# DOT & BAR (VALLEY TITLE) MIXED-USE PROJECT NOISE AND VIBRATION ASSESSMENT

San José, California

March 11, 2022

**Prepared for:** 

Shannon George Vice President & Principal Project Manager David J. Powers & Associates, Inc. 1871 The Alameda, Suite 200 San José, CA 95126

**Prepared by:** 

**Carrie J. Janello Michael S. Thill** 

# ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Job No.: 21-001

# **INTRODUCTION**

The Dot & Bar (Valley Title) Mixed-Use project proposes the construction of two 20-story mixed use towers, totaling 1,375,028 square feet of office and 58,606 square feet of retail and community serving uses, south of East San Carlos Street between South 1<sup>st</sup> Street and South 2<sup>nd</sup> Street in San José, California<sup>-1</sup> Five levels of below-grade parking would also be constructed by the proposed project. Demolition of an existing three-story, 58,362 square-foot office building and an approximately 95,000 square-foot surface parking lot would be required as part of the project. The existing buildings located in the southwestern corner of the block are not included in the project site and would remain.

This report evaluates the project's potential to result in significant impacts with respect to applicable California Environmental Quality Act (CEQA) guidelines. The report is divided into three sections: 1) the Setting Section provides a brief description of the fundamentals of environmental noise and groundborne vibration, summarizes applicable regulatory criteria, and discusses ambient noise conditions in the project vicinity; 2) the Plan Consistency Analysis section discusses noise and land use compatibility utilizing policies in the City's General Plan; and, 3) the Impacts and Mitigation Measures Section describes the significance criteria used to evaluate project impacts, provides a discussion of each project impact, and presents mitigation measures, where necessary, to mitigate project impacts to a less-than-significant level.

#### SETTING

#### Fundamentals of Environmental Noise

Noise may be defined as unwanted sound. Noise is usually objectionable because it is disturbing or annoying. The objectionable nature of sound could be caused by its *pitch* or its *loudness*. *Pitch* is the height or depth of a tone or sound, depending on the relative rapidity (*frequency*) of the vibrations by which it is produced. Higher pitched signals sound louder to humans than sounds with a lower pitch. *Loudness* is intensity of sound waves combined with the reception characteristics of the ear. Intensity may be compared with the height of an ocean wave in that it is a measure of the amplitude of the sound wave.

In addition to the concepts of pitch and loudness, there are several noise measurement scales which are used to describe noise in a particular location. A *decibel (dB)* is a unit of measurement which indicates the relative amplitude of a sound. The zero on the decibel scale is based on the lowest sound level that the healthy, unimpaired human ear can detect. Sound levels in decibels are calculated on a logarithmic basis. An increase of 10 decibels represents a ten-fold increase in acoustic energy, while 20 decibels is 100 times more intense, 30 decibels is 1,000 times more intense, etc. There is a relationship between the subjective noisiness or loudness of a sound and its intensity. Each 10 decibel increase in sound level is perceived as approximately a doubling of loudness over a fairly wide range of intensities. Technical terms are defined in Table 1.

<sup>1</sup> The project land uses have been updated since this analysis. The square footage of the office use has decreased, the square footage of the retail use has increased, and the number of parking spaces increased but the square footage would not change. These changes result in a net reduction in total building square footage. These project modifications would not change the project's impacts, as discussed further in the report.

There are several methods of characterizing sound. The most common in California is the *A*-weighted sound level (dBA). This scale gives greater weight to the frequencies of sound to which the human ear is most sensitive. Representative outdoor and indoor noise levels in units of dBA are shown in Table 2. Because sound levels can vary markedly over a short period of time, a method for describing either the average character of the sound or the statistical behavior of the variations must be utilized. Most commonly, environmental sounds are described in terms of an average level that has the same acoustical energy as the summation of all the time-varying events. This energy-equivalent sound/noise descriptor is called  $L_{eq}$ . The most common averaging period is hourly, but  $L_{eq}$  can describe any series of noise events of arbitrary duration.

The scientific instrument used to measure noise is the sound level meter. Sound level meters can accurately measure environmental noise levels to within about plus or minus 1 dBA. Various computer models are used to predict environmental noise levels from sources, such as roadways and airports. The accuracy of the predicted models depends upon the distance the receptor is from the noise source. Close to the noise source, the models are accurate to within about plus or minus 1 to 2 dBA.

Since the sensitivity to noise increases during the evening and at night -- because excessive noise interferes with the ability to sleep -- 24-hour descriptors have been developed that incorporate artificial noise penalties added to quiet-time noise events. The *Community Noise Equivalent Level* (*CNEL*) is a measure of the cumulative noise exposure in a community, with a 5 dB penalty added to evening (7:00 pm - 10:00 pm) and a 10 dB addition to nocturnal (10:00 pm - 7:00 am) noise levels. The *Day/Night Average Sound Level* (*DNL* or  $L_{dn}$ ) is essentially the same as CNEL, with the exception that the evening time period is dropped and all occurrences during this three-hour period are grouped into the daytime period.

#### **Effects of Noise**

#### Sleep and Speech Interference

The thresholds for speech interference indoors are about 45 dBA if the noise is steady and above 55 dBA if the noise is fluctuating. Outdoors the thresholds are about 15 dBA higher. Steady noises of sufficient intensity (above 35 dBA) and fluctuating noise levels above about 45 dBA have been shown to affect sleep. Interior residential standards for multi-family dwellings are set by the State of California at 45 dBA DNL. Typically, the highest steady traffic noise level during the daytime is about equal to the DNL and nighttime levels are 10 dBA lower. The standard is designed for sleep and speech protection and most jurisdictions apply the same criterion for all residential uses. Typical structural attenuation is 12-17 dBA with open windows. With closed windows in good condition, the noise attenuation factor is around 20 dBA for an older structure and 25 dBA for a newer dwelling. Sleep and speech interference is therefore possible when exterior noise levels are about 57-62 dBA DNL with open windows and 65-70 dBA DNL if the windows are closed. Levels of 55-60 dBA are common along collector streets and secondary arterials, while 65-70 dBA is a typical value for a primary/major arterial. Levels of 75-80 dBA are normal noise levels at the first row of development outside a freeway right-of-way. In order to achieve an acceptable interior

noise environment, bedrooms facing secondary roadways need to be able to have their windows closed, those facing major roadways and freeways typically need special glass windows.

#### Annoyance

Attitude surveys are used for measuring the annoyance felt in a community for noises intruding into homes or affecting outdoor activity areas. In these surveys, it was determined that the causes for annovance include interference with speech, radio and television, house vibrations, and interference with sleep and rest. The DNL as a measure of noise has been found to provide a valid correlation of noise level and the percentage of people annoyed. People have been asked to judge the annoyance caused by aircraft noise and ground transportation noise. There continues to be disagreement about the relative annoyance of these different sources. When measuring the percentage of the population highly annoyed, the threshold for ground vehicle noise is about 50 dBA DNL. At a DNL of about 60 dBA, approximately 12 percent of the population is highly annoyed. When the DNL increases to 70 dBA, the percentage of the population highly annoyed increases to about 25-30 percent of the population. There is, therefore, an increase of about 2 percent per dBA between a DNL of 60-70 dBA. Between a DNL of 70-80 dBA, each decibel increase increases by about 3 percent the percentage of the population highly annoyed. People appear to respond more adversely to aircraft noise. When the DNL is 60 dBA, approximately 30-35 percent of the population is believed to be highly annoved. Each decibel increase to 70 dBA adds about 3 percentage points to the number of people highly annoved. Above 70 dBA, each decibel increase results in about a 4 percent increase in the percentage of the population highly annoyed.

| Term                                                                  | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decibel, dB                                                           | A unit describing, the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure. The reference pressure for air is 20 micro Pascals.                                                                                                                                                                                                                                                                                                                                   |
| Sound Pressure Level                                                  | Sound pressure is the sound force per unit area, usually expressed in micro<br>Pascals (or 20 micro Newtons per square meter), where 1 Pascal is the<br>pressure resulting from a force of 1 Newton exerted over an area of 1 square<br>meter. The sound pressure level is expressed in decibels as 20 times the<br>logarithm to the base 10 of the ratio between the pressures exerted by the<br>sound to a reference sound pressure (e. g., 20 micro Pascals). Sound<br>pressure level is the quantity that is directly measured by a sound level<br>meter. |
| Frequency, Hz                                                         | The number of complete pressure fluctuations per second above and below atmospheric pressure. Normal human hearing is between 20 Hz and 20,000 Hz. Infrasonic sound are below 20 Hz and Ultrasonic sounds are above 20,000 Hz.                                                                                                                                                                                                                                                                                                                                |
| A-Weighted Sound<br>Level, dBA                                        | The sound pressure level in decibels as measured on a sound level meter<br>using the A-weighting filter network. The A-weighting filter de-emphasizes<br>the very low and very high frequency components of the sound in a manner<br>similar to the frequency response of the human ear and correlates well with<br>subjective reactions to noise.                                                                                                                                                                                                            |
| Equivalent Noise Level,<br>L <sub>eq</sub>                            | The average A-weighted noise level during the measurement period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lmax, Lmin                                                            | The maximum and minimum A-weighted noise level during the measurement period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L <sub>01</sub> , L <sub>10</sub> , L <sub>50</sub> , L <sub>90</sub> | The A-weighted noise levels that are exceeded 1%, 10%, 50%, and 90% of the time during the measurement period.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Day/Night Noise Level,<br>L <sub>dn</sub> or DNL                      | The average A-weighted noise level during a 24-hour day, obtained after addition of 10 decibels to levels measured in the night between 10:00 pm and 7:00 am.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Community Noise<br>Equivalent Level,<br>CNEL                          | The average A-weighted noise level during a 24-hour day, obtained after addition of 5 decibels in the evening from 7:00 pm to 10:00 pm and after addition of 10 decibels to sound levels measured in the night between 10:00 pm and 7:00 am.                                                                                                                                                                                                                                                                                                                  |
| Ambient Noise Level                                                   | The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Intrusive                                                             | That noise which intrudes over and above the existing ambient noise at a given location. The relative intrusiveness of a sound depends upon its amplitude, duration, frequency, and time of occurrence and tonal or informational content as well as the prevailing ambient noise level.                                                                                                                                                                                                                                                                      |

 TABLE 1
 Definition of Acoustical Terms Used in this Report

Source: Handbook of Acoustical Measurements and Noise Control, Harris, 1998.

| Common Outdoor Activities                         | Noise Level (dBA) | <b>Common Indoor Activities</b>                |
|---------------------------------------------------|-------------------|------------------------------------------------|
|                                                   | 110 dBA           | Rock band                                      |
| Jet fly-over at 1,000 feet                        |                   |                                                |
|                                                   | 100 dBA           |                                                |
| Gas lawn mower at 3 feet                          |                   |                                                |
|                                                   | 90 dBA            |                                                |
| Diesel truck at 50 feet at 50 mph                 |                   | Food blender at 3 feet                         |
|                                                   | 80 dBA            | Garbage disposal at 3 feet                     |
| Noisy urban area, daytime                         |                   |                                                |
| Gas lawn mower, 100 feet                          | 70 dBA            | Vacuum cleaner at 10 feet                      |
| Commercial area                                   |                   | Normal speech at 3 feet                        |
| Heavy traffic at 300 feet                         | 60 dBA            |                                                |
|                                                   |                   | Large business office                          |
| Quiet urban daytime                               | 50 dBA            | Dishwasher in next room                        |
| Quiet urban nighttime<br>Quiet suburban nighttime | 40 dBA            | Theater, large conference room                 |
|                                                   | 30 dBA            | Library                                        |
| Quiet rural nighttime                             |                   | Bedroom at night, concert hall<br>(background) |
|                                                   | 20 dBA            |                                                |
|                                                   | 10 dBA            | Broadcast/recording studio                     |
|                                                   | 0 dBA             |                                                |

# TABLE 2Typical Noise Levels in the Environment

Source: Technical Noise Supplement (TeNS), California Department of Transportation, September 2013.

