Rancho Springs Medical Center Project

Preliminary Hydrology and Hydraulics Report
APN 912-010-032
25500 Medical Center Drive
Murrieta, CA 92562

Prepared for:

Universal Health Service, Inc. 2192 Carmel Valley Road Del Mar, CA 91014

Prepared By:

Kimley-Horn and Associates, Inc. 660 South Figueroa Street Suite 2050 Los Angeles, CA 90017 June 2020

INTRODUCTION

The scope of the Project is to complete a preliminary hydrology and hydraulic analysis for the storm drain improvements associated with the proposed Rancho Springs Medical Center project in Murrieta, CA. The Project is located at 22500 Medical Center Drive on the northwest corner of the intersection of Interstate Freeway 215 and Murrieta Hot Springs Road. The Project consist of a 36,100 square foot hospital building expansion to be located centrally on the Rancho Springs Medical Center. Other project activities will also include utility improvements and parking areas and driveways redevelopment. The total project makes up approximately 5.23 acres.

Figure 1: Rancho Springs Medical Center Location

HYDROLOGY

The preliminary hydrology and hydraulic analyses were completed in accordance with the Riverside County Hydrology Manual. A rational method analysis in accordance with the Manual was completed to calculate the peak discharges for existing conditions and project conditions. A review of the Geotechnical Investigation Report dated December 16, 2019 prepared by NOCA Services, Inc found that subsurface soils at the site consisted of silty and clayey sand and sandy silt fill material underlain by medium dense to very dense sandstone. Additionally, preliminary infiltration tests showed that the soils have low infiltration rates. Soil group C is defined as soils having slow infiltration rates (high runoff potential) and was used to calculate the soil loss rates.

Per the Riverside County Hydrology Manual, antecedent moisture condition (AMC) of 2 was used for the 100-year storm event. The land use for the project is commercial which has an impervious range percent between 80-100%. Storm depths from NOAA 14 were used for the analyses. The Advance Engineering Software (AES) Hydrosoft package was used to complete the rational method analysis.

Under existing conditions, the project discharges to multiple storm drain inlets located throughout the project. Runoff is routed through an existing onsite storm drain system that drains to a 60-inch storm drain lateral that ultimately discharges to the public storm drain system.

For proposed conditions, the project area was divided into three drainage areas (A-C). Each drainage area was then subdivided for the rational method calculations. Drainage area A consists of offsite runoff; therefore, it was rerouted to discharge directly into the existing 60-inch storm drain. Drainage area B consists of off-site areas and 0.31 acres from the project limits that cannot be captured in the proposed storm drain system due to grading constraints. Drainage area C consists of run-on areas and the remaining 4.92 acres from the proposed project which will be routed to a proposed detention basin via the proposed onsite storm drain system. The outlet from the detention basin will be limited to existing conditions flow rates or lower via a riser structure prior to discharging into the existing 60-inch storm drain.

Offsite areas from the north will be collected prior to entering the project area and rerouted to the existing 60-inch storm drain located beneath the project area. Offsite areas from the south and east perimeters will be collected in the project's proposed storm drain system and have been included in the proposed rational method and detention calculations. Hydrology maps and results for existing and proposed conditions are included in Appendix A.

HYDRAULICS

Storm Drain and Detention Basin Hydraulic Calculations

Hydraulic calculations for sizing storm drain were completed using Manning's equation. Each proposed storm drain lateral has been sized in AES will be able to convey the 100-year peak flow. Each storm drain line will discharge to a main lateral which will discharge to the onsite detention basin.

The unit hydrograph for the proposed project was completed using the AES software. The basin routing analysis was completed with Bentley PondPack, which uses the Modified-Puls method for flow-through basin analysis. Routing analysis results for the detention basin showed that the maximum water surface depth during the 100-year, 24-hour storm event was 3.75 feet, which would allow for more than 2 feet of freeboard. The total volume detained was 0.513 ac-ft. In addition, the peak outflow from the basin (4.42 cfs) was less than the existing conditions 100-year, 24-hour peak flow (5.07 cfs).

A 10-year, 1-hour storm analysis of the detention system was also calculations. Basin routing analysis for the 10-year, 1-hour storm showed a peak basin outflow discharge of 0.39 cfs, which is less than the unit hydrograph peak undeveloped discharge (0.45 cfs). The total volume detained was 0.865 ac-ft with a maximum water surface depth of 5.68 feet.

The detention basin system will outlet to the existing 60-inch storm drain lateral, matching the existing conditions. The outlet from the detention basin will discharge via a riser with an orifice and rectangular notch weir to limit the flows similar to existing conditions. The storm drain and basin routing calculations are included in Appendix B.

Catch Basin Calculations

Catch basin capacity calculations were completed using Bentley's Flow Master software which uses HEC-22 Urban Drainage Design Manual (FHWA, 2009) methodology. The catch basins were designed for the 100-year 24-hour storm event and to limit the maximum ponding depth at the catch basins below 6 inches. The catch basin capacity calculations are included in Appendix C.

APPENDIX A: HYDROLOGY ANALYSIS

NOAA Atlas 14, Volume 6, Version 2 Location name: Murrieta, California, USA* Latitude: 33.5589°, Longitude: -117.1837° Elevation: 1144.08 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	100	200	500	1000	
5-min	0.112 (0.094-0.135)	0.148 (0.124-0.179)	0.198 (0.166-0.240)	0.241 (0.199-0.293)	0.301 (0.240-0.380)	0.349 (0.273-0.450)	0.399 (0.304-0.529)	0.453 (0.335-0.618)	0.529 (0.374-0.754)	0.590 (0.402-0.873)	
10-min	0.160 (0.135-0.193)	0.213 (0.178-0.256)	0.284 (0.238-0.344)	0.345 (0.286-0.421)	0.431 (0.345-0.544)	0.500 (0.391-0.645)	0.572 (0.436-0.758)	0.649 (0.480-0.886)	0.758 (0.536-1.08)	0.845 (0.577-1.25)	
15-min	0.194 (0.163-0.234)	0.257 (0.216-0.310)	0.344 (0.287-0.416)	0.417 (0.346-0.509)	0.521 (0.417-0.658)	0.604 (0.472-0.780)	0.692 (0.527-0.917)	0.785 (0.581-1.07)	0.916 (0.649-1.31)	1.02 (0.698-1.51)	
30-min	0.301 (0.253-0.362)	0.399 (0.335-0.481)	0.533 (0.446-0.645)	0.647 (0.536-0.789)	0.808 (0.646-1.02)	0.937 (0.733-1.21)	1.07 (0.818-1.42)	1.22 (0.901-1.66)	1.42 (1.01-2.03)	1.59 (1.08-2.35)	
60-min	0.458 (0.384-0.551)	0.607 (0.509-0.732)	0.812 (0.678-0.981)	0.985 (0.816-1.20)	1.23 (0.983-1.55)	1.43 (1.12-1.84)	1.63 (1.24-2.17)	1.85 (1.37-2.53)	2.16 (1.53-3.09)	2.41 (1.65-3.57)	
2-hr	0.669 (0.561-0.805)	0.878 (0.736-1.06)	1.16 (0.971-1.40)	1.40 (1.16-1.70)	1.73 (1.38-2.18)	1.99 (1.56-2.57)	2.26 (1.72-3.00)	2.55 (1.88-3.48)	2.94 (2.08-4.20)	3.26 (2.22-4.82)	
3-hr	0.829 (0.696-0.997)	1.09 (0.910-1.31)	1.43 (1.20-1.73)	1.72 (1.42-2.09)	2.12 (1.69-2.67)	2.43 (1.90-3.14)	2.75 (2.10-3.65)	3.09 (2.29-4.22)	3.56 (2.52-5.08)	3.93 (2.68-5.81)	
6-hr	1.18 (0.993-1.42)	1.55 (1.30-1.87)	2.03 (1.70-2.46)	2.44 (2.02-2.97)	2.99 (2.39-3.78)	3.42 (2.67-4.42)	3.86 (2.94-5.12)	4.32 (3.20-5.91)	4.96 (3.51-7.08)	5.46 (3.72-8.07)	
12-hr	1.57 (1.32-1.89)	2.07 (1.73-2.49)	2.72 (2.28-3.29)	3.26 (2.70-3.97)	4.00 (3.19-5.05)	4.57 (3.57-5.90)	5.15 (3.92-6.82)	5.75 (4.25-7.85)	6.57 (4.65-9.38)	7.22 (4.92-10.7)	
24-hr	2.03 (1.79-2.34)	2.71 (2.39-3.13)	3.60 (3.17-4.17)	4.33 (3.78-5.06)	5.33 (4.51-6.43)	6.10 (5.06-7.51)	6.90 (5.59-8.68)	7.71 (6.09-9.98)	8.83 (6.70-11.9)	9.71 (7.12-13.5)	
2-day	2.42 (2.14-2.80)	3.31 (2.92-3.83)	4.50 (3.96-5.22)	5.49 (4.80-6.42)	6.87 (5.82-8.29)	7.96 (6.60-9.80)	9.09 (7.37-11.5)	10.3 (8.11-13.3)	11.9 (9.05-16.1)	13.3 (9.72-18.5)	
3-day	2.56 (2.26-2.95)	3.55 (3.13-4.10)	4.91 (4.32-5.69)	6.05 (5.28-7.07)	7.67 (6.49-9.25)	8.97 (7.44-11.0)	10.3 (8.37-13.0)	11.8 (9.30-15.3)	13.9 (10.5-18.7)	15.6 (11.4-21.6)	
4-day	2.76 (2.44-3.19)	3.87 (3.42-4.48)	5.40 (4.75-6.26)	6.70 (5.85-7.82)	8.55 (7.23-10.3)	10.0 (8.33-12.4)	11.6 (9.42-14.6)	13.3 (10.5-17.3)	15.8 (12.0-21.3)	17.8 (13.1-24.8)	
7-day	3.20 (2.83-3.69)	4.52 (3.99-5.23)	6.35 (5.59-7.36)	7.92 (6.92-9.25)	10.2 (8.61-12.3)	12.0 (9.96-14.8)	14.0 (11.3-17.6)	16.1 (12.7-20.8)	19.1 (14.5-25.8)	21.7 (15.9-30.1)	
10-day	3.44 (3.04-3.98)	4.89 (4.32-5.65)	6.90 (6.08-8.00)	8.63 (7.54-10.1)	11.1 (9.42-13.4)	13.2 (10.9-16.2)	15.4 (12.4-19.3)	17.7 (14.0-22.9)	21.2 (16.0-28.5)	24.0 (17.6-33.4)	
20-day	4.25 (3.76-4.91)	6.11 (5.40-7.07)	8.73 (7.69-10.1)	11.0 (9.61-12.9)	14.3 (12.1-17.3)	17.0 (14.1-21.0)	20.0 (16.2-25.2)	23.2 (18.3-30.0)	27.9 (21.1-37.5)	31.8 (23.3-44.2)	
30-day	5.03 (4.44-5.80)	7.26 (6.41-8.40)	10.4 (9.18-12.1)	13.2 (11.5-15.4)	17.2 (14.6-20.8)	20.6 (17.1-25.3)	24.2 (19.6-30.5)	28.2 (22.2-36.4)	34.0 (25.7-45.7)	38.8 (28.5-54.0)	
45-day	5.91 (5.23-6.83)	8.54 (7.53-9.87)	12.3 (10.8-14.2)	15.5 (13.6-18.1)	20.3 (17.2-24.5)	24.3 (20.2-30.0)	28.7 (23.3-36.1)	33.5 (26.4-43.3)	40.5 (30.7-54.5)	46.4 (34.0-64.5)	
60-day	6.85 (6.06-7.91)	9.84 (8.68-11.4)	14.1 (12.4-16.3)	17.8 (15.6-20.8)	23.4 (19.8-28.2)	28.0 (23.2-34.4)	33.0 (26.7-41.6)	38.5 (30.4-49.9)	46.7 (35.4-62.8)	53.5 (39.2-74.5)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.5589°, Longitude: -117.1837°

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Tue May 12 16:45:11 2020

Back to Top

Maps & aerials

Large scale terrain

Back to Top

<u>US Department of Commerce</u> <u>National Oceanic and Atmospheric Administration</u> National Weather Service
National Water Center
1325 East West Highway Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

NOAA Atlas 14, Volume 6, Version 2 Location name: Murrieta, California, USA* Latitude: 33.5589°, Longitude: -117.1837° Elevation: 1144.08 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration	Average recurrence interval (years)										
	1	2	5	10	25	50	100	200	500	1000	
5-min	1.34 (1.13-1.62)	1.78 (1.49-2.15)	2.38 (1.99-2.88)	2.89 (2.39-3.52)	3.61 (2.88-4.56)	4.19 (3.28-5.40)	4.79 (3.65-6.35)	5.44 (4.02-7.42)	6.35 (4.49-9.05)	7.08 (4.82-10.5)	
10-min	0.960 (0.810-1.16)	1.28 (1.07-1.54)	1.70 (1.43-2.06)	2.07 (1.72-2.53)	2.59 (2.07-3.26)	3.00 (2.35-3.87)	3.43 (2.62-4.55)	3.89 (2.88-5.32)	4.55 (3.22-6.49)	5.07 (3.46-7.51)	
15-min	0.776 (0.652-0.936)	1.03 (0.864-1.24)	1.38 (1.15-1.66)	1.67 (1.38-2.04)	2.08 (1.67-2.63)	2.42 (1.89-3.12)	2.77 (2.11-3.67)	3.14 (2.32-4.29)	3.66 (2.60-5.23)	4.09 (2.79-6.05)	
30-min	0.602 (0.506-0.724)	0.798 (0.670-0.962)	1.07 (0.892-1.29)	1.29 (1.07-1.58)	1.62 (1.29-2.04)	1.87 (1.47-2.42)	2.15 (1.64-2.85)	2.44 (1.80-3.33)	2.84 (2.01-4.06)	3.17 (2.16-4.69)	
60-min	0.458 (0.384-0.551)	0.607 (0.509-0.732)	0.812 (0.678-0.981)	0.985 (0.816-1.20)	1.23 (0.983-1.55)	1.43 (1.12-1.84)	1.63 (1.24-2.17)	1.85 (1.37-2.53)	2.16 (1.53-3.09)	2.41 (1.65-3.57)	
2-hr	0.334 (0.280-0.402)	0.439 (0.368-0.529)	0.580 (0.486-0.702)	0.699 (0.579-0.852)	0.864 (0.691-1.09)	0.995 (0.778-1.29)	1.13 (0.862-1.50)	1.27 (0.942-1.74)	1.47 (1.04-2.10)	1.63 (1.11-2.41)	
3-hr	0.276 (0.232-0.332)	0.362 (0.303-0.436)	0.476 (0.398-0.575)	0.572 (0.474-0.697)	0.704 (0.563-0.889)	0.809 (0.632-1.04)	0.916 (0.698-1.21)	1.03 (0.761-1.41)	1.19 (0.839-1.69)	1.31 (0.893-1.94)	
6-hr	0.198 (0.166-0.238)	0.259 (0.217-0.311)	0.340 (0.284-0.410)	0.407 (0.337-0.496)	0.499 (0.399-0.630)	0.571 (0.447-0.738)	0.645 (0.491-0.855)	0.722 (0.534-0.986)	0.828 (0.586-1.18)	0.911 (0.622-1.35)	
12-hr	0.130 (0.109-0.157)	0.171 (0.144-0.207)	0.226 (0.189-0.273)	0.270 (0.224-0.330)	0.332 (0.265-0.419)	0.379 (0.296-0.489)	0.427 (0.326-0.566)	0.477 (0.353-0.652)	0.546 (0.386-0.779)	0.599 (0.409-0.886)	
24-hr	0.085 (0.075-0.098)	0.113 (0.100-0.130)	0.150 (0.132-0.174)	0.180 (0.158-0.211)	0.222 (0.188-0.268)	0.254 (0.211-0.313)	0.287 (0.233-0.362)	0.321 (0.254-0.416)	0.368 (0.279-0.495)	0.404 (0.297-0.563)	
2-day	0.050 (0.045-0.058)	0.069 (0.061-0.080)	0.094 (0.083-0.109)	0.114 (0.100-0.134)	0.143 (0.121-0.173)	0.166 (0.138-0.204)	0.189 (0.153-0.239)	0.214 (0.169-0.277)	0.249 (0.189-0.335)	0.276 (0.203-0.384)	
3-day	0.036 (0.031-0.041)	0.049 (0.044-0.057)	0.068 (0.060-0.079)	0.084 (0.073-0.098)	0.106 (0.090-0.128)	0.125 (0.103-0.153)	0.144 (0.116-0.181)	0.164 (0.129-0.212)	0.193 (0.146-0.259)	0.216 (0.158-0.301)	
4-day	0.029 (0.025-0.033)	0.040 (0.036-0.047)	0.056 (0.050-0.065)	0.070 (0.061-0.081)	0.089 (0.075-0.107)	0.105 (0.087-0.129)	0.121 (0.098-0.153)	0.139 (0.110-0.180)	0.165 (0.125-0.221)	0.185 (0.136-0.258)	
7-day	0.019 (0.017-0.022)	0.027 (0.024-0.031)	0.038 (0.033-0.044)	0.047 (0.041-0.055)	0.061 (0.051-0.073)	0.071 (0.059-0.088)	0.083 (0.067-0.105)	0.096 (0.076-0.124)	0.114 (0.086-0.153)	0.129 (0.095-0.179)	
10-day	0.014 (0.013-0.017)	0.020 (0.018-0.024)	0.029 (0.025-0.033)	0.036 (0.031-0.042)	0.046 (0.039-0.056)	0.055 (0.046-0.067)	0.064 (0.052-0.081)	0.074 (0.058-0.096)	0.088 (0.067-0.119)	0.100 (0.073-0.139)	
20-day	0.009 (0.008-0.010)	0.013 (0.011-0.015)	0.018 (0.016-0.021)	0.023 (0.020-0.027)	0.030 (0.025-0.036)	0.035 (0.029-0.044)	0.042 (0.034-0.052)	0.048 (0.038-0.063)	0.058 (0.044-0.078)	0.066 (0.049-0.092)	
30-day	0.007 (0.006-0.008)	0.010 (0.009-0.012)	0.014 (0.013-0.017)	0.018 (0.016-0.021)	0.024 (0.020-0.029)	0.029 (0.024-0.035)	0.034 (0.027-0.042)	0.039 (0.031-0.051)	0.047 (0.036-0.063)	0.054 (0.040-0.075)	
45-day	0.005 (0.005-0.006)	0.008 (0.007-0.009)	0.011 (0.010-0.013)	0.014 (0.013-0.017)	0.019 (0.016-0.023)	0.023 (0.019-0.028)	0.027 (0.022-0.033)	0.031 (0.024-0.040)	0.037 (0.028-0.050)	0.043 (0.031-0.060)	
60-day	0.005 (0.004-0.005)	0.007 (0.006-0.008)	0.010 (0.009-0.011)	0.012 (0.011-0.014)	0.016 (0.014-0.020)	0.019 (0.016-0.024)	0.023 (0.019-0.029)	0.027 (0.021-0.035)	0.032 (0.025-0.044)	0.037 (0.027-0.052)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 33.5589°, Longitude: -117.1837°

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Tue May 12 16:47:48 2020

Back to Top

Maps & aerials

Large scale terrain

Back to Top

<u>US Department of Commerce</u> <u>National Oceanic and Atmospheric Administration</u> National Weather Service
National Water Center
1325 East West Highway Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Example AND ASSOCIATES, INC.

660 S. FIGUEROA ST, SUITE 2050, LOS ANGELES, CA 90017
PHONE: 213-261-4040

```
****************** DESCRIPTION OF STUDY **************
* UHS Rancho Springs
 Existing Conditions
 10-year analysis
 FILE NAME: RS_E.DAT
 TIME/DATE OF STUDY: 21:12 05/17/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.070
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.985
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.430
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.630
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4144876
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4152232
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT =
              10.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4145
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
       AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
          (FT) SIDE / SIDE/ WAY (FT)
NO.
     (FT)
                                           (FT) (FT) (FT)
    ===
             20.0
                    0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
 1
     30.0
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************
 FLOW PROCESS FROM NODE
                         10.00 TO NODE
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
```

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

```
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1155.02
 DOWNSTREAM ELEVATION(FEET) = 1153.91
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(1.11)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.17
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE
                      20.00 TO NODE
                                     21.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1158.00
 DOWNSTREAM ELEVATION(FEET) = 1155.00
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(3.00)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.27
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1155.00 DOWNSTREAM(FEET) = 1153.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 99.00 CHANNEL SLOPE = 0.0202
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.530
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.26
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.31
 Tc(MIN.) = 6.31
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) = 0.52
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.28
                                        22.00 =
 LONGEST FLOWPATH FROM NODE
                         20.00 TO NODE
******************************
 FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.530
```

```
RS_E 10.RES
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) =
                 0.3 TOTAL RUNOFF(CFS) = 0.76
 TC(MIN.) =
         6.31
********************************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.70 DOWNSTREAM(FEET) = 1144.47
 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 2.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.75
 GIVEN PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.76
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 20.00 TO NODE
                                   23.00 =
                                           225.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE
                  70.00 TO NODE 71.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
```

SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =

******************************** FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>

ELEVATION DATA: UPSTREAM(FEET) = 1148.65 DOWNSTREAM(FEET) = 1148.56 FLOW LENGTH(FEET) = 18.50 MANNING'S N = 0.013

DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.7 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 2.04

GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 0.27

PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.15

LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 10018.50 FEET.

FLOW PROCESS FROM NODE 72.00 TO NODE 73.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<

______ ELEVATION DATA: UPSTREAM(FEET) = 1148.56 DOWNSTREAM(FEET) = 1147.02

```
RS E 10.RES
 FLOW LENGTH(FEET) = 102.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.07
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.27
 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) =
                                    5.71
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                    73.00 =
                                           10120.50 FEET.
*******************************
 FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.71
 RAINFALL INTENSITY(INCH/HR) = 2.64
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
**********************************
 FLOW PROCESS FROM NODE 74.00 TO NODE 75.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.27
                 0.11 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*****************************
 FLOW PROCESS FROM NODE 75.00 TO NODE 73.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.80 DOWNSTREAM(FEET) = 1146.73
 FLOW LENGTH(FEET) = 14.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
                            2.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.04
 GIVEN PIPE DIAMETER(INCH) = 12.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.27
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =
                                  5.12
 LONGEST FLOWPATH FROM NODE 74.00 TO NODE
                                   73.00 =
                                           114.70 FEET.
*********************************
 FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.12
```

** CONFLUENCE DATA **

RAINFALL INTENSITY(INCH/HR) = 2.76 TOTAL STREAM AREA(ACRES) = 0.11 PEAK FLOW RATE(CFS) AT CONFLUENCE =

```
RS E 10.RES
 STREAM
         RUNOFF
                  Tc
                       INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
    1
          0.27
                 5.71
                          2.638
                                     0.11
    2
          0.27
                 5.12
                          2.759
                                     0.11
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
0.51 5.12 2.759
0.53 5.71 2.638
 NUMBER
         (CFS)
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 0.53 Tc(MIN.) = TOTAL AREA(ACRES) = 0.2
                                   5.71
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 73.00 = 10120.50 FEET.
*******************************
 FLOW PROCESS FROM NODE 73.00 TO NODE
                                 76.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.73 DOWNSTREAM(FEET) = 1146.24
 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.13
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.53
 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) =
                                     5.98
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                    76.00 = 10172.50 FEET.
*********************************
                    76.00 TO NODE
 FLOW PROCESS FROM NODE
                                 76.00 IS CODE =
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.98
 RAINFALL INTENSITY(INCH/HR) = 2.59
 TOTAL STREAM AREA(ACRES) = 0.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 77.00 TO NODE
                                 78.00 \text{ IS CODE} = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
```

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841 SOIL CLASSIFICATION IS "C"

```
SUBAREA RUNOFF(CFS) = 0.27
 TOTAL AREA(ACRES) =
                   0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 78.00 TO NODE 76.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.80 DOWNSTREAM(FEET) = 1146.71
 FLOW LENGTH(FEET) = 18.80 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.04
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              0.27
 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) =
                                     5.15
 LONGEST FLOWPATH FROM NODE 77.00 TO NODE
                                    76.00 = 10018.80 FEET.
***********************************
 FLOW PROCESS FROM NODE 76.00 TO NODE 76.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.15
 RAINFALL INTENSITY(INCH/HR) = 2.75
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.27
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc INTENSITY
                                   AREA
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR) (ACRE)
          0.53 5.98
0.27 5.15
                 5.98 2.587
                                   0.22
    1
                          2.752
    2
                                     0.11
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ***************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HO
0.73 5.15 2.752
0.78 5.98 2.587
 NUMBER
                       (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 0.78 Tc(MIN.) = TOTAL AREA(ACRES) = 0.3
                                     5.98
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     76.00 =
                                             10172.50 FEET.
********************************
 FLOW PROCESS FROM NODE 76.00 TO NODE 23.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1146.24 DOWNSTREAM(FEET) = 1145.22
 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
                            3.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12
 GIVEN PIPE DIAMETER(INCH) = 12.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              0.78
 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                      70.00 TO NODE
                                    23.00 = 10240.50 FEET.
*********************************
                    23.00 TO NODE
                                 23.00 IS CODE = 11
 FLOW PROCESS FROM NODE
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF Tc
 STREAM
                      INTENSITY
                                 AREA
                (MIN.)
 NUMBER
         (CFS)
                       (INCH/HOUR)
                                 (ACRE)
                6.26
                       2.539
    1
          0.78
                                  0.33
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 23.00 = 10240.50 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                Tc
                      INTENSITY
                                 AREA
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR)
                                 (ACRE)
    1
          0.76
                6.39
                       2.518
                                  0.33
 LONGEST FLOWPATH FROM NODE
                       20.00 TO NODE
                                   23.00 =
                                             225.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***********************************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
              (MIN.)
        (CFS)
 NUMBER
                       (INCH/HOUR)
    1
         1.53
                          2.539
    2
         1.54
                 6.39
                          2.518
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.53 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    0.7
*****************************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*******************************
 FLOW PROCESS FROM NODE
                   23.00 TO NODE
                                 26.00 \text{ IS CODE} = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.47 DOWNSTREAM(FEET) = 1143.66
 FLOW LENGTH(FEET) = 120.60 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 4.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.55
 GIVEN PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 1.53
 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) =
                                    6.82
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                    26.00 =
                                            10361.10 FEET.
```

RS E 10.RES

```
*******************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.82
 RAINFALL INTENSITY(INCH/HR) = 2.45
 TOTAL STREAM AREA(ACRES) = 0.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
 FLOW PROCESS FROM NODE
                   24.00 TO NODE
                                 25.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1155.20
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(1.80)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
 ELEVATION DATA: UPSTREAM(FEET) = 1155.20 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 197.00 CHANNEL SLOPE = 0.0155
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.346
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8817
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.27
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.58
 Tc(MIN.) = 7.58
 SUBAREA AREA(ACRES) = 0.34 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) =
                           PEAK FLOW RATE(CFS) = 0.90
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.45
                                    26.00 =
 LONGEST FLOWPATH FROM NODE
                      24.00 TO NODE
******************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.346
```

```
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8817
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) =
                    0.34 SUBAREA RUNOFF(CFS) =
                                             0.70
 TOTAL AREA(ACRES) =
                    0.8 TOTAL RUNOFF(CFS) = 1.60
 TC(MIN.) =
          7.58
********************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
............
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
-----
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.58
 RAINFALL INTENSITY(INCH/HR) = 2.35
 TOTAL STREAM AREA(ACRES) = 0.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                1.60
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                    AREA
         (CFS)
 NUMBER
                                    (ACRE)
    1
                                       0.66
    2
          1.60 7.58
                          2.346
                                       0.76
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
2.98 6.82 2.450
3.07 7.58 2.346
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.07 Tc(MIN.) = 7.58
TOTAL AREA(ACRES) = 1.4
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                      26.00 = 10361.10 FEET.
**********************************
 FLOW PROCESS FROM NODE
                     30.00 TO NODE
                                  31.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1163.00 DOWNSTREAM(FEET) = 1157.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 329.00 CHANNEL SLOPE = 0.0182
 CHANNEL BASE(FEET) = 1.60 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.947
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8788
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.28
 AVERAGE FLOW DEPTH(FEET) = 0.15 TRAVEL TIME(MIN.) = 4.30
 Tc(MIN.) = 11.87
 SUBAREA AREA(ACRES) =
                     0.08
                             SUBAREA RUNOFF(CFS) =
```

RS E 10.RES 1.5 PEAK FLOW RATE(CFS) = 3.21

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 1.21 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 31.00 = 10690.10 FEET. ********************************* FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 41 ------>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1152.57 DOWNSTREAM(FEET) = 1145.78 FLOW LENGTH(FEET) = 210.50 MANNING'S N = 0.013DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.99 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.21PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 12.31LONGEST FLOWPATH FROM NODE 70.00 TO NODE 32.00 = 10900.60 FEET. ****************************** FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1 ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.31 RAINFALL INTENSITY(INCH/HR) = 1.92TOTAL STREAM AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.21 ****************************** FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 1162.00 DOWNSTREAM ELEVATION(FEET) = 1156.99 ELEVATION DIFFERENCE(FEET) = 5.01 TC = 0.303*[(100.00**3)/(5.01)]**.2 = COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 0.15TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = ******************************* FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 51 ----->>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1156.99 DOWNSTREAM(FEET) = 1150.03 CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0398 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.486
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8825
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.84
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.59
 Tc(MIN.) =
          6.59
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 0.86
 TOTAL AREA(ACRES) = 0.4
                             PEAK FLOW RATE(CFS) = 1.00
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.98
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE 35.00 =
                                               275.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.486
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8825
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 0.86
 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 1.86
 TC(MIN.) = 6.59
*******************************
 FLOW PROCESS FROM NODE 35.00 TO NODE 32.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.37 DOWNSTREAM(FEET) = 1145.76
 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.23
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              1.86
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE
                                      32.00 =
                                               298.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.65
 RAINFALL INTENSITY(INCH/HR) = 2.48
 TOTAL STREAM AREA(ACRES) = 0.84
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 ** CUNFLUENCE DATA

STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 3.21 12.31 1.918 1.56

2 1.86 6.65 2.476 0.84
                                   1.50
                                      0.84
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
```

ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA

```
RS E 10.RES
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
3.59 6.65 2.476
4.65 12.31 1.918
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.65 Tc(MIN.) = 12.31
TOTAL AREA(ACRES) = 2.3
 TOTAL AREA(ACRES) =
 LONGEST FLOWPATH FROM NODE
                          70.00 TO NODE
                                        32.00 = 10900.60 FEET.
**************************
 FLOW PROCESS FROM NODE 32.00 TO NODE 36.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.75 DOWNSTREAM(FEET) = 1142.04
 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.26
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 12.72
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 36.00 = 11076.60 FEET.
*******************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.72
                          1.89
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 2.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  4.65
*******************************
 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.49
 ELEVATION DIFFERENCE(FEET) = 7.51
TC = 0.303*[( 100.00**3)/( 7.51)]**.2 = 3.210
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
```

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 0.30TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.30

```
FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.49 DOWNSTREAM(FEET) = 1150.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 282.00 CHANNEL SLOPE = 0.0301
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.344
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8817
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.81
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.59
 Tc(MIN.) =
         7.59
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 0.97
 TOTAL AREA(ACRES) = 0.6
                             PEAK FLOW RATE(CFS) = 1.27
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 2.04
 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 39.00 =
*********************************
 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.344
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8817
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 0.97
 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 2.24
 TC(MIN.) = 7.59
**********************************
 FLOW PROCESS FROM NODE 39.00 TO NODE 36.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.36 DOWNSTREAM(FEET) = 1142.28
 FLOW LENGTH(FEET) = 9.50 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.85
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
                                    7.60
 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 36.00 = 391.50 FEET.
*******************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.60
 RAINFALL INTENSITY(INCH/HR) = 2.34
 TOTAL STREAM AREA(ACRES) = 1.06
```

2.24

ELEVATION DIFFERENCE(FEET) =

```
** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc
                       INTENSITY
                                  AREA
 NUMBER
                (MIN.) (INCH/HOUR) (ACRE)
         (CFS)
         4.65
                12.72 1.893
                                   2.34
    1
          2.24 7.60
    2
                         2.342
                                    1.06
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
       (CFS) (MIN.) (INCH/HO
5.02 7.60 2.342
6.46 12.72 1.893
 NUMBER
                      (INCH/HOUR)
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.46 Tc(MIN.) = 12.72
TOTAL AREA(ACRES) = 3.4
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                   36.00 = 11076.60 FEET.
********************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 40.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.91 DOWNSTREAM(FEET) = 1141.39
 FLOW LENGTH(FEET) = 33.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 7.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.13
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 12.79
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 40.00 = 11110.30 FEET.
*****************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
**********************************
 FLOW PROCESS FROM NODE
                   41.00 TO NODE
                                42.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.65
```

7.35

ELEVATION DIFFERENCE(FEET) = 7.35 TC = 0.303*[(100.00**3)/(7.35)]**.2 = 3.224 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

Page 14

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                  0.27
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.65 DOWNSTREAM(FEET) = 1151.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 236.00 CHANNEL SLOPE = 0.0324
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.379
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8819
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.69
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.32
 Tc(MIN.) = 7.32
 SUBAREA AREA(ACRES) = 0.28 SUBAREA RUNOFF(CFS) = 0.59
 TOTAL AREA(ACRES) = 0.4
                           PEAK FLOW RATE(CFS) = 0.86
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 2.00
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 43.00 =
******************************
 FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.379
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8819
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 1.46
 TC(MIN.) = 7.32
*****************************
 FLOW PROCESS FROM NODE
                   43.00 TO NODE 80.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.61 DOWNSTREAM(FEET) = 1143.76
 FLOW LENGTH(FEET) = 8.30 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000
 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.66
 ESTIMATED PIPE DIAMETER(INCH) = 8.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.46
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.33
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 80.00 = 344.30 FEET.
**********************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.33
 RAINFALL INTENSITY(INCH/HR) = 2.38
 TOTAL STREAM AREA(ACRES) = 0.68
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  1.46
*******************************
 FLOW PROCESS FROM NODE 44.00 TO NODE
                                    45.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1155.93
 DOWNSTREAM ELEVATION(FEET) = 1153.39
 ELEVATION DIFFERENCE(FEET) = 2.54
 TC = 0.303*[(100.00**3)/(2.54)]**.2 = 3.987
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                     0.15
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1153.39 DOWNSTREAM(FEET) = 1150.99
 CHANNEL LENGTH THRU SUBAREA(FEET) = 74.30 CHANNEL SLOPE = 0.0323
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.572
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.19
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 1.07
 Tc(MIN.) =
           6.07
 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.09
TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.31
 LONGEST FLOWPATH FROM NODE 44.00 TO NODE 46.00 = 174.30 FEET.
*******************************
 FLOW PROCESS FROM NODE 46.00 TO NODE 46.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.572
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.09
TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.33
 TC(MIN.) = 6.07
```

```
FLOW PROCESS FROM NODE 46.00 TO NODE 80.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.97 DOWNSTREAM(FEET) = 1144.76
 FLOW LENGTH(FEET) = 57.10 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.63
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.33
 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) =
                                     6.33
 LONGEST FLOWPATH FROM NODE 44.00 TO NODE
                                       80.00 =
                                                 231.40 FEET.
**************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.33
 RAINFALL INTENSITY(INCH/HR) = 2.53
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.33
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                     AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
1.46 7.33 2.378 0.68
0.33 6.33 2.527 0.14
 NUMBER
    1
    2
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                        INTENSITY
 STREAM RUNOFF Tc
        (CFS) (MIN.) (INCH/HOUR)
1.59 6.33 2.527
1.77 7.33 2.378
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.77 Tc(MIN.) = 7.33
TOTAL AREA(ACRES) = 0.8
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 80.00 = 344.30 FEET.
*********************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 40.00 IS CODE = 41
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1143.76 DOWNSTREAM(FEET) = 1141.39
 FLOW LENGTH(FEET) = 81.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 3.5 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.15
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                  1.77
 PIPE TRAVEL TIME(MIN.) = 0.22
                           Tc(MIN.) =
                                      7.55
 LONGEST FLOWPATH FROM NODE
                       41.00 TO NODE
                                      40.00 =
                                               425.30 FEET.
*******************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF Tc
 STREAM
                        INTENSITY
                                   AREA
                        (INCH/HOUR)
 NUMBER
          (CFS)
                 (MIN.)
                                   (ACRE)
                 7.55
    1
           1.77
                         2.349
                                    0.82
 LONGEST FLOWPATH FROM NODE
                        41.00 TO NODE
                                     40.00 =
                                              425.30 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
               12.79
    1
          6.46
                        1.888
                                    3.40
                                     40.00 = 11110.30 FEET.
 LONGEST FLOWPATH FROM NODE
                        70.00 TO NODE
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************************
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
        (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
          5.58
                 7.55
                           2.349
    2
          7.88
                12.79
                           1.888
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.88 Tc(MIN.) =
 TOTAL AREA(ACRES) =
*********************************
 FLOW PROCESS FROM NODE
                     40.00 TO NODE
                                  40.00 \text{ IS CODE} = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
_____
***********************************
                    40.00 TO NODE 47.00 IS CODE = 41
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.38 DOWNSTREAM(FEET) = 1138.35
 FLOW LENGTH(FEET) = 210.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.35
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                  7.88
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) =
                                     13.27
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     47.00 = 11320.30 FEET.
*******************************
 FLOW PROCESS FROM NODE
                     47.00 TO NODE
                                   48.00 \text{ IS CODE} = 41
```

