

Project No. 15535.000.000

July 10, 2019

Mr. Joe Martin TH Trumark Homes, LLC 450 Newport Center Drive, Suite 300 Newport Beach, CA 92660

Subject: Shady View (APN 1057-261-06) Chino Hills, California

PHASE II ENVIRONMENTAL SITE ASSESSMENT UPDATE

- References: 1. Hillmann Consulting; Phase I Environmental Site Assessment, APN 1057-261-06; Chino Hills, California 91709; September 18, 2014.
 - 2. Hillmann Consulting; Limited Phase II Subsurface Investigation Report, APN 1057-261-06, Chino Hills, California 91709; September 24, 2014.
 - 3. ENGEO; Shady View (APN 1057-261-06) Phase I Environmental Site Assessment DRAFT; Chino Hills, California; June 18, 2019.

Dear Mr. Martin:

We are pleased to submit the findings of our phase II environmental site assessment (ESA) conducted at the subject property (Property) in Chino Hills, California. The purpose of this phase II assessment was to address potential data gaps associated with previous environmental studies performed by others at the Site.

1.0 BACKGROUND

The Property, approximately 131 acres in area, is identified by Assessor's Parcel Number (APN) 1057-261-06 and is located in Chino Hills, California (Figure 1). The Property is zoned as low-density residential and agricultural ranch.

Record reviews found that the Property is generally undeveloped, with the exception of the northern portion of the Property. A paved road bisects the Property in the east-west direction, leading to a small developed area near the eastern Property boundary. The developed area consists of three crude oil above-ground storage tanks (ASTs), a scrap yard, storage area, two trenches (both contain construction debris), and a mobile home. Review of historical records indicates that the existing ASTs have been present since at least 1959, and three additional ASTs were present in the northwestern portion of the Property beginning in the 1973 topographic map and continuing through at least 2009.

2.0 PREVIOUS INVESTIGATIONS

Hillmann Consulting; Phase I Environmental Site Assessment, APN 1057-261-06; Chino Hills, California 91709; September 18, 2014.

At the time of the 2014 phase I environmental site assessment, the Property was mostly undeveloped with three developed areas near the east-central boundary. The developed areas consist of a paved garage, a residential mobile home, and a paved storage tank area for crude oil. Hillmann noted an "oil pipeline" extending west-to-east to the storage tanks from oil wells located adjacent to the west. Hillman identified two RECs, no controlled RECs, and no historical RECs. The two RECs included:

- The Property has been used to store crude oil produced from oil wells adjacent to the east and west for approximately 50 years. Hillmann considers this past use of the Property as a REC.
- Two excavated areas on the Property have been utilized for waste disposal purposes for approximately 50 years. Hillmann considers this past use of the Property as a REC.

Hillmann recommended a phase II environmental site assessment subsurface investigation to determine whether the current and past use of the Property and adjoining properties for producing and storing crude oil had resulted in releases of hazardous or petroleum substances, and to characterize the waste disposed in the excavated areas.

Hillmann Consulting; Limited Phase II Subsurface Investigation Report, APN 1057-261-06, Chino Hills, California 91709; September 24, 2014.

Hillmann performed a limited subsurface investigation for the Property to test the underlying soil and soil vapor for evidence of petroleum hydrocarbons, volatile and semi-volatile compounds, polychlorinated biphenyls (PCBs), and heavy metals associated with the past site usage. Six pits were excavated to total depths ranging from 3 to 8 feet below grade in the northeastern region of the Property. Excavation pits were selected near existing crude oil storage area and sumps and in debris-filled trenches that may have been used for waste disposal.

Two soil samples within the debris-filled trenches reported detectable levels of petroleum hydrocarbons: 260 milligram per kilogram (mg/kg) diesel-range hydrocarbons and 190 mg/kg oil-range hydrocarbons. The detected concentrations exceeded 2013 San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Tier 1 Environmental Screening Levels (ESLs) for diesel and oil-range hydrocarbons. Results indicated no detections of semi-volatile compounds or PCBs. In addition, results indicated that none of the samples had metal concentrations greater than the California Human Health Screening Levels (CHHSLs), except for arsenic. Arsenic is a metal commonly found in moderate concentrations of 12 mg/kg in naturally occurring sediment in southern California. The six soil gas samples reported non-detectable levels of volatile organic compounds (VOCs).

Hillmann recommended additional soil sampling to define the extent of hydrocarbon contamination in soil near Borings B1 and B2. They suggest excavating to at least the native soil interface, which is estimated to be approximately 3 feet below fill material. In addition, confirmation

TH Trumark Homes, LLC Shady View (APN 1057-261-06) PHASE II ENVIRONMENTAL SITE ASSESSMENT UPDATE

of soil sampling was recommended to ensure that underlying soil meets the residential screening levels, especially in the area immediately beneath the ASTs.

ENGEO; Shady View (APN 1057-261-06) Phase I Environmental Site Assessment DRAFT; Chino Hills, California; June 18, 2019.

ENGEO identified three recognized environmental conditions (RECs) and one potential environmental concern:

RECs:

- <u>Historic Petroleum Storage</u>: Three former ASTs were present in the northwestern portion of the Property from at least 1973 through at least 2009. The potential presence of petroleum-impacted soil and soil gas is a REC for the Property.
- <u>Current Petroleum Storage</u>: Three existing ASTs are currently present along the eastern Property boundary, and three former ASTs were located in the northwestern portion of the Property. Numerous drums are also stored at the Property. The potential presence of petroleum-impacted soil, groundwater, and soil gas is a REC for the Property.
- A scrap yard and storage area is located directly north of the existing ASTs.

Potential Environmental Concern:

Two trenches are located near the eastern Property boundary, north of the scrap yard. These
trenches contain visible construction-related debris (bricks, concrete, and wood). In addition,
the 2014 Limited Subsurface Investigation reported that two soil samples from the trenches
contained diesel and oil petroleum hydrocarbons at levels that exceed screening levels for
residential land use.

Based on the above information, ENGEO recommended a subsurface investigation to evaluate potential subsurface impacts associated with the past use of the Property.

3.0 SCOPE OF FIELD EXPLORATION

Field sampling activities associated with the phase II ESA were conducted on June 19, 2017. Prior to drilling, a boring permit was obtained from the County of San Bernardino Department of Environmental Health. A Geoprobe® direct-push rig was utilized to drill 13 borings for the purpose of soil, soil gas, and groundwater sampling.

There were three general areas of investigation: the existing above-ground storage tanks (E-AST), the former above-ground storage tanks (F-AST), and the scrap yard. Details pertaining to each of these tasks are presented below.

3.1 SOIL GAS ASSESSMENT

In order to evaluate potential vapor intrusion concerns, a soil gas assessment was performed. Five temporary soil gas borings were installed to a depth of approximately 5 feet below ground surface (bgs). Two borings were installed near the assumed location of the area of the former TH Trumark Homes, LLC Shady View (APN 1057-261-06) PHASE II ENVIRONMENTAL SITE ASSESSMENT UPDATE 15535.000.000 July 10, 2019 Page 4

above-ground storage tanks (F-AST), and three borings were installed within and near the existing above-ground storage tanks (E-AST) as shown in Figures 3 and 4. Each of the locations yielded soil gas samples. Soils across the Property were primarily silty sands and gravelly sands, resulting in high permeable conditions for soil gas sampling.

The installation and sampling of the soil gas borings were performed in general conformance with the Department of Toxic Substances Control (DTSC) Final Advisory Active Soil Gas Investigations (July 2015), using the following procedures:

- The soil gas monitoring well casings were constructed with ¼-inch-diameter Teflon® tubing equipped with a filter at the base of the tubing. The well installation was performed with a direct-push probe rig, which advanced an approximately 2-inch-diameter boring to a depth of 5 feet below the natural grade ground surface.
- The bottom of the well casing was equipped with a filter situated at a depth of 5 feet below the ground surface, centered in the middle of a 1-foot-layer of No. 3 sand. Six inches of dry bentonite was installed on top of the sand, and the remaining annular space was filled with hydrated bentonite grout to the surface.
- Following installation of the annular seal, the well casings were equipped with a permanent Swagelok® ferrule and nut. A threaded plug was then screwed into the nut and the mandatory 2-hour equilibration time began. The manifold was connected to the well tubing by threading the permanent Swagelok® fitting on the well casing onto the manifold. The manifold consisted of a stainless steel summa manifold with a built-in flow controller set to 150 milliliters per minute (ml/min).
- After the 2-hour equilibration time elapsed, a purge vacuum canister was attached to the manifold connection and a shut-in test was performed to assess for potential leaks. The shut-in test consisted of applying a vacuum with the vacuum canister, closing the purge valve, and observing the vacuum gauge for 2 minutes to check for a drop in the vacuum. After the gauge maintained its position for 2 minutes, three well volumes were purged from each well. After purging was complete, the valve on the manifold was closed, the purge canister was removed, and the sample canister was attached.
- The soil gas samples were collected by opening the sample canister valve and allowing the sample canister to extract soil gas until the vacuum in the sample canister reached approximately 4 inches of mercury. The leak detection compound 1,1-diflouroethane (1,1-DFA) was applied by wrapping a doused rag around the manifold fittings during sample collection. Each sample canister was labeled with a unique identification number, sampling time and pre- and post-sample vacuum readings. The soil gas sample was submitted to Enthalpy Analytical, a State-certified fixed laboratory, under documented chain-of-custody for analysis of VOCs by EPA Test Method TO-15, and methane by EPA Test Method 8015M.

3.2 SOIL ASSESSMENT

Following collection, the samples were sealed with Teflon® and plastic end caps and preserved in an ice-cooled chest, then transported under documented chain-of-custody to Enthalpy Analytical, a State-accredited laboratory.

3.2.1 Former and Existing Above-Ground Storage Tank Areas: Direct-Push Borings

To determine if past and present activities at the site have impacted subsurface soils, nine direct-push borings were advanced to 8 feet bgs. Five of the borings were located near the assumed location of the area of the former above-ground storage tanks, and the other four borings were located within and near the existing above-ground storage tanks.

Twenty-seven soil samples were retrieved within continuous acetate core liners measuring 4 feet in length. Specific soil samples were collected for laboratory analysis by cutting a 6-inch portion of the soil core liners from the desired sample depths of surface, 3, and 8 feet bgs. A photoionization detector (PID) was used to assist in characterization of the soils. None of the borings exhibited detectable readings on the PID. The borings were filled with grout upon completion of sampling. Each soil sample was submitted to the laboratory and analyzed on a discrete basis for the following:

- Total petroleum hydrocarbons (TPH) as diesel and motor oil (with silica gel cleanup) by EPA Test Method 8015M.
- Volatile organic compounds (VOCs) by EPA Test Method 8260.
- CAM-17 metals by EPA Test Method 6010.

3.2.2 Scrapyard Area: Near-Surface Sampling

Six soil samples were recovered using hand-sampling equipment at depths of 0 to 6 inches throughout the scrap yard (Figure 4). We instructed the laboratory to combine the samples into two 3-point composite samples and analyze them for TPH-diesel and motor oil (with gel cleanup) by EPA Test Method 8015M, and CAM-17 metals by EPA Test Method 6010.

3.3 GRAB GROUNDWATER ASSESSMENT

One boring was advanced with the intention of collecting groundwater samples. The Geoprobe® direct-push boring was advanced to the north of the existing AST area until refusal, approximately 35 feet bgs. A temporary PVC casing was placed in the borehole to facilitate groundwater collection and allowed to sit for over 4 hours. No groundwater was encountered; therefore, no groundwater samples were collected. The boring was filled with grout upon determination that no groundwater was encountered, in accordance with County requirements.

4.0 ANALYTICAL RESULTS

Laboratory test results were compared to corresponding United States Environmental Protection Agency USEPA Regional Screening Levels (RSLs¹), California Department of Toxic Substance Control Modified Screening Levels (DTSC SLs²), and San Francisco Regional Bay Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs³) assuming a residential land use scenario. The ESLs are often used outside of the San Francisco Bay Area, as they provide

¹ U.S. Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) for residential land use (May 2019).

² Department of Toxic Substance Control (DTSC) Modified Screening Levels DTSC-SLs for April 2019 for residential land use.

³ San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs), Direct Exposure Human Health, Residential Land Use, Shallow Soil Exposure, January 2019 (Revision 1).

TH Trumark Homes, LLC Shady View (APN 1057-261-06) PHASE II ENVIRONMENTAL SITE ASSESSMENT UPDATE

conservative screening levels for chemicals commonly found at sites with environmental impacts. The results are summarized in Tables A and B, attached.

4.1 SOIL GAS SAMPLING

Of the five soil gas samples, we requested the lab to analyze both samples within the former AST area and to analyze two of the three samples within and near the existing AST area. The remaining sample was placed on hold pending laboratory results of the other soil gas samples.

The four analyzed soil gas samples reported detectable VOC analytes, including 1,2,4-trimethylbenzene, 1,3-butadiene, 4-ethyltoluene, 4-methyl-2-pentanone (MIBK), acetone, benzene, chloroform, cyclohexane, toluene, and xylenes. We compared the detected soil gas concentrations to the established USEPA's RSLs and DTSC SLs for residential air. Several of the reported constituents, including 1,3-butadiene, benzene, and chloroform, exceed respective "tier 1" screening levels for soil gas. Methane was reported as non-detectable in all soil gas samples.

A summary of the soil gas analytical results is presented in Table A. The laboratory results are presented in their entirety in Appendix A.

4.2 SOIL SAMPLING

4.2.1 Former and Existing Above-Ground Storage Tank Areas: Direct-Push Borings

Initially, the surface samples of each of the nine soil borings were analyzed and the remaining samples were placed on hold pending laboratory results. Following the initial laboratory report, eight additional samples were selected for TPH-diesel and TPH-motor oil analysis. As presented in Table B, TPH-diesel was detected in 10 of the 17 analyzed discrete samples, and TPH-motor oil was detectable in four of the samples. The RSLs and DTSC-SLs do not establish screening levels for TPH-diesel or TPH-motor oil – therefore, the results were compared to ESLs.

Three soil samples, all within the existing AST area, reported concentrations of TPH-diesel which exceed the corresponding ESL. One VOC, methylene chloride, was detected in three samples, all within the existing AST area, and all below the corresponding screening levels. The reported metal concentrations were below screening levels with the exception of arsenic. Arsenic was detected in all nine of the surface soil samples ranging from 2.32 to 6.43 milligrams per kilograms (mg/kg). These concentrations are within the background concentration of 12 mg/kg for arsenic in Southern California⁴.

The soil analytical results are summarized in Table B, and the laboratory results are presented in their entirety in Appendix A.

⁴ Department of Toxic Substances Control (DTSC) Determination of a Southern California Background Arsenic Concentration in Soil, March 2008

4.2.2 Scrap Yard Area: Near Surface Sampling

Review of the composite sample laboratory test results found detectable concentrations of TPH-diesel and motor oil in one composite sample, as well as CAM 17 metals in both composite samples. The concentrations reported for TPH-diesel and TPH-motor oil, as well as CAM-17 metals, are below the respective residential screening levels with the exception of arsenic. Arsenic was detected in both composite soil samples, concentrations were reported as 4.26 and 6.91 mg/kg. These concentrations are within the background concentration of 12 mg/kg for arsenic in Southern California.

A summary of the scrap yard soil analytical results is presented in Table B. The laboratory results are presented in their entirety in Appendix A.

4.3 **GROUNDWATER SAMPLING**

Groundwater was not encountered; therefore, no groundwater samples were recovered or analyzed.

5.0 CONCLUSION AND RECOMMENDATIONS

- Soil gas samples reported several VOC concentrations exceeding the respective conservative "Tier 1" screening levels for soil gas. Exceeding screening levels for soil gas does not necessarily mean that a health risk exists; rather, exceeding screening levels indicates that additional analysis and study should be performed to determine if a health risk, such as a potential concern for vapor intrusion, exists under the proposed land redevelopment scenario. These "Tier 1" screening levels do not address several factors, including new construction material and techniques for foundations.
 - Additional activities are recommended. Additional activities could include additional subsurface investigations, a site-specific health risk assessment, and/or discussions with appropriate agencies.
- Soil sample results from the former and existing AST areas reported detectable concentrations of TPH-diesel in 10 samples, ranging from 18 to 2,200 mg/kg. Three of these concentrations, located within the existing AST area, exceed the respective ESL. The remaining analytes, TPH- motor oil, and VOCs, were reported as non-detectable.
 - Prior to demolition and grading, we recommend that a Site Management Plan be developed for use during future subsurface work, specifically for the petroleum-impacted soils in the vicinity of the existing AST. The Soil Management Plan should establish guidelines to address the soil excavation and removal during the construction process.
- The scrap yard soil samples reported detectable concentrations of TPH-diesel and motor oil, as well as CAM 17 metals. Each of the concentrations was below the corresponding screening level for residential use, though the area near the storage shed had soils with visible surface stains.
 - We recommend scarifying and removing the upper 6 inches of soil near the storage shed within the scrap yard area (approximately 0.8 acre), resulting in approximately 645 cubic yards of soil. We recommend that this soil be disposed of at a non-hazardous landfill, or potentially be placed in future roadways or deep fill areas.

TH Trumark Homes, LLC Shady View (APN 1057-261-06) PHASE II ENVIRONMENTAL SITE ASSESSMENT UPDATE 15535.000.000 July 10, 2019 Page 8

- The two debris-filled trenches located north of the scrap yard were not investigated during this
 assessment. However, the 2014 assessment indicated that the two samples collected from
 these trenches had diesel and oil petroleum hydrocarbons concentrations that exceed
 screening levels for residential land use. The 2014 report concluded that the soil from the two
 trenches should be excavated to at least native soil, followed by confirmation soil sampling.
 - In addition to the recommendation to remove the soil and debris, we recommend that a Site Management Plan be developed prior to excavation. The Soil Management Plan should establish guidelines to address the soil excavation and removal. Based on the 2014 samples, the debris could be disposed at a non-hazardous landfill. We concur that confirmation samples should be taken after the material is excavated.

In addition to the above recommendations, ENGEO recommends that all regulated chemicals and wastes, generally within the scrap yard area, be removed by the current ownership, prior to acquisition, with a final walk through to confirm the removal of regulated chemicals/waste.

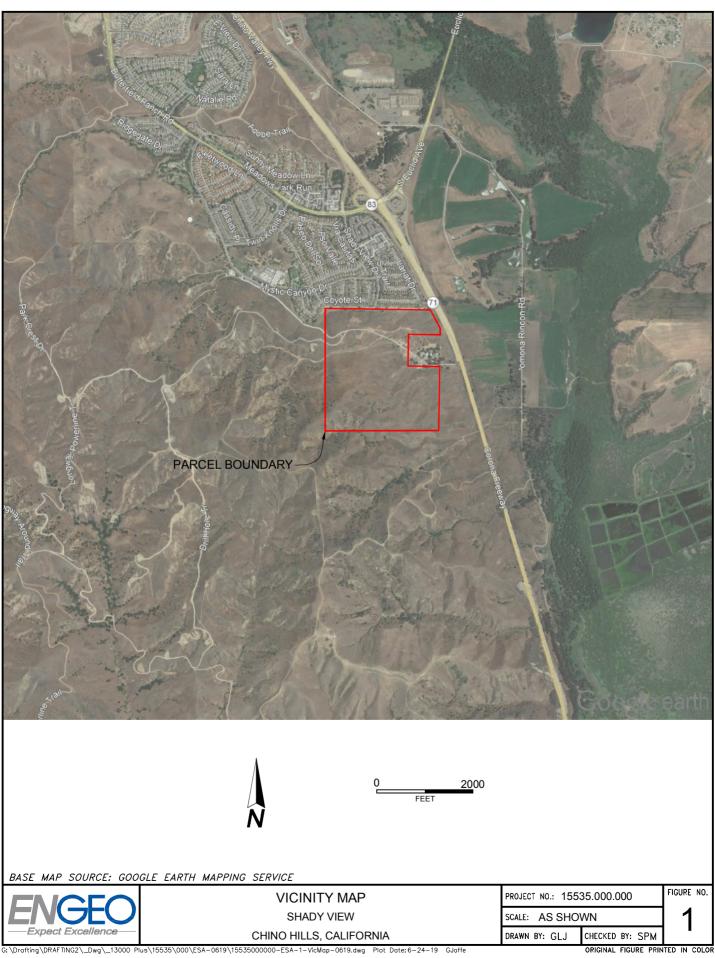
If you have any questions regarding this report, please contact us.

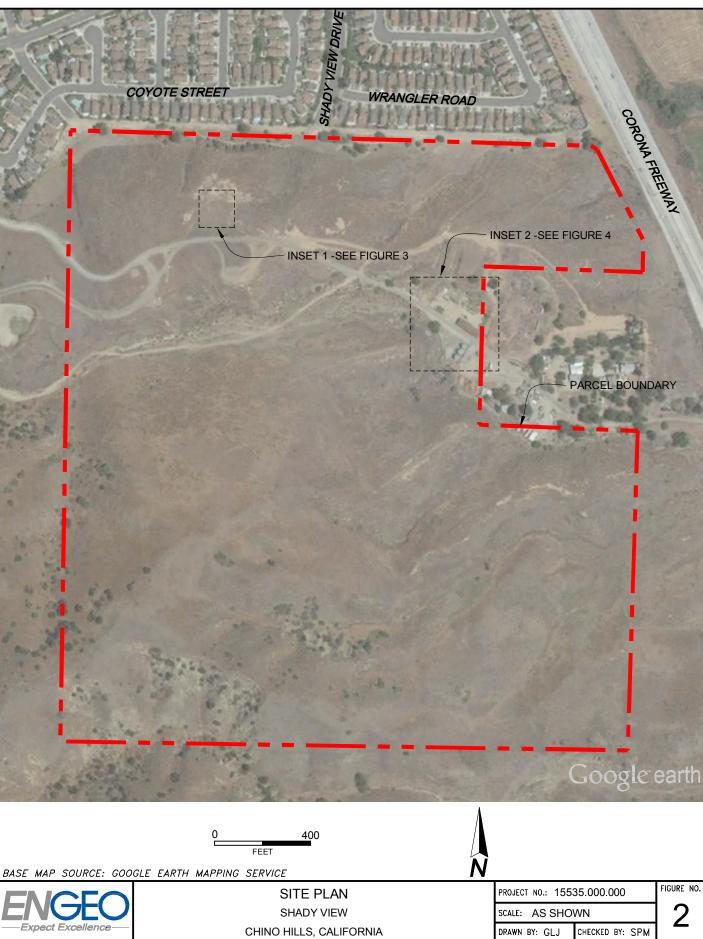
Sincerely,

ENGEO Incorporated

Adrianm Lundberg

Adrianna Lundberg aml/sm/jf


Shawn Munger, CHG

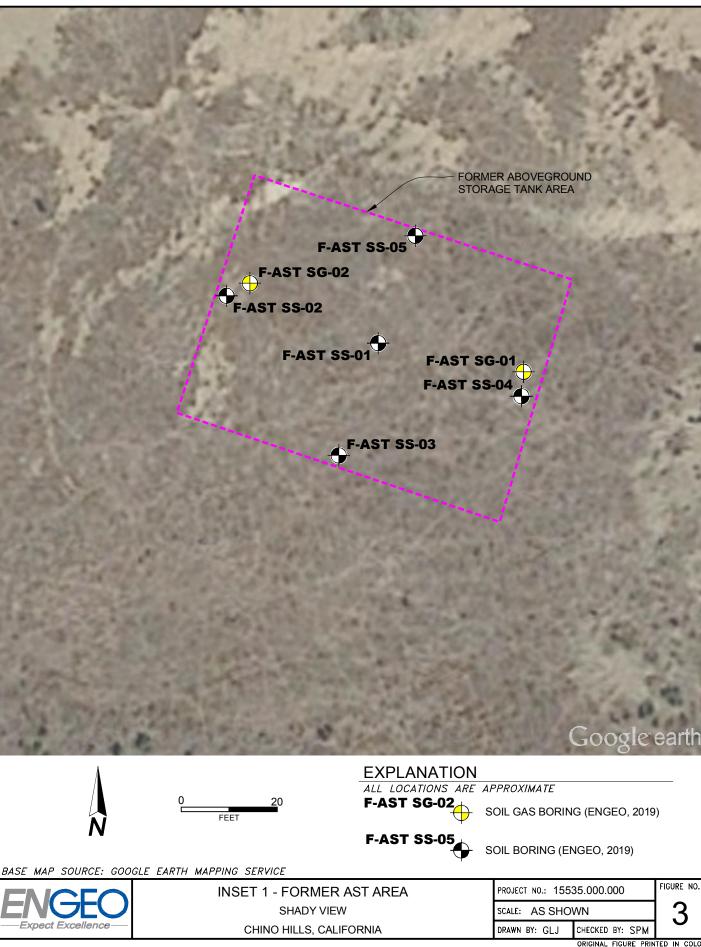

Attachments: Figures 1 through 5 Tables A and B Appendix A – Laboratory Analytical Reports

