Darnell \& associates

TRANSPORTATION PLANNING \& TRAFFIC ENGINEERING

May 19, 2021
Joe Esposito
Estrada Land Planning
750 B Street suite 1620
San Diego, CA 92101
D\&A Ref. No: 201001
Subject: Chollas Creek Trail Crosswalk Analysis at Sunshine Berardini Field Park Crossing Federal Boulevard (PTS\# 669559).

Dear Mr. Esposito,
Darnell \& Associates Inc., has completed our review of the proposed crossing of Federal Boulevard at Sunshine Berardini Field Park for a project in the Chollas Creek Watershed generally located along the south side of Federal Boulevard between Home Avenue and Sunshine Berardini Field. The project includes the improvement of approximately 1,885 linear feet (LF) of stream bed and the construction of a 3,100 LF Class I multi-use pedestrian and bicycle trail (the Chollas Creek Trail).

Existing Conditions

A pedestrian crossing was evaluated across Federal Boulevard between the proposed trail on the south side and Sunshine Berardini Field Park on the north side at the driveway to the Sunshine Berdini Field, located approximately 600^{\prime} feet east of the Interstate 805 overcrossing and 200' feet east of the SR-94 westbound overcrossing ramp to I-805A copy of the Chollas Creek Trail and Revegetation Plans for the project is presented in Attachment A. Figure 1 is a Vicinity Map and Figure 2 presents the location of the proposed Chollas Creek Trail project from Home Avenue to the Sunshine Berardini Field Park. A copy of the Chollas Creek Trail Plans are presented in Attachment A showing the proposed Chollas Creek Trail Plans and the crossing of Federal Boulevard at Sunshine Berardini Field Park. The proposed crossing at Federal Boulevard is 3,200' feet east of the Home Avenue signalized intersection and 2,200’ feet west of the $47^{\text {th }}$ Street signalized intersection.

Darnell \& Associates, Inc. conducted site visits, collected speed surveys and daily traffic volumes on Federal Boulevard on Wednesday, November 4, 2020 at the proposed crossing location. Speed surveys found the $85^{\text {th }}$ percentile speeds of vehicles approaching the crossing on Federal Boulevard where the posted speed limit is 45 mph . The surveys found the following:

- Eastbound Federal Boulevard $=50$ miles per hour;
- Westbound Federal Boulevard $=44$ miles per hour.

The volume of traffic on Federal Boulevard was counted as 3,469 daily vehicles, with 2,449 vehicles going eastbound and 1,020 vehicles going westbound during the period of the speed survey. A copy of the speed surveys and traffic count sheets are presented in Attachment B. Federal Boulevard currently has one lane of travel in each direction and parking on both sides of the road, with a curb-to-curb width of 62 feet at the proposed Federal Boulevard at Sunshine Berardini Field Park. A center turn lane is provided on Federal Boulevard to serve the Sunshine Berardini Park driveway and developmental easterly to $47^{\text {th }}$ street.

In addition to the traffic data collected, Darnell \& Associates, Inc. researched the City of San Diego daily traffic counts and found historical 24-hour machine count data for April 2018 to be 5,570 daily vehicles and February 18, 2020 to be 4,356 daily vehicles.

FIGURE 1 - VICINITY MAP

FIGURE 2 - CHOLLAS CREEK FEDERAL BOULEVARD PROPOSED CROSSING LOCATION

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 4
D\&A reviewed SANDAG 2035 Traffic Forecasts for Federal Boulevard to identify the forecasted future daily traffic volumes to be 7,100 daily vehicles. Figure 3 presents the Year 2035 SANDAG Series 13 Traffic Forecasts. Based on this review, Darnell \& Associates, Inc. concluded that the existing daily traffic of 3,469 vehicles may be lower due to COVID-19 conditions that are occurring at this time with fewer vehicles on the roadways.

In addition to the speed surveys and daily traffic count data, we reviewed the proposed crossing location and the activities at the existing Sunshine Berardini Field Park driveway. The Sunshine Berardini Field Park has three (3) baseball fields and contact with the operators of the field identified softball on the fields typically is limited to the evenings during the week and on the weekends. However, due to Covid-19 the use of the baseball fields and remainder of the park is limited. Several observations found activities at the Sunshine Berardini Field Park driveway to be closed at this time with the gate to the park closed and locked.

Mid-Block Crossing Warrant Analysis

The City of San Diego 2015 Pedestrian Crosswalk Guidelines were developed to expand Council Policy 200-07 to improve pedestrian and safety and enhance street crossings. Excerpts of the City of San Diego 2015 Pedestrian Crosswalk Guidelines and Council Policy 200-07 are presented in Attachment C. The installation of the proposed trail crossing has been evaluated; based on the City- of San Diego Pedestrian Crosswalk Guidelines 2015 to determine whether the proposed crossing meets warrants and to discuss its potential design. The City of San Diego Guidelines identify uncontrolled and controlled crosswalk warrants to be used for implementation.

The San Diego Council Policy 200-07 outlines six (6) basic warrants that must be met in order for an uncontrolled crossing to be considered for a marked crosswalk. The basic warrants are stated as item a) and the results of the analysis for the project are stated as item b) as follows:

Basic Warrants

- Pedestrian Volume Warrant: (Warrant not met)
a) The requirement of 10 pedestrians or greater per hour,
b) There were only 4 pedestrians observed during the analysis period.
- Approach Speed Warrant: (Warrant not met)
a) The requirement for $85^{\text {th }}$ percentile speed must be equal to or lower than 40 mph ,
b) This requirement was not met, the measured $85^{\text {th }}$ percentile speed was 50 and 44 mph , which is higher than the 40 mph criteria.
- Nearest Controlled Crossing Warrant: (Warrant Met under Existing Conditions)
a) The requirement for the nearest crossing location is greater than 250 feet,
b) This requirement was met, the proposed crossing location on Federal Boulevard at the Sunshine Berardini Field Park driveway is more than 300 feet to the nearest controlled intersection of Home Avenue (3,200 feet) and $47^{\text {th }}$ Street (2,200 feet).
- Visibility Warrant: (Warrant not met)
a) The requirement is that motorist must have an unrestricted view of all pedestrians in the proposed crossing from a sight distance outlined in the Council Policy 200-07 of 360' feet for the posted 45 mph approach speed and 430^{\prime} feet for the observed 50 mph approach speed.

FIGURE 3 - SANDAG YEAR 2035 SERIES 13 TRAFFIC FORECASTS

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 6
b) This requirement was not met, the sight distance measured for the proposed crossing location on Federal Boulevard calculated 404' feet looking to the east and 423 ' feet looking to the west from the Sunshine Berardini Field Park driveway. Visibility in both directions is blocked by existing on-street parking. To meet the requirement would require existing on-street parking to be removed.

- Illumination Warrant: (Warrant not met)
a) The requirement that is the proposed crossing location must have existing lighting,
b) This requirement was not met. Therefore, the proposed crossing location is presently illuminated with a streetlight on the south side of Federal Boulevard and may require the addition of a street light on the north side of Federal Boulevard at the crossing.
- Accessibility Warrant: (Warrant not met)
a) The requirement is that the proposed crossing must be ADA accessible,
b) ADA Ramps are not proposed at this time as a part of the project. Therefore, ADA accessibility will not be provided.
c) This requirement was not met.

The San Diego Council Policy 200-07 outlines four (4) Point Warrants categories that must be met. Sixteen (16) points are required in order for an uncontrolled crossing to be considered for a marked crosswalk. A total of fourteen (14) points was identified listed on Table 1 and have been discussed below. Therefore the Basic Warrant is not met. The point warrants are as follows:

Point Warrants

T1.1a Pedestrian Volume Warrant

The requirements are:
Pedestrian Volume
10-25
Warrant Points
4
8
10

51+ 10

Points received 4.

T1.1b Latent Pedestrian Demand Warrant:

The requirements are:
(a) Proposed location is in commercial, mixed land use, or high-density residential area
(b) A pedestrian or shared use path is interrupted by restricted crossing.
(c) A pedestrian attractor/generator is directly adjacent to the proposed crosswalk as defined in the table footnotes.

Points received 4.

T1.2 General Condition Warrant:

(a) Nearest controlled crossing is greater than 300 feet from proposed crosswalk,
(b) The proposed crosswalk will position pedestrians to be better seen by motorist, but require parking removal,
(c) The proposed crosswalk will establish mid-block crossing between adjacent signalized intersection or will connect at a proposed pedestrian path,
(d) The proposed crosswalk is Located within $1 / 4$ mile of pedestrian attractors/generators as defined,
(e) There is no Bus Stop is located within 100 feet from the Sunshine Berardini Field Park driveway between Home Avenue and $47^{\text {th }}$ Street. There is an MTS Bus Route on Federal Boulevard.
(f) Other factors.

Points received 6.

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 7

T1.3 Time Gap Warrant: Average number of vehicular gaps per Five-Minute Period

Average number of vehicle gaps per Five-Minute period is as follows:
0-0.99
1-1.99
2-2.99
3-3.99
4-4.99
5-5.99
6 or over
Average gap time observed was 7.34 seconds
Points received 0.

Conclusion:

The City of San Diego Pedestrian Crosswalk Guidelines identifies Basic and Point Warrants to be used in the analysis. Table 1 presents the Based Warrants and Point Warrants sheet for the proposed crossing. Table 2 presents the results of the gap time analysis used in the warrant analysis using gap times to cross Federal Boulevard. Table 2 presents the City of San Diego Worksheet used for this analysis. The warrant worksheet Table 1 summarizes the Basic Warrants and the Point Warrants and shows the Basic Warrants are not met and the Point Warrants are also not satisfied at this time.

TABLE 1
Council Policy 200-07: Marked Crosswalk Evaluation at Uncontrolled Locations

Location: FEDERAIL BOULEVARD AT BERARDINI PARK	
TR\#:	Date: $12 / 07 / 2020$
Investigator: BILL E. DARNELL	Section: DARNELL \& ASSOCIATES

BASIC WARRANT		
Pedestrian Volume Warrant	4	
Latent Pedestrian Demand	N/A	
Approach Speed Warrant	$\mathrm{EB}=50$	
Visibility Warrant	ADEQUAATE	
Illumination Warrant	EXISTING	\checkmark
Nearest Controlled Crossing	>250	\checkmark
Accessibility Warrant	PROPOSED	\checkmark

Basic Warrant Met	
Basic Warrant Not Met	\checkmark

Point Warrant		14
T1.1a Pedestrian Volume Warrant		4
10-25	4	\checkmark
26-50	8	
51+	10	
T1.1b Latent Pedestrian Demand Warrant		4
(a) The proposed location is in a commercial, mixed land use, or high density residential area.	3	
(b) A pedestrian or shared use path is interrupted by a restricted crossing.	3	
(c) A pedestrian attracting land use is directly adjacent to the proposed crosswalk as defined in the attached notes.	4	\checkmark
T1.2 General Condition Warrant		6
(a) Nearest controlled crossing is greater than 300 feet from proposed crosswalk.	3	\checkmark
(b) Will position pedestrians to be better seen by motorists.	3	
(c) Will establish mid-block crossing between adjacent signalized intersections or will connect an existing pedestrian path.	3	
(d) Is located within $1 / 4$ mile of pedestrian attractors/generators as defined in the attached notes.	3	\checkmark
(e) Bus stop is located within 100 feet from the Berardini Park proposed crosswalk.	3	
(f) Other factors.	3	
T1.3 Gap Time Warrant		0
0-0.99	0	
1-1.99	1	
2-2.99	8	
3-3.99	10	
4-4.99	8	
5-5.99	1	
6 or over	0	\checkmark

Notes:
POSTED SPEED LIMIT FOR BOTH DIRECTIONS OF TRAFFIC IS 45 MPH
85TH IS 50 MPH FOR EASTBOUND AND 44MPH FOR WESTBOUND DIRECTIONS OF TRAFFIC (85TH TAKEN FROM SPEED SURVEY)
ADT FROM MACHINE COUNT 3,469
ONE TRAVEL LANE AND BIKE LANE IN EACH DIRECTION OF TRAFFIC
ACCESS TO/FFROM BERARDINI PARK IS LOCATED ADJACENT TO THE PROPOSED CROSSING P E DGA P =4 P M -5 A M

ADT	3,469
CROSSING DISTANCE	62^{\prime}

Point Warrant Met	
Point Warrant Not Met	\checkmark

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 9

Table 2 - Federal Boulevard at Sunshine Berardini Access			
Time	Observed Pedestrian Gaps		
	Duration Gaps Observed (seconds) (a)	Total (seconds)	Gaps/ 5 Min (b)
$4: 00 \mathrm{PM}$	$26,22,18,31$	107	6.9
$4: 05 \mathrm{PM}$	$17,39,26,36,18$	136	8.8
$4: 10 \mathrm{PM}$	$28,18,27,17,16$	106	6.8
$4: 15 \mathrm{PM}$	$18,36,42,28,32$	156	10.1
$4: 20 \mathrm{PM}$	$16,36,27,18,20$	117	7.5
$4: 25 \mathrm{PM}$	$36,27,42,19$	124	8.0
$4: 30 \mathrm{PM}$	$50,18,20,43$	131	8.5
$4: 35 \mathrm{PM}$	$28,27,62,18$	135	8.7
$4: 40 \mathrm{PM}$	$21,18,41,36,16$	137	8.5
$4: 45 \mathrm{PM}$	$24,26,27,42,18$	109	7.0
$4: 50 \mathrm{PM}$	$28,28,36,17$	$32,36,16,24$	$\mathbf{1 0 8}$
$4: 55 \mathrm{PM}$		$\mathbf{1 , 3 6 6}$ seconds	$\mathbf{7 . 3 4}$ seconds

Notes:
a) Gaps in traffic that exceed 15.5 seconds $(62 \mathrm{ft} \div 4 \mathrm{ft} / \mathrm{sec})$
b) Average number of gaps per five-minute period (total Gap Time \div Available Gap/Time Period)
c) During the observation period a total of 4 pedestrians was observed. The Chollas Creek Trail designers provided an estate of 10 or more pedestrians using the Chollas Creek Trail could cross the road.

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 10
The final step in our analysis evaluated the sight distance for pedestrians that would cross Federal Boulevard and vehicles exiting the Sunshine Berardini Field Park driveway was evaluated per AASHTO Guidelines. The visibility of pedestrians was examined, based on corner sight distance for the 50 mile per hour ($85^{\text {th }}$ percentile) speed eastbound on Federal Boulevard and westbound 45 miles per hour ($85^{\text {th }}$ percentile) speed on Federal Boulevard. Review of the City of San Diego's Pedestrian Crosswalk Guidelines concludes that in the future, when traffic volumes return to typical conditions and traffic volumes return to previous levels, and the Sunshine Berardini Field Park is allowed to return to normal operating conditions, the warrants for uncontrolled and controlled crossing should be reevaluated.

An uncontrolled crossing is considered a location where the crossing is not marked and/or signed and the pedestrian, cyclist and/or horse riders cannot give a physical signal in order to stop for them to cross. Controlled crossings are ones that pedestrians, cyclist, and or horse riders have the power to activate controls to warn motorist of the crossing.

Corner Sight Distance

Corner sight distance was calculated using AASHTO Corner Sight Distance criteria to identify the need to restrict parking on Federal Boulevard approaching the driveway to accommodate vehicles to enter Federal Boulevard and pedestrians to cross. Table 3 presents the AASHTO Corner Sight Distance calculations for the Sunshine Berardini Field Park Driveway and are shown graphically on

Table 3 - Corner Sight Distance Requirements Per AASHTO for the Sunshine Berardini Field Park Driveway							
Location	$\underbrace{\text { Speed }-V^{(\mathrm{a})}}_{(\mathrm{mph})}$	Reaction Time - t (seconds)	$\begin{aligned} & \text { Deceleration } \\ & \text { Rate - a } \\ & \left(\mathrm{ft} / \mathrm{sec}^{2}\right) \end{aligned}$	Grade (\%)	$\begin{aligned} & \text { Reaction } \\ & \text { Distance }-\mathrm{d}_{1} \\ & \text { (feet) } \end{aligned}$	Braking Distance d 2 (feet)	Required Vehicle Corner Sight Distance $\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)$ (feet) (a)
FEDERAL BOULEVARD							
(Eastbound Traffic)	50 (PS)	2.5	11.2	N/A	183.8'	239.6'	423'
(Westbound Traffic)	45 (DS)	2.5	11.2	-6.5\%	165.4	239.2'	404'

Review of Table 3 shows 423 feet of corner sight distance is required looking west at eastbound traffic from the Sunshine Berardini Field Park Driveway. Looking east from the Sunshine Berardini Field Park Driveway at westbound traffic there is 404 feet of corner sight distance required. Figure 4 was then prepared to show the corner sight distance and location of recommended red curbs to accommodate vehicles entering Federal Boulevard from the park driveway. Review of Figure 4 identifies the need for 240 feet of red curb and/or "No Stopping" restrictions looking east and 171 feet of red curb looking west on the northside of Federal Boulevard .

FIGURE 4 - CORNER SIGHT DISTANCE AND RED CURB FOR THE SUNSHINE BERARDINI FIELD PARK DRIVEWAY

Joe Esposito
Estrada Land Planning
May 20, 2021
Page 12
The recommended red curb is only shown along the north side of Federal Boulevard.
Table 4 was then prepared to show the recommended red curb/ no stopping restrictions and estimated parking spaces to be removed to accommodate adequate visibility of potential pedestrians in the area of the Sunshine Berardini Field Park driveway.

Table 4-Parking Restrictions Recommended for the Sunshine Berardini Field Park Driveway			
Location	Corner Sight Distance	"Red Curb/No Stopping" Restrictions	Estimated Parking Spaces to be Removed(a)
North side of Federal Boulevard			
Looking East	404 ' Feet	240 Feet	7
Looking West	423 'Feet	171 Feet	$\underline{8}$

(a) Based on 20 feet of red curb for each vehicle.

Review of Table 4 identifies the loss of seven (7) parking spaces east of the driveway and eight (8) parking spaces west of the driveway.

The line of sight for the project driveway was measured from a point in the center of the driveway ten (10') feet from the curb to the center of the approaching travel lane. To identify the recommended red curb restriction, the line of sight for the driveway was reviewed to determine the recommended distance. The line of sight is eight (8 ') feet from the curb line.

To identify the recommended red curb for the pedestrian crossing the measurement was taken from the curb line of the crossing to accommodate the visibility of the pedestrian to see approaching vehicles and the vehicle to see the pedestrian entering the crossing.