Page 18

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 1135.35 DOWNSTREAM(FEET) = 1134.95
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.89
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.88
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 13.33
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 48.00 = 11345.30 FEET.
*********************************
 FLOW PROCESS FROM NODE 48.00 TO NODE 48.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.33
 RAINFALL INTENSITY(INCH/HR) = 1.86
 TOTAL STREAM AREA(ACRES) = 4.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 49.00 TO NODE 63.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.34
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 63.00 TO NODE 50.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1152.00 DOWNSTREAM(FEET) = 1149.03 CHANNEL LENGTH THRU SUBAREA(FEET) = 94.00 CHANNEL SLOPE = 0.0316
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.576
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.50
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.04
 Tc(MIN.) = 6.04
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) = 0.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.78
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE 50.00 = 1000094.00 FEET.
```

```
RS E 10.RES
```

```
***************************
 FLOW PROCESS FROM NODE 50.00 TO NODE
                                 50.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.576
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 0.85
 TC(MIN.) =
           6.04
**********************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 48.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.74 DOWNSTREAM(FEET) = 1136.51
 FLOW LENGTH(FEET) = 24.30 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.53
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.85
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 6.08
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE 48.00 = 1000118.31 FEET.
**********************************
 FLOW PROCESS FROM NODE
                    48.00 TO NODE
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.08
 RAINFALL INTENSITY(INCH/HR) = 2.57
 TOTAL STREAM AREA(ACRES) = 0.36
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
    1
          7.88 13.33 1.856
                                    4.22
                                      0.36
    2
          0.85 6.08
                           2.570
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.) (INCH/HO
4.44 6.08 2.570
8.49 13.33 1.856
 NUMBER
                        (INCH/HOUR)
    1
                         1.856
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.49 Tc(MIN.) =
                                    13.33
```

Page 20

```
LONGEST FLOWPATH FROM NODE 49.00 TO NODE
                                   48.00 = 1000118.31 FEET.
*******************************
 FLOW PROCESS FROM NODE 48.00 TO NODE 51.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1134.95 DOWNSTREAM(FEET) = 1132.94
 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.04
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              8.49
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 13.63
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE
                                    51.00 = 1000244.31 FEET.
*******************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.63
 RAINFALL INTENSITY(INCH/HR) = 1.84
 TOTAL STREAM AREA(ACRES) = 4.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 53.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1151.89
 DOWNSTREAM ELEVATION(FEET) = 1149.00
 ELEVATION DIFFERENCE(FEET) =
 ELEVATION DIFFERENCE(FEET) = 2.89
TC = 0.303*[(100.00**3)/(2.89)]**.2 = <math>3.885
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.34
 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 53.00 TO NODE 51.00 IS CODE = 41
 ------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.16 DOWNSTREAM(FEET) = 1144.09
 FLOW LENGTH(FEET) = 76.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
                             2.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.15
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.34
 PIPE TRAVEL TIME(MIN.) = 0.41
                          Tc(MIN.) =
```

TOTAL AREA(ACRES) = 4.6

LONGEST FLOWPATH FROM NODE 51.00 TO NODE 51.00 = 176.70 FEET. ********************************** FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.41 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.34 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA (CFS) (MIN.) (INCH/HOUR) (ACRE) 8.49 13.63 1.839 4.58 0.34 5.41 2.698 0.14 NUMBER 4.58 1 0.34 5.41 2 0.14 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) (INCH/HOUR) 5.41 2.698 8.73 13.63 1.830 1 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.73 Tc(MIN.) = 13.63TOTAL AREA(ACRES) = 4.7 LONGEST FLOWPATH FROM NODE 49.00 TO NODE 51.00 = 1000244.31 FEET. ******************************** FLOW PROCESS FROM NODE 51.00 TO NODE 54.00 IS CODE = 41 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>> ______ ELEVATION DATA: UPSTREAM(FEET) = 1132.94 DOWNSTREAM(FEET) = 1131.53 FLOW LENGTH(FEET) = 23.50 MANNING'S N = 0.013DEPTH OF FLOW IN 60.0 INCH PIPE IS 5.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.27 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.73PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 13.66LONGEST FLOWPATH FROM NODE 49.00 TO NODE 54.00 = 1000267.81 FEET. *********************************** FLOW PROCESS FROM NODE 54.00 TO NODE >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< ______

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

```
RAINFALL INTENSITY(INCH/HR) = 1.84
 TOTAL STREAM AREA(ACRES) = 4.72
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                8.73
******************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) =
                       5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.15
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1151.26 CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = 0.0122
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.571
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.94
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 1.07
 Tc(MIN.) =
          6.07
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) = 0.1
                             PEAK FLOW RATE(CFS) = 0.19
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 0.83
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE 57.00 = ******* FEET.
*******************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.571
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.24
 TC(MIN.) = 6.07
*******************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 54.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.14 DOWNSTREAM(FEET) = 1135.70
 FLOW LENGTH(FEET) = 103.00 MANNING'S N = 0.013
```

TIME OF CONCENTRATION(MIN.) = 13.66

```
1.3 INCHES
 DEPTH OF FLOW IN 10.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.62
 GIVEN PIPE DIAMETER(INCH) = 10.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                 0.24
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 6.37
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
                                       54.00 = ********** FEET.
*******************************
 FLOW PROCESS FROM NODE
                     54.00 TO NODE
                                   54.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.37
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc INTENSITY
                                      AREA
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                                      (ACRE)
    1
          8.73
                  13.66 1.837
                                       4.72
    2
          0.24 6.37
                            2.520
                                        0.10
*******************************WARNING***********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
        (CFS) (MIN.)
4.31 6.37
 NUMBER
                         (INCH/HOUR)
    1
                         2.520
           8.90 13.66
                           1.837
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.90 Tc(MIN.) = 13.66
 TOTAL AREA(ACRES) =
                     4.8
 LONGEST FLOWPATH FROM NODE
                         55.00 TO NODE
                                       ********************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 58.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1131.53 DOWNSTREAM(FEET) = 1130.68
 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 9.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.51
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
                  8.90
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.73 Tc(MIN.) =
                                       14.39
                                       58.00 = ********* FEET.
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
*******************************
```

FLOW PROCESS FROM NODE 58.00 TO NODE 58.00 IS CODE = 1

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.39
 RAINFALL INTENSITY(INCH/HR) = 1.80
TOTAL STREAM AREA(ACRES) = 4.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               8.90
**********************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.15
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.15
******************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1145.05
 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0244
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.307
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8815
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.65
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.88
 Tc(MIN.) = 7.88
 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
                            PEAK FLOW RATE(CFS) = 0.96
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.80
 LONGEST FLOWPATH FROM NODE
                       59.00 TO NODE 61.00 =
                                             319.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 61.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.307
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8815
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 1.77
 TC(MIN.) = 7.88
********************************
 FLOW PROCESS FROM NODE
                    61.00 TO NODE
                                  58.00 IS CODE = 31
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1140.87 DOWNSTREAM(FEET) = 1140.80
 FLOW LENGTH(FEET) = 14.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.40
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               1.77
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 59.00 TO NODE
                                       58.00 = 333.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 58.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.95
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 8.90 14.39 1.798

2 1.77 7.95 2.299
                                     AREA
                                     (ACRE)
                                     4.82
                                       0.86
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
               (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
          6.69
                 7.95
                         2.299
    1
    2
          10.29 14.39
                           1.798
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 10.29 Tc(MIN.) = 14.39
 TOTAL AREA(ACRES) =
                     5.7
                                      58.00 = ********** FEET.
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
*******************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 62.00 IS CODE = 41
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1130.68 DOWNSTREAM(FEET) = 1130.30
 FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 10.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.75
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               10.29
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
RS E 10.RES
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 14.69
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
                                     62.00 = ********** FEET.
**********************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1154.94
 DOWNSTREAM ELEVATION(FEET) = 1151.51
 ELEVATION DIFFERENCE(FEET) = 3.43
TC = 0.303*[( 100.00**3)/( 3.43)]**.2 = 3.754
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 65.00 TO NODE
                                  66.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.51 DOWNSTREAM(FEET) = 1146.98 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.0174
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.259
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8811
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.32
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 3.29
 Tc(MIN.) = 8.29
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.74
TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 0.93
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.51
 LONGEST FLOWPATH FROM NODE 64.00 TO NODE 66.00 = 360.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.259
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8811
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) =
                                            0.74
 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 1.67
```

```
TC(MIN.) = 8.29
```

```
***********************************
 FLOW PROCESS FROM NODE
                    66.00 TO NODE
                                 66.00 \text{ IS CODE} = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.29
 RAINFALL INTENSITY(INCH/HR) = 2.26
 TOTAL STREAM AREA(ACRES) = 0.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              1.67
*******************************
 FLOW PROCESS FROM NODE 67.00 TO NODE 68.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.15
TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 68.00 TO NODE 66.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1146.98
 CHANNEL LENGTH THRU SUBAREA(FEET) = 236.00 CHANNEL SLOPE = 0.0212
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.295
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8814
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.32
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.98
 Tc(MIN.) =
          7.98
 SUBAREA AREA(ACRES) = 0.26
                           SUBAREA RUNOFF(CFS) = 0.53
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                   0.3
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.57
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 66.00 = 3636.00 FEET.
****************************
 FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.295
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8814
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.53
 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 1.20
 TC(MIN.) = 7.98
```

```
*******************************
 FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 1
 ...........
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.98
 RAINFALL INTENSITY(INCH/HR) = 2.30
 TOTAL STREAM AREA(ACRES) = 0.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                   Tc
 STREAM RUNOFF
                         INTENSITY
                                      AREA
       (CFS) (MIN.) (INCH/HOUR)
1.67 8.29 2.259
1.20 7.98 2.295
                  (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
                                     0.82
    1
    2
                                        0.58
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
          2.81 7.98 2.295
    1
    2
          2.85
                 8.29
                          2.259
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.85 Tc(MIN.) = TOTAL AREA(ACRES) = 1.4
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE
                                        66.00 = 3636.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 66.00 TO NODE
                                   69.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.98 DOWNSTREAM(FEET) = 1139.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 281.00 CHANNEL SLOPE = 0.0284
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.073
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8798
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.45
 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 1.91
 Tc(MIN.) = 10.20
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.6
                             PEAK FLOW RATE(CFS) = 3.20
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.59
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 69.00 = 3917.00 FEET.
```

```
***************************
                   69.00 TO NODE
 FLOW PROCESS FROM NODE
                                69.00 IS CODE = 81
   ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.073
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8798
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                  1.8 TOTAL RUNOFF(CFS) = 3.54
 TC(MIN.) =
         10.20
***********************************
 FLOW PROCESS FROM NODE
                   69.00 TO NODE
                                62.00 \text{ IS CODE} = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1132.39 DOWNSTREAM(FEET) = 1132.00
 FLOW LENGTH(FEET) = 11.40 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.21
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.54
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                   10.22
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE
                                    62.00 =
                                            3928.40 FEET.
********************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
               (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                                (ACRE)
          3.54 10.22
                      2.072
                                 1.78
   1
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 62.00 = 3928.40 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
        RUNOFF
              Tc
                      INTENSITY
                                AREA
 NUMBER
        (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         10.29
               14.69
                       1.782
                                  5.68
                       55.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   ********************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***************************
 ** PEAK FLOW RATE TABLE **
 STREAM
      RUNOFF Tc
                      INTENSITY
             (MIN.)
10.22
14.69
 NUMBER
        (CFS)
                      (INCH/HOUR)
   1
         10.70
                         2.072
    2
        13.34
                         1.782
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 13.34 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    7.5
***************************
```

Page 30

RS_E_10.RES

FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 12

>>>>CLEAR MEMORY BANK # 1 <<<<<

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 7.5 PEAK FLOW RATE(CFS) = 13.34 7.5 TC(MIN.) = 14.69

______ ______

END OF RATIONAL METHOD ANALYSIS

```
RS E 100.RES
**********************************
           RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
       RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                    (RCFC&WCD) 1978 HYDROLOGY MANUAL
        (c) Copyright 1982-2011 Advanced Engineering Software (aes)
                    (Rational Tabling Version 18.0)
                 Release Date: 07/01/2011 License ID 1499
                         Analysis prepared by:
                    Kimley-Horn and Associates, Inc.
                           765 The City Drive
                               Suite 200
                            Orange, CA 92868
****************** DESCRIPTION OF STUDY **************
* UHS Rancho Springs
 Existing Conditions
 100-year analysis
 FILE NAME: RS_E.DAT
 TIME/DATE OF STUDY: 21:13 05/17/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.070
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.985
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.430
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.630
```

SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4144876

SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4152232

COMPUTED RAINFALL INTENSITY DATA:

STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =

SLOPE OF INTENSITY DURATION CURVE = 0.4152

RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD

NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL

AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*

HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

(FT) (FT) SIDE / SIDE/ WAY NO. (FT)

(FT) (FT) (FT)

20.0 0.018/0.018/0.020 0.67 1 30.0 2.00 0.0313 0.167 0.0150

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

===

1. Relative Flow-Depth = 0.00 FEET

as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)

2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN

OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*

**************************** FLOW PROCESS FROM NODE 10.00 TO NODE

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

> ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

```
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1155.02
 DOWNSTREAM ELEVATION(FEET) = 1153.91
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(1.11)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE
                      20.00 TO NODE
                                     21.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1158.00
 DOWNSTREAM ELEVATION(FEET) = 1155.00
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(3.00)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.45
*****************************
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1155.00 DOWNSTREAM(FEET) = 1153.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 99.00 CHANNEL SLOPE = 0.0202
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.217
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.53
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.08
 Tc(MIN.) = 6.08
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) = 0.86
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.61
                                        22.00 =
 LONGEST FLOWPATH FROM NODE
                          20.00 TO NODE
*********************************
 FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.217
```

```
RS_E_ 100.RES
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.41
 TOTAL AREA(ACRES) =
                  0.3 TOTAL RUNOFF(CFS) = 1.27
 TC(MIN.) =
          6.08
********************************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.70 DOWNSTREAM(FEET) = 1144.47
 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 2.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.70
 GIVEN PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.27
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 20.00 TO NODE
                                   23.00 =
                                           225.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE
                   70.00 TO NODE 71.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 41
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.65 DOWNSTREAM(FEET) = 1148.56
 FLOW LENGTH(FEET) = 18.50 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.45
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                   5.13
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 10018.50 FEET.
****************************
 FLOW PROCESS FROM NODE
                   72.00 TO NODE 73.00 IS CODE = 41
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<CCC
>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)

ELEVATION DATA: UPSTREAM(FEET) = 1148.56 DOWNSTREAM(FEET) = 1147.02

```
RS E 100.RES
 FLOW LENGTH(FEET) = 102.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.53
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.45
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) =
                                    5.61
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                    73.00 =
                                           10120.50 FEET.
*******************************
 FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.61
 RAINFALL INTENSITY(INCH/HR) = 4.36
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 74.00 TO NODE 75.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
                  0.11 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 75.00 TO NODE 73.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.80 DOWNSTREAM(FEET) = 1146.73
 FLOW LENGTH(FEET) = 14.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
 GIVEN PIPE DIAMETER(INCH) = 12.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.45
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                  5.10
 LONGEST FLOWPATH FROM NODE 74.00 TO NODE
                                   73.00 =
                                            114.70 FEET.
*********************************
 FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.10
 RAINFALL INTENSITY(INCH/HR) = 4.53
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.45
```

^{**} CONFLUENCE DATA **

```
STREAM
         RUNOFF
                 Tc
                       INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
                 5.61
    1
          0.45
                         4.359
                                     0.11
    2
          0.45
                 5.10
                          4.535
                                     0.11
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                      INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
0.85 5.10 4.535
 NUMBER
         (CFS)
    1
          0.88 5.61
    2
                        4.359
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 0.88 Tc(MIN.) = TOTAL AREA(ACRES) = 0.2
                                   5.61
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 73.00 = 10120.50 FEET.
****************************
 FLOW PROCESS FROM NODE 73.00 TO NODE
                                76.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.73 DOWNSTREAM(FEET) = 1146.24
 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.62
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.88
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
                                     5.85
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                   76.00 = 10172.50 FEET.
*********************************
                   76.00 TO NODE
 FLOW PROCESS FROM NODE
                                76.00 IS CODE =
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.85
 RAINFALL INTENSITY(INCH/HR) = 4.28
 TOTAL STREAM AREA(ACRES) = 0.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
 FLOW PROCESS FROM NODE 77.00 TO NODE
                                 78.00 \text{ IS CODE} = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
```

SOIL CLASSIFICATION IS "C"

RS E 100.RES

Page 5

```
SUBAREA RUNOFF(CFS) = 0.45
 TOTAL AREA(ACRES) =
                   0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 78.00 TO NODE 76.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.80 DOWNSTREAM(FEET) = 1146.71
 FLOW LENGTH(FEET) = 18.80 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.45
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                     5.13
 LONGEST FLOWPATH FROM NODE 77.00 TO NODE
                                    76.00 = 10018.80 FEET.
***********************************
 FLOW PROCESS FROM NODE
                    76.00 TO NODE 76.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.13
 RAINFALL INTENSITY(INCH/HR) = 4.52
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.45
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 TC INTENSITY AREA
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR) (ACRE)
         0.88 5.85
0.45 5.13
                 5.85 4.284
                                   0.22
    1
                          4.524
    2
                                     0.11
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HO
1.22 5.13 4.524
1.30 5.85 4.284
 NUMBER
                       (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.30 Tc(MIN.) = TOTAL AREA(ACRES) = 0.3
                                     5.85
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     76.00 = 10172.50 FEET.
********************************
 FLOW PROCESS FROM NODE 76.00 TO NODE 23.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1146.24 DOWNSTREAM(FEET) = 1145.22
 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
                            4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.77
 GIVEN PIPE DIAMETER(INCH) = 12.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              1.30
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                      70.00 TO NODE
                                    23.00 = 10240.50 FEET.
*********************************
                    23.00 TO NODE
                                 23.00 IS CODE = 11
 FLOW PROCESS FROM NODE
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF Tc
 STREAM
                      INTENSITY
                                 AREA
                (MIN.)
 NUMBER
         (CFS)
                       (INCH/HOUR)
                                 (ACRE)
          1.30
                6.09
    1
                       4.214
                                  0.33
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 23.00 = 10240.50 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                Tc
                      INTENSITY
                                 AREA
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR)
                                 (ACRE)
                6.15
    1
          1.27
                       4.198
                                  0.33
 LONGEST FLOWPATH FROM NODE
                       20.00 TO NODE
                                   23.00 =
                                             225.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***********************************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
              (MIN.)
 NUMBER
        (CFS)
                       (INCH/HOUR)
    1
         2.56
                          4.214
    2
         2.57
                 6.15
                          4.198
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.56 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    0.7
*****************************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
******************************
 FLOW PROCESS FROM NODE
                   23.00 TO NODE
                                 26.00 \text{ IS CODE} = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.47 DOWNSTREAM(FEET) = 1143.66
 FLOW LENGTH(FEET) = 120.60 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 6.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12
 GIVEN PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 2.56
 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) =
                                    6.58
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                    26.00 =
                                            10361.10 FEET.
```

RS E 100.RES

```
*************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.58
 RAINFALL INTENSITY(INCH/HR) = 4.08
 TOTAL STREAM AREA(ACRES) = 0.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************************
 FLOW PROCESS FROM NODE
                    24.00 TO NODE
                                 25.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1155.20
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(1.80)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.33
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
 ELEVATION DATA: UPSTREAM(FEET) = 1155.20 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 197.00 CHANNEL SLOPE = 0.0155
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.905
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.42
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.32
 Tc(MIN.) = 7.32
 SUBAREA AREA(ACRES) = 0.34 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) = 1.50
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.64
                                    26.00 =
 LONGEST FLOWPATH FROM NODE
                       24.00 TO NODE
*****************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.905
```

```
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) =
                    0.34 SUBAREA RUNOFF(CFS) = 1.18
 TOTAL AREA(ACRES) =
                    0.8 TOTAL RUNOFF(CFS) = 2.68
 TC(MIN.) =
          7.32
********************************
 FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
-----
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.32
 RAINFALL INTENSITY(INCH/HR) = 3.91
 TOTAL STREAM AREA(ACRES) = 0.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 2.68
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                     AREA
          (CFS) (MIN.) (INCH/HOUR)
2.56 6.58 4.081
        (CFS)
 NUMBER
                                     (ACRE)
    1
                                       0.66
    2
          2.68 7.32
                          3.905
                                       0.76
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
4.98 6.58 4.081
5.14 7.32 3.905
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.14 Tc(MIN.) = 7.32
TOTAL AREA(ACRES) = 1.4
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                      26.00 = 10361.10 FEET.
*********************************
 FLOW PROCESS FROM NODE
                     30.00 TO NODE
                                   31.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1163.00 DOWNSTREAM(FEET) = 1157.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 329.00 CHANNEL SLOPE = 0.0182
 CHANNEL BASE(FEET) = 1.60 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.272
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8861
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.41
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 3.89
 Tc(MIN.) = 11.20
 SUBAREA AREA(ACRES) =
                     0.08
                              SUBAREA RUNOFF(CFS) =
```

RS E 100.RES 1.5 PEAK FLOW RATE(CFS) = 5.37

TOTAL AREA(ACRES) =

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 31.00 = 10690.10 FEET.

FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1152.57 DOWNSTREAM(FEET) = 1145.78

FLOW LENGTH(FEET) = 210.50 MANNING'S N = 0.013

DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 8.92

GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 5.37

PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 11.59

LONGEST FLOWPATH FROM NODE 70.00 TO NODE 32.00 = 10900.60 FEET.

FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 11.59

RAINFALL INTENSITY(INCH/HR) = 3.23

TOTAL STREAM AREA(ACRES) = 1.50

PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.37

FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM

DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) =

UPSTREAM ELEVATION(FEET) = 1162.00

DOWNSTREAM ELEVATION(FEET) = 1156.99

ELEVATION DIFFERENCE(FEET) = 5.01 TC = 0.303*[(100.00**3)/(5.01)]**.2 =

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896

SOIL CLASSIFICATION IS "C"

SUBAREA RUNOFF(CFS) = 0.24

TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =

FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1156.99 DOWNSTREAM(FEET) = 1150.03 CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0398

CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00

```
RS E 100.RES
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.154
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.24
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.30
 Tc(MIN.) =
         6.30
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 1.44
 TOTAL AREA(ACRES) = 0.4
                            PEAK FLOW RATE(CFS) = 1.68
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 2.26
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE 35.00 =
                                              275.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.154
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 1.44
 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.12
 TC(MIN.) = 6.30
******************************
 FLOW PROCESS FROM NODE 35.00 TO NODE 32.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.37 DOWNSTREAM(FEET) = 1145.76
 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.23
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
              3.12
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 33.00 TO NODE
                                    32.00 =
                                              298.00 FEET.
********************************
 FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.36
 RAINFALL INTENSITY(INCH/HR) = 4.14
 TOTAL STREAM AREA(ACRES) = 0.84
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.12
 ** CONFLUENCE DATA **
```

STREAM NUMBER	RUNOFF (CFS)	Tc (MIN.)	<pre>INTENSITY (INCH/HOUR)</pre>	AREA (ACRE)
1	5.37	11.59	3.226	1.50
2	3.12	6.36	4.140	0.84

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA

```
RS E 100.RES
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ************************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
6.07 6.36 4.140
 NUMBER
    1
          7.80 11.59
                           3.226
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.80 Tc(MIN.) = 11.59
TOTAL AREA(ACRES) = 2.3
 TOTAL AREA(ACRES) =
 LONGEST FLOWPATH FROM NODE
                          70.00 TO NODE
                                        32.00 = 10900.60 FEET.
**************************
 FLOW PROCESS FROM NODE 32.00 TO NODE 36.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.75 DOWNSTREAM(FEET) = 1142.04
 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.41
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 11.94
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 36.00 = 11076.60 FEET.
******************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.94
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 2.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  7.80
*******************************
 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.49
 ELEVATION DIFFERENCE(FEET) = 7.51
TC = 0.303*[( 100.00**3)/( 7.51)]**.2 = 3.210
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
```

SOIL CLASSIFICATION IS "C"
SUBAREA RUNOFF(CFS) = 0.49

TOTAL AREA(ACRES) =

0.49

0.12 TOTAL RUNOFF(CFS) =

```
FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.49 DOWNSTREAM(FEET) = 1150.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 282.00 CHANNEL SLOPE = 0.0301
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.902
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.02
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.33
 Tc(MIN.) =
         7.33
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 1.63
 TOTAL AREA(ACRES) = 0.6
                            PEAK FLOW RATE(CFS) = 2.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 2.30
 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 39.00 =
********************************
 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.902
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 1.63
 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) =
                                          3.75
 TC(MIN.) = 7.33
*********************************
 FLOW PROCESS FROM NODE 39.00 TO NODE 36.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.36 DOWNSTREAM(FEET) = 1142.28
 FLOW LENGTH(FEET) = 9.50 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.12
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
                 3.75
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
                                    7.34
 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 36.00 = 391.50 FEET.
*******************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.34
 RAINFALL INTENSITY(INCH/HR) = 3.90
 TOTAL STREAM AREA(ACRES) = 1.06
```

PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.75

```
** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                       INTENSITY
                                   AREA
 NUMBER
                 (MIN.) (INCH/HOUR) (ACRE)
         (CFS)
          7.80
                11.94 3.186
                                    2.34
    1
          3.75 7.34
    2
                          3.900
                                     1.06
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (INCH/HO
8.54 7.34 3.900
10.86 11.94 3.186
 NUMBER
                       (INCH/HOUR)
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 10.86 Tc(MIN.) = 11.94
TOTAL AREA(ACRES) = 3.4
 LONGEST FLOWPATH FROM NODE
                        70.00 TO NODE
                                     36.00 = 11076.60 FEET.
**********************************
 FLOW PROCESS FROM NODE 36.00 TO NODE 40.00 IS CODE = 41
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.91 DOWNSTREAM(FEET) = 1141.39
 FLOW LENGTH(FEET) = 33.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.21
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 12.01
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 40.00 = 11110.30 FEET.
*****************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
**********************************
 FLOW PROCESS FROM NODE
                    41.00 TO NODE
                                 42.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.65
 ELEVATION DIFFERENCE(FEET) =
                        7.35
 ELEVATION DIFFERENCE(FEET) = 7.35
TC = 0.303*[( 100.00**3)/( 7.35)]**.2 = 3.224
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
```

```
RS E 100.RES
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.45
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.65 DOWNSTREAM(FEET) = 1151.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 236.00 CHANNEL SLOPE = 0.0324
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.950
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8881
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.12
 Tc(MIN.) = 7.12
 SUBAREA AREA(ACRES) = 0.28 SUBAREA RUNOFF(CFS) = 0.98
 TOTAL AREA(ACRES) = 0.4
                              PEAK FLOW RATE(CFS) = 1.43
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 2.20
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 43.00 =
 FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.950
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8881
```

SOIL CLASSIFICATION IS "C"

SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 2.44 TC(MIN.) = 7.12

FLOW PROCESS FROM NODE 43.00 TO NODE 80.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>

ELEVATION DATA: UPSTREAM(FEET) = 1146.61 DOWNSTREAM(FEET) = 1143.76 FLOW LENGTH(FEET) = 8.30 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000

DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.3 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 18.08

ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 2.44

PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.13

LONGEST FLOWPATH FROM NODE 41.00 TO NODE 80.00 = 344.30 FEET.

FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 1 ______

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.13
 RAINFALL INTENSITY(INCH/HR) = 3.95
 TOTAL STREAM AREA(ACRES) = 0.68
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 44.00 TO NODE
                                    45.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1155.93
 DOWNSTREAM ELEVATION(FEET) = 1153.39
 ELEVATION DIFFERENCE(FEET) = 2.54
 TC = 0.303*[(100.00**3)/(2.54)]**.2 = 3.987
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                     0.24
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
                                               0.24
*********************************
 FLOW PROCESS FROM NODE 45.00 TO NODE 46.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1153.39 DOWNSTREAM(FEET) = 1150.99
 CHANNEL LENGTH THRU SUBAREA(FEET) = 74.30 CHANNEL SLOPE = 0.0323
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.268
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8889
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.32
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.37
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 0.91
 Tc(MIN.) =
           5.91
 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.15
TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.57
 LONGEST FLOWPATH FROM NODE 44.00 TO NODE 46.00 = 174.30 FEET.
*******************************
 FLOW PROCESS FROM NODE 46.00 TO NODE 46.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.268
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8889
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.15
TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.55
 TC(MIN.) = 5.91
```

```
FLOW PROCESS FROM NODE 46.00 TO NODE 80.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.97 DOWNSTREAM(FEET) = 1144.76
 FLOW LENGTH(FEET) = 57.10 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.21
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.55
 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) =
                                    6.13
 LONGEST FLOWPATH FROM NODE 44.00 TO NODE
                                      80.00 =
                                               231.40 FEET.
*************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.13
 RAINFALL INTENSITY(INCH/HR) = 4.20
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               0.55
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc INTENSITY
                                    AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
2.44 7.13 3.948 0.68
0.55 6.13 4.202 0.14
 NUMBER
    1
    2
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                       INTENSITY
 STREAM RUNOFF Tc
         (CFS) (MIN.) (INCH/HOUR)
2.65 6.13 4.202
2.95 7.13 3.948
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.95 Tc(MIN.) = 7.13
TOTAL AREA(ACRES) = 0.8
 LONGEST FLOWPATH FROM NODE 41.00 TO NODE 80.00 = 344.30 FEET.
********************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 40.00 IS CODE = 41
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1143.76 DOWNSTREAM(FEET) = 1141.39
 FLOW LENGTH(FEET) = 81.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.5 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 7.15
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                  2.95
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
                                      7.32
 LONGEST FLOWPATH FROM NODE
                       41.00 TO NODE
                                      40.00 =
                                               425.30 FEET.
*******************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
       RUNOFF Tc
 STREAM
                        INTENSITY
                                   AREA
                        (INCH/HOUR)
 NUMBER
          (CFS)
                 (MIN.)
                                  (ACRE)
                 7.32
    1
           2.95
                        3.905
                                    0.82
 LONGEST FLOWPATH FROM NODE
                        41.00 TO NODE
                                     40.00 =
                                              425.30 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                 Tc
                       INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                  (ACRE)
               12.01
    1
          10.86
                        3.179
                                    3.40
                                     40.00 = 11110.30 FEET.
 LONGEST FLOWPATH FROM NODE
                        70.00 TO NODE
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
 NUMBER
                 (MIN.)
         (CFS)
                        (INCH/HOUR)
    1
          9.57
                 7.32
                           3.905
                           3.179
    2
         13.27
                12.01
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 13.27 Tc(MIN.) =
 TOTAL AREA(ACRES) =
*********************************
 FLOW PROCESS FROM NODE
                     40.00 TO NODE
                                  40.00 \text{ IS CODE} = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
_____
**********************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 47.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.38 DOWNSTREAM(FEET) = 1138.35
 FLOW LENGTH(FEET) = 210.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.44
 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES =
                 13.27
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     47.00 = 11320.30 FEET.
*******************************
 FLOW PROCESS FROM NODE
                     47.00 TO NODE
                                   48.00 \text{ IS CODE} = 41
```

Page 18

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
ELEVATION DATA: UPSTREAM(FEET) = 1135.35 DOWNSTREAM(FEET) = 1134.95
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 8.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.05
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.27
 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.48
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 48.00 = 11345.30 FEET.
*********************************
 FLOW PROCESS FROM NODE
                    48.00 TO NODE 48.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.48
 RAINFALL INTENSITY(INCH/HR) = 3.13
 TOTAL STREAM AREA(ACRES) = 4.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 49.00 TO NODE
                                  63.00 \text{ IS CODE} = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.57
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 63.00 TO NODE 50.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1152.00 DOWNSTREAM(FEET) = 1149.03 CHANNEL LENGTH THRU SUBAREA(FEET) = 94.00 CHANNEL SLOPE = 0.0316
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.282
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.82
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.86
 Tc(MIN.) = 5.86
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.95
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE 50.00 = 1000094.00 FEET.
```

```
FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.282
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.41
 TC(MIN.) =
          5.86
*********************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 48.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.74 DOWNSTREAM(FEET) = 1136.51
 FLOW LENGTH(FEET) = 24.30 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.58
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.41
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 5.89
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE 48.00 = 1000118.31 FEET.
*********************************
 FLOW PROCESS FROM NODE
                     48.00 TO NODE 48.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.89
 RAINFALL INTENSITY(INCH/HR) = 4.27
 TOTAL STREAM AREA(ACRES) = 0.36
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
         13.27 12.48 3.129
                                    4.22
    1
          1.41 5.89
                                       0.36
                          4.273
    2
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.) (INCH/HO)
7.67 5.89 4.273
14.30 12.48 3.129
 NUMBER
                        (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.30 Tc(MIN.) =
                                     12.48
```