FIGURES

Figure 1 – Vicinity Map Figure 2 – Site Plan Figure 3 – Inset 1 - Former AST Area Figure 4 – Inset 1 - Existing AST Area Uhd Scrap Yard Figure 5 – Site Photographs

ORIGINAL FIGURE PRINTED IN COLOR

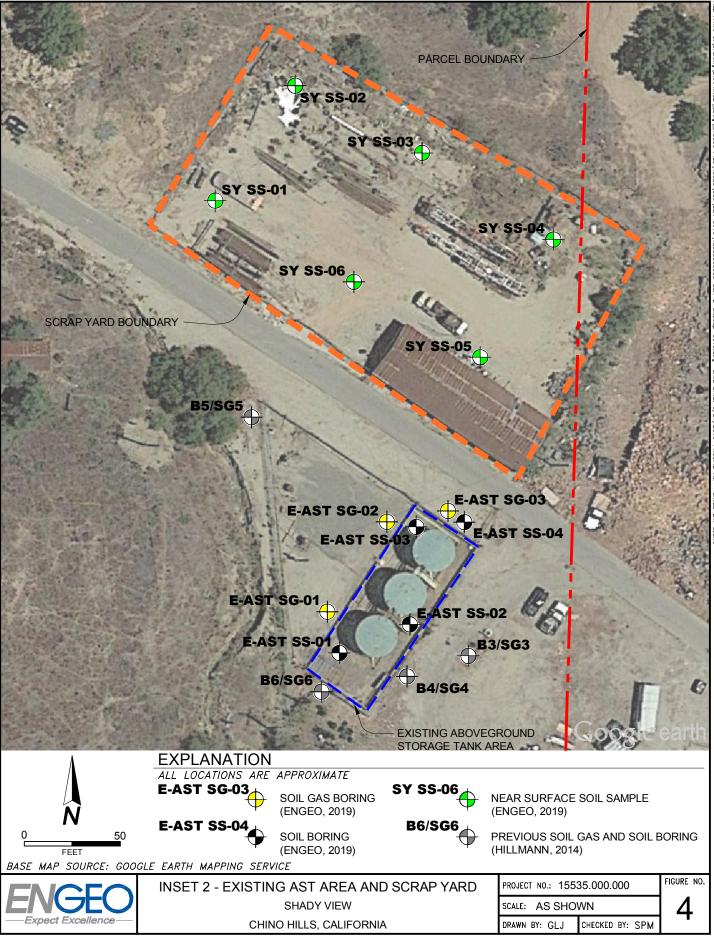
13000 Plus\15535\000\ESA-0619\


Ś

DAIE

6/24/2019

10:08:39 AM


ц

ORIGINAL FIGURE PRINTED IN COLOR

11:03:42 A

ц

0 2019 BY ENGED INCORPORATED. THIS DOCUMENT MAY NOT BE REPRODUCED IN WHOLE OR IN PART BY ANY MEANS WHATSGEVER, NOR MAY IT BE QUOTED OR EXCERPTED WITHOUT THE EXPRESS WRITTEN CONSENT OF ENGED INCORPORATED. COPYRIGHT

ORIGINAL FIGURE PRINTED IN COLOR

BORING E-AST SS-01 WITHIN EXISTING AST AREA

BORING E-AST SS-02 WITHIN EXISTING AST AREA 2

BORING E-AST SS-03 WITHIN EXISTING AST AREA

BORING F-AST SS 01 WITHIN FORMER AST AREA

SITE PHOTOGRAPHS SHADY VIEW CHINO HILLS, CALIFORNIA

PROJECT NO.: 1553	35.000.000	FIGURE NO
SCALE: NO SCA	LE	5
DRAWN BY: GLJ	CHECKED BY: SPM	

G:\Drafting\DRAFTING2_Dwg_13000 Plus\15535\000\ESA-0619\15535000000-ESA-5-SitePhotos-0619.dwg

TABLES

TABLE A – Summary of Soil Gas Analytical ResultsTABLE B – Summary of Soil Analytical Results

Table A - Summary of Soil Gas Analytical Results

Shady View - Chino Hills, California Sample Date: June 19, 2019

								١	/olatile Org	anic Compou	nds (VOCs) (l	EPA Method	i TO-15)									EPA Method 8015M
Sample	Date	1,1- Difluoroethane (Freon 152)	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	1,3- Butadiene	4-Ethyl toluene	4-Methyl-2- pentanone (MIBK)	Acetone	Benzene	Carbon Disulfide	Chloroform	Chloro methane	Cyclo hexane	Ethyl benzene	Heptane	Hexane	m,p- Xylene	Methylene chloride	o-Xylene	Toluene	Xylenes (Total)	Methane *
		μg/m ³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m ³	µg/m³	µg/m ³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³	µg/m ³	µg/m³
USEPA F	RSLs ¹		2,100	2,100	3.1		103,333	1,066,667	12.0	24,333	4.0	3,133	210,000	37	14,000	24,333	3,333	3,333	3,333	173,333	3,333	
CA DTSC	C SLs ²				2.1				3.1				-					420		310		
Former Abovegrou	und Storage Ta	anks (F-AST) Soil	Gas Samples	6																		
F-AST SG1@5	6/19/2019	ND	54.6	18.0 J	13.0 J	42.9	26.4	850	8.7 J	7.2 J	13.7 J	6.3 J	ND	9.9J	ND	240.0	33.1	ND	13.1 J	29.8	46.2	ND
F-AST SG2@5	6/19/2019	ND	8.0 J	ND	12.6 J	6.7 J	10.4 J	360	7.9 J	ND	9.0 J	ND	ND	7.3 J	9.0 J	9.8 J	20.6 J	8.4 J	7.1 J	26.7	27.7	ND
Existing Abovegro	ound Storage T	anks (E-AST) Soi	I Gas Sample	S																		
E-AST SG1@5	6/19/2019	ND	ND	ND	10.8 J	ND	39.3 J	1,100	<9.0	ND	ND	ND	100	ND	ND	17.1 J	30.1 J	16.5 J	ND	37.5 J	30.1 J	ND
E-AST SG2@5	6/19/2019	ND	7.3 J	ND	6.0 J	ND	27.3	750	7.2 J	4.8 J	ND	2.6 J	ND	8.6 J	8.0 J	28.1	25.5 J	10.7 J	7.9 J	35.3	33.4	ND
E-AST SG3@5	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

= Exceeds Screening Level

Notes:

'--' means no screening value exists

J = Reported value is estimated

ND = not detected

NA = not analyzed

¹ EPA Region IX Regional Screening Levels (RSLs) for indoor air (May 2019) with an attenuation factor of 0.03 for future residential land use. (THQ=1)

² DTSC-Modified Screening Levels DTSC-SLs for ambient air April 2019) for future residential land use.

* DTSC uses 500 ppmv methane as a trigger for further evaluation at school sites

Table B - Summary of Soil Analytical Results

Shady View - Chino Hills, California

Sample Date: June 19, 2019

			TPH		VOC		Date: June 1	, 20.0			CAM 17	Metals				
Sample ID	Date	GRO (C6 to C12)	DRO (C13 to C28)	MORO (C29 to C40)	Methylene chloride	Others	Arsenic*	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Nickel	Vanadium	Zinc
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			00	00	00	00	00	00		00		00	00	00	00	00
USEPA RS	SLs ¹				57	varies	0.68	15,000	71		23	3,100	80		390	23,000
CA DTSC HRF	RA SLs ²				310	varies	0.41						80	820		
CA SF RWQCE	B ESLs ³	430	260	12,000	25	varies	0.26	15,000	78		23	3,000	80	820	390	23,000
Scrap Yard - Compo	osite Soil San	nples														
4-POINT COMP SY SS-01 - 03	6/19/2019	ND	ND	ND	ND	ND	6.91	129	11.1	18.0	10.8	26.9	29.0	19.0	35.4	308
4-POINT COMP SY SS-04 - 06	6/19/2019	ND	185	116	ND	ND	4.26	78.8	0.88	11.4	6.95	11.8	13.6	11.7	24.6	93.2
Former Abovegroun	d Storage Ta	nks (F-AST) -	Discrete Soil Sa	mples											•	
F-AST SS-01@0	6/19/2019	ND	ND	ND	ND	ND	3.70	113	0.70	24.8	12.0	17.4	15.9	15.8	50.1	50.7
F-AST SS-01@3	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-01@8	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-02@0	6/19/2019	ND	ND	ND	ND	ND	6.34	115	0.64	21.0	10.1	13.8	8.85	14.2	43.8	41.2
F-AST SS-02@3	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-02@8	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-03@0	6/19/2019	ND	18.0	ND	ND	ND	5.29	124	0.78	26.4	11.8	17.6	9.77	15.7	51.9	52.1
F-AST SS-03@3	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-03@8	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-04@0	6/19/2019	ND	ND	ND	ND	ND	4.94	124	0.83	30.5	12.9	18.8	9.47	18.8	54.9	51.6
F-AST SS-04@3	6/19/2019	ND	58.4	67.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-04@8	6/19/2019	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-05@0	6/19/2019	ND	23.2	ND	ND	ND	5.39	119	0.72	24.4	12.4	16.4	11.4	17.7	49.4	48.2
F-AST SS-05@3	6/19/2019	ND	62.8	64.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F-AST SS-05@8	6/19/2019	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Existing Abovegrour		anks (E-AST) -	Discrete Soil Sa					-				-	-			-
E-AST SS-01@0	6/19/2019	ND	2,200	ND	0.007	ND	4.1	47.9	0.52	9.23	5.56	8.48	14.5	16.6	19.9	33.6
E-AST SS-01@3	6/19/2019	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-AST SS-01@8	6/19/2019	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-AST SS-02@0	6/19/2019	ND	350	ND	0.0053	ND	2.92	69.9	0.56	11.8	6.49	9.57	7.26	11.4	24.9	36.1
E-AST SS-02@3	6/19/2019	ND	207	183	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-AST SS-02@8	6/19/2019	ND	287	260	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-AST SS-03@0	6/19/2019	ND	ND	ND	ND	ND	2.32	59.1	0.62	10.5	7.62	10.1	3.22	10.2	24.3	29.8
E-AST SS-03@3	6/19/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-AST SS-03@8	6/19/2019	NA ND	NA 61.1	NA ND	NA 0.005	NA ND	NA 2.56	NA 78.7	NA 0.78	NA 13.4	NA	NA 10.9	NA 16.8	NA 12.1	NA 26.4	NA 51
E-AST SS-04@0 E-AST SS-04@3	6/19/2019 6/19/2019	ND NA	61.1 NA	ND NA	0.005 NA	ND NA	3.56 NA	78.7 NA	0.78 NA	13.4 NA	6.96 NA	10.9 NA	16.8 NA	12.1 NA	26.4 NA	51 NA
E-AST SS-04@3 E-AST SS-04@8	6/19/2019	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
E-431 33-04@8	0/19/2019	INA	NA Exceeds screen		NA	INA	INA	INA	INA	NA	NA	INA	INA	INA	INA	NA

Exceeds screening level

Exceeds screening level, but within background arsenic soil concentration in soil

ND = not detected

NA = not analyzed

* = Department of Toxic Substances Control (DTSC) Determination of a Southern California Background Arsenic Concentration in Soil, March 2008

'--' means no screening value exists

¹ EPA Region 9 Regional Screening Levels (RSLs) for residential soil (May 2019). (THQ=1)

² DTSC-Modified Screening Levels DTSC-SLs for April 2019 for future residential land use.

³ SF Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs), Direct Exposure Human Health Risk for future residential land use, January 20109 (Revision 1).

APPENDIX A

Laboratory Analytical Reports

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Lab Request: 416459 Report Date: 07/08/2019 Date Received: 06/19/2019 Client ID: 15790

Client: ENGEO Inc. Address: 6 Morgan, Suite 162 Irvine, CA 92618-1922

Attn: Adrianna Lundberg

Comments: Shady View 15535.000.000

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

<u>Sample #</u>	Client Sample ID
416459-001	F-AST SG1@5
416459-002	F-AST SG2@5
416459-003	E-AST SG1@5
416459-004	E-AST SG2@5

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

M. Malia

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Detections Summary

-	416459-001 Client Sample						
<u>Method</u>	Analyte	<u>Result</u>	DF	MDL	<u>RDL</u>	<u>Units</u>	Note
EPA TO-15	1,2,4-Trimethylbenzene	54.6	7.5	7.5	36.75	ug/m3	
EPA TO-15	1,3,5-Trimethylbenzene	18.0 J	7.5	7.5	36.75	ug/m3	
EPA TO-15	1,3-Butadiene	13.0 J	7.5	3	16.5	ug/m3	
EPA TO-15	4-Ethyltoluene	42.9	7.5	7.5	36.75	ug/m3	
EPA TO-15	4-Methyl-2-pentanone (MIBK)	26.4 J	7.5	6	30.75	ug/m3	
EPA TO-15	Acetone	850	7.5	44.25	90	ug/m3	
EPA TO-15	Benzene	8.7 J	7.5	4.5	24	ug/m3	
EPA TO-15	Carbon disulfide	7.2 J	7.5	4.5	23.25	ug/m3	
EPA TO-15	Chloroform	13.7 J	7.5	7.5	36.75	ug/m3	
EPA TO-15	Chloromethane	6.3 J	7.5	3	15.75	ug/m3	
EPA TO-15	Ethylbenzene	9.9 J	7.5	6.75	32.25	ug/m3	
EPA TO-15	Hexane	240	7.5	5.25	26.25	ug/m3	
EPA TO-15	m and p-Xylene	33.1	7.5	6.75	32.25	ug/m3	
EPA TO-15	o-Xylene	13.1 J	7.5	6.75	32.25	ug/m3	
EPA TO-15	Toluene	29.8	7.5	6	28.5	ug/m3	
EPA TO-15	Xylenes (Total)	46.2	7.5	6.75	32.25	ug/m3	
Sample #:	416459-002 Client Sample	#: F-AST SG	2@5				
Method	Analyte	<u>Result</u>	DF	MDL	RDL	<u>Units</u>	Note
EPA TO-15	1,2,4-Trimethylbenzene	8.0 J	6	6	29.4	ug/m3	
EPA TO-15	1,3-Butadiene	12.6 J	6	2.4	13.2	ug/m3	
EPA TO-15	4-Ethyltoluene	6.7 J	6	6	29.4	ug/m3	
EPA TO-15	4-Methyl-2-pentanone (MIBK)	10.4 J	6	4.8	24.6	ug/m3	
EPA TO-15	Acetone	360	6	35.4	72	ug/m3	
EPA TO-15	Benzene	7.9 J	6	3.6	19.2	ug/m3	
EPA TO-15	Chloroform	9.0 J	6	6	29.4	ug/m3	
EPA TO-15	Ethylbenzene	7.3 J	6	5.4	25.8	ug/m3	
EPA TO-15	Heptane	9.0 J	6	4.8	24.6	ug/m3	
EPA TO-15	Hexane	9.8 J	6	4.2	21	ug/m3	
EPA TO-15	m and p-Xylene	20.6 J	6	5.4	25.8	ug/m3	
EPA TO-15	Methylene chloride	8.4 J	6	4.2	21	ug/m3	
EPA TO-15	o-Xylene	7.1 J	6	5.4	25.8	ug/m3	
EPA TO-15	Toluene	26.7	6	4.8	22.8	ug/m3	
EPA TO-15	Xylenes (Total)	27.7	6	5.4	25.8	ug/m3	
Sample #:	416459-003 Client Sample	#: E-AST SG	61@5				
<u>Method</u>	Analyte	<u>Result</u>	DF	MDL	<u>RDL</u>	<u>Units</u>	Notes
EPA TO-15	1,3-Butadiene	10.8 J	15	6	33	ug/m3	
EPA TO-15	4-Methyl-2-pentanone (MIBK)	39.3 J	15	12	61.5	ug/m3	
EPA TO-15	Acetone	1100	15	88.5	180	ug/m3	
EPA TO-15	Cyclohexane	100	15	10.5	51	ug/m3	
EPA TO-15	Hexane	17.1 J	15	10.5	52.5	ug/m3	
EPA TO-15	m and p-Xylene	30.1 J	15	13.5	64.5	ug/m3	
EPA TO-15	Methylene chloride	16.5 J	15	10.5	52.5	ug/m3	
EPA TO-15	Toluene	37.5 J	15	12	57	ug/m3	
EPA TO-15	Xylenes (Total)	30.1 J	15	13.5	64.5	ug/m3	
Sample #:	416459-004 Client Sample	#: E-AST SG	62@5				
Method	Analyte	<u>Result</u>	DF	MDL	RDL	<u>Units</u>	Note
EPA TO-15	1,2,4-Trimethylbenzene	7.3 J	6	6	29.4	ug/m3	
EPA TO-15	1,3-Butadiene	6.0 J	6	2.4	13.2	ug/m3	
EPA TO-15	4-Methyl-2-pentanone (MIBK)	27.3	6	4.8	24.6	ug/m3	

Detections Summary

Sample #:	416459-004 Client S	ample #: E-AST SG2	2@5				
Method	<u>Analyte</u>	<u>Result</u>	DF	MDL	<u>RDL</u>	<u>Units</u>	Notes
EPA TO-15	Benzene	7.2 J	6	3.6	19.2	ug/m3	
EPA TO-15	Carbon disulfide	4.8 J	6	3.6	18.6	ug/m3	
EPA TO-15	Chloromethane	2.6 J	6	2.4	12.6	ug/m3	
EPA TO-15	Ethylbenzene	8.6 J	6	5.4	25.8	ug/m3	
EPA TO-15	Heptane	8.0 J	6	4.8	24.6	ug/m3	
EPA TO-15	Hexane	28.1	6	4.2	21	ug/m3	
EPA TO-15	m and p-Xylene	25.5 J	6	5.4	25.8	ug/m3	
EPA TO-15	Methylene chloride	10.7 J	6	4.2	21	ug/m3	
EPA TO-15	o-Xylene	7.9 J	6	5.4	25.8	ug/m3	
EPA TO-15	Toluene	35.3	6	4.8	22.8	ug/m3	
EPA TO-15	Xylenes (Total)	33.4	6	5.4	25.8	ug/m3	

Matrix: Air		t: ENGEO	nc.			C	Collector: Client
Sampled: 06/19/2019 13:39 Sample #: 416459-001	Site		21@5			Samu	
Sample #: 416459-001	Client Sample	#: F-ASI 50	51@5			Sam	ple Type:
Analyte		Result	DF	MDL	RDL	Units	Prepared Analyzed By Notes
Method: EPA 8015M	Prep Method: F		4 5	40200	40000		QCBatchID: QC1203659
Methane ug/M3		ND	1.5	49200	49200	ug/m3	06/27/19 10:24 EW
Method: EPA TO-15	Prep Method: N						QCBatchID: QC1203510
1,1,1-Trichloroethane		ND	7.5	8.25	41.25	ug/m3	06/25/19 09:35 ZZ
1,1,2,2-Tetrachloroethane		ND	7.5	10.5	51.75	ug/m3	06/25/19 09:35 ZZ
1,1,2-Trichloroethane		ND	7.5	8.25	41.25	ug/m3	06/25/19 09:35 ZZ
1,1,2-Trichlorotrifluoroethane		ND	7.5	11.25	57.75	ug/m3	06/25/19 09:35 ZZ
1,1-Dichloroethane		ND	7.5	6	30	ug/m3	06/25/19 09:35 ZZ
1,1-Dichloroethene		ND	7.5 7.5	6 20.25	30	ug/m3	06/25/19 09:35 ZZ 06/25/19 09:35 ZZ
1,1-Difluoroethane		ND ND	7.5 7.5	20.25 11.25	20.25 55.5	ug/m3	
1,2,4-Trichlorobenzene			7.5	7.5		ug/m3	06/25/19 09:35 ZZ 06/25/19 09:35 ZZ
1,2,4-Trimethylbenzene		54.6 ND	7.5 7.5	7.5 11.25	36.75	ug/m3	
1,2-Dibromoethane			7.5 7.5		57.75	ug/m3	
1,2-Dichloro-1,1,2,2-tetrafluoroetha 1,2-Dichlorobenzene		ND ND	7.5 7.5	10.5 9	52.5 45	ug/m3	06/25/19 09:35 ZZ 06/25/19 09:35 ZZ
1,2-Dichloroethane		ND	7.5	9 6	45 30	ug/m3 ug/m3	06/25/19 09:35 ZZ
,		ND	7.5	6.75	34.5	-	06/25/19 09:35 ZZ
1,2-Dichloropropane		18.0 J	7.5	7.5	36.75	ug/m3	06/25/19 09:35 ZZ
1,3,5-Trimethylbenzene 1.3-Butadiene		13.0 J	7.5 7.5	7.5	16.5	ug/m3 ug/m3	06/25/19 09:35 ZZ
1,3-Dichlorobenzene		ND	7.5	9	45	ug/m3	06/25/19 09:35 ZZ
1,4-Dichlorobenzene		ND	7.5	9	45 45	ug/m3	06/25/19 09:35 ZZ
1,4-Dioxane		ND	7.5	9 27	135	ug/m3	06/25/19 09:35 ZZ
2-Butanone (MEK)		ND	7.5	55.5	112.5	ug/m3	06/25/19 09:35 ZZ
2-Hexanone		ND	7.5	30.75	150	ug/m3	06/25/19 09:35 ZZ
4-Ethyltoluene		42.9	7.5 7.5	7.5	36.75	ug/m3	06/25/19 09:35 ZZ
4-Methyl-2-pentanone (MIBK)		42.9 26.4 J	7.5 7.5	6	30.75	ug/m3	06/25/19 09:35 ZZ
Acetone		20.4 J 850	7.5	44.25	90	ug/m3	06/25/19 09:35 ZZ
Benzene		8.7 J	7.5	4.5	24	ug/m3	06/25/19 09:35 ZZ
Benzyl Chloride		ND	7.5	7.5	39	ug/m3	06/25/19 09:35 ZZ
Bromodichloromethane		ND	7.5	9.75	50.25	ug/m3	06/25/19 09:35 ZZ
Bromoform		ND	7.5	15.75	50.25 75	ug/m3	06/25/19 09:35 ZZ
Bromomethane		ND	7.5	6	29.25	ug/m3	06/25/19 09:35 ZZ
Carbon disulfide		7.2 J	7.5	4.5	23.25	ug/m3	06/25/19 09:35 ZZ
Carbon Tetrachloride		ND	7.5	4.5 9	47.25	ug/m3	06/25/19 09:35 ZZ
Chlorobenzene		ND	7.5	6.75	34.5	ug/m3	06/25/19 09:35 ZZ
Chlorodibromomethane		ND	7.5	12.75	63.75	ug/m3	06/25/19 09:35 ZZ
Chloroethane		ND	7.5	3.75	19.5	ug/m3	06/25/19 09:35 ZZ
Chloroform		13.7 J	7.5	7.5	36.75	ug/m3	06/25/19 09:35 ZZ
Chloromethane		6.3 J	7.5	3	15.75	ug/m3	06/25/19 09:35 ZZ
cis-1,2-Dichloroethene		ND	7.5	6	30	ug/m3	06/25/19 09:35 ZZ
cis-1,3-dichloropropene		ND	7.5	6.75	33.75	ug/m3	06/25/19 09:35 ZZ
Cyclohexane		ND	7.5	5.25	25.5	ug/m3	06/25/19 09:35 ZZ
Dichlorodifluoromethane		ND	7.5	7.5	36.75	ug/m3	06/25/19 09:35 ZZ
Ethyl Acetate		ND	7.5	67.5	135	ug/m3	06/25/19 09:35 ZZ
Ethylbenzene		9.9 J	7.5	6.75	32.25	ug/m3	06/25/19 09:35 ZZ
Heptane		ND	7.5	6	30.75	ug/m3	06/25/19 09:35 ZZ
Hexachlorobutadiene		ND	7.5	15.75	82.5	ug/m3	06/25/19 09:35 ZZ
Hexane		240	7.5	5.25	26.25	ug/m3	06/25/19 09:35 ZZ
Isopropyl alcohol (IPA)		ND	7.5	45.75	90	ug/m3	06/25/19 09:35 ZZ
m and p-Xylene		33.1	7.5	6.75	32.25	ug/m3	06/25/19 09:35 ZZ
Methylene chloride		ND	7.5	5.25	26.25	ug/m3	06/25/19 09:35 ZZ
Methyl-t-butyl Ether (MTBE)		ND	7.5	5.25	27	ug/m3	06/25/19 09:35 ZZ
o-Xylene		13.1 J	7.5	6.75	32.25	ug/m3	06/25/19 09:35 ZZ
Propene		ND	7.5	2.25	12.75	ug/m3	06/25/19 09:35 ZZ
						J	