Summary

- To accommodate vehicles exiting the Sunshine Berardini Field Park driveway red curb on the north side is recommended as follows:

West of driveway 171 feet
East of driveway 240 feet

- The installation of a marked Pedestrian Crossing of Federal Boulevard as shown on Figure 2 is not recommended at this time, however red curb markings and/or "No Stopping" restrictions on the north side of Federal Boulevard is recommended for vehicles exiting the Sunshine Berardini Field Park driveway.
- Table 4 identifies the Corner Sight Distance requirements for the Sunshine Berardini Field Park driveway and shows an estimated existing 15 parking spaces along the north side of Federal Blvd would need to be removed.
- In the future, when traffic volumes return to more typical levels and activities at the Sunshine Berardini Field Park are resumed, the proposed crossing should be re-evaluated to determine if a marked and signed crossing including the applicable warning devices such as a Pedestrian Hybrid Beacon should be considered.

Sincerely,
DARNELL \& ASSOCIATES,

Bill E. Darnell, P.E.

RCE: 22338

BED/jam
~\$1001 - Revised Federal Blvd-Chollas Creek Trail Crosswalk Analysis-05-19-21.doc
May 20, 2021
(Date)

Attachment A

> Chollas Creek Trail and Revegetation Plans

GENERAL NOTES (see additional notes this sheet)

MONUMENT PRESERVATION CERTIFICATION

$\overline{\text { NMME }} \xlongequal{\text { DATE }}$

Comerer Recoop 4, or recore of suivery,

$\overline{\text { NMME }} \quad$ P.LS. / RCE No No XXXXXX

MPROVEMENT PLANS FOR

EDERAL BLVD CHOLLAS CREEK

VCINITY
GRADING + GEOTECHNICAL SPECIFICATIONS Al

为

 \qquad

$$
\begin{aligned}
& \overline{\text { PE OE }} \\
& \hline
\end{aligned}
$$

DECLARATION OF RESPONSIBLE CHARGE

OWNERS/APPLICANTS	
CITY OF SAN DIEGO STORMWATER DIVISION (858) 541-4336 (858) 541-4336	CALTRANS 4050 TAYLOR STREE (619) 688-668
REFERENCE DRAWINGS	

SITE ADDRESS

TOPOGRAPHY SOURCE

BENCHMARK
 ASSESSORS PARCEL NUMBER $\xlongequal[N / A]{\text { ASS }}$

ADDITIONAL NOTES

GRADING QUANTITIES

WORK TO BE DONE

TANDARD SPECIFICATIONS DOCUMENT NO.	Oescapron
Pworoita-01	Stin

 Escrapton

Ppoposed
шерогиенis.
Naviell smove chaw
prop structure
graviry elock Retanng wall
${ }_{\substack{\text { TRALL } \\ 0.34 \\ \text { Hecownt }}}$
${ }^{\text {ac segun }}$
sumer recocaton

EXISTING IMProvements

ITEM
SToan D oan

Stopar opan
fre HipRent

witr man
Jowt reench as cono. electrac, can

SHEET INDEX

MAY 19, 2021

TTLE SHEET FOR:

FEDERAL BLVD CHOLLAS CREEK
RESTORATION AND TRALL PROJECT

CITY OF SAN DIEGO, CALIFORNIADEVELOPMENT SERVCES DEPARTMENTSHEET 1 OF 22 SHEETS				Pracer no
For cir	tenerer			v.r.
Oiscerion	${ }_{\text {er }}^{\text {BXX }}$		OATE	
vils				
				$X X X X X-1-D$

PROJECT NARRATIVE

 TN WM VNTT.

KEY MAP $\left(p^{\prime}=X^{\prime}\right)$

ONSTRUCTION BMP GENERAL NOTES

\qquad $=$

GRADING NOTES

GROUND WATER DISCHARGE NOTES

MINIMUM POST-CONSTRUCTION MAINTENANCE PLAN

PROJECT PROPONENT AND CONSULTANTS

$$
\begin{aligned}
& \text { praucer omers: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prafict proponent: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proucter fanwete }
\end{aligned}
$$

TRAFFIC CONTROL NOTE

SHEET RESERVED FOR CEQA/ENVIRONMENTAL NOTES

500-Yef rloodilin	
$100-$ YEAR FlLooplan	--
regulatory flooonay	-- - Ј
DATA SOURCE: NATIONAL FLOC	

PANEL 06073C19016 EFF. 05/16/2012

(in FEET)
R.C.E No. 45005 EXP. 03-31-2022

OAIE

PROPOSED CHANNEL CROSS SECTION STA $32+98.97$
LOOKNG UPSTREAM, $1 "=10^{\prime} \quad$ U.S. OF DROP

PROPOSED CHANNEL CROSS SECTION STA $32+92.97$

$$
\text { LOOKNG UPSTREAM, } 1^{1 "}=10^{\prime} \quad \text { D.S. OF DROP }
$$

PROPOSED CHANNEL CROSS SECTION STA $32+67.00$
LOOKING UPSTREAM, 1 " $=10^{\prime}$

PROPOSED CHANNEL CROSS SECTION STA $30+31.27$
LOOKING UPSTREAM, $1 "=10^{\circ}$

PROPOSED CHANNEL CROSS SECTION STA $37+18.00$
LOOKING UPSTREAM, $1^{\prime \prime}=10^{\circ}$

PROPOSED CHANNEL CROSS SECTION STA $36+52.00$
LOOKING UPSTREAM, $1 "=10^{\prime}$

PROPOSED CHANNEL CROSS SECTION STA $35+13.00$ LOOKING UPSTREAM, $1^{\prime \prime}=10^{\prime}$

PROPOSED CHANNEL CROSS SECTION STA $34+02.00$ LOOKING UPSTREAM, $1^{\prime \prime}=10^{\prime}$

TORY R. WALKER

FEDERAL BLVD. CROSS SECTION STA. $34+30$ LOOKING EAST NO SCAIE

PROPOSED CHANNEL CROSS SECTION STA $37+43.98$

FEDERAL BLVD. CROSS SECTION @ BERARDINI PARK* LOOKING EAST No SCALE
*TRAIL JOINS EXIST. SIDEWALK JUST WEST OF PARK

PROPOSED CHANNEL CROSS SECTION STA $42+61.38$
LOOKING UPSTREAM, $1^{\prime \prime}=10^{\prime}$

PROPOSED CHANNEL CROSS SECTION STA $41+56$
LOOKING UPSTREAM, $1^{\prime \prime}=10^{\prime}$

PETALE PLAN FOR:
MAY 20, 202

trees										
symbol	botanical name	common name	Abbrev.	SIZE	COMments	CATEGORY	HT. . SP.	MATURE HT. x SP	detall	
\cdots	Existing tree to reman		-	-		.		-		
	platanus racemosa	CALIForna stamore	plarac	15 caL	FULL, VIGOROUS, STANDARD FORM, SINGLE TRUNK	riparan	${ }_{6} 6 \cdot 7 \times 2 \cdot 3$	${ }^{0} 0^{\circ} \times 30^{\circ}$	sol-101	
	auercus agrifolia	coast live oak	oueagr	15 GAL	full, vigorous, stanoard form	riparan	${ }_{6: 88} \times 3.4{ }^{4}$	${ }^{30} \times 40^{\prime}$	sol-101	
SHRUBS										
symbol	botanical name	COMMON NAME	ABBREV.	SIIE	COMments	CATEGORY	$\begin{aligned} & \text { MATURE } \\ & \text { HT. } \times \text { SPP. } \end{aligned}$	$\begin{gathered} \text { SPACING } \\ (0 . C .) \end{gathered}$	$\begin{gathered} \text { PLANTS/ } \\ \hline \text { ACRE } \end{gathered}$	DET
\bigcirc	ARtemesia caliornica	Coastal sage brush	Art cal	1 Gal	FULL, VIGOROUS, Stanoard form	transitoval	${ }_{3 \times 7}$	${ }_{6}$	250	sol-102
©	diplacus aurantacus	StCCkr Monker flower	DIPAUR	16 Al	FULL, VIGOROUS, STANOARD Form	transitional	${ }_{3 \times 3}$	3	300	S0L-102
(0)	ELYMUS Conoensatus	GIANT WLLD RYE	Elycon	1 6al	FULL. VGGOROUS, STANOARD Form	transtional	${ }^{3} \times{ }^{3}$	-	${ }_{150}$	s0L-102
-	OENETHERA LLETA SSP Hookerl	EVENNG PRIMROSE	oenele	1 Gal	FULL, VIGGROUS, STANOARO FORM	transtional	${ }^{1+\times 2}$	${ }^{3}$	300	S0L-102
(1)	Salviafalana	white sage	SALAPI	1 Gal	FULL, VIGOROUS, Stanoard form	transtional	${ }^{3} \times 4^{4}$	${ }^{6}$	200	s0L-102
(4)	Salva melufera	black sage	Salmel	1 6al	FULL, VIGOROUS, Standaro form	transitional	${ }^{3 \times} \times{ }^{3}$	${ }^{6}$	200	s0L-102

maximum applee water allowance (mawa)

Toatil mawn $=1,541,252$ gallons per vear
HYDROSEED MIX (SR-94 SLOPES SEED MIX) (1.64 ACRES)

SYMBOL	BOTANICAL	COMMON NAME	CATEGORY	${ }_{\text {PERMIITYITON* }}$	pounds ACRE
	ACMSPON ©LABER	DEERWEED	RIPARAN		
	Artemesia californca	CALIFORNA AAGEERUSH	RPPARL	$30 / 60$	
		fasciclee tarvee	RPPA		2
	-	Amornh mil	Rpan		
	Hrlum coner ilito	Lonostem Golone rairow	RPPARAN	TBO	${ }_{1.5}$
	ESCHSHCHOZIA CALLFORNCA	CALLFORNA POPPY	RPPARAN	98180	2
	OMA MENZIESII	COASTAL LOLLEENUUSH	RIPARAMN	$18 / 40$	
	Lastunacairon	Gobricos			
	MELIUCA MMEEREEECTA	SMALL-FLOWEREDEDELLC GRASS	${ }_{\text {R }}^{\text {RPAARARAN }}$	${ }_{\substack{90187 \\ 907}}^{967}$	1
	SISYRNCHUM BELLUM	${ }^{\text {biUEEEEVED GRASS }}$	RIPARRAN	98180	0.5
	SAlVIA APANA	WHITE SAGE	RIPARARN	$88 / 30$	
	SALVAMELIFERA	Btacksabe	RPaARA	${ }^{865} 50$	2
		${ }^{\text {PuRPLINTANEDLEGRASS }}$	${ }_{\text {Reparan }}^{\text {RPPARAN }}$	${ }_{\substack{90175 \\ 98175}}$	
	VULPAAMCROSTACHYS"	SMALL FESCUE	RIPARAAN	${ }_{90170}$	6

sYmbol	DESCRIPTION	REQUIREMENTS	DETAIL
,	construct asphal tranl	see cinl drawngs	-
$\square / 7$	CONSTRUCT DECOMPOSED GRANITE AREA	sEE civl dramings	.
-	construct curb and gutter	see inl drawngs	-
	BARK MULCH SHREDDED (IN ALL PLANTING AREAS		-
- - -	Root tarrier	24" DEPTH - INSTALL AT PAVING EDGE PER PLAN; SEE SPECIAL PROVISIONS	sol-106
\cdots	fence	36" HIGH 'WOODCRETE' FENCE RECOMMENDATION, PER PLAN	-
-	demountable post		som-16

min. tree separation distance

IMPROVEMENT	MIN. DISTANCE TO STREET TREE
Traffic signal, stop sicn	20 FEET
UNDERGROUND UTILITY LINES (EXCEPT SEWER)	5 Feet
sewer lines	10 FEET
ABOVE GROUND UTLITY STRUCTURES (TRANSFORMERS, HYPRANTS, UTLITY POLES, ET	10 FEET
drvewars	10 FEET
INTERSECTIONS (INTERSECTING	25 FEET

CHOLLAS CREEK NORTH PLANTING MIX (0.74 ACRES)

SHRUBS											
SYMBoL	botanical name	common name	Abbrev.	sIze	comments		CATEGORY	MATURE HT. .xS	SPACING (O.C.)	PLANTS/ ACRE	Detall
	Artemesia callornca	coastal Lage brush	ART CAL	$\begin{gathered} \text { D.40 OR } \\ \text { Sose } \\ \text { Ropics } \end{gathered}$	full, vigorous, standaro form		transitonal	${ }_{3} \times{ }^{\prime}$	${ }_{6}$	${ }_{250}$	sol-102
	dplacus aurantacus	Stickr monker flower	dip Aur	${ }_{\text {R }}^{\substack{\text { Rose } \\ \text { Pots }}}$	FULL, VIGOROUS, Standaro form		transtional	${ }_{3} \times 3 \times$	${ }^{3}$	300	sol-102
	Elymus condensatus	giant wld rye	Elycon		Fuli, vigorous, standaro form		transtional	${ }^{3} \times 3^{\prime}$	${ }^{4}$	${ }_{150}$	SDL-102
	Oenethera eleta ssp hookeri	Evenng Primrose	oenele	${ }_{\substack{\text { Rose } \\ \text { pors }}}$	Ful, vigorous, standarp form		transtional	${ }^{1+\times 2}$	${ }^{3}$	300	S0L-102
	sallitaplana	White Sage	salapl	${ }_{\text {R }}^{\substack{\text { RoSE } \\ \text { pots }}}$	FULL, VIGorous, standaro form		transitonal	$3^{3} \times 4^{4}$	${ }^{6}$	200	sol-102
	Salva mellifera	black sage	SALMEL		fuli, VIGorous, Stanaro form		transitional	$3^{3} \times 3^{\prime \prime}$	${ }^{6}$	200	sol-102
	StIP PuCLHRA	Purple needlegrass	stripu		FULL, VIGoruus, standarb form		transtional	${ }_{3} \times 2$	0.25	700	SDL-102
	HYDROSEED MIX										
	botanical name	Common name	CATEGORY		PURITYI GERMINATION*	POUNDSI ACRE					
	ACMSPON GABER	DEERWEEE	RIparan								
	ARTEMSSACALLFORNCA	Caltiorna AGEERUSH	$\frac{\text { Rrparan }}{\text { RPRARAN }}$		${ }_{\substack{30,60 \\ 25 / 65}}$	${ }_{2}^{2}$					
	ENCELLA CALL ORRNCA	CALIFRSNA ENCLIA			${ }_{30}^{20 / 45}$	2					
	ERROOOVM MASCCCOLATUM	Calliorna muckneat	$\frac{\mathrm{R}}{\mathrm{R} P \text { PRARAN }}$			¢ 1.5					
	ESCHSCHOLZACACLIFORNCA	CALIEORNA Pop PY			${ }_{98}^{9880}$	2					
	ISOCOMA MENLIESII	COASTAL GOLOENBUSH	RIPARAAN		18140 $98 / 95$ 98	${ }_{2}^{2}$					
	LUPINS Bicolor	MINATURE LUPNE	${ }_{\text {R R1PARAN }} \mathrm{R}$		98185	1					
	MELCA AMPEREECTA	SMALL-LIWWREED MELC GRASS			${ }_{\substack{90167 \\ 90880}}$	1					
	Sistrinchium belum	Buek Yed grass	$\frac{\text { Reparan }}{\text { RPAPAMAN }}$		98880 $88 / 30$	${ }^{0.5}$					
	SAllva	${ }^{\text {Black }}$ SAGE	RRPARARAN		${ }_{85}^{8150}$	2					
			RIPARIAN		${ }_{\substack{90175 \\ 98 \\ \hline 175}}$	${ }_{8}^{8}$					
	VULPAAMCRostachrs**	SWALL FESCUE									
	-THIS MAY INCLUDE VARR. MCROS			RTo							

(A) SECTION @ STA. $38+50$

(B) SECTION @ STA. $27+50$

(C) SECTION AT BERARDINI FIELD ENTRY

PLANS FOR THE CONSTRUCTION OF CHOLLAS CREEK TRAIL AND REVEGETATION PLANTING SECTIONS

CONSULTANT			sece. .o.	CITY Of SAN IEGGOOCALIEORNA PUBLIC WORKS DEPARTMENTSHEET 18 OF 18 SHEETS					
				FOR CITY ENGINEER PRINT DCE NAME		DसाE RCGH			
					${ }^{\text {BY }}$	Apporveio	DAAE TIU		
				ORIGINAL	${ }_{\text {El }}$				
									Csas coomple
ESMADA	ada Land Planning					隹			18-D

Attachment B

> Speed Surveys
> Daily Traffic Volumes

SPEED

Federal Blvd Bet. Home Ave \& 47th St

East Bound

Uume	$\leqslant 15$	15-19	20-24	25.29	30.34	35-39	$40-44$	45-49	50-54	55-59	60-64	$65-69$	70 t	Total
00:00 AM	0	0	0	0	0	1	5	8						
01:00	0	0	0	0	0	3	3	3	3	$\frac{0}{0}$	1	0	0	17
02:00	0	0	0	0	0	3	4	3	2	0	0	0	0	12
03:00	0	0	1	0	1	0	4	5	3	1	1	0	0	12
04:00	0	0	0	0	0	2	1	9	3	1	0	0	0	16
05:00	0	0	1	1	1	8	22	18	5	3	1	0	0	16
06:00	0	0	0	0	4	13	31	26	11	4	0	0	0	60
07:00	0	0	1	1	4	21	33	32	8	$\frac{2}{2}$	0	0		89
08:00	0	0	1	1	3	10	28	32	14	1			0	102
09:00	0	1	1	1	7	16	33	25	8	2	0	0	0	90
10:00	3	0	0	4	10	20			8	2	0	0	0	94
11:00	0	0	0	3	4	20	38	28	12	3	0	0	0	118
12:00 PM	0	0		3	4	12	54	26	20	3	0	0	0	122
13:00	0	0	0	1	7	18	51	56	24	1	1	0	0	159
14:00	0	1	1	1	11	36	61	48	16	4	1	1	0	180
15:00	0	0	0	1	8	47	71	62	16	6	1	0	0	213
16:00	0	0	0	4	12	25	99	101	25	4	2	0	0	272
17:00	0	0	1	0	6	26	80	100	36	7	2	0	0	258
18:00	0	0	0	2	3	29	92	75	22	4	1	0	0	228
19:00	0	0	0	0	3	18	44	39	14	2	2	0	0	122
20:00	0	0	0	2	2	17	38	24	2	2	0	1	0	88
21:00	0	0	0	0	2	11	19	19	4	0	0	0	0	55
22:00	0	1	0	0	2	7	22	17	4	1	1	0	0	55
23:00	0	0	0	1	2	5	17	18	0	0	1	0	0	44
Totals	0	$\frac{0}{3}$	0	0	0	7	7	7	4	1	1	0	0	27
\% of Totals	0\%	0\%	,	33	92	355	357	781	258	互	16	3		2499
	0\%	0\%	0\%	1\%	4\%	14\%	35\%	32\%	11\%	2\%	1\%	0\%		100\%

