

Compass Danbe Centerpointe

NOISE IMPACT ANALYSIS CITY OF MORENO VALLEY

PREPARED BY:

Bill Lawson, PE, INCE blawson@urbanxroads.com (949) 584-3148

Sama Shami sshami@urbanxroads.com (949) 945-4407

NOVEMBER 6, 2020

13661-05 Noise Study

TABLE OF CONTENTS

		F CONTENTS	
		CES	
	-	XHIBITS	
		ABLES	
1	INT	RODUCTION	3
	1.1	Site Location	
	1.2	Project Description	3
2	FU	NDAMENTALS	7
	2.1	Range of Noise	7
	2.2	Noise Descriptors	8
	2.3	Sound Propagation	8
	2.4	Noise Control	10
	2.5	Noise Barrier Attenuation	10
	2.6	Land Use Compatibility With Noise	10
	2.7	Community Response to Noise	11
	2.8	Vibration	11
3	REG	GULATORY SETTING	15
	3.1	State of California Noise Requirements	15
	3.2	State of California Green Building Standards Code	15
	3.3	City of Moreno Valley General Plan Noise Element	16
	3.4	Operational Noise Standards	18
	3.5	Construction Noise Standards	19
	3.5	Vibration Standards	20
	3.6	March Air Reserve Base/Inland Port Airport Land Use Compatibility	20
4	SIG		23
	4.1	CEQA Guidelines Not Further Analyzed	23
	4.2	Noise-Sensitive Receivers	23
	4.3	Non-Noise-Sensitive Receivers	24
	4.4	Significance Criteria Summary	25
5	EXI	STING NOISE LEVEL MEASUREMENTS	27
	5.1	Measurement Procedure and Criteria	27
	5.2	Noise Measurement Locations	27
	5.3	Noise Measurement Results	28
6	ME	THODS AND PROCEDURES	31
	6.1	FHWA Traffic Noise Prediction Model	31
	6.2	Off-Site Traffic Noise Prediction Model Inputs	
7	OF	F-SITE TRANSPORTATION NOISE IMPACTS	
	7.1	Traffic Noise Contours	35
	7.2	Existing Project Traffic Noise Level Increases	
	7.3	Existing plus Ambient Growth Project Traffic Noise Level Increases	

8	SENSITIVE RECEIVER LOCATIONS	39
9	OPERATIONAL NOISE IMPACTS	41
9.2 9.2 9.3 9.4 9.9	 2 Reference Noise Levels	41 45 45 46
10	CONSTRUCTION IMPACTS	
10 10 10 10	 D.2 Construction Reference Noise Levels D.3 Typical Construction Noise Analysis D.4 Typical Construction Noise Level Compliance 	51 53 54 54
	REFERENCES	

APPENDICES

APPENDIX 3.1: CITY OF MORENO VALLEY MUNICIPAL CODE
APPENDIX 5.1: STUDY AREA PHOTOS
APPENDIX 5.2: NOISE LEVEL MEASUREMENT WORKSHEETS
APPENDIX 7.1: OFF-SITE TRAFFIC NOISE CONTOURS
APPENDIX 9.1: CADNAA OPERATIONAL NOISE MODEL INPUTS
APPENDIX 10.1: CADNAA CONSTRUCTION NOISE MODEL INPUTS

LIST OF EXHIBITS

EXHIBIT 1-A:	LOCATION MAP	4
EXHIBIT 1-B:	SITE PLAN	5
EXHIBIT 2-A:	TYPICAL NOISE LEVELS	7
EXHIBIT 2-B:	NOISE LEVEL INCREASE PERCEPTION	11
EXHIBIT 2-C:	TYPICAL LEVELS OF GROUND-BORNE VIBRATION	13
EXHIBIT 3-A:	LAND USE NOISE COMPATIBILITY CRITERIA	17
EXHIBIT 3-B:	FUTURE AIRPORT NOISE LEVEL CONTOURS	21
EXHIBIT 5-A:	NOISE MEASUREMENT LOCATIONS	29
EXHIBIT 8-A:	SENSITIVE RECEIVER LOCATIONS	40
EXHIBIT 9-A:	OPERATIONAL NOISE SOURCE LOCATIONS	42
EXHIBIT 10-A	A: TYPICAL CONSTRUCTION NOISE SOURCE LOCATIONS	52

LIST OF TABLES

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	.1
TABLE 3-1: OPERATIONAL NOISE STANDARDS AT 200 FEET FROM THE SOURCE	19
TABLE 3-2: CONSTRUCTION NOISE STANDARDS FROM THE SOURCE LAND USE	20
TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY	
TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS	
TABLE 6-1: OFF-SITE ROADWAY PARAMETERS	32
TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES	-
TABLE 6-3: TIME OF DAY VEHICLE SPLITS	33
TABLE 6-4: WITHOUT PROJECT VEHICLE MIX	
TABLE 6-5: EXISTING WITH PROJECT VEHICLE MIX	33
TABLE 6-6: EXISTING PLUS AMBIENT GROWTH WITH PROJECT VEHICLE MIX	33
TABLE 7-1: EXISTING WITHOUT PROJECT NOISE CONTOURS	
TABLE 7-2: EXISTING WITH PROJECT NOISE CONTOURS	
TABLE 7-3: EXISTING PLUS AMBIENT GROWTH WITHOUT PROJECT NOISE CONTOURS	
TABLE 7-4: EXISTING PLUS AMBIENT GROWTH WITH PROJECT NOISE CONTOURS	
TABLE 7-5: EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES	38
TABLE 7-6: EXISTING PLUS AMBIENT GROWTH WITH PROJECT TRAFFIC NOISE INCREASES	
TABLE 9-1: REFERENCE NOISE LEVEL MEASUREMENTS4	
TABLE 9-2: ENTRY GATE & TRUCK MOVEMENTS BY LOCATION4	
TABLE 9-3: DAYTIME PROJECT OPERATIONAL NOISE LEVELS	-
TABLE 9-4: NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS4	-
TABLE 9-5: OPERATIONAL NOISE LEVEL COMPLIANCE4	
TABLE 9-6: DAYTIME PROJECT OPERATIONAL NOISE LEVEL INCREASES	
TABLE 9-7: NIGHTTIME OPERATIONAL NOISE LEVEL INCREASES	
TABLE 10-1: TYPICAL CONSTRUCTION REFERENCE NOISE LEVELS	
TABLE 10-2: TYPICAL CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY5	
TABLE 10-3: TYPICAL CONSTRUCTION NOISE LEVEL COMPLIANCE	
TABLE 10-4: UNMITIGATED NIGHTTIME CONCRETE POUR NOISE LEVEL COMPLIANCE	
TABLE 10-5: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT	
TABLE 10-6: TYPICAL CONSTRUCTION EQUIPMENT VIBRATION LEVELS	57

LIST OF ABBREVIATED TERMS

(1)	Reference
ADT	Average Daily Traffic
ANSI	American National Standards Institute
Calveno	California Vehicle Noise
CEQA	California Environmental Quality Act
CNEL	Community Noise Equivalent Level
dBA	A-weighted decibels
EPA	Environmental Protection Agency
FHWA	Federal Highway Administration
FTA	Federal Transit Administration
Hz	Hertz
INCE	Institute of Noise Control Engineering
L _{eq}	Equivalent continuous (average) sound level
L _{max}	Maximum level measured over the time interval
L _{min}	Minimum level measured over the time interval
MARB/IPA	March Air Reserve Base / Inland Port Airport
mph	Miles per hour
OPR	Office of Planning and Research
PPV	Peak particle velocity
Project	Compass Danbe Centerpointe
REMEL	Reference Energy Mean Emission Level
RMS	Root-mean-square
VdB	Vibration Decibels

EXECUTIVE SUMMARY

Urban Crossroads, Inc. has prepared this noise study to determine the potential noise impacts and the necessary noise mitigation measures, if any, for the proposed Compass Danbe Centerpointe development ("Project"). The Project site is located south of Alessandro Boulevard on either side of Chagall Court in the City of Moreno Valley. The Project is proposed to consist of up to 396,488 square feet (sf) of warehouse use. The site is currently designated as Commercial in the City's General Plan, which would require a land use and zoning change to Light Industrial use.

The results of this Compass Danbe Centerpointe Noise Impact Analysis are summarized below based on the significance criteria in Section 4 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines (1). Table ES-1 shows the findings of significance for each potential noise and/or vibration impact under CEQA. All impacts are considered less than significant without mitigation.

Anglusia	Report	Significance Findings		
Analysis	Section	Unmitigated	Mitigated	
Off-Site Traffic Noise	7	Less Than Significant	-	
Operational Noise	9	Less Than Significant	-	
Construction Noise		Less Than Significant	-	
Construction Vibration	10	Less Than Significant	-	
Nighttime Concrete Pour		Less Than Significant	-	

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

This page intentionally left blank

1 INTRODUCTION

This noise analysis has been completed to determine the noise impacts associated with the development of the proposed Compass Danbe Centerpointe ("Project"). This noise study briefly describes the proposed Project, provides information regarding noise fundamentals, sets out the local regulatory setting, presents the study methods and procedures for transportation related CNEL traffic noise analysis, and evaluates the future exterior noise environment. In addition, this study includes an analysis of the potential Project-related long-term stationary-source operational noise and short-term construction noise and vibration impacts.

1.1 SITE LOCATION

The proposed project is located south of Alessandro Boulevard on either side of Chagall Court in the City of Moreno Valley as shown on Exhibit 1-A. The March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately 0.9 miles south of the Project site. The Project site is bordered to the west by vacant land, to the east by vacant land, to the north by commercial and residential uses, and to the south are existing industrial buildings.

This proposed Project includes a General Plan Amendment (GPA) and a Zone Change (ZC). The site is currently designated as Commercial in the City's General Plan, which would require a land use and zoning change to Light Industrial use. The proposed changes are consistent with the zones to the west, south and east of the subject site and adjacent properties. The amendment is in keeping with the uses surrounding the project site.

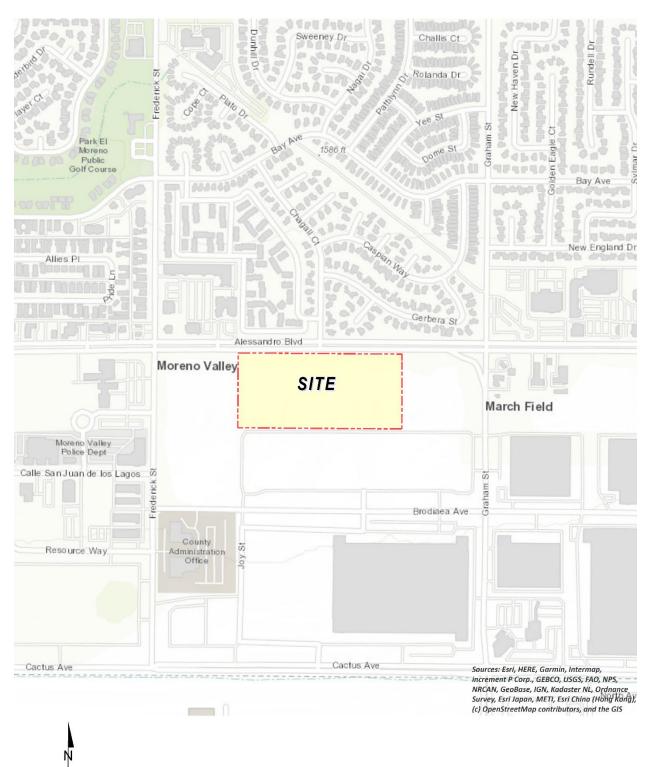

1.2 PROJECT DESCRIPTION

Exhibit 1-B illustrates a preliminary site plan for the Project. The Project is anticipated to be developed within a single phase with an anticipated opening year of 2022. The proposed Project consists of the following uses:

- Building 1: 206,665 square feet (sf) of warehousing (70% of total building sf) and 88,571 sf of highcube cold storage warehouse use (30% of total building sf) for a total of 295,236 sf for Building 1
- Building 2: 70,876 sf of warehousing (70% of total building sf) and 30,376 sf of high-cube cold storage warehouse use (30% of total building sf) for a total of 101,252 sf for Building 2

The on-site Project-related noise sources are expected to include: loading dock activity, entry gate & truck movements, roof-top air conditioning units, and trash enclosure activity. This noise analysis is intended to describe noise level impacts associated with the expected typical operational activities at the Project site. This report assumes the Project will operate 24-hours daily for seven days per week. At the time this noise analysis was prepared, the future tenants of the proposed Project were unknown however any tenant would operate consistent with a high-cube warehouse.

EXHIBIT 1-A: LOCATION MAP

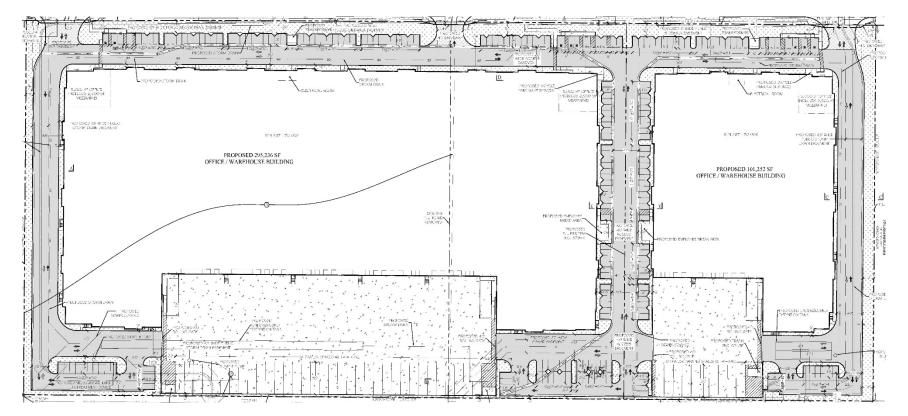


EXHIBIT 1-B: SITE PLAN

N

This page intentionally left blank

2 FUNDAMENTALS

Noise is simply defined as "unwanted sound." Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm or when it has adverse effects on health. Noise is measured on a logarithmic scale of sound pressure level known as a decibel (dB). A-weighted decibels (dBA) approximate the subjective response of the human ear to broad frequency noise source by discriminating against very low and very high frequencies of the audible spectrum. They are adjusted to reflect only those frequencies which are audible to the human ear. Exhibit 2-A presents a summary of the typical noise levels and their subjective loudness and effects that are described in more detail below.

COMMON OUTDOOR ACTIVITIES	COMMON INDOOR ACTIVITIES	A - WEIGHTED SOUND LEVEL dBA	SUBJECTIVE LOUDNESS	EFFECTS OF NOISE
THRESHOLD OF PAIN		140	\mathbf{X}	
NEAR JET ENGINE		130	INTOLERABLE OR	
		120	DEAFENING	HEARING LOSS
JET FLY-OVER AT 300m (1000 ft)	ROCK BAND	110		
LOUD AUTO HORN		100		
GAS LAWN MOWER AT 1m (3 ft)		90		
DIESEL TRUCK AT 15m (50 ft), at 80 km/hr (50 mph)	FOOD BLENDER AT 1m (3 ft)	80		SPEECH INTERFERENCE
NOISY URBAN AREA, DAYTIME	VACUUM CLEANER AT 3m (10 ft)	70	LOUD	
HEAVY TRAFFIC AT 90m (300 ft)	NORMAL SPEECH AT 1m (3 ft)	60		
QUIET URBAN DAYTIME	LARGE BUSINESS OFFICE	50	MODERATE	SLEEP
QUIET URBAN NIGHTTIME	THEATER, LARGE CONFERENCE ROOM (BACKGROUND)	40		DISTURBANCE
QUIET SUBURBAN NIGHTTIME	LIBRARY	30		
QUIET RURAL NIGHTTIME	BEDROOM AT NIGHT, CONCERT HALL (BACKGROUND)	20	FAINT	
	BROADCAST/RECORDING STUDIO	10	VERY FAINT	NO EFFECT
LOWEST THRESHOLD OF HUMAN HEARING	LOWEST THRESHOLD OF HUMAN HEARING	0		

EXHIBIT 2-A: TYPICAL NOISE LEVELS

Source: Environmental Protection Agency Office of Noise Abatement and Control, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety (EPA/ONAC 550/9-74-004) March 1974.

2.1 RANGE OF NOISE

Since the range of intensities that the human ear can detect is so large, the scale frequently used to measure intensity is a scale based on multiples of 10, the logarithmic scale. The scale for measuring intensity is the decibel scale. Each interval of 10 decibels indicates a sound energy ten times greater than before, which is perceived by the human ear as being roughly twice as loud (2). The most common sounds vary between 40 dBA (very quiet) to 100 dBA (very loud). Normal conversation at three feet is roughly at 60 dBA, while loud jet engine noises equate to 110 dBA

at approximately 100 feet, which can cause serious discomfort (3). Another important aspect of noise is the duration of the sound and the way it is described and distributed in time.

2.2 NOISE DESCRIPTORS

Environmental noise descriptors are generally based on averages, rather than instantaneous, noise levels. The most used figure is the equivalent level (L_{eq}). Equivalent sound levels are not measured directly but are calculated from sound pressure levels typically measured in A-weighted decibels (dBA). The equivalent sound level (L_{eq}) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period (typically one hour) and is commonly used to describe the "average" noise levels within the environment.

To describe the time-varying character of environmental noise, the City of Moreno Valley relies on the L₂₅, L₁₇, L₈ and L_{max}, percentile noise levels to describe the stationary source noise level limits. The percentile noise descriptors are the noise levels equaled or exceeded during 25 percent, 17 percent, and 8 percent of a stated time. Sound levels associated with the L₈ typically describe transient or short-term events, while levels associated with the L₂₅ describe the base or typical noise conditions. The City of Moreno Valley relies on the percentile noise levels to describe the stationary source noise level limits. While the L₂₅ describes the noise levels occurring 25 percent of the time, the L_{eq} accounts for the total energy (average) observed for the entire hour.

Peak hour or average noise levels, while useful, do not completely describe a given noise environment, however. Noise levels lower than peak hour may be disturbing if they occur during times when quiet is most desirable, namely evening and nighttime (sleeping) hours. To account for this, the Community Noise Equivalent Level (CNEL), representing a composite 24-hour noise level is utilized. The CNEL is the weighted average of the intensity of a sound, with corrections for time of day, and averaged over 24 hours. The time of day corrections require the addition of 5 decibels to dBA L_{eq} sound levels in the evening from 7:00 p.m. to 10:00 p.m., and the addition of 10 decibels to dBA L_{eq} sound levels at night between 10:00 p.m. and 7:00 a.m. These additions are made to account for the noise sensitive time periods during the evening and night hours when sound appears louder. CNEL does not represent the actual sound level heard at any time, but rather represents the total sound exposure. The City of Moreno Valley relies on the 24-hour CNEL level to assess land use compatibility with transportation related noise sources.

2.3 SOUND PROPAGATION

When sound propagates over a distance, it changes in level and frequency content. Based on guidance from the U.S. Department of Transportation, Federal Highway Administration (FHWA), Office of Environment and Planning, Noise and Air Quality Branch, the way noise reduces with distance depends on the following factors.

2.3.1 GEOMETRIC SPREADING

Sound from a localized source (i.e., a stationary point source) propagates uniformly outward in a spherical pattern. The sound level attenuates (or decreases) at a rate of 6 dB for each doubling

of distance from a point source. Highways consist of several localized noise sources on a defined path and hence can be treated as a line source, which approximates the effect of several point sources. Noise from a line source propagates outward in a cylindrical pattern, often referred to as cylindrical spreading. Sound levels attenuate at a rate of 3 dB for each doubling of distance from a line source (2).

2.3.2 GROUND ABSORPTION

The propagation path of noise from a highway to a receiver is usually very close to the ground. Noise attenuation from ground absorption and reflective wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is usually sufficiently accurate for distances of less than 200 feet. For acoustically hard sites (i.e., sites with a reflective surface between the source and the receiver, such as a parking lot or body of water), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (i.e., those sites with an absorptive ground surface between the source and the receiver such as soft dirt, grass, or scattered bushes and trees), an excess ground attenuation value of 1.5 dB per doubling of distance is normally assumed. When added to the cylindrical spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dB per doubling of distance from a line source (4).

2.3.3 ATMOSPHERIC EFFECTS

Receivers located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Sound levels can be increased at large distances (e.g., more than 500 feet) due to atmospheric temperature inversion (i.e., increasing temperature with elevation). Other factors such as air temperature, humidity, and turbulence can also have significant effects (2).

2.3.4 SHIELDING

A large object or barrier in the path between a noise source and a receiver can substantially attenuate noise levels at the receiver. The amount of attenuation provided by shielding depends on the size of the object and the frequency content of the noise source. Shielding by trees and other such vegetation typically only has an "out of sight, out of mind" effect. That is, the perception of noise impact tends to decrease when vegetation blocks the line-of-sight to nearest residents. However, for vegetation to provide a substantial, or even noticeable, noise reduction, the vegetation area must be at least 15 feet in height, 100 feet wide and dense enough to completely obstruct the line-of sight between the source and the receiver. This size of vegetation may provide up to 5 dBA of noise reduction. The Federal Highway Administration (FHWA) does not consider the planting of vegetation to be a noise abatement measure (4).

2.3.5 REFLECTION

Field studies conducted by the FHWA have shown that the reflection from barriers and buildings does not substantially increase noise levels (4). If all the noise striking a structure was reflected back to a given receiving point, the increase would be theoretically limited to 3 dBA. Further, not

all the acoustical energy is reflected back to same point. Some of the energy would go over the structure, some is reflected to points other than the given receiving point, some is scattered by ground coverings (e.g., grass and other plants), and some is blocked by intervening structures and/or obstacles (e.g., the noise source itself). Additionally, some of the reflected energy is lost due to the longer path that the noise must travel. FHWA measurements made to quantify reflective increases in traffic noise have not shown an increase of greater than 1-2 dBA; an increase that is not perceptible to the average human ear.

2.4 NOISE CONTROL

Noise control is the process of obtaining an acceptable noise environment for an observation point or receiver by controlling the noise source, transmission path, receiver, or all three. This concept is known as the source-path-receiver concept. In general, noise control measures can be applied to these three elements.

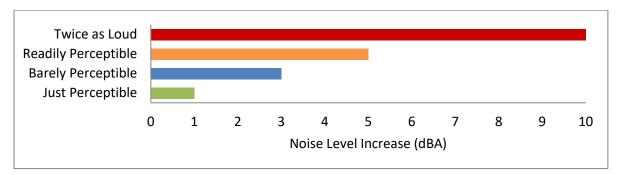
2.5 Noise Barrier Attenuation

Effective noise barriers can reduce noise levels by up to 10 to 15 dBA, cutting the loudness of traffic noise in half. A noise barrier is most effective when placed close to the noise source or receiver. Noise barriers, however, do have limitations. For a noise barrier to work, it must be high enough and long enough to block the path of the noise source (4).

2.6 LAND USE COMPATIBILITY WITH NOISE

Some land uses are more tolerant of noise than others. For example, schools, hospitals, churches, and residences are more sensitive to noise intrusion than are commercial or industrial developments and related activities. Sensitive receivers are generally defined as locations where people reside or where the presence of unwanted sound could otherwise adversely affect the use of the land. Noise-sensitive land uses are generally considered to include schools, hospitals, single-family dwellings, mobile home parks, churches, libraries, recreation areas or buildings where people normally sleep. Although the West Valley Detention Center is a temporary holding facility, there are beds at this facility for temporary stays. Therefore as a conservative measure, the individuals held at the West Valley Detention Center are considered sensitive receptors for the purposes of this analysis.

As ambient noise levels affect the perceived amenity or livability of a development, so too can the mismanagement of noise impacts impair the economic health and growth potential of a community by reducing the area's desirability as a place to live, shop and work. For this reason, land use compatibility with the noise environment is an important consideration in the planning and design process. The FHWA encourages State and Local government to regulate land development in such a way that noise-sensitive land uses are either prohibited from being located adjacent to a highway, or that the developments are planned, designed, and constructed in such a way that noise impacts are minimized (5).



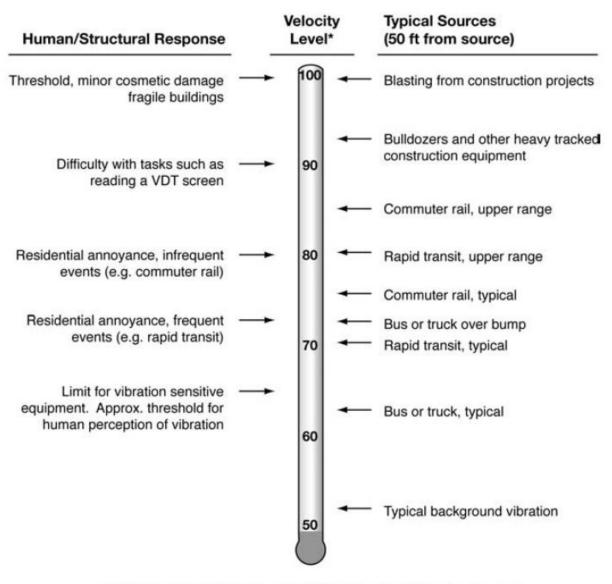
2.7 COMMUNITY RESPONSE TO NOISE

Community responses to noise varies depending upon everyone's susceptibility to noise and personal attitudes about noise. Several factors are related to the level of community annoyance including:

- Fear associated with noise producing activities;
- Socio-economic status and educational level;
- Perception that those affected are being unfairly treated;
- Attitudes regarding the usefulness of the noise-producing activity;
- Belief that the noise source can be controlled.

Approximately ten percent of the population has a very low tolerance for noise and will object to any noise not of their making. Consequently, even in the quietest environment, some complaints will occur. Twenty-five percent of the population will not complain even in very severe noise environments. Thus, a variety of reactions can be expected from people exposed to any given noise environment (6). Surveys have shown that about ten percent of the people exposed to traffic noise of 60 dBA will report being highly annoyed with the noise, and each increase of one dBA is associated with approximately two percent more people being highly annoyed. When traffic noise exceeds 60 dBA or aircraft noise exceeds 55 dBA, people may begin to complain (6). Despite this variability in behavior on an individual level, the population can be expected to exhibit the following responses to changes in noise levels as shown on Exhibit 2-B. A change of 3 dBA are considered *barely perceptible*, and changes of 5 dBA are considered *readily perceptible*. (4)

2.8 VIBRATION


Per the Federal Transit Administration (FTA) *Transit Noise and Vibration Impact Assessment Manual* (7), vibration is the periodic oscillation of a medium or object. The rumbling sound caused by the vibration of room surfaces is called structure-borne noise. Sources of ground-borne vibrations include natural phenomena (e.g., earthquakes, volcanic eruptions, sea waves, landslides) or human-made causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous, such as factory machinery, or transient, such as explosions. As is the case with airborne sound, ground-borne vibrations may be described by amplitude and frequency.

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings but is not always suitable for evaluating human response (annoyance) because it takes some time for the human body to respond to vibration signals. Instead, the human body responds to average vibration amplitude often described as the root mean square (RMS). The RMS amplitude is defined as the average of the squared amplitude of the signal and is most frequently used to describe the effect of vibration on the human body. Decibel notation (VdB) is commonly used to measure RMS. Decibel notation (VdB) serves to reduce the range of numbers used to describe human response to vibration. Typically, ground-borne vibration generated by man-made activities attenuates rapidly with distance from the source of the vibration. Sensitive receivers for vibration include structures (especially older masonry structures), people (especially residents, the elderly, and sick), and vibration-sensitive equipment and/or activities

The background vibration-velocity level in residential areas is generally 50 VdB. Ground-borne vibration is normally perceptible to humans at approximately 65 VdB. For most people, a vibration-velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If a roadway is smooth, the ground-borne vibration is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration-velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings. Exhibit 2-C illustrates common vibration sources and the human and structural response to ground-borne vibration.

EXHIBIT 2-C: TYPICAL LEVELS OF GROUND-BORNE VIBRATION

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Source: Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment Manual.

This page intentionally left blank

3 REGULATORY SETTING

To limit population exposure to physically and/or psychologically damaging as well as intrusive noise levels, the federal government, the State of California, various county governments, and most municipalities in the state have established standards and ordinances to control noise. In most areas, automobile and truck traffic is the major source of environmental noise. Traffic activity generally produces an average sound level that remains constant with time. Air and rail traffic, and commercial and industrial activities are also major sources of noise in some areas. Federal, state, and local agencies regulate different aspects of environmental noise. Federal and state agencies generally set noise standards for mobile sources such as aircraft and motor vehicles, while regulation of stationary sources is left to local agencies.

3.1 STATE OF CALIFORNIA NOISE REQUIREMENTS

The State of California regulates freeway noise, sets standards for sound transmission, provides occupational noise control criteria, identifies noise standards, and provides guidance for local land use compatibility. State law requires that each county and city adopt a General Plan that includes a Noise Element which is to be prepared per guidelines adopted by the Governor's Office of Planning and Research (OPR). (8) The purpose of the Noise Element is to *limit the exposure of the community to excessive noise levels*. In addition, the California Environmental Quality Act (CEQA) requires that all known environmental effects of a project be analyzed, including environmental noise impacts.

3.2 STATE OF CALIFORNIA GREEN BUILDING STANDARDS CODE

The State of California's Green Building Standards Code contains mandatory measures for nonresidential building construction in Section 5.507 on Environmental Comfort. (9) These noise standards are applied to new construction in California for controlling interior noise levels resulting from exterior noise sources. The regulations specify that acoustical studies must be prepared when non-residential structures are developed in areas where the exterior noise levels exceed 65 dBA CNEL, such as within a noise contour of an airport, freeway, railroad, and other areas where noise contours are not readily available. If the development falls within an airport or freeway 65 dBA CNEL noise contour, the combined sound transmission class (STC) rating of the wall and roof-ceiling assemblies must be at least 50. For those developments in areas where noise contours are not readily available and the noise level exceeds 65 dBA L_{eq} for any hour of operation, a wall and roof-ceiling combined STC rating of 45, and exterior windows with a minimum STC rating of 40 are required (Section 5.507.4.1).

