GEOTECHNICAL INVESTIGATION REPORT PROPOSED MULTI-FAMILY RESIDENTIAL DEVEOPMENT 1346, 1350 AND 1352 W. COURT STREET CITY OF LOS ANGELES, CALIFORNIA

Prepared for:

1300 Court Partners, LLC

9748 Topanga Canyon Boulevard Los Angeles, California 91311

Project No. 11388.001

August 31, 2016

Leighton and Associates, Inc.

A LEIGHTON GROUP COMPANY

Leighton and Associates, Inc.

August 31, 2016

Project No. 11388.001

1300 Court Partners, LLC9748 Topanga Canyon BoulevardLos Angeles, California 91311

Attention: Mr. Bill McReynolds

Subject: Geotechnical Exploration Report Proposed Multi-Family Residential Development 1346, 1350 and 1352 W. Court Street City of Los Angeles, California

Per your request, Leighton and Associates, Inc. (Leighton) is pleased to present this geotechnical exploration report for the proposed residential development project located at 1346, 1350 and 1352 W. Court Street in the city of Los Angeles, California. The currently planned development will consist of a four-story multi-family residential apartment building over a two-story parking garage that is planned to be partially below grade with an entrance at street grade on the Douglas Street side of the property. No specific information for the building construction type or structural loading is available at the time of this report.

The purpose of this report is to present the findings of our exploration at the site and to provide preliminary geotechnical recommendations for the project. Presented herein are subsurface information obtained during our exploration and recommendations with respect to site grading, earthwork, seismic design parameters, and building foundation design. Also presented in this report are considerations for the future construction of the project.

We appreciate the opportunity to work with you on this project. If you have any questions or if we can be of further service, please call us at your convenience.

Respectfully submitted,

LEIGHTON AND ASSOCIATES, INC.

Joe A. Roe, PG, CEG 2456 Principal Geologist

Lauren J. Dovel, PE, GE 2981 Principal Engineer

Reviewed by:

Vincent P. Ip, PE, GE 2522 Senior Principal Engineer

JMP/JAR/LJD/VIP/gv

Distribution: (1) Addressee

TABLE OF CONTENTS

<u>Sectio</u>	n		Pa	age
1.0	INTRO	DDUCT	-10N	1
	1.1 1.2		escription and Proposed Development	
2.0	GEOT	ECHN	ICAL FINDINGS	4
	2.1 2.2	Geolog Subsu	gic Setting Irface Conditions	4 5
		2.2.1 2.2.2 2.2.3 2.2.4		6 6
	2.3	Groun	dwater	7
3.0	GEOL	.OGIC/	SEISMIC HAZARDS	8
	3.1 3.2 3.3	Groun	ce Fault Rupture d Shaking dary Seismic Hazards	8
		3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	Lateral Spreading	10 10 10 10
	3.4 3.5		ng Hazards ne	
4.0	DESIC	GN REC	COMMENDATIONS	.12
	4.1	Shorin	ng Design Recommendations	.12
		4.1.2 4.1.3 4.1.4	Tie-Back Anchors Lateral Pressures Design of Soldier Piles Lagging Monitoring	14 15 15
	4.2	Earthv	vork	16
			Site Preparation General Grading Recommendations Pipe Bedding Trench Backfill	.16 .17

	4.3	Conventional Retaining Walls and Basement Walls	18
		4.3.1 Lateral Earth Pressures	19
	4.4 4.5	Seismic Design Parameters Footing Foundations	
		 4.5.1 Minimum Embedment and Width	22 22
	4.6 4.7 4.8	Slab-On-Grade Corrosion Protection Measures Surface Drainage	24
5.0	CONS	TRUCTION CONSIDERATIONS	25
	5.1 5.2 5.3	Temporary Excavations Oil Well Abandonment and Methane Mitigation Additional Geotechnical Services	25
6.0	LIMIT	ATIONS	27
7.0	REFE	RENCES	28

LIST OF ATTACHMENTS

Important Information About Your Geotechnical Engineering Report Rear of Text

FIGURES

Figure 1 – Site Location Map	Rear of Text
Figure 2 – Boring Location Map	Rear of Text
Figure 3 – Regional Geology Map	Rear of Text
Figure 4 – Regional Fault and Historical Seismicity Map	Rear of Text
Figure 5 – Seismic Hazard Map	Rear of Text
Figure 6 – Dam Inundation Map	Rear of Text
Figure 7 – Flood Hazard Zone Map	Rear of Text
Figure 8 – Methane Hazard Map	Rear of Text

APPENDICES

- Appendix A Field Exploration Logs
- Appendix B Laboratory Test Results
- Appendix C Previous Geotechnical Data
- Appendix D Seismic Design Parameters and Site-Specific Ground Motion Study
- Appendix E Subsurface Surveys Geophysical Survey

1.0 INTRODUCTION

1.1 <u>Site Description and Proposed Development</u>

The project site is located at 1346, 1350 and 1352 W. Court Street in the city of Los Angeles, California. The site location and immediate vicinity are shown on Figure 1, *Site Location Map*. The site is bounded by existing single-family and multi-family residential buildings to the southeast and southwest, by Court Street to the northeast, and by Douglass Street to the northwest.

The site encompasses two vacant parcels (1350 and 1352 W. Court Street) and one developed parcel (1346 W. Court Street) that contains two single-family homes and associated flatwork improvements. The vacant parcels are covered with light to moderate vegetation consisting of grasses, small shrubs and several mature trees. Topographically, the site generally slopes to the north, west and south from approximate Elevation 407 feet in the southeastern portion of the site to approximate Elevation 380 feet at street grade along Douglas Street in the western corner of the site. Locally, small near vertical slopes exist along portions of the site bounding the existing streets, on the alleyway and Court Street. Based on review of historical aerial photographs (NETR, 2016), the site appears to have been generally vacant since 1948; however, some minor miscellaneous structures may have been situated on the property at one time.

The current plan is to develop the site for a four-story multi-family residential apartment building over a two-story parking garage that is planned to be partially below grade with an entrance at street grade on the Douglas Street side of the property. The structure is expected to cover the site almost entirely. No information related to the type of building construction or structural loading is available at this time.

1.2 Purpose and Scope of Exploration

The purpose of our exploration was to evaluate the subsurface conditions beneath the site for developing preliminary geotechnical recommendations for the project as currently proposed.

The scope of this geotechnical report included the following tasks:

- <u>Background Review</u> A background review was performed of readily available, relevant geotechnical and geological literature pertinent to the project site. References used in preparation of this report are listed in Section 7.0.
- <u>Field Exploration</u> Our field exploration was performed on July 28, 2016, and consisted of two (2) hollow-stem auger borings (designated LB-1 and LB-2) drilled up to a maximum of 22 feet below existing ground surface (bgs). The approximate locations of the explorations are shown on Figure 2, *Boring Location Map*. Prior to the field exploration, the boring locations were marked and Underground Service Alert (USA) was notified for utility clearance. The borings as shown were located using a handheld GPS unit.

During drilling, both bulk and relatively undisturbed drive samples were obtained from the borings for geotechnical laboratory testing. Relatively undisturbed samples were collected from the borings using the Modified California Ring sampler conducted in accordance with ASTM Test Method D 3550. The samplers were driven for a total penetration of 18 inches, unless practical refusal, using a 140-pound automatic hammer falling freely for 30 inches. The number of blows per 6 inches of penetration was recorded on the boring logs.

The borings were logged in the field by a member of our technical staff. Each soil sample collected was reviewed and described in accordance with the Unified Soil Classification System. The samples were sealed and packaged for transportation to our laboratory. The boring logs are presented in Appendix A, *Field Exploration Logs*.

- <u>Laboratory Testing</u> Laboratory tests were performed on representative soil samples to determine the geotechnical engineering properties of subsurface materials. The following laboratory tests were performed:
 - Moisture Density (ASTM D422);
 - Atterberg Limits (ASTM D4318);
 - Unconfined Compressive Strength (ASTM D2166);

- Maximum Dry Density (ASTM D1557); and
- Soluble sulfate, soluble chloride, pH and minimum resistivity (CTM 417 Part II, CTM 422, and CTM 643).

The results of the laboratory tests are presented in Appendix B – *Laboratory Test Results.*

- <u>Engineering Analysis</u> Geotechnical analysis was performed on the collected data to develop conclusions and recommendations for design and construction presented in this report.
- <u>Report Preparation</u> This geotechnical report presents our findings, conclusions, and recommendations.

It should be noted that the recommendations in this report are subject to the limitations presented in Section 6.0. An information sheet prepared by ASFE (the Association of Engineering Firms Practicing in the Geosciences) is also included at the rear of the text. We recommend that all individuals using this report read the limitations along with the attached document.

2.0 GEOTECHNICAL FINDINGS

2.1 <u>Geologic Setting</u>

The project site is located along the northeastern margin of the Los Angeles basin, at the northern end of the Peninsular Ranges geomorphic province and adjacent to the Transverse Ranges geomorphic province. The Peninsular Ranges province extends approximately 900 miles southward from the Santa Monica Mountains to the tip of Baja California (Yerkes, et al., 1965). The province is characterized by elongated northwest-trending mountain ridges and sediment-floored valleys. The province includes numerous northwest trending fault zones, most of which either die out, merge with, or are terminated by faults that form the southern margin of the Transverse Ranges province. These northwest trending fault zones include the San Jacinto, Whittier-Elsinore, Palos Verdes, and Newport-Inglewood fault zones.

Approximately 65 million years ago (at the end of the Cretaceous Period) a deep, structural trough existed off the coast of southern California (Yerkes, 1972). Over time the trough was filled with sediments eroded from the surrounding highlands and mountains. About 7 million years ago the boundary between the Pacific and North American plates shifted to its present position and the geologically modern Los Angeles basin began to form. The deepest part of the Los Angeles basin contains Tertiary to Quaternary age (65 million years and younger) marine and non-marine sedimentary rocks that are about 24,000 feet thick (Yerkes, et al, 1965; Wright, 1991). During the Pleistocene epoch (the last two million years) the region was flooded as sea level rose in response to the worldwide melting of the Pleistocene glaciers.

The project site is located to the southwest of the Elysian Park Anticline, a westnorthwest trending fold belt which forms a topographic high of Early Pliocene to Late Miocene-aged bedrock materials. The area is underlain by Puente Formation bedrock that is composed of deep-marine clastic and biogenic rocks interbedded and interfingering siltstone and fine sandstone, siliceous shale and siltstone, diatomaceous shale and siltstone, and fine- to coarse-grained, thinly laminated to thick-bedded sandstone. Alluvial materials are found in topographic lows, which drain into the Los Angeles River Valley and the greater Los Angeles Basin located to the south. The project site is located on an area that is slightly elevated from the greater alluvial basin to the south.

2.2 <u>Subsurface Conditions</u>

Based on our observations of bedrock outcrop and within the hollow-stem auger borings, the site is underlain by undocumented artificial fill soils over bedrock of the Puente Formation. The fill soils as encountered during our exploration, consisting of primarily of sandy clay, sandy silt, and sandy clay extended down to a depth of approximately 5 feet below existing grade. Locally thicker accumulations of undocumented fills may exist in areas not explored as a part of this investigation. Sedimentary bedrock of the Puente Formation, consisting of well bedded siltstone/claystone with interbedded sand was found beneath the shallow fill soils to the depths explored. Bedrock was observed in outcrop on the southwest corner of the site at the intersection of the Douglas and the alleyway.

The siltstone/claystone bedrock observed in the samples and outcrops showed well defined bedding. Grain size analysis and Atterberg Limits tests results indicate the bedrock material is classified as silty clay (CL) to fat clay (CH) in accordance with the Unified Soil Classification System (USCS) with medium plasticity. According to regional geologic mapping in the area (Yerkes and Campbell, 2005; and Dibblee, 1991) and our experience with similar projects in the nearby area, the bedding at the project site is anticipated to generally exhibit an east-west strike with dip angles ranging from approximately 10 to 40 degrees to the south. Bedding attitudes measured at the exposed bedrock on the southwest corner of the site indicated a northeast strike (approximately 55 to 65 degrees from north) and slightly steeper dip angles (55 to 65 degrees to the southeast). This creates an adverse bedding condition on the north side of the project site, where proposed cuts up to 20 feet will expose bedding planes dipping out of slope. A map showing the geologic units mapped in the area is included with this report as Figure 3 – Regional Geology Map.

A detailed description of the subsurface soils encountered in the borings is presented in the boring logs (Appendix A). Some of the engineering properties of these soils are described in the following subsections.

2.2.1 Expansive Soil

Expansive soils contain significant amounts of clay particles that swell considerably when wetted and shrink when dried. Foundations constructed on these soils are subject to uplifting forces caused by the swelling. Without proper mitigation measures, heaving and cracking of

both building foundations and slabs-on-grade could result. Based on our exploration, the bedrock materials consist predominantly of siltstone and claystone. Laboratory test result of a claystone bedrock sample showed the material has a Plasticity Index of 42 and Liquid Limit of 65. Based on comparison on the test results with our projects in the vicinity, the bedrock at the site is considered expansive.

2.2.2 Soil Corrosivity

The bedrock materials were screened for corrosion potential to ferrous metals and concrete (e.g., footings, retaining walls). The corrosivity test results are included in Appendix B of this report and are summarized below.

Test Parameter	Test Results Boring LB-2 at 10'	General Classification of Corrosion Potential
Water-Soluble Sulfate in Soil (ppm)	1236	Moderate sulfate exposure to buried concrete
Water-Soluble Chloride in Soil (ppm)	158	Non-corrosive to embedded metals
рН	7.5	Mildly alkaline
Minimum Resistivity (saturated, ohm-cm)	380	Very Severely corrosive to buried ferrous pipes

Corrosivity Test Results

A corrosion engineer should be consulted for possible mitigation measures, if necessary.

2.2.3 <u>Strength Characteristics</u>

Based on the laboratory testing results and our experience with the bedrock material, the bedrock materials should exhibit adequate shear strength to provide structural support for the planned improvements.

2.2.4 Collapse/Compressibility Potential

The bedrock materials at the site are expected to exhibit low compressibility characteristics when subject to the anticipated loading.

2.3 Groundwater

Groundwater was not encountered in our explorations up to a maximum depth of 22 feet bgs on this site. Explorations on nearby sites advanced to depths up to 51.5 feet did not encounter groundwater in March 2013. Groundwater seepage may be encountered within the bedrock joints, fractures and various sandy layers within the depth of the planned excavation. Groundwater levels and the amount of seepage will be affected by seasonal factors such as rainfall and or irrigation practices in the vicinity of the site.

3.0 GEOLOGIC/SEISMIC HAZARDS

Geologic and seismic hazards include surface faulting, ground shaking, liquefaction, seismically-induced settlement, lateral spreading, seismically-induced landslides, seiches and tsunamis, and flooding. The following sections discuss these hazards and their potential impact at the project site.

3.1 <u>Surface Fault Rupture</u>

Our review of available in-house literature indicates that no known active faults have been mapped across the site, and the site is not located within a designated Alquist-Priolo Earthquake Fault Zone (CGS, 2014; Bryant and Bryant, 2007). Based on our review, we consider the potential for surface fault rupture at the site to be low.

The location of the closest active faults to the site was generated using the United States Geological Survey (USGS) Earthquake Hazards Program (USGS, 2008c). The closest active faults to the site are the Elysian Park blind thrust, Santa Monica, and Hollywood faults, located approximately 1.0, 3.5, and 3.6 miles, respectively, from the site. The San Andreas fault, which is the largest active fault in California, is approximately 33 miles northeast of the site. The nearby faults with surface expression in the vicinity of the site are shown on Figure 4, *Regional Fault and Historical Seismicity Map*.

3.2 Ground Shaking

The principal seismic hazard that could affect the site is ground shaking resulting from an earthquake occurring along several major active or potentially active faults in southern California. The site is expected to experience moderate to strong ground shaking resulting from the earthquake faults in the region. An evaluation of historical seismicity from significant past earthquakes related to the site was performed (see Figure 4, *Regional Fault and Historical Seismicity Map*). Peak ground accelerations (PGA) at the site resulting from significant past earthquakes between 1800 to 2016, with magnitudes M4.0 or greater, were estimated using the EQSEARCH computer program (Blake, 2000). This historical seismicity search was performed for a 100-kilometer (62-mile) radius from the project site, and is included in Appendix D. The largest earthquake magnitudes found in the search was the M7.0 earthquake that occurred on December 8, 1812 approximately 40.6 miles (65.4 kilometers) from the site

producing an estimated site acceleration of approximately 0.047g. A M7.0 earthquake also occurred on September 24, 1827 approximately 42.7 miles (68.7 kilometers) from the site producing an estimated site acceleration of approximately 0.044g. The largest estimated PGA found in the search was approximately 0.272g from an earthquake approximately 1.1 miles (1.7 kilometers) from the site.

Additional data publically available from the Center for Engineering Strong Motion Data (CESMD) website (<u>http://strongmotioncenter.org/</u>) was reviewed for stations in the vicinity of the project site. The data reviewed indicates that a site approximately 0.5 miles northeast of the project site experienced a peak ground acceleration of 0.141g from a M6.4 Northridge earthquake that occurred on January 17, 1994. A site-specific response analysis was developed using the computer program *EZ-FRISK* by Risk Engineering (v. 7.62) and the 2008 CGS Statewide Fault Model. The results of our analysis are presented in Section 4.4 Seismic Design Parameters.

3.3 <u>Secondary Seismic Hazards</u>

In general, seismic hazards due to ground shaking could include soil liquefaction, seismically-induced settlement, lateral spreading, seismically-induced landsliding, seiches and tsunamis. These potential secondary seismic hazards are discussed below.

3.3.1 Liquefaction Potential

Liquefaction is the loss of soil strength or stiffness due to increasing porewater pressure during severe ground shaking. Liquefaction is associated primarily with loose (low density), saturated, fine- to medium-grained, cohesionless soils.

As shown on the State of California Seismic Hazard Zones Map for the Hollywood Quadrangle (see Figure 5, *Seismic Hazard Map*; CGS, 1999), this site is not located within an area that has been identified by the State of California as being potentially susceptible to liquefaction. Furthermore, the site is underlain by relatively shallow bedrock. Therefore, it is our opinion that the potential for liquefaction occurring at the site is low.

3.3.2 Seismically Induced Settlement

During a strong seismic event, seismically induced settlement can occur within loose to moderately dense, unsaturated granular soils, separate from liquefaction. Settlement caused by ground shaking is often nonuniformly distributed, which can result in differential settlement. Based on blow count records and the relatively shallow bedrock at the site, the seismically induced settlement under the proposed buildings is anticipated to be negligible.

3.3.3 Lateral Spreading

Lateral spreading is a phenomenon in which large blocks of intact, nonliquefied soil move downslope on a liquefied soil layer. Lateral spreading is often a regional event. For lateral spreading to occur, the liquefiable soil zone must be laterally continuous, unconstrained laterally, and free to move along sloping ground. Due to the low potential for liquefaction at the site, the potential for lateral spreading is considered very low.

3.3.4 Seismically-Induced Landslide

Although some slopes are located along the northern, western and southern boundaries of the site, these slopes are planned to be completely removed with the proposed development plan that includes a partial subterranean parking level. In addition, based on the State of California Seismic Hazard Zones Map for the Hollywood Quadrangle (see Figure 5, *Seismic Hazard Map;* CGS, 1999), the site is not located within an area that has been identified by the State of California as being potentially susceptible to seismically induced landslides. Based on these factors, the potential for seismically-induced landslides to occur at the site is considered low.

3.3.5 Earthquake-Induced Flooding

Earthquake-induced flooding can be caused by failure of dams or other water-retaining structures as a result of earthquakes. As shown on Figure 6, *Dam Inundation Map*, the site is not within a mapped inundation zone for any reservoirs. Therefore, the risk of seismically-induced flooding due to dam failure is considered very low.

3.3.6 Seiches and Tsunamis

Seiches are large waves generated in very large enclosed bodies of water or partially enclosed arms of the sea in response to ground shaking. Tsunamis are waves generated in large bodies of water by fault displacement or major ground movement. Based on the lack of such large enclosed water bodies nearby, seiche and tsunami risks are considered low to remote.

3.4 Flooding Hazards

As shown on Figure 7, *Flood Hazard Map* and according to a Federal Emergency Management Agency (FEMA) flood insurance rate map (FEMA, 2008), the site is not located within a flood zone.

3.5 <u>Methane</u>

Based on review of available Division of Oil, Gas, and Geothermal Resources (DOGGR) maps, the project site is located in the Los Angeles City Oil Field and four oil wells (Courtland City Lights Association Well Nos. 1 and 2, and Parker Morrell Oil Co. Well Nos. 3 & 4) are reported to be present across the site. In addition, based on review of the *Methane and Methane Buffer Zones* map published by the City of Los Angeles (2004), the site is located within a Methane Zone as shown on Figure 8 – *Methane Hazard Map*. We understand that Roux Environmental is providing oil well location and methane mitigation services for this project. Roux provided the recent geophysical survey performed to locate oil wells identified on Division of Oil and Gas (DOGGR) maps. Although four wells were identified by DOGGR, evidence was found for only one well on site.

4.0 DESIGN RECOMMENDATIONS

Geotechnical recommendations for the proposed development are presented in the following sections. Construction considerations are discussed Section 5.0 in this report.

The geotechnical consultant should review the grading plan, foundation plan and specifications as they become available to verify that the recommendations presented in this report have been incorporated.

Based on the current plan, excavation up to 20 feet are anticipated for the construction of the subterranean portion of the development. To support the excavation, a temporary shoring system consisting of soldier piles (with or without tie-back anchors) may be used during construction. Due to presence of adverse bedrock bedding dipping into the excavation of the site, the south-facing shoring wall and basement walls along the northern boundary will be subject to geologic surcharge from the bedrock. However, permissions from adjoining property owners and the City will be required for installation of tie-back anchors on their properties.

4.1 <u>Shoring Design Recommendations</u>

Excavations ranging from 15 to 20 feet in height are anticipated during construction of the subterranean parking at each site. Based on review of the regional geology map and a project we completed recently in the vicinity of the site, the bedrock structure includes bedding that dips (slopes) toward the general alignment of the proposed shoring wall along the northern property boundary. The bedding angles are anticipated to vary from 55 to 65 degrees for the excavations at the project site based on local measurements (approximately 44 degrees out of slope), which would create an adverse condition along the northern property boundary of the site. The bedrock includes thin seams of bedding materials that are lower in strength (i.e., along bedding) than the gross shear strength (i.e., across bedding) of the siltstone/claystone bedrock. Therefore, geologic surcharge should be included when designing the shoring system.

In addition, surcharge due to the existing buildings and vehicular traffic along the alley behind the excavation should also be considered in the shoring wall design. We recommend the shoring contractor perform a survey to document the existing conditions behind the site prior to construction.

It is the shoring contractor's responsibility to design the system that meets the project specifications. The shoring contractor should submit the shoring plans and a testing program to the geotechnical engineer for review.

As the tie-back anchors and soldier piles are planned to be drilled into the bedrock, the potential of raveling and caving of loose soil is low, however, the shoring contactor should be prepared to use special techniques and measures, if necessary, to permit the proper installation of the soldier piles and tie-back anchors in case of caving and raveling of isolated loose soil layers or local groundwater seepage that may exist within the bedrock.

The shoring engineer should incorporate an adequate safety factor in designing the shoring system.

4.1.1 <u>Tie-Back Anchors</u>

All anchors should be designed in accordance with the recommendations by the Post-tensioning Institute (PTI) for prestressed rock and soil anchors (PTI, 2011) and the City of Los Angeles requirements.

For designing the anchored length of the tiebacks beyond the failure surface, a bond strength of 2,500 pounds per square foot (psf) may be assumed between the grout and the bedrock for gravity grouted tie-back anchors.

The anchored portion of the tiebacks should begin in the competent bedrock at least five feet behind the anticipated failure surface. The failure surface in the south-facing excavation along the northern property where geologic surcharge may be assumed to be a surface extended at an angle of 45 degrees from horizontal at the toe of the excavation. For other areas where geologic surcharge is not anticipated, the failure surface may be assumed to be a surface extended at an angle of 60 degrees from horizontal at the toe of the excavation.

The tiebacks should be installed at a minimum distance of four times the diameter of the anchor drill hole on center. The preferred installation angle should be between 5 and 30 degrees from horizontal. Obstacles behind the shoring may require a steeper installation angle.

During installation, each row of anchors should be proof-loaded and approved before excavation can proceed. The tie-back anchor capacity should be checked for each stage of the excavation to ensure adequate support of the system is maintained. Performance tests may also be required on selected tieback anchors. The number of anchors to be tested should be determined based on the results of the testing program.

4.1.2 Lateral Pressures

Shoring Design (Level Ground Surface)Wall Height ranging from 15 to 20 feetWall Height ranging from 15 to 20 feetFree Cantilever
(psf/ft)With Tiebacks
(psf)Walls with geologic surcharge6038HWalls without geologic surcharge3220H

The recommended lateral earth pressure for shoring design is as follows:

A safety factor of 1.25 has been incorporated in the above recommended values. The south facing shoring wall at the southern site should be designed for geologic surcharge. The earth pressure without geologic surcharge may be used for the remaining three sides of the shoring wall in southern site and all four sides of the shoring wall in the northern site. A triangular pressure distribution may be assumed for designing free cantilever shoring. For design of braced or tie-back shoring, a trapezoidal distribution of lateral earth pressure can be used. The recommended pressure distribution behind shoring will be zero at the top and bottom of the shoring and at its maximum value between 0.2H and 0.8H, where H is the height of the shoring in feet.

In addition to the recommended earth pressure, the walls should be designed to resist any applicable surcharge loads behind the shoring.

4.1.3 Design of Soldier Piles

For the design of solider piles spaced at least two diameters on-center, the maximum spacing of the solider piles should be limited to 8 feet. The portion of a soldier pile that extends below the excavation may be used to provide passive resistance for the shoring system. A uniform passive pressure of 4,400 psf may be used for a soldier pile embedded in competent bedrock. To develop the full lateral value, provisions should be taken to assure firm contact between the solider piles and the undisturbed soils. The shoring engineer should not consider any passive resistance to a depth equal to one drill hole diameter of the soldier pile below the excavation line.

When using the frictional resistance between the soldier pile and the soil, it is assumed that the drilled hole of the soldier pile will be backfilled with lean-mix concrete, and there is full contact between the lean-mix concrete and the retained soil.

The vertical component of the tie-back load may be supported by the shaft friction and end bearing of the soldier pile embedded in the competent bedrock. A frictional coefficient of 0.44 may be used to calculate the frictional resistance between the soldier pile and the retained soil. For soldier piles penetrated at least 5 feet below the excavation line, a maximum end bearing pressure of 6,500 psf may be used.

4.1.4 Lagging

Lagging should be provided between the soldier piles to control sloughing. Lagging should be placed in such a manner to maintain a tight soil to lagging contact. All voids behind the lagging should be filled with compacted materials or slurry. Lagging may be installed with a maximum spacing of 1½ inches to allow drainage from behind the wall. The soldier piles should be designed for the full anticipated lateral pressure. However, the pressure on the lagging will be less due to arching in the soils. For clear spans of up to 8 feet, we recommend that the lagging be designed for a semi-circular distribution of earth pressure where the maximum pressure is 300 psf at the mid-line between soldier piles, and 0 psf at the soldier piles.