#### **Fundamentals of Groundborne Vibration**

Ground vibration consists of rapidly fluctuating motions or waves with an average motion of zero. Several different methods are typically used to quantify vibration amplitude. One method is the Peak Particle Velocity (PPV). The PPV is defined as the maximum instantaneous positive or negative peak of the vibration wave. In this report, a PPV descriptor with units of mm/sec or in/sec is used to evaluate construction generated vibration for building damage and human complaints. Table 3 displays the reactions of people and the effects on buildings that continuous or frequent intermittent vibration levels produce. The guidelines in Table 3 represent syntheses of vibration criteria for human response and potential damage to buildings resulting from construction vibration.

Construction activities can cause vibration that varies in intensity depending on several factors. The use of pile driving and vibratory compaction equipment typically generates the highest construction related groundborne vibration levels. Because of the impulsive nature of such activities, the use of the PPV descriptor has been routinely used to measure and assess groundborne vibration and almost exclusively to assess the potential of vibration to cause damage and the degree of annoyance for humans.

The two primary concerns with construction-induced vibration, the potential to damage a structure and the potential to interfere with the enjoyment of life, are evaluated against different vibration limits. Human perception to vibration varies with the individual and is a function of physical setting and the type of vibration. Persons exposed to elevated ambient vibration levels, such as people in an urban environment, may tolerate a higher vibration level.

Structural damage can be classified as cosmetic only, such as paint flaking or minimal extension of cracks in building surfaces; minor, including limited surface cracking; or major, that may threaten the structural integrity of the building. Safe vibration limits that can be applied to assess the potential for damaging a structure vary by researcher. The damage criteria presented in Table 3 include several categories for ancient, fragile, and historic structures, the types of structures most at risk to damage. Most buildings are included within the categories ranging from "Historic and some old buildings" to "Modern industrial/commercial buildings". Construction-induced vibration that can be detrimental to the building is very rare and has only been observed in instances where the structure is at a high state of disrepair and the construction activity occurs immediately adjacent to the structure.

The annoyance levels shown in Table 3 should be interpreted with care since vibration may be found to be annoying at lower levels than those shown, depending on the level of activity or the sensitivity of the individual. To sensitive individuals, vibrations approaching the threshold of perception can be annoying. Low-level vibrations frequently cause irritating secondary vibration, such as a slight rattling of windows, doors, or stacked dishes. The rattling sound can give rise to exaggerated vibration complaints, even though there is very little risk of actual structural damage.

Railroad and light rail operations are potential sources of substantial ground vibration depending on distance, the type and the speed of trains, and the type of railroad track. People's response to ground vibration from rail vehicles has been correlated best with the average, root mean square (RMS) velocity of the ground. The velocity of the ground is expressed on the decibel scale. The reference velocity is 1 x 10-6 in/sec RMS, which equals 0 VdB, and 1 in/sec equals 120 VdB. Although not a universally accepted notation, the abbreviation "VdB" is used in this document for vibration decibels to reduce the potential for confusion with sound decibels.

Typical background vibration levels in residential areas are usually 50 VdB or lower, well below the threshold of perception for most humans. Perceptible vibration levels inside residences are attributed to the operation of heating and air conditioning systems, door slams and foot traffic. Construction activities, train operations, and street traffic are some of the most common external sources of vibration that can be perceptible inside residences. Table 4 illustrates some common sources of vibration and the association to human perception or the potential for structural damage.

| Velocity Level, |                                                |                                                                                                               |
|-----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| PPV (in/sec)    | Human Reaction                                 | Effect on Buildings                                                                                           |
| 0.01            | Barely perceptible                             | No effect                                                                                                     |
| 0.04            | Distinctly perceptible                         | Vibration unlikely to cause damage of any type to any structure                                               |
| 0.08            | Distinctly perceptible to strongly perceptible | Recommended upper level of the vibration to which ruins and ancient monuments should be subjected             |
| 0.1             | Strongly perceptible                           | Threshold at which there is a risk of damage to fragile<br>buildings with no risk of damage to most buildings |
| 0.25            | Strongly perceptible to severe                 | Threshold at which there is a risk of damage to historic and some old buildings.                              |
| 0.3             | Strongly perceptible to severe                 | Threshold at which there is a risk of damage to older residential structures                                  |
| 0.5             | Severe - Vibrations considered unpleasant      | Threshold at which there is a risk of damage to new residential and modern commercial/industrial structures   |

TABLE 3Reaction of People and Damage to Buildings from Continuous or Frequent<br/>Intermittent Vibration Levels

Source: Transportation and Construction Vibration Guidance Manual, California Department of Transportation, April 2020.

| Human/Structural<br>Response                                     | Velocity Level, VdB | Typical Events<br>(50-foot setback)                                                                                     |
|------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| Threshold, minor cosmetic damage                                 | 100                 | Blasting, pile driving, vibratory<br>compaction equipment<br>Heavy tracked vehicles<br>(Bulldozers, cranes, drill rigs) |
| Difficulty with tasks such as reading a video or computer screen | 90                  | (Dundozers, eranes, arm rigs)                                                                                           |
|                                                                  |                     | Commuter rail, upper range                                                                                              |
| Residential annoyance, infrequent events                         | 80                  | Rapid transit, upper range                                                                                              |
| Residential annoyance, occasional events                         |                     | Commuter rail, typical Bus or truck over bump or on rough roads                                                         |
| Residential annoyance, frequent events                           | 70                  | Rapid transit, typical                                                                                                  |
| Approximate human threshold of perception to vibration           |                     | Buses, trucks and heavy street traffic                                                                                  |
|                                                                  | 60                  |                                                                                                                         |
|                                                                  |                     | Background vibration in residential settings in the absence of activity                                                 |
| Lower limit for equipment ultra-<br>sensitive to vibration       | 50                  |                                                                                                                         |

TABLE 4Typical Levels of Groundborne Vibration

Source: Transit Noise and Vibration Impact Assessment, US Department of Transportation Federal Transit Administration, September 2018.

#### **Regulatory Background – Noise**

This section describes the relevant guidelines, policies, and standards established by State Agencies, Santa Clara County, and the City of San José. The State CEQA Guidelines, Appendix G, are used to assess the potential significance of impacts pursuant to local General Plan policies, Municipal Code standards, or the applicable standards of other agencies. A summary of the applicable regulatory criteria is provided below.

#### State of California

*State CEQA Guidelines.* The California Environmental Quality Act (CEQA) contains guidelines to evaluate the significance of effects of environmental noise attributable to a proposed project. Under CEQA, noise impacts would be considered significant if the project would result in:

- (a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- (b) Generation of excessive groundborne vibration or groundborne noise levels;

(c) For a project located within the vicinity of a private airstrip or an airport land use plan or where such a plan has not been adopted within two miles of a public airport or public use airport, if the project would expose people residing or working in the project area to excessive noise levels.

*2019 California Building Cal Green Code.* The State of California established exterior sound transmission control standards for new non-residential buildings as set forth in the 2019 California Green Building Standards Code (Section 5.507.4.1 and 5.507.4.2). The sections that pertain to this project are as follows:

**5.507.4.1 Exterior noise transmission, prescriptive method.** Wall and roof-ceiling assemblies exposed to the noise source making up the building envelope shall meet a composite STC rating of at least 50 or a composite OITC rating of no less than 40, with exterior windows of a minimum STC of 40 or OITC of 30 when the building falls within the 65 dBA  $L_{dn}$  noise contour of a freeway or expressway, railroad, industrial source or fixed-guideway noise source, as determined by the local general plan noise element.

**5.507.4.2 Performance method.** For buildings located, as defined by Section 5.507.4.1, wall and roof-ceiling assemblies exposed to the noise source making up the building envelope shall be constructed to provide an interior noise environment attributable to exterior sources that does not exceed an hourly equivalent noise level ( $L_{eq (1-hr)}$ ) of 50 dBA in occupied areas during any hour of operation.

The performance method, which establishes the acceptable interior noise level, is the method typically used when applying these standards.

# Santa Clara County

*Santa Clara County Airport Land Use Commission Comprehensive Land Use Plan.* The Comprehensive Land Use Plan (CLUP) adopted by the Santa Clara County Airport Land Use Commission contains standards for projects within the vicinity of San José International Airport which are relevant to this project;

#### 4.3.2.1 Noise Compatibility Policies

- N-1 The Community Noise Equivalent Level (CNEL) method of representing noise levels shall be used to determine if a specific land use is consistent with the CLUP.
- N-2 In addition to the other policies herein, the Noise Compatibility Policies presented in Table 4-1 shall be used to determine if a specific land use is consistent with this CLUP.
- N-3 Noise impacts shall be evaluated according to the Aircraft Noise Contours presented on Figure 5 (not shown in this report).
- N-6 Noise level compatibility standards for other types of land uses shall be applied in the same manner as the above residential noise level criteria. Table 4-1 presents acceptable noise levels for other land uses in the vicinity of the Airport.

#### Table 4 - 1

#### NOISE COMPATIBILITY POLICIES

| LAND USE CATEGORY                                                               | CNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |                                  |                                                                            |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|----------------------------------|----------------------------------------------------------------------------|--|
|                                                                                 | 55-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60-65 | 65-70 | 70-75 | 75-80                            | 80-85                                                                      |  |
| Residential – low density Single-family, duplex,<br>mobile homes                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | **    | ***   | ****  | ****                             | ****                                                                       |  |
| Residential – multi-family, condominiums,<br>townhouses                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | **    | ***   | ****  | ****                             | ****                                                                       |  |
| Transient lodging - motels, hotels                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | **    | ****  | ****                             | ****                                                                       |  |
| Schools, libraries, indoor religious assemblies,                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |       |                                  |                                                                            |  |
| hospitals, nursing homes                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***   | ****  | ****  | ****                             | ****                                                                       |  |
| Auditoriums, concert halls, amphitheaters                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***   | ***   | ****  | ****                             | ****                                                                       |  |
| Sports arena, outdoor spectator sports, parking                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | *     | **    | ***                              | ****                                                                       |  |
| Playgrounds, neighborhood parks                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | ***   | ****  | ****                             | ****                                                                       |  |
| Golf courses, riding stables, water recreation,<br>cemeteries                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | *     | **    | ***                              | ****                                                                       |  |
| Office buildings, business commercial and<br>professional, retail               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | **    | ***   | ****                             | ****                                                                       |  |
| Industrial, manufacturing, utilities, agriculture                               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *     | *     | ***   | ***                              | ****                                                                       |  |
| * Generally Acceptable  ** Conditionally Acceptable                             | Specified land use is satisfactory, based upon the assumption<br>that any buildings involved are of normal conventional<br>construction, without any special noise insulation<br>requirements. Mobile homes may not be acceptable in these<br>areas. Some outdoor activities might be adversely affected.           New construction or development should be undertaken<br>only after a detailed analysis of the noise reduction<br>requirements is made and needed noise insulation features<br>included in the design. Outdoor activities may be adversely<br>affected.           Residential:<br>Conventional construction, but with closed<br>windows and fresh air supply systems or air conditioning<br>will normally suffice. |       |       |       |                                  | onal<br>le in these<br>affected.<br>taken<br>features<br>adversely<br>osed |  |
| *** Generally Unacceptable                                                      | New construction or development should be discouraged. I<br>new construction or development does proceed, a detailed<br>analysis of the noise reduction requirements must be made<br>and needed noise insulation features included in the design.<br>Outdoor activities are likely to be adversely affected.                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |       | letailed<br>oe made<br>e design. |                                                                            |  |
| **** Unacceptable<br>Source: Based on General Plan Guidelines, Appendix C (2003 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | -     |       | not be und                       |                                                                            |  |

Source: Based on General Plan Guidelines, Appendix C (2003), Figure 2 and Santa Clara County ALUC 1992 Land Use Plan, Table 1

Source: Comprehensive Land Use Plan Santa Clara County, Norman Y Mineta San José International Airport, May 25, 2011, Amended May 23, 2019.

# City of San José

*City of San José General Plan.* The Environmental Leadership Chapter in the Envision San José 2040 General Plan sets forth policies with the goal of minimizing the impact of noise on people through noise reduction and suppression techniques, and through appropriate land use policies in the City of San José. The following policies are applicable to the proposed project:

**EC-1.1** Locate new development in areas where noise levels are appropriate for the proposed uses. Consider federal, state, and City noise standards and guidelines as a part of new development review. Applicable standards and guidelines for land uses in San José include:

# Interior Noise Levels

• The City's standard for interior noise levels in residences, hotels, motels, residential care facilities, and hospitals is 45 dBA DNL. Include appropriate site and building design, building construction and noise attenuation techniques in new development to meet this standard. For sites with exterior noise levels of 60 dBA DNL or more, an acoustical analysis following protocols in the City-adopted California Building Code is required to demonstrate that development projects can meet this standard. The acoustical analysis shall base required noise attenuation techniques on expected Envision General Plan traffic volumes to ensure land use compatibility and General Plan consistency over the life of this plan.

