RECIRCULATED DRAFT ENVIRONMENTAL IMPACT REPORT for the 2021-2029 Signal Hill Housing Element

SCH No. 2021050296

PREPARED FOR:

City of Signal Hill Community Development Department 2175 Cherry Avenue Signal Hill, CA 90755

PREPARED BY:

LOS ANGELES

706 S. Hill Street, 11th Floor Los Angeles, CA 90014

WESTLAKE VILLAGE

920 Hampshire Road, Suite A5 Westlake Village, CA 91361

January 2022

TABLE OF CONTENTS

Section	on	Page
Execu	tive Summary	ES-1
1.0	Introduction	1.0-1
2.0	Project Description	3.0-1
4.6	Hazards and Hazardous Materials	4.7-1
4.7	Land Use and Planning	4.9-1
6.0	Effects Found Not to be Significant	6.0-1
Apper	<u>ndices</u>	
F. Haz	zardous Materials Assessments	
F1	1a: Phase II Environmental Site Assessment, Town Center Northwest	
F1	11b: Human Health Risk Assessment, Town Center Northwest	
F1	11c: Review of Human Health Risk Assessment by OEHHA, Town Center Northwest	
	List of Figures	
Figure		Page
2.0-1	Conceptual Site Plan: Walnut Bluff	2.0-9
2.0-2	Conceptual Site Plan: Orange Bluff	2.0-10
2.0-3	Conceptual Site Plan: Town Center Northwest	2.0-11
2.0-4	Conceptual Site Plan: Heritage Square	2.0-12
	List of Tables	
	List of Tables	
<u>Table</u>		Page
4.7-1	SCAG 2020-2045 RTP/SCS Analysis	4.9-24
4.7-2	Project Consistency with General Plan Land Use Element	4.9-26
4.7-3	Project Consistency with Noise Element	4.9-29

1. PURPOSE OF THIS ENVIRONMENTAL IMPACT REPORT

This document is a *Recirculated* Draft Environmental Impact Report (EIR) with respect to the proposed 2021-2029 Housing Element (Project) that has been prepared by the City of Signa Hill (City). *Modifications* to the Draft EIR that have been made for this Recirculated Draft EIR are shown through formatting - bold italic type for insertions and strikethrough for deletions.

The California Environmental Quality Act (CEQA) requires that projects subject to an approval action by a public agency of the State of California, and that are not otherwise exempt or excluded, undergo an environmental review process to identify and evaluate potential impacts. Section 15050 of the CEQA Guidelines states that environmental review shall be conducted by the Lead Agency, defined in CEQA Guidelines Section 15367 as the public agency with principal responsibility for approving a project. The Project is subject to approval actions by the City, which is therefore Lead Agency for CEQA purposes.

In accordance with CEQA Guidelines Section 15123, this section of the Draft EIR provides a brief description of the Project; identifies significant effects and proposed mitigation measures or alternatives that would reduce or avoid those effects; and describes areas of controversy and issues to be resolved.

Under CEQA and the CEQA Guidelines, a lead agency must recirculate an EIR (or portions thereof) for additional public review and comment when "significant new information is added to the EIR after public notice is given of the availability of the Draft EIR for public review under [CEQA Guidelines] Section 15087 but before certification" of the EIR.

The specific new information to the Project that necessitated this recirculation is the correction to the building heights of the potential development that could occur at the housing sites as stated in the Draft EIR. In addition, typographic errors in the Draft EIR were corrected, notably the corrections of an error in Mitigation Measure MM HAZ-5 Install Methane Mitigation Systems Subslab of Proposed Buildings.

CEQA Guidelines Section15088.5 (c) states that if revisions are limited to a few chapters or portions of an EIR, then the lead agency need only recirculate the chapters or portions that have been modified. Accordingly, this Recirculated Draft EIR includes the Introduction, Project Description, Hazards, Land Use, and Effects Found Not Significant. The remainder of the previously circulated Draft EIR remain valid.

2. OVERVIEW OF THE PROPOSED PROJECT

Project Location

The Project applies to the entire City of Signal Hill. The Project also identifies specific housing availability sites within the City:

- Orange Bluff: located in the Central neighborhood adjacent to the City boundary to the south of East 28th Street between Orange Avenue and south of where East 27th Street terminates.
- Walnut Bluff: located north of E. Willow Street at 2653 Walnut Avenue in the Central neighborhood.
- Town Center Northwest: located northeast of the intersection of E. Willow Street and Walnut Avenue
 in the Central neighborhood. South and east of the site are developed commercial retail centers
 named Town Center West and Town Center North.
- Heritage Square: located northwest of the intersection of Cherry Avenue and E. Burnett Street near
 the City center in the Civic Center neighborhood. North of the site is E. Crescent Heights Street and
 west of the site is Rose Avenue. The Crescent Heights Historic District Residential Specific Plan is
 directly adjacent to the west.

Project Objectives

Section 15124(b) of the CEQA Guidelines states that "the statement of objectives should include the underlying purpose of the project." The underlying purpose of the Project is to update the Housing Element of the City's General Plan. Objectives of the Housing Element include:

- 1. Inspire a more diverse, sustainable, and balanced community through implementation of strategies and programs that will result in economically and socially diversified housing choices that preserve and enhance the special character of Signal Hill.
- 2. Facilitate a variety of Housing housing Strategies strategies to meet Housing Element Production production targets in a way that Complements complements the Existing existing Character character of the Community.
- 3. Identify adequate sites to accommodate the 6th Cycle RHNA allocation and the City's housing needs.
- 4. Provide adequate housing stock to meet the needs of extremely low-, very low-, low-, and moderate-income households and special-needs groups.
- 5. Development regulations that remove constraints to the maintenance, improvement, and development of housing.
- 6. Maintenance and improvement of affordable housing conditions.
- 7. Housing opportunities for all persons, regardless of race, religion, sex, marital status, ancestry, national origin, color, familial status, or disability.
- 8. Improve and preserve assisted housing developments for lower-income households.

Project Characteristics

The Project identifies programs and strategies to achieve the housing goals of the City. This includes the identification of housing sites that could accommodate the City's 2021-2029 Regional Housing Needs Allocation (RHNA). The four housing sites identified are expected to accommodate the following:

- 1. Walnut Bluff: up to 90 dwelling units within a multifamily development not to exceed four stories.
- 2. Orange Bluff: *up to* 290 dwelling units within a multifamily development *not to exceed* of up to 5 *five* stories.
- 3. Town Center Northwest: mixed-use development with approximately 22,000 square feet of retail and restaurant and *up to* 297 *ownership* dwelling units in a *wrap structure not to exceed five stories*.
- 4. Heritage Square: mixed-use development with *up to* 72 dwelling units *in ownership townhomes not to exceed three stories and two-story single-family dwellings*, an existing 14,000-square-foot market and 18,650 square feet of new retail and restaurant space.

To implement the new Housing Element, the City intends to enact zoning and planning *amendments* changes *either* concurrently, *or in advance of* with the adoption of the Housing Element. This EIR is intended to provide the evaluation required by CEQA for all these actions necessary to facilitate the development of new housing.

3. SUMMARY OF ALTERNATIVES

Section 15126.6(a) of the CEQA Guidelines requires an EIR to "describe the range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but will avoid or substantially lessen any of the significant effects of the Project and evaluate the comparative merits of the alternatives." The City considered a No Project Alternative, which would continue the housing sites under the existing regulatory framework; alternative housing site selection; and an alternative distribution of housing units between the selected housing sites. These alternatives would create variances in impact levels but would not avoid any of the significant effects of the Project and would not achieve the City's objectives as successfully as the Project.

_

¹ SCAG, 6th Cycle Final Regional Housing Needs Assessment Plan. https://scag.ca.gov/sites/main/files/file-attachments/6th-cycle-rhna-final-allocation-plan.pdf?1616462966 accessed May 2021.

4. SUMMARY OF ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Based on the Initial Study (see Appendix A), the City determined that preparation of an EIR was required to further evaluate potentially significant impacts related to: Air Quality, Cultural, Energy, Geology and Soils, Greenhouse Gas Emissions, Hazards and Hazardous Materials, Land Use, Noise, Population and Housing, Public Services, Transportation, and Tribal Cultural Resources. Impacts related to Aesthetics, Agricultural and Forestry Resources, Biology, Hydrology and Water Quality, Mineral Resources, Utilities and Service Systems, and Wildfire were determined to be less than significant and are not evaluated further in this Draft EIR. **Table 1-1: Summary of Findings** presents a summary of the findings of this EIR.

4. AREAS OF KNOWN CONTROVERSY

The State CEQA Guidelines² require that a EIR identify areas of controversy known to the Lead Agency, including issues raised by other agencies and the public. The level of development envisioned for the housing sites has been an area of controversy at public meetings.

5. ISSUES TO BE RESOLVED

The State CEQA Guidelines³ require that an EIR present issues to be resolved by the lead agency. These issues include the choice between alternatives and whether or how to mitigate potentially significant impacts. The major issue to be resolved by the City regarding the proposed Project is whether the City can achieve its RHNA goals through the Project.

ES-4

² California Public Resources Code, tit. 14, sec. 15123.

³ California Public Resources Code, tit. 14, sec. 15123(b)(3).

Table 1-1
Summary of Findings

Innect	Nitingtian Manager	Significance after Mitigation
Impact	Mitigation Measures	Significance after wintigation
Air Quality		
Threshold AQ-1 : Conflict with or obstruct implementation of the applicable air quality plan?	No mitigation measures required.	Less than significant.
Threshold AQ-2 : Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or State ambient air quality standard?	No mitigation measures required.	Less than significant.
Threshold AQ-3 : Expose sensitive receptors to substantial pollutant concentrations?	No mitigation measures required.	Less than significant.
Threshold AQ-4 : Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?	No mitigation measures required.	Less than significant.
Cultural		
Threshold CUL-1 : Cause a substantial adverse change in the significance of a historical resource pursuant to § 15064.5?	No mitigation measures required.	Less than significant.
Threshold CUL-2: Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?	See Section 4.12: Tribal Cultural Resources	Less than significant.
Energy		
Threshold ENE-1 : Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	No mitigation measures required.	Less than significant.
Threshold ENE-2 : Conflict with or obstruct a State or local plan for renewable energy or energy efficiency?	No mitigation measures required.	Less than significant.
Geology and Soils		
Threshold GEO-1 : Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:	No mitigation measures required.	Less than significant.
i. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known	No mitigation measures required.	Less than significant.

Impact	Mitigation Measures	Significance after Mitigation
fault? Refer to Division of Mines and Geology Special Publication 42.		
ii. Strong seismic ground shaking?	No mitigation measures required.	Less than significant.
Threshold GEO-3: Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?	No mitigation measures required.	Less than significant.
Threshold GEO-6: Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?	MM GEO-1: If paleontological resources are uncovered during construction activities, all ground-disturbing activities in the area of the find shall cease until a qualified paleontologist has evaluated the find, and identified the appropriate course of action in accordance with federal, state, and local The qualified paleontologist shall prepare a report according to current professional standards. The report shall be submitted to the City for review and approval. Project activities shall not proceed until the analysis and treatment of on-site paleontological resources has been approved by the City.	Less than significant.
Greenhouse Gas Emissions		
Threshold GHG-1 : Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?	No mitigation measures required.	Less than significant.
Threshold GHG-2 : Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?	No mitigation measures required.	Less than significant.
Hazards and Hazardous Materials		
the environment through the routine transport, use, or disposal of hazardous materials? Threshold HAZ-2: Create a significant hazard to the public or the environment through reasonably foreseeable upset and	A soil management plan should be prepared prior to any soil disturbance activities to be conducted onsite. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations. A South Coast Air Quality Management District (SCAQMD) Rule 1166 Permit and Compliance Plan should be obtained from the SCAQMD due to	Less than significant.
list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?	the presence of volatiles prior to the start of soil disturbance operations.	

Previously abandoned oil wells should be located, daylighted and methane gas leak tested prior to the installation of vent cones and vent risers pursuant to the City of Signal Hill's Oil and Gas Code §16.24.030 and §16.24.040. As the act of daylighting oil wells involves soil disturbance, monitoring for volatile organic compounds will be required under the R1166 permit/compliance plan. The R1166 permit limits the release of volatiles in soils to 50 parts per million by volume (ppmv) or less, however some volatiles will be released into the ambient atmosphere during these activities, decreasing the residual concentrations previously detected in site soils and soil vapor.

MM HAZ-3 Daylight Idle Oil Wells

Idle wells should be located, daylighted and abandoned in accordance with the State of California Department of Conservation, Geologic Energy Management Division (CalGEM) requirements and in accordance with the City of Signal Hill's Oil and Gas Code §16.22 and §16.24, and under the R1166 permit/compliance plan requirements.

MM HAZ-4 Daylight Abandoned Pipelines

Abandoned pipelines should be located, daylighted and removed in accordance with the Soil Management Plan and R1166 permit/compliance plan.

MM HAZ-5 Install Methane Mitigation Systems Subslab of Proposed Buildings

Institutional controls, i.e., a methane mitigation system to be installed subslab of any proposed buildings, pursuant to the City of Signal Hill's Oil and Gas Code §16.24.080 will effectively mitigate risks and hazards due to vapor intrusion to negligible conditions ensuring the site is safe for any future intended use including as a residential property. A redeveloped property precludes exposure to site soils by future residential occupants.

Methane mitigation subslab of proposed buildings is recommended based on the Methane Assessments. The methane mitigation system should consist of a subslab impervious membrane placed inbetween geotextile or geocloth to protect it from sand above and the 4" thick gravel blanket below in conformance with the City of Signal Hill Oil and Gas Code

Impact	Mitigation Measures	Significance after Mitigation
	§16.24.080 and City of Signal Hill Project Development Guide (June 2020). Perforated horizontal vent pipes should be placed in the 4" thick gravel blanket and tied into vertical vent risers (typically cast iron) placed inbetween the interior and exterior walls, less than 100-feet apart, extending a minimum of 3-feet above the roof line and should not terminate less than 10100-feet from any opening (City of Signal Hill June 2020).	
	Although designed to capture and vent methane to the atmosphere, other volatile organic compounds in the subsurface (both in the soil matrix and soil vapor) also will be captured and vented by this system.	
	MM HAZ-6 Include Vents in Impervious Pavement if Area is 5,000 Square Feet or Greater and Contiguous to Buildings If an impervious surface paving area is 5,000 square feet or greater and contiguous to the proposed buildings, the paving should have vents spaced less than 100-ft apart consisting of four sided concrete boxes with traffic rated grates and 4" thick gravel blanket at the base. The vents should be designed to prevent surface water infiltration.	
Land Use and Planning		
Threshold LU-2 : Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?	No mitigation measures required.	Less than significant.
Noise		
Threshold N-1 : Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	MM N-1 Construction Noise In the event construction noise levels increase to or within the "generally unacceptable" or "land use discouraged" land use compatibility for residential uses, the Applicant must utilize, without limitation, the following construction best management practices: • Shroud or shield all impact tools, and muffle or shield all intake and exhaust port on power equipment to reduce	Less than significant.
Threshold N-2 : Generation of excessive groundborne vibration or groundborne noise levels?	 construction noise by 10 dB or more. If feasible, schedule grading activities so as to avoid operating numerous pieces of heavy-duty off-road construction equipment (e.g., backhoes, dozers, excavators, loaders, or rollers) simultaneously in close 	

Less tha

Impact		Mitigation Measures	Significance after Mitigation
		 proximity to the boundary of properties of off-site noise sensitive receptors surrounding a Housing Site to reduce construction noise levels by approximately 5 to 10 dBA. Where feasible, temporary barriers including, without limitation, sound blankets on existing fences and walls, or freestanding portable sound walls, must be placed as close to the noise source or as close to the receptor as possible and break the line of sight between the source and receptor where modeled levels exceed applicable standards. 	
•	and Housing		
growth in a new home	POP-1 : Induce substantial unplanned population in area, either directly (for example, by proposing and businesses) or indirectly (for example, tension of roads or other infrastructure)?	No mitigation measures required.	Less than significant.
Public Servi	ices		
adverse phy or physicall physically a which could to maintain	PUB-1 : Would the project result in substantial viscal impacts associated with the provision of new y altered governmental facilities, need for new or ltered governmental facilities, the construction of d cause significant environmental impacts, in order acceptable service ratios, response times or other te objectives for any of the public services:		
(i)	Fire Protection?	No mitigation measures required.	Less than significant.
(ii)	Schools?	No mitigation measures required.	Less than significant.
(iii)	Parks?	No mitigation measures required.	Less than significant.
(iv)	Other Public Facilities?	No mitigation measures required.	Less than significant.
Transporta	tion		
Threshold TRA-1: Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities? Threshold TRA-2: Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?		No mitigation measures required. No mitigation measures required.	Less than significant. Less than significant.
Threshold 1	FRA-4 : Result in inadequate emergency access?	No mitigation measures required.	Less than significant.

Less tha

Impact		Mitigation Measures	Significance after Mitigation
Tribal Cultu	ral		
adverse cha defined in l site, feature defined in to place, or o	TRI-1 : Would the project cause a substantial inge in the significance of a tribal cultural resource, Public Resources Code section 21074 as either a e, place, cultural landscape that is geographically erms of the size and scope of the landscape, sacred bject with cultural value to a California Native ribe, and that is:		
(i)	Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or	No mitigation measures required.	Less than significant.
(ii)	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.	MM TCR-1. The project applicant/lead agency shall retain a Native American monitor from (or approved by) the Gabrieleño Band of Mission Indians – Kizh Nation (the "Kizh" or the "Tribe") - the direct lineal descendants of the project location. The monitor shall be retained prior to the commencement of any "ground-disturbing activity" for the subject project, at all project locations (i.e., both on-site and any off-site locations that are included in the project description/definition and/or required in connection with the project, such as public improvement work). "Ground-disturbing activity" includes, but is not limited to, pavement removal, potholing, auguring, grubbing, tree removal, boring, grading, excavation, drilling, and trenching.	Less than significant.
		A copy of the executed monitoring agreement shall be provided to the lead agency prior to the earlier of the commencement of any ground-disturbing activity for the project, or the issuance of any permit necessary to commence a ground-disturbing activity.	
		The project applicant/developer shall provide the Tribe with a minimum of 30 days advance written notice of the commencement of any project ground-disturbing activity so that the Tribe has sufficient time to secure and schedule a monitor for the project.	
		The project applicant/developer shall hold at least one (1) preconstruction sensitivity/educational meeting prior to the commencement of any ground-disturbing activities, where at a senior member of the Tribe will inform and educate the project's construction and managerial crew and staff members (including	

any project subcontractors and consultants) about the TCR mitigation measures and compliance obligations, as well as places of significance located on the project site (if any), the appearance of potential TCRs, and other informational and operational guidance to aid in the project's compliance with the TCR mitigation measures.

The monitor will complete daily monitoring logs that will provide descriptions of the relevant ground disturbing activities, the type of construction activities performed, locations of ground-disturbing activities, soil types, cultural-related materials, and any other facts, conditions, materials, or discoveries of significance to the Tribe.

Monitor logs will identify and describe any discovered TCRs, including but not limited to, Native American cultural and historical artifacts, remains, places of significance, etc., (collectively, tribal cultural resources, or "TCR"), as well as any discovered Native American (ancestral) human remains and burial goods. Copies of monitor logs will be provided to the project applicant/lead agency upon written request.

Native American monitoring for the project shall conclude upon the latter of the following: (1) written confirmation from a designated project point of contact to the Tribe that all ground-disturbing activities and all phases that may involve ground-disturbing activities on the project site and at any off-site project location are complete; or (2) written notice by the Tribe to the project applicant/lead agency that no future, planned construction activity and/or development/construction phase (known by the Tribe at that time) at the project site and at any off-site project location possesses the potential to impact TCRs.

MM TCR-2. Upon the discovery of a TCR, all construction activities in the immediate vicinity of the discovery (i.e., not less than the surrounding 50 feet) shall cease. The Tribe shall be immediately informed of the discovery, and a Kizh monitor and/or Kizh archaeologist will promptly report to the location of the discovery to evaluate the TCR and advise the project manager regarding the matter, protocol, and any mitigating requirements. No project construction activities shall resume in the surrounding 50 feet of the discovered TCR unless and until the Tribe has

completed its assessment/evaluation/recovery of the discovered TCR and surveyed the surrounding area.

The Tribe will recover and retain all discovered TCRs in the form and/or manner the Tribe deems appropriate in its sole discretion, and for any purpose the Tribe deems appropriate, including but not limited to, educational, cultural and/or historic purposes.

If Native American human remains and/or grave goods are discovered or recognized on the project site or at any off-site project location, then all construction activities shall immediately cease. Native American "human remains" are defined to include "an inhumation or cremation, and in any state of decomposition or skeletal completeness." (Pub. Res. Code § 5097.98 (d)(1).) Funerary objects, referred to as "associated grave goods," shall be treated in the same manner and with the same dignity and respect as human remains. (Pub. Res. Code § 5097.98 (a), d)(1) and (2).)

Any discoveries of human skeletal material or human remains shall be immediately reported to the County Coroner (Health & Safety Code § 7050.5(c); 14 Cal. Code Regs. § 15064.5(e)(1)(B)), and all ground-disturbing project ground-disturbing activities on site and in any other area where the presence of human remains and/or grave goods are suspected to be present, shall immediately halt and remain halted until the coroner has determined the nature of the remains. (14 Cal. Code Regs. § 15064.5(e).) If the coroner recognizes the human remains to be those of a Native American or has reason to believe they are Native American, he or she shall contact, within 24 hours, the Native American Heritage Commission, and Public Resources Code Section 5097.98 shall be followed.

Thereafter, construction activities may resume in other parts of the project site at a minimum of 200 feet away from discovered human remains and/or grave goods, if the Tribe determines in its sole discretion that resuming construction activities at that distance is acceptable and provides the project manager express consent of that determination (along with any other mitigation measures the Tribal monitor and/or archaeologist deems necessary). (14 Cal. Code Regs. § 15064.5(f).)

Preservation in place (i.e., avoidance) is the preferred manner of treatment for discovered human remains and/or grave goods. Any historic archaeological material that is not Native American in origin (non-TCRs) shall be curated at a public, non-profit institution with a research interest in the materials, such as the Natural History Museum of Los Angeles County or the Fowler Museum, if such an institution agrees to accept the material. If no institution accepts the archaeological material, it shall be offered to a local school or historical society in the area for educational purposes.

MM TCR-3. Any discovery of human remains and/or grave goods discovered and/or recovered shall be kept confidential to prevent further disturbance.

As the Most Likely Descendant ("MLD"), the Koo-nas-gna Burial Policy shall be implemented for all discovered Native American human remains and/or grave goods. Tribal Traditions include, but are not limited to, the preparation of the soil for burial, the burial of funerary objects and/or the deceased, and the ceremonial burning of human remains.

If the discovery of human remains includes four (4) or more burials, the discovery location shall be treated as a cemetery and a separate treatment plan shall be created.

The prepared soil and cremation soils are to be treated in the same manner as bone fragments that remain intact. Associated "grave goods" (aka, burial goods or funerary objects) are objects that, as part of the death rite or ceremony of a culture, are reasonably believed to have been placed with individual human remains either at the time of death or later, as well as other items made exclusively for burial purposes or to contain human remains. Cremations will either be removed in bulk or by means necessary to ensure complete recovery of all sacred materials.

In the case where discovered human remains cannot be fully recovered (and documented) on the same day, the remains will be covered with muslin cloth and a steel plate that can be moved by heavy equipment placed over the excavation opening to protect the remains. If this type of steel plate is not available, a 24-hour guard should be posted outside of working hours. The

Tribe will make every effort to divert the project while keeping the remains in situ and protected. If the project cannot be diverted, it may be determined that burials will be removed.

In the event preservation in place is not possible despite good faith efforts by the project applicant/developer and/or landowner, before ground-disturbing activities may resume on the project site, the landowner shall arrange a designated site location within the footprint of the project for the respectful reburial of the human remains and/or ceremonial objects. The site of reburial/repatriation shall be agreed upon by the Tribe and the landowner, and shall be protected in perpetuity.

Each occurrence of human remains and associated grave goods will be stored using opaque cloth bags. All human remains, grave goods, funerary objects, sacred objects and objects of cultural patrimony will be removed to a secure container on site if possible. These items will be retained and shall be reburied within six months of recovery.

The Tribe will work closely with the project's qualified archaeologist to ensure that the excavation is treated carefully, ethically and respectfully. If data recovery is approved by the Tribe, documentation shall be prepared and shall include (at a minimum) detailed descriptive notes and sketches. All data recovery data recovery-related forms of documentation shall be approved in advance by the Tribe. If any data recovery is performed, once complete, a final report shall be submitted to the Tribe and the NAHC. The Tribe does NOT authorize any scientific study or the utilization of any invasive and/or destructive diagnostics on human remain

1. PURPOSE OF THIS ENVIRONMENTAL IMPACT REPORT

The California Environmental Quality Act (CEQA) (California Public Resources Code [PRC] Sections 21000, et seq.), and its implementing guidelines (14 CCR 15000 et seq., hereinafter "CEQA Guidelines"), requires that lead agencies consider the potential environmental consequences of projects over which they have discretionary approval authority prior to taking approval action on such projects.

The subject of this Draft EIR is the proposed update to the Housing Element of the General Plan of the City of Signal Hill. The update to the Housing Element constitutes a "Project" as defined in CEQA Guidelines Section 15378.

CEQA defines "Lead Agency" as the public agency with primary responsibility for approving a project and thus has primary responsibility for ensuring compliance with the CEQA process. The City of Signal Hill (City) is the "Lead Agency" for this document.

A lead agency may prepare an Environmental Impact Report (EIR) for any project that is considered to may have a significant impact on the environment. As described in CEQA Guidelines Sections 15168(a)(b), an EIR is an informational document that will inform public agency decision-makers and the public of the significant environmental effects of a project, identify possible ways to minimize any significant effects, and describe reasonable project alternatives. Public agencies shall consider the information in the EIR, along with other information that may be presented to the agency, prior to approving the Project.

Under CEQA and the CEQA Guidelines, a lead agency must recirculate an EIR (or portions thereof) for additional public review and comment when "significant new information is added to the EIR after public notice is given of the availability of the Draft EIR for public review under [CEQA Guidelines] Section 15087 but before certification" of the EIR. "Significant new information" added to an EIR requires recirculation when that information discloses any of the following:

- (1) A new significant environmental impact would result from the project or from new mitigation measure proposed to be implemented.
- (2) A substantial increase in the severity of an environmental impact would result unless mitigation measures are adopted that reduce the impact to a level of insignificance.
- (3) A feasible project alternative or mitigation measure considerably different from others previously analyzed would clearly lessen the environmental impacts of the project, but the project's proponents decline to adopt it.