Matrix: Air	Client: ENGEO	Inc.			Col	lector: Client			
Sampled: 06/19/2019 13:39	Site:								
Sample #: <u>416459-001</u>	Client Sample #: F-AST Se	G1@5			Sample	Туре:			
Analyte	Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Styrene	ND	7.5	7.5	31.5	ug/m3		06/25/19 09:35	ZZ	
Tetrachloroethene	ND	7.5	10.5	51	ug/m3		06/25/19 09:35	ZZ	
Toluene	29.8	7.5	6	28.5	ug/m3		06/25/19 09:35	ZZ	
trans-1,2-dichloroethene	ND	7.5	6	30	ug/m3		06/25/19 09:35	ZZ	
trans-1,3-dichloropropene	ND	7.5	6.75	33.75	ug/m3		06/25/19 09:35	ZZ	
Trichloroethene	ND	7.5	8.25	40.5	ug/m3		06/25/19 09:35	ZZ	
Trichlorofluoromethane	ND	7.5	8.25	42	ug/m3		06/25/19 09:35	ZZ	
Vinyl acetate	ND	7.5	5.25	26.25	ug/m3		06/25/19 09:35	ZZ	
Vinyl Chloride	ND	7.5	3.75	19.5	ug/m3		06/25/19 09:35	ZZ	
Xylenes (Total)	46.2	7.5	6.75	32.25	ug/m3		06/25/19 09:35	ZZ	
<u>Surrogate</u>	<u>% R</u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)		87		60-140					

Matrix: Air		ENGEO	nc.			Co	ollector: Client			
Sampled: 06/19/2019 14:08 Sample #: <u>416459-002</u>	Site Client Sample #		32@5			Samp	le Type:			
	Gliefit Salliple #					-				
Analyte Method: EPA 8015M	Prep Method: R	Result	DF	MDL	RDL	Units	Prepared	Analyzed QCBatchID:		Notes C1203659
Methane ug/M3	Prep Metriou. R	ND	1.5	49200	49200	ug/m3			EW	51203039
			1.0	49200	49200	uy/m5				24000540
Method: EPA TO-15	Prep Method: M			0.0				QCBatchID:		C1203510
1,1,1-Trichloroethane		ND	6	6.6	33	ug/m3			ZZ	
1,1,2,2-Tetrachloroethane		ND	6	8.4	41.4	ug/m3			ZZ	
1,1,2-Trichloroethane		ND	6	6.6	33	ug/m3			ZZ	
1,1,2-Trichlorotrifluoroethane		ND	6	9 4.8	46.2	ug/m3			ZZ	
1,1-Dichloroethane		ND ND	6 6	4.0 4.8	24 24	ug/m3			ZZ ZZ	
1,1-Dichloroethene 1,1-Difluoroethane		ND	6	4.0 16.2	24 16.2	ug/m3			ZZ	
			6			ug/m3			ZZ	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		ND 8.0 J	6	9	44.4 29.4	ug/m3			ZZ	
•		8.0 J ND				ug/m3				
1,2-Dibromoethane	200		6	9 8 4	46.2	ug/m3			ZZ	
1,2-Dichloro-1,1,2,2-tetrafluoroeth	ane		6	8.4	42	ug/m3			ZZ	
1,2-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,2-Dichloroethane			6	4.8	24	ug/m3			ZZ	
1,2-Dichloropropane		ND	6	5.4	27.6	ug/m3			ZZ	
1,3,5-Trimethylbenzene		ND	6	6	29.4	ug/m3			ZZ	
1,3-Butadiene		12.6 J	6	2.4	13.2	ug/m3			ZZ	
1,3-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,4-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,4-Dioxane		ND	6	21.6	108	ug/m3			ZZ	
2-Butanone (MEK)		ND	6	44.4	90	ug/m3			ZZ	
2-Hexanone		ND	6	24.6	120	ug/m3			ZZ	
4-Ethyltoluene		6.7 J	6	6	29.4	ug/m3			ZZ	
4-Methyl-2-pentanone (MIBK)		10.4 J	6	4.8	24.6	ug/m3			ZZ	
Acetone		360	6	35.4 3.6	72 19.2	ug/m3			ZZ ZZ	
Benzene Benzul Chlorida		7.9 J ND	6			ug/m3			ZZ	
Benzyl Chloride Bromodichloromethane			6	6 7.8	31.2	ug/m3				
			6		40.2	ug/m3		06/25/19 10:20 06/25/19 10:20	ZZ	
Bromoform		ND	6	12.6	60	ug/m3			ZZ	
Bromomethane			6	4.8	23.4	ug/m3			ZZ	
Carbon disulfide		ND	6	3.6	18.6	ug/m3			ZZ	
Carbon Tetrachloride		ND	6	7.2	37.8	ug/m3		06/25/19 10:20	ZZ	
Chlorobenzene		ND	6	5.4 10.2	27.6	ug/m3			ZZ	
Chlorodibromomethane		ND	6 6	10.2	51 15 C	ug/m3			ZZ	
Chloroethane Chloroform		ND	6		15.6	ug/m3			ZZ ZZ	
		9.0 J	6	6 2.4	29.4	ug/m3			ZZ	
Chloromethane		ND	6	2.4 4.8	12.6	ug/m3			ZZ	
cis-1,2-Dichloroethene		ND ND	6	4.8 5.4	24 27	ug/m3			ZZ	
cis-1,3-dichloropropene Cyclohexane		ND	6	5.4 4.2	27	ug/m3			ZZ	
		ND ND	6 6	4.2 6	20.4 29.4	ug/m3			ZZ ZZ	
Dichlorodifluoromethane Ethyl Acetate		ND	6	54	29.4 108	ug/m3			ZZ	
		ND 7.3 J	6 6	54 5.4	25.8	ug/m3			ZZ ZZ	
Ethylbenzene Heptane		7.3 J 9.0 J	6	5.4 4.8	25.6 24.6	ug/m3			ZZ	
Hexachlorobutadiene		9.0 J ND	6	4.8 12.6	24.6 66	ug/m3			ZZ	
Hexachiorobuladiene		9.8 J	6	4.2	21	ug/m3			ZZ	
		9.8 J ND	6	4.2 36.6	72	ug/m3			ZZ	
Isopropyl alcohol (IPA)		20.6 J	6	36.6 5.4	72 25.8	ug/m3			ZZ	
m and p-Xylene		20.6 J 8.4 J	6	5.4 4.2	25.8 21	ug/m3			ZZ	
Methylene chloride Methyl-t-butyl Ether (MTBE)		8.4 J ND	6	4.2 4.2	21	ug/m3			ZZ	
		7.1 J	6	4.2 5.4		ug/m3			ZZ	
o-Xylene			6 6		25.8 10.2	ug/m3			ZZ ZZ	
Propene		ND	U	1.8	10.2	ug/m3		06/25/19 10:20	<i></i>	

Matrix: Air	Client: ENGEO I	nc.			Col	lector: Client			
Sampled: 06/19/2019 14:08	Site:								
Sample #: <u>416459-002</u>	Client Sample #: F-AST SC	G2@5			Sample	е Туре:			
Analyte	Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Styrene	ND	6	6	25.2	ug/m3		06/25/19 10:20	ZZ	
Tetrachloroethene	ND	6	8.4	40.8	ug/m3		06/25/19 10:20	ZZ	
Toluene	26.7	6	4.8	22.8	ug/m3		06/25/19 10:20	ZZ	
trans-1,2-dichloroethene	ND	6	4.8	24	ug/m3		06/25/19 10:20	ZZ	
trans-1,3-dichloropropene	ND	6	5.4	27	ug/m3		06/25/19 10:20	ZZ	
Trichloroethene	ND	6	6.6	32.4	ug/m3		06/25/19 10:20	ZZ	
Trichlorofluoromethane	ND	6	6.6	33.6	ug/m3		06/25/19 10:20	ZZ	
Vinyl acetate	ND	6	4.2	21	ug/m3		06/25/19 10:20	ZZ	
Vinyl Chloride	ND	6	3	15.6	ug/m3		06/25/19 10:20	ZZ	
Xylenes (Total)	27.7	6	5.4	25.8	ug/m3		06/25/19 10:20	ZZ	
<u>Surrogate</u>	<u>% R</u>	<u>ecovery</u>		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)	:	95		60-140					

Matrix: Air		ENGEO	nc.			Co	ollector: Client			
Sampled: 06/19/2019 11:44	Site		04.95			0				
Sample #: <u>416459-003</u>	Client Sample #	E-ASTS	61@5			Sampl	е Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed		
Method: EPA 8015M	Prep Method: R		4 5	40000	40000			QCBatchID:		01203659
Methane ug/M3		ND	1.5	49200	49200	ug/m3		06/27/19 11:10	EW	
Method: EPA TO-15	Prep Method: M							QCBatchID		C1203510
1,1,1-Trichloroethane		ND	15	16.5	82.5	ug/m3			ZZ	
1,1,2,2-Tetrachloroethane		ND	15	21	103.5	ug/m3			ZZ	
1,1,2-Trichloroethane		ND	15	16.5	82.5	ug/m3		06/24/19 19:29	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	15	22.5	115.5	ug/m3		06/24/19 19:29	ZZ	
1,1-Dichloroethane		ND	15	12	60	ug/m3			ZZ	
1,1-Dichloroethene		ND	15	12	60	ug/m3			ZZ	
1,1-Difluoroethane		ND	15	40.5	40.5	ug/m3			ZZ	
1,2,4-Trichlorobenzene		ND	15	22.5	111	ug/m3			ZZ	
1,2,4-Trimethylbenzene		ND	15	15	73.5	ug/m3			ZZ	
1,2-Dibromoethane		ND	15	22.5	115.5	ug/m3			ZZ	
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ane	ND	15	21	105	ug/m3			ZZ	
1,2-Dichlorobenzene		ND	15	18	90	ug/m3			ZZ	
1,2-Dichloroethane		ND	15	12	60 60	ug/m3			ZZ	
1,2-Dichloropropane		ND	15	13.5	69	ug/m3			ZZ	
1,3,5-Trimethylbenzene		ND	15	15	73.5	ug/m3			ZZ	
1,3-Butadiene		10.8 J	15	6	33	ug/m3		06/24/19 19:29	ZZ	
1,3-Dichlorobenzene		ND	15	18	90	ug/m3			ZZ	
1,4-Dichlorobenzene		ND	15	18	90	ug/m3			ZZ	
1,4-Dioxane		ND	15	54	270	ug/m3			ZZ	
2-Butanone (MEK)		ND	15	111	225	ug/m3			ZZ	
2-Hexanone		ND	15	61.5	300	ug/m3			ZZ	
4-Ethyltoluene		ND	15	15	73.5	ug/m3			ZZ	
4-Methyl-2-pentanone (MIBK)		39.3 J	15	12	61.5	ug/m3			ZZ	
Acetone		1100	15	88.5	180	ug/m3			ZZ	
Benzene Benzeit Obligide		ND	15	9	48	ug/m3			ZZ	
Benzyl Chloride		ND	15	15	78	ug/m3			ZZ	
Bromodichloromethane		ND	15	19.5	100.5	ug/m3			ZZ	
Bromoform		ND	15	31.5	150	ug/m3		06/24/19 19:29	ZZ	
Bromomethane		ND	15	12	58.5	ug/m3			ZZ	
Carbon disulfide		ND	15	9	46.5	ug/m3		06/24/19 19:29	ZZ	
Carbon Tetrachloride		ND	15	18	94.5	ug/m3		06/24/19 19:29	ZZ	
Chlorobenzene		ND	15	13.5	69	ug/m3			ZZ	
Chlorodibromomethane		ND	15	25.5	127.5	ug/m3			ZZ	
Chloroethane		ND	15	7.5	39	ug/m3			ZZ	
Chloroform		ND	15	15	73.5	ug/m3			ZZ	
Chloromethane		ND	15	6 12	31.5 60	ug/m3			ZZ	
cis-1,2-Dichloroethene			15 15		60 67 5	ug/m3			ZZ 77	
cis-1,3-dichloropropene		ND	15 15	13.5 10.5	67.5	ug/m3			ZZ	
Cyclohexane Dichlorodifluoromethane		100	15 15	10.5	51 72 5	ug/m3			ZZ ZZ	
		ND	15	15	73.5	ug/m3			ZZ	
Ethyl Acetate			15 15	135 13 5	270 64 5	ug/m3			ZZ	
Ethylbenzene			15 15	13.5	64.5	ug/m3				
Heptane		ND	15 15	12	61.5	ug/m3			ZZ	
Hexachlorobutadiene		ND	15	31.5	165	ug/m3			ZZ	
Hexane		17.1 J	15 15	10.5	52.5	ug/m3			ZZ	
Isopropyl alcohol (IPA)		ND	15 15	91.5	180	ug/m3			ZZ	
m and p-Xylene		30.1 J	15 15	13.5	64.5	ug/m3			ZZ	
Methylene chloride		16.5 J	15	10.5	52.5	ug/m3			ZZ	
Methyl-t-butyl Ether (MTBE)		ND	15	10.5	54	ug/m3			ZZ	
o-Xylene		ND	15	13.5	64.5 05.5	ug/m3			ZZ	
Propene		ND	15	4.5	25.5	ug/m3		06/24/19 19:29	ZZ	

Matrix: Air	Client: ENGEO	Inc.			Col	lector: Client			
Sampled: 06/19/2019 11:44	Site:								
Sample #: <u>416459-003</u>	Client Sample #: E-AST Se	G1@5			Sample	е Туре:			
Analyte	Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Styrene	ND	15	15	63	ug/m3		06/24/19 19:29	ZZ	
Tetrachloroethene	ND	15	21	102	ug/m3		06/24/19 19:29	ZZ	
Toluene	37.5 J	15	12	57	ug/m3		06/24/19 19:29	ZZ	
trans-1,2-dichloroethene	ND	15	12	60	ug/m3		06/24/19 19:29	ZZ	
trans-1,3-dichloropropene	ND	15	13.5	67.5	ug/m3		06/24/19 19:29	ZZ	
Trichloroethene	ND	15	16.5	81	ug/m3		06/24/19 19:29	ZZ	
Trichlorofluoromethane	ND	15	16.5	84	ug/m3		06/24/19 19:29	ZZ	
Vinyl acetate	ND	15	10.5	52.5	ug/m3		06/24/19 19:29	ZZ	
Vinyl Chloride	ND	15	7.5	39	ug/m3		06/24/19 19:29	ZZ	
Xylenes (Total)	30.1 J	15	13.5	64.5	ug/m3		06/24/19 19:29	ZZ	
<u>Surrogate</u>	<u>% R</u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)	1	100		60-140					

Matrix: Air		t: ENGEO	nc.			Co	ollector: Client			
Sampled: 06/19/2019 12:08 Sample #: <u>416459-004</u>	Site Client Sample #		G2@5			Samp	le Туре:			
Analyte		Result	DF	MDL	RDL	Units	Prepared	Analyzed I	Зv	Notes
Method: EPA 8015M	Prep Method: R							QCBatchID:		
Methane ug/M3		ND	1.5	49200	49200	ug/m3		06/27/19 11:21 E	EW	
Method: EPA TO-15	Prep Method: M	lethod						QCBatchID:	QC	1203510
1,1,1-Trichloroethane		ND	6	6.6	33	ug/m3		06/25/19 11:02	ZZ	
1,1,2,2-Tetrachloroethane		ND	6	8.4	41.4	ug/m3		06/25/19 11:02	ZZ	
1,1,2-Trichloroethane		ND	6	6.6	33	ug/m3		06/25/19 11:02	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	6	9	46.2	ug/m3		06/25/19 11:02	ZZ	
1,1-Dichloroethane		ND	6	4.8	24	ug/m3		06/25/19 11:02	ZZ	
1,1-Dichloroethene		ND	6	4.8	24	ug/m3		06/25/19 11:02	ZZ	
1,1-Difluoroethane		ND	6	16.2	16.2	ug/m3		06/25/19 11:02	ZZ	
1,2,4-Trichlorobenzene		ND	6	9	44.4	ug/m3			ZZ	
1,2,4-Trimethylbenzene		7.3 J	6	6	29.4	ug/m3		06/25/19 11:02	ZZ	
1,2-Dibromoethane		ND	6	9	46.2	ug/m3			ZZ	
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ane	ND	6	8.4	42	ug/m3			ZZ	
1,2-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,2-Dichloroethane		ND	6	4.8	24	ug/m3			ZZ	
1,2-Dichloropropane		ND	6	5.4	27.6	ug/m3			ZZ	
1,3,5-Trimethylbenzene		ND	6	6	29.4	ug/m3			ZZ	
1,3-Butadiene		6.0 J	6	2.4	13.2	ug/m3			ZZ	
1,3-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,4-Dichlorobenzene		ND	6	7.2	36	ug/m3			ZZ	
1,4-Dioxane		ND	6	21.6	108	ug/m3			ZZ 77	
2-Butanone (MEK) 2-Hexanone		ND ND	6 6	44.4 24.6	90 120	ug/m3		06/25/19 11:02 2 06/25/19 11:02 2	ZZ	
4-Ethyltoluene		ND	6	24.0 6	29.4	ug/m3 ug/m3			ZZ	
4-Methyl-2-pentanone (MIBK)		27.3	6	4.8	29.4 24.6	ug/m3 ug/m3			ZZ	
Acetone		750	6	35.4	24.0 72	ug/m3			ZZ	
Benzene		7.2 J	6	3.6	19.2	ug/m3			ZZ	
Benzyl Chloride		ND	6	6	31.2	ug/m3			ZZ	
Bromodichloromethane		ND	6	7.8	40.2	ug/m3			ZZ	
Bromoform		ND	6	12.6	60	ug/m3			ZZ	
Bromomethane		ND	6	4.8	23.4	ug/m3			ZZ	
Carbon disulfide		4.8 J	6	3.6	18.6	ug/m3		06/25/19 11:02	ZZ	
Carbon Tetrachloride		ND	6	7.2	37.8	ug/m3		06/25/19 11:02	ZZ	
Chlorobenzene		ND	6	5.4	27.6	ug/m3		06/25/19 11:02	ZZ	
Chlorodibromomethane		ND	6	10.2	51	ug/m3		06/25/19 11:02	ZZ	
Chloroethane		ND	6	3	15.6	ug/m3		06/25/19 11:02	ZZ	
Chloroform		ND	6	6	29.4	ug/m3		06/25/19 11:02	ZZ	
Chloromethane		2.6 J	6	2.4	12.6	ug/m3		06/25/19 11:02	ZZ	
cis-1,2-Dichloroethene		ND	6	4.8	24	ug/m3		06/25/19 11:02	ZZ	
cis-1,3-dichloropropene		ND	6	5.4	27	ug/m3			ZZ	
Cyclohexane		ND	6	4.2	20.4	ug/m3		06/25/19 11:02		
Dichlorodifluoromethane		ND	6	6	29.4	ug/m3			ZZ	
Ethyl Acetate		ND	6	54	108	ug/m3		06/25/19 11:02		
Ethylbenzene		8.6 J	6	5.4	25.8	ug/m3			ZZ	
Heptane		8.0 J	6	4.8	24.6	ug/m3		06/25/19 11:02		
Hexachlorobutadiene		ND	6	12.6	66	ug/m3			ZZ	
Hexane		28.1	6	4.2	21 72	ug/m3		06/25/19 11:02		
Isopropyl alcohol (IPA)		ND 25.5.1	6	36.6	72 25 9	ug/m3			ZZ 77	
m and p-Xylene		25.5 J	6 6	5.4 4.2	25.8 21	ug/m3		06/25/19 11:02	ZZ	
Methylene chloride Methyl-t-butyl Ether (MTBE)		10.7 J ND	6	4.2	21 21.6	ug/m3		06/25/19 11:02 2 06/25/19 11:02 2		
o-Xylene		ND 7.9 J	6	4.2 5.4	21.6 25.8	ug/m3		06/25/19 11:02 2		
Propene		7.9 J ND	6	5.4 1.8	25.6 10.2	ug/m3 ug/m3		06/25/19 11:02 2		
порене		ND	0	1.0	10.2	ugnito		00/20/13 11.02 /		

Matrix: Air	Client: ENGEO	Inc.			Col	lector: Client			
Sampled: 06/19/2019 12:08	Site:								
Sample #: <u>416459-004</u>	Client Sample #: E-AST S	G2@5							
Analyte	Result	DF	MDL	RDL	Units	Prepared	Analyzed	By	Notes
Styrene	ND	6	6	25.2	ug/m3		06/25/19 11:02	ZZ	
Tetrachloroethene	ND	6	8.4	40.8	ug/m3		06/25/19 11:02	ZZ	
Toluene	35.3	6	4.8	22.8	ug/m3		06/25/19 11:02	ZZ	
trans-1,2-dichloroethene	ND	6	4.8	24	ug/m3		06/25/19 11:02	ZZ	
trans-1,3-dichloropropene	ND	6	5.4	27	ug/m3		06/25/19 11:02	ZZ	
Trichloroethene	ND	6	6.6	32.4	ug/m3		06/25/19 11:02	ZZ	
Trichlorofluoromethane	ND	6	6.6	33.6	ug/m3		06/25/19 11:02	ZZ	
Vinyl acetate	ND	6	4.2	21	ug/m3		06/25/19 11:02	ZZ	
Vinyl Chloride	ND	6	3	15.6	ug/m3		06/25/19 11:02	ZZ	
Xylenes (Total)	33.4	6	5.4	25.8	ug/m3		06/25/19 11:02	ZZ	
<u>Surrogate</u>	<u>% </u>	Recovery		Limits	<u>Notes</u>				
4-Bromofluorobenzene (SUR)		88		60-140					

QCBatchID: QC1203510 Analyst:	nicollez	Method:	EPA TO-15			
Matrix: Air Analyzed:	06/24/2019	Instrument:	VOA-MS (grou	la)		
	Bla	nk Summai	v			
	Blank		y 			
Analyte	Result	Units	MDL	RDL	Notes	
QC1203510MB1	Rooun	Unito	mbe	TO L	1000	
1,1,1-Trichloroethane	ND	ug/m3	1.1	5.5		
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.4	6.9		
1,1,2-Trichloroethane	ND	ug/m3	1.1	5.5		
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	1.5	7.7		
1,1-Dichloroethane	ND	ug/m3	0.8	4		
1,1-Dichloroethene	ND	ug/m3	0.8	4		
1,1-Difluoroethane	ND	ug/m3	2.7	2.7		
1,2,4-Trichlorobenzene	ND	ug/m3	1.5	7.4		
1,2,4-Trimethylbenzene	ND	ug/m3	1	4.9		
1,2-Dibromoethane	ND	ug/m3	1.5	7.7		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ug/m3	1.4	7		
1,2-Dichlorobenzene	ND	ug/m3	1.2	6		
1,2-Dichloroethane	ND	ug/m3	0.8	4		
1,2-Dichloropropane	ND	ug/m3	0.9	4.6		
1,3,5-Trimethylbenzene	ND	ug/m3	1	4.9		
1,3-Butadiene	ND	ug/m3	0.4	2.2		
1,3-Dichlorobenzene	ND	ug/m3	1.2	6		
1,4-Dichlorobenzene	ND	ug/m3	1.2	6		
1,4-Dioxane	ND	ug/m3	3.6	18		
2-Butanone (MEK)	ND	ug/m3	7.4	15		
2-Hexanone	ND	ug/m3	4.1	20		
4-Ethyltoluene	ND	ug/m3	1	4.9		
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	0.8	4.1		
Acetone	ND	ug/m3	5.9	12		
Benzene	ND	ug/m3	0.6	3.2		
Benzyl Chloride	ND	ug/m3	1	5.2		
Bromodichloromethane	ND	ug/m3	1.3	6.7		
Bromoform	ND	ug/m3	2.1	10		
Bromomethane	ND	ug/m3	0.8	3.9		
Carbon disulfide	ND	ug/m3	0.6	3.1		
Carbon Tetrachloride	ND	ug/m3	1.2	6.3		
Chlorobenzene	ND	ug/m3	0.9	4.6		
Chlorodibromomethane	ND	ug/m3	1.7	8.5		
Chloroethane	ND	ug/m3	0.5	2.6		
Chloroform	ND	ug/m3	1	4.9		
Chloromethane	ND	ug/m3	0.4	2.1		
cis-1,2-Dichloroethene	ND	ug/m3	0.8	4		
cis-1,3-dichloropropene	ND	ug/m3	0.9	4.5		
Cyclohexane	ND	ug/m3	0.7	3.4		
Dichlorodifluoromethane	ND	ug/m3	1	4.9		
Ethyl Acetate	ND	ug/m3	9	18		
Ethylbenzene	ND	ug/m3	0.9	4.3		
Heptane	ND	ug/m3	0.8	4.1		
Hexachlorobutadiene	ND	ug/m3	2.1	11		
Hexane	ND	ug/m3	0.7	3.5		
Isopropyl alcohol (IPA)	ND	ug/m3	6.1	12		
m and p-Xylene	ND	ug/m3	0.9	4.3		
Methylene chloride	ND	ug/m3	0.7	3.5		
Methyl-t-butyl Ether (MTBE)	ND	ug/m3	0.7	3.6		
o-Xylene	ND	ug/m3	0.9	4.3		
Propene	ND	ug/m3	0.3	1.7		
-	ND	ug/m3	1	4.2		

