PHASE II SOIL VAPOR INVESTIGATION REPORT 13592 Slover Avenue Fontana, California 92335 Assessor's Parcel Numbers (APNs): 0238-062-36-0000 & -39-0000

Alere Property Group LLC 100 Bayview Circle, Suite 310 Newport Beach, California 92660 (949) 509-5002

SCS ENGINEERS

Project No. 01221034.00 Task 2 | March 24, 2021

3900 Kilroy Airport Way, Suite 100 Long Beach, California 90806 (562) 426-9544

Table of Contents

Sect	tion	Page
DISC	CLAIMER	iv
1	INTRODUCTION	1
2	GENERAL BACKGROUND	1
3	PHYSICAL SETTING	2
	Physiographic Setting	2
	Geology and Soils	2
	Groundwater	2
4	INITIAL SITE INVESTIGATION AND ANALYTICAL RESULTS	3
	Subsurface Utilities Clearance	3
	Soil Vapor Sample Collection	3
	Soil Vapor Analytical Results	3
5	DISCUSSION OF ANALYTICAL RESULTS AND REGULATORY LIMITS	4
	VOCs in Soil Vapor	4
6	CONCLUSIONS AND RECOMMENDATIONS	4
7	REFERENCES	5

Figures

Figure 1 Site Location Map Figure 2 Google Aerial Imag

Figure 2 Google Aerial Image of Property Showing Soil Vapor Sample Locations

Appendix

Appendix A H&P Laboratory Report

This Phase II Soil Vapor Investigation Report dated March 24, 2021 for 13592 Slover Avenue, Fontana, California was prepared and reviewed by the following:

Tyler Watkins

Project Professional

yler Watkins

SCS ENGINEERS

Justin Rauzon, REPA Project Manager

SCS ENGINEERS

Jeffrey T. Sieg, PG Technical Reviewer

SCS ENGINEERS

DISCLAIMER

This report has been prepared for Alere Property Group LLC with specific application to an investigation of soil vapor conducted at 13592 Slover Avenue, Fontana, California. This report has been prepared in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, express or implied, is made as to the professional opinions presented herein. No other party, known or unknown to SCS Engineers, is intended as a beneficiary of this work product, its content or information embedded therein. Third parties use this report at their own risk.

Changes in site conditions may occur due to variation in rainfall, temperature, water usage, or other factors. Additional information that was not available to the consultant at the time of this investigation or changes that may occur on the site or in the surrounding area may result in modification to the site that would impact the summary and recommendations presented herein. This report is not a legal opinion.

1 INTRODUCTION

SCS Engineers (SCS) was retained by Alere Property Group LLC (Alere) to conduct a soil vapor investigation at 13592 Slover Avenue, Fontana, California (the "Property"). Investigation activities were conducted in accordance with SCS's proposal dated March 10, 2021 (Proposal No. 010257221). A map showing the location of the Property is provided as **Figure 1**.

2 GENERAL BACKGROUND

SCS prepared a Phase I Environmental Site Assessment (Phase I ESA) for the Property dated March 8, 2021 (SCS Project Number 01221034.00). The Property is located on the north side of Slover Avenue, approximately 3,500 feet west of the intersection between Slover Avenue and South Etiwanda Avenue. It is approximately 17.4 acres and is currently occupied by the Clark Pacific precast concrete manufacturing facility. There are four main buildings on the Property: a production building, wood shop, maintenance shop, and office. The remainder of the Property is occupied by pre-cast concrete manufacturing activities and associated parking areas.

With the exception of a few dirt pathways, the Property was undeveloped or vacant land from at least 1896 through the early-1950s. A natural seasonal drainage creek historically crossed the northwestern corner of the Property. The drainage area was diminished after a flood control channel was constructed 600 feet west of the Property in the early 1950s. Industrial facilities were constructed on the Property in the mid- to late-1950s, including three buildings and rail spurs. Site contacts reported that the original occupant was Kaiser Steel, but city directory records indicated that Graver Tank and Mfg. Co. (Graver) occupied the Property from 1955. Tecon Pacific purchased the Property in 1984 and, by 1990, the Property was developed in its present day configuration. Tecon Pacific conducted pre-cast concrete manufacturing operations. In 1999, ownership of the Property transferred from Tecon Pacific to Clark Pacific, however site operations remained the same.

SCS interviewed Mr. Richard Maddux, an environmental engineer with Clark Pacific. Mr. Maddux informed SCS that chlorinated solvents were historically used on the Property in a parts washer that was located in the maintenance area. According to Mr. Maddux, chlorinated solvent use at the Property ceased six years ago (circa 2015). In the Phase I ESA, SCS identified the industrial/manufacturing operations at the Property dating back to the 1950s as a recognized environmental condition (REC). Few details about the historical Kaiser and Graver operations were available. Clark Pacific (and likely its predecessor Tecon Pacific) used chlorinated solvents at the Property through approximately 2015.

Four underground storage tanks (USTs); a 1,000-gallon single-walled gasoline UST and three 20,000-gallon single-walled diesel USTs were historical located on the Property. The USTs were removed in 1991. The tanks were installed at the Property between 1986 and 1987. A report detailing the removal of the tanks was submitted to the San Bernardino County Fire Department (SBCFD). Data included in the report shows soil samples were collected from each end of the tanks, from one to two feet below the bottom of the tank. Soil samples were analyzed for total petroleum hydrocarbons (TPH) and fuel-related volatile organic compounds (VOCs) and the results for all parameters were not detected above the laboratory's reporting limit. The SBCFD granted a no further action (NFA) letter to the Property in 1998.

Regulatory database information identified no known or suspected contamination sites in the area immediately surrounding the Property. Based on the type of listing and relative cross- and upgradient locations, the Kaiser Streel facility and related sites approximately 0.5 to 0.75 miles to the north and northwest of the Property were considered as possible contributors to regional volatile

organic compound (VOC) groundwater contamination. A review of available groundwater information at the former Kaiser Steel facility, cross- and up-gradient from the Property, indicates that there have been some regional VOC impacts to groundwater. However, with the exception of a single trace detection of chloroform, the up-gradient Kaiser wells did not identify any detectable concentrations of VOCs during multiple sampling events between 2009 and 2011. Grounder is estimated to be more than 300 feet below ground surface at the Property. Based on the available information, SCS did not identify likely impacts to groundwater beneath the Property from onsite or offsite sources.

Reportedly, Clark Pacific utilized chlorinated solvents at the Property from 1999 until 2015. Considering Clark Pacific and Tecon Pacific conducted the same manufacturing processes, it is probable that chlorinated solvents were utilized even earlier, as far back as 1984. Based on the historical use of chlorinated solvents on the Property until approximately 2015, as wells as the industrial/manufacturing operations at the Property dating back to the 1950s, SCS recommended a Phase II investigation that included collection and laboratory analysis of soil vapor samples.

3 PHYSICAL SETTING

PHYSIOGRAPHIC SETTING

According to the U.S. Geological Survey (USGS) Fontana, California 7.5-minute topographic maps, the Property is located in the Upper Santa Ana Valley, a broad area bordered to the north by the Transverse Ranges (the San Gabriel and San Bernardino Mountains), to the south by the Jurupa Mountains and other ranges of the Perris Block, to the east by the San Jacinto Fault, and to the west by the Chino Fault. The Property is located at an average elevation of about 980 to 990 feet above mean sea level (msl); the local topography slopes to the south. The nearest surface water is the Etiwanda Creek/San Sevaine Creek flood control channel located approximately 645 feet west of the Property.