4.1.5 Monitoring

The performance of the shoring system should be monitored on a regular basis during and after installation. The monitoring should consist of surveying of the lateral and vertical locations of the tops of all the soldier piles. The survey data should be submitted to the shoring engineer and geotechnical consultant for review. It is recommended that the maximum deflection behind the shoring be limited to between one-half inch to one inch.

We recommend that the adjacent existing structures and streets be surveyed for horizontal and vertical locations. Also, a survey of existing cracks and offsets in the streets should be performed and recorded along with photographic records.

4.2 <u>Earthwork</u>

4.2.1 <u>Site Preparation</u>

Prior to construction, the site should be cleared of any vegetation, trash and/or debris. These materials should be removed from the site. Any underground obstructions onsite should be removed. Efforts should be made to locate any existing utility lines to be removed or rerouted where interfering with the proposed construction. Any resulting cavities should be properly backfilled and compacted. After the areas are cleared, the soils should be carefully observed for the removal of all unsuitable deposits. All unsuitable deposits and undocumented fill should be excavated and removed from within the development area prior to fill placement.

4.2.2 General Grading Recommendations

It is anticipated that the onsite undocumented artificial fill will be removed during site excavation and competent bedrock will be exposed at the bottom level of the subterranean parking. Unsuitable materials if encountered at the exposed subgrade should be removed until a competent subgrade surface is exposed. Overexcavation and recompaction if required to remove unsuitable subgrade materials should extend a minimum horizontal distance equal to the vertical distance between the proposed footing bottom and depth of overexcavation.

However, care should be used to avoid undermining existing improvements adjacent to the excavation.

After completion of the overexcavation and prior to fill placement or other improvements such as flatwork and hardscape, the exposed soils should be scarified to a minimum depth of six inches, moisture conditioned 2 to 4 percentage points above optimum moisture content and compacted to a minimum of 90 percent relative compaction (ASTM D1557).

The excavated onsite soils, less than 6 inches and free of any deleterious material or organic matter, can be used in required fills. Any required import material should consist of non-corrosive and relatively non-expansive soils with an Expansion Index (EI) less than 20. The imported materials should contain sufficient fines (binder material) so as to be relatively impermeable and result in a stable subgrade when compacted. All proposed import materials should be approved by the geotechnical engineer of record prior to being placed at the site.

All fill soil should be placed in thin, loose lifts, with each lift properly moisture conditioned 2 to 4 percentage above the optimum moisture content and compacted to a minimum of 90 percent relative compaction (ASTM D1557). Proper moisture conditioning of the soils is vital in reducing expansion potential and reducing the potential for post-construction heave that may result in distortion and possibly damage to new improvements. Aggregate base should be compacted to a minimum of 95 percent relative compaction (ASTM D1557).

4.2.3 Pipe Bedding

Any proposed pipe should be placed on properly placed bedding materials. Pipe bedding should extend to a depth in accordance to the pipe manufacturer's specification. The pipe bedding should extend to at least 12 inches over the top of the pipeline. The bedding material may consist of compacted free-draining sand, gravel, or crushed rock. Pipe bedding material should have a Sand Equivalent (SE) of at least 30. Flooding or jetting to densify the bedding material is not recommended due to clayey nature of the bedrock.

4.2.4 Trench Backfill

Trench excavations above pipe bedding may be backfilled with onsite soils under the observation of the geotechnical consultant. All fill soils should be placed in loose lifts, moisture conditioned as required and compacted to a minimum of 90 percent relative compaction based on ASTM Test Method D 1557. Lift thickness will be dependent on the equipment used as suggested in the latest edition of the Standard Specifications for Public Works Construction (Greenbook). The fill soils should extend to the bottom of the aggregate base for new pavement, or to finished grade in non-paved areas. Control Low Strength Material (CLSM) should be used for the last 2 feet of utility trench entering the building.

4.3 <u>Conventional Retaining Walls and Basement Walls</u>

4.3.1 Lateral Earth Pressures

The following parameters may be used for the design of conventional retaining walls and basement walls:

	Free Cantilever Walls (Active) psf/ft	Basement Walls (At-rest) psf/ft		
Wall Height Ranging from 15 to 20 feet				
Earth Pressure with Geologic Surcharge	56	81		
Earth Pressure without Geologic Surcharge	28	45		
Seismic Pressure with Geologic Surcharge	41			
Seismic Pressure without Geologic Surcharge	25			

Seismic earth pressure should be applied in addition to static earth pressure for conventional retaining walls that are more than 12 feet in height and the unbalanced height portion (higher side) of the basement walls. The seismic earth pressure was calculated based on a seismic coefficient of 0.32 (i.e., ½ of two-third of PGAm). The distribution of the seismic earth pressure should be an invert triangle with the maximum pressure at the top. The point of application of the resultant seismic thrust may be assumed to act at a point located at 0.6 times the height of the retained height.

In addition to the recommended earth pressure, the walls should be designed to resist any applicable surcharge loads behind the walls.

4.3.2 Backfill

Retaining structures planned at the site should be backfilled with granular, non-expansive soil (Expansion Index less than 20).

Backfill should be compacted to at least 90 percent of the maximum dry density obtained by ASTM Test Method D 1557. Relatively light equipment should be used for backfilling behind retaining walls.

4.3.3 Drainage

All walls should be constructed with a backdrain. The backdrain should be sloped at a minimum of one percent toward an approved non-erosive outlet.

The walls should also be waterproofed or at least damp-proofed, depending upon the degree of moisture protection desired. Surface drainage should be designed to direct water away from foundations and toward approved drainage devices. Irrigation of landscaping should be controlled to maintain, as much as possible, consistent moisture content sufficient to provide healthy plant growth without overwatering.

4.4 <u>Seismic Design Parameters</u>

Moderate to strong ground shaking due to seismic activity is expected at the site during the life span of the project. A site-specific ground motion analysis was performed in accordance with the 2013 California Building Code (CBC) following

the procedures of ASCE 7-10 Publication, Section 21.2, as presented in Appendix D.

The deterministic and probabilistic seismic hazard analysis was performed using the computer program EZ-FRISK (Risk Engineering, 2011) to estimate peak horizontal ground acceleration (PHGA) that could occur at the site, and to develop design response spectra. Various probabilistic density functions were used in this analysis to assess uncertainty inherent in these calculations with respect to magnitude, distance and ground motion. An averaging of the following next-generation attenuation relationships (NGAs) was used with equal weights to calculate site-specific PHGA and spectra:

- Abrahamson et al. (2014),
- Boore et al. (2014),
- Campbell and Bozorgnia (2014), and
- Chiou and Youngs (2014).

The design response spectrum shown on Figure D-1 is derived from a comparison of probabilistic Maximum Considered Earthquake (MCE) and the 84th percentile of the deterministic MCE. In accordance with the 2013 CBC, peak ground accelerations are estimated based on earthquake ground motion having a 2 percent probability of exceedance in 50 years (ASCE, 2010). The seismic coefficients for the General Procedure were calculated utilizing an interactive program on current United States Geological Survey (USGS) website using ASCE 7-10 reference. The site-specific seismic coefficients are presented in Table 1 below.

Categorization/Coefficients	Code- Based ^{(1) (2)}	Site-Specific	
Site Longitude (decimal degrees) West	-118.25813		
Site Latitude (decimal degrees) North	34.06439		
Site Class	С		
Mapped Spectral Response Acceleration at 0.2s Period, S_s	2.514	-	
Mapped Spectral Response Acceleration at 1s Period, S_1	0.887	-	
Short Period Site Coefficient at 0.2s Period, F_a	1.0	-	
Long Period Site Coefficient at 1s Period, F_{v}	1.3	-	
Adjusted Spectral Response Acceleration at 0.2s Period, S_{MS}	2.514	2.514	
Adjusted Spectral Response Acceleration at 1s Period, S_{M1}	1.153	1.153	
Design Spectral Response Acceleration at 0.2s Period, S_{DS}	1.676	1.866	
Design Spectral Response Acceleration at 1s Period, S_{D1}	0.768	0.902	

1. All were derived from the USGS web page: <u>http://earthquake.usgs.gov/designmaps/us/application.php</u>

2. All coefficients in units of g (spectral acceleration)

3. See Appendix D for details of the site-specific evaluation.

Based on our borings, the building will be underlain by relatively dense siltstone and claystone of the Puente Shale formation. Therefore, in accordance with the 2013 CBC, this site should be classified as a Class C site. The results of this analysis also indicate that the Peak Ground Acceleration (PGA_M) for this site is 0.953g based on the USGS General Procedure. The summary reports are included in Appendix D.

4.5 Footing Foundations

New shallow spread footings established on bedrock may be used to support the proposed residential structures. Spread footing design recommendations are presented in the following subsections:

4.5.1 Minimum Embedment and Width

Continuous strip footings should have a minimum width of 12 inches. Isolated square pad column footings are recommended to be a minimum of 24 inches in width. The top of the footing should be at least 12 inches below lowest adjacent grade or finish floor elevation.

4.5.2 <u>Allowable Bearing Capacity</u>

The footings may be designed for a maximum net allowable soil bearing pressure of 6,500 pounds per square foot (psf) for isolated column footings and 6,000 psf continuous strip footings. The soil bearing pressure may be increased by one-third for transient loads such as wind and seismic forces.

4.5.3 Lateral Load Resistance

Resistance to lateral loads will be provided by a combination of friction between the soil and foundation interface and passive pressure acting against the vertical portion of the footings. For calculating allowable lateral resistance, a passive pressure of 250 psf per foot of depth to a maximum of 2,500 psf and a frictional coefficient of 0.25 may be used provided the foundations are supported within structural compacted fill as previously described. When combining frictional and passive resistance, the passive resistance should be reduced by one-third.

4.5.4 Settlement

The estimated total settlement of the structures supported on spread footings as recommended above is less than 1 inch. The differential settlement between adjacent columns is estimated to be less than ½ inch over a horizontal distance of 40 feet.

4.6 Slab-On-Grade

It is anticipated that the basement floor of both buildings will bear on compacted fill established on bedrock. From an expansive soil standpoint, we recommend the slab-on-grade be a minimum 5 inches thick with No. 4 rebar placed at the center of the slab at 16 inches on center in each direction. The structural engineer should design the actual thickness and reinforcement based on anticipated loading conditions. The slabs may be design for an average allowable bearing pressure of 1,500 psf for dead plus live loads with a maximum localized bearing pressure of 2,000 psf for column or wall loads. The allowable bearing pressure may be increased by one-third for short-term loading including wind and seismic loads.

A subdrain system consisting of a 9-inch layer of 1-inch open graded rock should be installed under the slab. The slab subdrain and the basement wall backdrain should be diverted to an approved discharge system.

Floor slabs are recommended to be underlain by a synthetic sheeting to serve as a retarder to moisture vapor transmission in areas where moisture-sensitive floor covering (such as vinyl, tile, or carpet) or equipment is planned. The sheeting is recommended to be a minimum 15 mil thick Stego® Wrap installed per manufacturer's specifications. Prior to installing the synthetic sheeting, the exposed subgrade surface should be clear of all extruding rock and gravel that could damage the sheeting. The sheeting should be evaluated for the presence of punctures or tears by the installer prior to pouring concrete. Installation of the sheeting should include proper overlap and taping of seams.

Leighton does not practice in the field of moisture vapor transmission evaluation, since this is not specifically a geotechnical issue. Therefore, we recommend that a qualified person, such as the flooring subcontractor and/or structural engineer, be consulted with to evaluate the general and specific moisture vapor transmission paths and any impact on the proposed construction. That person should provide recommendations for mitigation of potential adverse impact of moisture vapor transmission on various components of the structures as deemed appropriate.

Minor cracking of concrete after curing due to drying and shrinkage is normal and should be expected; however, concrete is often aggravated by a high water/cement ration, high concrete temperature at the time of placement, small nominal aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of low-slump concrete or low water/cement ratios can reduce the potential for shrinkage cracking. Additionally, our experience indicates that the use of reinforcement in slabs and foundations can generally reduce the potential for concrete cracking.

To reduce the potential for excessive cracking, concrete slabs-on-grade should be provided with construction or weakened plane joints at frequent intervals. Joints should be laid out to form approximately square panels.

4.7 <u>Corrosion Protection Measures</u>

Corrosion test results are summarized in Section 2.2.2, Soil Corrosivity and presented in Appendix B. The results of the resistivity test indicate the soil is corrosive to buried ferrous metals. These test results should be presented to the underground contractor for specific mitigation measures to reduce the risks associated with soil corrosivity.

Based on soluble sulfate test results, the bedrock materials also exhibit corrosion potential for concrete. Specific recommendations for treatment of concrete exposed to varying sulfate content are provided by the American Concrete Institute (ACI, 2011).

4.8 <u>Surface Drainage</u>

Surface drainage should be designed to direct water away from building and toward approved drainage devices. Irrigation of landscaping should be controlled to maintain, as much as possible, consistent moisture content sufficient to provide healthy plant growth without over watering.

5.0 CONSTRUCTION CONSIDERATIONS

5.1 <u>Temporary Excavations</u>

All temporary excavations, including footings, utility trenches, should be performed in accordance with project plans, specifications, and all OSHA requirements. Excavations 5 feet or deeper should be laid back or shored in accordance with OSHA requirements before personnel are allowed to enter.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the cut, unless the cut is shored appropriately.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor shall be responsible for providing the "competent person" required by OSHA standards to evaluate soil conditions. The bedrock can be classified as Type B soil. Soil types will vary, but Type C soils can be expected at shallow depths. Close coordination between the competent person and the geotechnical engineer should be maintained to facilitate construction while providing safe excavations.

5.2 Oil Well Abandonment and Methane Mitigation

Leighton should review the oil well abandonment recommendations and methane mitigation plans developed by Roux to address any potential conflicts with geotechnical recommendations.

5.3 Additional Geotechnical Services

The geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations and limited laboratory testing. Our conclusions and recommendations presented in this report should be reviewed and verified by Leighton during site construction and revised accordingly, if exposed geotechnical conditions vary from our preliminary findings and interpretations. The recommendations presented in this report are only valid if Leighton verifies the site conditions during construction.

Geotechnical observation and testing should be provided during the following activities:

- Grading and excavation of the site;
- Subgrade Preparation;
- Compaction of all fill materials;
- Utility trench backfilling and compaction;
- Footing excavation and slab-on-grade preparation;
- During installation of temporary shoring, wherever needed; and
- When any unusual conditions are encountered.

6.0 LIMITATIONS

This report was based solely on data obtained from a limited number of geotechnical explorations, and soil samples and tests. Such information is, by necessity, incomplete. The nature of many sites is such that differing soil or geologic conditions can be present within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time. Therefore, the findings, conclusions, and recommendations presented in this report are only valid if Leighton and Associates has the opportunity to observe subsurface conditions during grading and construction, to confirm that our preliminary data are representative for the site. Leighton and Associates, Inc. should also review the construction plans and project specifications, when available, to comment on the geotechnical aspects.

This report was prepared using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. The findings, conclusion, and recommendations included in this report are considered preliminary and are subject to verification. We do not make any warranty, either expressed or implied.

7.0 REFERENCES

- Abrahamson, N.A. Silva, W.J., and Kamai, R., 2014, Summary of the ASK14 Ground Motion Relation for Active Crustal Regions, Earthquake Spectra 30, pp. 1025-1055.
- American Concrete Institute, 2011, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, 2011.
- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, Errata Incorporated through March 15.
- Boore, D.M., Stewart, J.P., Seyhan, E., and Atkinson, G.A., 2014, NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthquake Spectra 30, pp. 1057-1085.
- Bryant, W.A. and Hart, E.W., Interim Revision 2007, Fault Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California Geological Survey, Special Publications 42, 42p.
- California Building Standards Commission (CBSC), 2013 California Building Code (CBC), Based on 2012 International Building Code.
- California Geological Survey (CGS; previously referred to as the California Division of Mines and Geology), 1998 (Revised 2001), Seismic Hazard Zone Report for the Hollywood 7.5-Minute Quadrangle, Los Angeles County, California, Seismic Hazard Zone Report 026.
- _____, 1999, State of California Seismic Hazard Zones Map, Hollywood Quadrangle, map scale 1:24,000.
- _____, 2000, CD-ROM containing digital images of Official Maps of Alquist-Priolo Earthquake Fault Zones that affect the Southern Region, DMG CD 2000-003 2000.
- _____, 2014, State of California Earthquake Fault Zones Map for the Hollywood Quadrangle, map scale 1:24,000, released November 6.

- Campbell, K.W., and Bozorgnia, Y., 2014, NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra, Earthquake Spectra 30, pp. 1087-1115.
- Chiou, B.S.-J., and Youngs, R.R., 2014, Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra 30, pp. 1117-1153.
- City of Los Angeles, Bureau of Engineering, Department of Public Works, 2004, Methane and Methane Buffer Zones Map, dated March 31.
- City of Los Angeles, Department of City Planning, 1996, Safety Element of the Los Angeles City General Plan, Adopted by the City Council on November 26.
- Dibblee, Thomas, W., 1991, Geologic Map of the Hollywood and Burbank (South ½) Quadrangles, Los Angeles County, California, Dibblee Geological Foundation Map No. DF-30, Scale 1:24,000.
- FEMA, 2008, web site (<u>https://hazards.fema.gov/femaportal/wps/portal/</u>).
- Nationwide Environmental Title Research, LLC (NETR), 2016, Historic Aerials by NETR Online, website: <u>http://www.historicaerials.com/aerials</u>, accessed July 12, 2016.
- Public Works Standards, Inc., 2011, The "Greenbook", Standard and Specifications for Public Works Constructions, 2012 Edition, BNI Building News, 2011.
- United States Geologic Survey (USGS), 1981, Hollywood 7.5-Minute Quadrangle Map, Los Angeles County, California, released 1961, photo revised 1981.
 - _____, 2008a, U.S. Seismic Design Maps, http://earthquake.usgs.gov/designmaps/us/application.php

____, 2008b, Interactive Deaggregations, http://geohazards.usgs.gov/deaggint/2008/index.php

_____, 2008c, National Seismic Hazard Maps – Fault Parameters, <u>http://geohazards.usgs.gov/cfusion/hazfaults 2008_search/query_main.cfm</u>

Wright, T.L., 1991, Structural Geology and Tectonic Evolution if the Los Angeles Basin, California, *in* Biddle, K.T. (editor), Active Margin Basins: American Association of Petroleum Geologists Memoir 52, pp. 35-134.

- Yerkes, R.F., 1972, Geology and Oil Resources of the Western Puente Hills Area, Southern California: U.S. Geological Survey Professional Paper 420-C, 63 p.
- _____, 1997, Preliminary Geologic Map of the Hollywood 7.5' Quadrangle, Southern California, United States Geological Survey (U.S.G.S.) Open-File Report 97-255, Map Scale 1:24,000.
- Yerkes, R.F., and Campbell, R.H., 2005, Preliminary Geologic Map of the Los Angeles 30' x 60' Quadrangle, Southern California, United States Geological Survey (U.S.G.S.) Open-File Report 2005-1019, Version 1.0, Map Scale 1:100,000.
- Yerkes, R.F., and Graham, S.E., 1997, Preliminary Geologic Map of the Hollywood 7.5' Quadrangle, Southern California: A Digital Database, United States Geological Survey (U.S.G.S.) Open-File Report 97-431, Map Scale 1:24,000.
- Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E. and Vedder, J.G., 1965, Geology of the Los Angeles Basin, California -- An Introduction: U.S. Geological Survey, Professional Paper 420-A, 57 p.

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnicalengineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled*. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated*.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only*. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

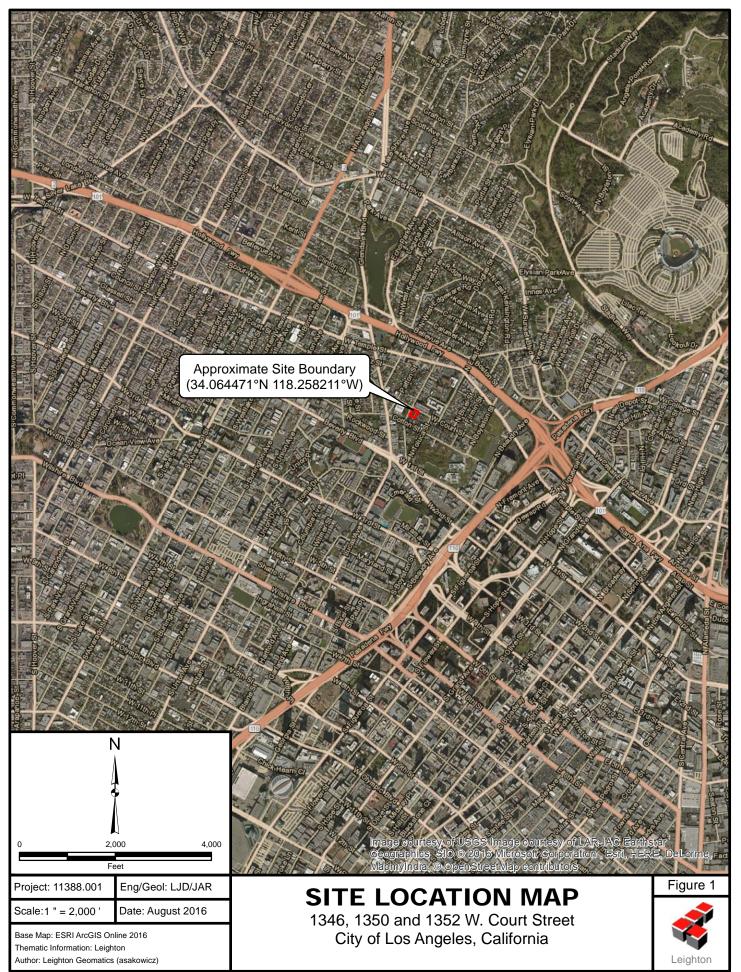
Read Responsibility Provisions Closely

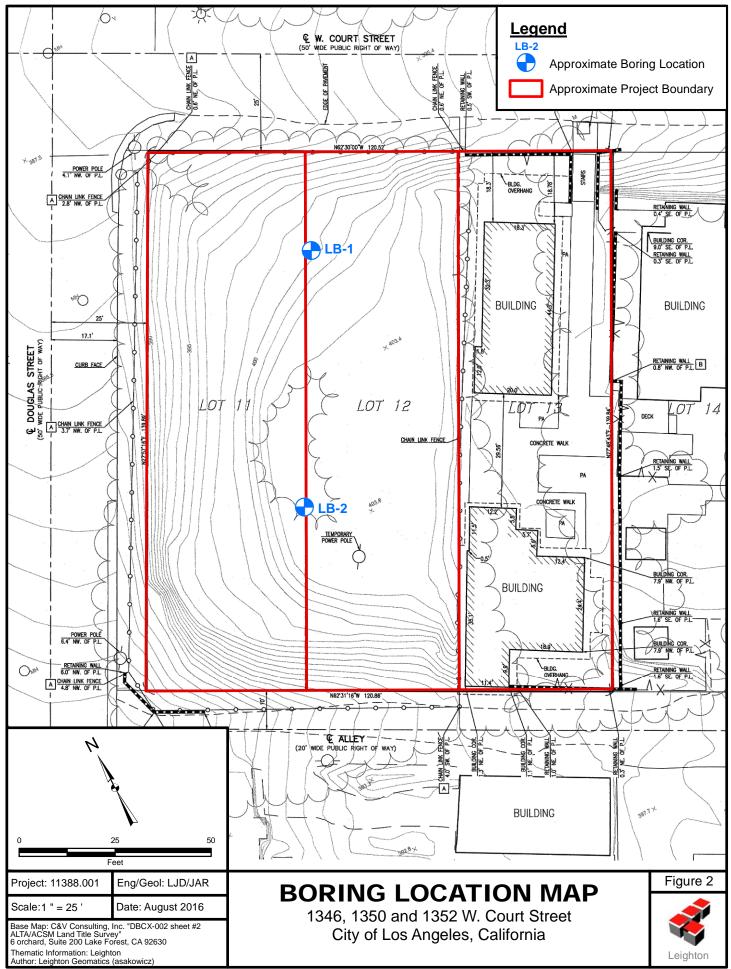
Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

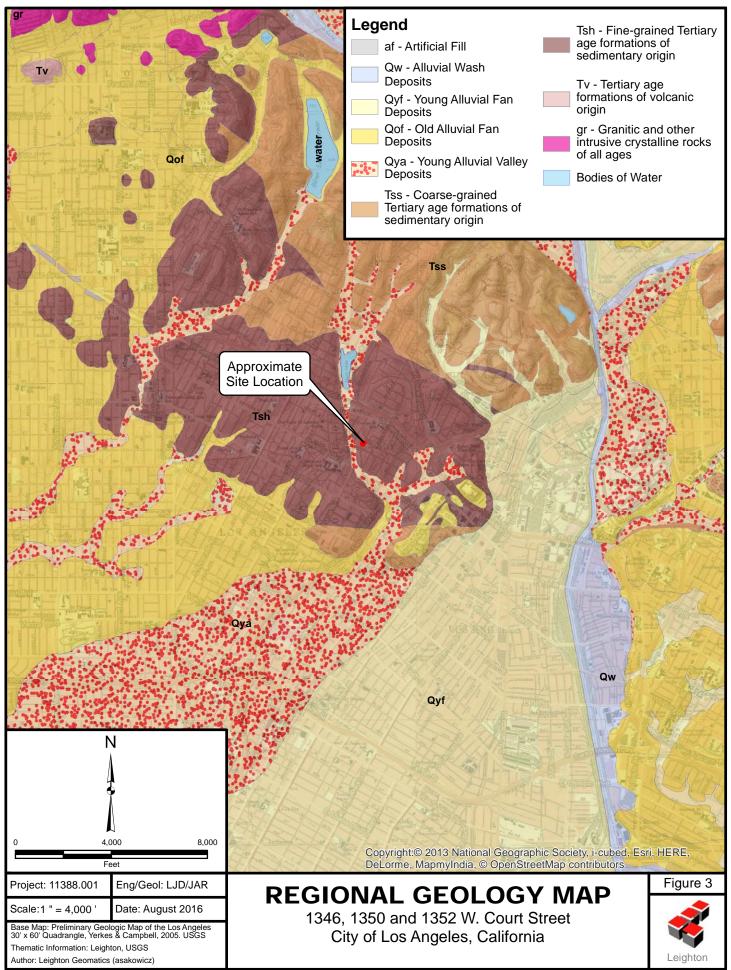
The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