(4) The draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded. CEQA Guidelines Section 15088.5(a) also indicates the term "information," as used therein, may include

CEQA Guidelines Section15088.5 (c) states that if revisions are limited to a few chapters or portions of an EIR, then the lead agency need only recirculate the chapters or portions that have been modified. Accordingly, this Recirculated Draft EIR includes the Introduction, Project Description, Hazards, Land Use, and Effects Found Not Significant. The remainder of the Draft EIR remains valid.

In accordance with state mandates, the City has prepared and re-circulated this RDEIR pursuant to CEQA Guidelines Section 15088.5, Subdivision (g).

2. ENVIRONMENTAL REVIEW PROCESS

The CEQA Guidelines define a process for environmental review that includes a series of steps that must be completed prior to any action taken by the Lead Agency on a project.

Scoping Process

An Initial Study was prepared for the proposed Project and released with a Notice of Preparation (NOP) for a 30-day public review period during May and June, 2021. A virtual scoping meeting was held in May to receive public comment. The Initial Study, NOP, and comment letters are included in **Appendix A** of this Draft EIR.

The City determined through the Initial Study that the proposed Project would result in less than significant impacts with respect to aesthetics; agricultural and forestry resources; biological resources; hydrology/water quality; mineral resources; recreation; utilities/service systems; and wildfire. Therefore, these areas are not analyzed further in this Draft EIR. For a complete discussion of the environmental issues that were scoped out from this Draft EIR, refer to **Section 6.0: Effects Found Not to be Significant.**

Review and Comment on the Recirculated Draft Environmental Impact Report

CEQA requires that the Lead Agency provide the public and agencies the opportunity to review and comment on the Draft EIR. This Draft EIR was will be published and distributed for a 45-day review period starting September 30, 2021 and ending November 15, 2021. The Recirculated Draft EIR was published and distributed for a 45-day review period starting January 28, 2022 and ending March 14, 2022.

Copies of this *Recirculated* Draft EIR have been sent to the State Clearinghouse, responsible agencies, other agencies that have commented on the NOP, and to all interested parties that have requested notice and copies of the Draft EIR.

The Draft EIR and the Recirculated Draft EIR is also available for review at the following locations:

- In person at Signal Hill City Hall Community Development Department located at 2175 Cherry Avenue, Signal Hill, CA 90755; and
- Online at the City's "Public Notices & Press Releases" webpage at https://www.cityofsignalhill.org/306/Public-Notices-Press-Releases and on the "General Plan" Planning webpage at https://www.cityofsignalhill.org/85/General-Plan.

Interested individuals, organizations, responsible agencies, and other agencies can provide written comments about the *Recirculated* Draft EIR addressed to:

• Erika Ramirez, Planning Manager, City of Signal Hill Community Development Department 2175 Cherry Avenue, Signal Hill, CA 90755 or eramirez@cityofsignalhill.org.

When submitting comments, please note "Housing Element Update EIR" in the subject line and include the name of the contact person within the commenting agency (if applicable).

After completion of the review period, a Final EIR will be prepared that includes responses to comments submitted on the Draft EIR and any necessary corrections or additions to the Draft EIR. The Final EIR will be made available to agencies and the public prior to the City's determination on the Project. Once the Final EIR is complete, the City may certify the Final EIR, prepare Findings, adopt a mitigation monitoring and reporting program, and issue a Notice of Determination, which is the final step in the CEQA process.

Following the 45-day public review period, the City will prepare responses to the written comments received during the recirculation period that relate to the revised and recirculated portions of the current RDEIR, as well as written comments received during the initial circulation period that relate to the portions of the DEIR that have not been recirculated and will compile the comments and responses into a Final EIR.

3. ORGANIZATION OF THE <u>RECIRCULATED</u> DRAFT-EIR

As stated, a principal objective of CEQA is to ensure that the environmental review process be a public one. In meeting this objective, a EIR informs members of the public, reviewing agencies, and decision-makers of the physical impacts associated with a project. Sections of the *Recirculated* Draft EIR are organized as follows:

Executive Summary provides a summary of the Project, impacts, mitigation measures and alternatives.

Section 1: Introduction reviews the purpose, scope and organization of the document.

Section 2: Project Description presents a description of the proposed Project including the objectives, locations, components and characteristics.

Section 3: Environmental Setting provides a summary of the context within which the Project would occur.

Section 4: Environmental Impact Analysis presents the existing conditions, Project impact analysis, mitigation measures, and conclusions regarding the level of significance after mitigation. *The Recirculated Draft EIR contains just the Land Use and Hazards sections from the original Draft EIR*.

Section 5: Alternatives discusses alternatives to the proposed Project that have been developed and analyzed to provide additional information on ways to avoid or lessen the impacts of the Project.

Section 6: Effects Found Not to be Significant provides a summary of those topics that were determined not to be significant during the scoping process.

Section 7: Other Environmental Considerations provides a discussion of significant unavoidable impacts that would result from the Project and the reasons why the Project is being proposed notwithstanding the significant unavoidable impacts. An analysis of the significant irreversible changes in the environment and potential secondary effects that would result from the Project is also presented here. This section also analyzes potential growth—inducing impacts of the Project and potential secondary effects caused by the implementation of the mitigation measures for the Project.

Section 8: References lists the principal documents, reports, maps, and other information sources referenced in this Draft EIR.

Section 9: Preparers of the EIR and Persons Consulted lists persons involved in the preparation of this Draft EIR or who contributed information incorporated into this Draft EIR.

Appendices to this Draft EIR include the Initial Study, NOP, and written comments, as well as technical reports and data used and referenced in the Draft EIR.

1. INTRODUCTION

As stated in Section 15124 of the CEQA Guidelines, the Project Description of a EIR must contain the location and boundaries of the project; a statement of the project objectives sought; a general description of the project's characteristics; and a brief description of the intended uses of the EIR. This Section identifies such required information.

2. LOCATION

The Project applies to the entire City. The City of Signal Hill is located in Los Angeles County, generally in the southern area of the greater Los Angeles Metropolitan Area. The City is surrounded by the City of Long Beach and is just over two square miles in area.

The City is regionally accessible from Interstate 405 (San Diego Freeway) which is located to the immediate North. Also, Cherry Avenue and Pacific Coast Highway provide access to the City. The City is approximately three miles north of the large Port of Long Beach and 22 miles south of Downtown Los Angeles.

The Project also identifies specific housing availability sites within the City:

- Orange Bluff: located between Orange Avenue on the west and Gundry Avenue on the east, between
 East 28th Street on the north and East 27th Street where it terminates at Gundry Avenue on the
 south in the Central neighborhood adjacent to the City boundary to the south of East 28th Street
 between Orange Avenue and south of where East 27th Street terminates.
- Walnut Bluff: located north of E. Willow Street at 2653 Walnut Avenue in the Central neighborhood.
- Town Center Northwest: located northeast of the intersection of East Willow Street and Walnut
 Avenue in the Central neighborhood. South and east of the site are developed commercial retail
 centers named Town Center West and Town Center North.
- Heritage Square: located northwest of the intersection of Cherry Avenue and East Burnett Street near
 the City center in the Civic Center neighborhood. North of the site is E. Crescent Heights Street and
 west of the site is Rose Avenue. The Crescent Heights Historic District Residential Specific Plan
 neighborhood is directly adjacent to the west.

3. PROJECT OBJECTIVES

California State law requires each county and city to adopt a General Plan for the physical development of the county or city, and any land outside its boundaries which in the planning agency's judgement bears relation to its planning. According to the 2017 General Plan Guidelines, all counties and cities are required to adopt seven mandatory elements, including land use, circulation, housing, conservation, open space, noise, and safety. Two additional elements, air quality and environmental justice, are also required for certain local jurisdictions. ²

The Housing Element establishes the goals, objectives, policies and programs that serves as the foundation for the city's housing strategy to achieve specific housing goals and improve local housing conditions. The Housing Element also identifies a city's housing conditions and needs using the Regional Housing Needs Assessment (RHNA) allocation provided by the regional Metropolitan Planning Organizations (MPOs).

The City has identified the following Project objectives:

- 1. Inspire a more diverse, sustainable, and balanced community through implementation of strategies and programs that will result in economically and socially diversified housing choices that preserve and enhance the special character of Signal Hill.
- 2. Facilitate a Variety of Housing Strategies to meet Housing Element Production Targets in a way that Complements the Existing Character of the Community.
- 3. Identify adequate sites to accommodate the 6th Cycle RHNA allocation and the City's housing needs.
- 4. Provide adequate housing stock to meet the needs of extremely low-, very low-, low-, and moderate-income households and special-needs groups.
- 5. Development regulations that remove constraints to the maintenance, improvement, and development of housing.
- 6. Maintenance and improvement of affordable housing conditions.
- 7. Housing opportunities for all persons, regardless of race, religion, sex, marital status, ancestry, national origin, color, familial status, or disability.

2-2

8. Improve and preserve assisted housing developments for lower-income households.

¹ Government Code Section 65300.

² Government Code Section 65302.

4. PROJECT CHARACTERISTICS

Housing Strategy

The Project includes the following programs to address the State requirements for a Housing Element:

- 1. Identify Sites to Accommodate the City's Share of the Regional Housing Need
- 2. Assist the Development of Lower Income and Moderate-Income Housing
- 3. Remove Governmental and Nongovernmental Constraints to Housing
- 4. Conserve and Improve the Existing Stock of Affordable Housing
- 5. Promote Housing Opportunities for All/Affirmatively Furthering Fair Housing

Of these programs, the identification of housing sites is likely to cause a reasonably foreseeable physical change in the environment and therefore is the subject of the analysis in this DEIR. The policies identified to implement this program, include designating the sites that would provide a variety of housing, specifically housing to meet the Regional Housing Needs, and implement policy actions such as specific plans, zone changes and general plan amendments that would enable the development of those sites.

For the 2021-2029 Planning Period, the Southern California Association of Governments (SCAG) Regional Housing Needs Allocation (RHNA) for the City identified a housing need of 517 housing units to include 161 very low-income units, 78 low-income units, 90 moderate-income units, and 188 above moderate-income units.³ To ensure sufficient capacity is available to meet the RHNA allocation for the Housing Element planning period, the HCD recommends the cities allocate at least 15 to 30 percent additional units in capacity than the required inventory stipulated by the RHNA allocation. Consistent with this recommendation, four potential candidate housing inventory sites (Housing Site) have been identified in the 2021-2029 Housing Element with a residential development capacity to accommodate up 724 units.

Housing Sites

The Housing Element is required to identify housing sites that are adequate in size, zoned appropriately and could feasibly be developed with the allocated housing. The City lacks adequately sized sites that are already zoned residential and could be further developed. As such, the City has conducted an extensive assessment of sites within the City and collaborated with Signal Hill Petroleum, the largest land owner within the City, to identify sites that could accommodate the RHNA allocation. The sites that have been identified are considered non-vacant due to the presence of existing oils wells are not for residential uses. As such, the Project includes planned rezoning of the sites and the abandonment of the existing wells.

_

³ SCAG, 6th Cycle Final Regional Housing Needs Assessment Plan. https://scag.ca.gov/sites/main/files/file-attachments/6th-cycle-rhna-final-allocation-plan.pdf?1616462966. Accessed May 2021.

The four sites that have been identified as described below. A potential housing capacity for each site was determined based on a likely development scenario. Implementation actions that the City would undertake as part of the Project were then identified for each site.

1. Walnut Bluff

Housing Site Condition

Walnut Bluff is located *in the Central neighborhood of the City,* north of *East* Willow Street at 2653 Walnut Avenue, Signal Hill, CA 90755 (APN# 7212-010-038). The *rectangular* site is located in the Central neighborhood of the City and has approximately 2 acres identified for potential residential development. The rectangular site *and* borders other commercial development to the east and north, with Walnut Avenue to the east of the site and *East* Willow Street to the south of the site. The existing site is vacant aside from four active oil and gas wells (two of which have idle status), four abandoned wells, and limited vegetation.

Surrounding Environment

The Walnut Bluff Housing Site is located on mostly vacant land occupied by a few buildings and active drilling rigs and associated equipment. Adjacent to the north North of the Housing Site there is a light industrial building and north of that is a newer two-story office building., located on 27th Street, is the The Signal Hill Police Department is located farther north on 27th Street, which is approximately 450 feet away. Directly south South of the Housing Site, across adjacent to East Willow Street, there are several multi-family residential structures and southeast across Willow Street is the Town Center West commercial center. Directly to the east across Walnut Avenue there is an oil well drilling site surrounded by a large oil facilities storage yard which is undeveloped but is the proposed future location of the Town Center Northwest mixed-use housing and commercial development site (discussed below). is more vacant land that has been disturbed by oil and drilling activities. The area is mostly vacant with the exception of the drilling rigs present. East of the Housing Site, which runs parallel to Walnut Avenue, is vacant, open space that is also occupied by more drilling rigs. West of the Housing Site are light industrial business is a woodworking shop, Interior Workshop, and the LA County Office of the Assessor, which is approximately 0.2 miles away and is located parallel to Gundry Avenue. Cherry Avenue, one block to the east, is classified as a High-Quality Transit Corridor, with stops for multiple bus lines at the intersection of Willow Steet and Cherry Avenue.4

_

⁴ Southern California Association of Governments, <u>Connect SoCal</u>: <u>The 2020-2045 Regional Transportation Plan/ Sustainable Communities Strategy, Data/Map Book, City of Signal Hill, Draft November 2019.</u>

Housing Potential

The Walnut Bluff Housing Site is anticipated to accommodate 90 dwelling units within a multifamily development. The Walnut Bluff Housing Site is zoned CI and the General Plan designation is Commercial Industrial. As part of the Project, the City intends to adopt a zone change to Special Purpose Housing (SP-7) Specific Plan, and a General Plan amendment to Very High Density Residential (35-45 dwelling units per acre). Building heights after rezoning would be limited to 2 stories or heights comparable to existing surrounding development. Building height after rezoning could be up to 4-stories.

2. Orange Bluff

Housing Site Condition

Orange Bluff is located between Orange Avenue on the west and Gundry Avenue on the east, between East 28th Street on the north and East 27th Street where it terminates at Gundry Avenue on the south in the Central neighborhood adjacent to the City boundary south of East 28th Street between Orange Avenue and extending just south of where East 27th Street dead ends into the property from the east (APN #s: 7212-008-049, -051, and 7212-010-010, -014, -015, -018, -019, -029). Development north and east of the site are mostly Commercial Office and Light Industrial sites, with a few intermittent vacant sites. The area set aside for residential development is approximately 7.1 acres. The existing site and is mostly vacant; however, the center of the site is developed with a Light Industrial building. Scattered about the site are remnants of previous developments including foundations and paved areas, with limited vegetation.

Surrounding Environment

The Orange Bluff Housing Site is near both the Walnut Bluff and the Town Center Northwest Housing Sites. The site is-extends across several areas of existing Commercial Office and Light Industrial zoned properties space along the western edge of the City. North of the Housing Site, along 28th Street, is a glass and mirror shop and I-Light I-Industrial facility. South of the Housing Site, along Willow Street, is an industrial center that includes the Everson Spice facility. PGA William Synnegh, Golf Academy, a recreational facility. Gundry Avenue runs along the eastern side of the Housing Site. The northeastern side of the Housing Site has several commercial properties such as an autobody shop, auto parts store, and painters, while the southeastern side has a woodworking shop called Interior Workshop and the LA County Office of the Assessor, a tax assessor. West of the Housing Site, near the intersection of Orange Avenue and Willow Street is the Long Beach Municipal Cemetery. On the northwestern portion, towards 28th Street, is the

Willow Springs Park. Cherry Avenue, three blocks to the east, is classified as a High-Quality Transit Corridor, with stops for multiple bus lines at the intersection of Willow Steet and Cherry Avenue.⁵

Housing Potential

The Orange Bluff site is expected to accommodate 290 dwelling units and would include resident amenities and open space typical of a multi-family complex. The Orange Bluff existing zoning is CI. The General Plan designation is Commercial Industrial. As part of the Project, the City intends to rezone the site to Special Purpose Housing (SP-7). Building heights after rezoning would be limited to 2 stories or heights comparable to existing surrounding development. Building height after rezoning could be up to five stories.

3. Town Center Northwest

Housing Site Condition

Town Center Northwest is located northeast of the intersection of Willow Street and Walnut Avenue (APN #: 7212-011-034). South and east of the site are developed commercial retail centers named Town Center West and Town Center North. To the north there are Light Industrial sites. The area set aside for residential development is approximately 7.4 acres. The existing site contains one of seven drill sites in the City housing eleven injection wells (three of which have idle status). There are also approximately fourteen active oil and gas wells (9 of which have idle status) outside of the drill site area, approximately ten abandoned wells, and limited vegetation. The area outside of the fenced drill site is currently used for storage of oil field related equipment.

Surrounding Environment

The Town Center Northwest Housing Site is adjacent parallel to the Walnut Bluff Housing Site across Walnut Avenue to the east. As mentioned, the site contains one drill site. Gaviota Avenue runs north of the Housing Site. Also north of the Housing Site is Gregg Drilling LLC, a drilling contractor, is adjacent to the north of the Housing Site on Walnut Avenue. and Ancon Services, an oil and natural gas company is also adjacent to the north along Gundry Avenue. South of the Housing Site, along Willow Street, is a shopping center with several amenities: grocery store, chain coffee shops, and restaurants. Immediately east of the Housing Site is another shopping center with a dollar store, takeout restaurant, and a cellphone store and a trucking yard. West of the housing site across Along Walnut Avenue, west of the Housing Site, there are two office buildings and as mentioned on the northwest corner of Walnut Avenue and East Willow Street is the Walnut Bluff Housing Site that is mostly vacant. space and a construction company.

2-6 Recirculated Draft EIR 2021-2029 Housing Element January 2022

Southern California Association of Governments, Connect SoCal: The 2020-2045 Regional Transportation Plan/ Sustainable Communities Strategy, Data/Map Book, City of Signal Hill, Draft November 2019.

Cherry Avenue, to the east, is classified as a High-Quality Transit Corridor, with stops for multiple bus lines at the intersection of Willow Steet and Cherry Avenue.⁶

Housing Potential

The Town Center Northwest House Site is anticipated to be developed as mixed-use, with approximately 22,000 square feet of retail and restaurant uses along Willow Street and *up to* 297 dwelling units *in a wrap structure on* within-the northern portion of the site *along* fronting on Walnut Avenue. The Town Center Northwest Housing Site existing zoning is *zoned* Commercial Corridor Specific Plan (SP-6). The General Plan designation is Town Center. As part of the Project, the site would be rezoned to a Town Center Northwest (*SP-24*SP-21) Specific Plan. Building heights after rezoning would be limited to a *maximum of five stories*. 2 stories or heights comparable to existing surrounding development.

4. Heritage Square

Housing Site Condition

Heritage Square is located near the City center in the Civic Center neighborhood, northwest of the intersection of Cherry Avenue and Burnett Street. North of the site is Crescent Heights Street and west of the site is Rose Avenue (APN #s: 7213-006-014, -015, -019, -020). The Crescent Heights Historic District residential Specific Plan is directly2 adjacent to the west. ∓

This site is approximately 8.8 acres in size and is bisected by Gardena Avenue. The site contains an existing commercial retail use ("Mother's Market & Kitchen"). There are also four active oil and gas wells, six abandoned wells, and limited vegetation.

Surrounding Environment

The Heritage Square Housing Site is located in an area that has been mostly disturbed by drilling activities. To the north North of the Housing Site is a shopping center, which is approximately 0.1 miles away. It has a health food store, Mother's Market and Kitchen, and an EVgo Charging Station. South of the Housing Site on East Burnett Street is vacant a lot of land that is has been mostly vacant and utilized for drilling activities. The City's Heritage Point view park in under construction directly south of East Burnett Street. To the east is across Cherry Avenue, which runs parallel to the Housing Site is the Town Center East Shopping Center which contains a Home Depot and Garden Center, which is approximately 0.2 miles away. Southeast of the site is the Hilltop Specific Plan residential neighborhood. West of the Housing Site, parallel to Rose Avenue, is a another lot of mostly vacant site land occupied by a drilling rig and the Crescent Heights Historic District Specific Plan residential neighborhoodsome residential homes. Cherry

_

⁶ Southern California Association of Governments, <u>Connect SoCal: The 2020-2045 Regional Transportation Plan/ Sustainable Communities Strategy, Data/Map Book, City of Signal Hill, Draft November 2019.</u>

Avenue is classified as a High-Quality Transit Corridor, with stops for multiple bus lines at the intersection of Willow Steet and Cherry Avenue.⁷

Housing Potential

The Heritage Square Housing Site existing zoning is CTC, and Crescent Heights Historic District (SP 11) Specific Plan. The General Plan designation is Town Center. The Land Use Element of the General Plan calls for the area to be re-designated and established as a Central Business District (CBD). Heritage Square will be rezoned under Crescent Heights Historic District, which will continue to maintain the historic nature of the neighborhood and its surroundings. The existing zoning of the Heritage Square site is split between Commercial Town Center (CTC) and the Crescent Heights Historic District (SP-11) Specific Plan. The General Plan designation is Town Center. The Land Use Element of the General Plan calls for the area to be re-designated and established as a Central Business District (CBD). The entire Heritage Square site will be rezoned as Heritage Square (SP-23) Specific Plan, which will be a mixed-use commercial and residential development with single-family homes facing Rose Avenue to maintain the character of the adjacent neighborhood.

The Heritage Square *development conceptual plan* site could be developed as a mixed-use development, retaining retains the existing 14,000-square-foot market and adding adds 18,650 square feet of retail and restaurant space along Cherry Avenue and *up to* 72 dwelling units on the western portion of the site. Gardena Avenue would be retained for access. *Building heights after rezoning would include two- and three-stories*.

Uses Of This EIR

To implement the **6**th **Cycle** new Housing Element **Update**, the City intends to enact zoning and planning changes concurrently with the adoption of the Housing Element. This EIR is intended to provide the evaluation required by CEQA for all these actions necessary to facilitate the development of new housing.

To accommodate the RHNA housing units, the City intends to rezone non-vacant land to residential uses. As described above, the sites would be rezoned as Special Purpose Housing. In addition, new Specific Plans would be implemented for Orange Bluff and Walnut Bluff and a General Plan Amendment to the Central Business District would be adopted to enable housing at the Town Center Northwest site.

_

Southern California Association of Governments, <u>Connect SoCal</u>: <u>The 2020-2045 Regional Transportation Plan/ Sustainable Communities Strategy</u>, <u>Data/Map Book</u>, <u>City of Signal Hill</u>, <u>Draft November 2019</u>.

FIGURE **2.0-1**

FIGURE **2.0-2**

1. INTRODUCTION

This section addresses the potential presence of hazardous materials and conditions within the 2021-2029 Housing Element Update (Housing Element Update) (Project) and analyzes the potential risk of such materials in proximity to proposed development on candidate housing sites (Housing Sites) that could occur under implementation of the Project. This section discusses the existing conditions in the Project area, existing policies and regulations regarding hazards and hazardous materials, and analyzes the potential impacts. The primary source of information for this section comes from

- Phase I Environmental Site Assessment, 2771 Gundry Avenue, Orange Bluff, by Mearns Consulting LLC,
 February 5, 2021 (Appendix F.1: Orange Bluff Phase I ESA);
- Summary Report for Methane Soil Gas Investigation Services at Proposed New Orange Bluff Site, by DL Science Inc., April 6, 2021 (Appendix F.2: Orange Bluff Methane Investigation Report);
- Human Health Risk Assessment, 2771 Gundry Avenue, Orange Bluff, by Mearns Consulting LLC, June 30, 2021 (Appendix F.3: Orange Bluff HHRA);
- Review of Human Health Risk Assessment 2771 Gundy Avenue, Signal Hill, California 90755, by CAL
 EPA Office of Environmental Health Hazard Assessment, July 16, 2021 (Appendix F.4: Orange Bluff
 HHRA Review);
- Phase II Environmental Site Assessment, 2771 Gundry Avenue, Orange Bluff, by Mearns Consulting LLC, April 21, 2021 (Appendix F.5: Orange Bluff Phase II ESA);
- Phase I Environmental Site Assessment, Northwest Corner E. Willow St. and Walnut Avenue, Walnut Bluff, by Mearns Consulting LLC, February 19, 2021 (Appendix F.6: Walnut Bluff Phase I ESA);
- Summary Report for Methane Soil Gas Investigation Services at Walnut Bluff Site, by DL Science Inc., March 25, 2021 (Appendix F.7: Walnut Bluff Methane Investigation Report);
- Human Health Risk Assessment, Northwest Corner of E. Willow St. and Walnut Avenue, Walnut Bluff, Signal Hill, California 90755 by Mearns Consulting LLC, June 16, 2021 (Appendix F.8: Walnut Bluff HHRA);
- Review of Human Health Risk Assessment 2175 Cherry Ave., Signal Hills, California, 90755 by CAL EPA Office of Environmental Health Hazard Assessment, July 19, 2021 (Appendix F.9: Walnut Bluff HHRA Review);
- Phase II Environmental Site Assessment, Northwest Corner of E. Willow St. and Walnut Avenue, Walnut Bluff, Signal Hill, California 90755, by Mearns Consulting LLC, April 22, 2021 (Appendix F.10: Walnut Bluff Phase II ESA);

- Phase I Environmental Site Assessment, Northeast Corner E Willow St. and Walnut Avenue, Town
 Center Northwest, Signal Hill, California 90755, by Mearns Consulting LLC, May 27, 2021 (Appendix
 F.11: Town Center Northwest Phase I ESA);
- Phase II Environmental Site Assessment, Northeast Corner E Willow St. and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755, by Mearns Consulting LLC, July 30, 2021 (Appendix F.11a: Town Center Phase II ESA);
- Human Health Risk Assessment, Northeast Corner E Willow St. and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755, by Mearns Consulting LLC, August 11, 2021 (Appendix F.11b: Town Center HHRA);
- Review of Human Health Risk Assessment Town Center Northwest, by CAL EPA Office of Environmental Health Hazard Assessment, July 16, 2021 (Appendix F.11c: Town Center HHRA Review);
- Approval, Summary Report for Methane Soil Gas Investigation Services at Proposed Town Center North
 West Site, Northeast Corner of Intersection of E. Willow Ave. and Walnut Ave., Signal Hill, California
 90755, by Mearns Consulting LLC, July 19, 2021 (Appendix F.12: Town Center Northwest Methane
 Investigation Report Approval Letter);
- Phase I Environmental Site Assessment, Northeast Corner E Willow St. and Walnut Avenue, Heritage Square, Signal Hill, California 90755, by Mearns Consulting LLC, February 1, 2018 (Appendix F.13: Heritage Square Phase I ESA);
- Summary Report for Methane Soil Gas Investigation Services at Heritage Square, Signal Hill, California 90755, by Mearns Consulting LLC, July 19, 2021 (Appendix F.14: Heritage Square Methane Investigation Summary Report);
- Human Health Risk Assessment, Heritage Square Project, Signal Hill, California 90755, by Mearns
 Consulting LLC, July 15, 2021 (Appendix F.15: Heritage Square HHRA);
- Phase II Environmental Site Assessment, Heritage Square Project, Signal Hill, California 90755, by Mearns Consulting LLC, December 21, 2018 (Appendix F.16: Heritage Square Phase II ESA);
- Review of Human Health Risk Assessment Heritage Square, by CAL EPA Office of Environmental Health Hazard Assessment, July 16, 2021 (Appendix F.17: Heritage Square HHRA Review);

2. ENVIRONMENTAL SETTING

Historical Context

Signal Hill has a rich and colorful history. Most famous for the discovery of oil in 1921, and commonly known as an "oil town," the City is now a diverse community with an "oil history" and a bright future. Oil

¹ City of Signal Hill. History of Signal Hill. https://www.cityofsignalhill.org/218/History-of-Signal-Hill. Accessed June 2021.

production continued to be Signal Hill's mainstay until declining oil prices reduced production in the 1970s. In 1974 the Signal Hill Redevelopment Agency was formed, and the city focused on economic development and diversity from oil.