GEOLOGY AND SOILS

The surficial geological unit in the general area of the property consists of Holocene Younger Alluvium, which is made up predominantly of alluvial sand- and silt-sized bedrock fragments and reworked Older Alluvium. Underlying the surficial units is early Pleistocene-age Older alluvium consisting of sand, silty-sand, and gravel. The alluvial sediments range in thickness from 350 to 700 feet below ground surface (bgs). Below these units is dense, non-water-bearing granitic bedrock.

Surface sediments at the Property consist of alluvial material derived from the San Gabriel Mountains, located approximately seven miles to the north. Sediments encountered during a SCS Phase II investigation at the National Oilwell Varco Ameron Facility, located approximately 850 feet west of the Property at 13032 Slover Avenue, consisted primarily of medium- and coarse-grained sand with some gravel to approximately 30-40 feet bgs with fine sands and silts to depths of 150 feet bgs (SCS, 2013). Based on proximity, similar conditions are anticipated at the Property.

GROUNDWATER

The Property overlies the Upper Santa Ana Valley Groundwater Basin, Chino Subbasin. Based on measurements at former groundwater wells at the former National Oilwell Varco Ameron site, groundwater was encountered at approximately 311 feet bgs (SCS, 2013). Regional information from the Chino Basin Optimum Management Program indicates that groundwater in the area flows southwesterly in direction (Wildermuth, 2011). Groundwater in the area has been impacted by total

dissolved solids, total organic carbon, and traces of VOCs such as trichloroethene (TCE) and 1,1-dichloroethene, originating from the nearby Kaiser Steel Mill site (Wildermuth, 2011).

4 INITIAL SITE INVESTIGATION AND ANALYTICAL RESULTS

SUBSURFACE UTILITIES CLEARANCE

As required by law, SCS marked areas of investigation and contacted Underground Service Alert prior to conducting any subsurface work (Dig Alert No. A210680706). On March 15, 2021 GPRS Inc., of Los Angeles/Orange County, California conducted a geophysical survey using electromagnetic survey equipment to clear proposed boring locations of subsurface utilities and/or structures.

SOIL VAPOR SAMPLE COLLECTION

Field activities were conducted on March 15, 2021. Under the direction of SCS, H&P Mobile Geochemistry (H&P) of Carlsbad, California installed 15 temporary soil vapor probes, designated SV-1 through SV-15, to a depth of approximately 5 feet bgs. The location of the probes are depicted in **Figure 2**.

Vapor probes were installed using a truck-mounted direct-push drill rig or rotohammer and hand tools. At each location, a steel rod was advanced to the target depth. The steel rod was then retracted and new (clean) 1/8-inch diameter Nylaflow tubing, with a polypropylene filter placed on the bottom end, was inserted to the desired depth. Clean #2/12 Monterey sand was placed in a 6-inch vertical interval around each filter and dry granular bentonite was placed approximately 6-inches above the sand pack. Hydrated bentonite was used to seal the annulus of the boring.

Soil vapor sampling was conducted in general accordance with the Advisory – Active Soil Gas Investigations, published by the California Environmental Protection Agency (CalEPA), Department of Toxic Substance Control (DTSC), Los Angeles Regional Water Quality Control Board (LARWQCB), and San Francisco Regional Water Quality Control Board (SFRWQCB) in July 2015 (the "Guidance"). Following a minimum equilibration period of two hours, a shut-in test was conducted and then a leak-check compound (1,1-difluoroethane [1,1-DFA]) was placed at the surface while the tubing was purged to remove ambient air from the sampling system in order to ensure that the collected soil vapor sample was representative of subsurface conditions.

A total of 16 soil vapor samples (including a replicate sample from SV-6) were collected and analyzed for VOCs using Method H&P 8260SV, a modified version of EPA Method 8260B, in a mobile laboratory provided by H&P. H&P is certified by the United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP) to conduct the specified analysis. Chain-of custody documentation was completed to track the samples accurately from the point of collection through analysis.

Following completion of sample collection and analyses, the temporary probes were removed and boreholes were patched to match the surrounding surface. No soil cuttings requiring disposal were generated during this investigation.

SOIL VAPOR ANALYTICAL RESULTS

The H&P laboratory report, chain-of-custody documentation, and quality assurance/control (QA/QC) data are included as **Appendix B**. As shown, VOCs were not detected in any of the soil vapor samples at concentrations above the laboratory's detection limits.

5 DISCUSSION OF ANALYTICAL RESULTS AND REGULATORY LIMITS

VOCS IN SOIL VAPOR

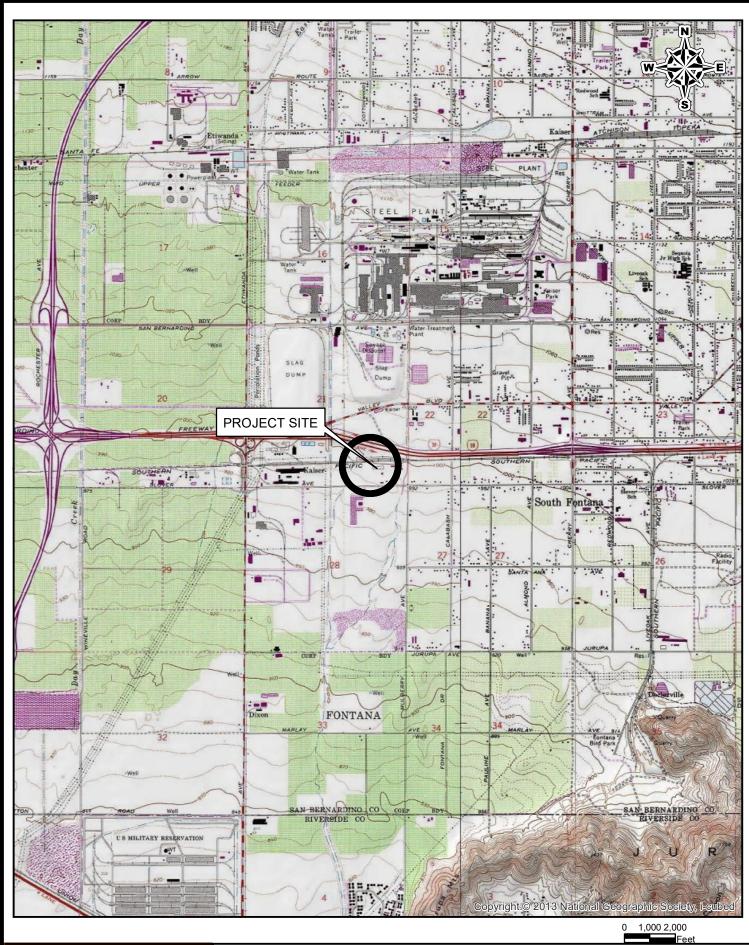
Regulatory agencies such as the United States Environmental Protection Agency (U.S. EPA) and the Department of Toxic Substance Control (DTSC) have calculated screening levels for soil vapor samples that are considered protective of human-health in the event that vapor intrusion from VOCs is occurring. The calculations use various attenuation, hazard, inhalation risk factors for the specific constituent on concern. As stated, none of the samples contained VOCs at concentrations above the laboratory's detection limit. The laboratory's detection limits are far below the screening levels utilizing an attenuation factor of 0.0005 for commercial/industrial land use, suggesting that even if VOCs were present at the laboratory's detection limit they would not be at concentrations that would present a significant health risk.