# Exterior Noise Levels

- The City's acceptable exterior noise level objective is 60 dBA DNL or less for residential and most institutional land uses (Table EC-1). The acceptable exterior noise level objective is established for the City, except in the environs of the San José International Airport and the Downtown, as described below:
  - For new multi-family residential projects and for the residential component of mixed-use development, use a standard of 60 dBA DNL in usable outdoor activity areas, excluding balconies and residential stoops and porches facing existing roadways. Some common use areas that meet the 60 dBA DNL exterior standard will be available to all residents. Use noise attenuation techniques such as shielding by buildings and structures for outdoor common use areas. On sites subject to aircraft overflights or adjacent to elevated roadways, use noise attenuation techniques to achieve the 60 dBA DNL standard for noise from sources other than aircraft and elevated roadway segments.

|    |                                                                                                                                                                                    | EXTERIO           | R NOISE      | EXPOSU       | JRE (DN      | L IN DE      | CIBELS (DBA))        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|--------------|--------------|--------------|----------------------|
|    | LAND USE CATEGORY                                                                                                                                                                  | 55                | 60           | 65           | 70           | 75           | 80                   |
|    | Residential, Hotels and Motels, Hospitals and Residential Care <sup>1</sup>                                                                                                        |                   |              |              |              |              |                      |
|    | Outdoor Sports and Recreation, Neighborhood<br>Parks and Playgrounds                                                                                                               |                   |              |              |              |              |                      |
|    | Schools, Libraries, Museums, Meeting Halls,<br>Churches                                                                                                                            |                   |              |              |              |              |                      |
|    | Office Buildings, Business Commercial, and<br>Professional Offices                                                                                                                 |                   | l            |              |              |              |                      |
| ). | Sports Arena, Outdoor Spectator Sports                                                                                                                                             |                   |              |              |              |              |                      |
| 5. | Public and Quasi-Public Auditoriums, Concert<br>Halls, Amphitheaters                                                                                                               |                   |              |              |              |              |                      |
|    | nise mitigation to reduce interior noise levels purs<br>rmally Acceptable:<br>Specified land use is satisfactory, based upon th<br>without any special noise insulation requiremen | e assumption that |              |              | d are of nor | mal conve    | ntional constructior |
| 0  | nditionally Acceptable:<br>Specified land use may be permitted only after of<br>features included in the design.                                                                   | letailed analysis | of the noise | reduction    | requiremen   | ts and need  | ded noise insulation |
| n  | acceptable:<br>New construction or development should gener<br>noise element policies.                                                                                             | ally not be under | taken becau  | use mitigati | on is usuall | y not feasil | ble to comply with   |

#### Table EC-1: Land Use Compatibility Guidelines for Community Noise in San José

Source: Envision San José 2040 General Plan, Adopted November 1, 2011, As Amended on May 16, 2019.

- **EC-1.2** Minimize the noise impacts of new development on land uses sensitive to increased noise levels (Categories 1, 2, 3 and 6) by limiting noise generation and by requiring use of noise attenuation measures such as acoustical enclosures and sound barriers, where feasible. The City considers significant noise impacts to occur if a project would:
  - Cause the DNL at noise sensitive receptors to increase by five dBA DNL or more where the noise levels would remain "Normally Acceptable;" or
  - Cause the DNL at noise sensitive receptors to increase by three dBA DNL or more where noise levels would equal or exceed the "Normally Acceptable" level.
- **EC-1.3** Mitigate noise generation of new nonresidential land uses to 55 dBA DNL at the property line when located adjacent to existing or planned noise sensitive residential and public/quasi-public land uses.

- **EC-1.6** Regulate the effects of operational noise from existing and new industrial and commercial development on adjacent uses through noise standards in the City's Municipal Code.
- **EC-1.7** Require construction operations within San José to use best available noise suppression devices and techniques and limit construction hours near residential uses per the City's Municipal Code. The City considers significant construction noise impacts to occur if a project located within 500 feet of residential uses or 200 feet of commercial or office uses would:
  - Involve substantial noise generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) continuing for more than 12 months.

For such large or complex projects, a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting or notification of construction schedules, and designation of a noise disturbance coordinator who would respond to neighborhood complaints will be required to be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses.

**EC-1.11** Require safe and compatible land uses within the Mineta International Airport noise zone (defined by the 65 CNEL contour as set forth in State law) and encourage aircraft operating procedures that minimize noise.

# **Regulatory Background – Vibration**

#### **Federal Government**

*Federal Transit Administration.* The Federal Transit Administration (FTA) has identified vibration impact criteria for sensitive buildings, residences, and institutional land uses near rail transit and railroads. These criteria are shown in Table 5. The thresholds for residences and buildings where people normally sleep (e.g., nearby residences) are 72 VdB for frequent events (more than 70 events of the same source per day), 75 VdB for occasional events (30 to 70 vibration events of the same source per day), and 80 VdB for infrequent events (less than 30 vibration events of the same source per day).

|                                                                                         | Groundborne Vibration Impact Levels<br>(VdB re 1 µinch/sec, RMS) |                                |                                |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|--------------------------------|--|--|--|
| Land Use Category                                                                       | Frequent Events <sup>1</sup>                                     | Occasional Events <sup>2</sup> | Infrequent Events <sup>3</sup> |  |  |  |
| Category 1<br>Buildings where vibration<br>would interfere with interior<br>operations. | $65 \text{ VdB}^4$                                               | $65 \text{ VdB}^4$             | $65 \text{ VdB}^4$             |  |  |  |
| Category 2<br>Residences and buildings<br>where people normally sleep.                  | 72 VdB                                                           | 75 VdB                         | 80 VdB                         |  |  |  |
| <b>Category 3</b><br>Institutional land uses with<br>primarily daytime use.             | 75 VdB                                                           | 78 VdB                         | 83 VdB                         |  |  |  |

#### TABLE 5Groundborne Vibration Impact Criteria

Notes:

1. "Frequent Events" is defined as more than 70 vibration events of the same source per day. Most rapid transit projects fall into this category.

2. "Occasional Events" is defined as between 30 and 70 vibration events of the same source per day. Most commuter trunk lines have this many operations.

3. "Infrequent Events" is defined as fewer than 30 vibration events of the same kind per day. This category includes most commuter rail branch lines.

4. This criterion limit is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes. Vibration sensitive manufacturing or research should always require detailed evaluation to define the acceptable vibration levels. Ensuring low vibration levels in a building requires special design of HVAC systems and stiffened floors.

# City of San José

*City of San José General Plan.* The Environmental Leadership Chapter in the Envision San José 2040 General Plan sets forth policies to achieve the goal of minimizing vibration impacts on people, residences, and business operations in the City of San José. The following policies are applicable to the proposed project:

- **EC-2.1** Near light and heavy rail lines or other sources of ground-borne vibration, minimize vibration impacts on people, residences, and businesses through the use of setbacks and/or structural design features that reduce vibration to levels at or below the guidelines of the Federal Transit Administration. Require new development within 100 feet of rail lines to demonstrate prior to project approval that vibration experienced by residents and vibration sensitive uses would not exceed these guidelines.
- **EC-2.3** Require new development to minimize continuous vibration impacts to adjacent uses during demolition and construction. For sensitive historic structures, including ruins and ancient monuments or building that are documented to be structurally weakened, a continuous vibration limit of 0.08 in/sec PPV (peak particle velocity) will be used to minimize the potential for cosmetic damage to a building. A

continuous vibration limit of 0.20 in/sec PPV will be used to minimize the potential for cosmetic damage at buildings of normal conventional construction. Equipment or activities typical of generating continuous vibration include but are not limited to: excavation equipment; static compaction equipment; vibratory pile drivers; pile-extraction equipment; and vibratory compaction equipment. Avoid use of impact pile drivers within 125 feet of any buildings, and within 300 feet of historical buildings, or buildings in poor condition. On a project-specific basis, this distance of 300 feet may be reduced where warranted by a technical study by a qualified professional that verifies that there will be virtually no risk of cosmetic damage to sensitive buildings from the new development during demolition and construction. Transient vibration impacts may exceed a vibration limit of 0.08 in/sec PPV only when and where warranted by a technical study by a qualified professional that verifies that there will be virtually no risk of cosmetic buildings from the new development during demolition and construction.

#### **Existing Noise Environment**

The project site is located south of East San Carlos Street, between South 1<sup>st</sup> Street and South 2<sup>nd</sup> Street in the downtown area of San José, California. Commercial retail buildings in the southwestern corner of this block will remain under future project conditions. An office building is located to the north, opposite East San Carlos Street. Commercial retail, a school, and residential uses are located to the east, opposite South 2<sup>nd</sup> Street, and to the west, opposite South 1<sup>st</sup> Street. Commercial retail uses are located south of the site, opposite East San Salvador Street.

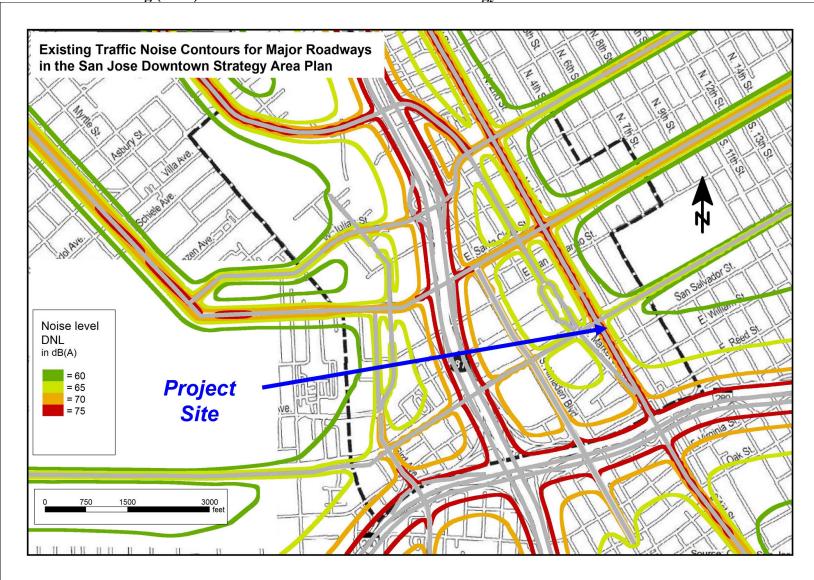
The existing noise environment at the site results primarily from local vehicular traffic along East San Carlos Street and the other surrounding roadways. Distant SR 87 and I-280 traffic noise, the VTA light rail line that runs parallel to East San Carlos Street, and aircraft associated with Mineta San José International Airport also contribute to the noise environment.

Due to the COVID-19 pandemic, traffic volumes along the surrounding roadways were reduced from typical conditions. A noise monitoring survey was not completed to document ambient noise levels during this unique time period because resultant noise levels would not be representative of typical ambient conditions. However, the project site and the surrounding area falls within the plan area for the *Downtown San José Strategy Plan 2040 EIR*.<sup>2</sup> Measurements and noise contours generated for the Downtown Strategy Plan were reviewed to establish the existing noise environment.

As part of the ambient noise measurements made for the Downtown Strategy Plan in 2017, one long-term noise measurement was made near the project site: LT-14 was made approximately 35 feet from the centerline of South 1<sup>st</sup> Street starting on December 19, 2016 and ending on December 21, 2016. The day-night average noise level at LT-14 was 70 dBA DNL. Hourly average noise levels at this location ranged from 64 to 72 dBA  $L_{eq}$  during the day, and from 58 to 69 dBA  $L_{eq}$  at night.

Additionally, existing traffic noise contours, based on traffic peak hour traffic volumes provided in 2015, were generated for the Plan Area. According to the contours, which are shown in Figure

<sup>2</sup> City of San José, "Downtown San José Strategy Plan 2040 Environmental Impact Report," December 2018.