3.3 CITY OF MORENO VALLEY GENERAL PLAN NOISE ELEMENT

The City of Moreno Valley Noise Element typically provides the standards for land use compatibility for community noise exposure. However, the City of Moreno Valley General Plan does not include a noise element or specific transportation-related noise standards. Rather, noise is considered in the Environmental Safety section of the General Plan Safety Element. (10) While the General Plan provides background and noise fundamentals, it does not identify criteria to assess the impacts associated with off-site transportation-related noise impacts. Therefore, for this analysis, the transportation noise criteria are derived from standards contained in the California Office of Planning and Research (OPR) *General Plan Guidelines*. (8)

The OPR land use/noise compatibility standards are used by many California cities and counties and specify the maximum noise levels allowable for new developments impacted by transportation noise sources. The OPR land use/noise compatibility criteria, found in Figure 2 of the *General Plan Guidelines, Appendix D: Noise Element Guidelines,* identify the criteria for industrial land uses such as the Project, as shown on Exhibit 3-A. When the unmitigated exterior noise levels approach 70 dBA CNEL industrial land use is considered *normally acceptable.* With exterior noise levels ranging from 70 to 80 dBA CNEL, industrial land uses are considered *conditionally acceptable,* and with exterior noise levels greater than 80 dBA CNEL, they are considered *normally unacceptable.* For *normally unacceptable* land use, *new construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.* (8) For the purposes of this analysis, industrial land use such as the Project does not contain outdoor living areas requiring exterior noise levels experienced by employees at the Project site are evaluated against the appropriate noise level standards.

The purpose of the transportation noise criteria is to protect, create, and maintain an environment free from noise and vibration that may jeopardize the health or welfare of sensitive receptors, or degrade quality of life. City General Policies (City of Moreno Valley General Plan, pp.9-31, 9-32) act to ensure that when exterior noise levels exceed 65 dBA CNEL at sensitive receivers, mitigation is provided to ensure that interior noise levels of 45 dBA CNEL are maintained. General Plan Policies in this regard are consistent with, and support, the California Building Code interior noise standards.

Land Use Category	Community Noise Exposure L _{dn} or CNEL, dB								
	55	60	65	70	75	80	INTERPRETATION:		
Residential - Low Density Single Family, Duplex, Mobile Homes							Normally Acceptable		
Residential - Multi. Family		Ē					Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation		
Transient Lodging - Motels, Hotels		E.	Т	1		4	requirements.		
Schools, Libraries, Churches, Hospitals, Nursing Homes							Conditionally Acceptable New construction or development should be undertaken only after a detailed analysis of the noise reduction		
Auditoriums, Concert Halls, Amphitheaters						+	requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning		
Sports Arena, Outdoor Spectator Sports				÷.			will normally suffice.		
Playgrounds, Neighborhood Parks							Normally Unacceptable New construction or development should generally be discouraged. If new construction or development does		
Golf Courses, Riding Stables, Water Recreation, Cemeteries							proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.		
Office Buildings, Business Commercial and Professional							Clearly Unacceptable New construction or development		
Industrial, Manufacturing, Utilities, Agriculture							should generally not be undertaken.		

EXHIBIT 3-A: LAND USE NOISE COMPATIBILITY CRITERIA

Source: OPR General Plan Guidelines, Appendix D: Noise Element Guidelines, Figure 2.

3.4 OPERATIONAL NOISE STANDARDS

To analyze noise impacts originating from a designated fixed location or private property such as the Compass Danbe Centerpointe Project, stationary-source (operational) noise such as the expected loading dock activity, entry gate & truck movements, roof-top air conditioning units, and trash enclosure activity are typically evaluated against standards established under a City's Municipal Code.

The City of Moreno Valley Municipal Code, Chapter 11.80 *Noise Regulation*, provides performance standards and noise control guidelines for determining and mitigating non-transportation or stationary-source noise impacts from operations at private properties. The City of Moreno Valley Municipal Code defines *Maximum Sound Levels (in dB(A)) for Source Land Uses* in Table 11.80.030-2 for *Residential* and *Commercial* land uses. As defined by the Municipal Code, Section 11.80.020 *Definitions, Commercial* land use *means all uses of land not otherwise classified as residential*, and *Residential* land use *means all uses of land not otherwise classified as hospitals, schools, colleges and universities, and places of religious assembly.* (11) For the purpose of this analysis, the Compass Danbe Centerpointe Project is considered *Commercial* land use since it is not classified as residential. Based on this standard, the operational noise level limits for commercial land use, from Table 11.80.030-2, of 65 dBA L_{eq} during the daytime (8:00 a.m. to 10:00 p.m.) hours and 60 dBA L_{eq} during the nighttime (10:01 p.m. to 7:59 a.m.) hours shall apply to the operational noise source activities from the Project.

Further, Section 11.80.030 (C) Prohibited Acts, Nonimpulsive Sound Decibel Limits, states: No person shall maintain, create, operate or cause to be operated on private property any source of sound in such a manner as to create any nonimpulsive sound which exceeds the limits set forth for the source land use category (as defined in Section 11.80.020) in Table 11.80.030-2 when measured at a distance of two hundred (200) feet or more from the real property line of the source of the sound, if the sound occurs on a privately owned property... (11) Therefore, at a distance of 200 feet from the property line, the Project's operational noise levels shall not exceed the 65 dBA L_{eq} daytime and 60 dBA L_{eq} nighttime noise level standards for commercial land uses, as shown on Table 3-1.

The City of Moreno Valley Municipal Code also identifies continuous sound level limits in Table 11.80.030-1 based on the Center for Disease Control and Prevention and the National Institute for Occupational Safety and Health (NIOSH) noise exposure guidelines. A division of the U.S. Department of Health and Human Services, NIOSH identifies a noise level threshold based on the duration of exposure to the source. The City of Moreno Valley noise level threshold starts at 90 dBA for more than eight hours per day, and for every increase, the exposure time is reduced. The City of Moreno Valley identifies noise level thresholds of 92 dBA for more than 6 hours per day, 97 dBA for more than 3 hours per day, and up to 100 dBA for more than 2 hours per day. However, this noise study uses the more restrictive City of Moreno Valley commercial noise level limits identified on Table 11.80.030-2 for source land uses in the Municipal Code, shown on Table 3-1 of this report, to evaluate the potential operational noise levels due to the operation of the Project.

City	Source	Noise Level Standards (dBA Leq) ¹		
City	Land use	Daytime	Nighttime	
Moreno Valley	Commercial	65	60	

TABLE 3-1: OPERATIONAL NOISE STANDARDS AT 200 FEET FROM THE SOURCE

¹ City of Moreno Valley Municipal Code, Chapter 11.80 Noise Regulation, Table 11.80.030-2 Maximum Sound Levels (in dB(A)) for Source Land Uses when measured at a distance of 200 feet from the property line of the source land use (Appendix 3.1). Leq represents a steady state sound level containing the same total energy as a time varying signal over a given period. "Daytime" = 8:00 a.m. to 10:00 p.m.; "Nighttime" = 10:01 p.m. to 7:59 a.m.

3.5 CONSTRUCTION NOISE STANDARDS

To analyze noise impacts originating from the construction of the Compass Danbe Centerpointe site, noise from construction activities are typically evaluated against standards established under a City's Municipal Code. The Municipal Code noise standards for construction are described below for the City of Moreno Valley to determine the potential noise impacts at the nearest receiver locations. The construction-related noise standards are shown on Table 3-2.

The Municipal Code noise standards for construction are described below for the City of Moreno Valley to determine the potential noise impacts at the nearest sensitive receiver locations. As a subset of its stationary-source noise regulations, the City Municipal Code establishes permitted hours of construction activity. More specifically, Municipal Code Section 11.80.030 (D)(7), *Construction and Demolition*, provides the following:

No person shall operate, or cause operation of any tools or equipment used in construction, drilling, repair, alteration, or demolition work between the hours of eight p.m. and seven a.m. the following day such that the sound there from creates a noise disturbance, except for emergency work by public service utilities or for other work approved by the city manager or designee.

Therefore, based on the Section 11.80.030 (D)(7) construction regulations, a construction-related *noise disturbance* occurs if Project construction activity occurs outside of the permitted hours. However, for this analysis, the stationary-source noise level limits of 65 dBA L_{eq} during the daytime hours and 60 dBA L_{eq} during the nighttime hours are used as appropriate thresholds for the nearest sensitive land uses (e.g. residential homes) in the Project study area. In addition, grading operations shall be limited to the hours identified in Section 8.21.050 (O) of 7:00 a.m. to 6:00 p.m., Monday through Friday, and 8:00 a.m. to 4:00 p.m. on weekends and holidays or as approved by the City Engineer. The City of Moreno Valley construction noise standards are shown on Table 3-2 and included in Appendix 3.1. As previously discussed in Section 3.4, the construction noise level threshold used in this noise study represents a conservative approach, since it is more restrictive than the continuous sound level limits of Table 11.80.030-1 of the City of Moreno Valley Municipal Code.

City	Permitted Hours of Construction Activity	Construction Noise Level Standard (dBA L _{eq}) ²		
	,	Daytime	Nighttime	
Moreno Valley ¹	General Activity: 7:00 a.m. to 8:00 p.m. on any day. Grading is limited to 7:00 a.m. to 6:00 p.m. Monday to Friday; 8:00 a.m. to 4:00 p.m. on weekends and holidays.		60 ³	

TABLE 3-2: CONSTRUCTION NOISE STANDARDS FROM THE SOURCE LAND USE

¹ City of Moreno Valley Municipal Code, Section 11.80.030 (D)(7) and Section 8.21.050 (O) (Appendix 3.1).

² Acceptable threshold for determining the relative significance of short-term Project construction noise levels, based on the City of Moreno Valley stationary noise standards shown on Table 3-1.

³ Any nighttime construction activity requires an exemption from the City of Moreno Valley Municipal Code as indicated in Section 11.80.030 (E)(8) for a special event permit (Section 11.80.040). The special event permit application shall be submitted to the City of Moreno Valley Planning Department for approval and meet the requirements of Municipal Code Section 11.80.040.

"Daytime" = 8:00 a.m. to 10:00 p.m.; "Nighttime" = 10:01 p.m. to 7:59 a.m.

3.5 VIBRATION STANDARDS

Construction activity can result in varying degrees of ground-borne vibration, depending on the equipment and methods used, distance to the affected structures and soil type. Construction vibration is generally associated with pile driving and rock blasting. Other construction equipment such as air compressors, light trucks, hydraulic loaders, etc., generates little or no ground vibration. (7) To analyze vibration impacts originating from the operation and construction of the Compass Danbe Centerpointe, vibration-generating activities are appropriately evaluated against standards established under a City's Municipal Code, if such standards exist. However, the City of Moreno Valley does not identify specific vibration level limits and instead relies on the Federal Transit Administration (FTA) methodology. The FTA *Transit Noise and Vibration Impact Assessment* methodology provides guidelines for the maximum-acceptable vibration criteria for different types of land uses. These guidelines allow 90 VdB for industrial (workshop) use, 84 VdB for office use and 78 VdB for daytime residential uses and 72 VdB for nighttime uses in buildings where people normally sleep. (7)

3.6 MARCH AIR RESERVE BASE/INLAND PORT AIRPORT LAND USE COMPATIBILITY

The March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately 0.9-miles south of the Project site. The *March Air Reserve Base/Inland Port Airport Land Use Compatibility Plan* (MARB/IPA LUCP) includes the policies for determining the land use compatibility of the Project. The MARB/IPA, Map MA-1, indicates that the Project site is located within Compatibility Zone D and Zone E, which Table MA-1 Compatibility Zone Factors indicates is considered to have a *moderate to low* noise impact. Further, the Project site is located outside of the 60 dBA CNEL noise level contour boundary. Moreover, the Basic Compatibility Criteria, listed in Table MA-2 of the MARB/IPA LUCP identifies no prohibited uses for either zones. (12) The MARB/IPA LUCP does not identify industrial-use specific noise compatibility standards, and therefore, the City of Moreno Valley *Land Use Compatibility for Community Noise Exposure* matrix, previously discussed in Section 3.3, is used to assess potential aircraft-related noise levels at the Project site. The City of Moreno Valley guidelines indicate that industrial uses, such as the Project, are considered *normally acceptable* with exterior noise levels of up to 70 dBA CNEL. (13) The noise

contour boundaries of MARB/IPA are presented on Exhibit 3-B of this report and show that the Project is considered *normally acceptable* land use since it is located outside of the 60 dBA CNEL contour boundary. Further, Table MA-2 indicates that no uses are prohibited in this area.

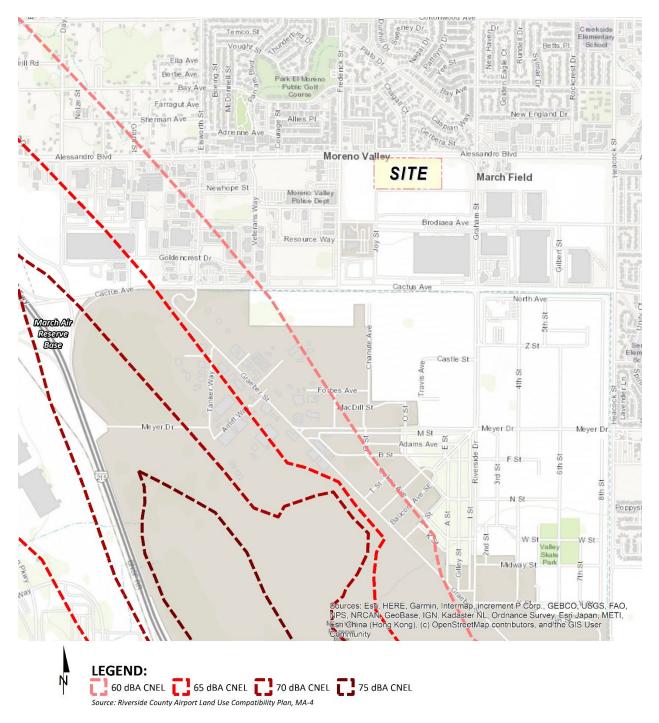


EXHIBIT 3-B: FUTURE AIRPORT NOISE LEVEL CONTOURS

4 SIGNIFICANCE CRITERIA

The following significance criteria are based on currently adopted guidance provided by Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (14) For the purposes of this report, impacts would be potentially significant if the Project results in or causes:

- A. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- B. Generation of excessive ground-borne vibration or ground-borne noise levels?
- C. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

While the City of Moreno Valley General Plan Guidelines provide direction on noise compatibility and establish noise standards by land use type that are sufficient to assess the significance of noise impacts, they do not define the levels at which increases are considered substantial for use under Guideline A. CEQA Appendix G Guideline C applies to nearby public and private airports, if any, and the Project's land use compatibility.

4.1 CEQA GUIDELINES NOT FURTHER ANALYZED

In Section 3.6, the noise contour boundaries of MARB/IPA are presented on Exhibit 3-B of this report and show that the Project is considered *normally acceptable* land use since it is located outside of the 60 dBA CNEL contour. Moreover, Table MA-2 of the MARB/IPA LUCP indicates that no uses are prohibited in this area, and therefore, impacts are considered *less than significant*, and no further noise analysis is provided under Guideline C.

4.2 NOISE-SENSITIVE RECEIVERS

Noise level increases resulting from the Project are evaluated based on the Appendix G CEQA Guidelines described above at the closest sensitive receiver locations. Under CEQA, consideration must be given to the magnitude of the increase, the existing ambient noise levels, and the location of noise-sensitive receivers to determine if a noise increase represents a significant adverse environmental impact. This approach recognizes *that there is no single noise increase that renders the noise impact significant.* (15)

Unfortunately, there is no completely satisfactory way to measure the subjective effects of noise or of the corresponding human reactions of annoyance and dissatisfaction. This is primarily because of the wide variation in individual thresholds of annoyance and differing individual experiences with noise. Thus, an important way of determining a person's subjective reaction to a new noise is the comparison of it to the existing environment to which one has adapted—the so-called *ambient* environment. In general, the more a new noise exceeds the previously existing ambient noise level, the less acceptable the new noise will typically be judged. The Federal Interagency Committee on Noise (FICON) (16) developed guidance to be used for the assessment of project-generated increases in noise levels that consider the ambient noise level. The FICON recommendations are based on studies that relate aircraft noise levels to the percentage of persons highly annoyed by aircraft noise. Although the FICON recommendations were specifically developed to assess aircraft noise impacts, these recommendations are often used in environmental noise impact assessments involving the use of cumulative noise exposure metrics, such as the average-daily noise level (CNEL) and equivalent continuous noise level (L_{eq}).

As previously stated, the approach used in this noise study recognizes *that there is no single noise increase that renders the noise impact significant*, based on a 2008 California Court of Appeal ruling on Gray v. County of Madera. (15) For example, if the ambient noise environment is quiet (<60 dBA) and the new noise source greatly increases the noise levels, an impact may occur if the noise criteria may be exceeded. Therefore, for this analysis, FICON identifies a *readily perceptible* 5 dBA or greater project-related noise level increase is considered a significant impact when the noise criteria for a given land use is exceeded. Per the FICON, in areas where the without project noise levels range from 60 to 65 dBA, a 3 dBA *barely perceptible* noise level already exceed 65 dBA, any increase in community noise louder than 1.5 dBA or greater is considered a significant impact if the noise criteria for a given land use is exceeded, since it likely contributes to an existing noise exposure exceedance.

The FICON guidance provides an established source of criteria to assess the impacts of substantial temporary or permanent increase in ambient noise levels. Based on the FICON criteria, the amount to which a given noise level increase is considered acceptable is reduced when the without Project noise levels are already shown to exceed certain land-use specific exterior noise level criteria. The specific levels are based on typical responses to noise level increases of 5 dBA or *readily perceptible*, 3 dBA or *barely perceptible*, and 1.5 dBA depending on the underlying without Project noise levels for noise-sensitive uses. These levels of increases and their perceived acceptance are consistent with guidance provided by both the Federal Highway Administration (4 p. 9) and Caltrans (17 p. 2_48).

4.3 NON-NOISE-SENSITIVE RECEIVERS

Since the City of Moreno Valley General Plan Safety Element does not identify criteria to assess the impacts associated with off-site transportation-related noise impacts, the OPR land use/noise compatibility criteria, found in Figure 2 of the *General Plan Guidelines, Appendix D: Noise Element Guidelines* is used to determine potential impacts at adjacent land uses. As previously shown on Exhibit 3-A, the *normally acceptable* exterior noise level for non-noise-sensitive land use, such as industrial use, is 70 dBA CNEL. Noise levels greater than 70 dBA CNEL are considered *conditionally acceptable* according to the *Land Use Compatibility Criteria*. (8)

To determine if Project-related traffic noise level increases are significant at off-site non-noisesensitive land uses, a *barely perceptible* 3 dBA criteria is used. When the without Project noise levels are greater than the *normally acceptable* 70 dBA CNEL land use compatibility criteria, a *barely perceptible* 3 dBA or greater noise level increase is considered a significant impact since the noise level criteria is already exceeded. The noise level increases used to determine significant impacts for non-noise-sensitive land uses is generally consistent with the FICON noise

level increase thresholds for noise-sensitive land uses but instead rely on the OPR land use/noise compatibility criteria, found in Figure 2 of the *General Plan Guidelines, Appendix D: Noise Element Guidelines normally acceptable* 70 dBA CNEL exterior noise level criteria.

4.4 SIGNIFICANCE CRITERIA SUMMARY

Noise impacts shall be considered significant if any of the following occur as a direct result of the proposed development. Table 4-1 shows the significance criteria summary matrix.

Analysis	Receiving Land Use	Condition(s)	Significance Criteria		
	Land Ose		Daytime	Nighttime	
		if ambient is < 60 dBA CNEL	≥ 5 dBA CNEL P	roject increase	
	Noise- Sensitive ¹	if ambient is 60 - 65 dBA CNEL	≥ 3 dBA CNEL P	roject increase	
Off-Site	Jensitive	if ambient is > 65 dBA CNEL	≥ 1.5 dBA CNEL	Project increase	
	Non-Noise- Sensitive ²	if ambient is > 70 dBA CNEL	≥ 3 dBA CNEL Project increase		
	Noise- Sensitive ¹	At 200' from the property line of the source ³	65 dBA L _{eq}	60 dBA L _{eq}	
Onerational		if ambient is < 60 dBA L _{eq} ¹	≥ 5 dBA L _{eq} Project increase		
Operational		if ambient is 60 - 65 dBA L _{eq} 1	≥ 3 dBA L _{eq} Project increase		
		if ambient is > 65 dBA L_{eq}^{1}	t is > 65 dBA L_{eq}^1 \geq 1.5 dBA L_{eq} Project incr		
		Vibration Level Threshold ⁴	78 VdB	72 VdB	
Construction	Noise- Sensitive	At 200' from the property line of the source ³	65 dBA L _{eq}	60 dBA L _{eq}	
	Sensitive	Vibration Level Threshold ⁴	78 VdB	n/a	

TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY

¹ FICON, 1992.

² OPR General Plan Guidelines, Figure 2 Land Use Compatibility Criteria.

³ City of Moreno Valley Municipal Code, Chapter 11.80 Noise Regulation (Appendix 3.1).

⁴ Federal Transit Administration, Transit Noise and Vibration Impact Assessment.

"Daytime" = 8:00 a.m. - 10:00 p.m.; "Nighttime" = 10:01 p.m. - 7:59 a.m.

This page intentionally left blank

5 EXISTING NOISE LEVEL MEASUREMENTS

To assess the existing noise level environment, 24-hour noise level measurements were taken at five locations in the Project study area. The receiver locations were selected to describe and document the existing noise environment within the Project study area. Exhibit 5-A provides the boundaries of the Project study area and the noise level measurement locations. To fully describe the existing noise conditions, noise level measurements were collected by Urban Crossroads, Inc. on Wednesday, September 16th, 2020. Appendix 5.1 includes study area photos.

5.1 MEASUREMENT PROCEDURE AND CRITERIA

To describe the existing noise environment, the hourly noise levels were measured during typical weekday conditions over a 24-hour period. By collecting individual hourly noise level measurements, it is possible to describe the daytime and nighttime hourly noise levels and calculate the 24-hour CNEL. The long-term noise readings were recorded using Piccolo Type 2 integrating sound level meter and dataloggers. The Piccolo sound level meters were calibrated using a Larson-Davis calibrator, Model CAL 150. All noise meters were programmed in "slow" mode to record noise levels in "A" weighted form. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (18)

5.2 NOISE MEASUREMENT LOCATIONS

The long-term noise level measurements were positioned as close to the nearest sensitive receiver locations as possible to assess the existing ambient hourly noise levels surrounding the Project site. Both Caltrans and the FTA recognize that it is not reasonable to collect noise level measurements that can fully represent every part of a private yard, patio, deck, or balcony normally used for human activity when estimating impacts for new development projects. This is demonstrated in the Caltrans general site location guidelines which indicate that, *sites must be free of noise contamination by sources other than sources of interest. Avoid sites located near sources such as barking dogs, lawnmowers, pool pumps, and air conditioners unless it is the express intent of the analyst to measure these sources. (2) Further, FTA guidance states, that it is not necessary nor recommended that existing noise exposure be determined by measuring at every noise-sensitive location in the project area. Rather, the recommended approach is to characterize the noise environment for clusters of sites based on measurements or estimates at representative locations in the community. (7)*

Based on recommendations of Caltrans and the FTA, it is not necessary to collect measurements at each individual building or residence, because each receiver measurement represents a group of buildings that share acoustical equivalence. (7) In other words, the area represented by the receiver shares similar shielding, terrain, and geometric relationship to the reference noise source. Receivers represent a location of noise sensitive areas and are used to estimate the future noise level impacts. Collecting reference ambient noise level measurements at the nearest sensitive receiver locations allows for a comparison of the before and after Project noise levels

and is necessary to assess potential noise impacts due to the Project's contribution to the ambient noise levels.

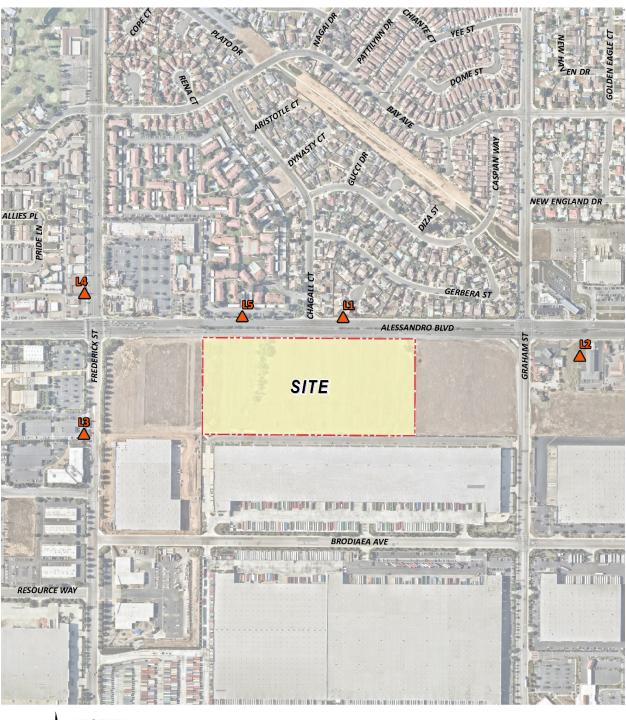
5.3 NOISE MEASUREMENT RESULTS

The noise measurements presented below focus on the average or equivalent sound levels (L_{eq}). The equivalent sound level (L_{eq}) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period. Table 5-1 identifies the hourly daytime (8:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 8:00 a.m.) noise levels at each noise level measurement location.

Table 5-1 provides the (energy average) noise levels used to describe the daytime and nighttime ambient conditions. These daytime and nighttime energy average noise levels represent the average of all hourly noise levels observed during these time periods expressed as a single number. Appendix 5.2 provides summary worksheets of the noise levels for each hour as well as the minimum, maximum, L₁, L₂, L₅, L₈, L₂₅, L₅₀, L₉₀, L₉₅, and L₉₉ percentile noise levels observed during the daytime and nighttime periods.

The background ambient noise levels in the Project study area are dominated by the transportation-related noise associated with surface streets. This includes the auto and heavy truck activities on study area roadway segments near the noise level measurement locations.

Location ¹	Description	Energy Average Noise Level (dBA L _{eq}) ²		CNEL
		Daytime	Nighttime	
L1	Located north of the Project site on Alessandro Boulevard near existing single-family residential home at 13994 Chagall Court.	68.7	67.3	73.8
L2	Located east of the Project site by existing Motel 6 at 23581 Alessandro Boulevard.	61.1	56.3	64.1
L3	Located southwest of the Project site by the Moreno Valley City Hall at 14177 Frederick Street.	57.3	55.9	62.4
L4	Located northwest of the Project site on Fredrick Street near existing single-family residential home at 13979 Frederick Street.	66.0	63.5	70.6
L5	Located north of the Project site on Alessandro Boulevard near existing multi-family residential homes at 13933 Chagall Court.	71.0	67.9	74.8


 TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS

¹ See Exhibit 5-A for the noise level measurement locations.

"Daytime" = 8:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 8:00 a.m.

² Energy (logarithmic) average levels. The long-term 24-hour measurement worksheets are included in Appendix 5.2.

EXHIBIT 5-A: NOISE MEASUREMENT LOCATIONS

LEGEND:
 M A Measurement Locations

This page intentionally left blank

6 METHODS AND PROCEDURES

The following section outlines the methods and procedures used to model and analyze the future traffic noise environment. Consistent with the *Land Use Compatibility Criteria*, all transportation related noise levels are presented in terms of the 24-hour CNEL's.

6.1 FHWA TRAFFIC NOISE PREDICTION MODEL

The expected roadway noise level increases from vehicular traffic were calculated by Urban Crossroads, Inc. using a computer program that replicates the Federal Highway Administration (FHWA) Traffic Noise Prediction Model- FHWA-RD-77-108. (19) The FHWA Model arrives at a predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). In California the national REMELs are substituted with the California Vehicle Noise (Calveno) Emission Levels. (20) Adjustments are then made to the REMEL to account for: the roadway classification (e.g., collector, secondary, major or arterial), the roadway active width (i.e., the distance between the center of the outermost travel lanes on each side of the roadway), the total average daily traffic (ADT), the travel speed, the percentages of automobiles, medium trucks, and heavy trucks in the traffic volume, the roadway grade, the angle of view (e.g., whether the roadway view is blocked), the site conditions ("hard" or "soft" relates to the absorption of the ground, pavement, or landscaping), and the percentage of total ADT which flows each hour throughout a 24-hour period. Research conducted by Caltrans has shown that the use of soft site conditions is appropriate for the application of the FHWA traffic noise prediction model used in this analysis. (21)

6.2 OFF-SITE TRAFFIC NOISE PREDICTION MODEL INPUTS

Table 6-1 presents the roadway parameters used to assess the Project's off-site dBA CNEL transportation noise impacts. Table 6-1 identifies the 4 study area roadway segments, the distance from the centerline to adjacent land use based on the functional roadway classifications per the City of Moreno Valley General Plan Circulation Element, and the posted vehicle speeds. The ADT volumes used in this study area presented on Table 6-2 are based on the *Alessandro Warehouse Traffic Analysis*, prepared by Urban Crossroads, Inc. for the following traffic scenarios under both Without and With Project alternatives: Existing (2020), and Existing plus Ambient Growth plus Project (EAP). (22)

The ADT volumes vary for each roadway segment based on the existing traffic volumes and the combination of project traffic distributions. This analysis relies on a comparative evaluation of the off-site traffic noise impacts, without and with project ADT traffic volumes from the Project traffic study.

ID	Roadway	Segment	Receiving Existing Land Use ¹	Distance from Centerline to Receiving Land Use (Feet) ²	Vehicle Speed (mph) ³
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	44'	40
2	Alessandro Bl.	w/o Frederick St.	Sensitive	55'	45
3	Alessandro Bl.	w/o Graham St.	Sensitive	55'	45
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	55'	45

TABLE 6-1: OFF-SITE ROADWAY PARAMETERS

¹ Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² Distance to receiving land use is based upon the right-of-way distances.