The 2.25 square mile city of Signal Hill lies within the Long Beach Oil Field. The City's legacy of oil production began in 1919 when oil was first discovered.² The Long Beach Field is termed a mega giant field. It is the eighth-largest by cumulative production in California, and although now largely depleted, still officially retains around 5 million barrels of recoverable oil.³

The historical use of the properties in the City includes oil fields, laydown yards, operating units and commercial/industrial businesses. The adjacent properties include commercial/industrial businesses, oilfields, single and multifamily residences. Although the City was once dominated by oil rigs, Signal Hill is now predominantly single and multi-family homes, commercial developments, modern office buildings and industrial parks. The oil rigs that once heavily dotted the hillside now give way for views of single-family residences, retail commercial developments, and modern industrial parks.

Existing Conditions

Even with the dramatic land use changes to the City over the decades, the oil field remains moderately productive, with oil wells and oilfield infrastructure intermixed with commercial and residential development. Many properties contain abandoned oil wells, *which*. However, these wells no longer produce and have been permanently sealed. Title 16 of the City's Municipal Code, the Oil Code, regulates oil production facilities and operations and sets out the standards for development over and around active and abandoned oil wells.

Housing Sites

Orange Bluff

The historical use of the proposed Orange Bluff Housing Site is an oil field. Numerous previously abandoned oil wells associated piping runs, a previous 2,310,000-gallon capacity aboveground storage tank, dehydration plant, boilers, pump station, laboratories, former bio cells used to remediation oilfield impacted material and operating units are/were located on site. Operating units, a stormwater detention basin, a small one-story stucco building, used as a laboratory and new automobiles currently are on site.

_

² City of Signal Hill. Oil Well Information. https://www.cityofsignalhill.org/111/Oil-Well-Information. Accessed June 2021.

³ City of Signal Hill. Oil Well Information. https://www.cityofsignalhill.org/111/Oil-Well-Information. Accessed June 2021.

⁴ City of Signal Hill. Developing Around Oil Wells. https://www.cityofsignalhill.org/421/Developing-Around-Oil-Wells. Accessed June 2021.

The proposed Housing Site is accessible from the adjacent property on southern boundary of the Site and is currently undeveloped land used as overflow parking for new automobiles and a few operating units. A small stucco building, located at 1396 East 28th Street, is located at the southwest corner of East 28th Street and Gundry Avenue with a small parking lot on the south side of East 28th Street. Due to its age, the building may have asbestos containing building materials, lead-based paint and/or fluorescent lights. There are 20 oil wells on site, it appears nine are previously abandoned, six are idle and four are active (see **Appendix F.1: Orange Bluff Phase I ESA**). Numerous pipelines underlie Orange Avenue, East 28th Street, Gundry Avenue and East 27th Street, effectively surrounding the Site. Several of these pipelines are owned by entities no longer in business and therefore more than likely are abandoned. Abandoned pipelines that historically conveyed wet gas, crude oil, gas, dry gas and/or natural gas is common on site.

Methane measurements on-site range from non-detect (ND), or less than 1,000 parts per million by volume (ppmv) to 279,000 ppmv. Methane concentrations in soil vapors on-site range from 11,000 ppmv to 140,000 ppmv (see **Appendix F.2: Orange Bluff Methane Investigation Report**).

Chemicals of Potential Concern (COPCs) in soil vapor on the proposed Orange Bluff Housing Site are total petroleum hydrocarbons (TPH, gasoline range) and chlorinated and non-chlorinated volatile organic compounds (VOCs). COPCs present in the soil on site are TPH, ethylbenzene, cumene, naphthalene, n-propylbenzene, cadmium, hexavalent chromium and molybdenum (see **Appendix F.3: Orange Bluff Site HHRA** and **Appendix F.4: Orange Bluff HHRA Review**).

Walnut Bluff

The historical use of the Housing Site is an oil field. Seven oil wells (two operating, two idle and three previously abandoned), associated piping runs and aboveground storage tanks are/were located on site. Operating units, a stormwater system with detention basins and piping currently are on site.

The proposed Housing Site is accessible from the Walnut Avenue and comprises of vacant, undeveloped land. Numerous pipelines underlie East Willow Street, Walnut Avenue and the proposed Walnut Bluff Site. Several of these pipelines are owned by entities no longer in business and therefore more than likely are abandoned. Abandoned pipelines that historically conveyed wet gas, crude oil, gas, dry gas and/or natural may impact the site. There are no sources of asbestos containing building material, lead-based paint or fluorescent lights on site (see **Appendix F.6: Walnut Bluff Phase I ESA**).

Methane measurements on site range from ND to 898,000 ppmv. Methane concentrations in soil vapors on=site range from 34,000 ppmv to 200,000 ppmv (see **Appendix F.7: Walnut Bluff Methane Investigation Report**).

COPCs in soil vapor on the proposed Walnut Bluff Housing Site are TPH, metals and VOCs. COPCs present in the soil vapor on site include benzene, toluene, ethylbenzene, tetracholoroethylene (PCE), total xylenes and gasoline range organics (GROs) (see **Appendix F.8: Walnut Bluff Site HHRA** and **Appendix F.9: Walnut Bluff HHRA Review**).

Town Center Northwest

The historical use of the Housing Site is an oil field. There are 34 oil wells on site or adjacent to it; specifically, there are 19 wells on site and 15 within the eastern two-thirds of the Signal Hill Petroleum, Inc. Drill Site (SHP Drill Site) which is not part of the Project; the western one-third of this portion of this Site is part of the Project. Operating units, a stormwater system with detention basins, swales, berms and piping are currently on site. The Site is used by Signal Hill Petroleum, Inc. (SHP) to store drilling equipment.

The Town Center Northwest Site is accessible via Walnut Avenue and is vacant and undeveloped. It is covered with dirt, grass weeds, gravel, asphalt and concrete. The Site consists of three operating units, six idle units and 10 abandoned oil wells used for storage of oil field equipment. Stormwater prevention measures are present throughout the Housing Site. The eastern two-thirds of the SHP Drill Site contains seven active operating units, seven idle units and one previously abandoned oil well. Numerous pipelines underlie Walnut Avenue and East Willow Street. Several of these pipelines are owned by entities no longer in business and therefore more than likely are abandoned. Abandoned pipelines that historically conveyed wet gas, crude oil, gas, dry gas, natural gas and wastewater may impact the Housing Site. There are no sources of asbestos containing building material, lead-based paint or fluorescent lights on site (see Appendix F.11: Town Center Northwest Phase I ESA).

Heritage Square

The historical use of the Housing Site is an oil field. There are 25 oil wells on the 7.14-acre Site. Oil derricks, sumps and aboveground storage tanks were previously located on site. Operating units, pipelines and a stormwater drainage system, with detention basins and piping are currently on site.

The Heritage Square Site is accessible via Cherry Avenue and is currently unoccupied. The 3-acre portion of the Housing Site identified as 2475 Cherry Avenue, or 2500 Cherry Avenue, was redeveloped in 2010 with a commercial building and a surface parking lot covering approximately 1.5-acres. During the redevelopment effort an unknown quantity of soil was removed from the portion of the Site. The remaining 1.5-acres is vacant and undeveloped with active oil field activity. The four on-site buildings at

-

⁵ The SHP Drill Site is not part of the Project but is surrounded by the Town Center Northwest Site on all sides.

2435, 2449, 2461 Gardena Avenue were constructed between 1959 and 1960 and potentially contain asbestos containing building materials and/or lead-based paint. The portion of the Housing Site identified as 2475 and 2485 Gardena Avenue remains vacant and undeveloped with active oil field activity. The portion of the Site identified as 1800 East Burnett Street remains vacant and undeveloped with active oil field activity (see **Appendix F.13: Heritage Square Phase I ESA**). There is no evidence hazardous materials are stored, used, spilled or dumped on the Housing Site and there are no recognized environmental conditions on site or adjacent to the Site.

Methane measurements on-site range from ND to 802,000 ppmv. Methane concentrations in soil vapors on-site range from ND ppmv to 87,200 ppmv (see **Appendix F.14: Heritage Square Methane Investigation Summary Report**).

COPCs in soil on the proposed Housing Site are TPH-diesel range (TPH-d), C23-C40, lead, mercury and thallium. COPCs present in the soil vapor on site include sec-butylbenzene, tert-butylbenzene, dichlorodifluoromethane, naphthalene, PCE, toluene, 1,2,4-trimethylbenzene and di-isopropylether (DIPE) (see **Appendix F.15: Heritage Square HHRA**).

3. REGULATORY SETTING

The regulations governing the storage and handling of hazardous materials are complex, with a varying degree of overlap associated with existing federal, State, and local programs. In general, applicable laws and regulations are aimed at hazardous materials inventory and emergency response planning, risk planning and accident prevention, employee hazard communication, public notification of potential exposure to specific chemicals, storage of hazardous materials including aboveground storage tanks (AST) and USTs. A description of the major regulations, policies, and programs regulating hazardous materials storage and handling applicable to activities at the Project site is provided below.

Federal Setting

A variety of laws and regulations governing the management and control of hazardous substances has been established at the federal level to protect the environment.

Regulating Agencies

United States Environmental Protection Agency

The USEPA is the main federal agency responsible for enforcing regulations relating to hazardous materials and wastes, including evaluation and remediation of contamination and hazardous wastes. The agency works collaboratively with other agencies to enforce materials handling and storage regulations

and site cleanup requirements. The U.S. Occupational Safety and Health Administration (USOSHA) and the USDOT are authorized to regulate safe transport of hazardous materials.

Several USEPA programs address the disposal and cleanup of various hazardous waste materials, including lead, asbestos-containing materials (ACMs), pesticides, and polychlorinated biphenyls (PCBs).⁶

US Occupational Safety and Health Administration

USOSHA is authorized to regulate safe transport of hazardous materials. Specifically, USOSHA implements regulation related to materials handling. USOSHA requirements are intended to promote worker safety, worker training, and a worker's right to know.

Legislation, Regulations, and Programs

Comprehensive Environmental Response, Compensation, and Liability Act

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)—better known as Superfund—provides federal funds to clean up uncontrolled or abandoned hazardous waste sites, accidents, spills, discharges, and other emergency releases of pollutants and contaminants into the environment. Through CERCLA, USEPA was given authority to seek out those parties responsible for any hazardous release and ensure their cooperation in the cleanup.

Emergency Planning and Community Right-to-know Act

The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986,⁷ commonly known as Title III of the Superfund Amendments and Reauthorization Act (SARA), was enacted by Congress as national legislation on community safety. This law was designated to help local communities protect public health, safety, and the environment from chemical hazards. The primary purpose of EPCRA is to inform communities and citizens of chemical hazards in their areas by requiring businesses to report the locations and quantities of chemicals stored on site to State and local agencies. These reports help communities prepare to respond to chemical spills and similar emergencies. Section 313.1 of EPCRA requires manufacturers to report releases to the environment (air, soil, and water) of more than 600 designated toxic chemicals; report off-site transfers of waste for treatment or disposal at separate facilities; implement pollution prevention measures and activities; and participate in chemical recycling. These annual reports are submitted to the USEPA and state agencies. The USEPA maintains and publishes a database that contains information on toxic chemical releases and other waste management activities by

_

⁶ US EPA. Waste, Chemical, and Cleanup Enforcement. https://www.epa.gov/enforcement/waste-chemical-and-cleanupenforcement. Accessed May 2021.

^{7 42} USC sec. 11001 et seq., Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986.

certain industry groups and federal facilities. This online, publicly available, national digital database is called the Toxics Release Inventory (TRI) and was expanded by the Pollution Prevention Act of 1990.

To implement EPCRA, Congress required each state to appoint a State Emergency Response Commission (SERC) to coordinate planning and implementation activities associated with hazardous materials. The SERCs were required to divide their states into emergency planning districts and to name a local emergency planning committee (LEPC) for each district. The federal EPCRA program is implemented and administered in California by Cal OES, a SERC, 6 LEPCs, and 83 certified Unified Program agencies (CUPAs). Cal OES coordinates and provides staff support to the SERC and LEPCs. Broad representation by fire fighters, health officials, government and media representatives, community groups, industrial facilities, and emergency managers ensures that all necessary elements of the planning process are represented.

Resource Conservation and Recovery Art

The 1976 Resource Conservation and Recovery Act (RCRA) was the first major federal act regulating the potential health and environmental problems associated with hazardous and nonhazardous solid waste. RCRA and the implementation regulations developed by the USEPA provide the general framework of national hazardous waste management systems. This framework includes the determination of whether hazardous wastes are being generated, techniques for tracking wastes to eventual disposal, and the design and permitting of hazardous waste management facilities. RCRA allows individual states to develop their own program for the regulation of hazardous wastes as long as state regulations are at least as stringent as the RCRA.

Toxic Substances Control Act

The Toxic Substances Control Act of 1976⁸ was enacted by Congress to give the USEPA the ability to track the 75,000 industrial chemicals currently produced or imported into the United States. The USEPA repeatedly screens these chemicals and can require reporting or testing of any that may pose an environmental or human health hazard. It can ban the manufacture and import of chemicals that pose an unreasonable risk. Also, the USEPA has mechanisms in place to track the thousands of new chemicals that industry develops each year with either unknown or dangerous characteristics. It was given the authority to control these chemicals as necessary to protect human health and the environment. Within that authority, the Toxic Substances Control Act addresses the production, importation, use, and disposal of specific chemicals including PCBs, ACMs, radon, and lead-based paint. The act supplements other federal statutes, including the Clean Air Act and the TRI under EPCRA.

⁸ Toxic Substances Control Act of 1976, 15 USC sec. 2601 et seq.

Lead Renovation, Repair, and Painting Program

USEPA's Lead Renovation, Repair, and Painting Rule (RRP Rule) requires that firms performing renovation, repair, and painting projects that disturb lead-based paint in homes, childcare facilities and pre-schools built before 1978 have their firm certified by USEPA (or an USEPA authorized state), use certified renovators who are trained by USEPA-approved training providers, and follow lead-safe work practices.

Hazardous Materials Transportation Act

The USDOT, in conjunction with the USEPA, is responsible for enforcement and implementation of federal laws and regulations pertaining to safe storage and transportation of hazardous materials. The Code of Federal Regulations (CFR) Title 49, Sections 171–180, regulate the transportation of hazardous materials, types of material defined as hazardous, and the marking of vehicles transporting hazardous materials. This act applies to the Project because contractors will be required to comply with its storage and transportation requirements that would reduce the possibility of spills.

State Setting

Regulating Agencies

California Environmental Protection Agency

The California Environmental Protection Agency (CalEPA) was created in 1991 with the signing of Executive Order W-5-91 by Governor Pete Wilson. Several State regulatory boards, departments, and offices were placed under the CalEPA umbrella to create a cabinet-level voice for the protection of human health and the environment and to assure the coordinated deployment of State resources. Among those responsible for hazardous materials and waste management are the Department of Toxic Substance Control (DTSC), Department of Pesticide Regulation, the State Water Quality Control Board and its Regional Water Quality Control Boards (RWQCB), and Office of Environmental Health Hazard Assessment. CalEPA also oversees the unified hazardous waste and hazardous materials management regulatory program (Unified Program), which consolidates, coordinates, and makes consistent the following six programs:

- Hazardous Materials Release Response Plans and Inventories (Business Plans);
- Underground Storage Tank (UST) Program;
- Aboveground Petroleum Storage Tank Act;
- Hazardous Waste Generator and On-site Hazardous Waste Treatment Programs;
- California Uniform Fire Code: Hazardous Material Management Plans and Inventory Statements; and
- California Accidental Release Prevention (CalARP) Program.

In addition, in compliance with California Public Resources Code Section 3229, before commencing any work to abandon any oil well, the owner or operator shall file with the CalGEM, formerly known as the Division of Oil, Gas, and Geothermal Resources, a written notice of intention to abandon the well (California State Division of Oil, Gas and Geothermal Resources form OG108).

Department of Toxic Substances Control

DTSC is authorized by CalEPA to administer the hazardous waste laws and oversee remediation of hazardous wastes sites. Regulations require that DTSC "shall compile and update as appropriate, but at least annually, and shall submit to the Secretary for Environmental Protection, a list of all the following: (1) All hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code (HSC)."9

The DTSC regulates hazardous waste, cleans up existing contamination, and looks for ways to reduce the hazardous waste produced in California. Approximately 1,000 scientists, engineers, and specialized support staff ensure that companies and individuals handle, transport, store, treat, dispose of, and clean up hazardous wastes appropriately. Through these measures, DTSC contributes to greater safety for all Californians, and less hazardous waste reaches the environment. DTSC's role is limited to projects with State funding. DTSC oversight is not required where a State-funded project is statutorily or categorically exempt from CEQA.

The hazardous waste facilities identified in HSC Section 25187.5 are those where DTSC has taken or contracted for corrective action because a facility owner/operator has failed to comply with a date for taking corrective action in an order issued under the HSC, or because DTSC determined that immediate corrective action was necessary to abate an imminent or substantial endangerment.

Certified Unified Program Agency

Californians are protected from hazardous waste and hazardous materials by a Unified Program that ensures consistency throughout the State regarding administrative requirements, permits, inspections, and enforcement. CalEPA oversees the statewide implementation of the Unified Program and its 83 certified local government agencies, known as Certified Unified Program Agencies (CUPAs), which apply regulatory standards established by five different State agencies. The CUPA can be a county, city, or joint powers authority. A participating agency is a local agency that has been designated by the local CUPA to administer one or more Unified Programs within their jurisdiction on behalf of the CUPA. A designated agency is a local agency that has not been certified by CalEPA to become a CUPA but is the responsible

⁹ California Government Code (GOV), Development Permits for Classes of Projects [65960 - 65964.1], sec. 65962.5

local agency that would implement the six Unified Programs until they are certified. Currently, there are 83 CUPAs in California. The CUPA for the County is the Los Angeles County Fire Department (LACoFD).

California Occupational Safety and Health Administration

The California Occupational Safety and Health Administration (Cal/OSHA) has set forth work requirements for disturbance of ACMs, including removal operations for all types of ACMs. In addition, the agency has developed standards for general industry and the construction industry hazardous waste operations and emergency response. Cal/OSHA ensures that employers must have controls to reduce and monitor exposure levels of hazardous materials; and oversees an informational program describing any exposure during operations and the inspection of drums and containers prior to removal or opening. Decontamination procedures and emergency response plans must be in place before employees begin working in hazardous waste operations.

Legislation and Regulations

Senate Bill 14: California Hazardous Waste Source Reduction and Management Review Act of 1989

The California Hazardous Waste Source Reduction and Management Review Act of 1989, also known as Senate Bill (SB) 14, required large-quantity generators—those that annually produce more than 13.2 tons of hazardous waste or 26.4 pounds of extremely hazardous waste—to periodically conduct a source evaluation of their facilities and develop plans to reduce their volume of hazardous waste through measures such as changes in raw materials production methods, product reformulations, and employee training. ¹⁰ The primary objective of the legislation was to reduce the quantity of hazardous waste generated in California and thereby promote public health and improve environmental quality. Generators that exceed the aforementioned waste volume thresholds are required to file waste minimization reports with DTSC every 4 years.

California Emergency Response Plan

California has developed an emergency response plan to coordinate emergency services provided by federal, State, and local governments and private agencies. Responding to hazardous materials incidents is one part of this plan. The plan is administered by Cal OES, which coordinates the responses of other agencies, including CalEPA, the California Highway Patrol, the RWQCB, and the LACoFD.

_

California Department of Toxic Substances Control (DTSC), "SB14 Introduction and Overview" (July 2012), https://dtsc.ca.gov/sb14/sb14-introduction-and-overview/. Accessed May 2021.

Hazardous Waste Control Act

The Hazardous Waste Control Act (HWCA) is the State equivalent of RCRA and regulates the generation, treatment, storage, and disposal of hazardous waste. ¹¹ This act implements the RCRA "cradle-to-grave" waste management system in California but is more stringent in its regulation of non-RCRA wastes, spent lubricating oil, small-quantity generators, and transportation and permitting requirements, as well as in its penalties for violations. HWCA applies to the Project because contractors will be required to comply with its hazardous waste requirements to reduce the possibility of spills.

Hazardous Materials Management Plans

In January 1996, CalEPA adopted regulations implementing a Unified Hazardous Waste and Hazardous Materials Management Regulatory Program (Unified Program). ¹² As noted previously, the six program elements of the Unified Program are hazardous waste generators and hazardous waste on-site treatment; underground storage tanks; aboveground storage tanks; hazardous material release response plans and inventories; risk management and prevention programs; and Uniform Fire Code hazardous materials management plans and inventories. The program is implemented at the local level by a local agency, the CUPA, which is responsible for consolidating the administration of the six program elements within its jurisdiction.

State and federal laws require detailed planning (1) to ensure that hazardous materials are properly handled, used, stored, and disposed of; and (2) in the event that such materials are accidentally released, to prevent or to mitigate injury to health or the environment.

California Hazardous Materials Release Response Plans and Inventory Law of 1985 (Business Plan Act)

The Business Plan Act requires preparation of hazardous materials business plans and disclosure of hazardous materials inventories, including an inventory of hazardous materials handled, plans showing where hazardous materials are stored, an emergency response plan, and provisions for employee training in safety and emergency response procedures (HSC, Division 20, Chapter 6.95, Article 1).13 Statewide, DTSC has primary regulatory responsibility for management of hazardous materials, with delegation of authority to local jurisdictions that enter into agreements with the State. Local agencies are responsible for administering these regulations. Several State agencies regulate the transportation and use of hazardous materials to minimize potential risks to public health and safety, including CalEPA and Cal OES. The California Highway Patrol and California Department of Transportation (Caltrans) enforce regulations

DTSC, California Hazardous Waste and Hazardous Substances Law, California Code of Regulations, Title 22, Division 4.5, Environmental Health Standards for the Management of Hazardous Waste.

¹² CalEPA, "Unified Program," https://calepa.ca.gov/cupa/.

specifically related to the transport of hazardous materials. Together, these agencies determine container types used and license hazardous waste haulers for hazardous waste transportation on public roadways. The Business Plan Act applies to this Project because contractors will be required to comply with its handling, storage, and transportation requirements that would reduce the possibility of spills, and to prepare an emergency response plan to respond to accidental spills.

California Government Code Section 65962.5: Cortese List

The provisions of Government Code Section 65962.5 are commonly referred to as the Cortese List.14 The Cortese List is a planning document used by State and local agencies to provide information about hazardous materials release sites. Section 65962.5 requires CalEPA to develop an updated Cortese List annually. DTSC is responsible for a portion of the information contained in the Cortese List. Other State and local government agencies are required to provide additional hazardous material release information for the Cortese List.

Regional and Local Setting

South Coast Air Quality Management District

The South Coast Air Quality Management District (SCAQMD) regulates asbestos through Rule 1403, Asbestos Emissions from Renovation/Demolition Activities. Rule 1403 regulates asbestos as a toxic material and controls the emissions of asbestos from demolition and renovation activities by specifying agency notifications, appropriate removal procedures, and handling and cleanup procedures. Rule 1403 applies to owners and operators involved in the demolition or renovation of asbestos-containing structures, asbestos storage facilities, and waste disposal sites. SCAQMD also regulates volatile organic compound (VOC) emissions from contaminated soil through Rule 1166, Volatile Organic Compound Emissions from Decontamination of Soil. Rule 1166 sets requirements to control the emission of VOCs from excavating, grading, handling, and treating soil contaminated with VOCs as a result of leakage from storage or transfer operations, accidental spillage, or other deposition.

Los Angeles Regional Water Quality Control Board

The Los Angeles Regional Water Quality Control Board (LARWQCB) is one of nine Statewide regional boards. The LARWQCB protects ground and surface water quality in the Los Angeles region, including the coastal watersheds of Los Angeles and Ventura Counties, along with very small portions of Kern and Santa

Barbara Counties. In order to carry out its mission to preserve and enhance water quality, the LARWQCB conducts the following range of activities to protect ground and surface waters under its jurisdictions: ¹³

- Addresses region-wide and specific water quality concerns through updates of the Water Quality Control Plan for the Los Angeles region;
- Prepares, monitors compliance with, and enforces Waste Discharge Requirements, including National Pollutant Discharge Elimination System (NPDES) permits;
- Implements and enforces local stormwater control efforts;
- Regulates the cleanup from contaminated sites, which have already been polluted or have the potential to pollute ground or surface water;
- Enforces water quality laws, regulations, and waste discharge requirements;
- Coordinates with other public agencies and groups that are concerned with water quality; and
- Informs and involves the public on water quality issues.

Additionally, the LARWQCB has the responsibility for oversight of leaking USTs and the responsibility for inspecting ASTs and ensuring SPCC's have been prepared within the County. 14

Los Angeles County Hazardous Materials Control Program

In 1982, the Los Angeles County Board of Supervisors established the Hazardous Materials Control Program in the Department of Health Services (DHS) for the inspection of businesses generating hazardous waste. In 1991, the program merged into the LACoFD and it became the Health Hazardous Materials Division (HHMD). In 1997, HHMD became a CUPA to administer the following programs within Los Angeles County: the Hazardous Waste Generator Program, the Hazardous Materials Release Response Plans and Inventory Program, the California Accidental Release Prevention Program (CalARP), the Aboveground Storage Tank Program and the Underground Storage Tank Program. The LACoFD, Prevention Services Bureau, HHMD is a CUPA that administer the Hazardous Waste Generator Program, the Hazardous Materials Release Response Plans and Inventory Program, the CalARP, the Aboveground Storage Tank Program, and the Underground Storage Tank Program, and the Underground Storage Tank Program.

The Los Angeles County Sanitation District and its Household Hazardous Waste and Electronic Collection Program (HWW) provides Los Angeles County residents with a legal way to dispose of unwanted household chemicals that cannot be disposed of in the regular trash.