In the latest update to Human and Ecological Risk Office (HERO) Note No. 3, DTSC also recommended that screening assessments calculate soil vapor screening levels using the U.S. EPA recommended attenuation factor of 0.03 (based on June 2015 guidance) for sub-slab soil gas and "near-source" exterior soil gas. Use of this attenuation factor was also in the Public Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion released by DTSC and the California Water Resources Control Boards in February 2020. These attenuation factors result in extremely conservative screening levels.

With the exception of tetrachloroethene, benzene, and ethylbenzene, the laboratory's reporting limit for specific analytes are below the screening levels using an attenuation factor of 0.03, indicating no significant risks associated with vapor intrusion. Given that the screening levels for VOCs, utilizing an attenuation factor of 0.03 is an extremely conservative factor generated from a limited study of primarily residential homes with degraded concrete/basements, it would not apply to new development. Therefore, the laboratory's reporting limit at these low levels is considered sufficient to show that there is no significant risk to human health from vapor intrusion of VOCs at the Property.

6 CONCLUSIONS AND RECOMMENDATIONS

On March 15, 2021, SCS conducted a soil vapor investigation at the Property. Based on results of this investigation, SCS concludes the following:

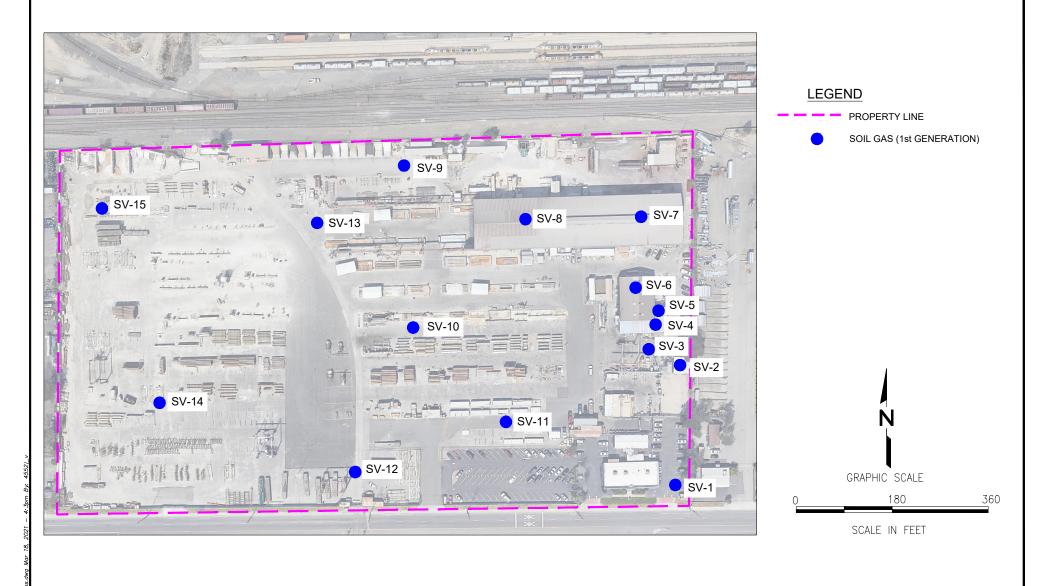

- VOCs were not detected in any of the samples analyzed at concentrations above laboratory reporting limits.
- The results of the soil vapor investigation indicate that there are no significant health risks associated with vapor intrusion present at the Property.

Additional investigation of soil vapor is not recommended at this time.

7 REFERENCES

- California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), June 2020. *Human Health Risk Assessment (HHRA) Note Number* 3.
- California Department of Toxic Substances Control (DTSC) and California Environmental Protection Agency (CalEPA), October 2011. *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance).*
- California Department of Toxic Substances Control (DTSC) and California Water Resources Control Boards, February 2020. *Public Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion*.
- California Environmental Protection Agency (CalEPA) and California Department of Toxic Substances Control (DTSC), July 2015. *Advisory Active Soil Gas Investigations*.
- SCS Engineers, March 8, 2021. Phase I Environmental Site Assessment, 13592 Slover Avenue, Fontana, California 92335.
- U.S. EPA, June 2015. Oswer Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air.
- U.S. EPA, November 2020. Regional Screening Level (RSL) Summary Table.
- Wildermuth Environmental Inc. (Wildermuth), June 2017. Chino Basin Optimum Management Program, 2016 State of the Basin Report.

Figures 1 and 2



SCS ENGINEERS

3900 KILROY AIRPORT WAY, SUITE 100 LONG BEACH, CALIFORNIA 90806 13592 Slover Avenue Fontana, California 92335 Job No.: 01221034.00

Title: SITE LOCATION MAP

FIGURE

SCS ENGINEERS

ENVIRONMENTAL CONSULTANTS 3900 KILROY AIRPORT WAY, SUITE 100

LONG BEACH, CA 90806 PH. (562) 426-9544 FAX. (562) 427-0805

ROJ. NO.	01221034.00 T2	DWN. BY: J.VARGAS	ACAD FILE: LONG BEACH
SN. BY:	J.VARGAS	T.WATKINS	J.RAUZON

CLIENT:

ALERE PROPERTY GROUP LLC 100 BAYVIEW CIRCLE, SUITE 310 NEWPORT BEACH, CALIFORNIA

SHEET TITLE:		
	GOOGLE AERIAL IMAGE SHOWING SOIL VAPOR SAMPLE LOCATIONS	
DPO IECT TITLE:		-

PROJECT TITLE:

13592 SLOVER AVENUE FONTANA, CALIFORNIA

DATE:
MARCH 2021
SCALE:
1" = 180'

FIGURE NO.

Appendix A H&P Laboratory Report

Justin Rauzon SCS Engineers - Long Beach 3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816

H&P Project: SCS031621-10

Client Project: 01221034.00 T2 / Fontana

Dear Justin Rauzon:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 15-Mar-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- · Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Reported:
Project Manager: Justin Rauzon 17-Mar-21 11:57