³ Alessandro Warehouse Traffic Analysis, Urban Crossroads, Inc.

			Avera	Average Daily Traffic Vo				
ID	Roadway	Segment	Exist 202	U	Existin Ambient	_		
			Without With Project Project		Without Project	With Project		
1	Graham St.	s/o Alessandro Bl.	11,231	11,765	11,684	12,219		
2	Alessandro Bl.	w/o Frederick St.	38,736	38,794	40,171	40,227		
3	Alessandro Bl.	w/o Graham St.	38,944	39,592	40,517	41,163		
4	Alessandro Bl.	e/o Graham St.	41,770	41,799	43,458	43,484		

TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES

¹ Alessandro Warehouse Traffic Analysis, Urban Crossroads, Inc.

To quantify the off-site noise levels, the Project related truck trips were added to the heavy truck category in the FHWA noise prediction model. The addition of the Project related truck trips increases the percentage of heavy trucks in the vehicle mix. This approach recognizes that the FHWA noise prediction model is significantly influenced by the number of heavy trucks in the vehicle mix.

Table 6-3 provides the time of day (daytime, evening, and nighttime) vehicle splits. The daily Project truck trip-ends were assigned to the individual off-site study area roadway segments based on the Project truck trip distribution percentages documented in the *Traffic Impact Analysis*. Using the Project truck trips in combination with the Project trip distribution, Urban Crossroads, Inc. calculated the number of additional Project truck trips and vehicle mix percentages for each of the study area roadway segments. Table 6-4 shows the traffic flow by vehicle type (vehicle mix) used for all without Project traffic scenarios, and Tables 6-5 and 6-6 show the vehicle mixes used for the with Project traffic scenarios.

		Time of Day Splits ¹	Total of Time of	
Vehicle Type	Daytime	Evening	Nighttime	Day Splits
Autos	77.50%	12.90%	9.60%	100.00%
Medium Trucks	84.80%	4.90%	10.30%	100.00%
Heavy Trucks	86.50%	2.70%	10.80%	100.00%

TABLE 6-3: TIME OF DAY VEHICLE SPLITS

¹ County of Riverside Office of Industrial Hygiene. Values rounded to the nearest one-hundredth.

"Daytime" = 7:00 a.m. to 7:00 p.m.; "Evening" = 7:00 p.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.

TABLE 6-4: WITHOUT PROJECT VEHICLE MIX

Classification		Total % Traffic Flow		Total
Classification	Autos	Medium Trucks	Heavy Trucks	rotar
All Segments	98.89%	0.70% 0.42%		100.00%

Based on an existing vehicle count taken at Frederick Street and Alessandro Boulevard (Alessandro Warehouse Traffic Analysis, Urban Crossroads, Inc.). Vehicle mix percentage values rounded to the nearest one-hundredth.

Due to the added Project truck trips, the increase in Project traffic volumes and the distributions of trucks on the study area road segments, the percentage of autos, medium trucks and heavy trucks will vary for each of the traffic scenarios. This explains why the existing and future traffic volumes and vehicle mixes vary between seemingly identical study area roadway segments.

TABLE 6-5: EXISTING WITH PROJECT VEHICLE MIX

			With Project ¹					
ID	Roadway	Segment	Autos	Medium Trucks	Heavy Trucks	Total ²		
1	Graham St.	s/o Alessandro Bl.	97.03%	1.12%	1.84%	100.00%		
2	Alessandro Bl.	w/o Frederick St.	99.00%	0.70%	0.30%	100.00%		
3	Alessandro Bl.	w/o Graham St.	98.57%	0.82%	0.60%	100.00%		
4	Alessandro Bl.	e/o Graham St.	99.00%	0.70%	0.30%	100.00%		

¹ Alessandro Warehouse Traffic Analysis, Urban Crossroads, Inc.

² Total of vehicle mix percentage values rounded to the nearest one-hundredth.

TABLE 6-6: EXISTING PLUS AMBIENT GROWTH WITH PROJECT VEHICLE MIX

			With Project ¹						
ID	Roadway	Segment	Autos	Medium Trucks	Heavy Trucks	Total ²			
1	Graham St.	s/o Alessandro Bl.	97.10%	1.11%	1.79%	100.00%			
2	Alessandro Bl.	w/o Frederick St.	99.00%	0.70%	0.30%	100.00%			
3	Alessandro Bl.	w/o Graham St.	98.59%	0.82%	0.59%	100.00%			
4	Alessandro Bl.	e/o Graham St.	99.00%	0.70%	0.30%	100.00%			

¹ Alessandro Warehouse Traffic Analysis, Urban Crossroads, Inc.

² Total of vehicle mix percentage values rounded to the nearest one-hundredth.

This page intentionally left blank

7 OFF-SITE TRANSPORTATION NOISE IMPACTS

To assess the off-site transportation CNEL noise level impacts associated with the proposed Project, noise contours were developed based on the *Alessandro Warehouse Traffic Analysis*. (22) Noise contour boundaries represent the equal levels of noise exposure and are measured in CNEL from the center of the roadway.

7.1 TRAFFIC NOISE CONTOURS

Noise contours were used to assess the Project's incremental 24-hour dBA CNEL traffic-related noise impacts at land uses adjacent to roadways conveying Project traffic. The noise contours represent the distance to noise levels of a constant value and are measured from the center of the roadway for the 70, 65, and 60 dBA CNEL noise levels. The noise contours do not consider the effect of any existing noise barriers or topography that may attenuate ambient noise levels. In addition, because the noise contours reflect modeling of vehicular noise on area roadways, they appropriately do not reflect noise contributions from the surrounding stationary noise sources within the Project study area.

Tables 7-1 through 7-4 present a summary of the exterior dBA CNEL traffic noise levels without barrier attenuation. Roadway segments are analyzed from the without Project to the with Project conditions in each of the following timeframes: Existing (2020), and Existing plus Ambient Growth plus Project (EAP). Appendix 7.1 includes a summary of the dBA CNEL traffic noise level contours for each of the traffic scenarios.

			Receiving	CNEL at Receiving		nce to Co enterline	
ID	Road	Segment	Existing Land Use ¹	Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	66.9	RW	59	127
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.7	84	180	388
3	Alessandro Bl.	w/o Graham St.	Sensitive	72.8	84	181	390
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.1	88	190	408

TABLE 7-1: EXISTING WITHOUT PROJECT NOISE CONTOURS

¹ Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

	Receiving		CNEL at Receiving		ance to Contour Centerline (Feet)		
ID	Road	Segment	Existing Land Use ¹	Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	68.9	RW	80	173
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.7	84	181	389
3	Alessandro Bl.	w/o Graham St.	Sensitive	73.3	92	197	425
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.1	88	190	409

TABLE 7-2: EXISTING WITH PROJECT NOISE CONTOURS

¹ Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

TABLE 7-3: EXISTING PLUS AMBIENT GROWTH WITHOUT PROJECT NOISE CONTOURS

			Receiving	CNEL at Receiving	from Centerline (Feet)		
ID	Road	Segment	Existing Land Use ¹	Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	67.1	RW	61	131
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.9	86	185	398
3	Alessandro Bl.	w/o Graham St.	Sensitive	72.9	86	186	400
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.2	90	195	419

¹ Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

 $^{\rm 2}$ The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

TABLE 7-4: EXISTING PLUS AMBIENT GROWTH WITH PROJECT NOISE CONTOURS

			Receiving	CNEL at Receiving			
ID	Road	Segment	Existing Land Use ¹	Land Use (dBA) ²	70 dBA CNEL	65 dBA CNEL	60 dBA CNEL
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	69.0	RW	82	176
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.9	86	185	398
3	Alessandro Bl.	w/o Graham St.	Sensitive	73.5	94	202	435
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.2	90	195	420

¹ Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² The CNEL is calculated at the boundary of the right-of-way of the receiving adjacent land use.

"RW" = Location of the respective noise contour falls within the right-of-way of the road.

7.2 EXISTING PROJECT TRAFFIC NOISE LEVEL INCREASES

An analysis of existing traffic noise levels plus traffic noise generated by the proposed Project has been included in this report to fully analyze all the existing traffic scenarios identified in the *Alessandro Warehouse Traffic Analysis*. This condition is provided solely for informational purposes and will not occur, since the Project will not be fully developed and occupied under Existing conditions. Table 7-1 shows the Existing without Project conditions CNEL noise levels. The Existing without Project exterior noise levels are expected to range from 66.9 to 73.1 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-2 shows the Existing with Project conditions will range from 68.9 to 73.3 dBA CNEL. Table 7-5 shows that the Project off-site traffic noise level impacts will range from 0.0 to 2.0 dBA CNEL. Based on the significance criteria for off-site traffic noise presented in Table 4-1, land uses adjacent to the study area roadway segments would experience *less than significant* noise level increases on receiving land uses due to the Project-related traffic.

7.3 EXISTING PLUS AMBIENT GROWTH PROJECT TRAFFIC NOISE LEVEL INCREASES

Table 7-3 presents the Existing plus Ambient Growth without Project conditions CNEL noise levels. The Existing plus Ambient Growth without Project exterior noise levels are expected to range from 67.1 to 73.2 dBA CNEL, without accounting for any noise attenuation features such as noise barriers or topography. Table 7-4 shows the Existing plus Ambient Growth with Project conditions will range from 69.0 to 73.5 dBA CNEL. Table 7-6 shows that the Project off-site traffic noise level increases will range from 0.0 to 1.9 dBA CNEL. Based on the significance criteria for off-site traffic noise presented in Table 4-1, land uses adjacent to the study area roadway segments would experience *less than significant* noise level increases on receiving land uses due to the Project-related traffic.

ID	Receiving Road Segment Existing		CNEL at Receiving Land Use (dBA) ²			Incremental Noise Level Increase Threshold ³		
			Land Use ¹	No Project	With Project	Project Addition	Limit	Exceeded?
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	66.9	68.9	2.0	n/a	No
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.7	72.7	0.0	1.5	No
3	Alessandro Bl.	w/o Graham St.	Sensitive	72.8	73.3	0.6	1.5	No
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.1	73.1	0.0	3.0	No

TABLE 7-5: EXISTING WITH PROJECT TRAFFIC NOISE LEVEL INCREASES
--

¹Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the receiving land use.

³ Does the Project create an incremental noise level increase exceeding the significance criteria (Table 4-1)?

ID	Road	Segment	Receiving Existing		EL at Receind Use (dB	0	Level	ental Noise Increase eshold ³
			Land Use ¹	No Project	With Project	Project Addition	Limit	Exceeded?
1	Graham St.	s/o Alessandro Bl.	Non-Sensitive	67.1	69.0	1.9	n/a	No
2	Alessandro Bl.	w/o Frederick St.	Sensitive	72.9	72.9	0.0	1.5	No
3	Alessandro Bl.	w/o Graham St.	Sensitive	72.9	73.5	0.5	1.5	No
4	Alessandro Bl.	e/o Graham St.	Non-Sensitive	73.2	73.2	0.0	3.0	No

TABLE 7-6: EXISTING PLUS AMBIENT GROWTH WITH PROJECT TRAFFIC NOISE INCREASES

¹Based on a review of existing aerial imagery. Noise sensitive uses limited to existing residential land uses.

² The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the receiving land use.

³ Does the Project create an incremental noise level increase exceeding the significance criteria (Table 4-1)?

8 SENSITIVE RECEIVER LOCATIONS

To assess the potential for long-term operational and short-term construction noise impacts, the following sensitive receiver locations, as shown on Exhibit 8-A, were identified as representative locations for analysis. Sensitive receivers are generally defined as locations where people reside or where the presence of unwanted sound could otherwise adversely affect the use of the land. Noise-sensitive land uses are generally considered to include schools, hospitals, single-family dwellings, mobile home parks, churches, libraries, and recreation areas. Moderately noise-sensitive land uses typically include multi-family dwellings, hotels, motels, dormitories, outpatient clinics, cemeteries, golf courses, country clubs, athletic/tennis clubs, and equestrian clubs. Land uses that are considered relatively insensitive to noise include business, commercial, and professional developments. Land uses that are typically not affected by noise include: industrial, manufacturing, utilities, agriculture, undeveloped land, parking lots, warehousing, liquid and solid waste facilities, salvage yards, and transit terminals.

To describe the potential off-site Project noise levels, five receiver locations in the vicinity of the Project site were identified. All distances are measured from the Project site boundary to the outdoor living areas (e.g., private backyards) or at the building façade, whichever is closer to the Project site. The selection of receiver locations is based on FHWA guidelines and is consistent with additional guidance provided by Caltrans and the FTA, as previously described in Section 5.2. Other sensitive land uses in the Project study area that are located at greater distances than those identified in this noise study will experience lower noise levels than those presented in this report due to the additional attenuation from distance and the shielding of intervening structures. Distance is measured in a straight line from the project boundary to each receiver location.

- R1: Location R1 represents the existing noise sensitive residence at 13994 Chagall Court, approximately 152 feet north of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R1 is placed at the residential building façade. A 24-hour noise measurement was taken near this location, L1, to describe the existing ambient noise environment.
- R2: Location R2 represents the Motel 6 at 23581 Alessandro Blvd, approximately 1,023 feet east of the Project site. Receiver R2 is placed at the building façade. A 24-hour noise measurement was taken near this location, L2, to describe the existing ambient noise environment.
- R3: Location R3 represents the Moreno Valley City Hall at 14177 Frederick Street, approximately 744 feet west of the Project site. Receiver R3 is placed at the building façade. A 24-hour noise measurement near this location, L3, is used to describe the existing ambient noise environment.
- R4: Location R4 represents the existing noise sensitive residence at 13979 Frederick Street, approximately 784 feet northwest of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R4 is placed at the residential building façade. A 24-hour noise measurement near this location, L4, is used to describe the existing ambient noise environment.

R5: Location R5 represents the existing noise sensitive residences at 13933 Chagall Court, approximately 217 feet north of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receiver R5 is placed at the residential building façade. A 24-hour noise measurement near this location, L5, is used to describe the existing ambient noise environment.

EXHIBIT 8-A: SENSITIVE RECEIVER LOCATIONS

9 OPERATIONAL NOISE IMPACTS

This section analyzes the potential stationary-source operational noise impacts at the nearest receiver locations, identified in Section 8, resulting from the operation of the proposed Compass Danbe Centerpointe Project. Exhibit 9-A identifies the representative noise source locations used to assess the operational noise levels.

9.1 OPERATIONAL NOISE SOURCES

At the time this noise analysis was prepared the future tenants of the proposed Project were unknown. Therefore, this operational noise analysis is intended to describe noise level impacts associated with the expected typical of daytime and nighttime activities at the Project site. To present the potential worst-case noise conditions, this analysis assumes the Project would be operational 24 hours per day, seven days per week. Consistent with similar warehouse uses, the Project business operations would primarily be conducted within the enclosed buildings, except for traffic movement, parking, as well as loading and unloading of trucks at designated loading bays. The on-site Project-related noise sources are expected to include: loading dock activity, entry gate & truck movements, roof-top air conditioning units, and trash enclosure activity.

9.2 REFERENCE NOISE LEVELS

To estimate the Project operational noise impacts, reference noise level measurements were collected from similar types of activities to represent the noise levels expected with the development of the proposed Project. This section provides a detailed description of the reference noise level measurements shown on Table 9-1 used to estimate the Project operational noise impacts. It is important to note that the following projected noise levels assume the worst-case noise environment with the loading dock activity, entry gate & truck movements, roof-top air conditioning units, and trash enclosure activity all operating continuously. These sources of noise activity will likely vary throughout the day.

Noise Source ¹	Noise Source	Min./Hour ²		Reference Noise	Sound Power
Noise Source-	Height (Feet)	Day	Night	Level (dBA L _{eq}) @ 50 Feet	Level (dBA) ³
Loading Dock Activity	8'	60	60	65.7	111.5
Entry Gate & Truck Movements	8'	_4	_4	58.0	89.7
Roof-Top Air Conditioning Units	5'	39	28	57.2	88.9
Trash Enclosure Activity	5'	5	5	57.3	89.0

TABLE 9-1: REFERENCE NOISE LEVEL MEASUREMENTS

¹ As measured by Urban Crossroads, Inc.

² Anticipated duration (minutes within the hour) of noise activity during typical hourly conditions expected at the Project site. "Daytime" = 8:00 a.m. - 10:00 p.m.; "Nighttime" = 10:01 p.m. - 7:59 a.m.

³ Sound power level represents the total amount of acoustical energy (noise level) produced by a sound source independent of distance or surroundings. Sound power levels calculated using the CadnaA noise model at the reference distance to the noise source. Numbers may vary due to size differences between point and area noise sources.

⁴Entry Gate & Truck Movements are calculate based on the number of events by time of day (See Table 9-2).

9.2.1 MEASUREMENT PROCEDURES

The reference noise level measurements presented in this section were collected using a Larson Davis LxT Type 1 precisions sound level meter (serial number 01146). The LxT sound level meter was calibrated using a Larson-Davis calibrator, Model CAL 200, was programmed in "slow" mode to record noise levels in "A" weighted form and was located at approximately five feet above the ground elevation for each measurement. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (18)

9.2.2 LOADING DOCK ACTIVITY

To describe the loading dock activities, a reference noise level measurement was collected to represent the truck activities. The reference noise level measurement was taken in the center of the loading dock activity area and represents multiple concurrent noise sources resulting in a combined noise level of 65.7 dBA L_{eq} at a uniform distance of 50 feet. Specifically, the reference noise level measurement represents one truck located approximately 30 feet from the noise level meter with another truck passing by to park roughly 20 feet away, both with their engines idling. Throughout the reference noise level measurement, a separate docked and running reefer truck was located approximately 50 feet east of the measurement location. Additional background noise sources included truck pass-by noise, truck drivers talking to each other next to docked trucks, and air brake release noise when trucks parked.

9.2.3 ENTRY GATE & TRUCK MOVEMENTS

An entry gate and truck movements reference noise level measurement were taken over a 15minute period and represents multiple noise sources producing a reference noise level of 58.0 dBA Leq at 50 feet. The noise sources included at this measurement location account for the rattling and squeaking during normal opening and closing operations, the gate closure equipment, truck engines idling outside the entry gate, truck movements through the entry gate, and background truck court activities and forklift backup alarm noise.

Consistent with the *Alessandro Warehouse Traffic Analysis*, the Project is expected to generate a total of approximately 742 trip-ends per day (actual vehicles) and includes 224 truck trip-ends per day. (22) This noise study relies on the actual Project trips (as opposed to the passenger car equivalents) to accurately account for the effect of individual truck trips on the study area roadway network. Using the estimated number of truck trips in combination with time of day vehicle splits, the number of entry gate and truck movements by driveway location were calculated. As shown on Table 9-2, this information is then used to calculate the entry gate and truck movements operational noise source activity based on the number of events by time of day.

Entry Gate	Total	Trip	Dist. ³		Time of	Day Vehicl	e Splits⁵	True	ck Moveme	ents ⁶
& Truck Movement Location ¹	Project Truck Trips ²	In	Out	Truck Trips by Location ⁴	Day	Evening	Night	Day	Evening	Night
Driveway 1	224	90%	10%	112	86.50%	2.70%	10.80%	97	3	12
Driveway 3	224	10%	90%	112	86.50%	2.70%	10.80%	97	3	12

¹ Driveway locations as shown on Exhibit 9-A.

² Total Project truck trips according to Table 4-2 of the Alessandro Warehouse Traffic Analysis.

³ Project truck trip distribution according to Exhibit 4-2 of the Alessandro Warehouse Traffic Analysis.

⁴ Calculated trip trucks per location represents the product of the total (inbound and outbound) project truck trips by and the trip

distribution.

⁵ Heavy truck time of day vehicle splits as shown on Table 6-3.

⁶ Calculated time of day entry gate and truck movements by location.

9.2.4 ROOF-TOP AIR CONDITIONING UNITS

The noise level measurements describe a single mechanical roof-top air conditioning unit. The reference noise level represents a Lennox SCA120 series 10-ton model packaged air conditioning unit. At the uniform reference distance of 50 feet, the reference noise levels are 57.2 dBA L_{eq} . Based on the typical operating conditions observed over a four-day measurement period, the roof-top air conditioning units are estimated to operate for and average 39 minutes per hour during the daytime hours, and 28 minutes per hour during the nighttime hours. These operating conditions reflect peak summer cooling requirements with measured temperatures approaching 96 degrees Fahrenheit (°F) with average daytime temperatures of 82°F. For this noise analysis, the air conditioning units are expected to be located on the roof of the Project buildings.

9.2.5 TRASH ENCLOSURE ACTIVITY

The measured reference noise level at the uniform 50-foot reference distance is 57.3 dBA L_{eq} for the trash enclosure activity. The trash enclosure activity noise levels include two metal gates opening and closing, metal scraping against concrete floor sounds, dumpster movement on metal wheels, trash dropping into the metal dumpster, and background parking lot vehicle movements.

Noise associated with trash enclosure activities is conservatively expected to occur for 5 minutes per hour.

9.3 CADNAA NOISE PREDICTION MODEL

To fully describe the exterior operational noise levels from the Project, Urban Crossroads, Inc. developed a noise prediction model using the CadnaA (Computer Aided Noise Abatement) computer program. CadnaA can analyze multiple types of noise sources using the spatially accurate Project site plan, georeferenced Nearmap aerial imagery, topography, buildings, and barriers in its calculations to predict outdoor noise levels.

Using the ISO 9613 protocol, CadnaA will calculate the distance from each noise source to the noise receiver locations, using the ground absorption, distance, and barrier/building attenuation inputs to provide a summary of noise level at each receiver and the partial noise level contributions by noise source. Consistent with the ISO 9613 protocol, the CadnaA noise prediction model relies on the reference sound power level (Lw) to describe individual noise sources. While sound pressure levels (e.g. L_{eq}) quantify in decibels the intensity of given sound sources at a reference distance, sound power levels (Lw) are connected to the sound source and are independent of distance. Sound pressure levels vary substantially with distance from the source and diminish as a result of intervening obstacles and barriers, air absorption, wind, and other factors. Sound power is the acoustical energy emitted by the sound source and is an absolute value that is not affected by the environment.

The operational noise level calculations provided in this noise study account for the distance attenuation provided due to geometric spreading, when sound from a localized stationary source (i.e., a point source) propagates uniformly outward in a spherical pattern. A default ground attenuation factor of 0.5 was used in the noise analysis to account for mixed ground representing a combination of hard and soft surfaces. Appendix 9.1 includes the detailed noise model inputs used to estimate the Project operational noise levels presented in this section.

9.4 **PROJECT OPERATIONAL NOISE LEVELS**

Using the reference noise levels to represent the proposed Project operations that include loading dock activity, entry gate & truck movements, roof-top air conditioning units, and trash enclosure activity, Urban Crossroads, Inc. calculated the operational source noise levels that are expected to be generated at the Project site and the Project-related noise level increases that would be experienced at each of the sensitive receiver locations and at 200 feet from the property line of the source. Tables 9-3 shows the Project operational noise levels during the daytime hours of 8:00 a.m. to 10:00 p.m. The daytime hourly noise levels at the off-site receiver locations are expected to range from 35.1 to 55.6 dBA L_{eq}.

Noise Source ¹	Operational Noise Levels by Receiver Location (dBA Leq)							
Noise Source-	R1	R2	R3	R4	R5	at 200'		
Loading Dock Activity	34.9	43.3	48.8	31.5	32.7	55.4		
Entry Gate & Truck Movements	25.6	30.4	33.3	31.0	30.4	41.0		
Roof-Top Air Conditioning Units	37.4	25.9	26.5	27.6	36.6	29.1		
Trash Enclosure Activity	1.0	14.3	18.2	2.7	1.3	25.2		
Total (All Noise Sources)	39.5	43.6	48.9	35.1	38.8	55.6		

TABLE 9-3: DAYTIME PROJECT OPERATIONAL NOISE LEVELS

¹ See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

Table 9-4 shows the Project operational noise levels during the nighttime hours of 10:01 p.m. to 7:59 a.m. The nighttime hourly noise levels at the off-site receiver locations are expected to range from 32.8 to 55.4 dBA L_{eq} . The differences between the daytime and nighttime noise levels is largely related to the duration of noise activity (Table 9-1).

Noise Source ¹	Operational Noise Levels by Receiver Location (dBA Leq)							
Noise Source-	R1	R2	R3	R4	R5	at 200'		
Loading Dock Activity	34.9	43.3	48.8	31.5	32.7	55.4		
Entry Gate & Truck Movements	16.5	21.3	24.2	21.9	21.3	32.0		
Roof-Top Air Conditioning Units	35.0	23.5	24.1	25.2	34.2	26.7		
Trash Enclosure Activity	0.0	13.3	17.2	1.8	0.4	24.3		
Total (All Noise Sources)	38.0	43.4	48.8	32.8	36.7	55.4		

TABLE 9-4: NIGHTTIME PROJECT OPERATIONAL NOISE LEVELS

¹ See Exhibit 9-A for the noise source locations. CadnaA noise model calculations are included in Appendix 9.1.

9.5 PROJECT OPERATIONAL NOISE LEVEL COMPLIANCE

To demonstrate compliance with local noise regulations, the Project-only operational noise levels are evaluated against exterior noise level thresholds based on the City of Moreno Valley exterior noise level standards at the nearest noise-sensitive receiver locations. Table 9-5 shows the operational noise levels associated with Compass Danbe Centerpointe Project will satisfy the City of Moreno Valley 65 dBA L_{eq} daytime and 60 dBA L_{eq} nighttime exterior noise level standards at all the nearest receiver locations and at 200 feet from the property line of the source. Therefore, the operational noise impacts are considered *less than significant* at the nearest noise-sensitive receiver locations.

Receiver Location ¹	Project Op Noise Level	perational s (dBA Leq) ²		l Standards Leq) ³		l Standards ded? ⁴
Location	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime
R1	39.5	38.0	65	60	No	No
R2	43.6	43.4	65	60	No	No
R3	48.9	48.8	65	60	No	No
R4	35.1	32.8	65	60	No	No
R5	38.8	36.7	65	60	No	No
at 200'	55.6	55.4	65	60	No	No

TABLE 9-5: OPERATIONAL NOISE LEVEL COMPLIANCE

¹ See Exhibit 8-A for the receiver locations.

² Proposed Project operational noise levels as shown on Tables 9-3 and 9-4.

³ Exterior noise level standards for source (commercial) land use, as shown on Table 4-1.

⁴ Do the estimated Project operational noise source activities exceed the noise level standards?

"Daytime" = 8:00 a.m. - 10:00 p.m.; "Nighttime" = 10:01 p.m. - 7:59 a.m.

9.6 PROJECT OPERATIONAL NOISE LEVEL INCREASES

To describe the Project operational noise level increases, the Project operational noise levels are combined with the existing ambient noise levels measurements for the nearest receiver locations potentially impacted by Project operational noise sources. Since the units used to measure noise, decibels (dB), are logarithmic units, the Project-operational and existing ambient noise levels cannot be combined using standard arithmetic equations. (2) Instead, they must be logarithmically added using the following base equation:

$$SPL_{Total} = 10log_{10}[10^{SPL1/10} + 10^{SPL2/10} + \dots 10^{SPLn/10}]$$

Where "SPL1," "SPL2," etc. are equal to the sound pressure levels being combined, or in this case, the Project-operational and existing ambient noise levels. The difference between the combined Project and ambient noise levels describe the Project noise level increases to the existing ambient noise environment. As indicated on Tables 9-6 and 9-7, the Project is not expected to generate a measurable daytime and nighttime operational noise level increase dBA L_{eq} at the nearest receiver locations and at 200 feet from the property line of the source. Project-related operational noise level increases will satisfy the operational noise level increase significance criteria presented in Table 4-1. Therefore, the incremental Project operational noise level increase level increase stress will satisfy the operational noise level increase stress level increase level increase level increase stress will satisfy the incremental Project operational noise level increase level increase level increase stress will satisfy the incremental Project operational noise level increase level increase level increase stress has significant at all receiver locations.

Receiver Location ¹	Total Project Operational Noise Level ²	Measurement Location ³	Reference Ambient Noise Levels ⁴	Combined Project and Ambient ⁵	Project Increase ⁶	Increase Criteria ⁷	Increase Criteria Exceeded?
R1	39.5	L1	68.7	68.7	0.0	1.5	No
R2	43.6	L2	61.1	61.2	0.1	3.0	No
R3	48.9	L3	57.3	57.9	0.6	5.0	No
R4	35.1	L4	66.0	66.0	0.0	1.5	No
R5	38.8	L5	71.0	71.0	0.0	1.5	No
at 200'	55.6	L1	68.7	68.9	0.2	1.5	No

TABLE 9-6: DAYTIME PROJECT OPERATIONAL NOISE LEVEL INCREASES

¹ See Exhibit 8-A for the receiver locations.

² Total Project daytime operational noise levels as shown on Table 9-3.

³ Reference noise level measurement locations as shown on Exhibit 5-A.

⁴ Observed daytime ambient noise levels as shown on Table 5-1.

⁵ Represents the combined ambient conditions plus the Project activities.

⁶ The noise level increase expected with the addition of the proposed Project activities.

⁷ Significance increase criteria as shown on Table 4-1.

Receiver Location ¹	Total Project Operational Noise Level ²	Measurement Location ³	Reference Ambient Noise Levels ⁴	Combined Project and Ambient ⁵	Project Increase ⁶	Increase Criteria ⁷	Increase Criteria Exceeded?
R1	38.0	L1	67.3	67.3	0.0	1.5	No
R2	43.4	L2	56.3	56.5	0.2	5.0	No
R3	48.8	L3	55.9	56.7	0.8	5.0	No
R4	32.8	L4	63.5	63.5	0.0	3.0	No
R5	36.7	L5	67.9	67.9	0.0	1.5	No
at 200'	55.4	L1	67.3	67.6	0.3	1.5	No

TABLE 9-7: NIGHTTIME OPERATIONAL NOISE LEVEL INCREASES

¹ See Exhibit 8-A for the receiver locations.