AM Volumes	3	1	5	11	34	109	256	215	91	2		-		
\% AM	0\%	0\%	0\%	0\%	1\%	4\%	10\%	9\%	4\%	1\%	0\%			748
AM Peak Hour	10:00	09:00	03:00	10:00	10:00	07:60	11:\%	07:00	11:00	06:0	0\%			31\%
Volume	3	1	1	4	10	21	54	32	20	4	1			11:00
PM Volumes	0	2	2	12	58	246	601	566	167	32	13			
\% PM		0\%	0\%	0\%	2\%	10\%	25\%	23\%	7\%	1\%	1\%	0\%		
PM Peak Hour		14:00	13:00	15:00	15:00	34:00	15:00	15:00	16:00	16:00	15:00	13.00		
Volume		1	1	4	12	47	99	101	36	7	2	,		15:00
Directional Peak Periods All Speeds			AM 7-9			NOON 12-2			PM 4-6			Off Peak Volumes		
			Volume$192$$\longleftrightarrow$		$\begin{gathered} \% \\ 8 \% \end{gathered}$	Volume 339	\longrightarrow		Volume 486	\longleftrightarrow	$\begin{gathered} \% \\ 20 \% \end{gathered}$	Volume 1432	\longleftrightarrow	$\begin{gathered} \% \\ 58 \% \end{gathered}$

Street Name	Direction	Percentiles					
		15th	50th	Average	85th	95th	ADT
Federal Blvd	East Bound	38	44	44	50	54	2449
Federal Blvd	West Bound	31	38	38	44	48	1020

Day：Wednesday
Date：11／4／2020

$\begin{gathered} \text { \%6S } \\ \% \end{gathered}$	n	$\begin{array}{r} 59 \\ \text { уш } \\ \hline \end{array}$		9－6	ュu		て－2I	$\underset{\partial u}{L}$		6－2		spəads IIV spoliad yead ןeuo！jวana		
6 6 ¢		I	2	8	LE	601	LII	SL	$\downarrow \varepsilon$	LI	\downarrow	τ	I	amnon
00：ST		OO：EI	OO：SI	00：91	00：92	OQ：ST	00：st	00： pI	OS边	OO：GT	OO：EI	OO： p	00：st	anoh yeed Wd
\％99		\％0	\％ 0	\％	\％S	\％81	\％zz	\％ε I	\％s	\％I	\％0	\％	\％0	Wd \％
ODEz	0	2	£I	¢	08t	659	092	Ot	ter	暏	－	9	z	samijon wd
8 CT			โ	\checkmark	てz	¢	ZL	67	92	IT	5	乙	ε	วunjon
00：0t				00：90	DO：TI	$00: \angle 0$	OPiTL	00：60	OSSOI	00：90	00：50	00：90	00：01	」noh Yead WV
ε			\％0	\％	\％E	\％	\％01	\％L	\％ε	$\%$ \％	\％I	\％0	\％0	WV\％
6917	0	0	ε	12	26	6 Ec	LSE	Ctr	SII	ES	$\angle 2$	5	s	saumjon WV

[^0]| time | <15 | 15－19 | $20-24$ | 25－29 | 30－34 | 35－39 | 40－44 | 45.49 | 50－54 | 55.59 | 60－64 | 65－69 | $20+$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00：00 AM | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 9 | | | | | | |
| 01：00 | 0 | 0 | 0 | 0 | 3 | 4 | 4 | 3 | 3 | 0 | 1 | 0 | 0 | 21 17 |
| 02：00 | 0 | 0 | 1 | 0 | 1 | 7 | 4 | 3 | 2 | 0 | 0 | 0 | 0 | 17 |
| 03：00 | 0 | 1 | 1 | 4 | 1 | 2 | 5 | 5 | 3 | 1 | 1 | 0 | 0 | 18 |
| 04：00 | 0 | 0 | 1 | 1 | 1 | 5 | 5 | 10 | 3 | 1 | 1 | 0 | 0 | 24 |
| 05：00 | 1 | 0 | 5 | 4 | 5 | 20 | 26 | 20 | 5 | $\frac{1}{3}$ | 0 | 0 | 0 | 27 |
| 06：00 | 0 | 2 | 2 | 11 | 18 | 33 | 36 | 28 | | 3 | 1 | 0 | 0 | 90 |
| 07：00 | 0 | 0 | 5 | 3 | 16 | 36 | 48 | 43 | 11 | 4 | 0 | 0 | 0 | 145 |
| 08：00 | 0 | 0 | 4 | 6 | 17 | 23 | 46 | 43 | 9 | 2 | 0 | 0 | 0 | 162 |
| 10：00 | 3 | 0 | 4 | 9 | 26 | | 54 | 28 | 8 | 2 | 0 | 0 | 0 | 167 |
| 11：00 | 0 | 0 | 1 | | 15 | 38 | 50 | 31 | 14 | 3 | 0 | 0 | 0 | 178 |
| 12：00 PM | 0 | 0 | 0 | 5 | | 29 | 72 | 27 | 22 | 3 | 0 | 0 | 0 | 176 |
| 13：00 | 0 | 0 | 4 | 11 | 18 | 41 | 70 | 64 | 24 | 1 | 1 | 0 | 0 | 224 |
| 14：00 | 0 | 1 | 1 | 11 | 23 | 50 | 92 | 51 | 16 | 4 | 1 | 1 | 0 | 253 |
| 15：00 | 1 | 1 | 1 | 2 | 34 | 75 | 85 | 64 | 17 | 7 | 1 | 0 | 0 | 287 |
| 16：00 | 0 | 1 | 1 | 5 | 23 | 50 | 117 | 109 | 26 | 4 | 2 | 0 | 0 | 339 |
| 17：00 | 0 | 1 | 1 | 7 | 16 | 52 | 93 | 109 | 37 | 8 | 2 | 0 | 0 | 326 |
| 18：00 | | 0 | 3 | 4 | 14 | 53 | 116 | 85 | 25 | 4 | 1 | 0 | 0 | 305 |
| 19：00 | 0 | 1 | 3 | 5 | 12 | 42 | 65 | 52 | 16 | 2 | 2 | 0 | 0 | 200 |
| 20：00 | | 0 | 0 | 3 | 5 | 27 | 47 | 32 | 4 | 2 | 0 | 1 | 0 | 121 |
| 21：00 | 1 | 0 | 0 | 2 | 9 | 21 | 22 | 24 | 4 | 0 | 0 | 0 | 0 | 82 |
| 22：00 | 0 | 1 | 1 | 0 | 5 | 11 | 27 | 19 | 6 | 1 | 1 | 0 | 0 | 73 |
| 23：00 | 0 | 1 | 0 | 2 | 4 | 9 | 18 | 21 | 0 | 0 | 1 | 0 | 0 | 56 |
| Uuals | $\frac{1}{7}$ | 0 | 0 | 2 | 1 | 9 | 8 | 7 | 5 | 1 | 1 | 0 | 0 | 34 |
| \％of Totals | 0\％ | 12 | 42 | － 201 | 279 | 687 | 1117 | 876 | 277 | 55 | 26 | 8 | | 5×6 |
| | | 0% | 1\％ | 3\％ | 8\％ | 20\％ | 32\％ | 25\％ | 8\％ | 2\％ | 0\％ | 0\％ | | 100\％ |

VOLUME

Federal Blvd Bet. Home Ave \& 47th St

Day: Wednesday
Date: 11/4/2020

	DAILY TOTALS	NB		SB			EB WB	WB		Total	
			0		0		2,449	1,020			$3{ }^{\text {a }}$
AMr Peak four		21:45		0915							
-sarcturlume		159		π		2008	PM Ps Volume		16×80 280		2 c \%
eparbrizatan		0.770		0,621		0782	Pkils Fecter		0.972	0.850	085
		192		114		306	3.6Yafume		486	145	$\frac{0.302}{831}$
7-9Pesk: Hour		07:50		07:00		Ofio0	4-6 Peak four		15350	17.0	
77 9 9 Pk Volume		109		60		182	${ }^{6} 6$ Pk Volume		280	1.00	$4{ }^{5} 50$
Pheitr Eator	Prin	0.779	4	0.833		0.843	PheHr Factor		0.772	0.770	

Attachment C

Excerpts from:

> City of San Diego Transportation and Storm Water Street Design Manual March 2017 Edition
> City of San Diego Pedestrian Crosswalk Guidelines 2015
> Council policy 200-07
> Caltrans Highway Design Manual Seventh Edition
> AASHTO "A Policy of Geometric Design of Highways and Streets
> California Manual on Uniform Traffic Control Devices 2014 Edition
$>$ City of San Diego Transportation and Storm Water Street Design Manual March 2017 Edition

THE CITY OF SAN DIEGO Transportation \& Storm Water Design Manuals

Street Design Manual

March 2017 Edition

hampered. The spacing of intersections or crossing points is also an important element in the creation of a supportive pedestrian environment.

This section describes how intersections can be made more pedestrian-friendly by reducing crossing distances and improving visibility for both pedestrians and drivers. Detailed discussion of specific crossing designs and elements is included in Section 2.5, "Pedestrian Crossings."

2.4.1 Issues to Consider

The following are general issues that should be considered for intersection design:

- Pedestrians should be made as visible as possible because multiple conflict points for vehicles and pedestrians exist at intersections.
- Intersections that minimize pedestrain crossing distance and crossing time reduce the exposure to traffic and pedestrian/vehicular conflicts.
- Drivers traveling at a slower rate of speed have more time to process and react to pedestrian conflicts at intersections.

2.4.2 ADA Accessibility

Pedestrian facilities (including curb ramps, signal equipment, etc.) must comply with ADA standards and California Title 24 regulations and take into account the entire range of disability categories.

2.4.3 New Development versus Retrofit

- Prior to improvements to an existing intersection, utilities (e.g., lighting, electrical, and storm drains) should be identified and either incorporated into the design or relocated.
- New intersections provide the opportunity to clarify new forms of traffic control that may create a more pedestrian-friendly setting.

2.4.4 Relation to Transit

The location and design of transit stops at intersections should consider the access needs of adjacent land uses that generate pedestrian demand for transit as well as pedestrian and traffic safety issues at the intersection.

Pedestrjan Crossings

One of the most effective means of turning an important corridor into a community "spine" or "seam" rather than a community "divider" is providing for safe street crossings. Guidelines for installation of marked crosswalks at uncontrolled intersections and mid-block crossings are contained in Council Policy 200-07, "Marked Crosswalk Criteria at Uncontrolled Locations".

2.5.1 Issues to Consider

The following are general issues that should be considered for pedestrian crossings, including residential street crossings and mid-block crosswalks:

Pedestrian and Accessibility Design

- The width of the street, the geometry of the intersection, the timing of signalization, and the frequency of crossing opportunities all play important roles in achieving a pedestrian-friendly environment.
- Crossing opportunities should be provided at regular and convenient intervals.
- Marked crosswalks are useful in channelizing pedestrian crossing activity at specified locations.
- Marked crosswalks identify appropriate crossing locations for pedestrians and alert drivers to the possible presence of pedestrians.
- The use of marked crosswalks is generally considered appropriate at signalized intersections where pedestrian activity occurs.
- Street width and traffic speed can be mitigated with the use of sidewalk pop-outs.
- Some pedestrians may become overconfident or be less aware of vehicles when crossing in a marked crosswalk; therefore, marked crosswalks should not be used indiscriminately.

2.5.2 Accessibility

Appropriate curb ramps must be provided at all pedestrian crossings and island passageways.

2.5.3 Relation to Transit

All transit stops require that pedestrians be able to cross the street safely and within proximity to the stop.

2.5.4 Guidelines

The following guidelines should be followed for pedestrian crossings:

1. The width of all crosswalks shall be a minimum of 10 feet wide or per dimensions specified by the ADA and California Title 24 regulations. Unless small-scale intersection conditions dictate otherwise, widths shall be increased where there is greater pedestrian activity.
2. Adequate lighting at the levels specified in Chapter 4, "Street Lighting", should be present.
3. The installation of crosswalks shall conform to Council Policy 200-07 and in accordance with CA MUTCD.
4. Marked crosswalks should be provided at all signalized intersections where pedestrian crossing is allowed.
5. Curb ramps shall be provided at all crosswalks. If a raised median extends into the crosswalk, the median nose should be relocated out of the crosswalk or an island passageway with truncated domes must be provided through the median.

2.5.5 Residential Street Crossings

2.5.5.1 Issues to consider

- Enhanced pedestrian crossings in residential neighborhoods are a key component of pedestrian-oriented street design and lead to both improved pedestrian safety and the livability of the neighborhood.
- Residential street crossings are often combined with traffic-calming measures that are designed to maintain low vehicle speeds, such as raised crosswalks, chicanes, and gateway narrowings (see Chapter 3, "Traffic Calming").
- Enhanced pedestrian crossings in residential neighborhoods may not be used if traffic volumes are low enough that pedestrians are comfortable crossing at any location.

2.5.5.2 Guidelines

- Enhanced pedestrian crossing measures should be considered in residential neighborhoods where a demonstrated crossing demand exists.
- On residential streets that experience excessive vehicle speeds, enhanced pedestrian crossings should be combined with traffic-calming measures such as pop-outs.

2.5.6 Mid-Block Crosswalks

2.5.6.1 Issues to consider

- Mid-block crosswalks provide convenient crossing locations for pedestrians when other crossing opportunities are distant or where there is a presence of concentrated mid-block pedestrian crossing demand.
- Guildelines for installation of mid-block crossings are contained in the Council Policy 200-07, "Marked Crosswalk Criteria at Uncontrolled Locations."

2.5.6.2 Guidelines

1. Crosswalks at uncontrolled intersections and mid-block crosswalks shall be installed in accordance with Council Policy 200-07.
2. Mid-block crosswalks shall be well illuminated (refer to Chapter 4, "Street Lighting"),
3. A curb ramp shall be provided at each end of the crosswalk.
4. Curb extensions may be considered at the crosswalk to enhance pedestrian crossing visibility and reduce crossing distance.
5. If mid-block crosswalks are signalized, accessible pedestrian signals and devices shall be installed.
6. On streets that experience excessive vehicle speeds, enhanced pedestrian crossings should be combined with traffic calming measures such as raised crosswalks or curb extensions.

Pedestrian and Accessibility Design

Island passageways in wide or busy streets improve safety for pedestrians and vehicles. They are defined as areas within an intersection or between lanes of traffic where pedestrians may safely walk until vehicular traffic clears, allowing them to cross a street. Another benefit to pedestrians is that it can significantly reduce delay in crossing unsignalized intersections because pedestrians need only search for vehicles in one direction at a time.

2.6.1 Issues to Consider

In general, island passageways work best on wider streets with long pedestrian crossing times and exposure to vehicular traffic or on streets with speeds higher than 35 mph .

2.6.2 Accessibility

Island passageways are particularly useful for slower pedestrians such as the very young, the elderly, or those with mobility disabilities. Where it is not possible to include ramps and waiting pads that meet accessibility requirements waiting areas should be at-grade with the roadway (channels).

2.6.3 New Development versus Retrofit

Island passageways may be installed at intersections or mid-block locations deemed appropriate through engineering studies. They should be considered from the outset of design for intersections that are either complex, irregular in shape, excessively wide, or in areas where children and the elderly are expected to cross frequently.

2.6.4 Relation to Transit

The use of island passageways should be considered where transit is "running" with the street ROW, particularly in station areas.

2.6.5 Guidelines

The following guidelines should be followed for island passageways:

1. Island passageways with truncated domes shall be designed per the City of San Diego Standard Drawings.
2. Pedestrian island passageways should be well illuminated.

Sight biciancer

More often than not, sight distance is discussed only from the standpoint of the driver, not the pedestrian. This is of particular concern at crosswalk locations where parked cars, utility poles, street furnishings, or landscapes can obstruct the line of sight for pedestrians.

2.7.1 Issues to Consider

Streets that support pedestrian movements allow for the placement of elements such as trees and medians with landscaping. The presence of such elements creates a slower speed environment that is more conducive to pedestrian travel. These elements shall be placed in such a way that adequate sight distance is provided for all users of the public ROW.

All pedestrian crossing facilities in the City shall take into consideration Council Policy 200-07, "Marked Crosswalk Criteria at Uncontrolled Locations."

2.7.2 Relation to Current Standards and Practices

- AASHTO Green Book recommends a 90-degree angle of roadways whenever possible.
- The CalTrans Highway Design Manual defines stopping sight distance requirements based on the approaching speed of vehicles (Section 201.3). These standards range from 125 feet for speeds of 20 mph to 360 feet for speeds of 45 mph on flat terrain.

2.7.3 Guidelines

The following guidelines should be followed for sight distance:

1. Parking restrictions near crosswalks should be considered to remove potential obstructions to the pedestrian's line of sight, particularly for young children and those in wheelchairs.
2. When street furnishings or other objects that obstruct view cannot be relocated, curb extension or other treatments should be considered.

2.8. Sidewalks for Overpasses, Underpasses, and Highway On/Off Ramps

Access on an overpass across a highway is often along a narrow sidewalk where the pedestrian is against a wall or guardrail and is highly exposed and vulnerable to speeding traffic. The unappealing environment of underpasses is often exacerbated by poor lighting and obscured sightlines. Pedestrian access across on- and off-ramps can also be difficult because drivers are preoccupied with making the transition between the highway and the street network.

The overpass discussion is applicable to all bridges with pedestrian access, and the overpass and underpass discussions are applicable to grade-separated railroad crossings.

2.8.1 Overpasses and Underpasses

2.8.1.1 Issues to Consider

Overpasses and underpasses are required to be accessible. Pedestrian ramps or elevators may be incorporated as part of the access elements. Pedestrian ramps may require a considerable amount of land for installation and elevators may have potential security and maintenance issues.
> City of San Diego Pedestrian Crosswalk Guidelines 2015

City of San Diego Pedestrian Crosswalk Guidelines 2015

Prepared for:

City of San Diego

Prepared by:
Chen ${ }^{\text {*RYAN }}$

2. CROSSWALK WARRANTS AND TREATMENT GUIDELINES

yellow for marking crosswalks in school areas is mandated by the California Vehicle Code and the California Manual on Uniform Traffic Control Devices (CA MUTCD). The risk model results validate the conclusions of previous studies and recommend an engineering warrant approach to the installation of all marked crosswalks.

Locations where pedestrian restrictions have been placed to prevent pedestrians from crossing are identified in the risk model as having a higher propensity for pedestrian collisions. These results highlight the need for pedestrians to be educated on the high risk of injury from crossing at locations where drivers are not expecting pedestrians.

The following variables are associated with a decrease in pedestrian risk: presence of pedestrian warning signage, presence of pedestrian signal heads, population levels, and employment levels.