```
LONGEST FLOWPATH FROM NODE 49.00 TO NODE
                                   48.00 = 1000118.31 FEET.
*******************************
 FLOW PROCESS FROM NODE 48.00 TO NODE 51.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1134.95 DOWNSTREAM(FEET) = 1132.94
 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 8.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.22
 GIVEN PIPE DIAMETER(INCH) = 60.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              14.30
 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 12.73
 LONGEST FLOWPATH FROM NODE 49.00 TO NODE
                                    51.00 = 1000244.31 FEET.
*******************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.73
 RAINFALL INTENSITY(INCH/HR) = 3.10
 TOTAL STREAM AREA(ACRES) = 4.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 53.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1151.89
 DOWNSTREAM ELEVATION(FEET) = 1149.00
 ELEVATION DIFFERENCE(FEET) =
 ELEVATION DIFFERENCE(FEET) = 2.89
TC = 0.303*[(100.00**3)/(2.89)]**.2 = <math>3.885
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.57
 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 53.00 TO NODE 51.00 IS CODE = 41
 ------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.16 DOWNSTREAM(FEET) = 1144.09
 FLOW LENGTH(FEET) = 76.70 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS
                             3.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.66
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.57
 PIPE TRAVEL TIME(MIN.) = 0.35
                          Tc(MIN.) =
```

TOTAL AREA(ACRES) = 4.6

RS_E_100.RES

************************************ 51.00 TO NODE 51.00 IS CODE = 1 FLOW PROCESS FROM NODE

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.35 RAINFALL INTENSITY(INCH/HR) = 4.45

TOTAL STREAM AREA(ACRES) = 0.14

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.57

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	14.30	12.73	3.103	4.58
2	0.57	5.35	4.448	0.14

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	6.58	5.35	4.448
2	14.69	12.73	3.103

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 14.69 Tc(MIN.) = 12.73

TOTAL AREA(ACRES) = 4.7

LONGEST FLOWPATH FROM NODE 49.00 TO NODE 51.00 = 1000244.31 FEET.

FLOW PROCESS FROM NODE 51.00 TO NODE 54.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>>

______ ELEVATION DATA: UPSTREAM(FEET) = 1132.94 DOWNSTREAM(FEET) = 1131.53

FLOW LENGTH(FEET) = 23.50 MANNING'S N = 0.013

DEPTH OF FLOW IN 60.0 INCH PIPE IS 6.4 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 13.19

GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 14.69

PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 12.76

LONGEST FLOWPATH FROM NODE 49.00 TO NODE 54.00 = 1000267.81 FEET.

FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

```
RAINFALL INTENSITY(INCH/HR) = 3.10
TOTAL STREAM AREA(ACRES) = 4.72
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) =
                       5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.24
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1151.26
 CHANNEL LENGTH THRU SUBAREA(FEET) = 60.00 CHANNEL SLOPE = 0.0122
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.208
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.90
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.11
 Tc(MIN.) =
          6.11
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07
 TOTAL AREA(ACRES) = 0.1
                             PEAK FLOW RATE(CFS) = 0.32
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.02
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE 57.00 = ******* FEET.
*******************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.00 IS CODE = 81
............
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.208
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.39
 TC(MIN.) = 6.11
*******************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 54.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <><<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.14 DOWNSTREAM(FEET) = 1135.70
 FLOW LENGTH(FEET) = 103.00 MANNING'S N = 0.013
```

TIME OF CONCENTRATION(MIN.) = 12.76

```
1.7 INCHES
 DEPTH OF FLOW IN 10.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.61
 GIVEN PIPE DIAMETER(INCH) = 10.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.39
 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 6.37
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
                                       54.00 = ********** FEET.
*******************************
 FLOW PROCESS FROM NODE 54.00 TO NODE
                                   54.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.37
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc INTENSITY
                                      AREA
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                                      (ACRE)
          14.69 12.76 3.100
    1
                                      4.72
    2
          0.39 6.37
                            4.136
                                        0.10
*******************************WARNING***********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
        (CFS) (MIN.)
7.73 6.37
 NUMBER
                         (INCH/HOUR)
    1
                         4.136
          14.99 12.76
                           3.100
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.99 Tc(MIN.) = 12.76
 TOTAL AREA(ACRES) =
                      4.8
 LONGEST FLOWPATH FROM NODE
                         55.00 TO NODE
                                       *******************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 58.00 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1131.53 DOWNSTREAM(FEET) = 1130.68
 FLOW LENGTH(FEET) = 197.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 12.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.26
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
                  14.99
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 13.39
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE 58.00 = ******* FEET.
*******************************
 FLOW PROCESS FROM NODE
                      58.00 TO NODE
                                     58.00 IS CODE = 1
```

Page 24

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.39
 RAINFALL INTENSITY(INCH/HR) = 3.04
TOTAL STREAM AREA(ACRES) = 4.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
**********************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.24
 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.24
****************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1145.05
 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0244
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.812
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8878
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.72
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.76
 Tc(MIN.) = 7.76
 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.35
TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
                            PEAK FLOW RATE(CFS) = 1.60
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 2.05
 LONGEST FLOWPATH FROM NODE
                       59.00 TO NODE 61.00 =
                                             319.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 61.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.812
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8878
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.35
 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 2.95
 TC(MIN.) = 7.76
********************************
 FLOW PROCESS FROM NODE
                    61.00 TO NODE
                                  58.00 IS CODE = 31
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1140.87 DOWNSTREAM(FEET) = 1140.80
 FLOW LENGTH(FEET) = 14.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.88
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
                                       7.82
 LONGEST FLOWPATH FROM NODE 59.00 TO NODE
                                       58.00 = 333.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 58.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.82
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.86
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 ** CUNFLUENCE 2...

STREAM RUNOFF TC INTENSE...

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 14.99 13.39 3.039

2 95 7.82 3.799
                                     AREA
                                     (ACRE)
                                     4.82
                                       0.86
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
          11.70
                 7.82
                         3.799
    1
          17.35 13.39
                           3.039
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 17.35 Tc(MIN.) = 13.39
 TOTAL AREA(ACRES) =
                     5.7
                                      LONGEST FLOWPATH FROM NODE 55.00 TO NODE
*******************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 62.00 IS CODE = 41
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1130.68 DOWNSTREAM(FEET) = 1130.30
 FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 13.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.54
 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               17.35
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
RS E 100.RES
 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 13.65
 LONGEST FLOWPATH FROM NODE 55.00 TO NODE
                                     62.00 = ********** FEET.
*********************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1154.94
 DOWNSTREAM ELEVATION(FEET) = 1151.51
 ELEVATION DIFFERENCE(FEET) = 3.43
TC = 0.303*[( 100.00**3)/( 3.43)]**.2 = 3.754
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.33
TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
                                           0.33
********************************
 FLOW PROCESS FROM NODE 65.00 TO NODE
                                  66.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.51 DOWNSTREAM(FEET) = 1146.98 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.0174
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.801
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8877
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.54
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.81
 Tc(MIN.) = 7.81
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.25
TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 1.57
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.71
 LONGEST FLOWPATH FROM NODE 64.00 TO NODE 66.00 = 360.00 FEET.
************************************
 FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.801
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8877
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.25
```

TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) =

```
TC(MIN.) = 7.81
```

```
FLOW PROCESS FROM NODE
                   66.00 TO NODE
                                66.00 \text{ IS CODE} = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.81
 RAINFALL INTENSITY(INCH/HR) = 3.80
 TOTAL STREAM AREA(ACRES) = 0.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              2.82
*******************************
 FLOW PROCESS FROM NODE 67.00 TO NODE 68.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.24
TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 68.00 TO NODE 66.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.99 DOWNSTREAM(FEET) = 1146.98
 CHANNEL LENGTH THRU SUBAREA(FEET) = 236.00 CHANNEL SLOPE = 0.0212
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.876
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.61
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.45
 Tc(MIN.) =
          7.45
 SUBAREA AREA(ACRES) = 0.26
                           SUBAREA RUNOFF(CFS) = 0.89
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                   0.3
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.75
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 66.00 = 3636.00 FEET.
****************************
 FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.876
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8880
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) =
                                         0.89
 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 2.03
 TC(MIN.) = 7.45
```

```
FLOW PROCESS FROM NODE 66.00 TO NODE 66.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.45
 RAINFALL INTENSITY(INCH/HR) = 3.88
 TOTAL STREAM AREA(ACRES) = 0.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                   Tc
 STREAM RUNOFF
                         INTENSITY
                                      AREA
       (CFS) (MIN.) (INCH/HOUR)
2.82 7.81 3.801
2.03 7.45 3.876
                  (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
                                     0.82
    1
    2
                                        0.58
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
          4.73 7.45 3.876
    1
    2
           4.82 7.81
                          3.801
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.82 Tc(MIN.) = TOTAL AREA(ACRES) = 1.4
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE
                                        66.00 = 3636.00 FEET.
********************************
 FLOW PROCESS FROM NODE 66.00 TO NODE
                                   69.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.98 DOWNSTREAM(FEET) = 1139.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 281.00 CHANNEL SLOPE = 0.0284
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.511
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8869
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.86
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 1.64
 Tc(MIN.) = 9.45
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 1.6
                             PEAK FLOW RATE(CFS) = 5.41
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.14 FLOW VELOCITY(FEET/SEC.) = 2.78
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 69.00 = 3917.00 FEET.
```

```
*************************
                   69.00 TO NODE
 FLOW PROCESS FROM NODE
                                69.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.511
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8869
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                  1.8 TOTAL RUNOFF(CFS) = 6.00
 TC(MIN.) =
          9.45
**********************************
 FLOW PROCESS FROM NODE
                   69.00 TO NODE
                                62.00 \text{ IS CODE} = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1132.39 DOWNSTREAM(FEET) = 1132.00
 FLOW LENGTH(FEET) = 11.40 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.51
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.00
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                   9.47
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE
                                   62.00 =
                                           3928.40 FEET.
*********************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
      RUNOFF TC INTENSITY
 STREAM
                                AREA
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
                                (ACRE)
              9.47
          6.00
                      3.508
                                 1.78
   1
 LONGEST FLOWPATH FROM NODE 67.00 TO NODE 62.00 = 3928.40 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
        RUNOFF
              Tc INTENSITY
                                AREA
 NUMBER
        (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         17.35
               13.65
                       3.015
                                 5.68
                       55.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                   *******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***************************
 ** PEAK FLOW RATE TABLE **
 STREAM
      RUNOFF Tc
                      INTENSITY
             (MIN.)
 NUMBER
        (CFS)
                      (INCH/HOUR)
   1
        18.04
                9.47
                         3.508
    2
        22.51 13.65
                         3.015
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 22.51 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    7.5
*****************************
```

RS_E_100.RES

FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 12

>>>>CLEAR MEMORY BANK # 1 <<<<<

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 7.5 PEAK FLOW RATE(CFS) = 22.51 7.5 TC(MIN.) = 13.65

______ ______

END OF RATIONAL METHOD ANALYSIS

© 2020 KIMLEY-HORN AND ASSOCIATES, INC. 660 S. FIGUEROA ST, SUITE 2050, LOS ANGELES, CA 90017 PHONE: 213-261-4040


```
RS_P_10.RES
***********************************
           RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
       RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                     (RCFC&WCD) 1978 HYDROLOGY MANUAL
        (c) Copyright 1982-2011 Advanced Engineering Software (aes)
                     (Rational Tabling Version 18.0)
                  Release Date: 07/01/2011 License ID 1499
                         Analysis prepared by:
                     Kimley-Horn and Associates, Inc.
                           765 The City Drive
                               Suite 200
                            Orange, CA 92868
******************* DESCRIPTION OF STUDY **************
* Rancho Springs Medical Center
 Proposed Conditions
 10-year analysis
 FILE NAME: RS_P.DAT
 TIME/DATE OF STUDY: 07:27 05/18/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.070
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.985
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.430
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.630
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4144876
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4152232
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4145
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
```

NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) SIDE / SIDE/ WAY (FT) NO. (FT) (FT) (FT) (FT) === 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 1

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

1. Relative Flow-Depth = 0.00 FEET

as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)

2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN

OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*

**************************** FLOW PROCESS FROM NODE 30.00 TO NODE >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE< ______ USER-SPECIFIED VALUES ARE AS FOLLOWS:

TC(MIN) = 5.00RAIN INTENSITY(INCH/HOUR) = 2.79

```
**********************************
 FLOW PROCESS FROM NODE
                    31.00 TO NODE 300.00 IS CODE = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1152.47 DOWNSTREAM(FEET) = 1143.66
 FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.53
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.14
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                     6.07
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                     300.00 =
                                              226.00 FEET.
**************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1155.41
 ELEVATION DIFFERENCE(FEET) = 1.59
 TC = 0.303*[(102.00**3)/(1.59)]**.2 = 4.431
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
                   0.25
 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.00 DOWNSTREAM(FEET) = 1149.75
 FLOW LENGTH(FEET) = 104.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.71
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) =
                                    5.64
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                     102.00 =
*****************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.64
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.25
```

```
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 21
  ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1155.37
 DOWNSTREAM ELEVATION(FEET) = 1154.06
 ELEVATION DIFFERENCE(FEET) = 1.31
TC = 0.303*[( 100.00**3)/( 1.31)]**.2 = 4.551
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.27
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 102.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.06 DOWNSTREAM(FEET) = 1153.34
 CHANNEL LENGTH THRU SUBAREA(FEET) = 76.00 CHANNEL SLOPE = 0.0095
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.540
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.01
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.25
 Tc(MIN.) =
            6.25
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.13
 TOTAL AREA(ACRES) = 0.2
                              PEAK FLOW RATE(CFS) = 0.41
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE 102.00 =
**********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE
                                   102.00 \text{ IS CODE} = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.540
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.13
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.54
 TC(MIN.) =
*****************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
   >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
```

```
RS P 10.RES
```

```
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.25
 RAINFALL INTENSITY(INCH/HR) =
                         2.54
 TOTAL STREAM AREA(ACRES) = 0.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               0.54
*******************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1154.96
 ELEVATION DIFFERENCE(FEET) = 2.04
TC = 0.303*[( 100.00**3)/( 2.04)]**.2 = 4.165
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.30
                                           0.30
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
****************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.96 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 123.00 CHANNEL SLOPE = 0.0229
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.523
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8827
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.52
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.35
 Tc(MIN.) = 6.35
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.3
                             PEAK FLOW RATE(CFS) =
                                                   0.72
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.68
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 107.00 =
**********************************
 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.523
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8827
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.14
 TC(MIN.) =
*******************************
```

```
RS P 10.RES
```

FLOW PROCESS FROM NODE 107.00 TO NODE 102.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<

ELEVATION DATA: UPSTREAM(FEET) = 1149.13 DOWNSTREAM(FEET) = 1148.92

FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.8 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 3.05

ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) =

PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 6.59

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 102.00 = 266.00 FEET.

FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:

TIME OF CONCENTRATION(MIN.) = 6.59

RAINFALL INTENSITY(INCH/HR) = 2.49

TOTAL STREAM AREA(ACRES) = 0.50

PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.14

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	0.25	5.64	2.651	0.10
2	0.54	6.25	2.540	0.23
3	1.14	6.59	2.486	0.50

*******************************WARNING**********************

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	1.71	5.64	2.651
2	1.86	6.25	2.540
3	1.90	6.59	2.486

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 1.90 Tc(MIN.) = 6.59

TOTAL AREA(ACRES) = 0.8

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 102.00 = 266.00 FEET.

FLOW PROCESS FROM NODE 102.00 TO NODE 108.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

______ ELEVATION DATA: UPSTREAM(FEET) = 1148.92 DOWNSTREAM(FEET) = 1148.20

FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013

```
RS P 10.RES
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.70
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                  NUMBER OF PIPES = 1
                 1.90
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) =
                                      6.82
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 108.00 =
                                                 331.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.82
 RAINFALL INTENSITY(INCH/HR) = 2.45
 TOTAL STREAM AREA(ACRES) = 0.83
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1158.23
 DOWNSTREAM ELEVATION(FEET) = 1154.48
 ELEVATION DIFFERENCE(FEET) = 3.75
TC = 0.303*[( 100.00**3)/( 3.75)]**.2 = 3.688
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 108.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.48 DOWNSTREAM(FEET) = 1152.91 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0449
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.708
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.63
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 0.36
          5.36
 Tc(MIN.) =
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.2
                               PEAK FLOW RATE(CFS) =
```

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.68

LONGEST FLOWPATH FROM NODE 109.00 TO NODE 108.00 = 135.00 FEET.

```
FLOW PROCESS FROM NODE
                    108.00 TO NODE
                                 108.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.708
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.02
 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           5.36
**********************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.36
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.17
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                       INTENSITY
                                   AREA
        (CFS) (MIN.) (INCH/HOUR)
1.90 6.82 2.450
0.42 5.36 2.708
 NUMBER
                                  (ACRE)
    1
                                   0.83
    2
                                    0.17
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
    1
          1.91
                5.36
                       2.708
    2
          2.28 6.82
                         2.450
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.28 Tc(MIN.) = 6.82
 TOTAL AREA(ACRES) =
                   1.0
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    108.00 = 331.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 111.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.90 DOWNSTREAM(FEET) = 1147.68
 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.87
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.28
```

```
RS P 10.RES
PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 6.97
```

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 111.00 = 367.00 FEET.

FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1

______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 6.97

RAINFALL INTENSITY(INCH/HR) = 2.43

TOTAL STREAM AREA(ACRES) = 1.00

PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.28

FLOW PROCESS FROM NODE 112.00 TO NODE 111.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) = 89.00

UPSTREAM ELEVATION(FEET) = 1156.08

DOWNSTREAM ELEVATION(FEET) = 1151.80

ELEVATION DIFFERENCE(FEET) = 4.28 TC = 0.303*[(89.00**3)/(4.28)]**.2 = 3.349

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841

SOIL CLASSIFICATION IS "C"

SUBAREA RUNOFF(CFS) = 0.27

TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =

FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.00

RAINFALL INTENSITY(INCH/HR) = 2.79

TOTAL STREAM AREA(ACRES) = 0.11

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.27

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	2.28	6.97	2.428	1.00
2	0.27	5.00	2.787	0.11

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
         1.91 5.00
                       2.787
    1
                6.97
    2
          2.52
                        2.428
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.52 Tc(MIN.) =
                                   6.97
 TOTAL AREA(ACRES) = 1.1
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    111.00 =
                                             367.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.29 DOWNSTREAM(FEET) = 1146.91
 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.75
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.52
 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    113.00 =
                                             442.00 FEET.
**************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 ______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.31
 RAINFALL INTENSITY(INCH/HR) = 2.38
 TOTAL STREAM AREA(ACRES) = 1.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 114.00 TO NODE
                                 115.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1158.13
 DOWNSTREAM ELEVATION(FEET) = 1155.26
 ELEVATION DIFFERENCE(FEET) = 2.87
TC = 0.303*[( 100.00**3)/( 2.87)]**.2 = 3.891
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.20
***********************************
 FLOW PROCESS FROM NODE 115.00 TO NODE
                                 116.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1155.26 DOWNSTREAM(FEET) = 1152.66
 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = 0.0260
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.538
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.32
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 1.26
 Tc(MIN.) = 6.26
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.2
                             PEAK FLOW RATE(CFS) = 0.42
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.34
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 116.00 =
                                                200.00 FEET.
************************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.538
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.22
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 0.65
 TC(MIN.) = 6.26
*****************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 113.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.49 DOWNSTREAM(FEET) = 1147.41
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.02
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.65
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 6.38
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 =
                                               235.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.38
 RAINFALL INTENSITY(INCH/HR) = 2.52
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.65
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                    AREA
 NUMBER
         (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
```

```
1.11
    1
          2.52
               7.31
                         2.381
          0.65
                6.38
                         2.519
                                    0.28
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
              (MIN.)
 NUMBER
         (CFS)
                       (INCH/HOUR)
              6.38
7.31
    1
         2.84
                     2.519
    2
          3.13
                        2.381
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.13 Tc(MIN.) = TOTAL AREA(ACRES) = 1.4
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                   113.00 = 442.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 117.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 1146.91 DOWNSTREAM(FEET) = 1146.78
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.99
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.13
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                   117.00 =
                                            467.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE
                                117.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.41
 RAINFALL INTENSITY(INCH/HR) = 2.37
 TOTAL STREAM AREA(ACRES) = 1.39
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 118.00 TO NODE
                                117.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1152.04
 DOWNSTREAM ELEVATION(FEET) = 1151.64
 ELEVATION DIFFERENCE(FEET) = 0.40
 TC = 0.303*[(100.00**3)/(
                        [0.40]**.2 =
                                  5.770
```

RS P 10.RES

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.626
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8833
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.79
 TOTAL AREA(ACRES) =
                   0.34 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.77
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 119.00 TO NODE
                                120.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) =
                   0.07 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 117.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.78
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.23
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              0.17
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) =
                                    5.34
 LONGEST FLOWPATH FROM NODE 119.00 TO NODE
                                   117.00 =
                                             166.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.34
 RAINFALL INTENSITY(INCH/HR) = 2.71
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                   AREA
```

```
(ACRE)
 NUMBER
          (CFS)
                 (MIN.)
                       (INCH/HOUR)
    1
          3.13
                 7.41
                          2.367
                                     1.39
          0.79
    2
                 5.77
                          2.626
                                     0.34
    3
                 5.34
                         2.711
          0.17
                                     0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
************************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
3.16 5.34 2.711
3.39 5.77 2.626
 NUMBER
         (CFS)
    1
    2
          3.99 7.41
                        2.367
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.99 Tc(MIN.) =
                                     7.41
 TOTAL AREA(ACRES) =
                    1.8
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    117.00 =
                                             467.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 121.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.78 DOWNSTREAM(FEET) = 1146.56
 FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.10
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              3.99
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    121.00 =
                                            511.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.59
 RAINFALL INTENSITY(INCH/HR) = 2.34
 TOTAL STREAM AREA(ACRES) = 1.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               3.99
********************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) =
                      5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
```

RS P 10.RES

```
SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) =
                   0.07 TOTAL RUNOFF(CFS) =
                                           0.17
*******************************
 FLOW PROCESS FROM NODE 123.00 TO NODE 121.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.56
 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.47
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.17
 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) =
                                   5.28
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 121.00 =
                                            103.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                    121.00 TO NODE
                                 121.00 IS CODE =
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.28
 RAINFALL INTENSITY(INCH/HR) = 2.72
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.17
 ** CONFLUENCE DATA **
                 Tc
 STREAM RUNOFF
                       INTENSITY
                                  AREA
         (CFS) (MIN.) (INCH/HOUR)
3.99 7.59 2.344
0.17 5.28 2.724
                 (MIN.) (INCH/HOUR) (ACRE)
         (CFS)
 NUMBER
    1
                                   1.80
                                     0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
        (CFS) (MIN.)
 NUMBER
                       (INCH/HOUR)
         2.95 5.28 2.724
    1
    2
         4.14
                7.59
                        2.344
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.14 Tc(MIN.) = TOTAL AREA(ACRES) = 1.9
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    121.00 =
                                            511.00 FEET.
**************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 124.00 IS CODE = 31
______
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

SOIL CLASSIFICATION IS "C"

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.56 DOWNSTREAM(FEET) = 1146.49
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.00
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.14
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    124.00 =
                                            526.00 FEET.
***********************************
                   124.00 TO NODE
                                124.00 IS CODE = 1
 FLOW PROCESS FROM NODE
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.65
 RAINFALL INTENSITY(INCH/HR) = 2.34
 TOTAL STREAM AREA(ACRES) = 1.87
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 125.00 TO NODE 124.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 76.00
 UPSTREAM ELEVATION(FEET) = 1155.54
 DOWNSTREAM ELEVATION(FEET) = 1151.58
 ELEVATION DIFFERENCE(FEET) =
                        3.96
 TC = 0.303*[(76.00**3)/(
                        3.96)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                  0.30
 TOTAL AREA(ACRES) =
                  0.12 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 2.79
 TOTAL STREAM AREA(ACRES) = 0.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.30
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                       INTENSITY
                                   AREA
                  Tc
 NUMBER
                 (MIN.)
          (CFS)
                        (INCH/HOUR)
                                  (ACRE)
                      2.336
          4.14 7.65
    1
                                    1.87
          0.30
                5.00
                          2.787
                                     0.12
```

RS P 10.RES

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

```
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

```
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc
                                INTENSITY
          (CFS) (MIN.) (INCH/HO
3.00 5.00 2.787
4.38 7.65 2.336
NUMBER
                                 (INCH/HOUR)
    1
    2
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 4.38 Tc(MIN.) = TOTAL AREA(ACRES) = 2.0 7.65

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 124.00 = 526.00 FEET.

FLOW PROCESS FROM NODE 124.00 TO NODE 126.00 IS CODE = 31

----->>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1146.00 DOWNSTREAM(FEET) = 1145.70 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.14

ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) =

PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 7.89

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 126.00 = 586.00 FEET.

FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE =

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 7.89 RAINFALL INTENSITY(INCH/HR) = 2.31TOTAL STREAM AREA(ACRES) = 1.99

PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.38

FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00

UPSTREAM ELEVATION(FEET) = 1166.00

DOWNSTREAM ELEVATION(FEET) = 1159.30

ELEVATION DIFFERENCE(FEET) = 6.70 TC = 0.303*[(100.00**3)/(6.70)]**.2 = 3.284

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841

SOIL CLASSIFICATION IS "C"

```
0.15
 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.06 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 128.00 TO NODE 126.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1159.30 DOWNSTREAM(FEET) = 1151.31
 CHANNEL LENGTH THRU SUBAREA(FEET) = 118.00 CHANNEL SLOPE = 0.0677
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8829
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.63
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 1.20
 Tc(MIN.) =
           6.20
 SUBAREA AREA(ACRES) =
                    0.11
                             SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 2.17
 LONGEST FLOWPATH FROM NODE 127.00 TO NODE 126.00 =
                                               218.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8829
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 0.64
 TC(MIN.) =
***********************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1
 ------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.20
 RAINFALL INTENSITY(INCH/HR) = 2.55
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                   Tc
                        INTENSITY
                                    AREA
 NUMBER
                  (MIN.) (INCH/HOUR)
          (CFS)
                                    (ACRE)
                      2.306
2.548
    1
          4.38
                 7.89
                                     1.99
    2
           0.64 6.20
                                      0.28
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************************
```

```
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR)

1 4.09 6.20 2.548

2 4.96 7.89 2.306
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.96 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 126.00 = 586.00 FEET.
***************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 129.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
ELEVATION DATA: UPSTREAM(FEET) = 1145.70 DOWNSTREAM(FEET) = 1145.46
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.41
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.96
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) =
                                   8.07
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    129.00 =
******************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.07
 RAINFALL INTENSITY(INCH/HR) = 2.28
 TOTAL STREAM AREA(ACRES) = 2.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.96
*****************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.17
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 131.00 TO NODE
                                 129.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
```

ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.96

```
FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.11
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                  NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.17
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 129.00 =
                                                 74.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 129.00 TO NODE
                                   129.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.08
 RAINFALL INTENSITY(INCH/HR) = 2.77
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.17
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                     AREA
          (CFS) (MIN.)
4.96 8.07
0.17 5.08
         (CFS)
                  (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
                  8.07 2.285
                                      2.27
    1
    2
                           2.767
                                       0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
        (CFS) (MIN.) (INCH/HO
3.30 5.08 2.767
5.11 8.07 2.285
 NUMBER
                        (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.11 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3
                                     8.07
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      129.00 =
                                                634.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 132.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.46 DOWNSTREAM(FEET) = 1145.15
 FLOW LENGTH(FEET) = 63.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.41
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.11
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
                                     8.31
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 132.00 = 697.00 FEET.
```

```
RS P 10.RES
***************************
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                   132.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.31
 RAINFALL INTENSITY(INCH/HR) = 2.26
 TOTAL STREAM AREA(ACRES) = 2.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 5.11
********************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1157.98
 ELEVATION DIFFERENCE(FEET) = 8.02
 TC = 0.303*[(100.00**3)/(8.02)]**.2 = 3.168
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1157.98 DOWNSTREAM(FEET) = 1153.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 72.00 CHANNEL SLOPE = 0.0692
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.637
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8833
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.68
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.71
 Tc(MIN.) =
            5.71
 SUBAREA AREA(ACRES) = 0.03
                              SUBAREA RUNOFF(CFS) = 0.07
 TOTAL AREA(ACRES) = 0.1
                              PEAK FLOW RATE(CFS) = 0.24
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.97
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 135.00 =
                                                172.00 FEET.
**********************************
```

FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = 81

>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.637

```
SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.31
 TC(MIN.) =
**********************************
 FLOW PROCESS FROM NODE 135.00 TO NODE 132.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.89 DOWNSTREAM(FEET) = 1146.15
 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.31
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
                                      5.91
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE
                                       132.00 =
                                                227.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.91
 RAINFALL INTENSITY(INCH/HR) = 2.60
 TOTAL STREAM AREA(ACRES) = 0.13
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 5.11 8.31 2.257

2 0.31 5.91 2.601
                                      AREA
                                      (ACRE)
                                      2.34
                                        0.13
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
          3.94 5.91
                         2.601
    1
          5.38 8.31
                          2.257
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.38 Tc(MIN.) = 8.31
 TOTAL AREA(ACRES) = 2.5
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       132.00 = 697.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                    136.00 \text{ IS CODE} = 31
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.15 DOWNSTREAM(FEET) = 1145.01
 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.49
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    136.00 = 725.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.42
 RAINFALL INTENSITY(INCH/HR) = 2.25
 TOTAL STREAM AREA(ACRES) = 2.47
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               5.38
******************************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.17
                  0.07 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 138.00 TO NODE
                                 136.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.26
 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.90
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.17
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
                                   5.09
 LONGEST FLOWPATH FROM NODE 137.00 TO NODE 136.00 =
*******************************
 FLOW PROCESS FROM NODE 136.00 TO NODE
                                 136.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.09
 RAINFALL INTENSITY(INCH/HR) = 2.77
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
PEAK FLOW RATE(CFS) AT CONFLUENCE =
**********************************
 FLOW PROCESS FROM NODE 139.00 TO NODE 140.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1159.54
 DOWNSTREAM ELEVATION(FEET) = 1151.67
 ELEVATION DIFFERENCE(FEET) =
                         7.87
 TC = 0.303*[(100.00**3)/(7.87)]**.2 = 3.180
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.27
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 140.00 TO NODE 136.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.67 DOWNSTREAM(FEET) = 1150.93
 CHANNEL LENGTH THRU SUBAREA(FEET) = 91.00 CHANNEL SLOPE = 0.0081
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.471
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8824
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.90
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.68
 Tc(MIN.) =
           6.68
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.3
                             PEAK FLOW RATE(CFS) = 0.64
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.03
 LONGEST FLOWPATH FROM NODE 139.00 TO NODE 136.00 =
                                              191.00 FEET.
********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.471
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8824
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.01
 TC(MIN.) =
**************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 1
 ______
```

TOTAL STREAM AREA(ACRES) = 0.07

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

```
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) =
                         2.47
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                        INTENSITY
                                    AREA
         (CFS) (MIN.) (INCH/HOUR
5.38 8.42 2.246
0.17 5.09 2.766
         (CFS)
 NUMBER
                        (INCH/HOUR)
                                    (ACRE)
    1
                                      2.47
    2
                                      0.07
          1.01
                6.68
                         2.471
                                      0.45
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                        INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
    1
          4.20 5.09
                        2.766
          5.43 6.68
    2
                         2.471
          6.44 8.42
                         2.246
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.44 Tc(MIN.) =
                                      8.42
 TOTAL AREA(ACRES) =
                    3.0
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                     136.00 =
                                               725.00 FEET.
********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 141.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.01 DOWNSTREAM(FEET) = 1144.82
 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.53
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) =
                                    8.56
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                     141.00 =
****************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.56
 RAINFALL INTENSITY(INCH/HR) =
                        2.23
 TOTAL STREAM AREA(ACRES) = 2.99
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                6.44
```

```
************************************
 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 21
  ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.52
 ELEVATION DIFFERENCE(FEET) = 7.48
TC = 0.303*[( 100.00**3)/( 7.48)]**.2 = 3.212
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 143.00 TO NODE 144.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.52 DOWNSTREAM(FEET) = 1152.35
 CHANNEL LENGTH THRU SUBAREA(FEET) = 122.00 CHANNEL SLOPE = 0.0506
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.526
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8827
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.52
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 1.34
 Tc(MIN.) =
            6.34
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.11
 TOTAL AREA(ACRES) = 0.1
                               PEAK FLOW RATE(CFS) = 0.31
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.69
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE 144.00 =
***********************************
 FLOW PROCESS FROM NODE 144.00 TO NODE
                                   144.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.526
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8827
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.11
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.42
 TC(MIN.) =
*****************************
 FLOW PROCESS FROM NODE 144.00 TO NODE 141.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
```

```
RS_P_10.RES
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1148.28 DOWNSTREAM(FEET) = 1145.82
 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.04
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.42
 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =
                                      6.52
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE
                                       141.00 =
                                                 278.00 FEET.
 *****************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.52
 RAINFALL INTENSITY(INCH/HR) = 2.50
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                   Tc
 STREAM
        RUNOFF
                         INTENSITY
                                      AREA
          (CFS) (MIN.) (INCH/FIDE)
6.44 8.56 2.229
         (CFS)
                  (MIN.) (INCH/HOUR)
 NUMBER
                                     (ACRE)
    1
                                     2.99
    2
                                       0.18
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                        INTENSITY
               (MIN.) (INCH/HOU
6.52 2.496
 NUMBER
         (CFS)
                         (INCH/HOUR)
    1
          5.32
    2
           6.81
                 8.56
                           2.229
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.81 Tc(MIN.) =
                                       8.56
 TOTAL AREA(ACRES) =
                     3.2
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       141.00 =
                                                765.00 FEET.
**********************************
                                  145.00 IS CODE = 31
 FLOW PROCESS FROM NODE
                   141.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.82 DOWNSTREAM(FEET) = 1144.62
 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.71
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                  NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) =
                                       8 70
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       145.00 =
                                                 804.00 FEET.
```

```
*******************************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.70
 RAINFALL INTENSITY(INCH/HR) = 2.21
 TOTAL STREAM AREA(ACRES) = 3.17
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1164.72
 DOWNSTREAM ELEVATION(FEET) = 1157.49
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(7.23)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.12
TOTAL AREA(ACRES) = 0.05
                   0.05 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
 -----
 ELEVATION DATA: UPSTREAM(FEET) = 1157.49 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0334
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.422
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8822
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.33
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 2.01
 Tc(MIN.) = 7.01
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) = 0.36
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.53
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 148.00 =
******************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 148.00 IS CODE = 81
    ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.422
```

```
RS P 10.RES
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8822
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) =
                    0.11 SUBAREA RUNOFF(CFS) =
                                            0.24
                    0.3 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                           0.59
 TC(MIN.) =
           7.01
***********************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 145.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.10 DOWNSTREAM(FEET) = 1145.62
 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.27
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.59
 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 7.12
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE
                                     145.00 = 301.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.12
 RAINFALL INTENSITY(INCH/HR) = 2.41
 TOTAL STREAM AREA(ACRES) = 0.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.59
******************************
 FLOW PROCESS FROM NODE 149.00 TO NODE
                                  145.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 94.00
 UPSTREAM ELEVATION(FEET) = 1154.92
 DOWNSTREAM ELEVATION(FEET) = 1151.86
 ELEVATION DIFFERENCE (FEET) = 3.06
TC = 0.303*[(94.00**3)/(3.06)]**.2 = 3.701
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.27
 TOTAL AREA(ACRES) =
                  0.11 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE
                    145.00 TO NODE
                                  145.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
```

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 5.00

```
RAINFALL INTENSITY(INCH/HR) = 2.79
TOTAL STREAM AREA(ACRES) = 0.11
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.27
```

```
** CONFLUENCE DATA **
STREAM RUNOFF
                           Tc
                                     INTENSITY
                                                        AREA
             (CFS) (MIN.) (INCH/HOUR)
6.81 8.70 2.215
0.59 7.12 2.407
0.27 5.00 2.787
                          (MIN.) (INCH/HOUR)
            (CFS)
NUMBER
                                                       (ACRE)
    1
                                                          3.17
    2
                                                          0.27
    3
                                                          0.11
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

```
** PEAK FLOW RATE TABLE **
STREAM
       RUNOFF Tc
                      INTENSITY
              (MIN.) (INCH/HOUR)
NUMBER
        (CFS)
         4.60 5.00
                       2.787
  1
         6.40 7.12
  2
                        2.407
         7.57 8.70
   3
                        2.215
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 7.57 Tc(MIN.) = 8.70

TOTAL AREA(ACRES) = 3.6

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 145.00 = 804.00 FEET.