² Total Project nighttime operational noise levels as shown on Table 9-4.

³ Reference noise level measurement locations as shown on Exhibit 5-A.

⁴ Observed nighttime ambient noise levels as shown on Table 5-1.

⁵ Represents the combined ambient conditions plus the Project activities.

⁶ The noise level increase expected with the addition of the proposed Project activities.

⁷ Significance increase criteria as shown on Table 4-1.

This page intentionally left blank

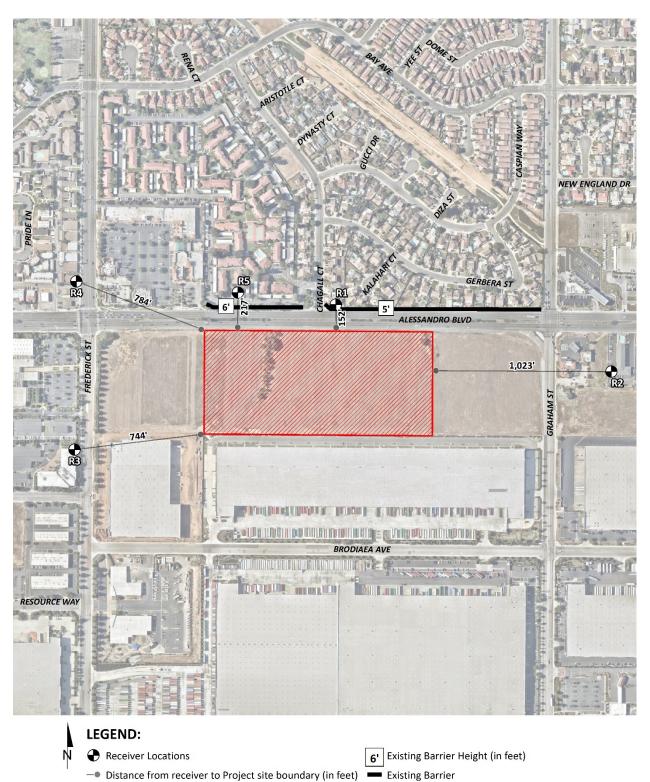
10 CONSTRUCTION IMPACTS

This section analyzes potential impacts resulting from the short-term construction activities associated with the development of the Project. Exhibit 10-A shows the construction noise source locations in relation to the nearest sensitive receiver locations previously described in Section 8.

To prevent high levels of construction noise from impacting noise-sensitive land uses, City of Moreno Valley Municipal Code Section 11.80.030 (D)(7) limits general construction activities within 200 feet of residential uses to weekdays, between 7:00 a.m. and 8:00 p.m. In addition, grading operations shall be limited to the hours identified in Section 8.21.050 (O) of 7:00 a.m. to 6:00 p.m., Monday through Friday, and 8:00 a.m. to 4:00 p.m. on weekends and holidays or as approved by the City Engineer.

10.1 CONSTRUCTION NOISE LEVELS

Noise generated by the Project construction equipment will include a combination of trucks, power tools, concrete mixers, and portable generators that when combined can reach high levels. The number and mix of construction equipment is expected to occur in the following stages:


- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

This construction noise analysis was prepared using reference noise level measurements taken by Urban Crossroads, Inc. to describe the typical construction activity noise levels for each stage of Project construction. The construction reference noise level measurements represent a list of typical construction activity noise levels.

10.2 CONSTRUCTION REFERENCE NOISE LEVELS

To describe the Project construction noise levels, measurements were collected for similar activities at several construction sites. Table 10-1 provides a summary of the construction reference noise level measurements. Since the reference noise levels were collected at varying distances of 30 feet and 50 feet, all construction noise level measurements presented on Table 10-1 have been adjusted for consistency to describe a uniform reference distance of 50 feet.

EXHIBIT 10-A: TYPICAL CONSTRUCTION NOISE SOURCE LOCATIONS

Construction Stage	Reference Construction Activity ¹	Reference Noise Level @ 50 Feet (dBA L _{eq})	Highest Reference Noise Level (dBA L _{eq})	
	Scraper Turnaround & Pass-by 4 with Blades	72.6		
Site Preparation	Backhoe	64.2	72.6	
reparation	Water Truck Pass-By & Backup Alarm	71.9		
	Rough Grading Activities	73.5		
Grading	Water Truck Pass-By & Backup Alarm	71.9	73.5	
	Construction Vehicle Maintenance Activities	67.5		
	Foundation Trenching	68.2		
Building Construction	Framing	62.3	71.6	
construction	Concrete Mixer Backup Alarms & Air Brakes	71.6		
	Concrete Mixer Truck Movements	71.2		
Paving	Concrete Paver Activities	65.6	71.2	
	Concrete Mixer Pour & Paving Activities	65.9	1	
	Air Compressors	65.2		
Architectural Coating	Generator	64.9	65.2	
couting	Crane	62.3		

TABLE 10-1: TYPICAL CONSTRUCTION REFERENCE NOISE LEVELS

¹ Reference construction noise level measurements taken by Urban Crossroads, Inc.

10.3 Typical Construction Noise Analysis

Using the reference construction equipment noise levels and the CadnaA noise prediction model, calculations of the Project construction noise level impacts at the nearest sensitive receiver locations were completed. To assess the worst-case construction noise levels, the Project construction noise analysis relies on the highest noise level impacts when the equipment with the highest reference noise level is operating at the closest point from the edge of primary construction activity (Project site boundary) to each receiver location. As shown on Table 10-2, the construction noise levels are expected to range from 56.3 to 63.7 dBA L_{eq} at the nearest receiver locations and at 200 feet from the property line of the source. Appendix 10.1 includes the detailed CadnaA construction noise model inputs.

		Cor	nstruction Nois	e Levels (dBA	N L _{eq})	
Receiver Location ¹	Site Preparation	Grading	Building Construction	Paving	Architectural Coating	Highest Levels ²
R1	61.0	61.9	60.0	56.5	53.6	61.9
R2	55.4	56.3	54.4	50.9	48.0	56.3
R3	57.0	57.9	56.0	52.5	49.6	57.9
R4	56.4	57.3	55.4	52.3	49.0	57.3
R5	59.0	59.9	58.0	54.7	51.6	59.9
at 200'	62.8	63.7	61.8	57.6	55.4	63.7

TABLE 10-2: TYPICAL CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY

¹Noise receiver locations are shown on Exhibit 10-A.

² Construction noise level calculations based on distance from the project site boundaries (construction activity area) to the nearest receiver locations. CadnaA construction noise model inputs are included in Appendix 10.1.

10.4 Typical Construction Noise Level Compliance

The construction noise analysis shows that the nearest receiver locations will satisfy the City of Moreno Valley daytime 65 dBA L_{eq} significance threshold during Project construction activities as shown on Table 10-3. Therefore, the noise impacts due to Project construction noise is considered *less than significant* at all receiver locations and at 200 feet from the property line of the source.

	Construction Noise Levels (dBA Leq)						
Receiver Location ¹	Highest Construction Noise Levels ²	Threshold ³	Threshold Exceeded? ⁴				
R1	61.9	65	No				
R2	56.3	65	No				
R3	57.9	65	No				
R4	57.3	65	No				
R5	59.9	65	No				
at 200'	63.7	65	No				

TABLE 10-3: TYPICAL CONSTRUCTION NOISE LEVEL COMPLIANCE

¹Noise receiver locations are shown on Exhibit 10-A.

² Highest construction noise level calculations based on distance from the construction noise

source activity to the nearest receiver locations as shown on Table 10-2.

³ Construction noise level thresholds as shown on Table 4-1.

⁴ Do the estimated Project construction noise levels exceed the construction noise level threshold?

10.5 NIGHTTIME CONCRETE POUR NOISE ANALYSIS

Nighttime concrete pouring activities may occur as a part of Project construction activities. Nighttime concrete pouring activities are often used to support reduced concrete mixer truck transit times and lower air temperatures than during the daytime hours and are generally limited to the actual buildings area as shown on Exhibit 10-B. Since the nighttime concrete pours may take place outside the permitted City of Moreno Valley Municipal Code, Section 11.80.030 (D)(7)

hours of 7:00 a.m. to 8:00 p.m. on any day and grading is limited to 7:00 a.m. to 6:00 p.m. Monday to Friday and 8:00 a.m. to 4:00 p.m. on weekends and holidays, the Project Applicant will be required to obtain authorization for nighttime work from the City of Moreno Valley. Table 10-4 shows the concrete pour activities (paving) noise will range from 50.9 to 57.6 dBA L_{eq.} at the nearest sensitive receiver locations and at 200 feet from the property line of the source. Therefore, the unmitigated nighttime concrete pour noise level impacts are considered *less than significant* at the nearest noise-sensitive receiver locations and at 200 feet from the property line.

	Construction Noise Levels (dBA Leq)				
Receiver Location ¹	Paving Construction ²	Nighttime Construction Standard ³	Threshold Exceeded? ⁴		
R1	56.5	60	No		
R2	50.9	60	No		
R3	52.5	60	No		
R4	52.3	60	No		
R5	54.7	60	No		
at 200'	57.6	60	No		

TABLE 10-4: NIGHTTIME CONCRETE POUR NOISE LEVEL COMPLIANCE

¹ Noise receiver locations are shown on Exhibit 10-B.

² Construction noise level calculations based on distance from the project building area to the property line of adjacent uses as shown on Table 10-4.

³ Construction noise level standards as shown on Table 3-2.

⁴ Do the estimated Project construction noise levels exceed the construction noise level threshold?

10.6 Typical Construction Vibration Impacts

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods used, distance to the affected structures and soil type. It is expected that ground-borne vibration from Project construction activities would cause only intermittent, localized intrusion. Ground-borne vibration levels resulting from typical construction activities occurring within the Project site were estimated by data published by the Federal Transit Administration (FTA). (7) However, while vehicular traffic is rarely perceptible, construction has the potential to result in varying degrees of temporary ground vibration, depending on the specific construction activities and equipment used. Ground vibration levels associated with various types of construction equipment are summarized on Table 10-5. Based on the representative vibration levels presented for various construction equipment types, it is possible to estimate the potential Project construction vibration levels using the following vibration assessment methods defined by the FTA. To describe the human response (annoyance) associated with vibration impacts the FTA provides the following equation: $L_{VdB}(D) = L_{VdB}(25 \text{ ft}) - 30\log(D/25)$

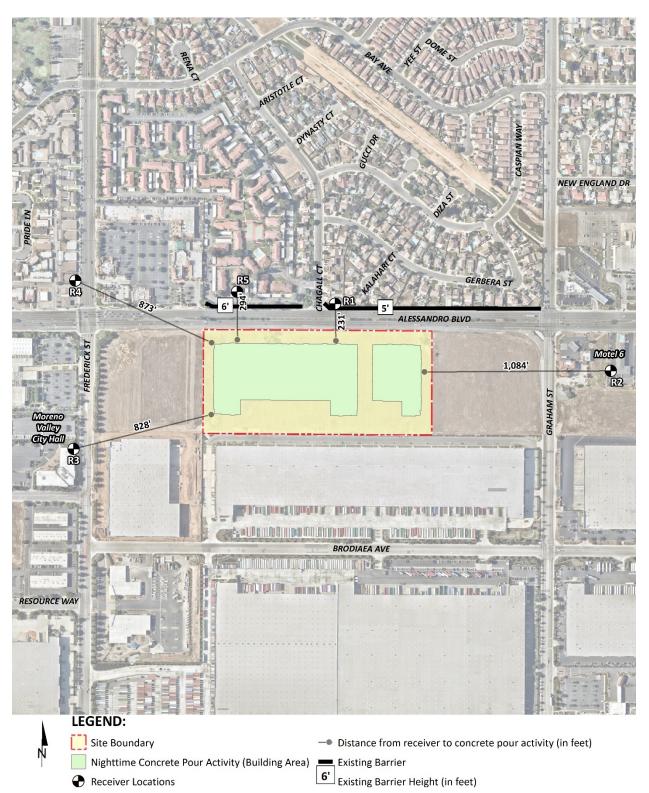


EXHIBIT 10-B: NIGHTTIME CONCRETE POUR NOISE SOURCE AND RECEIVER LOCATIONS

Equipment	Vibration Decibels (VdB) at 25 feet		
Small bulldozer	58		
Jackhammer	79		
Loaded Trucks	86		
Large bulldozer	87		

TABLE 10-5: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT

Federal Transit Administration, Transit Noise and Vibration Impact Assessment Manual

Table 10-6 presents the expected typical construction equipment vibration levels at the nearest receiver locations. At distances ranging from 152 feet to 1,023 feet from typical Project construction activities (at the Project site boundary), construction vibration levels are estimated to range from 38.6 to 63.5 VdB and will remain below the FTA Transit Noise and Vibration Impact Assessment maximum acceptable vibration criteria of 78 VdB for daytime residential uses, and 84 VdB for daytime office use at all receiver locations and at 200 feet from the property line of the source. Therefore, the Project-related vibration impacts are considered *less than significant* during typical construction activities at the Project site.

TABLE 10-6: TYPICAL CONSTRUCTION EQUIPMENT VIBRATION LEVELS

	Distance to	Receiver Vibration Levels (VdB) ²						
Receiver Location ¹	Construction Activity (Feet)	Small Bulldozer	Jack- hammer	Loaded Trucks	Large Bulldozer	Highest Vibration Levels	Threshold VdB ³	Threshold Exceeded? ⁴
R1	152'	34.5	55.5	62.5	63.5	63.5	78	No
R2	1,023'	9.6	30.6	37.6	38.6	38.6	78	No
R3	744'	13.8	34.8	41.8	42.8	42.8	84	No
R4	784'	13.1	34.1	41.1	42.1	42.1	78	No
R5	217'	29.8	50.8	57.8	58.8	58.8	78	No
at 200'	200'	30.9	51.9	58.9	59.9	59.9	78	No

¹Noise receiver locations are shown on Exhibit 10-A.

² Based on the Vibration Source Levels of Construction Equipment included on Table 10-5.

³ FTA Transit Noise and Vibration Impact Assessment maximum acceptable vibration criteria as shown in Section 3.5.

⁴ Does the vibration level exceed the maximum acceptable vibration threshold?

Further, vibration levels at the site of the closest sensitive receiver are unlikely to be sustained during the entire construction period but will occur rather only during the times that heavy construction equipment is operating simultaneously adjacent to the Project site perimeter.

This page intentionally left blank

11 REFERENCES

- 1. State of California. California Environmental Quality Act, Appendix G. 2018.
- 2. California Department of Transportation Environmental Program. *Technical Noise Supplement A Technical Supplement to the Traffic Noise Analysis Protocol.* Sacramento, CA : s.n., September 2013.
- 3. Environmental Protection Agency Office of Noise Abatement and Control. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. March 1974. EPA/ONAC 550/9/74-004.
- 4. U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning, Noise and Air Quality Branch. *Highway Traffic Noise Analysis and Abatement Policy and Guidance*. December 2011.
- 5. **U.S. Department of Transportation, Federal Highway Administration.** *Highway Traffic Noise in the United States, Problem and Response.* April 2000. p. 3.
- 6. U.S. Environmental Protection Agency Office of Noise Abatement and Control. *Noise Effects Handbook-A Desk Reference to Health and Welfare Effects of Noise*. October 1979 (revised July 1981). EPA 550/9/82/106.
- 7. U.S. Department of Transportation, Federal Transit Administration. *Transit Noise and Vibration Impact Assessment Manual.* September 2018.
- 8. Office of Planning and Research. State of California General Plan Guidelines. October 2017.
- 9. State of California. 2016 California Green Building Standards Code. January 2017.
- 10. City of Moreno Valley. General Plan Safety Element. July 2006.
- 11. —. Municipal Code, Chapter 11.80 Noise Regulation.
- 12. Riverside County Airport Land Use Commission. March Air Reserve Base/Inland Port Airport Land Use Compatibility Plan. November 2014.
- 13. City of Moreno Valley. General Plan. July, 2006.
- 14. Office of Planning and Research. State of California General Plan Guidlines. October 2017.
- 15. California Court of Appeal. *Gray v. County of Madera, F053661.* 167 Cal.App.4th 1099; Cal.Rptr.3d, October 2008.
- 16. Federal Interagency Committee on Noise. Federal Agency Review of Selected Airport Noise Analysis Issues. August 1992.
- 17. California Department of Transportation. Technical Noise Supplement. November 2009.
- 18. American National Standards Institute (ANSI). Specification for Sound Level Meters ANSI S1.4-2014/IEC 61672-1:2013.
- 19. U.S. Department of Transportation, Federal Highway Administration. FHWA Highway Traffic Noise Prediction Model. December 1978. FHWA-RD-77-108.
- 20. California Department of Transportation Environmental Program, Office of Environmental Engineering. Use of California Vehicle Noise Reference Energy Mean Emission Levels (Calveno REMELs) in FHWA Highway Traffic Noise Prediction. September 1995. TAN 95-03.
- 21. California Department of Transportation. *Traffic Noise Attenuation as a Function of Ground and Vegetation Final Report.* June 1995. FHWA/CA/TL-95/23.
- 22. Urban Crossroads, Inc. Alessandro Warehouse. September 2020.

This page intentionally left blank

12 CERTIFICATION

The contents of this noise study report represent an accurate depiction of the noise environment and impacts associated with the proposed Compass Danbe Centerpointe Project. The information contained in this noise study report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at (949) 336-5979.

Bill Lawson, P.E., INCE Principal URBAN CROSSROADS, INC. 260 E. Baker Street, Suite 200 Costa Mesa, CA 92626 (949) 336-5979 blawson@urbanxroads.com

EDUCATION

Master of Science in Civil and Environmental Engineering California Polytechnic State University, San Luis Obispo • December, 1993

Bachelor of Science in City and Regional Planning California Polytechnic State University, San Luis Obispo • June, 1992

PROFESSIONAL REGISTRATIONS

PE – Registered Professional Traffic Engineer – TR 2537 • January, 2009
AICP – American Institute of Certified Planners – 013011 • June, 1997–January 1, 2012
PTP – Professional Transportation Planner • May, 2007 – May, 2013
INCE – Institute of Noise Control Engineering • March, 2004

PROFESSIONAL AFFILIATIONS

ASA – Acoustical Society of America ITE – Institute of Transportation Engineers

PROFESSIONAL CERTIFICATIONS

Certified Acoustical Consultant – County of Orange • February, 2011 FHWA-NHI-142051 Highway Traffic Noise Certificate of Training • February, 2013

This page intentionally left blank

APPENDIX 3.1:

CITY OF MORENO VALLEY MUNICIPAL CODE

This page intentionally left blank

Chapter 11.80 NOISE REGULATION

11.80.010 Legislative findings.

It is found and declared that:

A. Excessive sound within the limits of the city is a condition which has existed for some time, and the amount and intensity of such sound is increasing.

B. Such excessive sound is a detriment to the public health, safety, and welfare and quality of life of the residents of the city.

C. The necessity in the public interest for the provisions and prohibitions hereinafter contained and enacted is declared as a matter of legislative determination and public policy, and it is further declared that the provisions and prohibitions hereinafter contained and enacted are in pursuance of and for the purpose of securing and promoting the public health, safety, welfare and quality of life of the city and its inhabitants. (Ord. 740 § 1.2, 2007)

11.80.020 Definitions.

For purposes of this chapter, certain words and phrases used herein are defined as follows:

"A-weighted sound level" means the sound pressure level in decibels as measured with a sound level meter using the A-weighting network. The unit of measurement is the dB(A).

"Commercial" means all uses of land not otherwise classified as residential, as defined in this section.

"Construction" means any site preparation, and/or any assembly, erection, repair, or alteration, excluding demolition, of any structure, or improvements to real property.

"Continuous airborne sound" means sound that is measured by the slow-response setting of a meter manufactured to the specifications of ANSI Section 1.4-1983 (R2006) "Specification for Sound Level Meters," or its successor.

"Daytime" means eight a.m. to ten p.m. the same day.

"Decibel" (dB) means a unit for measuring the amplitude of sound, equal to twenty (20) times the logarithm to the base ten (10) of the ratio of the pressure of the sound measured to the reference pressure, which is twenty (20) microPascals (twenty (20) microNewtons per square meter.)

"Demolition" means any dismantling, intentional destruction or removal of structures or other improvements to real property.

"Disturb" means to interrupt, interfere with, or hinder the enjoyment of peace or quiet or the normal listening activities or the sleep, rest or mental concentration of the hearer.

"Emergency" means any occurrence or set of circumstances involving actual or imminent physical trauma or significant property damage which necessitates immediate action. Economic loss alone shall not constitute an emergency. It shall be the burden of an alleged violator to prove an "emergency."

"Emergency work" means any work made necessary to restore property to a safe condition following an emergency, or to protect persons or property threatened by an imminent emergency, to the extent such work is, in fact, necessary to protect persons or property from exposure to imminent danger or damage.

"Frequency" means the number of complete oscillation cycles per unit of time.

"Impulsive sound" means sound of short duration, usually less than one second, with an abrupt onset and rapid decay. Examples of sources of impulsive sound include explosions, drop forge impacts, and discharge of firearms.

"Nighttime" means 10:01 p.m. to 7:59 a.m. the following day.

"Noise disturbance" means any sound which:

1. Disturbs a reasonable person of normal sensitivities;

2. Exceeds the sound level limits set forth in this chapter; or

3. Is plainly audible as defined in this section. Where no specific distance is set forth for the determination of audibility, references to noise disturbance shall be deemed to mean plainly audible at a distance of two hundred (200) feet from the real property line of the source of the sound, if the sound occurs on privately owned property, or from the source of the sound, if the sound occurs on public right-of-way, public space or other publicly owned property.

"Person" means any person, person's firm, association, copartnership, joint venture, corporation, or any entity public or private in nature.

"Plainly audible" means that the sound or noise produced or reproduced by any particular source, can be clearly distinguished from ambient noise by a person using his/her normal hearing faculties.

"Public right-of-way" means any street, avenue, boulevard, sidewalk, bike path or alley, or similar place normally accessible to the public which is owned or controlled by a governmental entity.

"Public space" means any park, recreational or community facility, or lot which contains at least one building that is open to the general public during its hours of operation.

"Residential" means all uses of land primarily for dwelling units, as well as hospitals, schools, colleges and universities, and places of religious assembly.

"Sound" means an oscillation in pressure, particle displacement, particle velocity or other physical parameter, in a medium with internal forces that causes compression and rarefaction of that medium capable of producing an auditory impression. The description of sound may include any characteristic of such sound, including duration, intensity and frequency.

"Sound level" means the weighted sound pressure level as measured in dB(A) by a sound level meter and as specified in American National Standards Institute (ANSI) specifications for sound-level meters (ANSI Section 1.4-1971 (R1976)). If the frequency weighting employed is not indicated, the A-weighting shall apply.

"Sound level meter" means an instrument, demonstrably capable of accurately measuring sound levels as defined above.

All technical definitions not defined above shall be in accordance with applicable publications and standards of the American National Standards Institute (ANSI). (Ord. 740 § 1.2, 2007)

11.80.030 Prohibited acts.

A. General Prohibition. It is unlawful and a violation of this chapter to maintain, make, cause, or allow the making of any sound that causes a noise disturbance, as defined in Section 11.80.020.

B. Sound causing permanent hearing loss.

1. Sound level limits. Based on statistics from the Center for Disease Control and Prevention and the National Institute for Occupational Safety and Health, Table 1 and Table 1-A specify sound level limits which, if exceeded, will have a high probability of producing permanent hearing loss in anyone in the area where the sound levels are being exceeded. No sound shall be permitted within the city which exceeds the parameters set forth in Tables 11.80.030-1 and 11.80.030-1-A of this chapter:

Table 11.80.030-1 MAXIMUM CONTINUOUS SOUND LEVELS*

Duration per Day					
Continuous Hours	Sound level [db(A)]				
8	<mark>90</mark>				
6	92				
4	95				
3	97				

2	100
1.5	102
1	105
0.5	110
0.25	115

* When the daily sound exposure is composed of two or more periods of sound exposure at different levels, the combined effect of all such periods shall constitute a violation of this section if the sum of the percent of allowed period of sound exposure at each level exceeds 100 percent

Table 11.80.030-1A MAXIMUM IMPULSIVE SOUND LEVELS

Number of Repetitions per 24-Hour Period	Sound level [dB(A)]
1	145
10	135
100	125

2. Exemptions. No violation shall exist if the only persons exposed to sound levels in excess of those listed in Tables 11.80.030-1 and 11.80.030-1A are exposed as a result of:

a. Trespass;

b. Invitation upon private property by the person causing or permitting the sound; or

c. Employment by the person or a contractor of the person causing or permitting the sound.

C. Nonimpulsive Sound Decibel Limits. No person shall maintain, create, operate or cause to be operated on private property any source of sound in such a manner as to create any nonimplusive sound which exceeds the limits set forth for the source land use category (as defined in Section <u>11.80.020</u>) in Table 11.80.030-2 when measured at a distance of two hundred (200) feet or more from the real property line of the source of the sound, if the sound occurs on privately owned property, or from the source of the sound, if the sound occurs on public right-of-way, public space or other publicly owned property. Any source of sound in violation of this subsection shall be deemed prima facie to be a noise disturbance.

Table 11.80.030-2

MAXIMUM SOUND LEVELS (IN dB(A)) FOR SOURCE LAND USES

Resi	dential	Com	mercial
Daytime	Nighttime	Daytime	Nighttime
60	55	<mark>65</mark>	<mark>60</mark>

D. Specific Prohibitions. In addition to the general prohibitions set out in subsection A of this section, and unless otherwise exempted by this chapter, the following specific acts, or the causing or permitting thereof, are regulated as follows:

1. Motor Vehicles. No person shall operate or cause to be operated a public or private motor vehicle, or combination of vehicles towed by a motor vehicle, that creates a sound exceeding the sound level limits in Table 11.80.030-2 when the vehicle(s) are not otherwise subject to noise regulations provided for by the California <u>Vehicle Code</u>.

2. Radios, Televisions, Electronic Audio Equipment, Musical Instruments or Similar Devices from a Stationary Source. No person shall operate, play or permit the operation or playing of any radio, tape player, television, electronic audio equipment, musical instrument, sound amplifier or other mechanical or electronic sound making device that produces, reproduces or amplifies sound in such a manner as to create a noise disturbance. However, this subsection shall not apply to any use or activity exempted in subsection E of this section and any use or activity for which a special permit has been issued pursuant to Section <u>11.80.040</u>.

3. Radios, Electronic Audio Equipment, or Similar Devices from a Mobile Source Such as a Motor Vehicle. Sound amplification or reproduction equipment on or in a motor vehicle is subject to regulation in accordance with the California <u>Vehicle Code</u> when upon the public right-of-way. When upon public space or publicly owned property other than the public right-of-way or upon private property open to the public, sound amplification or reproduction equipment shall not be operated in such a manner that it is plainly audible at a distance of fifty (50) feet in any direction from the vehicle.

4. Portable, Hand-Held Music or Sound Amplification or Reproduction Equipment. Such equipment shall not be operated on a public right-of-way, public space or other publicly owned property in such a manner as to be plainly audible at a distance of fifty (50) feet in any direction from the operator.

5. Loudspeakers and Public Address Systems.

a. Except as permitted by Section <u>11.80.040</u>, no person shall operate, or permit the operation of, any loudspeaker, public address system or similar device, for any commercial purpose:

1. Which produces, reproduces or amplifies sound in such a manner as to create a noise disturbance; or

2. During nighttime hours on a public right-of-way, public space or other publicly owned property.

b. No person shall operate, or permit the operation of, any loudspeaker, public address system or similar device, for any noncommercial purpose, during nighttime hours in such a manner as to create a noise disturbance.

6. Animals. No person shall own, possess or harbor an animal or bird that howls, barks, meows, squawks, or makes other sounds that:

a. Create a noise disturbance;

b. Are of frequent or continued duration for ten (10) or more consecutive minutes and are plainly audible at a distance of fifty (50) feet from the real property line of the source of the sound; or

c. Are intermittent for a period of thirty (30) or more minutes and are plainly audible at a distance of fifty (50) feet from the real property line of the source of the sound.

7. Construction and Demolition. No person shall operate or cause the operation of any tools or equipment used in construction, drilling, repair, alteration or demolition work between the hours of eight p.m. and seven a.m. the following day such that the sound there from creates a noise disturbance, except for emergency work by public service utilities or for other work approved by the city manager or designee. This section shall not apply to the use of power tools as provided in subsection (D)(9) of this section.

8. Emergency Signaling Devices. No person shall intentionally sound or permit the sounding outdoors of any fire, burglar or civil defense alarm, siren or whistle, or similar stationary emergency signaling device, except for emergency purposes or for testing as follows:

a. Testing of a stationary emergency signaling device shall not occur between seven p.m. and seven a.m. the following day;

b. Testing of a stationary emergency signaling device shall use only the minimum cycle test time, in no case to exceed sixty (60) seconds;

c. Testing of a complete emergency signaling system, including the functioning of the signaling device and the personnel response to the signaling device, shall not occur more than once in each calendar month. Such testing shall only occur only on weekdays between seven a.m. and seven p.m. and shall be exempt from the time limit specified in subsection (D)(8)(2) of this section.

9. Power Tools. No person shall operate or permit the operation of any mechanically, electrically or gasoline motordriven tool during nighttime hours so as to cause a noise disturbance across a residential real property boundary.

10. Pumps, Air Conditioners, Air-Handling Equipment and Other Continuously Operating Equipment. Notwithstanding the general prohibitions of subsection a of this section, no person shall operate or permit the operation of any pump, air

conditioning, air-handling or other continuously operating motorized equipment in a state of disrepair or in a manner which otherwise creates a noise disturbance distinguishable from normal operating sounds.

E. Exemptions. The following uses and activities shall be exempt from the sound level regulations except the maximum sound levels provided in Tables 11.80.030-1 and 11.80.030-1A:

1. Sounds resulting from any authorized emergency vehicle when responding to an emergency call or acting in time of an emergency.