Locations where pedestrian warning signage was present in advance of the crosswalks showed lower pedestrian risk. This finding validates the need to maintain at least the minimum advance warning signage that supplements marked crossings following the standards in the CA MUTCD. When a location is controlled with a traffic signal and has a pedestrian signal head, pedestrian risk is lower; however, vehicle turning movements may impact pedestrian risk at these locations and turning movements should be closely evaluated when determining signal phasing and turning restrictions. Population and employment levels were evaluated based on census tract data. This analysis showed that high population and employment density locations had lower pedestrian risk near the study locations.

In addition to the pedestrian risk model analysis, an isolated variable analysis was conducted which looked at each variable individually without the impacts of all other variables. Through this analysis, the presence of a bus stop was found to be associated with an increase in pedestrian risk. This variable has been included as a factor to be considered in the marked crosswalk warrants.

The remainder of this chapter presents methods for determining whether a marked crosswalk is warranted at a proposed uncontrolled pedestrian crossing location, as well as any additional treatments that may be required with the installation of a marked crosswalk. Pedestrian crossing treatment toolboxes for both uncontrolled and controlled crossings are also provided in this section.

Uncontrolled Crosswalk Warrants and Implementation

This section presents guidance for assessing uncontrolled intersections and mid-block locations for potential installation of marked crosswalks and additional pedestrian safety treatments.

This warrant system builds on the warrant system in Council Policy 200-07, and incorporates findings from the pedestrian risk model. This warrant system is more flexible and also includes new factors to improve alignment with regional smart growth goals, complete streets

2. CROSSWALK WARRANTS AND TREATMENT GUIDELINES

principles, and community members' overall desire to make streets and roadways more walkable. It elevates the status of pedestrians to be more in balance with vehicles, bicycles, and other modes of transportation. It is expected to result in more proposed marked crosswalk locations meeting the warrants. The warrant system also provides a comprehensive list of treatments that can improve safety at marked crosswalk locations and provide an enhanced walking environment across the city.

Engineering judgment should be used to apply these guidelines or adjust them to fit individual field site conditions. These guidelines are not intended to be a substitute for engineering knowledge, experience or judgment.

Overview of Evaluation Process

This report proposes a warrant system (Basic Warrants and Point Warrants) to assess the installation of marked crosswalks at uncontrolled crossing locations. The warrants and treatment evaluation are described below.

Basic Warrants - Requirements contained in each of the six (6) Basic Warrants (pedestrian volume or latent pedestrian demand, approach speed, distance to nearest controlled crossing, visibility, illumination, and accessibility) must be met in order for a currently uncontrolled location to be considered for the installation of a marked crosswalk.

Point Warrant - If the requirements contained in each of the Basic Warrants are met, the uncontrolled location is then evaluated using the Point Warrants. The Point Warrants have separate categories, with 38 possible points available. An uncontrolled location needs 16 points or more to qualify for the installation of a marked crosswalk.

Additional Treatments - Before a marked crosswalk can be approved, additional crossing treatments need to be installed. Table 2-3 identifies categories for crossing treatments that that are based on thresholds considering vehicle volumes, vehicle speeds, and crossing distances. Table 2-4 lists the crossing treatments for each category.

Inputs to Evaluation of Uncontrolled Crossing Locations

The following data inputs are required to evaluate an uncontrolled location for installation of a marked crosswalk:

- Peak Hour Pedestrian Volumes or Latent Pedestrian Demand
- 85th Percentile Speed
- Vehicular Approach Visibility
- Presence of Lighting
- Accessibility
- Nearest Controlled Crossing Distance
- Surrounding Land Uses
- Presence of Bus Stop
- Additional Extenuating Factors

Basic Warrants

In order for a proposed uncontrolled location to qualify for a marked crosswalk and supplemental treatments, a location must meet each of the following Basic Warrants.

1. Pedestrian Volume Warrant

Pedestrian volumes must be equal to or greater than ten (10) pedestrians per hour during the peak pedestrian hour. Children under 13, elderly over 64 years and/or disabled persons count as 1.5 pedestrians. Alternatively, this warrant can be satisfied using Latent Pedestrian Demand if conditions (a), (b), or (c) under Table 2-2, 2-2.1b are met.
2. Approach Speed Warrant

The $85^{\text {th }}$ percentile approach speed must be equal to or lower than 40 MPH . This warrant does not apply when a pedestrian hybrid beacon or a pedestrian traffic signal will be installed.
3. Nearest Controlled Crossing

The proposed location must be further than 250 feet from the nearest controlled crossing location (measured from the nearest edge of the proposed marked crosswalk to the closest edge of the controlled crossing).
4. Visibility Warrant

The motorist must have an unrestricted view of all pedestrians at the proposed location for the distance required by the following table (stopping sight distance is to be interpolated when $85^{\text {th }}$ percentile speed is between 5 mph increments):

$85^{\text {th }}$ Percentile Specd (MPHi)	Stopping Stsht Distande (feet)
25	150
30	200
35	250
40	300

Source: Caltrans Highway Design Manual, Table 201.1(March 7, 2014)

5. Illumination Warrant

The proposed location must have existing lighting.
6. Accessibility Warrant

The proposed location must have existing accessibility to disabled pedestrians or have accessibility improvements programmed.

2. CROSSWALK WARRANIS AND TREATMENT GUIDELINES

Point Warrants

The Point Warrant has a total possible score of 38 points. As stated above, to qualify for installation of a marked crosswalk, a location must meet each of the Basic Warrants and score a minimum of 16 points in the Point Warrants. A summary of each of the Point Warrants and the allocation of points is presented in Table 2-2. A discussion of each of the Point Warrant variables follows the table.

Table 2-2: Point Warrants
2.2.1. Pedestrian Volume Warrant

Number of Pedestrians (Peak Hour)	Points	Total Available Points
10-25	4	
26-50	8	10
51+	10	
262,10) Latent Pedestrian Demand Wairant (in lfeu of Pedestrian Volume Warrant)		
Condition	Points	Total Available Points
(a) The proposed crosswalk is in a commercial, mixed land use, or high density residential area.	3	
(b) A pedestrian or shared use path is interrupted by a restricted crossing.	3	10
(c) A pedestrian attractor/generator is directly adjacent to the proposed crosswalk as defined in the explanatory notes below.	4	
2-2.2 General Condition Warrant		
Condition	Points	Total Available Points
(a) The nearest controlled crossing is greater than 300 feet from the proposed crosswalk.	3	18
(b) The proposed crosswalk will position pedestrians to be better seen by motorists.	3	
(c) The proposed crosswalk will establish a mid-block crossing between adjacent signalized intersections or it will connect an existing pedestrian path.	3	
(d) The proposed crosswalk is located within $1 / 4$ mile of pedestrian attractors/generators as defined in the explanatory notes below.	3	
(e) An existing bus stop is located within 100 feet of the proposed crosswalk.	3	
(f) Other factors.	3	

Table 2-2: Point Warrants (continued)

Average Number of Vehicular Gaps per 5-Minute Period	Points	Total Available Points
0-0.99	0	
1-1.99	1	
2-2.99	8	
3-3.99	10	10
4-4.99	8	
5-5.99	1	
6 or over	0	
Total Available Points		38

Table 2-2 Explanatory Notes:

2-2.1a Pedestrian Volume Warrant

The Pedestrian Volume Warrant assigns point values based on pedestrian crossing volumes at the proposed crosswalk. Children under 13, elderly over 64 years and/or disabled persons count as 1.5 pedestrians.

2-2.1b Latent Pedestrian Demand Warrant (in lieu of Pedestrian Volume Warrant)

The Latent Pedestrian Demand Warrant may be used in lieu of the Pedestrian Volume Warrant.

2-2.2 General Condition Warrant

The General Condition Warrant presents six (6) unique categories. A location can score either zero (0) or three (3) points for each unique category, making a total 18 possible points available. The general conditions include the following:
(a) The nearest controlled crossing is greater than 300 feet from the proposed crosswalk.

The distance should be measured from the proposed location of the crosswalk to the nearest controlled intersection, i.e. stop sign, traffic signal, etc.
(b) The proposed crosswalk will position pedestrians to be better seen by motorists.

This condition should be considered at locations where one leg of the intersection provides better sight distance than the other legs.
(c) The proposed crosswalk will establish a mid-block crossing between adjacent signalized intersections. This warrant refers to a condition where there is a high pedestrian attractor/generator nearby, and adequate crossing can be provided that could help channelize a recognized heavy flow of mid-block pedestrians.
(d) The proposed crosswalk is located within $1 / 4$ mile of the following pedestrian attractors/generators as defined below:

- International Border Crossing
- Major Multi-Modal Transit Centers (>10,000 boardings per day)
- Transit Stops (>1,000boardings per day)
- Elementary/Middle/ High Schools
- Universities and Colleges
- Neighborhood Civic Facilities (Libraries, Post Office \& Religious Facilities)

2. CROSSWALK WARRANTS AND TREATMENT GUIDELINES

- Neighborhood and Community Retail
- Pedestrian Intensive Beaches
- Parks \& Recreation (excludes non-useable open space)
- Mixed Land Uses (housing near employment and/or commercial)
(e) A bus stop is located within 100 feet of the proposed crosswalk.

This warrant is applicable if there is a bus stop within 100 -feet of the proposed crosswalk.
(f) Other factors.

Other factors allow for extenuating circumstances not covered in the proposed warrants. This is to be evaluated using engineering judgment.

2-2.3 Gap Time Warrant

Gap time is the time needed for a pedestrian to cross the travelled lanes of a roadway at an average walking speed without the need for a driver to yield. The number of usable gaps (or gaps that exceed the minimum time needed to cross) are counted during the peak vehicular hour and averaged per five-minute period.

Crossing Treatments

If the proposed crossing location meets the criteria set by both the Basic and Point Warrants, the next step is to evaluate the most appropriate crossing treatment(s) to be installed with the marked crosswalk. Table 2-3 provides thresholds for determining whether additional treatments are required prior to installing a marked crosswalk. The thresholds are based on vehicle volumes, vehicle speeds, and pedestrian crossing distance at the proposed location. Location types are divided into categories A, B, C and D, and are used to determine the appropriate treatment for the proposed location.

Table 2-3: Crossing Treatment Thresholds for Uncontrolled Marked Crosswalks if Warrants are Met

Crossins thitance ${ }^{3}$	Rordway ADII (vehides per day)								
	<1,500	1,501-5,000		5,001-12,000		12,001-15,000		> 15,000	
$<40^{\prime}$	A	B		B		C		C	D^{1}
40' to 52'	A	B		C		C	D^{1}		
> 52'	A	B	$\mathbf{C l}^{1}$	c	D^{1}				

1. For streets with more than one lane at an approach or posted speed limit 30 mph or greater.
2. Crossing distance can be measured to a pedestrian refuge island if one is present.

Source: City of San Diego (February, 2015)

Crossing Treatments

Table 2-4 presents treatment requirements for the categories shown in Table 2-3. As new devices or treatments are proven, they may be considered in lieu of these treatments, with the City Engineer's approval.

2. CROSSWALK WARRANTS AND TREATMENT GUIDELINES

Table 2-4: Crossing Treatments for Uncontrolled Marked Crosswalks if Warrants are Met

category	Grossing Treatments
A	The following is required: - (W11-2) Pedestrian Warning Signage with the corresponding (W16-7P) arrow plaque
B	At least one of the following is required: - (R1-6) State Law - Yield to Pedestrian sign if median is present - Rectangular Rapid Flashing Beacons (RRFBs) - Raised crosswalk or other traffic calming treatments if the City of San Diego's Traffic Calming Guidelines are met
C	At least two of the following are required: - Radar Speed Feedback Signs - Striping changes such as narrower lanes, painted medians, road diets, or other speed reducing treatments. - RRFBs - Staggered crosswalks and pedestrian refuge island - Horizontal deflection traffic calming treatments ${ }^{1}$ if the City of San Diego's Traffic Calming Guidelines are met
D	A Traffic Signal is required if the CA MUTCD warrants are met and it is recommended by a traffic engineering study. Otherwise at least one of the following is required: - Pedestrian Hybrid Beacon if the CA MUTCD warrants are met - Horizontal deflection traffic calming treatment ${ }^{1}$ with RRFBs if the City of San Diego's Traffic Calming Guidelines are met
1. Horizontal deflection treatments include, but are not limited to: roundabouts, pedestrian refuge islands, and pedestrian bulb-outs.	

Source: City of San Diego (February, 2015)

Continental Crosswalks

The continental crosswalk, which is a high visibility crosswalk, is the City's standard crosswalk design for all marked crosswalk locations. Continental crosswalks have been shown to be more visible to approaching motorists and have been shown to improve yielding behavior. Continental crosswalks, along with the treatments identified in Table 2-4 will enhance the pedestrian environment at marked crosswalks.

Table 2-5 provides a toolbox of crossing treatments including a graphic example and definition of the treatments.

2. CROSSWALK WARRANTS AND TREATMENT GUIDELINES

Table 2-5: Uncontrolled Intersection and Mid-Block Crossing Treatments

Ireatment	Description	When to USE
(Pedestrian Hybrid Beacon) Photo: Mike Cynecki (2009), from pedbikesafe.org	A pedestrian hybrid beacon is a special type of beacon used to warn and control traffic at an unsignalized, marked crossing location. Pedestrian hybrid beacons should only be used in conjunction with a marked crosswalk. The alternating red flashers allow vehicles to stop and then proceed if the pedestrian has already passed them, reducing motorist delay. Reference CA MUTCD Chapter 4F	Best suited for uncontrolled crossing locations on multi-lane, higher speed or volume roadways where there is a need to provide pedestrian crossings without excessive delay to motor vehicles. Examples of these locations include school crossings, access to parks and senior centers, or neighborhood street crossings. Applicable Crossing Treatment Categories: D
Rectangular Rapid Flash Beacon (RRFB)	The Rectangular Rapid Flash Beacon (RRFB) is a pedestrian crossing warning sign supplemented with flashing beacons that provide a highvisibility strobe-like warning to drivers when activated. Pedestrians activate the beacon through pushbuttons or other detectors, which then begin flashing the lights, alerting drivers of a pedestrian. Signs are placed on both sides of a crosswalk, to face each direction of traffic.	RRFBs should be used to supplement standard crossing warning signage and markings at locations without YIELD, STOP, or traffic signal controls. RRFBs should be reserved for locations with significant pedestrian safety issues. RRFBs are best suited for two-lane streets. Applicable Crossing Treatment Category: B, C and D
Curb Extensions (Pop-outs)	Intersection pop-outs are curb extensions that narrow the street at intersections by widening the sidewalks at the point of crossing. They are used to make pedestrian crossings shorter and reduce the width of long, straight streets. Intersection pop-outs must accommodate cyclists, transit vehicles and emergency response vehicles. Pop-outs improve pedestrian visibility to the driver, create shorter pedestrian crossing widths, and may reduce vehicle speeds. Reference City of San Diego Traffic Calming Guidelines	Locations with useable space next to the curb, like that provided by on-street parking. Applicable Crossing Treatment Categories: B, C, and D

> Council Policy 200-07

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

1.3 Summary

Council Policy 200-07 provides the requirements uncontrolled pedestrian crossings must meet in order to be considered for a marked crosswalk, how a crosswalk must be marked, and the process of removal, if necessary.

If a location meets each of the Basic Warrants and scores a minimum of 16 points in the Point Warrants, it qualifies for a marked crosswalk. Point Warrants are indicated in Table 1. In addition, crossing treatments and/or warning devices must accompany the crosswalk. Table 2 identifies categories for crossing treatments that are needed based on thresholds of vehicle volumes and crossing distances. Table 3 lists the crossing treatments for each category.

For unusual conditions not identified in this policy, engineering judgment should be used to apply these guidelines or adjust them to fit individual field site conditions. These guidelines are not intended to be a substitute for engineering knowledge, experience or judgment.

In addition, any removal of a marked crosswalk must follow the procedure outlined in the California Vehicle Code.

2.0 POLICY

2.1 Basic Warrants

Each of the following warrants must be satisfied in order for an uncontrolled location to be considered for a marked crosswalk.

2.1.1. Pedestrian Volume Warrant

The pedestrian volumes must be equal to or greater than ten (10) pedestrians per hour during the peak pedestrian hour. Children under 13, elderly over 64 years and/or disabled persons count as 1.5 pedestrians. Alternatively, this warrant can be satisfied using Latent Pedestrian Demand if conditions (a), (b), or (c) under Table 1, T1.1b are met.

2.1.2. Approach Speed Warrant

The $85^{\text {th }}$ percentile approach speed must be equal to or lower than 40 MPH . This warrant does not apply when a pedestrian hybrid beacon or a pedestrian traffic signal will be installed.

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

2.1.3. Nearest Controlled Crossing

The proposed location must be farther than 250 feet from the nearest controlled pedestrian crossing (measured from the nearest edge of the proposed marked crosswalk to the closest edge of the controlled crossing).
2.1.4. Visibility Warrant

The motorist must have an unrestricted view of all pedestrians at the proposed location for a distance required by the following table (stopping sight distance is to be interpolated when $85^{\text {th }}$ percentile speed is between 5 mph increments):

$\mathbf{8 5}^{\text {th }}$ Percentile Speed (MPH)	Stopping Sight Distance (feet)
25	150
30	200
35	250
40	300

2.1.5. Illumination Warrant

The proposed location must have existing lighting.

2.1.6. Accessibility Warrant

The proposed location must have existing accessibility to disabled pedestrians or have accessibility improvements programmed.

2.2 Point Warrants

Point warrants are the number of points a location is required to meet (in with the Basic Warrants above) to qualify for a marked crosswalk. Sixteen points are required and can be achieved through pedestrian volumes or latent pedestrian demand, general conditions, and/or the average gaps in traffic. A summary of each Point Warrant and the allocation of points are presented in Table 1. A discussion of each Point Warrant variable follows the table.

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

Table 1: Point Warrants

11. 1 a Pedestrian Volmme Wharamt		
Number of Pedestrians (Peak Hour)	Points	Total Available Points
10-25	4	10
26-50	8	
51+	10	
T1.1b Latent Pedestrian Demend Werrent (th Pen of Pedestiran Voume Warrami)		
Condition	Points	Total Available Points
(a) The proposed crosswalk is in a commercial, mixed land use, or high density residential area.	3	10
(b) A pedestrian or shared use path is interrupted by a restricted crossing.	3	
(c) A pedestrian attractor/generator is directly adjacent to the proposed crosswalk as defined in the explanatory notes below.	4	
M1.2 Gencral Condition Warnant		
Condition	Points	Total Available Points
(a) The nearest controlled crossing is greater than 300 feet from the proposed crosswalk.	3	18
(b) The proposed crosswalk will position pedestrians to be better seen by motorists.	3	
(c) The proposed crosswalk will establish a mid-block crossing between adjacent signalized intersections or it will connect an existing pedestrian path.	3	
(d) The proposed crosswalk is located within $1 / 4$ mile of pedestrian attractors/generators as defined in the explanatory notes below.	3	
(e) An existing bus stop is located within 100 feet of the proposed crosswalk.	3	
(f) Other factors.	3	

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

Table 1: Point Warrants (continued)
T1.3 Gap Time Warram:

Average Number of Vehicular Gaps per Five-Minute Period	Points	Total Available Points
$0-0.99$	0	
$1-1.99$	1	
	$2-2.99$	8
	$3-3.99$	10
	$4-4.99$	8

Table 1, Explanatory Notes:

T1.1a Pedestrian Volume Warrant

The Pedestrian Volume Warrant assigns point values based on pedestrian crossing volumes at the proposed location. Children under 13 , elderly over 64 years and/or disabled persons count as 1.5 pedestrians.