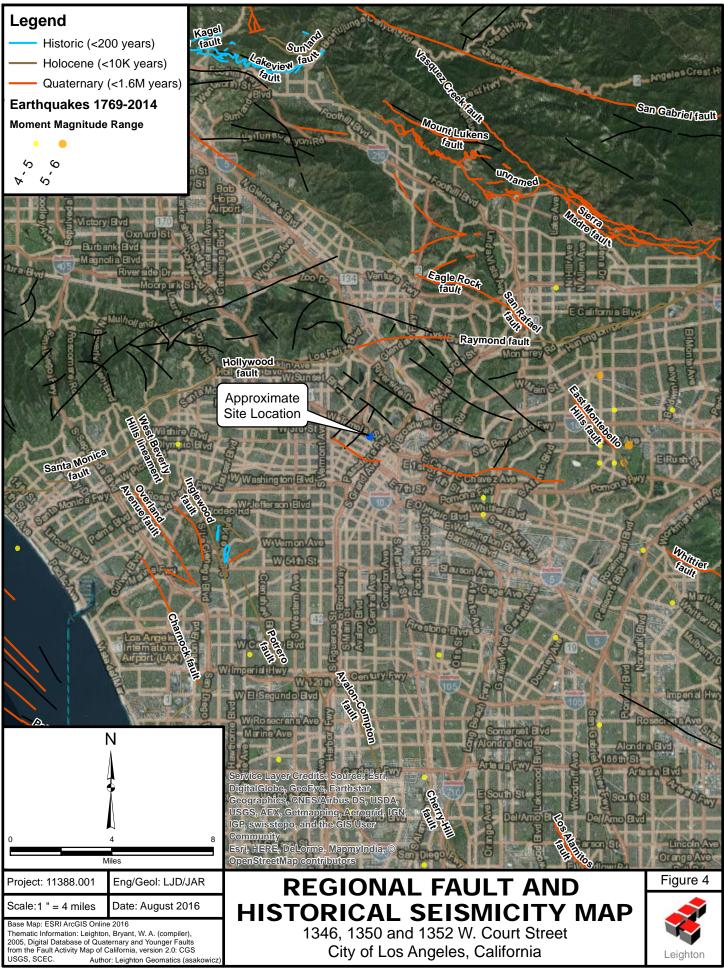
Obtain Professional Assistance to Deal with Moisture Infiltration and Mold


While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

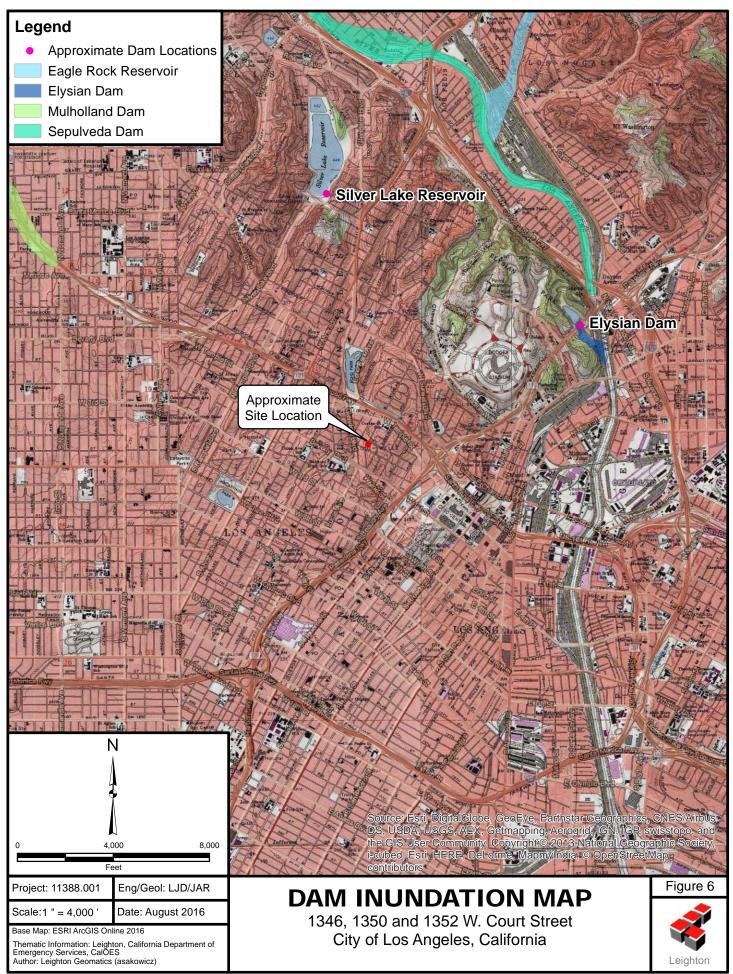

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

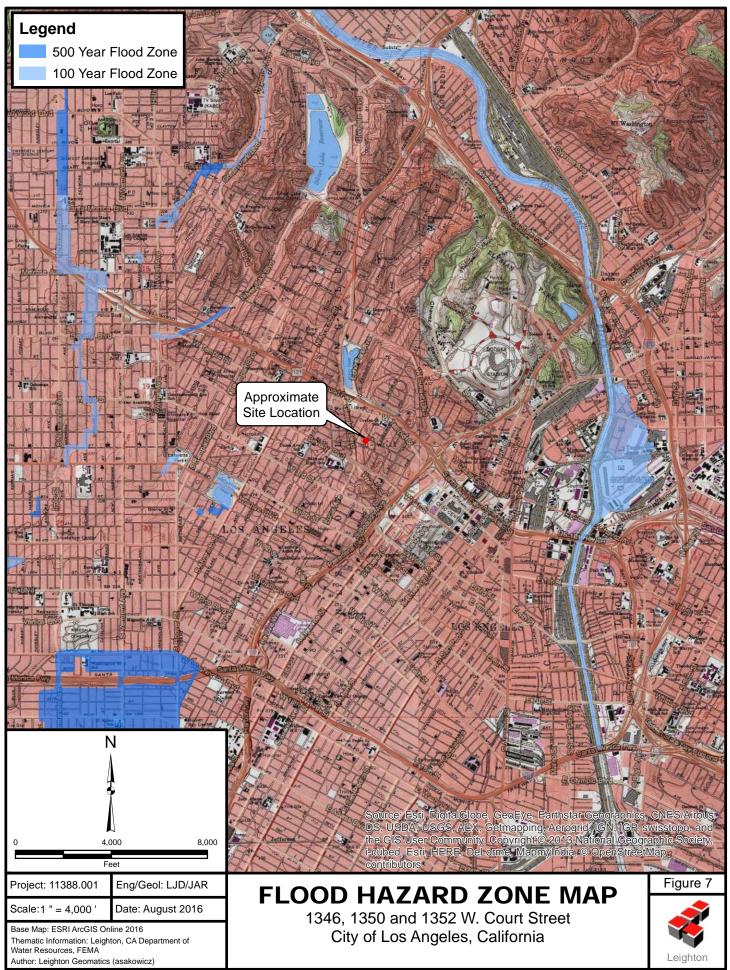
Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent


Figures


Map Saved as V:\Drafting\11388\001\Maps\11388_001_F01_SLM_2016-07-13.mxd on 8/23/2016 7:01:47 AM

Map Saved as V:\Drafting\11388\001\Maps\11388_001_F02_BLM_2016-08-08.mxd on 8/23/2016 7:03:36 AM


Map Saved as V:\Drafting\11388\001\Maps\11388_001_F03_RGM_2016-07-13.mxd on 7/13/2016 11:10:27 AM


Map Saved as V:\Drafting\11388\001\Maps\11388_001_F05_RFHSM_2016-07-13.mxd on 8/23/2016 7:08:17 AM

Map Saved as V:\Drafting\11388\001\Maps\11388_001_F06_SHM_2016-07-13.mxd on 8/23/2016 7:09:45 AM

Map Saved as V:\Drafting\11388\001\Maps\11388_001_F07_Dam_2016-07-13.mxd on 7/13/2016 12:19:02 PM

Map Saved as V:\Drafting\11388\001\Maps\11388_001_F08_Flood_2016-07-13.mxd on 8/23/2016 7:13:04 AM

Map Saved as V:\Drafting\11388\001\Maps\11388_001_F09_Methane_2016-07-13.mxd on 8/23/2016 7:15:21 AM

APPENDIX A FIELD EXPLORATION LOGS

Project No.	11388.001	Date Drilled	7-28-16
Project	Proposed Residential Developments-West Court Street	Logged By	EMH
Drilling Co.	2R Drilling	Hole Diameter	"
Drilling Method	Hollow Stem Auger - Autohammer	Ground Elevation	400 ft. MSL'
Location		Sampled By	EMH
			ş

Elevation Feet	Depth Feet	Graphic Log	Attitudes	Sample No.		Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual		
Ele		ษั N S	Att	Sam	Bulk Driven	B Per 6	Dry	Con Con	Soil (U.	and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type	
	0			<u>BB-1</u>	-					@0': <u>Artificial Fill (afu)</u> Puente Formation Bedrock (Tp)		
	_			R-1		20 50/4"				@2': Silty CLAYSTONE, brown to orange brown, moist, laminated, heavilty weathered		
	5— _			R-2		20 33 50				@5': Interbedded SILTSTONE and CLAYSTONE, orange brown and tan, thinly bedded, weathered, potentially diamtomaceous laminations		
	_			R-3		33 50/5"				@7': SILTSTONE, olive brown, laminated, weathered, slightly fissile, some clay and fine sand		
	10— — —			R-4		37 50/6"				@10': Interbedded SILTSTONE and CLAYSTONE, orange brown, hard, oxidized, with minor sandy laminations		
	 15 			R-5		19 51/6"				@15': Increasing clay		
	20 			R-6		33 _50/5"				 @20': Becomes more thinly laminated, oxidation staining on laminations, thin discrete claystone laminations, some fine sand Total Depth: 20.7 Feet Groundwater not encountered to maximum depth explored Boring backfilled with tamped cuttings upon completion Bedding attitudes, SW corner of site: N54E 60SE N65E 55SE N58E 63SE 		
B C G	30 DLE TYP BULK S CORE S GRAB S RING S SPLIT S TUBE S	AMPLE SAMPLE SAMPLE AMPLE SPOON SA	MPLE	AL A CN C CO C CR C	% FI	STS: NES PAS ERBERG SOLIDAT LAPSE ROSION RAINED	LIMITS FION	EI H MD PP	EXPAN HYDRO MAXIM	T SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH T PENETROMETER JE		

Proj	ect No.	_	1138	8.001						Date Drilled	7-28-16	
Proj		_	Propo	osed Re	esid	ential	Devel	opmer	nts-We	st Court Street Logged By	EMH	
	ing Co.		2R D	rilling						Hole Diameter	"	
Drill	ing Meth	nod _	Hollo	w Sterr	ו Au	iger -	Autoh	amme	r	Ground Elevation	403 ft. M	SL'
Loc	ation									Sampled By	EMH	
Elevation Feet		Graphic Log ø	Attitudes	Sample No.	Bulk Driven	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the explorative of sampling. Subsurface conditions may differ at other and may change with time. The description is a simplificative actual conditions encountered. Transitions between soil type gradual.	locations on of the	Type of Tests
	0			BB-1	Π					@0': Artificial Fill (afu)		
	-			R-1		9 21 31				Sandy SILT (ML), dark brown, hard, fine sand, with miscella debris, potential cement slurry	aneous	
										Puente Formation Bedrock (Tp)		
	5			R-2		10 25 32	90	15		@5': SILTSTONE, olive brown and tan, laminated, some fin heavily weathered, with diatomaceous laminations	e sand,	
				R-3		12 50/6"				@7': thinly laminated, some minor clayey laminations, hard, weathered, nonfissile		
	10			R-4		20 41 50/4"	100	17		@10': Interbedded SILTSTONE and CLAYSTONE, olive bro orange brown, thinly laminated, oxidized, with minor san laminations		
	15			R-5		45 50/3"	103	17		@15': SILTSTONE, orangish brown and grayish brown, har bedded, nonfissile, some sand and clay	d, thinly	
	20			R-6		37 50/3"	103	20		@20': Interbedded SILTSTONE, CLAYSTONE, and SANDS olive brown, gray, and orangeish brown, hard, fine sand, nonfissile, with granitic clast Total Depth: 20.8 feet Groundwater not encountered to maximum depth explored Boring backfilled with tamped cuttings upon completion	STONE,	
B C G R S	30 PLE TYPES BULK SAN CORE SAN GRAB SAN RING SAN SPLIT SPO TUBE SAN	MPLE MPLE MPLE 1PLE DON SAI	MPLE	AL CN CO CC	% FIN ATTE CONS COLL CORF	RES PAS RBERG SOLIDAT APSE ROSION	LIMITS	EI H MD PP	EXPAN HYDRO MAXIM	I SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE STRENG T PENETROMETER JE	этн	

APPENDIX B LABORATORY TEST RESULTS

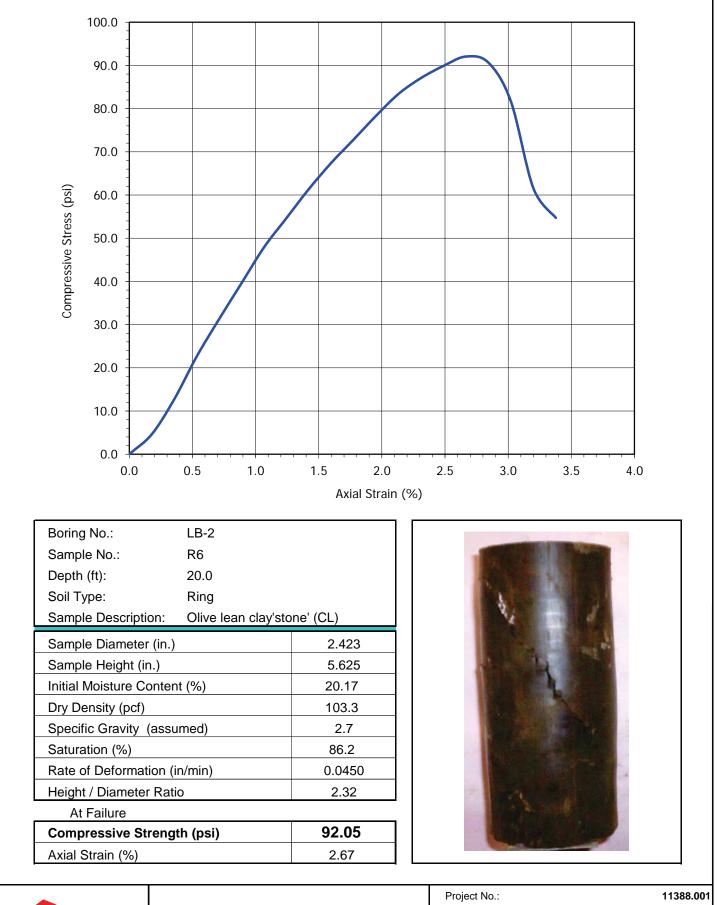
									Sheet	1 of 1
Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
5.0							14.6	89.8		
10.0							17.2	100.4		
15.0							17.0	102.5		
20.0							20.2	103.2		
	5.0 10.0 15.0	Depth Limit 5.0	Depth Limit Limit 5.0	DeptrinLimitLimitIndex5.010.015.010.0	DepthLiquid LimitPlastic LimitPlasticity IndexSize (mm)5.0	DepthLiquid LimitPlastic LimitPlasticity IndexSize (mm)%<#200 Sieve5.010.015.01000100010001000	DepthLiquid LimitPlastic LimitPlasticity IndexSize (mm)%<#200 SieveClass- ification5.010.010.010.010.010.010.0	DepthLiquid LimitPlastic LimitPlasticity IndexSize 	DepthLiquid LimitPlastic LimitPlasticity IndexSize (mm)%<#200 SieveClass- ificationContent (%)Density (pcf)5.014.689.810.017.2100.415.0117.0102.5	DepthLiquid LimitPlastic LimitPlasticity IndexMaximum Size (mm)%<#200 SieveClass- ificationWater Content (%)Dry Density (pcf)Satur- ation (%)5.0 </td

Summary of Laboratory Results

Project Name:Proposed Residential Developments-West Court StreProject Number:11388.001

Date: 8/17/2016 11:05:13 AM

Figure No. 1



UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL ASTM D 2166

Project Name:	Court Partn	ers LLC	Tested by:	A. Santos	D	ate:	08/16/16
Project No.:	11388.001		Checked by:	J. Ward	D	ate:	08/17/16
Boring No.:	LB-2		Sample Type:		Ring		
Sample No.:	R6		Depth (ft):		20.0		
Sample Descript	ion:	Olive lean clay'stone' (CL)					

Weight of Sample + Tube / Rings (g)	845.00	Sample Measurements		
Weight of Tube / Rings (g)	0.00		2.424	
Wet Weight of Soil + Container (g)	1144.00	Diameter (in)	2.423	
Dry Weight of Soil + Container (g)	1002.40		2.423	
Weight of Container (g)	300.30	Area (sq.in.)	4.612	
Load Surcharge (Ib)	2.20		5.626	
Rate of Deformation (in/min)	0.045	Height (in)	5.625	
Specific Gravity (Assumed)	2.70		5.624	

Axial Deformation (in.)	Load (lb.)	Compressive Stress (psi)	Axial Strain (%)	Axial Deformation (in.)	Load (lb.)	Compressive Stress (psi)	Axial Strain (%)
0.0000	0.0	0.00	0.000				
0.0100	19.0	4.59	0.178				
0.0200	56.5	12.68	0.356				
0.0300	102.5	22.58	0.533				
0.0400	143.0	31.26	0.711				
0.0500	182.0	39.58	0.889				
0.0600	221.0	47.88	1.067				
0.0700	253.0	54.64	1.244				
0.0800	285.0	61.38	1.422				
0.0900	314.0	67.46	1.600				
0.1000	340.0	72.87	1.778				
0.1100	366.5	78.38	1.956				
0.1200	391.0	83.43	2.133				
0.1300	409.0	87.09	2.311				
0.1400	423.0	89.89	2.489				
0.1500	434.0	92.05	2.667				
0.1600	428.0	90.62	2.844				
0.1700	386.0	81.62	3.022				
0.1800	291.0	61.53	3.200				
0.1900	259.0	54.72	3.378				

Leighton

Unconfined Compressive Strength of Cohesive Soil ASTM D 2166

Court Partners LLC

08/16/16

TESTS for SULFATE CONTENT CHLORIDE CONTENT and pH of SOILS

Project Name:	Court Partners LLC	Tested By :	G. Berdy	Date: 08/15/16
Project No. :	11388.001	Data Input By:	J. Ward	Date: 08/17/16

Boring No.	LB-2	
Sample No.	R4	
Sample Depth (ft)	10.0	
Soil Identification:	Olive brown silt'stone' (ML)	
Wet Weight of Soil + Container (g)	135.29	
Dry Weight of Soil + Container (g)	127.23	
Weight of Container (g)	56.73	
Moisture Content (%)	11.43	
Weight of Soaked Soil (g)	100.53	

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	93	
Crucible No.	3	
Furnace Temperature (°C)	860	
Time In / Time Out	10:00/10:45	
Duration of Combustion (min)	45	
Wt. of Crucible + Residue (g)	42.6789	
Wt. of Crucible (g)	42.6523	
Wt. of Residue (g) (A)	0.0266	
PPM of Sulfate (A) x 41150	1094.59	
PPM of Sulfate, Dry Weight Basis	1236	

CHLORIDE CONTENT, DOT California Test 422

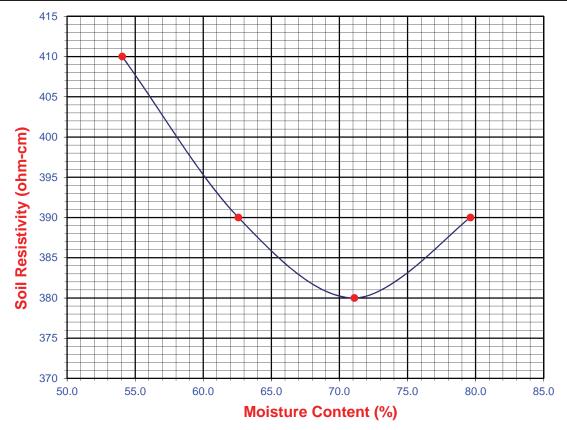
ml of Extract For Titration (B)	30	
ml of AgNO3 Soln. Used in Titration (C)	1.6	
PPM of Chloride (C -0.2) * 100 * 30 / B	140	
PPM of Chloride, Dry Wt. Basis	158	

pH TEST, DOT California Test 643

pH Value	7.45		
Temperature °C	20.2		

SOIL RESISTIVITY TEST DOT CA TEST 643

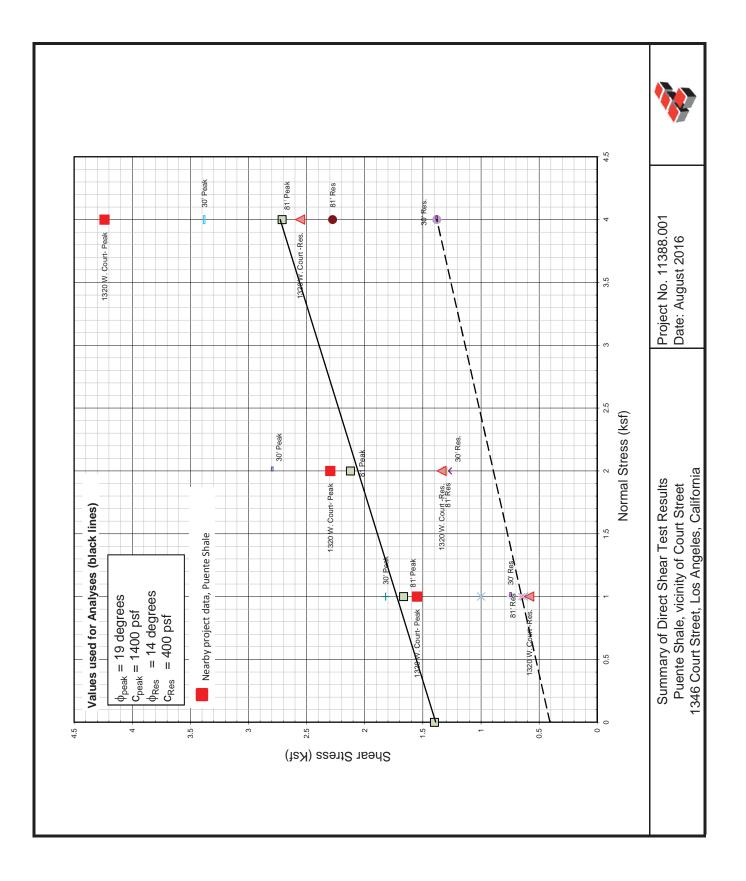
Project Name:	Court Partners LLC	Tested By :	G. Berdy	Date: 08/16/16
Project No. :	11388.001	Data Input By	: J. Ward	Date: 08/17/16
Boring No.:	LB-2	Depth (ft.) :	10.0	
Sample No. :	R4			


Soil Identification:* Olive brown silt'stone' (ML)

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	50	54.05	410	410
2	60	62.58	390	390
3	70	71.10	380	380
4	80	79.62	390	390
5				

Moisture Content (%) (MCi)	11.43						
Wet Wt. of Soil + Cont. (g)	135.29						
Dry Wt. of Soil + Cont. (g)	127.23						
Wt. of Container (g)	56.73						
Container No.							
Initial Soil Wt. (g) (Wt)	130.73						
Box Constant	1.000						
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100							


Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
DOT CA	A Test 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA	A Test 643
380	71.1	1236	158	7.45	20.2

Location	1346 Coui	1346 Court Street, El.	vicinity, West Court Street, El. 440	rt Street, El. 440	1301 Colt	1301 Colton Street, El.	301 Yale Street	Hollywood SHZP Report
sample depth/type Fill/soil, 0 to 5 ft.	l/soil, 0 to 5 ft.	Tpsh, 0 to 22 ft.	Fill/soil, 0 to 5 ft.	Tpsh, 5 to 51.5 ft.	Fill/soil, 0 to 2 ft.	Tpsh, 0 to 22 ft.	Tpsh , 15 to 30 ft.	Tpsh (abc)
Classification	CH, silt clay	Siltstone, Claystone	CH, silty clay	Siltstone, Claystone		Sandstone, Claystone Siltstone, Claystone	Siltstone, Claystone	Siltstone, Claystone
ieve (%Gr/%Sand/%Fines)			0/8/92				0/6/94	
unit weight, pcf	103	121		111	107	122		
MC, %	14.6%	17-20%						
Atterberg Limit		P1=42, LL=65	PI=36, LL=58				PI=31, LL=55	
Expansion Index			76				26	
Strength, peak		phi = 19, C=1400		phi = 43, C=600psf			phi = 19, C=1400	
Strength, residual		phi = 14, C=400		phi = 28, C=200psf			phi = 14, C=400	phi = 19 to 26, C=300 to 364
R-value			17					
Max, pcf			112 pcf @12%OMC					
Sulfates/Chlorides (PPM)		1236/158	1428/20					
Hd		7.45						
Resistivity, ohm-cm		380	400					
UC, psi		92.05		30.92		79.15	48.68	

Geotechnical Parameters Summary, Puente Shale (Court and Colton Street Projects) 11388.001 Court Street

APPENDIX C PREVIOUS GEOTECHNICAL DATA

Proj Drill Drill	ject No ject ling Co ling Mo ation	D.	Hollo	Drilling w Stem A ngeles, C			- Auto	Date Drilled 3-19-13 Logged By BCP Hole Diameter 8" Ground Elevation ~1 foot ab Sampled By BCP	<u>oove st</u> reet	
Elevation Feet	Depth Feet	z Graphic v v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	0 			B-1				CL	2" Asphalt, 4" Base 0-6": Dry <u>Undocumented Artificial Fill (Afu)</u> @ 1-4": CLAY: brown, fine-grained sand, dry	
	5— — — —	- • • - • • - • • - • •	0.0	R-1 LB-3-5'	16 31 42				 Puente Formation Bedrock (Tp) @ 5': SILTSTONE/CLAYSTONE with interbedded sand, brown to grey, fine-grained sand, dry, hard, thinnly bedded 	
	10— — —		0.0	S-1 LB-3-10	14 35 20				@10': SILTSTONE/CLAYSTONE with interbedded sand, brown, fine-grained sand, dry, hard	
	15— — —	- • _ • _ • _ • _ • _ • _ • _ • _ • _ •	0.0	R-2	5 6 16				@ 15': SILTSTONE/CLAYSTONE, light brown to grey, trace fine-grained sand, dry, very stiff	
		- • • • • - • - • - • - • -	0.0	S-2	6 13 14				@ 20': SILTSTONE/CLAYSTONE, light brown to grey, trace fine-grained sand, dry, hard	
			0.0	R-3	12 25 29				@ 25': SILTSTONE/CLAYSTONE, grey, trace fine-grained sand, interbedded gypsum, dry, hard, thinnly bedded	
	CORE S GRAB S RING S SPLIT S	SAMPLE SAMPLE SAMPLE	MPLE	TYPE OF TE -200 % FI AL ATT CN CON CO COL CR COR CU UND	NES PAS ERBERG ISOLIDA [®] LAPSE ROSION	LIMITS	DS EI H MD PP L RV	EXPAN HYDRO MAXIM	T SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY UM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH T PENETROMETER JE	\$

	ject No	D.								9-13
Pro	ject ling Co								Logged By BC	P
	ling Mo			Drilling		4.4.011	• •		Hole Diameter 8"	
	-	eniou		w Stem A			- Auto	hamm		foot above street
	ation		LOS F	Angeles, C	aiiiom				Sampled ByBC	
Elevation Feet	Depth Feet	۲ Graphic «	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at time of sampling. Subsurface conditions may differ at other locati and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types ma gradual.	ions o the o
	30	· · · · · · · · · · · · · · · · · · ·	0.0	S-3	13 22 40				@ 30': SILTSTONE/CLAYSTONE, light brown to grey, trace fine-grained sand, dry, very dense	
	35— 	· · · · · · · · · · · · · · · · · · ·	0.0	R-4 LB-3-35	18 24 50/2"				@ 35': SILTSTONE/CLAYSTONE, light brown to grey, trace interbedded fine-grained sand, dry, very dense	
	40	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _	0.0	S-4	25 28 30				@ 40': SILTSTONE/CLAYSTONE, light brown to grey, trace fine-grained sand, dry, very dense	
	45— 	• • • •	0.0	R-5 LB-3-45	35 50				@ 45': SILTSTONE/CLAYSTONE with interbedded sand, light brown to grey, fine-grained sand, dry, very dense, thinnly bedded, oxidized	
	50								Total Depth = 46 Feet Groundwater was not encountered at time of drilling No hydrocarbon staining or odor observed in boring Backfilled with methane probe SP-1 installed at depths of 30, and 15 feet bgs on 3/19/13	20,
	60 PLE TYP BULK S CORE S GRAB S RING S SPLIT S TUBE S	AMPLE AMPLE AMPLE AMPLE POON SA	MPLE	TYPE OF TE -200 % FI AL ATT CN CON CO COL CR COF CU UNE	INES PAS ERBERG ISOLIDA LAPSE RROSION	LIMITS TION	EI H MD PP	EXPAN HYDRC MAXIM	T SHEAR SA SIEVE ANALYSIS ISION INDEX SE SAND EQUIVALENT DMETER SG SPECIFIC GRAVITY IUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH ET PENETROMETER UE	