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 1144.62 DOWNSTREAM(FEET) = 1141.82 FLOW LENGTH(FEET) = 136.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.5 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 8.25

ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 7.57

PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 8.98

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 150.00 = 940.00 FEET.

FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 10

----->>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
UPSTREAM ELEVATION(FEET) = 1152.00

```
RS_P_10.RES
 DOWNSTREAM ELEVATION(FEET) = 1150.13
 ELEVATION DIFFERENCE(FEET) =
                        1.87
 TC = 0.303*[(100.00**3)/(1.87)]**.2 = 4.239
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 2.79
 TOTAL STREAM AREA(ACRES) = 0.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 154.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.64
 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.47
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) =
                                  5.45
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                   152.00 = 193.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
```

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.45

RAINFALL INTENSITY(INCH/HR) = 2.69

TOTAL STREAM AREA(ACRES) = 0.07

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.17

```
FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                      0.17
 TOTAL AREA(ACRES) =
                    0.07 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 156.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.64
 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.73
                                  NUMBER OF PIPES =
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
 PIPE-FLOW(CFS) = 0.17
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 155.00 TO NODE
                                      152.00 =
                                               163.00 FEET.
***********************************
 FLOW PROCESS FROM NODE
                     152.00 TO NODE
                                   152.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) =
                         2.72
 TOTAL STREAM AREA(ACRES) =
                         0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.17
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    Tc
                         INTENSITY
                                     AREA
           (CFS) (MIN.) (INCH/HUUK)
0.30 5.00 2.787
                  (MIN.) (INCH/HOUR)
 NUMBER
          (CFS)
                                     (ACRE)
    1
                                       0.12
    2
          0.17
                 5.45
                          2.689
                                       0.07
          0.17 5.31 2.717
    3
                                       0.07
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
         RUNOFF
 STREAM
                 Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
```

```
5.31
          0.63
    2
                         2.717
                5.45
    3
          0.63
                        2.689
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 0.62 Tc(MIN.) =
                                     5.00
 TOTAL AREA(ACRES) =
                    0.3
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                    152.00 =
                                             193.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 152.00 TO NODE
                                 150.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.14 DOWNSTREAM(FEET) = 1142.83
 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.17
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0.62
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                     5.16
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                    150.00 =
*********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE
                                 150.00 IS CODE = 14.0
______
 >>>>MEMORY BANK # 1 COPIED ONTO MAIN-STREAM MEMORY<
______
 MAIN-STREAM MEMORY DEFINED AS FOLLOWS:
 STREAM RUNOFF Tc
 NUMBER
         (CFS)
                (MIN.)
         7.57
                8.98
   1
  TOTAL AREA =
                  3.6
*********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.98
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 3.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
                   157.00 TO NODE
 FLOW PROCESS FROM NODE
                                 158.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1151.83
 DOWNSTREAM ELEVATION(FEET) = 1150.21
 ELEVATION DIFFERENCE(FEET) =
 ELEVATION DIFFERENCE(FEET) = 1.62
TC = 0.303*[( 100.00**3)/( 1.62)]**.2 = 4.362
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
```

1

0.62

5.00

2.787

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.25
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 158.00 TO NODE 159.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1150.21 DOWNSTREAM(FEET) = 1149.90
 CHANNEL LENGTH THRU SUBAREA(FEET) = 23.00 CHANNEL SLOPE = 0.0135
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.708
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.07
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 0.36
 Tc(MIN.) = 5.36
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) = 0.1
                            PEAK FLOW RATE(CFS) = 0.29
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.94
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 159.00 =
******************************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.708
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.34
 TC(MIN.) = 5.36
******************************
 FLOW PROCESS FROM NODE 159.00 TO NODE 150.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.90 DOWNSTREAM(FEET) = 1141.82
 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.02
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.34
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.52
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 150.00 = 143.00 FEET.
********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.52
 RAINFALL INTENSITY(INCH/HR) = 2.67
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.34
 ** CONFLUENCE DATA **
                                     AREA
 STREAM
        RUNOFF
                   Tc
                         INTENSITY
                  (MIN.)
                         (INCH/HOUR)
 NUMBER
         (CFS)
                                     (ACRE)
          7.57 8.98 2.186
0.34 5.52 2.674
    1
          7.57
                                       3.55
    2
                                       0.14
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
5.00 5.52 2.674
7.85 8.98 2.186
         (CFS)
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.85 Tc(MIN.) = TOTAL AREA(ACRES) = 3.7
                                      8.98
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 150.00 = 940.00 FEET.
********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE
                                   160.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.82 DOWNSTREAM(FEET) = 1141.64
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.85
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =
                                      9.09
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       160.00 =
                                                975.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                     160.00 TO NODE
                                   160.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.09
 RAINFALL INTENSITY(INCH/HR) = 2.17
 TOTAL STREAM AREA(ACRES) = 3.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 7.85
*******************************
```

FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1153.39
 DOWNSTREAM ELEVATION(FEET) = 1150.16
 ELEVATION DIFFERENCE(FEET) = 3.23
TC = 0.303*[( 100.00**3)/( 3.23)]**.2 = 3.800
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.34
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1150.16 DOWNSTREAM(FEET) = 1149.22
 CHANNEL LENGTH THRU SUBAREA(FEET) = 72.00 CHANNEL SLOPE = 0.0131
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.573
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.13
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.06
 Tc(MIN.) = 6.06
 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.45
TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
                                                     0.80
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.29
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 172.00 FEET.
********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE 163.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.573
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.25
 TC(MIN.) = 6.06
**********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE
                                   160.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.18 DOWNSTREAM(FEET) = 1141.94
 FLOW LENGTH(FEET) = 17.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
```

```
DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.67
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                   NUMBER OF PIPES = 1
                 1.25
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                       6.09
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 160.00 =
                                                  189.00 FEET.
********************************
 FLOW PROCESS FROM NODE 160.00 TO NODE
                                    160.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.09
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.54
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc INTENSITY
                                      AREA
 NUMBER
         (CFS)
                   (MIN.) (INCH/HOUR)
                                      (ACRE)
          7.85
    1
                   9.09 2.175
                                        3.69
    2
          1.25
                 6.09
                            2.569
                                         0.54
*******************************WARNING***********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
 NUMBER
        (CFS) (MIN.)
                         (INCH/HOUR)
           6.51 6.09
8.92 9.09
    1
                         2.569
                           2.175
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.92 Tc(MIN.) =
                                       9.09
 TOTAL AREA(ACRES) =
                      4.2
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                        160.00 =
                                                 975.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 164.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.78 DOWNSTREAM(FEET) = 1140.76
 FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.29
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
                  8.92
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) =
                                       9.27
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 164.00 = 1053.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 164.00 TO NODE
                                    164.00 \text{ IS CODE} = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.27
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 8.92
********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
 UPSTREAM ELEVATION(FEET) = 1151.81
 DOWNSTREAM ELEVATION(FEET) = 1148.41
 ELEVATION DIFFERENCE(FEET) =
 ELEVATION DIFFERENCE(FEET) = 3.40
TC = 0.303*[(70.00**3)/(3.40)]**.2 = 3.036
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 164.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.84 DOWNSTREAM(FEET) = 1142.76
 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.52
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.17
 PIPE TRAVEL TIME(MIN.) = 0.11
                            Tc(MIN.) =
                                       5.11
 LONGEST FLOWPATH FROM NODE 165.00 TO NODE
                                      164.00 =
                                                101.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 164.00 TO NODE 164.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) = 2.76
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                         INTENSITY
                                     AREA
 NUMBER
         (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
    1
          8.92
                  9.27
                           2.157
                                       4.23
```

```
RS_P_10.RES
0.07
```

2 0.17 5.11 2.761 0

```
*******************************WARNING***********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
 NUMBER
          (CFS)
                 (MIN.)
                         (INCH/HOUR)
                 5.11
    1
           5.09
                          2.761
                 9.27
    2
           9.05
                           2.157
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.05 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                     4.3
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       164.00 =
                                               1053.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                     164.00 TO NODE
                                   165.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1140.76 DOWNSTREAM(FEET) = 1140.53
 FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.03
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.05
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                       9.43
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                       165.00 =
                                                1100.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                          9.43
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
                     166.00 TO NODE
 FLOW PROCESS FROM NODE
                                   167.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1151.81
 DOWNSTREAM ELEVATION(FEET) =
                         1150.67
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(61.00**3)/(1.14)]**.2 =
```

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.12
 TOTAL AREA(ACRES) =
                  0.05 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 167.00 TO NODE 165.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.56 DOWNSTREAM(FEET) = 1145.98
 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.12
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 5.03
 LONGEST FLOWPATH FROM NODE 166.00 TO NODE
                                     165.00 = 69.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.03
 RAINFALL INTENSITY(INCH/HR) = 2.78
 TOTAL STREAM AREA(ACRES) = 0.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.12
******************************
 FLOW PROCESS FROM NODE 168.00 TO NODE
                                  169.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1151.99
 DOWNSTREAM ELEVATION(FEET) = 1149.95
 ELEVATION DIFFERENCE (FEET) = 2.04
TC = 0.303*[( 100.00**3)/( 2.04)]**.2 = 4.165
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                  0.08 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 169.00 TO NODE
                                  170.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.95 DOWNSTREAM(FEET) = 1149.76
 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = 0.0076
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
```

```
RS P 10.RES
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.675
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8835
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.81
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 0.52
 Tc(MIN.) =
          5.52
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.01
TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
                             PEAK FLOW RATE(CFS) = 0.21
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 0.83
 LONGEST FLOWPATH FROM NODE 168.00 TO NODE 170.00 = 125.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
_____
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.675
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8835
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.01
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.22
 TC(MIN.) = 5.52
**********************************
 FLOW PROCESS FROM NODE 170.00 TO NODE
                                    165.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.85 DOWNSTREAM(FEET) = 1143.00
 FLOW LENGTH(FEET) = 83.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.31
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   0.22
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 5.93
 LONGEST FLOWPATH FROM NODE 168.00 TO NODE
                                       165.00 = 208.00 FEET.
******************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.93
 RAINFALL INTENSITY(INCH/HR) = 2.60
 TOTAL STREAM AREA(ACRES) = 0.09
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.22
 ** CONFLUENCE DATA **
                         INTENSITY
                                      AREA
 STREAM RUNOFF
                   Tc
        (CFS) (MIN.) (INCH/HOUR)

9.05 9.43 2.142

0.12 5.03 2.779

0.22 5.93 2.595
 NUMBER
                                      (ACRE)
                                     4.30
    1
    2
                                        0.05
```

3

D =	~~	40
Рa	ge	40

0.09

```
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                      INTENSITY
 NUMBER
         (CFS)
              (MIN.)
                       (INCH/HOUR)
    1
         5.14
              5.03 2.779
    2
          6.04
                5.93
                        2.595
          9.33
                9.43
    3
                        2.142
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.33 Tc(MIN.) =
                                    9.43
 TOTAL AREA(ACRES) = 4.4
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    165.00 = 1100.00 FEET.
******************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 171.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1140.52 DOWNSTREAM(FEET) = 1140.09
 FLOW LENGTH(FEET) = 87.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.08
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                NUMBER OF PIPES = 1
                 9.33
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 171.00 =
                                            1187.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 171.00 TO NODE
                                 171.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
 ********************************
 FLOW PROCESS FROM NODE 172.00 TO NODE 173.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1150.81
 DOWNSTREAM ELEVATION(FEET) = 1147.88
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(2.93)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.64
 TOTAL AREA(ACRES) =
                   0.26 TOTAL RUNOFF(CFS) =
**********************************
```

RS P 10.RES FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1147.88 DOWNSTREAM(FEET) = 1147.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0251 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.705 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837 SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.58 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 5.37SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.07 PEAK FLOW RATE(CFS) = 0.71 TOTAL AREA(ACRES) = 0.3 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 174.00 = ********************************** FLOW PROCESS FROM NODE 174.00 TO NODE 174.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.705 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 0.78 TC(MIN.) = 5.37

FLOW PROCESS FROM NODE 174.00 TO NODE 171.00 IS CODE = 31

------>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

ELEVATION DATA: UPSTREAM(FEET) = 1143.47 DOWNSTREAM(FEET) = 1143.30

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)

FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.8 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 5.53

ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 0.78

PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 5.38

LONGEST FLOWPATH FROM NODE 172.00 TO NODE 171.00 = 140.00 FEET.

FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 10

>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<<

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM

```
DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1151.24
 DOWNSTREAM ELEVATION(FEET) = 1147.95
 ELEVATION DIFFERENCE(FEET) = 3.29
 TC = 0.303*[(100.00**3)/(3.29)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.95 DOWNSTREAM(FEET) = 1147.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 158.00 CHANNEL SLOPE = 0.0060
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.269
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8812
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.82
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 3.21
 Tc(MIN.) =
          8.21
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.2
                             PEAK FLOW RATE(CFS) = 0.54
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 0.86
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 =
                                               258.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.269
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8812
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.24
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 0.78
 TC(MIN.) =
********************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 178.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.94 DOWNSTREAM(FEET) = 1141.01
 FLOW LENGTH(FEET) = 105.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.39
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.78
```

```
RS P 10.RES
 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 8.72
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                     178.00 =
                                              363.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 178.00 TO NODE 178.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.72
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.36
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.78
**********************************
 FLOW PROCESS FROM NODE 179.00 TO NODE 180.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1148.13
 DOWNSTREAM ELEVATION(FEET) = 1146.40
 ELEVATION DIFFERENCE(FEET) = 1.73
TC = 0.303*[( 100.00**3)/( 1.73)]**.2 = 4.305
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.26
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
 ELEVATION DATA: UPSTREAM(FEET) = 1146.40 DOWNSTREAM(FEET) = 1145.61
 CHANNEL LENGTH THRU SUBAREA(FEET) = 62.00 CHANNEL SLOPE = 0.0127
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.603
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8832
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 0.89
 Tc(MIN.) = 5.89
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) =
                             PEAK FLOW RATE(CFS) = 0.51
 TOTAL AREA(ACRES) = 0.2
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.20
 LONGEST FLOWPATH FROM NODE 179.00 TO NODE 181.00 =
 **************************
 FLOW PROCESS FROM NODE 181.00 TO NODE 181.00 IS CODE = 81
 ______
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.603
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8832
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) =
                                              0.77
 TC(MIN.) =
          5.89
**********************************
 FLOW PROCESS FROM NODE 181.00 TO NODE 178.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1142.60 DOWNSTREAM(FEET) = 1142.01
 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.10
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.77
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 179.00 TO NODE
                                       178.00 = 201.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 178.00 TO NODE 178.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.05
 RAINFALL INTENSITY(INCH/HR) = 2.57
 TOTAL STREAM AREA(ACRES) = 0.33
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.77
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc
                         INTENSITY
                                     AREA
          (CFS) (MIN.) (INCH/HOUR)
0.78 8.72 2.212
0.77 6.05 2.575
 NUMBER
                         (INCH/HOUR)
          (CFS)
                                     (ACRE)
    1
                                        0.36
                                        0.33
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                        INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
1.30 6.05 2.575
1.43 8.72 2.212
 NUMBER
          (CFS)
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.43 Tc(MIN.) = TOTAL AREA(ACRES) = 0.7
                                      8.72
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 178.00 = 363.00 FEET.
```

```
FLOW PROCESS FROM NODE
                    178.00 TO NODE
                                  171.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.01 DOWNSTREAM(FEET) = 1140.96
 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 1.32
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.43
 PIPE TRAVEL TIME(MIN.) = 1.39 Tc(MIN.) =
                                     10.12
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                     171.00 =
                                               473.00 FEET.
**************************
 FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 14.0
 >>>>MEMORY BANK # 2 COPIED ONTO MAIN-STREAM MEMORY<
 MAIN-STREAM MEMORY DEFINED AS FOLLOWS:
 STREAM RUNOFF
              Tc
 NUMBER
                 (MIN.)
         (CFS)
   1
         9.33
                 9.71
  TOTAL AREA =
                  4.4
********************************
 FLOW PROCESS FROM NODE 171.00 TO NODE
 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
                Tc
         RUNOFF
 STREAM
                       INTENSITY
                                   AREA
                 (MIN.)
          (CFS)
 NUMBER
                        (INCH/HOUR)
                                  (ACRE)
                 9.71
    1
           9.33
                        2.116
                                   4.44
 LONGEST FLOWPATH FROM NODE
                       105.00 TO NODE 171.00 = 1187.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **
 STREAM
         RUNOFF
               Tc INTENSITY
                                  AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                  (ACRE)
               5.38
                                    0.32
          0.78
                       2.702
    1
 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 171.00 =
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
          5.96
    1
                 5.38
                           2.702
    2
          9.94
                  9.71
                           2.116
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.94 Tc(MIN.) =
                                      9.71
 TOTAL AREA(ACRES) =
                     4.8
*******************************
```

FLOW PROCESS FROM NODE 171.00 TO NODE 182.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 1140.09 DOWNSTREAM(FEET) = 1139.23
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.45
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.94
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 9.81
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      182.00 = 1235.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1153.06
 DOWNSTREAM ELEVATION(FEET) = 1149.59
 ELEVATION DIFFERENCE(FEET) = 3.47
 TC = 0.303*[(100.00**3)/(3.47)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.787
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8841
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.12
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
------
 ELEVATION DATA: UPSTREAM(FEET) = 1149.59 DOWNSTREAM(FEET) = 1139.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 454.00 CHANNEL SLOPE = 0.0230
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.987
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8792
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.20
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 6.30
 Tc(MIN.) = 11.30
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
                             PEAK FLOW RATE(CFS) = 0.18
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.05
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 =
**********************************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
    ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.987
```

RS_P_10.RES

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8792

SOIL CLASSIFICATION IS "C"

SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.05 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.23 TC(MIN.) = 11.30

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) = 0.23 0.1 TC(MIN.) = 11.30

______ _____

END OF RATIONAL METHOD ANALYSIS

```
RS P 100.RES
*****************************
           RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
       RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
                    (RCFC&WCD) 1978 HYDROLOGY MANUAL
        (c) Copyright 1982-2011 Advanced Engineering Software (aes)
                    (Rational Tabling Version 18.0)
                 Release Date: 07/01/2011 License ID 1499
                         Analysis prepared by:
                    Kimley-Horn and Associates, Inc.
                           765 The City Drive
                               Suite 200
                            Orange, CA 92868
****************** DESCRIPTION OF STUDY **************
Rancho Springs Medical Center
 Proposed Conditions
 100-year analysis
 FILE NAME: RS_P.DAT
 TIME/DATE OF STUDY: 07:28 05/18/2020
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.070
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.985
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.430
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.630
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.4144876
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.4152232
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.4152
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
```

NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

(FT) SIDE / SIDE/ WAY (FT) NO. (FT) (FT) (FT) (FT) === 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 1 30.0

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)

2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

**************************** FLOW PROCESS FROM NODE 30.00 TO NODE >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<

______ USER-SPECIFIED VALUES ARE AS FOLLOWS:

TC(MIN) = 5.00RAIN INTENSITY(INCH/HOUR) = 4.57

```
RS P 100.RES
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
FLOW PROCESS FROM NODE
                    31.00 TO NODE
                                300.00 \text{ IS CODE} = 41
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1152.47 DOWNSTREAM(FEET) = 1143.66
 FLOW LENGTH(FEET) = 226.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.53
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.14
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                    6.07
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                    300.00 =
                                              226.00 FEET.
**************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1155.41
 ELEVATION DIFFERENCE(FEET) = 1.59
 TC = 0.303*[(102.00**3)/(1.59)]**.2 = 4.431
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
                   0.41
 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.00 DOWNSTREAM(FEET) = 1149.75
 FLOW LENGTH(FEET) = 104.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.17
 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.55 Tc(MIN.) =
                                   5.55
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                    102.00 =
***************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.55
 RAINFALL INTENSITY(INCH/HR) = 4.38
```

TOTAL STREAM AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE =

Page 2

0.41

```
********************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 21
  ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1155.37
 DOWNSTREAM ELEVATION(FEET) = 1154.06
 ELEVATION DIFFERENCE(FEET) = 1.31
TC = 0.303*[( 100.00**3)/( 1.31)]**.2 = 4.551
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 102.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.06 DOWNSTREAM(FEET) = 1153.34
 CHANNEL LENGTH THRU SUBAREA(FEET) = 76.00 CHANNEL SLOPE = 0.0095
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.181
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.05
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.21
           6.21
 Tc(MIN.) =
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.22
 TOTAL AREA(ACRES) = 0.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.08
 LONGEST FLOWPATH FROM NODE 103.00 TO NODE 102.00 =
*******************************
 FLOW PROCESS FROM NODE 102.00 TO NODE
                                  102.00 \text{ IS CODE} = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.181
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.22
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.89
 TC(MIN.) =
*****************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
   >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 3
```

```
RS P 100.RES
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.21
 RAINFALL INTENSITY(INCH/HR) =
                        4.18
 TOTAL STREAM AREA(ACRES) = 0.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.89
*******************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1157.00
 DOWNSTREAM ELEVATION(FEET) = 1154.96
 ELEVATION DIFFERENCE(FEET) = 2.04
TC = 0.303*[( 100.00**3)/( 2.04)]**.2 = 4.165
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.49
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.96 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 123.00 CHANNEL SLOPE = 0.0229
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.173
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.66
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.24
 Tc(MIN.) = 6.24
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.70
 TOTAL AREA(ACRES) =
                    0.3
                              PEAK FLOW RATE(CFS) = 1.19
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.83
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 107.00 =
***********************************
 FLOW PROCESS FROM NODE 107.00 TO NODE
                                   107.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.173
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887
 SOIL CLASSIFICATION IS "C"
```

SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.70
TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.90
TC(MIN.) = 6.24

```
RS_P_100.RES
```

FLOW PROCESS FROM NODE 107.00 TO NODE 102.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 1149.13 DOWNSTREAM(FEET) = 1148.92

FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.0 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 3.41

ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 1.90

PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 6.45

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 102.00 = 266.00 FEET.

FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:

TIME OF CONCENTRATION(MIN.) = 6.45

RAINFALL INTENSITY(INCH/HR) = 4.12

TOTAL STREAM AREA(ACRES) = 0.50

PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.90

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	0.41	5.55	4.381	0.10
2	0.89	6.21	4.181	0.23
3	1.90	6.45	4.116	0.50

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	2.84	5.55	4.381
2	3.11	6.21	4.181
3	3.16	6.45	4.116

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 3.16 Tc(MIN.) = 6.45

TOTAL AREA(ACRES) = 0.8

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 102.00 = 266.00 FEET.

FLOW PROCESS FROM NODE 102.00 TO NODE 108.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 1148.92 DOWNSTREAM(FEET) = 1148.20

FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013

```
RS P 100.RES
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.24
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                3.16
 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) =
                                      6.65
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 108.00 =
                                                 331.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.65
 RAINFALL INTENSITY(INCH/HR) = 4.06
 TOTAL STREAM AREA(ACRES) = 0.83
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1158.23
 DOWNSTREAM ELEVATION(FEET) = 1154.48
 ELEVATION DIFFERENCE(FEET) = 3.75
TC = 0.303*[( 100.00**3)/( 3.75)]**.2 = 3.688
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.61
 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 108.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1154.48 DOWNSTREAM(FEET) = 1152.91 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0449
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.468
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8894
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.01
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 0.29
          5.29
 Tc(MIN.) =
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.2
                               PEAK FLOW RATE(CFS) = 0.65
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.94
 LONGEST FLOWPATH FROM NODE 109.00 TO NODE 108.00 = 135.00 FEET.
```

```
FLOW PROCESS FROM NODE
                    108.00 TO NODE
                                 108.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.468
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8894
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.04
 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           5.29
********************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.29
 RAINFALL INTENSITY(INCH/HR) = 4.47
 TOTAL STREAM AREA(ACRES) = 0.17
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                       INTENSITY
                                   AREA
       (CFS) (MIN.) (INCH/HOUR)
3.16 6.65 4.062
0.69 5.29 4.468
 NUMBER
                                  (ACRE)
    1
                                   0.83
    2
                                    0.17
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
              (MIN.)
 NUMBER
         (CFS)
                       (INCH/HOUR)
    1
          3.20
                5.29
                       4.468
    2
          3.79 6.65
                         4.062
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.79 Tc(MIN.) = 6.65
 TOTAL AREA(ACRES) =
                   1.0
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    108.00 = 331.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 111.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.90 DOWNSTREAM(FEET) = 1147.68
 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.42
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.79
```

```
RS P 100.RES
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 6.79
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                   111.00 =
                                            367.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.79
 RAINFALL INTENSITY(INCH/HR) = 4.03
 TOTAL STREAM AREA(ACRES) = 1.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              3.79
*********************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 111.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 89.00
 UPSTREAM ELEVATION(FEET) = 1156.08
 DOWNSTREAM ELEVATION(FEET) = 1151.80
 ELEVATION DIFFERENCE(FEET) = 4.28
TC = 0.303*[( 89.00**3)/( 4.28)]**.2 = 3.349
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
 TOTAL AREA(ACRES) =
                 0.11 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 4.57
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.45
 ** CONFLUENCE DATA **
                 Tc INTENSITY
 STREAM RUNOFF
                                  AREA
        (CFS) (MIN.) (INCH/HOUR)
3.79 6.79 4.029
 NUMBER
                                  (ACRE)
    1
                                 1.00
    2
         0.45
               5.00
                        4.574
                                    0.11
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
         3.24 5.00
                       4.574
    1
                6.79
    2
          4.18
                        4.029
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.18 Tc(MIN.) =
                                   6.79
 TOTAL AREA(ACRES) = 1.1
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    111.00 =
                                             367.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.29 DOWNSTREAM(FEET) = 1146.91
 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.18
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                     7.09
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    113.00 =
                                             442.00 FEET.
**************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 ______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.09
 RAINFALL INTENSITY(INCH/HR) = 3.96
 TOTAL STREAM AREA(ACRES) = 1.11
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
 FLOW PROCESS FROM NODE 114.00 TO NODE
                                 115.00 IS CODE = 21
  ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1158.13
 DOWNSTREAM ELEVATION(FEET) = 1155.26
 ELEVATION DIFFERENCE(FEET) = 2.87
TC = 0.303*[( 100.00**3)/( 2.87)]**.2 = 3.891
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.33
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 115.00 TO NODE
                                 116.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1155.26 DOWNSTREAM(FEET) = 1152.66
 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = 0.0260
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.215
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.53
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.09
 Tc(MIN.) = 6.09
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.2
                             PEAK FLOW RATE(CFS) = 0.70
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.63
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 116.00 =
                                                200.00 FEET.
************************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.215
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.07
 TC(MIN.) = 6.09
*****************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 113.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.49 DOWNSTREAM(FEET) = 1147.41
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.86
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.07
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 6.19
 LONGEST FLOWPATH FROM NODE 114.00 TO NODE 113.00 =
                                               235.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.19
 RAINFALL INTENSITY(INCH/HR) = 4.19
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.07
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                    AREA
 NUMBER
         (CFS)
                  (MIN.) (INCH/HOUR)
                                     (ACRE)
```

```
1
          4.18
                7.09
                        3.957
                                     1.11
          1.07
                6.19
                         4.187
                                    0.28
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
              (MIN.)
 NUMBER
         (CFS)
                       (INCH/HOUR)
         4.72 6.19
5.20 7.09
                      4.187
    1
    2
                        3.957
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.20 Tc(MIN.) = TOTAL AREA(ACRES) = 1.4
                                   7.09
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    113.00 = 442.00 FEET.
**************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 117.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
-----
 ELEVATION DATA: UPSTREAM(FEET) = 1146.91 DOWNSTREAM(FEET) = 1146.78
 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.52
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.20
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    117.00 =
                                            467.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE
                                 117.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.18
 RAINFALL INTENSITY(INCH/HR) = 3.94
 TOTAL STREAM AREA(ACRES) = 1.39
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 118.00 TO NODE
                                 117.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1152.04
 DOWNSTREAM ELEVATION(FEET) = 1151.64
 ELEVATION DIFFERENCE(FEET) = 0.40
 TC = 0.303*[(100.00**3)/(
                        [0.40]**.2 =
                                  5.770
```

RS P 100.RES

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.310
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   1.30
 TOTAL AREA(ACRES) =
                  0.34 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.77
 RAINFALL INTENSITY(INCH/HR) =
                      4.31
 TOTAL STREAM AREA(ACRES) = 0.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 119.00 TO NODE
                                120.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) =
                   0.07 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 117.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.78
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.73
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              0.28
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) =
                                    5.29
 LONGEST FLOWPATH FROM NODE 119.00 TO NODE
                                   117.00 =
                                            166.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.29
 RAINFALL INTENSITY(INCH/HR) = 4.47
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                   AREA
```

```
RS P 100.RES
                                  (ACRE)
 NUMBER
          (CFS)
                 (MIN.) (INCH/HOUR)
    1
          5.20
                 7.18
                         3.935
                                    1.39
          1.30
    2
                 5.77
                         4.310
                                    0.34
    3
          0.28
                 5.29
                         4.466
                                    0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                       INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
5.31 5.29 4.466
5.75 5.77 4.310
 NUMBER
         (CFS)
    1
    2
          6.64 7.18
                        3.935
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.64 Tc(MIN.) =
                                    7.18
 TOTAL AREA(ACRES) =
                    1.8
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    117.00 =
                                            467.00 FEET.
******************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 121.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.78 DOWNSTREAM(FEET) = 1146.56
 FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.65
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                6.64
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    121.00 =
                                            511.00 FEET.
********************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.34
 RAINFALL INTENSITY(INCH/HR) = 3.90
 TOTAL STREAM AREA(ACRES) = 1.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              6.64
********************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 22
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) =
                      5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
```

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896

```
SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) =
                    0.07 TOTAL RUNOFF(CFS) =
                                            0.28
*******************************
 FLOW PROCESS FROM NODE 123.00 TO NODE 121.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.56
 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.09
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.28
 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) =
                                    5.24
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 121.00 =
                                              103.00 FEET.
*********************************
 FLOW PROCESS FROM NODE
                    121.00 TO NODE
                                  121.00 IS CODE =
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.24
 RAINFALL INTENSITY(INCH/HR) = 4.49
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               0.28
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                        INTENSITY
                                   AREA
         (CFS) (MIN.) (INCH/HOUR)
6.64 7.34 3.900
0.28 5.24 4.486
                 (MIN.) (INCH/HOUR) (ACRE)
         (CFS)
 NUMBER
    1
                                    1.80
                                      0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
        (CFS) (MIN.) (INCH/HOU
5.02 5.24 4.486
 NUMBER
                        (INCH/HOUR)
    1
    2
          6.88
                7.34
                         3.900
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.88 Tc(MIN.) = TOTAL AREA(ACRES) = 1.9
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                     121.00 =
                                              511.00 FEET.
 *********************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 124.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

```
RS P 100.RES
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.56 DOWNSTREAM(FEET) = 1146.49
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.51
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.88
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 124.00 =
                                             526.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.40
 RAINFALL INTENSITY(INCH/HR) = 3.89
 TOTAL STREAM AREA(ACRES) = 1.87
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
 FLOW PROCESS FROM NODE 125.00 TO NODE 124.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 76.00
 UPSTREAM ELEVATION(FEET) = 1155.54
 DOWNSTREAM ELEVATION(FEET) = 1151.58
 ELEVATION DIFFERENCE(FEET) =
                        3.96
 TC = 0.303*[(76.00**3)/(3.96)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.49
 TOTAL AREA(ACRES) =
                  0.12 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 4.57
```

TOTAL STREAM AREA(ACRES) = 0.12

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.49

** CONFLUENCE DATA **

STREAM NUMBER	RUNOFF (CFS)	Tc (MIN.)	<pre>INTENSITY (INCH/HOUR)</pre>	AREA (ACRE)
1	6.88	7.40	3.888	1.87
2	0.49	5.00	4.574	0.12

RS P 100.RES

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc
                                INTENSITY
          (CFS) (MIN.) (INCH/HO
5.14 5.00 4.574
7.30 7.40 3.888
NUMBER
                                 (INCH/HOUR)
    1
    2
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 7.30 Tc(MIN.) = TOTAL AREA(ACRES) = 2.0 7.40

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 124.00 = 526.00 FEET.

FLOW PROCESS FROM NODE 124.00 TO NODE 126.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1146.00 DOWNSTREAM(FEET) = 1145.70

FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 4.86

ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) =

PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 7.60

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 126.00 = 586.00 FEET.

FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE =

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 7.60RAINFALL INTENSITY(INCH/HR) = 3.84

TOTAL STREAM AREA(ACRES) = 1.99

PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.30

FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00

UPSTREAM ELEVATION(FEET) = 1166.00

DOWNSTREAM ELEVATION(FEET) = 1159.30

ELEVATION DIFFERENCE(FEET) = 6.70

TC = 0.303*[(100.00**3)/(6.70)]**.2 = 3.284

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896

SOIL CLASSIFICATION IS "C"

```
0.24
 TOTAL AREA(ACRES) =
                    0.06 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 128.00 TO NODE 126.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1159.30 DOWNSTREAM(FEET) = 1151.31
 CHANNEL LENGTH THRU SUBAREA(FEET) = 118.00 CHANNEL SLOPE = 0.0677
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.235
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.93
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 1.02
 Tc(MIN.) =
           6.02
 SUBAREA AREA(ACRES) =
                    0.11
                             SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                    0.2
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 2.10
 LONGEST FLOWPATH FROM NODE 127.00 TO NODE 126.00 =
                                               218.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.235
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.41
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.07
 TC(MIN.) =
***********************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.02
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                    AREA
 NUMBER
                  (MIN.) (INCH/HOUR)
          (CFS)
                                    (ACRE)
          7.30 7.60
1.07 6.02
                 7.60 3.844
6.02 4.235
    1
                                     1.99
                         4.235
    2
                                      0.28
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************************
```

SUBAREA RUNOFF(CFS) =

```
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR)

1 6.85 6.02 4.235

2 8.27 7.60 3.844
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.27 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 126.00 = 586.00 FEET.
**************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 129.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.70 DOWNSTREAM(FEET) = 1145.46
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.27
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                   7.76
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    129.00 =
******************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.76
 RAINFALL INTENSITY(INCH/HR) = 3.81
 TOTAL STREAM AREA(ACRES) = 2.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.27
*****************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.28
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 131.00 TO NODE
                                 129.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
```

ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.96

```
RS P 100.RES
FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
DEPTH OF FLOW IN 12.0 INCH PIPE IS
                                 1.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.94
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                      NUMBER OF PIPES =
PIPE-FLOW(CFS) =
                0.28
PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) =
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 129.00 =
```

74.00 FEET.

FLOW PROCESS FROM NODE 129.00 TO NODE 129.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.07 RAINFALL INTENSITY(INCH/HR) = 4.55TOTAL STREAM AREA(ACRES) = 0.07

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.28

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	8.27	7.76	3.811	2.27
2	0.28	5.07	4.546	0.07

********************************WARNING************************

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	5.69	5.07	4.546
2	8.51	7.76	3.811

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 8.51 Tc(MIN.) = TOTAL AREA(ACRES) = 2.3 7.76

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 129.00 = 634.00 FEET.