1, existing noise levels at a distance of 75 feet from the centerline of South 1<sup>st</sup> Street would be 70 dBA DNL and at a distance of 75 feet from the centerline of East San Carlos Street would be 64 dBA DNL. The peak hour levels would be about 1 dBA lower than the day-night average noise levels along each of these roadways. Figure 2 shows an aerial image of the project site, with LT-14 identified, and Figure 3 shows the daily trends for LT-14.

#### **Existing Vibration Environment**

Vibration levels were measured along the VTA light rail line for a project located at 27 South 1<sup>st</sup> Street on Wednesday, March 28, 2018.<sup>3</sup> The instrumentation used to conduct the measurements included a Roland model R-05 solid state recorder and seismic grade, low noise accelerometers firmly fixed to the ground. This system was capable of accurately measuring very low vibration levels. Vibration levels were measured at the ground level approximately 60 feet from the light rail track on South 1<sup>st</sup> Street. This same train line runs along East San Carlos Street, with the tracks located between the eastbound and westbound lanes.

A total of six (6) individual light rail train passbys were observed and recorded at the 60-foot vibration monitoring site during the testing period. Vibration levels were measured in the vertical axis because ground vibration is typically most dominant in this axis. Vibration spectra measured during each light rail train passby event are shown in Figure 4. Overall levels ranged from 59 to 64 VdB at a distance of 60 feet from the tracks.

<sup>&</sup>lt;sup>3</sup> Illingworth & Rodkin, Inc., "27 South First Street Project Environmental Noise and Vibration Report," December 14, 2018.



#### FIGURE 1 Existing (2015) Noise Contours for the Downtown Strategy Plan Area

- FIGURE 2 Aerial Image of the Project Site and Surrounding Area with the Location of LT-14 of the Downtown Strategy Plan Identified

Source: Google Earth, 2021.

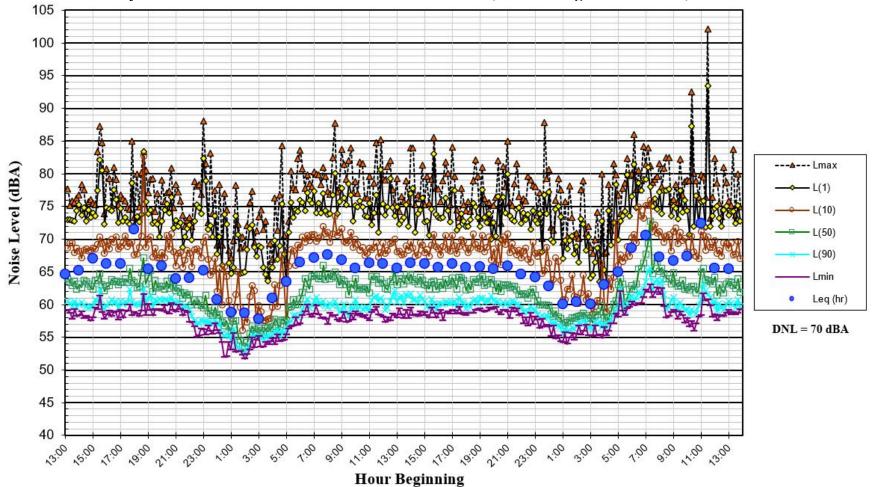



FIGURE 3 Daily Trend in Noise Levels for LT-14 from December 19, 2016 through December 21, 2016

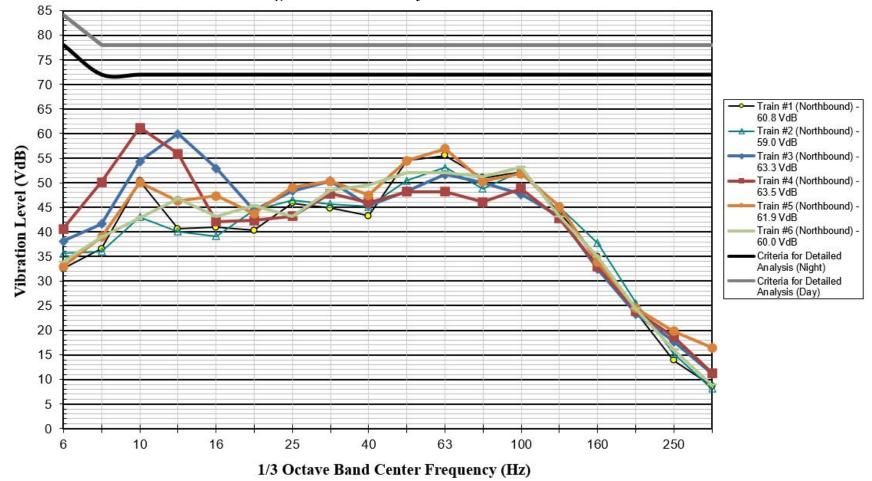



FIGURE 4 Vibration Levels from Light Rail Train Passbys

# PLAN CONSISTENCY ANALYSIS

# Noise and Land Use Compatibility

The Environmental Leadership Chapter in the Envision San José 2040 General Plan sets forth policies with the goal of minimizing the impact of noise on people through noise reduction and suppression techniques and through appropriate land use policies in the City of San José. The applicable General Plan policies were presented in detail in the Regulatory Background section and are summarized below for the proposed project:

- The City's acceptable exterior noise level standard is 70 dBA DNL or less for the proposed commercial land uses.
- The Cal Green Code standards specify an interior noise environment attributable to exterior sources not to exceed an hourly equivalent noise level (L<sub>eq (1-hr)</sub>) of 50 dBA in occupied areas of nonresidential uses during any hour of operation.

The future noise environment at the site would continue to result primarily from vehicular traffic along nearby roadways. According to the traffic study completed for the *Downtown San José Strategy Plan 2040 EIR*,<sup>1</sup> the traffic noise level increase at the project site would be up to 72 dBA DNL along South 1<sup>st</sup> Street and up to 67 dBA DNL along East San Carlos Street at 75-foot setbacks under each of the 2040 cumulative buildout alternatives.

#### Future Exterior Noise Environment

The site plan shows an outdoor seating area along South 2<sup>nd</sup> Street on the northern portion of the site and a plaza in the center of the site with direct line-of-sight to South 1<sup>st</sup> Street. A terrace is proposed on Level 3, just north of the ground-level plaza. A terrace connecting the two office towers would also be located on Level 5, with an alternative bridge terrace on Level 12. Small, private office balconies are shown on several floors; however, private balconies are not considered to be primary outdoor areas that would be subject to the City's exterior noise thresholds.

The center of the ground-level outdoor seating area would be located about 55 feet from the centerline of South 2<sup>nd</sup> Street. Assuming the noise levels along South 2<sup>nd</sup> Street would be similar to South 1<sup>st</sup> Street, future exterior noise levels at the center of this outdoor use area would be 73 dBA DNL at a distance of 55 feet.

The ground-level plaza and the Level 3 terrace would be shielded from traffic along East San Carlos Street, South 2<sup>nd</sup> Street, and East San Salvador Street. The centers of both outdoor use areas would be approximately 125 feet from the centerline of South 1<sup>st</sup> Street. At this distance, future exterior noise levels would be at or below 70 dBA DNL.

The terrace located on Level 5 and potentially on Level 12 would be in the same location, with setbacks of 100 feet from the centerline of South 2<sup>nd</sup> Street, but at different elevations. With partial shielding from the future and existing buildings, as well as the elevations of these spaces, the future exterior noise levels would be below 70 dBA DNL.

For each of the terraces on levels 3 through 12 and the ground-level plaza, future exterior noise levels at the centers of outdoor spaces would be at or below the City's normally acceptable threshold of 70 dBA DNL. However, the outdoor dining area along the eastern building façade would have future exterior noise levels exceeding the City's threshold. Considering the usage of this space to be outdoor seating along the sidewalk, constructing a sound wall would take away from the aesthetic appeal and intention of the outdoor space. Since the future exterior noise levels would be within the City's conditionally acceptable limits, no additional noise controls are recommended for the outdoor dining area.

#### Future Interior Noise Environment

Ground-level commercial retail uses and commercial offices on upper floors would be subject to the State's Cal Green Code. The proposed buildings would have setbacks of approximately 50 feet from the centerlines of South 1<sup>st</sup> Street and South 2<sup>nd</sup> Street, approximately 55 feet from the centerline of East San Carlos Street, and approximately 40 feet from the centerline of East San Salvador Street. Based on the results of *Downtown San José Strategy Plan 2040 EIR*, daytime hourly average noise levels would be up to 73 dBA L<sub>eq</sub> at the building façades, with day-night average noise levels up to 74 dBA DNL.

Standard construction materials for commercial uses would provide about 25 dBA of noise reduction in interior spaces. The inclusion of adequate forced-air mechanical ventilation systems is normally required so that windows may be kept closed at the occupant's discretion and would provide an additional 5 dBA reduction. The standard construction materials in combination with forced-air mechanical ventilation would satisfy the daytime threshold of 50 dBA L<sub>eq(1-hr)</sub>.

Spaces where lower noise levels would be desired, such as private offices and conference rooms, may benefit from additional noise control in order to meet a lower, more desirable interior noise level. Additional noise control could be accomplished by selecting higher sound-rated windows (STC 34 or greater along exterior façades).

#### LRT Vibration and Land Use Compatibility

The Environmental Leadership Chapter in the Envision San José 2040 General Plan sets forth policies with the goal of minimizing the impact of heavy and light rail vibration on people through appropriate land use policies in the City of San José. Policy EC-2.1 requires new development within 100 feet of light and heavy rail lines or other sources of groundborne vibration, to use setbacks and/or structural design features that reduce vibration to levels at or below the guidelines of the FTA.

The FTA vibration impact assessment criteria (summarized in Table 5) were used to evaluate vibration levels produced by trains passing the project area. The FTA vibration impact criteria are based on maximum overall levels for a single event. The impact criteria in Table 5 provide thresholds based on the number of train passbys in a given day: frequent events (more than 70 events of the same source per day), occasional events (30 to 70 vibration events of the same source per day), and infrequent events (less than 30 vibration events of the same source per day).

#### Future Vibration Environment

A discussion of recent light rail train activity was included in the *Downtown San José Strategy Plan 2040 EIR*.<sup>1</sup> This stated that vibration levels from light rail trains passing through the plan area would not exceed the "frequent events" category from FTA criteria shown in Table 5 at a distance of 60 feet from the tracks. Per Policy EC-2.1 of the City's General Plan, buildings proposed within 100 feet of the VTA tracks need to demonstrate compliance with the FTA standards.

The nearest building façade would be approximately 45 feet from the nearest VTA tracks. Propagating the measured vibration levels taken at 27 South 1<sup>st</sup> Street<sup>2</sup> to a distance of 45 feet using a fall-off rate of 3 dB per doubling of the distance, vibration levels are estimated to range from 60 to 65 VdB at the nearest building façade. Based on the number of events observed in a relatively short span of time in March 2018, sites along this light rail line would be subject to 70 or more events per day. This is not expected to change under future project conditions. The proposed commercial towers would fall into Category 3, which has a threshold of 75 VdB for frequent events. With vibration levels up to 65 VdB at the nearest building façade, the proposed project is expected to meet the vibration threshold. The project would be compatible with the future vibration environment at the project site.

# NOISE IMPACTS AND MITIGATION MEASURES

This section describes the significance criteria used to evaluate project impacts under CEQA, provides a discussion of each project impact, and presents mitigation measures, where necessary, to reduce project impacts to less-than-significant levels.

# Significance Criteria

The following criteria were used to evaluate the significance of environmental noise resulting from the project:

- A significant noise impact would be identified if the project would generate a substantial temporary or permanent noise level increase over ambient noise levels at existing noise-sensitive receptors surrounding the project site and that would exceed applicable noise standards presented in the General Plan at existing noise-sensitive receptors surrounding the project site.
  - A significant noise impact would be identified if construction-related noise would temporarily increase ambient noise levels at sensitive receptors. The City of San José considers large or complex projects involving substantial noise-generating activities and lasting more than 12 months significant when within 500 feet of residential land uses or within 200 feet of commercial land uses or offices.
  - A significant permanent noise level increase would occur if the project would result in: a) a noise level increase of 5 dBA DNL or greater, with a future noise level of less than 60 dBA DNL, or b) a noise level increase of 3 dBA DNL or greater, with a future noise level of 60 dBA DNL or greater.