-

¹³ California Waterboards, About Us, https://www.waterboards.ca.gov/losangeles/about_us/, accessed May 2021.

¹⁴ Health and Safety Code Section 25270.8.

Signal Hill General Plan Safety Element

The Safety Element is one of seven General Plan elements required by the State of California. This document provides the City of Signal Hill with background information on hazards and public safety services, and establishes goals, policy direction, and implementation measures intended to limit the community's exposure to a range of hazards. This element is a comprehensive update of the 1986 Safety Element and incorporates the latest available information from local, state, and federal sources regarding public safety and hazards. This element includes:

- Existing conditions & background information on the City and existing police, fire, and medical services serving the City.
- A discussion of seismic and geologic hazards, including surface rupture and ground shaking resulting from earthquakes, liquefaction, landslides, and soil settlement and expansion.
- A discussion of oilfield hazards related to hazardous materials impacts, with a focus on identifying and minimizing risks associated with oil production, storage, and transportation activities.
- An evaluation of other hazards, including fires, flooding, tsunami, seiche, and dam failure, including evacuation routes.
- Goals, policies, and implementation measures that provide direction and guidance for the City of Signal Hill to minimize impacts resulting from hazards over the coming decades.

Signal Hill Municipal Code

Title 16: City of Signal Hill Oil and Gas Code

Title 16 regulates the drilling for production, processing, storage and transport by pipeline of petroleum and other hydrocarbon substances, timely and proper well abandonment and well site restoration and removal of oil and gas related facilities, reclamation and remediation of host sites and final disposition of pipelines in compliance with applicable laws and permits so that these activities may be conducted in conformance with federal, state, and local requirements, and to mitigate the impact of oil-related activities on urban development.

4. ENVIRONMENTAL IMPACTS

Thresholds of Significance

To assist in determining whether the proposed Project would have a significant effect on the environment, the City finds the proposed Project may be deemed to have a significant impact related to hazards if it would:

Threshold IV. HAZ-1: Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Threshold IV. HAZ-2: Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Threshold IV. HAZ-3: Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Threshold IV. HAZ-4: Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

Threshold IV. HAZ-5: For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

Threshold IV. HAZ-6: Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Threshold IV. HAZ-7: Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

Methodology

To evaluate potential impacts regarding hazards and hazardous materials, Phase I and Phase II ESAs, Methane Gas Summary Reports and Human Health Risk Assessments (HHRAs) were prepared for the Project Sites. The analysis of the potential impacts regarding hazardous materials management was based on review of identified publicly available documents and on-site reconnaissance. In addition, the analysis of the potential impacts regarding the generation and disposal of ACMs, lead based paint, and PCBs were based on the provisions of applicable local, State, and federal regulations.

The site reconnaissance included excavation and drilling on the four Housing Sites. Soil matrix samples were collected and tested. All drilling, logging and sampling activities were conducted by or under direct supervision of a California Professional Geologist, and in accordance with California Well Standards presented in the Department of Water Resources (DWR).

The site reconnaissance identified the potential for environmental conditions to exist on the Project site. Recommendations regarding the construction of the Project are identified in response to the conditions that exist on the four Housing Sites. Various reports including Phase I and Phase II ESAs, Methane Gas Summary Reports and HHRAs are provided in **Appendix F.1—Appendix F.16** of this Draft EIR.

Environmental Impacts

Threshold IV. HAZ-1: Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Implementation of the proposed Project would not directly construct new housing in the City but would promote and facilitate development of new residential land uses. However, implementation of the Housing Element Update (HEU) would facilitate new residential construction in order to meet the City's RHNA allocation. Future construction on the Housing Sites would involve site clearing; bioremediation of soils and subsurface materials; demolition of previous structures and piping remnants; daylighting and leak testing of oil wells; construction of new residential buildings; and the installation of utilities and landscaping. These activities may require the transport of contaminated soil and the use of hazardous substances during construction. In addition, construction activities would use hazardous materials such as fuels (gasoline and diesel), oils and lubricants, paints and paint thinners, glues, cleaners (which could include solvents and corrosives in addition to soaps and detergents) and possibly pesticides and herbicides. Future residential land uses would not be expected to transport, use, store or dispose of substantial amounts of hazardous materials.

Construction

Construction activities on the Housings Sites are anticipated to involve the use of typical materials that are potentially hazardous, including vehicle fuels, paints, mastics, solvents, and other acidic or alkaline solutions that would require special handling, transport, and disposal. Additionally, the demolition and removal of existing structures and facility remnants such as underground pipes and the daylighting of oil wells within the Project Site could potentially result in the exposure of hazardous materials such as ACMs, lead-based paint and other potentially hazardous building materials in some form as part of the building materials, such as PCBs, mercury or chlorofluorocarbons in fluorescent lighting and electrical switches as well as potentially hazardous VOCs in on-site soils.

In accordance with City, State, and federal regulations, an evaluation of hazardous building materials would be performed prior to the start of demolition of any construction to determine if remediation and abatement of ACMs and lead-based paint is required. The ACMs and lead-based paint containing hazardous waste and debris encountered/generated during demolition activities would be disposed of in

accordance with applicable local, State, and federal regulations. Any other waste discovered such as fluorescent bulbs, ballast, thermostats, electrical switches, and batteries would also be disposed of in accordance with applicable local, State and federal regulations. Through compliance with applicable local, State and federal regulations, the proposed Project impacts related to the routine transport, use, or disposal of hazardous materials during building demolition would be less than significant.

All potentially hazardous materials used during construction would be used and stored in compliance with applicable federal, State, and local regulations. As the use and transport of these hazardous materials would be limited, in terms of volume and duration, these materials are not considered a significant hazard to the public or environment. Additionally, the Los Angeles County Fire Department would have the authority to perform inspections and enforce federal and State laws governing the storage, use, transport, and disposal of hazardous materials and wastes.

Furthermore, any spills or leakages encountered during construction would be required to be remediated in accordance with the State and local regulations for hazardous waste cleanup. The potential for construction materials to cause contamination would be reduced through the implementation of a stormwater pollution prevention plan (SWPPP), in accordance with NPDES.

Implementation of Mitigation Measure (MM) HAZ-1 would require the preparation of a soil management plan (SMP) prior to commencement of ground disturbing activities as approved by the SCAQMD would be completed prior to construction activities. MM HAZ-1 would ensure the SMP would provide instructions for appropriate actions in the event discolored or odiferous soils are discovered during grading. Abandoned oil wells and pipelines and idle oil wells present on the Housing Sites would be located, daylighted and methane gas leak tested and fitted with vent cones and risers through incorporation of MM HAZ-2 through MM HAZ-4. Daylighting oil wells and pipelines involves the disturbance of soils and monitoring for VOCs which are required to be below 50 parts per million by volume (ppmv). Soil impacted with TPH and metals may be hauled off-site for disposal to a licensed landfill upon completion of a waste profile and acceptance by the receiving facility. Waste classification will be conducted in accordance with 22 CCR Division 4.5, Chapter 11, Article 3 and 40 CFR 261 Subpart C. The on-site TPH impacted soil may meet the criteria for use as daily cover. On-site treatment of metals (lead) impacted soil may be implemented prior to transfer off site for disposal. Trucks will follow the designated hauling route as required by the City of Signal Hill (see Appendix F.1—Appendix F.16). All applicable regulations would be followed to minimize adverse exposure of contaminated soil to the public.

Based on the identification of the existing conditions at the Project Site described previously, as well as the use of hazardous substances during construction of the Project, there is the potential for an adverse impact to the environment and other sensitive receptors through the routine transport, use, or disposal of hazardous materials. However, during Project construction, all activities that relate to existing on-site environmental conditions would be subject to the requirements of MM HAZ-1 through MM HAZ-4 and applicable local, State, and federal regulations relating to the routine transport, use, and disposal of hazards and hazardous materials which appropriately address all of the environmental conditions that are present at the Project Site. Through required compliance with these mitigation measures and regulatory compliance measures, the Project would not result in adverse impacts related to the routine transport, use, and disposal of hazards and hazardous materials during construction and impacts would be less than significant.

Operation

Operation and maintenance of the proposed residential Project would not involve the routine transport, use, or disposal of hazardous materials. Further, the types and amounts of materials that would be used in connection with the proposed Project would be typical of those used in residential neighborhoods and neighborhood uses, such as surface and floor cleaning products utilized for routine janitorial cleaning procedures. All potentially hazardous materials to be used during construction and operation of the Housing Sites would be contained, stored, and used in accordance with manufacturers' instructions and handled in accordance with all applicable standards and regulations, including but not limited to, those set forth by the federal and State Occupational Safety and Health Acts. Any associated risk would be adequately reduced to a less than significant level through implementation and compliance with these existing laws and regulations. Operational impacts through the routine transport, use, or disposal of hazardous materials would be less than significant and no mitigation measure is required.

Threshold IV. HAZ-2: Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Construction

Construction of the proposed Project would involve the temporary use of hazardous materials including vehicle fuels, oils, and transmission fluids. Such use which could pose risks to construction workers or lead to soil and groundwater contamination, if not properly stored, used, or disposed. However, the materials used would not be in such quantities or stored in such a manner as to pose a significant safety hazard. These activities would also be short term or one time in nature. Project construction workers would be trained in safe handling and hazardous materials use.

Additionally, the use, storage, transport, and disposal of construction-related hazardous materials and waste would be required to conform to existing laws and regulations. These include the Hazardous

Material Transportation Act, the Resource Conservation and Recovery Act, the California Hazardous Waste Control Act, CUPA, and the California Accidental Release Prevention Program. As required by law, notification to Underground Service Alert would be made. Prior to construction an attempt to coordinate with the owners/operators of high priority underground lines would be made in order to avoid damage to high-pressure pipelines and natural gas/petroleum pipelines in the area. Compliance with applicable laws and regulations governing the use, storage, and transportation of hazardous materials would ensure that all potentially hazardous materials are used and handled in an appropriate manner and would minimize the potential for safety impacts to occur. For example, if a spill or leakage of petroleum products occurs during construction activities, it would be immediately contained, the hazardous material identified, and the impacted area would be remediated in compliance with applicable State and local regulations for the cleanup and disposal of that contaminant.

Phase I and Phase II ESAs, Methane Gas Summary Reports and HHRAs provided in **Appendix F.1**— **Appendix F.16** summarize existing pollutants on and beneath the surface of the Project Site and develops appropriate remediation actions to be completed which would be implemented prior to construction. **MM HAZ-5** would require a Methane Mitigation System to be installed below the foundations of future residential buildings on the Housing Sites. The Methane Mitigation System would eliminate the exposure pathway of methane and other chemicals of concern (COCs) that remain on-site and would mitigate vapor intrusion ensuring the Housing Sites are safe for future residential uses. Further, **MM HAZ-6** would ensure future residential uses are safe by requiring the paved areas on the Housing Sites greater than 5,000 square feet and contiguous to future residential buildings to be vented with designs to prevent surface water infiltration. Groundwater sampling data indicates there would be little to no chance COCs on the Housing Sites would affect the quality groundwater quality.

Accordingly, implementation of **MM HAZ-5** and **MM HAZ-6** prior to Project approval and compliance with applicable laws and regulations governing the use, storage, and transportation of hazardous materials would ensure that all potentially hazardous materials are used and handled in an appropriate manner which would minimize potential impacts associated with upset or accident conditions. Potential impacts regarding hazardous waste upset or accident conditions would be less than significant.

Operation

Occupancy and use of the residential units would not create a significant hazard to the public or the environment and would not emit hazardous emissions. Routine maintenance and upkeep of the residential development would involve handling of small quantities of hazardous materials for activities including cleaning and local upgrades. However, as discussed under **Threshold IV.HAZ-1**, handling of such

materials would follow manufacturer's instructions and properly stored when not in use. Therefore, potential impacts associated with upset or accident conditions would be less than significant.

Threshold IV. HAZ-3: Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

There are no schools located within one-quarter mile of the proposed Housing Sites. The nearest school is Signal Hill Elementary School, approximately 0.5 miles south/southwest of the Housing Sites. The Project would introduce residential land uses to the Housing Sites. This land use does not generate hazardous emissions or involve the handling of acutely hazardous materials, substances or wastes. The residential land uses may involve limited transport, storage, use and disposal of small quantities of hazardous materials such as chemical cleaning agents. No special permits would be required for such limited use of common cleaning agents. The proposed restaurant may use and dispose of grease and food oils, which are not considered hazardous but do require special handling and as such would be collected in separate grease interceptors and removed by contracted haulers for transport to appropriate disposal sites. As noted in the response to **Threshold IV.HAZ-1** above, the residential land uses would involve the regular handling of minor quantities of common household chemical agents and related wastes; however, these types of wastes are typical and do not represent a hazardous materials or waste impact. Thus, a less than significant impact would occur in relation to this issue.

Threshold IV. HAZ-4: Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

California Government Code Section 65962.5 specifies lists of the following types of hazardous materials sites: hazardous waste facilities; hazardous waste discharges for which the State Water Quality Control Board has issued certain types of orders; public drinking water wells containing detectable levels of organic contaminants; underground storage tanks with reported unauthorized releases; and solid waste disposal facilities from which hazardous waste has migrated. While Section 65962.5 makes reference to the preparation of a list, many changes have occurred related to web-based information access since 1992 and information regarding the Cortese List is now compiled on the websites of the DTSC, the State Water Resources Control Board, and CalEPA. The DTSC maintains the EnviroStor database, which includes sites on the Cortese List and also identifies potentially hazardous sites where cleanup actions or extensive investigations are planned or have occurred. The database provides a listing of federal Superfund sites, State response sites, voluntary cleanup sites, and school cleanup sites.

The EnviroStor database is maintained by DTSC and provides access to detailed information on hazardous waste permitted sites and corrective action facilities, as well as existing site cleanup information. EnviroStor also provides information on investigation, cleanup, permitting, and/or corrective actions that are planned, being conducted, or have been completed under DTSC's oversight. The RWQCB maintains the GeoTracker database which manages sites that impact, or have the potential to impact, water quality in California. The GeoTracker database includes sites that require cleanup, are under current investigation/remediation, or have been closed with a status not requiring further investigation.

A geographical search for hazardous materials sites, as defined in Government Code Section 66962.5, was conducted based on a review of these databases The addresses associated with the proposed Housing Sites are not included on any list compiled pursuant to Government Code Section 65962.5 (see **Appendix F.1**, **Appendix F.6**, **Appendix F.11**, and **Appendix F.13**). As such, the Housing Sites are not located in an area with current significant hazardous materials sites and therefore would not create a significant hazard to the public or environment. No impact would occur.

Threshold IV. HAZ-5: For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

The nearest public use airport is Long Beach Municipal Airport, located less than 1 mile to the northeast of the Housing Sites. The project would introduce new residential land uses. The Los Angeles County Airport Land Use Commission establishes Airport Influence Areas (AIA) to identify areas likely to be impacted by noise and flight activity created by aircraft operations at and airport. The Housing Sites are not within the AIA for Long Beach Municipal Airport (Los Angeles County Airport Land Use Commission 2003). Thus, people living or working on the future Housing Sites site would not be exposed to any safety hazards associated with the operation of the airport. As such, impact would be less than significant.

Threshold IV. HAZ-6: Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Both the County of Los Angeles and the City of Signal Hill have plans that include operational concepts, describe responsibilities, and outline procedures for emergency response. The County has adopted an Operational Area Emergency Response Plan, which describes the planned responses to emergencies associated with natural and man-made disasters and technological incidents. The Signal Hill (2018e) Hazard Mitigation Plan documents strategies and approaches designed to reduce loss of life and property in the event of a disaster or emergency. Key action items in the plan include improving communication

and strengthening emergency operations by increasing collaboration and coordination among the various agencies and organizations involved in emergency planning, identifying funding to implement prevention plans and programs, and continuing the education and outreach efforts.

Project implementation at the Housing Sites would not interfere with the implementation of either of these plans because the proposed Project does not introduce any new land uses not considered in the implementation of the plans and it does not place the proposed land uses in an area that would require any specialized response, nor does it place new land uses in an area that is subject to potential threats such as high fire hazard area, flood, or known hazardous materials or substance releases.

As for emergency evacuation, the roadway grid in and around Signal Hill provides multiple means of evacuation from natural, technological or human-caused disasters. As identified in the Signal Hill General Plan Safety Element, existing evacuation routes are adequate to serve the City's population, and no major improvements are considered necessary to maintain emergency access. Several of the local arterial roadways and Interstate (I-405) are major evacuation routes. Two arterial roadways are in the immediate vicinity of the project site; Cherry Avenue to the west and Willow Street to the north are designated as major evacuation routes. ¹⁵ Given these available emergency routes, future residents, workers, and visitors would have sufficient options for emergency evacuation at each Housing Site if necessary.

The Project would be required to meet minimum driveway width and design requirements as established by SHMC Title 15 and the Los Angeles County Fire Department. ¹⁶ These standards ensure that driveways are properly sized and located to facilitate emergency vehicle access and the positioning of emergency response crews during emergencies. Thus, since the development of the Housing Sites would not introduce any new land uses not already considered in emergency response plans or place the proposed land uses in an area that has been identified as high risk in relation to natural or man-made hazards, and since it would adhere to design requirements established in part to promote safety and logical evacuation, the Project would have a less than significant impact in relation to the implementation of an emergency response plan or evacuation plan.

Threshold IV. HAZ-7: Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?

The California Department of Forestry and Fire Protection (Cal fire) has mapped fire hazard severity zones throughout the state. Designations include Unboned (the lowest wildland fire risk), Moderate, High, and Very High. Property within the City boundaries is Unzoned, indicating a low potential for wildland fire;

_

¹⁵ General Plan Safety Element 2016.

¹⁶ Signal Hill Municipal Code Title 15 (Buildings and Construction).

there are no Moderate, High, or Very High fire hazard zones in the City.¹⁷ Thus, the Project would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands. As such, there would be no impact.

5. MITIGATION MEASURES

The following Mitigation Measures (MMs) have been identified and are based on available information provided in various reports for the Housing Sites:

MM HAZ-1 Prepare a Soil Management Plan Prior to Commencement of Ground Disturbing Activities

A soil management plan should be prepared prior to any soil disturbance activities to be conducted on site. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations. A South Coast Air Quality Management District (SCAQMD) Rule 1166 Permit and Compliance Plan should be obtained from the SCAQMD due to the presence of volatiles prior to the start of soil disturbance operations.

MM HAZ-2 Daylight Abandoned Oil Wells

Previously abandoned oil wells should be located, daylighted and methane gas leak tested prior to the installation of vent cones and vent risers pursuant to the City of Signal Hill's Oil and Gas Code §16.24.030 and §16.24.040. As the act of daylighting oil wells involves soil disturbance, monitoring for volatile organic compounds will be required under the R1166 permit/compliance plan. The R1166 permit limits the release of volatiles in soils to 50 parts per million by volume (ppmv) or less, however some volatiles will be released into the ambient atmosphere during these activities, decreasing the residual concentrations previously detected in site soils and soil vapor.

MM HAZ-3 Daylight Idle Oil Wells

Idle wells should be located, daylighted and abandoned in accordance with the State of California Department of Conservation, Geologic Energy Management Division (CalGEM)

_

¹⁷ As shown in Figure 7 of the Signal Hill General Plan Safety Element 2016.

requirements and in accordance with the City of Signal Hill's Oil and Gas Code §16.22 and §16.24, and under the R1166 permit/compliance plan requirements.

MM HAZ-4 Daylight Abandoned Pipelines

Abandoned pipelines should be located, daylighted and removed in accordance with the Soil Management Plan and R1166 permit/compliance plan.

MM HAZ-5 Install Methane Mitigation Systems Subslab of Proposed Buildings

Institutional controls, i.e., a methane mitigation system to be installed subslab of any proposed buildings, pursuant to the City of Signal Hill's Oil and Gas Code §16.24.080 will effectively mitigate risks and hazards due to vapor intrusion to negligible conditions ensuring the site is safe for any future intended use including as a residential property. A redeveloped property precludes exposure to site soils by future residential occupants.

Methane mitigation subslab of proposed buildings is recommended based on the Methane Assessments. The methane mitigation system should consist of a subslab impervious membrane placed in between geotextile or geocloth to protect it from sand above and the 4" thick gravel blanket below in conformance with the City of Signal Hill Oil and Gas Code §16.24.080 and City of Signal Hill Project Development Guide (June 2020). Perforated horizontal vent pipes should be placed in the 4" thick gravel blanket and tied into vertical vent risers (typically cast iron) placed in between the interior and exterior walls, less than 100-feet apart, extending a minimum of 3-feet above the roof line and should not terminate less than 1010-feet from any opening (City of Signal Hill June 2020).

Although designed to capture and vent methane to the atmosphere, other volatile organic compounds in the subsurface (both in the soil matrix and soil vapor) also will be captured and vented by this system.

MM HAZ-6 Include Vents in Impervious Pavement if Area is 5,000 Square Feet or Greater and Contiguous to Buildings

If an impervious surface paving area is 5,000 square feet or greater and contiguous to the proposed buildings, the paving should have vents spaced less than 100-ft apart consisting of four sided concrete boxes with traffic rated grates and 4" thick gravel blanket at the base. The vents should be designed to prevent surface water infiltration.

6. LEVEL OF SIGNIFICANCE AFTER MITIGATION

MM HAZ-1 would require the preparation of a SMP prior to commencement of ground disturbing activities as approved by the SCAQMD would be completed prior to construction activities and would ensure the SMP would provide instructions for appropriate actions in the event discolored or odiferous soils are discovered during grading. MM HAZ-2 through MM HAZ-4 would require abandoned oil wells and pipelines and idle oil wells present on the Housing Sites to be located, daylighted, methane gas leak tested and fitted with vent cones and risers. MM HAZ-5 would require a Methane Mitigation System to be installed below the foundations of future residential buildings on the Housing Sites which would eliminate the exposure pathway of methane and other COCs that remain on-site and would mitigate vapor intrusion ensuring the Housing Sites are safe for future residential uses. Further, MM HAZ-6 would ensure future residential uses are safe by requiring the paved areas on the Housing Sites greater than 5,000 square feet and contiguous to future residential buildings to be vented with designs to prevent surface water infiltration. Therefore, implementation of MM HAZ-1 through MM HAZ-4 would ensure potential impacts to the public or the environment through the routine transport, use or disposal of hazardous materials to a less than significant level. MM HAZ-5 and MM HAZ-6 would ensure potential impacts to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials would be less than significant.

1. INTRODUCTION

This section evaluates potential impacts concerning land use and planning that could result from the Project, including housing development on the Housing Sites. This section describes the existing environmental and regulatory settings concerning land use and planning. This section also evaluates the potential for the Project to cause significant environmental impact due to a conflict with an existing land use plan or regulation adopted to avoid or mitigate environmental effects. Housing Sites and nearby land uses will be considered in order to comprehensively evaluate the potential effect of the Project.

2. ENVIRONMENTAL SETTING

The City of Signal Hill (City) is located in the Southern California Associated Governments (SCAG) region, which is the largest metropolitan planning organization (MPO) in the country, including approximately 19 million people. The region contains six counties: Imperial County, Los Angeles County, Orange County, Riverside County, San Bernardino County, and Ventura County. Today, the region contains 6 million households and 8 million jobs. While the growth trend has slowed in recent years due to a combination of factors, the region's population continues to grow at approximately 0.85 percent annually, or by approximately 161,500 people annually. Population growth is projected to slow, but continued growth through 2045 is expected. This population growth in turn translates into continued growth for the number of households and jobs in the region.

The history of the City has long been tied to oil production since the discovery and completion of the Alamitos No. 1 well by the Shell Oil Company in 1921. The oil field runs over four miles long and one mile wide, mainly located beneath the City of Signal Hill with a portion extending in the City of Long Beach. The development suitability within the City considers the physical restrictions that exist with the pre2vious oil facilities located amongst most of the existing properties as well as policy direction which is used to encourage the protection of the City's views and historic resources.

Existing Conditions

Signal Hill Setting

Since the redevelopment of the City in 1974, there has been a focus on economic development through the addition of multiple commercial big box stores as well as several dealerships added to the Signal Hill

SCAG. Connect SoCal- The 2020-2045 RTP/SCS. https://scag.ca.gov/sites/main/files/file-attachments/0903fconnectsocal-plan_0.pdf?1606001176. March 4, 2021.

² City of Signal Hill General Plan, Environmental Resources Element, https://www.cityofsignalhill.org/DocumentCenter/View/310/Environmental-resources-element?bidId=. Accessed June 2021.

Auto Center.³ The development of the existing oil field has been a complicated factor due to the fragmented ownership pattern, leading to another focus of the redevelopment plan which is centered around improving land use patterns, housing opportunities, and the quality of architecture and design throughout the City. The existing setting within the City consists of a mix of residential, commercial, and industrial uses with pockets of industrial located near the center and eastern portion of the City and residential and commercial uses found throughout. There are a total of twelve existing parks available to residents as well as the surrounding City of Long Beach park facilities totaling 8.2 park acres per 1,000 residents.⁴ The City shares its transportation network and many other public services with the neighboring City of Long Beach. Regional access to the Project area is supported primarily by Interstate 405 (I-405) and the Pacific Coast Highway (PCH). The City's transportation system consists of roads and a variety of public transportation systems, including buses, light rail, and paratransit service, airports, and seaports.⁵ Major north-south routes within the City include Cherry and Orange Avenues; major east-west through routes include Spring and Willow Streets and Pacific Coast Highway.

The City can be divided into seven neighborhoods including: North End, Central, West Side, Civic Center, Southeast, Hilltop, and Atlantic Spring. The North End neighborhood consists mainly of medium density residential units with some light industrial uses, commercial general, open space, and public institutional uses. The Central Neighborhood consists of mostly commercial general uses with an equal amount of commercial office and general industrial uses. The West Side neighborhood includes some high density residential and medium density residential uses, commercial industrial, general industrial, and Light Industrial uses. The Civic Center neighborhood consists of a multitude of uses: low density residential, high density residential, public institutional, Town Center, light industrial, commercial office, and open space. The Southeast neighborhood includes a majority low density residential uses, some high density residential, medium density residential, with few open space designations, sparce commercial general near the Pacific Coast Highway, and light industrial, general industrial, and commercial industrial to the east of Hathaway Avenue. The Hilltop neighborhood includes low density residential uses, few open space uses, high density residential, Town Center use, and a small portion of commercial designation near Willow Street. The final neighborhood of Atlantic Spring consists of the following uses: commercial general, commercial industrial, Light Industrial, general industrial, and public institute.

³ City of Signal Hill. General Plan – Land Use Element. https://www.cityofsignalhill.org/DocumentCenter/View/309/circulation-element?bidId=. Accessed June 2021.

⁴ Los Angeles Countywide Comprehensive Park & Recreation Needs Assessment, City of Signal Hill, https://documentcloud.adobe.com/spodintegration/index.html?locale=en-us. Accessed June 2021.