2. Sounds resulting from emergency work as defined in Section 11.80.020

3. Any aircraft operated in conformity with, or pursuant to, federal law, federal air regulations and air traffic control instruction used pursuant to and within the duly adopted federal air regulations; and any aircraft operating under technical difficulties in any kind of distress, under emergency orders of air traffic control, or being operated pursuant to and subsequent to the declaration of an emergency under federal air regulations.

4. All sounds coming from the normal operations of interstate motor and rail carriers, to the extent that local regulation of sound levels of such vehicles has been preempted by the Noise Control Act of 1972 (42 U.S.C. § 4901 et seq.) or other applicable federal laws or regulations

5. Sounds from the operation of motor vehicles, to the extent they are regulated by the California Vehicle Code.

6. Any constitutionally protected noncommercial speech or expression conducted within or upon a any public rightof-way, public space or other publicly owned property constituting an open or a designated public forum in compliance with any applicable reasonable time, place and manner restrictions on such speech or expression or otherwise pursuant to legal authority.

7. Sounds produced at otherwise lawful and permitted city-sponsored events, organized sporting events, school assemblies, school playground activities, by permitted fireworks, and by permitted parades on public right-of-way, public space or other publicly owned property.

8. An event for which a temporary use permit or special event permit has been issued under other provisions of this code, where the provisions of Section 11.80.040 are met, the permit granted expressly grants an exemption from specific standards contained in this chapter, and the permittee and all persons under the permittee's reasonable control actually comply with all conditions of such permit. Violation of any condition of such a permit related to sound or sound equipment shall be a violation of this chapter and punishable as such.

F. Nothing in this chapter shall be construed to limit, modify or repeal any other regulation elsewhere in this code relating to the regulation of noise sources, nor shall any such other regulation be read to permit the emission of noise in violation of any provision of this chapter. (Ord. 740 § 1.2, 2007)

11.80.040 Special provisions for temporary use and special event permits.

The exemption by permit set forth in Section 11.80.030(E)(8) shall be subject to the following requirements and conditions:

A. The permit application shall include the name, address and telephone number of the permit applicant; the date, hours and location for which the permit is requested; and the nature of the event or activity. It shall also specify the types of sounds and/or sound equipment to be permitted, the proposed duration of such sound, the specific standards from which the sound is to be exempted, and the reasons for each requested exemption.

B. The permit shall be issued provided the proposed activity meets the requirements of this section and the issuing official determines that the sound to be emitted at the event as proposed would not be detrimental to the public health, safety or welfare, that the event cannot reasonably achieve its legitimate aims and purposes without the exemption and that the sound levels proposed will not unreasonably damage the peace and quiet enjoyment of the lawful users of surrounding properties, nor constitute a public nuisance.

C. The official issuing the permit may prescribe any reasonable conditions or requirements he/she deems necessary to minimize noise disturbances upon the community or the surrounding neighborhood, and/or to protect the health, safety or welfare of the public, including participants in the permitted event, including use of mufflers, screens or other sound-attenuating devices.

D. Any permit granted must be in writing and shall contain all conditions upon which the permit shall be effective.

E. No more than six events requiring a sound limit exemption may be held at any particular location upon privately owned or controlled property per calendar year, provided further that the number of events shall not exceed the number permitted under the regulations for the type of permit issued. For purposes of this subsection, "location" means a legal parcel of real property or a complete shopping or commercial center or mall sharing common parking and access even if comprised of multiple legal parcels.

F. The exemption from sound limits under such permit shall not exceed maximum period of four hours in one twenty-four (24) hour day.

G. The permit will only be granted for hours between nine a.m. and ten p.m. on all days other than Friday and Saturday; and, on Friday and Saturday, between the hours of nine a.m. and one a.m. of the following day, except in the following circumstances:

1. A permit may be granted for hours between nine a.m. on New Year's Eve and one a.m. the following day (New Year's Day).

2. A permit may be granted for hours between nine a.m. and two a.m. the following day if there are no residences, hospitals, or nursing homes within a 0.5 mile radius of the property where the function is taking place.

H. Functions for which the permits are issued shall be limited to a continuous airborne sound level not to exceed seventy (70) dB(A), as measured two hundred (200) feet from the real property boundary of the source property if on private property, or from the source if on public right-of-way, public space or other publicly owned property. (Ord. 740 1.2, 2007)

11.80.050 Measurement or assessment of sound.

A. Measurement With Sound Meter.

1. The measurement of sound shall be made with a sound level meter meeting the standards prescribed by ANSI Section 1.4-1983 (R2006). The instruments shall be maintained in calibration and good working order. A calibration check shall be made of the system at the time of any sound level measurement. Measurements recorded shall be taken so as to provide a proper representation of the source of the sound. The microphone during measurement shall be positioned so as not to create any unnatural enhancement or diminution of the measured sound. A windscreen for the microphone shall be used at all times. However, a violation of this chapter may occur without the occasion of the measurements being made as otherwise provided.

2. The slow meter response of the sound level meter shall be used in order to best determine the average amplitude.

3. The measurement shall be made at any point on the property into which the sound is being transmitted and shall be made at least three feet away from any ground, wall, floor, ceiling, roof and other plane surface.

4. In case of multiple occupancy of a property, the measurement may be made at any point inside the premises to which any complainant has right of legal private occupancy; provided that the measurement shall not be made within three feet of any ground, wall, floor, ceiling, roof or other plane surface.

5. All measurements of sound provided for in this chapter will be made by qualified officials of the city who are designated by the city manager or designee to operate the apparatus used to make the measurements.

B. Assessment Without Sound Level Meter. Any police officer, code enforcement officer, or other official designated by the city manager or designee who hears a noise or sound that is plainly audible, as defined in Section <u>11.80.020</u>, in violation of this chapter, may enforce this chapter and shall assess the noise or sound according to the following standards:

1. The primary means of detection shall be by means of the official's normal hearing faculties, not artificially enhanced.

2. The official shall first attempt to have a direct line of sight and hearing to the vehicle or real property from which the sound or noise emanates so that the official can readily identify the offending source of the sound or noise and the distance involved. If the official is unable to have a direct line of sight and hearing to the vehicle or real property from which the sound or noise emanates, then the official shall confirm the source of the sound or noise by approaching the suspected vehicle or real property until the official is able to obtain a direct line of sight and hearing, and confirm the source of the sound or noise that was heard at the place of the original assessment of the sound or noise.

3. The official need not be required to identify song titles, artists, or lyrics in order to establish a violation. (Ord. 740 § 1.2, 2007)

11.80.060 Violation.

A. Violation of Sound Level Limits. Any person violating any of the provisions of this chapter shall be deemed guilty of a misdemeanor, and upon conviction thereof shall be punishable by a fine not to exceed one thousand dollars (\$1,000.00) and/or six months in the county jail, or both. Notwithstanding the foregoing, any violation of the provisions of this chapter may, in the discretion of the citing officer or the city attorney, be cited and/or prosecuted as an infraction or be subject to civil citation pursuant to Chapter <u>1.10</u>.

B. Joint and Several Responsibility. In addition to the person causing the offending sound, the owner, tenant or lessee of property, or a manager, overseer or agent, or any other person lawfully entitled to possess the property from which the offending sound is emitted at the time the offending sound is emitted, shall be responsible for compliance with this chapter if the additionally responsible party knows or should have known of the offending noise disturbance. It shall not be a lawful defense to assert that some other person caused the sound. The lawful possessor or operator of the premises shall be responsible for operating or maintaining the premises in compliance with this chapter and may be cited regardless of whether or not the person actually causing the sound is also cited.

C. Violation May be Declared a Public Nuisance. The operation or maintenance of any device, equipment, instrument, vehicle or machinery in violation of any provisions of this chapter which endangers the public health, safety and quality of life of residents in the area is declared to be a public nuisance, and may be subject to abatement summarily or by a restraining order or injunction issued

by a court of competent jurisdiction. (Ord. 824 § 1.2, 2011; Ord. 740 § 1.2, 2007)

View the mobile version.

APPENDIX 5.1:

STUDY AREA PHOTOS

L1_E 33, 55' 2.670000", 117, 15' 23.370000"

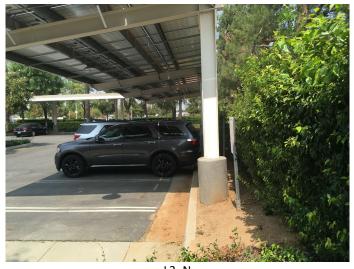
L1_N 33, 55' 2.670000", 117, 15' 23.370000"

L1_S 33, 55' 2.670000", 117, 15' 23.370000"

L1_W 33, 55' 2.680000", 117, 15' 23.400000"

L2_E 33, 55' 0.510000", 117, 15' 4.860000"

L2_N 33, 55' 0.530000", 117, 15' 4.860000"


L2_S 33, 55' 0.500000", 117, 15' 4.860000"

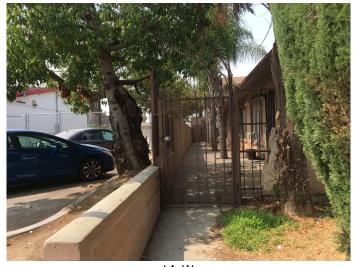
L2_W 33, 55' 0.500000", 117, 15' 4.860000"

L3_E 33, 54' 55.230000", 117, 15' 40.840000"

L3_N 33, 54' 55.400000", 117, 15' 40.460000"

L3_S 33, 54' 55.230000", 117, 15' 40.840000"

L3_W 33, 54' 55.240000", 117, 15' 40.900000"


L4_E 33, 55' 3.930000", 117, 15' 40.540000"

L4_N 33, 55' 3.930000", 117, 15' 40.540000"

L4_S 33, 55' 4.040000", 117, 15' 40.680000"

L4_W 33, 55' 3.960000", 117, 15' 40.620000"

L5_E 33, 55' 2.500000", 117, 15' 28.810000"

L5_N 33, 55' 4.070000", 117, 15' 27.910000"

L5_S 33, 55' 2.520000", 117, 15' 28.840000"

L5_W 33, 55' 2.520000", 117, 15' 28.870000"

APPENDIX 5.2:

NOISE LEVEL MEASUREMENT WORKSHEETS

						24-Ho	ur Noise Le	evel Meas	urement S	ummary						
Date:	Wednesday	, September	16, 2020		Location:	L1 - Located	l north of the	e Project site	on Alessand	ro	Meter:	Piccolo II			JN:	13661
Project:	Compass Da	anbe Centerp	ointe				0	single-family	residential h	nome at					Analyst:	P. Mara
						13994 Chag		dBA Readings	(unadjusted)							
							HOUTIY L eq 0	ива кейитуз	(unuujusteu)							
85.0	2															
₹ 80.0 ₹ 75.0	5															
<u>5</u> 70.0						~		ດ								
– 60.0	Š − ∞ +	∞ 0	65.1	68.2 69.7	70.	70.2 69.4	69.4	69.9 68.8	68.7	68.2	68.4 69.1	0.69	68.9 68.7	<mark>6:99</mark>	66.3 65.7	64.3
80.0 75.0 80.0 75.0 80.0 80.0 80.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		61.8 62.0	65											9	9 9	64
음 45.0 40.0	3 🛨 🕂															
35.0	J ++															
	0	1 2	3	4 5	6	7 8	9 1	10 11	12 1	3 14	15 16	17	18 19	20	21 22	23
									eginning							
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%	L _{eq}	Adj.	Adj. L _{eq}
	0	63.8	76.0	48.5	75.4	74.4	71.5	69.1	60.9	54.7	49.5	49.1	48.6	63.8	10.0	73.8
	1 2	61.8 62.0	73.8 74.3	48.5 49.8	73.3 73.8	72.4	69.4 69.5	67.1 67.2	58.9 58.6	53.7 53.5	49.3 50.4	48.9 50.2	48.6 49.9	61.8 62.0	10.0 10.0	71.8 72.0
	3	65.1	74.3	50.8	76.3	75.3	72.7	70.7	63.0	56.0	51.5	51.2	50.9	65.1	10.0	75.1
Night	4	68.2	78.8	54.3	78.3	77.4	75.1	73.6	67.9	61.6	55.6	55.0	54.5	68.2	10.0	78.2
	5	69.7	79.2	56.3	78.8	78.0	76.3	75.2	70.5	63.9	57.4	56.8	56.4	69.7	10.0	79.7
	6	70.8	81.5	56.9	80.9	79.9	77.1	75.5	71.1	65.7	58.5	57.6	57.0	70.8	10.0	80.8
Deu	7	70.2 69.4	79.1 78.5	56.9 54.6	78.6	77.9	76.1 75.3	74.9 74.4	71.4	66.3	58.3 56.3	57.5 55.4	57.0 54.7	70.2 69.4	0.0	70.2 69.4
Day	8 9	69.4 69.4	78.5	54.6	78.0 77.9	77.2	75.3	74.4	70.6	65.1 65.2	55.4	55.4 54.0	54.7	69.4 69.4	0.0	69.4 69.4
	10	69.9	80.9	49.3	80.3	79.1	76.1	74.2	70.0	65.3	52.7	51.1	49.5	69.9	0.0	69.9
	11	68.8	78.0	47.9	77.6	76.8	74.8	73.7	70.0	65.2	51.0	49.7	48.2	68.8	0.0	68.8
	12	68.7	77.8	50.4	77.3	76.6	74.8	73.7	69.9	64.4	53.3	51.6	50.6	68.7	0.0	68.7
	13	68.6	78.0	50.7	77.6	76.6	74.5	73.4	70.0	64.8	53.9	52.4	50.9	68.6	0.0	68.6
	14 15	68.2 68.4	77.1 90.2	51.9 52.3	76.7 89.3	75.9 87.9	74.1 83.2	72.9 80.4	69.5 69.7	64.8 65.4	55.2 55.5	53.4 54.0	52.2 52.6	68.2 68.4	0.0 0.0	68.2 68.4
	16	69.1	78.8	53.1	78.3	77.4	75.0	73.8	69.7	65.9	55.9	54.5	53.4	69.1	0.0	69.1
	17	69.0	80.7	54.0	80.1	79.2	76.0	73.9	69.9	65.8	56.9	55.4	54.2	69.0	0.0	69.0
	18	68.9	79.1	53.6	78.6	77.7	75.0	73.6	69.3	64.9	56.0	54.8	53.8	68.9	0.0	68.9
	19	68.7	80.7	51.3	80.1	79.0	75.4	73.1	67.9	61.4	53.4	52.2	51.5	68.7	5.0	73.7
Evening	20 21	66.9 66.3	77.9 77.6	50.3 50.6	77.2 76.9	76.3 75.8	73.9	72.4 71.6	66.7 65.6	59.6 59.3	51.9 52.2	51.0 51.3	50.4 50.7	66.9 66.3	5.0 5.0	71.9
	21	65.7	85.6	48.6	84.8	83.5	73.4 78.3	71.6	65.6	59.3	52.2	49.6	48.8	65.7	10.0	71.3
Night	23	64.3	76.0	49.0	75.5	74.5	71.6	69.8	62.4	56.3	50.3	49.6	49.1	64.3	10.0	74.3
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%		L _{eq} (dBA)	
Day	Min	68.2	77.1	47.9	76.7	75.9	74.1	72.9	69.3	64.4	51.0	49.7	48.2	24-Hour	Daytime	Nighttime
,	Max	69.9	90.2	54.6	89.3	87.9	83.2	80.4	70.6	65.9	56.9	55.4	54.7		-	
Energy	Average Min	69.0 66.3	Ave 77.6	erage: 50.3	79.2 76.9	78.3 75.8	75.8 73.4	74.4	70.0 65.6	65.2 59.3	54.7 51.9	53.3 51.0	52.1 50.4	68.2	68.7	67.3
Evening	Max	68.7	80.7	50.3	76.9 80.1	75.8	73.4	71.6	67.9	61.4	51.9	51.0	50.4		Hour CNEL (d	
Energy	Average	67.4		erage:	78.1	77.1	74.2	72.4	66.7	60.1	52.5	51.5	50.9			
Night	Min	61.8	73.8	48.5	73.3	72.4	69.4	67.1	58.6	53.5	49.3	48.9	48.6	1	73.8	
	Max	70.8	85.6	56.9	84.8	83.5	78.3	75.5	71.4	66.3	58.5	57.6	57.0		/ 5.0	
Energy	Average	67.3	Ave	erage:	77.4	76.5	73.5	71.4	64.3	58.2	52.6	52.0	51.5			

						24-Ho	ur Noise L	evel Meas	urement S	ummary						
		r, September anbe Centerp	-		Location:	L2 - Located 23581 Aless	east of the andro Boule	Project site b evard.	oy existing M	otel 6 at	Meter:	Piccolo II			JN: Analyst:	13661 P. Mara
							Hourly L _{eq}	dBA Readings	(unadjusted)							
85.0	0															
(V ap) 65.0 65.0 65.0 66.0 66.0																
لم 60.0 م ح 55.0				0.0	m.	ານ <mark>ດີ</mark>	<u> </u>	8. <u>-</u>	61.8	61.2 60.5	62.4 61.5	63.9	62.2 61.9		4 m	10
1 00.0 1 55.0 1 55.0 1 55.0 1 55.0 1 60.0 1 55.0 1 60.0 1 60.0 1 60.0 1 60.0 1 55.0 1 55.0 1 60.0 1 55.0 1 60.0 1 65.0 1 65.0 1 60.0 1 65.0 1 60.0 1 65.0 1 60.0 1 65.0 1 60.0 1 60	54.1	53.4	54.0	57.2 59.0	57.	57.		23.		60. 60.	61		9 9	23.	58.4	56.5
35.0																
	0	1 2	3	4 5	6	7 8	9	10 11	12 1	.3 14	15 16	17	18 19	20	21 22	23
									eginning							
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%	L _{eq}	Adj.	Adj. L _{eq}
	0	54.1 53.4	62.8 63.5	48.5 48.5	62.5 63.1	62.1 62.2	60.8 58.9	59.1 56.7	53.3 52.6	50.8 50.5	49.0 49.0	48.8 48.8	48.6 48.6	54.1 53.4	10.0 10.0	64.1 63.4
	2	52.9	61.5	48.4	60.9	60.4	58.3	56.9	52.6	50.3	49.0	48.7	48.5	52.9	10.0	62.9
NI -h t	3	54.0	63.9	48.7	63.0	62.0	60.4	58.8	52.5	50.7	49.3	49.0	48.8	54.0	10.0	64.0
Night	4	57.2	66.5	51.2	66.2	65.8	64.2	62.2	55.6	53.3	51.7	51.5	51.3	57.2	10.0	67.2
	5	59.0	68.7	52.5	68.4	67.9	66.0	63.2	57.7	55.4	53.2	53.0	52.6	59.0	10.0	69.0
	6	57.3	65.5	52.5	65.0	64.5	62.6	61.3	57.4	55.0	53.1	52.8	52.6	57.3	10.0	67.3
Day	8	57.5 57.9	65.2 65.6	53.0 52.4	64.8 65.3	64.3 64.9	62.5 63.6	61.1 62.4	57.8 57.7	55.7 55.6	53.7 53.0	53.4 52.7	53.1 52.5	57.5 57.9	0.0	57.5 57.9
Day	9	60.0	68.5	53.4	68.1	67.4	66.0	64.8	59.9	57.0	54.2	53.9	53.5	60.0	0.0	60.0
	10	59.8	70.8	52.9	69.9	68.7	66.0	64.2	58.6	56.2	53.8	53.4	53.0	59.8	0.0	59.8
	11	59.7	66.7	54.4	66.3	65.9	64.7	63.7	60.0	58.0	55.6	55.1	54.6	59.7	0.0	59.7
	12	61.8	69.9	56.5	69.4	68.7	67.0	65.6	62.1	59.9	57.3	56.9	56.6	61.8	0.0	61.8
	13	61.2	70.1	54.5	69.7	69.0	66.9	65.9	61.1	58.5	55.5	55.1	54.6	61.2	0.0	61.2
	14 15	60.5 62.4	69.4 72.4	54.2 54.8	68.5 71.8	67.6 70.9	65.5 68.9	64.3 66.8	60.7 61.5	58.4 59.2	55.2 56.1	54.7 55.5	54.3 55.0	60.5 62.4	0.0 0.0	60.5 62.4
	16	61.5	68.7	56.2	68.2	67.7	66.3	65.1	61.8	59.9	57.4	56.9	56.4	61.5	0.0	61.5
	17	63.9	74.7	56.5	74.0	73.2	70.2	67.8	62.7	60.7	57.8	57.2	56.6	63.9	0.0	63.9
	18	62.2	70.9	54.9	70.4	69.8	67.9	66.5	62.6	59.7	56.1	55.6	55.0	62.2	0.0	62.2
- ·	19	61.9	71.4	54.5	70.6	69.7	67.6	66.0	62.3	59.1	55.6	55.1	54.7	61.9	5.0	66.9
Evening	20 21	59.5 58.4	69.1 66.8	52.0 51.9	68.5 66.5	67.9 66.1	66.3 64.5	64.6 63.2	58.9 58.0	55.7 55.6	52.9 52.7	52.6 52.3	52.2 52.0	59.5 58.4	5.0 5.0	64.5 63.4
	21	56.3	66.2	50.8	65.8	65.1	62.9	60.5	55.2	53.1	51.3	51.1	50.9	56.3	10.0	66.3
Night	23	56.5	66.6	50.1	66.4	66.0	63.3	61.1	54.7	52.2	50.5	50.3	50.2	56.5	10.0	66.5
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%		L _{eq} (dBA)	
Day	Min	57.9	65.6	52.4	65.3	64.9	63.6	62.4	57.7	55.6	53.0	52.7	52.5	24-Hour	Daytime	Nighttime
Energy	Max Average	63.9 61.3	74.7 Ave	56.5 erage:	74.0 69.2	73.2 68.5	70.2 66.6	67.8 65.2	62.7 60.8	60.7 58.5	57.8 55.6	57.2 55.2	56.6 54.7			
	Min	58.4	66.8	51.9	66.5	66.1	64.5	63.2	58.0	55.6	52.7	52.3	52.0	59.6	61.1	56.3
Evening	Max	61.9	71.4	54.5	70.6	69.7	67.6	66.0	62.3	59.1	55.6	55.1	54.7	24-	Hour CNEL (a	IBA)
Energy	Average	60.2		erage:	68.5	67.9	66.1	64.6	59.7	56.8	53.7	53.3	52.9			
Night	Min	52.9	61.5	48.4	60.9	60.4	58.3	56.7	52.5	50.3	48.9	48.7	48.5		64.1	
	Max Average	59.0 56.3	68.7 Ave	53.0 erage:	68.4 64.6	67.9 64.0	66.0 61.9	63.2 60.0	57.8 54.6	55.7 52.4	53.7 50.7	53.4 50.4	53.1 50.2		U - T . L	
Litergy	Average	50.5	Ave	liuge.	04.0	04.0	01.5	00.0	54.0	52.4	50.7	50.4	50.2			

						24-Ho	ur Noise L	evel Meas	urement S	Summary						
Date:	Wednesday	, Septembe	r 16, 2020		Location	L3 - Located				Moreno	Meter:	Piccolo II			JN:	13661
Project:	Compass Da	anbe Center	pointe			Valley City H	fall at 1417	7 Frederick St	reet.						Analyst:	P. Mara
							Hourly L ea	dBA Readings	(unadjusted)						
05.4																
85.0	5															
(80 .0 (75 .0 (80) (75 .0 (75 .0) (75 .0) (75 .0)	3															
	2					_										
<u></u> 2 55.0	Ď			10 Lý	•	59.5	<u> </u>	8. . .	6	4 N		o		m	<u>لە</u>	
A 55.0 A 55.0 D 45.0 O 45.0 40.0	55.7	53.1	54.6	55.5	58.0	59.5	58.1	56.3	56.	57	57		57.3 60.	56.	55.5 53.5	51.6
35.0	5															
	0	1 2	3	4 5	6	7 8	9	10 11		13 14	15 16	5 17	18 19	20	21 22	23
									eginning							
Timeframe	Hour 0	L _{eq} 55.7	L _{max} 62.3	L _{min} 53.0	L1% 61.9	L2%	L5% 59.4	L8% 58.4	<i>L25%</i> 56.1	L50% 54.6	L90% 53.3	<i>L95%</i> 53.2	L99% 53.1	L _{eq} 55.7	Adj. 10.0	Adj. L _{eq} 65.7
	1	53.1	61.8	49.4	61.3	60.5	59.4	56.3	52.8	50.9	49.9	49.7	49.5	53.1	10.0	63.1
	2	52.5	60.9	48.7	60.6	60.0	58.0	56.5	51.5	50.1	49.2	49.0	48.8	52.5	10.0	62.5
Night	3	54.6	64.0	50.9	63.6	63.1	59.9	57.7	53.8	52.2	51.3	51.1	51.0	54.6	10.0	64.6
	4	55.5	63.7	51.6	63.4	62.8	60.8	59.4	55.1	53.2	52.1	51.9	51.7	55.5	10.0	65.5
	5	57.5 58.0	65.3 66.0	53.1 53.5	64.9 65.7	64.3 65.2	62.6 63.3	61.4 62.0	57.8 58.1	55.3 55.7	53.6 54.0	53.4 53.8	53.2 53.6	57.5 58.0	10.0 10.0	67.5 68.0
	7	59.5	69.4	53.9	69.0	68.2	65.2	63.0	58.9	56.7	54.5	54.3	54.0	59.5	0.0	59.5
Day	8	58.1	66.8	52.6	66.4	65.8	63.7	62.2	57.8	55.3	53.2	52.9	52.7	58.1	0.0	58.1
	9	58.1	66.6	49.9	66.2	65.6	63.8	62.4	58.7	55.6	51.2	50.8	50.1	58.1	0.0	58.1
	10 11	56.8 56.1	66.1 64.6	47.5 48.3	65.7 64.2	65.1 63.7	62.9 61.7	61.4 60.2	57.1 56.6	53.3 53.6	49.0 49.4	48.4 48.9	47.8 48.4	56.8 56.1	0.0 0.0	56.8 56.1
	11	56.9	66.6	48.5	66.2	65.4	62.7	61.1	56.6	53.0	50.3	48.9	48.4	56.9	0.0	56.9
	13	57.4	65.2	50.2	64.8	64.2	62.5	61.4	58.1	55.2	51.4	50.9	50.4	57.4	0.0	57.4
	14	57.2	65.8	48.7	65.3	64.7	63.0	61.7	57.9	54.2	50.0	49.4	48.9	57.2	0.0	57.2
	15	57.1	65.7	47.5	65.4	64.7	62.9 63.4	61.6	57.5	53.7	49.0	48.3	47.7	57.1 57.4	0.0	57.1
	16 17	57.4 57.0	66.5 65.3	48.4 49.5	66.1 64.9	65.5 64.3	63.4	62.0 61.1	57.8 57.5	54.0 54.6	49.6 50.6	49.1 50.0	48.6 49.6	57.4 57.0	0.0 0.0	57.4 57.0
	18	57.3	66.2	49.8	65.7	64.8	62.7	61.6	57.7	54.4	50.8	50.3	49.9	57.3	0.0	57.3
	19	60.0	73.6	50.2	72.9	71.2	66.5	63.2	56.5	53.6	50.9	50.6	50.3	60.0	5.0	65.0
Evening	20	56.3	65.3	51.0	64.9	64.3	61.7	60.1	55.9	53.5	51.6	51.3	51.1	56.3	5.0	61.3
	21 22	55.5 53.5	64.8 63.2	49.3 46.9	64.2 62.8	63.5 62.2	60.8 60.0	59.0 57.9	55.5 52.9	53.0 49.8	50.2 47.6	49.8 47.3	49.4	55.5 53.5	5.0	60.5 63.5
Night	23	51.6	59.9	47.2	59.1	58.3	56.6	55.5	51.8	49.3	47.7	47.5	47.3	51.6	10.0	61.6
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%		L _{eq} (dBA)	
Day	Min Max	56.1 58.1	64.6 66.8	47.5 52.6	64.2 66.4	63.7 65.8	61.7 63.8	60.2 62.4	56.6 58.7	53.3 55.6	49.0 53.2	48.3 52.9	47.7 52.7	24-Hour	Daytime	Nighttime
Energy	Average	58.1		erage:	65.5	64.9	62.9	62.4	58.7	55.6	53.2	49.9	49.4	50.0	57 0	FFO
Evening	Min	55.5	64.8	49.3	64.2	63.5	60.8	59.0	55.5	53.0	50.2	49.8	49.4	56.8	57.3	55.9
	Max	60.0	73.6	51.0	72.9	71.2	66.5	63.2	56.5	53.6	51.6	51.3	51.1	24-	Hour CNEL (a	IBA)
Energy	Average	57.7 51.6	_	erage:	67.3	<u>66.3</u> 58.3	63.0 56.6	60.8 55.5	56.0 51.5	53.3 49.3	50.9	50.6	50.3 47.0			
Night	Min Max	51.6	59.9 69.4	46.9 53.9	59.1 69.0	68.2	56.6 65.2	63.0	51.5	49.3	47.6 54.5	47.3 54.3	47.0 54.0		62.4	
Energy	Average	55.9		erage:	62.6	62.0	59.8	58.3	54.4	52.4	51.0	50.8	50.6	<u> </u>		