- A significant noise impact would be identified if the project would expose persons to or generate noise levels that would exceed applicable noise standards presented in the General Plan.
- A significant impact would be identified if the construction of the project would generate excessive vibration levels surrounding receptors. Groundborne vibration levels exceeding 0.08 in/sec PPV would have the potential to result in cosmetic damage to historic buildings, and groundborne vibration levels exceeding 0.2 in/sec PPV would have the potential to result in cosmetic damage to normal buildings.
- A significant noise impact would be identified if the project would expose people residing or working in the project area to excessive aircraft noise levels.

# **Impact 1a:** Temporary Construction Noise. Existing noise-sensitive land uses would be exposed to a temporary increase in ambient noise levels due to project construction activities. This is a significant impact.

Noise impacts resulting from construction depend upon the noise generated by various pieces of construction equipment, the timing and duration of noise-generating activities, and the distance between construction noise sources and noise-sensitive areas. Construction noise impacts primarily result when construction activities occur during noise-sensitive times of the day (e.g., early morning, evening, or nighttime hours), the construction occurs in areas immediately adjoining noise-sensitive land uses, or when construction lasts over extended periods of time.

Policy EC-1.7 of the City's General Plan requires that all construction operations within the City to use best available noise suppression devices and techniques and to limit construction hours near residential uses per the Municipal Code allowable hours, which are between the hours of 7:00 a.m. and 7:00 p.m. Monday through Friday when construction occurs within 500 feet of a residential land use. Further, the City considers significant construction noise impacts to occur if a project that is located within 500 feet of residential uses or 200 feet of commercial or office uses would involve substantial noise-generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) continuing for more than 12 months.

Project construction will occur from 7:00 a.m. to 10:00 p.m. on weekdays and from 7:00 a.m. to 7:00 p.m. on Saturdays. While no construction is expected to occur during nighttime hours, a permit from the City would be required to operate outside the allowable hours since the project site is located within 500 feet of residences and within 200 feet of commercial or office uses.

Based on the 2016 ambient measurements provided in the *Downtown San José Strategy Plan 2040 EIR*, ambient noise levels at existing noise-sensitive receptors in the project vicinity would range from 64 to 72 dBA L<sub>eq</sub> during daytime hours.

Construction activities generate considerable amounts of noise, especially during earth-moving activities when heavy equipment is used. The construction of the proposed project would involve demolition of the existing gas station, commercial/retail, and church located at the site, excavation to create the basement level and foundations, utilities, and building construction. The hauling of

excavated materials and construction materials would generate truck trips on local roadways, as well. For the proposed project, pile driving, which generates excessive noise levels, is not expected.

Construction activities for individual projects are typically carried out in phases. During each phase of construction, there would be a different mix of equipment operating, and noise levels would vary by phase and vary within phases, based on the amount of equipment in operation and the location at which the equipment is operating. The typical range of maximum instantaneous noise levels for the proposed project would be 70 to 90 dBA  $L_{max}$  at a distance of 50 feet (see Table 6) from the equipment. Table 7 shows the hourly average noise level ranges, by construction phase, typical for various types of projects. Hourly average noise levels generated by construction are about 75 to 89 dBA  $L_{eq}$  for office buildings, measured at a distance of 50 feet from the center of a busy construction site. Construction-generated noise levels drop off at a rate of about 6 dBA per doubling of the distance between the source and receptor. Shielding by buildings or terrain often result in lower construction noise levels at distant receptors.

A detailed list of equipment expected to be used during each phase of project construction was provided for this analysis and is summarized in Table 8. Federal Highway Administration's (FHWA's) Roadway Construction Noise Model (RCNM) was used to calculate the hourly average noise levels for each phase of construction, assuming every piece of equipment would operate simultaneously, which would represent the worst-case scenario. This construction noise model includes representative sound levels for the most common types of construction equipment and the approximate usage factors of such equipment that were developed based on an extensive database of information gathered during the construction of the Central Artery/Tunnel Project in Boston, Massachusetts (CA/T Project or "Big Dig"). The usage factors represent the percentage of time that the equipment would be operating at full power.

For each phase, the worst-case hourly average noise level was estimated at the property line of each surrounding land use. For the existing commercial buildings expected to remain under project conditions, worst-hour construction noise levels were estimated at the nearest building façade. Multiple pieces of equipment used simultaneously would add together creating a collective noise source. While every piece of equipment per phase would likely be scattered throughout the site, the noise-sensitive receptors surrounding the site would be subject to the collective noise source generated by all equipment operating at once. Therefore, to assess construction noise impacts at the receiving property lines of noise-sensitive receptors, the collective worst-case hourly average noise level for each phase was positioned at the geometrical center of the site and propagated to the nearest property line or building façades of the surrounding land uses. These noise level estimates are also shown in Table 8. Noise levels in Table 8 do not assume reductions due to intervening buildings or existing barriers.

For the phases requiring cement and mortar mixers, the table shows the total number expected during the phase; however, these would not all be operating at one time. At any given time, up to six cement and mortar mixers could be operational. For modeling worst-case scenario, six cement and mortar mixers were assumed for the trenching/foundation, building – superstructure/exterior, and sitework phases.

| Equipment Category                                | L <sub>max</sub> Level (dBA) <sup>1,2</sup> | Impact/Continuous |
|---------------------------------------------------|---------------------------------------------|-------------------|
| Arc Welder                                        | 73                                          | Continuous        |
| Auger Drill Rig                                   | 85                                          | Continuous        |
| Backhoe                                           | 80                                          | Continuous        |
| Bar Bender                                        | 80                                          | Continuous        |
| Boring Jack Power Unit                            | 80                                          | Continuous        |
| Chain Saw                                         | 85                                          | Continuous        |
| Compressor <sup>3</sup>                           | 70                                          | Continuous        |
| Compressor (other)                                | 80                                          | Continuous        |
| Concrete Mixer                                    | 85                                          | Continuous        |
| Concrete Pump                                     | 82                                          | Continuous        |
| Concrete Saw                                      | 90                                          | Continuous        |
| Concrete Vibrator                                 | 80                                          | Continuous        |
| Crane                                             | 85                                          | Continuous        |
| Dozer                                             | 85                                          | Continuous        |
| Excavator                                         | 85                                          | Continuous        |
| Front End Loader                                  | 80                                          | Continuous        |
| Generator                                         | 82                                          | Continuous        |
| Generator (25 KVA or less)                        | 70                                          | Continuous        |
| Gradall                                           | 85                                          | Continuous        |
| Grader                                            | 85                                          | Continuous        |
| Grinder Saw                                       | 85                                          | Continuous        |
| Horizontal Boring Hydro Jack                      | 80                                          | Continuous        |
| Hydra Break Ram                                   | 90                                          | Impact            |
| Impact Pile Driver                                | 105                                         | Impact            |
| Insitu Soil Sampling Rig                          | 84                                          | Continuous        |
| Jackhammer                                        | 85                                          | Impact            |
| Mounted Impact Hammer (hoe ram)                   | 90                                          | Impact            |
| Paver                                             | 85                                          | Continuous        |
| Pneumatic Tools                                   | 85                                          | Continuous        |
| Pumps                                             | 77                                          | Continuous        |
| Rock Drill                                        | 85                                          | Continuous        |
| Scraper                                           | 85                                          | Continuous        |
| Slurry Trenching Machine                          | 82                                          | Continuous        |
| Soil Mix Drill Rig                                | 80                                          | Continuous        |
| Street Sweeper                                    | 80                                          | Continuous        |
| Tractor                                           | 84                                          | Continuous        |
| Truck (dump, delivery)                            | 84                                          | Continuous        |
| Vacuum Excavator Truck (vac-truck)                | 85                                          | Continuous        |
| Vibratory Compactor                               | 80                                          | Continuous        |
| Vibratory Pile Driver                             | 95                                          | Continuous        |
| All other equipment with engines larger than 5 HP | 85                                          | Continuous        |

TABLE 6 **Construction Equipment 50-Foot Noise Emission Limits** 

Notes:

<sup>1</sup>Measured at 50 feet from the construction equipment, with a "slow" (1 sec.) time constant. <sup>2</sup>Noise limits apply to total noise emitted from equipment and associated components operating at full power while engaged in its intended operation.

<sup>3</sup>Portable Air Compressor rated at 75 cfm or greater and that operates at greater than 50 psi.

| Domestic Housing                                                                                 |    | Office Building,<br>Hotel, Hospital,<br>School, Public<br>Works |    | Industrial Parking<br>Garage, Religious<br>Amusement &<br>Recreations, Store,<br>Service Station |    | Public Works<br>Roads & Highways,<br>Sewers, and<br>Trenches |    |    |
|--------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------|----|----|
|                                                                                                  | Ι  | II                                                              | Ι  | II                                                                                               | Ι  | II                                                           | Ι  | II |
| Ground<br>Clearing                                                                               | 83 | 83                                                              | 84 | 84                                                                                               | 84 | 83                                                           | 84 | 84 |
| Excavation                                                                                       | 88 | 75                                                              | 89 | 79                                                                                               | 89 | 71                                                           | 88 | 78 |
| Foundations                                                                                      | 81 | 81                                                              | 78 | 78                                                                                               | 77 | 77                                                           | 88 | 88 |
| Erection                                                                                         | 81 | 65                                                              | 87 | 75                                                                                               | 84 | 72                                                           | 79 | 78 |
| Finishing                                                                                        | 88 | 72                                                              | 89 | 75                                                                                               | 89 | 74                                                           | 84 | 84 |
| I - All pertinent equipment present at site.<br>II - Minimum required equipment present at site. |    |                                                                 |    |                                                                                                  |    |                                                              |    |    |

TABLE 7Typical Ranges of Construction Noise Levels at 50 Feet, Leq (dBA)

Source: U.S.E.P.A., Legal Compilation on Noise, Vol. 1, p. 2-104, 1973.

|                                           |                         |                                                                                                                    |                                                     |                                            | lated H                                        | ourly Averag                               | e Noise                  | Levels, Leq (d                             | BA)                      |                                            |
|-------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------|--------------------------------------------|--------------------------|--------------------------------------------|
|                                           |                         |                                                                                                                    | Ambient Noise Levels = 64 to 72 dBA L <sub>eq</sub> |                                            |                                                |                                            |                          |                                            |                          |                                            |
| Phase of<br>Construction                  | Time                    | Construction<br>Equipment (Quantity)                                                                               | On-Site Comm.<br>(95ft)                             |                                            | East & West<br>Res., School &<br>Comm. (210ft) |                                            | North Comm.<br>(340ft)   |                                            | South Comm.<br>(360ft)   |                                            |
| Construction                              | Duration                | Equipment (Quantity)                                                                                               | Leq,<br>dBA                                         | Exceeds<br>Ambient<br>by 5 dBA<br>or more? | L <sub>eq</sub> ,<br>dBA                       | Exceeds<br>Ambient<br>by 5 dBA<br>or more? | L <sub>eq</sub> ,<br>dBA | Exceeds<br>Ambient<br>by 5 dBA<br>or more? | L <sub>eq</sub> ,<br>dBA | Exceeds<br>Ambient<br>by 5 dBA<br>or more? |
| Demolition                                | 4/3/2023-<br>4/10/2023  | Concrete/Industrial Saw (1)<br>Excavator (1)<br>Rubber-Tired Dozer (1)<br>Tractor/Loader/Backhoe (1)               | 80                                                  | Yes                                        | 73                                             | No                                         | 69                       | No                                         | 69                       | No                                         |
| Site Preparation                          | 4/4/2023-<br>7/3/2023   | Grader (1)<br>Rubber-Tired Dozer (1)<br>Tractor/Loader/Backhoe (2)                                                 | 80-<br>83 <sup>b</sup>                              | Yes                                        | 73-<br>76 <sup>b</sup>                         | No                                         | 69-<br>72 <sup>ь</sup>   | No                                         | 69-<br>72 <sup>ь</sup>   | No                                         |
| Grading/<br>Excavation                    | 7/4/2023-<br>4/19/2024  | Excavator (2)<br>Grader (1)<br>Rubber-Tired Dozer (1)<br>Concrete/Industrial Saw (2)<br>Tractor/Loader/Backhoe (1) | 83                                                  | Yes                                        | 76                                             | No                                         | 72                       | No                                         | 72                       | No                                         |
| Trenching/<br>Foundation                  | 4/19/2024-<br>6/1/2024  | Tractor/Loader/Backhoe (1)<br>Excavator (1)<br>Crane (2)<br>Cement & Mortar Mixer (1120 <sup>a</sup> )             | 82                                                  | Yes                                        | 75                                             | No                                         | 71                       | No                                         | 70                       | No                                         |
| Building –<br>Superstructure/Ext<br>erior | 6/1/2024-<br>3/20/2026  | Crane (2)<br>Forklift (4)<br>Aerial Lift (10)<br>Cement & Mortar Mixer (7859 <sup>a</sup> )                        | 81                                                  | Yes                                        | 74                                             | No                                         | 70                       | No                                         | 70                       | No                                         |
| Building – Cores/<br>Elevators/ Finishes  | 3/15/2025-<br>9/5/2026  | Industrial Saw (4)<br>Aerial Lift (10)                                                                             | 83-<br>85°                                          | Yes                                        | 77-<br>78°                                     | Yes                                        | 72-<br>74°               | No                                         | 72-<br>73°               | No                                         |
| Sitework                                  | 3/18/2026-<br>8/23/2026 | Cement & Mortar Mixer (200 <sup>a</sup> )<br>Paving Equipment (1)<br>Roller (1)<br>Tractor/Loader/Backhoe (1)      | 83-<br>85 <sup>d</sup>                              | Yes                                        | 76-<br>79 <sup>d</sup>                         | Yes                                        | 71-<br>74 <sup>d</sup>   | No                                         | 71-<br>74 <sup>d</sup>   | No                                         |

 TABLE 8
 Estimated Construction Noise Levels at Nearby Land Uses

<sup>a</sup> This represents total number of equipment; however, at any given time, up to six would be operational. Therefore, six cement and mortar mixers were modeled to represent worst-case conditions.