Pro Pro	ject No ject	D.								Date Drilled	3-20-13 BCP	
	, ling Co	.	J& H	Drilling						Hole Diameter	8"	
Dril	ling M	ethod		w Stem A	uger -	140lb	- Auto	hamm	er	Ground Elevation		above street
Loc	ation	-	Los A	ngeles, C	aliforn	ia				Sampled By	BCP	
Elevation Feet	Depth Feet	z Graphic « Log	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DES This Soil Description applies only t time of sampling. Subsurface con and may change with time. The d actual conditions encountered. Tra gradual.	ditions may differ at other escription is a simplificatio	locations on of the	Type of Tests
	0							SP	Undocumented Artificial Fill (A @Surface: poorly graded SAND w	<u>fu)</u> rith gravel, brown, dry, sor	ne clays	
	5	· · ·	2.5		18 50				Puente Formation Bedrock (Tp) (@ 5': SILTSTONE/CLAYSTON some fine gravel, dry, very den- and odor	E, brown, some fine-graine se, minor hydrocarbon stai	ed sand, ning	
	10	· · · · · · · · · · · · · · · · · · ·	5.5	LB-4-10	12 13 19				@10': SILTSTONE/CLAYSTON and fine-grained sand, dry, den	E, brown, less gravel, some se, hydrocarbon staining a	e clay nd odor	
	-	- • • • • • • • • • • •	34.5	LB-4-16	22 50				@ 16': SILTSTONE/CLAYSTON fine-grained sand, dry, very der	NE, light brown to grey, so ise, hydrocarbon odor and	me staining	
	20	· · · · · · · · · · · · · · · · · · ·	8.8	R-1 LB-4-20	8 24 46				@ 20': SILTSTONE/CLAYSTON brown to grey, fine-grained san and odor, thinnly bedded, oxidi	VE with interbedded sand, d, dry, hard, hydrocarbon zed	light staining	
	25	- • \bullet	1.8	S-1	12 24 36				@ 25': SILTSTONE/CLAYSTON fine-grained sand, dry, hard, no	E, light brown to grey, tra hydrocarbon odor or stair	ce ling	
	GRAB S RING S SPLIT S	Sample Sample Sample Ample Spoon Sa	PLE AL ATTERBERG LIMITS EI EXPANSION INDEX SE SAND EQUIVALENT PLE CN CONSOLIDATION H HYDROMETER SG SPECIFIC GRAVITY LE CO COLLAPSE MD MAXIMUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH IN SAMPLE CR CORROSION PP POCKET PENETROMETER								3	

Proj Dril	ling Co	D.		Drilling					Lo	ate Drilled ogged By ole Diameter	3-20-13 BCP 8"	
	ling Mo ation	ethod		w Stem A Ingeles, C			- Auto	hamm		round Elevation	~15 foot a _BCP	above street
Elevation	Depth Feet	z Graphic «	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	This Soil Description applies only to a time of sampling. Subsurface condition and may change with time. The desci actual conditions encountered. Trans- gradual.	RIPTION location of the explore ons may differ at other ription is a simplification	ation at the locations on of the	Type of Tests
	30	- • • - • • - • • - • •	2.5	R-2 LB-4-30	20 23 50				@ 30': SILTSTONE/CLAYSTONE, I interbedded fine-grained sand, dry, staining or odor, thinnly bedded	light brown to grey, tra very dense, no hydroc	ce arbon	
	35	· · · · · · · · · · · · · · · · · · ·	5.4	S-2	13 25 30				@ 35': SILTSTONE/CLAYSTONE w brown to grey, fine-grained sand, d hydrocarbon staining or odor	vith interbedded sand, l lry, very dense, no	light	
	40	- • \bullet = • • \bullet = • \bullet \bullet \bullet = \bullet \bullet =\bullet \bullet =	0.6	R-3 LB-4-40	14 25 30				@ 40': SILTSTONE/CLAYSTONE, interbedded fine-grained sand, dry, staining, thinnly bedded	light brown to grey, tra hard, no hydrocarbon	ace odor or	
	45— — — —	· · · · · · · · · · · · · · · · · · ·	0.5	S-3	15 31 50				@ 45': SILTSTONE/CLAYSTONE, I fine-grained sand, dry, hard, no hyd	light brown to grey, tra drocarbon odor or stair	ce ning	
	50— — —	- • \bullet = • • \bullet = • • \bullet = \bullet \bullet \bullet =\bullet \bullet =	2.2	R-4	20 30 46				@ 50': SILTSTONE/CLAYSTONE, 1 fine-grained sand, dry, hard, no hyd thinnly bedded	light brown to grey, tra drocarbon odor or stair	ce ning,	
	55 								Total Depth = 51.5 Feet Groundwater was not encountered Backfilled with bentonite grout on 3	at time of drilling 3/20/13		
	GRAB S	Sample Sample Sample Ample Spoon Sa	PLE AL ATTERBERG LIMITS EI EXPANSION INDEX SE SAND EQUIVALENT PLE CN CONSOLIDATION H HYDROMETER SG SPECIFIC GRAVITY LE CO COLLAPSE MD MAXIMUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH ON SAMPLE CR CORROSION PP POCKET PENETROMETER								X	

Pro Proj	ject No	D.	-							Date Drilled	3-20-13 BCP	
-	ling Co	D.	.I& H	Drilling						Logged By Hole Diameter	8"	
Dril	ling M	ethod		w Stem A	uger -	140lb	- Auto	hamm		Ground Elevation		above street'
Loc	ation			ngeles, C						Sampled By	BCP	
Elevation Feet	Depth Feet	z Graphic «	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	Soil Description applies only to time of sampling. Subsurface condi and may change with time. The des actual conditions encountered. Tran gradual.	a location of the explora tions may differ at other scription is a simplificatio	locations on of the	Type of Tests
	0		0.0	B-1				SM	Undocumented Artificial Fill (Afu @ Surface: poorly graded SAND: bi sand with gravel, trace clay, dry,	rown, fine to medium-gra	ained or odor	
	5— — — —	· · · · · · · · · · · · · · · · · · ·	0.5	R-0 LB-5-5'	23 50				Puente Formation Bedrock (Tp) @ 5': SILTSTONE/CLAYSTONE, fine-grained sand, dry, very dens staining	tan to brown, some clay e, no hydrocarbon odor c		
	10— — —	-• -• -• -• -• -• -•	2.1	S-1 B-2	7 8 25				@10': SILTSTONE/CLAYSTONE, oxidation, some fine-grained san hydrocarbon staining and odor	grey with orange brown d with clay, dry, dense, r	ninor	
	15— — —	- • • - • • - • • - • • - • •	5.1	R-1 LB-5-15	19 23 30				@ 15': SILTSTONE/CLAYSTONE fine-grained sand, dry, hard, min odor, thinnly bedded	E, tan to grey, trace intert or hydrocarbon staining	bedded and	
	20	· · · · · · · · · · · · · · · · · · ·		S-2	9 10 35				@ 20': SILTSTONE/CLAYSTONE sand, dry, hard, minor hydrocarb	E, tan to grey, some fine- on staining and odor	grained	
	25		2.1	R-2 LB-5-25	25 25 30				@ 25': SILTSTONE/CLAYSTONE fine-grained sand and gypsum, d staining or odor, thinnly bedded	E, light brown, trace inter ry, very dense, no hydrod	bedded earbon	
	GRAB S RING S SPLIT S	Sample Sample Sample Ample Spoon Sa	PLE AL ATTERBERG LIMITS EI EXPANSION INDEX SE SAND EQUIVALENT PLE CN CONSOLIDATION H HYDROMETER SG SPECIFIC GRAVITY LE CO COLLAPSE MD MAXIMUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH ON SAMPLE CR CORROSION PP POCKET PENETROMETER								F	

Proj Dril	ject No ject ling Co ling Mo).		Drilling w Stem A	uaer -	140lb	- Auto	Pate Drilled Logged By Hole Diameter er Ground Elevation	3-20-13 BCP 8" ~15 foot a	above street	
Loc	ation	-		Angeles, C				-	Sampled By	BCP	
Elevation Feet	Depth Feet	z Graphic v	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the explor time of sampling. Subsurface conditions may differ at other and may change with time. The description is a simplificati actual conditions encountered. Transitions between soil typ gradual.	r locations on of the	Type of Tests
	30	-••	2.1	S-3	10 15 19				@ 30': SILTSTONE/CLAYSTONE, light brown, fine-grain dry, very dense, no hydrocarbon staining or odor	ned sand,	
	35— –	· · · · · · · · · · · · · · · · · · ·	4.8	R-3 LB-5-35	14 20 25				@ 35': SILTSTONE/CLAYSTONE, light brown, interbedd fine-grained sand, dry, very dense, no hydrocarbon staini odor, thinnly bedded, oxidized	led ng or	
			2.4	S-4	13 17 24				@ 40': SILTSTONE/CLAYSTONE, light brown, fine-grain dry, very dense, no hydrocarbon staining or odor	ned sand,	
				R-0	4 5 6				@ 45': no recovery		
									Total Depth = 46.5 Feet Groundwater was not encountered at time of drilling Backfilled with methane probe SP-3 installed at depths and 25 feet bgs on 3/20/13	of 40, 30,	
	GRAB S	Sample Sample Sample	MPLE	TYPE OF TI -200 % F AL ATT CN CON CO COL CR COF CU UNIC	INES PAS ERBERG ISOLIDA LAPSE RROSION	LIMITS TION	EI H MD PP	EXPAN HYDRC MAXIM	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALENT METER SG SPECIFIC GRAVITY JM DENSITY UC UNCONFINED COMPRESSIVE STRENG T PENETROMETER	5ТН	

Proj Dril Dril	ject No ject ling Co ling Mo ation).	Hollo	Drilling w Stem A			- Auto	hamm	er Grou	e Drilled ged By Diameter und Elevation ppled By	3-20-13 BCP 8" ~15 foot a BCP	above street
Elevation	Depth Feet	 Graphic Log 	Attitudes	Sample No.	Blows Per 6 Inches	Dry Density pcf	Moisture Content, %	Soil Class. (U.S.C.S.)	This Soil Description applies only to a loc time of sampling. Subsurface conditions and may change with time. The descript actual conditions encountered. Transitio gradual.	CIPTION cation of the explora may differ at other tion is a simplification	tion at the locations n of the	Type of Tests
	0							SM	Undocumented Artificial Fill (Afu) @ Surface: silty SAND: brown, fine-grain no hydrocarbon staining or odor	ined sand with grave	el, dry,	
	5— — — —	· · · · · · · · · · · · · · · · · · ·	0.3	LB-6-5'	9 19 20				Puente Formation Bedrock (Tp) @ 5': SILTSTONE/CLAYSTONE, brow sand, dry, dense, no hydrocarbon odo	vn, some silt, fine-gr r or staining	 ained	
	10— — — —	- • • - • • - • • - • • - • •	0.6	LB-6-10	10 20 35				@10': SILTSTONE/CLAYSTONE, brow clay, dry, dense, minor hydrocarbon s	wn, fine-grained san taining and odor	d with	
	15— — — —	- • \bullet \bullet \bullet = • • \bullet \bullet \bullet \bullet \bullet \bullet = \bullet \bullet = \bullet \bullet \bullet = \bullet \bullet = \bullet \bullet = \bullet \bullet = \bullet \bullet =\bullet	4.4	R-1 LB-6-15	20 26 36				@ 15': SILTSTONE/CLAYSTONE, gree clay, dry, dense, minor hydrocarbon s	ey, fine-grained sand taining and odor	with	
	20	· · · · · · · · · · · · · · · · · · ·	0.3	S-1	6 13 26				@ 20': SILTSTONE/CLAYSTONE, lig sand with clay, dry, dense, minor hyd	ht brown, some fine rocarbon staining an	-grained d odor	
	25	- • \bullet = • \bullet \bullet = \bullet \bullet =	0.6	R-2 LB-6-25	12 16 30				@ 25': SILTSTONE/CLAYSTONE wit brown to grey, fine-grained sand, dry hydrocarbon staining or odor, thinnly	h interbedded sand, to slightly moist, de bedded, oxidized	light nse, no	
	RING S	SAMPLE SAMPLE SAMPLE AMPLE SPOON SA	MPLE	CO COL CR COR	NES PAS ERBERG ISOLIDA ⁻ LAPSE	LIMITS	DS El H MD PP L RV	EXPAN HYDRO MAXIM	SHEAR SA SIEVE ANALYSIS SION INDEX SE SAND EQUIVALEN METER SG SPECIFIC GRAVIT JM DENSITY UC UNCONFINED CON T PENETROMETER E	Y	гн	*

Project No. Project		-						Date Drilled 3-20-13		
Project									Logged By BCP	
Drilling Co.		_ J& H Drilling Hollow Stem Auger - 140lb - Autohammer						Hole Diameter 8"		
Drilling Method							- Auto	hamm		above street'
Location			Los A	ngeles, C	aliforn	ia		1	Sampled By BCP	
ation et	oth et	raphic Log	sabr	le No.	ws nches	Density pcf	ture int, %	c.S.)	SOIL DESCRIPTION This Soil Description applies only to a location of the exploration at the	f Tests
Elevation Feet	Depth Feet	s Grap Grap	Attitudes	Sample No.	Blows Per 6 Inches	Dry De po	Moisture Content, %	Soil Class. (U.S.C.S.)	time of sampling. Subsurface conditions may differ at other locations and may change with time. The description is a simplification of the actual conditions encountered. Transitions between soil types may be gradual.	Type of Tests
	30	- • • - • - • - • - • - • - • - • -	7.0	S-2	13 15 18				@ 30': SILTSTONE/CLAYSTONE, light brown to grey, fine-grained sand, interbedded gypsum, dry, dense, minor hydrocarbon staining or odor	
	35	· · · · · · · · · · · · · · · · · · ·	7.4	R-3 LB-6-35	18 20 31				@ 35': SILTSTONE/CLAYSTONE, grey, interbedded fine-grained sand with clay, interbedded gypsum, dry, dense, minor hydrocarbon staining or odor, oxidized	
	40 	- • _ • _ • _ • _ • _ • _ • _ • _ • _ •	3.4	S-4	16 16 24				@ 40': SILTSTONE/CLAYSTONE, grey, fine-grained sand with clay, interbedded gypsum, dry, dense, minor hydrocarbon staining or odor	
	 45	• • • • • • • • • • • • • • • • • • •	4.7	R-4	18 20 19				@ 45': SILTSTONE/CLAYSTONE, grey, trace fine-grained sand, dry, hard, no hydrocarbon staining or odor	
	50— 				· · ·				Total Depth = 46.5 Feet Groundwater was not encountered at time of drilling Backfilled with bentonite grout on 3/20/13	
B C G R S	GRAB S	Sample Sample Sample Ample Spoon Sa	MPLE	TYPE OF TE -200 % FI AL ATT CN CON CO COL CR COF CU UND	NES PAS ERBERG ISOLIDA LAPSE ROSION	LIMITS TION	EI H MD PP	EXPAN HYDRC MAXIM	T SHEAR SA SIEVE ANALYSIS ISION INDEX SE SAND EQUIVALENT OMETER SG SPECIFIC GRAVITY IUM DENSITY UC UNCONFINED COMPRESSIVE STRENGTH IF	

PARTICLE-SIZE ANALYSIS OF SOILS

ASTM D 422

Project I	Name:
-----------	-------

Project No. :

Exploration No.: <u>LB-3</u>

Sample No.: <u>B-1</u>

Soil Identification:

Tested By :G. BathalaDate:Data Input By:J. WardDate:

ate: 04/03/13 ate: 04/09/13

Depth (feet) : 0-5

Yellowish brown fat clay (CH)

	% Gravel	0 Soil Type		Moisture Content	Moisture Content	After	
% Sand		8	СН	& Dry Weight of Air-Dry Soil	of Oven-Dry Soil	Hydrometer & Wet Sieve ret.	
	% Fines	92		Passing #4	Passing #10	in #200 Sieve	
Specific Gravity (Assumed)	2.70	Wt.of Air-Dry	Soil + Cont.(g)	1248.80	121.01		
Correction for Specific Gravity	0.99	Dry Wt. of Soil + Cont. (g)		1192.03	120.29	80.22	
Wt.of Air-Dry Soil + Cont. (g)	9704.40	Wt. of Container No (g)		249.48	65.33	76.53	
Wt. of Container	0.00	Moisture Content (%)		6.02	1.31		
Dry Wt. of Soil (g)	9704.40	Wt. of Dry Soil (g)		942.55		3.69	

	Coarse Sieve		
U.S. Sieve	Cumulative Wt. Of Dry Soil Retained (g)	% Passing	
6"	0.00	100.0	
3"	0.00	100.0	
1½"	0.00	100.0	
3/4"	0.00	100.0	
3/8"	14.50	99.9	
No. 4	26.60	99.7	1st sample split
No. 10	3.00	99.4	2nd sample split
Pan			

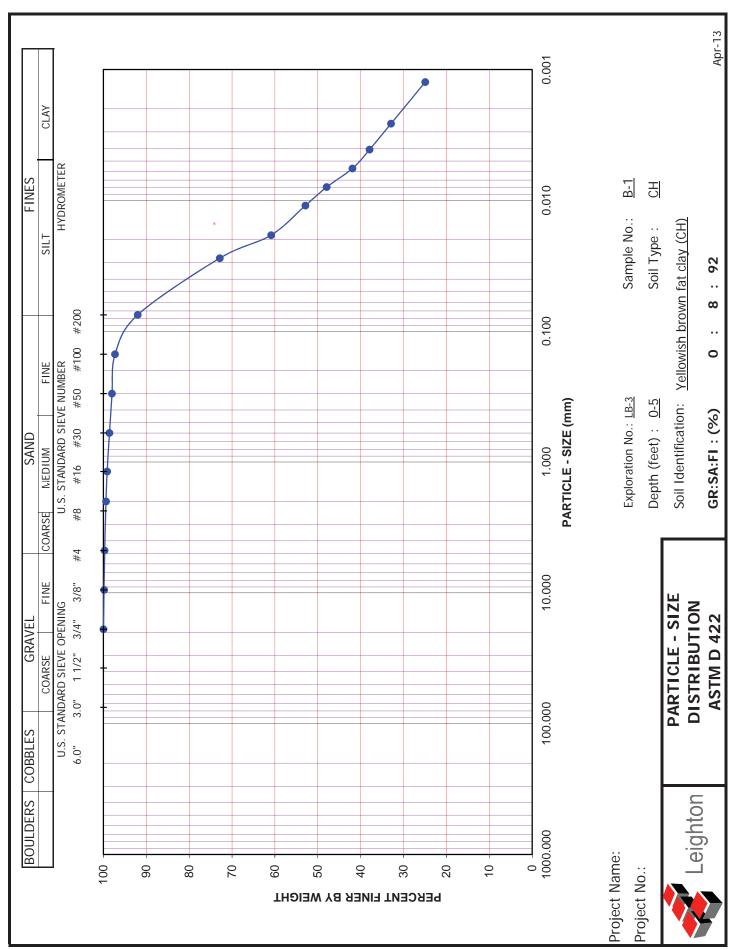
Sieve after Hydrometer & Wet Sieve								
U.S. Sieve Size	Cumulative Wt. Of Dry Soil Retained (g)	% Passing	% Total Sample					
No. 10	0.00	100.0	99.4					
No. 16	0.14	99.7	99.1					
No. 30	0.40	99.2	98.6					
No. 50	0.70	98.6	98.0					
No. 100	1.05	97.9	97.3					
No. 200	3.67	92.6	92.0					
Pan								

Hydrometer

Wt. of Air-Dry Soil (g)

W

Wt. of Dry Soil (g)


49.38

Deflocculant	125 cc of 4% Solution	

Date Time		Elapsed Time (min)	Water Temperature (°C)	Composite Correction 152H	Actual Hydrometer Readings	% Total Sample (%)	Soil Particle Diameter (mm)
04-Apr-13	9:30	0		7.5			
	9:32	2	23.4	7.5	44.0	72.9	0.0277
	9:35	5	23.2	7.5	38.0	60.9	0.0184
	9:45	15	23.1	7.5	34.0	52.9	0.0110
	10:00	30	23.1	7.5	31.5	47.9	0.0079
	10:30	60	23.0	7.5	28.5	41.9	0.0057
	11:30	120	23.1	7.5	26.5	37.9	0.0041
	14:40	310	23.1	7.5	24.0	32.9	0.0026
05-Apr-13	9:30	1440	22.6	7.5	20.0	25.0	0.0012

50.03

SA & Hyd LB-3, B-1 @ 0-5

CA & LL

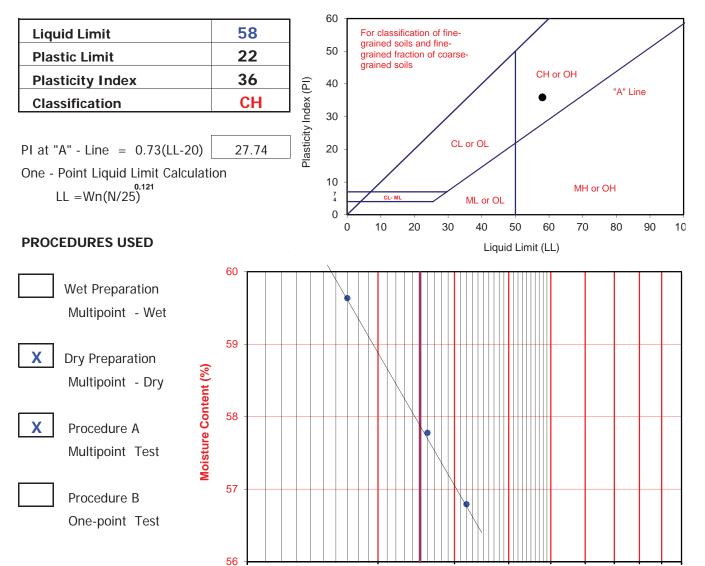
LL,PL,PI

MODIFIED PROCTOR COMPACTION TEST

ASTM D 1557

Sample No. : B	B-3 -1 ellowish browr	n fat clay (Cł	 +)	Tested By : Input By : Depth (ft.)		Date: Date:	04/02/13 04/09/13
Preparation Method:	X	Moist			X	Mechanica	
	Mold Volu	Dry me (ft³)	0.03340	Ram W	l Veight = 10 li	Manual Ra b.; Drop =	
TEST NO		1	2	3	4	5	6
Wt. Compacted Soil	+ Mold (g)	3684.0	3770.0	3798.0	3784.0		
Weight of Mold	(g)	1874.0	1874.0	1874.0	1874.0		
Net Weight of Soil	(g)	1810.0	1896.0	1924.0	1910.0		
Wet Weight of Soil	+ Cont. (g)	473.40	478.30	443.20	464.70		
Dry Weight of Soil +		440.10	434.10	395.30	405.90		
Weight of Container		50.70	51.40	51.80	51.10		
Moisture Content	(%)	8.55	11.55	13.94	16.57		
Wet Density	(pcf)	119.5	125.1	127.0	126.1		
Dry Density	(pcf)	110.1	112.2	111.5	108.1		
Maxin PROCEDURE USE	num Dry Den D ¹²	sity (pcf)	112.0	Optimum	Moisture Co		12.0 P. GR. = 2.45
Procedure A Soil Passing No. 4 (4.75 mm Mold : 4 in. (101.6 mm) Layers : 5 (Five) Blows per layer : 25 (twen May be used if +#4 is 20%	diameter ity-five)	5.0				∖ − s	P. GR. = 2.50 P. GR. = 2.55
Soil Passing 3/8 in. (9.5 mm Mold : 4 in. (101.6 mm) Layers : 5 (Five) Blows per layer : 25 (twen Use if +#4 is >20% and +3 20% or less	diameter 5 Ity-five) 5	0.0					
Soil Passing 3/4 in. (19.0 m Mold : 6 in. (152.4 mm) Layers : 5 (Five) Blows per layer : 56 (fifty- Use if +3/8 in. is >20% and is <30%	diameter six) 10	5.0					
Particle-Size District O:8:92 GR:SA:FI Atterberg Limits: 58:22:36		0.0	5.0		10.0	15.0	20.