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-6-5	E103048-01	Vapor	15-Mar-21	15-Mar-21
SV-6-5 REP	E103048-02	Vapor	15-Mar-21	15-Mar-21
SV-4-5	E103048-03	Vapor	15-Mar-21	15-Mar-21
SV-5-5	E103048-04	Vapor	15-Mar-21	15-Mar-21
SV-2-5	E103048-05	Vapor	15-Mar-21	15-Mar-21
SV-3-5	E103048-06	Vapor	15-Mar-21	15-Mar-21
SV-11-5	E103048-07	Vapor	15-Mar-21	15-Mar-21
SV-12-5	E103048-08	Vapor	15-Mar-21	15-Mar-21
SV-13-5	E103048-09	Vapor	15-Mar-21	15-Mar-21
SV-15-5	E103048-10	Vapor	15-Mar-21	15-Mar-21
SV-14-5	E103048-11	Vapor	15-Mar-21	15-Mar-21
SV-10-5	E103048-12	Vapor	15-Mar-21	15-Mar-21
SV-1-5	E103048-13	Vapor	15-Mar-21	15-Mar-21
SV-9-5	E103048-14	Vapor	15-Mar-21	15-Mar-21
SV-7-5	E103048-15	Vapor	15-Mar-21	15-Mar-21
SV-8-5	E103048-16	Vapor	15-Mar-21	15-Mar-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach 3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816	Project: SC Project Number: 01 Project Manager: Jus		Reported: 17-Mar-21 11:57							
DETECTIONS SUMMARY										
Sample ID: SV-6-5	Laboratory ID:	D: E103048-01								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-6-5 REP	Laboratory ID:	E103048-02								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-4-5	Laboratory ID:	E103048-03								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-5-5	Laboratory ID:	E103048-04								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-2-5	Laboratory ID:	E103048-05								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-3-5	Laboratory ID:	E103048-06								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-11-5	Laboratory ID:	E103048-07								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					
Sample ID: SV-12-5	Laboratory ID:	E103048-08								
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach 3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816	Kilroy Airport Way, Suite 100 Project Number: 01221034.00 T2 / Fon				
Sample ID: SV-13-5	Laboratory ID:	E103048-09			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-15-5	Laboratory ID:	E103048-10			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-14-5	Laboratory ID:	E103048-11			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-10-5	Laboratory ID:	E103048-12			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-1-5	Laboratory ID:	E103048-13			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-9-5	Laboratory ID:	E103048-14			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-7-5	Laboratory ID:	E103048-15			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes
Sample ID: SV-8-5	Laboratory ID:	E103048-16			
Analyte No Detections Reported	Result	Reporting Limit	Units	Method	Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 (E103048-01) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	,,	,,	"	"	"	
m,p-Xylene	ND ND	0.40	,,	"	"	"	"	"	
m,p-xyicht	טט	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 (E103048-01) Vapor Sampled: 15-Mar-21	Received: 1	5-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	75-12	25	"	"	"	"	
Surrogate: Dioromojiuorometnane Surrogate: 1,2-Dichloroethane-d4		100 % 105 %	75-12 75-12		,,	,,	,,	"	
Surrogate: 1,2-Dichloroethane-a4 Surrogate: Toluene-d8		95.4 %	75-12 75-12		,,	,,	,,	"	
Surrogate: 10tuene-ao Surrogate: 4-Bromofluorobenzene		95.4 % 96.1 %	75-12 75-12		,,	,,	,,	"	
Surroguie. 7-Diomojiuorovenzene		90.1 /0	/ 3-12	۷.5					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 REP (E103048-02) Vapor Sampled: 15-	Mar-21 Recei	ved: 15-Mar-2	21						
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p ryiene	טוו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 REP (E103048-02) Vapor	Sampled: 15-Mar-21 Receiv	ed: 15-Mar-2	21						
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Cumpo acta, Dibuomo du anoverde en e		96.2 %	75	125	"	"	"	"	
Surrogate: Dibromofluoromethane		96.2 % 103 %		125 125	,,	,,	,,	"	
Surrogate: 1,2-Dichloroethane-d4		103 % 92.4 %		125 125	,,	"	"	"	
Surrogate: Toluene-d8		92.4 % 86.4 %		125 125	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.4 %	/3-	123					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4-5 (E103048-03) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
7r J	.,,,	0.10							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

The Proble Geochemistry, Inc.													
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
SV-4-5 (E103048-03) Vapor Sampled: 15-M	lar-21 Received: 1	5-Mar-21											
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV					
Styrene	ND	0.40	"	"	"	"	"	"					
Bromoform	ND	0.40	"	"	"	"	"	"					
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"					
n-Propylbenzene	ND	0.40	"	"	"	"	"	"					
Bromobenzene	ND	0.40	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"					
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
n-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"					
Naphthalene	ND	0.080	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Surrogate: Dibromofluoromethane		95.9 %	75-12	5	"	"	"	"					
Surrogate: 1,2-Dichloroethane-d4		95.3 %	75-12	5	"	"	"	"					
Surrogate: Toluene-d8		96.5 %	75-12	5	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		95.4 %	75-12	5	"	"	"	"					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-5 (E103048-04) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.000	"	"	"	,,	"	"	
Chlorobenzene	ND	0.080	"	"	"	,,	"	"	
Ethylbenzene	ND ND	0.000	"	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Xylene	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Ayiche	טוו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

The Proble Geochemistry, Inc.													
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
SV-5-5 (E103048-04) Vapor Sampled: 15-M	Mar-21 Received: 1	5-Mar-21											
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV					
Styrene	ND	0.40	"	"	"	"	"	"					
Bromoform	ND	0.40	"	"	"	"	"	"					
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"					
n-Propylbenzene	ND	0.40	"	"	"	"	"	"					
Bromobenzene	ND	0.40	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"					
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"					
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"					
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
n-Butylbenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"					
Naphthalene	ND	0.080	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"					
Surrogate: Dibromofluoromethane		106 %	75-12	5	"	"	"	"					
Surrogate: 1,2-Dichloroethane-d4		93.6 %	75-12	5	"	"	"	"					
Surrogate: Toluene-d8		95.5 %	75-12	5	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		86.5 %	75-12	5	"	"	"	"					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-5 (E103048-05) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-5 (E103048-05) Vapor Sampled: 15-Ma	r-21 Received: 1:	5-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87.8 %	75-	125	"	"	"	"	
Surrogate: Toluene-d8		98.5 %	75-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.7 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-5 (E103048-06) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.000	"	"	"	,,	"	"	
Chlorobenzene	ND	0.080	"	"	"	,,	"	"	
Ethylbenzene	ND ND	0.000	"	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Xylene	ND ND	0.40	,,	"	"	,,	"	"	
m,p-Ayiene	טוו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-5 (E103048-06) Vapor Sampled: 15-Mar-2	1 Received: 1	5-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	75-12	25	"	"	"	"	
Surrogate: Dibromojiuoromethane Surrogate: 1,2-Dichloroethane-d4		105 % 106 %	75-12 75-12		,,	"	"	"	
Surrogate: 1,2-Dichloroethane-a4 Surrogate: Toluene-d8		106 % 96.8 %	/5-12 75-12		,,	,,	"	,,	
Surrogate: 1011ene-as Surrogate: 4-Bromofluorobenzene		90.8 % 97.0 %	75-12 75-12		"	"	"	"	
Zan zone za zanojmorovenzene		27.070	, 0 12						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-5 (E103048-07) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
7 J		5.10							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-11-5 (E103048-07) Vapor Sampled: 15-Ma	r-21 Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	75-1	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	75-1	125	"	"	"	"	
Surrogate: Toluene-d8		95.3 %	75-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.7 %	75-1	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-5 (E103048-08) Vapor Sampled: 15-Mar-2	Received:	: 15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	,,	"	"	"	
,p,	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-12-5 (E103048-08) Vapor Sampled: 15-M	Mar-21 Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		91.9 %	75-1	25	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	75-1	25	"	"	"	"	
Surrogate: Toluene-d8		93.9 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.9 %	75-1	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-13-5 (E103048-09) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-13-5 (E103048-09) Vapor Samp	oled: 15-Mar-21 Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	11	
Surrogate: Dibromofluoromethane		95.7 %	75-1		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	75-1		"	"	"	"	
Surrogate: Toluene-d8		93.9 %	75-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	75-1	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-15-5 (E103048-10) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40		"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40		"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p Ayrene	טאו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-15-5 (E103048-10) Vapor Sampled: 15-M	Iar-21 Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		97.3 %	75-1	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		102 %	75-1	125	"	"	"	"	
Surrogate: Toluene-d8		93.3 %	75-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	75-1	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-14-5 (E103048-11) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.40	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
m,p-Xylene	ND	0.40	"	"	"	"	"	"	
m,p Ayrene	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

The Mobile George Mistry, The.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-14-5 (E103048-11) Vapor Sampled: 15-M	Mar-21 Received:	15-Mar-21										
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV				
Styrene	ND	0.40	"	"	"	"	"	"				
Bromoform	ND	0.40	"	"	"	"	"	"				
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"				
n-Propylbenzene	ND	0.40	"	"	"	"	"	"				
Bromobenzene	ND	0.40	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"				
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
n-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"				
Naphthalene	ND	0.080	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane		104 %	75-12	5	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		95.6 %	75-12	5	"	"	"	"				
Surrogate: Toluene-d8		102 %	75-12	5	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		93.4 %	75-12	5	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon

17-Mar-21 11:57

Reported:

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-10-5 (E103048-12) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080		"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40		"	"	"	"	"	
Bromodichloromethane	ND	0.40		"	"	"	"	"	
Dibromomethane	ND	0.40		"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.40	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.40		,,	"	"	"	"	
m,p-Xylene	ND ND	0.40	,,	,,	,,	"	,,	"	
m,p-Ayrene	טאו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-10-5 (E103048-12) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Summarian Dilamonda and an administrative		100.67	75 1	25	,,	"	"	"	
Surrogate: Dibromofluoromethane		108 %	75-12		,,	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.4 %	75-12		,,	"	"	"	
Surrogate: Toluene-d8		97.1 %	75-12		,,	"	,,	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	75-12	23	"	,,	"	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Reported:
Project Manager: Justin Rauzon 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-5 (E103048-13) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	n .	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	n .	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	n .	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	n .	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.000	"	"	"	,,	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND ND	0.000	"	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	"	"	"	,,	"	"	
m,p-Xylene	ND	0.40	"	"	"	,,	"	"	
m,p rytene	טויו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-5 (E103048-13) Vapor Sampled: 15-Mar-21	Received: 1	5-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	75-1	25	"	"	"	"	
Surrogate: Dioromojtuorometnane Surrogate: 1,2-Dichloroethane-d4		102 % 90.1 %	75-1 75-1		,,	,,	,,	"	
Surrogate: 1,2-Dichioroethane-a4 Surrogate: Toluene-d8		90.1 % 97.7 %	/5-1 75-1		,,	,,	,,	"	
Surrogate: 101uene-as Surrogate: 4-Bromofluorobenzene		97.7 % 90.7 %	75-1 75-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-9-5 (E103048-14) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.40	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	,,	,,	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	,,	"	"	"	"	"	
Tetrachloroethene	ND	0.080	,,	"	,,	"	"	"	
Dibromochloromethane	ND ND	0.080	,,	,,	"	"	"	"	
Chlorobenzene	ND ND	0.080	,,	"	"	"	"	"	
Ethylbenzene	ND ND	0.080	,,	,,	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	"	"	,,	
			,,	"	"	"	"	"	
m,p-Xylene	ND	0.40						**	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

The Proble George Strate												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-9-5 (E103048-14) Vapor Sampled: 15-M	Mar-21 Received: 1	5-Mar-21										
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV				
Styrene	ND	0.40	"	"	"	"	"	"				
Bromoform	ND	0.40	"	"	"	"	"	"				
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"				
n-Propylbenzene	ND	0.40	"	"	"	"	"	"				
Bromobenzene	ND	0.40	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"				
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"				
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"				
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
n-Butylbenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"				
Naphthalene	ND	0.080	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane		100 %	75-12	5	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		97.3 %	75-12	5	"	"	"	"				
Surrogate: Toluene-d8		97.4 %	75-12	5	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		95.7 %	75-12	5	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7-5 (E103048-15) Vapor Sampled: 15-Mar-21	Received: 1	5-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.080	"	"	"	"	"	"	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	,,	"	,,	"	,,	"	
1,2-Dibromoethane (EDB)	ND	0.40	,,	"	,,	"	,,	"	
1,3-Dichloropropane	ND	0.40	"	,,	"	"	"	"	
Tetrachloroethene	ND	0.080	,,	,,	,,	"	,,	"	
Dibromochloromethane	ND ND	0.080	,,	"	,,	"	"	"	
Chlorobenzene	ND ND	0.080	,,	"	,,	"	"	"	
Ethylbenzene	ND ND	0.080	,,	,,	,,	"	,,	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	,,	"	"	"	"	,,	
			,,	"	"	"	"	,,	
m,p-Xylene	ND	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

17-Mar-21 11:57

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana
Project Manager: Justin Rauzon

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7-5 (E103048-15) Vapor Sampled	: 15-Mar-21 Received: 1	5-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	75-12	25	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	75-12		"	"	"	"	
Surrogate: Toluene-d8		97.6 %	75-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.7 %	75-12		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-8-5 (E103048-16) Vapor Sampled: 15-Mar-2	1 Received: 1	15-Mar-21							
1,1-Difluoroethane (LCC)	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	ND	0.40	"	"	"	"	"	"	
Chloromethane	ND	0.40	"	"	"	"	"	"	
Vinyl chloride	ND	0.040	"	"	"	"	"	"	
Bromomethane	ND	0.40	"	"	"	"	"	"	
Chloroethane	ND	0.40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.40	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	n .	
1,1-Dichloroethane	ND	0.40	"	"	"	"	"	n .	
2,2-Dichloropropane	ND	0.40	"	"	"	"	"	n .	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	n .	
Chloroform	ND	0.080	"	"	"	"	"	n .	
Bromochloromethane	ND	0.40	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.080	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.080	"	"	"	"	"	"	
Benzene	ND	0.080	"	"	"	"	"	"	
Trichloroethene	ND	0.080	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Bromodichloromethane	ND	0.40	"	"	"	"	"	"	
Dibromomethane	ND	0.40	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
Toluene	ND	0.80	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.40	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.40	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.40	"	"	"	"	"	"	
Tetrachloroethene	ND	0.080	"	"	"	"	"	"	
Dibromochloromethane	ND	0.000	"	"	"	"	"	"	
Chlorobenzene	ND	0.080	"	"	"	"	"	"	
Ethylbenzene	ND	0.000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.40	"	"	"	,,	"	"	
m,p-Xylene	ND ND	0.40	"	"	"	,,	"	"	
ш,р-лучене	שוו	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon Reported: 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-8-5 (E103048-16) Vapor Sampled: 15-Mar-21	Received:	15-Mar-21							
o-Xylene	ND	0.40	ug/l	0.04	EC11607	16-Mar-21	16-Mar-21	H&P 8260SV	
Styrene	ND	0.40	"	"	"	"	"	"	
Bromoform	ND	0.40	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	0.40	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.40	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.40	"	"	"	"	"	"	
n-Propylbenzene	ND	0.40	"	"	"	"	"	"	
Bromobenzene	ND	0.40	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.40	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.40	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.40	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.40	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
n-Butylbenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.40	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.40	"	"	"	"	"	"	
Naphthalene	ND	0.080	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.40	"	"	"	"	"	"	
Sumagata: Dibuamafluoyamathana		101 %	75	125	"	"	"	"	
Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4		101 % 100 %		125 125	,,	,,	,,	"	
Surrogate: 1,2-Dichioroethane-a4 Surrogate: Toluene-d8		95.3 %		125 125	,,	,,	"	"	
Surrogate: 10tuene-as Surrogate: 4-Bromofluorobenzene		93.3 % 88.2 %		125 125	,,	,,	,,	"	
Surroguie. 4-Dromojiuorovenzene		00.2 %	/3-	123					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Reported:
Project Manager: Justin Rauzon 17-Mar-21 11:57