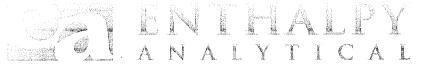
QCBatchID: QC1203510	Analyst:	nicollez	Method:	EPA TO-15			
Matrix: Air	Analyzed:	06/24/2019	Instrument:	VOA-MS (grou	up)		
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1203510MB1			1	-		1	
Tetrachloroethene		ND	ug/m3	1.4	6.8		
Toluene		ND	ug/m3	0.8	3.8		
trans-1,2-dichloroethene		ND	ug/m3	0.8	4		
trans-1,3-dichloropropene		ND	ug/m3	0.9	4.5		
Trichloroethene		ND	ug/m3	1.1	5.4		
Trichlorofluoromethane		ND	ug/m3	1.1	5.6		
Vinyl acetate		ND	ug/m3	0.7	3.5		
Vinyl Chloride		ND	ug/m3	0.5	2.6		
Xylenes (Total)		ND	ug/m3	0.9	4.3		

Duplicate Summary												
	Sample	Duplicate			Limits							
Analyte	Amount	Amount	Units	RPD	RPD	Notes						
QC1203510DUP1						Source: 416463-003						
1,1,1-Trichloroethane	ND	ND	ug/m3	0.0	30							
1,1,2,2-Tetrachloroethane	ND	ND	ug/m3	0.0	30							
1,1,2-Trichloroethane	ND	ND	ug/m3	0.0	30							
1,1,2-Trichlorotrifluoroethane	ND	ND	ug/m3	0.0	30							
1,1-Dichloroethane	ND	ND	ug/m3	0.0	30							
1,1-Dichloroethene	ND	ND	ug/m3	0.0	30							
1,2,4-Trichlorobenzene	ND	ND	ug/m3	0.0	30							
1,2,4-Trimethylbenzene	ND	ND	ug/m3	0.0	30							
1,2-Dibromoethane	ND	ND	ug/m3	0.0	30							
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ug/m3	0.0	30							
1,2-Dichlorobenzene	ND	ND	ug/m3	0.0	30							
1,2-Dichloroethane	ND	ND	ug/m3	0.0	30							
1,2-Dichloropropane	ND	ND	ug/m3	0.0	30							
1,3,5-Trimethylbenzene	ND	ND	ug/m3	0.0	30							
1,3-Butadiene	ND	ND	ug/m3	0.0	30							
1,3-Dichlorobenzene	ND	ND	ug/m3	0.0	30							
1,4-Dichlorobenzene	ND	ND	ug/m3	0.0	30							
1,4-Dioxane	ND	ND	ug/m3	0.0	30							
2-Butanone (MEK)	ND	ND	ug/m3	0.0	30							
2-Hexanone	ND	ND	ug/m3	0.0	30							
4-Ethyltoluene	ND	ND	ug/m3	0.0	30							
4-Methyl-2-pentanone (MIBK)	ND	ND	ug/m3	0.0	30							
Acetone	ND	ND	ug/m3	0.0	30							
Benzene	ND	ND	ug/m3	0.0	30							
Benzyl Chloride	ND	ND	ug/m3	0.0	30							
Bromodichloromethane	ND	ND	ug/m3	0.0	30							
Bromoform	ND	ND	ug/m3	0.0	30							
Bromomethane	ND	ND	ug/m3	0.0	30							
Carbon disulfide	ND	ND	ug/m3	0.0	30							
Carbon Tetrachloride	ND	ND	ug/m3	0.0	30							
Chlorobenzene	ND	ND	ug/m3	0.0	30							
Chlorodibromomethane	ND	ND	ug/m3	0.0	30							
Chloroethane	ND	ND	ug/m3	0.0	30							
Chloroform	ND	ND	ug/m3	0.0	30							
Chloromethane	ND	ND	ug/m3	0.0	30							
cis-1,2-Dichloroethene	2200	2100	ug/m3	4.7	30							
cis-1,3-dichloropropene	ND	ND	ug/m3	0.0	30							
Cyclohexane	ND	ND	ug/m3	0.0	30							
Dichlorodifluoromethane	ND	ND	ug/m3	0.0	30							

QCBatchID: QC1203510	Analyst:	nicollez	Method:	EPA TO-15			
Matrix: Air	Analyzed:	06/24/2019	Instrument:	VOA-MS (group)		
		Sample	Duplicate			Limits	
Analyte		Amount	Amount	Units	RPD	RPD	Notes
QC1203510DUP1						4	Source: 416463-003
Ethyl Acetate		ND	ND	ug/m3	0.0	30	
Ethylbenzene		ND	ND	ug/m3	0.0	30	
Heptane		ND	ND	ug/m3	0.0	30	
Hexachlorobutadiene		ND	ND	ug/m3	0.0	30	
Hexane		ND	ND	ug/m3	0.0	30	
Isopropyl alcohol (IPA)		ND	ND	ug/m3	0.0	30	
m and p-Xylene		ND	ND	ug/m3	0.0	30	
Methylene chloride		27.1	27.7	ug/m3	2.2	30	
Methyl-t-butyl Ether (MTBE)		ND	ND	ug/m3	0.0	30	
o-Xylene		ND	ND	ug/m3	0.0	30	
Propene		ND	ND	ug/m3	0.0	30	
Styrene		ND	ND	ug/m3	0.0	30	
Tetrachloroethene		7300	7600	ug/m3	4.0	30	
Toluene		ND	ND	ug/m3	0.0	30	
trans-1,2-dichloroethene		55.1	55.1	ug/m3	0.0	30	
trans-1,3-dichloropropene		ND	ND	ug/m3	0.0	30	
Trichloroethene		3400	3400	ug/m3	0.0	30	
Trichlorofluoromethane		ND	ND	ug/m3	0.0	30	
Vinyl acetate		ND	ND	ug/m3	0.0	30	
Vinyl Chloride		ND	ND	ug/m3	0.0	30	
Xylenes (Total)		ND	ND	ug/m3	0.0	30	

QCBatchID: QC1203659	Analyst:	sandyw	Method:	EPA 8015M			
Matrix: Air	Analyzed:	06/27/2019	Instrument:	VOA-GC (grou	p)		
		Bla	nk Summa	ry			
		Blank					
Analyte		Result	Units	MDL	RDL	Notes	
QC1203659MB1							1
Ethane		ND	Vppm	50	50		
Ethane		ND	Vppm	50	50		
Ethene		ND	Vppm	50	50		
Ethene		ND	Vppm	50	50		
Methane		ND	Vppm	50	50		
Methane		ND	Vppm	50	50		
Methane		ND	mg/L	0.005	0.005		
Methane ug/M3		ND	ug/m3	32800	32800		
Methane ug/M3		ND	ug/m3	32800	32800		

Duplicate Summary											
	Sample	Duplicate			Limits						
Analyte	Amount	Amount	Units	RPD	RPD	Notes					
QC1203659DUP1	i					Source: 416459-004					
Ethane	ND	ND	Vppm	0.0	20						
Ethene	ND	ND	Vppm	0.0	20						
Methane	ND	ND	Vppm	0.0	20						
Methane ug/M3	ND	ND	ug/m3	0.0	20						
QC1203659DUP2						Source: 416473-003					
Methane	0.018	0.020	mg/L	10.5	30						


Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.
J	Reported value is estimated The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample
L	data was reported with qualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
М	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not
	within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
P	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3 S	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
-	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
T T4	Sample was extracted/analyzed past the holding time.
T1 T2	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T3	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time. Sample received and analyzed out of hold time per client's request.
T4	Sample was analyzed out of hold time per client's request.
Т5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
T6	Hold time is indeterminable due to unspecified sampling time.
Т7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

Analytical Results Report

Enthalpy Analytical, LLC

Pho	ie: (714)		ange, CA 92868 Fax: (714) 771-9933			533. 532	TE	ľ.	V			AL	P	Y			Chai Job N		Custody 41645	Record
c/o 1	Iontrose	Environme	ntal Group Inc. ngeles, CA 90074-1137		Careford and a second		<u> </u>	1 m	Ţ	<u>AL</u>	<u>Y</u> 7		<u>C A</u>	The second se	- to			I	PageC	of
<u> </u>			CUSTO GEO	MER INFORM	MATION					1		FORMATION	I		PON	lumbe	:			
Con	ралу:							Name:		Shady V 15535.00				· _	Lab	Quote	Numbe	r:	<u> </u>	
Rep	ort To:		anna Lundberg					Numbe	r:	15535.00	0.000				-					
Ema	11:		idberg@engeo				· · · · · · · · · · · · · · · · · · ·	Address:												
Ado	ress:		organ, Suite 16	DZ						Chino Hi	lis, CA					Analys	is Rec	luest	Required Tu Tim	
			ne, CA 92618			T		Global	ID:	ļ	·····			· ·	4					
Pho	ne: cial Instr		.579.2268		Fax:		· · · ·	Sample	d By:						4				Standard	X
					- -										2	ethane			4 Day 72 Hour 48 Hour 24 Hour	
ĺ				Air Type (i) indoor	Equi	pment Infon Canister	mation		Start	Sampling Inform	nation Canister	Stop	Sampling Inform	nation Canister	þ	Ne.				
		Sam	ple ID	(A) Ambient (SV) Soil Vapor	Canister ID	Size (6L or 1L)	Flow Controller ID	Da	ite	Time	Pressure (in. Hg)	Date	Time	Pressure (in. Hg)	F	2			Comm	ents
1	F.	4st	SGI@S	su	00202	IL	104	6/1	9/19	1322	- 30	C/19/4	1339	-5	X	X				
2	F	Ast	59205	sv	00148	12	10106	, t	·	1355	-30	ſ	1408	-4	X	X				
3			SG 1@5	sv	594	11	0009		•	1130	-29	1++++	1144	-4	ΤX	1X				
4	E-	AST	56205	SV	00221	11	60015			1746	-30	13458	1208		X	X	·			
5	Ē-	AST	5G 305	SV	578	12	00029	×	<	1209	-30	The start	+228	-4	X	X			hold	
6	-															1				
7			•												-	1				
в			· · · · · · · · · · · · · · · · · · ·								İ							-		
9															Τ					
10																				
11																	ľ			
12																1				
13															1					
14																				
15							1			1						-				
				SIGNATURE			1		PRINT	NAME			cc	MPANY/TITLE					DATE / TI	ME
BY			The second		<u> </u>		HEAY	Ч	5	AWYE	<u>n</u>	EA	IGEC 1	>				6	119/19	15:08
	CEIVED B		G	C			6.6	Čm	<u> </u>	Awye		G	7						0/19/14	(208)
5	INQUISH		. 7																-	
RE	CEIVED E	iΥ:	•		- 	·		•												

SAMPLE ACCEPTANCE CHECKLIST

Section 1						
Client: Engeo		Project:	Shady View			
Date Received: 6/19/19		Sampler	's Name Present:	✓Yes	No	
Section 2			gunden og en sen en son en			
Sample(s) received in a coo	ler? Yes, How many?	🗸	NO (skip section 2)	Sampl	e Temp (°C) (No Cooler)	: 23.4
Sample Temp (°C), One fror	m each cooler: #1:	#2:	#3:	#4:		-
(Acceptance range is < 6°C but not f	rozen (for Microbiology samples, accep	otance range is	s < 10°C but not frozen).	It is acceptable		s collected
the same day as so Shipping Information:	ample receipt to have a higher tempero	uture as long a	as there is evidence that c	ooiing has beg	un.j	
Section 3		arceloganish karjengan nerom Anniheston ah	емалогия малинали на организация на организация на организация на организация на организация на организация на			
Was the cooler packed with			le Wrap 📃 Styr	ofoam		
	Paper None		r	 		
Cooler Temp (°C): #1:	#2:	<u></u>	‡3:	#4:		
Section 4				YES	NO	N/A
Was a COC received?				1		
Are sample IDs present?	een op op op de staat en de staat die een de keer de keer de keer de keer de keer de staat op de staa			1		
Are sampling dates & times	present?			1		
ls a relinquished signature p	present?	Constant of the Real Property lines		1		
Are the tests required clear	ly indicated on the COC?			1		
Are custody seals present?					1	
	resent, were they intact?					\checkmark
	astic bags? (Recommended		oiology samples)			
	t? If no, indicate in Section 4	*****	NATION CONTRACTOR CONTRA			
	vith COC? (ID, dates and time	trent de la company de la c	ine of the state of			
	d in the correct containers fo		irea tests?			
	peled with the correct preser		tor?			
	OA vials greater than 5-6 mn sample submitted for the re		NCOLOGICAL AND			√
		.questeu li		Y		
Section 5 Explanations/Co	omments					
	A style style style at the calor of the style at the style at the style style style at the style s	1927, BARRINA SPECIFICAÇÃO - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Ref. P. Constant and the second s			
Section 6						
For discrepancies, how was	the Project Manager notifie	d? 🚺 Verl	bal PM Initials:	_ Date/Time		
		Ema				
Project Manager's response	9 :					
				an da an		
Completed By:	6	Date:	Elam			
- "		<u> </u>				
	Enthalpy Analytical, a subsidiary of 931 W. Barkley Ave, Orange, CA 92868)9		
		alpy.com/socal				

Sample Acceptance Checklist - Rev 4, 8/8/2017

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Lab Request: 416458 Report Date: 06/27/2019 Date Received: 06/19/2019 Client ID: 15790

Client: ENGEO Inc. Address: 6 Morgan, Suite 162 Irvine, CA 92618-1922

Attn: Adrianna Lundberg

Comments: Shady View 15535.000.000

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	<u>Client Sample ID</u>
416458-004	3-pt composite SY SS- 01-03
416458-008	3-pt composite SY SS- 04-06
416458-009	E-AST SS-01@0
416458-012	E-AST SS-02@0
416458-015	E-AST SS-03@0
416458-018	F-AST SS-01@0
416458-021	F-AST SS-02@0
416458-024	F-AST SS-03@0
416458-027	E-AST SS-04@0
416458-030	F-AST SS-04@0
416458-033	F-AST SS-05@0

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

M. Malua

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Sample #: 4	416458-004 Client Sam	ple #: 3-pt comp	osite SY SS-0	1-03		
Method	<u>Analyte</u>	<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
EPA 6010B	Arsenic	6.91	1	1	mg/Kg	
EPA 6010B	Barium	129	1	1	mg/Kg	
EPA 6010B	Cadmium	11.1	1	0.5	mg/Kg	
EPA 6010B	Chromium	18.0	1	1	mg/Kg	
EPA 6010B	Cobalt	10.8	1	0.5	mg/Kg	
EPA 6010B	Copper	26.9	1	1	mg/Kg	
EPA 6010B	Lead	29.0	1	1	mg/Kg	
EPA 6010B	Nickel	19.0	1	1.5	mg/Kg	
EPA 6010B	Vanadium	35.4	1	0.5	mg/Kg	
EPA 6010B	Zinc	308	1	5	mg/Kg	
Sample #: 4	416458-008 Client Sam	ple #: 3-pt comp	osite SY SS-0	4-06		
Method	Analyte	<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
EPA 6010B	Arsenic	4.26	1	1	mg/Kg	
EPA 6010B	Barium	78.8	1	1	mg/Kg	
EPA 6010B	Cadmium	0.88	1	0.5	mg/Kg	
EPA 6010B	Chromium	11.4	1	1	mg/Kg	
EPA 6010B	Cobalt	6.95	1	0.5	mg/Kg	
EPA 6010B	Copper	11.8	1	1	mg/Kg	
EPA 6010B	Lead	13.6	1	1	mg/Kg	
EPA 6010B	Nickel	11.7	1	1.5	mg/Kg	
EPA 6010B	Vanadium	24.6	1	0.5	mg/Kg	
EPA 6010B	Zinc	93.2	1	5	mg/Kg	
EPA 8015M	TPH (C13 to C28) (SGT)	185	5	50	mg/Kg	
EPA 8015M	TPH (C29 to C 40) (SGT)	116	5	100	mg/Kg	
Sample #: 4	116458-009 Client Sam	ple #: E-AST SS	-01@0			
Method	Analyte	<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
-		-	-	<u>RDL</u> 1	<u>Units</u> mg/Kg	<u>Notes</u>
Method	<u>Analyte</u>	<u>Result</u>	DF			<u>Notes</u>
Method EPA 6010B	Analyte Arsenic	<u>Result</u> 4.10	DF	1	mg/Kg mg/Kg mg/Kg	Notes
Method EPA 6010B EPA 6010B	<u>Analyte</u> Arsenic Barium	Result 4.10 47.9	DF	1 1	mg/Kg mg/Kg	Notes
Method EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium	Result 4.10 47.9 0.52	DF	1 1 0.5	mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper	Result 4.10 47.9 0.52 9.23 5.56 8.48	DF	1 1 0.5 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt	Result 4.10 47.9 0.52 9.23 5.56	DF 1 1 1 1 1	1 1 0.5 1 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6	DF 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9	DF 1 1 1 1 1	1 1 0.5 1 0.5 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6	DF 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1.5 0.5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 8015M	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT)	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200	DF 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1.5 0.5 5 500	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6	DF 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1.5 0.5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 Ple #: E-AST SS	DF 1 1 1 1 1 1 1 1 1 1 50 1 5-02@0	1 1 0.5 1 0.5 1 1.5 0.5 5 500 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg	
Method EPA 6010B EPA 8015M EPA 8260B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0	DF 1 1 1 1 1 1 1 1 1 50 1	1 1 0.5 1 0.5 1 1.5 0.5 5 500	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>Notes</u>
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 Ple #: E-AST SS	DF 1 1 1 1 1 1 1 1 1 1 50 1 5-02@0	1 1 0.5 1 0.5 1 1.5 0.5 5 500 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg	
Method EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Analyte Arsenic Barium	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9	DF 1 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 50 50 50 50 50 50 50 50 50	1 1 0.5 1 0.5 1 1 1.5 0.5 5 500 5 RDL 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg ug/Kg	
Method EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 Ple #: E-AST SS Result 2.92 69.9 0.56	DF 1 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 50 50 50 50 50 50 50 50 50	1 1 0.5 1 0.5 1 1 1.5 0.5 5 500 5 RDL 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg ug/Kg	
Method EPA 6010B EPA 8015M EPA 8260B Sample #: Method EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium Chromium	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8	DF 1 1 1 1 1 1 1 1 1 1 1 50 1 5-02@0 DF 1 1 1	1 1 0.5 1 0.5 1 1 1.5 0.5 5 500 5 500 5 RDL 1 1 0.5 1 1 1 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1.5 0.5 5 500 5 RDL 1 1 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Analyte Arsenic Barium Cadmium Chromium Cobalt Copper	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49 9.57	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1.5 0.5 5 500 5 5 500 5 5 5 0.5 1 1 0.5 1 1 0.5 1 1 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49 9.57 7.26	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1 1.5 0.5 5 500 5 5 500 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49 9.57 7.26 11.4	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1 1.5 0.5 5 500 5 5 500 5 5 5 500 5 1 1 0.5 1 0.5 1 1 1.5 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Chromium Copper Lead Nickel Vanadium	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49 9.57 7.26 11.4 24.9	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1 1.5 0.5 5 500 5 5 500 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 8015M EPA 8260B Sample #: 4 Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Analyte Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel Vanadium Zinc TPH (C13 to C28) (SGT) Methylene chloride 416458-012 Client Sam Arsenic Barium Cadmium Chromium Cobalt Copper Lead Nickel	Result 4.10 47.9 0.52 9.23 5.56 8.48 14.5 16.6 19.9 33.6 2200 7.0 ple #: E-AST SS Result 2.92 69.9 0.56 11.8 6.49 9.57 7.26 11.4	DF 1 1 1 1 1 1 1 1 1 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0.5 1 0.5 1 1 1 1.5 0.5 5 500 5 5 500 5 5 5 500 5 1 1 0.5 1 0.5 1 1 1.5 0.5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	

Sample #.	416458-012	Client Sample #	E-AST S	S-02@0			
Method	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	<u>Notes</u>
EPA 8015M	TPH (C13 to	C28) (SGT)	350	20	200	mg/Kg	
EPA 8260B	Methylene ch		5.3	1	5	ug/Kg	
Sample # [.]	416458-015	Client Sample #	F-AST S	ട-03@0			
Method	Analyte		Result	DF	RDL	Units	Notes
							NOLES
EPA 6010B EPA 6010B	Arsenic Barium		2.32 59.1	1 1	1	mg/Kg	
EPA 6010B EPA 6010B	Cadmium		0.62	1	1 0.5	mg/Kg	
EPA 6010B	Chromium		10.5	1	0.5	mg/Kg	
EPA 6010B	Cobalt		7.62	1	0.5	mg/Kg mg/Kg	
EPA 6010B	Copper		10.1	1	0.5	mg/Kg	
EPA 6010B	Lead		3.22	1	1	mg/Kg	
EPA 6010B	Nickel		10.2	1	1.5	mg/Kg	
EPA 6010B	Vanadium		24.3	1	0.5	mg/Kg	
EPA 6010B	Zinc		29.8	1	5	mg/Kg	
					5	ilig/itg	
-	416458-018	Client Sample #		<u> </u>			
<u>Method</u>	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
EPA 6010B	Arsenic		3.70	1	1	mg/Kg	
EPA 6010B	Barium		113	1	1	mg/Kg	
EPA 6010B	Cadmium		0.70	1	0.5	mg/Kg	
EPA 6010B	Chromium		24.8	1	1	mg/Kg	
EPA 6010B	Cobalt		12.0	1	0.5	mg/Kg	
EPA 6010B	Copper		17.4	1	1	mg/Kg	
EPA 6010B	Lead		15.9	1	1	mg/Kg	
EPA 6010B	Nickel		15.8	1	1.5	mg/Kg	
EPA 6010B	Vanadium		50.1	1	0.5	mg/Kg	
EPA 6010B	Zinc		50.7	1	5	mg/Kg	
Sample #:	416458-021	Client Sample #	F-AST S	S-02@0			
<u>Method</u>	<u>Analyte</u>		<u>Result</u>	DF	RDL	<u>Units</u>	<u>Notes</u>
EPA 6010B	Arsenic		6.34	1	1	mg/Kg	
EPA 6010B	Barium		115	1		malka	
EPA 6010B			115	I	1	mg/Kg	
	Cadmium		0.64	1	1 0.5	mg/Kg	
EPA 6010B	Cadmium Chromium			•			
EPA 6010B EPA 6010B			0.64	1	0.5	mg/Kg	
	Chromium		0.64 21.0	1 1	0.5 1	mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt		0.64 21.0 10.1	1 1	0.5 1 0.5	mg/Kg mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel		0.64 21.0 10.1 13.8	1 1	0.5 1 0.5 1 1 1.5	mg/Kg mg/Kg mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead		0.64 21.0 10.1 13.8 8.85 14.2 43.8	1 1	0.5 1 0.5 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel		0.64 21.0 10.1 13.8 8.85 14.2	1 1	0.5 1 0.5 1 1 1.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2	1 1 1 1 1 1 1 1	0.5 1 0.5 1 1.5 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2	1 1 1 1 1 1 1 1	0.5 1 0.5 1 1.5 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B Sample #:	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B Sample #: <u>Method</u> EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 <u>Analyte</u>	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 : F-AST Si Result	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B Sample #: <u>Method</u> EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 <u>Analyte</u> Arsenic	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Units mg/Kg	Notes
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B Sample #: Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Arsenic Barium	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B Sample #: Method EPA 6010B EPA 6010B EPA 6010B EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Ansenic Barium Cadmium	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124 0.78	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Ansenic Barium Cadmium Chromium	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124 0.78 26.4	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1 0.5 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Arsenic Barium Cadmium Cadmium Cobalt Copper Lead	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124 0.78 26.4 11.8	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1 0.5 1 0.5	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Arsenic Barium Cadmium Chromium Cobalt Copper	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124 0.78 26.4 11.8 17.6 9.77 15.7	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1 0.5 1 0.5 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes
EPA 6010B EPA 6010B	Chromium Cobalt Copper Lead Nickel Vanadium Zinc 416458-024 Arsenic Barium Cadmium Cadmium Cobalt Copper Lead	Client Sample #	0.64 21.0 10.1 13.8 8.85 14.2 43.8 41.2 F-AST S Result 5.29 124 0.78 26.4 11.8 17.6 9.77	1 1 1 1 1 1 1 5-03@0	0.5 1 0.5 1 1 1.5 0.5 5 RDL 1 1 0.5 1 0.5 1 0.5 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Notes