⁵ City of Signal Hill. General Plan- Circulation Element. https://www.cityofsignalhill.org/DocumentCenter/View/309/circulation-element?bidId=. Accessed June 2021.

Existing Land Uses

The City of Signal Hill exists within the City of Long Beach and includes a variety of commercial, industrial, and residential land uses. In 1974, the City focused on redevelopment after two thirds of the 2.2 square miles were identified as in need of improvement due to the existing oilfields. The City focused the majority of its redevelopment on infrastructure improvements and then in the 1980's, focus was shifted towards improving economic development and affordable housing. Within the Land Use Element, the City's goals center around affordable housing development. The City's land use pattern is well established and is not anticipated to change materially over time. The City identified that the majority of development would most likely occur within vacant oil field areas and to a lesser extent in-fill development within established neighborhoods. The constraints of future development within the City surround ongoing oil field operations as well as other physical qualities that limit the extent of residential development. However, the goals and policies with the City's General Plan support the development of additional residential and commercial uses throughout the City focusing on environmental suitability of each use.

Each neighborhood within the City is described below with details about the history and existing uses.

North End

The North End neighborhood has been a well-established suburb since before the City's incorporation in 1924, when many of the dwellings were relocated to make way for petroleum exploration. The North End neighborhood is located to the north of the I-405 freeway contained by Atlantic Avenue to the west and Walnut Avenue to the east. Due to the proximity of the neighborhood to the highway infrastructure, a sound wall was constructed to alleviate the travelling vehicle noise in 1998. Today, the neighborhood is lined mostly with large shady trees and cottage homes, with relatively large lots. The neighborhood is also home to the Burroughs Elementary School and Reservoir Park. The southern half of Reservoir Park is a five-million-gallon reservoir and pump station. A minimal amount of two-story apartment buildings also exists in the neighborhood on 32nd Street near California Avenue.

Atlantic/Spring

The Atlantic/Spring Neighborhood is located between Atlantic Avenue and California Avenues and the 405-Freeway and East Willow Street. This neighborhood remained largely undeveloped until the 2000s and still retains a large portion of the remaining vacant land in the City. The availability of undeveloped land is largely a result of ongoing oil production activities from independent oil operators, contaminated

⁶ City of Signal Hill General Plan, Land Use Element, https://www.cityofsignalhill.org/85/General-Plan. Accessed June 2021.

⁷ City of Signal Hill General Plan, Land Use Element, https://www.cityofsignalhill.org/85/General-Plan. Accessed June 2021.

soils, small lots, and lack of infrastructure. Today, the neighborhood includes commercial retail and restaurants, medical offices, and Light Industrial operations.

Central

The Central Neighborhood lies south of the I-405 freeway between Temple and California Avenues. Willow Street is the southern boundary of the Central Neighborhood except that the Hathaway Tank Farm and industrial complex between Hathaway and Redondo Avenues is included in the Central Neighborhood. During the oilfield boom years from 1923 to 1965, the Central Neighborhood served as a vast storage yard for the oil field. As oil production declined, the major petroleum companies sold the land and their interests in the Signal Hill oil field and relinquished the surface rights back to property owners. Some storage yards remain in the neighborhood to this day.

Today, the neighborhood consists of primarily small size industrial lots with narrow streets and alleys. Industrial and business buildings dominate the neighborhood and benefit from the location's easy access to several freeways and a nearby airport. The area is rich with commercial services such as auto centers, auto repair shops, banking, fitness center, and trade schools.

West Side

The West Side Neighborhood is located south of East Willow Street between Orange Avenue and the abandoned Pacific Electric Railroad right-of-way. Historically, the area includes a mix of older industrial and residential land uses on small size lots with scattered oil field operations. Today, the neighborhood is characterized with mostly rental properties, some of which house more than 150 units. The neighborhood contains more rental properties as compared to other areas of the City. The neighborhood also has a mix of historical buildings, industrial buildings, and storage yards. The average income in this neighborhood is lower than the average income of the rest of the City.

Civic Center

The Civic Center Neighborhood takes its name from the many public institutions located between Cherry and Walnut Avenues and E**ast** Willow Street and the southerly City boundary along the abandoned Pacific Electric railroad right-of-way. The Civic Center neighborhood includes public service institutions including the City Hall, police station, library, and community center serving the City. Three schools are also located in the neighborhood which are the Signal Hill and Alvarado elementary schools, and the Preparatory Academy junior high school. Aside from public services and schools, the neighborhood contains a mix of older homes, contemporary condominiums, and single-family residential homes.

The retail development of the area has taken a different turn in recent years with the City shifting their focus from retail sales tax generating establishments such as Costco and Home Depot towards more neighborhood shopping venues such as grocery stores, beauty supply shop, coffee house, and restaurants.

Hilltop

The Hilltop Neighborhood is located on elevated land, as compared to the rest of the City, and enjoys panoramic views of its surrounding landscape. The boundaries of the Hilltop Neighborhood are East Willow Street on the north, 21st and 19th Streets on the south, Cherry Avenue on the west and Hathaway and Obispo Avenues on the east. Developments in the area include single- and multifamily dwellings, retail amenities at Town Center East with Costco and Home Depot, and telecommunication sites.

Current development in the Hilltop Neighborhood is largely in accordance with the Hilltop Area Specific Plan which includes a mix of single-family detached dwellings and condominium flats. Pedestrian walking trails will connect the neighborhood to parks and other neighborhoods nearby.

Southeast

The Southeast Neighborhood includes the area south of East Willow Street, west of Cherry Avenue, north of Pacific Coast Highway, and generally east of Redondo Avenue. The neighborhood went through a redevelopment effort from 1989 to 2000, with the replacement of former commercial properties along Pacific Coast Highway with new single-family homes, the removal of obsolete commercial uses, and the building of a neighborhood park. Existing land use in the neighborhood includes single- and multifamily developments, light manufacturing, warehouses, and offices.

Candidate Housing Sites

As discussed in **Section 2.0 Project Description**, Housing Sites have been chosen which are suitable and available for future residential development in order to meet the regional housing need by income level. A description of each Housing Site is provided below.

Walnut Bluff

Walnut Bluff is located in the Central neighborhood of the City, north of East Willow Street at 2653 Walnut Avenue, Signal Hill, CA 90755. The rectangular site is approximately 2 acres and borders other commercial development to the east and north, with Walnut Avenue to the east of the site and East Willow Street to the south of the site. The existing site is vacant aside from four active oil and gas wells (two of which have idle status), four abandoned wells, and limited vegetation. The Walnut Bluff Housing Site is located on

mostly vacant land occupied by *a* few buildings and active drilling rigs *and associated equipment*. North of the Housing Site, *there is a light industrial building and a newer two-story office building. The Signal Hill Police Department* located on 27th Street, is *farther north* the Signal Hill Police Department which, is , approximately 450 feet away. South of the Housing Site, adjacent to Willow Street, is mostly residential, high density with some single-family homes located on Gundry Ave. Additionally, there is a vacant parcel that has been disturbed by oil and drilling activities south of the Project site. East of the Housing Site which runs parallel to Walnut Avenue *there is an oil well drilling site surrounded by a large oil equipment storage area that is undeveloped.* is vacant, open space that is also occupied by more drilling rigs. West of the Housing Site there is a woodworking shop 2known as Interior Workshop and the LA County Office of the Assessor that is approximately 0.2 miles away. It is located parallel to Gundry Avenue north of East Willow Street.

Heritage Square

Heritage Square is located near the City center in the Civic Center neighborhood, northwest of the intersection of Cherry Avenue and Burnett Street. North of the site is Crescent Heights Street and west of the site is Rose Avenue. The area set aside for residential development is approximately 3.4 acres. The existing condition on site contains a commercial retail use (local grocer). There are eight active oil and gas wells (seven of which have idle status), ten abandoned wells, and limited vegetation. The site also contains pavement and fencing around the perimeter of each individual parcel. The Heritage Square Housing Site is located in an area that has been mostly disturbed by drilling activities. North of the Housing Site are two office buildings including shopping center which is approximately 0.1 miles away. Additionally, a health food store, Mother's Market and Kitchen, and an EVgo Charging Station exist to the north of the site. South of the Housing Site on Burnett Street is a lot of land that is mostly vacant and utilized for drilling activities. To the east is Cherry Avenue which runs parallel to the Housing Site is a Home Depot and Garden Center, which is approximately 0.2 miles away. West of the Housing Site, parallel to Rose Avenue, is another lot of mostly vacant land occupied by a drilling rig and some residential homes.

Town Center Northwest

Town Center Northwest is located northeast of the intersection of Willow Street and Walnut Avenue in the Cent2ral neighborhood. The area set aside for residential development is approximately 7.4 acres. The existing site contains one of seven drill sites in the City housing eleven injection wells (three of which have idle status). There are also approximately fourteen active oil and gas wells (9 of which have idle status) outside of the drill site area, approximately ten abandoned wells, and limited vegetation. The area outside of the fenced drill site to the east is currently used for storage of oil field related equipment. The Town Center Northwest Housing Site is parallel to the Walnut Bluff Housing Site. As mentioned, the site contains one drill site. Gaviota Avenue runs north of the Housing Site. Also north of the Housing Site is

Gregg Drilling LLC, a drilling contractor, and Ancon Services, an oil and natural gas company. South of the Housing Site, along Willow Street, is a shopping center with several amenities: grocery store, chain coffee shops, and restaurants. Immediately east of the Housing Site is another shopping center with a dollar store, takeout restaurant and a cellphone store. Along Walnut Avenue, west of the Housing Site, is the Walnut Bluff Housing Site that is mostly vacant space and a construction company.

Orange Bluff

Orange Bluff is located between Orange Avenue on the west and Gundry Avenue on the east, between East 28th Street on the north and East 27th Street where it terminates at Gundry Avenue on the south. The area set aside for residential development is approximately 7.1 acres. The existing site is mostly vacant; however, the site wraps around an existing center of the site is developed with a Light light Industrial building. There is also an existing industrial kitchen supply store and a spice warehouse on the site. The 2se existing structures would not be within the proposed residential development area and would remain on-site. Scattered about the site are remnants of previous developments including foundations, and paved areas, with limited vegetation. The Orange Bluff Housing Site is near both the Walnut Bluff and the Town Center Northwest Housing Sites. The site is fairly large and extends across several areas of commercial office and general industrial space. North of the Housing Site, along 28th Street, is a glass and mirror shop and light industrial facility. South of the Housing Site, along Willow Street, is a vacant site that historically housed the Majestic Golf Land driving range which has since been demolished. The site has been purchased by a development company who are proposing to develop a large warehouse distribution facility, a recreational facility. Gundry Avenue runs along the eastern side of the Housing Site. Located to the The northeast of ern side of the Housing Site there are has several commercial properties such as an autobody shop, auto parts store, and painters. To, while the southeastern there is side has a woodworking shop called Interior Workshop and the LA County Office of the Assessor, a tax assessor. West of the Housing Site, near the intersection of Orange Avenue and Willow Street is the Long Beach Municipal Cemetery. Northwest On the northwestern portion, towards 28th Street, is the Willow Springs Park, located in Long Beach.

3. REGULATORY SETTING

State

Housing Crisis Act of 2019 (SB 330)

The Housing Crisis Act (SB 330) was enacted by Governor Newson in 2019 as a means to combat the State's growing housing crisis. This legislation's goal is to increase California's affordable housing stock by 3.5 million new units by 2025. To streamline residential development, a new preliminary development application process is required which includes a staff-level review of basic information regarding a project such as:

- Site characteristics:
- The planned project;
- Certain environmental concerns;
- Facts related to any potential density bonus;
- Certain coastal zone-specific concerns;
- The number of units to be demolished; and
- The location of recorded public easements.

SB 330 further streamlines housing development by reducing the number of public meetings or hearings to five or less (e.g., workshops, design review board meetings, planning commission meetings, advisory committee meetings, and city council meetings). A shortened approval time of 90 days instead of 120 days from the time of certification for an EIR is also required to streamline the development approval process.

Local agencies are no longer able to remove or modify land use designations or allowances to inhibit the development of housing, unless the local agency replaces the lost housing potential; therefore, ensuring no net loss in housing availability. Further, local agencies will no longer be able to limit the annual number of housing-focused land use approvals, create caps on the amount of constructed housing units, or limit the population size of their city. Subjective design limitations on parcels where housing is an allowable use is also no longer permissible for projects that are subject to processing per SB 330 (any housing project).

Senate Bill 166 No Net Loss

SB 166 builds on existing laws and regulations to ensure a local agency meets its allocated housing units for lower and moderate-income households. This bill requires adequate housing development capacities to be available throughout the Housing Element planning period to meet the unmet RHNA needs. SB 166 prevents a local jurisdiction from permitting an identified lower and moderate-income residential housing site for development of another use or for a lower density residential development than identified in the Housing Element. If a site identified for housing development is permitted for another use or developed at a lower density which prevents the local agency from meeting its RHNA for lower and moderate income residential housing allocation numbers, the local agency must identify another site for housing development within 180 days to meet the RHNA allocation for lower and moderate income housing.⁸

4.7-8 Recirculated Draft EIR 2021-2029 Housing Element January 2022

SCAG, 6th Cycle Regional Housing Needs Assessment Estimate, 10/1/2021 – 10/1/2029. http://www.scag.ca.gov/programs/Documents/RHNA/Staff-Recommended-RHNA-Estimated-Allocations030520.pdfaccessed March 4, 2021.

Regional Plans and Regulations

SCAG 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy

SCAG is responsible for the designated Regional Transportation Plan (RTP), including its Sustainable Communities Strategy (SCS) component pursuant to SB 375. The 2020-2045 RTP/SCS, also known as Connect SoCal, was adopted by SCAG on September 3, 2020. The 2020-2045 RTP/SCS is a long-range visioning plan that builds upon and expands land use and transportation strategies established over several planning cycles to increase mobility options and achieve a more sustainable growth pattern.

Update of the 2020-2045 RTP/SCS reflects changes in economic, policy, and demographic conditions in the region. ⁹ In the SCAG region, annual growth is slowing down in concert with the national population growth trend. Population growth in the region slowed down from about 0.85 percent in 2020 to about 0.45 percent by 2045. These changes are driven by declines in fertility and affected by high housing costs in the region. The population in the region is also growing older, with a median age of 32.3 in 2000 to 35.8 in 2016. By 2045 the median age is expected to reach 39.7. Net migration to the region has also slowed over the last 30 years.

Applicable goals from the 2020-2045 RTP/SCS include:

Goal 2: Improve mobility, accessibility, reliability, and travel safety for people and goods

Goal 4: Increase person and goods movement and travel choices within the

transportation system

Goal 6: Support healthy and equitable communities

Goal 9: Encourage development of diverse housing types in areas that are supported by

multiple transportation options

Local

City of Signal Hill General Plan

California State Law requires every city and county to adopt a comprehensive General Plan to guide its future development. The adopted General Plan is a blueprint for future development and focuses on the long-term goals of the city or county. The City's General Plan includes the following elements: Land Use, Circulation, Environmental Resources, Housing, Noise, and Safety.

4.7-9 Recirculated Draft EIR 2021-2029 Housing Element January 2022

Southern California Association of Governments (SCAG), 2020-2045 Connect SoCal [2020 RTP/SCS] (adopted November 2019).

Land Use Element

The Land Use Element was adopted in 1989 and has been amended in 2001.¹⁰ The Land Use Element identifies goals and policies and includes a land use map showing the location and intensity of types of uses, such as business, industry, housing, education, public buildings, and open space. The goals and policies applicable to the proposed Project are identified below:

Goal 1: Manage growth to achieve a well-balanced land use pattern that accommodates existing and future needs for housing, commercial and industrial land, open space, and community facilities and services, while maintaining a healthy, diversified economy adequate to provide future City revenues.

Policy 1.2: Provide opportunities for a variety of residential densities and

housing styles.

Policy 1.4: Provide for density bonuses, which exceed maximum densities

specified in the land use plan and classification system, for development projects for low and very-low income or "special need" households in low, medium, and high-density land use

classifications.

Policy 1.5: The distribution and intensity of land uses shall be consistent

with the land use map and descriptions for each of the land use

categories in Section VI of the Land Use Element.

Goal 2: Ensure that new development is consistent with the City's circulation system, availability of public facilities, existing development constraints, and the City's unique characteristics and natural resources.

Policy 2.6: Encourage the development of oil field areas through the removal

or relocation of wells and pipelines, or with site plan designs that encourage the joint use of land for oil production and other urban uses while maintaining essential access to petroleum resources.

Goal 3: Assure a safe, healthy, and aesthetically pleasing community for residents and businesses.

Policy 3.3: Ensure a sensitive transition between commercial or industrial

uses and residential uses by means of such techniques as

buffering, landscaping, and setbacks.

Policy 3.4: Promote mixed-use development and ensure compatible

integration of adjacent uses to minimize conflicts.

Policy 3.5: Encourage the elimination of nonconforming uses and buildings

and limit the reuse of nonconforming buildings to less intensive

uses more compatible with the underlying zoning.

4.7-10

¹⁰ City of Signal Hill General Plan, Land Use Element (2001), https://www.cityofsignalhill.org/DocumentCenter/View/1649/FinalLandUseElement?bidId=. Accessed June 2021.

1 01107 0171	wanted and emiliance the quality of residential merginosimosas.
Policy 3.13:	Reinforce Signal Hill's image and community identity within the
	greater Long Beach Metropolitan area.
Policy 3.16:	Review and revise, as necessary, the City's development
	standards to improve the quality of new development and protect
	the public health and safety.
Policy 3.17:	Promote "smart growth" principles that encourage development
	that is economically viable, creates a sense of community, and
	preserves natural resources. Smart growth includes narrower
	streets, mixed uses, smaller setbacks, open spaces, habitat
	preserves and parks, infill development and compact commercial
	centers, and the reuse of brownfields.

Goal 4: Ensure that future land use decisions are the result of sound and comprehensive planning.

Policy 4.1: Consider all general plan goals and policies, including those in

other general plan elements, in evaluating proposed

Maintain and enhance the quality of residential neighborhoods.

development projects for general plan consistency.

Policy 4.2: Maintain consistency between the Land Use Element, the other

elements of the general plan, the zoning ordinance, and the

Municipal Codes regulations and standards.

Policy 4.6: Develop comprehensive local and regional rather than piecemeal

planning solutions and promote long-range solutions to land use

issues.

Circulation Element

Policy 3.7:

The Circulation Element was most recently updated in 2009.¹¹ It establishes guidelines and policy direction for the development and maintenance of a comprehensive transportation system for the City. The future development of the Housing Sites would create additional low income and very low income housing for the City. The Project would be required to adhere to the general goals and policies in order to reduce the effect of increased traffic due to the creation of residential uses in the area.

The Circulation Element requires that new development must preserve and enhance the City's circulation system. The Project would be consistent with this goal by ensuring that necessary circulation system enhancements and expansions occur, and development of circulation improvements would occur as necessary to ensure safety. The Project would also minimize the environmental impact of transportation systems by encouraging infill development of vacant lots with multi-family and high density development.

¹¹ City of Signal Hill General Plan, Circulation Element, https://www.cityofsignalhill.org/DocumentCenter/View/309/circulation-element?bidId=. Accessed June 2021.

Environmental Resources Element

The Environmental Resources Element was adopted in 1986.¹² The Environmental Resources Element combines the open space and conservation elements into one document to address the long-term and comprehensive preservation and conservation of open space. It also details the conservation, development, and use of natural resources such as water, forests, soils, rivers, and mineral deposits.

The Project would be consistent with the Environmental Resources Element by managing the production of economically valuable resources in the City to balance market forces and long-term community values. The Project would revitalize vacant parcels in order to create a more balanced residential environment within the City. Generation of affordable housing opportunities within the City would create more diverse uses that would encourage growth.

Noise Element

The Noise Element was adopted in 2009 and identifies and assesses noise problems within the community and establishes guidelines to achieve noise-compatible land uses. ¹³ Noise sensitive uses can include residential, schools, hospitals, libraries, and parks. The goals and policies applicable to the proposed Project are identified below:

Goal 1: Protect the health, safety, and welfare of people living and working within the City from adverse noise impacts.

Policy 1.a: The City will consider the severity of noise exposure in the

community planning process to prevent or minimize noise

impacts to existing and proposed land uses.

Policy 1.c: Noise-sensitive land uses, including residential, transient lodging,

hospitals and long-term care facilities, educational facilities, libraries, churches, and places of public assembly will not be

located near major stationary noise sources

Safety Element

The Safety Element was adopted by the City in 1986 and updated most recently in 2016. ¹⁴ The Safety Element focuses on identifying natural or human-made hazards in the City and specifies policies and

4.7-12

¹² City of Signal Hill General Plan, Environmental Resources Element, https://www.cityofsignalhill.org/DocumentCenter/View/310/Environmental-resources-element?bidId=. Accessed June 2021.

¹³ City of Signal Hill General Plan, Noise Element, https://www.cityofsignalhill.org/DocumentCenter/View/313/Noise-element?bidId=. Accessed June 2021.

¹⁴ City of Signal Hill General Plan, Safety Element, https://www.cityofsignalhill.org/DocumentCenter/View/2557/Safety-Element-2016?bidId=. Accessed June 2021.

programs to mitigate hazards to the public. See **Section 4.6: Hazards** for a consistency analysis of the proposed Project and the Safety Element.

General Plan Designations

The City's General Plan Land Use Map displays the general boundaries and patterns of land uses within the City. This map is a general guide to the amount of land and the boundaries of each land use in order for planning development among the most appropriate and consistent land use types within an area. Each land use designation is determined based on the City's specific development requirements and the physical boundaries given the City's unique characteristics.

Low Density Residential (Less than 10 dwelling units per acre)

The Low-Density Residential category allows single-family detached dwellings on individual lots, and in the Hilltop Area attached dwellings containing two to four units. Developed areas of the City that are designated as Low-Density Residential include California Crown located at Temple Avenue and 20th Street and portions of the Southeast Neighborhood located south of 21st Street.

Medium Density Residential (10 - 20 dwelling units per acre)

The Medium-Residential Density land use category includes most land in the North End and West Side Neighborhoods that are largely developed with a mix of lower density single family detached dwellings and medium density multi-family development. Vacant Medium-Residential Density land is found scattered among existing developed parcels.

High Density Residential (20 - 35 dwellings per acre)

The High-Density Residential land use category provides opportunities for multi-family development including multi-story condominiums and apartments. The High-Density Residential areas are located in the Civic Center, West Side and Hilltop Neighborhoods where there are existing high-density residential developments.

Very High Density Residential (35-45 dwellings per acre)

The Very High-Density Residential land use category has been added to the City's Generalized Land Use Map since the Land Use Element was last updated in 2001, for the purpose of accommodating affordable housing projects. The City's most recent affordable housing project, completed in 2019, called Zinnia Apartments is developed at 45 dwelling units per acre.

Town Center

The Town Center land use category is the commercial core of the City generally located at the intersection of Cherry Avenue and Willow Street. The Town Center category provides opportunity for large-scale retail stores, offices, entertainment and dining as well as neighborhood shopping centers. New development in the Town Center is guided by existing Town Center East and the Commercial Corridor Specific Plans and by the Willow/Spring/Cherry Landscape Overlay District. These plans and design guidelines promote orderly development, compatible land uses and cohesive design primarily through the design review procedure including architecture, landscape and sign plan review.

Commercial General

The Commercial General land use category is characterized by a variety of miscellaneous retail and commercial service land uses including retail sales, automotive repair, restaurants, offices, day care, nursery, technical schools and convenience stores. The Commercial General areas are located along major arterial highways including Wardlow Road (where the City of Long Beach controls the frontage, zoning and business licensing), Willow Street between Atlantic and California Avenues, Spring Street between Atlantic and California Avenues, and the Target shopping center located in the North End neighborhood at 33rd Street and California Avenue.

Commercial Office

The Commercial Office land use category provides for the development of professional offices and related supportive retail and service commercial uses. Offices permitted by this category include finance, insurance, architecture, engineering, real estate, business support services and medical or dental. New development in the Atlantic Avenue Commercial Office area should complement existing large scale medical offices. The Commercial Office area located on Walnut Avenue south of Hill Street may provide opportunity for the enlargement of the adjacent existing office complex.

Commercial Industrial

The Commercial Industrial category is intended to accommodate a combination of retail and light industrial uses. The designation applies to areas located along Willow Street and Cherry Avenue. The Commercial Industrial designation allows for mixed-use types of businesses such as manufacturing with retail sales of the manufactured product or warehousing with limited retail sales. Because the typical buildings in the Commercial Industrial category are designed and parked for light industrial use the appropriate uses should not overburden limited parking in the area but should complement the retail business along Willow Street and Cherry Avenue. Likewise, heavy industrial uses are not encouraged in the Commercial Industrial category.

Light Industrial

The Light Industrial land use category is designed to accommodate a variety of light industrial uses which are nonpolluting, and which can coexist with surrounding commercial and residential uses. Development in the Light Industrial areas should complement the existing modern industrial park development with landscaped setbacks orderly parking lots, and high-quality design buildings. When light industrial development abuts commercial or residential development special buffering or wall treatments should be incorporated into the design to minimize incompatibilities.

General Industrial

The General Industrial land use category provides opportunities for heavy industrial uses that can coexist with adjacent light industrial and commercial development. Conditionally permitted uses shall be required to demonstrate that they can operate safely and compatibly with surrounding existing and planned land uses and that they can mitigate environmental impacts. Certain heavy industrial uses are not permitted. The evaluation of conditionally permitted land uses in the General Industrial area shall consider how well the proposal addresses the aesthetic impacts on the surrounding community by incorporating landscaping, high quality architecture and setbacks into the site design.

Open Space

The Open Space category includes public parks, trails and privately owned trails/enhanced walkways when the general public has access to the use of the trail/enhanced walkway recorded as a pedestrian easement.

Public Institutional

The Public Institutional land use category is for public school sites; institutions, utility facilities and public buildings formerly included in the open space land use category. There are four existing school sites within the City far more than necessary to serve the neighborhood populations in vicinity of the schools. New Public Institutional development should reflect the public interest in high quality durable architecture and landscaping to complement existing surrounding development.

City of Signal Hill Municipal Code

Municipal codes refer to a collection of laws passed by a local governing body such as a city. These laws are enforced locally in addition to state law and federal law and cannot conflict with existing state laws and federal laws. The City of Signal Hill has a collection of laws and ordinances enacted on a local level which can be found within the Signal Hill Municipal Code. The Signal Hill Municipal Code includes topics pertaining to real estate development including Title 15-Buildings and Construction and Title 20-Zoning.

Each Specific Plan District is set forth in the Municipal Code and contains guidelines for development within the individual area.