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EC11607 - EPA 5030			
Blank (EC11607-BLK1)			
1,1-Difluoroethane (LCC)	ND	0.40	ug/l
Dichlorodifluoromethane (F12)	ND	0.40	"
Chloromethane	ND	0.40	"
Vinyl chloride	ND	0.040	"
Bromomethane	ND	0.40	"
Chloroethane	ND	0.40	"
Trichlorofluoromethane (F11)	ND	0.40	"
1,1-Dichloroethene	ND	0.40	"
1,1,2 Trichlorotrifluoroethane (F113)	ND	0.40	"
Methylene chloride (Dichloromethane)	ND	0.40	"
Methyl tertiary-butyl ether (MTBE)	ND	0.40	"
trans-1,2-Dichloroethene	ND	0.40	"
1,1-Dichloroethane	ND	0.40	"
2,2-Dichloropropane	ND	0.40	"
cis-1,2-Dichloroethene	ND	0.40	"
Chloroform	ND	0.080	"
Bromochloromethane	ND	0.40	"
1,1,1-Trichloroethane	ND	0.40	"
1,1-Dichloropropene	ND	0.40	"
Carbon tetrachloride	ND	0.080	"
1,2-Dichloroethane (EDC)	ND	0.080	"
Benzene	ND	0.080	"
Trichloroethene	ND	0.080	"
1,2-Dichloropropane	ND	0.40	"
Bromodichloromethane	ND	0.40	"
Dibromomethane	ND	0.40	"
cis-1,3-Dichloropropene	ND	0.40	"
Toluene	ND	0.80	"
trans-1,3-Dichloropropene	ND	0.40	"
1,1,2-Trichloroethane	ND	0.40	"
1,2-Dibromoethane (EDB)	ND	0.40	"
1,3-Dichloropropane	ND	0.40	"
Tetrachloroethene	ND	0.080	"
Dibromochloromethane	ND	0.40	"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Limit

Notes

RPD

SCS Engineers - Long Beach

Analyte

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Reported:
Project Manager: Justin Rauzon 17-Mar-21 11:57

Source

Result

%REC

%REC

Limits

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Units

Reporting

Limit

Result

Spike

Level

ritaryte	Result								
Batch EC11607 - EPA 5030									
Blank (EC11607-BLK1)				Prepared &	Analyzed:	16-Mar-21			
Chlorobenzene	ND	0.080	ug/l						
Ethylbenzene	ND	0.40	"						
1,1,1,2-Tetrachloroethane	ND	0.40	"						
m,p-Xylene	ND	0.40	"						
o-Xylene	ND	0.40	"						
Styrene	ND	0.40	"						
Bromoform	ND	0.40	"						
(Sopropylbenzene (Cumene)	ND	0.40	"						
1,1,2,2-Tetrachloroethane	ND	0.40	"						
1,2,3-Trichloropropane	ND	0.40	"						
n-Propylbenzene	ND	0.40	"						
Bromobenzene	ND	0.40	"						
1,3,5-Trimethylbenzene	ND	0.40	"						
2-Chlorotoluene	ND	0.40	"						
4-Chlorotoluene	ND	0.40	"						
tert-Butylbenzene	ND	0.40	"						
1,2,4-Trimethylbenzene	ND	0.40	"						
sec-Butylbenzene	ND	0.40	"						
p-Isopropyltoluene	ND	0.40	"						
1,3-Dichlorobenzene	ND	0.40	"						
1,4-Dichlorobenzene	ND	0.40	"						
n-Butylbenzene	ND	0.40	"						
1,2-Dichlorobenzene	ND	0.40	"						
1,2-Dibromo-3-chloropropane	ND	4.0	"						
1,2,4-Trichlorobenzene	ND	0.40	"						
Hexachlorobutadiene	ND	0.40	"						
Naphthalene	ND	0.080	"						
1,2,3-Trichlorobenzene	ND	0.40	"						
Surrogate: Dibromofluoromethane	1.98		"	2.00		98.9	75-125		
Surrogate: 1,2-Dichloroethane-d4	2.07		"	2.00		103	75-125		
Surrogate: Toluene-d8	1.87		"	2.00		93.7	75-125		
Surrogate: 4-Bromofluorobenzene	1.84		"	2.00		92.2	75-125		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach

Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806-6816 Project Number: 01221034.00 T2 / Fontana Project Manager: Justin Rauzon

Spike

Source

Reported: 17-Mar-21 11:57

RPD

%REC

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC11607 - EPA 5030										
LCS (EC11607-BS1)				Prepared &	ኔ Analyzed:	16-Mar-21				
Dichlorodifluoromethane (F12)	3.5	0.50	ug/l	5.00		70.4	70-130			
Vinyl chloride	5.6	0.050	"	5.00		113	70-130			
Chloroethane	6.1	0.50	"	5.00		122	70-130			
Trichlorofluoromethane (F11)	6.6	0.50	"	5.00		132	70-130			QL-1H
1,1-Dichloroethene	4.9	0.50	"	5.00		97.3	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	4.6	0.50	"	5.00		92.0	70-130			
Methylene chloride (Dichloromethane)	4.8	0.50	"	5.00		96.8	70-130			
trans-1,2-Dichloroethene	4.9	0.50	"	5.00		98.7	70-130			
1,1-Dichloroethane	4.3	0.50	"	5.00		85.9	70-130			
cis-1,2-Dichloroethene	5.1	0.50	"	5.00		103	70-130			
Chloroform	5.2	0.10	"	5.00		103	70-130			
1,1,1-Trichloroethane	3.9	0.50	"	5.00		77.6	70-130			
Carbon tetrachloride	3.7	0.10	"	5.00		74.3	70-130			
1,2-Dichloroethane (EDC)	5.1	0.10	"	5.00		102	70-130			
Benzene	5.0	0.10	"	5.00		99.3	70-130			
Trichloroethene	5.3	0.10	"	5.00		106	70-130			
Toluene	4.9	1.0	"	5.00		97.2	70-130			
1,1,2-Trichloroethane	5.3	0.50	"	5.00		107	70-130			
Tetrachloroethene	4.6	0.10	"	5.00		92.7	70-130			
Ethylbenzene	4.9	0.50	"	5.00		98.5	70-130			
1,1,1,2-Tetrachloroethane	3.9	0.50	"	5.00		79.0	70-130			
m,p-Xylene	9.7	0.50	"	10.0		97.0	70-130			
o-Xylene	4.7	0.50	"	5.00		93.7	70-130			
1,1,2,2-Tetrachloroethane	6.9	0.50	"	5.00		138	70-130			QL-1H
Surrogate: Dibromofluoromethane	2.44		"	2.50		97.6	75-125			
Surrogate: 1,2-Dichloroethane-d4	2.43		"	2.50		97.1	75-125			
Surrogate: Toluene-d8	2.54		"	2.50		102	75-125			
Surrogate: 4-Bromofluorobenzene	2.19		"	2.50		87.8	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - Long Beach Project: SCS031621-10

3900 Kilroy Airport Way, Suite 100 Project Number: 01221034.00 T2 / Fontana Reported:

Long Beach, CA 90806-6816 Project Manager: Justin Rauzon 17-Mar-21 11:57

Notes and Definitions

QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound

is qualified and should be considered biased high.

LCC Leak Check Compound

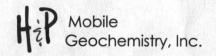
ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

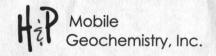

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.