<sup>b</sup> Range of hourly average noise levels reflects the site preparation phase only and in combination with the demolition phase.

<sup>c</sup>Range of hourly average noise levels reflects the building cores/elevators/finishes phase only and in combination with the building – superstructure/exterior phase.

<sup>d</sup>Range of hourly average noise levels reflects the sitework phase only and in combination with the building cores/elevators phase.

As shown in Table 8, ambient levels at the surrounding uses would potentially be exceeded by 5 dBA  $L_{eq}$  or more at various times throughout construction. Project construction is expected to last for a period of approximately 42 months. Since project construction would last for a period of more than one year and considering that the project site is within 500 feet of existing residential uses and within 200 feet of existing commercial uses, this temporary construction impact would be considered significant in accordance with Policy EC-1.7 of the City's General Plan.

The proposed project falls within the *Downtown San José Strategy Plan 2040 EIR* plan area, which included mitigation measures to reduce temporary construction noise levels at noise-sensitive receptors. The *Downtown San José Strategy Plan 2040 EIR* would enforce Policy EC-1.7 of the City's General Plan, which states the following:

Construction operations within the City will be required to use available noise suppression devices and techniques and continue to limit construction hours near residential uses per the City's Municipal Code. The City considers significant construction noise impacts to occur if a project located within 500 feet of residential uses or 200 feet of commercial or office uses would:

• Involve substantial noise generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) continuing for more than 12 months.

For such large or complex projects, a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting or notification of construction schedules, and designation of a noise disturbance coordinator who would respond to neighborhood complaints will be required to be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses.

Additionally, the City requires that reasonable noise reduction measures be incorporated into the construction plan and implemented during all phases of construction activity. Accordingly, the *Downtown San José Strategy Plan 2040 EIR* requires that all projects shall implement the following standard noise control measures:

- Construction will be limited to the hours of 7:00 a.m. to 7:00 p.m. Monday through Friday for any on-site or off-site work within 500 feet of any residential unit. Construction outside of these hours may be approved through a development permit based on a site-specific "construction noise mitigation plan" and a finding by the Director of Planning, Building and Code Enforcement that the construction noise mitigation plan is adequate to prevent noise disturbance of affected residential uses.
- The contractor shall use "new technology" power construction equipment with stateof-the-art noise shielding and muffling devices. All internal combustion engines used on the project site shall be equipped with adequate mufflers and shall be in good mechanical condition to minimize noise created by faulty or poorly maintained engines or other components.

- The unnecessary idling of internal combustion engines shall be prohibited. Staging areas and stationary noise-generating equipment shall be located as far as possible from noise-sensitive receptors such as residential uses (a minimum of 200 feet, where feasible).
- The surrounding neighborhood within 500 feet shall be notified early and frequently of the construction activities.
- A "noise disturbance coordinator" shall be designated to respond to any local complaints about construction noise. The disturbance coordinator would determine the cause of the noise complaints (e.g., beginning work too early, bad muffler, etc.) and institute reasonable measures warranted to correct the problem. A telephone number for the disturbance coordinator would be conspicuously posted at the construction site.

Adherence to the Municipal Code requirements would minimize impacts to neighboring properties from temporary increases in ambient noise levels resulting from future construction activities. Larger projects within the *Downtown San José Strategy Plan 2040 EIR* plan area that are expected to last over one year in duration, such as the proposed project, may result in a substantial temporary noise increase at adjacent land uses and would require a "construction noise logistics plan," in accordance with GP Policy EC-1.7. As stated in the *Downtown San José Strategy Plan 2040 EIR*, typical construction noise logistics plan would include, but not be limited to, the following measures to reduce construction noise levels as low as practical:

- Utilize 'quiet' models of air compressors and other stationary noise sources where technology exists;
- Equip all internal combustion engine-driven equipment with mufflers, which are in good condition and appropriate for the equipment;
- Locate all stationary noise-generating equipment, such as air compressors and portable power generators, as far away as possible from adjacent land uses;
- Locate staging areas and construction material areas as far away as possible from adjacent land uses;
- Prohibit all unnecessary idling of internal combustion engines;
- If impact driving is proposed, multiple-pile drivers shall be considered to expedite construction. Although noise levels generated by multiple pile drivers would be higher than the noise generated by a single pile driver, the total duration of pile driving activities would be reduced; *(not applicable)*
- If impact pile driving is proposed, temporary noise control blanket barriers shall shroud pile drivers or be erected in a manner to shield the adjacent land uses. Such noise control blanket barriers can be rented and quickly erected; *(not applicable)*

- If impact pile driving is proposed, foundation pile holes shall be pre-drilled to minimize the number of impacts required to seat the pile Pre-drilling foundation pile holes is a standard construction noise control technique. Pre-drilling reduces the number of blows required to seat the pile. Notify all adjacent land uses of the construction schedule in writing; *(not applicable)*
- Designate a "disturbance coordinator" who would be responsible for responding to any local complaints about construction noise. The disturbance coordinator will determine the cause of the noise complaint (e.g., starting too early, bad muffler, etc.) and will require that reasonable measures warranted to correct the problem be implemented. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule.

With the implementation of GP Policy EC-1.7, Municipal Code requirements, and the above measures included in the *Downtown San José Strategy Plan 2040 EIR*, the temporary construction noise impact would be reduced to a less-than-significant level.

# Mitigation Measure 1a: No further mitigation required.

**Impact 1b: Permanent Noise Level Increase.** The proposed project is not expected to cause a substantial permanent traffic noise level increase at the existing noise-sensitive land uses in the project vicinity. **This is a less-than-significant impact.** 

According to Policy EC-1.2 of the City's General Plan, a significant permanent noise increase would occur if the project would increase noise levels at noise-sensitive receptors by 3 dBA DNL or more where ambient noise levels exceed the "normally acceptable" noise level standard. Where ambient noise levels are at or below the "normally acceptable" noise level standard, noise level increases of 5 dBA DNL or more would be considered significant. The City's General Plan defines the "normally acceptable" outdoor noise level standard for the nearby residential land uses to be 60 dBA DNL. Existing ambient levels, based on the measurements made in the project vicinity, exceed 60 dBA DNL. Therefore, a significant impact would occur if traffic due to the proposed project would permanently increase ambient levels by 3 dBA DNL. For reference, a 3 dBA DNL noise increase would be expected if the project would double existing traffic volumes along a roadway.

The traffic study included peak hour turning movements for the existing traffic volumes and project trips at nine intersections in the vicinity of the project site. The peak hour project trips were added to the existing traffic volumes to establish the existing plus project traffic scenario. By comparing the existing plus project traffic scenario to the existing scenario, the project would result in an increase of less than 3 dBA DNL along all roadway segments included in the traffic study. Therefore, the project would not result in a substantial permanent noise increase at noise-sensitive receptors in the project vicinity. This is a less-than-significant impact.

#### Mitigation Measure 1b: None required.

**Impact 1c:** Noise Levels in Excess of Standards. The proposed project is not expected to generate noise in excess of standards established in the City's General Plan at the nearby residential receptors with the incorporation of the mitigation measures provided in the *Downtown San José Strategy Plan 2040 EIR*. This is a less-than-significant impact.

Under the City's Noise Element, noise levels from nonresidential building equipment shall not exceed a noise level of 55 dBA DNL at receiving noise-sensitive land uses. Noise-sensitive receptors surrounding the site would include existing residences and school to the east, opposite South 2<sup>nd</sup> Street, and the existing residences to the west, opposite South 1<sup>st</sup> Street. Two proposed projects (BoTown Residential and 420 South 2<sup>nd</sup> Street) are currently in the CEQA review stage and would include future residential towers south of the project site, opposite East San Salvador Street, and southeast of the project site, opposite the intersection of East San Salvador Street/South 2<sup>nd</sup> Street. The future residential receptors would be exposed to operational noise generated by the proposed project and are considered receptors for this analysis. Policies EC-1.3 and EC-1.6 of the City's General Plan shall be enforced for the proposed project at these nearby residences.

Additionally, the City's Municipal Code also has noise limits of 60 dBA for receiving commercial uses, which are located in the southwestern corner of the project site and to the north and south, opposite East San Carlos Street and East San Salvador Street, respectively. However, exceeding these limits would not be considered a significant impact under CEQA.

#### Mechanical Equipment

The site plan shows some electrical and mechanical rooms on floors one through 19. The building façades would provide adequate shielding for equipment located in these rooms. Level 20 of the site plan shows additional electrical and mechanical rooms, as well as a cooling tower and associated equipment, and the roof shows solar panels, which generate insignificant noise levels, which would not be measurable or audible on adjacent properties.

Emergency generator rooms, a pump room, a wastewater treatment room, and other electrical and mechanical rooms would be located in the basement level of the proposed building. The underground location would provide adequate shielding for all surrounding noise-sensitive receptors. Noise from these mechanical equipment units would not be expected to generate noise levels of 55 dBA DNL at the surrounding residences or exceed 60 dBA DNL at the surrounding commercial properties.

The cooling tower and associated equipment would be more than 278 feet above the ground. Further, the site plan indicates a parapet wall surrounding the cooling tower equipment. While the roof would be exposed, the wall surrounding the equipment would provide some shielding. The existing residential building to the east is approximately 16 stories tall, and the future residential towers south and southeast of the project site would be 12 to 29 stories tall. Therefore, a conservative 10 dBA reduction from the parapet wall alone is assumed for these elevated receptors. All other receptors surrounding the site would be no more than five stories tall and would have at least 20 dBA of reduction due to the parapet wall and the elevation. The location of the cooling tower would be on the 20<sup>th</sup> floor of the southern tower, along the eastern building façade.

Cooling towers typically include fan operations with noise levels up to 74 dBA at a distance of 50 feet. When combined with the heating pumps and chillers, which are typically associated with cooling tower equipment, the total mechanical equipment noise generated by the equipment would be 94 dBA at a distance of 3 feet.