Sample #:	416458-024 Client	Sample #: F-AST SS	-03@0			
<u>Method</u>	<u>Analyte</u>	<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	<u>Notes</u>
EPA 6010B	Zinc	52.1	1	5	mg/Kg	
EPA 8015M	TPH (C13 to C28) (SGT)) 18.0	1	10	mg/Kg	
Sample #:	416458-027 Client	Sample #: E-AST SS	-04@0			
<u>Method</u>	<u>Analyte</u>	<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	<u>Notes</u>
EPA 6010B	Arsenic	3.56	1	1	mg/Kg	
EPA 6010B	Barium	78.7	1	1	mg/Kg	
EPA 6010B	Cadmium	0.78	1	0.5	mg/Kg	
EPA 6010B	Chromium	13.4	1	1	mg/Kg	
EPA 6010B	Cobalt	6.96	1	0.5	mg/Kg	
EPA 6010B	Copper	10.9	1	1	mg/Kg	
EPA 6010B	Lead	16.8	1	1	mg/Kg	
EPA 6010B	Nickel	12.1	1	1.5	mg/Kg	
EPA 6010B	Vanadium	26.4	1	0.5	mg/Kg	
EPA 6010B	Zinc	51.0	1	5	mg/Kg	
EPA 8015M	TPH (C13 to C28) (SGT)		5	50	mg/Kg	
EPA 8260B	Methylene chloride	5.0	1	5	ug/Kg	
Sample #:	416458-030 Client	Sample #: F-AST SS	-04@0			
Method	Analyte	Result	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic	4.94	1	1	mg/Kg	
EPA 6010B	Barium	124	1	1	mg/Kg	
EPA 6010B	Cadmium	0.83	1	0.5	mg/Kg	
EPA 6010B	Chromium	30.5	1	1	mg/Kg	
EPA 6010B	Cobalt	12.9	1	0.5	mg/Kg	
EPA 6010B	Copper	18.8	1	1	mg/Kg	
EPA 6010B	Lead	9.47	1	1	mg/Kg	
EPA 6010B	Nickel	18.8	1	1.5	mg/Kg	
EPA 6010B	Vanadium	54.9	1	0.5	mg/Kg	
EPA 6010B	Zinc	51.6	1	5	mg/Kg	
Sample #:	416458-033 Client	Sample #: F-AST SS	-05@0		0 0	
Method	Analyte	<u>Result</u>	DF	RDL	<u>Units</u>	Notes
EPA 6010B	Arsenic	5.39	1	1	mg/Kg	
EPA 6010B	Barium	119	1	1	mg/Kg	
EPA 6010B	Cadmium	0.72	1	0.5	mg/Kg	
EPA 6010B	Chromium	24.4	1	1	mg/Kg	
EPA 6010B	Cobalt	12.4	1	0.5	mg/Kg	
EPA 6010B	Copper	16.4	1	1	mg/Kg	
EPA 6010B	Lead	11.4	1	1	mg/Kg	
	Nickel	17.7	1	1.5	mg/Kg	
	INICKEI		•			
EPA 6010B			1	0.5	ma/Ka	
	Vanadium Zinc	49.4 48.2	1 1	0.5 5	mg/Kg mg/Kg	

Matrix:			t: ENGEC) Inc.		Col	lector: Client			
	06/19/2019	Site								
Sample #:	<u>416458-004</u>	Client Sample	#: 3-pt cor	nposite SY SS	5-01-03	Sample	е Туре:			
Analyte			Result	DF	RDL	Units	Prepared	Analyzed	l By	Notes
Method: EPA 6	010B NELAC	Prep Method: E	PA 3050B					QCBatchl	D: Q(C1203542
Antimony			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic			6.91	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium			129	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium			ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium			11.1	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium			18.0	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt			10.8	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper			26.9	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead			29.0	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum			ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel			19.0	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver			ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium			35.4	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc			308	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 74	471A NELAC	Prep Method: E	PA 7471A					QCBatchl	D: Q	C1203554
Mercury		-	ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 80	015M	Prep Method: E	PA 3580A					QCBatchl	D: Q	C1203546
TPH (C13 to C	28) (SGT)		ND	1	10	mg/Kg		06/26/19	ΤW	
TPH (C29 to C	240) (SGT)		ND	1	20	mg/Kg		06/26/19	ΤW	
TPH (C6 to C1	2) (SGT)		ND	1	10	mg/Kg		06/26/19	TW	
<u>Surrogate</u>			<u>%</u>	<u>Recovery</u>	Limits	<u>Notes</u>				
Triacontane	(SUR)			101	50-150					

Matrix:			: ENGEC) Inc.		Col	lector: Client			
Sampled:	06/19/2019	Site):							
Sample #:	<u>416458-008</u>	Client Sample #	: 3-pt cor	nposite SY SS	6-04-06	Sample	туре:			
Analyte			Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA 6	010B NELAC	Prep Method: E	PA 3050B					QCBatchl	D: Q(C1203542
Antimony			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic			4.26	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium			78.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium			ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium			0.88	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium			11.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt			6.95	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper			11.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead			13.6	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum			ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel			11.7	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver			ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium			ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium			24.6	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc			93.2	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 74	471A NELAC	Prep Method: E	PA 7471A					QCBatchl	D: Q	C1203554
Mercury			ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 80	015M	Prep Method: E	PA 3580A					QCBatchl	D: Q	C1203546
TPH (C13 to C	28) (SGT)		185	5	50	mg/Kg		06/26/19	ΤW	
TPH (C29 to C	C 40) (SGT)		116	5	100	mg/Kg		06/26/19	TW	
TPH (C6 to C1	2) (SGT)		ND	5	50	mg/Kg		06/26/19	TW	
<u>Surrogate</u>			%	<u>Recovery</u>	<u>Limits</u>	<u>Notes</u>				
Triacontane	(SUR)			148	50-150					

Samplet: 00/1702/0107.50 State: Samplet: Statestad02 Clent Samplet: Sample: Samplet: Samplet:	Matrix: Solid	Client: ENGE	EO Inc.		Co	llector: Client			
Analyte Robuilt DF RDL Units Prepared Analyzed By Notes OCCRMID: CC120352 Antimory Antimory ND 1 mgKg 062219 8022019 RLN Antimory Antimory 1 mgKg 062219 8022019 RLN Antimory Analyte 4.10 1 mgKg 062219 8022019 RLN Barlum 4.73 1 mgKg 0622119 802219 RLN Cadmium 6.22 1 1 mgKg 062219 802219 RLN Copper 8.48 1 mgKg 062219 062219 RLN Copper 8.48 1 mgKg 062219 062219 RLN Mokderum ND 1 3 mgKg 062219 062219 RLN Sterein ND 1 3 mgKg 062219 RLN Lead 1.45 1 mgKg 062219 RLN	Sampled: 06/19/2019 07:50	Site:							
Method: EPA 60108 Prep Method: EPA 30008 OCC282542 Antimony Atlinony ND 1 mgKq 0622519 0622619 KLN Aranic 4.10 1 mgKq 0622519 0622619 KLN Berlum A7.9 1 mgKq 062519 0622619 KLN Construct 5.5 mgKq 062519 0622619 KLN Corbait 5.56 1 1 mgKq 0622519 0022019 KLN Copper 6.48 1 1 mgKq 0022519 0022019 KLN Load 1.45 1 mgKq 0022019 KLN McValue Mokol 1.65 1.5 mgKq 0022019 KLN McValue Stever ND 1 3 mgKq 002219 McKN Stever ND 1 0.5 mgKq 002219 KLN Stever ND 1 0.5 </td <td>Sample #: 416458-009</td> <td>Client Sample #: E-AS</td> <td>T SS-01@0</td> <td></td> <td>Sampl</td> <td>е Туре:</td> <td></td> <td></td> <td></td>	Sample #: 416458-009	Client Sample #: E-AS	T SS-01@0		Sampl	е Туре:			
Arternic ND 1 3 mpKg 0622/19 0626/19 RLN Barlum 47.9 1 1 mpKg 0626/19 RLN Barlum ND 1.5 mpKg 0626/19 RC20/19 RLN Cardmium 0.52 1 0.5 mpKg 0626/19 RLN Cardmium 0.52 1 0.5 mpKg 0626/19 RLN Cobati 5.56 1 0.5 mpKg 0626/19 RLN Cobati 5.66 1 5 mpKg 0626/19 RLN Cobati 5.66 1 5 mpKg 0626/19 RLN Ladd 1 mpKg 0626/19 RLN RLN RLN Molydelnum ND 1 mpKg 0626/19 RLN RLN Silver ND 1 0.5 mpKg 0626/19 RLN Metod EPA 7471A Collocation 0.622119				RDL	Units	Prepared			
Arsonic 4.10 1 mp/Kg 0.022/19 0.020/19 KLN Barlum ND 1 5 mp/Kg 0.025/19 0.020/19 KLN Cadmium 0.52 1 5 mp/Kg 0.025/19 0.020/19 KLN Cobat 5.56 1 0.5 mp/Kg 0.022/19 0.020/19 KLN Cobat 5.56 1 0.5 mp/Kg 0.022/19 0.020/19 KLN Cobat 5.56 1 1 mp/Kg 0.022/19 0.020/19 KLN Laad 1.4.5 1 1 mp/Kg 0.022/19 0.020/19 KLN Silver ND 1 0.5 mp/Kg 0.022/19 0.020/19 KLN Silver ND 1 3 mp/Kg 0.022/19 0.020/19 KLN Silver ND 1 0.14 mp/Kg 0.022/19 0.020/19 KLN Tanalum ND 1									C1203542
Barlum 47.8 1 mp/Kg 0025/19 0626/19 KLN Beryllum ND 1 0.5 mg/Kg 0625/19 0626/19 KLN Cabranium 0.52 1 0.5 mg/Kg 0625/19 0626/19 KLN Cobat 5.56 1 mg/Kg 0622/19	•								
Berglum ND 1 0.5 mpKg 0025/19 002019 KLN Cadmium 9.23 1 1 mpKg 0025/19 002019 KLN Chramum 9.23 1 1 mpKg 0025/19 002019 KLN Cobati 5.5 1.5 mpKg 0025/19 0020119 KLN Load 1.4.5 1 mpKg 0025/19 0020119 KLN Mohjdomum ND 1 mpKg 0025/19 0020119 KLN Sidemum ND 1 0.5 mpKg 0022119 0020119 KLN Sidemum ND 1 0.5 mpKg 0022119 0020119 KLN Sidemum ND 1 0.5 mpKg 0022119 KLN Tallum ND 1 0.4 mpKg 0022119 KLN Tallum ND 1 0.4 mpKg 0022119 0022119 KLN									
Caramium 0.52 1 0.5 mg/kg 06/25/19			1	-					
Chomburn 9.23 1 1 mg/kg 66/25/19 60/25/19 70/2 60/25/19 70/2 70/25/36/2 Method: EPA 61016 Prop Method: EPA 7471A mg/kg 6	Beryllium	ND	1	0.5			06/26/19		
Cobait 5.66 1 0.5 mg/kg 66/25/19 07/2 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19			1	0.5					
Copper 8.48 1 mg/kg 66/25/19 06/25/19 KLN Lead 14.5 1 mg/kg 06/25/19 06/25/19 06/25/19 KLN Mickol 16.6 1 1 mg/kg 06/25/19 <t< td=""><td></td><td></td><td>1</td><td>-</td><td>0 0</td><td></td><td></td><td></td><td></td></t<>			1	-	0 0				
Lead 14.5 1 mg/kg 06/26/19 06/26/19 06/26/19 06/26/19 Molydacum ND 1 mg/kg 06/25/19 06/26/19<			•						
Molyadanum ND 1 1 mg/Kg 06/26/19 07/20 Method: EPA 171/A 0 0 1				1					
Nickel 16.6 1 1.5 mg/Kq 06/22/19			1	1					
Selenium ND 1 3 mg/kg 0025119 0622119 KLN Silver ND 1 0.5 mg/kg 0022119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 0622119 07 Method: EPA APTA Method: EPA APTA 025119 07 025119 07 025119 07 025119 07 025119 07 025119 07 025119 07 025119 07 025119 07 025119 07<	,		1	-					
Silver ND 1 0.5 mg/Kg 06/25/19 06/26/19 KLN Thallum ND 1 3 mg/Kg 06/25/19 06/26/19 KLN Zinc 33.6 1 5 mg/Kg 06/25/19 06/26/19 KLN Method: EPA 7471A Method: EPA 7471A 00/26/19 KLN Method: EPA 7471A Prep Method: EPA 7471A 00/26/19 KLN Method: EPA 3550A 0 06/26/19 KLN 07/2036/6 TPH (G15 0 C28) (SGT) ND 50 f000 mg/Kg 06/26/19 TW Surgade 2/260 50 fmg/Kg 06/26/19 TW TW TH (G1 to C28) (SGT) ND 50 f000 mg/Kg 06/26/19 TW Surgade 2/260 cocory Lintlik Notes Notes 06/26/19 ZZ 1.1.2-Tetholocothane ND 1 5 ug/Kg 06/25/19 ZZ	Nickel	16.6	1			06/25/19		KLN	
Thallium ND 1 3 mg/Kg 06/25/19 06/26/19 KLN Variadrum 33.6 1 5 mg/Kg 06/25/19 06/26/19 KLN Method: EPA 7471A Method: EPA 7471A 02.64119 KLN Method: EPA 30104 0.14 mg/Kg 06/25/19 06/25/19 JP Method: EPA 3015M Prep Method: EPA 3050A 02.64101D: 02.1203564 TPH (C3 to C28) (SGT) 2200 50 500 mg/Kg 06/26/19 TW TPH (C3 to C28) (SGT) ND 50 1000 mg/Kg 06/26/19 TW Surgate ½: Recevery Linits Notes Tracontare (SUR) QCEBatchiD: QC1203531 1.1.1:7:chtohroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.1:7:chtohroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.1:7:chtohroethane ND 1 5 ug/Kg 0		ND	1	3					
Vandum 19.9 1 0.5 mg/Kg 06/25/19 06/25/19 06/26/19 KLN Method: EPA 7471A CCBatchilo: CCCBatchilo: CCCBa			1						
Zinc 33.6 1 5 mg/kg 08/26/19 KLN Method: EPA 7471A Prep Method: FPA 7471A CCBatchID: OC1203554 Method: EPA 8015M Prep Method: EPA 7471A mg/kg 06/25/19 06/25/19 JP Method: EPA 8015M Prep Method: EPA 3586A OCBatchID: OC1203546 TPH (C3 to C28) (SGT) ND 50 500 mg/kg 06/26/19 TW Surrogate Sk.Recovery Linits Notes Notes Notes Method: EPA 8260B MetAC Prep Method: EPA 5030 OCCBatchID: OC1203531 11,1.17/fichtorothane ND 1 5 ug/kg 06/25/19 ZZ 11,1.2.Tetrachloroethane ND 1 5 ug/kg 06/25/19 ZZ 11,2.2.Tetrachloroethane ND 1 5 ug/kg 06/25/19 ZZ 11,1.2.Tetrachloroethane ND 1 5 ug/kg 06/25/19									
Method: EPA 7471A MELAC Prep Method: EPA 7471A CCCBatchID: CC1203554 Mercury ND 1 0.14 mg/Kg 06/25/19 0/25/19 JP Method: EPA 8015M Prep Method: EPA 3350A CCCBatchID: CC1203546 TPH (C13 to C28 (SGT) ND 50 1000 mg/Kg 06/26/19 TW Surgagate X2.Recovery Linits Notes 02/26/19 TW Surgagate X2.Recovery Linits Notes 06/26/19 ZZ 1.1.12-Tetrahirorethane ND 1 5 ug/Kg 06/22/19 ZZ 1.1.2-Tetrahirorethane ND 1 5 ug/Kg 06/22/19 ZZ 1.1.2-Tetrahirorethane ND 1 5 ug/Kg 06/22/19 ZZ 1.1.2-Tetrahirorethane ND 1 5 ug/Kg 06/22/19 ZZ 1.1.2-Trethoroethane ND 1 5 ug/Kg 06/22/19 ZZ	Vanadium	19.9	1	0.5					
Mercury ND 1 0.14 mg/kg 06/25/19 06/25/19 JP Method: EPA 8015M Prep Method: EPA 3580A OCEatchID: QCEatchID: QCEatc	Zinc	33.6	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 8015M Prep Method: EPA 3580A OCBatchID: OCCBatchID: OCBatchID: OCBatchID				<u> </u>		00/05/40			C1203554
TPH (C13 to C28) (SGT) 2200 50 500 mg/Kg 06/26/19 TW TPH (C29 to C 40) (SGT) ND 50 1000 mg/Kg 06/26/19 TW TPH (C28 to C12) (SGT) ND 50 500 mg/Kg 06/26/19 TW Surrozate % Recovery Limits Notes 06/26/19 TW Triacontane (SUR) 98 50-150 06/25/19 ZZ 1.1.1.2 Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2.2 Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2 Tichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2 Tichloroptheme				0.14	mg/Kg	06/25/19			
TPH (C29 to C 40) (SGT) ND 50 1000 mg/Kg 06/26/19 TW Surrogada 36 Recovery Limits Notes 06/26/19 TW Surrogada 36 Recovery Limits Notes 06/26/19 TW Method: EPA 22008 Prep Method: EPA 32008 06/25/19 ZZ 1,1,1-Trichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Tretrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-3-Trichoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,		1					-		C1203546
TPH (C6 to C12) (SGT) ND 50 500 mg/Kg 06/26/19 TW Surrogate Triacontane (SUR) 38 50-150 Notes Notes Notes Method: EPA 8208 Prep Method: EPA 6303 OCBatchID: QCBatchID: QCBatchID:<	. ,. ,								
Surgate Triacontane (SUR) 25 Recovery 98 Limits 50-150 Notes Method: EPA 8280B MELAC Prep Method: EPA 5030 QCBatchID: QC1203531 11,1-1: Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 11,12-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 11,12-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane <	,,,,,								
Triacontane (SUR) 98 50-150 Method: EPA 82608 Prep Method: EPA 82608 QCBatchID: QCC1203531 1,1,1-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroptopene ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-3-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-4-Trinhoroptopane ND 1 5 <td>TPH (C6 to C12) (SGT)</td> <td>ND</td> <td>50</td> <td>500</td> <td>mg/Kg</td> <td></td> <td>06/26/19</td> <td>ΤW</td> <td></td>	TPH (C6 to C12) (SGT)	ND	50	500	mg/Kg		06/26/19	ΤW	
Method: EPA 8260B Prep Method: EPA 5030 QCBatchID: QC1203531 1.1.1.2-Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2-Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1.Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1.2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1.2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ <t< td=""><td><u>Surrogate</u></td><td>6</td><td><u>% Recovery</u></td><td>Limits</td><td><u>Notes</u></td><td></td><td></td><td></td><td></td></t<>	<u>Surrogate</u>	6	<u>% Recovery</u>	Limits	<u>Notes</u>				
1,1,1,2-Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,1-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorophopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trinethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trinethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ	Triacontane (SUR)		98	50-150					
1,1,1,2-Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,1-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trinethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ	Method: EPA 8260B NELAC	Prep Method: EPA 5030)				QCBatch	nID: Q	C1203531
1,1,1-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloropthane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloropthane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloropthane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trinhotropthanene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-1Dichorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ </td <td>1,1,1,2-Tetrachloroethane</td> <td></td> <td></td> <td>5</td> <td>ug/Kg</td> <td></td> <td>06/25/19</td> <td></td> <td></td>	1,1,1,2-Tetrachloroethane			5	ug/Kg		06/25/19		
1,1,2,2-Tetrachloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-STrichloropopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichloropopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptnane ND 1 5 ug/Kg 06/25/19 ZZ 1	1,1,1-Trichloroethane	ND	1	5			06/25/19	ZZ	
1,1,2-Trichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1,2-Trichlorotifluoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethene ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trinelropopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropopane ND 1 5 ug/Kg 06/25/19 ZZ <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td>1</td> <td>5</td> <td></td> <td></td> <td>06/25/19</td> <td>ZZ</td> <td></td>	1,1,2,2-Tetrachloroethane	ND	1	5			06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroptopene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorophane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ	1,1,2-Trichloroethane	ND	1	5			06/25/19	ZZ	
1,1-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroethene ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloroptopene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ <td>1,1,2-Trichlorotrifluoroethane</td> <td>ND</td> <td>1</td> <td>5</td> <td></td> <td></td> <td>06/25/19</td> <td>ZZ</td> <td></td>	1,1,2-Trichlorotrifluoroethane	ND	1	5			06/25/19	ZZ	
1,1-Dichloropene ND 1 5 ug/Kg 06/25/19 ZZ 1,1-Dichloropropene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chioropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chioropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropenzene ND 1 5 ug/Kg 06/25/19 <td< td=""><td></td><td>ND</td><td>1</td><td>5</td><td></td><td></td><td>06/25/19</td><td>ZZ</td><td></td></td<>		ND	1	5			06/25/19	ZZ	
1,1-Dichloropropene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromoethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropthane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropthane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ			1	5					
1,2,3-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,3-Trichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromoethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 <t< td=""><td>1,1-Dichloropropene</td><td></td><td>1</td><td>5</td><td></td><td></td><td>06/25/19</td><td>ZZ</td><td></td></t<>	1,1-Dichloropropene		1	5			06/25/19	ZZ	
1,2,3-Trichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-schloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloropenzene ND 1 5 ug/Kg 06/25/19<		ND	1	5					
1,2,4-Trichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2,4-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ	1,2,3-Trichloropropane		1	5			06/25/19	ZZ	
1,2,4-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromo-4-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloropenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloroppane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ	1,2,4-Trichlorobenzene		1	5				ZZ	
1,2-Dibromo-3-chloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dibromoethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloroptopane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloroptopane ND 1 100 ug/Kg 06/25/19 ZZ <td></td> <td>ND</td> <td>1</td> <td>5</td> <td></td> <td></td> <td>06/25/19</td> <td></td> <td></td>		ND	1	5			06/25/19		
1,2-Dibromoethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-5-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 100 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 5 ug/Kg 06/25/19 ZZ		ND	1						
1,2-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3,5-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 100 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 5 ug/Kg 06/25/19 ZZ <		ND	1	5					
1,2-Dichloroethane ND 1 5 ug/Kg 06/25/19 ZZ 1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3,5-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 100 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ	1,2-Dichlorobenzene	ND	1	5			06/25/19	ZZ	
1,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3,5-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 100 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 5 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ		ND	1	5			06/25/19	ZZ	
1,3,5-Trimethylbenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 100 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ		ND	1						
1,3-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ			1						
1,3-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 1,4-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Spropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ	-								
1,4-Dichlorobenzene ND 1 5 ug/Kg 06/25/19 ZZ 2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ									
2,2-Dichloropropane ND 1 5 ug/Kg 06/25/19 ZZ 2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ									
2-Butanone (MEK) ND 1 100 ug/Kg 06/25/19 ZZ 2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ			1						
2-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ									
4-Chlorotoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ									
4-Isopropyltoluene ND 1 5 ug/Kg 06/25/19 ZZ 4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ									
4-Methyl-2-pentanone (MIBK) ND 1 5 ug/Kg 06/25/19 ZZ Acetone ND 1 100 ug/Kg 06/25/19 ZZ		.10							
Acetone ND 1 100 ug/Kg 06/25/19 ZZ		ND	1	5	uu/nu			~~	
	4-IVIELTIVI-Z-DENTANONE (MIBK)								
		ND	1	5	ug/Kg		06/25/19	ZZ	

	ient: ENGEO Ir	nc.		Col	lector: Client			
Sampled: 06/19/2019 07:50	Site:				-			
Sample #: 416458-009 Client Samp	le #: E-AST SS	5-01@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	7.0	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% Re</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)	9	03	70-145					
4-Bromofluorobenzene (SUR)	1:	20	70-145					
Dibromofluoromethane (SUR)	10	02	70-145					
Toluene-d8 (SUR)	10	05	70-145					