Zoning Code

The zoning code coordinates all existing zoning regulations and provisions into one comprehensive zoning plan in order to designate, regulate, and control the location and use of buildings, structures and land for residence, commerce, trade and industry or other purposes. The zoning code regulates the dimension, number of stores, and other related components of a building, structure, or land to ensure the most appropriate use of land and to protect and promote the health, safety, and general welfare of the public. The City has six commercial zoning codes, four residential zoning codes, and the Open Space and Commercial Residential codes. The zoning codes are supplemented by a number of specific plans and districts.

Residential Zoning

Residential zoning primarily serving residential uses in the City are divided into four levels- Residential Low Density (RL), Residential Low/Medium-1 (RLM-1), Residential Low/Medium-2 (RLM-2), and Residential High Density (RH). The purpose of each type of zoning are described below.

Residential Low Density (RL): This zone is intended to provide for the orderly development and maintenance of low-density neighborhoods in accordance with the general plan. Permitted housing types include single-family detached dwellings and duplexes.

Residential Low/Medium-1 (RLM-1): This zone is intended to provide for the orderly development of low/medium density residential neighborhoods exclusively limited to small-lot subdivisions of single-family detached dwellings.

Residential Low/Medium-2 (RLM-2): This zone is intended to provide for the orderly development and maintenance of low/medium residential neighborhoods which include both single-family dwellings and duplexes.

Residential High Density (RH): This zone is intended to provide for the orderly development and maintenance of high-density residential neighborhoods in areas without physical constraints to such development and where infrastructure is adequate to support such development.

Commercial Zoning

Commercial zoning primarily serves commercial as well as industrial and residential zoning. There are six levels of commercial zoning – Commercial Residential, Commercial Office, Commercial Town Center,

Commercial General, Commercial Industrial.

Commercial Residential (CR): This zone is intended to provide for limited small scale commercial and

office uses along, or in conjunction with, medium density residential uses. Such mixed uses on a single

parcel shall be compatible and where possible, mutually supportive.

Commercial Office (CO): This zone is intended to provide for the orderly development and maintenance

of professional offices and limited commercial uses. Other permitted uses will include commercial offices,

medical offices and hospitals.

Commercial Town Center (CTC): This zone is intended to serve as a concentrated commercial core for

the city. Retail outlets typical of community shopping centers or districts along with general retail uses

and professional offices will be among the uses permitted in this district.

Commercial General (CG): This zone is intended to provide for a wide variety of service and retail uses,

many of which are highway-oriented.

Commercial Industrial (CI): This zone is intended to provide for a wide variety of commercial uses and

limited compatible light indus8trial uses. Commercial or industrial uses which might create offensive levels

of noise, air pollution, glare, radioactivity or other nuisances shall be prohibited from this district.

Industrial Zoning

Industrial zoning serves industrial zoning areas and includes two level - Light Industrial and General

Industrial.

Light Industrial (LI): This zone is designed to accommodate a variety of light industrial uses which are

nonpolluting and which can coexist with surrounding land uses. In addition, limited complimentary

commercial uses shall be permitted.

General Industrial (GI): This zone is intended to provide for the development of a variety of general

industrial and service uses which do not generate obnoxious or offensive impacts which might affect

persons residing or conducting business in the city.

City of Signal Hill 4.7-17 Recirculated Draft EIR 2021-2029 Housing Element January 2022

Specific Plan and Districts

The City utilizes Specific Plan Districts set forth in the Municipal Code zoning section to establish development standards and implementation measures for development within the individual areas. Existing Specific Plans applicable to the Housing Sites are described below.

Special Purpose Housing Specific Plan

The Special Purpose Housing Specific Plan (SP-7) includes six areas within the City each with their own general guidelines, concepts, regulations and conditions to provide for the development of housing for persons with physical disabilities. The project is intended to expand the housing opportunities available to persons with disabilities, low and very low income households, and senior housing. Some goals and objectives for this plan include the following:

- 1. Assure that a specialized population, persons with disabilities, has access to adequate and affordable housing opportunities;
- 2. Support development of dwelling units expressly designed for the special needs of disabled persons;
- 3. Assure that low-income households have access to adequate and affordable housing opportunities;
- 4. Assure that senior and family households have access to adequate and affordable housing opportunities;
- 5. Encourage the development of privately sponsored housing developments intended to be occupied by special needs populations;
- 6. Apply design standards which result in the highest quality development and achieve streetscapes with pedestrian scale and ambiance consistent with Signal Hill's small town character;
- 7. Provide architectural diversity and avoid uniformity of appearance; and
- 8. Enhance aesthetic considerations and minimize view impacts by maintaining finished grades at or below existing grades as identified on the Official 1960 Topographic Map.

Town Center West Specific Plan District

The Town Center West Specific Plan District (SP 3) establishes more detailed development proposals prepared by landowners, developers and general agencies. The SP 3 provides for integrated commercial development consistent with general plan objectives, policies, and programs. Policies include criteria for pay phones and vending machines within the district, hardscape and setbacks that are limited to driveways and walkways, and the prohibited use of commercial marijuana uses.

Heritage Square Specific Plan

The Land Use Element in the City's General Plan proposed changes in the 2001 update for the development of the Heritage Square Central Business District. This designation would include a mixed-use intensive commercial and residential specific plan added to the Commercial Town Center area located between 25th and Creston Streets and Rose and Cherry Avenues. This proposed district would be combined with the Central Business District designation allowing for the development of high intensity mixed-use space which includes retail shops, entertainment, dining, fitness center as well as high density residential development. The Heritage Square Specific Plan (SP-23) would be developed using the proposed designation in the Land Use Element and would accommodate for the Heritage Square Housing Site located near the City center in the Civic Center neighborhood, northwest of the intersection of Cherry Avenue and E. Burnett Street.

Los Angeles County Airport Land Use Plan

California State Law requires the establishment of an Airport Land Use Commission (ALUC) with the purpose of planning for areas within the vicinity of public use airports. In Los Angeles County, the Regional Planning Commission has the responsibility for acting as the ALUC and the subsequent requirements of that agency. The Los Angeles County Airport Land Use Plan (ALUP) is required by State law through the ALUC in order to protect the public, health, safety, and welfare of the surrounding areas. The Long Beach Municipal Airport (LGB) is within Los Angeles County and does not provide an individual ALUP by the City; thus, it is included in the Los Angeles County ALUP.

It is the focus of the Los Angeles County ALUP to provide for the orderly expansion of the County's public use airports and the area surrounding them. It is also intended to provide for the adoption of land use measures that will minimize the public's exposure to excessive noise and safety hazards. The ALUC does not have jurisdiction over airport operations or establishing uses within the airport vicinity, but they complement the planning responsibilities of the cities and other affected agencies. The ALUC has the responsibility to set uniform policies and standards to prohibit development of incompatible uses. However, it is the responsibility of planning commission to specify which compatible uses are appropriate within their individual jurisdictions. The LGB is owned and operated by the City of Long Beach and occupies approximately 1,166 acres just north of Interstate 405 (I-405) freeway. The City of Signal Hill is not within the influence area of the LGB. As such, the Project is not within the influence of the Los Angeles County ALUP and is not required to be consistent with the ALUP guidelines.

4. ENVIRONMENTAL IMPACTS

Thresholds of Significance

Threshold IV. LU-1: Cause a significant environmental impact due to a conflict with any land use

plan, policy, or regulation adopted for the purpose of avoiding or mitigating an

environmental effect?

Methodology

This analysis considers the CEQA Guidelines Appendix G thresholds, as described above, in determining whether the project, including future housing development facilitated by the Project, would result in impacts concerning land use and planning. The evaluation of potential land use and planning impacts is based on review of documents pertaining to the existing and candidate sites associated with the 2021-2029 Housing Element Update. The evaluation was based on a review of the existing policies and regulations to determine the consistency of the Project with existing applicable policies and regulations. These policies and regulations include those within SCAG 2020-2045 RTP/SCS, the City of Signal Hill General Plan, the Special Purpose Housing Specific Plan, the Town Center West Specific Plan District, and the Heritage Square Specific Plan.

Land Use Designation and Zoning Update

The existing zoning and land use designation of the identified Housing Sites are discussed below.

Walnut Bluff

The existing General Plan designation for the Housing Site is Commercial Industrial (3.4). The land uses designated to the north of the Project site are *Commercial* General Industrial (4.2 3.4) and Public Institutional (PI). To the east *the designation* is designated as Town Center (3.1) and the west is designated as *Commercial* General Industrial. To *The designation to* the south *across* of the Site and Willow Street is designated High Density Residential Commercial Industrial (1.3) and southeast across Willow Street is designated Town Center, and High Density Residential (1.3 3.1). The existing zoning for the site is Commercial Industrial (CI). The *nearly square* rectangular site borders other Commercial Industrial (CI) uses to the west and *north*. To the east the of the project site across Walnut Avenue the property is zoned Commercial Corridor Specific Plan (SP-6) General Industrial (GI) development to the east and north. South of the Project site across and Walnut Avenue is zoned high density residential (RH) and the uses as well as the Villagio Specific Plan (SP-16) area. East of the Project site and Walnut Street is zoned for the Commercial Corridor Specific Plan (SP-6) and General Industrial.

Designation of the site to accommodate housing would require a General Plan amendment to Very High Density Residential (35-45 dwelling units per acre) and a zone change to a Special Purpose Housing (SP-7) Specific Plan. This is the standard density and zoning used by the City for affordable housing projects.

Heritage Square

The General Plan designation is Town Center and Low Density Residential. To the north and east of the Project site lies additional Town Center designated uses. The south and west is designated as Low Density Residential with some Open Space (OS) use to the south. The existing zoning for the site is Commercial Town Center (CTC) and Crescent Heights Historic District (SP-11) Specific Plan. The Crescent Heights Historic District residential Specific Plan is directly adjacent to the west and incorporates a portion of the Project site. The north is zoned as Commercial Town Center and Commercial Corridor Specific Plan (SP-6). South of the Project site is zoned for residential low-medium (*RLM-2*).

The Land Use Element of the General Plan calls for the area to be re-designated and established as a Central Business District (CBD). Designation of the site to accommodate housing would also require a zoning ordinance amendment to the Heritage Square (SP-23) Specific Plan to allow a mixed-use commercial and residential project and a General Plan amendment to CBD.

Town Center Northwest

The General Plan designation for the Housing Site is Town Center. North of the site is designated as General Industrial. The east and south are designated as Town Center with some High Density Residential designation to the south. West of the Project site is designated as Commercial Industrial. The existing zoning for the site is Commercial Corridor Specific Plan (SP-6). South and east of the site are developed commercial retail centers named Town Center West and Town Center North. Farther zoned as SP-6 to the south the zoning is Commercial Town Center (and CTC) to the east. Zoning to To the north of the site is zoned as general industrial General Industrial (GI), use CTC and a portion of the Auto Center Specific Plan (SP-4) and zoning to. To the west of the Project site is zoned as commercial industrial Commercial Industrial (CI) use.

Designation of the site to accommodate housing would require a General Plan amendment to CBD and a zoning ordinance amendment to a Town Center Northwest (SP-**24**21) Specific Plan to allow a mixed-use commercial and residential project.

Orange Bluff

The General Plan designation is Commercial Industrial (3.4) and General Industrial. Property Toto the north is designated General Industrial (4.2). To the south and west east of the site is designated General

Industrual Commercial Industrial, and property to the west of the site is in Long Beach. East of the site is designated Commercial Industrial, General Industrial, and a small portion is designated as Public Institutional. To the south is designated as Commercial Industrial. The existing zoning for the site is Commercial Industrial (CI) and General Industrial (GI). Development north and east of the site are mostly commercial office and *light* general industrial *uses* sites, with a few intermittent vacant sites. Zoning to the north continues the General Industrial uses and to the south past Willow Street lies Commercial Industrial zoning. To the east of the Project site is General Industrial zoning, Commercial Industrial, as well as Public Institutional (PI).

The existing zoning for the site is General Industrial (GI). The General Plan designation is General Industrial. Designation of the site to accommodate housing would require a General Plan Amendment to Very High Density Residential designation and a zoning ordinance amendment to rezone the site to the Special Purpose Housing (SP-7) Specific Plan designation.

Environmental Impacts

Threshold IV. LU-1: Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

The Housing Element is one of the State-mandated elements a City is required to prepare as part of its General Plan. Enacted by law in 1969, the Housing Element identifies a City's housing conditions and needs using the Regional Housing Needs Assessment (RHNA) allocation provided by the regional Metropolitan Planning Organizations (MPOs), in the Project's case would be the Southern California Association of Governments (SCAG). The Housing Element then establishes the goals, objectives, policies and programs that serves as the foundation for the City's housing strategy to achieve specific housing goals and improve local housing conditions. The City is updating the Housing Element to address housing needs for the October 2021 to October 2029 Planning Period. The SCAG RHNA allocation for the City identified a housing need of 517 housing units with approximately 45 percent of the 517 units needed for very low- and low-income households. The RHNA allocation for Signal Hill includes 161 very low-income units, 78 low-income units, 90 moderate-income units, and 188 above moderate-income units. The proposed Project would accommodate for 339 above moderate units; 90 very low and low-income units; and 295 very low, low, and moderate-income units. A total of 724 units are proposed with the implementation of the Project.

City of Signal Hill 4.7-22 Recirculated Draft EIR 2021-2029 Housing Element January 2022

SCAG, 6th Cycle Final Regional Housing Needs Assessment Plan. https://scag.ca.gov/sites/main/files/file-attachments/6th-cycle-rhna-final-allocation-plan.pdf?1616462966 accessed May 2021.

This analysis evaluates the adoption of the 2021-2029 Housing Element Update (Project) and the four Housing Sites that have been identified for future housing development to meet the City's RHNA allocation. Future housing developments would be subject to the entitlement process requirements and City approval. Development of identified Housing Sites would be required to comply with applicable federal, State, and local laws and local policies and regulations consistent with the procedures applicable to new developments. This section focuses on the Housing Sites' consistency with existing land use plans and policies. The following plans have been reviewed for consistency with the 2021-2029 Housing Element Update adoption and the anticipated development of the four Housing Sites.

SCAG 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy

The 2020-2045 RTP/SCS provides goals and policies consistent with the SCAG planning vision for regional growth and a guide to collaboration with local governments in order to increase the mobility and sustainability of the area. The update of the 2020-2045 RTP/SCS reflects the changes in economic, policy, and demographic conditions in the region. The overarching goals of this plan address four core categories: economy, mobility, environment, and health/complete communities. The proposed Project would further the objectives of the plan by increasing the amount of available affordable housing within the City, which has been designated a High Quality Transit Area (HQTA).¹⁶

The 2020-2045 RTP/SCS identifies strategies and investments to support expanded housing choices for all income levels in areas with a range of transportation choices. Conclusions within the document stated that a comprehensive approach is needed in order to identify housing opportunities within Priority Growth Areas (PGAs) such as job centers, Transit Priority Areas (TPAs) found within half a mile of a major transit station, and High Quality Transit Areas (HQTAs) which include generally walkable transit oriented areas within one half-mile or a 15 minute walk of a well serviced transit stop. Additionally, under Assembly Bill 101 (AB 101) (2019) legislation, SCAG is eligible for approximately \$47 million from the California Department of Housing and Community Development (HCD). These funds will be used to develop a Regional Housing Strategy Framework and provide planning resources, grants and services to jurisdictions to implement their 6th cycle RHNA allocation, which is supportive of Connect SoCal goals and policies.

According to the 2020-2045 RTP/SCS, the Project would be consistent with the Regional Housing Strategy Framework which places an emphasis on affordable infill housing development within transit-oriented neighborhoods. The Housing Sites are all located within High Quality Transit Areas (HQTAs) according to SCAG which is considered a generally walkable transit village or corridor and is within one half-mile of a

SCAG, Data Map Book for the City of Signal Hill, Major Transit Stops and High Quality Transit Corridors, https://scag.ca.gov/sites/main/files/file-attachments/signalhill.pdf?1604903063. Accessed June 2021.

¹⁷ SCAG, 2020-2045 RTP/SCS, Ch. 6, pg. 153.

well-serviced transit stop or a transit corridor within 15-minute or less service frequency during peak hours. The Housing Sites are served by existing Long Beach Transit (LBT) bus lines along Orange Avenue and East Willow Street. Moreover, the LA Metro Willow Street station is within the vicinity of the Housing Sites. With the implementation of the proposed Project, a total of 385 very low, low, and moderate units would be create within the HQTA as well as an additional 339 above moderate units. The SCAG RHNA allocation for the City identified 329 very low, low, and moderate units with 188 above moderate income units. The proposed Project would sufficiently allocate the SCAG RHNA identified number of units for each affordability level as well as additional units and would be consistent with the goals of the 2020-2045 RTP/SCS.

Table 4.7-1: SCAG 2020-2045 RTP/SCS Analysis provides a consistency analysis of the proposed Project as compared to applicable goals and policies contained in various chapters of the plan. The analysis contained in the table demonstrates that the proposed Project would generally be consistent with the advisory and voluntary RTP/SCS Goals.

Table 4.7-1 SCAG 2020-2045 RTP/SCS Analysis

	, ,
Goals, Policies, and Strategies	Project Consistency
Goal 2: Improve mobility, accessibility, reliability, and travel safety for people and goods	Consistent. Future housing development facilitated by the Project would be consistent with the transportation goals for people and goods. All considered Housing Sites are located within HQTAs within the City.
Goal 4: Increase person and goods movement and travel choices within the transportation system	Consistent. The proposed Project would allow for more people to be located near transportation areas and create enhanced transportation availability.
Goal 6: Support healthy and equitable communities	Consistent. Future housing development facilitated by the Project would increase the availability of housing near transportation areas and allow for increased employment in the vicinity of these sites.
Goal 9: Encourage development of diverse housing types in areas that are supported by multiple transportation options	

City of Signal Hill General Plan

Land Use Element

The General Plan policies focus largely on the continuation of developing the character of each community and neighborhood within the City and protecting the quality of the physical environment. A main objective of the Housing Element is to meet the City's housing needs, including accommodating a variety of housing types and densities. Implementation of the Housing Element and development of new housing in the City

would, for the most part, be in or adjacent to urbanized areas and are vacant for the most part. **Table 4.7- 2: Project Consistency with General Plan Land Use Element** outlines the consistency of the proposed Project with the Land Use Element goals and policies. Additionally, the proposed amendments to the General Plan would be consistent with the intent of these existing goals and policies.

While no specific development projects are proposed at this time, the Project would aim to designate the four Housing Sites as potential future development areas to provide housing to very low, low, moderate, and above moderate affordability levels. Current designation of the Housing Sites would need to be amended in order to support future housing development and become consistent with the City's General Plan and zoning code. The Walnut Bluff Site would require a General Plan amendment to Very High Density Residential (35-45 dwelling units per acre) and a zone change to a Special Purpose Housing (SP-7) Specific Plan. The Heritage Square Site re-designation calls for the area to be designated and established as a Central Business District (CBD) and would also require a zoning ordinance amendment to the Heritage Square (SP-23) Specific Plan. Town Center Northwest Site would require a General Plan amendment to CBD and a zoning ordinance amendment to a Town Center Northwest Specific Plan (SP-24SP-21) to allow a mixed-use commercial and residential project. Finally, the Orange Bluff Site would require a General Plan Amendment to Very High Density Residential designation and a zoning ordinance amendment to rezone the site to the Special Purpose Housing Specific Plan (SP-7) designation. For the Walnut Bluff and Orange Bluff Sites, a change in land use designation to Very High Density Residential would be consistent with the City's standard density used for affordable housing projects. The Heritage Square Site and the Town Center Northwest Site would be re-designated to CBD. The Commercial Business District was identified in the City's Land Use Element stemming from a need for new high-intensity commercial environment, including diverse and intensely developed pedestrian friendly mixed-use facilities. This designation would include retail, restaurants, community facilities, and residential dwellings within mixed-use structures. The Housing Sites would be consistent with the goals for this designation. Additionally, the General Plan designation map would be amended to support the adopted designation changes for each of the Housing Sites.

Anticipated development of the Housing Sites would be consistent with the General Plan, including policies and programs adopted to address environmental impacts, after the proposed amendments to the General Plan, designation map, and the zoning code. The Project would not remove or modify any policies or measures from the General Plan that are intended for environmental protection and would not conflict with any General Plan policies or measures that are intended for environmental protection. The four Housing Sites identified within the City would require General Plan amendments in order for future development to occur. The General Plan Designation Amendments would meet the objectives outlined

within the Land Use Element to establish more residential uses and also meet the philosophy, character, and quality of the existing land uses.

Table 4.7-2
Project Consistency with General Plan Land Use Element

Goals and Policies	Project Consistency
Goal 1 Manage growth to achieve a well-balanced land use pattern that accommodates existing and future needs for housing, commercial and industrial land, open space, and community facilities and services, while maintaining a healthy, diversified economy adequate to provide future City revenues.	adequate housing is available within the City to provide for the identified housing deficit and for future housing
Policy 1.2 : Provide opportunities for a variety of residential densities and housing styles.	Consistent. Future development of the Housing Sites would apply a variety of housing types and residential densities.
Policy 1.4 : Provide for density bonuses, which exceed maximum densities specified in the land use plan and classification system, for development projects for low and very-low income or "special need" households in low, medium, and high-density land use classifications.	
Policy 1.5 : The distribution and intensity of land uses shall be consistent with the land use map and descriptions for each of the land use categories in Section VI of the Land Use Element.	Housing Sites in order to appropriately designate the
Goal 2: Ensure that new development is consistent with the City's circulation system, availability of public facilities, existing development constraints, and the City's unique characteristics and natural resources.	Sites would be assessed individually for circulation
Policy 2.6: Encourage the development of oil field areas through the removal or relocation of wells and pipelines, or with site plan designs that encourage the joint use of land for oil production and other urban uses while maintaining essential access to petroleum resources.	oil drilling areas within the City and would establish residential uses in these areas that are consistent with
Goal 3: Assure a safe, healthy, and aesthetically pleasing community for residents and businesses.	Consistent. Future development of the Housing Sites would add residential uses to areas previously lacking this use and establish enhanced neighborhoods within these areas.
Policy 3.3: Ensure a sensitive transition between commercial or industrial uses and residential uses by means of such techniques as buffering, landscaping, and setbacks.	Consistent. All area specific requirements for development would be adhered to with the future development of the Housing Sites among commercial and industrial uses.
Policy 3.4: Promote mixed-use development and ensure compatible integration of adjacent uses to minimize conflicts.	

development of those areas.

Goals and Policies	Project Consistency						
Policy 3.5: Encourage the elimination of nonconforming uses and buildings and limit the reuse of nonconforming buildings to less intensive uses more compatible with the underlying zoning.	the existing communities to create a diverse blend of						
Policy 3.7: Maintain and enhance the quality of residential neighborhoods.	Consistent. Future development of the Housing Sites would enforce the existing characteristics of each neighborhood so as to enhance the quality.						
Policy 3.13: Reinforce Signal Hill's image and community identity within the greater Long Beach Metropolitan area.	- · · · · · · · · · · · · · · · · · · ·						
Policy 3.16: Review and revise, as necessary, the City's development standards to improve the quality of new development and protect the public health and safety.							
Policy 3.17: Promote "smart growth" principles that encourage development that is economically viable, creates a sense of community, and preserves natural resources. Smart growth includes narrower streets, mixed uses, smaller setbacks, open spaces, habitat preserves and parks, infill development and compact commercial centers, and the reuse of brownfields.	would encourage development that is economically viable through the increase in housing opportunities and enhancement of currently vacant sites which would increase the number of people contributing to						
Goal 4: Ensure that future land use decisions are the result of sound and comprehensive planning.	Consistent. The proposed Project would encourage future housing development and would create land use patterns consistent with City goals for achieving greater housing opportunities.						
Policy 4.1: Consider all general plan goals and policies, including those in other general plan elements, in evaluating proposed development projects for general plan consistency.							
Policy 4.2: Maintain consistency between the Land Use Element, the other elements of the general plan, the zoning ordinance, and the Municipal Codes regulations and standards.	to maintain consistency with existing goals and land						
Policy 4.6: Develop comprehensive local and regional rather than piecemeal planning solutions and promote long-range solutions to land use issues.							

Noise Element

The Noise Element provides goals and policies intended to limit the community's exposure to excessive noise levels. The predominate noise source in the vicinity of the Project area is vehicular traffic. Existing noise sensitive uses around the Walnut Bluff, Town Center Northwest, and Orange Bluff sits include Willow Springs Park, Long Beach Municipal Cemetery, and churches. Noise sensitive uses near Heritage Square include residential homes in close proximity. Future development of the Housing Sites would

require the use of heavy equipment (e.g., bulldozers, backhoes, cranes, loaders, etc.), which would generate noise on a temporary, short-term basis. Oil drilling facilities exist on each of the four Housing Sites and would need to be removed prior to the development of the sites. In the event construction activities were to occur concurrently at multiple Housing Sites in close proximity, impacts to nearby sensitive receptors can increase to a level where the impacts to surrounding sensitive receptors would be potentially significant.

Construction noise associated with future residential land uses and associated infrastructure development as a result of the Project would be temporary in nature and would vary depending on the characteristics of construction activities being performed. The proposed Project includes existing Housing Sites and future development of those Sites based on the approval of the Project. Noise generated during construction of buildings and long-term Project related noise would be regulated by the City's Noise Ordinance and other related policies. As for Project area, the Orange Bluff, Walnut Bluff, and Town Center Northwest Sites are all located within the vicinity of some industrial uses. However, the Noise Element does not identify commercial and industrial uses as a citywide noise problem, except for some isolated conflicts. Additionally, the Noise Ordinance, Zoning Ordinance, and other sections within the Municipal Code provide standards that limit noise production from these uses, such as hours of operation.

The future development of the Sites would not create substantial noise, which might conflict with existing policies in the City's Noise Element. Each Site would be assessed prior to development to ensure that consistency with surrounding uses can be achieved and protect sensitive receptors within the residential dwellings. As such, the uses within the vicinity of the Project area would be consistent with the proposed future development of residential uses. Policies within the Noise Element proposed to protect sensitive receptors and the health and safety of the public through consistent land uses would be applied to the Project, as shown in **Table 4.7-3: Project Consistency with Noise Element.**

Table 4.7-3
Project Consistency with Noise Element

Goals and Policies	Consistency
-	Consistent. Each Housing Site would be assessed prior to development to ensure safety and consistency for sensitive receptors and surrounding uses.
exposure in the community planning process to	Consistent. The Housing Sites would each include residential uses which are considered sensitive and would require any noise impacts to be assessed and minimized if necessary.
	Consistent. Each Housing Site would be individually evaluated to determine if impacts from surrounding noise sources require mitigation.