FLOW PROCESS FROM NODE 129.00 TO NODE 132.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 1145.46 DOWNSTREAM(FEET) = 1145.15 FLOW LENGTH(FEET) = 63.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.0 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99

ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 8.51

PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 7.97

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 132.00 = 697.00 FEET.

```
RS P 100.RES
**************************
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                   132.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.97
 RAINFALL INTENSITY(INCH/HR) = 3.77
 TOTAL STREAM AREA(ACRES) = 2.34
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 8.51
********************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1157.98
 ELEVATION DIFFERENCE(FEET) = 8.02
 TC = 0.303*[(100.00**3)/(8.02)]**.2 = 3.168
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1157.98 DOWNSTREAM(FEET) = 1153.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 72.00 CHANNEL SLOPE = 0.0692
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.369
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8891
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.06
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 0.58
 Tc(MIN.) =
           5.58
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.12
 TOTAL AREA(ACRES) = 0.1
                              PEAK FLOW RATE(CFS) = 0.40
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 2.20
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 135.00 =
                                               172.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 135.00 TO NODE 135.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.369
```

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8891

```
SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) =
                                                 0.52
 TC(MIN.) =
*********************************
 FLOW PROCESS FROM NODE 135.00 TO NODE 132.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.89 DOWNSTREAM(FEET) = 1146.15
 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.62
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.52
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                         5.75
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE
                                          132.00 =
                                                    227.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.75
 RAINFALL INTENSITY(INCH/HR) = 4.32
 TOTAL STREAM AREA(ACRES) = 0.13
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)

        1
        8.51
        7.97
        3.769

        2
        0.52
        5.75
        4.317

                                         AREA
                                         (ACRE)
                                         2.34
                                           0.13
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                           4.317
                   5.75
    1
           6.65
            8.96 7.97
                             3.769
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.96 Tc(MIN.) = 7.97
 TOTAL AREA(ACRES) = 2.5
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                          132.00 = 697.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 132.00 TO NODE
                                       136.00 \text{ IS CODE} = 31
```

```
RS P 100.RES
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.15 DOWNSTREAM(FEET) = 1145.01
 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.07
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    136.00 = 725.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.06
 RAINFALL INTENSITY(INCH/HR) = 3.75
 TOTAL STREAM AREA(ACRES) = 2.47
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              8.96
******************************
 FLOW PROCESS FROM NODE 137.00 TO NODE 138.00 IS CODE = 22
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.28
                  0.07 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
******************************
 FLOW PROCESS FROM NODE 138.00 TO NODE
                                 136.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1147.26
 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.72
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                0.28
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
                                   5.08
 LONGEST FLOWPATH FROM NODE 137.00 TO NODE 136.00 =
*********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE
                                 136.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
```

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.08

RAINFALL INTENSITY(INCH/HR) = 4.55

```
PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
 FLOW PROCESS FROM NODE 139.00 TO NODE 140.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1159.54
 DOWNSTREAM ELEVATION(FEET) = 1151.67
 ELEVATION DIFFERENCE(FEET) =
                         7.87
 TC = 0.303*[(100.00**3)/(7.87)]**.2 = 3.180
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.45
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
***********************************
 FLOW PROCESS FROM NODE 140.00 TO NODE 136.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1151.67 DOWNSTREAM(FEET) = 1150.93
 CHANNEL LENGTH THRU SUBAREA(FEET) = 91.00 CHANNEL SLOPE = 0.0081
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.104
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8885
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.02
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 1.49
 Tc(MIN.) =
           6.49
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.62
 TOTAL AREA(ACRES) = 0.3
                             PEAK FLOW RATE(CFS) = 1.07
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.16
 LONGEST FLOWPATH FROM NODE 139.00 TO NODE 136.00 =
                                              191.00 FEET.
********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.104
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8885
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.17 SUBAREA RUNOFF(CFS) = 0.62
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.69
 TC(MIN.) =
**************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 1
 ______
```

TOTAL STREAM AREA(ACRES) = 0.07

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

```
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        4.10
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc
                        INTENSITY
                                    AREA
          (CFS) (MIN.) (INCH/HOUI
8.96 8.06 3.751
         (CFS)
 NUMBER
                         (INCH/HOUR)
                                    (ACRE)
    1
                                      2.47
    2
          0.28 5.08
                          4.545
                                      0.07
          1.69 6.49
    3
                          4.104
                                      0.45
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
       RUNOFF Tc
 STREAM
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
7.25 5.08 4.545
9.16 6.49 4.104
 NUMBER
    1
    2
          10.74 8.06
                         3.751
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 10.74 Tc(MIN.) =
                                      8.06
 TOTAL AREA(ACRES) =
                    3.0
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      136.00 =
                                               725.00 FEET.
********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 141.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.01 DOWNSTREAM(FEET) = 1144.82
 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.24
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                     8.19
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      141.00 =
*****************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.19
 RAINFALL INTENSITY(INCH/HR) =
                        3.73
 TOTAL STREAM AREA(ACRES) = 2.99
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                10.74
```

```
FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 21
  ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1166.00
 DOWNSTREAM ELEVATION(FEET) = 1158.52
 ELEVATION DIFFERENCE(FEET) = 7.48
TC = 0.303*[( 100.00**3)/( 7.48)]**.2 = 3.212
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.33
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 143.00 TO NODE 144.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1158.52 DOWNSTREAM(FEET) = 1152.35
 CHANNEL LENGTH THRU SUBAREA(FEET) = 122.00 CHANNEL SLOPE = 0.0506
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.201
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.79
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 1.14
 Tc(MIN.) =
            6.14
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.19
 TOTAL AREA(ACRES) = 0.1
                               PEAK FLOW RATE(CFS) = 0.51
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 2.03
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE 144.00 =
**********************************
 FLOW PROCESS FROM NODE 144.00 TO NODE
                                    144.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.201
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8888
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.19
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.70
 TC(MIN.) =
*****************************
 FLOW PROCESS FROM NODE 144.00 TO NODE 141.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
```

```
RS P 100.RES
 ELEVATION DATA: UPSTREAM(FEET) = 1148.28 DOWNSTREAM(FEET) = 1145.82
 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.85
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.70
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                      6.30
                                      141.00 =
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE
                                                278.00 FEET.
 *************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.30
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                   Tc
                         INTENSITY
                                     AREA
          (CFS) (MIN.) (INCH/HOUI
10.74 8.19 3.726
                  (MIN.) (INCH/HOUR)
 NUMBER
                                     (ACRE)
    1
                                     2.99
          0.70 6.30
    2
                          4.156
                                       0.18
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF Tc
                        INTENSITY
               (MIN.)
6.30
 NUMBER
          (CFS)
                        (INCH/HOUR)
    1
          8.96
                        4.156
    2
          11.37
                 8.19
                          3.726
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 11.37 Tc(MIN.) =
                                       8.19
 TOTAL AREA(ACRES) =
                     3.2
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      141.00 =
                                               765.00 FEET.
*********************************
                                 145.00 IS CODE = 31
 FLOW PROCESS FROM NODE
                   141.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.82 DOWNSTREAM(FEET) = 1144.62
 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.47
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                  NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 11.37
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =
                                       8.31
```

LONGEST FLOWPATH FROM NODE 105.00 TO NODE

145.00 =

804.00 FEET.

```
********************************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.31
 RAINFALL INTENSITY(INCH/HR) = 3.70
 TOTAL STREAM AREA(ACRES) = 3.17
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.37
*****************************
 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1164.72
 DOWNSTREAM ELEVATION(FEET) = 1157.49
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(7.23)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.05
                    0.05 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 147.00 TO NODE 148.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
 ELEVATION DATA: UPSTREAM(FEET) = 1157.49 DOWNSTREAM(FEET) = 1152.14
 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0334
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.057
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8884
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.59
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 1.67
 Tc(MIN.) = 6.67
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) = 0.60
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.79
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE 148.00 =
******************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 148.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.057
```

```
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8884
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) =
                    0.11 SUBAREA RUNOFF(CFS) =
                                            0.40
                    0.3 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
 TC(MIN.) =
**********************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 145.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1148.10 DOWNSTREAM(FEET) = 1145.62
 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.28
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.00
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 6.77
 LONGEST FLOWPATH FROM NODE 146.00 TO NODE
                                     145.00 = 301.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.77
 RAINFALL INTENSITY(INCH/HR) = 4.03
 TOTAL STREAM AREA(ACRES) = 0.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                1.00
******************************
 FLOW PROCESS FROM NODE 149.00 TO NODE
                                  145.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 94.00
 UPSTREAM ELEVATION(FEET) = 1154.92
 DOWNSTREAM ELEVATION(FEET) = 1151.86
 ELEVATION DIFFERENCE (FEET) = 3.06
TC = 0.303*[(94.00**3)/(3.06)]**.2 = 3.701
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.45
 TOTAL AREA(ACRES) =
                   0.11 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE
                    145.00 TO NODE
                                  145.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
```

RS P 100.RES

0.45

```
RAINFALL INTENSITY(INCH/HR) = 4.57
TOTAL STREAM AREA(ACRES) = 0.11
PEAK FLOW RATE(CFS) AT CONFLUENCE =
```

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	11.37	8.31	3.704	3.17
2	1.00	6.77	4.034	0.27
3	0.45	5.00	4.574	0.11

*******************************WARNING***********************

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

```
** PEAK FLOW RATE TABLE **
STREAM
        RUNOFF Tc
                         INTENSITY
               (MIN.) (INCH/HOUR)
NUMBER
         (CFS)
                 5.00
                          4.574
   1
          8.02
         10.65 6.77
12.64 8.31
   2
                            4.034
   3
                           3.704
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.64 Tc(MIN.) =

TOTAL AREA(ACRES) = 3.6

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 145.00 = 804.00 FEET.

FLOW PROCESS FROM NODE 145.00 TO NODE 150.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<

ELEVATION DATA: UPSTREAM(FEET) = 1144.62 DOWNSTREAM(FEET) = 1141.82 FLOW LENGTH(FEET) = 136.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 9.35

NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) = 18.00

PIPE-FLOW(CFS) = 12.64

PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 8.55

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 150.00 = 940.00 FEET.

FLOW PROCESS FROM NODE 150.00 TO NODE

>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ______

FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 1152.00

```
RS_P_100.RES
 DOWNSTREAM ELEVATION(FEET) = 1150.13
 ELEVATION DIFFERENCE(FEET) =
                        1.87
 TC = 0.303*[(100.00**3)/(1.87)]**.2 = 4.239
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.49
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 4.57
 TOTAL STREAM AREA(ACRES) = 0.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
                                          0.28
*******************************
 FLOW PROCESS FROM NODE 154.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.64
 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.97
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) =
                                  5.39
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                   152.00 = 193.00 FEET.
****************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
```

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.39

RAINFALL INTENSITY(INCH/HR) = 4.43

TOTAL STREAM AREA(ACRES) = 0.07

PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.28

```
156.00 IS CODE = 22
 FLOW PROCESS FROM NODE 155.00 TO NODE
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 USER SPECIFIED Tc(MIN.) = 5.000
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                     0.28
 TOTAL AREA(ACRES) =
                    0.07 TOTAL RUNOFF(CFS) =
                                          0.28
*********************************
 FLOW PROCESS FROM NODE 156.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
-----
 ELEVATION DATA: UPSTREAM(FEET) = 1149.50 DOWNSTREAM(FEET) = 1146.64
 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.36
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.28
 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 155.00 TO NODE
                                     152.00 =
                                             163.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                    152.00 TO NODE
                                 152.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.27
 RAINFALL INTENSITY(INCH/HR) = 4.48
 TOTAL STREAM AREA(ACRES) =
                        0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               0.28
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                        INTENSITY
                                    AREA
          (CFS) (MIN.) (INCH/HUUK)
0.49 5.00 4.574
 NUMBER
         (CFS)
                                    (ACRE)
    1
                                      0.12
    2
          0.28 5.39
                         4.433
                                      0.07
          0.28 5.27 4.476
    3
                                      0.07
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
***********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
         RUNOFF Tc
 STREAM
                       INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
```

```
1.02
    1
                 5.00
                        4.574
                5.27
    2
          1.04
                         4.476
                5.39
    3
          1.04
                         4.433
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.02 Tc(MIN.) =
                                     5.00
 TOTAL AREA(ACRES) =
                    0.3
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                    152.00 =
                                             193.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 152.00 TO NODE
                                 150.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.14 DOWNSTREAM(FEET) = 1142.83
 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.18
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                     5.13
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                    150.00 =
********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE
                                 150.00 IS CODE = 14.0
______
 >>>>MEMORY BANK # 1 COPIED ONTO MAIN-STREAM MEMORY<
______
 MAIN-STREAM MEMORY DEFINED AS FOLLOWS:
 STREAM RUNOFF Tc
 NUMBER (CFS)
               (MIN.)
                8.55
        12.64
   1
  TOTAL AREA =
                  3.6
*********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.55
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 3.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*********************************
                   157.00 TO NODE
 FLOW PROCESS FROM NODE
                                 158.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1151.83
 DOWNSTREAM ELEVATION(FEET) = 1150.21
 ELEVATION DIFFERENCE(FEET) =
                        1.62
 ELEVATION DIFFERENCE(FEET) = 1.62
TC = 0.303*[( 100.00**3)/( 1.62)]**.2 = 4.362
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
```

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                   0.41
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 158.00 TO NODE 159.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1150.21 DOWNSTREAM(FEET) = 1149.90
 CHANNEL LENGTH THRU SUBAREA(FEET) = 23.00 CHANNEL SLOPE = 0.0135
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.448
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8893
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.10
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 0.35
 Tc(MIN.) = 5.35
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 0.1
                           PEAK FLOW RATE(CFS) = 0.49
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.20
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 159.00 =
*******************************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.448
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8893
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.08
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.57
 TC(MIN.) = 5.35
*****************************
 FLOW PROCESS FROM NODE 159.00 TO NODE 150.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.90 DOWNSTREAM(FEET) = 1141.82
 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.57
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 5.49
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 150.00 = 143.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
```

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

```
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.49
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.57
 ** CONFLUENCE DATA **
                   Tc
                                    AREA
 STREAM
        RUNOFF
                         INTENSITY
         (MIN.) (INCH/HOUR)
12.64 8.55 3.660
0.57 5.49
 NUMBER
         (CFS)
                         (INCH/HOUR)
                                     (ACRE)
    1
                                       3.55
    2
                                       0.14
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
8.68 5.49 4.400
13.11 8.55 3.660
         (CFS)
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 13.11 Tc(MIN.) = TOTAL AREA(ACRES) = 3.7
                                     8.55
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 150.00 = 940.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE
                                   160.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.82 DOWNSTREAM(FEET) = 1141.64
 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.63
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.11
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                     8.66
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      160.00 =
                                               975.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                    160.00 TO NODE
                                   160.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.66
 RAINFALL INTENSITY(INCH/HR) = 3.64
 TOTAL STREAM AREA(ACRES) = 3.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.11
*******************************
```

FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1153.39
 DOWNSTREAM ELEVATION(FEET) = 1150.16
 ELEVATION DIFFERENCE(FEET) = 3.23
TC = 0.303*[( 100.00**3)/( 3.23)]**.2 = 3.800
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.57
TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1150.16 DOWNSTREAM(FEET) = 1149.22
 CHANNEL LENGTH THRU SUBAREA(FEET) = 72.00 CHANNEL SLOPE = 0.0131
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.294
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.46
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.82
 Tc(MIN.) =
          5.82
 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.76
TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.51
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 = 172.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE 163.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.294
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.76
 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.10
 TC(MIN.) = 5.82
**********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE
                                   160.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1145.18 DOWNSTREAM(FEET) = 1141.94
 FLOW LENGTH(FEET) = 17.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
```

```
DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.55
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                   NUMBER OF PIPES = 1
                 2.10
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                       5.84
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 160.00 =
                                                   189.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 160.00 TO NODE
                                     160.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.84
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.54
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc INTENSITY
                                      AREA
         (CFS)
13.11
 NUMBER
                   (MIN.) (INCH/HOUR)
                                       (ACRE)
    1
                   8.66 3.642
                                        3.69
    2
          2.10 5.84
                             4.287
                                         0.54
*******************************WARNING***********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS) (MIN.)
10.95 5.84
14.90 8.66
 NUMBER
                          (INCH/HOUR)
    1
                          4.287
                           3.642
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.90 Tc(MIN.) =
                                         8.66
 TOTAL AREA(ACRES) =
                      4.2
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                        160.00 =
                                                  975.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 164.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.78 DOWNSTREAM(FEET) = 1140.76
 FLOW LENGTH(FEET) = 78.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.23
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
                  14.90
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                       8.81
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                        164.00 = 1053.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 164.00 TO NODE
                                     164.00 \text{ IS CODE} = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.81
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 4.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
 UPSTREAM ELEVATION(FEET) = 1151.81
 DOWNSTREAM ELEVATION(FEET) = 1148.41
 ELEVATION DIFFERENCE(FEET) =
 ELEVATION DIFFERENCE(FEET) = 3.40
TC = 0.303*[(70.00**3)/(3.40)]**.2 = 3.036
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.28
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
*********************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 164.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.84 DOWNSTREAM(FEET) = 1142.76
 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.15
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.28
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) =
                                       5.10
 LONGEST FLOWPATH FROM NODE 165.00 TO NODE
                                      164.00 =
                                               101.00 FEET.
********************************
 FLOW PROCESS FROM NODE 164.00 TO NODE 164.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) = 4.54
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc
                         INTENSITY
                                     AREA
 NUMBER
         (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
    1
          14.90 8.81
                           3.615
                                       4.23
```

```
RS P 100.RES
```

2 0.28 5.10 4.536 0.07

WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

*******************************WARNING*********************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
STREAM
          RUNOFF
                    Tc
NUMBER
```

INTENSITY (CFS) (MIN.) (INCH/HOUR)

5.10 1 8.90 4.536 2 15.12 8.81 3.615

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 15.12 Tc(MIN.) =

TOTAL AREA(ACRES) = 4.3

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 164.00 = 1053.00 FEET.

FLOW PROCESS FROM NODE 164.00 TO NODE 165.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

______ ELEVATION DATA: UPSTREAM(FEET) = 1140.76 DOWNSTREAM(FEET) = 1140.53

FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 5.60

ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 15.12

PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 8.95

LONGEST FLOWPATH FROM NODE 105.00 TO NODE 165.00 = 1100.00 FEET.

FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 3

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 8.95

RAINFALL INTENSITY(INCH/HR) =

TOTAL STREAM AREA(ACRES) = 4.30

PEAK FLOW RATE(CFS) AT CONFLUENCE =

166.00 TO NODE FLOW PROCESS FROM NODE 167.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

ASSUMED INITIAL SUBAREA UNIFORM

DEVELOPMENT IS COMMERCIAL

TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2

INITIAL SUBAREA FLOW-LENGTH(FEET) =

UPSTREAM ELEVATION(FEET) = 1151.81

DOWNSTREAM ELEVATION(FEET) = 1150.67

ELEVATION DIFFERENCE(FEET) =

TC = 0.303*[(61.00**3)/(1.14)]**.2 =

COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.

```
RS P 100.RES
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    0.20
 TOTAL AREA(ACRES) =
                  0.05 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 167.00 TO NODE 165.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1146.56 DOWNSTREAM(FEET) = 1145.98
 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 1.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.20
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 5.03
 LONGEST FLOWPATH FROM NODE 166.00 TO NODE
                                      165.00 = 69.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.03
 RAINFALL INTENSITY(INCH/HR) = 4.56
 TOTAL STREAM AREA(ACRES) = 0.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                0.20
******************************
 FLOW PROCESS FROM NODE 168.00 TO NODE
                                   169.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1151.99
 DOWNSTREAM ELEVATION(FEET) = 1149.95
 ELEVATION DIFFERENCE (FEET) = 2.04
TC = 0.303*[( 100.00**3)/( 2.04)]**.2 = 4.165
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.33
 TOTAL AREA(ACRES) =
                  0.08 TOTAL RUNOFF(CFS) =
*********************************
                    169.00 TO NODE
 FLOW PROCESS FROM NODE
                                   170.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
```

ELEVATION DATA: UPSTREAM(FEET) = 1149.95 DOWNSTREAM(FEET) = 1149.76 CHANNEL LENGTH THRU SUBAREA(FEET) = 25.00 CHANNEL SLOPE = 0.0076

CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000

Page 39

```
RS P 100.RES
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.396
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8892
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.83
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 0.50
 Tc(MIN.) =
          5.50
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.02
TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
                              PEAK FLOW RATE(CFS) = 0.35
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.86
 LONGEST FLOWPATH FROM NODE 168.00 TO NODE 170.00 =
                                                125.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
_____
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.396
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8892
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.02
 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.37
 TC(MIN.) = 5.50
**********************************
 FLOW PROCESS FROM NODE 170.00 TO NODE
                                    165.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1144.85 DOWNSTREAM(FEET) = 1143.00
 FLOW LENGTH(FEET) = 83.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 2.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.85
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   0.37
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 5.86
 LONGEST FLOWPATH FROM NODE 168.00 TO NODE
                                       165.00 = 208.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.86
 RAINFALL INTENSITY(INCH/HR) = 4.28
 TOTAL STREAM AREA(ACRES) = 0.09
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 0.37
 ** CONFLUENCE DATA **
                                      AREA
 STREAM RUNOFF
                   Tc INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
15.12 8.95 3.591
0.20 5.03 4.563
0.37 5.86 4.282
                  (MIN.) (INCH/HOUR)
 NUMBER
                                      (ACRE)
                                     4.30
    1
    2
                                        0.05
    3
                                       0.09
```

Page 40

```
RS P 100.RES
```

```
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                       INTENSITY
         (CFS)
 NUMBER
              (MIN.)
                       (INCH/HOUR)
              5.03 4.563
    1
         9.01
    2
                5.86
          10.46
                         4.282
                8.95
         15.59
                        3.591
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 15.59 Tc(MIN.) =
                                     8.95
 TOTAL AREA(ACRES) =
                    4.4
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                    165.00 = 1100.00 FEET.
********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 171.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1140.52 DOWNSTREAM(FEET) = 1140.09
 FLOW LENGTH(FEET) = 87.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.83
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                NUMBER OF PIPES = 1
              15.59
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.25
                          Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 171.00 =
                                            1187.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 171.00 TO NODE
                                 171.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<<
 *******************************
 FLOW PROCESS FROM NODE 172.00 TO NODE 173.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1150.81
 DOWNSTREAM ELEVATION(FEET) = 1147.88
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(100.00**3)/(2.93)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) =
                    1.06
 TOTAL AREA(ACRES) =
                   0.26 TOTAL RUNOFF(CFS) =
**********************************
```

RS P 100.RES FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 51 ------>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1147.88 DOWNSTREAM(FEET) = 1147.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0251 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.456 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8893 SOIL CLASSIFICATION IS "C" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.80 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 5.32SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.18 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.81 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 174.00 = 135.00 FEET. *********************************** FLOW PROCESS FROM NODE 174.00 TO NODE 174.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>> ______ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.456 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8893 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.30 TC(MIN.) = 5.32******************************** FLOW PROCESS FROM NODE 174.00 TO NODE 171.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>> ELEVATION DATA: UPSTREAM(FEET) = 1143.47 DOWNSTREAM(FEET) = 1143.30 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000 DEPTH OF FLOW IN 12.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.40 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.30PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.34LONGEST FLOWPATH FROM NODE 172.00 TO NODE 171.00 = 140.00 FEET. ******************************* FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 10 ______ >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<< -----********************************* FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21 ______

ASSUMED INITIAL SUBAREA UNIFORM

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

```
DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1151.24
 DOWNSTREAM ELEVATION(FEET) = 1147.95
 ELEVATION DIFFERENCE(FEET) = 3.29
 TC = 0.303*[(100.00**3)/(3.29)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.49
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.49
*****************************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 51
 -----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1147.95 DOWNSTREAM(FEET) = 1147.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 158.00 CHANNEL SLOPE = 0.0060
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.794
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8877
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.93
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.84
 Tc(MIN.) =
          7.84
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.2
                             PEAK FLOW RATE(CFS) = 0.89
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.01
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 =
                                               258.00 FEET.
******************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 177.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.794
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8877
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.40
 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.30
 TC(MIN.) =
********************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 178.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.94 DOWNSTREAM(FEET) = 1141.01
 FLOW LENGTH(FEET) = 105.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.92
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.30
```

```
PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) = 8.29
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                     178.00 =
                                            363.00 FEET.
********************************
 FLOW PROCESS FROM NODE 178.00 TO NODE 178.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.29
                        3.71
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.36
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                1.30
*********************************
 FLOW PROCESS FROM NODE 179.00 TO NODE 180.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 1148.13
 DOWNSTREAM ELEVATION(FEET) = 1146.40
 ELEVATION DIFFERENCE(FEET) = 1.73
TC = 0.303*[( 100.00**3)/( 1.73)]**.2 = 4.305
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.43
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
 ELEVATION DATA: UPSTREAM(FEET) = 1146.40 DOWNSTREAM(FEET) = 1145.61
 CHANNEL LENGTH THRU SUBAREA(FEET) = 62.00 CHANNEL SLOPE = 0.0127
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.282
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.20
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.86
 Tc(MIN.) = 5.86
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) =
                             PEAK FLOW RATE(CFS) = 0.85
 TOTAL AREA(ACRES) = 0.2
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.31
 LONGEST FLOWPATH FROM NODE 179.00 TO NODE 181.00 =
 ***************************
 FLOW PROCESS FROM NODE 181.00 TO NODE 181.00 IS CODE = 81
 ______
```

RS P 100.RES

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.282
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890
 SOIL CLASSIFICATION IS "C"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) =
                                              1.27
 TC(MIN.) =
          5.86
***********************************
 FLOW PROCESS FROM NODE 181.00 TO NODE 178.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1142.60 DOWNSTREAM(FEET) = 1142.01
 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 12.000
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.74
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.27
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 179.00 TO NODE
                                       178.00 = 201.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 178.00 TO NODE 178.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.00
 RAINFALL INTENSITY(INCH/HR) = 4.24
 TOTAL STREAM AREA(ACRES) = 0.33
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 1.27
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                   Tc
                         INTENSITY
                                     AREA
         (CFS) (MIN.) (INCH/HOUR)
1.30 8.29 3.708
1.27 6.00 4.241
 NUMBER
                         (INCH/HOUR)
                                     (ACRE)
    1
                                        0.36
                                        0.33
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                        INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
2.21 6.00 4.241
2.41 8.29 3.708
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.41 Tc(MIN.) = TOTAL AREA(ACRES) = 0.7
                                      8.29
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 178.00 = 363.00 FEET.
```

```
FLOW PROCESS FROM NODE
                    178.00 TO NODE
                                  171.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1141.01 DOWNSTREAM(FEET) = 1140.96
 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 1.49
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.41
 PIPE TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) =
                                     9.52
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                     171.00 =
                                               473.00 FEET.
*************************
 FLOW PROCESS FROM NODE 171.00 TO NODE 171.00 IS CODE = 14.0
 >>>>MEMORY BANK # 2 COPIED ONTO MAIN-STREAM MEMORY<
 MAIN-STREAM MEMORY DEFINED AS FOLLOWS:
                 Tc
 STREAM RUNOFF
 NUMBER
                 (MIN.)
        (CFS)
   1
         15.59
                 9.20
  TOTAL AREA =
                  4.4
*******************************
 FLOW PROCESS FROM NODE 171.00 TO NODE
 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF
                Tc
 STREAM
                       INTENSITY
                                   AREA
                 (MIN.)
          (CFS)
                        (INCH/HOUR)
 NUMBER
                                  (ACRE)
    1
          15.59
                 9.20
                        3.550
                                   4.44
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 171.00 = 1187.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **
 STREAM
         RUNOFF
               Tc INTENSITY
                                  AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                  (ACRE)
          1.30 5.34
                                    0.32
                       4.452
    1
 LONGEST FLOWPATH FROM NODE 172.00 TO NODE 171.00 =
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
         10.34
                 5.34
                           4.452
    2
         16.63
                  9.20
                           3.550
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 16.63 Tc(MIN.) =
                                      9.20
 TOTAL AREA(ACRES) =
                     4.8
*******************************
```

FLOW PROCESS FROM NODE 171.00 TO NODE 182.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 1140.09 DOWNSTREAM(FEET) = 1139.23
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.56
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.63
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 9.29
 LONGEST FLOWPATH FROM NODE 105.00 TO NODE
                                      182.00 = 1235.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1153.06
 DOWNSTREAM ELEVATION(FEET) = 1149.59
 ELEVATION DIFFERENCE(FEET) = 3.47
 TC = 0.303*[(100.00**3)/(3.47)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.574
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "C"
 SUBAREA RUNOFF(CFS) = 0.20
TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 1149.59 DOWNSTREAM(FEET) = 1139.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 454.00 CHANNEL SLOPE = 0.0230
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.347
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8863
 SOIL CLASSIFICATION IS "C"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.35
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 5.61
 Tc(MIN.) = 10.61
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
                             PEAK FLOW RATE(CFS) = 0.29
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.25
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 =
***********************************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.347
```

RS_P_100.RES

COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8863

SOIL CLASSIFICATION IS "C"

SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.09 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.38 TC(MIN.) = 10.61

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) = 0.38 0.1 TC(MIN.) = 10.61

______ _____

END OF RATIONAL METHOD ANALYSIS

APPENDIX B: STORM DRAIN HYDRAULIC ANALYSIS

UHS Rancho Springs Medical Center Synthetic Unit Hydrograph Method Loss Rate Estimates

May-20

10-year and 100-year, AMC 2

Existing Conditions

Soil Group	Cover Type	Curve (RI) Number	Pervious Area Infiltration Rate (in/hr)	Land Use	Decimal Percent of Impervious Area	Adj Infiltration Rate (in/hr)	Subarea (acres)	Total Area (acres)	Subarea/Total Area	Avg Adjusted Infiltration Rate (in/hr)*	Min Loss Rate (inch/hr)
С	Commercial Landscaping	69	0.11	Commercial	0.74	0.04	7.5	7.5	1	0.04	0.02

Low Loss Developed Condition = 0.9 - (0.8 x % Impervious) =

0.31 (Minimum value in AES is 0.5; therefore, 0.5 was used for the current study)

10-year and 100-year, AMC 2

Project Conditions

Soil Group	Cover Type	Curve (RI) Number	Pervious Area Infiltration Rate (in/hr)	Land Use	Decimal Percent of Impervious Area	Adj Infiltration Rate (in/hr)	Subarea (acres)	Total Area (acres)	Subarea/Total Area	Avg Adjusted Infiltration Rate (in/hr)*	Min Loss Rate (inch/hr)
С	Commercial Landscaping	69	0.11	Commercial	0.85	0.03	5.9	5.9	1	0.03	0.01

0.22

Low Loss Developed Condition = 0.9 - (0.8 x % Impervious) =

(Minimum value in AES is 0.5; therefore, 0.5 was used for the current study)

Lag Time Calculations

	Tc (Min)	Tc (Hour)	Lag (Hour)
Existing DA C (100-year)	14	0.23	0.18
Existing DA C (10-year)	15	0.25	0.20
Project (100-year)	5	0.08	0.07
Project (10-year)	5	0.08	0.07

- 1. Lag time taken as 0.8(Tc), where Tc is time of concentration from rational method results.
- 2. Tc from rational method results was used for existing conditions while a Tc of 5 was conservatively selected for the proposed conditions.
- 3. Minimum lag time of 0.1 hr was used for analysis of proposed conditions.
- *Minimum value in AES is 0.05; therefore, 0.05 was used for the study.

```
FLOOD ROUTING ANALYSIS
```

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

Kimley-Horn and Associates, Inc. 765 The City Drive Suite 200 Orange, CA 92868

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 5.900 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
Warning: Watershed Area is less than 10 acres
*USER ENTERED "LAG" TIME = 0.100 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.
THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)
MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.
VALLEY S-GRAPH SELECTED
UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.050
LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.500
USER-ENTERED RAINFALL = 0.99 INCHES
RCFC&WCD 1-Hour Storm (5-Minute period) SELECTED
(SLOPE OF INTENSITY-DURATION CURVE = 0.41)
RCFC&WCD DEPTH-AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000

UNIT HYDROGRAPH TIME UNIT = 5.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 83.333

UNIT HYDROGRAPH DETERMINATION

INTERVAL "S" GRAPH UNIT HYDROGRAPH

NUMBER

"S" GRAPH MEAN VALUES ORDINATES(CFS)

1	13.994	9.985	
2	59.664	32.587	
3	78.792	13.649	
4	86.766	5.689	
5	91.428	3.326	
6	94.514	2.202	
7	96.650	1.524	
8	98.044	0.995	
9	98.699	0.467	
10	99.289	0.421	
11	99.716	0.304	
12	99.929	0.152	
13	100.000	0.051	

Т	•		
*	*	*	k

UNIT	UNIT	UNIT	EFFECTIVE
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0493	0.0042	0.0452
2	0.0517	0.0042	0.0475
3	0.0545	0.0042	0.0503
4	0.0593	0.0042	0.0551
5	0.0621	0.0042	0.0579
6	0.0694	0.0042	0.0652
7	0.0796	0.0042	0.0754
8	0.0864	0.0042	0.0822
9	0.1227	0.0042	0.1185
10	0.2220	0.0042	0.2178
11	0.0743	0.0042	0.0702
12	0.0537	0.0042	0.0495

TOTAL STORM RAINFALL(INCHES) = 0.99

TOTAL SOIL-LOSS(INCHES) = 0.05

TOTAL EFFECTIVE RAINFALL(INCHES) = 0.94

TOTAL SOIL-LOSS VOLUME(ACRE-FEET) = 0.0246 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 0.4595

==

1-HOUR STORM RUNOFF HYDROGRAPH

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS) 0.	5.0	10.0	15.0	20.0
0.083	0.0031	0.45 Q		•	•	•
0.167	0.0165	1.95 .V	Q .	•	•	•
0.250	0.0349	2.67 .	VQ.	•	•	•
0.333	0.0562	3.10 .	VQ.		•	•
0.417	0.0802	3.48 .	Q.		•	•
0.500	0.1066	3.83 .	Q V.		•	
0.583	0.1364	4.32 .	Q.V		•	
0.667	0.1702	4.91 .	Q.	٧.	•	•

					RS_U	_10.RES		
0.750	0.2096	5.72		.Q	\	<i>'</i> .	•	•
0.833	0.2654	8.11		•	Q	. V	•	•
0.917	0.3376	10.48		•		Q	٧.	•
1.000	0.3865	7.09		•	Q		. '	٧.
1.083	0.4184	4.64		Q.			•	V .
1.167	0.4346	2.34	. Q	•			•	V .
1.250	0.4439	1.35	. Q	•			•	٧.
1.333	0.4499	0.87	.Q	•			•	٧.
1.417	0.4537	0.56	.Q	•			•	٧.
1.500	0.4560	0.34	Q	•			•	٧.
1.583	0.4576	0.23	Q	•			•	٧.
1.667	0.4586	0.14	Q	•			•	٧.
1.750	0.4591	0.08	Q	•			•	٧.
1.833	0.4594	0.04	Q	•			•	٧.
1.917	0.4595	0.01	Q	•		•	•	٧.
2.000	0.4595	0.00	Q	•		•	•	٧.

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Peak Flow		Duration (minutes)
=========	=======	=======
0%		120.0
10%		70.0
20%		60.0
30%		45.0
40%		35.0
50%		20.0
60%		15.0
70%		10.0
80%		5.0
90%		5.0
============	==========	

END OF FLOODSCx ROUTING ANALYSIS

UHS Rancho Springs 10-yr, 1 hr Detention Analysis

Project Summary	
Title	UHS Rancho Springs_10 yr, 1 hr
Engineer	Nikki Kerry, P.E.
Company	Kimley-Horn and Associates, Inc.
Date	5/12/2020
Notes	Inflow hydrograph (10-year, 1 hr) calculated based on Synthetic Unit Hydrograph Method from Riverside County Flood Control and Water Conservation District Hydrology Manual (April 1978) using AES software
	Flow-through basin analysis completed using modfified Pul's (storage indication routing).