T1.1b Latent Pedestrian Demand Warrant (in lieu of Pedestrian Volume Warrant)
The Latent Pedestrian Demand Warrant may be used in lieu of the Pedestrian Volume Warrant.

T1.2 General Condition Warrant

The General Condition Warrant presents six (6) unique categories. A location can score either zero (0) or three (3) points for each unique category, making a total of 18 points possible. The general conditions include the following:
(a) The nearest controlled crossing is greater than 300 feet from the proposed crosswalk. The distance should be measured from the proposed location of the crosswalk to the nearest controlled intersection, i.e. stop sign, traffic signal, etc.
(b) The proposed crosswalk will position pedestrians to be better seen by motorists. This condition should be considered at locations where one leg of the intersection provides better sight distance than the other legs or midblock location with better sight distance.
(c) The proposed crosswalk will establish a mid-block crossing between adjacent signalized intersections. This warrant refers to a condition where there is a major pedestrian attractor/generator nearby, and an adequate crossing can be provided that could help channelize a heavy flow of mid-block pedestrians.

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

Table 1: Point Warrants (continued)
(d) The proposed crosswalk is located within $1 / 4$ mile of a pedestrian attractor/generator as defined below:

- International Border Crossing
- Major Multi-Modal Transit Centers
- Transit Stops
- Elementary/Middle/High Schools
- Universities and Colleges
- Neighborhood Civic Facilities (Libraries, Post Office \& Religious Facilities)
- Neighborhood and Community Retail
- Pedestrian Intensive Beaches
- Parks \& Recreation (excludes non-useable open space)
- Mixed Land Uses (housing near employment and/or commercial)
(e) A bus stop is located within 100 feet of the proposed location. This warrant applies if there is a bus stop within 100 feet of the proposed crosswalk.
(f) Other factors.

Other factors allow for extenuating circumstances not covered in the proposed warrants. These are to be evaluated using engineering judgment.

T1.3 Gap Time Warrant

Gap time is the time needed for a pedestrian to cross the travelled lanes of a roadway at an average walking speed without the need for a driver to yield. The number of usable gaps (or gaps that exceed the minimum time needed to cross) are counted during the peak vehicular hour and averaged per five-minute period.

2.3 Crossing Treatments

2.3.1 Crossing Treatment Thresholds

If the proposed crossing location meets the criteria set by both the Basic and Point warrants, the next step is to evaluate the most appropriate crossing treatment(s) to be installed with the marked crosswalk. Marked crosswalks at streets that have less than 1,500 ADT can be installed with signs and markings alone. Table 2 provides thresholds for determining whether additional treatments are required prior to installing a marked crosswalk. The thresholds are based on vehicle volumes, vehicle speeds, and pedestrian crossing distance at the proposed location. Location types are divided into categories A, B, C, and D, and are used to determine the appropriate treatment for the proposed marked crosswalk location.

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

Table 2: Crossing Treatment Thresholds for Uncontrolled Marked Crosswalks if Warrants are Met

Sracymy Diven.ace	Roadway ADT (vehiches yer (bay)								
	<1,500	1,501-5,000		5,001-12,000		12,001-15,000		> 15,000	
<40,	A	B		B		C		C	D^{1}
40^{\prime} to 52'	A	B		C		C	D^{1}		
> 52,	A	B	C^{1}	C	D^{1}				

1. For streets with more than one lane at an approach or posted speed limit 30 mph or greater.
2. Crossing distance can be measured to a pedestrian refuge island if one is present.

2.3.2 Crossing Treatments

Table 3 presents treatment requirements for the categories shown in Table 2. As new devices or treatments are proven, they may be considered in lieu of these treatments, with the City Engineer's approval.

Table 3: Crossing Treatments for Uncontrolled Marked Crosswalks if Warrants are Met

Cotregory	Grossing Treatmentax
A	The following is required: (W11-2) Pedestrian Warning Signage with the corresponding (W16-7P) arrow plaque as shown in CA MUTCD Section 2C. 50
B	At least one of the following is required: - (R1-6) State Law - Yield to Ped estrian sign if median is present - Rectangular Rapid Flashing Beacons (RRFBs) Raised crosswalk or other traffic calming treatments if the City of San Diego's Traffic Calming Guid elines are met
C	At least two of the following are required: - Radar Speed Feed back Signs - Striping changes such as narrower lanes, painted medians, road diets, or other speed red ucing treatments. - RRFBs - Staggered crosswalks and ped estrian refuge island - Horizontal deflection traffic calming treatments ${ }^{1}$ if the City of San Diego's Traffic Calming Guid elines are met
D	A Traffic Signal is required if the CA MUTCD warrants are met and it is recommended by a traffic engineering study. Otherwise at least one of the following is required: - Ped estrian Hybrid Beacon if the CA MUTCD warrants are met - Horizontal deflection traffic calming treatment ${ }^{1}$ with RRFBs if the City of Sar Dicgo's Traffic Calming Guidelines are met
1. Horizontal	

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

2.4 Stop Controlled Crosswalks

At stop controlled intersection approaches, stop signs are the major factor controlling both the motorist's and pedestrian's behavior, rather than crosswalk markings. The warrants reflected in this policy do not apply at stop controlled intersection approaches. At such approaches stop bars are intended to define pedestrian paths. A marked crosswalk may be installed at a stop controlled intersection on a case by case basis if a clear benefit to pedestrians is demonstrated. Examples of such demonstrated benefits are:

- An all-way stop controlled intersection where at least one street is a one-way street with more than one lane, and marking the far side crossing will highlight pedestrian crossing (all approaches that pedestrians are allowed to cross should be marked in this case).
- An all-way stop controlled intersection where pedestrians are restricted on one or more legs and marking the alternate crossing routes will highlight where pedestrians are allowed to cross.

2.5 Removal of Crosswalks

It shall be the Policy of the City of San Diego to follow the California Vehicle Code requirements when a crosswalk is considered for removal.

The California Vehicle Code, Section 21950.5, states the following:
(a) An existing marked crosswalk may not be removed unless notice and opportunity to be heard is provided to the public not less than 30 days prior to the scheduled date of removal. In addition to any other public notice requirements, the notice of proposed removal shall be posted at the crosswalk identified for removal.
(b) The notice required by subdivision (a) shall include, but is not limited to, notification to the public of both of the following:
(1) That the public may provide input relating to the scheduled removal.
(2) The form and method of providing the input authorized by paragraph (1).

CITY OF SAN DIEGO, CALIFORNIA COUNCIL POLICY

CURRENT

3.0 HISTORY:

"Installation of Parking Facility Guide Signs"
Adopted by Resolution R-171103-05/31/1962
Repealed by Resolution R-212199-12/12/1974
"Comprehensive Pedestrian Crossing Policy"
Adopted by Resolution R-275560-04/23/1990
"Marked Crosswalk Criteria at Uncontrolled Locations"
Amended by Resolution R-309772-06/11/2015
> Caltrans Highway Design Manual Seventh Edition

Highway Design Manual Seventh Edition

California Department of Transportation

California Department of Transportation

Highway
 Design
 Manual

U.S. Customary Units

July 1, 2020
(5) Lock To Lock Time - The time in seconds that an average driver would take under normal driving conditions to turn the steering wheel of a vehicle from the lock position on one side to the lock position on the other side. The default in AutoTurn software is 6 seconds
(6) Steering Lock Angle - The maximum angle that the steering wheels can be turned. It is further defined as the average of the maximum angles made by the left and right steering wheels with the longitudinal axis of the vehicle.
(7) Articulating Angle - The maximum angle between the tractor and semitrailer.

Topic 405 - Intersection Design Standards

405.1 Sight Distance

(1) Stopping Sight Distance. requirements.
(2) Corner Sight Distance.
(a) General. At unsignalized intersections a substantially clear line of sight should be maintained between the driver of a vehicle, bicyclist or pedestrian stopped on the minor road and the driver of an approaching vehicle on the major road that has no stop. Line of sight for all users should be included in right of way, in order to preserve sight lines.
See DIB 79 for 2R, 3R, certain storm damage, protective betterment, operational, and safety projects on two-lane and three-lane conventional highways.
Adequate time should be provided for the stopped vehicle on the minor road to either cross all lanes of through traffic, cross the near lanes and turn left, or turn right, without requiring through traffic to radically alter their speed. The visibility required for these maneuvers form a clear sight triangle with the corner sight distance b and the crossing distance a_{1} or a_{2} (see Figure 405.1 as an example of corner sight distance at a two-lane, two-way highway). Dimensions a_{1} and a_{2} are measured from the decision point to the center of the lane. The actual number of lanes will vary on the major and minor roads. There should be no sight obstruction within the clear sight triangle.
The methodology used for the driver on the minor road that is stopped to complete the necessary maneuver while the approaching vehicle travels at the design speed of the major road is based on gap-acceptance behavior. A 7-1/2 second criterion is applied to a passenger car (including pickup trucks) for a left turn from a stop on the minor road. However, this time gap does not account for a single-unit truck (no semitrailer), a combination truck (see Index 404.4 for truck tractor-semitrailer guidance), a right-turn from a stop, or for a crossing maneuver. See Table 405.1A for the time gap that addresses these situations for the assumed design vehicle making these maneuvers from the minor road.
In determining corner sight distance, a set back distance for the vehicle waiting on the minor road must be assumed as measured from the edge of traveled way of the major road. Set back for the driver of the vehicle on the minor road should be a minimum of 10 feet plus the shoulder width of the major road but not less than 15 feet. The location of the driver's eye for the set back is the decision point per Figure 405.1. Corner sight distance and the driver's eye set back are also illustrated in Figures 405.7 and 504.31. Line of sight for corner sight distance for passenger cars is to be determined from a 3 and $1 / 2$-foot height at the location of the driver of the vehicle in the center of the minor road lane to a 3 and $1 / 2$-foot cbject height in the center of the approaching outside lane of the major road. This provides for reciprocal sight by both vehicles. The passenger
car driver's eye height should be applied to all minor roads. In addition, a truck driver's eye height of 7.6 feet should be applied to the minor road where applicable. Additionally, if the major road has a median barrier, a 2 -foot object height should be used to determine the median barrier set back. A median that is wide enough to accommodate a stopped vehicle should also provide a clear sight triangle.
The minimum corner sight distance (feet) should be determined by the equation: $1.47 \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{g}}$, where V_{m} is the design speed (mph) of the major road and T_{q} is the time gap (seconds) for the minor road vehicle to enter the major road. The values given in Table 405.1A should be used to determine T_{g} based on the design vehicle, the type of maneuver, and whether the stopped vehicle's rear wheels are on an upgrade exceeding 3 percent. The distance from the edge of traveled way to the rear wheels at the minor road stop location should be assumed as: 20 feet for a passenger car, 30 feet for a single-unit truck, and 72 feet for a combination truck.
(b) Public Road Intersections (Refer to Topic 205 and Index 405.7); corner sight distance applies, see Table 405.1A.
At signalized intersections the corner sight distances should also be applied whenever possible. Even though traffic" flows are designed to move at separate times, unanticipated conflicts can occur due to violation of signal, right turns on red, malfunction of the signal, or use of flashing red/yellow mode.
The minimum value for corner sight distance at signalized intersections should be equal to the stopping sight distance as given, in Table 201.1, measured as previously described. This includes an urban driveway that forms a leg of the signalized intersection.
(c) Private Road Intersections (Refer to Index 205.2) and Rural Driveways (Refer to Index 205.4); corner sight distance applies, see Table 405.1A. If signalized, the minimum corner sight distance should be equal to the stopping sight distance as given in Table 201.1, measured as previously described.
(d) Urban Driveways (Refer to Index 205.3); corner sight distance requirements as described above are not applied to urban driveways unless signalized. See Index 405.1(2)(b) underlined standard. If parking is allowed on the major road, parking should be prohibited on both sides of the driveway per the California MUTCD, 3B.19.
(3) Decision Sight Distance. At intersections where the State route turns or crosses another State route, the decision sight distance values given in Table 201.7 should be used. In computing and measuring decision sight distance, the 3.5 -foot eye height and the 0.5 -foot object height should be used, the object being located on the side of the intersection nearest the approaching driver.
The application of the various sight distance requirements for the different types of intersections is summarized in Table, 405.1B

July 1, 2020
Table 405.1B

Application of Sight Distance Requirements

Intersection Types	Sight Distance		
	Stopping	Corner	Decision
Private Roads	X	$\mathrm{X}^{(1)}$	
Public Streets and Roads	X	X	
Signalized Intersections	X	$\mathrm{X}^{(2)}$	
State Route	X	X	X

Intersections \&
Route Direction
Changes, with
or without
Signals

NOTES:

${ }^{(1)}$ Per Index $405.1(2)(\mathrm{c})$, the minimum corner sight distance shall be equal to the stopping sight distance as given in Table 201.1. See Index 405.1(2)(a) for setback requirements.
(2) Apply corner sight distance requirements a! signalized intersections whenever possible due to unanticipated violations of the signals or malfunctions of the signals. See Index 405.1(2)(b).
(4) Acceleration Lanes for Turning Moves onto State Highways. At rural intersections, with "STOP" control on the local cross road, acceleration lanes for left and right turns onto the State facility should be considered. At a minimum, the following features should be evaluated for both the major highway and the cross road:

- divided versus undivided
- number of lanes
- design speed
- gradient
- lane, shoulder and median width
- traffic volume and composition of highway users, including trucks and transit vehicles

Figure 405.1
Corner Sight Distance (b)

Corner Sight Distance Time Gap (Tg) for Unsignalized Intersections

Design Vehicle	Left-turn from Stop (s) ${ }^{(4)}$	Right-turn from Stop and Crossing Maneuver (s)
Passenger Car Private Road Intersection Rural Driveway Single-Unit Truck Public Road Intersection Combination Truck Major and Minor Roads on Routes: \quad National Network \quad Terminal or Service Access \quad California Legal KPRA Advisory	$91 / 2$	

Notes: Time gaps are for a stopped vehicle to turn left, right or cross a two-lane highway with no median and with minor road grades of 3 percent or less. The table values should be adjusted as follows:
${ }^{(1)}$ For multilane highways-When crossing or making a left-turn onto a two-way major road with more than two lanes, add 0.5 s for passenger cars or 0.7 s for trucks for each additional lane to be crossed. Median widths should be converted to an equivalent number of lanes in applying the 0.5 s and 0.7 s criteria. For example, an 18 -foot wide median is equivalent to 1.5 lanes; this requires an additional 0.75 s for a passenger car to cross or an additional 1.05 s for a truck to cross.
${ }^{(2)}$ For minor road approach grades-If the minor roadd approach grade is an upgrade that exceeds 3 percent and the rear wheels of the design vehicle are on the grade exceeding 3 percent, add 0.2 s for each percent grade for left-turns and crossing maneuvers; or add 0.1 s for each percent grade for right-turns. For example, a passenger car is turning right from a minor road and at the stop location its rear wheels are on a 4 percent upgrade; this requires an additional 0.4 s for the right-turn.
${ }^{(3)}$ Unique situations may necessitate a different design vehicle for a particular minor road than those listed here (e.g., predominant combination trucks out of a rural driveway). Additionally, for intersections at skewed angles less than 60 degrees, a further adjustment is needed. See the AASHTO "A Policy on Geometric Design of Highways and Streets" for guidance.
${ }^{(4)}$ Time gap for vehicles approaching from the left can be the same as the right-turn from stop maneuver.

July 1, 2020

- turning volumes
- horizontal curve radii
- sight distance
- proximity of adjacent intersections
- types of adjacent intersections

For additional information and guidance, refer to AASHTO, A Policy on Geometric Design of Highways and Streets, the District Traffic Engineer or designee, the District Design Liaison, and the Project Delivery Coordinator.

405.2 Left-turn Channelization

(1) General. The purpose of a left-turn lane is to expedite the movement of through traffic by, controlling the movement of turning traffic, increasing the capacity of the intersection, and improving safety characteristics.
The District Traffic Branch normally establishes the need for left-turn lanes.
(2) Design Elements.
(a) Lane Width - The lane width for both single and double left-turn lanes on State highways shall be 12 feet.
For conventional State highways with posted speeds less than or equal to 40 miles per hour and AADTT (truck volume) less than 250 per lane that are in urban, city or town centers (rural main streets), the minimum lane width shall be 11 feet.
When considering lane width reductions adjacent to curbed medians, refer to Index 303.5 for guidance on effective roadway width, which may vary depending on drivers' lateral positioning and shy distance from raised curbs.
(b) Approach Taper - On conventional highways without a median, an approach taper provides space for a left-turn lane by moving traffic laterally to the right. The approach taper is unnecessary where a median is available for the full width of the left-turn lane. Length of the approach taper is given by the formula on Figures 405.2A, B and C.
Figure 405.2A shows a standard left-turn channelization design in which all widening is to the right of approaching traffic and the deceleration lane (see below) begins at the end of the approach taper. This design should be used in all situations where space is available, usually in rural and semi-rural areas or in urban areas with high traffic speeds and/or volumes.

Figures 405.2B and 405.2C show alternate designs foreshortened with the deceleration lane beginning at the $2 / 3$ point of the approach taper so that part of the deceleration takes place in the through traffic lane. Figure 405.2C is shortened further by widening half (or other appropriate fraction) on each side. These designs may be used in urban areas where constraints exist, speeds are moderate and traffic volumes are relatively low.
> AASHTO "A Policy of Geometric Design of Highways and Streets

3 Elements of Design

3.1 INTRODUCTION

The alignment of a highway or street produces a great impact on the environment, the fabric of the community, and the highway user. The alignment consists of a variety of design elements that combine to create a facility that serves traffic safely and efficiently, consistent with the facility's intended function. Each alignment element should complement others to achieve a consistent, safe, and efficient design.

The design of highways and streets within particular functional classes is treated separately in later chapters. Common to all classes of highways and streets are several principal elements of design. These include sight distance, superelevation, traveled way widening, grades, horizontal and vertical alignments, and other elements of geometric design. These alignment elements are discussed in this chapter, and, as appropriate, in the later chapters pertaining to specific highway functional classes.