City of Signal Hill Municipal Code and Zoning Code

The Signal Hill Municipal Code carries out the policies of the City's General Plan by classifying and regulating the uses and development of land and structures consistent with the General Plan. The Zoning Code is adopted to encourage, classify, designate, regulate, and restrict the location of buildings and a variety of uses within the City to promote public health, safety and general welfare. The Housing Sites would be reviewed prior to any construction for consistency with the City's development standards set forth in the Municipal Code and Design Guidelines as part of the design review process. The Specific Plan Districts are set forth in the Municipal Code zoning section and contain guidelines for development within the individual area. With each Project subject to the individual Specific Plan designation upon rezoning, the Sites would be consistent with the Municipal Code and Zoning Code policies and guidelines. *The existing and proposed Specific Plans applicable to the Project are described below.*

Special Purpose Housing Specific Plan

The Special Purpose Housing Specific Plan (SP-7) includes six areas within the City each with their own general guidelines for development. The use classification of the SP-7 includes various residential designations including supplemental amenities to support those uses such as parking designations, laundry facilities, and community facilities. With the implementation of the proposed Project, two new areas would be proposed to support the future housing development within the Walnut Bluff and Orange Bluff sites.

¹⁸ City Municipal Code, Ch.20, Sec.20.02.020.

The Project would use this Specific Plan designation in order to provide housing for very low and low income households. The Walnut Bluff and Orange Bluff sites would require a zoning change to SP-7 in order to accommodate specific housing for these income levels. SP-7 zoning includes guidelines for multifamily dwelling units and accessory uses permitted such as community meeting rooms, laundry facilities on-site for use of the households, open space, carports and uncovered parking lots. Income levels above very low and low income would restricted from occupancy within this plan. Additionally, the maximum dwelling unit density would be limited to 35-45 or Very High Density Residential land use designation which would align with the SP-7 plan. Other requirements of the SP-7 zoning include building height; required setbacks; landscape materials and turf; fences, walls, and hedges; off-street parking; trash and recycling storage; signs; mechanical equipment; and utilities. These would be defined specifically within each individual site area in order to accommodate and maintain consistency within the existing land uses surrounding the future development site. Future development would not be approved via the approval of the Project and would be required to follow the development standards of the SP-7 guidelines including site plan review and building design requirements.

Town Center Northwest Specific Plan District

The Project proposes a zoning amendment for the Town Center Northwest site from Commercial Corridor Specific Plan (SP-6) to a Town Center Northwest Specific Plan (SP-24). This designation would allow for mixed-use commercial and residential projects for future development. Existing SP-6 zoning outlines provisions for property development of commercial centers but does not have allowances or standards for a mixed-use project that includes both commercial and residential uses. The rezoning of the Town Center Northwest Specific Plan will include provisions for mixed-use development. As such, the proposed Project would be consistent with the intended re-zoning to SP-24 and environmental impacts would be less than significant.

Heritage Square Specific Plan

The Project proposes a zoning amendment for the Heritage Square site to a Heritage Square Specific Plan (SP-23). This designation would allow for mixed-use commercial and residential projects for future development in accordance with the development density described in this EIR. As such, the proposed Project would be consistent with the intended re-zoning and environmental impacts would be less than significant.

The Land Use Element in the City's General Plan proposed changes in the 2001 update for the development of the Heritage Square Central Business District. This proposed district would be combined with the Central Business District designation allowing for the development of high intensity mixed-use

space which includes retail shops, entertainment, dining, fitness center as well as high density residential development. This designation would include a mixed-use intensive commercial and residential specific plan added to the Commercial Town Center area located between 25th and Creston Streets and Rose and Cherry Avenues. The Heritage Square Specific Plan (SP-23) would be developed using the proposed designation in the Land Use Element and would accommodate for the Heritage Square Housing Site located near the City center in the Civic Center neighborhood, northwest of the intersection of Cherry Avenue and E. Burnett Street. Future development of the Heritage Square Site and the Heritage Square Specific Plan (SP-23) would be required to follow the existing Municipal Code guidelines established under the SP-23 zoning and the City's General Plan.

Los Angeles County Airport Land Use Plan

As previously discussed, California State Law requires the establishment of an Airport Land Use Commission (ALUC) with the purpose of planning for areas within the vicinity of public use airports. The Los Angeles County Airport Land Use Plan (ALUP) is required by State law through the ALUC in order to protect the public, health, safety, and welfare of the surrounding areas. The Long Beach Municipal Airport (LGB) is included in the Los Angeles ALUP. The City of Signal Hill is located northeast adjacent to the Long Beach Airport Influence Area and would not be subject to the Los Angeles ALUP.

5. MITIGATION MEASURES

No mitigation measures would be required. With the proposed General Plan amendments and rezoning, the proposed Project would not result in any significant conflicts with existing land use plan, policy, or regulation.

6. LEVEL OF SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant. No mitigation measures are required.

6.0 EFFECTS FOUND NOT TO BE SIGNIFICANT

Section 15128 of the CEQA Guidelines¹ requires that an EIR "contain a statement briefly indicating the reasons that various possible significant effects of a project were determined not to be significant and therefore were not discussed in detail in the EIR." An Initial Study (see **Appendix A** of this DEIR) was prepared and released with a Notice of Preparation (NOP) in May of 2021 that included the determination that an EIR would be prepared in compliance with CEQA to analyze potentially significant impacts that may result from the Project. The Initial Study also identified topics for which effects were determined not to be significant. The following section summarizes the findings of the Initial Study for those topics that were determined not to be significant and thus were not discussed in detail within this EIR.

The corrections and revisions to the Project that were identified in the introduction to this recirculated DEIR require revision to the discussion of aesthetics that was determined not to be significant in the Initial Study. The revisions are shown below.

Aesthetics

The identified housing sites are located on infill sites as defined by Public Resource Code Section 21099 which states that aesthetic impacts of a residential or mixed-use residential project on an infill site within a transit priority area shall not be considered significant impacts on the environment. The area is considered a transit priority area (TPA) based on the SCAG map of TPAs for plan year 2045, developed for the SCAG 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) and based on the bus services of Long Beach Transit. As such, aesthetic impacts would be less than significant.

Furthermore, future housing development at the identified Housing Sites would be comparable in height to its surrounding developments, would be required to comply with the requirements of the building standards of the Signal Hill Municipal Code and would be subject to design review by the City to ensure compatibility with the surrounding area. As such, build out of the Housing Sites would not have an adverse effect on aesthetics.

The identified Housing Sites are located on infill, mostly flat sites – with minimal elevation increasing from north to south and are surrounded by a variety of commercial, industrial and residential uses. The Orange Bluff, Walnut Bluff and Town Center Northwest sites are all located within the City's Central Neighborhood where predominant uses are commercial, and they are not situated to impact views from residential neighborhoods. Each of the sites has a conceptual plan for development that includes open

² City of Signal Hill, Street Tree Ordinance. Accessed April 2021.

space, pedestrian access, and objective design elements. The Heritage Square site is directly adjacent to two residential neighborhoods, the Crescent Heights Historic District, and the Crescent Square residential development. The conceptual design and the specific plan zoning will limit the building heights to no more than three stories for the townhomes and will limit the height of the single-family dwellings fronting on Rose to two-stories which is comparable to homes in the Crescent Heights Historic District, and less than homes on the Crescent Square development. Both the Town Center Northwest project and the Heritage Square project will be reviewed under the City's Site Plan and Design Review process and will require discretionary actions by both the Planning Commission and City Council at public hearings. All design elements including building height, design and view impacts will be considered under this process. The Orange Bluff and Walnut Bluff sites will provide affordable income housing and will not be require further discretionary action beyond the adoption of the Special Purpose Housing Specific Plan zoning which will establish development standards for building height, parking, design and landscaping as examples. For these reasons, aesthetic impacts would be less than significant.

Agriculture and Forestry Resources

The City does not contain areas of Prime Farmland, Unique Farmland, Farmland of Statewide Importance, Farmland of Local Importance, Farmland of Local Potential, Grazing Land, Forest or Timberland. As such, the development of housing on the identified housing sites would have no direct or indirect effect on agriculture or forestry resources.

Biological Resources

The identified Housing Sites are disturbed sites containing scattered ruderal vegetation and ornamental trees. The General Plan Environmental Resources Element does not identify any sensitive natural communities on or within the vicinity of the Housing Sites. There are no rivers or streams and no riparian habitat or any other kind of sensitive natural community in or within the immediate vicinity of the identified Housing Sites. The lands surrounding these sites are developed with streets, light industrial, educational, residential, and commercial uses, which have disturbed and replaced natural habitat. No portions of the City are located within a habitat conservation plan, natural community conservation plan, or other approved local, regional, or State habitat conservation plan. The City of Signal Hill does have a street tree ordinance which establishes standards for the planting, removal, replacement, and maintenance of all City street trees in accordance with tree species recommendations contained in the

Street Tree Master Plan.² Development of the Sites would not conflict with this ordinance. For these reasons, impacts would be less than significant.

Hydrology and Water Quality

Housing development associated with the Project would be required to comply with the existing regulatory systems including permitting under California's WDRs and the National Pollutant Discharge Elimination System (NPDES) program. Further, the Signal Hill Municipal Code, Chapter 12.16, Storm Water/Urban Runoff, contains requirements for post-construction stormwater activities and facility operations of development and redevelopment projects to comply with the current Municipal Separate Storm Sewer System (MS4). In part, adherence requires integrating low-impact development (LID) design principles to lessen the water quality impacts of development through biofiltration, evapotranspiration, and rainfall harvest. Specifically, a LID plan would be required for each individual development project on the Housing Sites to demonstrate compliance with the provisions of the City's Municipal Code (Section 12.16.114, New development/redevelopment pollutant reduction).

Anticipated development of the Housing Sites does not include any groundwater extraction wells because all water demand would be met through piped connections to the City of Signal Hill's municipal water system. The housing sites do not feature any natural water features and are not within flood zones and are not close enough to bodies of water to be affected by Tsunami or seiche event. Based on the preceding, hydrology impacts would be less than significant.

Mineral Resources

The City's General Plan does not identify the Housing Sites as having significant mineral deposits of any kind, nor are they located in an area delineated as a mineral resource recovery site. The implementation of the Project could result in the deactivation of 26 active oil drilling wells. Given the extent of drilling activity within the Long Beach oil field, removal of the active wells on the housing sites would not result in the substantial loss of a mineral resource. As such, impacts would be less than significant.

Recreation

The Project does not include any recreational facility. However, development of the Housing Sites would add approximately 1,355 new residents to the City. The City has assessed for foreseeable increase in population in the City and increased the parks and recreation fee accordingly to account for additional

_

² City of Signal Hill, Street Tree Ordinance. Accessed April 2021. https://www.cityofsignalhill.org/DocumentCenter/View/774/2011-11-1441tree-ordADOPTED?bidId=.

park land development. The City has plans to increase recreational facilities within the City limits. Implementation of the Housing Sites would not require the construction or expansion of recreational facilities outside of the existing and planned recreational facility upgrades. No adverse environmental effects are anticipated from the planned recreational facility upgrades associated with the population increase resulting from the Project.

Utilities and Service Systems

Water, wastewater treatment, storm water drainage, electric power, natural gas, and telecommunication facilities exists within the City. Future Housing associated with the Project would connect to this existing infrastructure. The City's water supplies are considered to be stable and sufficient to support expected growth that could occur over the next several years. Signal Hill sanitary sewers connect to the City of Long Beach sewer line, which flows into regional wastewater facilities maintained by the Los Angeles County Sanitation District 29. Since population growth associated with the Project is consistent with the growth projections for City, it is expected that the additional wastewater flow associated with the Project can be accommodated within existing and planned facilities. Future residential development within the City would comply with the City's solid waste reduction programs, which are designed to comply with federal, state, and local statutes and regulations related to solid waste. Based on the above, the Project would not result in significant impacts to utilities or service systems.

Wildfire

The City is not in or near a Fire Hazard Severity Zone (FHSZ), Local Responsibility Area (LRA) or State Responsibility Area (SRA). As such, the Project would not exacerbate wildfire risks or otherwise result in wildfire impacts.

APPENDIX F

Hazardous Materials Assessments

Phase II Environmental Site Assessment, Town Center Northwest

MEARNS CONSULTING LLC ENVIRONMENTAL CONSULTANTS RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405

Cell 310.403.1921

Tel 310.396.9606 Fax310.396.6878

Mearns.Consulting@verizon.net

www.MearnsConsulting.com

Phase II Environmental Site Assessment Northeast Corner E. Willow St. and Walnut Avenue Town Center Northwest Signal Hill, California 90755

July 30, 2021

Prepared for:

City of Signal Hill 2175 Cherry Avenue Signal Hill, California 90755

Prepared by:

Mearns Consulting LLC 738 Ashland Avenue Santa Monica, California 90405

MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS
RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax 310.396.6878 Mearns.Consulting@verizon.net www.MearnsConsulting.com

July 30, 2021

via email

Ms. Elise McCaleb, Economic Development Manager Ms. Colleen Doan, Community Development Director City of Signal Hill 2175 Cherry Avenue Signal Hill, Ca 90755

RE:

Phase II Environmental Site Assessment

Northeast Corner E. Willow Street and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755

Dear Ms. McCaleb and Ms. Doan:

I am pleased to present this Phase II Environmental Site Assessment (Phase II ESA) the 8.35-acre site located at the northeast corner of the intersection of East Willow Street and Walnut Avenue, identified by the address 2690 Walnut Avenue, known as Town Center Northwest, in Signal Hill, Los Angeles County, California 90755 (the site) pursuant to the contract executed on November 12, 2020.

The site is an unpaved oilfield. There are 34 oil wells onsite or contiguous to the site (19 onsite and 15 within the eastern two-thirds of the Drill Site which is not a part of the project site). Operating units, a stormwater system with detention basins, swales, berms and piping currently are onsite. The site will be redeveloped as multifamily residential. A Phase I Environmental Site Assessment (Phase I ESA) conducted in May 2021 identified the site history as an oilfield since at least 1928.

Recognized Environmental Conditions onsite include: (1) the previously abandoned oil wells, (2) the historic aboveground storage tanks, (3) historic pipelines associated with the previously abandoned oil wells and/or the aboveground storage tanks, (4) historic sumps associated with the previously abandoned and/or operating oil wells, (5) the storage of 55-gallon containers of used oil, (6) retail-sized containers of motor oil, (7) 5-gallon buckets of oil, (8) residue in catch basins, (9) gasoline containers, (10) surface staining, (11) transformers, (12) forklifts and (13) the northeastern corner drainage are Recognized Environmental Conditions.

The results of this Phase II ESA indicate a human health risk assessment should be prepared to address the detected concentrations of carbon chains, metals volatile organic compounds and semivolatile organic compounds in site soils and volatiles in the vapor phase that exceed their respective environmental screening level thresholds.

Should you have any questions or desire additional information, please contact me at your earliest convenience at 310.403.1921.

Sincerely,

Kevin M. Clark PG #8573

x Susan Mearns

Susan L. Mearns, Ph.D.

KEVIN M. CLARK No. 8573

Mearns Consulting LLC

MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS
RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax 310.396.6878 Mearns.Consulting@verizon.net www.MearnsConsulting.com

Phase II Environmental Site Assessment
Northeast Corner of E. Willow Street and Walnut Avenue
Town Center Northwest
Signal Hill, California 90755

Background

Pursuant to the authorization of Ms. Colleen Doan (Community Development Director, City of Signal Hill) on November 12, 2020 and to comply with the City of Signal Hill Project Development Guide (2020) Mearns Consulting LLC performed a Phase I Environmental Site Assessment (Phase I ESA) the 8.35–acre site located at the northeast corner of the intersection of East Willow Street and Walnut Avenue, known as Town Center Northwest, in Signal Hill, Los Angeles County, California 90755 (the site) in May 2021.

The Phase I ESA had the following conclusions:

- The historical use of the site is an oil field. There are 34 oil wells onsite or contiguous to the site (19 onsite and 15 within the eastern two-thirds of the Drill Site which is not a part of the project site). Operating units, a stormwater system with detention basins, swales, berms and piping currently are onsite.
- Recognized Environmental Conditions onsite include: (1) the previously abandoned oil wells, (2) the historic aboveground storage tanks, (3) historic pipelines associated with the previously abandoned oil wells and/or the aboveground storage tanks, (4) historic sumps associated with the previously abandoned and/or operating oil wells, (5) the storage of 55-gallon containers of used oil, (6) retail-sized containers of motor oil, (7) 5-gallon buckets of oil, (8) residue in catch basins, (9) gasoline containers, (10) surface staining, (11) transformers, (12) forklifts and (13) the northeastern corner drainage are Recognized Environmental Conditions.
- The adjacent properties include commercial/industrial businesses, an oilfield and multifamily residences. The adjacent oilfield and operating units are Potential Recognized Environmental Conditions that may impact the site. The contiguous former Dico Oil Company property with a LURA designation from DTSC also is a Potential Recognized Environmental Condition that may impact the site.
- The adjacent properties include oilfields, operating units and commercial/industrial businesses. The
 adjacent oilfields and operating units are Potential Recognized Environmental Conditions that may impact
 the site.

The Phase I ESA had the following recommendations:

Pursuant to the City of Signal Hill Project Development Guide (2020) and the City of Signal Hill Oil and Gas Code (2015) a Phase II Environmental Site Assessment (Phase II ESA) should be performed. The Phase II ESA should include soil matrix and soil vapor sampling adjacent to the previously abandoned oil wells, the historic locations of the aboveground storage tanks, the historic locations of the sumps, the surface staining and within the footprint of the proposed multifamily units.

A baseline human health risk assessment should be performed with the data generated from the Phase II ESA.

A methane assessment should be performed in accordance with the City of Signal Hill Oil and Gas Code §16.24.080.

The previously abandoned oil wells should be daylighted and leak tested pursuant to the City of Signal Hill Oil and Gas Code §16.24.030 and §16.24.040

Piping runs should be identified and removed.

A soil management plan should be prepared prior to any grading activities to be conducted onsite. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations.

Phase II ESA

Based on the conclusions, including the identification of Recognized Environmental Conditions, of the Phase I ESA, and the City of Signal Hill Project Development Guide (June 2020) Mearns Consulting LLC conducted a Phase II ESA.

The primary objectives of this Phase II ESA were to conduct soil matrix and soil vapor sampling at the areas identified onsite as Recognized Environmental Conditions and to provide data for use in a baseline Human Health Risk Assessment.

Mearns Consulting LLC delineated the work areas with white spray paint and notified Underground Service Alert to clear public utility lines as required by law on June 30, 2021, at least two business days prior to boring activities conducted on July 13 and 14, 2021 (ticket number B211810092-00B).

Prior to drilling, all locations were excavated to a minimum depth of 5-feet bgs using a hand auger to prevent damage to possible unidentified subsurface utilities.

Kehoe Testing & Engineering, Inc. advanced the borings using a Geoprobe 7800 direct push rig. The sampling system was appropriately cleaned between each borehole. Rinsate generated from cleaning was appropriately disposed.

Mearns Consulting LLC collected soil matrix samples pursuant to SW846 from 19 locations (SV1-SV19) at depths of 5-feet below ground surface (bgs), 10-feet bgs and 15-feet bgs. Soil samples were collected in acetate sleeves with plastic end caps with minimal headspace, labeled and logged onto a chain-of-custody form and stored in a cooler at 4°C until delivered under chain of custody to Sierra Analytical Labs (a State of California Department of Health Services ELAP accredited laboratory; ELAP No. 2320). Analyses requested were carbon chain ranges C4-C12, C13-C23, C23-C40 via USEPA method GC/FID 8015B, total threshold limit concentration (TTLC) metals and hexavalent chromium via USEPA methods 6000/7000, volatile organic compounds via USEPA 8260B, collected via USEPA 5035B in the field by placing 5g of soil into volatile organic analyte vials to which preservative had been added and semi-volatile organic compounds via USEPA 8270C. Soil matrix analytical results are included as Appendix A.

These soil borings were then developed as dual-nested soil vapor probes at 5-feet and 15-feet bgs (SV1-SV19) in accordance with *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)*, DTSC, October 2011, the *Advisory Active Soil Gas Investigations*, DTSC, LARWQCB, SFRWQCB, July 2015 and the DRAFT Supplemental Guidance Screening and Evaluating Vapor Intrusion (CalEPA, DTSC, SWRCB February 2020).

A new section of ¼-inch diameter nylaflow tubing with a new 6-inch stainless steel probe tip at the terminal end was inserted into the borehole to the desired sampling depth. One-inch diameter polyvinyl chloride (PVC) casing was used as a guide for the tubing to ensure that the desired sampling depth was achieved. Sand was poured into the boring annulus to form an approximately one-foot long sand pack around the probe tip, at which time the PVC

piping was withdrawn. Approximately one foot of dry, granular bentonite was placed atop the sand pack and the remainder of the borehole was backfilled with hydrated bentonite to the ground surface to form a seal. The sampling end of the tubing was fitted with a three-way valve and the probe was labeled for identification.

Soil gas samples were collected in general accordance with the July 2015 DTSC and LARWQCB) "Advisory – Active Soil Gas Investigations."

Each probe was allowed to equilibrate for a minimum of 48-hours after installation prior to sampling by a mobile laboratory. Soil vapor samples were collected in glass gas-tight syringes equipped with Teflon plungers. A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of three purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents. Prior to purging and sampling of soil vapor at each location, a shut-in test was conducted to check for leaks in the aboveground fittings. The shut-in test was performed on the aboveground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there is any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then collected. No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Forty soil vapor samples, including three duplicates, were collected from these soil vapor probes by a Jones Environmental, Inc. (ELAP 2882) chemist and analyzed in a mobile laboratory on July 27 and 28, 2021. Three duplicates, one per 10 soil vapor samples, were collected and analyzed by the chemist. One deep probe SV19 was unable to be set at 15-feet bgs due to oily conditions. Soil vapor analytical results are included as Appendix B.

All drilling, logging and sampling activities were conducted by or under the direct supervision of a California-Professional Geologist, and in accordance with California Well Standards presented in the Department of Water Resources (DWR) Bulletins 74-81 and 74-90. The Site Geology section and boring logs were prepared by Mr. Scott R. Fagan, a State of California Professional Geologist PG #4289. Boring logs are included as Appendix C.

Site Geology - The site is located on the west flank of the Signal Hill uplift created by lateral movement on the Cherry Hill Fault (CHF) (part of the Newport Inglewood fault zone). The CHF is located north of the site and the site overlies the Gardena Syncline, an east-west trending down-fold of the local stratigraphy.

The surface sediments are Recent Alluvium consisting of sand, silt and clay which overlie the Lakewood Formation. Borings are logged as predominantly silt and clay with thin sections of sand.

The Gaspur Aquifer is the first groundwater below the site, below any boring depths achieved during drilling activities. No groundwater was detected in any soil boring.

Soil Matrix Analytical Results – Carbon chains C4-C12 were detected eight times in 57 soil matrix samples at a concentrations ranging from 0.052 mg/kg to 2,600 mg/kg; four detected concentrations: 1,100 mg/kg, 2,600 mg/kg, 510 mg/kg and 1,500 mg/kg exceed the screening threshold of 82 mg/kg. Carbon chains C13-C22 were detected 12 times in 57 soil matrix samples at concentrations ranging from 34 mg/kg to 2,500 mg/kg; five detected concentrations exceeded the screening threshold of 97 mg/kg. Carbon chains C23-C40 were detected 15 times in

57 soil matrix samples at concentrations ranging from 35 mg/kg to 2,200 mg/kg; none of these detected concentrations were greater than the screening threshold of 2,400 mg/kg (Table 1 and Figure 4).

The following metals were detected in concentrations greater than their respective reporting limits: arsenic, barium, cobalt, trivalent chromium, copper, lead, nickel, selenium, vanadium and zinc (Table 1 and Figure 4). A detected concentration of arsenic, 20 mg/kg, exceeded the screening threshold.

The volatile organic compounds (VOCs) benzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, ethylbenzene, isopropylbenzene (cumene), methyl tert-butyl ether (MTBE), naphthalene, n-propylbenzene, m,p-xylenes and o-xylene were detected in concentrations greater than their respective reporting limits (Table 3 and Figure 5). Detected concentrations of naphthalene exceed the screening limit.

Semi-volatile organic compounds (SVOCs) acenaphthene, anthracene, benzo(a)anthracene, 2,4-dinitrophenol, chrysene, 4,6-dinitro-2-methylphenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, fluorene, 2-methylnaphthalene, naphthalene, 4-nitroaniline, n-nitrosodi-n-propylamine, phenanthrene and pyrene were detected in the soil matrix at concentrations greater than their respective reporting limits. Detected concentrations of benzo(a)anthracene, 2,6-dinitrotoluene and naphthalene exceeded their respective screening levels (Table 4 and Figure 5).

Soil Vapor Analytical Results – The VOCs, benzene, n-butylbenzene, sec-butylbenzene, cis-1,2-dichloroethene, di-isopropylether, ethylbenzene, isopropylbenzene (cumene), 4-isopropyltoluene (cymene), methylene chloride, naphthalene, n-propylbenzene, tetrachloroethene, toluene, total xylenes and gasoline range organics (GRO) were detected in concentrations greater than their respective reporting limits in the vapor phase (Table 5 and Figure 6). All of these volatiles were detected at concentrations that exceeded their respective screening thresholds. The greatest detected concentration of benzene, 8,850 micrograms per cubic meter (μ g/m³) was detected at SV7-15 adjacent to a previously abandoned oil well and along a pipeline corridor. Generally concentrations of volatiles in the vapor phase increased with depth.

Conclusions

Carbon chains, C4-C12, C13-C22, C23-C40, metals VOCs and SVOCs were detected in the soil matrix. Sixteen volatile organic compounds were detected in the vapor phase in soil vapor underlying the site (Table 5 and Figure 6).

The carbon chains C4-C12 and C13-C22 were detected at concentrations greater than their respective screening thresholds (Table 1 and Figure 4). Arsenic was detected at concentrations greater than the screening threshold (Table 1 and Figure 4). Three VOCs/SVOCs in the soil matrix exceeded their respective screening thresholds. Seventeen volatile organic compounds in the vapor phase were detected at concentrations that exceeded their respective screening thresholds (Tables 3-5 and Figures 5 and 6).

Recommendations

As the proposed future development for the site is residential, a human health risk assessment is warranted based on the results of this Phase II ESA. The human health risk assessment should include an evaluation of potential health impacts to future residential, commercial and construction workers.

References

Department of Toxic Substances Control (DTSC). June 2020. HERO Note 3, DTSC Modified Screening Levels.

Mearns Consulting LLC. May 27, 2021. Phase I Environmental Site Assessment, Northeast Corner of E. Willow Street and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755. Two volumes.

San Francisco Bay Regional Water Quality Control Board. 2019. Rev. 2. Environmental Screening Levels, Tier 1.

Sierra Analytical Labs, Inc. April 2005 and July 2021. Background metals soil matrix analytical results Spud Field.

USEPA. May 2021. Regional Screening Levels.