Table of Contents

	User Notifications	2
	Master Network Summary	3
Unit Hydrograph (Onsite Runoff)	Read Hydrograph	4
Outfall (POC)	Addition Summary	5
Onsite Detention Basin (OUT)	Time vs. Elevation	6
Onsite Detention Basin	Time vs. Volume	9
Onsite Detention Basin	Pipe Volume	12
Composite Outlet Structure - 1		
	Outlet Input Data	14
	Individual Outlet Curves	17
	Composite Rating Curve	20
Onsite Detention Basin		
	Elevation-Volume-Flow Table (Pond)	21
Onsite Detention Basin (IN)		
	Level Pool Pond Routing Summary	22
Onsite Detention Basin (OUT)		
	Pond Routed Hydrograph (total out)	23
Onsite Detention Basin (IN)		
	Pond Inflow Summary	26
Outlet-1		
	Diverted Hydrograph	27

Subsection: User Notifications

User Notifications

Message Id	17
•	
Scenario	Base
Element Type	Composite Outlet Structure
Element Id	21
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Riser orifice equation controls at one or more headwater elevations for outlet structure.
Source	Information
Message Id	48
Scenario	Base
Element Type	Pond
Element Id	16
Label	Onsite Detention Basin
Time	(N/A)
Message	Outflow hydrograph never crested (last ordinate = max outflow).
Source	Warning

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
Unit Hydrograph (Onsite Runoff)	Base	0	0.459	50.000	10.48

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
Outfall (POC)	Base	0	0.367	1,440.000	0.39

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Onsite Detention Basin (IN)	Base	0	1.226	51.000	9.80	(N/A)	(N/A)
Onsite Detention Basin (OUT)	Base	0	0.367	1,440.000	0.39	5.68	0.860

Subsection: Read Hydrograph

Label: Unit Hydrograph (Onsite Runoff)

Peak Discharge	10.48 ft ³ /s
Time to Peak	50.000 min
Hydrograph Volume	0.459 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 5.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
` '		(, ,	` , ,	(, ,	· , ,
0.000	0.45	1.95	2.67	3.10	3.48
25.000	3.83	4.32	4.91	5.72	8.11
50.000	10.48	7.09	4.64	2.34	1.35
75.000	0.87	0.56	0.34	0.23	0.14
100.000	0.08	0.04	0.01	0.00	0.42

Subsection: Addition Summary

Label: Outfall (POC)

Summary for Hydrograph Addition at 'Outfall (POC)'

	Upstream Link	Upstream Node
Outlet-1		Onsite Detention Basin

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Outlet-1	0.367	1,440.000	0.39
Flow (In)	Outfall (POC)	0.367	1,440.000	0.39

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(min)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	0.00	0.08	0.24	0.45	0.59
15.000	0.71	0.84	0.98	1.10	1.23
30.000	1.36	1.50	1.63	1.78	1.94
45.000	2.13	2.36	2.59	2.80	2.96
60.000	3.08	3.17	3.23	3.27	3.30
75.000	3.32	3.33	3.34	3.35	3.35
90.000	3.36	3.36	3.36	3.36	3.36
105.000	3.35	3.35	3.35	3.35	3.34
120.000	3.35	3.35	3.36	3.37	3.37
135.000	3.38	3.39	3.39	3.40	3.40
150.000	3.41	3.42	3.42	3.43	3.44
165.000	3.44	3.45	3.46	3.46	3.47
180.000	3.47	3.48	3.49	3.49	3.50
195.000	3.51	3.51	3.52	3.52	3.53
210.000	3.54	3.54	3.55	3.55	3.56
225.000	3.57	3.57	3.58	3.59	3.59
240.000	3.60	3.60	3.61	3.62	3.62
255.000	3.63	3.63	3.64	3.65	3.65
270.000	3.66	3.67	3.67	3.68	3.68
285.000	3.69	3.70	3.70	3.71	3.71
300.000	3.72	3.73	3.73	3.74	3.74
315.000	3.75	3.76	3.76	3.77	3.77
330.000	3.78	3.79	3.79	3.80	3.80
345.000	3.81	3.82	3.82	3.83	3.83
360.000	3.84	3.85	3.85	3.86	3.86
375.000	3.87	3.88	3.88	3.89	3.89
390.000	3.90	3.91	3.91	3.92	3.92
405.000	3.93	3.94	3.94	3.95	3.95
420.000	3.96	3.97	3.97	3.98	3.98
435.000	3.99	4.00	4.00	4.01	4.01
450.000	4.02	4.03	4.03	4.04	4.04
465.000	4.05	4.06	4.06	4.07	4.07
480.000	4.08	4.08	4.09	4.10	4.10
495.000	4.11	4.11	4.12	4.13	4.13
510.000	4.14	4.14	4.15	4.16	4.16
525.000	4.17	4.17	4.18	4.18	4.19
540.000	4.20	4.20	4.21	4.21	4.22
555.000	4.23	4.23	4.24	4.24	4.25
570.000	4.25	4.26	4.27	4.27	4.28
585.000	4.28	4.29	4.29	4.30	4.31
600.000	4.31	4.32	4.32	4.33	4.34

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
615.000	4.34	4.35	4.35	4.36	4.36
630.000	4.37	4.38	4.38	4.39	4.39
645.000	4.40	4.40	4.41	4.42	4.42
660.000	4.43	4.43	4.44	4.44	4.45
675.000	4.46	4.46	4.47	4.47	4.48
690.000	4.48	4.49	4.50	4.50	4.51
705.000	4.51	4.52	4.52	4.53	4.54
720.000	4.54	4.55	4.55	4.56	4.56
735.000	4.57	4.58	4.58	4.59	4.59
750.000	4.60	4.61	4.61	4.62	4.62
765.000	4.63	4.63	4.64	4.65	4.65
780.000	4.66	4.66	4.67	4.67	4.68
795.000	4.69	4.69	4.70	4.70	4.71
810.000	4.71	4.72	4.72	4.73	4.74
825.000	4.74	4.75	4.75	4.76	4.76
840.000	4.77	4.78	4.78	4.79	4.79
855.000	4.80	4.80	4.81	4.82	4.82
870.000	4.83	4.83	4.84	4.84	4.85
885.000	4.85	4.86	4.87	4.87	4.88
900.000	4.88	4.89	4.89	4.90	4.91
915.000	4.91	4.92	4.92	4.93	4.93
930.000	4.94	4.94	4.95	4.96	4.96
945.000	4.97	4.97	4.98	4.98	4.99
960.000	4.99	5.00	5.01	5.01	5.02
975.000	5.02	5.03	5.03	5.04	5.05
990.000	5.05	5.06	5.06	5.07	5.07
1,005.000	5.08	5.09	5.09	5.10	5.10
1,020.000	5.11	5.11	5.12	5.13	5.13
1,035.000	5.14	5.14	5.15	5.15	5.16
1,050.000	5.17	5.17	5.18	5.18	5.19
1,065.000	5.19	5.20	5.20	5.21	5.22
1,080.000	5.22	5.23	5.23	5.24	5.24
1,095.000	5.25	5.26	5.26	5.27	5.27
1,110.000	5.28	5.28	5.29	5.29	5.30
1,125.000	5.31	5.31	5.32	5.32	5.33
1,140.000	5.33	5.34	5.35	5.35	5.36
1,155.000	5.36	5.37	5.37	5.38	5.38
1,170.000	5.39	5.40	5.40	5.41	5.41
1,185.000	5.42 5.45	5.42 5.45	5.43 5.46	5.43 5.46	5.44 5.47
1,200.000 1,215.000	5.45 5.47	5.45 5.48	5.46 5.48	5.46 5.49	5.47 5.50
1,213.000	5.4/	3.48	5.48	5. 4 9	5.50

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

	•				
Time (min)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
(111111)	(11)	(11)	(11)	(11)	(11)
1,230.000	5.50	5.51	5.51	5.52	5.52
1,245.000	5.53	5.53	5.54	5.54	5.55
1,260.000	5.55	5.56	5.56	5.56	5.57
1,275.000	5.57	5.58	5.58	5.58	5.59
1,290.000	5.59	5.59	5.60	5.60	5.60
1,305.000	5.61	5.61	5.61	5.61	5.62
1,320.000	5.62	5.62	5.63	5.63	5.63
1,335.000	5.63	5.63	5.64	5.64	5.64
1,350.000	5.64	5.64	5.65	5.65	5.65
1,365.000	5.65	5.65	5.66	5.66	5.66
1,380.000	5.66	5.66	5.66	5.66	5.67
1,395.000	5.67	5.67	5.67	5.67	5.67
1,410.000	5.67	5.68	5.68	5.68	5.68
1,425.000	5.68	5.68	5.68	5.68	5.68
1,440.000	5.68	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(min)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.001	0.005	0.019	0.029
15.000	0.041	0.054	0.070	0.084	0.099
30.000	0.116	0.136	0.154	0.176	0.201
45.000	0.231	0.267	0.307	0.342	0.371
60.000	0.393	0.408	0.419	0.426	0.431
75.000	0.434	0.437	0.439	0.440	0.441
90.000	0.441	0.442	0.442	0.442	0.441
105.000	0.441	0.440	0.440	0.439	0.439
120.000	0.440	0.441	0.442	0.443	0.444
135.000	0.445	0.446	0.448	0.449	0.450
150.000	0.451	0.452	0.453	0.455	0.456
165.000	0.457	0.458	0.459	0.460	0.461
180.000	0.463	0.464	0.465	0.466	0.467
195.000	0.468	0.469	0.471	0.472	0.473
210.000	0.474	0.475	0.476	0.477	0.478
225.000	0.479	0.481	0.482	0.483	0.484
240.000	0.485	0.486	0.487	0.488	0.489
255.000	0.491	0.492	0.493	0.494	0.495
270.000	0.496	0.497	0.498	0.500	0.501
285.000	0.502	0.503	0.504	0.505	0.506
300.000	0.507	0.508	0.510	0.511	0.512
315.000	0.513	0.514	0.515	0.516	0.517
330.000	0.518	0.519	0.521	0.522	0.523
345.000	0.524	0.525	0.526	0.527	0.528
360.000	0.529	0.531	0.532	0.533	0.534
375.000	0.535	0.536	0.537	0.538	0.539
390.000	0.540	0.542	0.543	0.544	0.545
405.000	0.546	0.547	0.548	0.549	0.550
420.000	0.551	0.552	0.554	0.555	0.556
435.000	0.557	0.558	0.559	0.560	0.561
450.000	0.562	0.563	0.564	0.566	0.567
465.000	0.568	0.569	0.570	0.571	0.572
480.000	0.573	0.574	0.575	0.576	0.577
495.000	0.578	0.580	0.581	0.582	0.583
510.000	0.584	0.585	0.586	0.587	0.588
525.000	0.589	0.590	0.591	0.592	0.594
540.000	0.595	0.596	0.597	0.598	0.599
555.000	0.600	0.601	0.602	0.603	0.604
570.000	0.605	0.606	0.607	0.608	0.610
585.000	0.611	0.612	0.613	0.614	0.615
600.000	0.616	0.617	0.618	0.619	0.620

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
615.000	0.621	0.622	0.623	0.624	0.625
630.000	0.626	0.628	0.629	0.630	0.631
645.000	0.632	0.633	0.634	0.635	0.636
660.000	0.637	0.638	0.639	0.640	0.641
675.000	0.642	0.643	0.644	0.645	0.646
690.000	0.647	0.649	0.650	0.651	0.652
705.000	0.653	0.654	0.655	0.656	0.657
720.000	0.658	0.659	0.660	0.661	0.662
735.000	0.663	0.664	0.665	0.666	0.667
750.000	0.668	0.669	0.671	0.672	0.673
765.000	0.674	0.675	0.676	0.677	0.678
780.000	0.679	0.680	0.681	0.682	0.683
795.000	0.684	0.685	0.686	0.687	0.688
810.000	0.689	0.690	0.691	0.692	0.693
825.000	0.694	0.695	0.696	0.697	0.698
840.000	0.699	0.700	0.701	0.703	0.704
855.000	0.705	0.706	0.707	0.708	0.709
870.000	0.710	0.711	0.712	0.713	0.714
885.000	0.715	0.716	0.717	0.718	0.719
900.000	0.720	0.721	0.722	0.723	0.724
915.000	0.725	0.726	0.727	0.728	0.729
930.000	0.730	0.731	0.732	0.733	0.734
945.000	0.735	0.736	0.737	0.738	0.739
960.000	0.740	0.741	0.742	0.743	0.744
975.000	0.745	0.746	0.747	0.748	0.749
990.000	0.750	0.751	0.752	0.753	0.754
1,005.000	0.755	0.756	0.757	0.758	0.759
1,020.000	0.760	0.761	0.762	0.763	0.764
1,035.000	0.765	0.766	0.767	0.768	0.769
1,050.000	0.770	0.771	0.772	0.773	0.774
1,065.000	0.775	0.776	0.777	0.778	0.779
1,080.000	0.780	0.781	0.782	0.783	0.784
1,095.000	0.785	0.786	0.787	0.788	0.789
1,110.000	0.790	0.791	0.792	0.793	0.794
1,125.000	0.795	0.796	0.797	0.798	0.799
1,140.000	0.800	0.801	0.802	0.803	0.804
1,155.000	0.805	0.806	0.807	0.808	0.809
1,170.000	0.810	0.811	0.812	0.813	0.813
1,185.000	0.814	0.815	0.816	0.817	0.818
1,200.000	0.819	0.820	0.821	0.822	0.823
1,215.000	0.824	0.825	0.826	0.827	0.828

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,230.000	0.829	0.830	0.831	0.832	0.833
1,245.000	0.833	0.834	0.835	0.836	0.837
1,260.000	0.837	0.838	0.839	0.840	0.840
1,275.000	0.841	0.842	0.842	0.843	0.844
1,290.000	0.844	0.845	0.845	0.846	0.846
1,305.000	0.847	0.847	0.848	0.848	0.849
1,320.000	0.849	0.850	0.850	0.850	0.851
1,335.000	0.851	0.852	0.852	0.852	0.853
1,350.000	0.853	0.853	0.854	0.854	0.854
1,365.000	0.855	0.855	0.855	0.855	0.856
1,380.000	0.856	0.856	0.856	0.857	0.857
1,395.000	0.857	0.857	0.858	0.858	0.858
1,410.000	0.858	0.858	0.859	0.859	0.859
1,425.000	0.859	0.859	0.860	0.860	0.860
1,440.000	0.860	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Pipe Volume Label: Onsite Detention Basin

Volume Results (Pipe)	
Pipe Storage Upstream Invert	0.20 ft
Pipe Storage Downstream Invert	0.00 ft
Pipe Storage Length	200.00 ft
Pipe Storage Diameter	96.0 in
Pipe Storage Number of Barrels	5
Pipe Storage Slice Width	1.00 ft
Pipe Storage Vertical Increment	0.20 ft

Elevation (ft)	Perpendicular Downstream Depth (ft)	Perpendicular Downstream Area (ft²)	Wetted Length (ft)	Filled Length (ft)	Perpendicular Upstream Depth (ft)	Perpendicular Upstream Area (ft²)	Total Volume (ac-ft)
0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.000
0.20	0.20	0.3	200.00	0.00	0.00	0.0	0.003
0.40	0.40	0.9	200.00	0.00	0.20	0.3	0.014
0.60	0.60	1.7	200.00	0.00	0.40	0.9	0.030
0.80	0.80	2.6	200.00	0.00	0.60	1.7	0.049
1.00	1.00	3.6	200.00	0.00	0.80	2.6	0.071
1.20	1.20	4.7	200.00	0.00	1.00	3.6	0.096
1.40	1.40	5.9	200.00	0.00	1.20	4.7	0.122
1.60	1.60	7.2	200.00	0.00	1.40	5.9	0.150
1.80	1.80	8.5	200.00	0.00	1.60	7.2	0.179
2.00	2.00	9.8	200.00	0.00	1.80	8.5	0.210
2.20	2.20	11.2	200.00	0.00	2.00	9.8	0.242
2.40	2.40	12.7	200.00	0.00	2.20	11.2	0.274
2.60	2.60	14.2	200.00	0.00	2.40	12.7	0.308
2.80	2.80	15.7	200.00	0.00	2.60	14.2	0.343
3.00	3.00	17.2	200.00	0.00	2.80	15.7	0.378
3.20	3.20	18.8	200.00	0.00	3.00	17.2	0.413
3.40	3.40	20.3	200.00	0.00	3.20	18.8	0.449
3.60	3.60	21.9	200.00	0.00	3.40	20.4	0.485
3.80	3.80	23.5	200.00	0.00	3.60	21.9	0.522
4.00	4.00	25.1	200.00	0.00	3.80	23.5	0.559
4.20	4.20	26.7	200.00	0.00	4.00	25.1	0.595
4.40	4.40	28.3	200.00	0.00	4.20	26.7	0.632
4.60	4.60	29.9	200.00	0.00	4.40	28.3	0.669
4.80	4.80	31.5	200.00	0.00	4.60	29.9	0.705
5.00	5.00	33.0	200.00	0.00	4.80	31.5	0.741
5.20	5.20	34.6	200.00	0.00	5.00	33.0	0.776
5.40	5.40	36.1	200.00	0.00	5.20	34.6	0.811
5.60	5.60	37.6	200.00	0.00	5.40	36.1	0.846
5.80	5.80	39.0	200.00	0.00	5.60	37.6	0.879
6.00	6.00	40.4	200.00	0.00	5.80	39.0	0.912

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Pipe Volume Label: Onsite Detention Basin

Elevation (ft)	Perpendicular Downstream Depth (ft)	Perpendicular Downstream Area (ft²)	Wetted Length (ft)	Filled Length (ft)	Perpendicular Upstream Depth (ft)	Perpendicular Upstream Area (ft²)	Total Volume (ac-ft)
6.20	6.20	41.8	200.00	0.00	6.00	40.4	0.944
6.40	6.40	43.1	200.00	0.00	6.20	41.8	0.975
6.60	6.60	44.4	200.00	0.00	6.40	43.1	1.004
6.80	6.80	45.5	200.00	0.00	6.60	44.4	1.032
7.00	7.00	46.6	200.00	0.00	6.80	45.5	1.058
7.20	7.20	47.6	200.00	0.00	7.00	46.6	1.082
7.40	7.40	48.5	200.00	0.00	7.20	47.6	1.104
7.60	7.60	49.3	200.00	0.00	7.40	48.6	1.124
7.80	7.80	49.9	200.00	0.00	7.60	49.3	1.140
8.00	8.00	50.3	200.00	0.00	7.80	49.9	1.151
8.20	8.00	50.3	200.00	200.00	8.00	50.3	1.154

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations				
Minimum (Headwater)	0.00 ft			
Increment (Headwater)	0.50 ft			
Maximum (Headwater)	8.20 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
	_			(ft)	(ft)
Stand Pipe	Riser - 1	Forward	TW	7.00	8.20
Orifice-Circular	Orifice - 1	Forward	TW	0.00	8.20
Rectangular Weir	Notch Weir	Forward	TW	5.50	8.20
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	0.00 ft
Orifice Diameter	1.8 in
Orifice Coefficient	0.600
Structure ID: Notch Weir Structure Type: Rectangular Wei	-
Number of Openings	1
Elevation	5.50 ft
Weir Length	0.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Riser - 1 Structure Type: Stand Pipe	
Number of Openings	1
Elevation	0.00 ft
Diameter	54.0 in
Orifice Area	15.9 ft ²
Orifice Coefficient	0.600
Weir Length	14.14 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	
	True
Structure ID: TW Structure Type: TW Setup, DS CI	
Structure ID: TW	
Structure ID: TW Structure Type: TW Setup, DS CI	nannel
Structure ID: TW Structure Type: TW Setup, DS CI Tailwater Type	nannel
Structure ID: TW Structure Type: TW Setup, DS Cl Tailwater Type Convergence Tolerances	nannel Free Outfall
Structure ID: TW Structure Type: TW Setup, DS Cl Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	nannel Free Outfall 30
Structure ID: TW Structure Type: TW Setup, DS Cl Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	nannel Free Outfall 30 0.01 ft

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Convergence Tolerances	
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = ()

......

Upstream ID = Downstream ID =

Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft³/s) (ft) (ft)

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = ()

Upstream ID = Downstream ID =

Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft³/s) (ft) (ft)

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = ()

Upstream ID = Downstream ID =

Water Surface Flow Tailwater Elevation Convergence Error Elevation (ft³/s) (ft) (ft)

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.05	(N/A)	0.00
1.00	0.08	(N/A)	0.00
1.50	0.10	(N/A)	0.00
2.00	0.11	(N/A)	0.00
2.50	0.13	(N/A)	0.00
3.00	0.14	(N/A)	0.00
3.50	0.15	(N/A)	0.00
4.00	0.16	(N/A)	0.00
4.50	0.17	(N/A)	0.00
5.00	0.18	(N/A)	0.00
5.50	0.19	(N/A)	0.00
6.00	0.73	(N/A)	0.00
6.50	1.70	(N/A)	0.00
7.00	205.49	(N/A)	0.00
7.50	214.10	(N/A)	0.00
8.00	222.67	(N/A)	0.00
8.20	226.08	(N/A)	0.00

None Contributing
Orifice - 1
Orifice - 1 + Notch Weir
Orifice - 1 + Notch Weir
Orifice - 1 + Notch Weir
Riser - 1 + Orifice - 1 +
Notch Weir
Riser - 1 + Orifice - 1 +
Notch Weir
Riser - 1 + Orifice - 1 +
Notch Weir
Riser - 1 + Orifice - 1 + Notch Weir
Noteri Well

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Onsite Detention Basin

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	3.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
0.00	0.00	0.000	0	0.00	0.00	0.00
0.50	0.05	0.022	0	0.00	0.05	10.80
1.00	0.08	0.071	0	0.00	0.08	34.67
1.50	0.10	0.136	0	0.00	0.10	65.87
2.00	0.11	0.210	0	0.00	0.11	101.69
2.50	0.13	0.291	0	0.00	0.13	141.11
3.00	0.14	0.378	0	0.00	0.14	182.87
3.50	0.15	0.467	0	0.00	0.15	226.29
4.00	0.16	0.559	0	0.00	0.16	270.53
4.50	0.17	0.650	0	0.00	0.17	314.90
5.00	0.18	0.741	0	0.00	0.18	358.74
5.50	0.19	0.829	0	0.00	0.19	401.24
6.00	0.73	0.912	0	0.00	0.73	442.26
6.50	1.70	0.989	0	0.00	1.70	480.58
7.00	205.49	1.058	0	0.00	205.49	717.66
7.50	214.10	1.114	0	0.00	214.10	753.33
8.00	222.67	1.151	0	0.00	222.67	779.68
8.20	226.08	1.154	0	0.00	226.08	784.58

Subsection: Level Pool Pond Routing Summary

Label: Onsite Detention Basin (IN)

Infiltration		<u></u>	
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft	<u> </u>	
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	3.000 min		
Inflow/Outflow Hydrograph S	ummarv		
Flow (Peak In)	9.80 ft ³ /s	Time to Peak (Flow, In)	51.000 min
Flow (Peak Outlet)	0.39 ft ³ /s	Time to Peak (Flow, Outlet)	1,440.000 min
Elevation (Water Surface, Peak)	5.68 ft		
Volume (Peak)	0.860 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.226 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.367 ac-ft		
Volume (Retained)	0.858 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		
Error (Mass Balance)	0.1 %		

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

Peak Discharge	0.39 ft ³ /s
Time to Peak	1,440.000 min
Hydrograph Volume	0.367 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.01	0.03	0.05	0.06
15.000	0.06	0.07	0.08	0.08	0.09
30.000	0.09	0.10	0.10	0.10	0.11
45.000	0.12	0.12	0.13	0.13	0.14
60.000	0.14	0.14	0.14	0.14	0.14
75.000	0.14	0.15	0.15	0.15	0.15
90.000	0.15	0.15	0.15	0.15	0.15
105.000	0.15	0.15	0.15	0.15	0.15
120.000	0.15	0.15	0.15	0.15	0.15
135.000	0.15	0.15	0.15	0.15	0.15
150.000	0.15	0.15	0.15	0.15	0.15
165.000	0.15	0.15	0.15	0.15	0.15
180.000	0.15	0.15	0.15	0.15	0.15
195.000	0.15	0.15	0.15	0.15	0.15
210.000	0.15	0.15	0.15	0.15	0.15
225.000	0.15	0.15	0.15	0.15	0.15
240.000	0.15	0.15	0.15	0.15	0.15
255.000	0.15	0.15	0.15	0.15	0.15
270.000	0.15	0.15	0.15	0.15	0.15
285.000	0.15	0.15	0.15	0.15	0.15
300.000	0.15	0.15	0.15	0.15	0.15
315.000	0.15	0.15	0.15	0.15	0.15
330.000	0.15	0.15	0.15	0.16	0.16
345.000	0.16	0.16	0.16	0.16	0.16
360.000	0.16	0.16	0.16	0.16	0.16
375.000	0.16	0.16	0.16	0.16	0.16
390.000	0.16	0.16	0.16	0.16	0.16
405.000	0.16	0.16	0.16	0.16	0.16
420.000	0.16	0.16	0.16	0.16	0.16
435.000	0.16	0.16	0.16	0.16	0.16
450.000	0.16	0.16	0.16	0.16	0.16
465.000	0.16	0.16	0.16	0.16	0.16
480.000	0.16	0.16	0.16	0.16	0.16
495.000	0.16	0.16	0.16	0.16	0.16
510.000	0.16	0.16	0.16	0.16	0.16
525.000	0.16	0.16	0.16	0.16	0.16
540.000	0.16	0.16	0.16	0.16	0.16

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
555.000	0.16	0.16	0.16	0.16	0.16
570.000	0.16	0.16	0.16	0.16	0.16
585.000	0.16	0.17	0.17	0.17	0.17
600.000	0.17	0.17	0.17	0.17	0.17
615.000	0.17	0.17	0.17	0.17	0.17
630.000	0.17	0.17	0.17	0.17	0.17
645.000	0.17	0.17	0.17	0.17	0.17
660.000	0.17	0.17	0.17	0.17	0.17
675.000	0.17	0.17	0.17	0.17	0.17
690.000	0.17	0.17	0.17	0.17	0.17
705.000	0.17	0.17	0.17	0.17	0.17
720.000	0.17	0.17	0.17	0.17	0.17
735.000	0.17	0.17	0.17	0.17	0.17
750.000	0.17	0.17	0.17	0.17	0.17
765.000	0.17	0.17	0.17	0.17	0.17
780.000	0.17	0.17	0.17	0.17	0.17
795.000	0.17	0.17	0.17	0.17	0.17
810.000	0.17	0.17	0.17	0.17	0.17
825.000	0.17	0.17	0.17	0.17	0.17
840.000	0.17	0.17	0.17	0.17	0.17
855.000	0.17	0.17	0.17	0.18	0.18
870.000	0.18	0.18	0.18	0.18	0.18
885.000	0.18	0.18	0.18	0.18	0.18
900.000	0.18	0.18	0.18	0.18	0.18
915.000	0.18	0.18	0.18	0.18	0.18
930.000	0.18	0.18	0.18	0.18	0.18
945.000	0.18	0.18	0.18	0.18	0.18
960.000	0.18	0.18	0.18	0.18	0.18
975.000	0.18	0.18	0.18	0.18	0.18
990.000	0.18	0.18	0.18	0.18	0.18
1,005.000	0.18	0.18	0.18	0.18	0.18
1,020.000	0.18	0.18	0.18	0.18	0.18
1,035.000	0.18	0.18	0.18	0.18	0.18
1,050.000	0.18	0.18	0.18	0.18	0.18
1,065.000	0.18	0.18	0.18	0.18	0.18
1,080.000	0.18	0.18	0.18	0.18	0.18
1,095.000	0.18	0.18	0.18	0.18	0.18
1,110.000	0.18	0.18	0.18	0.18	0.18
1,125.000	0.18	0.18 0.18	0.18	0.18 0.18	0.18
1,140.000	0.18		0.18		0.18
1,155.000 1,170.000	0.18	0.18	0.19	0.19	0.19
1,170.000	0.19	0.19	0.19	0.19	0.19

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

	Time on feet represents time for mot value in each form				
Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
1,185.000	0.19	0.19	0.19	0.19	0.19
1,200.000	0.19	0.19	0.19	0.19	0.19
1,215.000	0.19	0.19	0.19	0.19	0.19
1,230.000	0.19	0.19	0.20	0.21	0.21
1,245.000	0.22	0.22	0.23	0.23	0.24
1,260.000	0.24	0.25	0.25	0.26	0.26
1,275.000	0.27	0.27	0.27	0.28	0.28
1,290.000	0.28	0.29	0.29	0.30	0.30
1,305.000	0.30	0.30	0.31	0.31	0.31
1,320.000	0.32	0.32	0.32	0.32	0.33
1,335.000	0.33	0.33	0.33	0.34	0.34
1,350.000	0.34	0.34	0.35	0.35	0.35
1,365.000	0.35	0.35	0.36	0.36	0.36
1,380.000	0.36	0.36	0.36	0.36	0.37
1,395.000	0.37	0.37	0.37	0.37	0.37
1,410.000	0.37	0.38	0.38	0.38	0.38
1,425.000	0.38	0.38	0.38	0.38	0.38
1,440.000	0.39	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Pond Inflow Summary Label: Onsite Detention Basin (IN)

Summary for Hydrograph Addition at 'Onsite Detention Basin'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Unit Hydrograph (Onsite Runoff)

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Unit Hydrograph (Onsite Runoff)	0.459	50.000	10.48
Flow (In)	Onsite Detention Basin	1.226	51.000	9.80

Subsection: Diverted Hydrograph

Label: Outlet-1

Peak Discharge 0.39 ft³/s Time to Peak 1,440.000 min Hydrograph Volume 0.367 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.00	0.01	0.03	0.05	0.06
15.000	0.06	0.07	0.08	0.08	0.09
30.000	0.09	0.10	0.10	0.10	0.11
45.000	0.12	0.12	0.13	0.13	0.14
60.000	0.14	0.14	0.14	0.14	0.14
75.000	0.14	0.15	0.15	0.15	0.15
90.000	0.15	0.15	0.15	0.15	0.15
105.000	0.15	0.15	0.15	0.15	0.15
120.000	0.15	0.15	0.15	0.15	0.15
135.000	0.15	0.15	0.15	0.15	0.15
150.000	0.15	0.15	0.15	0.15	0.15
165.000	0.15	0.15	0.15	0.15	0.15
180.000	0.15	0.15	0.15	0.15	0.15
195.000	0.15	0.15	0.15	0.15	0.15
210.000	0.15	0.15	0.15	0.15	0.15
225.000	0.15	0.15	0.15	0.15	0.15
240.000	0.15	0.15	0.15	0.15	0.15
255.000	0.15	0.15	0.15	0.15	0.15
270.000	0.15	0.15	0.15	0.15	0.15
285.000	0.15	0.15	0.15	0.15	0.15
300.000	0.15	0.15	0.15	0.15	0.15
315.000	0.15	0.15	0.15	0.15	0.15
330.000	0.15	0.15	0.15	0.16	0.16
345.000	0.16	0.16	0.16	0.16	0.16
360.000	0.16	0.16	0.16	0.16	0.16
375.000	0.16	0.16	0.16	0.16	0.16
390.000	0.16	0.16	0.16	0.16	0.16
405.000	0.16	0.16	0.16	0.16	0.16
420.000	0.16	0.16	0.16	0.16	0.16
435.000	0.16	0.16	0.16	0.16	0.16
450.000	0.16	0.16	0.16	0.16	0.16
465.000	0.16	0.16	0.16	0.16	0.16
480.000	0.16	0.16	0.16	0.16	0.16
495.000	0.16	0.16	0.16	0.16	0.16
510.000	0.16	0.16	0.16	0.16	0.16
525.000	0.16	0.16	0.16	0.16	0.16
540.000	0.16	0.16	0.16	0.16	0.16

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Diverted Hydrograph

Label: Outlet-1

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
555.000	0.16	0.16	0.16	0.16	0.16
570.000	0.16	0.16	0.16	0.16	0.16
585.000	0.16	0.17	0.17	0.17	0.17
600.000	0.17	0.17	0.17	0.17	0.17
615.000	0.17	0.17	0.17	0.17	0.17
630.000	0.17	0.17	0.17	0.17	0.17
645.000	0.17	0.17	0.17	0.17	0.17
660.000	0.17	0.17	0.17	0.17	0.17
675.000	0.17	0.17	0.17	0.17	0.17
690.000	0.17	0.17	0.17	0.17	0.17
705.000	0.17	0.17	0.17	0.17	0.17
720.000	0.17	0.17	0.17	0.17	0.17
735.000	0.17	0.17	0.17	0.17	0.17
750.000	0.17	0.17	0.17	0.17	0.17
765.000	0.17	0.17	0.17	0.17	0.17
780.000	0.17	0.17	0.17	0.17	0.17
795.000	0.17	0.17	0.17	0.17	0.17
810.000	0.17	0.17	0.17	0.17	0.17
825.000	0.17	0.17	0.17	0.17	0.17
840.000	0.17	0.17	0.17	0.17	0.17
855.000	0.17	0.17	0.17	0.18	0.18
870.000	0.18	0.18	0.18	0.18	0.18
885.000	0.18	0.18	0.18	0.18	0.18
900.000	0.18	0.18	0.18	0.18	0.18
915.000	0.18	0.18	0.18	0.18	0.18
930.000	0.18	0.18	0.18	0.18	0.18
945.000	0.18	0.18	0.18	0.18	0.18
960.000	0.18	0.18	0.18	0.18	0.18
975.000	0.18	0.18	0.18	0.18	0.18
990.000	0.18	0.18	0.18	0.18	0.18
1,005.000	0.18	0.18	0.18	0.18	0.18
1,020.000	0.18	0.18	0.18	0.18	0.18
1,035.000	0.18	0.18	0.18	0.18	0.18
1,050.000	0.18	0.18	0.18	0.18	0.18
1,065.000	0.18	0.18	0.18	0.18	0.18
1,080.000	0.18	0.18	0.18	0.18	0.18
1,095.000	0.18	0.18	0.18	0.18	0.18
1,110.000	0.18	0.18	0.18	0.18	0.18
1,125.000	0.18	0.18	0.18	0.18	0.18
1,140.000	0.18	0.18	0.18	0.18	0.18
1,155.000	0.18	0.18	0.19	0.19	0.19
1,170.000	0.19	0.19	0.19	0.19	0.19

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Diverted Hydrograph

Label: Outlet-1

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

	rime on left represents time for mist value in each row.				
Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
1,185.000	0.19	0.19	0.19	0.19	0.19
1,200.000	0.19	0.19	0.19	0.19	0.19
1,215.000	0.19	0.19	0.19	0.19	0.19
1,230.000	0.19	0.19	0.20	0.21	0.21
1,245.000	0.22	0.22	0.23	0.23	0.24
1,260.000	0.24	0.25	0.25	0.26	0.26
1,275.000	0.27	0.27	0.27	0.28	0.28
1,290.000	0.28	0.29	0.29	0.30	0.30
1,305.000	0.30	0.30	0.31	0.31	0.31
1,320.000	0.32	0.32	0.32	0.32	0.33
1,335.000	0.33	0.33	0.33	0.34	0.34
1,350.000	0.34	0.34	0.35	0.35	0.35
1,365.000	0.35	0.35	0.36	0.36	0.36
1,380.000	0.36	0.36	0.36	0.36	0.37
1,395.000	0.37	0.37	0.37	0.37	0.37
1,410.000	0.37	0.38	0.38	0.38	0.38
1,425.000	0.38	0.38	0.38	0.38	0.38
1,440.000	0.39	(N/A)	(N/A)	(N/A)	(N/A)

Index

C Composite Outlet Structure - 1 (Composite Rating Curve)...20 Composite Outlet Structure - 1 (Individual Outlet Curves)...17, 18, 19 Composite Outlet Structure - 1 (Outlet Input Data)...14, 15, 16 Μ Master Network Summary...3 0 Onsite Detention Basin (Elevation-Volume-Flow Table (Pond))...21 Onsite Detention Basin (IN) (Level Pool Pond Routing Summary)...22 Onsite Detention Basin (IN) (Pond Inflow Summary)...26 Onsite Detention Basin (OUT) (Pond Routed Hydrograph (total out))...23, 24, 25 Onsite Detention Basin (OUT) (Time vs. Elevation)...6, 7, 8 Onsite Detention Basin (Pipe Volume)...12, 13 Onsite Detention Basin (Time vs. Volume)...9, 10, 11 Outfall (POC) (Addition Summary)...5 Outlet-1 (Diverted Hydrograph)...27, 28, 29 U Unit Hydrograph (Onsite Runoff) (Read Hydrograph)...4

User Notifications...2

```
FLOOD ROUTING ANALYSIS
```

ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Analysis prepared by:

Kimley-Horn and Associates, Inc. 765 The City Drive Suite 200 Orange, CA 92868

(UNIT-HYDROGRAPH ADDED TO STREAM #1)

WATERSHED AREA = 5.900 ACRES
BASEFLOW = 0.000 CFS/SQUARE-MILE
Warning: Watershed Area is less than 10 acres
*USER ENTERED "LAG" TIME = 0.100 HOURS
CAUTION: LAG TIME IS LESS THAN 0.50 HOURS.