Moisture Content (%)


ATTERBERG LIMITS

ASTM D 4318

Project Name:		Tested By:	G. Bathala	Date:	04/04/13
Project No. :		Input By:	J. Ward	Date:	04/09/13
Boring No.:	LB-3	Checked By:	J. Ward		
Sample No.:	B-1	Depth (ft.)	0-5		

Soil Identification: Yellowish brown fat clay (CH)

TEST	PLAST	FIC LIMIT		LIC	UID LIMIT	
NO.	1	2	1	2	3	4
Number of Blows [N]			32	26	17	
Wet Wt. of Soil + Cont. (g)	26.27	26.17	26.92	28.82	29.26	
Dry Wt. of Soil + Cont. (g)	23.97	23.87	22.07	23.21	23.38	
Wt. of Container (g)	13.50	13.52	13.53	13.50	13.52	
Moisture Content (%) [Wn]	21.97	22.22	56.79	57.78	59.63	

10

30 **Number of Blows** 40

50

60

70 80 90 0

25

20

EXPANSION INDEX of SOILS ASTM D 4829

Project Name:		Tested By:	S. Felter	Date:	04/03/13
Project No. :		Checked By:	J. Ward	Date:	04/09/13
Boring No.:	LB-3	Depth (ft.)	0-5		
Sample No. :	B-1				
Soil Identification:	Yellowish brown fat clay (CH)				

Dry Wt. of Soil + Cont. (g)	1000.00
Wt. of Container No. (g)	0.00
Dry Wt. of Soil (g)	1000.00
Weight Soil Retained on #4 Sieve	0.00
Percent Passing # 4	100.00

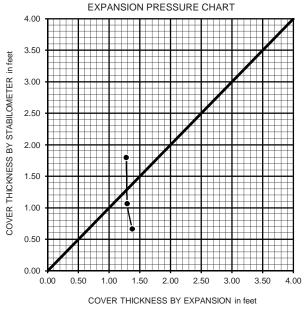
MOLDED SPECI	MEN	Before Test	After Test
Specimen Diameter	(in.)	4.01	4.01
Specimen Height	(in.)	1.0000	1.0935
Wt. Comp. Soil + Mold	(g)	529.20	427.41
Wt. of Mold	(g)	163.10	0.00
Specific Gravity (Assume	ed)	2.70	2.70
Container No.		0	0
Wet Wt. of Soil + Cont.	(g)	723.80	590.51
Dry Wt. of Soil + Cont.	(g)	634.40	483.96
Wt. of Container	(g)	0.00	163.10
Moisture Content	(%)	14.09	33.21
Wet Density	(pcf)	110.4	117.9
Dry Density	(pcf)	96.8	88.5
Void Ratio		0.742	0.905
Total Porosity		0.426	0.475
Pore Volume	(cc)	88.1	107.5
Degree of Saturation (%	o) [S meas]	51.3	99.1

SPECIMEN INUNDATION in distilled water for the period of 24 h or expansion rate < 0.0002 in./h

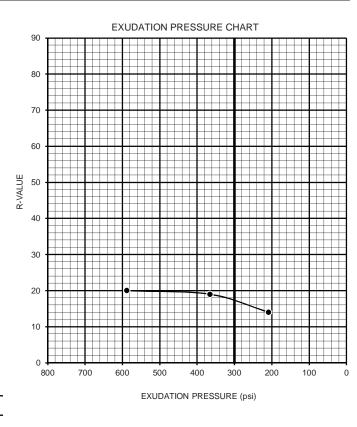
Date	Time	Pressure (psi)	Elapsed Time (min.)	Dial Readings (in.)
04/03/13	14:07	1.0	0	0.1265
04/03/13	14:17	1.0	10	0.1265
	Ac	d Distilled Water to the	e Specimen	
04/03/13	15:15	1.0	58	0.1630
04/04/13	6:40	1.0	983	0.2200
04/04/13	8:11	1.0	1074	0.2200

Expansion Index (EI meas)	=	((Final Rdg - Initial Rdg) / Initial Thick.) x 1000	94
---------------------------	---	---	----

Т


R-VALUE TEST RESULTS

DOT CA Test 301


PROJECT NAME:		PROJECT NUMBER:	10116.001
BORING NUMBER:		DEPTH (FT.):	0-5
SAMPLE NUMBER:	_B-1	TECHNICIAN:	S. Felter
SAMPLE DESCRIPTION:	Yellowish brown CH	DATE COMPLETED:	4/4/2013

TEST SPECIMEN		b	
	а	U	C
MOISTURE AT COMPACTION %	21.2	22.2	22.7
HEIGHT OF SAMPLE, Inches	2.49	2.68	2.62
DRY DENSITY, pcf	107.8	104.3	104.4
COMPACTOR PRESSURE, psi	75	50	50
EXUDATION PRESSURE, psi	588	365	208
EXPANSION, Inches x 10exp-4	54	32	20
STABILITY Ph 2,000 lbs (160 psi)	120	126	132
TURNS DISPLACEMENT	3.24	3.31	3.59
R-VALUE UNCORRECTED	20	17	13
R-VALUE CORRECTED	20	19	14

DESIGN CALCULATION DATA	а	b	С
GRAVEL EQUIVALENT FACTOR	1.0	1.0	1.0
TRAFFIC INDEX	5.0	5.0	5.0
STABILOMETER THICKNESS, ft.	1.28	1.30	1.38
EXPANSION PRESSURE THICKNESS, ft.	1.80	1.07	0.67

19
17
17

TESTS for SULFATE CONTENT CHLORIDE CONTENT and pH of SOILS

Project Name:	Tested By :	GEB/ACS	Date:	04/05/13
Project No. :	Data Input By:	J. Ward	Date:	04/09/13

Boring No.	LB-3	
Sample No.	R-2	
Sample Depth (ft)	15.0	
Soil Identification:	Yellowish olive ML	
Wet Weight of Soil + Container (g)	189.50	
Dry Weight of Soil + Container (g)	187.60	
Weight of Container (g)	58.26	
Moisture Content (%)	1.47	
Weight of Soaked Soil (g)	100.09	

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	51	
Crucible No.	2, 31	
Furnace Temperature (°C)	840	
Time In / Time Out	10:25/11:10	
Duration of Combustion (min)	45	
Wt. of Crucible + Residue (g)	36.2896	
Wt. of Crucible (g)	36.2554	
Wt. of Residue (g) (A)	0.0342	
PPM of Sulfate (A) x 41150	1407.33	
PPM of Sulfate, Dry Weight Basis	1428	

CHLORIDE CONTENT, DOT California Test 422

ml of Extract For Titration (B)	30	
ml of AgNO3 Soln. Used in Titration (C)	0.4	
PPM of Chloride (C -0.2) * 100 * 30 / B	20	
PPM of Chloride, Dry Wt. Basis	20	

pH TEST, DOT California Test 532/643

pH Value	7.67		
Temperature °C	22.1		

SOIL RESISTIVITY TEST DOT CA TEST 532 / 643

Tested By :

Depth (ft.) :

Data Input By:

Project Name:

Project No. :

Boring No.: LB-3

Sample No. : R-2

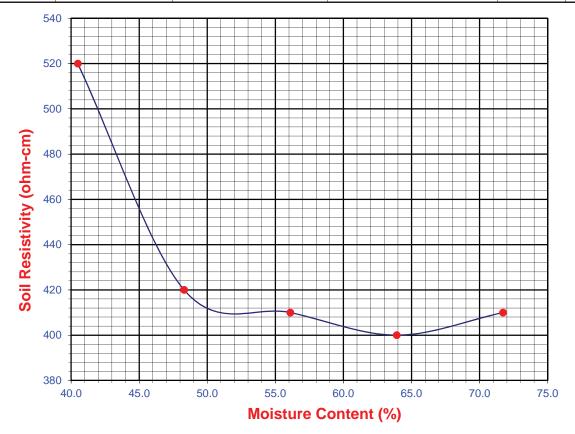
Soil Identification:* Yellowish olive ML

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	50	40.50	520	520
2	60	48.30	420	420
3	70	56.11	410	410
4	80	63.91	400	400
5	90	71.72	410	410

Moisture Content (%) (MCi)	1.47
Wet Wt. of Soil + Cont. (g)	189.50
Dry Wt. of Soil + Cont. (g)	187.60
Wt. of Container (g)	58.26
Container No.	
Initial Soil Wt. (g) (Wt)	130.00
Box Constant	1.000
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100

GEB/ACS


J. Ward

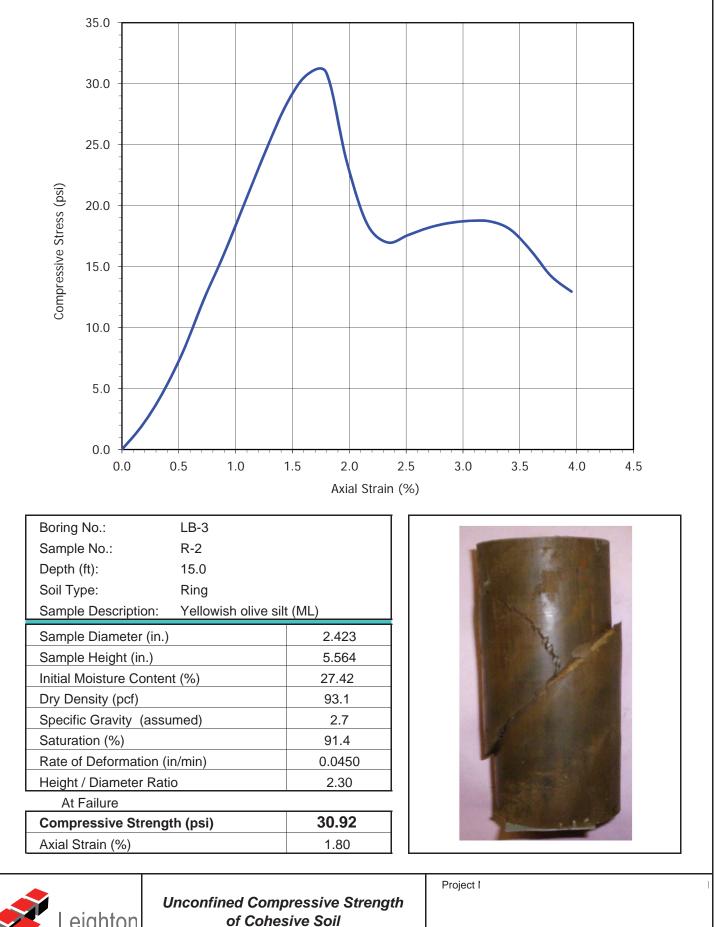
15.0

Date: 04/09/13

Date: 04/09/13

Min. Resistivity (ohm-cm)	Moisture Content (%)	Sulfate Content (ppm)	Chloride Content (ppm)	Soil pH pH Temp. (°C)	
DOT CA Test 532 / 643		DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Te	est 532 / 643
400	63.9	1428	20	7.67	22.1

Specific Gravity (Assumed)


UNCONFINED COMPRESSIVE STRENGTH of COHESIVE SOIL ASTM D 2166

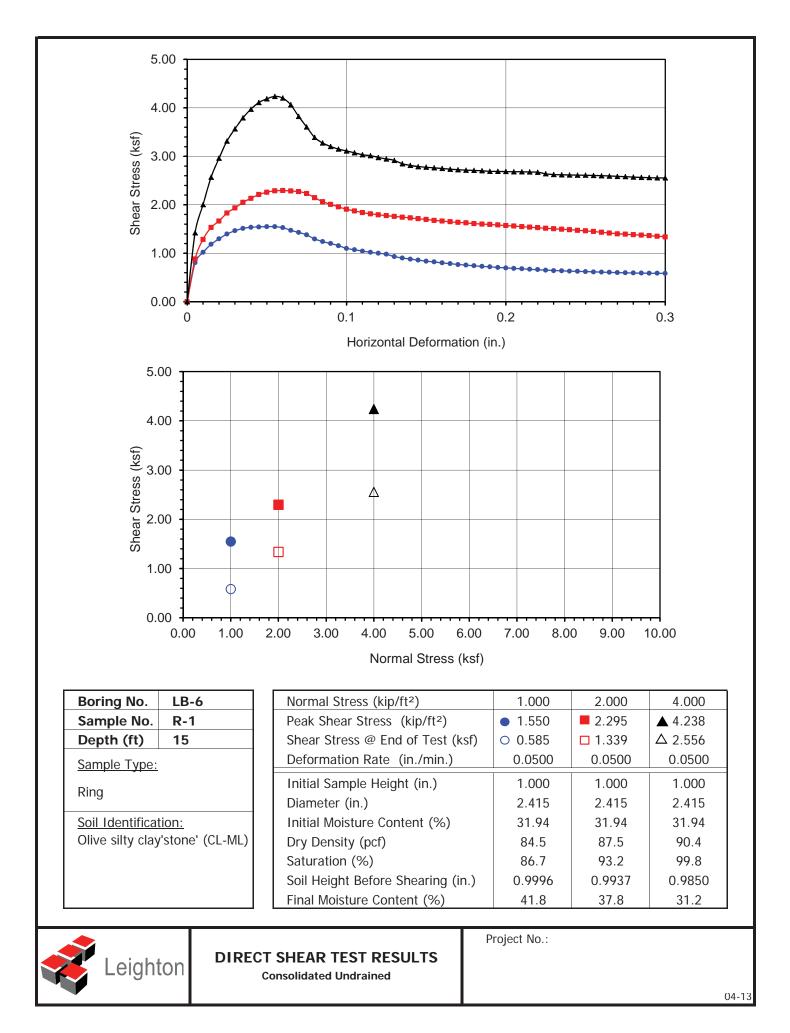
Project Name:	_			Tested by:	A. Santos	Date:	04/04/13
Project No .:				Checked by:	J. Ward	Date:	04/09/13
Boring No.:	LB-3	_		Sample Type	: <u> </u>	Ring	
Sample No.:	R-2	_		Depth (ft):		15.0	
Sample Descrip	otion:	Yellowish oliv	re silt (ML)				
Weight of Sa	mple + Tube	/ Rings (g)	798.80		Sample Meas	surements	
Weight of Tu	be / Rings (g	g)	0.00				2.420
Wet Weight of Soil + Container (g)		906.60	Diam	Diameter (in)		2.425	
Dry Weight o	of Soil + Cont	ainer (g)	735.10				2.425
Weight of Co	ntainer (g)		109.70	Area	(sq.in.)		4.612
Load Surchar	ge (lb)		2.20				5.562
Rate of Defor	rmation (in/	min)	0.045	Heig	jht (in)		5.564

2.70

5.565

Axial Deformation (in.)	Load (lb.)	Compressive Stress (psi)	Axial Strain (%)
0.0000	0.0	0.00	0.000
0.0100	7.0	1.99	0.180
0.0200	19.4	4.67	0.359
0.0300	35.2	8.07	0.539
0.0400	54.8	12.27	0.719
0.0500	72.5	16.05	0.899
0.0600	92.0	20.20	1.078
0.0700	111.5	24.34	1.258
0.0800	129.5	28.14	1.438
0.0900	141.5	30.65	1.618
0.1000	143.0	30.92	1.797
0.1100	109.0	23.63	1.977
0.1200	85.0	18.50	2.157
0.1300	78.0	16.98	2.337
0.1400	81.0	17.58	2.516
0.1500	84.0	18.19	2.696
0.1600	86.0	18.57	2.876
0.1700	87.0	18.75	3.056
0.1800	87.0	18.71	3.235
0.1900	84.0	18.05	3.415
0.2000	76.0	16.35	3.595
0.2100	66.0	14.23	3.774
0.2200	60.0	12.95	3.954

Leighton ASTM D 2166


04/04/13

DIRECT SHEAR TEST

Consolidated Undrained

•	<u>LB-6</u>	Tested By: Checked By: Sample Type:	<u>G. Bathala</u> <u>J. Ward</u> Ring	Date: Date:	04/03/13 04/09/13
Sample No.:	<u>R-1</u>	Depth (ft.):	<u>15.0</u>		
Soil Identification	n: <u>Olive silty clay'stone' (CL-ML</u>)			-
	Sample Diameter(in):	2.415	2.415	2.415	
	Sample Thickness(in.):	1.000	1.000	1.000	
	Weight of Sample + ring(gm):	176.96	182.64	186.90	
	Weight of Ring(gm):	42.86	43.77	43.42	
	Before Shearing				-
	Weight of Wet Sample+Cont.(gm):	209.30	209.30	209.30	
	Weight of Dry Sample+Cont.(gm):	168.09	168.09	168.09	
	Weight of Container(gm):	39.07	39.07	39.07	
	Vertical Rdg.(in): Initial	0.2595	0.2617	0.0000	
	Vertical Rdg.(in): Final	0.2599	0.2680	-0.0150	
	After Shearing		·		3
	Weight of Wet Sample+Cont.(gm):	175.52	177.64	182.85	
	Weight of Dry Sample+Cont.(gm):	135.36	139.14	148.47	
	Weight of Container(gm):	39.29	37.31	38.44	
	Specific Gravity (Assumed):	2.70	2.70	2.70	
	Water Density(pcf):	62.43	62.43	62.43	

APPENDIX D SEISMIC DESIGN PARAMETERS AND SITE-SPECIFIC GROUND MOTION STUDY DATA

EVENTIAL STATE Design Maps Detailed Report

ASCE 7-10 Standard (34.06439°N, 118.25813°W)

Site Class C – "Very Dense Soil and Soft Rock", Risk Category I/II/III

Section 11.4.1 — Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2010 ASCE-7 Standard are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From <u>Figure 22-1</u> ^[1]	$S_s = 2.514 \text{ g}$
From Figure 22-2 ^[2]	S ₁ = 0.887 g

Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class C, based on the site soil properties in accordance with Chapter 20.

Site Class	v s	\overline{N} or \overline{N}_{ch}	_ Su
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf
	Any profile with more than 10 ft of soil having the character • Plasticity index $PI > 20$, • Moisture content $w \ge 40\%$, and • Undrained shear strength $\overline{s_u} < 500$ psf		
F. Soils requiring site response analysis in accordance with Section		e Section 20.3.1	

Table 20.3–1 Site Classification

analysis in accordance with Section

21.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Section 11.4.3 — Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

Site Class	Mapped MCE $_{\scriptscriptstyle R}$ Spectral Response Acceleration Parameter at Short Period						
	$S_{s} \leq 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7 of ASCE 7						

Table 11.4–1: Site Coefficient F_a

Note: Use straight–line interpolation for intermediate values of S_{s}

For Site Class = C and S_s = 2.514 g, F_a = 1.000

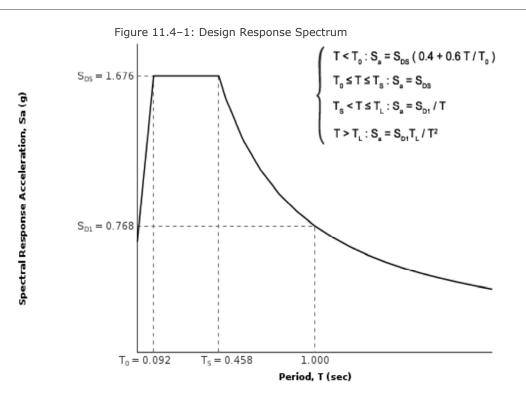
Site Class	Mapped MCE $_{\mbox{\tiny R}}$ Spectral Response Acceleration Parameter at 1–s Period						
_	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S₁ ≥ 0.50		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
E	3.5	3.2	2.8	2.4	2.4		
F	See Section 11.4.7 of ASCE 7						

Table 11.4–2: Site Coefficient $F_{\scriptscriptstyle v}$

Note: Use straight–line interpolation for intermediate values of S_1

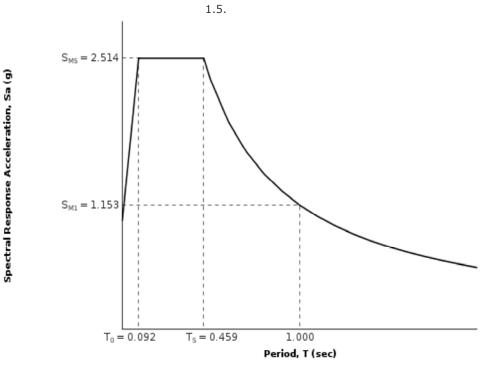
For Site Class = C and $S_1 = 0.887$ g, $F_v = 1.300$

$S_{M1} = F_v S_1 = 1.300 \times 0.887 = 1.153 q$
$S_{MS} = T_{a}S_{S} = 1.000 \times 2.011 = 2.011 \text{ g}$
$S_{MS} = F_a S_S = 1.000 \times 2.514 = 2$


Section 11.4.4 — Design Spectral Acceleration Parameters

Equation (11.4–3):	$S_{\text{DS}} = \frac{2}{3} S_{\text{MS}} = \frac{2}{3} \times 2.514 = 1.676 \text{ g}$
Equation (11.4–4):	S _{D1} = ⅔ S _{M1} = ⅔ x 1.153 = 0.768 g

Section 11.4.5 — Design Response Spectrum


From Figure 22-12^[3]

 $T_{L} = 8$ seconds

Section 11.4.6 — Risk-Targeted Maximum Considered Earthquake (MCE $_{\!\scriptscriptstyle R})$ Response Spectrum

The $MCE_{\scriptscriptstyle R}$ Response Spectrum is determined by multiplying the design response spectrum above by

Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7^[4]

PGA = 0.953

Equation (11.8–1): $PGA_{M} = F_{PGA}PGA = 1.000 \times 0.953 = 0.953 g$

Table 11.8–1: Site Coefficient F_{PGA}							
Site							
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7 of ASCE 7						

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = C and PGA = 0.953 g, F_{PGA} = 1.000

Section 21.2.1.1 — Method 1 (from Chapter 21 – Site-Specific Ground Motion Procedures for Seismic Design)

From Figure 22-17 ^[5]	$C_{RS} = 0.943$
From <u>Figure 22-18</u> ^[6]	C _{R1} = 0.955

Section 11.6 — Seismic Design Category

	RISK CATEGORY				
	I or II	III	IV		
S _{DS} < 0.167g	А	А	А		
$0.167g \le S_{DS} < 0.33g$	В	В	С		
$0.33g \le S_{DS} < 0.50g$	С	С	D		
0.50g ≤ S _{DS}	D	D	D		

Table 11.6-1 Seismic Design Categ	jory Based on Short Period F	Response Acceleration Parameter

For Risk Category = I and S_{DS} = 1.676 g, Seismic Design Category = D

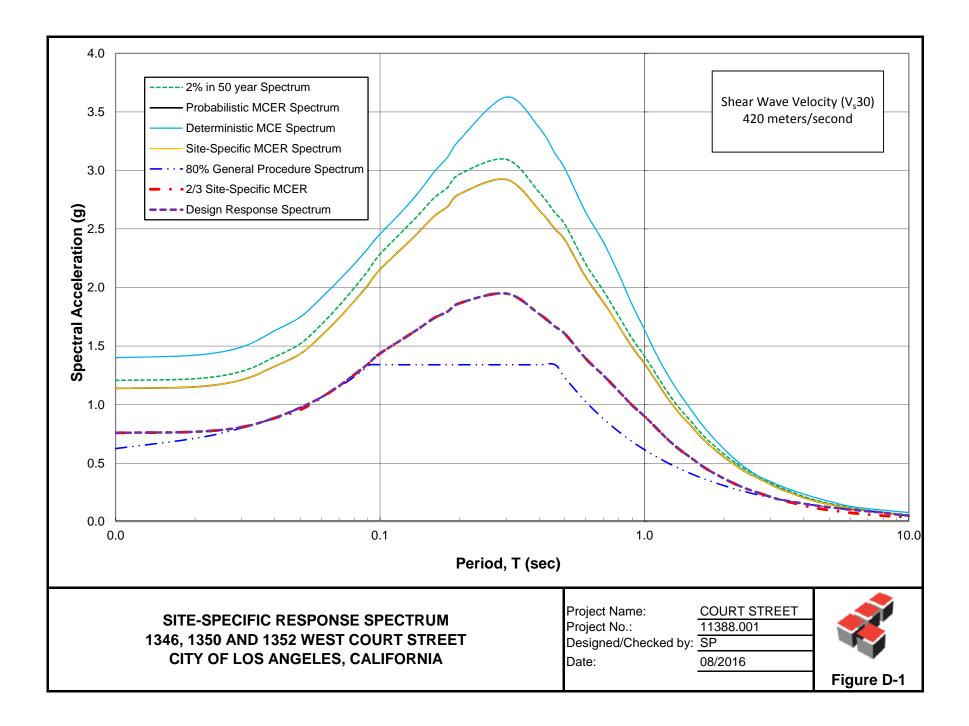
Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter
--

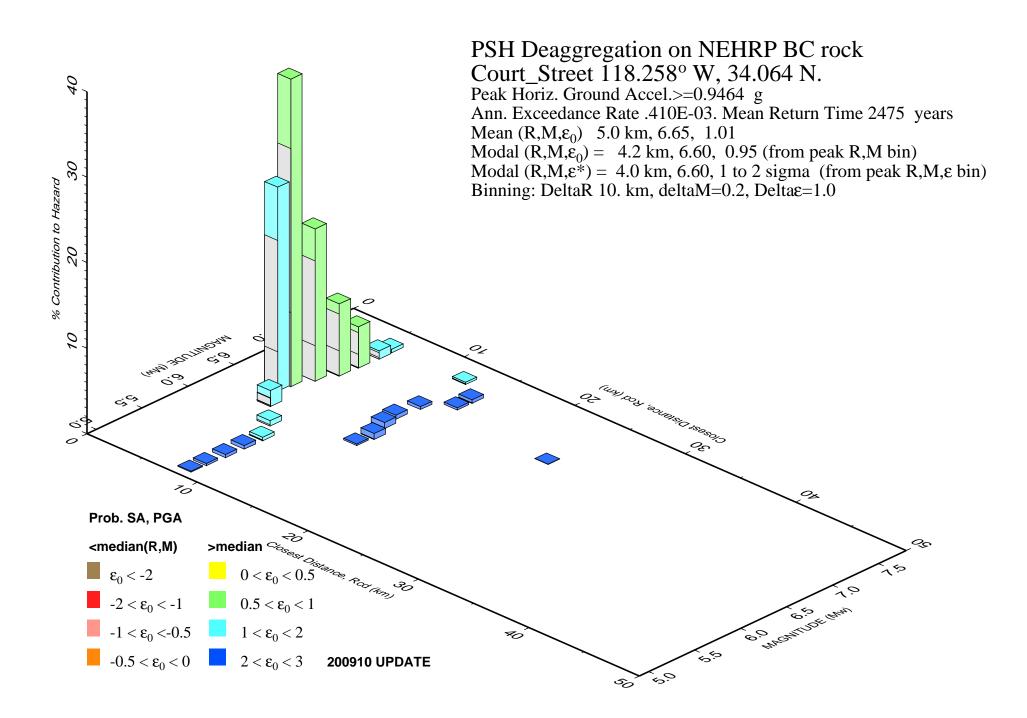
	RISK CATEGORY							
VALUE OF S _{D1}	I or II	III	IV					
S _{D1} < 0.067g	А	А	А					
$0.067g \le S_{D1} < 0.133g$	В	В	С					
$0.133g \le S_{D1} < 0.20g$	С	С	D					
0.20g ≤ S _{D1}	D	D	D					

For Risk Category = I and S_{D1} = 0.768 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and **F** for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 11.6-1 or 11.6-2" = E


Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.