Table 9 shows the estimated mechanical equipment noise propagated to the surrounding land uses.

| Receptor                                       | Distance from Center<br>of the Cooling Tower<br>Equipment | L <sub>eq</sub> from<br>Equipment, dBA | Combined DNL,<br>dBA |
|------------------------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------|
| Adjoining Comm.<br>(max of 3 floors)           | 115 feet                                                  | 43ª                                    | 49 <sup>a</sup>      |
| East Res.<br>(max of 16 floors)                | 180 feet                                                  | 49 <sup>b</sup>                        | 55 <sup>b</sup>      |
| East Res., School &<br>Comm. (max of 5 floors) | 100 feet                                                  | 44ª                                    | 50 <sup>a</sup>      |
| West Res. & Comm.<br>(max of 5 floors)         | 320 feet                                                  | 34ª                                    | 40 <sup>a</sup>      |
| North Comm.<br>(max of 3 floors)               | 465 feet                                                  | 31ª                                    | 37 <sup>a</sup>      |
| South Res.<br>(max of 29 floors)               | 230 feet                                                  | 47 <sup>b</sup>                        | 53 <sup>b</sup>      |
| South Comm.<br>(max of 1 floor)                | 230 feet                                                  | 37ª                                    | 43ª                  |
| Southeastern Res.<br>(max of 22 floors)        | 250 feet                                                  | 46 <sup>b</sup>                        | 52 <sup>b</sup>      |

 TABLE 9
 Estimated Operational Noise Levels for the Cooling Tower Operations

<sup>a</sup> A conservative 20 dBA reduction was applied to the noise levels due to the elevation of the rooftop equipment and parapet wall.

<sup>b</sup> A conservative 10 dBA reduction was applied to the noise levels due to the elevation of the rooftop equipment and parapet wall.

Based on the estimated noise levels in Table 9, mechanical equipment noise levels are not expected to exceed the City's General Plan threshold of 55 dBA DNL at the existing or future residential land uses surrounding the project site.

The final design plans should be reviewed by a qualified acoustical consultant to address any potential conflicts with the General Plan or Municipal Code. For noise-generating land uses, the *Downtown San José Strategy Plan 2040 EIR* states the following:

The implementation of General Plan Policies EC-1.2, EC-1.3, and EC-1.9 would reduce potential impacts associated with new noise-producing land uses facilitated by the plan to a less-than-significant level. Policy EC-1.2 limits noise generation by requiring use of noise attenuation measures, such as acoustical enclosures and sound barriers, where feasible, to avoid substantial increases to ambient noise. General Plan Policy EC-1.3 would be implemented and would require new projects to mitigate noise generation to 55 dBA DNL at the property line. Lastly, General Plan Policy EC-1.9 would be implemented and would

require that studies be conducted to mitigate loud intermittent noise sources associated with new projects.

The implementation of this mitigation measure would reduce noise levels originating from the project site to a less-than-significant level.

# Truck Loading and Unloading

The site plan shows truck loading and unloading activities occurring within the parking structure on the basement level B1. The proposed building façades would provide adequate shielding from all surrounding land uses. Truck deliveries occurring at the proposed project site are not expected to generate levels exceeding 55 dBA DNL or existing ambient conditions at the nearby noisesensitive land uses. This would be a less-than-significant impact.

# Mitigation Measure 1c: No further mitigation required.

**Impact 2: Exposure to Excessive Groundborne Vibration.** Construction-related vibration levels could potentially exceed applicable vibration thresholds at nearby sensitive land uses. **This is a significant impact.** 

The construction of the project may generate perceptible vibration when heavy equipment or impact tools (e.g., jackhammers, hoe rams) are used. Construction activities would include demolition, site preparation work, foundation work, and new building framing and finishing. Pile driving equipment, which can cause excessive vibration, is not expected to be required for the proposed project.

The San José Historic Commercial District surrounds and includes the project site, according to the City's Historic Resource Inventory.<sup>4</sup> Figure 5 shows an aerial shot taken from the Historic Resource Inventory, identifying the project site and the surrounding historical structures.

<sup>&</sup>lt;sup>4</sup> www.sanjoseca.gov/your-government/departments/planning-building-code-enforcement/planning-division/historicpreservation/historic-resources-inventory





According to Policy EC-2.3 of the City of San José General Plan, a vibration limit of 0.08 in/sec PPV shall be used to minimize the potential for cosmetic damage to sensitive historical structures, and a vibration limit of 0.20 in/sec PPV shall be used to minimize damage at buildings of normal conventional construction. The vibration limits contained in this policy are conservative and designed to provide the ultimate level of protection for existing buildings in San José. As discussed in detail below, vibration levels exceeding these thresholds would be capable of cosmetically damaging adjacent buildings. Cosmetic damage (also known as threshold damage) is defined as hairline cracking in plaster, the opening of old cracks, the loosening of paint or the dislodging of loose objects. Minor damage is defined as hairline cracking in masonry or the loosening of plaster. Major structural damage is defined as wide cracking or the shifting of foundation or bearing walls.

Table 10 presents typical vibration levels that could be expected from construction equipment at a distance of 25 feet. Project construction activities, such as drilling, the use of jackhammers, rock drills and other high-power or vibratory tools, and rolling stock equipment (tracked vehicles, compactors, etc.), may generate substantial vibration in the immediate vicinity. Jackhammers typically generate vibration levels of 0.035 in/sec PPV, and drilling typically generates vibration levels of 0.09 in/sec PPV at a distance of 25 feet.

Vibration levels would vary depending on soil conditions, construction methods, and equipment used. Table 10 also summarizes the distances to the 0.08 in/sec PPV threshold for historical buildings and to the 0.2 in/sec PPV threshold for all other buildings.

| Equipment         |         | PPV at 25 ft.<br>(in/sec) | Minimum Distance to<br>Meet 0.08 in/sec PPV<br>(feet) | Minimum Distance to<br>Meet 0.2 in/sec PPV (feet) |
|-------------------|---------|---------------------------|-------------------------------------------------------|---------------------------------------------------|
| Clam shovel drop  |         | 0.202                     | 59                                                    | 26                                                |
| Hydromill (slurry | in soil | 0.008                     | 4                                                     | 2                                                 |
| wall)             | in rock | 0.017                     | 7                                                     | 3                                                 |
| Vibratory Roller  |         | 0.210                     | 61                                                    | 27                                                |
| Hoe Ram           |         | 0.089                     | 28                                                    | 13                                                |
| Large bulldozer   |         | 0.089                     | 28                                                    | 13                                                |
| Caisson drilling  |         | 0.089                     | 28                                                    | 13                                                |
| Loaded trucks     |         | 0.076                     | 24                                                    | 11                                                |
| Jackhammer        |         | 0.035                     | 12                                                    | 6                                                 |
| Small bulldozer   |         | 0.003                     | 2                                                     | <1                                                |

 TABLE 10
 Vibration Source Levels for Construction Equipment

Source: Transit Noise and Vibration Impact Assessment Manual, Federal Transit Administration, Office of Planning and Environment, U.S. Department of Transportation, September 2018, as modified by Illingworth & Rodkin, Inc., July 2021.

As shown in Figure 5, one of the commercial buildings adjoining the site in the southwest corner of the block would be considered historical and would be subject to the conservative 0.08 in/sec PPV. Additionally, the commercial building to the west and to the south of the project would also be considered historical. Commercial and residential buildings to the north and west would be considered normal conventional construction buildings subject to the 0.2 in/sec PPV threshold.

Table 11 summarizes the vibration levels at each of the surrounding buildings in the project vicinity. Vibration levels are highest close to the source and then attenuate with increasing distance at the rate  $\binom{D_{ref}}{D}^{1.1}$ , where *D* is the distance from the source in feet and  $D_{ref}$  is the reference distance of 25 feet. While construction noise levels increase based on the cumulative equipment in use simultaneously, construction vibration levels would be dependent on the location of individual pieces of equipment. That is, equipment scattered throughout the site would not generate a collective vibration level, but a vibratory roller, for instance, operating near the project site boundary would generate the worst-case vibration levels for the receptor sharing that property line. Further, construction vibration impacts are assessed based on damage to buildings on receiving land uses, not receptors at the nearest property lines. Therefore, the distances used to propagate construction noise levels (as shown in Table 11), which are different than the distances used to propagate construction noise levels (as shown in Table 6), were estimated under the assumption that each piece of equipment from Table 10 was operating along the nearest boundary of the project site, which would represent the worst-case scenario.

Project construction activities, such as drilling, the use of jackhammers, rock drills and other highpower or vibratory tools, and rolling stock equipment (tracked vehicles, compactors, etc.) may generate substantial vibration in the immediate vicinity of the historical buildings adjoining the project site to the southwest. As shown in Table 10, the 0.08 in/sec PPV threshold would potentially be exceeded within about 60 feet of the surrounding buildings, and due to the close proximity of the buildings to the southwest of the project site (about 5 feet), the use of most construction equipment along the shared property line would potentially exceed the City's threshold, as shown in Table 11. All other historical buildings would be more than 60 feet from the project site and would not be subject to vibration levels exceeding 0.08 in/sec PPV. Likewise, all non-historical buildings in the project vicinity would be 80 feet or more from the project site and would not be subject to vibration levels of 0.2 in/sec PPV or more.

A study completed by the US Bureau of Mines analyzed the effects of blast-induced vibration on buildings in USBM RI 8507.<sup>5</sup> The findings of this study have been applied to buildings affected by construction-generated vibrations.<sup>6</sup> As reported in USBM RI 8507<sup>4</sup> and reproduced by Dowding,<sup>5</sup> Figure 6 presents the damage probability, in terms of "threshold damage," "minor damage," and "major damage," at varying vibration levels. Threshold damage, which is described as cosmetic damage in this report, would entail hairline cracking in plaster, the opening of old cracks, the loosening of paint or the dislodging of loose objects. Minor damage would include hairline cracking in masonry or the loosening of plaster, and major structural damage would include wide cracking or shifting of foundation or bearing walls.

As shown in Figure 6, maximum vibration levels of 1.2 in/sec PPV would result in about 20% chance of threshold or cosmetic damage. No minor or major damage would be expected at the historical buildings immediately adjoining the project site.

Heavy vibration-generating construction equipment would have the potential to produce vibration levels of 0.08 in/sec PPV or more at historic buildings within 60 feet of the project site or 0.2 in/sec PPV or more at non-historical buildings within 25 feet of the project site.

Neither cosmetic, minor, or major damage would occur at historical or conventional buildings located 60 feet or more from the project site. At these locations, and in other surrounding areas where vibration would not be expected to cause cosmetic damage, vibration levels may still be perceptible. However, as with any type of construction, this would be anticipated and would not be considered significant, given the intermittent and short duration of the phases that have the highest potential of producing vibration (use of jackhammers and other high-power tools). By use of administrative controls, such as notifying neighbors of scheduled construction activities and scheduling construction activities with the highest potential to produce perceptible vibration during hours with the least potential to affect nearby businesses, perceptible vibration can be kept to a minimum.

In summary, the construction of the project would generate vibration levels exceeding the General Plan threshold of 0.08 in/sec PPV at the historic properties approximately 5 feet southwest of the site. This would be considered a significant impact.

<sup>&</sup>lt;sup>5</sup> Siskind, D.E., M.S. Stagg, J.W. Kopp, and C.H. Dowding, Structure Response and Damage Produced by Ground Vibration form Surface Mine Blasting, RI 8507, Bureau of Mines Report of Investigations, U.S. Department of the Interior Bureau of Mines, Washington, D.C., 1980.

<sup>&</sup>lt;sup>6</sup> Dowding, C.H., Construction Vibrations, Prentice Hall, Upper Saddle River, 1996.

| Equipment        |         | PPV (in/sec)                                           |                                     |                                      |                                      |                                                                 |
|------------------|---------|--------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------|
|                  |         | Adjacent Historical<br>Buildings to<br>Southwest (5ft) | West Historical<br>Buildings (75ft) | South Historical<br>Buildings (65ft) | North Commercial<br>Buildings (90ft) | East Residential,<br>School &<br>Commercial<br>Buildings (80ft) |
| Clam shovel drop |         | 1.186                                                  | 0.060                               | 0.071                                | 0.049                                | 0.056                                                           |
| Hydromill        | in soil | 0.047                                                  | 0.002                               | 0.003                                | 0.002                                | 0.002                                                           |
| (slurry wall)    | in rock | 0.100                                                  | 0.005                               | 0.006                                | 0.004                                | 0.005                                                           |
| Vibratory Roller |         | 1.233                                                  | 0.063                               | 0.073                                | 0.051                                | 0.058                                                           |
| Hoe Ram          |         | 0.523                                                  | 0.027                               | 0.031                                | 0.022                                | 0.025                                                           |
| Large bulldozer  |         | 0.523                                                  | 0.027                               | 0.031                                | 0.022                                | 0.025                                                           |
| Caisson drilling |         | 0.523                                                  | 0.027                               | 0.031                                | 0.022                                | 0.025                                                           |
| Loaded trucks    |         | 0.446                                                  | 0.023                               | 0.027                                | 0.019                                | 0.021                                                           |
| Jackhammer       |         | 0.206                                                  | 0.010                               | 0.012                                | 0.009                                | 0.010                                                           |
| Small bulldozer  |         | 0.018                                                  | 0.001                               | 0.001                                | 0.001                                | 0.001                                                           |

 TABLE 11
 Vibration Source Levels for Construction Equipment

Source: Transit Noise and Vibration Impact Assessment Manual, Federal Transit Administration, Office of Planning and Environment, U.S. Department of Transportation, September 2018, as modified by Illingworth & Rodkin, Inc., July 2021.