2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

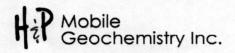
DATE: 3/15/21 Page 1 of 2

	La	b Client an	d Projec	t Information	1.03								Sample	Rece	eipt (La	ab Use	Only)		
Lab Client/Consultant: SCS Engineers Lab Client Project Manager: JUSTIN RAUZON				Project Name /#: 6122103 Project Location: 13502	Lover A	ve .	Fourt	ana	. CA		Н8	ate Rec'd: P Project	# S C	d21 503		21-1		1-0}	7
Lab Client Address:	Seport W	ay. Su	i le 100	Report E-Mail(s); Twatkin	s a scse	ngine	ers.c	om			Sa	mple Inta	ot: Y		0302 No [ADDRESS NO.	CONTROL STATE	ow	
Phone Number: (562) 306-0323		a la			trio in the season	at Make	1,2,003		SQ M			eceipt Gar					Temp:		
Reporting Requireme	ents	т	urnarour	nd Time	San	npler Info	rmation	1				tside Lab							
Standard Report ☐ Level III ☐ Excel EDD ☐ Other EDD:	Level IV			s for preliminary or final report)	Sampler(s):	lla					Re	ceipt Note	es/Tracki	ng #:					
CA Geotracker Global ID:				24 hrs	Date: 3/5/2	й Ч										Lab	PM Initia	ıls: W	A
* Preferred VOC units (please che	U UCCAN	it+alus p	Waded Waspieja				- 16 - 17	TO-15 V 1815	/ Project List TO-15]T0-15	☐T0-15	TO-15m rtic Fractions	mpound	v 8015m	ASTM D1945 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \				
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE ~	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project List	Oxygenates Reference Naphthalene		Aromatic/Aliphatic Fractions		Methane by EPA 8015m	Fixed Gases by ASTM D1945				
81-6-5		03/15/21	1216	W.	ZaomL	522	-,92	X					X						
SV-6-5 REP '		03/15/21	1219	5V	200 ml	532	-86	X					X						
SV-4-5		03/15/21	1233	5V	20001	525	-67	X					X		910				
5V-5-5		03/15/21	1248	5V	200mL	533	-82	X					X						7
51-2-5		03/15/21	302	5V,	200ml	526	-59	X					X						
51-3-5		03/15/21	1323	5V,	200ml	523	-1.30	X					X						
51-11-5		03/15/21	1339	5V,	20ml	521	52	X		the second			X		100		100		
SV-12-5		03/15/21	1349	51	ZoomL	516	-47	X					X						
SV-13-5		03/15/21	1406	51/	200 ml	513	51	X					X						
Approved/Relinquished by:		03/15/21	1416	51	200ml	519	1.13	X			000	nony: 4	IX	Date	,		Time:	149	
Approved/Refinquished by:		Company:		Date: 9/15/21	1457	Received by:	多	Ví.			Com	pany:	#P	Date	3/15/	124	Time:	457	
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						pany:		Date):		Time:		

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 3/15/21 Page 2 of 2


	La	b Client an	d Projec	t Information		1.590									ipt (La	b Use (Only)	
Lab Client/Consultant: SCS Engineers Lab Client Project Manager: Lab Client Address: 3900 Ellmy Ai Lab Client City State, Zip: Long Beach, CA Phone Number:	rport wa		te 100	Project Name /#: O \ 22102@ Project Location: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Dover Av	e Fo		a, cA	2		Lab W Sampl Recei	ork Ord e Intact pt Gaug	ler#	SOS	Control No	See Not		4.02 N
Reporting Requirem Standard Report Level III Excel EDD Other EDD: CA Geotracker Global ID:	ents	☐ Stand	t, 10 days f	s for preliminary or final report)		urosales	-				Outsid		s/Trackir	ng #:		Lab F	PM Initial	s: MA
* Preferred VOC units (please compage)	hoose one):			Julia 3/10/20			341	VOCs Standard Full List / 1925 8260SV □ TO-15 V/1925 VOCs Short List / Project List	☐ TO-15 ☐ TO-15	10-15	□ TO-15m	Aromatic/Aliphatic Fractions R260SVm T0-15m	Compound PA He	PA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	Oxygenates	Naphthalene	TPHv as Gas	Aromatic/Alipl	Leak Check Compound	by	Fixed Gases t			
5V-14-5 4N-10-5 5V-1-5 4N-9-5 4N-7-5 8V-8-5		03/15/21 03/15/21 03/15/21 03/15/21 03/15/21	1427 1436 1451 1409 1423 1441	5V. 4N/ 5V/ 5V/ 5V/ 5V/ 5V/ 5V/ 5V/ 5V/ 5V/ 5V	200 ml 200 ml 200 ml 200 ml 200 ml	509 520 515 508 517 314	-103 -78 -(4) -141 -147 -147	XXXXX					X X X X X X X					
Approved/Reilinquished by: Approved/Reilinquished by: Approved/Reilinquished by:	ter	Company:	,	Date:	Time:	Received by: Received by: Received by:	₩/	h			Compar	y: H	1 4 F	Date Date	e: 3/1	5/1	Time:	457

H&P 8260SV (Modified EPA 8260B)

		Low RL*	Low RL*
Analyte	CAS No.	Vapor (µg/L)	Vapor (µg/m³)
Dichlorodifluoromethane (F12)	75-71-8	0.4	400
Chloromethane	74-87-3	0.4	400
Vinyl chloride	75-01-4	0.04	40
Bromomethane	74-83-9	0.4	400
Chloroethane	75-00-3	0.4	400
Trichlorofluoromethane (F11)	75-69-4	0.4	400
1,1-Dichloroethene	75-35-4	0.4	400
1,1,2-Trichlorotrifluoroethane (F113)	76-13-1	0.4	400
Methylene chloride (Dichloromethane)	75-09-2	0.4	400
Methyl tertiary-butyl ether (MTBE)	1634-04-4	0.4	400
trans-1,2-Dichloroethene	156-60-5	0.4	400
1,1-Dichloroethane	75-34-3	0.4	400
2,2-Dichloropropane	594-20-7	0.4	400
cis-1,2-Dichloroethene	156-59-2	0.4	400
Bromochloromethane	74-97-5	0.4	400
Chloroform	67-66-3	0.08	80
1,1,1-Trichloroethane	71-55-6	0.4	400
1,1-Dichloropropene	563-58-6	0.4	400
Carbon tetrachloride	56-23-5	0.08	80
1,2-Dichloroethane (EDC)	107-06-2	0.08	80
Benzene	71-43-2	0.08	80
Trichloroethene	79-01-6	0.08	80
1,2-Dichloropropane	78-87-5	0.4	400
Dibromomethane	74-95-3	0.4	400
Bromodichloromethane	75-27-4	0.4	400
cis-1,3-Dichloropropene	10061-01-5	0.4	400
Toluene	108-88-3	0.8	800
trans-1,3-Dichloropropene	10061-02-6	0.4	400
1,1,2-Trichloroethane	79-00-5	0.4	400
1,3-Dichloropropane	142-28-9	0.4	400
Tetrachloroethene	127-18-4	0.08	80
Dibromochloromethane	124-48-1	0.4	400
1,2-Dibromoethane (EDB)		0.4	400
Chlorobenzene	106-93-4 108-90-7	0.08	80
	630-20-6	0.08	400
1,1,1,2-Tetrachloroethane			
Ethylbenzene	100-41-4	0.4	400
m,p-Xylene	179601-23-1	0.4	400
o-Xylene	95-47-6	0.4	400
Styrene	100-42-5	0.4	400
Bromoform	75-25-2	0.4	400
Isopropylbenzene (Cumene)	98-82-8	0.4	400
1,1,2,2-Tetrachloroethane	79-34-5	0.4	400
n-Propylbenzene	103-65-1	0.4	400
1,2,3-Trichloropropane	96-18-4	0.4	400
Bromobenzene	108-86-1	0.4	400
2-Chlorotoluene	95-49-8	0.4	400
1,3,5-Trimethylbenzene	108-67-8	0.4	400
4-Chlorotoluene	106-43-4	0.4	400

H&P 8260SV Rev 0, 5/12/16

H&P 8260SV (Modified EPA 8260B)