THE 5-MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM)

MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES.

VALLEY S-GRAPH SELECTED

UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.050 LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.500 MINIMUM SOIL-LOSS RATE(INCH/HOUR) = 0.010

USER-ENTERED RAINFALL = 6.90 INCHES

RCFC&WCD 24-Hour Storm (15-Minute period) SELECTED

*USER SPECIFIED PRECIPITATION DEPTH-AREA ADJUSTMENT FACTOR = 0.9990

UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES
UNIT INTERVAL PERCENTAGE OF LAG-TIME = 250.000

UNIT HYDROGRAPH DETERMINATION

INTERVAL NUMBER "S" GRAPH MEAN VALUES

UNIT HYDROGRAPH ORDINATES(CFS)

RS_U_100.RES

1	50.817	12.086	
2	90.903	9.534	
3	97.798	1.640	
4	99.444	0.392	
5	99.778	0.079	
6	99.944	0.040	
7	100.000	0.013	

1	•	
*	*	*

UNIT	UNIT	UNIT	EFFECTIV
PERIOD	RAINFALL	SOIL-LOSS	RAINFALL
(NUMBER)	(INCHES)	(INCHES)	(INCHES)
1	0.0138	0.0069	0.0069
2	0.0207	0.0103	0.0103
3	0.0207	0.0103	0.0103
4	0.0276	0.0138	0.0138
5	0.0207	0.0103	0.0103
6	0.0207	0.0103	0.0103
7	0.0207	0.0103	0.0103
8	0.0276	0.0138	0.0138
9	0.0276	0.0138	0.0138
10	0.0276	0.0138	0.0138
11	0.0345	0.0172	0.0172
12	0.0345	0.0172	0.0172
13	0.0345	0.0172	0.0172
14	0.0345	0.0172	0.0172
15	0.0345	0.0172	0.0172
16	0.0414	0.0207	0.0207
17	0.0414	0.0207	0.0207
18	0.0483	0.0212	0.0271
19	0.0483	0.0208	0.0274
20	0.0551	0.0205	0.0347
21	0.0414	0.0201	0.0213
22	0.0483	0.0197	0.0285
23	0.0551	0.0194	0.0358
24	0.0551	0.0190	0.0361
25	0.0620	0.0187	0.0434
26	0.0620	0.0183	0.0437
27	0.0689	0.0180	0.0510
28	0.0689	0.0176	0.0513
29	0.0689	0.0173	0.0516
30	0.0758	0.0169	0.0589
31	0.0827	0.0166	0.0661
32	0.0896	0.0163	0.0733
33	0.1034	0.0159	0.0874
34	0.1034	0.0156	0.0878
35	0.1103	0.0153	0.0950
36	0.1172	0.0150	0.1022
37	0.1310	0.0147	0.1163
38	0.1379	0.0143	0.1235
39	0.1448	0.0140	0.1307
40	0.1516	0.0137	0.1379
41	0.1034	0.0134	0.0900
42	0.1034	0.0131	0.0903
43	0.1379	0.0128	0.1250
44	0.1379	0.0125	0.1253
45	0.1310	0.0122	0.1187
46	0.1310	0.0119	0.1190
47	0.1172	0.0116	0.1055

		RS_U_100.	RES
48	0.1241	0.0114	0.1127
49	0.1723	0.0111	0.1613
50	0.1792	0.0108	0.1684
51	0.1930	0.0105	0.1825
52	0.1999	0.0103	0.1896
53	0.2344	0.0100	0.2244
54	0.2344	0.0097	0.2246
55	0.1585	0.0095	0.1491
56	0.1585	0.0092	0.1493
57	0.1861	0.0089	0.1772
58	0.1792	0.0087	0.1705
59	0.1792	0.0084	0.1708
60	0.1723	0.0082	0.1641
61	0.1654	0.0080	0.1575
62	0.1585	0.0077	0.1508
63	0.1310	0.0075	0.1235
64	0.1310	0.0073	0.1237
65	0.0276	0.0070	0.0205
66	0.0276	0.0068	0.0208
67	0.0207	0.0066	0.0141
68	0.0207	0.0064	0.0143
69	0.0345	0.0062	0.0283
70	0.0345	0.0060	0.0285
71	0.0345	0.0058	0.0287
72	0.0276	0.0056	0.0220
73	0.0276	0.0054	0.0222
74	0.0276	0.0052	0.0224
75	0.0207	0.0050	0.0157
76	0.0138	0.0048	0.0090
77 70	0.0207	0.0047	0.0160
78 70	0.0276	0.0045	0.0231
79	0.0207	0.0043	0.0164
80	0.0138	0.0042	0.0096
81	0.0207	0.0040	0.0167
82 83	0.0207	0.0039	0.0168
84	0.0207 0.0138	0.0037 0.0036	0.0170 0.0102
85	0.0207	0.0035	0.0172
86	0.0138	0.0033	0.0172
87	0.0207	0.0032	0.0175
88	0.0138	0.0031	0.0173
89	0.0207	0.0031	0.0177
90	0.0138	0.0029	0.0109
91	0.0138	0.0028	0.0110
92	0.0138	0.0027	0.0111
93	0.0138	0.0027	0.0111
94	0.0138	0.0026	0.0112
95	0.0138	0.0025	0.0112
96	0.0138	0.0025	0.0113
	RM RAINFALL(INCHES		
	L-LOSS(INCHES) =		
	ECTIVE RAINFALL(IN	·	
) =	
TOTAL STORM RU	NOFF VOLUME (ACRE-F) = 0.5031 EET) = 2.8845	

HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS)

(Note: Time indicated is at END of Each Unit Intervals)

TIME(HRS)	VOLUME(AF)	Q(CFS)	0.	2.5	5.0	7.5	10.0
0.083	0.0006	0.08	Q		•		
0.167	0.0011	0.08	Q	•	•	•	•
0.250	0.0017	0.08	Q	•	•	•	•
0.333	0.0030	0.19	Q	•	•	•	•
0.417	0.0043	0.19	Q	•	•	•	•
0.500	0.0057	0.19	Q	•	•	•	•
0.583	0.0073	0.23	Q	•	•	•	•
0.667	0.0089	0.23	Q	•	•	•	•
0.750	0.0105	0.23	Q	•	•	•	•
0.833	0.0125	0.28	VQ	•	•	•	•
0.917	0.0144	0.28	VQ	•	•	•	•
1.000	0.0164	0.28	VQ	•	•	•	•
1.083	0.0183	0.28	VQ	•	•	•	•
1.167	0.0202	0.28	VQ	•	•	•	•
1.250	0.0221	0.28	VQ	•	•	•	•
1.333	0.0239	0.25	VQ	•	•	•	•
1.417	0.0256	0.25	VQ	•	•	•	•
1.500	0.0273	0.25	VQ	•	•	•	•
1.583	0.0290	0.25	Q	•	•	•	•
1.667	0.0307	0.25	Q	•	•	•	•
1.750	0.0324	0.25	Q	•	•	•	•
1.833	0.0344	0.29	VQ	•	•	•	•
1.917	0.0364	0.29	VQ	•	•	•	•
2.000	0.0384	0.29	VQ	•	•	•	•
2.083	0.0406	0.32	VQ	•	•	•	•
2.167	0.0428	0.32	VQ	•	•	•	•
2.250	0.0450	0.32	VQ	•	•	•	•
2.333	0.0473	0.33	VQ	•	•	•	•
2.417	0.0495	0.33	VQ	•	•	•	•
2.500	0.0518	0.33	VQ	•	•	•	•
2.583	0.0543	0.37	VQ	•	•	•	•
2.667	0.0568	0.37	VQ	•	•	•	•
2.750	0.0594	0.37	VQ	•	•	•	•
2.833	0.0621	0.40	VQ	•	•	•	•
2.917	0.0649	0.40	VQ	•	•	•	•
3.000	0.0677	0.40	VQ	•	•	•	•
3.083	0.0705	0.41	VQ	•	•	•	•
3.167	0.0733	0.41	Q	•	•	•	•
3.250	0.0761	0.41	Q	•	•	•	•
3.333	0.0789	0.41	.Q	•	•	•	•
3.417	0.0818	0.41	.Q	•	•	•	•
3.500	0.0846	0.41	.Q	•	•	•	•
3.583	0.0874	0.41	.Q	•	•	•	•
3.667	0.0902	0.41	.Q	•	•	•	•
3.750	0.0930	0.41	.Q	•	•	•	•
3.833	0.0962	0.45	.Q	•	•	•	•
3.917	0.0993	0.45 0.45	.Q	•	•	•	•
4.000	0.1024 0.1057	0.45	.Q	•	•	•	•
4.083	0.1057	0.48	.Q	•	•	•	•
4.167	0.1090 0.1124	0.48	.Q	•	•	•	•
4.250 4.333			.Q	•	•	•	•
	0.1163 0.1202	0.57	.VQ	•	•	•	•
4.417 4.500	0.1262 0.1241	0.57	.VQ	•	•	•	•
4.500 4.583	0.1241 0.1285	0.57	.VQ	•	•	•	•
		0.63	.VQ	•	•	•	•
4.667	0.1328	0.63	.VQ	•	•	•	•

				RS_U_100.RES		
4.750	0.1372	0.63	.VQ .			
4.833	0.1423	0.74	.VQ .	•	•	•
4.917	0.1473	0.74	. Q .	•	•	•
5.000	0.1524	0.74	. Q .	•	•	•
5.083 5.167	0.1569 0.1613	0.65 0.65	. Q . . Q .	•	•	•
5.250	0.1658	0.65	. Q .	•	•	•
5.333	0.1700	0.62	. Q .	•	•	•
5.417	0.1743	0.62	. Q .	•	•	
5.500	0.1785	0.62	. Q .	•		
5.583	0.1837	0.76	. VQ .	•		•
5.667	0.1889	0.76	. VQ .	•	•	•
5.750	0.1942	0.76	. VQ .	•	•	•
5.833	0.1999	0.84	. VQ .	•	•	•
5.917 6.000	0.2057 0.2114	0.84 0.84	. VQ	•	•	•
6.083	0.2179	0.84	. VQ . . Q .	•	•	•
6.167	0.2244	0.94	. Q .	•	•	•
6.250	0.2309	0.94	. Q .	•	•	
6.333	0.2379	1.02	. vQ .	•	•	•
6.417	0.2449	1.02	. VQ .	•		•
6.500	0.2520	1.02	. VQ .	•	•	•
6.583	0.2597	1.12	. VQ .	•	•	•
6.667	0.2674	1.12	. VQ .	•	•	•
6.750	0.2751	1.12	. VQ .	•	•	•
6.833 6.917	0.2834 0.2917	1.20 1.20	. VQ .	•	•	•
7.000	0.2999	1.20	. Q . . Q .	•	•	•
7.083	0.3083	1.22	. Q .	•	•	•
7.167	0.3167	1.22	. Q .	•		
7.250	0.3251	1.22	. Q .	•	•	•
7.333	0.3342	1.31	. VQ .	•		•
7.417	0.3432	1.31	. VQ .	•	•	•
7.500	0.3523	1.31	. VQ .	•	•	•
7.583	0.3624	1.47	. Q .	•	•	•
7.667 7.750	0.3725 0.3827	1.47 1.47	. Q .	•	•	•
7.730	0.3940	1.64		•	•	•
7.917	0.4053	1.64	. vç . . vQ .	•	•	•
8.000	0.4166	1.64	. VQ .	•	•	
8.083	0.4296	1.89	. v Q .	•		•
8.167	0.4426	1.89	. VQ .	•		•
8.250	0.4557	1.89	. VQ .	•	•	•
8.333	0.4698	2.05	. VQ.	•	•	•
8.417	0.4839 0.4980	2.05	. VQ.	•	•	•
8.500 8.583	0.4980	2.05 2.17	. V Q . . VQ .	•	•	•
8.667	0.5278	2.17	. VQ .	•	•	•
8.750	0.5427	2.17	. VQ .	•		
8.833	0.5588	2.33	. v q.	•		•
8.917	0.5748	2.33	. v Q.	•		
9.000	0.5909	2.33	. VQ.	•		•
9.083	0.6086	2.58	. V Q	•	•	•
9.167	0.6264	2.58	. V Q	•	•	•
9.250	0.6442	2.58	. V Q	•	•	•
9.333 9.417	0.6636 0.6830	2.82 2.82	. V.Q	•	•	•
9.417	0.7024	2.82	. V.Q . V.Q	•	•	•
9.583	0.7231	3.00	. v.g	·) .	•	•
9.667	0.7437	3.00	. v (•	•
9.750	0.7644	3.00	. v (
9.833	0.7863	3.17	. V (
9.917	0.8081	3.17	. V(•

			RS_U_100.RES
10.000	0.8300	3.17 .	VQ
10.083	0.8484	2.68 .	QV
10.167	0.8669	2.68 .	Q V
10.250	0.8854	2.68 .	Q V
10.333	0.9008	2.24 .	Q . V
10.417	0.9162	2.24 .	Q . V
10.500	0.9317	2.24 .	Q . V
10.583	0.9495	2.59 .	Q V
10.667 10.750	0.9674 0.9852	2.59 . 2.59 .	Q V
10.730	1.0052	2.91 .	.Q V
10.033	1.0253	2.91 .	.Q V
11.000	1.0453	2.91 .	.Q V
11.083	1.0652	2.89 .	.Q V
11.167	1.0850	2.89 .	.Q V
11.250	1.1049	2.89 .	.Q V
11.333	1.1245	2.84 .	.Q V
11.417	1.1440	2.84 .	.Q V
11.500	1.1635	2.84 .	.Q V
11.583	1.1819	2.67 .	Q V
11.667	1.2003	2.67 .	Q V
11.750	1.2187	2.67 .	Q V
11.833 11.917	1.2368 1.2549	2.63 . 2.63 .	Q V
12.000	1.2730	2.63 .	Q V
12.083	1.2954	3.26 .	. Q V
12.167	1.3178	3.26 .	. Q V
12.250	1.3403	3.26 .	. Q V
12.333	1.3666	3.82 .	. Q V
12.417	1.3928	3.82 .	. Q V
12.500	1.4191	3.82 .	. Q V
12.583	1.4476	4.13 .	. Q V
12.667	1.4761	4.13 .	. Q V
12.750	1.5045	4.13 .	. Q V
12.833	1.5348	4.39 .	. Q .V
12.917	1.5650	4.39 .	. Q .V
13.000 13.083	1.5952 1.6289	4.39 . 4.90 .	. Q . V
13.167	1.6627	4.90 .	. Q. V
13.250	1.6965	4.90 .	. Q. V
13.333	1.7327	5.26 .	Q V
13.417	1.7689	5.26 .	
13.500	1.8051	5.26 .	Q V
13.583	1.8355	4.41 .	. Q . V
13.667	1.8659	4.41 .	. Q . V .
13.750	1.8962	4.41 .	. Q . V
13.833 13.917	1.9218 1.9473	3.71 .	. Q . V
14.000	1.9473	3.71 . 3.71 .	. Q . V
14.083	1.9999	3.93 .	0
14.167	2.0269	3.93 .	. Q . V
14.250	2.0539	3.93 .	. Q . V.
14.333	2.0820	4.08 .	. Q . V .
14.417	2.1102	4.08 .	. Q . V
14.500	2.1383	4.08 .	. Q . V
14.583	2.1663	4.06 .	. Q . V .
14.667	2.1942	4.06 .	. Q . V .
14.750	2.2222	4.06 .	. Q . V .
14.833	2.2496	3.98 .	. QV .
14.917	2.2771	3.98 .	. QV .
15.000	2.3045	3.98 .	. QV .
15.083 15.167	2.3309 2.3573	3.84 . 3.84 .	. Q V V
10.10/	2.33/3	J.04 .	v .

				DC	_U_100.RES		
15.250	2.3838	3.84 .		. (٧.
15.333	2.4091	3.68 .		. Q		·	v .
15.417	2.4345	3.68 .		. Q	•	•	v .
15.500	2.4599	3.68 .		. Q	•		٧.
15.583	2.4824	3.28 .		. Q	•		٧.
15.667	2.5050	3.28 .		. Q	•		٧.
15.750	2.5275	3.28 .	ı	. Q	•		V .
15.833	2.5482	3.00 .		. Q	•		٧.
15.917	2.5689	3.00 .		. Q	•	•	٧.
16.000	2.5896	3.00 .		. Q	•	•	V .
16.083	2.6014	1.71 .	Q	•	•	•	٧ .
16.167	2.6131	1.71 .	Q	•	•	•	٧.
16.250	2.6249	1.71 .	Q	•	•	•	٧.
16.333	2.6299	0.72 .	Q	•	•	•	V . V .
16.417	2.6348		Q	•	•	•	v . V .
16.500 16.583	2.6398 2.6430		. Q .Q	•	•	•	v . V .
16.667	2.6462		Q	•	•	•	v . V .
16.750	2.6494		Q	•	•	•	v . V .
16.833	2.6520		Q	•	•	•	v .
16.917	2.6545		Q	•	•		۷.
17.000	2.6570		Q	•	•		٧.
17.083	2.6606		Q	•	•		V .
17.167	2.6641	0 -0	Q		•		V .
17.250	2.6677	0.52 .	Q		•		V .
17.333	2.6721	0.65 .	Q	•	•		٧.
17.417	2.6766	0.65 .	Q		•		٧.
17.500	2.6811	0.65 .	Q	•	•	•	٧.
17.583	2.6857	0.67 .	Q	•	•	•	٧.
17.667	2.6903	0.67 .	Q	•	•	•	٧.
17.750	2.6950	0.67 .	Q	•	•	•	٧.
17.833	2.6991		Q	•	•	•	٧.
17.917 18.000	2.7032 2.7073		Q	•	•	•	V . V .
18.083	2.7110	0.54 .	Q Q	•	•	•	v . V .
18.167	2.7148	0.54 .	Q	•	•	•	v . V .
18.250	2.7185	0.54 .	0	•	•	•	v . V .
18.333	2.7221	0.53 .	Q		•		٧.
18.417	2.7258	0.53 .	Q	•	•		٧.
18.500	2.7295		Q				٧.
18.583	2.7326		Q		•		٧.
18.667	2.7357	0.45 .	Q	•	•		٧.
18.750	2.7388		Q	•	•	•	٧.
18.833	2.7409		Q	•	•	•	V .
18.917	2.7430		Q	•	•	•	٧.
19.000	2.7451		Q	•	•	•	٧.
19.083	2.7473		Q	•	•	•	٧.
19.167	2.7495		Q	•	•	•	V . V .
19.250 19.333	2.7517 2.7548		Q	•	•	•	v . V .
19.333	2.7580		.Q .Q	•	•	•	v . V .
19.500	2.7611		Q	•	•	•	v . V .
19.583	2.7642		Q	•	•	•	v . V .
19.667	2.7673		Q		•		٧.
19.750	2.7704		Q		•	•	٧.
19.833	2.7726		, Q		•		V .
19.917	2.7748		Q	•	•		٧.
20.000	2.7770		Q		•		V .
20.083	2.7792	0.33 .	Q	•	•		٧.
20.167	2.7815		Q		•		V .
20.250	2.7838		Q	•	•	•	V .
20.333	2.7865		Q	•	•	•	٧.
20.417	2.7891	0.39 .	Q	•	•	•	V .

					RS_U_100.RES	5	
20.500	2.7918	0.39	.Q	•		•	٧.
20.583	2.7945	0.40	.Q		•	•	٧.
20.667	2.7973	0.40	.Q		•	•	٧.
20.750	2.8000	0.40	.Q		•	•	٧.
20.833	2.8022	0.32	.Q		•	•	٧.
20.917	2.8045	0.32	.Q		•	•	٧.
21.000	2.8067	0.32	.Q		•	•	٧.
21.083	2.8090	0.34	.Q		•	•	٧.
21.167	2.8114	0.34	.Q	•	•		٧.
21.250	2.8137	0.34	.Q	•	•	•	٧.
21.333	2.8159	0.32	.Q	•	•	•	٧.
21.417	2.8181	0.32	.Q	•	•	•	٧.
21.500	2.8203	0.32	.Q		•	•	٧.
21.583	2.8226	0.35	.Q		•	•	٧.
21.667	2.8250	0.35	.Q		•	•	٧.
21.750	2.8274	0.35	.Q		•	•	٧.
21.833	2.8296	0.32	.Q	•	•	•	٧.
21.917	2.8318	0.32	.Q	•	•	•	٧.
22.000	2.8340	0.32	.Q	•	•	•	٧.
22.083	2.8364	0.35	.Q	•	•	•	٧.
22.167	2.8389	0.35	.Q		•	•	٧.
22.250	2.8413	0.35	.Q		•		٧.
22.333	2.8435	0.33	.Q		•	•	٧.
22.417	2.8458	0.33	.Q		•	•	٧.
22.500	2.8480	0.33	.Q		•	•	٧.
22.583	2.8499	0.27	.ų			•	٧.
22.667	2.8518	0.27	.ų			•	٧.
22.750	2.8536	0.27	.ų			•	٧.
22.833	2.8555	0.26	. Q			•	٧.
22.917	2.8573	0.26	.ų			•	٧.
23.000	2.8591	0.26	. Q			•	٧.
23.083	2.8609	0.26	. Q			•	٧.
23.166	2.8627	0.26	. Q			•	٧.
23.250	2.8646	0.26	. Q			•	٧.
23.333	2.8664	0.27	. Q			•	٧.
23.416	2.8682	0.27	.Q	•	•	•	٧.
23.500	2.8701	0.27	.ų			•	٧.
23.583	2.8719	0.27	.Q	•	•	•	٧.
23.666	2.8737	0.27	.ų			•	٧.
23.750	2.8756	0.27	.Q	•	•	•	٧.
23.833	2.8774	0.27	.Q		•		٧.
23.916	2.8793	0.27	.Q		•		٧.
24.000	2.8811	0.27	.Q		•		٧.
24.083	2.8820	0.13	Q		•		٧.
24.166	2.8829	0.13	Q				٧.
24.250	2.8838	0.13	Q	•	•		٧.
24.333	2.8840	0.02	Q		•		٧.
24.416	2.8842	0.02	Q		•		٧.
24.500	2.8843	0.02	Q		•		٧.
24.583	2.8844	0.01	Q	•	-	.	٧.
24.666	2.8844	0.01	Q	•	-	•	٧.
24.750	2.8844	0.01	Q	•	-	•	٧.
		5.01	~	•	•	•	• •

TIME DURATION(minutes) OF PERCENTILES OF ESTIMATED PEAK FLOW RATE: (Note: 100% of Peak Flow Rate estimate assumed to have an instantaneous time duration)

Percentile of Estimated Peak Flow Rate	Duration (minutes)
=======================================	=======
0%	1485.0
10%	810.0
20%	585.0

	RS_U_100.RES
30%	510.0
40%	450.0
50%	360.0
60%	240.0
70%	195.0
80%	60.0
90%	30.0
	=======================================

END OF FLOODSCx ROUTING ANALYSIS

Project Summary	
Title	UHS Rancho Springs_100 yr, 24 hr
Engineer	Nikki Kerry, P.E.
Company	Kimley-Horn and Associates, Inc.
Date	5/12/2020
Notes	Inflow hydrograph (100-year, 24 hr) calculated based on Synthetic Unit Hydrograph Method from Riverside County Flood Control and Water Conservation District Hydrology Manual (April 1978) using AES software Flow-through basin analysis completed using modified Pul's (storage indication routing).

Table of Contents

	User Notifications	2
	Master Network Summary	3
Unit Hydrograph (Onsite Runoff)	Read Hydrograph	4
Outfall (POC)	Addition Summary	6
Onsite Detention Basin (OUT)	Time vs. Elevation	7
Onsite Detention Basin	Time vs. Volume	10
Onsite Detention Basin	Pipe Volume	13
Composite Outlet Structure - 1		
	Outlet Input Data	15
	Individual Outlet Curves	18
	Composite Rating Curve	24
Onsite Detention Basin		
	Elevation-Volume-Flow Table (Pond)	25
Onsite Detention Basin (IN)		
	Level Pool Pond Routing Summary	26
Onsite Detention Basin (OUT)		
	Pond Routed Hydrograph (total out)	27
Onsite Detention Basin (IN)		
	Pond Inflow Summary	30
Outlet-1		
	Diverted Hydrograph	31

Subsection: User Notifications

Information

User Notifications

Source

Message Id	17
•	17
Scenario	Base
Element Type	Composite Outlet Structure
Element Id	21
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Riser orifice equation controls at one or more headwater elevations for outlet structure

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
Unit Hydrograph (Onsite Runoff)	Base	0	2.888	795.000	5.26

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
Outfall (POC)	Base	0	2.676	810.000	4.42

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Onsite Detention Basin (IN)	Base	0	2.885	795.000	5.26	(N/A)	(N/A)
Onsite Detention Basin (OUT)	Base	0	2.676	810.000	4.42	3.75	0.513

Subsection: Read Hydrograph

Label: Unit Hydrograph (Onsite Runoff)

Peak Discharge	5.26 ft ³ /s
Time to Peak	800.000 min
Hydrograph Volume	2.888 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 5.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.08	0.08	0.08	0.19	0.19
25.000	0.19	0.24	0.24	0.24	0.29
50.000	0.29	0.29	0.28	0.28	0.28
75.000	0.25	0.25	0.25	0.25	0.25
100.000	0.25	0.29	0.29	0.29	0.32
125.000	0.32	0.32	0.33	0.33	0.33
150.000	0.37	0.37	0.37	0.40	0.40
175.000	0.40	0.41	0.41	0.41	0.41
200.000	0.41	0.41	0.41	0.41	0.41
225.000	0.45	0.45	0.45	0.48	0.48
250.000	0.48	0.57	0.57	0.57	0.64
275.000	0.64	0.64	0.74	0.74	0.74
300.000	0.65	0.65	0.65	0.62	0.62
325.000	0.62	0.76	0.76	0.76	0.84
350.000	0.84	0.84	0.94	0.94	0.94
375.000	1.02	1.02	1.02	1.12	1.12
400.000	1.12	1.20	1.20	1.20	1.22
425.000	1.22	1.22	1.32	1.32	1.32
450.000	1.47	1.47	1.47	1.64	1.64
475.000	1.64	1.90	1.90	1.90	2.05
500.000	2.05	2.05	2.17	2.17	2.17
525.000	2.33	2.33	2.33	2.58	2.58
550.000	2.58	2.82	2.82	2.82	3.00
575.000	3.00	3.00	3.18	3.18	3.18
600.000	2.68	2.68	2.68	2.24	2.24
625.000	2.24	2.59	2.59	2.59	2.91
650.000	2.91	2.91	2.89	2.89	2.89
675.000	2.84	2.84	2.84	2.67	2.67
700.000	2.67	2.63	2.63	2.63	3.26
725.000	3.26	3.26	3.82	3.82	3.82
750.000	4.14	4.14	4.14	4.39	4.39
775.000	4.39	4.91	4.91	4.91	5.26
800.000	5.26	5.26	4.41	4.41	4.41
825.000	3.71	3.71	3.71	3.93	3.93
850.000	3.93	4.09	4.09	4.09	4.07
875.000	4.07	4.07	3.99	3.99	3.99
900.000	3.84	3.84	3.84	3.69	3.69

Subsection: Read Hydrograph

Label: Unit Hydrograph (Onsite Runoff)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 5.000 min Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
925.000	3.69	3.28	3.28	3.28	3.01
950.000	3.01	3.01	1.71	1.71	1.71
975.000	0.72	0.72	0.72	0.47	0.47
1,000.000	0.47	0.37	0.37	0.37	0.52
1,025.000	0.52	0.52	0.65	0.65	0.65
1,050.000	0.67	0.67	0.67	0.60	0.60
1,075.000	0.60	0.54	0.54	0.54	0.53
1,100.000	0.53	0.53	0.45	0.45	0.45
1,125.000	0.31	0.31	0.31	0.32	0.32
1,150.000	0.32	0.46	0.46	0.46	0.45
1,175.000	0.45	0.45	0.32	0.32	0.32
1,200.000	0.33	0.33	0.33	0.39	0.39
1,225.000	0.39	0.40	0.40	0.40	0.32
1,250.000	0.32	0.32	0.34	0.34	0.34
1,275.000	0.32	0.32	0.32	0.35	0.35
1,300.000	0.35	0.32	0.32	0.32	0.35
1,325.000	0.35	0.35	0.33	0.33	0.33
1,350.000	0.27	0.27	0.27	0.27	0.27
1,375.000	0.27	0.26	0.26	0.26	0.27
1,400.000	0.27	0.27	0.27	0.27	0.27
1,425.000	0.27	0.27	0.27	0.13	0.13
1,450.000	0.13	0.02	0.02	0.02	0.01
1,475.000	0.01	0.01	0.00	(N/A)	(N/A)

Subsection: Addition Summary

Label: Outfall (POC)

Summary for Hydrograph Addition at 'Outfall (POC)'

	Upstream Link	Upstream Node
Outlet-1		Onsite Detention Basin

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Outlet-1	2.676	810.000	4.42
Flow (In)	Outfall (POC)	2.676	810.000	4.42

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time Elevation Elevation		Elevation	Elevation	Elevation	
(min)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	0.00	0.01	0.01	0.02	0.03
15.000	0.05	0.06	0.08	0.10	0.11
30.000	0.13	0.15	0.18	0.20	0.22
45.000	0.24	0.26	0.29	0.31	0.34
60.000	0.36	0.38	0.40	0.43	0.45
75.000	0.47	0.49	0.50	0.51	0.52
90.000	0.53	0.53	0.54	0.55	0.56
105.000	0.57	0.58	0.59	0.60	0.61
120.000	0.62	0.63	0.64	0.65	0.66
135.000	0.67	0.69	0.70	0.71	0.72
150.000	0.73	0.74	0.76	0.77	0.78
165.000	0.80	0.81	0.82	0.84	0.85
180.000	0.87	0.88	0.89	0.91	0.92
195.000	0.94	0.95	0.97	0.98	0.99
210.000	1.01	1.02	1.03	1.04	1.05
225.000	1.06	1.07	1.08	1.10	1.11
240.000	1.12	1.13	1.15	1.16	1.17
255.000	1.19	1.20	1.22	1.23	1.25
270.000	1.27	1.28	1.30	1.32	1.34
285.000	1.36	1.38	1.40	1.42	1.44
300.000	1.46	1.48	1.49	1.51	1.53
315.000	1.54	1.56	1.57	1.59	1.60
330.000	1.62	1.64	1.66	1.68	1.70
345.000	1.72	1.74	1.76	1.78	1.80
360.000	1.82	1.84	1.86	1.88	1.90
375.000	1.92	1.94	1.96	1.98	2.00
390.000	2.02	2.04	2.06	2.08	2.10
405.000	2.11	2.13	2.15	2.17	2.18
420.000	2.20	2.21	2.23	2.24	2.25
435.000	2.27	2.28	2.30	2.31	2.33
450.000	2.34	2.36	2.37	2.39	2.40
465.000	2.42	2.43	2.45	2.46	2.48
480.000	2.50	2.52	2.54	2.55	2.57
495.000	2.59	2.60	2.62	2.64	2.65
510.000	2.67	2.68	2.70	2.71	2.73
525.000	2.74	2.76	2.77	2.79	2.80
540.000	2.82	2.84	2.85	2.87	2.89
555.000	2.90	2.92	2.94	2.96	2.97
570.000	2.99	3.01	3.03	3.04	3.06
585.000	3.07	3.09	3.11	3.12	3.13
600.000	3.14	3.14	3.14	3.14	3.14

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
615.000	3.13	3.13	3.12	3.11	3.11
630.000	3.11	3.11	3.11	3.11	3.11
645.000	3.12	3.13	3.13	3.14	3.15
660.000	3.15	3.16	3.16	3.17	3.17
675.000	3.17	3.18	3.18	3.18	3.18
690.000	3.18	3.18	3.18	3.18	3.18
705.000	3.18	3.17	3.17	3.17	3.17
720.000	3.18	3.19	3.20	3.21	3.22
735.000	3.24	3.26	3.28	3.30	3.32
750.000	3.34	3.36	3.38	3.40	3.42
765.000	3.44	3.46	3.48	3.50	3.52
780.000	3.54	3.57	3.59	3.61	3.63
795.000	3.66	3.68	3.71	3.73	3.74
810.000	3.75	3.75	3.75	3.75	3.74
825.000	3.73	3.72	3.71	3.69	3.68
840.000	3.68	3.67	3.67	3.66	3.66
855.000	3.65	3.65	3.65	3.65	3.65
870.000	3.65	3.65	3.65	3.65	3.65
885.000	3.65	3.64	3.64	3.64	3.64
900.000	3.63	3.63	3.63	3.62	3.62
915.000	3.61	3.61	3.60	3.59	3.59
930.000	3.58	3.56	3.55	3.54	3.53
945.000	3.52	3.50	3.49	3.47	3.46
960.000	3.43	3.39	3.35	3.32	3.28
975.000	3.24	3.19	3.14	3.10	3.06
990.000	3.02	2.98	2.94	2.90	2.86
1,005.000	2.83	2.79	2.76	2.73	2.70
1,020.000	2.68	2.65	2.63	2.61	2.59
1,035.000	2.58	2.56	2.55	2.53	2.52
1,050.000	2.51	2.50	2.49	2.48	2.47
1,065.000	2.46	2.45	2.44	2.43	2.42
1,080.000	2.41	2.40	2.39	2.38	2.37
1,095.000	2.36 2.32	2.35 2.31	2.34 2.30	2.34 2.29	2.33 2.28
1,110.000					
1,125.000	2.27	2.26	2.25 2.21	2.24	2.23
1,140.000	2.23	2.22		2.20	2.19
1,155.000	2.19 2.17	2.19 2.17	2.18 2.17	2.18 2.16	2.18 2.16
1,170.000 1,185.000	2.17	2.17	2.17	2.16	2.16
1,185.000	2.16	2.13	2.14	2.14	2.13
1,215.000	2.13	2.13	2.12	2.12	2.11
1,213.000	2.11	2.11	2.11	2.10	2.10

Subsection: Time vs. Elevation Label: Onsite Detention Basin (OUT)