						24-Ho	ur Noise L	evel Meası	urement S	ummary						
Date:	Wednesday	, September	16, 2020		Location:	L4 - Located	northwest o	of the Project	t site on Fred	drick Street	Meter:	Piccolo II			IN:	13661
	-	anbe Centerp			Location	near existin	g single-fam	ily residentia	l home at 13	8979	meter.				Analyst:	
						Frederick St			(
							Hourly L _{eq}	dBA Readings	(undajustea)							
85.0	2															
85.0 (Y gp) ¹⁰ 65.0 ¹⁰ 65.0 ¹⁰ 65.0 1 1 1 1 1 1 1 1 1 1	5															
<u>5</u> 70.0															_	
<u>م</u> 60.0	Š – – –	0.		- N	68.9	4. 6.0		0	4 - 0	64.9 65.8	6:	68.4	66.2 65.9	<u> </u>		
55.0	6.09	64.0	57.1	60.8 63.2		64.4 65.9	<u>65</u>	67 65.	- <mark>.</mark>	<mark></mark>	66.		65.	<u> </u>	62.3	63.1
ទ 45.0 40.0		57.	- 12													
35.0	õ 🕂 🕂															
	0	1 2	3	4 5	6	7 8	9	10 11		.3 14	15 16	17	18 19	20	21 22	23
									eginning							
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%	L _{eq}	Adj.	Adj. L _{eq}
	01	60.9 64.0	72.8 73.4	48.3 60.5	72.3 72.8	71.2	69.1 68.2	66.2 66.3	57.9 62.7	53.5	49.6 61.0	48.9 60.8	48.4 60.5	60.9 64.0	10.0 10.0	70.9 74.0
	2	57.4	67.9	50.1	67.2	66.3	63.6	62.0	56.4	62.1 53.3	50.7	50.8	50.2	57.4	10.0	67.4
A.Y. 1.	3	57.1	66.2	49.4	65.9	65.3	63.2	61.7	57.1	53.5	50.1	49.9	49.5	57.1	10.0	67.1
Night	4	60.8	69.4	51.6	69.1	68.6	67.1	66.1	61.1	57.2	52.8	52.2	51.7	60.8	10.0	70.8
	5	63.2	71.9	53.7	71.6	71.0	69.4	67.9	63.6	60.0	54.8	54.3	53.9	63.2	10.0	73.2
	6	68.9	76.6	54.7	76.2	75.8	74.7	74.0	70.7	64.9	56.0	55.4	54.8	68.9	10.0	78.9
Day	7	64.4 65.9	72.3	55.6 54.1	71.8 75.6	71.2	69.9 72.8	68.8 71.2	65.2 65.3	62.1 61.7	57.0 56.0	56.3 55.1	55.8 54.3	64.4 65.9	0.0	64.4 65.9
Duy	9	65.6	73.9	58.0	73.5	73.0	71.3	70.0	65.8	63.4	59.4	58.7	58.2	65.6	0.0	65.6
	10	67.0	78.2	54.5	77.9	77.1	74.0	71.8	65.3	62.1	56.9	55.7	54.7	67.0	0.0	67.0
	11	65.0	74.0	53.9	73.5	73.0	71.5	70.3	64.8	61.5	56.3	55.1	54.1	65.0	0.0	65.0
	12	65.4	75.3	55.1	74.5	73.6	72.0	70.3	65.0	62.2	57.3	56.4	55.3	65.4	0.0	65.4
	13 14	64.9 65.8	73.9 76.1	55.6 54.1	73.5 75.6	72.8 74.8	70.8 72.2	69.1 70.4	65.3 65.5	62.2 62.3	57.7 56.6	56.8 55.3	55.8 54.4	64.9 65.8	0.0 0.0	64.9 65.8
	14	66.1	76.1	54.9	75.5	74.8	72.2	70.4	65.9	62.5	57.5	56.3	55.1	66.1	0.0	66.1
	16	65.8	74.8	55.6	74.4	73.7	71.8	70.1	66.1	63.1	58.0	56.9	55.9	65.8	0.0	65.8
	17	68.4	80.0	55.6	79.4	78.2	75.7	73.4	67.2	63.3	58.0	56.9	55.9	68.4	0.0	68.4
	18	66.2	75.5	55.3	75.0	74.4	72.8	70.5	66.2	63.1	57.6	56.4	55.5	66.2	0.0	66.2
Evening	19 20	65.9 63.7	77.1 73.6	54.1 52.7	76.5 72.9	76.0 72.2	72.9 70.4	70.4 68.8	64.6 63.7	61.5 59.5	56.1 54.4	55.1 53.6	54.2 52.9	65.9 63.7	5.0 5.0	70.9 68.7
Evening	20	66.3	75.0	52.7	72.9	77.6	70.4	71.0	61.9	59.5	52.9	53.0	52.9	66.3	5.0	71.3
Nicht	22	62.3	73.2	50.5	72.6	71.9	69.4	67.4	61.0	57.0	52.0	51.3	50.7	62.3	10.0	72.3
Night	23	63.1	79.3	47.5	76.1	74.1	69.3	66.9	58.5	54.3	49.1	48.3	47.7	63.1	10.0	73.1
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%		L _{eq} (dBA)	
Day	Min	64.9	73.9	53.9	73.5	72.8	70.8	69.1	64.8	61.5	56.0	55.1	54.1	24-Hour	Daytime	Nighttime
Energy	Max Average	68.4 66.1	80.0 Ave	58.0 erage:	79.4 75.3	78.2 74.6	75.7 72.5	73.4	67.2 65.7	63.4 62.5	59.4 57.4	58.7 56.3	58.2 55.4			60 F
	Min	63.7	73.6	50.8	72.9	72.2	70.4	68.8	61.9	58.3	52.9	51.7	51.0	65.1	66.0	63.5
Evening	Max	66.3	79.9	54.1	79.1	77.6	73.8	71.0	64.6	61.5	56.1	55.1	54.2	24-	Hour CNEL (a	IBA)
Energy	Average	65.5		erage:	76.2	75.3	72.4	70.1	63.4	59.8	54.5	53.5	52.7			
Night	Min	57.1	66.2	47.5	65.9 76.2	65.3	63.2	61.7	56.4	53.3	49.1	48.3	47.7	1	70.6	
Energy	Max Average	68.9 63.5	79.3 Ave	60.5 erage:	76.2 71.5	75.8	74.7 68.2	74.0 66.5	70.7 61.0	64.9 57.3	61.0 52.9	60.8 52.4	60.5 52.0			
Linergy	A CIUEC	03.5	Ave	inge.	71.5	70.7	00.2	00.5	01.0	57.5	52.5	52.4	52.0			

						24-Ho	ur Noise Le	evel Meas	urement S	ummary						
Date:	Wednesday	, September	16, 2020		Location:				on Alessand		Meter:	Piccolo II			JN:	13661
Project:	Compass Da	anbe Centerp	ointe				0	multi-family	residential h	omes at					Analyst:	P. Mara
						13933 Chag		IRA Dandinan	(
							Houriy L _{eq} d	dBA Readings	(unaajustea)							
85.0)															
(Vap) (Va	2															
8 70.0	ž ++					o <u>o</u>		<u>ب</u>	- m						_	
- 65.0 - 60.0) - + -			8.5	0.0	71.0		11.1	71.3	20.6	71.7	71.6	70.4 69.8	69.0	67.2 68.0	0
<u></u> 255.0	64.4	62.6 62.2	65.1	8 1										9	67	64.
e 45.0	5															
40.0 × 40.0																
	0	1 2	3	4 5	6	7 8	9 1	LO 11	12 1	3 14	15 16	17	18 19	20	21 22	23
	-		-		-	-	-	Hour Be	eginning	-				-		-
Timeframe	Hour	L _{eq}	L _{max}	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%	L _{eq}	Adj.	Adj. L _{eq}
	0	64.4	75.8	50.6	75.4	74.7	71.9	69.6	62.8	56.9	51.4	51.1	50.7	64.4	10.0	74.4
	1	62.6	73.9	50.6	73.5	72.8	70.2	67.7	60.9	55.7	51.5	51.0	50.7	62.6	10.0	72.6
	2	62.2	73.3	52.3	72.9	72.1	69.7	67.8	59.9	55.5	52.8	52.5	52.3	62.2	10.0	72.2
Night	3	65.1 68.5	75.7 78.7	52.0 55.5	75.3 78.2	74.6 77.5	72.3 75.2	70.6 73.7	64.5 68.5	58.3	52.8 56.5	52.4 56.0	52.1 55.6	65.1 68.5	10.0	75.1 78.5
	4 5	70.5	78.7	55.5	78.2	77.5	75.2	75.5	71.5	63.0 66.0	58.9	58.3	55.6	70.5	10.0 10.0	80.5
	6	70.9	79.9	58.5	79.6	78.9	76.8	75.6	71.7	67.2	60.0	59.1	58.6	70.9	10.0	80.9
	7	71.0	78.5	59.3	78.2	77.7	76.4	75.7	72.5	68.2	60.7	59.9	59.4	71.0	0.0	71.0
	8	71.9	80.2	60.5	79.7	78.9	77.2	76.3	73.3	68.9	62.3	61.5	60.7	71.9	0.0	71.9
	9	72.1	80.4	57.7	80.0	79.3	77.7	76.7	73.3	69.3	60.8	59.4	58.0	72.1	0.0	72.1
	10	72.1	80.8	57.8	80.3	79.4	77.5	76.2	73.4	69.8	60.8	59.4	58.1	72.1	0.0	72.1
	11 12	71.5 71.3	79.7 79.9	56.2 56.3	79.3 79.5	78.6 78.7	76.6 76.8	75.8 75.6	72.9 72.8	69.1 68.7	58.7 59.1	57.5 57.6	56.5 56.5	71.5 71.3	0.0	71.5 71.3
Day	12	71.5	79.9	57.8	79.5	78.0	76.8	75.4	72.8	68.9	60.6	57.6	58.0	71.5	0.0	71.5
Duy	14	70.6	77.8	56.5	77.5	77.0	75.9	75.0	72.1	68.4	59.8	58.2	56.7	70.6	0.0	70.6
	15	70.8	79.2	58.2	78.8	78.0	75.9	74.8	72.1	68.8	60.9	59.5	58.3	70.8	0.0	70.8
	16	71.7	82.0	58.7	81.5	80.4	77.1	75.2	72.2	69.0	61.6	59.9	58.8	71.7	0.0	71.7
	17	71.6	81.0	58.7	80.5	79.8	77.6	75.8	72.2	68.9	61.6	60.1	58.9	71.6	0.0	71.6
	18 19	70.4 69.8	78.9 79.1	58.1 56.6	78.6 78.6	77.9	75.8 75.8	74.5 74.5	71.6	68.1	60.4 58.9	59.4 57.9	58.3 56.8	70.4 69.8	0.0	70.4 74.8
Evening	20	69.8 69.0	79.1 78.6	55.8	78.6	77.9	75.8 75.4	74.5	69.2	66.0 64.6	58.9	57.9 56.7	56.8	69.8 69.0	5.0	74.8
2101118	21	67.2	76.2	54.9	75.8	75.1	73.4	72.3	67.8	62.9	56.4	55.6	55.1	67.2	5.0	72.2
Night	22	68.0	79.6	51.5	79.3	78.7	75.2	72.6	66.5	60.9	53.6	52.7	51.7	68.0	10.0	78.0
	23	64.6	74.9	51.5	74.4	73.7	71.7	70.2	63.8	58.3	52.6	52.1	51.6	64.6	10.0	74.6
Timeframe	Hour	L _{eq}	L max	L _{min}	L1%	L2%	L5%	L8%	L25%	L50%	L90%	L95%	L99%		L _{eq} (dBA)	
Day	Min	70.4	77.8	56.2	77.5	77.0	75.8	74.5	71.6	68.1	58.7	57.5	56.5	24-Hour	Daytime	Nighttime
Energy	Max Average	72.1 71.4	82.0 Ave	60.5 erage:	81.5 79.5	80.4	77.7 76.8	76.7 75.6	73.4 72.6	69.8 68.9	62.3 60.6	61.5 59.2	60.7 58.1			
	Min	67.2	76.2	54.9	75.8	75.1	73.4	72.3	67.8	62.9	56.4	55.6	55.1	69.9	71.0	67.9
Evening	Max	69.8	79.1	56.6	78.6	77.9	75.8	74.5	70.6	66.0	58.9	57.9	56.8	24-	Hour CNEL (a	dBA)
Energy	Average	68.8		erage:	77.5	76.9	74.9	73.6	69.2	64.5	57.6	56.7	55.9			
Night	Min	62.2	73.3	50.6	72.9	72.1	69.7	67.7	59.9	55.5	51.4	51.0	50.7		74.8	
	Max	71.0	79.9	59.3	79.6 76.4	78.9	76.8 73.3	75.7	72.5 65.6	68.2 60.2	60.7 54.4	59.9 53.9	59.4 53.5		7-1.0	
Energy	Average	67.9	AVE	erage:	70.4	/5./	/3.3	/1.5	05.0	00.2	54.4	53.9	53.5			

APPENDIX 7.1:

OFF-SITE TRAFFIC NOISE CONTOURS

FHWA	-RD-77-108 HIGHW	AY NOISE PREDIC			
Scenario: Existing (2020 Road Name: Graham St. Road Segment: s/o Alessandr			ect Name: Compass Number: 13661	Danbe Cer	nterpo
SITE SPECIFIC INP	UT DATA		NOISE MODEL I	NPUTS	
Highway Data		Site Condition	ns (Hard = 10, Soft =	= 15)	
Average Daily Traffic (Adt): 11	1,231 vehicles		Autos:	15	
Peak Hour Percentage: 6	5.98%	Medium	Trucks (2 Axles):	15	
Peak Hour Volume:	784 vehicles	Heavy T	rucks (3+ Axles):	15	
Vehicle Speed:	40 mph	Vehicle Mix			
Near/Far Lane Distance:	50 feet	VehicleTy	pe Dav Ev	ening Nig	ght Daily
Site Data		Veniele ry			9.6% 98.89
Barrier Height:	0.0 feet	Medium	Trucks: 84.8%	4.9% 10	0.3% 0.70
Barrier Type (0-Wall, 1-Berm):	0.0	Heavy	Trucks: 86.5%	2.7% 10	0.8% 0.42
Centerline Dist. to Barrier:	44.0 feet				
Centerline Dist. to Observer:	44.0 feet		Elevations (in feet)		
Barrier Distance to Observer:	0.0 feet	710	itos: 0.000		
Observer Height (Above Pad):	5.0 feet	Medium Tru		ade Adjusti	mant: 0.0
Pad Elevation:	0.0 feet	Heavy Tru	cks: 8.004 Gra	aue Aujusti	nent. 0.0
Road Elevation:	0.0 feet	Lane Equivale	ent Distance (in feet,)	
Road Grade:	0.0%	AL	itos: 36.551		
Left View:	-90.0 degrees	Medium Tru	cks: 36.308		
Right View:	90.0 degrees	Heavy Tru	cks: 36.332		
FHWA Noise Model Calculations					
	raffic Flow Distar			rrier Atten	Berm Atter
Autos: 66.51	-2.43	1.94 -1.2		0.000	0.00
Medium Trucks: 77.72	-23.95	1.98 -1.2		0.000	0.00
Heavy Trucks: 82.99	-26.17	1.98 -1.2	-5.50	0.000	0.00
Unmitigated Noise Levels (withou	t Topo and barrier a	ttenuation)			
VehicleType Leq Peak Hour			eq Night Ldi		CNEL
Autos: 64.8	64.5	62.7	56.7	65.3	65
Medium Trucks: 54.5	54.6	48.2	46.7	55.2	55
Heavy Trucks: 57.6	57.7	48.7	50.0	58.3	58
Vehicle Noise: 65.9	65.7	63.0	57.8	66.4	66
Centerline Distance to Noise Cont	our (in feet)				
			65 dBA 60 d		55 dBA
	Ldn: CNEL:	25 27	55 59	118	254 274
				127	

FHWA-RD-77-108 HIG	SHWAY	NOISE PF	REDICTI		DEL			
Scenario: Existing (2020)						ass Danbe	Centerp	0
Road Name: Alessandro Bl. Road Segment: w/o Graham St			Job N	umber: ·	13661			
		1						
SITE SPECIFIC INPUT DATA		0.4					5	
Highway Data		Site Con	ditions					
Average Daily Traffic (Adt): 38,944 vehicles					Autos:			
Peak Hour Percentage: 6.98%				icks (2 A				
Peak Hour Volume: 2,718 vehicles		Hea	avy Truc	:ks (3+ A	(xles):	15		
Vehicle Speed: 45 mph		Vehicle N	lix					
Near/Far Lane Distance: 73 feet		Vehi	cleType		Day	Evening	Night	Daily
Site Data			A	lutos:	77.5%	12.9%	9.6%	98.899
Barrier Height: 0.0 feet			edium Tr		84.8%		10.3%	
Barrier Type (0-Wall, 1-Berm): 0.0		E	leavy Tr	ucks:	58.3%	2.7%	10.8%	0.42
Centerline Dist. to Barrier: 55.0 feet		Noise So	urce El	evation	s (in fi	pet)		
Centerline Dist. to Observer: 55.0 feet			Autos		000			
Barrier Distance to Observer: 0.0 feet		Mediur	n Trucks		297			
Observer Height (Above Pad): 5.0 feet			y Trucks		004	Grade Ad	iustment	: 0.0
Pad Elevation: 0.0 feet								
Road Elevation: 0.0 feet		Lane Equ				feet)		
Road Grade: 0.0%			Autos					
Left View: -90.0 degrees			n Trucks					
Right View: 90.0 degrees		Heav	y Trucks	s: 41.1	253			
FHWA Noise Model Calculations								
VehicleType REMEL Traffic Flow D	istance	Finite	Road	Fresn	el	Barrier Atte	en Ber	m Atten
Autos: 68.46 2.46	1.	12	-1.20		-4.67	0.0	000	0.00
Medium Trucks: 79.45 -19.07	1.	15	-1.20		-4.87	0.0	000	0.00
Heavy Trucks: 84.25 -21.28	1.	15	-1.20		-5.38	0.0	000	0.00
Unmitigated Noise Levels (without Topo and bar	rier atte	nuation)						
VehicleType Leq Peak Hour Leq Day	Leq	Evening	Leq	Night		Ldn	C	NEL
Autos: 70.8 70.5	5	68.7		62.7		71.3	3	71.
Medium Trucks: 60.3 60.4		54.0		52.5		60.9		61.
Heavy Trucks: 62.9 61.3		54.0		55.3		63.0		63.
Vehicle Noise: 71.8 71.4	ŀ	69.0		63.7		72.2	2	72.
Centerline Distance to Noise Contour (in feet)								
) dBA	65 0	dBA	6	60 dBA		dBA
Ldn.		77		167		359		774
CNEL		84		181		390		840

Tuesday, November 3, 2020

FF	WA-RD-77-108 H	IIGHWAY	NOISE PR	REDICTIC	N MODEL		
Scenario: Existing (2	2020)					pass Danbe C	enterpo
Road Name: Alessandr				Job Nu	mber: 1366	61	
Road Segment: w/o Frede	rick St.						
SITE SPECIFIC I	NPUT DATA					DEL INPUTS	
Highway Data			Site Con	ditions (I	lard = 10,	Soft = 15)	
Average Daily Traffic (Adt):	38,736 vehicles	3			Auto		
Peak Hour Percentage:	6.98%				ks (2 Axles	· · ·	
Peak Hour Volume:	2,704 vehicles		He	avy Truck	s (3+ Axles	s): 15	
Vehicle Speed:	45 mph		Vehicle I	Mix			
Near/Far Lane Distance:	73 feet			icleType	Day	Evening I	Vight Daily
Site Data				AL	itos: 77.5		9.6% 98.89%
Barrier Height:	0.0 feet		Me	edium Tru	cks: 84.8	3% 4.9%	10.3% 0.70%
Barrier Type (0-Wall, 1-Berm):	0.0		F	leavy Tru	cks: 58.3	3% 2.7%	10.8% 0.42%
Centerline Dist. to Barrier:	55.0 feet		Noise Sc	urce Ele	vations (in	feet)	
Centerline Dist. to Observer:	55.0 feet		110/30 00	Autos:		leey	
Barrier Distance to Observer:	0.0 feet		Modiu	n Trucks:	0.000		
Observer Height (Above Pad):	5.0 feet			v Trucks:		Grade Adju	stment: 0.0
Pad Elevation:	0.0 feet						
Road Elevation:	0.0 feet		Lane Eq		Distance (i	n feet)	
Road Grade:	0.0%			Autos:			
Left View:	-90.0 degrees			n Trucks:			
Right View:	90.0 degrees	3	Heav	y Trucks:	41.253		
FHWA Noise Model Calculatio	ns						
VehicleType REMEL	Traffic Flow	Distance	Finite	Road	Fresnel	Barrier Atter	Berm Atten
Autos: 68.4			.12	-1.20	-4.6		
Medium Trucks: 79.4	5 -19.09	1	.15	-1.20	-4.8	7 0.00	0 0.00
Heavy Trucks: 84.2	5 -21.31	1	.15	-1.20	-5.3	8 0.00	0 0.00
Unmitigated Noise Levels (wit	hout Topo and b	arrier atte	enuation)				
VehicleType Leq Peak Ho			Evening	Leq N		Ldn	CNEL
		0.5	68.7		62.7	71.3	71.
		0.4	54.0		52.5	60.9	61.3
		1.3	54.0		55.2	62.9	63.
Vehicle Noise: 7	1.8 7	1.3	69.0		63.7	72.2	72.
	Contour (in feet)						
Centerline Distance to Noise C	ontour (mileet)						
Centerline Distance to Noise C	iontour (in reet)	70	0 dBA	65 di	BA	60 dBA	55 dBA
Centerline Distance to Noise C	,	70 dn:	0 dBA 77	65 di	3A 166	60 dBA 358	55 dBA 772

FHWA	-RD-77-108 HIG	HWAY N	IOISE PF	REDICT		DEL			
Scenario: Existing (2020 Road Name: Alessandro Bl Road Segment: e/o Graham S					Name: 0 lumber: 1		ass Danbe	Centerp	D
SITE SPECIFIC INPU	JT DATA			N	IOISE N	IODE	L INPUT	5	
Highway Data		5	Site Con	ditions	(Hard =	10, So	oft = 15)		
Average Daily Traffic (Adt): 41	,770 vehicles				A	Autos:	15		
Peak Hour Percentage: 6	6.98%		Mee	dium Tr	ucks (2 A	xles):	15		
Peak Hour Volume: 2,	916 vehicles		Hea	avy Tru	cks (3+ A	xles):	15		
Vehicle Speed:	45 mph	1	Vehicle N	Nix					
Near/Far Lane Distance:	73 feet	F		cleType		Dav	Evening	Night	Daily
Site Data		-				77.5%	•	9.6%	
Barrier Height:	0.0 feet		Me	dium T	rucks:	84.8%		10.3%	0.70%
Barrier Type (0-Wall, 1-Berm):	0.0 1001		F	leavy T	rucks:	58.3%	2.7%	10.8%	0.42%
	55.0 feet	-							
	55.0 feet	<u>'</u>	Noise So				eet)		
Barrier Distance to Observer:	0.0 feet			Auto	. 0.0				
Observer Height (Above Pad):	5.0 feet			n Truck			Oursels Add		
Pad Elevation:	0.0 feet		Heav	y Truck	s: 8.0	104	Grade Adj	ustment	0.0
Road Elevation:	0.0 feet	L	Lane Equ	iivalen	t Distanc	e (in f	feet)		
Road Grade: (0.0%			Auto	s: 41.4	46			
Left View:	90.0 degrees		Mediur	n Truck	s: 41.2	232			
Right View:	90.0 degrees		Heav	y Truck	s: 41.2	253			
FHWA Noise Model Calculations									
VehicleType REMEL T	raffic Flow Di	stance	Finite	Road	Fresn	e/	Barrier Atte	en Ber	m Atten
Autos: 68.46	2.76	1.12	-	-1.20		4.67	0.0		0.000
Medium Trucks: 79.45	-18.76	1.15		-1.20		-4.87	0.0		0.000
Heavy Trucks: 84.25	-20.98	1.15	5	-1.20		-5.38	0.0	00	0.000
Unmitigated Noise Levels (without									
VehicleType Leq Peak Hour	Leq Day	Leq Ev		Leq	Night		Ldn		VEL
Autos: 71.1	70.8		69.0		63.0		71.6		72.2
Medium Trucks: 60.6	60.7		54.3		52.8		61.2		61.5
Heavy Trucks: 63.2	61.6		54.3		55.6		63.3		63.4
Vehicle Noise: 72.1	71.7		69.3		64.0		72.5	•	73.1
Centerline Distance to Noise Cont	our (in feet)								
	, l	70 a		65	dBA	6	i0 dBA	55	dBA
	Ldn:		81		175		377		811
	CNEL:		88		190		408		880

	FHW	/A-RD-77-108	HIGHW	AY N	OISE PF	REDICTI		DEL			
Scenario: E Road Name: G Road Segment: s/	raham St.						Name: (umber: 1		ass Danbe	Centerp	0
SITE SPE	CIFIC IN	PUT DATA							L INPUTS	6	
Highway Data				S	Site Con	ditions	(Hard =	10, Sc	oft = 15)		
Average Daily Traff	ic (Adt):	11,765 vehicle	es				A	Autos:	15		
Peak Hour Perc	entage:	6.98%			Me	dium Tru	icks (2 A	xles):	15		
Peak Hour \	/olume:	821 vehicle	s		He	avy Truc	:ks (3+ A	xles):	15		
Vehicle	Speed:	40 mph		L.	/ehicle I	<i>liv</i>					
Near/Far Lane D	istance:	50 feet		-		cleType		Dav	Evening	Night	Daily
Site Data					1011			77.5%	•	9.6%	
Barrier	Hoight.	0.0 feet			Me	edium Tr	ucks:	84.8%	4.9%	10.3%	1.129
Barrier Type (0-Wall, 1		0.0			F	leavy Tr	ucks:	86.5%	2.7%	10.8%	1.84%
Centerline Dist. to	,	44.0 feet		-				. C	- 41		
Centerline Dist. to Ol	bserver:	44.0 feet		n n	Voise So	Auto		000	eet)		
Barrier Distance to Ol	bserver:	0.0 feet				n Trucks	. 0.0	297			
Observer Height (Abov	/e Pad):	5.0 feet				n Trucks y Trucks		.97)04	Grade Adj	uctmont	0.0
Pad El	evation:	0.0 feet			Heav	y mucks	s. o.u	104	Grade Auj	usument	0.0
Road El	evation:	0.0 feet		L	ane Equ	iivalent	Distanc	e (in i	feet)		
Road	Grade:	0.0%				Autos	s: 36.5	551			
Le	eft View:	-90.0 degree	es			n Trucks					
Rigi	ht View:	90.0 degree	es		Heav	y Trucks	s: 36.3	332			
FHWA Noise Model Ca	lculations										
VehicleType R	EMEL	Traffic Flow	Dista	nce	Finite	Road	Fresn	el	Barrier Atte	en Ber	m Atten
Autos:	66.51	-2.31		1.94		-1.20		-4.61	0.0		0.00
Medium Trucks:	77.72	-21.67		1.98	-	-1.20		-4.87	0.0		0.00
Heavy Trucks:	82.99	-19.52		1.98	3	-1.20		-5.50	0.0	00	0.00
Unmitigated Noise Lev			barrier	atteni	uation)						
	Peak Hou			eq Ev	rening	Leq	Night		Ldn		VEL
Autos:	64.	-	64.6		62.8		56.8		65.4		66.
Medium Trucks:	56.	-	56.9		50.5		49.0		57.4		57.
Heavy Trucks:	64.		64.4		55.4		56.6		65.0		65.
Vehicle Noise:	68.	0	67.9		63.8		60.1		68.5		68.
Centerline Distance to	Noise Co	ntour (in feet)					r			
				70 d		65 (dBA	6	60 dBA	55	dBA
			Ldn:		35		76		163		352
			NEL		37		80		173		373

FHWA-RD-77-108 HIG	HWAY	NOISE PI	REDICT	TON MO	DEL						
Scenario: Existing + Project						ass Danbe	Centerp	o			
Road Name: Alessandro Bl.			Job N	lumber:	13661						
Road Segment: w/o Graham St.											
SITE SPECIFIC INPUT DATA						L INPUT	5				
Highway Data		Site Conditions (Hard = 10, Soft = 15)									
Average Daily Traffic (Adt): 39,592 vehicles					Autos:	15					
Peak Hour Percentage: 6.98%		Me	dium Tr	ucks (2 A	Axles):	15					
Peak Hour Volume: 2,764 vehicles		He	avy Tru	cks (3+ A	Axles):	15					
Vehicle Speed: 45 mph		Vehicle I	Nix								
Near/Far Lane Distance: 73 feet		Veh	cleType	e	Day	Evening	Night	Daily			
Site Data				Autos:	77.5%	12.9%	9.6%	98.57%			
Barrier Height: 0.0 feet		Me	edium T	rucks:	84.8%	4.9%	10.3%	0.82%			
Barrier Type (0-Wall, 1-Berm): 0.0		ŀ	leavy T	rucks:	81.2%	3.8%	15.0%	0.60%			
Centerline Dist. to Barrier: 55.0 feet		Noise Sc	urce F	levation	s (in f	pet)					
Centerline Dist. to Observer: 55.0 feet			Auto		3 (<i>III I</i>						
Barrier Distance to Observer: 0.0 feet		Mediu	n Truck		297						
Observer Height (Above Pad): 5.0 feet			y Truck		207	Grade Ad	iustment	: 0.0			
Pad Elevation: 0.0 feet											
Road Elevation: 0.0 feet		Lane Eq				feet)					
Road Grade: 0.0%			Auto								
Left View: -90.0 degrees			n Truck								
Right View: 90.0 degrees		Heav	y Truck	(s: 41.)	253						
FHWA Noise Model Calculations											
VehicleType REMEL Traffic Flow D	Distance	Finite	Road	Fresh	el	Barrier Atte	en Ber	m Atten			
Autos: 68.46 2.51	1.	.12	-1.20		-4.67	0.0	000	0.00			
Medium Trucks: 79.45 -18.28	1.	15	-1.20		-4.87	0.0	000	0.00			
Heavy Trucks: 84.25 -19.62	1.	.15	-1.20		-5.38	0.0	000	0.00			
Unmitigated Noise Levels (without Topo and bar	rier atte	enuation)									
VehicleType Leq Peak Hour Leq Day	Leq	Evening	Leq	Night		Ldn	C	NEL			
Autos: 70.9 70.6	6	68.8		62.7	,	71.4	Ļ	72.			
Medium Trucks: 61.1 61.2	2	54.8		53.3	3	61.7	,	62.			
Heavy Trucks: 64.6 64.5		57.1		58.4		66.1		66.			
Vehicle Noise: 72.2 71.9	9	69.2		64.4	ŀ	72.8	3	73.			
Centerline Distance to Noise Contour (in feet)											
	70) dBA	65	dBA	6	60 dBA	55	dBA			
Ldn		85		183		394		850			
CNEL		92		197		425		915			