Analyte	CAS No.	Low RL* Vapor (µg/L)	Low RL* Vapor (µg/m³)
tert-Butylbenzene	98-06-6	0.4	400
1,2,4-Trimethylbenzene	95-63-6	0.4	400
sec-Butylbenzene	135-98-8	0.4	400
p-Isopropyltoluene	99-87-6	0.4	400
1,3-Dichlorobenzene	541-73-1	0.4	400
1,4-Dichlorobenzene	106-46-7	0.4	400
n-Butylbenzene	104-51-8	0.4	400
1,2-Dichlorobenzene	95-50-1	0.4	400
1,2-Dibromo-3-chloropropane	96-12-8	4.0	4000
1,2,4-Trichlorobenzene	120-82-1	0.4	400
Hexachlorobutadiene	87-68-3	0.4	400
Naphthalene	91-20-3	0.08	80
1,2,3-Trichlorobenzene	87-61-6	0.4	400
Leak Check Compound			
1,1-Difluoroethane	75-37-6	0.4	400

^{*}NOTE: 25cc sample for Low RL

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Summa

H&P Project #:	SCS 031521 - TECH/TECH	Date: 3/15/2	
Site Address:	13592 Slover Ave Fortamo	A.SB Page: 1 of Z	
Consultant:	SCS	H&P Rep(s): B. Villarona 06	Reviewed:
Consultant Rep(s):	Tyler Watkins	D. Blackbyrn	Scanned: There-
Equipment info	Purge Volume Information	Leak Cheek Compound	1,1-DFA
Inline Gauge ID#: T13	PV Amount: , PV Includes: Tubing	A cloth saturated with LCC is placed around tubing	□ 1,1,1,2-TFA
Pump ID#: OLO	28/ Sand 40%	connections and probe seal. This is done for all samples	LJ IPA
7.3	Dry Bent 50	% unless otherwise noted.	[] Other:

	-	Sample	and S	umma	Infor	matio	n			- 36	Prob	e Spe	ecs				Pus	rge & (Collecti	on Infor	mation	
	And the second second second second	Point ID	Summa ID#	Sample Kit ID#		Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec	Leak Check (*/)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac Fig H₂O
-	1	W-6-5	522	246	1215	-26	1216	0	5	7	1/8	12	,75	6	.75	1	1	189	4200		100	0
	2	41-6-5 REP	532	246	1216	-27	1219	d	5	7	1/8	12	.75	6	75	_	/	389	2200	-	< 100	0
	3	61-4-5	525	254	123	-28	1233	d	5	7	1/4	12	.75	6	,75	~	1	189	2290	_	5000 P	0
1	4	9V-5-5	528	116		-24	Jerry .		5	7	1/8	12	.75	6	.75	/	/	189	0200		et 53	Ø
+	5	4-5-5	533	116	1248	-13.5	1248	Ø	5	7	1/8	12	.75	6	.75	/	/	189	4200		2200	0
	6	61-2-5	526	220	1301	-25	1302	0	5	7	1/4	12	.75	6	.75	/	/	189	2200		250	0
	7	51-3-5	523	344	1322	-25	1323	0	5	7	1/8	17	1.5	6	15	~	1	697	200	3:29	<260	0
	8	SV-11-5	521	183	1337	-26	1339	0	5	7	A	12	1.5	6	1.5	/	/	697	2290	3:29	100	10
	9	5V-12-5	516	260	1347	-25.5	1249	0	5	7	1/8	12	1.5	6	1.5	/	/	697	200	3:29	250	0
1	10	81-13-5	513	1931	1404	-27	HO6	0	5	7	18	12	1.5	6	1.5	/	/	697	200	3:29	200	Ø,
1	11	61-15-5	519	202	1415	26.5	1416	0	5	7	1/8	12	(5	4	1.5	/	/	697	200	3:29	200	Ø,
1	12	94-14-5	590	173	1425	-27	1427	-6	5	7	18	12	15	6	1.5		/	697	- 200	3:29	200	0

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

Ksumma under -25"Ha@ -23"Hg

+ summa 533 under 25"Hay

48

					Shee			-				g w	ith :	Sum	ma	/			131.	fective: 1/2 Page 1
H&P Project #:		THE PERSON NAMED IN COLUMN TO PE	<	45	03	15	21-	TE	CH/	TEC	H	Date:	No. Section Contraction Contra	3/	15/	21				
Site Address:	135	92 8	love	Ane	, Fow	bre						Page:		2	of	3				
Consultant	Manager Colonia		7	50	S	,			n Atomic van Walson	. Н	&P R	ep(s):		Villa		les		•	Reviewed.	
Consultant Rep(s):	ELFLERISH THREE TAN	ny a mananghalanaa - manimalan	7	yles	- W	atk	ins	The second second second					P. 3	tack	burn		y have a linear least to	133	Scanned.	110
Equipment in dine Gauge ID#: Pump ID#:			PVA	mount:	rungo h			Tub Sar Dry	ing nd 40%	0%		conne	h satura ctions a		LCC is p	laced are	ound tubing ne for all sa		☐ 1,1,1, ☐ 1,1,1, ☐ IPA ☐ Other	2-TFA
Sample	and S	umma	Infor	matio	 M				Prob	e Spe	ecs				Pu	rge &	Collecti	on Infor	mation	
Point ID		Sample Kit !D#		Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec	Leak Check (√)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVa
W-10-5	520	045	1436	-27	1436	Ø	5	7	1/8	12	1.5	6	1.5			697	1200	3:29	200	0
AND THE REST OF THE PARTY OF TH	1	359		1		0	5	7	1/5	(2	15	6	15			697	200	3:29	200	Ø
					100				70											
Michigan Carrina (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994)																				
and Language Annual Control of the C																				
A Company							13/4									1/-/				
														4						
an at Autor State Control of the Con																				
-			19/21			161.07						70.0				1979	45/5/2		10.75	
									12			3.4				i i i				9
			- Children of the Control of the Con														•			

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Summa

H&P Project #:	50303	1521- TREHT TECH		Date:	3115/21			
Site Address:	13592	Slover Ave.		Page:	3 of 3			
Consultant:	scs			H&P Rep(s):	K School / D. Blackrown	Reviewed: EC		
Consultant Rep(s):	Tylor				B. Villaroschi	Scanned: 176r-3		
Equipment Info Inline Gauge ID#: ー Pump ID#: ごうゞ		Purge Volume In PV Amount:	des: Tubing Sand 40%	connect	Leak Check Compound saturated with LCC is placed around tubing tions and probe seal. This is done for all samples	☐ 1,1-DFA ☐ 1,1,1,2-TFA ☐ IPA		
			☑ Dry Bent 50%	unless	otherwise noted.	☐ Other:		

	Sample and Summa Information							Probe Specs							Purge & Collection Information						
	Point ID	Summa ID#	Sample Kit ID#		Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)		Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☑ H₂O
1	Sv-9-5	508	296	1407	-26.0	१५७९	0.0	5	7	10	12	18	6	1.5	V	1	697	200	3:29	200	-5
2	Sv-7-5	517	360	1422	-25.0	ESMI	0.0	5	~	Le	12	1.5	6	1.5	V	V	697	200	3:29	200	-5
3	5V- 9-5	514	157	1438	-270	1441	-2-0	5	7	1/6	12	1.5	6	1.5	1	1	697	700	3:29	200	-5
4			34																7		
5														1000							
6									V //												
7																					
8				100																1 10	
9	984 (88)						1														
10		7																			18.0
11																					
12																					

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):