Matrix: Solid	Clier	nt: ENGE	O Inc.		Col	lector: Client			
Sampled: 06/19/2019 08:10	Sit								
Sample #: 416458-012	Client Sample	#: E-AST	SS-02@0		Sample	Туре:			
Analyte		Resul		RDL	Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: E								C1203542
Antimony		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic		2.92	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium		69.9	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium		0.56	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium		11.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt		6.49	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper		9.57	1		mg/Kg	06/25/19	06/26/19	KLN	
Lead		7.26	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum		ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel		11.4	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium		24.9	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc		36.1	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: E			0.44	ma///	06/05/40			C1203554
Mercury		ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: E								C1203546
TPH (C13 to C28) (SGT)		350	20	200	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)		ND	20	400	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)		ND	20	200	mg/Kg		06/26/19	TW	
<u>Surrogate</u>		<u>%</u>	<u>6 Recovery</u>	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			150	50-150					
Method: EPA 8260B NELAC	Prep Method: E	EPA 5030					QCBatch	ID: Q	C1203531
1,1,1,2-Tetrachloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trimethylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromo-3-chloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromoethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3,5-Trimethylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
				5			06/25/19	ZZ	
1,4-Dichlorobenzene		ND	1		ug/Kg				
1,4-Dichlorobenzene 2,2-Dichloropropane		ND ND	1		ug/Kg ug/Kg		06/25/19	ZZ	
				5			06/25/19 06/25/19		
2,2-Dichloropropane		ND	1	5	ug/Kg ug/Kg			ZZ ZZ	
2,2-Dichloropropane 2-Butanone (MEK)		ND ND	1 1	5 5 100	ug/Kg ug/Kg ug/Kg		06/25/19	ZZ	
2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene		ND ND ND	1 1 1	5 5 100 5	ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ ZZ	
2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene		ND ND ND ND	1 1 1 1	5 5 100 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ	
2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene		ND ND ND ND ND	1 1 1 1 1	5 5 100 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ	
2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)		ND ND ND ND ND ND	1 1 1 1 1 1 1 1	5 5 100 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ	thalov

	nt: ENGEO I	nc.		Col	llector: Client			
Sampled: 06/19/2019 08:10 Sit					_			
Sample #: 416458-012 Client Sample	#: E-AST S	S-02@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	5.3	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% R</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		94	70-145					
4-Bromofluorobenzene (SUR)	1	131	70-145					
Dibromofluoromethane (SUR)	1	105	70-145					
Toluene-d8 (SUR)		98	70-145					

Matrix: Solid	Client: ENGE	O Inc.		Co	ollector: Client			
Sampled: 06/19/2019 08:20	Site:							
Sample #: <u>416458-015</u>	Client Sample #: E-AST	SS-03@0		Sampl	le Type:			
Analyte	Result		RDL	Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: EPA 30508	3				QCBatch	ID: QC	C1203542
Antimony	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic	2.32	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium	59.1	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium	0.62	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium	10.5	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt	7.62	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper	10.1	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead	3.22	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum	ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	10.2	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium	24.3	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	29.8	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA 7471/							C1203554
Mercury	ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA 3580A	4				QCBatch	ID: QC	C1203546
TPH (C13 to C28) (SGT)	ND	1	10	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)	ND	1	20	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg		06/26/19	TW	
<u>Surrogate</u>	2	<u>6 Recovery</u>	<u>Limits</u>	Notes	2			
Triacontane (SUR)	_	185	50-150	s		high but samp	ole is NE)
Method: EPA 8260B NELAC	Prep Method: EPA 5030				-	QCBatch		C1203531
1,1,1,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene		1	•					
	ND		5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene	ND ND	1		ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,2,3-Trichlorobenzene		1 1 1	5					
	ND		5 5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene	ND ND	1	5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ND ND ND	1 1	5 5 5 5	ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND ND ND ND	1 1 1	5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND ND ND	1 1 1 1	5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND ND ND ND ND	1 1 1 1 1	5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND ND ND ND ND ND	1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 	ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 	ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropenpane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 4-Chlorotoluene 4-Isopropyltoluene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ	

				_				
	ent: ENGEO Ir	nc.		Col	lector: Client			
	Site:				-			
Sample #: <u>416458-015</u> Client Samp	le #: E-AST SS	5-03@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% Re</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)	g	95	70-145					
4-Bromofluorobenzene (SUR)	1	11	70-145					
Dibromofluoromethane (SUR)	1	04	70-145					
Toluene-d8 (SUR)	1	05	70-145					

Matrix: Solid	Client: ENGEC) Inc.		Co	llector: Client			
Sampled: 06/19/2019 11:04	Site:							
Sample #: <u>416458-018</u>	Client Sample #: F-AST	SS-01@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: EPA 3050B					QCBatch	ID: QC	21203542
Antimony	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic	3.70	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium	113	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium	0.70	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium	24.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt	12.0	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper	17.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead	15.9	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum	ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	15.8	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium Zina	50.1	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	50.7	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA 7471A		• • •		00/07/17			21203554
Mercury	ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA 3580A						ID: QC	21203546
TPH (C13 to C28) (SGT)	ND	1	10	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)	ND	1	20	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg		06/26/19	TW	
<u>Surrogate</u>	<u>%</u>	<u>Recovery</u>	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)		202	50-150	S	Surrogate	high but sam	ole is ND)
Method: EPA 8260B NELAC	Prep Method: EPA 5030					QCBatch	ID: QC	21203531
1,1,1,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trimethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromo-3-chloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromoethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3,5-Trimethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,4-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
2,2-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
2-Butanone (MEK)	ND	1	100	ug/Kg		06/25/19	ZZ	
2-Chlorotoluene						06/25/19	ZZ	
	ND	1	5	ug/Kg				
4-Chlorotoluene	ND	1	5	ug/Kg		06/25/19	ZZ	
4-Isopropyltoluene	ND ND	1 1	5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	ND ND ND	1 1 1	5 5 5	ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ	
4-Isopropyltoluene	ND ND	1 1	5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	

	nt: ENGEO I	nc.		Col	llector: Client			
	ite:							
Sample #: 416458-018 Client Sample	#: F-AST SS	6-01@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>		ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		07	70-145					
4-Bromofluorobenzene (SUR)	1	12	70-145					
Dibromofluoromethane (SUR)	1	14	70-145					
Toluene-d8 (SUR)	1	02	70-145					

Matrix: Solid	Client: E	INGEC) Inc.		Co	llector: Client			
Sampled: 06/19/2019 11:37	Site:								
Sample #: 416458-021	Client Sample #: F	-AST	SS-02@0		Sampl	е Туре:			
Analyte		esult	DF	RDL	Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: EPA								C1203542
Antimony		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic	6	5.34	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium		115	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium	C).64	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium	2	21.0	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt	1	0.1	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper		3.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead	8	8.85	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum		ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	1	4.2	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium	4	3.8	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	4	1.2	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA	7471A					QCBatch	ID: Q	C1203554
Mercury		ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA	3580A					QCBatch	ID: Q	C1203546
TPH (C13 to C28) (SGT)		ND	1	10	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)		ND	1	20	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)		ND	1	10	mg/Kg		06/26/19	TW	
Surrogate		%	<u>Recovery</u>	Limits	Notes				
Triacontane (SUR)		<u>/ •</u>	146	<u> </u>					
Method: EPA 8260B NELAC		5000							C1203531
	Prep Method: EPA		1	5	ug/Kg		QCBatch		01200001
1,1,1,2-Tetrachloroethane	Prep Method: EPA	ND	1	5	ug/Kg		06/25/19	ZZ	01200001
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	Prep Method: EPA	ND ND	1	5	ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Prep Method: EPA	ND ND ND	1 1	5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Prep Method: EPA	ND ND ND ND	1 1 1	5 5 5	ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane		ND ND ND ND ND	1 1 1 1 1	5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane		ND ND ND ND ND ND	1 1 1 1 1	5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloroethene		ND ND ND ND ND ND ND	1 1 1 1 1 1 1	5 5 	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene		ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichloropthane		ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,4-Trichlorobenzene		ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichlorotrifluoroethane1,1,2-Trichlorotrifluoroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene		ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropthene1,2,3-Trichloropthene1,2,3-Trichloropthene1,2,4-Trichloropthene1,2,4-Trichloropthene1,2,4-Trichloropthene1,2,4-Trichloropthene1,2-Dibromo-3-chloropropane		ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane		ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropane1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dibromoethane1,2-Dibromoethane1,2-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropene1,2,3-Trichloropropane1,2,4-Trinchlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trinchlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropena1,2-Dichloropena1,2-Dichloropena1,2-Dichloropena1,2-Dichloropena1,2-Dichloropena		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropropane1,2-Dichloropropane1,3,5-Trimethylbenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1.Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropenzene1,2-Dichloropenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropenane1,3-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichlorobenzene1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trinethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,4-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropane1,2,4-Trinchlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane1,2-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane1,4-Dichloropropane1,4-Dichloropropane1,4-Dichloropropane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropene1,2,3-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropenane1,2-Dichloropenane1,3-Dichloropropane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,3-Dichloropenane1,4-Dichloropenane2,2-Dichloropenane2,Butanone (MEK)		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2-Tetrachloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloropropene1,2,3-Trichloropropane1,2,4-Trinchlorobenzene1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichlorobenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-Dichloropropane3,3-		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene1,2,3-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dichlorobenzene1,2-Dichlorobenzene1,2-Dichloropenane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,5-Trimethylbenzene3,5-Trimethylbenzene3,5-Trimethylbenzene3,5-Trimethylbenzene3,5-Trimethylbenzene3,5-Trimethylbenzene3,5-Trimethylbenzen		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane<		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichloropropane1,2,4-Trinethylbenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichlorobenzene2,2-Dichloropropane2,2-Dichloropropane2,4-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,4-Chlorotoluene4-Chlorotoluene4-Methyl-2-pentanone (MIBK)		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2,2-Trichloroethane1,1,2-Trichloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroethane1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2-Dibromo-3-chloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dichlorobenzene1,2-Dichloropropane1,3,5-Trimethylbenzene1,3-Dichloropropane1,3-Dichloropropane1,4-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,2-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane2,3-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane3,4-Dichloropropane<		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	

	t: ENGEO	Inc.		Col	lector: Client			
Sampled: 06/19/2019 11:37 Sit					-			
Sample #: 416458-021 Client Sample	#: F-AST S	S-02@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% R</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		97	70-145					
4-Bromofluorobenzene (SUR)	-	107	70-145					
Dibromofluoromethane (SUR)	1	105	70-145					
Toluene-d8 (SUR)	-	101	70-145					

Matrix: Solid	Client: ENG	EO Inc.		Co	ollector: Client			
Sampled: 06/19/2019 12:38	Site:							
Sample #: 416458-024	Client Sample #: F-AS	T SS-03@0		Samp	le Type:			
Analyte	Resu	lt DF	RDL	Units	Prepared	Analyze	d By	Notes
Method: EPA 6010B NELAC	Prep Method: EPA 3050	B				QCBatch	ID: Q	C1203542
Antimony	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic	5.29	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium	124	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium	0.78	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium	26.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt	11.8	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper	17.6	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead	9.77	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum	ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	15.7	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver	ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium	ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium	51.9	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	52.1	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA 7471	A						C1203554
Mercury	ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA 3580)A				QCBatch	ID: Q	C1203546
TPH (C13 to C28) (SGT)	18.0	1	10	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)	ND	1	20	mg/Kg		06/26/19	тw	
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg		06/26/19	TW	
		<u>% Recovery</u>	Limito		.			
<u>Surrogate</u>	2	213	<u>Limits</u>	Notes	_	receivery still	high off	r ro outro
Triacontane (SUR)		-	50-150	S	Surrogale	recovery still		
Method: EPA 8260B NELAC	Prep Method: EPA 5030							C1203531
1,1,1,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trimethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromo-3-chloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromoethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3,5-Trimethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
1,4-Dichlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
2,2-Dichloropropane	ND	1	5	ug/Kg		06/25/19	ZZ	
2-Butanone (MEK)	ND	1	100	ug/Kg		06/25/19	ZZ	
2-Chlorotoluene	ND	1	5	ug/Kg		06/25/19	ZZ	
4-Chlorotoluene	ND	1		ug/Kg		06/25/19	ZZ	
4-Isopropyltoluene	ND	1	5	ug/Kg		06/25/19	ZZ	
4-Methyl-2-pentanone (MIBK)	ND		0	~9,9				
	חוא	1	5	ua/Ka		06/25/19	77	
Acetone	ND ND	1 1	5 100	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ 77	
Acetone	ND ND	1 1	5 100	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ	thalny

	nt: ENGEO I	nc.		Col	lector: Client			
	te:				-			
Sample #: 416458-024 Client Sample	#: F-AST SS	8-03@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg		06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% R</u>	ecovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)	:	97	70-145					
4-Bromofluorobenzene (SUR)	1	10	70-145					
Dibromofluoromethane (SUR)		03	70-145					
Toluene-d8 (SUR)	1	07	70-145					

Matrix: Solid	Client: E	NGE	D Inc.		Co	ollector: Client			
Sampled: 06/19/2019 08:54	Site:								
Sample #: <u>416458-027</u>	Client Sample #: E	-AST	SS-04@0		Sampl	е Туре:			
Analyte		sult		RDL	Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: EPA								C1203542
Antimony		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic		.56	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium		8.7	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium		.78	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium		3.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt		.96	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper		0.9	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead		6.8	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum		ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	1	2.1	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium	2	6.4	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	5	1.0	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA			0.44		00/05/40			C1203554
Mercury		ND	1	0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA								C1203546
TPH (C13 to C28) (SGT)		1.1	5	50	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)		ND	5	100	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)		ND	5	50	mg/Kg		06/26/19	TW	
<u>Surrogate</u>		%	Recovery	<u>Limits</u>	<u>Notes</u>	1			
Triacontane (SUR)			130	50-150					
Method: EPA 8260B NELAC	Prep Method: EPA	5030					QCBatch	ID: Q	C1203531
		-							
1,1,1,2-Tetrachloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane		ND ND	1 1	5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1-Trichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		ND ND	1 1	5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		ND ND ND ND	1 1 1	5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane		ND ND ND	1 1 1 1	5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloroethene		ND ND ND ND ND	1 1 1 1 1 1	5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane		ND ND ND ND ND ND	1 1 1 1 1 1	5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene		ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene		ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichloropenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene		ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane		ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 		ND ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane		ND ND ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3,5-Trimethylbenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichloropthene 1,2,3-Trichloropthene 1,2,4-Trichloropthene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropthene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropthene 1,2-Dichloropthene 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroptopene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloroptopane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroptopane 1,2-Dichloroptopane 1,3,5-Trimethylbenzene 1,3-Dichloroptopane 1,3-Dichloroptopane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropene 1,2,3-Trichloropropane 1,2,4-Trinchlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2-A-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropenane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropenane 1,3-Dichloropenane 1,4-Dichloropenane 2,2-Dichloropenane		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK)		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,4-Dichloropthane 2,2-Dichloropthane 2-Butanone (MEK) 2-Chlorotoluene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,2-Dichloropethane 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,4-Dichloropenzene 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19 06/25/19	ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-5-Trimethylbenzene 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,4-Dichloropthane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 4-Dichloropropane 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloropthene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trinethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,3-5-Trimethylbenzene 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,3-Dichloropthane 1,4-Dichloropthane 2-Butanone (MEK) 2-Chlorotoluene 4-Chlorotoluene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	thalov

Matrix: Solid		ENGEO	Inc.		Co	llector: Client			
Sampled: 06/19/2019 08:54	Site:					_			
Sample #: <u>416458-027</u> C	lient Sample #:	E-AST S	S-04@0		Sample	е Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride		ND	1	5	ug/Kg		06/25/19	ZŹ	
Benzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform		ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride		ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform		ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane		ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene		ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene		ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene		ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene		ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride		5.0	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)		ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene		ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene		ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene		ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene		ND	1	5	ug/Kg	-	06/25/19	ZZ	
trans-1,2-dichloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene		ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene		ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane		ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride		ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)		ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>		<u>% F</u>	Recovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)			97	70-145					
4-Bromofluorobenzene (SUR)			115	70-145					
Dibromofluoromethane (SUR)			105	70-145					
Toluene-d8 (SUR)			103	70-145					

Matrix: Solid	Client: ENC	GEO Inc.		C	ollector: Client			
Sampled: 06/19/2019 12:50	Site:							
Sample #: <u>416458-030</u>	Client Sample #: F-A	ST SS-04@0		Samp	ole Type:			
Analyte	Res		RDL	. Units	Prepared	Analyze		
Method: EPA 6010B NELAC	Prep Method: EPA 30							C1203542
Antimony	NE		3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic	4.94		1	mg/Kg	06/25/19	06/26/19	KLN	
Barium	124		1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium	NE) 1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium	0.83		0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium	30.5		1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt	12.9		0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper	18.8		1	mg/Kg	06/25/19	06/26/19	KLN	
Lead	9.47		1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum	NE		1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel	18.8	B 1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium	NE) 1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver	NE		0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium	NE		3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium	54.9) 1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc	51.6	3 1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Prep Method: EPA 74		<u> </u>		00/05/40			C1203554
Mercury	NE		0.14	mg/Kg	06/25/19	06/25/19	JP	
Method: EPA 8015M	Prep Method: EPA 358							C1203546
TPH (C13 to C28) (SGT)	NE		10	mg/Kg		06/26/19	TW	
TPH (C29 to C 40) (SGT)	NE		20	mg/Kg		06/26/19	TW	
TPH (C6 to C12) (SGT)	NE) 1	10	mg/Kg		06/26/19	TW	
<u>Surrogate</u>		<u>% Recovery</u>	<u>Limits</u>	Note	<u>s</u>			
Triacontane (SUR)		104	50-150					
Method: EPA 8260B NELAC	Prep Method: EPA 503	30				QCBatch	ID: Q	C1203531
1,1,1,2-Tetrachloroethane	ND		5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene	NE		5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichloropropane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trichlorobenzene	NE		5	ug/Kg		06/25/19	ZZ	
1,2,4-Trimethylbenzene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromo-3-chloropropane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromoethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichlorobenzene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloroethane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloropropane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,3,5-Trimethylbenzene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichlorobenzene	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichloropropane	NE) 1	5	ug/Kg		06/25/19	ZZ	
1,4-Dichlorobenzene	NE		5	ug/Kg		06/25/19	ZZ	
2,2-Dichloropropane	NE		5	ug/Kg		06/25/19	ZZ	
2-Butanone (MEK)	NE		100	ug/Kg		06/25/19	ZZ	
2-Chlorotoluene	NE		5	ug/Kg		06/25/19	ZZ	
4-Chlorotoluene	NE		5	ug/Kg		06/25/19	ZZ	
4-Isopropyltoluene) 1	5	ug/Ka		06/25/19	ZZ	
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK)	NE		5 5	ug/Kg ug/Kg		06/25/19 06/25/19	ZZ ZZ	
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) Acetone) 1	5 5 100	ug/Kg		06/25/19 06/25/19 06/25/19	ZZ	
4-Methyl-2-pentanone (MIBK)	NE NE) 1) 1	5	ug/Kg ug/Kg		06/25/19	ZZ ZZ	thalny

Matrix: Solid	Client: ENGEO In	IC.		Col	lector: Client			
Sampled: 06/19/2019 12:50	Site:				-			
Sample #: <u>416458-030</u> Client	Sample #: F-AST SS	-04@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
<u>Surrogate</u>	<u>% Re</u>	covery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)	ç	8	70-145					
4-Bromofluorobenzene (SUR)	1	08	70-145					
Dibromofluoromethane (SUR)	1	06	70-145					
Toluene-d8 (SUR)	1	12	70-145					

Matrix: Solid		nt: ENGE	O Inc.		Col	llector: Client			
Sampled: 06/19/2019 13:10 Sample #: <u>416458-033</u>	Si Client Sample	ite: #: F-AST	SS-05@0		Sample	е Туре:			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Method: EPA 6010B NELAC	Prep Method:	EPA 3050E	3			-	QCBatchl	D: Q	21203542
Antimony		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Arsenic		5.39	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Barium		119	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Beryllium		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Cadmium		0.72	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Chromium		24.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Cobalt		12.4	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Copper		16.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Lead		11.4	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Molybdenum		ND	1	1	mg/Kg	06/25/19	06/26/19	KLN	
Nickel		17.7	1	1.5	mg/Kg	06/25/19	06/26/19	KLN	
Selenium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Silver		ND	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Thallium		ND	1	3	mg/Kg	06/25/19	06/26/19	KLN	
Vanadium		49.4	1	0.5	mg/Kg	06/25/19	06/26/19	KLN	
Zinc		48.2	1	5	mg/Kg	06/25/19	06/26/19	KLN	
Method: EPA 7471A NELAC	Drop Mathad:		<u> </u>	· · · · · · · ·					21202554
Mercury	Prep Method:	ND	1	0.14	mg/Kg	06/25/19	QCBatchl 06/25/19	JP	51203554
Method: EPA 8015M	Prep Method:			0.14	mg/rtg	00/20/10	QCBatchl		21203546
TPH (C13 to C28) (SGT)	Fiep Method.	23.2	1	10	mg/Kg		06/26/19	TW	51203340
TPH (C29 to C 40) (SGT)		23.2 ND	1	20			06/26/19	TW	
TPH (C6 to C12) (SGT)		ND	1	20 10	mg/Kg mg/Kg		06/26/19	TW	
			•				00/20/10		
<u>Surrogate</u>		<u> </u>	<u>Recovery</u>	<u>Limits</u>	<u>Notes</u>	0			
Triacontane (SUR)			159	50-150	S	Surrogate	recovery high a		
Method: EPA 8260B NELAC	Prep Method:						QCBatchl		21203531
1,1,1,2-Tetrachloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,1-Trichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2,2-Tetrachloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1,2-Trichlorotrifluoroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloroethene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,1-Dichloropropene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,3-Trichloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2,4-Trimethylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromo-3-chloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dibromoethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloroethane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,2-Dichloropropane		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3,5-Trimethylbenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichlorobenzene		ND	1	5	ug/Kg		06/25/19	ZZ	
1,3-Dichloropropane		ND	1	5	ug/Kg ug/Kg		06/25/19	ZZ	
1,4-Dichlorobenzene		ND	1	5	ug/Kg ug/Kg		06/25/19	ZZ	
			1				06/25/19	ZZ	
2,2-Dichloropropane		ND		5	ug/Kg				
2-Butanone (MEK)		ND	1	100	ug/Kg		06/25/19	ZZ	
2-Chlorotoluene		ND	1	5	ug/Kg		06/25/19	_ ZZ	
4-Chlorotoluene		ND	1	5	ug/Kg		06/25/19	ZZ	
4-Isopropyltoluene		ND	1	5	ug/Kg		06/25/19	ZZ	
4-Methyl-2-pentanone (MIBK)		ND	1	5	ug/Kg		06/25/19	ZZ	
Acetone		ND	1	100	ug/Kg		06/25/19	ZZ	

	t: ENGEO	Inc.		Col	llector: Client			
Sampled: 06/19/2019 13:10 Site					-			
Sample #: 416458-033 Client Sample	#: F-AST S	S-05@0		Sample	е Туре:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By	Notes
Allyl Chloride	ND	1	5	ug/Kg	•	06/25/19	ZŹ	
Benzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromochloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromodichloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromoform	ND	1	5	ug/Kg		06/25/19	ZZ	
Bromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Carbon Tetrachloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorobenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Chlorodibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloroform	ND	1	5	ug/Kg		06/25/19	ZZ	
Chloromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,2-Dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
cis-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Dibromomethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Dichlorodifluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Ethylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Hexachlorobutadiene	ND	1	5	ug/Kg		06/25/19	ZZ	
Isopropylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
m and p-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Methylene chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Methyl-t-butyl Ether (MTBE)	ND	1	5	ug/Kg		06/25/19	ZZ	
Naphthalene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
N-propylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
o-Xylene	ND	1	5	ug/Kg		06/25/19	ZZ	
Sec-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Styrene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tert-butylbenzene	ND	1	5	ug/Kg		06/25/19	ZZ	
Tetrachloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Toluene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,2-dichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,3-dichloropropene	ND	1	5	ug/Kg		06/25/19	ZZ	
trans-1,4-dichloro-2-butene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichloroethene	ND	1	5	ug/Kg		06/25/19	ZZ	
Trichlorofluoromethane	ND	1	5	ug/Kg		06/25/19	ZZ	
Vinyl Chloride	ND	1	5	ug/Kg		06/25/19	ZZ	
Xylenes (Total)	ND	1	5	ug/Kg		06/25/19	ZZ	
Surrogate	<u>% F</u>	Recovery	Limits	<u>Notes</u>				
1,2-Dichloroethane-d4 (SUR)		97	70-145					
4-Bromofluorobenzene (SUR)		110	70-145					
Dibromofluoromethane (SUR)		106	70-145					
Toluene-d8 (SUR)		102	70-145					