Tuesday, November 3, 2020

Scenario	o: Existing + P	Project				Project	Name [,] (`omps	ss Danbe (Centern	2
	2: Alessandro						umber: 1		ISS Daribe (Senterp	,
Road Segmen						000 14	innocr. i	0001			
	PECIFIC IN					N		ODE			
Highway Data	JI LON IO IN	POT DATA			Site Con						
Average Daily 1	Traffic (Adt):	38,794 vehicle	s				A	utos:	15		
Peak Hour I	Percentage:	6.98%			Med	dium Tru	icks (2 A	xles):	15		
Peak Ho	our Volume:	2,708 vehicles			Hea	avy Truc	ks (3+ A	xles):	15		
Vet	icle Speed:	45 mph		H	Vehicle N	<i>liv</i>					
Near/Far Lar	e Distance:	73 feet		F		cleType	1	Day	Evening	Night	Daily
Site Data								77.5%	•	9.6%	
Bar	rier Height:	0.0 feet			Ме	dium Tr	ucks: 8	34.8%	4.9%	10.3%	0.70%
Barrier Type (0-Wa		0.0			H	leavy Tr	ucks: 8	31.2%	3.8%	15.0%	0.30%
Centerline Dis	. ,	55.0 feet		⊢	Noise So	urco El	vations	(in fr	of)		
Centerline Dist. t	o Observer:	55.0 feet		-	140/36 30	Autos			eŋ		
Barrier Distance t	o Observer:	0.0 feet			Madium	n Trucks	. 0.0				
Observer Height (/	Above Pad):	5.0 feet				y Trucks			Grade Adju	istment	0.0
Pa	d Elevation:	0.0 feet			Tieav	y mucka	. 0.0	04	0,000,000	Journom.	0.0
Roa	d Elevation:	0.0 feet		4	Lane Equ				eet)		
F	Road Grade:	0.0%				Autos					
	Left View:	-90.0 degree	s			n Trucks					
	Right View:	90.0 degree	s		Heav	y Trucks	: 41.2	53			
FHWA Noise Mode	I Calculation:	5									
VehicleType	REMEL	Traffic Flow	Dist	tance	Finite	Road	Fresne	e/	Barrier Atte	n Ber	m Atten
Autos:	68.46	2.45		1.1	-	-1.20		4.67	0.0		0.00
Medium Trucks:	79.45	-19.09		1.1	-	-1.20		4.87	0.0		0.00
Heavy Trucks:	84.25	-22.75		1.1	5	-1.20	-	5.38	0.0	00	0.00
Unmitigated Noise			oarrie								
	Leq Peak Hou			Leq E	vening	Leq	•		Ldn	CI	VEL
Autos:	70		0.5		68.7		62.7		71.3		71.
Medium Trucks:	60		60.4		54.0		52.5		60.9		61.
Heavy Trucks:	61	-	61.3		54.0		55.2		62.9		63.
Vehicle Noise:	71	.6	71.3		69.0		63.7		72.2		72.
Centerline Distanc	e to Noise Co	ontour (in feet)									
				70	dBA	65 0		6	0 dBA	55	dBA
			dn:		77		166		359		773
			IEL:		84		181		389		838

F	HWA-RD-77	108 HIG	HWAY N	NOISE PF	REDICTIO	N MODE	L		
<i>Scenario:</i> Existing <i>Road Name:</i> Alessand <i>Road Segment:</i> e/o Grah	iro Bl.					ame: Co nber: 136	mpass Danbe 861	Centerp	D
SITE SPECIFIC	INPUT DA	ГА					DEL INPUT	5	
Highway Data				Site Con	ditions (H	ard = 10	, Soft = 15)		
Average Daily Traffic (Adt)	: 41,799 ve	hicles				Aut			
Peak Hour Percentage					dium Truc		.,		
Peak Hour Volume	1	icles		He	avy Truck	s (3+ Axle	es): 15		
Vehicle Speed		h		Vehicle I	Nix				
Near/Far Lane Distance	: 73 fee	t	F	Vehi	cleType	Da	y Evening	Night	Daily
Site Data					Au	tos: 77	.5% 12.9%	9.6%	99.00%
Barrier Height	: 0.0 fe	et		Me	edium Truc	ks: 84	.8% 4.9%	10.3%	0.70%
Barrier Type (0-Wall, 1-Berm)				ŀ	leavy Tru	cks: 81	.2% 3.8%	15.0%	0.30%
Centerline Dist. to Barrier	: 55.0 fe	et	5	Noise So	urce Elev	ations (i	n feet)		
Centerline Dist. to Observer			F		Autos:	0.000	,		
Barrier Distance to Observer				Mediur	n Trucks:	2.297	,		
Observer Height (Above Pad)		et			y Trucks:	8.004		iustment.	0.0
Pad Elevation	. 0.0 10		-						
Road Elevation	0.010	et	4	Lane Equ	uivalent D				
Road Grade	. 0.070				Autos:	41.446			
Left View	· 00.0 de	•			n Trucks:	41.232	-		
Right View	: 90.0 de	grees		Heav	y Trucks:	41.253	3		
FHWA Noise Model Calculati									
VehicleType REMEL	Traffic Flo		istance	Finite		Fresnel	Barrier Att		m Atten
Autos: 68.		2.77	1.1	-	-1.20	-4.		000	0.000
Medium Trucks: 79.		8.76	1.1	-	-1.20	-4.		000	0.000
Heavy Trucks: 84.	25 -22	2.42	1.1	5	-1.20	-5.	38 0.0	000	0.00
Unmitigated Noise Levels (w									
VehicleType Leq Peak H		Day	Leq E	vening	Leq Ni		Ldn		VEL
	71.1	70.8		69.0		63.0	71.6		72.2
	60.6	60.7		54.3		52.8	61.2	-	61.5
	61.8	61.6		54.3		55.6	63.3		63.4
	72.0	71.7		69.3		64.1	72.5)	73.
Centerline Distance to Noise	Contour (in	feet)	70	-0.4	CE 1		60 JD 4		-10.4
		l dai		dBA	65 dE	175	60 dBA	55	dBA
		Ldn: CNEL:		81 88		175 190	377 409		812 881
		UNEL:		88		190	409		881

FHWA-RD-77-108 HIGHW	AY NOISE PREDICTION MODEL
Scenario: EA Without Project Road Name: Graham St. Road Segment: s/o Alessandro Bl.	Project Name: Compass Danbe Centerpo Job Number: 13661
SITE SPECIFIC INPUT DATA	NOISE MODEL INPUTS
Highway Data	Site Conditions (Hard = 10, Soft = 15)
Average Daily Traffic (Adt): 11,684 vehicles	Autos: 15
Peak Hour Percentage: 6.98%	Medium Trucks (2 Axles): 15
Peak Hour Volume: 816 vehicles	Heavy Trucks (3+ Axles): 15
Vehicle Speed: 40 mph	Vehicle Mix
Near/Far Lane Distance: 50 feet	VehicleType Day Evening Night Daily
Site Data	Autos: 77.5% 12.9% 9.6% 98.89%
Barrier Height: 0.0 feet	Medium Trucks: 84.8% 4.9% 10.3% 0.70%
Barrier Type (0-Wall, 1-Berm): 0.0	Heavy Trucks: 86.5% 2.7% 10.8% 0.42%
Centerline Dist. to Barrier: 44.0 feet	
Centerline Dist. to Observer: 44.0 feet	Noise Source Elevations (in feet)
Barrier Distance to Observer: 0.0 feet	Autos: 0.000
Observer Height (Above Pad): 5.0 feet	Medium Trucks: 2.297
Pad Elevation: 0.0 feet	Heavy Trucks: 8.004 Grade Adjustment: 0.0
Road Elevation: 0.0 feet	Lane Equivalent Distance (in feet)
Road Grade: 0.0%	Autos: 36.551
Left View: -90.0 degrees	Medium Trucks: 36.308
Right View: 90.0 degrees	Heavy Trucks: 36.332
FHWA Noise Model Calculations	
VehicleType REMEL Traffic Flow Distan	ce Finite Road Fresnel Barrier Atten Berm Atten
Autos: 66.51 -2.26	1.94 -1.20 -4.61 0.000 0.00
Medium Trucks: 77.72 -23.78	1.98 -1.20 -4.87 0.000 0.00
Heavy Trucks: 82.99 -26.00	1.98 -1.20 -5.50 0.000 0.00
Unmitigated Noise Levels (without Topo and barrier a	
	q Evening Leq Night Ldn CNEL
Autos: 65.0 64.7	62.9 56.8 65.5 66.
Medium Trucks: 54.7 54.8	48.4 46.9 55.3 55.
Heavy Trucks: 57.8 57.9	48.9 50.1 58.5 58.
Vehicle Noise: 66.1 65.8	63.2 58.0 66.6 67.
Centerline Distance to Noise Contour (in feet)	
	70 dBA 65 dBA 60 dBA 55 dBA
Ldn:	26 56 121 260
CNEL:	28 61 131 282

FHWA-RD-77-108 HIC	GHWAY	NOISE PR	EDICTI	ON MOI	DEL			
Scenario: EA Without Project Road Name: Alessandro Bl. Road Segment: w/o Graham St.				Name: (Imber: 1		ss Danbe	Centerp)
SITE SPECIFIC INPUT DATA							S	
Highway Data		Site Cond	ditions ('Hard =	10, So	ft = 15)		
Average Daily Traffic (Adt): 40,517 vehicles					Autos:	15		
Peak Hour Percentage: 6.98%		Med	dium Tru	cks (2 A	xles):	15		
Peak Hour Volume: 2,828 vehicles		Hea	avy Truc	ks (3+ A	xles):	15		
Vehicle Speed: 45 mph		Vehicle N	lix					
Near/Far Lane Distance: 73 feet		Vehi	cleType		Day	Evening	Night	Daily
Site Data			A	utos:	77.5%	12.9%	9.6%	98.89%
Barrier Height: 0.0 feet		Me	dium Tr	ucks:	84.8%	4.9%	10.3%	0.70%
Barrier Type (0-Wall, 1-Berm): 0.0		H	leavy Tr	ucks:	58.3%	2.7%	10.8%	0.42%
Centerline Dist. to Barrier: 55.0 feet		Noise So	urco Ek	vation	: (in fo	of		
Centerline Dist. to Observer: 55.0 feet		110/30 00	Autos		000	01/		
Barrier Distance to Observer: 0.0 feet		Mediun	n Trucks		97			
Observer Height (Above Pad): 5.0 feet			v Trucks		04	Grade Ad	iustment.	0.0
Pad Elevation: 0.0 feet								
Road Elevation: 0.0 feet		Lane Equ				eet)		
Road Grade: 0.0%			Autos					
Left View: -90.0 degrees			n Trucks v Trucks					
Right View: 90.0 degrees		neav	y mucks	. 41.4	200			
FHWA Noise Model Calculations								
VehicleType REMEL Traffic Flow L	Distance	Finite	Road	Fresn	el	Barrier Atte	en Ber	m Atten
Autos: 68.46 2.63		12	-1.20		-4.67		000	0.00
Medium Trucks: 79.45 -18.89		15	-1.20		-4.87		000	0.00
Heavy Trucks: 84.25 -21.11	1.	15	-1.20		-5.38	0.0	000	0.00
Unmitigated Noise Levels (without Topo and bar	rier atte	nuation)						
VehicleType Leq Peak Hour Leq Day		Evening	Leq I	Vight		Ldn		VEL
Autos: 71.0 70.7		68.9		62.9		71.5		72.
Medium Trucks: 60.5 60.6	-	54.2		52.7		61.1		61.
Heavy Trucks: 63.1 61.5		54.2		55.4		63.1		63.
Vehicle Noise: 72.0 71.5	5	69.2		63.9		72.4	ŀ	72.
Centerline Distance to Noise Contour (in feet)								
) dBA	65 c		6	0 dBA		dBA
Ldn		80		171		369		798
CNEL	2	86		186		400		862

Tuesday, November 3, 2020

Scenari	p: EA Without	Project				Project	Name [,] (omns	ass Danbe (`entern	2
	e: Alessandro						umber: 1		155 Daribe (Jenterp	,
Road Segmen						300 14	uniber. I	3001			
•	SPECIFIC IN										
Highway Data	SPECIFIC IN	PUIDAIA			Site Con					,	
Average Daily	Traffic (Adt):	40.171 vehicle	s					Autos:			
Peak Hour	• •	6.98%			Med	dium Tru	icks (2 A	xles):	15		
Peak H	our Volume:	2,804 vehicles			Hea	avy Truc	ks (3+ A	, xles):	15		
Vel	nicle Speed:	45 mph		-	Vehicle N	Aiw		-			
Near/Far Lar	ne Distance:	73 feet		-		l ix cleType		Day	Evening	Night	Daily
Site Data					Veni			77.5%	•	9.6%	
					Me	dium Ti		84.8%		10.3%	0.70%
	rier Height:	0.0 feet 0.0				leavy Tr		58.3%		10.8%	0.42%
Barrier Type (0-Wa Centerline Dis	. ,	0.0 55.0 feet								10.070	0.127
Centerline Dis Centerline Dist. 1		55.0 feet			Noise So	urce El	evations	in fe	eet)		
Barrier Distance 1		0.0 feet				Autos	s: 0.0	00			
Observer Height (5.0 feet			Mediur	n Trucks	s: 2.2	97			
	d Elevation:	0.0 feet			Heav	y Trucks	s: 8.0	04	Grade Adju	istment:	0.0
	d Elevation:	0.0 feet		F	Lane Equ	uvəlont	Distanc	o (in i	foot)		
	o Elevation. Road Grade:	0.0%		F	Lune Lqu	Autos					
r	Left View:				Modiur	n Truck					
	Right View:	-90.0 degree 90.0 degree				y Trucks					
		, , , , , , , , , , , , , , , , , , ,	Č								
FHWA Noise Mode							_				
VehicleType Autos:	REMEL 68.46	Traffic Flow 2.59	Dis	tance	Finite	-1.20	Fresn	e/ -4.67	Barrier Atte		m Atten
Autos: Medium Trucks:	08.40 79.45	-18.93		1.1	-	-1.20		-4.87	0.0		0.00
	79.45 84.25	-18.93		1.1	-	-1.20		-4.87 -5.38	0.0		0.00
Heavy Trucks:					-	-1.20		-5.38	0.0	JU	0.00
Unmitigated Noise											
VehicleType Autos:	Leq Peak Hou 71		70.6	Leq E	vening 68.9	Leq	Night 62.8		Ldn 71.4	CI	VEL
Autos: Medium Trucks:	60		70.6 30.5		54.2		62.8 52.6		61.1		72.0 61.3
Heavy Trucks:	60		50.5 51.5		54.2 54.2		52.6 55.4		63.1		63.3
Vehicle Noise:	71	.9	71.5		69.2		63.9		72.4		72.9
Centerline Distanc	e to Noise Co	ontour (in feet)									
			. L	70	dBA	65 (BA	6	60 dBA	55	dBA
			dn:		79		170		367		791
			Lan: IEL:		86		185		398		857

	FHW	/A-RD-77-108	BHIG	HWAY N	NOISE PF	REDICTIO	ON MOI	DEL			
Scenario: EA Wit Road Name: Alessa Road Segment: e/o Gra	ndro	BI.				Project I Job Nu			ass Danbe	Centerp	0
SITE SPECIFI	C IN	PUT DATA							L INPUTS	3	
Highway Data					Site Con	ditions (I			,		
Average Daily Traffic (Ad	·	43,458 vehicl	es					Autos:	15		
Peak Hour Percentag		6.98%				dium True			15		
Peak Hour Volun		3,033 vehicle	s		Hea	avy Truck	(S (3+ A	xles):	15		
Vehicle Spee		45 mph			Vehicle N	Nix					
Near/Far Lane Distand	e:	73 feet		F	Vehi	cleType		Day	Evening	Night	Daily
Site Data						A	utos:	77.5%	12.9%	9.6%	98.89%
Barrier Heig	ht.	0.0 feet			Me	edium Tru	icks:	84.8%	4.9%	10.3%	0.70%
Barrier Type (0-Wall, 1-Berr		0.0			F	leavy Tru	icks:	58.3%	2.7%	10.8%	0.42%
Centerline Dist. to Barri	er:	55.0 feet			Noise So	urce Ele	vations	in fe	ef)		
Centerline Dist. to Observ	er:	55.0 feet		F		Autos		00			
Barrier Distance to Observ	er:	0.0 feet			Mediur	n Trucks.	0.0				
Observer Height (Above Pa		5.0 feet				y Trucks		04	Grade Adj	ustment	: 0.0
Pad Elevation		0.0 feet		-							
Road Elevation		0.0 feet		4	Lane Equ				feet)		
Road Grad		0.0%				Autos:					
Left Vie		-90.0 degre				n Trucks.					
Right Vie	W.	90.0 degre	es		Heav	y Trucks	41.2	253			
FHWA Noise Model Calcula	tions	;									
VehicleType REME	-	Traffic Flow	Di	istance	Finite	Road	Fresn	e/	Barrier Atte	en Ber	m Atten
Autos: 6	3.46	2.93		1.1	2	-1.20		-4.67	0.0	00	0.000
Medium Trucks: 7	9.45	-18.59		1.1	5	-1.20		4.87	0.0	00	0.000
Heavy Trucks: 8	4.25	-20.81		1.1	5	-1.20		-5.38	0.0	00	0.000
Unmitigated Noise Levels (withc	out Topo and	barri	ier atten	uation)						
VehicleType Leq Peak	Hou	r Leq Da	V	Leq E	vening	Leq N	light		Ldn		NEL
Autos:	71.	-	71.0		69.2		63.2		71.8		72.4
Medium Trucks:	60.	-	60.9		54.5		53.0		61.4		61.7
Heavy Trucks:	63.		61.8		54.5		55.7		63.4		63.6
Vehicle Noise:	72.	.3	71.8		69.5		64.2		72.7		73.2
Centerline Distance to Nois	e Co	ntour (in fee	t)								
					dBA	65 d		6	60 dBA	55	dBA
			Ldn:		83		180		387		833
			NEL:		83 90		180		419		903

	FHW	VA-RD-77-10	8 HIGH	IWAY N	NOISE PF	REDICTI		DEL			
Scenario: EA Road Name: Gr Road Segment: s/o	aham St.	,					Name: (umber: 1		ass Danbe (Centerpo	
SITE SPEC	CIFIC IN	PUT DATA							L INPUTS	6	
Highway Data					Site Con	ditions	(Hard =	10, Sc	oft = 15)		
Average Daily Traffic Peak Hour Perce Peak Hour Ve	entage:	12,219 vehic 6.98% 853 vehicl					A Icks (2 A Iks (3+ A	/	15		
Vehicle S	Speed:	40 mph		E.				<i>,</i>			
Near/Far Lane Dis	stance:	50 feet		-	Vehicle I	vix icleType		Dav	Evening	Night	Dailu
Site Data					veni			77.5%	•	•	Daily 97.10%
Barrier H	loiabti	0.0 feet			Me	, edium Tr		34.8%			1.11%
Barrier Type (0-Wall, 1-		0.0			F	leavy Tr		36.5%		10.8%	1.79%
Centerline Dist. to E		44.0 feet		-					0		
Centerline Dist. to Ob		44.0 feet			Noise So	Auto			eet)		
Barrier Distance to Ob	server:	0.0 feet			1 4 m all	Autos n Trucks	. 0.0				
Observer Height (Above	e Pad):	5.0 feet							Grade Adj	untmont: C	
Pad Ele	vation:	0.0 feet			Heav	y Trucks	5. 8.0	104	Grade Adj	usimeni. u	.0
Road Ele	vation:	0.0 feet		1	Lane Equ	uivalent	Distanc	e (in i	feet)		
Road	Grade:	0.0%				Autos	s: 36.5	551			
Lef	t View:	-90.0 degr	ees		Mediur	n Trucks	s: 36.3	808			
Right	t View:	90.0 degr	ees		Heav	y Trucks	s: 36.3	32			
FHWA Noise Model Cal	culations	5									
VehicleType RE	MEL	Traffic Flow	Dis	tance	Finite	Road	Fresn	e/	Barrier Atte	en Berm	Atten
Autos:	66.51	-2.1	4	1.9	4	-1.20		4.61	0.0	00	0.000
Medium Trucks:	77.72	-21.5	7	1.9	8	-1.20		4.87	0.0	00	0.000
Heavy Trucks:	82.99	-19.4	9	1.9	8	-1.20		-5.50	0.0	00	0.000
Unmitigated Noise Leve	els (witho	out Topo an	d barrie	er atten	uation)						
VehicleType Leq F	Peak Hou	r Leq Da	ay	Leq E	vening	Leq	Night		Ldn	CNE	L
			64.8		63.0		56.9		65.6		66.3
Autos:	65.	.1	04.0								
Medium Trucks:	56.	.9	57.0		50.6		49.1		57.5		
Medium Trucks: Heavy Trucks:	56. 64.	.9 .3	57.0 64.4		55.4		49.1 56.6		65.0		65.1
Medium Trucks:	56.	.9 .3	57.0				49.1				65.1
Medium Trucks: Heavy Trucks:	56. 64. 68.	9 3 1	57.0 64.4 68.0		55.4		49.1 56.6		65.0		57.8 65.1 69.0
Medium Trucks: Heavy Trucks: Vehicle Noise:	56. 64. 68.	9 3 1	57.0 64.4 68.0	70 0	55.4	65 (49.1 56.6	-	65.0		65.1 69.0
Medium Trucks: Heavy Trucks: Vehicle Noise:	56. 64. 68.	9 3 1	57.0 64.4 68.0	70 0	55.4 63.9	65 (49.1 56.6 60.2	-	65.0 68.6		65.1 69.0

	FHW	A-RD-77-108 HIG	HWAY	NOISE PF	REDICT	ION MC	DEL						
	EA With Proj Alessandro E w/o Graham	BI.		Project Name: Compass Danbe Centerpo Job Number: 13661									
SITE S	PECIFIC INF	UT DATA			N	IOISE	NODE	L INPUT	5				
Highway Data				Site Conditions (Hard = 10, Soft = 15)									
Average Daily T	raffic (Adt): 4	1,163 vehicles					Autos:	15					
Peak Hour P	ercentage:	6.98%		Me	dium Tri	ucks (2	Axles):	15					
Peak Ho	ur Volume: 2	2,873 vehicles		He	avy Truc	cks (3+ .	Axles):	15					
Vehi	icle Speed:	45 mph	-	Vehicle I	Ai~								
Near/Far Lane	e Distance:	73 feet	-		cleType		Dav	Evening	Night	Daily			
Site Data				10/1		Autos:	77.5%	•	9.6%				
	ier Heiaht:	0.0 feet		Me	edium Ti		84.8%		10.3%	0.829			
Barrier Type (0-Wa		0.0 feet			leavy T		81.2%		15.0%	0.599			
Centerline Dist	. ,	55.0 feet	-										
Centerline Dist. to		55.0 feet	-	Noise So				eet)					
Barrier Distance to		0.0 feet			Auto		000						
Observer Height (A		5.0 feet			n Truck		297	Oursels Ad					
÷ (Elevation:	0.0 feet		Heav	y Truck	s: 8.	004	Grade Adj	usiment	0.0			
Road	Elevation:	0.0 feet	ľ	Lane Equ	uivalent	t Distan	ce (in i	feet)					
R	oad Grade:	0.0%	ſ		Auto	s: 41	446						
	Left View:	-90.0 degrees		Mediur	n Truck	s: 41	232						
1	Right View:	90.0 degrees		Heav	y Truck	s: 41	253						
FHWA Noise Model													
VehicleType			istance	Finite		Fresi	-	Barrier Att		m Atten			
Autos: Medium Trucks:	68.46 79.45	2.68 -18.13	1.1	-	-1.20 -1.20		-4.67 -4.87		000 000	0.00			
Heavy Trucks:	79.45 84.25	-18.13	1.1		-1.20		-4.87		000	0.00			
				-	-1.20		-9.30	0.0	000	0.00			
Unmitigated Noise				/ I			-						
	eq Peak Hour			vening	Leq	Night		Ldn		VEL			
Autos:	71.1			69.0		62.	-	71.5		72.			
Medium Trucks:	61.3 64.7			55.0 57.2		53. 58.		61.9 66.1		62. 66.			
Heavy Trucks: Vehicle Noise:	72.3			57.2 69.4		58. 64.		73.0		73			
				09.4		04.	5	73.0)	13.			
Centerline Distance	to Noise Con	itour (in feet)	70	dBA	65	dBA	e	0 dBA	55	dBA			
		Ldn:		87		187		404		86			
								101		000			

Tuesday, November 3, 2020

		/A-RD-77-108									
Scenario: EA V		,							ass Danbe (Centerpo	C
Road Name: Ales						Job N	umber: 1	3661			
Road Segment: w/o	rederio	ck St.									
SITE SPECI	FIC IN	PUT DATA							L INPUTS	5	
Highway Data					Site Con	ditions	(Hard = 1	10, Sc	oft = 15)		
Average Daily Traffic (Adt):	40,227 vehicle	s				A	Autos:	15		
Peak Hour Percent	tage:	6.98%			Med	dium Tru	icks (2 A	xles):	15		
Peak Hour Vol	ume:	2,808 vehicles			Hea	avy Truc	:ks (3+ A	xles):	15		
Vehicle Sp		45 mph		ŀ	Vehicle N	lix					
Near/Far Lane Dista	ance:	73 feet		-		cleType	1	Dav	Evening	Night	Dailv
Site Data							utos:	77.5%	•	9.6%	99.00
Barrier He	iaht [.]	0.0 feet			Ме	dium Tr	ucks: 8	34.8%	4.9%	10.3%	0.70%
Barrier Type (0-Wall, 1-B	5	0.0 1001			H	leavy Tr	ucks: 8	81.2%	3.8%	15.0%	0.309
Centerline Dist. to Ba		55.0 feet		-	N 0			(f.	41		
Centerline Dist. to Obse	erver:	55.0 feet		-	Noise So	Autos			eet)		
Barrier Distance to Obse	erver:	0.0 feet									
Observer Height (Above I	Pad):	5.0 feet				n Trucks			Grade Adju	of mont	
Pad Eleva	ation:	0.0 feet			Heav	y Trucks	8: 8.0	104	Graue Auju	istinent.	0.0
Road Eleva	ation:	0.0 feet			Lane Equ	iivalent	Distanc	e (in i	feet)		
Road G	rade:	0.0%				Autos	s: 41.4	46			
Left	view:	-90.0 degree	s		Mediun	n Trucks	s: 41.2	32			
Right	view:	90.0 degree	s		Heav	y Trucks	5: 41.2	253			
FHWA Noise Model Calcu	Ilations	5									
VehicleType REM	1EL	Traffic Flow	Dis	stance	Finite		Fresne		Barrier Atte		m Atten
Autos:	68.46	2.60	_	1.1	-	-1.20		4.67	0.0		0.00
Medium Trucks:	79.45	-18.93		1.1	-	-1.20		4.87	0.0	00	0.00
Heavy Trucks:	84.25	-22.59		1.1	5	-1.20		-5.38	0.0	00	0.00
Unmitigated Noise Levels					,						
VehicleType Leq Pe				Leq E	vening	Leq	Night		Ldn	CI	VEL
Autos:	71.		70.6		68.9		62.8		71.4		72.
Medium Trucks:	60.		50.5		54.2		52.6		61.1		61.
Heavy Trucks:	61.	-	51.5		54.2		55.4		63.1		63.
Vehicle Noise:	71.	-	71.5		69.2		63.9		72.4		72.
Centerline Distance to No	oise Co	ntour (in feet)									
			L	70	dBA	65 0		6	60 dBA	55	dBA
											792
			Ldn: IEL		79 86		171 185		367 398		85

	HWA-F	RD-77-108 H	IIGH	NAY I		REDICTI	ON MO	DEL						
Scenario: EA Witt Road Name: Alessar Road Segment: e/o Gra	dro Bl.	1					Name: ımber:		ass Danbe	Centerp	0			
SITE SPECIFIC	INPU	T DATA			NOISE MODEL INPUTS Site Conditions (Hard = 10, Soft = 15)									
Highway Data					Site Con	ditions (,					
Average Daily Traffic (Ad		184 vehicles						Autos.						
Peak Hour Percentage		98%				dium Tru								
Peak Hour Volum		35 vehicles			He	avy Truc	KS (3+)	Axies).	15					
Vehicle Spee		45 mph		Ē	Vehicle I	Nix								
Near/Far Lane Distance	9.' 7	73 feet			Vehi	cleType		Day	Evening	Night	Daily			
Site Data						A	utos:	77.5%	6 12.9%	9.6%	99.00%			
Barrier Heigh	t: (0.0 feet			Me	edium Tru	ucks:	84.8%	6 4.9%	10.3%	0.70%			
Barrier Type (0-Wall, 1-Berm): (0.0			F	leavy Tri	ucks:	81.2%	6 3.8%	15.0%	0.30%			
Centerline Dist. to Barrie	r: 5	5.0 feet			Noise So	urco Ele	vation	e (in f	oof)					
Centerline Dist. to Observe	r: 5	5.0 feet			10/30 00	Autos		000	000					
Barrier Distance to Observe	r: (0.0 feet			Mediur	n Trucks		297						
Observer Height (Above Pac): ;	5.0 feet				y Trucks		004	Grade Ad	iustmen	t: 0.0			
Pad Elevatio		0.0 feet		L										
Road Elevatio		0.0 feet		-	Lane Equ				feet)					
Road Grad		0%				Autos		446						
Left View		0.0 degrees				n Trucks		232						
Right View	V: 91	0.0 degrees			Heav	y Trucks	: 41.	253						
FHWA Noise Model Calculat	ions													
VehicleType REMEL	Tra	ffic Flow	Dista	ance	Finite	Road	Fresr	nel	Barrier Att	en Be	rm Atten			
	.46	2.94		1.1	-	-1.20		-4.67		000	0.00			
	.45	-18.59		1.1	-	-1.20		-4.87		000	0.00			
Heavy Trucks: 84	.25	-22.25		1.1	5	-1.20		-5.38	0.0	000	0.00			
Unmitigated Noise Levels (w														
VehicleType Leq Peak		Leq Day		Leq E	vening	Leq N			Ldn		NEL			
Autos:	71.3		1.0		69.2		63.	-	71.8	-	72.			
Medium Trucks:	60.8		0.9		54.5		53.0	-	61.4		61.			
Heavy Trucks: Vehicle Noise:	62.0	-	1.8		54.5		55.		63.4		63. 73.			
	72.1		1.8		69.5		64.2	2	72.7	(73.			
Centerline Distance to Noise	Conto	ur (in feet)		70		65 -	ID A		60 dBA		d D A			
			dn:	70	dBA	65 a	<i>IBA</i> 180		60 dBA 387		dBA			
		CNE			83 90		180		387		834 904			
		CN	=L.:		90		195		420		904			