3.2 SIGHT DISTANCE

3.2.1 General Considerations

A driver's ability to see ahead is needed for safe and efficient operation of a vehicle on a highway. For example, on a railroad, trains are confined to a fixed path, yet a block signal system and trained operators are needed for safe operation. In contrast, the path and speed of motor vehicles on highways and streets are subject to the control of drivers whose ability, training, and experience are quite varied. The designer should provide sight distance of sufficient length that drivers can control the operation of their vehicles to avoid striking an unexpected object in the traveled way. Certain two-lane highways should also have sufficient sight distance to enable drivers to use the opposing traffic lane for passing other vehicles without interfering with oncoming vehicles. Two-lane rural highways should generally provide such passing sight distance at frequent intervals and for substantial portions of their length. On the other hand, it is normally of little practical value to provide passing sight distance on two-lane urban streets or arterials. The proportion of a highway's length with sufficient sight distance to pass another vehicle and interval between passing opportunities should be compatible with the intended function of the highway
and the desired level of service. Design criteria and guidance applicable to specific functional classifications of highways and streets are presented in Chapters 5 through 8.

Four aspects of sight distance are discussed below: (1) the sight distances needed for stopping, which are applicable on all highways; (2) the sight distances needed for the passing of overtaken vehicles, applicable only on two-lane highways; (3) the sight distances needed for decisions at complex locations; and (4) the criteria for measuring these sight distances for use in design. The design of alignment and profile to provide sight distances and to satisfy the applicable design criteria are described later in this chapter. The special conditions related to sight distances at intersections are discussed in Section 9.5.

3.2.2 Stopping Sight Distance

Sight distance is the length of the roadway ahead that is visible to the driver. The available sight distance on a roadway should be sufficiently long to enable a vehicle traveling at or near the design speed to stop before reaching a stationary object in its path. Although greater lengths of visible roadway are desirable, the sight distance at every point along a roadway should be at least that needed for a below-average driver or vehicle to stop.

Stopping sight distance is the sum of two distances: (1) the distance traversed by the vehicle from the instant the driver sights an object necessitating a stop to the instant the brakes are applied, and (2) the distance needed to stop the vehicle from the instant brake application begins. These are referred to as brake reaction distance and braking distance, respectively.

Brake Reaction Time

Brake reaction time is the interval from the instant that the driver recognizes the existence of an obstacle on the roadway ahead that necessitates braking until the instant that the driver actually applies the brakes. Under certain conditions, such as emergency situations denoted by flares or flashing lights, drivers accomplish these tasks almost instantly. Under most other conditions, the driver needs not only to see the object but also to recognize it as a stationary or slowly moving object against the background of the roadway and other objects, such as walls, fences, trees, poles, or bridges. Such determinations take time, and the amount of time needed varies considerably with the distance to the object, the visual acuity of the driver, the natural rapidity with which the driver reacts, the atmospheric visibility, the type and the condition of the roadway, and nature of the obstacle. Vehicle speed and roadway environment probably also influence reaction time. Normally, a driver traveling at or near the design speed is more alert than one traveling at a lesser speed. A driver on an urban street confronted by innumerable potential conflicts with parked vehicles, driveways, and cross streets is also likely to be more alert than the same driver on a limited-access facility where such conditions should be almost nonexistent.

The study of reaction times by Johansson and Rumar (39) referred to in Section 2.2.6 was based on data from 321 drivers who expected to apply their brakes. The median reaction-time value for these drivers was 0.66 s , with 10 percent using 1.5 s or longer. These findings correlate with those of earlier studies in which alerted drivers were also evaluated. Another study (44) found 0.64 s as the average reaction time, while 5 percent of the drivers needed over 1 s . In a third study (48), the values of brake reaction time ranged from 0.4 to 1.7 s . In the Johansson and Rumar study (39), when the event that prompted application of the brakes was unexpected, the drivers' response times were found to increase by approximately 1 s or more; some reaction times were greater than 1.5 s . This increase in reaction time substantiated carlier
laboratory and road tests in which the conclusion was drawn that a driver who needed 0.2 to 0.3 s of reaction time under alerted conditions would need 1.5 s of reaction time under normal conditions.

Minimum brake reaction times for drivers could thus be at least $1.64 \mathrm{~s}, 0.64 \mathrm{~s}$ for alerted drivers plus 1 s for the unexpected event. Because the studies discussed above used simple prearranged signals, they represent the least complex of roadway conditions. Even under these simple conditions, it was found that some drivers took over 3.5 s to respond. Because actual conditions on the highway are generally more complex than those of the studies, and because there is wide variation in driver reaction times, it is evident that the criterion adopted for use should be greater than 1.64 s . The brake reaction time used in design should be long enough to include the reaction times needed by nearly all drivers under most highway conditions. Both recent research (17) and the studies documented in the literature $(39,44,48)$ show that a 2.5 -s brake reaction time for stopping sight situations encompasses the capabilities of most drivers, including those of older drivers. The recommended design criterion of 2.5 s for brake reaction time exceeds the 90th percentile of reaction time for all drivers and was used in the development of Table 3-1.

A brake reaction time of 2.5 s is considered adequate for conditions that are more complex than the simple conditions used in laboratory and road tests, but it is not adequate for the most complex conditions encountered in actual driving. The need for greater reaction time in the most complex conditions encountered on the roadway, such as those found at multiphase at-grade intersections and at ramp terminals on through roadways, can be found in Section 3.2.3 on "Decision Sight Distance."

Braking Distance

The approximate braking distance of a vehicle on a level roadway traveling at the design speed of the roadway may be determined from the following equation:

Metric	U.S. Customary
$d_{B}=0.039 \frac{V^{2}}{a}$	$d_{B}=1.075 \frac{V^{2}}{a}$
where:	where:
$d_{B}=$ braking distance, m	$d_{B}=$ braking distance, ft
$V=$ design speed, km / h	$V=$ design speed, mph
$a=$ deceleration rate, $\mathrm{m} / \mathrm{s}^{2}$	$a=$ deceleration rate, $\mathrm{ft} / \mathrm{s}^{2}$

Studies documented in the literature (17) show that most drivers decelerate at a rate greater than $4.5 \mathrm{~m} / \mathrm{s}^{2}$ [$14.8 \mathrm{ft} / \mathrm{s}^{2}$] when confronted with the need to stop for an unexpected object in the roadway. Approximately 90 percent of all drivers decelerate at rates greater than $3.4 \mathrm{~m} / \mathrm{s}^{2}\left[11.2 \mathrm{ft} / \mathrm{s}^{2}\right]$. Such decelerations are within the driver's capability to stay within his or her lane and maintain steering control during the braking maneuver on wet surfaces. Therefore, $3.4 \mathrm{~m} / \mathrm{s}^{2}\left[11.2 \mathrm{ft} / \mathrm{s}^{2}\right]$ (a comfortable deceleration for most drivers) is recommended as the deceleration threshold for determining stopping sight distance. Implicit in the choice of this deceleration threshold is the assessment that most vehicle braking systems and the tire-pavement friction levels of most roadways are capable of providing a deceleration rate of at least $3.4 \mathrm{~m} / \mathrm{s}^{2}\left[11.2 \mathrm{ft} / \mathrm{s}^{2}\right]$. The friction available on most wet pavement surfaces and the capabilities of most vehicle braking systems can provide braking friction that exceeds this deceleration rate.

Table 3-1. Stopping Sight Distance on Level Roadways

Metric					U.S. Customary				
Design Speed (km/h)	Brake Reaction Distance (m)	Braking Distance on Level (m)	Stopping Sight Distance		Design Speed (mph)	Brake Reaction Distance (ft)	Braking Distance on Level (ft)	Stopping Sight Distance	
			Calculat- ed (m)	Design (m)				Calculated (ft)	Design (ft)
20	13.9	4.6	18.5	20	15	55.1	21.6	76.7	80
30	20.9	10.3	31.2	35	20	73.5	38.4	111.9	115
40	27.8	18.4	46.2	50	25	91.9	60.0	151.9	155
50	34.8	28.7	63.5	65	30	110.3	86.4	196.7	200
60	41.7	41.3	83.0	85	35	128.6	117.6	246.2	250
70	48.7	56.2	104.9	105	40	147.0	153.6	300.6	305
80	55.6	73.4	129.0	130	45	165.4	194.4	359.8	360
90	62.6	92.9	155.5	160	50	183.8	240.0	423.8	425
100	69.5	114.7	184.2	185	55	202.1	290.3	492.4	495
110	76.5	138.8	215.3	220	60	220.5	345.5	566.0	570
120	83.4	165.2	248.6	250	65	238.9	405.5	644.4	645
130	90.4	193.8	284.2	285	70	257.3	470.3	727.6	730
					75	275.6	539.9	815.5	820
					80	294.0	614.3	908.3	910

Note: Brake reaction distance predicated on a time of 2.5 s ; deceleration rate of $3.4 \mathrm{~m} / \mathrm{s}^{2}\left[11.2 \mathrm{ft} / \mathrm{s}^{2}\right]$ used to determine calculated sight distance.

Design Values

The stopping sight distance is the sum of the distance traversed during the brake reaction time and the distance to brake the vehicle to a stop. The computed distances for various speeds at the assumed conditions on level roadways are shown in Table 3-1 and were developed from the following equation:

Metric	U.S. Customary
$S S D=0.278 V t+0.039 \frac{V^{2}}{a}$	$S S D=1.47 V t+1.075 \frac{V^{2}}{a}$

where:
$S S D=$ stopping sight distance, ft

$$
\begin{aligned}
\text { SSD } & =\text { stopping sight distance, } \mathrm{m} \\
V & =\text { design speed, } \mathrm{km} / \mathrm{h} \\
t & =\text { brake reaction time, } 2.5 \mathrm{~s} \\
a & =\text { deceleration rate, } \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

$V=$ design speed, mph
$t=$ brake reaction time, 2.5 s
$a=$ deceleration rate, $\mathrm{ft} / \mathrm{s}^{2}$
Stopping sight distances exceeding those shown in Table 3-1 should be used as the basis for design wherever practical. Use of longer stopping sight distances increases the margin for error for all drivers and, in particular, for those who operate at or near the design speed during wet pavement conditions. New pavements should have initially, and should retain, friction coefficients consistent with the deceleration rates used to develop Table 3-1.

Effect of Grade on Stopping

When a highway is on a grade, Equation 3-1 for braking distance is modified as follows:

Metric	
$d_{B}=\frac{V^{2}}{254\left[\left(\frac{a}{9.81}\right) \pm G\right]}$	$d_{B}=\frac{V^{2}}{30\left[\left(\frac{a}{32.2}\right) \pm G\right]}$

where:

$$
\begin{aligned}
d_{B} & =\text { braking distance on grade, } \mathrm{m} \\
V & =\text { design speed, } \mathrm{km} / \mathrm{h} \\
a & =\text { deceleration, } \mathrm{m} / \mathrm{s}^{2} \\
G & =\text { grade, rise/run, } \mathrm{m} / \mathrm{m}
\end{aligned}
$$

where:

$$
\begin{aligned}
d_{B} & =\text { braking distance on grade, } \mathrm{ft} \\
V & =\text { design speed, } \mathrm{mph} \\
a & =\text { deceleration, } \mathrm{ft} / \mathrm{s}^{2} \\
G & =\text { grade, rise/run, } \mathrm{ft} / \mathrm{ft}
\end{aligned}
$$

In this equation, G is the rise in elevation divided by the distance of the run and the percent of grade divided by 100 , and the other terms are as previously stated. The stopping distances needed on upgrades are shorter than on level roadways; those on downgrades are longer. The stopping sight distances for various grades shown in Table 3-2 are the values determined by using Equation 3-3 in place of the second term in Equation 3-2. These adjusted sight distance values are computed for wet-pavement conditions using the same design speeds and brake reaction times used for level roadways in Table 3-1.

Table 3-2. Stopping Sight Distance on Grades

Metric							U.S. Customary						
Design Speed (km/h)	Stopping Sight Distance (m)						Design Speed (mph)	Stopping Sight Distance (ft)					
	Downgrades			Upgrades				Downgrades			Upgrades		
	3%	6\%	9\%	3\%	6 \%	9\%		3%	6\%	9%	3%	6\%	9\%
20	20	20	20	19	18	18	15	80	82	85	75	74	73
30	32	35	35	31	30	29	20	116	120	126	109	107	104
40	50	50	53	45	44	43	25	158	165	173	147	143	140
50	66	70	74	61	59	58	30	205	215	227	200	184	179
60	87	92	97	80	77	75	35	257	271	287	237	229	222
70	110	116	124	100	97	93	40	315	333	354	289	278	269
80	136	144	154	123	118	114	45	378	400	427	344	331	320
90	164	174	187	148	141	136	50	446	474	507	405	388	375
100	194	207	223	174	167	160	55	520	553	593	469	450	433
110	227	243	262	203	194	186	60	598	638	686	538	515	495
120	263	281	304	234	223	214	65	682	728	785	612	584	561
130	302	323	350	267	254	243	70	771	825	891	690	658	631
							75	866	927	1003	772	736	704
							80	965	1035	1121	859	817	782

On nearly all roads and streets, the grade is traversed by traffic in both directions of travel, but the sight distance at any point on the highway generally is different in each direction, particularly on straight roads in rolling terrain. As a general rule, the sight distance available on downgrades is larger than on upgrades, more or less automatically providing the appropriate corrections for grade. This may explain why some designers do not adjust stopping sight distance because of grade. Exceptions are one-way roadways or streets, as on divided highways with independent profiles. For these separate roadways, adjustments for grade may be needed.

Variation for Trucks

The recommended stopping sight distances are based on passenger car operation and do not explicitly consider design for truck operation. Trucks as a whole, especially the larger and heavier units, need longer stopping distances for a given speed than passenger vehicles. However, there is one factor that tends to balance the additional braking lengths for trucks with those for passenger cars. The truck driver is able to see substantially farther beyond vertical sight obstructions because of the higher position of the seat in the vehicle. Separate stopping sight distances for trucks and passenger cars, therefore, are not generally used in highway design.

There is one situation in which the goal should be to provide stopping sight distances greater than the design values in Table 3-1. Where horizontal sight restrictions occur on downgrades, particularly at the ends of long downgrades where truck speeds closely approach or exceed those of passenger cars, the greater height of eye of the truck driver is of little value. Although the average truck driver tends to be more experienced than the average passenger car driver and quicker to recognize potential risks, it is desirable under such conditions to provide stopping sight distance that exceeds the values in Tables 3-1 or 3-2.

3.2.3 Decision Sight Distance

Stopping sight distances are usually sufficient to allow reasonably competent and alert drivers to come to a hurried stop under ordinary circumstances. However, greater distances may be needed where driyers must make complex or instantaneous decisions, where information is difficult to perceive, or when unexpected or unusual maneuvers are needed. Limiting sight distances to those needed for stopping may preclude drivers from performing evasive maneuvers, which often involve less risk and are otherwise preferable to stopping. Even with an appropriate complement of standard traffic control devices in accordance with the Manual on Uniform Traffic Control Devices (MUTCD) (22), stopping sight distances may not provide sufficient visibility distances for drivers to corroborate advance warning and to perform the appropriate maneuvers. It is evident that there are many locations where it would be prudent to provide longer sight distances. In these circumstances, decision sight distance provides the greater visibility distance that drivers need.

Decision sight distance is the distance needed for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its potential threat, select an appropriate speed and path, and initiate and complete complex maneuvers (9). Because decision sight distance offers drivers additional margin for error and affords them sufficient length to maneuver their vehicles at the same or reduced speed, rather than to just stop, its values are substantially greater than stopping sight distance.

Drivers need decision sight distances whenever there is likelihood for error in either information reception, decision making, or control actions (40). Examples of critical locations where these kinds of errors are likely to occur, and where it is desirable to provide decision sight distance include interchange and intersection locations where unusual or unexpected maneuvers are needed, changes in cross section such as toll plazas and lane drops, and areas of concentrated demand where there is apt to be "visual noise" from competing sources of information, such as roadway elements, traffic, traffic control devices, and advertising signs.

The decision sight distances in Table 3-3 may be used to (1) provide values for sight distances that may be appropriate at critical locations, and (2) serve as criteria in evaluating the suitability of the available sight distances at these locations. Because of the additional maneuvering space provided, decision sight distances should be considered at critical locations or critical decision points should be moved to locations where sufficient decision sight distance is available. If it is not practical to provide decision sight distance because of horizontal or vertical curvature or if relocation of decision points is not practical, special attention should be given to the use of suitable traffic control devices for providing advance warning of the conditions that are likely to be encountered.

Table 3-3. Decision Sight Distance

Metric						U.S. Customary					
	Decision Sight Distance (m)					Design Speed (mph)	Decision Sight Distance (ft)				
	Avoidance Maneuver						Avoidance Maneuver				
	A	B	C	D	E		A	B	C	D	E
50	70	155	145	170	195	30	220	490	450	535	620
60	95	195	170	205	235	35	275	590	525	625	720
70	115	235	200	235	275	40	330	690	600	715	825
80	140	280	230	270	315	45	395	800	675	800	930
90	170	325	270	315	360	50	465	910	750	890	1030
100	200	370	315	355	400	55	535	1030	865	980	1135
110	235	420	330	380	430	60	610	1150	990	1125	1280
120	265	470	360	415	470	65	695	1275	1050	1220	1365
130	305	525	390	450	510	70	780	1410	1105	1275	1445
						75	875	1545	1180	1365	1545
						80	970	1685	1260	1455	1650

Avoidance Maneuver A: Stop on rural road-t $=3.0 \mathrm{~s}$
Avoidance Maneuver B: Stop on urban road-t=9.1 s
Avoidance Maneuver C: Speed/path/direction change on rural road-t varies between 10.2 and 11.2 s
Avoidance Maneuver D; Speed/path/direction change on suburban road-t varies between 12.1 and 12.9 s
Avoidance Maneuver E: Speed/path/direction change on urban road-t varies between 14.0 and 14.5 s
Decision sight distance criteria that are applicable to most situations have been developed from empirical data. The decision sight distances vary depending on whether the location is on a rural or urban road and on the type of avoidance maneuver needed to negotiate the location properly. Table 3-3 shows decision sight distance values for various situations rounded for design. As can be seen in the table, shorter distances are generally needed for rural roads and for locations where a stop is the appropriate maneuver.

For the avoidance maneuvers identified in Table 3-3, the pre-maneuver time is greater than the brake reaction time for stopping sight distance to allow the driver additional time to detect and recognize the roadway or traffic situation, identify alternative maneuvers, and initiate a response at critical locations on the highway (45). The pre-maneuver component of decision sight distance uses a value ranging between 3.0 and 9.1 s (5l).