References

- 1. Figure 22-1:
- http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf 2. *Figure 22-2*:

http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf

- 3. *Figure 22-12*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf
- Figure 22-7: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
- 5. *Figure 22-17*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf
- 6. *Figure 22-18*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

11388.001 EQSearch

ESTIMATION OF PEAK ACCELERATION FROM CALIFORNIA EARTHQUAKE CATALOGS

JOB NUMBER: 11388.001

DATE: 07-13-2016

JOB NAME: Court Street

EARTHQUAKE-CATALOG-FILE NAME: ALLQUAKE.DAT

MAGNI TUDE RANGE: MI NI MUM MAGNI TUDE: 4.00 MAXI MUM MAGNI TUDE: 9.00

SI TE COORDI NATES: SI TE LATI TUDE: 34.0644 SI TE LONGI TUDE: 118.2581

SEARCH DATES: START DATE: 1800 END DATE: 2016

SEARCH RADIUS: 62.0 mi 99.8 km

ATTENUATION RELATION: 25) Campbell & Bozorgnia (1997 Rev.) - Soft Rock UNCERTAINTY (M=Median, S=Sigma): M Number of Sigmas: 0.0 ASSUMED SOURCE TYPE: DS [SS=Strike-slip, DS=Reverse-slip, BT=Blind-thrust] SCOND: 0 Depth Source: A Basement Depth: 5.00 km Campbell SSR: 1 Campbell SHR: 0 COMPUTE PEAK HORIZONTAL ACCELERATION

MINIMUM DEPTH VALUE (km): 3.0

-----EARTHQUAKE SEARCH RESULTS -----

	· 			TIME	 		SITE	SI TE	APPROX.
FI LE CODE	LAT. NORTH	LONG. WEST	DATE	(UTC) H M Sec	DEPTH (km)	QUAKE	ACC. g	MM INT.	DISTANCE mi [km]
MGI MGI MGI MGI MGI MGI MGI T-A T-A T-A T-A T-A T-A T-A T-A T-A T-A	$\begin{array}{c} 34.\ 1000\\ 34.\ 1000\\ 34.\ 1000\\ 34.\ 1000\\ 34.\ 1000\\ 34.\ 1000\\ 34.\ 1000\\ 34.\ 0000\\ 34.\$	118. 3000118. 3000118. 3000118. 3000118. 2000118. 2000118. 2500118. 2500118. 2500118. 2500118. 2500118. 2500118. 2500118. 2500118. 2500118. 2500118. 3000118. 3000118. 3000118. 3000118. 3000118. 2000118. 2000118. 2000118. 2000118. 2000118. 3000118. 3000118. 3000118. 3000118. 3000118. 4000118. 4000118. 4000118. 4000118. 4000118. 4000118. 4000118. 4000118. 0900118. 3360118. 3360118. 3360118. 3360118. 0900118. 3360118. 0900118. 3360118. 0970	12/03/1988 10/04/1987 01/11/1950 02/07/1927 02/22/1920 01/29/1927	$\begin{array}{c} 2022 & 0. \\ 0 \\ 2127 & 0. \\ 0 \\ 2130 & 0. \\ 0 \\ 1215 & 0. \\ 0 \\ 1538 & 0. \\ 0 \\ 1432 & 0. \\ 0 \\ 830 & 0. \\ 0 \\ 830 & 0. \\ 0 \\ 1432 & 0. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 5. \ 00\\ 4. \ 60\\ 4. \ 60\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 30\\ 5. \ 00\\ 5. \ 00\\ 5. \ 00\\ 4. \ 30\\ 4. \ 30\\ 4. \ 30\\ 4. \ 30\\ 4. \ 30\\ 4. \ 30\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 00\\ 4. \ 60\\ 4. \ 00\\ 4. \ 60\\ 4. \ 00\\ 4. \ $	$\begin{array}{c} 0.\ 272\\ 0.\ 156\\ 0.\ 156\\ 0.\ 156\\ 0.\ 099\\ 0.\ 088\\ 0.\ 088\\ 0.\ 111\\ 0.\ 105\\ 0.\ 176\\ 0.\ 176\\ 0.\ 176\\ 0.\ 176\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 105\\ 0.\ 075\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 069\\ 0.\ 062\\ 0.\ 062\\ 0.\ 062\\ 0.\ 064\\ 0.\ 064\\ 0.\ 036\\ 0.\ 0.\ 036\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	IX VIII VII VI VI <tr< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></tr<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

11388.001 EQSearch

				11300.001	LUJUU	I UII			
DMG	34.0000	118.4170	12/07/1938	338 0.0	0.0	4.00	0. 035	V	10.1(16.3)
PAS	34.0610	118.0790	10/01/1987	144220.0	9.5	5.90	0. 159	VIII	10.2(16.5)
DMG	33.9500	118. 1330	10/25/1933	7 046.0	0.0	4.30	0. 041	V	10.7(17.1)
GSP	33.9920	118.0820	03/16/2010	110400.2	18.0	4.40	0. 041	V	11.2(18.1)
MGI	33.9000	118.2000	10/08/1927	1914 0.0	0.0	4.60	0. 045	VI	11.8(19.0)
PAS	34.0770	118.0470	02/11/1988	152555.7	12.5	4.70	0. 047	VI	12.1(19.5)
DMG	33.8830	118.3170	03/11/1933	1457 0.0	0.0	4.90	0. 050	VI	13.0(20.9)
GSG	34.0958	118.4912	06/02/2014	023643.9	4.4	4.16	0. 026	V	13.5(21.7)
DMG	33.9670	118.0500	01/30/1941	13446.9	0.0	4.10	0. 025	V	13.7(22.0)
DMG	33.8670	118. 2170	06/19/1944	0 333.0	0.0	4.50	0.033	V	13.8(22.3)

-----EARTHQUAKE SEARCH RESULTS ------

FILE LAT. CODE NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SI TE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSG 34. 1347 DMG 33. 8670 DMG 33. 9000 DMG 34. 0000 MGI 34. 0000 DMG 34. 0000 MGI 34. 0000 DMG 34. 0000 DMG 33. 8500 DMG 33. 8500 DMG 33. 8500 DMG 33. 9030 MGI 34. 0000 MGI 34. 2000 GSP 34. 2840 GSP 34. 2840 GSP 34. 2840 GSP 34. 2840 GSP 34. 2150 <td>118. 200011.118. 100007.118. 500011.118. 500008.118. 500008.118. 500008.118. 500003.118. 500003.118. 500003.118. 500003.118. 267003.118. 267003.118. 267003.118. 267003.118. 431011.118. 000005.118. 000005.118. 000005.118. 000005.118. 000001.118. 475003.118. 471001.118. 389012.118. 403001.118. 403001.118. 403001.118. 300012.118. 300012.118. 300011.118. 300012.118. 300012.118. 300011.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 331002.118. 439002.</td> <td>/17/2014 /13/1933 /08/1929 /08/1914 /19/1918 /04/1927 /22/1920 /23/1920 /08/1918 /06/1918 /06/1918 /11/1933 /11/1933 /11/1933 /29/1938 /27/1930 /05/1929 /05/1929 /05/1929 /05/1929 /25/1903 /15/1967 /20/1994 /09/1921 /14/2001 /14/2001 /18/1994 /09/1921 /15/1994 /03/1931 /31/1928 /25/1994 /15/1994 /03/1931 /31/1928 /25/1994 /15/1994 /03/1971 /03/1994 /09/1971</td> <td>3 6 7.0 132536.9 2128 0.0 1646 6.7 1140 0.0 2018 0.0 1224 0.0 248 0.0 1220 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1425 0.0 1230 0.0 1425 0.0 17 0.0 175 0.0 17 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 122614.1 155144.9 034834.5 530 0.0 025053.7 225737.1 140914.8 16 5 0.0 1045 0.0 125657.1 055948.6 085508.7 123055.4 155820.7 162335.4 155820.7 162335.4 155820.7 162335.4 071406.2 141612.9 84136.3 Page</td> <td>$\begin{array}{c} 0. \ 0\\ 9. \ 9\\ 0. \ 0\\ 13. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 10. \ 0\\ 10. \ 0\ 0\\ 10. \ 0\ 0\\ 10. \ 0\ 0\ 0\\ 10. \ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$</td> <td>$\begin{array}{c} 4. \ 40\\ 4. \ 39\\ 4. \ 00\\ 4. \ 70\\ 4. \ 50\\ 5. \ 00\\ 5. \ 00\\ 4. \ 90\\ 4. \ 00\\ 4. \$</td> <td>$\begin{array}{c} 0.\ 031\\ 0.\ 030\\ 0.\ 022\\ 0.\ 037\\ 0.\ 031\\ 0.\ 046\\ 0.\ 043\\ 0.\ 021\\ 0.\ 045\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 025\\ 0.\ 020\\ 0.\ 032\\ 0.\ 019\\ 0.\ 032\\ 0.\ 019\\ 0.\ 032\\ 0.\ 019\\ 0.\ 031\\ 0.\ 042\\ 0.\ 033\\ 0.\ 020\\ 0.\ 016\\ 0.\ 024\\ 0.\ 026\\ 0.\ 016\\ 0.\ 025\\ 0.\ 015\\ 0.\ 026\\ 0.\ 015\\ 0.\ 026\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$</td> <td>V V V V V V V V V V V V V V V V V V V</td> <td>13. $8(22.3)$ 13. $9(22.4)$ 14. $0(22.6)$ 14. $5(23.4)$ 14. $8(23.8)$ 14. $8(23.8)$ 14. $8(23.8)$ 14. $9(24.0)$ 15. $0(24.1)$ 15. $4(24.8)$ 15. $4(24.8)$ 15. $4(24.8)$ 16. $9(27.1)$ 17. $2(27.7)$ 17. $2(27.7)$ 17. $3(27.8)$ 17. $4(28.0)$ 17. $5(28.1)$ 17. $5(28.1)$ 17. $5(28.1)$ 17. $6(28.3)$ 17. $6(28.4)$ 17. $8(28.6)$ 18. $4(29.6)$ 18. $4(29.6)$ 18. $9(30.4)$ 19. $0(30.5)$ 19. $1(30.8)$ 19. $4(31.3)$ 19. $4(31.3)$ 19. $4(31.3)$</td>	118. 200011.118. 100007.118. 500011.118. 500008.118. 500008.118. 500008.118. 500003.118. 500003.118. 500003.118. 500003.118. 267003.118. 267003.118. 267003.118. 267003.118. 431011.118. 000005.118. 000005.118. 000005.118. 000005.118. 000001.118. 475003.118. 471001.118. 389012.118. 403001.118. 403001.118. 403001.118. 300012.118. 300012.118. 300011.118. 300012.118. 300012.118. 300011.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 300012.118. 331002.118. 439002.	/17/2014 /13/1933 /08/1929 /08/1914 /19/1918 /04/1927 /22/1920 /23/1920 /08/1918 /06/1918 /06/1918 /11/1933 /11/1933 /11/1933 /29/1938 /27/1930 /05/1929 /05/1929 /05/1929 /05/1929 /25/1903 /15/1967 /20/1994 /09/1921 /14/2001 /14/2001 /18/1994 /09/1921 /15/1994 /03/1931 /31/1928 /25/1994 /15/1994 /03/1931 /31/1928 /25/1994 /15/1994 /03/1971 /03/1994 /09/1971	3 6 7.0 132536.9 2128 0.0 1646 6.7 1140 0.0 2018 0.0 1224 0.0 248 0.0 1220 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1230 0.0 1425 0.0 1230 0.0 1425 0.0 17 0.0 175 0.0 17 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0 122614.1 155144.9 034834.5 530 0.0 025053.7 225737.1 140914.8 16 5 0.0 1045 0.0 125657.1 055948.6 085508.7 123055.4 155820.7 162335.4 155820.7 162335.4 155820.7 162335.4 071406.2 141612.9 84136.3 Page	$\begin{array}{c} 0. \ 0\\ 9. \ 9\\ 0. \ 0\\ 13. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 10. \ 0\\ 10. \ 0\ 0\\ 10. \ 0\ 0\\ 10. \ 0\ 0\ 0\\ 10. \ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	$\begin{array}{c} 4. \ 40\\ 4. \ 39\\ 4. \ 00\\ 4. \ 70\\ 4. \ 50\\ 5. \ 00\\ 5. \ 00\\ 4. \ 90\\ 4. \ 00\\ 4. \ $	$\begin{array}{c} 0.\ 031\\ 0.\ 030\\ 0.\ 022\\ 0.\ 037\\ 0.\ 031\\ 0.\ 046\\ 0.\ 043\\ 0.\ 021\\ 0.\ 045\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 021\\ 0.\ 025\\ 0.\ 020\\ 0.\ 032\\ 0.\ 019\\ 0.\ 032\\ 0.\ 019\\ 0.\ 032\\ 0.\ 019\\ 0.\ 031\\ 0.\ 042\\ 0.\ 033\\ 0.\ 020\\ 0.\ 016\\ 0.\ 024\\ 0.\ 026\\ 0.\ 016\\ 0.\ 025\\ 0.\ 015\\ 0.\ 026\\ 0.\ 015\\ 0.\ 026\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 017\\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 016\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	V V V V V V V V V V V V V V V V V V V	13. $8(22.3)$ 13. $9(22.4)$ 14. $0(22.6)$ 14. $5(23.4)$ 14. $8(23.8)$ 14. $8(23.8)$ 14. $8(23.8)$ 14. $9(24.0)$ 15. $0(24.1)$ 15. $4(24.8)$ 15. $4(24.8)$ 15. $4(24.8)$ 16. $9(27.1)$ 17. $2(27.7)$ 17. $2(27.7)$ 17. $3(27.8)$ 17. $4(28.0)$ 17. $5(28.1)$ 17. $5(28.1)$ 17. $5(28.1)$ 17. $6(28.3)$ 17. $6(28.4)$ 17. $8(28.6)$ 18. $4(29.6)$ 18. $4(29.6)$ 18. $9(30.4)$ 19. $0(30.5)$ 19. $1(30.8)$ 19. $4(31.3)$ 19. $4(31.3)$ 19. $4(31.3)$

				11388.001	E0Sea	rch			
GSP	34, 2920	118, 4660	01/19/1994		6.0	4.00	0.013		19.7(31.7)
GSP			01/21/1994	185344.6	7.0	4.30	0.017	IV.	19.7(31.7)
DMG	33. 7830	118.2000	12/27/1939	192849.0	0.0	4.70	0. 023	1 V	19.7(31.7)
GSP	34.3010	118.4520	01/21/1994	185244.2	7.0	4.30	0.017	IV	19.7(31.8)
DMG	34.2960	118.4640	03/30/1971	85443.3	2.6	4. 10	0.014	V	19.8(31.9)
GSP	34.2500	117.9900	06/28/1991	170055.5	9.0	4.30	0. 016	IV	20.0(32.1)
GSP	34. 2910	118.4760	02/06/1994	131926.9	11.0	4. 10	0.014	V	20.0(32.2)
GSP	34.2620	118.0020	06/28/1991	144354.5	11.0	5.40	0. 040	V	20.0(32.2)
GSB	34.3000	118.4660	01/21/1994	183915.3	10.0	4.70	0. 022	V	20.1(32.4)
DMG	34.3080	118.4540	02/09/1971	144346.7	6.2	5.20	0.033	V	20.2(32.5)
GSP	34.3110	118.4560	01/17/1994	193534.3	2.0	4.00	0. 013		20.4(32.9)
GSP	34.3040	118.4730	01/17/1994	150703.2	2.0	4.20	0. 015	V	20.6(33.1)
DMG	34.3610	118.3060	02/09/1971	141021.5	5.0	4.70	0. 022	V	20.7(33.2)
DMG	33. 7830	118. 1330	01/13/1940	749 7.0	0.0	4.00	0.012		20.7(33.3)

-----EARTHQUAKE SEARCH RESULTS

. age										
FI LE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SI TE ACC. g	SI TE MM I NT.	APPROX. DISTANCE mi [km]	
DMG GSP GSP GSP DMG GSP DMG DMG DMG DMG DMG DMG DMG DMG DMG DMG	$\begin{array}{c} 33.\ 7830\\ 34.\ 3170\\ 34.\ 2610\\ 34.\ 2610\\ 34.\ 2540\\ 33.\ 7590\\ 34.\ 2540\\ 33.\ 7590\\ 34.\ 2860\\ 34.\ 2860\\ 34.\ 2860\\ 34.\ 2800\\ 34.\ 2730\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7830\\ 33.\ 7670\\ 33.\ 7670\\ 33.\ 7500\\ 33.\ 7500\\ 34.\ 2000\\ 34.\ 2180\\ 34.\ 2740\\ 34.\ 3390\\ 34.\ 3340\\ 33.\ 9500\\ 33.\ 7500\\ 33.\ 7500\\ 34.\ 2650\\ 34.\ 350\\ 350\\ 350\\ 350\ 350\\ 350\ 350\\ 350\ 350$	118. 1330118. 4550118. 5340118. 5340118. 5450118. 5450118. 5450118. 5150118. 3140118. 5730118. 3020118. 3020118. 4170118. 4170118. 4170118. 4170118. 4170118. 4170118. 4170117. 9172118. 4280118. 100117. 8923118. 1830118. 1670117. 9000117. 9000117. 9000118. 6070118. 4840118. 4320118. 4330118. 43750118. 4330118. 5530118. 5630118. 5770	01/17/1994 01/21/1994 01/21/1994 08/31/1938 01/17/1994 03/31/1971 04/25/1971 01/17/1994 02/10/1971 06/21/1971 06/21/1971 11/01/1940 10/12/1940 10/12/1940 03/29/2014 03/27/1994 03/27/1994 03/31/1930		$\begin{array}{c} 0. \ 0\\ 0. \ 0\\ 2. \ 0\\ 14. \ 0\\ 7. \ 0\\ 0. \ 0\\ 10. \ 0\\ 1. \ 0\\ 2. \ 1\\ -2. \ 0\\ 19. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 11. \ 8\\ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 12. \ 0\\ 14. \ 0\\ 7. \ 0\\ 10. \ 0\\ 0. \ 0\\ 14. \ 0\\ 7. \ 0\\ 10. \ 0\\ 0. \ 0\\ 14. \ 0\\ 7. \ 0\\ 10. \ 0\\ 0. \ 0\\ 14. \ 0\\ 7. \ 0\\ 10. \ 0\\ 0. \ 0\\ 3. \ 3\\ 3. \ 3\\ 3e \ 4\end{array}$	$\begin{array}{c} 5.40\\ 4.00\\ 4.70\\ 4.20\\ 4.50\\ 4.50\\ 4.50\\ 4.50\\ 4.60\\ 4.00\\ 5.00\\$	$\begin{array}{c} 0. \ 038\\ 0. \ 012\\ 0. \ 021\\ 0. \ 021\\ 0. \ 018\\ 0. \ 014\\ 0. \ 019\\ 0. \ 018\\ 0. \ 019\\ 0. \ 018\\ 0. \ 019\\ 0. \ 018\\ 0. \ 019\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 011\\ 0. \ 011\\ 0. \ 011\\ 0. \ 011\\ 0. \ 011\\ 0. \ 011\\ 0. \ 011\\ 0. \ 013\\$	V III IV IV IV IV IV IV IV III IV III IV	20. $7(33.3)$ 20. $7(33.3)$ 20. $7(33.4)$ 20. $8(33.5)$ 21. $0(33.7)$ 21. $0(33.8)$ 21. $1(33.9)$ 21. $2(34.1)$ 21. $2(34.1)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $5(34.5)$ 21. $5(34.6)$ 21. $2(34.8)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.2)$ 21. $2(34.5)$ 21. $5(34.5)$ 21. $5(34.5)$ 22. $1(35.6)$ 22. $1(35.6)$ 22. $1(35.6)$ 22. $1(35.6)$ 22. $2(36.2)$ 22. $6(36.4)$ 22. $6(36.4)$ 22. $6(36.4)$ 22. $9(36.8)$ 22. $9(36.9)$	

				11200 001	FOCas				
				11388.001	EQSea	rcn			
MGI	33.8000		06/18/1915	15 5 0.0	0.0	4.00	0. 010		22.9(36.9)
GSP	34.2690	118. 5760	01/17/1994	125546.8	16.0	4. 10	0. 011		23.0(37.0)
DMG	34.3870	118. 3640	02/09/1971	143917.8	-1.6	4.00	0. 010		23.1(37.1)
DMG	33.7670	118. 4500	10/11/1940	55712.3	0.0	4.70	0. 018	IV	23.3(37.5)
PAS	33.9190	118. 6270	01/19/1989	65328.8	11.9	5.00	0. 023	IV	23.4(37.6)
DMG	33.8000	118. 0000	10/21/1913	938 0.0	0.0	4.00	0. 010		23.5(37.8)
DMG	34.3560	118. 4740	03/25/1971	2254 9.9	4.6	4.20	0.012		23.6(38.0)
DMG	34.3960	118. 3660	02/10/1971	173855.1	6.2	4.20	0. 012		23.7(38.1)
GSP	34.3570	118. 4800	02/25/1994	125912.6	1.0	4.10	0. 011		23.8(38.4)
DMG	33.7500	118. 0830	03/14/1933	1219 0.0	0.0	4.50	0. 015	IV	23.9(38.5)
DMG	33.7500	118. 0830	03/12/1933	027 0.0	0.0	4.40	0.014		23.9(38.5)
DMG	33.7500	118. 0830	03/11/1933	227 0.0	0.0	4.60	0.016		23.9(38.5)
DMG	33.7500	118. 0830	03/17/1933	1651 0.0	0.0	4.10	0. 011		23.9(38.5)
DMG	33.7500	118. 0830	03/13/1933	1532 0.0	0.0	4.10	0. 011		23.9(38.5)
DMG	33.7500	118. 0830	03/11/1933	1147 0.0	0.0	4.40	0.014		23.9(38.5)
DMG	33.7500	118. 0830	03/12/1933	740 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500	118.0830		326 0.0	0.0	4.10	0.011		23.9(38.5)
DMG	33.7500	118.0830	03/23/1933	840 0.0	0.0	4.10	0.011		23.9(38.5)
		•							. ,

EARTHQUAKE SEARCH RESULTS

Page 4

FILE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SI TE ACC. g	SI TE MM I NT.	APPROX. DISTANCE mi [km]
DMG DMG DMG DMG DMG DMG DMG DMG DMG DMG	 33. 7500 	118.0830 118.0830	03/11/1933 03/11/1933 03/11/1933 03/12/1933 03/11/1933 03/11/1933 03/11/1933 03/11/1933 03/11/1933 03/11/1933 03/11/1933 03/11/1933 03/12/1933 03/12/1933 03/11/1933 03/11/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/12/1933 03/11/1933 03/11/1933 03/11/1933	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0. \ 0 \\ 0. \$	$\begin{array}{c} 4.10\\ 4.70\\ 4.20\\ 4.90\\ 4.20\\ 4.80\\ 4.00\\ 4.20\\ 4.30\\ 4.00\\ 4.20\\ 4.30\\ 4.60\\ 4.10\\ 4.20\\ 4.00\\$	$\begin{array}{c} 0. \ 011\\ 0. \ 017\\ 0. \ 012\\ 0. \ 020\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 010\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 012\\ 0. \ 014\\ 0. \ 010\\ 0. \ 015\\ 0. \ 014\\ 0. \ 015\\ 0. \ 015\\ 0. \ 014\\ 0. \ 015\\ 0.\ 015\\ 0. \ 015\\ 0. \ 015\\ 0. \ 015\\ 0.\ 015\\ 0.\ 015\\ 0.$	++ V V V V V V 	$\begin{array}{c} 23. \ 9(\ 38. \ 5)\\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23$
DMG DMG DMG	33.7500 33.7500 33.7500	118.0830 118.0830 118.0830	03/11/1933 03/11/1933 03/19/1933	211 0.0	0.0 0.0 0.0	4.00 4.40 4.20	0. 010 0. 014 0. 012		23. 9(38. 5) 23. 9(38. 5) 23. 9(38. 5)

			11388.001	EQSea	rch			
DMG	33.7500 118.083	0 03/12/1933	448 0.0	0.0	4.00	0.010		23.9(38.5)
DMG	33.7500 118.083	0 03/13/1933	1929 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500 118.083		036 0.0	0.0	4.20	0.012	iii	23.9(38.5)
DMG	33. 7500 118. 083		837 0.0	0.0	4.00	0.010	iii	23.9(38.5)
							1 1	
DMG	33. 7500 118. 083		252 0.0	0.0	4.00	0.010		23.9(38.5)
DMG	33. 7500 118. 083		1225 0.0	0.0	4.40	0.014		23.9(38.5)
DMG	33.7500 118.083		2 8 0.0	0.0	4.10	0. 011		23.9(38.5)
DMG	33.7500 118.083	0 03/15/1933	432 0.0	0.0	4.10	0. 011		23.9(38.5)
DMG	33.7500 118.083	0 03/11/1933	553 0.0	0.0	4.00	0. 010		23.9(38.5)
DMG	33.7500 118.083	0 03/11/1933	1956 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500 118.083		2231 0.0	0.0	4.40	0.014		23.9(38.5)
DMG	33.7500 118.083		618 0.0	0.0	4.20	0.012	iii	23.9(38.5)
DMG	33. 7500 118. 083		2 9 0.0	0.0	5.00	0.012	iv	23.9(38.5)
			/ 0.0				1 1	
DMG	33.7500 118.083		1.000 0.01	0.0	4.10	0.011		
DMG	33. 7500 118. 083		339 0.0	0.0	4.00	0.010		23.9(38.5)
DMG	33. 7500 118. 083		347 0.0	0.0	4. 10	0. 011		23.9(38.5)
DMG	33. 7500 118. 083	0 03/13/1933	131828.0	0.0	5.30	0. 028	V	23.9(38.5)
DMG	33.7500 118.083	0 03/11/1933	880.0	0.0	4.50	0.015	V	23.9(38.5)
DMG	33.7500 118.083	0 03/11/1933	440 0.0	0.0	4.70	0.017	1 V	23.9(38.5)
DMG	33.7500 118.083		759 0.0	0.0	4.10	0.011		23.9(38.5)
DMG	33.7500 118.083		1346 0.0	0.0	4.10	0.011	;;;	23.9(38.5)
DMG								
DIVIG	33. 7500 118. 083	0 03/11/1933	515 0.0	0.0	4.00	0.010		23.9(38.5)

EARTHQUAKE SEARCH RESULTS

Page 5

~									
FILE LAT. CODE NORTH	LONG. DA WEST DA	TIME TE (UTC HMS	C) DEPTH	QUAKE MAG.	SI TE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]		
DMG 33. 7500 DMG 33. 7500 <td>118.0830 03/11, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/14, 118.0830 03/14,</td> <td>/1933 926 (/1933 259 (/1933 1536 (/1933 1456 (/1933 1456 (/1933 1456 (/1933 2128 (/1933 323 (/1933 310 (/1933 311 () (/1933 336 (/1933 316 (/1933 751 (/1933 034 (/1933 220 (/1933 220 (/1933 220 (/1933 555 (/1933 555 (/1933 1653 (/1933 155 (/1933 1358 (/1933 1358 (/1933 1358 (/1933 125 (/1933 1025 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>$\begin{array}{c} 4. \ 10\\ 4. \ 10\\ 4. \ 00\\ 4. \ 10\\ 4. \ 20\\ 4. \ 00\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \$</td> <td>$\begin{array}{c} 0. \ 011\\ 0. \ 011\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 011\\ 0. \ 022\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 014\\ 0. \ 024\\ 0. \ 016\\ 0. \ 010\\ 0. \ 014\\ 0. \ 012\\ 0. \ 010\\ 0. \ 011\\ 0. \ 012\\ 0. \ 010\\ 0. \ 012\\$</td> <td>III III III IV III IV III IV III IV III IV IV</td> <td>$\begin{array}{c} 23. \ 9(\ 38. \ 5)\\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23$</td>	118.0830 03/11, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/12, 118.0830 03/14, 118.0830 03/14,	/1933 926 (/1933 259 (/1933 1536 (/1933 1456 (/1933 1456 (/1933 1456 (/1933 2128 (/1933 323 (/1933 310 (/1933 311 () (/1933 336 (/1933 316 (/1933 751 (/1933 034 (/1933 220 (/1933 220 (/1933 220 (/1933 555 (/1933 555 (/1933 1653 (/1933 155 (/1933 1358 (/1933 1358 (/1933 1358 (/1933 125 (/1933 1025 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (/1933 3 5 (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 4. \ 10\\ 4. \ 10\\ 4. \ 00\\ 4. \ 10\\ 4. \ 20\\ 4. \ 00\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ 20\\ 4. \ 10\\ 4. \ 20\\ 4. \ $	$\begin{array}{c} 0. \ 011\\ 0. \ 011\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 011\\ 0. \ 022\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 010\\ 0. \ 014\\ 0. \ 024\\ 0. \ 016\\ 0. \ 010\\ 0. \ 014\\ 0. \ 012\\ 0. \ 010\\ 0. \ 011\\ 0. \ 012\\ 0. \ 010\\ 0. \ 012\\$	III III III IV III IV III IV III IV III IV IV	$\begin{array}{c} 23. \ 9(\ 38. \ 5)\\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23. \ 9(\ 38. \ 5)\ 23$		