QCBatchID: QC1203531 Analyst:	Riee	Method:	EPA 8260B		
Matrix: Solid Analyzed:	06/25/2019	Instrument:	VOA-MS (group)		
	BI-	ank Summai	21		
			/ y	1	1
A nali da	Blank	Linita		Natas	
Analyte	Result	Units	RDL	Notes	
QC1203531MB1					
1,1,1,2-Tetrachloroethane	ND	ug/Kg	5		
1,1,1-Trichloroethane	ND	ug/Kg	5		
1,1,2,2-Tetrachloroethane	ND	ug/Kg	5		
1,1,2-Trichloroethane	ND	ug/Kg	5		
1,1,2-Trichlorotrifluoroethane	ND	ug/Kg	5		
1,1-Dichloroethane	ND	ug/Kg	5		
1,1-Dichloroethene	ND	ug/Kg	5		
1,1-Dichloropropene	ND	ug/Kg	5		
1,2,3-Trichlorobenzene	ND	ug/Kg	5		
1,2,3-Trichloropropane	ND	ug/Kg	5		
1,2,4-Trichlorobenzene	ND	ug/Kg	5		
1,2,4-Trimethylbenzene	ND	ug/Kg	5		
1,2-Dibromo-3-chloropropane	ND	ug/Kg	5		
1,2-Dibromoethane	ND	ug/Kg	5		
1,2-Dichlorobenzene	ND	ug/Kg	5		
	ND		5		
1,2-Dichloroethane		ug/Kg			
1,2-Dichloropropane	ND	ug/Kg	5		
1,3,5-Trimethylbenzene	ND	ug/Kg	5		
1,3-Dichlorobenzene	ND	ug/Kg	5		
1,3-Dichloropropane	ND	ug/Kg	5		
1,4-Dichlorobenzene	ND	ug/Kg	5		
2,2-Dichloropropane	ND	ug/Kg	5		
2-Butanone (MEK)	ND	ug/Kg	100		
2-Chlorotoluene	ND	ug/Kg	5		
4-Chlorotoluene	ND	ug/Kg	5		
4-Isopropyltoluene	ND	ug/Kg	5		
4-Methyl-2-pentanone (MIBK)	ND	ug/Kg	5		
Acetone	ND	ug/Kg	100		
Allyl Chloride	ND	ug/Kg	5		
Benzene	ND	ug/Kg	5		
Bromobenzene	ND	ug/Kg	5		
Bromochloromethane	ND	ug/Kg	5		
Bromodichloromethane	ND	ug/Kg	5		
Bromoform	ND	ug/Kg	5		
Bromomethane			5		
	ND	ug/Kg			
Carbon Tetrachloride	ND	ug/Kg	5		
Chlorobenzene	ND	ug/Kg	5		
Chlorodibromomethane	ND	ug/Kg	5		
Chloroethane	ND	ug/Kg	5		
Chloroform	ND	ug/Kg	5		
Chloromethane	ND	ug/Kg	5		
cis-1,2-Dichloroethene	ND	ug/Kg	5		
cis-1,3-dichloropropene	ND	ug/Kg	5		
cis-1,4-dichloro-2-butene	ND	ug/Kg	5		
Dibromomethane	ND	ug/Kg	5		
Dichlorodifluoromethane	ND	ug/Kg	5		
Di-isopropyl ether (DIPE)	ND	ug/Kg	5		
Ethylbenzene	ND	ug/Kg	5		
Ethyl-tertbutylether (ETBE)	ND	ug/Kg	5		
Hexachlorobutadiene	ND	ug/Kg	5		
	ND				
Isopropylbenzene	ND	ug/Kg	5		

QCBatchID: QC1203531	Analyst:	Rlee	Method:	EPA 8260B			
Matrix: Solid	Analyzed:	06/25/2019	Instrument:	VOA-MS (grou	ıp)		
		Blank					
Analyte		Result	Units		RDL	Notes	
QC1203531MB1			1	-11		1	
Methylene chloride		ND	ug/Kg		5		
Methyl-t-butyl Ether (MTBE)		ND	ug/Kg		5		
Naphthalene		ND	ug/Kg		5		
N-butylbenzene		ND	ug/Kg		5		
N-propylbenzene		ND	ug/Kg		5		
o-Xylene		ND	ug/Kg		5		
Sec-butylbenzene		ND	ug/Kg		5		
Styrene		ND	ug/Kg		5		
t-Butyl alcohol (TBA)		ND	ug/Kg		10		
Tert-amylmethylether (TAME)		ND	ug/Kg		5		
Tert-butylbenzene		ND	ug/Kg		5		
Tetrachloroethene		ND	ug/Kg		5		
Toluene		ND	ug/Kg		5		
trans-1,2-dichloroethene		ND	ug/Kg		5		
trans-1,3-dichloropropene		ND	ug/Kg		5		
trans-1,4-dichloro-2-butene		ND	ug/Kg		5		
Trichloroethene		ND	ug/Kg		5		
Trichlorofluoromethane		ND	ug/Kg		5		
Vinyl Chloride		ND	ug/Kg		5		
Xylenes (Total)		ND	ug/Kg		5		

Lab	Control Sp	ike/ Lab	Contro	ol Spike	Duplica	te Sun	nmary				
	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1203531LCS1, QC1203531LCSD1	•		•			•					
1,1-Dichloroethene	50	50	52	51	ug/Kg	104	102	2	59-172	22	
Benzene	50	50	52	51	ug/Kg	104	102	2	62-137	24	
Chlorobenzene	50	50	54	52	ug/Kg	108	104	4	60-133	24	
Methyl-t-butyl Ether (MTBE)	50	50	50	51	ug/Kg	100	102	2	62-137	21	
Toluene	50	50	49	54	ug/Kg	98	108	10	59-139	21	
Trichloroethene	50	50	56	60	ug/Kg	112	120	7	66-142	21	

QCBatchID:	QC1203542	Analyst:	dswafford	Method:	EPA 6010B			
Matrix:	Solid	Analyzed:	06/25/2019	Instrument:	AAICP (group)			
			Bla	ank Summa	ry			
			Blank					
	Analyte		Result	Units		RDL	Notes	
QC1203542N	IB1			1	-1 1		L	
Antimony			ND	mg/Kg		3		
Arsenic			ND	mg/Kg		1		
Barium			ND	mg/Kg		1		
Beryllium			ND	mg/Kg		0.5		
Cadmium			ND	mg/Kg		0.5		
Chromium			ND	mg/Kg		1		
Cobalt			ND	mg/Kg		0.5		
Copper			ND	mg/Kg		1		
Lead			ND	mg/Kg		1		
Molybdenur	n		ND	mg/Kg		1		
Nickel			ND	mg/Kg		1.5		
Selenium			ND	mg/Kg		3		
Silver			ND	mg/Kg		0.5		
Thallium			ND	mg/Kg		3		
Vanadium			ND	mg/Kg		0.5		
Zinc			ND	mg/Kg		5		

		Lab Control Spike/ Lab Control Spike Duplicate Summary										
	Spike	Amount	Spike	Result		Reco	veries		Limits			
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes	
C1203542LCS1	-											
Antimony	100		111		mg/Kg	111			80-120			
Arsenic	100		98.4		mg/Kg	98			80-120			
Barium	100		98.5		mg/Kg	99			80-120			
Beryllium	100		104		mg/Kg	104			80-120			
Cadmium	100		104		mg/Kg	104			80-120			
Chromium	100		101		mg/Kg	101			80-120			
Cobalt	100		108		mg/Kg	108			80-120			
Copper	100		91.2		mg/Kg	91			80-120			
Lead	100		104		mg/Kg	104			80-120			
Molybdenum	100		111		mg/Kg	111			80-120			
Nickel	100		107		mg/Kg	107			80-120			
Selenium	100		98.2		mg/Kg	98			80-120			
Silver	100		111		mg/Kg	111			80-120			
Thallium	100		102		mg/Kg	102			80-120			
Vanadium	100		105		mg/Kg	105			80-120			
Zinc	100		102		mg/Kg	102			80-120			

	Mat	trix Sp	ike/Mati	rix Spil	ke Dupli	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limit	S	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1203542MS1, QC1203542MSD1										Sc	ource:	416458-004
Antimony	0.46	100	100	38.1	40.4	mg/Kg	38	40	5.9	75-125	20	М
Arsenic	6.91	100	100	106	110	mg/Kg	99	103	3.7	75-125	20	
Barium	129	100	100	230	240	mg/Kg	101	111	4.3	75-125	20	
Beryllium	ND	100	100	103	107	mg/Kg	103	107	3.8	75-125	20	
Cadmium	11.1	100	100	104	107	mg/Kg	93	96	2.8	75-125	20	
Chromium	18.0	100	100	119	124	mg/Kg	101	106	4.1	75-125	20	
Cobalt	10.8	100	100	111	117	mg/Kg	100	106	5.3	75-125	20	
Copper	26.9	100	100	121	126	mg/Kg	94	99	4.0	75-125	20	
Lead	29.0	100	100	127	129	mg/Kg	98	100	1.6	75-125	20	
Molybdenum	0.35	100	100	104	108	mg/Kg	104	108	3.8	75-125	20	

QCBatchID: QC1203542	Analyst:	dswaff	ord	М	ethod: E	PA 6010B						
Matrix: Solid	Analyzed:	06/25/2	2019	Instru	ument: A	AICP (group)					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1203542MS1, QC1203542MSD1										Sc	ource:	416458-004
Nickel	19.0	100	100	122	126	mg/Kg	103	107	3.2	75-125	20	
Selenium	ND	100	100	95.2	104	mg/Kg	95	104	8.8	75-125	20	
Silver	ND	100	100	105	111	mg/Kg	105	111	5.6	75-125	20	
Thallium	0.74	100	100	95.1	98.7	mg/Kg	94	98	3.7	75-125	20	
Vanadium	35.4	100	100	144	148	mg/Kg	109	113	2.7	75-125	20	
Zinc	308	100	100	291	284	mg/Kg	0	0	2.4	75-125	20	М

QCBatchID: QC1203546	Analyst:	TWu	Method:	EPA 8015M			
Matrix: Solid	Analyzed:	06/25/2019	Instrument:	SVOA-GC (gro	up)		
		Bla	nk Summai	ŷ			
		Blank					
Analyte		Result	Units		RDL	Notes	
QC1203546MB1			- t				
TPH (C10 to C28) (SGT)		ND	mg/Kg		10		
TPH (C13 to C28) (SGT)		ND	mg/Kg		10		
TPH (C29 to C 40) (SGT)		ND	mg/Kg		20		
TPH (C6 to C12) (SGT)		ND	mg/Kg		10		
TPH Diesel (SGT)		ND	mg/Kg		10		
	Lab Conti	rol Spike/ Lab	Control Spi	ke Duplicate	Summar	ν	
			-			-	

Edit Cont			001111		Baphoat	e eun	inital y				
	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1203546LCS1	•		•								
TPH (C10 to C28)	250		232.31			93			-		
TPH Diesel (SGT)	250		220		mg/Kg	88			36-138		

Matrix Spike/Matrix Spike Duplicate Summary												
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	S	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1203546MS1, QC1203546MSD1						•	•		•	Sc	ource:	416458-004
TPH (C10 to C28) (SGT)	ND	250	250	216	218	mg/Kg	86	87	0.9	70-130	30	

QCBatchID: <u>QC1203554</u>	Analyst:	cmorales	Method:	EPA 7471A					
Matrix: Solid	Analyzed:	06/25/2019	Instrument:	AAICP-HG1					
		BI	ank Summai	ry					
		Blank							
Analyte		Result	Units		RDL	Notes			
QC1203554MB1			l				ľ		
Mercury		ND	mg/Kg		0.14				
	Lab Cont	rol Spike/ Lab Spike Amount	Control Spi Spike Result		e Summary Recoveries		Limi	ts	
Analyte		LCS LCSD	LCS LCSI		LCS LCSD	RPD	%Rec	RPD	Notes
QC1203554LCS1	I					I			
Mercury		0.83	0.74	mg/Kg	89		80-120		
	Mat	trix Spike/Mati	rix Spike Duj	olicate Sum	mary				
	Mat Sample	t rix Spike/Mati Spike Amount	r ix Spike Duj Spike Result	-	Recoveries		Limit	S	

0.70

mg/Kg

0.87

105 84

Source: 416458-004

Μ

21.7 75-125 20

QC1203554MS1, QC1203554MSD1

Mercury

ND

0.83

0.83

Data Qualifiers and Definitions

Qualifiers	
A	See Report Comments.
В	Analyte was present in an associated method blank.
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.
BQ2	No valid test replicates.
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.
С	Possible laboratory contamination.
D	RPD was not within control limits. The sample data was reported without further clarification.
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.
D2	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
D3	Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.
DW	Sample result is calculated on a dry weigh basis.
E	Concentration is estimated because it exceeds the quantification limits of the method.
I	The sample was read outside of the method required incubation period.
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification. Reported value is estimated
J L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample
-	data was reported with gualifier.
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.
м	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated
	LCS and/or LCSD was within control limits and the sample data was reported without further clarification.
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.
N1	Sample chromatography does not match the specified TPH standard pattern.
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.
Р	Sample was received without proper preservation according to EPA guidelines.
P1	Temperature of sample storage refrigerator was out of acceptance limits.
P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended due to potential loss of target analytes. Results may be biased low.
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.
Q2	Analyte calibration was not verified and the result was estimated.
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.
S1	The associated surrogate recovery was out of control limits; result is estimated.
S2	The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate recoveries in the associated batch QC met recovery criteria.
S3 T	Internal Standard did not meet recovery limits. Analyte concentration is estimated.
T T1	Sample was extracted/analyzed past the holding time. Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.
T3	Sample received and analyzed out of hold time per client's request.
T4	Sample was analyzed out of hold time per client's request.
Т5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.
Т6	Hold time is indeterminable due to unspecified sampling time.
Т7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.
Definitions	
DF	- Dilution Factor
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.
ND	Analyte was not detected or was less than the detection limit.
NR	Not Reported. See Report Comments.
RDL	Reporting Detection Limit
TIC	Tentatively Identified Compounds

ENTHAL	PY ANALYTICA	L				Chain of Cus	tody Red	cord			т	urn A	rou	und '	Tim	e (Ru	sh by a	advanc	ed no	tice	only	y)	
931 W. Ba	rkley Ave., Orange,	CA 92868	 6		🔨 🛛 Lab N	10: 4(645	58		ſ	Standar	d:		\checkmark	4	Day:		3	Day:				
Phone: (714)	771-6900 Fax: (71	14) 538-1209		SP Pro-	Page:		of				2 Day:				1	Day:		s	ame Da	ay:			
Billing: Enthalpy	Analytical					Matrix: A =																	
1 Park Plaza, Suit	te 1000			THALP		FL = Food Liquid P = Pure Product								Pre				a₂S₂O₃ NaOH			HNC) ₃	
Irvine, CA 92614					1	SW = Swab W =											564 5		0 01				
CL	JSTOMER INFOR	MATION		PR	OJECT INF	ORMATION					Analysi	s Requ	iest				Test	Instruc	tions /	Comr	nent	:s	
Company:	ENGEO			Name:	Shady V	iew																	
Report To:	Adrianna Lund	berg		Number:				1															
Email:	alundberg@en	igeo.com		P.O. #:	15535.00	00.000]															
Address:	6 Morgan Suite	ə 162		Address:	Scrap Ya	ard]															
	Irvine, CA				Chino Hi	ills, CA]	ORO							si	ica gel (cleanup	TPH E	ORO	and		
Phone:	949.491.6366			Global ID:				17	N.	s						М	ORO						
Fax:				Sampled By:				CAM	DRO, MORO	VOCs													
	Sample ID		Sampling Date	Sampling Time	^g Matri	x Container No. / Size	Pres.	6010 - (8015 -	8260 - \													
1 SY	SS.OI@R	5 (6/19/19	1054	1 soil	1/ 2x6	-	\mathbf{M}	\mathbf{M}														
2 SY	SS-OZer	5		1058		1	-	X	V														
3 SY	55-03eø			1100			-	Δ	Λ								3-	-pt con	nposite	e 01	-03		
4 SY	55-04ex	5		1236			-	\mathbf{M}	\mathbf{M}														
5 SY	55.05Cp	· 6	6/19/19	1 1237				X	X										-				
6 SY	55-0600	5		1240	×	×	-	\square	\square								3-	-pt con	nposite	e 01	-03		
7	· · · · ·						-	<u> </u>									. .						
8							-																
9									Ļ						_								
10							-								Î								
		Sig	nature			Print Name		ļ		(Compa								te / Ti				
¹ Relinquishe						H JAWY	<u>ir</u>				EN	GEO	1 (d	ize']	6	6/19						
¹ Received By		(orf			6- Un	<u> </u>				f	A						\mathcal{Q}	9 ft	H	15	.0	1_	
² Relinquishe	_		•••••••					-												•			
² Received By		•					····	<u> </u>															_
³ Relinquishe			·····																				
³ Received By	<i>'</i> :																						

•

ENTHA	LPY ANALYTICAL			e and see	× (Chain of Cust	ody Red	cord	{			T	urn	Arc	ound	l Tir	me	(Rusł	ı by	/ adv	/anced	l noti	ce or	ıly)
931 W. E	Barkley Ave., Orange, CA 92868			Y	Lab No:						Sta	ndar	d:		\checkmark		4 C	Day:			3 Da	ау:		
Phone: (714	4) 771-6900 Fax: (714) 538-1209		Carpen Ca		Page:		of				2 D	aγ:					10	Day:			Sam	ie Day	:	
Billing: Enthalp	y Analytical			Åt		Matrix: A = A				-													_	
1 Park Plaza, Su	iite 1000	ana	THAL	inc	-	L = Food Liquid = Pure Product									Pr	eset					2O ₃ 2 = 10H 6 =			NO3
Irvine, CA 9261	4				1	= Swab W = W											-	- 11200	, J			oun	-1	
(CUSTOMER INFORMATION			PROJ	IECT INFO	RMATION					Ana	alysi	s Rec	ques	t				Te	est In	structio	ns / C	omme	nts
Company:	ENGEO		Name:	S	Shady View	N		1			Τ													
Report To:	Adrianna Lundberg		Number:		· · · ·			1																
Email:	alundberg@engeo.com		P.O. #:	1	5535.000	.000		1												1				
Address:	6 Morgan Suite 162		Address:	E	Existing AS	ST		1																
	Irvine, CA			C	Chino Hills	, CA		1	MORO									silic	a ge	el cle	anup Ti	PH DF	RO an	d
Phone:	949.491.6366		Global ID:					15	Ž	0								MOI						
Fax:			Sampled By:					CAM	DRO,	- VOCs														
	Sample ID	Samplin Date	g Samp Tin	÷	Matrix	Container No. / Size	Pres.	6010 - 0	8015 - 1	1.		2												
1 E-AST	SS-01@0	6/19/	19 750,00	ыl	5517	1/ 2x6	-	Ň	$\overline{\mathbf{X}}$	Íχ	\mathbf{T}		Ť	Ì			╽							
	SS-01@3	<u>•/·/</u>	750 SE		1	1/ 2x6	-		Ĩ			T					T	1	hā	Lc	p			
<u> </u>	SS-01@8		ব্লি হল	,		1/ 2x6					ĺ	Ī		1			Ī	1	hé	Jd				
4 E-AST			90 96	э́Н		1/2x6	-	K	K	K									-					
5 E-AST	SS-02@3		812 sc	хił		1/ 2x6	-		Ì										ha	old				
6 E-AST	-SS-02@8		816 sc	ліL		1/ 2x6	-]		رياه	Į			
7 E-AS	T-SS-03@0		820 SE	yil-		1/ 2x6	-	X																
8 E-AST	-SS-03@3		825 50	uil	/	1/ 2x6	-												h	ala	1			
9 E-AST	-SS-03@8		832 SG	٥IJ	×	1/ 2x6													V	nola	k			
10							-																	
		ignature				int Name						npa									Date	-		
¹ Relinquish	ed By:	2		1	HEATH	Spinjer	~				_	EN	GEC	010	beo	lig	3e36			19			¢S:	10
¹ Received B	by:	2			Gli	<u>ر</u>				ł	2	1_				450			† 	1/9	14		15.	len_
² Relinquish	ed By:									-0	, -												-	
² Received B	Sy:																						-	
³ Relinquish	ed By:																			-				
³ Received B	βy:																							

ENT	HALPY ANALYT	ICAL	p=-				74.5	Ch	ain of Cust	ody Rec	cord	[Tu	rn A	rou	nd T	īm	ie (F	Rush	by ac	dva	nced r	notic	e on	ly)	
931	. W. Barkley Ave., Ora	nge, CA 92868	r			$\langle $	Lab I	No:						Sta	indard	:	1		4	4 Da	γ:			3 Day	:			
Phone	: (714) 771-6900 Fax	x: (714) 538-1209			1A		Page	2:		of				2 C	Day:		Γ		:	1 Da	y:			Same	Day:			L
Billing: Ent	thalpy Analytical								Matrix: A = A			-	-										6.0	2 1			10	
1 Park Pla	za, Suite 1000		an	aly	HALP tical, in	Υ <u>τ</u> .			Food Liquid Pure Product									Pres	serv					₃ 2 ≕ ⊢ H 6 = 0			4O3	
Irvine, CA	92614								Swab W = N											•								
	CUSTOMER IN	FORMATION			PR	OJEC	T IN	FORM	MATION					An	alysis	Requ	est					Test l	Insti	uctions	; / Cor	mmer	nts	
Company:	ENGEO			Na	ime:	Sha	ıdy ۱	∕iew				Γ		Τ														
Report To	: Adrianna L	undberg		Nu	ımber:						1																	
Email:	alundberg	@engeo.com		P.C	D. #:	155	35.0	0.00	00		1																	
Address:	6 Morgan S	Suite 162		Ad	dress:	For	mer	AST			1																	
	Irvine, CA					Chi	no H	lills, (CA			DRO, MORO									silica	gel cl	lear	up TPI		O and	d	
Phone:	949.491.63	366		Glo	obal ID:						1	Ň	s s								MOR			-				
Fax:				Sar	mpled By:						CAM	DRO DRO	VOCs					ļ										
	Sample ID		Sampl Dat		Samplin Time	g	Matr	rix	Container No. / Size	Pres.	6010 - 0	1	17															
1 F-/	AST SS-01@0		6/19/	119	1104 50#		55à	1	1/ 2x6	-	Ň	$\overline{\mathbb{N}}$		1											·			-
	AST SS-01@3		- <u></u>	<u> </u>	1105 coit		1		1/ 2x6	-	Ê				\square			Ī)	tolo	d					
	AST SS-01@8				1108-5011				1/ 2x6	-		Î		Î							,	610						_
4 F-	AST SS-02@0				113750H				1/ 2x6	-	X	\mathbb{N}		1														_
5 F-	AST SS-02@3				11398 soit				1/ 2x6	-												Hol	d					
6 F-	AST-SS-02@8				1230001	.			1/ 2x6	-												401	0					
7 F-	AST SS-03@0				1230 soit				1/ 2x6	-	X	ĴÞ	\mathbb{X}	1									_					
8 F-	AST SS-03@3				1240 soit				1/ 2x6	-											ł	61	d					
9 F-	AST SS-03@8				1243 soil		V	/	1/ 2x6												ł	tole	7					
10							, .			-																		
		s	ignature	2					t Name						mpar									Date /	Time	5		
¹ Relinq	uished By:	H		. .		AG	AT	4 5	Spurjer	<u> </u>					ENG	EO /	Ċ	evlo	isi	54	61	12/	19		Ē	5:	09	
¹ Receiv	ed By:	- Car	<u> </u>			G.	Kin	'n	/				G						<i></i>			41				15.0	09	
² Relinq	uished By:	T												,							ļ				<u> </u>			
² Receiv	ed By:																						_					
³ Relinq	uished By:																											
³ Receiv	red By:																											