APPENDIX 9.1:

CADNAA OPERATIONAL NOISE MODEL INPUTS

13661 - Compass Danbe Centerpointe

CadnaA Noise Prediction Model: 13661.cna Date: 03.11.20 Analyst: S. Shami

Calculation Configuration

ParameterValueGeneral	Configurat	ion
Country(user defined)Max. Error (dB)0.00Max. Search Radius (#(Unit,LEN))2000.01Min. Dist Src to Revr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnProj. Area SourcesOnReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Reference Time Night (min)480.00Daytime Penalty (dB)10.00DTMStandard Height (m)DTM0.00Standard Height (m)0.00Max. Distance Source - Revr100.00Max. Distance Source - Revr100.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Min. Distance Source - Reflector0.10	Parameter	Value
Max. Error (dB) 0.00 Max. Search Radius (#(Unit,LEN)) 2000.01 Min. Dist Src to Rcvr 0.00 Partition 0.00 Raster Factor 0.50 Max. Length of Section (#(Unit,LEN)) 999.99 Min. Length of Section (#(Unit,LEN)) 999.99 Min. Length of Section (%) 0.00 Proj. Line Sources On Proj. Area Sources On Ref. Time Reference Time Day (min) Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Reference Time Night (Min) 0.00 Model of Terrain Triangulation Reflection 2 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Min. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 1 Lateral Diffraction some Obj Obst. within Area Src do not shield On	General	
Max. Search Radius (#(Unit,LEN)) 2000.01 Min. Dist Src to Rcvr 0.00 Partition Raster Factor Raster Factor 0.50 Max. Length of Section (#(Unit,LEN)) 999.99 Min. Length of Section (#(Unit,LEN)) 1.01 Min. Length of Section (%) 0.00 Proj. Line Sources On Proj. Area Sources On Ref. Time Reference Time Day (min) Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Ref. Time Penalty (dB) 10.00 DTM Daytime Penalty (dB) Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 1000.00 Min. Distance Source - Reflector 1.00 Min. Distance Sour	Country	(user defined)
Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Retr. Time Penalty (dB)10.00DTMStandard Height (m)Ondel of TerrainTriangulationReflection2Search Radius Src100.00Max. Drder of Reflection2Search Radius Src100.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Incl. Ground Att. over BarrierDestingIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.00Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly act. to RLS-90Railways (FTA/FRA)Aircraft (???)	Max. Error (dB)	0.00
Min. Dist Src to Rcvr0.00PartitionRaster FactorRaster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Line SourcesOnReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Retr. Time Penalty (dB)10.00DTMStandard Height (m)Ondel of TerrainTriangulationReflection2Search Radius Src100.00Max. Drder of Reflection2Search Radius Src100.00Min. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Incl. Ground Att. over BarrierDestingIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.00Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly act. to RLS-90Railways (FTA/FRA)Aircraft (???)	Max. Search Radius (#(Unit,LEN))	2000.01
Raster Factor0.50Max. Length of Section (#(Unit,LEN))999.99Min. Length of Section (#(Unit,LEN))1.01Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Rer. Time Penalty (dB)10.00Night-time Penalty (dB)10.00DTMStandard Height (m)Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Min. Distance Source - Revr1000.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)Barrier Coefficients C1,2,3Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly acc. to RLS-90Railways (FTA/FRA)Aircraft (???)		0.00
Max. Length of Section (#(Unit,LEN)) 999.99 Min. Length of Section (#(Unit,LEN)) 1.01 Min. Length of Section (%) 0.00 Proj. Line Sources On Proj. Area Sources On Ref. Time Reference Time Day (min) Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Recr. Time Penalty (dB) 0.00 Retr. Time Penalty (dB) 10.00 DTM Standard Height (m) Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Max. Distance Source - Revr 1000.00 Min. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Lateral Diffraction Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP))<	Partition	
Min. Length of Section (#(Unit,LEN)) 1.01 Min. Length of Section (%) 0.00 Proj. Line Sources On Proj. Area Sources On Ref. Time Reference Time Day (min) Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Retr. Time Penalty (dB) 0.00 Retr. Time Penalty (dB) 10.00 DTM 5 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Src 100.00 Max. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 2 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 10 rel. Humidity (%) 70 Ground Absorp	Raster Factor	0.50
Min. Length of Section (#(Unit,LEN)) 1.01 Min. Length of Section (%) 0.00 Proj. Line Sources On Proj. Area Sources On Ref. Time Reference Time Day (min) Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Retr. Time Penalty (dB) 0.00 Retr. Time Penalty (dB) 10.00 DTM 5 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Src 100.00 Max. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 2 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 10 rel. Humidity (%) 70 Ground Absorp	Max. Length of Section (#(Unit,LEN))	999.99
Min. Length of Section (%)0.00Proj. Line SourcesOnProj. Area SourcesOnRef. TimeReference Time Day (min)Reference Time Night (min)480.00Daytime Penalty (dB)0.00Recr. Time Penalty (dB)10.00DTMStandard Height (m)Ondold0.00Reflection2Standard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Order of Reflection2Search Radius Rcvr1000.00Min. Distance Source - Rcvr10000.00Min. Distance Source - Reflector1.00Industrial (ISO 9613)Lateral DiffractionLateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDarrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Railways (FTA/FRA)Aircraft (???)Aircraft (???)		1.01
Proj. Area SourcesOnRef. TimeReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.00Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)3.0 20.0 0.0Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly acc. to RLS-90Railways (FTA/FRA)Aircraft (???)		0.00
Proj. Area SourcesOnRef. TimeReference Time Day (min)960.00Reference Time Night (min)480.00Daytime Penalty (dB)0.00Recr. Time Penalty (dB)5.00Night-time Penalty (dB)10.00DTM0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Max. Distance Source - Reflector1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)1.00Lateral Diffractionsome ObjObst. within Area Src do not shieldOnScreeningIncl. Ground Att. over BarrierDz with limit (20/25)3.0 20.0 0.0Barrier Coefficients C1,2,33.0 20.0 0.0Temperature (#(Unit,TEMP))10rel. Humidity (%)70Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly acc. to RLS-90Railways (FTA/FRA)Aircraft (???)		On
Ref. Time 960.00 Reference Time Day (min) 960.00 Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Recr. Time Penalty (dB) 5.00 Night-time Penalty (dB) 10.00 DTM 5 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 1.00 Industrial (ISO 9613) 1 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) 5 Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 <td></td> <td>On</td>		On
Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Recr. Time Penalty (dB) 5.00 Night-time Penalty (dB) 10.00 DTM 5 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Lateral Diffraction Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)		
Reference Time Night (min) 480.00 Daytime Penalty (dB) 0.00 Recr. Time Penalty (dB) 5.00 Night-time Penalty (dB) 10.00 DTM 5 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Lateral Diffraction Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)		960.00
Daytime Penalty (dB) 0.00 Recr. Time Penalty (dB) 5.00 Night-time Penalty (dB) 10.00 DTM 0.00 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 1000.00 Min. Distance Source - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Eateral Diffraction Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Statictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)		480.00
Recr. Time Penalty (dB) 5.00 Night-time Penalty (dB) 10.00 DTM		
Night-time Penalty (dB)10.00DTMStandard Height (m)0.00Model of TerrainTriangulationReflection2Search Radius Src100.00Search Radius Rcvr100.00Max. Distance Source - Rcvr1000.00 1000.00Min. Distance Source - Reflector1.00 1.00Min. Distance Source - Reflector0.10Industrial (ISO 9613)Lateral DiffractionScreeningIncl. Ground Att. over BarrierDz with inxit (20/25)Sarrier Coefficients C1,2,33.0 20.0 0.070Ground Absorption G0.50Wind Speed for Dir. (#(Unit,SPEED))3.0Roads (RLS-90)Strictly acc. to RLS-90Railways (FTA/FRA)Aircraft (???)		5.00
DTM 0.00 Standard Height (m) 0.00 Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 1 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Darrier Coefficients C1,2,3 Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)		10.00
Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 2 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 10 rel. Humidity (%) 70 Ground Absorption G Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) Strictly acc. to RLS-90 Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???) Aircraft (???) Aircraft (???)		
Model of Terrain Triangulation Reflection 2 Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 2 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 10 rel. Humidity (%) 70 Ground Absorption G Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) Strictly acc. to RLS-90 Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???) Aircraft (???) Aircraft (???)	Standard Height (m)	0.00
Reflection 2 search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 Min. Distance Source - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 1 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 10 rel. Humidity (%) 70 Ground Absorption G Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) Stricity acc. to RLS-90 Stricity acc. to RLS-90 Railways (FTA/FRA) Aircraft (???) Aircraft (???) Aircraft (???)		Triangulation
Search Radius Src 100.00 Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 1000.00 Min. Distance Rcvr - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) 1 Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Dz Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Reflection	
Search Radius Rcvr 100.00 Max. Distance Source - Rcvr 1000.00 1000.00 Min. Distance Source - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Industrial (ISO 9613) Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	max. Order of Reflection	2
Max. Distance Source - Rcvr 1000.00 1000.00 Min. Distance Rvcr - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Industrial (ISO 9613) Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Darrier Coefficients C1,2,3 Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Search Radius Src	100.00
Min. Distance Rvcr - Reflector 1.00 1.00 Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Edited State St	Search Radius Rcvr	100.00
Min. Distance Source - Reflector 0.10 Industrial (ISO 9613) Ederal Diffraction Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Max. Distance Source - Rcvr	1000.00 1000.00
Industrial (ISO 9613) some Obj Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Min. Distance Rvcr - Reflector	1.00 1.00
Lateral Diffraction some Obj Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Min. Distance Source - Reflector	0.10
Obst. within Area Src do not shield On Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Industrial (ISO 9613)	
Screening Incl. Ground Att. over Barrier Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Lateral Diffraction	some Obj
Dz with limit (20/25) Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Obst. within Area Src do not shield	On
Barrier Coefficients C1,2,3 3.0 20.0 0.0 Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Screening	Incl. Ground Att. over Barrier
Temperature (#(Unit,TEMP)) 10 rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) 3.0 Strictly acc. to RLS-90 10 Railways (FTA/FRA) 10 Aircraft (???) 10		Dz with limit (20/25)
rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Barrier Coefficients C1,2,3	3.0 20.0 0.0
rel. Humidity (%) 70 Ground Absorption G 0.50 Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Temperature (#(Unit,TEMP))	10
Wind Speed for Dir. (#(Unit,SPEED)) 3.0 Roads (RLS-90)		70
Roads (RLS-90) Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Ground Absorption G	0.50
Strictly acc. to RLS-90 Railways (FTA/FRA) Aircraft (???)	Wind Speed for Dir. (#(Unit,SPEED))	3.0
Railways (FTA/FRA) Aircraft (???)	Roads (RLS-90)	
Railways (FTA/FRA) Aircraft (???)	Strictly acc. to RLS-90	
Christin and to A=D	Aircraft (???)	
Strictly act. to AZB	Strictly acc. to AzB	

Receiver Noise Levels

Name	M.	ID	Level Lr		Lir	nit. Val	ue		Land	Use	Height		Co	oordinates		
			Day	Night	CNEL	Day	Night	CNEL	Туре	Auto	Noise Type			Х	Y	Z
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)				(ft)		(ft)	(ft)	(ft)
RECEIVERS		R1	39.5	38.0	44.7	65.0	60.0	0.0				5.00	а	6256312.79	2278949.58	5.00
RECEIVERS		R2	43.6	43.4	50.0	65.0	60.0	0.0				5.00	а	6257887.44	2278566.77	5.00
RECEIVERS		R3	48.9	48.8	55.5	65.0	60.0	0.0				5.00	а	6254819.51	2278120.58	5.00
RECEIVERS		R4	35.1	32.8	39.7	65.0	60.0	0.0				5.00	а	6254829.93	2279082.21	5.00
RECEIVERS		R5	38.8	36.6	43.4	65.0	60.0	0.0				5.00	а	6255752.80	2279018.15	5.00
RECEIVERS		@ 200	55.5	55.4	62.1	65.0	60.0	0.0				5.00	а	6257067.66	2278236.19	5.00

Point Source(s)

Name	М.	ID	R	esult. PW	/L	. Lw/Li				erating Ti	me	К0	Height		Coordinates			
			Day	Evening	Night	Туре	Value	norm.	Day	Special	Night				Х	Y	Z	
			(dBA)	(dBA)	(dBA)			dB(A)	(min)	(min)	(min)	(dB)	(ft)		(ft)	(ft)	(ft)	
POINTSOURCE		TRASH03	89.0	89.0	89.0	Lw	89		75.00	0.00	45.00	0.0	5.00	а	6255782.68	2278218.71	5.00	
POINTSOURCE		TRASH02	89.0	89.0	89.0	Lw	89		75.00	0.00	45.00	0.0	5.00	а	6256273.56	2278214.72	5.00	
POINTSOURCE		TRASH01	89.0	89.0	89.0	Lw	89		75.00	0.00	45.00	0.0	5.00	а	6256682.17	2278244.65	5.00	
POINTSOURCE		AC01	88.9	88.9	88.9	Lw	88.9		585.00	0.00	252.00	0.0	5.00	g	6255642.95	2278707.03	50.00	
POINTSOURCE		AC02	88.9	88.9	88.9	Lw	88.9		585.00	0.00	252.00	0.0	5.00	g	6256420.94	2278702.03	50.00	
POINTSOURCE		AC03	88.9	88.9	88.9	Lw	88.9		585.00	0.00	252.00	0.0	5.00	g	6256787.64	2278696.43	50.00	

Line Source(s)

Name	м.	ID	R	esult. PW	/L	R	esult. PW	L'		Lw / Li		Op	erating Ti	me		Moving	Pt. Src		Height
			Day	Evening	Night	Day	Evening	Night	Туре	Value	norm.	Day	Special	Night		Number		Speed	
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	(min)	(min)	(min)	Day	Evening	Night	(mph)	(ft)
LINESOURCE		DWY01	92.9	77.8	83.8	69.6	54.5	60.5	PWL-Pt	89.7					97.0	3.0	12.0	6.2	8
LINESOURCE		DWY03	92.6	77.5	83.5	69.6	54.5	60.5	PWL-Pt	89.7					97.0	3.0	12.0	6.2	8
LINESOURCE		DWY1&3	91.2	76.1	82.1	72.6	57.5	63.5	PWL-Pt	89.7					194.0	6.0	24.0	6.2	8

Name	ŀ	lei	ght			Coordinat	es	
	Begin		End		х	у	z	Ground
	(ft)		(ft)		(ft)	(ft)	(ft)	(ft)
LINESOURCE	8.00	а			6255770.89	2278288.20	8.00	0.00
					6255586.95	2278291.38	8.00	0.00
					6255585.68	2278722.08	8.00	0.00
					6255613.67	2278746.25	8.00	0.00
					6255616.85	2278800.33	8.00	0.00
LINESOURCE	8.00	а			6256695.05	2278275.81	8.00	0.00
					6256834.86	2278281.92	8.00	0.00
					6256833.64	2278704.02	8.00	0.00
					6256816.56	2278733.30	8.00	0.00
					6256812.94	2278793.79	8.00	0.00
LINESOURCE	8.00	а			6256285.49	2278285.21	8.00	0.00
					6256524.87	2278283.25	8.00	0.00

Area Source(s)

Name	М.	ID	R	esult. PW	'L	Re	esult. PW	L''		Lw/L	i	Op	erating Ti	me	Height
			Day	Evening	Night	Day	Evening	Night	Туре	Value	norm.	Day	Special	Night	(ft)
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	(min)	(min)	(min)	
AREASOURCE		DOCK01	111.5	111.5	111.5	72.0	72.0	72.0	Lw	111.5					8
AREASOURCE		DOCK02	111.5	111.5	111.5	76.8	76.8	76.8	Lw	111.5					8

Name	ŀ	lei	ght		Coordinat	es	
	Begin		End	x	у	z	Ground
	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)
AREASOURCE	8.00	а		6255771.27	2278400.50	8.00	0.00
				6256285.56	2278396.31	8.00	0.00
				6256285.43	2278208.79	8.00	0.00
				6255770.64	2278212.94	8.00	0.00
AREASOURCE	8.00	а		6256525.91	2278394.45	8.00	0.00
				6256694.80	2278393.11	8.00	0.00
				6256695.20	2278205.05	8.00	0.00
				6256524.15	2278206.72	8.00	0.00

Barrier(s)

Name	М.	ID	Abso	rption	Z-Ext.	Canti	ilever	H	lei	ght		Coordinat	es	
			left	right		horz.	vert.	Begin		End	x	У	z	Ground
					(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)
BARRIEREXISTING		0						6.00	а		6255572.68	2278951.74	6.00	0.00
											6255611.75	2278933.51	6.00	0.00
											6256126.07	2278933.51	6.00	0.00
BARRIEREXISTING		0						5.00	а		6256248.99	2278952.24	5.00	0.00
											6256281.89	2278922.97	5.00	0.00
											6256870.71	2278924.11	5.00	0.00
											6257366.73	2278920.70	5.00	0.00
											6257486.99	2278920.70	5.00	0.00

Building(s)

Name	М.	ID	RB	Residents	Absorption	Height			Coordinat	es	
						Begin		х	У	z	Ground
						(ft)		(ft)	(ft)	(ft)	(ft)
BUILDING		BUILDING00001	х	0		45.00	а	6255623.77	2278719.79	45.00	0.00
								6255664.95	2278719.93	45.00	0.00
								6255664.95	2278723.08	45.00	0.00
								6255715.31	2278723.08	45.00	0.00
								6255715.45	2278725.42	45.00	0.00
								6255742.49	2278725.69	45.00	0.00
								6255742.63	2278722.67	45.00	0.00
								6255792.72	2278721.99	45.00	0.00
								6255792.72	2278724.59	45.00	0.00
								6255819.48	2278724.87	45.00	0.00
								6255819.76	2278722.40	45.00	0.00
								6255900.59	2278721.44	45.00	0.00
								6255900.59	2278724.18	45.00	0.00
								6255928.18	2278724.18	45.00	0.00
								6255928.04	2278720.89	45.00	0.00
								6255977.72	2278720.75	45.00	0.00
								6255977.72	2278723.77	45.00	0.00
								6256005.31	2278723.63	45.00	0.00

Name	M.	ID	RB	Residents	Absorption	Height	:		Coordinat	es	
						Begin	_	х	У	z	Ground
						(ft)		(ft)	(ft)	(ft)	(ft)
								6256005.17		45.00	0.00
									2278720.06	45.00	0.00
									2278723.22	45.00	0.00
									2278723.08	45.00	0.00
								6256082.58	2278719.79 2278719.65	45.00 45.00	0.00
											0.00
								6256131.85 6256159.57		45.00 45.00	0.00
							\vdash		2278722.40	45.00	0.00
								6256240.27		45.00	0.00
									2278718.05	45.00	0.00
									2278721.44	45.00	0.00
									2278718.56	45.00	0.00
									2278718.28	45.00	0.00
									2278721.30	45.00	0.00
								6256344.44	2278721.16	45.00	0.00
								6256344.58	2278718.28	45.00	0.00
								6256395.22	2278717.73	45.00	0.00
								6256395.22	2278716.36	45.00	0.00
								6256438.73	2278716.36	45.00	0.00
								6256438.59	2278687.54	45.00	0.00
								6256439.55	2278687.26	45.00	0.00
								6256439.41	2278634.70	45.00	0.00
								6256442.29	2278634.42	45.00	0.00
							Ĺ	6256442.43	2278606.02	45.00	0.00
							Ľ	6256439.41	2278606.02	45.00	0.00
								6256439.14	2278538.63	45.00	0.00
								6256442.43	2278538.77	45.00	0.00
								6256442.16	2278510.49	45.00	0.00
								6256439.00	2278510.63	45.00	0.00
								6256438.59	2278421.70	45.00	0.00
								6256441.61	2278421.56	45.00	0.00
								6256441.74	2278393.70	45.00	0.00
									2278393.43	45.00	0.00
								6256438.73	2278340.45	45.00	0.00
								6256437.63	2278340.45	45.00	0.00
								6256437.63	2278311.77	45.00	0.00
								6256407.57	2278312.04	45.00	0.00
									2278310.94	45.00	0.00
									2278310.80	45.00	0.00
									2278308.61	45.00	0.00
								6256329.89		45.00	0.00
								6256329.75		45.00	0.00
								6256285.29		45.00	0.00
									2278396.31	45.00	0.00
								6255771.27	2278400.50	45.00	0.00
								6255771.07		45.00	0.00
									2278315.64	45.00	0.00
									2278312.96	45.00	0.00
	-						Н		2278312.87	45.00	0.00
			-				\parallel		2278316.11	45.00	0.00
	-		-				\parallel		2278316.40	45.00 45.00	0.00
	-		-				Η		2278320.89		0.00
	-		-				Н		2278320.98 2278347.71	45.00 45.00	0.00
	-		\vdash				Н			45.00	0.00
			-				H		2278347.71 2278400.58	45.00	0.00
	-		-				Н		2278400.58	45.00	0.00
	-		-				Н		2278400.77	45.00	0.00
	-		-				Η		2278428.93	45.00	0.00
	-		+				H		2278506.34	45.00	0.00
	-		-				Η		2278506.62	45.00	0.00
	-		-				Η		2278530.02	45.00	0.00
	-		\vdash				H		2278534.78	45.00	0.00
	-						Η		2278612.38	45.00	0.00
	-		1				Η		2278612.38	45.00	0.00
	-		1				Η		2278640.54	45.00	0.00
			1				H		2278640.44	45.00	0.00
	-		+				H		2278693.41	45.00	0.00
	-		-				Η		2278693.41	45.00	0.00
	-		1				H		2278707.92	45.00	0.00
BUILDING	-	BUILDING00002	x	0		45.00	а	6256527.92		45.00	0.00
	-					.5.00	f		2278715.33	45.00	0.00
	-						H		2278715.55	45.00	0.00
			-				\vdash			45.00	0.00
								6256611 X-			
								6256611.83 6256612.10	2278718.95	45.00	0.00

Name	М.	ID	RB	Residents	Absorption	Height		Coordinat	es	
						Begin	x	у	z	Ground
						(ft)	(ft)	(ft)	(ft)	(ft)
							6256639.09	2278716.13	45.00	0.00
							6256690.77	2278715.46	45.00	0.00
							6256691.04	2278718.41	45.00	0.00
							6256718.30	2278718.15	45.00	0.00
							6256718.70	2278715.73	45.00	0.00
							6256769.05	2278714.79	45.00	0.00
							6256769.18	2278711.70	45.00	0.00
							6256800.19		45.00	0.00
							6256800.19	2278684.72	45.00	0.00
							6256803.55		45.00	0.00
	++		-				6256803.28		45.00	0.00
	++						6256805.97	2278631.68	45.00	0.00
							6256806.24	2278603.49	45.00	0.00
							6256803.28		45.00	0.00
								2278525.75	45.00	0.00
	++						6256806.10		45.00	0.00
	+						6256805.83		45.00	0.00
							6256803.01		45.00	0.00
							6256802.61	2278437.30	45.00	0.00
							6256805.70	2278420.05	45.00	0.00
							6256805.83	2278391.76	45.00	0.00
							6256802.48		45.00	0.00
	+ +									
							6256802.61		45.00	0.00
	+						6256797.11		45.00	0.00
							6256797.24		45.00	0.00
	+						6256773.48		45.00	0.00
							6256773.61	2278308.26	45.00	0.00
							6256694.40		45.00	0.00
							6256694.80	2278393.11	45.00	0.00
							6256525.91		45.00	0.00
							6256526.04		45.00	0.00
							6256523.09		45.00	0.00
							6256523.09		45.00	0.00
							6256526.31		45.00	0.00
							6256526.31	2278510.05	45.00	0.00
							6256523.62	2278509.91	45.00	0.00
							6256523.35	2278538.37	45.00	0.00
							6256526.17	2278538.37	45.00	0.00
							6256526.55	2278605.63	45.00	0.00
							6256523.57	2278605.86	45.00	0.00
							6256523.57	2278634.03	45.00	0.00
							6256526.55	2278633.80	45.00	0.00
							6256526.78	2278686.70	45.00	0.00
							6256527.92	2278686.93	45.00	0.00

APPENDIX 10.1:

CADNAA CONSTRUCTION NOISE MODEL INPUTS

13661 -Compass Danbe Centerpointe CadnaA Noise Prediction Model: 13661_Construction.cna

CadnaA Noise Prediction Model: 13661_Construction.cna Date: 03.11.20 Analyst: S. Shami

Calculation Configuration

Configurat	ion
Parameter	Value
General	
Country	(user defined)
Max. Error (dB)	0.00
Max. Search Radius (#(Unit,LEN))	2000.01
Min. Dist Src to Rcvr	0.00
Partition	
Raster Factor	0.50
Max. Length of Section (#(Unit,LEN))	999.99
Min. Length of Section (#(Unit,LEN))	1.01
Min. Length of Section (%)	0.00
Proj. Line Sources	On
Proj. Area Sources	On
Ref. Time	
Reference Time Day (min)	960.00
Reference Time Night (min)	480.00
Daytime Penalty (dB)	0.00
Recr. Time Penalty (dB)	5.00
Night-time Penalty (dB)	10.00
DTM	
Standard Height (m)	0.00
Model of Terrain	Triangulation
Reflection	
max. Order of Reflection	2
Search Radius Src	100.00
Search Radius Rcvr	100.00
Max. Distance Source - Rcvr	1000.00 1000.00
Min. Distance Rvcr - Reflector	1.00 1.00
Min. Distance Source - Reflector	0.10
Industrial (ISO 9613)	
Lateral Diffraction	some Obj
Obst. within Area Src do not shield	On
Screening	Incl. Ground Att. over Barrier
	Dz with limit (20/25)
Barrier Coefficients C1,2,3	3.0 20.0 0.0
Temperature (#(Unit,TEMP))	10
rel. Humidity (%)	70
Ground Absorption G	0.50
Wind Speed for Dir. (#(Unit,SPEED))	3.0
Roads (RLS-90)	
Strictly acc. to RLS-90	
Railways (FTA/FRA)	
Aircraft (???)	
Strictly acc. to AzB	

Receiver Noise Levels

Name	М.	ID	Level Lr			Limit. Value			Land Use			Height		Coordinates		
			Day	Night	CNEL	Day	Night	CNEL	Туре	Auto	Noise Type			Х	Y	Z
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)				(ft)		(ft)	(ft)	(ft)
RECEIVERS		R1	61.9	61.9	68.6	65.0	60.0	0.0				5.00	а	6256312.79	2278949.58	5.00
RECEIVERS		R2	56.3	56.3	63.0	65.0	60.0	0.0				5.00	а	6257887.44	2278566.77	5.00
RECEIVERS		R3	57.9	57.9	64.5	65.0	60.0	0.0				5.00	а	6254819.51	2278120.58	5.00
RECEIVERS		R4	57.3	57.3	64.0	65.0	60.0	0.0				5.00	а	6254829.93	2279082.21	5.00
RECEIVERS		R5	59.9	59.9	66.6	65.0	60.0	0.0				5.00	а	6255752.80	2279018.15	5.00
RECEIVERS		@ 200	63.7	63.7	70.4	65.0	60.0	0.0				5.00	а	6257067.66	2278236.19	5.00

Area Source(s)

Name	M.	ID	Result. PWL			Re	esult. PW	Lw / Li			Operating Time			Height	
			Day	Evening	Night	Day	Evening	Night	Туре	Value	norm.	Day	Special	Night	(ft)
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	(min)	(min)	(min)	
SITEBOUNDARY		SITEBOUNDARY00001	122.1	122.1	122.1	73.5	73.5	73.5	Lw"	73.5					8

Name	ŀ	lei	ght			Coordinat		
	Begin		End		х	У	z	Ground
	(ft)		(ft)		(ft)	(ft)	(ft)	(ft)
SITEBOUNDARY	8.00	а			6256864.04	2278199.25	8.00	0.00
					6255558.59	2278209.31	8.00	0.00
					6255562.07	2278802.36	8.00	0.00
					6256865.47	2278793.43	8.00	0.00

Barrier(s)

Name	М.	ID	Abso	rption	Z-Ext.	Canti	ilever	F	lei	ght		Coordinat	es	
			left	right		horz.	vert.	Begin	Begin		x	У	z	Ground
					(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)
BARRIEREXISTING		0						6.00	а		6255572.68	2278951.74	6.00	0.00
											6255611.75	2278933.51	6.00	0.00
											6256126.07	2278933.51	6.00	0.00
BARRIEREXISTING		0						5.00	а		6256248.99	2278952.24	5.00	0.00
											6256281.89	2278922.97	5.00	0.00
											6256870.71	2278924.11	5.00	0.00
											6257366.73	2278920.70	5.00	0.00
											6257486.99	2278920.70	5.00	0.00