				11388.001	EQSea	rch			
DMG	33.7500	118.0830	03/11/1933	524 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500	118.0830		540 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500	118. 0830	03/11/1933	257 0.0	0.0	4.20	0. 012		23.9(38.5)
DMG	33.7500	118. 0830		311 0.0	0.0	4.20	0. 012		23.9(38.5)
DMG	33.7500	118. 0830		835 0.0	0.0	4.20	0. 012		23.9(38.5)
DMG	33. 7500	118. 0830		800.0	0.0	4.00	0. 010		23.9(38.5)
DMG	33.7500	118.0830		642 0.0	0.0	4.20	0.012		23.9(38.5)
DMG	33.7500	118.0830		240.0	0.0	4.90	0.020		23.9(38.5)
DMG	33.7500	118.0830		911 0.0	0.0	4.40	0.014		23.9(38.5)
DMG	33.7500	118.0830		3 9 0.0	0.0	4.40	0.014		23.9(38.5)
GSB	34.3010	118.5650		204602.4	9.0	5.20	0.026	<u>v</u>	24.0(38.6)
DMG	33.7700	118.4800		182754.8	0.0	4.40	0.013		24.0(38.6)
DMG	34.4110	118.3290		5 636.0	4.7	4.30	0.012		24.3(39.1)
DMG GSB	34.3610 34.3190	118. 4870 118. 5580		143526.7 132444.1	4.4	4.20	0.011		24.3(39.1)
DMG	34.3190	118. 4270		71511.7	1.0 7.2	4.50 4.50	0. 014 0. 014		24.5(39.5) 24.6(39.6)
DMG	33.7330	118. 1000		1447 0.0	0.0	4.30	0.014		24.6(39.6)
DMG	33.7330	118. 1000		1350 0.0	0.0	4.40	0.013	iii	24.6(39.6)
DMG	33.7330	118.1000		15 9 0.0	0.0	4.40	0.013	iii	24.6(39.6)
PAS	34.3800	118.4590		21926.1	9.5	4.50	0.014	iv	24.6(39.6)
GSP	34.3050	118.5790		112036.0	1.0	5.10	0.023	l iv l	24.7(39.8)
DMG	34.3840	118.4550		113134.6	6.0	4.20	0.011		24.8(39.8)
DMG	34.3990	118. 4190		134953.7	9.7	4.30	0. 012		24.9(40.0)
GSP	34.2780	118. 6110	01/29/1994	121656.4	2.0	4.30	0. 012		25.0(40.2)
DMG	34. 3970	118. 4390		55052.6	6.9	4. 70	0.016	IV	25.2(40.5)
PAS	33. 9330	118. 6690	10/17/1979	205237.3	5.5	4. 20	0. 011		25.2(40.6)

------EARTHQUAKE SEARCH RESULTS

				TIME			SI TE	SI TE	APPROX.
FILE	LAT.	LONG.	DATE	(UTC)	DEPTH	QUAKE	ACC.	MM	DI STANCE
CODE	NORTH	WEST		H M Se	c (km)	MAG.	g	INT.	mi [km]
	+	+	+	+	-+	+		++	·
DMG	34.4110					4.20	0.011		25.3(40.7)
DMG		118.4010		14 154.		4.20	0.011		25.3(40.7)
DMG			02/09/1971			5.30	0. 026	V	25.3(40.7)
DMG		118.4010				4.10	0.010		25.3(40.7)
DMG		118.4010				4.10	0.010		25.3(40.7)
DMG			02/09/1971			5.80	0.039	<u>v</u>	25.3(40.7)
DMG		118.4010				4.10	0.010		25.3(40.7)
DMG		118.4010				6.40	0.062	VI	25.3(40.7)
DMG		118.4010				4.20	0.011		25.3(40.7)
DMG		118.4010				4.10	0.010		25.3(40.7)
DMG		118.4010				4.40	0.012		25.3(40.7)
DMG		118.4010				4.00	0.009		25.3(40.7)
DMG		118.4010				4.00	0.009		25.3(40.7)
DMG		118.4010				4.70	0.016		25.3(40.7)
DMG DMG	34.4110	118. 4010 118. 4010				4.00 4.10	0. 009 0. 010		25.3(40.7) 25.3(40.7)
DMG						4.10	0.010		25.3(40.7)
DMG		118.4010				4.10	0.010		25.3(40.7)
DMG						5.80	0.039		25.3(40.7)
DMG		118.4010				4.50	0.039		25.3(40.7)
DMG		118.4010		14 150.		4.30	0.013		25.3(40.7)
DMG			02/09/1971			4.20	0.011		25.3(40.7)
DMG			02/09/1971			4.10	0.013		25.3(40.7)
DIVIO	134.4110	1110.4010	02/0//1//1	117 137.			0.010		20.0(40.7)

		11200 0		rob			
DMG	34.4110 118.4010 02/09/1	11388.00 971 14 550.0		4.10	0.010		25.3(40.7)
DMG	34. 4110 118. 4010 02/09/1			4. 10	0.010		25.3(40.7)
DMG	34. 4110 118. 4010 02/09/1			4.50	0.013	;;;	25.3(40.7)
DMG	34. 4110 118. 4010 02/09/1			4.20	0.013		25.3(40.7)
DMG	34. 4110 118. 4010 02/09/1			4.10	0.010	;;;	25.3(40.7)
GSP	34. 3740 118. 4950 01/28/1			4.20	0.010	iii	25.3(40.7)
DMG	34. 3000 118. 6000 04/04/1			6.00	0.045	vi	25.4(40.9)
PAS	33. 9440 118. 6810 01/01/1			5.00	0.020	I ÎV	25.6(41.2)
GSB	34. 3450 118. 5520 01/24/1			4.80	0.017	I İV	25.6(41.2)
GSB	34. 2850 118. 6240 01/17/1			4.70	0.015	IV	25.9(41.6)
DMG	34.4310 118.3690 08/14/1			4.20	0.010		26.1(42.0)
DMG	34.3990 118.4730 03/09/1			4.70	0.015		26.2(42.1)
DMG	33. 7500 118. 0000 11/16/1	934 2126 0.0	0.0	4.00	0. 008		26.3(42.3)
GSP	34.3000 118.6200 08/09/2			4.40	0. 012		26.3(42.3)
DMG	34. 1000 117. 8000 03/31/1			4.00	0. 008		26.3(42.3)
DMG	34. 4260 118. 4140 02/10/1			4.50	0. 013		26.5(42.6)
DMG	34. 4280 118. 4130 04/01/1			4.10	0.009		26.6(42.8)
DMG	34. 4330 118. 3980 02/09/1			4. 10	0.009		26.7(42.9)
GSB	34. 3600 118. 5710 01/19/1			4.50	0. 012		27.1(43.6)
DMG	33. 7000 118. 0670 03/11/1			5. 10	0.019	V	27.4(44.2)
DMG	33. 7000 118. 0670 03/11/1			5.10	0.019	I V	27.4(44.2)
DMG	33. 7000 118. 0670 02/08/1			4.00	0.008		27.4(44.2)
DMG	33.7000 118.0670 07/20/1			4.00	0.008		27.4(44.2)
MGI	33.8000 117.9000 05/22/1			4.30	0.010		27.5(44.2)
GSP	34. 3790 118. 5610 01/18/1			4.80	0.015	! !	27.8(44.7)
GSP	34. 3790 118. 5630 01/18/1			4.40	0.011		27.8(44.8)
GSB	34. 3330 118. 6230 01/18/1			4.30	0.010		27.9(44.9)
DMG	34. 4460 118. 4360 02/10/1	971 185441.		4.20	0.009		28.2(45.4)
GSP	33. 9090 117. 7920 06/14/2			4.00	0.007		28.8(46.3)
DMG	34. 4570 118. 4270 02/09/1	971 161926. !	5 -1.0	4.20	0.009		28.8(46.3)

------EARTHQUAKE SEARCH RESULTS

FILE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec		QUAKE MAG.	SI TE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSG GSG GSP DMG GSP GSP GSP GSP GSP GSP GSP GSP GSP GS	34. 4630 33. 9050 33. 6830 34. 3620 34. 3620 34. 3440 33. 9070 34. 3580 33. 6630 34. 4080 34. 3590 33. 9170 33. 9530 34. 3630 34. 3740	118. 3720 118. 4090 117. 7920 118. 0500 118. 0500 118. 6150 117. 7910 118. 6360 117. 7880 118. 6220 118. 4130 118. 5590 118. 6290 117. 7610 118. 6270 118. 6220	05/15/2013	$\begin{array}{c} 200006.\ 2\\ 212824.\ 3\\ 062334.\ 1\\ 1250\ 0.\ 0\\ 658\ 3.\ 0\\ 073759.\ 8\\ 163322.\ 1\\ 143436.\ 1\\ 203100.\ 3\\ 040126.\ 8\\ 738\ 5.\ 3\\ 200205.\ 4\\ 055024.\ 3\\ 070851.\ 9\\ 184215.\ 7\\ 055421.\ 1\\ 155410.\ 8\\ 211144.\ 9\end{array}$	1. 2 1. 2 5. 0 10. 0 0. 0 13. 0 10. 0 10. 0 10. 0 10. 0 12. 0	$\begin{array}{c} 4.\ 00\\ 4.\ 00\\ 4.\ 20\\ 4.\ 50\\ 4.\ 40\\ 5.\ 50\\ 4.\ 10\\ 4.\ 50\\ 4.\ 10\\ 4.\ 50\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 30\\ 4.\ 30\\ 4.\ 80\\ 5.\ 30\\ 4.\ 80\\ 5.\ 10\\ \end{array}$	$\begin{array}{c} 0. \ 007\\ 0. \ 007\\ 0. \ 009\\ 0. \ 011\\ 0. \ 010\\ 0. \ 025\\ 0. \ 008\\ 0. \ 011\\ 0. \ 015\\ 0. \ 008\\ 0. \ 011\\ 0. \ 007\\ 0. \ 0. \ 007\\ 0. \ 0. \ 007\\ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	++ 	$\begin{array}{c} 28.8(46.3)\\ 28.8(46.4)\\ 28.8(46.4)\\ 28.9(46.4)\\ 28.9(46.5)\\ 28.9(46.5)\\ 28.9(46.5)\\ 28.9(46.6)\\ 28.9(46.6)\\ 28.9(46.6)\\ 29.0(46.7)\\ 29.0(46.7)\\ 29.0(46.7)\\ 29.0(46.7)\\ 29.1(46.8)\\ 29.3(47.1)\\ 29.4(47.2)\\ 29.4(47.3)\\ 29.5(47.4)\\ 29.5(47.4)\\ 29.8(48.0)\\ 29.8(48.0)\\ 29.8(48.0)\\ \end{array}$

				11000 001	FOC				
DAC	124 2470	110 / 5/0		11388.001			0 011		20, 0(40, 2)
PAS			04/08/1976		14.5	4.60	0.011		29.9(48.2)
DMG	33.6330	117.7390	11/01/1940	20 046.0 717 4.8	0.0	4.00	0.007		30.0(48.2)
PAS GSP	34. 0060	117. 7390		194353.4	3.3 13.0	4.30 4.10	0.009 0.007		30.0(48.2) 30.1(48.5)
DMG	34. 3800	118.6230				4.10	0.007		
DMG	33. 6300	118. 2000		132338.2	10. 0 0. 0	4.00	0.007		30.1(48.5) 30.2(48.6)
GSB	34. 3430		01/17/1994	234925.4	8.0	4.30	0.007		30.2(48.6)
GSP	33. 9550	117.7460		120135.5	13.0	4.00	0.009		30. 3(48. 7)
GSP	34. 3970	118.6090		095724.0	11.0	4.00	0.007		30.5(49.0)
DMG	33. 6800	117.9930		85334.7	4.4	4.00	0.007	ii	30.6(49.2)
DMG	33.6710	118.0120		223534.2	5.6	4.10	0.007	ii	30.6(49.2)
GSP	34. 3610	118.6570		055328.9	14.0	4.20	0.008	ii	30.6(49.3)
DMG	33.6330	118.4000		938 0.0	0.0	4.00	0.007	ii	30.9(49.7)
GSP	34.1100	117.7200		223227.2	4.0	4.60	0.011	iii	30.9(49.8)
GSP	34. 3260	118.6980		233330.7	9.0	5.60	0.024	V V	30.9(49.8)
GSP	34.3770	118.6490		110928.4	15.0	4.80	0.012		31.0(50.0)
DMG	34.1000	118.8000	05/10/1911	1340 0.0	0.0	4.00	0.007		31.1(50.0)
GSG	34.3040	118. 7220	01/17/1994		10.0	4.00	0.006		31.2(50.3)
GSP	34.1500	117.7200	03/01/1990	032303.0	11.0	4.70	0. 011		31.3(50.4)
DMG	34.5190	118. 1980	08/23/1952	10 9 7.1	13.1	5.00	0.014	IV	31.6(50.8)
GSP	34.3690	118. 6720		103730.7	16.0	5. 10	0. 015	V	31.6(50.9)
PAS	34. 1360	117. 7090		15 458.5	7.9	4.60	0. 010		31.8(51.1)
DMG	33. 6650	117. 9790		214240.7	7.2	4.00	0. 006		31.9(51.3)
DMG	33. 6170	118. 1170			0.0	4.50	0.009		31.9(51.4)
GSP	34.3040	118.7370			13.0	4.10	0.007		32.0(51.4)
MGI	33.8000	117.8000		1948 0.0	0.0	4.60	0.010		32.0(51.4)
MGI	33.8000	117.8000		635 0.0	0.0	4.00	0.006		32.0(51.4)
MGI	33.8000	117.8000		2238 0.0	0.0	4.60	0.010		32.0(51.4)
MGI	33.8000	117.8000		1723 0.0	0.0	4.60	0.010		32.0(51.4)
MGI	33.8000	117.8000		945 0.0	0.0	4.00	0.006		32.0(51.4)
MGI MGI	33.8000	117.8000 117.8000			0.0	4.60	0.010		32.0(51.4)
DMG	33.8000 33.6540	117.8000		719 0.0 194950.5	0.0 4.6	4.00 4.30	0.006 0.008		32.0(51.4) 32.1(51.7)
DMG			01/08/1967	73730.4	4.0	4.00	0.008		32. 2(51.8)
DIVIO	155.0520	110.4070	10170071907	/3/30.4	11.4	4.00	0.000		52.2(51.0)

-----EARTHQUAKE SEARCH RESULTS -----

raye o									
FI LE CODE	LAT. NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)	QUAKE MAG.	SI TE ACC. g	SITE MM INT.	APPROX. DISTANCE mi [km]
GSP	34. 1300 34. 0000 34. 1400 34. 3540 33. 9510 33. 8540 33. 7000 33. 7670 34. 3940 34. 3940 34. 1400 34. 1000	117.7000 117.7000 117.7000 118.7040 117.7090 117.7520 117.9000 117.8170 118.6690 118.5210 117.6900 117.6830 117.6830	10/20/1961 03/01/1990 12/03/1929 02/28/1990 05/01/1996 01/05/1998 10/04/1961 07/08/1902 08/22/1936 06/26/1995 07/16/1965 03/02/1990 01/18/1934 01/09/1934 01/19/1994	$\begin{array}{c} 003457. 1\\ 9 \ 5 \ 0. 0\\ 234336. 6\\ 194956. 4\\ 181406. 5\\ 22131. 6\\ 945 \ 0. 0\\ 521 \ 0. 0\\ 521 \ 0. 0\\ 084028. 9\\ 74622. 4\\ 172625. 4\\ 214 \ 0. 0\\ 1410 \ 0. 0\\ 044314. 5 \end{array}$	6. 1 4. 0 5. 0 14. 0 11. 0 4. 3 0. 0 0. 0 13. 0 15. 1 6. 0 0. 0 12. 0 ge 9	$\begin{array}{c} 4.\ 00\\ 4.\ 00\\ 5.\ 20\\ 4.\ 10\\ 4.\ 30\\ 4.\ 10\\ 4.\ 00\\ 5.\ 00\\ 4.\ 00\\ 5.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 00\\ 4.\ 50\\ 4.\ 10\\ 4.\ 10\\ \end{array}$	$\begin{array}{c} 0. \ 006\\ 0. \ 006\\ 0. \ 006\\ 0. \ 016\\ 0. \ 007\\ 0. \ 008\\ 0. \ 007\\ 0. \ 008\\ 0. \ 007\\ 0. \ 006\\ 0. \ 013\\ 0. \ 006\\ 0. \ 010\\ 0. \ 006\\ 0. \ 009\\ 0. \ 006\\ \end{array}$	 	$\begin{array}{c} 32.\ 2(\ 51.\ 8)\\ 32.\ 2(\ 51.\ 9)\\ 32.\ 2(\ 51.\ 9)\\ 32.\ 3(\ 52.\ 0)\\ 32.\ 4(\ 52.\ 1)\\ 32.\ 4(\ 52.\ 1)\\ 32.\ 4(\ 52.\ 1)\\ 32.\ 4(\ 52.\ 2)\\ 32.\ 5(\ 52.\ 2)\\ 32.\ 5(\ 52.\ 2)\\ 32.\ 5(\ 52.\ 2)\\ 32.\ 6(\ 52.\ 4)\\ 32.\ 7(\ 52.\ 6)\\ 32.\ 7(\ 52.\ 6)\\ 32.\ 7(\ 52.\ 6)\\ 32.\ 7(\ 52.\ 6)\\ 32.\ 7(\ 52.\ 6)\\ 32.\ 9(\ 52.\ 9)\\ 33.\ 0(\ 53.\ 1)\ 33.\ 0(\ 53.\ 1)\\ 33.\ 0(\ 53.\ 1)\ 33.\ $
5									

				11388.001	EQSea	irch			
GSP	34.3770	118.6980	01/18/1994		11.0	5.20	0. 016	IV	33.1(53.3)
DMG	33.6170	118. 0330	05/21/1938	944 0.0	0.0	4.00	0.006		33.5(53.9)
GSB	34.3790	118. 7110	01/19/1994	210928.6	14.0	5.50	0.019	1 V	33.8(54.3)
DMG	33.6170	118.0170		111332.0	0.0	4.90	0.012		33.8(54.5)
DMG	33.6170	118. 0170		1326 1.0	0.0	4.00	0.006		33.8(54.5)
DMG	33.6170	118. 0170	03/14/1933	19 150.0	0.0	5.10	0.014	IV	33.8(54.5)
GSP	34.5000	118. 5600		174157.1	11.0	4.10	0.006		34.7(55.8)
DMG	33.6000	118.0170		1715 0.0	0.0	4.50	0.008		34.9(56.2)
DMG	34.4000	117.8000	02/24/1946	6 752.0	0.0	4.10	0.006		34.9(56.2)
DMG	33.6170	117.9670		154 7.8	0.0	6.30	0.034	v	35.1(56.5)
DMG	33.6000	118.0000		217 0.0	0.0	4.50	0.008		35.3(56.8)
DMG	33.6000	118.0000	03/11/1933	231 0.0	0.0	4.40	0.007		35.3(56.8)
DMG	34.5650	118. 1130	02/28/1969	45612.4	5.3	4.30	0.007		35.5(57.2)
GSP	34.0690	118. 8820	05/02/2009	011113.7	14.0	4.40	0.007		35.7(57.4)
GSP	33.8060	117. 7150	03/07/2000	002028.2	11.0	4.00	0.005		35.9(57.7)
DMG	33. 5430	118. 3400		35116.2	2.2	4.20	0.006		36.3(58.4)
PAS	33.5380	118. 2070		134430.3	13.7	4. 10	0.005		36.5(58.7)
DMG	33. 5610	118. 0580		183547.0	10.0	4.00	0.005		36.6(58.9)
GSP	33. 6200	117. 9000	04/07/1989	200730.2	13.0	4.50	0.007		36.9(59.4)
DMG	33. 5750	117. 9830		518 4.0	0.0	5.20	0.013		37.3(60.0)
GSP	34.0490	118.9150		212418. 1	15.0	4.30	0.006		37.6(60.5)
DMG	33. 5670	117. 9830		1833 0.0	0.0	4.00	0.005		37.8(60.8)
DMG	33. 5670	117. 9830	07/07/1937	1112 0.0	0.0	4.00	0.005		37.8(60.8)
DMG	33. 5170	118.1000		82240.0	0.0	4.00	0.005		38.9(62.5)
DMG	34. 5290	118. 6440		21656.5	16.0	4.20	0.005		38.9(62.6)
DMG	33.5000	118.2500		10 8 0.0	0.0	4.50	0.007	!!	39.0(62.7)
DMG	33.9500	117.5830		12024.0	0.0	4.00	0.004	!	39.4(63.5)
DMG	34.1830	117.5830		24628.0	0.0	4.00	0.004	.!	39.4(63.5)
PAS	33.5080	118.0710		53928.7	6.0	4.50	0.007		39.9(64.2)
PAS	34.0540	118.9640		11 212.2	16.6	4.00	0.004		40.4(65.0)
DMG	34.3700	117.6500		15 0 0.0	0.0	7.00	0.047	VI	40.6(65.4)
DMG	34.0170	118.9670		222624.0	0.0	4.70	0.007		40.7(65.5)
GSP	34.3740	117.6490		234958.4	9.0	4.40	0.006		40.8(65.7)
DMG DMG	34.4170 34.3000	118.8330		11 631.0 512 0.0	0.0	4.10	0. 005 0. 021		40.9(65.7)
DMG	34. 5860	117. 6000 118. 6130		31638.6	0.0 2.6	6.00 4.60	0.021		41.0(65.9) 41.3(66.5)
DMG	34. 1830	117. 5480		163533.5	10.0	4.50	0.007		41.3(66.6)
DMG			09/16/1903		0.0	4.00	0.008		41.9(67.4)
DIVIG	133.0000	117.0000	107/10/1903		0.0	4.00	0.004		41.7(07.4)

EARTHQUAKE SEARCH RESULTS

FILE LAT. CODE NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec	DEPTH (km)		SI TE ACC. g	SI TE MM I NT.	APPROX. DISTANCE mi [km]
PAS 34. 0160 GSP 34. 3850 DMG 34. 1670 DMG 34. 1270 PAS 33. 4710 DMG 34. 3040 MGI 34. 0000 DMG 34. 1400	118. 9880 117. 6350 117. 5330 117. 5210 118. 0610 117. 5700 119. 0000 119. 0000 117. 5150	04/22/1918 10/26/1984 10/16/2007 03/01/1948 12/27/1938 02/27/1984 05/05/1969 12/14/1912 09/24/1827 01/01/1965 10/19/1979	$\begin{array}{c} 172043.5\\ 085344.1\\ 81213.0\\ 10\ 928.6\\ 101815.0\\ 16\ 2\ 9.6\\ 0\ 0\ 0.0\\ 4\ 0\ 0.0\\ 8\ 418.0 \end{array}$	0.0 13.3 8.0 0.0 10.0 6.0 8.8 0.0 0.0 5.9 4.9	5.00 4.60 4.20 4.70 4.00 4.00 4.40 5.70 7.00 4.40 4.10	$\begin{array}{c} 0.\ 009\\ 0.\ 007\\ 0.\ 005\\ 0.\ 007\\ 0.\ 004\\ 0.\ 004\\ 0.\ 005\\ 0.\ 016\\ 0.\ 044\\ 0.\ 005\\ 0.\ 004\\ 0.\ 005\\ 0.\ 004\\ \end{array}$	 	41.9(67.4) 41.9(67.4) 41.9(67.4) 42.0(67.7) 42.4(68.2) 42.5(68.4) 42.5(68.4) 42.7(68.7) 42.7(68.7) 42.8(68.9) 42.8(68.9)