Time vs. Elevation (ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

	•				
Time	Elevation	Elevation	Elevation	Elevation	Elevation
(min)	(ft)	(ft)	(ft)	(ft)	(ft)
1,230.000	2.10	2.10	2.10	2.10	2.09
1,245.000	2.09	2.09	2.09	2.08	2.08
1,260.000	2.08	2.08	2.07	2.07	2.07
1,275.000	2.07	2.07	2.06	2.06	2.06
1,290.000	2.06	2.06	2.06	2.06	2.05
1,305.000	2.05	2.05	2.05	2.05	2.05
1,320.000	2.05	2.05	2.05	2.04	2.04
1,335.000	2.04	2.04	2.04	2.04	2.04
1,350.000	2.04	2.04	2.03	2.03	2.03
1,365.000	2.03	2.03	2.02	2.02	2.02
1,380.000	2.02	2.02	2.02	2.01	2.01
1,395.000	2.01	2.01	2.01	2.01	2.01
1,410.000	2.01	2.00	2.00	2.00	2.00
1,425.000	2.00	2.00	2.00	2.00	2.00
1,440.000	1.99	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(min)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
15.000	0.001	0.001	0.001	0.001	0.002
30.000	0.002	0.002	0.003	0.003	0.004
45.000	0.005	0.007	0.008	0.009	0.011
60.000	0.012	0.013	0.015	0.016	0.018
75.000	0.020	0.021	0.022	0.023	0.024
90.000	0.024	0.025	0.026	0.026	0.027
105.000	0.028	0.028	0.029	0.030	0.031
120.000	0.032	0.033	0.034	0.035	0.036
135.000	0.037	0.038	0.039	0.041	0.042
150.000	0.043	0.044	0.045	0.047	0.048
165.000	0.049	0.051	0.052	0.054	0.055
180.000	0.057	0.058	0.060	0.061	0.063
195.000	0.065	0.066	0.068	0.069	0.071
210.000	0.072	0.073	0.075	0.076	0.077
225.000	0.079	0.080	0.082	0.083	0.085
240.000	0.086	0.088	0.089	0.091	0.092
255.000	0.094	0.096	0.098	0.100	0.102
270.000	0.104	0.107	0.109	0.111	0.114
285.000	0.116	0.119	0.122	0.125	0.127
300.000	0.130	0.133	0.135	0.137	0.140
315.000	0.142	0.144	0.146	0.148	0.150
330.000	0.153	0.156	0.158	0.161	0.164
345.000	0.167	0.170	0.173	0.176	0.179
360.000	0.182	0.185	0.188	0.191	0.195
375.000	0.198	0.201	0.204	0.207	0.210
390.000	0.213	0.217	0.220	0.222	0.225
405.000	0.228	0.231	0.234	0.236	0.239
420.000 435.000	0.241 0.253	0.244 0.255	0.246 0.258	0.248 0.260	0.251 0.262
450.000	0.265	0.253	0.236	0.272	0.262
465.000	0.263	0.280	0.270	0.272	0.274
480.000	0.277	0.280	0.283	0.285	0.288
495.000	0.291	0.309	0.297	0.300	0.303
510.000	0.320	0.323	0.312	0.314	0.317
	0.333		0.325		0.343
525.000 540.000	0.333	0.336 0.349	0.338	0.341 0.355	0.343
555.000	0.346	0.349	0.352	0.355	0.358
570.000	0.361	0.364	0.367	0.370	0.388
585.000	0.376	0.379	0.382	0.385	0.388
600.000	0.391	0.394	0.396	0.399	0.401
000.000	0.402	U. 1 U2	0.402	0.403	U. 1 U2

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

T:	Values a	Values e	Values	Values a	\/aliveaa
Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
615.000	(ac-it)	` '	(ac-it) 0.399	` '	
630.000	0.401	0.400 0.397	0.399	0.397 0.397	0.396 0.397
645.000	0.399	0.400	0.401	0.402	0.404
660.000	0.405	0.405	0.406	0.407	0.408
675.000	0.408	0.409	0.409	0.410	0.410
690.000	0.410	0.410	0.410	0.409	0.409
705.000	0.409	0.408	0.408	0.408	0.408
720.000	0.409	0.411	0.413	0.415	0.417
735.000	0.421	0.424	0.428	0.431	0.434
750.000	0.438	0.442	0.446	0.449	0.452
765.000	0.456	0.460	0.463	0.467	0.470
780.000	0.475	0.479	0.483	0.487	0.491
795.000	0.496	0.500	0.505	0.509	0.511
810.000	0.513	0.513	0.512	0.512	0.512
825.000	0.510	0.507	0.505	0.503	0.501
840.000	0.499	0.498	0.497	0.496	0.496
855.000	0.495	0.495 0.495	0.495	0.495	0.495
870.000	0.495		0.495	0.494	0.494
885.000 900.000	0.494 0.492	0.494 0.491	0.493 0.490	0.493 0.489	0.492 0.488
915.000 930.000	0.487 0.481	0.486 0.479	0.485 0.477	0.484 0.475	0.483 0.472
945.000	0.481	0.479	_		0.472
960.000	0.470	0.467 0.447	0.465 0.440	0.463 0.434	0.439
975.000	0.420	0.447	0.440	0.395	0.428
990.000	0.420	0.411	0.403	0.360	0.354
1,005.000	0.347	0.341	0.336	0.330	0.326
1,020.000	0.347	0.341	0.336	0.330	0.326
1,035.000	0.321	0.317	0.314	0.310	0.307
1,050.000	0.293	0.291	0.290	0.288	0.286
1,065.000	0.284	0.283	0.290	0.279	0.277
1,080.000	0.276	0.274	0.272	0.279	0.269
1,095.000	0.268	0.267	0.265	0.264	0.263
1,110.000	0.261	0.260	0.258	0.257	0.255
1,125.000	0.254	0.252	0.250	0.249	0.247
1,140.000	0.234	0.244	0.243	0.249	0.247
1,155.000	0.240	0.244	0.239	0.238	0.238
1,170.000	0.240	0.239	0.239	0.236	0.238
1,185.000	0.237	0.237	0.236	0.230	0.235
1,185.000	0.235	0.234	0.233	0.232	0.231
1,215.000	0.230	0.230	0.229	0.228	0.228
1,213.000	0.227	0.227	0.227	0.220	0.226

Subsection: Time vs. Volume Label: Onsite Detention Basin

Time vs. Volume (ac-ft)

Output Time increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
1,230.000	0.226	0.226	0.225	0.225	0.225
1,245.000	0.225	0.224	0.224	0.223	0.223
1,260.000	0.222	0.222	0.222	0.221	0.221
1,275.000	0.221	0.220	0.220	0.220	0.219
1,290.000	0.219	0.219	0.219	0.219	0.219
1,305.000	0.218	0.218	0.218	0.218	0.217
1,320.000	0.217	0.217	0.217	0.217	0.217
1,335.000	0.217	0.217	0.216	0.216	0.216
1,350.000	0.216	0.215	0.215	0.215	0.215
1,365.000	0.214	0.214	0.214	0.213	0.213
1,380.000	0.213	0.213	0.212	0.212	0.212
1,395.000	0.212	0.211	0.211	0.211	0.211
1,410.000	0.211	0.211	0.210	0.210	0.210
1,425.000	0.210	0.210	0.210	0.210	0.209
1,440.000	0.209	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Pipe Volume Label: Onsite Detention Basin

Volume Results (Pipe)	
Pipe Storage Upstream Invert	0.20 ft
Pipe Storage Downstream Invert	0.00 ft
Pipe Storage Length	200.00 ft
Pipe Storage Diameter	96.0 in
Pipe Storage Number of Barrels	5
Pipe Storage Slice Width	1.00 ft
Pipe Storage Vertical Increment	0.20 ft

Elevation (ft)	Perpendicular Downstream Depth (ft)	Perpendicular Downstream Area (ft²)	Wetted Length (ft)	Filled Length (ft)	Perpendicular Upstream Depth (ft)	Perpendicular Upstream Area (ft²)	Total Volume (ac-ft)
0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.000
0.20	0.20	0.3	200.00	0.00	0.00	0.0	0.003
0.40	0.40	0.9	200.00	0.00	0.20	0.3	0.014
0.60	0.60	1.7	200.00	0.00	0.40	0.9	0.030
0.80	0.80	2.6	200.00	0.00	0.60	1.7	0.049
1.00	1.00	3.6	200.00	0.00	0.80	2.6	0.071
1.20	1.20	4.7	200.00	0.00	1.00	3.6	0.096
1.40	1.40	5.9	200.00	0.00	1.20	4.7	0.122
1.60	1.60	7.2	200.00	0.00	1.40	5.9	0.150
1.80	1.80	8.5	200.00	0.00	1.60	7.2	0.179
2.00	2.00	9.8	200.00	0.00	1.80	8.5	0.210
2.20	2.20	11.2	200.00	0.00	2.00	9.8	0.242
2.40	2.40	12.7	200.00	0.00	2.20	11.2	0.274
2.60	2.60	14.2	200.00	0.00	2.40	12.7	0.308
2.80	2.80	15.7	200.00	0.00	2.60	14.2	0.343
3.00	3.00	17.2	200.00	0.00	2.80	15.7	0.378
3.20	3.20	18.8	200.00	0.00	3.00	17.2	0.413
3.40	3.40	20.3	200.00	0.00	3.20	18.8	0.449
3.60	3.60	21.9	200.00	0.00	3.40	20.4	0.485
3.80	3.80	23.5	200.00	0.00	3.60	21.9	0.522
4.00	4.00	25.1	200.00	0.00	3.80	23.5	0.559
4.20	4.20	26.7	200.00	0.00	4.00	25.1	0.595
4.40	4.40	28.3	200.00	0.00	4.20	26.7	0.632
4.60	4.60	29.9	200.00	0.00	4.40	28.3	0.669
4.80	4.80	31.5	200.00	0.00	4.60	29.9	0.705
5.00	5.00	33.0	200.00	0.00	4.80	31.5	0.741
5.20	5.20	34.6	200.00	0.00	5.00	33.0	0.776
5.40	5.40	36.1	200.00	0.00	5.20	34.6	0.811
5.60	5.60	37.6	200.00	0.00	5.40	36.1	0.846
5.80	5.80	39.0	200.00	0.00	5.60	37.6	0.879
6.00	6.00	40.4	200.00	0.00	5.80	39.0	0.912

Subsection: Pipe Volume Label: Onsite Detention Basin

Elevation (ft)	Perpendicular Downstream Depth (ft)	Perpendicular Downstream Area (ft²)	Wetted Length (ft)	Filled Length (ft)	Perpendicular Upstream Depth (ft)	Perpendicular Upstream Area (ft²)	Total Volume (ac-ft)
6.20	6.20	41.8	200.00	0.00	6.00	40.4	0.944
6.40	6.40	43.1	200.00	0.00	6.20	41.8	0.975
6.60	6.60	44.4	200.00	0.00	6.40	43.1	1.004
6.80	6.80	45.5	200.00	0.00	6.60	44.4	1.032
7.00	7.00	46.6	200.00	0.00	6.80	45.5	1.058
7.20	7.20	47.6	200.00	0.00	7.00	46.6	1.082
7.40	7.40	48.5	200.00	0.00	7.20	47.6	1.104
7.60	7.60	49.3	200.00	0.00	7.40	48.6	1.124
7.80	7.80	49.9	200.00	0.00	7.60	49.3	1.140
8.00	8.00	50.3	200.00	0.00	7.80	49.9	1.151
8.20	8.00	50.3	200.00	200.00	8.00	50.3	1.154

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations				
Minimum (Headwater) 0.00 ft				
Increment (Headwater)	0.50 ft			
Maximum (Headwater)	8.21 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Stand Pipe	Riser - 1	Forward	TW	7.00	8.20
Orifice-Circular	Orifice - 1	Forward	TW	0.00	8.20
Rectangular Weir	Notch Weir	Forward	TW	1.75	8.20
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	0.00 ft
Orifice Diameter	1.8 in
Orifice Coefficient	0.600
Structure ID: Notch Weir Structure Type: Rectangular Wei	r
Number of Openings	1
Elevation	1.75 ft
Weir Length	0.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Riser - 1 Structure Type: Stand Pipe	
Number of Openings	1
Elevation	0.00 ft
Diameter	54.0 in
Orifice Area	15.9 ft ²
Orifice Coefficient	0.600
Weir Length	14.14 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
	0.000
Manning's n	0.000
	0.000
Manning's n Kev, Charged Riser Weir Submergence	
Kev, Charged Riser	0.000
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW	0.000 False True
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS C	0.000 False True
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW	0.000 False True
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS Convergence Tolerances	0.000 False True
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS C	0.000 False True
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS Convergence Tolerances	0.000 False True hannel Free Outfall
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS C Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance	0.000 False True hannel Free Outfall
Kev, Charged Riser Weir Submergence Orifice H to crest Structure ID: TW Structure Type: TW Setup, DS Ci Tailwater Type Convergence Tolerances Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	0.000 False True hannel Free Outfall 30 0.01 ft

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Convergence Tolerances	
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

·----

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.05	(N/A)	0.00
1.00	0.08	(N/A)	0.00
1.50	0.10	(N/A)	0.00
1.75	0.10	(N/A)	0.00
2.00	0.11	(N/A)	0.00
2.50	0.13	(N/A)	0.00
3.00	0.14	(N/A)	0.00
3.50	0.15	(N/A)	0.00
4.00	0.16	(N/A)	0.00
4.50	0.17	(N/A)	0.00
5.00	0.18	(N/A)	0.00
5.50	0.19	(N/A)	0.00
6.00	0.20	(N/A)	0.00
6.50	0.20	(N/A)	0.00
7.00	0.21	(N/A)	0.00
7.50	0.22	(N/A)	0.00
8.00	0.23	(N/A)	0.00
8.20	0.23	(N/A)	0.00

Computation Messages

Upstream HW &
DNstream TW < Inv.El
H =.43
H =.93
H =1.43
H =1.68
H =1.93
H =2.43
H =2.93
H =3.43
H =3.93
H =4.43
H =4.93
H =5.43
H =5.93
H =6.43
H =6.93

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

_____`

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages

H = 7.43

H = 7.93

H = 8.13

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = Notch Weir (Rectangular Weir)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
1.75	0.00	(N/A)	0.00
2.00	0.19	(N/A)	0.00
2.50	0.97	(N/A)	0.00
3.00	2.10	(N/A)	0.00
3.50	3.47	(N/A)	0.00
4.00	5.06	(N/A)	0.00
4.50	6.84	(N/A)	0.00
5.00	8.79	(N/A)	0.00
5.50	10.89	(N/A)	0.00
6.00	13.14	(N/A)	0.00
6.50	15.53	(N/A)	0.00
7.00	18.04	(N/A)	0.00
7.50	20.68	(N/A)	0.00
8.00	23.44	(N/A)	0.00
8.20	24.57	(N/A)	0.00

Computation Messages

HW & TW below Inv.El.=1.750 H=.00; Htw=.00; Qfree=.00; H=.25; Htw=.00; Qfree=.19; H=.75; Htw=.00; Qfree=.97; H=1.25; Htw=.00; Qfree=2.10; H=1.75; Htw=.00; Qfree=3.47;

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = Notch Weir (Rectangular Weir)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages

H=2.25; Htw=.00; Qfree=5.06; H=2.75; Htw=.00; Qfree=6.84; H=3.25; Htw=.00; Qfree=8.79; H=3.75; Htw=.00; Qfree=10.89; H=4.25; Htw=.00; Qfree=13.14; H=4.75; Htw=.00; Qfree=15.53; H=5.25; Htw=.00; Qfree=18.04; H=5.75; Htw=.00; Qfree=20.68; H=6.25; Htw=.00; Qfree=23.44; H=6.45; Htw=.00; Qfree=24.57;

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

_____`

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.00	(N/A)	0.00
1.00	0.00	(N/A)	0.00
1.50	0.00	(N/A)	0.00
1.75	0.00	(N/A)	0.00
2.00	0.00	(N/A)	0.00
2.50	0.00	(N/A)	0.00
3.00	0.00	(N/A)	0.00
3.50	0.00	(N/A)	0.00
4.00	0.00	(N/A)	0.00
4.50	0.00	(N/A)	0.00
5.00	0.00	(N/A)	0.00
5.50	0.00	(N/A)	0.00
6.00	0.00	(N/A)	0.00
6.50	0.00	(N/A)	0.00
7.00	202.53	(N/A)	0.00
7.50	209.64	(N/A)	0.00
8.00	216.51	(N/A)	0.00
8.20	219.20	(N/A)	0.00

Computation Messages

•		
E < E1=	7.000	

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Stand Pipe)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Computation Messages

Orifice: H =7.00; Riser orifice equation controlling.
Orifice: H =7.50; Riser orifice equation controlling.
Orifice: H =8.00; Riser orifice equation controlling.
Orifice: H =8.20; Riser orifice: H =8.20; Riser orifice equation controlling.

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
0.00	0.00	(N/A)	0.00
0.50	0.05	(N/A)	0.00
1.00	0.08	(N/A)	0.00
1.50	0.10	(N/A)	0.00
1.75	0.10	(N/A)	0.00
2.00	0.30	(N/A)	0.00
2.50	1.10	(N/A)	0.00
3.00	2.23	(N/A)	0.00
3.50	3.62	(N/A)	0.00
4.00	5.22	(N/A)	0.00
4.50	7.01	(N/A)	0.00
5.00	8.97	(N/A)	0.00
5.50	11.08	(N/A)	0.00
6.00	13.34	(N/A)	0.00
6.50	15.73	(N/A)	0.00
7.00	220.78	(N/A)	0.00
7.50	230.54	(N/A)	0.00
8.00	240.17	(N/A)	0.00
8.20	244.00	(N/A)	0.00

Contributing Structures

None Contributing Orifice - 1 Orifice - 1 Orifice - 1 Orifice - 1 + Notch Weir Riser - 1 + Orifice - 1 + Notch Weir Riser - 1 + Orifice - 1 + Notch Weir Riser - 1 + Orifice - 1 + Notch Weir Riser - 1 + Orifice - 1 + Notch Weir

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Onsite Detention Basin

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	0.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	3.000 min

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + 0 (ft³/s)
0.00	0.00	0.000	0	0.00	0.00	0.00
0.50	0.05	0.022	0	0.00	0.05	10.80
1.00	0.08	0.071	0	0.00	0.08	34.67
1.50	0.10	0.136	0	0.00	0.10	65.87
1.75	0.10	0.172	0	0.00	0.10	83.29
2.00	0.30	0.210	0	0.00	0.30	101.88
2.50	1.10	0.291	0	0.00	1.10	142.08
3.00	2.23	0.378	0	0.00	2.23	184.97
3.50	3.62	0.467	0	0.00	3.62	229.76
4.00	5.22	0.559	0	0.00	5.22	275.59
4.50	7.01	0.650	0	0.00	7.01	321.74
5.00	8.97	0.741	0	0.00	8.97	367.53
5.50	11.08	0.829	0	0.00	11.08	412.13
6.00	13.34	0.912	0	0.00	13.34	454.87
6.50	15.73	0.989	0	0.00	15.73	494.61
7.00	220.78	1.058	0	0.00	220.78	732.95
7.50	230.54	1.114	0	0.00	230.54	769.77
8.00	240.17	1.151	0	0.00	240.17	797.19
8.20	244.00	1.154	0	0.00	244.00	802.50

Subsection: Level Pool Pond Routing Summary

Label: Onsite Detention Basin (IN)

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	0.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	3.000 min		
Flow (Peak In) Flow (Peak Outlet)	5.26 ft³/s 4.42 ft³/s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)	795.000 min 810.000 min
Elevation (Water Surface, Peak)	3.75 ft		
Volume (Peak)	0.513 ac-ft	<u></u>	
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	2.885 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	2.676 ac-ft		
Volume (Retained)	0.208 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

Peak Discharge	4.42 ft ³ /s
Time to Peak	810.000 min
Hydrograph Volume	2.676 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
3.000	0.00	0.00	0.00	0.00	0.00
18.000	0.01	0.01	0.01	0.01	0.01
33.000	0.02	0.02	0.02	0.02	0.03
48.000	0.03	0.03	0.03	0.04	0.04
63.000	0.04	0.04	0.04	0.05	0.05
78.000	0.05	0.05	0.05	0.05	0.05
93.000	0.05	0.05	0.06	0.06	0.06
108.000	0.06	0.06	0.06	0.06	0.06
123.000	0.06	0.06	0.06	0.06	0.06
138.000	0.06	0.06	0.06	0.06	0.06
153.000	0.06	0.07	0.07	0.07	0.07
168.000	0.07	0.07	0.07	0.07	0.07
183.000	0.07	0.07	0.07	0.07	0.07
198.000	0.07	0.08	0.08	0.08	0.08
213.000	0.08	0.08	0.08	0.08	0.08
228.000	0.08	0.08	0.08	0.08	0.08
243.000	0.08	0.08	0.08	0.08	0.08
258.000	0.08	0.09	0.09	0.09	0.09
273.000	0.09	0.09	0.09	0.09	0.09
288.000	0.09	0.09	0.09	0.09	0.09
303.000	0.10	0.10	0.10	0.10	0.10
318.000	0.10	0.10	0.10	0.10	0.10
333.000	0.10	0.10	0.10	0.10	0.10
348.000	0.10	0.11	0.13	0.14	0.16
363.000	0.17	0.19	0.21	0.22	0.24
378.000	0.25	0.27	0.29	0.30	0.34
393.000	0.37	0.40	0.43	0.45	0.48
408.000	0.51	0.54	0.56	0.59	0.61
423.000	0.64	0.66	0.68	0.71	0.73
438.000	0.75	0.78	0.80	0.82	0.84
453.000	0.87	0.89	0.92	0.94	0.96
468.000	0.99	1.02	1.04	1.07	1.10
483.000	1.14	1.18	1.22	1.26	1.30
498.000	1.34	1.37	1.41	1.44	1.48
513.000	1.52	1.55	1.58	1.62	1.65
528.000	1.69	1.72	1.75	1.79	1.83
543.000	1.87	1.90	1.94	1.98	2.02

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
558.000	2.06	2.10	2.14	2.18	2.22
573.000	2.26	2.31	2.35	2.39	2.44
588.000	2.48	2.53	2.57	2.60	2.61
603.000	2.62	2.62	2.63	2.62	2.61
618.000	2.58	2.56	2.54	2.53	2.53
633.000	2.53	2.53	2.54	2.54	2.56
648.000	2.58	2.60	2.62	2.64	2.66
663.000	2.67	2.68	2.70	2.71	2.72
678.000	2.72	2.73	2.74	2.74	2.74
693.000	2.74	2.73	2.73	2.72	2.72
708.000	2.71	2.71	2.70	2.71	2.73
723.000	2.76	2.79	2.82	2.86	2.91
738.000	2.96	3.02	3.07	3.12	3.17
753.000	3.23	3.29	3.34	3.39	3.45
768.000	3.51	3.56	3.62	3.68	3.75
783.000	3.83	3.91	3.98	4.05	4.12
798.000	4.20	4.28	4.35	4.40	4.42
813.000	4.42	4.42	4.42	4.41	4.37
828.000	4.33	4.28	4.24	4.21	4.18
843.000	4.17	4.15	4.13	4.12	4.12
858.000	4.12	4.11	4.11	4.11	4.11
873.000	4.10	4.10	4.10	4.10	4.09
888.000	4.08	4.08	4.07	4.06	4.05
903.000	4.04	4.02	4.01	4.00	3.98
918.000	3.96	3.94	3.92	3.90	3.86
933.000	3.82	3.79	3.75	3.71	3.67
948.000	3.62	3.59	3.55	3.50	3.41
963.000	3.31	3.21	3.12	3.02	2.89
978.000	2.76	2.63	2.51	2.40	2.28
993.000	2.18	2.09	2.01	1.92	1.84
1,008.000	1.76	1.69	1.62	1.56	1.50
1,023.000	1.45	1.40	1.35	1.31	1.27
1,038.000	1.24	1.21	1.18	1.15	1.12
1,053.000	1.10	1.08	1.07	1.05	1.03
1,068.000	1.02	1.00	0.98	0.97	0.95
1,083.000	0.94	0.92	0.90	0.89	0.88
1,098.000	0.86	0.85	0.84	0.82	0.81
1,113.000	0.79	0.78	0.77	0.75	0.74
1,128.000	0.72	0.70	0.69	0.67	0.66
1,143.000	0.65	0.63	0.62	0.61	0.60
1,158.000	0.60	0.59	0.59	0.58	0.58
1,173.000	0.57	0.57	0.56	0.56	0.55

Subsection: Pond Routed Hydrograph (total out)

Label: Onsite Detention Basin (OUT)

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

-					-1
Time	Flow	Flow	Flow	Flow	Flow
(min)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
1,188.000	0.54	0.53	0.52	0.51	0.51
1,203.000	0.50	0.49	0.49	0.48	0.48
1,218.000	0.47	0.47	0.47	0.46	0.46
1,233.000	0.46	0.46	0.45	0.45	0.45
1,248.000	0.44	0.44	0.43	0.43	0.42
1,263.000	0.42	0.42	0.41	0.41	0.41
1,278.000	0.40	0.40	0.40	0.39	0.39
1,293.000	0.39	0.39	0.39	0.39	0.38
1,308.000	0.38	0.38	0.38	0.37	0.37
1,323.000	0.37	0.37	0.37	0.37	0.37
1,338.000	0.37	0.37	0.36	0.36	0.36
1,353.000	0.36	0.35	0.35	0.35	0.34
1,368.000	0.34	0.34	0.33	0.33	0.33
1,383.000	0.33	0.32	0.32	0.32	0.32
1,398.000	0.31	0.31	0.31	0.31	0.31
1,413.000	0.31	0.31	0.30	0.30	0.30
1,428.000	0.30	0.30	0.30	0.30	0.29

Subsection: Pond Inflow Summary Label: Onsite Detention Basin (IN)

Summary for Hydrograph Addition at 'Onsite Detention Basin'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Unit Hydrograph (Onsite Runoff)

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (min)	Flow (Peak) (ft³/s)
Flow (From)	Unit Hydrograph (Onsite Runoff)	2.888	795.000	5.26
Flow (In)	Onsite Detention Basin	2.885	795.000	5.26

Subsection: Diverted Hydrograph

Label: Outlet-1

Peak Discharge 4.42 ft³/s
Time to Peak 810.000 min
Hydrograph Volume 2.676 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
3.000	0.00	0.00	0.00	0.00	0.00
18.000	0.01	0.01	0.01	0.01	0.01
33.000	0.02	0.02	0.02	0.02	0.03
48.000	0.03	0.03	0.03	0.04	0.04
63.000	0.04	0.04	0.04	0.05	0.05
78.000	0.05	0.05	0.05	0.05	0.05
93.000	0.05	0.05	0.06	0.06	0.06
108.000	0.06	0.06	0.06	0.06	0.06
123.000	0.06	0.06	0.06	0.06	0.06
138.000	0.06	0.06	0.06	0.06	0.06
153.000	0.06	0.07	0.07	0.07	0.07
168.000	0.07	0.07	0.07	0.07	0.07
183.000	0.07	0.07	0.07	0.07	0.07
198.000	0.07	0.08	0.08	0.08	0.08
213.000	0.08	0.08	0.08	0.08	0.08
228.000	0.08	0.08	0.08	0.08	0.08
243.000	0.08	0.08	0.08	0.08	0.08
258.000	0.08	0.09	0.09	0.09	0.09
273.000	0.09	0.09	0.09	0.09	0.09
288.000	0.09	0.09	0.09	0.09	0.09
303.000	0.10	0.10	0.10	0.10	0.10
318.000	0.10	0.10	0.10	0.10	0.10
333.000	0.10	0.10	0.10	0.10	0.10
348.000	0.10	0.11	0.13	0.14	0.16
363.000	0.17	0.19	0.21	0.22	0.24
378.000	0.25	0.27	0.29	0.30	0.34
393.000	0.37	0.40	0.43	0.45	0.48
408.000	0.51	0.54	0.56	0.59	0.61
423.000	0.64	0.66	0.68	0.71	0.73
438.000	0.75	0.78	0.80	0.82	0.84
453.000	0.87	0.89	0.92	0.94	0.96
468.000	0.99	1.02	1.04	1.07	1.10
483.000	1.14	1.18	1.22	1.26	1.30
498.000	1.34	1.37	1.41	1.44	1.48
513.000	1.52	1.55	1.58	1.62	1.65
528.000	1.69	1.72	1.75	1.79	1.83
543.000	1.87	1.90	1.94	1.98	2.02

Subsection: Diverted Hydrograph

Label: Outlet-1

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
558.000	2.06	2.10	2.14	2.18	2.22
573.000	2.26	2.31	2.35	2.39	2.44
588.000	2.48	2.53	2.57	2.60	2.61
603.000	2.62	2.62	2.63	2.62	2.61
618.000	2.58	2.56	2.54	2.53	2.53
633.000	2.53	2.53	2.54	2.54	2.56
648.000	2.58	2.60	2.62	2.64	2.66
663.000	2.67	2.68	2.70	2.71	2.72
678.000	2.72	2.73	2.74	2.74	2.74
693.000	2.74	2.73	2.73	2.72	2.72
708.000	2.71	2.71	2.70	2.71	2.73
723.000	2.76	2.79	2.82	2.86	2.91
738.000	2.96	3.02	3.07	3.12	3.17
753.000	3.23	3.29	3.34	3.39	3.45
768.000	3.51	3.56	3.62	3.68	3.75
783.000	3.83	3.91	3.98	4.05	4.12
798.000	4.20	4.28	4.35	4.40	4.42
813.000	4.42	4.42	4.42	4.41	4.37
828.000	4.33	4.28	4.24	4.21	4.18
843.000	4.17	4.15	4.13	4.12	4.12
858.000	4.12	4.11	4.11	4.11	4.11
873.000	4.10	4.10	4.10	4.10	4.09
888.000	4.08	4.08	4.07	4.06	4.05
903.000	4.04	4.02	4.01	4.00	3.98
918.000	3.96	3.94	3.92	3.90	3.86
933.000	3.82	3.79	3.75	3.71	3.67
948.000	3.62	3.59	3.55	3.50	3.41
963.000	3.31	3.21	3.12	3.02	2.89
978.000	2.76	2.63	2.51	2.40	2.28
993.000	2.18	2.09	2.01	1.92	1.84
1,008.000	1.76	1.69	1.62	1.56	1.50
1,023.000	1.45	1.40	1.35	1.31	1.27
1,038.000	1.24	1.21	1.18	1.15	1.12
1,053.000	1.10	1.08	1.07	1.05	1.03
1,068.000	1.02	1.00	0.98	0.97	0.95
1,083.000	0.94	0.92	0.90	0.89	0.88
1,098.000	0.86	0.85	0.84	0.82	0.81
1,113.000	0.79	0.78	0.77	0.75	0.74
1,128.000	0.72	0.70	0.69	0.67	0.66
1,143.000	0.65	0.63	0.62	0.61	0.60
1,158.000	0.60	0.59	0.59	0.58	0.58
1,173.000	0.57	0.57	0.56	0.56	0.55

Subsection: Diverted Hydrograph

Label: Outlet-1

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 3.000 min Time on left represents time for first value in each row.

	rance on fert represents time for mot value in cach form				
Time (min)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
1,188.000	0.54	0.53	0.52	0.51	0.51
1,203.000	0.50	0.49	0.49	0.48	0.48
1,218.000	0.47	0.47	0.47	0.46	0.46
1,233.000	0.46	0.46	0.45	0.45	0.45
1,248.000	0.44	0.44	0.43	0.43	0.42
1,263.000	0.42	0.42	0.41	0.41	0.41
1,278.000	0.40	0.40	0.40	0.39	0.39
1,293.000	0.39	0.39	0.39	0.39	0.38
1,308.000	0.38	0.38	0.38	0.37	0.37
1,323.000	0.37	0.37	0.37	0.37	0.37
1,338.000	0.37	0.37	0.36	0.36	0.36
1,353.000	0.36	0.35	0.35	0.35	0.34
1,368.000	0.34	0.34	0.33	0.33	0.33
1,383.000	0.33	0.32	0.32	0.32	0.32
1,398.000	0.31	0.31	0.31	0.31	0.31
1,413.000	0.31	0.31	0.30	0.30	0.30
1,428.000	0.30	0.30	0.30	0.30	0.29

Index

C Composite Outlet Structure - 1 (Composite Rating Curve)...24 Composite Outlet Structure - 1 (Individual Outlet Curves)...18, 19, 20, 21, 22, 23 Composite Outlet Structure - 1 (Outlet Input Data)...15, 16, 17 Μ Master Network Summary...3 0 Onsite Detention Basin (Elevation-Volume-Flow Table (Pond))...25 Onsite Detention Basin (IN) (Level Pool Pond Routing Summary)...26 Onsite Detention Basin (IN) (Pond Inflow Summary)...30 Onsite Detention Basin (OUT) (Pond Routed Hydrograph (total out))...27, 28, 29 Onsite Detention Basin (OUT) (Time vs. Elevation)...7, 8, 9 Onsite Detention Basin (Pipe Volume)...13, 14 Onsite Detention Basin (Time vs. Volume)...10, 11, 12 Outfall (POC) (Addition Summary)...6 Outlet-1 (Diverted Hydrograph)...31, 32, 33 U

Unit Hydrograph (Onsite Runoff) (Read Hydrograph)...4, 5

User Notifications...2

APPENDIX C: INLET CAPACITY CALCULATIONS

Worksheet for 2'x2' Grate Inlet in Sag (Largest runoff)

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.30 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Grate Width	2.00 ft	
Grate Length	2.0 ft	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Grate Type	P-50 mm (P-1 -7/8")	
Clogging	50.0 %	
Results		
Spread	12.9 ft	
Depth	3.1 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Open Grate Area	1.8 ft ²	
Active Grate Weir Length	4.0 ft	

Worksheet for 2'x2' Grate Inlet On Grade (Largest runoff)

Project Description		
Solve For	Efficiency	
Input Data		
Discharge	1.30 cfs	
Slope	0.020 ft/ft	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Roughness Coefficient	0.015	
Grate Width	2.00 ft	
Grate Length	2.0 ft	
Grate Type	P-50 mm (P-1 -7/8")	
Clogging	50.0 %	
Options Grate Flow Option	Exclude None	
Results		
Efficiency	61.24 %	
Intercepted Flow	0.80 cfs	
Bypass Flow	0.50 cfs	
Spread	6.8 ft	
Depth	1.6 in	
Flow Area	0.5 ft ²	
Gutter Depression	0.0 in	
Total Depression	0.0 in	
Velocity	2.80 ft/s	
Splash Over Velocity	5.66 ft/s	
Frontal Flow Factor	1.000	
Side Flow Factor	0.021	
Grate Flow Ratio	0.604	
Active Grate Length	1.0 ft	

Worksheet for 3' Curb Inlet (Largest runoff)

Project Description		
Solve For	Spread	
Input Data		
Discharge	1.00 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Curb Opening Length	3.0 ft	
Opening Height	0.8 ft	
Curb Throat Type	Horizontal	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Throat Incline Angle	90.00 degrees	
Results		
Spread	11.6 ft	
Depth	2.8 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	

Worksheet for 7' Curb Inlet (Largest runoff)

Project Description		
Solve For	Spread	
Input Data		
Discharge	2.10 cfs	
Gutter Width	0.00 ft	
Gutter Cross Slope	0.000 ft/ft	
Road Cross Slope	0.020 ft/ft	
Curb Opening Length	7.0 ft	
Opening Height	0.8 ft	
Curb Throat Type	Horizontal	
Local Depression	0.0 in	
Local Depression Width	0.0 in	
Throat Incline Angle	90.00 degrees	
Results		
Spread	10.8 ft	
Depth	2.6 in	
Gutter Depression	0.0 in	
Total Depression	0.0 in	