The braking distance for the design speed is added to the pre-maneuver component for avoidance maneuvers A and B as shown in Equation 3-4. The braking component is replaced in avoidance maneuvers C, D , and E with a maneuver distance based on maneuver times, between 3.5 and 4.5 s , that decrease with increasing speed (45) in accordance with Equation 3-5.

The decision sight distances for avoidance maneuvers A and B are determined as:

Metric	U.S. Customary
$D S D=0.278 V t+0.039 \frac{V^{2}}{a}$	$D S D=1.47 V t+1.075 \frac{V^{2}}{a}$

where:
$D S D=$ decision sight distance, ft
$t=$ pre-maneuver time, s (see notes in Table3-3)
$V=$ design speed, mph
$a=$ driver deceleration, $\mathrm{ft} / \mathrm{s}^{2}$

The decision sight distances for avoidance maneuvers C, D, and E are determined as:

Metric	U.S. Customary
$D S D=0.278 \mathrm{Vt}$	$D S D=1.47 \mathrm{Vt}$

where:

$$
\begin{aligned}
D S D= & \text { decision sight distance, } \mathrm{m} \\
t= & \text { total pre-maneuver and maneuver } \\
& \text { time, } \mathrm{s} \text { (see notes in Table 3-3) } \\
V= & \text { design speed, } \mathrm{km} / \mathrm{h}
\end{aligned}
$$

where:
$D S D=$ decision sight distance, ft
$t=$ total pre-maneuver and maneuver time, s (see notes in Table 3-3)
$V=$ design speed, mph

3.2.4 Passing Sight Distance for Two-Lane Highways

Criteria for Design

Most roads and many streets are two-lane, two-way highways on which vehicles frequently overtake slower moving vehicles. Passing maneuvers in which faster vehicles move ahead of slower vehicles are accomplished on lanes regularly used by opposing traffic. If passing is to be accomplished without
interfering with an opposing vehicle, the passing driver should be able to see a sufficient distance ahead, clear of traffic, so the passing driver can decide whether to initiate and to complete the passing maneuver without cutting off the passed vehicle before meeting an opposing vehicle that appears during the maneuver. When appropriate, the driver can return to the right lane without completing the pass if he or she sees opposing traffic is too close when the maneuver is only partially completed. Many passing maneuvers are accomplished without the driver being able to see any potentially conflicting vehicle at the beginning of the maneuver. An alternative to providing passing sight distance is found in Section 3.4.4 under "Passing Lanes."

Minimum passing sight distances for use in design are based on the minimum sight distances presented in the MUTCD (22) as warrants for no-passing zones on two-lane highways. Design practice should be most effective when it anticipates the traffic controls (i.e., passing and no-passing zone markings) that will be placed on the highways. The potential for conflicts in passing operations on two-lane highways is ultimately determined by the judgments of drivers that initiate and complete passing maneuvers in response to (1) the driver's view of the road ahead as provided by available passing sight distance and (2) the passing and no-passing zone markings. Recent research has shown that the MUTCD passing sight distance criteria result in two-lane highways that experience very few crashes related to passing maneuvers $(20,34)$.

Design Values

The design values for passing sight distance are presented in Table 3-4 and are shown in comparison to stopping sight distance criteria in Figure 3-1. It is apparent from the comparison in Figure 3-1 that more sight distance is needed to accommodate passing maneuvers on a two-lane highway than for stopping sight distance that is provided continuously along the highway.

Table 3-4. Passing Sight Distance for Design of Two-Lane Highways

Metric				U.S. Customary			
	Assumed Speeds (km/h)		Passing Sight Distance\qquad	Design Speed (mph)	Assumed Speeds (mph)		Passing Sight Distance (ft)
Speed $(\mathrm{km} / \mathrm{h})$	Passed Vehicle	Passing Vehicle			Passed Vehicle	Passing Vehicle	
30	11	30	120	20	8	20	400
40	21	40	140	25	13	25	450
50	31	50	160	30	18	30	500
60	41	60	180	35	23	35	550
70	51	70	210	40	28	40	600
80	61	80	245	45	33	45	700
90	71	90	280	50	38	50	800
100	81	100	320	55	43	55	900
110	91	110	355	60	48	60	1000
120	101	120	395	65	53	65	1100
130	111	130	440	70	58	70	1200
				75	63	75	1300
				80	68	80	1400

A Policy on Geometric Design of Highways and Streets

Research has verified that the passing sight distance values in Table 3-4 are consistent with field observation of passing maneuvers (34). This research used two theoretical models for the sight distance needs of passing drivers; both models were based on the assumption that a passing driver will abort the passing maneuver and return to his or her normal lane behind the passed vehicle if a potentially conflicting vehicle comes into view before reaching a critical position in the passing maneuver beyond which the passing driver is committed to complete the maneuver. The Glennon model (26) assumes that the critical position occurs where the passing sight distance to complete the maneuver is equal to the sight distance needed to abort the maneuver. The Hassan et al. model (35) assumes that the critical position occurs where the passing sight distances to complete or abort the maneuver are equal or where the passing and passed vehicles are abreast, whichever occurs first.

METRIC

U.S. CUSTOMARY

Figure 3-1. Comparison of Design Values for Passing Sight Distance and Stopping Sight Distance

Minimum passing sight distances for design of two-lane highways incorporate certain assumptions about driver behavior. Actual driver behavior in passing maneuvers varies widely. To accommodate these variations in driver behavior, the design criteria for passing sight distance should accommodate the behavior

GDHS-6-E1—August 2012

3-12 A Policy on Geometric Design of Highways and Streets
of a high percentage of drivers, rather than just the average driver. The assumptions made in applying the Glennon and Hassan et al. models $(25,35)$ are as follows:

1. The speeds of the passing and opposing vehicles are equal and represent the design speed of the highway.
2. The passed vehicle travels at uniform speed and speed differential between the passing and passed vehicles is $19 \mathrm{~km} / \mathrm{h}$ [12 mph].
3. The passing vehicle has sufficient acceleration capability to reach the specified speed differential relative to the passed vehicle by the time it reaches the critical position, which generally occurs about 40 percent of the way through the passing maneuver.
4. The lengths of the passing and passed vehicles are $5.8 \mathrm{~m}[19 \mathrm{ft}]$, as shown for the P design vehicle in Section 2.1.1.
5. The passing driver's perception-reaction time in deciding to abort passing a vehicle is 1 s .
6. If a passing maneuver is aborted, the passing vehicle will use a deceleration rate of $3.4 \mathrm{~m} / \mathrm{s}^{2}$ [11.2 ft/s $\left.{ }^{2}\right]$, the same deceleration rate used in stopping sight distance criteria.
7. For a completed or aborted pass, the space headway between the passing and passed vehicles is 1 s .
8. The minimum clearance between the passing and opposed vehicles at the point at which the passing vehicle returns to its normal lane is 1 s .

The application of the passing sight distance models using these assumptions is presented in NCHRP Report 605 (34).

The passing sight distance for use in design should be based on a single passenger vehicle passing a single passenger vehicle. While there may be occasions to consider multiple passings, where two or more vehicles pass or are passed, it is not practical to assume such conditions in developing minimum design criteria. Research has shown that longer sight distances are often needed for passing maneuvers when the passed vehicle, the passing vehicle, or both are trucks (30). Longer sight distances occur in design, and such locations can accommodate an occasional multiple passing maneuver or a passing maneuver involving a truck.

Frequency and Length of Passing Sections

Sight distance adequate for passing should be encountered frequently on two-lane highways. Each passing section along a length of roadway with sight distance ahead equal to or greater than the minimum passing sight distance should be as long as practical. The frequency and length of passing sections for highways principally depend on the topography, the design speed of highway, and the cost. For streets, the spacing of intersections is the principal consideration.

It is not practical to directly indicate the frequency with which passing sections should be provided on two-lane highways due to the physical constraints and cost limitations. During the course of normal design, passing sections are provided on almost all highways and selected streets, but the designer's appreciation of their importance and a studied attempt to provide them can usually enable others to be provided at little or no additional cost. In steep mountainous terrain, it may be more economical to build
intermittent four-lane sections or passing lanes with stopping sight distance on some two-lane highways, in lieu of two-lane sections with passing sight distance. Alternatives are discussed in "Passing Lanes" of Section 3.4.4.

The passing sight distances shown in Table 3-4 are sufficient for a single or isolated pass only. Designs with infrequent passing sections may not provide enough passing opportunities for efficient traffic operations. Even on low-volume roadways, a driver desiring to pass may, on reaching the passing section, find vehicles in the opposing lane and thus be unable to use the passing section or at least may not be able to begin to pass at once.

The importance of frequent passing sections is illustrated by their effect on the level of service of a two-lane, two-way highway. The procedures in the Highway Capacity Manual (HCM) (62) to analyze two-lane, two-way highways base the level-of-service criteria on two measures of effectiveness-percent time spent following and average travel speed. Both of these criteria are affected by the lack of passing opportunities. The HCM procedures show, for example, up to a 19 percent increase in the percent time spent following when the directional split is $50 / 50$ and no-passing zones comprise 40 percent of the analysis length compared to a highway with similar traffic volumes and no sight restrictions. The effect of restricted passing sight distance is even more severe for unbalanced flow and where the no-passing zones comprise more than 40 percent of the length.

There is a similar effect on the average travel speed. As the percent of no-passing zones increases, there is an increased reduction in the average travel speed for the same demand flow rate. For example, a demand flow rate of 800 passenger cars per hour incurs a reduction of $3.1 \mathrm{~km} / \mathrm{h}$ [1.9 mph] when no-passing zones comprise 40 percent of the analysis length compared to no reduction in speed on a route with unrestricted passing.

The HCM procedures indicate another possible criterion for passing sight distance design on two-lane highways that are several miles or more in length. The available passing sight distances along this length can be summarized to show the percentage of length with greater-than-minimum passing sight distance. Analysis of capacity related to this percentage would indicate whether or not alignment and profile adjustments are needed to accommodate the design hourly volume (DHV). When highway sight distances are analyzed over the whole range of lengths within which passing maneuvers are made, a new design criterion may be evaluated. Where high traffic volumes are expected on a highway and a high level of service is to be maintained, frequent or nearly continuous passing sight distances should be provided.

The HCM procedures and other traffic models can be used in design to determine the level of service that will be provided by the passing sight distance profile for any proposed design alternative. The level of service provided by the proposed design should be compared to the highway agency's desired level of service for the project and, if the desired level of service is not achieved, the feasibility and practicality of adjustments to the design to provide additional passing sight distance should be considered. Passing sections shorter than 120 to 240 m [400 to 800 ft] have been found to contribute little to improving the traffic operational efficiency of a two-lane highway. In determining the percentage of roadway length with greater-than-minimum passing sight distance, passing sections shorter than the minimum lengths shown in Table 3-5 should be excluded from consideration.

Height of Object

For stopping sight distance and decision sight distance calculations, the height of object is considered to be $0.60 \mathrm{~m}[2.00 \mathrm{ft}]$ above the road surface. For passing sight distance calculations, the height of object is considered to be 1.08 m [3.50 ft$]$ above the road surface.

Stopping sight distance object-The selection of a $0.60-\mathrm{m}[2.00-\mathrm{ft}]$ object height was based on research indicating that objects with heights less than 0.60 m [2.00 ft] are seldom involved in crashes (17). Therefore, it is considered that an object 0.60 m [2.00 ft] in height is representative of the smallest object that involves risk to drivers. An object height of 0.60 m [2.00 ft] is representative of the height of automobile headlights and taillights. Using object heights of less than 0.60 m [2.00 ft] for stopping sight distance calculations would result in longer crest vertical curves without a documented decrease in the frequency or severity of crashes (17). Object height of less than 0.60 m [2.00 ft] could substantially increase construction costs because additional excavation would be needed to provide the longer crest vertical curves. It is also doubtful that the driver's ability to perceive situations involving risk of collisions would be increased because recommended stopping sight distances for high-speed design are beyond most drivers' capabilities to detect objects less than 0.60 m [2.00 ft] in height (17).

Passing sight distance object—An object height of 1.08 m [3.50 ft$]$ is adopted for passing sight distance. This object height is based on a vehicle height of 1.33 m [4.35 ft], which represents the 15 th percentile of vehicle heights in the current passenger car population, less an allowance of $0.25 \mathrm{~m}[0.85 \mathrm{ft}]$, which represents a near-maximum value for the portion of the vehicle height that needs to be visible for another driver to recognize a vehicle as such (32). Passing sight distances calculated on this basis are also considered adequate for night conditions because headlight beams of an opposing vehicle generally can be seen from a greater distance than a vehicle can be recognized in the daytime. The choice of an object height equal to the driver eye height makes passing sight distance design reciprocal (i.e., when the driver of the passing vehicle can see the opposing vehicle, the driver of the opposing vehicle can also see the passing vehicle).

Intersection sight distance object-As in the case of passing sight distance, the object to be seen by the driver in an intersection sight distance situation is another vehicle. Therefore, design for intersection sight distance is based on the same object height used in design for passing sight distance, 1.08 m [3.50 ft].

Decision sight distance object-The $0.60-\mathrm{m}$ [2.00-ft] object-height criterion adopted for stopping sight distance is also used for decision sight distance. The rationale for applying this object height for decision sight distance is the same as for stopping sight distance.

Sight Obstructions

On a tangent roadway, the obstruction that limits the driver's sight distance is the road surface at some point on a crest vertical curve. On horizontal curves, the obstruction that limits the driver's sight distance may be the road surface at some point on a crest vertical curve or it may be some physical feature outside of the traveled way, such as a longitudinal barrier, a bridge-approach fill slope, a tree, foliage, or the backslope of a cut section. Accordingly, all highway construction plans should be checked in both the vertical and horizontal plane for sight distance obstructions.

Measuring and Recording Sight Distance

The design of horizontal alignment and vertical profile using sight distance and other criteria is addressed in Sections 3.3 through 3.5, including the detailed design of horizontal and vertical curves. Sight distance
should be considered in the preliminary stages of design when both the horizontal and vertical alignment are still subject to adjustment. By determining the available sight distances graphically on the plans and recording them at frequent intervals, the designer can review the overall layout and produce a more balanced design by minor adjustments in the plan or profile. Methods for scaling sight distances on plans are demonstrated in Figure 3-2, which also shows a typical sight distance record that would be shown on the final plans.

Because the view of the highway ahead may change rapidly in a short travel distance, it is desirable to measure and record sight distance for both directions of travel at each station. Both horizontal and vertical sight distances should be measured and the shorter lengths recorded. In the case of a two-lane highway, passing sight distance should be measured and recorded in addition to stopping sight distance.

Sight distance information, such as that presented in Figures 3-41 and 3-43, may be used to establish minimum lengths of vertical curves. Charts similar to Table 3-28 are useful for determining the radius of horizontal curve or the lateral offset from the traveled way needed to provide the design sight distance. Examining sight distances along the proposed highway may be accomplished by direct scaling. Sight distance can be easily determined where plans and profiles are drawn using computer-aided design and drafting (CADD) systems. The following discussion presents a method for scaling sight distances.

Horizontal sight distance on the inside of a curve is limited by obstructions such as buildings, hedges, wooded areas, high ground, or other topographic features. These are generally plotted on the plans. Horizontal sight is measured with a straightedge, as indicated in the upper left portion of Figure 3-2. The cut slope obstruction is shown on the worksheets by a line representing the proposed excavation slope at a point 0.84 m [2.75 ft$]$ above the road surface (i.e., the approximate average of 1.08 and $0.60 \mathrm{~m}[3.50$ and $2.00 \mathrm{ft}]$ for stopping sight distance and a point about $1.080 \mathrm{~m}[3.50 \mathrm{ft}]$ above the road surface for passing sight distance. The position of this line with respect to the centerline may be scaled from the plotted highway cross sections. Preferably, the stopping sight distance should be measured between points on one traffic lane and passing sight distance from the middle of the other lane.

Such refinement on two-lane highways generally is not needed and measurement of sight distance along the centerline or traveled-way edge is suitable. Where there are changes of grade coincident with horizontal curves that have sight-limiting cut slopes on the inside, the line-of-sight intercepts the slope at a level either lower or higher than the assumed average height. In measuring sight distance, the error in use of the assumed $0.84-$ or $1.08-\mathrm{m}$ [2.75- or $3.50-\mathrm{ft}]$ height usually can be ignored.

Vertical sight distance may be scaled from a plotted profile by the method illustrated at the right center of Figure 3-2. A transparent strip with parallel edges $1.08 \mathrm{~m}[3.50 \mathrm{ft}]$ apart and with a scratched line 0.60 m [2.00 ft] from the upper edge, in accordance with the vertical scale, is a useful tool. The lower edge of the strip is placed on the station from which the vertical sight distance is desired, and the strip is pivoted about this point until the upper edge is tangent to the profile. The distance between the initial station and the station on the profile intersected by the $0.60-\mathrm{m}[2.00-\mathrm{ft}]$ line is the stopping sight distance. The distance between the initial station and the station on the profile intersected by the lower edge of the strip is the passing sight distance.

A simple sight distance record is shown in the lower part of Figure 3-2. Sight distances in both directions are indicated by arrows and figures at each station on the plan and profile sheet of the proposed highway. To avoid the extra work of measuring unusually long sight distances that may occasionally be found, a selected maximum value may be recorded. In the example shown, all sight distances of more than 1000 m [$3,000 \mathrm{ft}]$ are recorded as $1000 \mathrm{~m}+[3,000 \mathrm{ft}+]$, and where this occurs for several consecutive stations, the intermediate values are omitted. Sight distances less than $500 \mathrm{~m}[1,500 \mathrm{ft}]$ may be scaled to the nearest $10 \mathrm{~m}[50 \mathrm{ft}]$ and those greater than $500 \mathrm{~m}[1,500 \mathrm{ft}]$ to the nearest 50 m [100 ft$]$. The available sight distances along a proposed highway also may be shown by other methods. Several states use a sight distance graph, plotted in conjunction with the plan and profile of the highway, as a means of demonstrating sight distances.

Sight distance records for two-lane highways may be used effectively to tentatively determine the marking of no-passing zones in accordance with criteria given in the MUTCD (22). Marking of such zones is an operational rather than a design responsibility. No-passing zones thus established serve as a guide for markings when the highway is completed. The zones so determined should be checked and adjusted by field measurements before actual markings are placed.

Sight distance records also are useful on two-lane highways for determining the percentage of length of highway on which sight distance is restricted to less than the passing minimum, which is important in evaluating capacity. With recorded sight distances, as in the lower part of Figure 3-2, it is a simple process to determine the percentage of length of highway with a given sight distance or greater.