FIGURE 6 Probability of Cracking and Fatigue from Repetitive Loading

Source: Dowding, C.H., Construction Vibrations, Prentice Hall, Upper Saddle River, 1996.

# Mitigation Measure 2:

The project shall implement the following measures, in addition to the best practices specified in Mitigation Measure 1a of this report, to minimize the impacts of groundborne vibration.

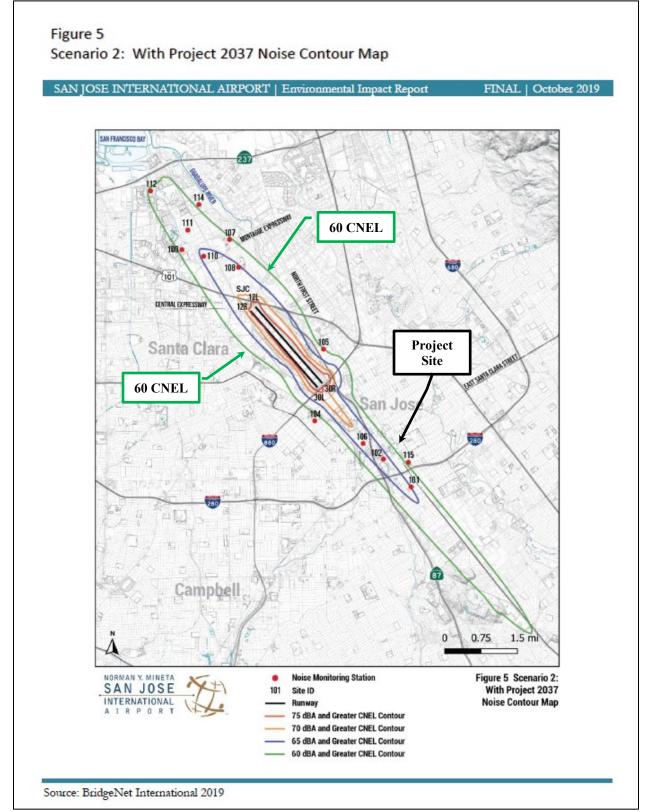
Construction Vibration Monitoring, Treatment, and Reporting Plan: The project proponent shall implement a construction vibration monitoring plan to document conditions prior to, during, and after vibration generating construction activities. All plan tasks shall be undertaken under the direction of a licensed Professional Structural Engineer in the State of California and be in accordance with industry-accepted standard methods. The construction vibration monitoring plan shall include, but not be limited to, the following measures:

- The report shall include a description of measurement methods, equipment used, calibration certificates, and graphics as required to clearly identify vibration-monitoring locations.
- A list of all heavy construction equipment to be used for this project and the anticipated time duration of using the equipment that is known to produce high vibration levels (clam shovel drops, vibratory rollers, hoe rams, large bulldozers, caisson drillings, loaded trucks, jackhammers, etc.) shall be submitted to the Director of Planning or Director's designee of the Department of Planning, Building and Code Enforcement by the contractor. This list shall be used to identify equipment and activities that would potentially generate substantial vibration and to define the level of effort required for continuous vibration monitoring. Phase demolition, earth-moving, and ground impacting operations so as not to occur during the same time period.
- Where possible, use of the heavy vibration-generating construction equipment shall be prohibited within 60 feet of any adjacent building.
- Document conditions at all historic structures located within 60 feet of construction and at all other buildings located within 25 feet of construction prior to, during, and after vibration generating construction activities. All plan tasks shall be undertaken under the direction of a licensed Professional Structural Engineer in the State of California and be in accordance with industry-accepted standard methods. Specifically:
  - Vibration limits shall be applied to vibration-sensitive structures located within 60 feet of any construction activities identified as sources of high vibration levels.
  - Performance of a photo survey, elevation survey, and crack monitoring survey for each historic structure within 60 feet of construction activities and all other buildings within 25 feet of construction activities. Surveys shall be performed prior to any construction activity, in regular intervals during construction, and after project completion, and shall include internal and external crack monitoring in structures, settlement, and distress, and shall document the condition of foundations, walls and other structural elements in the interior and exterior of said structures.

- Develop a vibration monitoring and construction contingency plan to identify structures where monitoring would be conducted, set up a vibration monitoring schedule, define structure-specific vibration limits, and address the need to conduct photo, elevation, and crack surveys to document before and after construction conditions. Construction contingencies shall be identified for when vibration levels approached the limits.
- At a minimum, vibration monitoring shall be conducted during demolition and excavation activities.
- If vibration levels approach limits, suspend construction and implement contingency measures to either lower vibration levels or secure the affected structures.
- Designate a person responsible for registering and investigating claims of excessive vibration. The contact information of such person shall be clearly posted on the construction site.
- Conduct a post-construction survey on structures where either monitoring has indicated high vibration levels or complaints of damage has been made. Make appropriate repairs or compensation where damage has occurred as a result of construction activities. The survey will be submitted to the City of San José Department of Parks, Recreation, and Neighborhood Services.

Implementation of this mitigation measure would reduce the impact to a less-than-significant level.

**Impact 3:** Excessive Aircraft Noise. The project site is located less than 2 miles from Norman Y. Mineta International Airport, but the noise environment attributable to aircraft is considered normally acceptable under the Santa Clara County ALUC noise compatibility policies for office land uses. This is a less-than-significant impact.


Norman Y. Mineta San José International Airport is a public-use airport located approximately 2 miles northwest of the project site. According to the City's new Airport Master Plan Environmental Impact Report,<sup>7</sup> the project site lies outside the 60 dBA CNEL/DNL contour line (see Figure 7). According to Policy EC-1.11 of the City's General Plan, the required safe and compatible threshold for exterior noise levels would be at or below 65 dBA CNEL/DNL for aircrafts. Therefore, the proposed project would be compatible with the City's exterior noise standards for aircraft noise.

Assuming standard construction materials for aircraft noise below 60 dBA DNL, the future interior noise levels resulting from aircraft would below 50 dBA  $L_{eq(1-hr)}$ . Therefore, future interior noise at the proposed building would be compatible with aircraft noise. This would be a less-than-significant impact.

# Mitigation Measure 3: None required.

<sup>&</sup>lt;sup>7</sup> David J. Powers & Associates, Inc., Integrated Final Environmental Impact Report, Amendment to Norman Y. Mineta San Jose International Airport Master Plan, April 2020.





# **Cumulative Impacts**

Cumulative noise impacts would include temporary construction noise from cumulative construction projects. Cumulative traffic noise increases due to the proposed project was studied in the *Downtown San José Strategy Plan 2040 EIR*. Therefore, no further cumulative traffic noise increases would occur due to the proposed project.

From the City's website,<sup>8</sup> the following planned or approved projects are located within 1,000 feet of the proposed project:

- City View Plaza this project is located at 150 Almaden Boulevard and would include construction of three 19-story buildings with up to 3.8 million square feet of office and commercial space. The City View Plaza project site is approximately 1,000 feet from the project site. This project has been approved, but construction has not started. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- **Gateway Tower** this project is located at 455 South 1<sup>st</sup> Street, approximately 430 feet southwest of the project site. This mixed-use project would include construction of a 25-story tower with 308 residential units and approximately 8,000 square feet of ground-level retail. This project has been approved but not constructed. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- South Market Mixed-Use this project is located at 477 South Market Street, approximately 590 feet southwest of the Dot & Bar project site. This six-story mixed-use building would include 130 residential units and approximately 5,000 square feet of commercial space. This project has been approved but not constructed. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- **Tribute Hotel** this project is located at 211 South 1<sup>st</sup> Street, which is about 215 feet north of the project site. This project has been approved but not constructed. It consists of a 24-story, 279-room hotel integrated into a historical building. The commercial building north of the Dot & Bar site, opposite East San Carlos Street would be directly impacted by both construction sites. While there may be some disruption to the occupants, it is unlikely that the two projects would overlap. Cumulative construction is therefore not assumed.
- **Park Habitat (formerly Museum Place)** this project is located at 180 Park Avenue, which is about 925 feet northwest of the project site. This project has been approved but not constructed. It consists of a 24-story mixed-use building with approximately 214,000 square feet of office, 13,402 square feet of ground-level retail, 60,000 square feet of museum space, 184 hotel rooms, and 306 residential units. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.

<sup>&</sup>lt;sup>8</sup> https://gis.sanjoseca.gov/maps/devprojects/

- The Mark this project is located at 459 South 4<sup>th</sup> Street, which is about 715 feet southeast of the project site. This project is pending and includes the construction of a 23-story multi-family residential building. The construction schedule for this project is unavailable at this time. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- **BoTown Residential** this project is located at 409 South 2<sup>nd</sup> Street, which is south of the site, opposite East San Salvador Street, and has been identified as a potential receptor in the analysis of this report. This project is in the review process and consists of a 29-story high-rise with up to 520 residential units and approximately 6,400 square feet of ground-floor retail. The existing residential receptors east of the Dot & Bar site would be shared noise-sensitive receptors directly impacted by both construction sites. While the construction schedule is unknown at this time, construction could occur simultaneously or concurrently.
- **420** South 2<sup>nd</sup> Street this project is located at 420 South 2<sup>nd</sup> Street, which is southeast of the project site, opposite the East San Salvador Street/South 2<sup>nd</sup> Street intersection and has been identified as a potential receptor in the analysis of this report. This project is in the review process and consists of a two 12- and 22-story mixed-use towers with a total of 234 residential units and approximately 8,000 square feet of ground-floor retail. The existing residential receptors east of the Dot & Bar site would be shared noise-sensitive receptors directly impacted by both construction sites. While the construction schedule is unknown at this time, construction could occur simultaneously or concurrently.
- **420** South 3<sup>rd</sup> Street this project is located at 420 South 3<sup>rd</sup> Street, which is approximately 470 feet southeast of the project site. This project is in the review process and consists of a 20-story mixed-use tower with a total of 146 residential units and approximately 3,000 square feet of ground-floor retail. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- San José Stage/Home 2 Hotel this project is located at 490 South 1<sup>st</sup> Street, which is approximately 465 feet south of the site, and is in the review process. This project consists of a new 132,000 square-foot mixed-use building (seven stories) with a total of 151 hotel rooms and 17,000 square feet of performance theater/auditorium space. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.
- South 4<sup>th</sup> Street Mixed-Use this project is located at 439 South 4<sup>th</sup> Street, which is approximately 625 feet southeast of the site, and is in the review process. This project consists of an 18-story mixed-use building with 218 residential units, approximately 1,345 square feet of commercial use space, and approximately 12,381 square feet of public eating. Noise-sensitive receptors directly impacted by construction at this site would not be shared receptors at the Dot & Bar site. Cumulative construction is therefore not assumed.

The existing residences and commercial uses east of the project site would be considered sensitive receptors during construction activities at Dot & Bar, BoTown, and 420 South 2<sup>nd</sup> Street project sites. Each of these identified project sites are located within the boundary of the *Downtown San José Strategy Plan 2040 EIR*. According to the Strategy Plan, implementation of the construction noise and vibration mitigation measures in combination with Policies EC-1.7 and EC-2.3 of the City's General Plan and the construction allowable hours identified in the City's Municipal Code would reduce construction occurring within the Plan Area to a less-than-significant impact. Each individual project includes measures to further reduce noise and vibration levels emanating from the individual sites. With the implementation of construction noise and vibration mitigation measures from the individual projects, construction noise and vibration levels would be reduced as much as possible at all surrounding sensitive receptors during construction impacts.