DMG DMG	34. 2110 34. 2810	117.5520 09/13/1970		10. 0 8. 0	4.50 0.00 4.40 0.00	5 11	42.8(68.9) 43.0(69.2)
DMG MGI DMG GSG	34. 2700 34. 0000 34. 0000 34. 6173	117.5400 09/12/1970 117.5000 12/16/1858 117.5000 07/03/1908 118.6302 01/04/2015	10 0 0.0 1255 0.0	8.0 0.0 0.0 8.8	5. 40 0. 01. 7. 00 0. 04. 4. 00 0. 00. 4. 25 0. 00.	2 VI 1 I	43. 4(69. 9) 43. 6(70. 2) 43. 6(70. 2) 43. 7(70. 3)
DMG DMG DMG	33.5450 34.2000 34.0650	117. 8070 10/27/1969 117. 5000 06/14/1892 119. 0350 02/21/1973	1316 2.3 1325 0.0	6.5 0.0 8.0	4.50 0.00 4.90 0.00 5.90 0.01	5 11 3 11	44. 2(71. 2) 44. 3(71. 3) 44. 4(71. 5)
DMG DMG DMG	34.2670 34.1240 34.1160	117.5180 09/12/1970 117.4800 05/15/1955 117.4750 06/28/1960	17 326.0 20 048.0	8.0 7.6 12.0	4. 10 0. 00 4. 00 0. 00 4. 10 0. 00 4. 20 0. 00	1 I 1 I	44.5(71.7) 44.7(71.9) 44.9(72.3)
T-A GSP DMG DMG	34. 4200 34. 1390 33. 9900 34. 3000	118. 9200 03/29/1917 117. 4650 03/09/2008 119. 0580 05/29/1955 117. 5000 07/22/1899	164335.4	0.0 3.0 17.4 0.0	4. 30 0. 00 4. 00 0. 00 4. 10 0. 00 6. 50 0. 02	1 I 1 I	45. 1(72. 5) 45. 6(73. 4) 46. 1(74. 1) 46. 3(74. 4)
DMG PAS GSG	34. 2170 34. 1350 34. 1430	117. 4670 03/25/1941 117. 4480 01/08/1983 117. 4425 01/15/2014	234341.0 71930.4 093518.9	0.0 4.6 3.6	4.00 0.00 4.10 0.00 4.43 0.00	3 4 5	46.4(74.7) 46.6(74.9) 46.9(75.5)
GSP DMG DMG T-A	34. 1250 34. 1120 34. 1320 34. 0000	117. 4380 01/06/2005 117. 4260 03/19/1937 117. 4260 04/15/1965 117. 4200 04/12/1888	12338.4 20 833.3	4.0 10.0 5.5 0.0	4. 40 0. 00 4. 00 0. 00 4. 50 0. 00 4. 30 0. 00	3 I 5 II	47.1(75.8) 47.7(76.7) 47.8(76.9) 48.2(77.5)
T – A DMG DMG	34.0000 33.6820 33.3670	117. 4200 09/10/1920 117. 5530 07/05/1938 118. 1500 04/16/1942	1415 0.0 18 655.7 72833.0	0.0 10.0 0.0	4.30 0.00 4.50 0.00 4.00 0.00	4 5 3	48.2(77.5) 48.3(77.7) 48.5(78.1)
DMG DMG MGI PAS	33.7170 33.7170 34.0000 34.3780	117.5170 06/19/1935 117.5070 08/06/1938 117.4000 05/22/1907 119.0350 04/03/1985	1117 0.0 22 056.0 652 0.0 4 449.8	0.0 10.0 0.0 27.9	4.00 0.00 4.00 0.00 4.60 0.00 4.00 0.00	3 I 5 I I	48. 8(78.5) 49.3(79.3) 49.3(79.3) 49.4(79.4)
DMG DMG DMG	34. 3780 33. 7250 33. 6990 33. 7480	117. 4980 01/03/1956 117. 5110 05/31/1938 117. 4790 06/22/1971	02548.9 83455.4 104119.0	13.7 10.0 8.0	4. 700. 005. 500. 014. 200. 00	5 D	49.5(79.6) 49.7(80.0) 49.7(80.0)
DMG USG GSP	34.2000 34.1390 34.1900	117. 4000 07/22/1899 117. 3860 02/21/1987 117. 3900 12/28/1989		0.0 2.6 15.0	5.50 0.01 4.07 0.00 4.50 0.00	3 I 5 I	49.9(80.3) 50.1(80.7) 50.4(81.0)
DMG DMG DMG GSP	34. 4830 34. 4830 33. 7330 33. 7330	118. 9830 09/04/1942 118. 9830 09/03/1942 117. 4670 10/26/1954 117. 4660 09/02/2007	63433.0 14 6 1.0 162226.0 172914.0	0.0 0.0 0.0 2.0	4.50 0.00 4.50 0.00 4.10 0.00 4.70 0.00	5 I 3 I	50.5(81.2) 50.5(81.2) 50.8(81.7) 50.8(81.8)
DMG DMG	33.8330	117. 4000 06/05/1940 117. 3670 10/24/1943	82727.0	0.0 0.0	4.00 0.00 4.00 0.00	3 1	51.7(83.2) 51.8(83.4)

EARTHQUAKE SEARCH RESULTS

Page 10									
FILE LAT. CODE NORTH	LONG. WEST	DATE	TIME (UTC) H M Sec		QUAKE MAG.		SI TE MM I NT.	APPROX. DISTANCE mi [km]	
DMG 34.6000 DMG 34.1180 GSP 33.6920 DMG 34.1270 DMG 34.1400	118.9000 117.3410 119.0580 117.3380 117.3390	04/18/1940 05/18/1940 09/22/1951 05/30/2012 02/23/1936 02/26/1936 01/24/1950	91512.0 82239.1 051400.8 222042.7 93327.6	0.0 11.9 16.0 10.0 10.0 0.0	4.40 4.00 4.30 4.00 4.50 4.00 4.00	0.003 0.004 0.003		52. 0(83. 7) 52. 0(83. 7) 52. 6(84. 6) 52. 6(84. 6) 52. 8(84. 9) 52. 8(85. 0) 53. 0(85. 2)	

					11388.001	EQSea	rch			
PAS	33.6300	119.	0200	10/23/1981	172816.9	12.0	4.60	0.005		53.0(85.3)
PAS	34.5410	118.	9890	06/12/1984	02752.4	11.7	4.10	0.003		53.1(85.5)
PAS	33.9060		1660	05/23/1978	91650.8	6.0	4.00	0.003		53.1(85.5)
GSP	34. 1680	117.	3370	06/28/1997	214525.1	9.0	4.20	0.003		53.1(85.5)
DMG	34.0330		3170		647 0.0	0.0	4.50	0.004		53.9(86.7)
T-A	34.1700		3200		2210 0.0	0.0	4.30	0.003		54.1(87.1)
PAS	33.6370		0560	10/23/1981	191552.5	6.3	4.60	0.004		54.4(87.6)
GSP	34.1070		3040	01/09/2009	034946.3	14.0	4.50	0.004		54.6(87.9)
MGI	34.2000		2000	06/16/1914	1052 0.0	0.0	4.60	0.004		54.6(87.9)
MGI	34.1000		3000	07/15/1905	2041 0.0	0.0	5.30	0.008		54.8(88.3)
MGI	34.1000		3000		11 0 0.0	0.0	4.60	0.004	!	54.8(88.3)
MGI	34.1000		3000	11/22/1911	257 0.0	0.0	4.00	0.003		54.8(88.3)
DMG	34.1000		3000	02/16/1931	1327 0.0	0.0	4.00	0.003		54.8(88.3)
DMG DMG	34.1180 33.7000		2200 4000		185628.0 1547 0.0	13.8 0.0	4.70 6.00	0. 005 0. 013		55.1(88.7) 55.2(88.9)
DMG	33.7000			05/13/1910	620 0.0	0.0	5.00	0.013	;;'	55.2(88.9)
DMG	33.7000			04/11/1910	757 0.0	0.0	5.00	0.000		55.2(88.9)
MGI	34.2000			04/13/1913	1045 0.0	0.0	4.00	0.003		55.5(89.4)
PAS	33.6710		1110	09/04/1981	155050.3	5.0	5.30	0.007		55.9(90.0)
DMG	34.0000		2830	11/07/1939	1852 8.4	0.0	4.70	0.004	`i	56.0(90.1)
DMG	33.9960		2700	02/17/1952	123658.3	16.0	4.50	0.004		56.7(91.3)
GSP	34.0470		2550	02/21/2000	134943.1	15.0	4.50	0.004		57.4(92.4)
DMG	34.5000		1170	11/17/1954	23 351.0	0.0	4.40	0.003		57.5(92.5)
T-A	34.0800	117.	2500	10/07/1869	0 0 0.0	0.0	4.30	0.003		57.7(92.8)
DMG	34.0000		2500	07/23/1923	73026.0	0.0	6.25	0.015	V	57.8(93.1)
DMG	34.0000		2500	11/01/1932	445 0.0	0.0	4.00	0.002		57.8(93.1)
PAS	34.0230		2450	10/02/1985	234412.4	15.2	4.80	0.005		58.0(93.4)
DMG	33.6040		1050		332 2.3	8.2	4.20	0.003		58.0(93.4)
GSP	33.5150		0330		054216.9	16.0	4.00	0.002	-	58.4(94.1)
GSP GSP	34.4400 34.0240		1830	05/08/2009 03/11/1998	202714.0 121851.8	7.0 14.0	4.10 4.50	0.003 0.004	- I	58.8(94.6) 58.9(94.8)
DMG	34.0240		2280	04/03/1939	25044.7	10.0	4.00	0.004		58.9(94.8)
T-A	34.8300		7500		0 0 0.0	0.0	7.00	0.002	v	59.8(96.3)
DMG	34.6830		0000		223624.0	0.0	4.00	0.002	- I	60.1(96.7)
DMG	34.7170			06/11/1935	1810 0.0	0.0	4.00	0.002	_	60.5(97.4)
MGI	34.1000		2000		2113 0.0	0.0	4.00	0.002	_	60.6(97.4)
DMG	34.6170		0830		0 622.0	0.0	4.70	0.004		60.6(97.4)
DMG	34.7000	119.	0000	10/23/1916	254 0.0	0.0	5.50	0.007		60.9(98.1)
DMG	33.9000	117.	2000	12/19/1880	000.0	0.0	6.00	0.011		61.6(99.2)
MGI	34.3000			05/15/1927	1120 0.0	0.0	4.00	0.002	-	61.7(99.3)
MGI	34.3000		3000		1830 0.0	0.0	4.60	0.004		61.7(99.3)
MGI	34.3000		3000		1749 0.0	0.0	4.00	0.002	-	61.7(99.3)
DMG	34.7840		9020		03117.4	8.0	4.40	0.003		61.7(99.4)
GSP	34.0050	117.	1800	02/13/2010	213906.6	8.0	4.10	0.002	-	61.8(99.5)

-END OF SEARCH- 528 EARTHQUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA. TIME PERIOD OF SEARCH: 1800 TO 2016 LENGTH OF SEARCH TIME: 217 years THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 1.1 MILES (1.7 km) AWAY. 11388.001 EQSearch LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.0 LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.272 g COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION: a-value= 3.589 b-value= 0.808 beta-value= 1.860

TABLE OF MAGNITUDES AND EXCEEDANCES:

Earthquake	Number of Times	Cumulative
Magnitude	Exceeded	No. / Year
4. 0	528	2. 44444
4. 5	200	0. 92593
5. 0	70	0. 32407
5. 5	26	0. 12037
6. 0	14	0. 06481
6. 5	6	0. 02778
7. 0	4	0. 01852

APPENDIX E SUBSURFACE SURVEYS GEOPHYSICAL SURVEY

Subsurface Surveys & Associates, Inc. 2075 Corte Del Nogal, Suite W Carlsbad, CA 92011 Phone: (760) 476-0492 Fax: (760) 476-0493

Roux Associates, Inc. 5150 Pacific Coast Hwy, Suite 450 Long Beach, CA 90804 May 24, 2016

Attn:Paige FarrellRe:Geophysical Survey Summary ReportW. Court Street – Oil Well Search

This report covers the results of a geophysical survey performed at 1350 W. Court Street, in Los Angeles, California. The purpose of the survey was to search for and map the location of suspected oil wells beneath the property. A secondary objective was to locate and mark out pipe and utility lines for future drilling and excavation work.

The fieldwork was performed on May 13, 2016. An aerial photo is provided on Figure 1 that shows the location and limits of the survey.

Survey Design and Field Procedures

To provide a systematic uniform search, a rectangular survey grid was established using a 5-foot line spacing. The grid origin (0, 0) is located at the southeast corner of the site. Data was recorded in a SE to NW direction.

A Geonics EM-61 metal detector and a Gem GSM-19 magnetometer were the primary instruments used for the survey. Thick vegetation and steep slopes prevented use of the EM-61 over the entire grid. Rather, it was used in a free traversing mode across clear areas and to confirm targets found with the magnetometer.

Instruments used for the utility pipeline mark out are as follows: Ridgid line tracer, Fischer Mscope, and Schonstedt magnetic gradiometer. Data from the utility instruments are normally not recorded and stored for future processing. Instead, the display meters are monitored continuously during the traverses to detect subsurface anomalies. The location of pipes and utility lines are marked on the ground and then transferred to site plans or aerial photos.

Equipment Description and Survey Fundamentals

The Geonics EM-61 instrument is a high resolution, time-domain device for detecting buried metal objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field when its coils are energized, which induces eddy currents in nearby objects. The decay of the

eddy currents, following the input pulse, is measured by the receiver coils. By making the measurements at a relatively long time interval (measured in milliseconds) after termination of the primary pulse, the response is nearly independent of the electrical conductivity of the ground. Thus, the instrument is a super-sensitive metal detector. Due to its unique coil arrangement, the response curve is a single well-defined positive peak directly over a buried conductive object. This facilitates quick and accurate location of targets.

The GSM-19 is a portable high sensitivity magnetometer made by GEM Systems. This instrument provides measurements of the Earth's total magnetic field with a resolution of 0.10 nT and 0.2 nT accuracy over its entire range. A built in GPS receiver is part of the recording console. A notch 60 Hz filter helps to reduce effects from overhead and underground power lines. Spatial variations in the field as recorded along profiles lines or over a grid, are primarily the result of changes in the magnetic mineral content of the rock or soil. Iron objects and cultural features such as fences, buried pipelines and well casing will also produce a magnetic variation or "anomaly".

The Schonstedt magnetic gradiometer has two flux gate magnetic sensors that are passed closely to and over the ground. When not in close proximity to a magnetic object, the instrument emits a sound signal at a low frequency. When the instrument passes over a buried iron or ferrous metal object that produces a significant magnetic gradient, the frequency of the emitted sound increases. The frequency is a function of the gradient between the two sensors.

The Ridgid utility locator is used to passively detect energized high voltage electric lines and electrical conduit (50-60 Hz), VLF signals (14-22 kHz), as well as to actively trace other utilities. Where risers are present, the utility locator transmitter can be connected directly to the object to send a signal (9.8-82 kHz) along the conductor, pipe, conduit, etc. In the absence of a riser, the transmitter can be used to impress an input signal on the utility by induction. In either case, the receiver unit is tuned to the input signal, and is used to actively trace the pipe's surface projection.

Summary of Results

The Magnetic Contour Map displayed on Figures 2 shows the location of two suspected oil well casings. They are marked by a circular purple symbol. The amplitude and lateral extent of an oil well anomaly is primarily a function of casing length, thickness, and diameter. Because of contour interpolation and possible geometric effects from the induced fields, the well locations are thought to be accurate to about ± 2 feet.

The possible well location posted near grid coordinates (x=100, y=40) is considered uncertain because full access was limited by a large tree and waste high vegetation. Based on the measurements around this area, the suspected casing appears to be beneath the tree. The well target near (x=55, y=5) is open and accessible, and was detected with the EM-61. This indicates the top of casing is relatively shallow (i.e. 0-6 feet depth). A prominent mag and EM anomaly was detected near grid coordinate (x=55, y=35) and is highlighted on Figure 2. The source is thought to be a fairly large metal object, about 3-5 feet in length. The SE half of this feature is located under bushes, but the NW side is clear (see photo on Figure 4).

The south side of the grid, near the power pole and metal fence, is littered with metal debris at the ground surface and along the south facing slope.

No active utility lines were detected across the top of the property. The electric control box next to the power pole is not functional. Water and electric were found at the NW corner of the grid, but do not extend onto the property.

Geophysical Survey Limitations

It should be understood that limitations inherent in geophysical instruments and/or surveying techniques exist at all sites, and nearly all sites exhibit conditions under which instruments and survey methodology may not perform optimally. Consequently, the detection of buried objects in all circumstances cannot be guaranteed. Such limitations are numerous and include, but are not limited to, rebar-reinforced ground cover, abrupt changes in ground cover type, above-ground obstacles preventing full traverses or traverses in one direction only, above-ground conductive objects interfering with instrument signal, nearby powerlines or EM transmitters, highly conductive background soil conditions, limited GPR penetration, non-metallic targets, shallower or larger objects shielding deeper or smaller targets, tracing signal jumping from one line to another, and inaccessible risers, cleanouts, valve boxes, and manholes. If one or more geophysical instruments is rendered ineffective and cannot be utilized, the quality of the survey can be somewhat degraded.

Subsurface Surveys reports may include maps and site plans. While they are an accurate general representation of the survey area and our findings, they are not of engineering quality (i.e., measured and mapped by a licensed land surveyor).

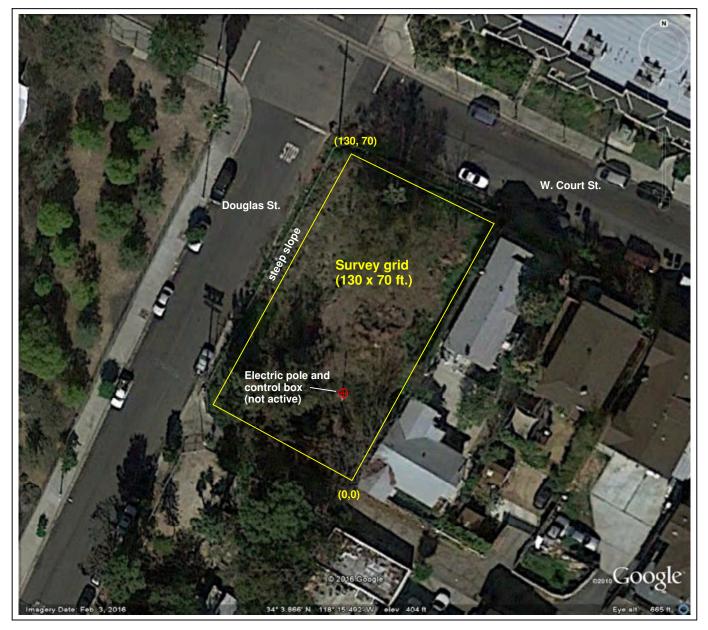
Subsurface Surveys and Associates makes no guarantee either expressed or implied regarding the accuracy of the findings and interpretations present. And, in no event will Subsurface Surveys and Associates be liable for any direct, indirect, special, incidental, or consequential damages resulting from interpretations and opinions presented herewith.

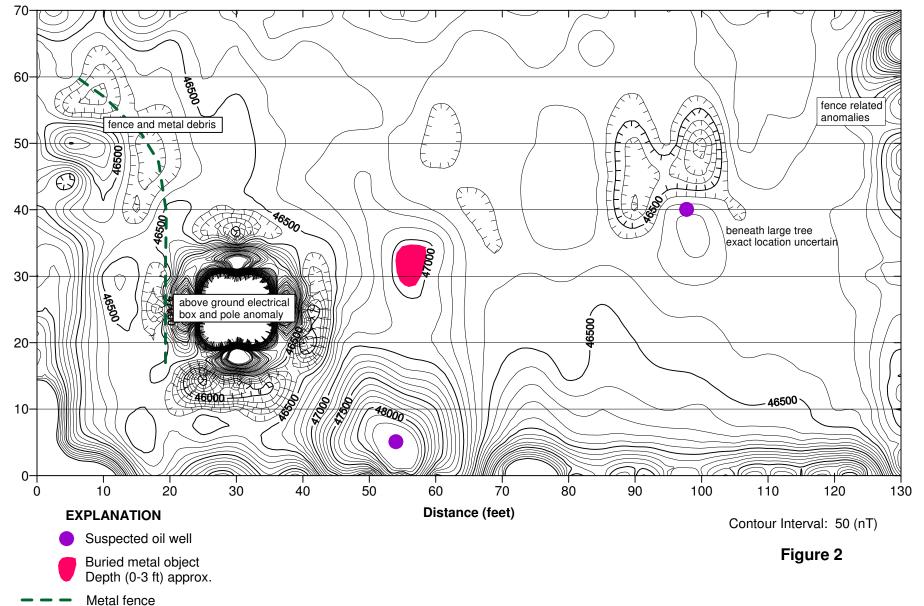
All data acquired during this survey is considered confidential and is available for review by your staff at any time. We appreciate the opportunity to participate in this project.

Pawalee Please call if there are any questions.

Phillip A. Walen Senior Geophysicist CA Registration No. GP917

Ťм




Figure 1

Magnetic Contour Map

1350 W. Court Street -- Los Angeles, CA

Douglas Street

ħ

Court Street

Survey Photographs

Survey Photograph

Figure 4

Leighton and Associates, Inc.

August 24, 2018 (Revised September 18, 2018)

Project No. 11388.005

Court Street, LLC c/o DB Companies 9748 Topanga Canyon Boulevard Los Angeles, California 91311

Attention: Mrs. Ellen Gola

Subject: Addendum to Geotechnical Exploration Report Retaining Wall and Alley Grading 1346, 1350 and 1352 W. Court Street City of Los Angeles, California

Reference: Leighton and Associates, Inc., 2016, Geotechnical Exploration Report Proposed Multi-Family Residential Development 1346, 1350 and 1352 W. Court Street, City of Los Angeles, California, Project No. 11388.001, dated August 31, 2016.

INTRODUCTION

Per your request, Leighton and Associates, Inc. (Leighton) is pleased to present this addendum letter to our original geotechnical report dated August 31, 2016 for the proposed multi-family residential development located at 1346, 1350, and 1352 West Court Street in the City of Los Angeles, California. We understand in order to accommodate site grades, the alley located directly south of the project site will need to be cut and regraded. In addition, construction of a new retaining wall located along the southern edge of the alleyway will be required. The currently planned development will consist of a four-story multi-family residential apartment building over a partial two-level subterranean parking garage with an entrance at street grade on the Douglas Street side of the property.

All recommendations provided in the above referenced geotechnical report remains valid except where modified herein. No additional field exploration was performed in association with this addendum.

PROJECT UNDERSTANDING

Based on correspondence with design staff as well as review of the undated *Court Street and Douglas Street (S/E Corner) (Voluntary Improvement) Plans,* prepared by C & V Consulting, Inc., we understand that grading involving cuts on the order of 6 to 8 feet are proposed in the alley south of the project site. In addition, a concrete masonry unit (cmu) retaining wall with a maximum height of 4 feet 8 inches is currently proposed along the southern edge of the alley (south of the project site) to accommodate design grade for the development. We understand the retaining wall is currently designed for full hydrostatic pressure and also includes weep holes and a mirafi drain.

SUBSURFACE CONDITIONS

Our original geotechnical exploration within previous project limits encountered approximately 5 feet of artificial fill soils overlying sedimentary bedrock of the Puente Formation. Bedding attitudes as measured at the bedrock outcrop in the southwest corner of the project site indicate a northeast strike of 55 to 65 degrees with a dip angle of 55 to 65 degrees to the southeast.

The bedding, as measured in our original exploration creates a favorable bedding condition for cuts proposed along the southern edge of the alley where exposed bedding planes will be dipping into slope.

RETAINING WALL RECOMMENDATIONS

The following soil parameters (Leighton 2016) may be used for the design of retaining walls with level backfill:

	Free Cantilever Walls (Active) psf/ft	Restrained Walls (At-rest) psf/ft
Retained Height up to 20 feet		
Earth Pressure with Geologic Surcharge	56	81
Earth Pressure without Geologic Surcharge	28	45
Seismic Pressure with Geologic Surcharge	41	
Seismic Pressure without Geologic Surcharge	25	

Seismic earth pressure should be applied in addition to static earth pressure for conventional retaining walls that are more than 6 feet in height and the unbalanced height portion (higher side) of the basement walls.

In addition to the recommended earth pressure, the walls should be designed to resist any applicable surcharge loads behind the walls.

The retaining wall foundation is anticipated to bear on bedrock.

Retaining Wall Foundation

New shallow spread footings established on bedrock may be used to support the proposed retaining wall

Wall foundation should have a minimum width of 12 inches. The top of the footing should be at least 12 inches below lowest adjacent grade.

The footings may be designed for a maximum net allowable soil bearing pressure of 6,000 pounds per square foot (psf). The soil bearing pressure may be increased by one-third for transient loads such as wind and seismic forces.

Resistance to lateral loads will be provided by a combination of friction between the soil and foundation interface and passive pressure acting against the vertical portion of the footings. For calculating allowable lateral resistance, a passive pressure of 250 psf per foot of depth to a maximum of 2,500 psf and a frictional coefficient of 0.25 may be used

provided the foundations are supported within structural compacted fill. When combining frictional and passive resistance, the passive resistance should be reduced by one-third.

The estimated total settlement of the structures supported on spread footings as recommended above is less than 1 inch. The differential settlement between adjacent columns is estimated to be less than ½ inch over a horizontal distance of 40 feet.

<u>Backfill</u>

Backfill for retaining structures planned at the site should be non-expansive soil (Expansion Index less than 20).

Backfill should be compacted to at least 90 percent of the maximum dry density obtained by ASTM Test Method D 1557. Relatively light equipment should be used for backfilling behind retaining walls.

<u>Drainage</u>

We understand that site geometry will not allow for construction of a backdrain system to divert water to a designated discharge location. In lieu of a backdrain, a wall drain system consisting of weep hole perforations penetrating the face of the wall and mirafi drain at the back of the wall are planned. The retaining wall should be designed to withstand full hydrostatic pressure in the event that the proposed wall drain fails to function as planned.

In addition, the wall should be waterproofed or at least damp-proofed, depending upon the degree of moisture protection desired.

GRADING RECOMMENDATIONS

The exact thickness of undocumented fill beneath the alley is currently unknown. Although the planned cuts on the order of 6 to 8 feet as proposed should remove the undocumented fill and expose competent bedrock, unsuitable materials if encountered at the exposed subgrade should be removed until a competent bedrock subgrade is exposed. Overexcavation and recompaction if required to remove unsuitable subgrade materials should extend a minimum horizontal distance equal to the vertical distance between the proposed footing bottom and depth of overexcavation. However, care should be used to avoid undermining existing improvements adjacent to the excavation.

After completion of the overexcavation and prior to fill placement or other improvements such as flatwork and hardscape, the exposed soils should be scarified to a minimum

depth of six inches, moisture conditioned 2 to 4 percentage points above optimum moisture content and compacted to a minimum of 90 percent relative compaction (ASTM D1557).

The excavated onsite soils, less than 6 inches and free of any deleterious material or organic matter, can be used in required fills. Any required import material should consist of non-corrosive and relatively non-expansive soils with an Expansion Index (EI) less than 20. The imported materials should contain sufficient fines (binder material) so as to be relatively impermeable and result in a stable subgrade when compacted. All proposed import materials should be approved by the geotechnical engineer of record prior to being placed at the site.

All fill soil should be placed in thin, loose lifts, with each lift properly moisture conditioned 2 to 4 percentage above the optimum moisture content and compacted to a minimum of 90 percent relative compaction (ASTM D1557). Proper moisture conditioning of the soils is vital in reducing expansion potential and reducing the potential for post-construction heave that may result in distortion and possibly damage to new improvements. Aggregate base should be compacted to a minimum of 95 percent relative compaction (ASTM D1557).

Temporary Excavations

All temporary excavations, including footings, utility trenches, should be performed in accordance with project plans, specifications, and all OSHA requirements. Excavations 5 feet or deeper should be laid back or shored in accordance with OSHA requirements before personnel are allowed to enter.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the cut, unless the cut is shored appropriately.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor shall be responsible for providing the "competent person" required by OSHA standards to evaluate soil conditions. The bedrock can be classified as Type B soil. Soil types will vary, but Type C soils can be expected at shallow depths. Close coordination between the competent person and the geotechnical engineer should be maintained to facilitate construction while providing safe excavations.

Should an excavation depth exceed 5 feet in total depth in the area of the proposed retaining wall and alley earthwork, the "ABC" slot cut method may be used immediately adjacent to property lines or other existing improvements during excavation. The maximum width and height of the slots should not exceed eight feet. Final configuration of the slot cut should be determined based on the exposed soil conditions. Slot cut grading along the property lines will likely result in a zone of unimproved soils along the property line. Depending on the site development layout, recommendations for other alternatives to safely grade along the property lines can be provided upon request.

We appreciate the opportunity to work with you on this project. If you have any questions or if we can be of further service, please contact us at your convenience.

PROFESSION TO THE PING. AUTOMOTION TO THE PING. AUTOMO

Respectfully submitted,

LEIGHTON AND ASSOCIATES, INC.

Eric M. Holliday, PG 9219 Project Geologist Ext 4252; <u>eholliday@leightongroup.com</u>

Vincent P. Ip, PE, GE 2522 Senior Principal Engineer Ext 1682; <u>vip@leightongroup.com</u>

EMH/JAR/VIP/gv

Distribution: (1) Addressee