3.3 HORIZONTAL ALIGNMENT

3.3.1 Theoretical Considerations

To achieve balance in highway design, all geometric elements should, as far as economically practical, be designed to operate at a speed likely to be observed under the normal conditions for that roadway for a vast majority of motorists. Generally, this can be achieved through the use of design speed as an overall design control. The design of roadway curves should be based on an appropriate relationship between design speed and curvature and on their joint relationships with superelevation (roadway banking) and side friction. Although these relationships stem from the laws of mechanics, the actual values for use in design depend on practical limits and factors determined more or less empirically. These limits and factors are explained in the following discussion.

When a vehicle moves in a circular path, it undergoes a centripetal acceleration that acts toward the center of curvature. This acceleration is sustained by a component of the vehicle's weight related to the roadway superelevation, by the side friction developed between the vehicle's tires and the pavement surface, or by a combination of the two. Centripetal acceleration is sometimes equated to centrifugal force. However, this is an imaginary force that motorists believe is pushing them outward while cornering when, in fact, they are truly feeling the vehicle being accelerated in an inward direction. In horizontal curve design, "lateral acceleration" is equivalent to "centripetal acceleration"; the term "lateral acceleration" is used in this policy as it is specifically applicable to geometric design.
at its junction with the major road. For simple unchannelized intersections involving low design speeds and stop or signal control, it may be desirable to warp the crowns of both roads into a plane at the intersection; the appropriate plane depends on the direction of drainage and other conditions. Changes from one cross slope to another should be gradual. Intersections at which a minor road crosses a multilane divided highway with a narrow median on a superelevated curve should be avoided whenever practical because of the difficulty in adjusting grades to provide a suitable crossing. Gradelines of separate turning roadways should be designed to fit the cross slopes and longitudinal grades of the intersection legs.

The alignment and grades are subject to greater constraints at or near intersections than on the open road. At or near intersections, the combination of horizontal and vertical alignment should provide traffic lanes that are clearly visible to drivers at all times, clearly understandable for any desired direction of travel, free from the potential for conflicts to appear suddenly, and consistent in design with the portions of the highway just traveled.

The combination of vertical and horizontal curvature should allow adequate sight distance at an intersection. As discussed in Section 3.5 on "Combinations of Horizontal and Vertical Alignment," a sharp horizontal curve following a crest vertical curve is undesirable, particularly on intersection approaches.

9.5 INTERSECTION SIGHT DISTANCE

9.5.1 General Considerations

Each intersection has the potential for several different types of vehicular conflicts. The possibility of these conflicts actually occurring can be greatly reduced through the provision of proper sight distances and appropriate traffic controls. The avoidance of conflicts and the efficiency of traffic operations still depend on the judgment, capabilities, and response of each individual driver.

Stopping sight distance is provided continuously along each highway or street so that drivers have a view of the roadway ahead that is sufficient to allow drivers to stop. The provision of stopping sight distance at all locations along each highway or street, including intersection approaches, is fundamental to intersection operation.

Vehicles are assigned the right-of-way at intersections by traffic-control devices or, where no trafficcontrol devices are present, by the rules of the road. A basic rule of the road, at an intersection where no traffic-control devices are present, requires the vehicle on the left to yield to the vehicle on the right if they arrive at approximately the same time. Sight distance is provided at intersections to allow drivers to perceive the presence of potentially conflicting vehicles. This should occur in sufficient time for a motorist to stop or adjust their speed, as appropriate, to avoid colliding in the intersection. The methods for determining the sight distances needed by drivers approaching intersections are based on the same principles as stopping sight distance, but incorporate modified assumptions based on observed driver behavior at intersections.

The driver of a vehicle approaching an intersection should have an unobstructed view of the entire intersection, including any traffic-control devices, and sufficient lengths along the intersecting highway to permit the driver to anticipate and avoid potential collisions. The sight distance needed under various
assumptions of physical conditions and driver behavior is directly related to vehicle speeds and to the resultant distances traversed during perception-reaction time and braking.

Sight distance is also provided at intersections to allow the drivers of stopped vehicles a sufficient view of the intersecting highway to decide when to enter the intersecting highway or to cross it. If the available sight distance for an entering or crossing vehicle is at least equal to the appropriate stopping sight distance for the major road, then drivers have sufficient sight distance to anticipate and avoid collisions. However, in some cases, a major-road vehicle may need to stop or slow to accommodate the maneuver by a minor-road vehicle. To enhance traffic operations, intersection sight distances that exceed stopping sight distances are desirable along the major road.

9.5.2 Sight Triangles

Specified areas along intersection approach legs and across their included corners should be clear of obstructions that might block a driver's view of potentially conflicting vehicles. These specified areas are known as clear sight triangles. The dimensions of the legs of the sight triangles depend on the design speeds of the intersecting roadways and the type of traffic control used at the intersection. These dimensions are based on observed driver behavior and are documented by space-time profiles and speed choices of drivers on intersection approaches (12). Two types of clear sight triangles are considered in intersection design-approach sight triangles and departure sight triangles.

Approach Sight Triangles

Each quadrant of an intersection should contain a triangular area free of obstructions that might block an approaching driver's view of potentially conflicting vehicles. The length of the legs of this triangular area, along both intersecting roadways, should be such that the drivers can see any potentially conflicting vehicles in sufficient time to slow or stop before colliding within the intersection. Figure 9-15A shows typical clear sight triangles to the left and to the right for a vehicle approaching an uncontrolled or yieldcontrolled intersection.

Approach Sight Triangles (Uncontrolled or Yield-Controlled)

- A -

Departure Sight Triangle for Viewing Trafic Approaching the Minor Road from the Left

Departure Sight Triangle for Viewing Traffic Approaching the Minor Road from the Right

Departure Sight Triangles (Stop-Controlled)

- B -

Figure 9-15. Intersection Sight Triangles

The vertex of the sight triangle on a minor-road approach (or an uncontrolled approach) represents the decision point for the minor-road driver (see Figure 9-15A). This decision point is the location at which the minor-road driver should begin to brake to a stop if another vehicle is present on an intersecting approach. The distance from the major road, along the minor road, is illustrated by the distance a_{1} to the left and a_{2} to the right as shown in Figure 9-15A. Distance a_{2} is equal to distance a_{1} plus the width of the lane(s) departing from the intersection on the major road to the right. Distance a_{2} should also include the width of any median present on the major road unless the median is wide enough to permit a vehicle to stop before entering or crossing the roadway beyond the median.

The geometry of a clear sight triangle is such that when the driver of a vehicle without the right-of-way sees a vehicle that has the right of way on an intersecting approach, the driver of that potentially conflicting vehicle can also see the first vehicle. Distance billustrates the length of this leg of the sight triangle. Thus, the provision of a clear sight triangle for vehicles without the right-of-way also permits the drivers of vehicles with the right-of-way to slow, stop, or avoid other vehicles, if needed.

Although desirable at higher volume intersections, approach sight triangles like those shown in Figure 9-15A are not needed for intersection approaches controlled by stop signs or traffic signals. In that case, the need for approaching vehicles to stop at the intersection is determined by the traffic control devices and not by the presence or absence of vehicles on the intersecting approaches.

Departure Sight Triangles

A second type of clear sight triangle provides sight distance sufficient for a stopped driver on a minor-road approach to depart from the intersection and enter or cross the major road. Figure 9-15B shows typical departure sight triangles to the left and to the right of the location of a stopped vehicle on the minor road. Departure sight triangles should be provided in each quadrant of each intersection approach controlled by stop or yield signs. Departure sight triangles should also be provided for some signalized intersection approaches (see Case D in Section 9.5.3 on "Intersection Control"). Distance a_{2} in Figure 9-15B is equal to distance a_{1} plus the width of the lane(s) departing from the intersection on the major road to the right. Distance a_{2} should also include the width of any median present on the major road unless the median is wide enough to permit a vehicle to stop before entering or crossing the roadway beyond the median. The appropriate measurement of distances a_{1} and a_{2} for departure sight triangles depends on the placement of any marked stop line that may be present and, thus, may vary with site-specific conditions.

The recommended dimensions of the clear sight triangle for desirable traffic operations where stopped vehicles enter or cross a major road are based on assumptions derived from field observations of driver gap-acceptance behavior (12). The provision of clear sight triangles like those shown in Figure 9-15B also allows the drivers of vehicles on the major road to see any vehicles stopped on the minor-road approach and to be prepared to slow or stop, if needed.

Identification of Sight Obstructions within Sight Triangles

The profiles of the intersecting roadways should be designed to provide the recommended sight distances for drivers on the intersection approaches. Within a sight triangle, any object at a height above the elevation of the adjacent roadways that would obstruct the driver's view should be removed or lowered, if practical. Such objects may include buildings, parked vehicles, highway structures, roadside hardware, hedges, trees, bushes, unmowed grass, tall crops, walls, fences, and the terrain itself. Particular attention should be given to the evaluation of clear sight triangles at interchange ramp/crossroad intersections where features such as bridge railings, piers, and abutments are potential sight obstructions.

The determination of whether an object constitutes a sight obstruction should consider both the horizontal and vertical alignment of both intersecting roadways, as well as the height and position of the object. In making this determination, it should be assumed that the driver's eye is $1.08 \mathrm{~m}[3.50 \mathrm{ft}]$ above the roadway surface and that the object to be seen is 1.08 m [3.50 ft$]$ above the surface of the intersecting road.

This object height is based on a vehicle height of 1.33 m [4.35 ft], which represents the 15 th percentile of vehicle heights in the current passenger car population less an allowance of 250 mm [10 in .]. This allowance represents a near-maximum value for the portion of a passenger car height that needs to be visible for another driver to recognize it as the object. The use of an object height equal to the driver eye height makes intersection sight distances reciprocal (i.e., if one driver can see another vehicle, then the driver of that vehicle can also see the first vehicle).

Where the sight-distance value used in design is based on a single-unit or combination truck as the design vehicle, it is also appropriate to use the eye height of a truck driver in checking sight obstructions. The recommended value of a truck driver's eye height is $2.33 \mathrm{~m}[7.6 \mathrm{ft}]$ above the roadway surface.

9.5.3 Intersection Control

The recommended dimensions of the sight triangles vary with the type of traffic control used at an intersection because different types of control impose different legal constraints on drivers and, therefore, result in different driver behavior. Procedures to determine sight distances at intersections are presented below according to different types of traffic control, as follows:

- Case A-Intersections with no control
- Case B-Intersections with stop control on the minor road
- Case B1—Left turn from the minor road
- Case B2-Right turn from the minor road
- Case B3-Crossing maneuver from the minor road
- Case C-Intersections with yield control on the minor road
- Case Cl -Crossing maneuver from the minor road
- Case C2—Left or right turn from the minor road
- Case D—Intersections with traffic signal control
- Case E-Intersections with all-way stop control
- Case F-Left turns from the major road

Case A-Intersections with No Control

For intersections not controlled by yield signs, stop signs, or traffic signals, the driver of a vehicle approaching an intersection should be able to see potentially conflicting vehicles in sufficient time to stop before reaching the intersection. The location of the decision point (driver's eye) of the sight triangles on each approach is determined from a model that is analogous to the stopping sight distance model, with slightly different assumptions.

While some perceptual tasks at intersections may need substantially less time, the detection and recognition of a vehicle that is a substantial distance away on an intersecting approach, and is near the limits of the driver's peripheral vision, may take up to 2.5 s . The distance to brake to a stop can be determined from the same braking coefficients used to determine stopping sight distance in Table 3-1.

Field observations indicate that vehicles approaching uncontrolled intersections typically slow to approximately 50 percent of their midblock running speed. This occurs even when no potentially conflicting vehicles are present (12). This initial slowing typically occurs at deceleration rates up to $1.5 \mathrm{~m} / \mathrm{s}^{2}\left[5 \mathrm{ft} / \mathrm{s}^{2}\right]$. Deceleration at this gradual rate has been observed to begin even before a potentially conflicting vehicle comes into view. Braking at greater deceleration rates, which can approach those assumed in stopping

California Manual on Uniform Traffic Control Devices

FHWA's MUTCD 2009 Edition, undurding Revisions 182 as amended for use in California.

2014 Edition
Revision 5 (fiarch 27, 2020)

State of California
 California State Pransportation Agency
 Department of Transportation

Sancil
CALIFORNIA STATE TRANSPORIATION AGENCY

CHAPTER 4F. PEDESTRIAN HYBRID BEACONS

Section 4F. 01 Application of Pedestrian Hybrid Beacons

Support:
ol A pedestrian hybrid beacon is a special type of hybrid beacon used to warn and control traffic at an unsignalized location to assist pedestrians in crossing a street or highway at a marked crosswalk.
01 A conventional traffic control signal operation with a standard signal face displaying green, yellow and red (steady and/or flashing red) indications, at a mid-block crosswalk is an altemative to the pedestrian hybrid beacon.
Option:
02 A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C), or at a location that meets traffic signal warrants under Sections 4C. 05 and/or 4C. 06 but a decision is made to not install a traffic control signal.
Standard:
03 If used, pedestrian hybrid beacons shall be used in conjunction with signs and pavement markings to warn and control traffic at locations where pedestrians enter or cross a street or highway. A pedestrian hybrid beacon shall only be installed at a marked crosswalk.

Guidance:

at If one of the signal warrants of Chapter 4C is met and a traffic control signal is justified by an engineering study, and if a decision is made to install a traffic control signal, it should be installed based upon the provisions of Chapters $4 D$ and $4 E$.
os If a traffic control signal is not justified under the signal warrants of Chapter 4C and if gaps in traffic are not adequate to permit pedestrians to cross, or if the speed for vehicles approaching on the major street is too high to permit pedestrians to cross, or if pedestrian delay is excessive, the need for a pedestrian hybrid beacon should be considered on the basis of an engineering study that considers major-street volumes, speeds, widths, and gaps in conjumction with pedestrian volumes, walking speeds, and delay.
${ }^{06}$ For a major street where the posted or statutory speed limit or the 85 th-percentile speed is 35 mph or less, the need for a pedestrian hybrid beacon should be considered if the engineering study finds that the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding total of all pedestrians crossing the major street for 1 hour (amy four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure $4 F$ - 1 for the length of the crosswalk.
${ }^{07}$ For a major street where the posted or statutory speed limit or the 85 th-percentile speed exceeds 35 mph , the need for a pedestrian hybrid beacon should be considered if the engineering study finds that the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding total of all pedestrians crossing the major street for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4F-2 for the length of the crosswalk.
08 For crosswalks that have lengths other than the four that are specifically shown in Figures 4F-I and 4F-2, the values should be interpolated between the curves.

Section 4F. 02 Design of Pedestrian Hybrid Beacons

Standard:

ol Except as otherwise provided in this Section, a pedestrian hybrid beacon shall meet the provisions of Chapters 4D and 4E.
02 A pedestrian hybrid beacon face shall consist of three signal sections, with a CIRCULAR YELLOW signal indication centered below two horizontally aligned CIRCULAR RED signal indications (see Figure 4F-3).
${ }_{03}$ When an engineering study finds that installation of a pedestrian hybrid beacon is justified, then:
A. At least two pedestrian hybrid beacon faces shall be installed for each approach of the major street,
B. A stop line shall be installed for each approach to the crosswalk,
C. A pedestrian signal head conforming to the provisions set forth in Chapter 4E shall be installed at each end of the marked crosswalk, and
D. The pedestrian hybrid beacon shall be pedestrian actuated.

Guidance:

o4 When an engineering study finds that installation of a pedestrian hybrid beacon is justified, then:
A. The pedestrian hybrid beacon should be installed at an intersection, or at the junction of a roadway with a driveway, or at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs,
B. Parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the marked crosswalk, or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance,
C. The installation should include suitable standard signs and pavement markings, and
D. If installed within a signal system, the pedestrian hybrid beacon should be coordinated.

05 On approaches having posted or statutory speed limits or 85 th-percentile speeds in excess of 35 mph and on approaches having Iraffic or operating conditions that would tend to obscure visibility of roadside hybrid beacon face locations, both of the minimum of two pedestrian hybrid beacon faces should be installed over the roadway.
${ }_{06}$ On multi-lane approaches having a posted or statutory speed limits or 85 th-percentile speeds of 35 mph or less, either a pedestrian hybrid beacon face should be installed on each side of the approach (if a median of sufficient width exists) or at least one of the pedestrian hybrid beacon faces should be installed over the roadway. 07 A pedestrian hybrid beacon should comply with the signal face location provisions described in Sections 4D. 11 through 4D. 16.
Standard:
08 A CROSSWALK STOP ON RED (symbolic circular red) (R10-23) sign (see Section 2B.53) shall be mounted adjacent to a pedestrian hybrid beacon face on each major street approach. If an overhead pedestrian hybrid beacon face is provided, the sign shall be mounted adjacent to the overhead signal face. Option:
:
09 A Pedestrian (WI 1-2) warning sign (see Section 2C.50) with an AHEAD (W16-9P) supplemental plaque may be placed in advance of a pedestrian hybrid beacon. A warning beacon may be installed to supplement the W11-2 sign.
Guidance:
10 If a warning beacon supplements a WI1-2 sign in advance of a pedestrian hybrid beacon, it should be programmed to flash only when the pedestrian hybrid beacon is not in the dark mode.

Standard:

"If a warning beacon is installed to supplement the W11-2 sign, the design and location of the warning beacon shall comply with the provisions of Sections 4L.01 and 4L.03.

Section 4F. 03 Operation of Pedestrian Hybrid Beacons
 Standard:

of Pedestrian hybrid beacon indications shall be dark (not illuminated) during periods between actuations.
02 Upon actuation by a pedestrian, a pedestrian hybrid beacon face shall display a flashing CIRCULAR yellow signal indication, followed by a steady CIRCULAR yellow signal indication, followed by both steady CIRCULAR RED signal indications during the pedestrian walk interval, followed by alternating flashing CIRCULAR RED signal indications during the pedestrian elemfomee change interval (see Figure 4F-3). Upon termination of the pedestrian clearance interval, the pedestrian hybrid beacon faces shall revert to a dark (not illuminated) condition.
03 Except as provided in Paragraph 4, the pedestrian signal heads shall continue to display a steady UPRAISED HAND (symbolizing DONT WALK) sigral indication when the pedestrian hybrid beacon faces are either dark or displaying flashing or steady CIRCULAR yellow signal indications. The pedestrian signal heads shall display a WALKING PERSON (symbolizing WALK) signal indication when the pedestrian hybrid beacon faces are displaying steady CIRCULAR RED signal indications. The pedestrian signal heads shall display a flashing UPRAISED HAND (symbolizing DONT WALK) signal indication when the pedestrian hybrid beacon faces are displaying alternating flashing CRRCULAR RED signal indications. Upon termination of the pedestrian clearance interval, the pedestrian signal heads shall revert to a steady UPRAISED HAND (symbolizing DONT WALK) signal indication.

[^0]: StreetName
 Federal Blvd