. APA

. . **.**

ENTHAL	PY ANALYTICAL					Chain of Cust	ody Rec	cord				Τι	ırn /	Aro	und	Tin	ne (I	Rush	by a	dvanced	l not	ice	only	()
931 W, Ba	irkley Ave., Orange, CA 92868				Lab No	:					Star	ndar	d:		\checkmark		4 Da	ıy:		3 Da	ay:			
Phone: (714)	771-6900 Fax: (714) 538-1209		and farmer		Page:		of				2 D	ay:					1 Da	iy:		Sam	ie Day	/:		
Billing: Enthalpy	Analytical					Matrix: A = A				-					_									
1 Park Plaza, Suit	te 1000	ana	THALP	Υ <u></u> η <u>c</u> .	1	L = Food Liquid = Pure Product									Pr	eser				S₂O₃ 2 = NaOH 6			HNC	'3
Irvine, CA 92614						= Swab W = V													4					
CL	JSTOMER INFORMATION		PR	OJE	CT INFO	RMATION					Ana	lysis	Req	uest			·		Test	nstructio	ns / C	Comn	nent	s
Company:	ENGEO		Name:	Sh	ady Vie	w																		
Report To:	Adrianna Lundberg		Number:					1																
Email:	alundberg@engeo.com		P.O. #:	15	535.000).000																		
Address:	6 Morgan Suite 162		Address:	Ex	isting A	ST																		
	Irvine, CA			Ch	nino Hills	s, CA]	- DRO, MORO									silica	a gel.c	leanup T	PH D	RO :	and	
Phone:	949.491.6366		Global ID:	Τ				17	X	s								MOF	20					
Fax:			Sampled By:					CAM	L N	- VOCs														
	Sample ID	Sampling Date	g Samplin Time	g	Matrix	Container No. / Size	Pres.	6010 - (8015 -	8260 - \														
1 E-AST S	SS-04@0	6/19/1	9 854-soil		soil	1/ 2x6	-	X		K						\square	Π							
2 E-AST S	SS-04@3		855- 30il			1/ 2x6	-			1								1	nole	k				
3 E-AST S	SS-04@8	91	902 soit			1/ 2x6	-												hold	4				
4							-																	
5 E-AST G	W-04@		groundwa	ater			HCE											n	o gr	sinduk	ter	rec	shee	4
6 E-AST G	W-04@		groundwa	ater			-												0					
7							-																	
8							-																	
9																								
10	1						-																	
	S	ignature			Pr	rint Name					Con	npa	ny /	Tit	e					Date	/ Tin	ne		
¹ Relinquishe	d By:	2	2	Å	EAT-	1 Sherry	tR					ENG	θEΟ	16	Jean	log	isf	÷.	e/	2/19		15	: [<i>'1</i>
¹ Received By			-	k		1			6	iz.						Ű			611	<u>q [a</u>			5.2	<i>י</i> ןי
² Relinquishe	d By:																		- 71	1 1 1		- t-		
² Received By	<u>.</u>															ę.								
³ Relinquishe	d By:																							
³ Received By	/:																						_	

ENTHA	PY ANALYTICAL				99793		Cha	in of Cust	ody Red	cord	ł			Τι	ırn /	Arou	and i	Tim	e (R	ush	by a	dvance	d no	tice	onl	y)	
931 W. E	arkley Ave., Orange, CA 92868	6				Lab N	lo:						Sta	ndaro	1:		\checkmark		4 Day	:		3 D	Day:				
Phone: (714) 771-6900 Fax: (714) 538-1209		ريحك	e a		Page:	:. [of				2 D	ay:					1 Day	:		Sar	me Da	ıy:			
Billing: Enthalp	/ Analytical							trix: A = A				-							_								
1 Park Plaza, Su	ite 1000			cal, in		r		ood Liquid re Product					-				Pre	serv				₂ S ₂ O ₃ 2 NaOH 6			HNC	03	
Irvine, CA 9261	4							vab W=V												12004	5 .	uon o	ou				
(USTOMER INFORMATION			PRC	DIEC	CT INF	ORM	ATION			ata ang sa		Ana	alysis	Req	uest				n na na gi tan ti	Test l	Instructio	ons / I	Comr	nen	ts	
Company:	ENGEO		Name:	:	Sha	ady V	'iew			ĺ		T													•		
Report To:	Adrianna Lundberg		Numb	er:																							
Email:	alundberg@engeo.com		P.O. #:	:	155	535.0	00.00	0																			
Address:	6 Morgan Suite 162		Addre	ISS:	For	rmer /	AST]								-									
	Irvine, CA				Chi	ino Hi	ills, C	4]	DRO MORO									silica	gel c	leanup T	ГРН С	DRO	and	i	
Phone:	949.491.6366		Global	HD:]2[Ž	s o							1	MOR	0						
Fax:			Sampl	led By:						CAM	La C	- VOCs															
	Sample ID	Sampli Date	- I	Sampling Time		Matri	x I	ontainer Io. / Size	Pres.	6010 - (1.	17															
1 F-AST	SS-04@0	6/19/	19 12	250-30it		أحري	$\left(\right)$	1/ 2x6	-	X	\mathbb{D}				\square	\square						. <u> </u>					
2 F-AST	SS-04@3	1	12	25 Soil 1	252	1		1/ 2x6	-			ŀ	1							h	sld	-					
3 F-AST	SS-04@8		V?	304 sott				1/ 2x6	-		Ì										dd						
4 F-AST	SS-05@0		12	^{3\©} ≪ooith				1/ 2x6	-	K																	
5 F-AST	SS-05@3		17	311 <u>soil</u>				1/ 2x6	-											h	sla	(·					
6 F-AST	-SS-05@8	¥	١	322 soil		X		1/ 2x6	-											h	ماہ	Y					
7.									-																		
8									-																		
9																							,				
10									-																		
	Las	ignature					Print			·				npai								Date	e / Tir				
¹ Relinquish	ed By:		and	/	4 <u>G</u>	ATH	- 50	duy'e	y			_		ENG	θEΟ	10	es.	152	34	6		118			54		
¹ Received B	y:		•••••		Ċ	5 ^{- k}	m				(20	_							<u> </u>	[[9	14		15	S. /c	<u>)</u>	
² Relinquish	ed By:	·	<u>.</u>							_														•			
² Received B	y:									1										_							
³ Relinquish	ed By:											-															
³ Received E	y:									1																	

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Engeo P	Project: Shady View			
Date Received: 6/19/19 S	Sampler's Name Present:	√ Yes	No	
Section 2				()*3==11;==13=000;000;000;000;000;000;000;000;000;00
Sample(s) received in a cooler? 🚺 Yes, How many? 2	NO (skip section 2)		e Temp (°C) (No Cooler)	:
Sample Temp (°C), One from each cooler: #1: 7.2 #	#2: <u>5.9</u> #3:	_#4:	-	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptanc	ce range is < 10°C but not frozen). It	is acceptable		s collected
the same day as sample receipt to have a higher temperature Shipping Information:	e as long as there is evidence that coo	oling has beg	un.)	
Section 3				
Was the cooler packed with: Ice Ice Ice Packs Paper None	Bubble Wrap Styro Other	foam		
Cooler Temp (°C): #1: <u>4.3</u> #2: <u>2.3</u>	#3:	_#4:		
Section 4		YES	NO	N/A
Was a COC received?	ма алдо на слава и маке на	√ 	···~	·// ·
Are sample IDs present?	an de la recentra cua angune en conquert primo a succión e constantes de la recentra de la recentra de la recen	$\overline{\mathbf{V}}$		
Are sampling dates & times present?		\checkmark		
ls a relinquished signature present?		\checkmark		
Are the tests required clearly indicated on the COC?		\checkmark		
Are custody seals present?			\checkmark	
If custody seals are present, were they intact?				\checkmark
Are all samples sealed in plastic bags? (Recommended for				\checkmark
Did all samples arrive intact? If no, indicate in Section 4 be	low.	1		
Did all bottle labels agree with COC? (ID, dates and times)		1		
Were the samples collected in the correct containers for the				
Are the containers labeled with the correct preservat				√
Is there headspace in the VOA vials greater than 5-6 mm in	and and a second state of the second seco			√
Was a sufficient amount of sample submitted for the reque	ested tests?			
Section 5 Explanations/Comments				
Section 6	— · · · · · · · · · · · · · · · · ·			
For discrepancies, how was the Project Manager notified?				
Project Managar's responses	Email (email sent to/o	on):	/	
Project Manager's response:				
	kan mula mela menergan yang kang pang tang menergan kang menergan kang menergan kang menergan kang menergan ka Penergan kang menergan kang Penergan kang menergan kang			
Completed By:	Date: Gracca			
	are disting			
Enthalpy Analytical, a subsidiary of Mo 931 W. Barkley Ave, Orange, CA 92868 • T www.enthalpy.c	: (714) 771-6900 • F: (714) 538-1209			

Sample Acceptance Checklist - Rev 4, 8/8/2017

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Lab Request: 416458 Report Date: 07/02/2019 Date Received: 06/19/2019 Client ID: 15790

Client: ENGEO Inc. Address: 6 Morgan, Suite 162 Irvine, CA 92618-1922

Attn: Adrianna Lundberg

Comments: Shady View 15535.000.000

Supplemental Report

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

<u>Sample #</u>	Client Sample ID
416458-010	E-AST SS-01@3
416458-011	E-AST SS-01@8
416458-013	E-AST SS-02@3
416458-014	E-AST SS-02@8
416458-031	F-AST SS-04@3
416458-032	F-AST SS-04@8
416458-034	F-AST SS-05@3
416458-035	F-AST SS-05@8

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

M. Malua

Report Review performed by: Diane Galvan, Project Manager

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 45 days from date received. The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Sample #: 416458-010 Client Sample #: E-AST SS-01@3

No analyte detected

Sample #: 416458-011 Client Sample #: E-AST SS-01@8

No analyte	detected
------------	----------

Sample #:	416458-013	Client Samp	le #: E-AST SS	-02@3			
<u>Method</u>	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
EPA 8015M	TPH (C13 to	o C28) (SGT)	207	4	40	mg/Kg	
EPA 8015M	TPH (C29 to	o C 40) (SGT)	183	4	80	mg/Kg	
Sample #:	416458-014	Client Samp	le #: E-AST SS	-02@8			
<u>Method</u>	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	<u>Notes</u>
EPA 8015M	TPH (C13 to	o C28) (SGT)	287	4	40	mg/Kg	
EPA 8015M	TPH (C29 to	o C 40) (SGT)	260	4	80	mg/Kg	
Sample #:	416458-031	Client Samp	le #: F-AST SS	04@3			
<u>Method</u>	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	<u>Notes</u>
EPA 8015M	TPH (C13 to	o C28) (SGT)	58.4	2	20	mg/Kg	
EPA 8015M	TPH (C29 to	o C 40) (SGT)	67.7	2	40	mg/Kg	
Sample #:	416458-032	Client Samp	le #: F-AST SS-	04@8			
No analyte	detected						
Sample #:	416458-034	Client Samp	le #: F-AST SS	05@3			
Method	<u>Analyte</u>		<u>Result</u>	DF	<u>RDL</u>	<u>Units</u>	Notes
EPA 8015M	TPH (C13 to	o C28) (SGT)	62.8	1	10	mg/Kg	
EPA 8015M	TPH (C29 to	o C 40) (SGT)	64.8	1	20	mg/Kg	
Sample #:	416458-035	Client Samp	le #: F-AST SS-	05@8			

No analyte detected

Matrix: Solid	Client: E	ENGEO Ir	IC.		Coll	ector: Client			
Sampled: 06/19/2019 07:50 Sample #: <u>416458-010</u>	Site: Client Sample #: E	E-AST SS	5-01@3		Sample	Туре:			
Analyte	R	esult	DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Method: EPA 8015M	Prep Method: EPA	3580A					QCBatchIE		
TPH (C13 to C28) (SGT)		ND	2	20	mg/Kg	06/28/19	07/01/19	TW	D2
TPH (C29 to C 40) (SGT)		ND	2	40	mg/Kg	06/28/19	07/01/19	тw	D2
TPH (C6 to C12) (SGT)		ND	2	20	mg/Kg	06/28/19	07/01/19	TW	D2
						00,20,10	01101110		22
<u>Surrogate</u>			ecovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)		1.	25	50-150		10g used,	spike amount c	hange	d to 20ppr
Matrix: Solid	Client: E	ENGEO Ir	IC.		Coll	ector: Client			
Sampled: 06/19/2019 08:05	Site:								
Sample #: <u>416458-011</u>	Client Sample #: E	E-AST SS	-01@8		Sample	Type:			
			-			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Analyte		esult	DF	RDL	Units	Prepared	Analyzed		
Method: EPA 8015M	Prep Method: EPA						QCBatchIE		
TPH (C13 to C28) (SGT)		ND	2	20	mg/Kg	06/28/19	07/01/19	TW	D2
TPH (C29 to C 40) (SGT)		ND	2	40	mg/Kg	06/28/19	07/01/19	ΤW	D2
TPH (C6 to C12) (SGT)		ND	2	20	mg/Kg	06/28/19	07/01/19	TW	D2
<u>Surrogate</u>		<u>% R</u> e	ecovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)			00	50-150		10g used,	spike amount c	hange	d to 20ppr
						•	•		
Matrix: Solid	Client: E	ENGEO li	nc.		Coll	ector: Client			
Sampled: 06/19/2019 08:12	Site:								
Sample #: <u>416458-013</u>	Client Sample #: E	E-AST SS	6-02@3		Sample	Туре:			
Analyte	R	esult	DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Method: EPA 8015M	Prep Method: EPA						QCBatchIE		
TPH (C13 to C28) (SGT)		207	4	40	mg/Kg	06/28/19	07/01/19	TW	
TPH (C29 to C 40) (SGT)		183	4	80	mg/Kg	06/28/19	07/01/19	тw	
TPH (C6 to C12) (SGT)		ND	4	40	mg/Kg	06/28/19	07/01/19	тw	
Surrogate		0/ D/	ecovery	Limits	Notes				
<u>Surrogate</u> Triacontane (SUR)			51	<u>50-150</u>	<u>110183</u>	10g used	spike amount c	hanaa	d to 20nne
				30-730		iog useu,	spike amount c	nange	u 10 20ppi
Matrix: Solid	Client: E	ENGEO Ir	IC.		Coll	ector: Client			
Sampled: 06/19/2019 08:16	Site:								
Sample #: <u>416458-014</u>	Client Sample #: E	E-AST SS	6-02@8		Sample	Туре:			
Analyte	D	esult	DF	RDL	Units	Prepared	Analyzed	Bv	Notos
Method: EPA 8015M	Prep Method: EPA		DI	NDL	Onits	Tiepareu	QCBatchIE		
TPH (C13 to C28) (SGT)		287	4	40	mg/Kg	06/28/19	07/01/19	TW	
TPH (C29 to C 40) (SGT)		260	4	40 80	mg/Kg	06/28/19	07/01/19	TW	
TPH (C6 to C12) (SGT)		ND	4	40	mg/Kg	06/28/19	07/01/19	TW	
						00/20/19	07/01/19	1 V V	
<u>Surrogate</u>			ecovery	<u>Limits</u>	<u>Notes</u>				
Triacontane (SUR)		5	54	50-150		10g used,	spike amount c	hange	d to 20ppr
Matrix: Solid	Client: E	ENGEO II	nc		Coll	ector: Client			
Sampled: 06/19/2019 12:52	Site:		10.		001	cotor: olicint			
Sample #: <u>416458-031</u>	Client Sample #: F		-04@3		Sample	Type:			
Gampie π. <u>+10+30-031</u>	onent oampie #.	-701.00			Sample	.ypc.			
Analyte		esult	DF	RDL	Units	Prepared	Analyzed		
Method: EPA 8015M	Prep Method: EPA	3580A					QCBatchIE		01203701
TPH (C13 to C28) (SGT)		58.4	2	20	mg/Kg	06/28/19	07/01/19	ΤW	
		67.7	2	40	mg/Kg	06/28/19	07/01/19	ΤW	
TPH (C19 to C 40) (SGT)	ť	••••							
		ND	2	20	mg/Kg	06/28/19	07/01/19	TW	
TPH (C29 to C 40) (SGT)		ND	2 ecovery	20 <u>Limits</u>	mg/Kg	06/28/19	07/01/19	ΤW	
TPH (C29 to C 40) (SGT) TPH (C6 to C12) (SGT)		ND <u>% R</u> e					07/01/19 Spike amount o		ed to 20pp

Matrix: Solid	Client: ENGEO	nc.		Col	ector: Client	
Sampled: 06/19/2019 13:04	Site:					
Sample #: 416458-032	Client Sample #: F-AST S	S-04@8		Sample	Туре:	
Analyte	Result	DF	RDL	Units	Prepared	Analyzed By Notes
Method: EPA 8015M	Prep Method: EPA 3580A					QCBatchID: QC1203701
TPH (C13 to C28) (SGT)	ND	1	10	mg/Kg	06/28/19	07/01/19 TW
TPH (C29 to C 40) (SGT)	ND	1	20	mg/Kg	06/28/19	07/01/19 TW
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg	06/28/19	07/01/19 TW
<u>Surrogate</u>	<u>% R</u>	ecovery	Limits	<u>Notes</u>		
Triacontane (SUR)	1	04	50-150			
Matrix: Solid	Client: ENGEO	nc		Col	ector: Client	
Sampled: 06/19/2019 13:11	Site:			001	ononit	
Sample #: 416458-034	Client Sample #: F-AST S	5-05@3		Sample	Type:	
				oumpio	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyte	Result	DF	RDL	Units	Prepared	Analyzed By Notes
Method: EPA 8015M	Prep Method: EPA 3580A					QCBatchID: QC1203701
TPH (C13 to C28) (SGT)	62.8	1	10	mg/Kg	06/28/19	07/01/19 TW
TPH (C29 to C 40) (SGT)	64.8	1	20	mg/Kg	06/28/19	07/01/19 TW
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg	06/28/19	07/01/19 TW
Surrogate	% R	ecovery	Limits	Notes		
Triacontane (SUR)	1	09	50-150			
Matuice Calid				0.1	ostow Oliost	
Matrix: Solid	Client: ENGEO	nc.		COL	ector: Client	
Sampled: 06/19/2019 13:22	Site:				_	
Sample #: <u>416458-035</u>	Client Sample #: F-AST S	5-05@8		Sample	Type:	
Analyte	Result	DF	RDL	Units	Prepared	Analyzed By Notes
Method: EPA 8015M	Prep Method: EPA 3580A					QCBatchID: QC1203701
TPH (C13 to C28) (SGT)	ND	1	10	mg/Kg	06/28/19	07/01/19 TW
TPH (C29 to C 40) (SGT)	ND	1	20	mg/Kg	06/28/19	07/01/19 TW
TPH (C6 to C12) (SGT)	ND	1	10	mg/Kg	06/28/19	07/01/19 TW
Surrogate	% R	ecovery	Limits	Notes		
Triacontane (SUR)		07	50-150			
		U 1	00-100			

QCBatchID: QC1203701	Analyst:	Abanh	1	Met	thod:	EPA 8015M						
Matrix: Solid	Analyzed:	06/28/	2019	Instrun	nent:	SVOA-GC (gro	oup)					
			Bl	ank Sun	nmar	У						
			Blank									
Analyte			Result	Un	its		R	DL	No	tes		
QC1203701MB1	ŀ											
TPH (C10 to C28) (SGT)			ND	mg/	′Kg		1	0				
TPH (C13 to C28) (SGT)			ND	mg/	′Kg		1	0				
TPH (C29 to C 40) (SGT)			ND	mg/	′Kg		2	0				
TPH (C6 to C12) (SGT)			ND	mg/	′Kg		1	0				<u></u>
L	.ab Conti	rol Sp	ike/ Lab	Control	l Spik	ke Duplicate	e Sun	nmary				
		Spike	Amount	Spike R	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSE) Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1203701LCS1						- 1						
TPH (C10 to C28) (SGT)		250		193		mg/Kg	77			36-138		
	Mat	rix Sp	oike/Matr	rix Spike	e Dup	licate Sum	mary					
	Sample	Spike	Amount	Spike R	Result		Reco	veries		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1203701MS1, QC1203701MSD1						1			1	S	ource:	416458-011
		500	500	386					0.8	70-130	30	

Data Qualifiers and Definitions

Qualifiare		
<u>Qualifiers</u>	See Denot Commente	
A B	See Report Comments. Analyte was present in an associated method blank.	
B1	Analyte was present in a sample and associated method blank greater than MDL but less than RDL.	
BQ1	No valid test replicates. Sample Toxicity is possible. Best result was reported.	
BQ2	No valid test replicates.	
BQ3	No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.	
BQ4	Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.	
BQ5	Minor Dissolved Oxygen loss was observed in the blank water check.	
С	Possible laboratory contamination.	
D	RPD was not within control limits. The sample data was reported without further clarification.	
D1	Lesser amount of sample was used due to insufficient amount of sample supplied.	
D2 D3	Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit. Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.	
DW	Sample result is calculated on a dry weigh basis.	
E	Concentration is estimated because it exceeds the quantification limits of the method.	
-	The sample was read outside of the method required incubation period.	
IR	Inconclusive Result. Legionella is present, however, there is possible non-specific agglutination preventing specific identification.	
J	Reported value is estimated	
L	The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample data was reported with qualifier.	
L2	LCS did not meet recovery criteria, however, the MS and/or MSD met LCS recovery criteria, validating the batch.	
Μ	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated LCS and/or LCSD was within control limits and the sample data was reported without further clarification.	
M1	The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.	
M2	The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not within control limits. Sample result is estimated.	
N1	Sample chromatography does not match the specified TPH standard pattern.	
NC	The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not apply.	
P P1	Sample was received without proper preservation according to EPA guidelines. Temperature of sample storage refrigerator was out of acceptance limits.	
P1 P2	The sample was preserved within 24 hours of collection in accordance with EPA 218.6.	
P3	Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended	
	due to potential loss of target analytes. Results may be biased low.	
Q1	Analyte Calibration Verification exceeds criteria. The result is estimated.	
Q2	Analyte calibration was not verified and the result was estimated.	
Q3	Analyte initial calibration was not available or exceeds criteria. The result was estimated.	
S	The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery was within control limits and the sample data was reported without further clarification.	
S1 S2	The associated surrogate recovery was out of control limits; result is estimated. The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate	
S2 S3	recoveries in the associated batch QC met recovery criteria. Internal Standard did not meet recovery limits. Analyte concentration is estimated.	
T	Sample was extracted/analyzed past the holding time.	
T1	Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).	
T2	Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.	
ТЗ	Sample received and analyzed out of hold time per client's request.	
T4	Sample was analyzed out of hold time per client's request.	
Т5	Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.	
Т6	Hold time is indeterminable due to unspecified sampling time.	
T7	Sample was analyzed past hold time due to insufficient time remaining at time of receipt.	
<u>Definitions</u>		
DF	Dilution Factor	
MDL	Method Detection Limit. Result is reported ND when it is less than or equal to MDL.	
	Analyte was not detected or was less than the detection limit.	
NR RDL	Not Reported. See Report Comments. Reporting Detection Limit	
TIC	Tentatively Identified Compounds	

Analytical Results Report

From:	Adrianna Lundberg
To:	Diane Galvan
Subject:	Re: Shady View, Enthalpy Analytical Final Report #416458
Date:	Friday, June 28, 2019 11:29:44 AM
Attachments:	image001.png

Thank you, Diane. Could we please also analyze a few samples that we have on hold? Please also analyze the following samples for 8015 TPH-DRO and MORO with silica gel cleanup: E-AST SS01@3 and E-AST SS01@8, E-AST SS02@3 and E-AST SS02@8, F-AST SS04@3 and F-AST SS04@8, and F-AST SS05@3 and F-AST SS05@8.

Thank you, Adrianna Lundberg Project Engineer, ENGEO 949.579.2268