Table 1 - TPH and Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Со	Cr	Cu	Ni	Pb	Se	V	Zn	C4-C12	C13-C22	C23-C40
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000	82	97	230,000
DTSC-SLr		0.11	·		36,000		820	80		390			97	2,400
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000	420	560	3,500,000
DTSC-SLi		0.36			170,000		11,000	320		1,000			500	18,000
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340			
SV1-5	7/12/2021	< 5.5	68	5.4	9.8	8.8	6.4	<7.1	< 6.9	15	27	< 0.05	<5	<5
SV1-10	7/12/2021	< 5.5	77	7.1	21	20	12	<7.1	< 6.9	24	42	< 0.05	<5	<5
SV1-15	7/12/2021	< 5.5	45	<3.3	7	<5	3.6	<7.1	< 6.9	6.6	22	< 0.05	<5	<5
SV2-5	7/12/2021	< 5.5	74	5.5	11	13	6.2	<7.1	< 6.9	13	28	< 0.042	<5	35
SV2-10	7/12/2021	< 5.5	82	9.3	18	18	12	<7.1	< 6.9	31	36	< 0.045	<5	<5
SV2-15	7/12/2021	< 5.5	81	6.6	21	14	11	<7.1	< 6.9	28	36	< 0.05	<5	<5
SV3-5	7/12/2021	< 5.5	67	5.6	12	11	4.3	<7.1	< 6.9	18	25	< 0.042	<5	<5
SV3-10	7/12/2021	< 5.5	50	6.4	18	17	9.5	<7.1	< 6.9	31	34	< 0.05	<5	<5
SV3-15	7/12/2021	< 5.5	32	3.7	8.3	6.2	5	<7.1	< 6.9	18	18	< 0.05	<5	<5
SV4-5	7/12/2021	< 5.5	63	8.2	13	14	8	<7.1	< 6.9	25	26	< 0.05	<5	<5
SV4-10	7/12/2021	< 5.5	40	4.6	14	12	7	<7.1	< 6.9	21	25	< 0.05	<5	<5
SV4-15	7/12/2021	< 5.5	26	3.7	8.1	6.8	5.7	<7.1	< 6.9	14	20	< 0.05	<5	<5
SV5-5	7/12/2021	< 5.5	82	8.1	18	17	10	<7.1	< 6.9	34	34	< 0.05	<5	<5
SV5-10	7/12/2021	< 5.5	47	5.1	12	11	7.8	<7.1	< 6.9	21	24	< 0.05	<5	<5
SV5-15	7/12/2021	< 5.5	61	6.1	14	15	8.8	<7.1	< 6.9	28	30	< 0.05	<5	<5
SV6-5	7/13/2021	< 5.5	83	7.6	14	14	8.5	<7.1	< 6.9	24	28	< 0.05	<5	<5
SV6-10	7/13/2021	< 5.5	66	6.4	21	16	12	<7.1	< 6.9	31	40	< 0.05	<5	<5
SV6-15	7/13/2021	< 5.5	42	4.3	9.4	9	6.4	<7.1	< 6.9	14	27	< 0.05	<5	<5
SV7-5	7/13/2021	< 5.5	73	7.2	16	13	11	7.2	< 6.9	27	34	< 0.062	<5	<5
SV7-10	7/13/2021	< 5.5	50	6.6	13	11	7.6	<7.1	< 6.9	19	25	< 0.071	<5	<5
SV7-15	7/13/2021	< 5.5	37	3.6	10	8.4	6.7	<7.1	< 6.9	16	20	< 0.05	<5	<5
SV8-5	7/13/2021	< 5.5	30	<3.3	5.7	7.8	4	19	< 6.9	9.1	26	< 0.042	<5	<5
SV8-10	7/13/2021	< 5.5	58	10	12	11	7.8	<7.1	< 6.9	21	25	< 0.05	<5	<5
SV8-15	7/13/2021	< 5.5	50	4.6	17	12	9.8	<7.1	< 6.9	19	29	< 0.05	<5	<5
SV9-5	7/13/2021	< 5.5	3100	5.1	26	31	20	24	< 6.9	28	73	< 0.067	110	550
SV9-10	7/13/2021	< 5.5	77	6.2	17	12	8.3	<7.1	< 6.9	23	27	< 0.043	<5	50
SV9-15	7/13/2021	< 5.5	110	10	30	17	16	<7.1	< 6.9	33	45	< 0.05	<5	<5
SV10-5	7/13/2021	< 5.5	650	10	25	31	24	42	< 6.9	36	100	< 0.084	510	650
SV10-10	7/13/2021	< 5.5	49	4.9	10	8.3	6	<7.1	< 6.9	16	20	< 0.05	<5	52
SV10-15	7/13/2021	< 5.5	81	11	21	15	13	<7.1	< 6.9	36	42	< 0.05	<5	<5
SV11-5	7/13/2021	< 5.5	150	10	19	21	15	17	< 6.9	29	60	< 0.05	<5	160
SV11-10	7/13/2021	< 5.5	130	8.5	15	10	8.1	<7.1	< 6.9	23	28	< 0.05	39	200
SV11-15	7/13/2021	< 5.5	64	6	19	11	11	<7.1	< 6.9	23	31	< 0.05	<5	<5
SV12-5	7/13/2021	< 5.5	83	5.4	12	7.8	6.4	<7.1	< 6.9	18	23	< 0.07	<5	<5
SV12-10	7/13/2021	< 5.5	46	5.4	10	6.7	5.7	<7.1	< 6.9	16	20	< 0.05	<5	<5
SV12-15	7/13/2021	< 5.5	32	3.3	7	<5	4.5	<7.1	< 6.9	9.2	16	< 0.05	<5	<5
SV13-5	7/13/2021	< 5.5	83	7.1	15	9.8	8.7	<7.1	< 6.9	23	31	< 0.05	<5	<5

Table 1 - TPH and Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Co	Cr	Cu	Ni	Pb	Se	V	Zn	C4-C12	C13-C22	C23-C40
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000	82	97	230,000
DTSC-SLr		0.11			36,000		820	80		390			97	2,400
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000	420	560	3,500,000
DTSC-SLi		0.36			170,000		11,000	320		1,000			500	18,000
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340			
SV13-10	7/13/2021	<5.5	100	5.7	21	13	10	<7.1	< 6.9	26	37	< 0.05	<5	<5
SV13-15	7/13/2021	< 5.5	46	4.5	12	8	7	<7.1	< 6.9	16	26	< 0.05	<5	<5
SV14-5	7/13/2021	< 5.5	50	4.7	11	7.4	5.9	<7.1	< 6.9	15	22	< 0.05	<5	<5
SV14-10	7/13/2021	< 5.5	88	5.6	22	12	9.1	26	< 6.9	17	61	0.21	53	180
SV14-15	7/13/2021	< 5.5	38	3.8	12	6.9	6.4	<7.1	< 6.9	13	28	< 0.05	<5	<5
SV15-5	7/13/2021	< 5.5	110	4.9	12	9	6.7	<7.1	< 6.9	19	28	< 0.06	<5	<5
SV15-10	7/13/2021	< 5.5	79	7.8	16	13	12	<7.1	< 6.9	26	38	< 0.056	<5	<5
SV15-15	7/13/2021	< 5.5	64	4.9	11	6.9	7.7	<7.1	< 6.9	16	26	< 0.065	<5	<5
SV16-5	7/13/2021	< 5.5	160	7.4	17	20	11	19	< 6.9	24	63	< 0.058	190	500
SV16-10	7/13/2021	< 5.5	130	11	24	27	16	27	< 6.9	36	86	< 0.063	<5	<5
SV16-15	7/13/2021	< 5.5	720	8	23	37	16	61	< 6.9	28	90	0.26	150	200
SV17-5	7/13/2021	20	88	6.7	18	47	17	57	< 6.9	21	180	0.052	34	650
SV17-10	7/13/2021	< 5.5	170	9.2	20	21	13	12	< 6.9	28	61	< 0.05	<5	79
SV17-15	7/13/2021	< 5.5	240	16	35	35	19	12	7.4	47	120	< 0.05	<5	78
SV18-5	7/13/2021	< 5.5	110	8.2	18	16	12	14	< 6.9	28	66	< 0.10	110	600
SV18-10	7/13/2021	< 5.5	94	9.8	18	14	12	<7.1	< 6.9	32	40	1100	1300	2200
SV18-15	7/13/2021	< 5.5	100	7.7	25	16	16	<7.1	< 6.9	35	54	0.48	<5	<5
SV19-5	7/13/2021	< 5.5	74	6.9	14	11	11	<7.1	< 6.9	24	33	2600	2400	<250
SV19-10	7/13/2021	< 5.5	66	7.3	17	12	12	<7.1	< 6.9	23	35	510	590	270
SV19-15	7/13/2021	< 5.5	46	5.2	10	7.8	8.1	<7.1	< 6.9	15	28	1500	2500	530
Notes:		•				•				•				

Notes:

mg/kg = milligram per kilogram

As = arsenic, Ba = barium, Co = cobalt, Cr = trivalent chromium, Cu = copper, Ni = nickel, Pb = lead, Se = selenium, V = vanadium, Zn = zinc

<5.5 = concentration is less than the Reporting Limit (5.5), i.e., not detected (ND)

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs).

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of metals are presented in this table. All other metals were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels, except nickel and TPH

DTSC SL C17-C32, aromatic high and USEPA aromatic high values were used for C23-C40

DTSC SL C9-C16, aromatic medium and USEPA aromatic medium values were used for C13-C22

Table 2 - Background Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Co	Cr	Cu	Ni	Pb	Se	V	Zn
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000
DTSC-SLr		0.11			36,000		820	80		390	
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000
DTSC-SLi		0.36			170,000		11,000	320		1,000	
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340
Offsite-1	4/4/2005	5.2	97	8.1	21	25	12	12	<1.9	35	62
Offsite-5	4/4/2005	12	160	17	50	64	30	8.1	<1.9	75	99
Offsite-10	4/4/2005	12	170	14	32	35	22	5.6	<1.9	58	67
Offsite-20	4/4/2005	14	73	17	35	80	22	10	<1.9	67	95
SB1-5	7/6/2021	< 5.5	84	11	36	40	21	8.8	< 6.9	46	54
SB2-5	7/6/2021	< 5.5	69	9.3	21	26	15	<7.1	< 6.9	36	39
SB3-5	7/6/2021	<5.5	48	4.6	9	16	6.2	<7.1	< 6.9	16	29
SB4-5	7/6/2021	< 5.5	170	14	42	45	26	9.5	< 6.9	58	74
SB5-5	7/6/2021	< 5.5	97	16	30	40	27	8.5	< 6.9	52	56
SB6-5	7/6/2021	< 5.5	130	22	42	46	33	11	< 6.9	71	85
SB7-5	7/6/2021	< 5.5	80	12	24	26	19	<7.1	< 6.9	43	47
SB8-5	7/6/2021	< 5.5	180	17	38	37	32	11	< 6.9	68	51
SB9-5	7/6/2021	<5.5	87	14	30	28	24	9	< 6.9	54	38
SB10-5	7/6/2021	< 5.5	98	13	27	30	23	7.5	< 6.9	51	39
SB11-5	7/6/2021	< 5.5	120	9.8	22	14	16	<7.1	< 6.9	39	31

Notes:

mg/kg = milligram per kilogram

As = arsenic, Ba = barium, Co = cobalt, Cr = trivalent chromium, Cu = copper, Ni = nickel, Pb = lead, Se = selenium, V = vanadium, Zn = zinc <5.5 = concentration is less than the Reporting Limit (5.5), i.e., not detected (ND)

SB1-5 = Soil Boring1, 5-feet below ground surface (bgs).

Analytical results are included as Appendix B

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020) carcinogenic values were preferentially used for all screening levels, except nickel

Table 3 - VOCs Analytical Results in Soil Matrix

								er				
								Methyl tert-butyl ether				
			e	ne	tert-Butylbenzene		Isopropylbenzene	tyl		ne		
			n-Butylbenzene	sec-Butylbenzene	enz	ne	zue	nq-	e	n-Propylbenzene		
			en	lbe	ylb	nze	y lb(tert	ılen	lbe	ene	43
		Benzene	tylk	uty	3ut,	Ethylbenzene	ido.	y 11	Naphthalene	ppy	m,p-Xylene	o-Xylene
G + 3 5 D 7 77		enz	Bu	c-B	I.	thy]	opr	eth	aph	Pro	d,	Xy
SAMPLE ID	DATE SAMPLED											_
RSLr	SAMI LED	mg/kg 1.2	mg/kg 3,900	7,800	7,800	mg/kg 5.8	mg/kg 1,900	mg/kg 47	mg/kg 2	mg/kg 3,800	mg/kg 550	mg/kg 650
DTSC-SLr		0.33	2,400	2,200	2,200	5.0	1,900	7/	2	3,800	330	050
RSLi		5.1	58,000	120,000	120,000	25	9,900	210	8.6	24,000	2,400	2,800
DTSC-SLi		1.4	18,000	12,000	12,000				6.5			
ESL Tier 1		0.025				0.43		0.028	0.042		2.1	2.1
SV1-5	7/12/2021	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045		< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
SV1-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV1-15	7/12/2021 7/12/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.0042	<0.005	<0.005	<0.005	<0.005	<0.005
SV2-5 SV2-10	7/12/2021	< 0.0042	<0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	<0.0042
SV2-10	7/12/2021	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039
SV3-5	7/12/2021	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042
SV3-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV3-15	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV4-5	7/12/2021	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005
SV4-10	7/12/2021	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
SV4-15 SV5-5	7/12/2021 7/12/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SV5-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV5-15	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV6-5	7/13/2021	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058
SV6-10	7/13/2021	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099
SV6-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV7-5	7/13/2021	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
SV7-10 SV7-15	7/13/2021 7/13/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SV8-5	7/13/2021	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
SV8-10	7/13/2021	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
SV8-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV9-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV9-10	7/13/2021	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV9-15 SV10-5	7/13/2021 7/13/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005 <0.0056
SV10-3 SV10-10	7/13/2021	< 0.0036	< 0.0056	< 0.0056	< 0.0036	< 0.0056	< 0.0056	< 0.005	< 0.0036	< 0.0056	< 0.005	< 0.0036
SV10-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV11-5	7/13/2021	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056				< 0.0056	< 0.0056	
SV11-10	7/13/2021	< 0.0058							< 0.0058	< 0.0058	< 0.0058	
SV11-15	7/13/2021	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064
SV12-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV12-10 SV12-15	7/13/2021 7/13/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005
SV12-13 SV13-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV13-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV13-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV14-5	7/13/2021	< 0.0056							< 0.0056	< 0.0056	< 0.0056	
SV14-10	7/13/2021	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.023	< 0.0059		< 0.0059	< 0.0059	0.11	0.043
SV14-15	7/13/2021	<0.0057	<0.0057	< 0.0057	< 0.0057				<0.0057	< 0.0057	<0.0057	
SV15-5 SV15-10	7/13/2021 7/13/2021	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087
SV15-10 SV15-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.006
SV15-15	7/13/2021	< 0.003			< 0.0064			< 0.0064		< 0.0064		< 0.003
	- /=-											

Table 3 - VOCs Analytical Results in Soil Matrix

SAMPLE ID	DATE SAMPLED	m Syl Benzene	m ^{gg} n-Butylbenzene ^{gg}	프 ^{RS} sec-Butylbenzene ^{RS}	m Refert-Butylbenzene References	ա Թ Fthylbenzene	프 ^{RS} Isopropylbenzene ^{RS}	프 전 제 제 Methyl tert-butyl ether	ա Թ Տո Naphthalene	프 ^{RS} n-Propylbenzene ^{RS}	m % m,p-Xylene a	m Ng 0-Xylene
RSLr		1.2	3,900	7,800	7,800	5.8	1,900	47	2	3,800	550	650
DTSC-SLr		0.33	2,400	2,200	2,200				2			
RSLi		5.1	58,000	120,000	120,000	25	9,900	210	8.6	24,000	2,400	2,800
DTSC-SLi		1.4	18,000	12,000	12,000				6.5			
ESL Tier 1		0.025				0.43		0.028	0.042		2.1	2.1
SV16-10	7/13/2021	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067
SV16-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.014	< 0.005	< 0.005	< 0.005
SV17-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV17-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV17-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV18-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV18-10	7/13/2021	0.0081	0.0052	0.035	0.005	0.023	0.031	< 0.005	0.036	0.035	< 0.005	< 0.005
SV18-15	7/13/2021	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
SV19-5	7/13/2021	< 0.005	1	< 0.005	< 0.005	< 0.005	3	1.2	7.7	5.7	< 0.005	< 0.005
SV19-10	7/13/2021	< 0.0069	< 0.0069	0.068	0.012	< 0.0069	1	14	< 0.69	1.6	0.0075	< 0.0069
SV19-15	7/13/2021	< 0.5	1.7	< 0.5	< 0.5	< 0.5	1.7	12	13	4.1	< 0.5	< 0.5

Notes:

mg/kg = milligram per kilogram

<0.005 = concentration is less than the Reporting Limit (0.005), i.e., not detected (ND)

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs).

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of VOCs are presented in this table. All other VOCs were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels

Table 4 - SVOCs Analytical Results in Soil Matrix

Acenaphthene Anthracene Benzo (a) anthracene 2,4-Dinitrophenol Chrysene 4,6-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene		, 2-Methylnaphthalene , Naphthalene		, N-Nitrosodi-n-propylamine Phenanthrene	, Pyrene
ID SAMPLED mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		ng/kg mg/kg		g/kg mg/kg	mg/kg
	/	240 2 190 2	27 0.	.078	1,800
2,000		,000 8.6	110 0	0.33	23,000
		,300 6.5		.21	13,000
ESL Tier 1 12 1.9 0.63 3 0.023		0.88 0.042	7. 0	7.8	45
SV1-5 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0	<0.33 <0	0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
SV1-10 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	< 0.33 < 0	0.33 < 0.33		0.33 < 0.33	< 0.33
SV1-15 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV2-5 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV2-10 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	<0.33
SV2-15 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <		0.33 < 0.33		0.33 < 0.33	< 0.33
SV3-5 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0		0.33 < 0.33		0.33 < 0.33	<0.33
SV3-10 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33 0.33 < 0.33		0.33 < 0.33 0.33 < 0.33	<0.33
SV4-5 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0		0.33 < 0.33		0.33 < 0.33	<0.33
SV4-10 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <		0.33 < 0.33		0.33 < 0.33	<0.33
SV4-15 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <		0.33 < 0.33		0.33 < 0.33	<0.33
SV5-5 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV5-10 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV5-15 7/12/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV6-5 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
SV6-10 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<0.33 <0	0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
SV6-15 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <		0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
SV7-5 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV7-10 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV7-15 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	< 0.33
SV8-5 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0		0.33 < 0.33		0.33 < 0.33	<0.33
SV8-10 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33		0.33 < 0.33	<0.33
		0.33 < 0.33 0.33 < 0.33		0.33 < 0.33 0.33 < 0.33	<0.33
		0.33 < 0.33			
		0.33 < 0.33			
SV10-5 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33				0.33 < 0.33	
		0.33 < 0.33			
	<0.33 <0	0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
	<0.33 <0	0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33 0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
		0.33 < 0.33			
SV15-10 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33		0.33 < 0.33			
SV15-15 7/13/2021 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<0.33 <0	0.33 < 0.33	< 0.33	0.33 < 0.33	< 0.33

July 30, 2021 Mearns Consulting LLC

Table 4 - SVOCs Analytical Results in Soil Matrix

SAMPLE ID	DATE SAMPLED	គ្ន ខ្មុ ភ្	म ज्ञे ज्ञे	జ 음 জ জ	a ក្នុ 2,4-Dinitrophenol	ա Թ Ծ	ធ្នូ 4,6-Dinitro-2-methylphenol	ធ្នូ 2,4-Dinitrotoluene	표 전 A 2,6-Dinitrotoluene	m % Fluorene	គ្ន ភ្នំ 2-Methylnaphthalene	m % Naphthalene %	ធ្ន ក្នុ វក្ស	ଞ୍ଚୁ N-Nitrosodi-n-propylamine ନ	ធ្ល ក្នុ p	^{ba} Pyrene
RSLr		3,600	18,000	1.1	130	110	5.1	1.7	0.36	2,400	240	2	27	0.078		1,800
DTSC-SLr		3,300	17,000							2,300	190	2				
RSLi		45,000	230,000	21	1,600	2,100		7.4	1.5	30,000	3,000	8.6	110	0.33		23,000
DTSC-SLi		23,000	130,000	12.0	1,100	1,300	42	4.7	0.99	17,000	1,300	6.5	74	0.21		13,000
ESL Tier 1		12	1.9	0.63	3			0.023		6	0.88	0.042			7.8	45
SV16-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV16-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV16-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV18-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV18-10	7/13/2021	< 0.33	0.82	< 0.33	0.92	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	2.2	0.44	< 0.33	< 0.33	0.77	< 0.33
SV18-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV19-5	7/13/2021	< 0.33	2.1	< 0.33	< 0.33	< 0.33	0.4	1.1	1.2	1.1	12	5.2	0.85	0.91	2	0.87
SV19-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV19-15	7/13/2021	1.6	1.1	1.3	< 0.33	1.5	< 0.33	< 0.33	< 0.33	3	< 0.33	4	< 0.33	< 0.33	9.7	8.5

Notes:

mg/kg = milligram per kilogram

<0.005 = concentration is less than the Reporting Limit (0.005), i.e., not detected (ND)

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs).

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of SVOCs are presented in this table. All other SVOCs were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels

July 30, 2021 Mearns Consulting LLC

Table 5 - Soil Vapor Analytical Results

SAMPLE ID	DATE SAMPLED	, B. Benzene	편 B. n-Butylbenzene	표 를 sec-Butylbenzene	로 cis-1,2-Dichloroethene	편 로 Di-isopropylether	Ethylbenzene	편 를 Isopropylbenzene	로 4-Isopropyltoluene	ਨੂੰ B. Methylene chloride	ỗ. 로. Methyl tert-butyl ether	R. Naphthalene	편 B. n-Propylbenzene	편 로 Tetrachloroethene	표 Je Toluene	g m,p-Xylenes	o-Xylene	ਸੂੰ Gasoline Range Organics (GRO)
RSLr		0.36				730	1.1	420		100	11	0.83	1,000	11	5,200	100	100	31
DTSC-SLr		0.097	210	420	8.3					1				0.46	83			
RSLi		1.6					4.9	1,800		1,200	47	0.36	4,400	47	22,000	440	440	130
DTSC-SLi		0.42	880	1,800	35	3,100				12				2	350			
ESL Tier 1		3.2			280		37			34	360	2.8		15	10,000	3,500	3,500	3,300
SV1-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV1-15	7/27/2021	13	<12	<12	<8	<40	<8	57	321	20	<40	<40	<8	<8	16	<16	<8	25,000
SV2-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV2-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	17	<40	<40	<8	<8	<8	<16	<8	<2,000
SV2-15 REP	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	26	<40	<40	<8	<8	<8	<16	<8	<2,000
SV3-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	18	<8	<16	<8	<2,000
SV3-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	8	<40	<40	<8	17	<8	<16	<8	<2,000
SV4-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	22	<8	<16	<8	<2,000
SV4-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	12	<8	<16	<8	<2,000
SV5-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV5-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	9	<40	<40	<8	<8	<8	<16	<8	<2,000
SV6-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	17	<8	<16	<8	<2,000
SV6-15	7/27/2021	243	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	317,000
SV7-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV7-15	7/27/2021	8,850	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	4,210	799	441	46,300,000
SV8-5	7/27/2021	20	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	23	15	<16	<8	<2,000
SV8-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV9-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV9-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	34	13	<16	<8	<2,000
SV9-15 REP	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	34	14	<16	<8	<2,000
SV10-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	9	<8	<16	<8	<2,000
SV10-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	<2,000
SV11-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	24	<8	<16	<8	<2,000
SV11-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV12-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	<2,000
SV12-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	9	<8	<16	<8	<2,000

July 30, 2021 Mearns Consulting LLC

Table 5 - Soil Vapor Analytical Results

SAMPLE ID	DATE SAMPLED	हैं. डे. Benzene	편 를 n-Butylbenzene	를 sec-Butylbenzene	F. cis-1,2-Dichloroethene	ਨੂੰ B <u>,</u> Di-isopropylether	表 로 Ethylbenzene	हूँ । Sopropylbenzene	표 로 4-Isopropyltoluene	로 Methylene chloride	हु . हु .Methyl tert-butyl ether	ਨੂੰ B. Naphthalene	ਨੂੰ B_n-Propylbenzene	표 로 Tetrachloroethene	ਸ਼੍ਰੇ Journe Journe	ក g-m,p-Xylenes	g o Xylene	편 글 로
RSLr		0.36				730	1.1	420		100	11	0.83	1,000	11	5,200	100	100	31
DTSC-SLr		0.097	210	420	8.3					1				0.46	83			
RSLi		1.6					4.9	1,800		1,200	47	0.36	4,400	47	22,000	440	440	130
DTSC-SLi		0.42	880	1,800	35	3,100				12				2	350			
ESL Tier 1		3.2			280		37			34	360	2.8		15	10,000	3,500	3,500	3,300
SV13-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	16	<8	<16	<8	<2,000
SV13-5 REP	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	25	<8	<16	<8	<2,000
SV13-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV14-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	10	<8	<16	<8	<2,000
SV14-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV15-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	37	<8	<16	<8	<2,000
SV15-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	29	<8	<16	<8	<2,000
SV16-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	15	<8	<16	<8	<2,000
SV16-15	7/28/2021	27	<12	<12	51	<40	74	<8	16	<8	<40	41	<8	18	44	287	84	46,800
SV17-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	32	<8	<16	<8	<2,000
SV17-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	10	<8	<16	<8	<2,000
SV18-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	13	<8	<16	<8	<2,000
SV18-15	7/28/2021	1,150	<12	<12	<8	4,780	1,910	2,490	<8	<8	8,610	826	2,640	<8	<8	1,720	<8	3,380,000
SV19-5	7/28/2021	18	649	2,380	<8	<40	2,730	4,290	13	<8	121,000*	405	5,810	42	25	<16	<8	900,000

Notes:

 $\mu g/m^3 = micrograms per cubic meter$

< = concentration is less than the Reporting Limit, i.e., not detected; BOLD exceeds the screening level

Blank cell screening threshold not available

Analytical results are included as Appendix C

Only detected concentrations of volatiles in the vapor phase are presented in this table

Soil vapor was collected from dual-nested soil vapor probes installed at 5-feet bgs and 15-feet bgs

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential air, RSLi = USEPA Regional Screening Levels for industrial air (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential air, DTSC SLi = CalEPA DTSC Screening Level for industrial air (June 2020) carcinogenic values were preferentially used for all screening levels

* = dilution factor 1/3

July 30, 2021 Mearns Consulting LLC

Figure 1: Site Location Map Town Center Northwest Signal Hill, CA

Mearns Consulting LLC

Base map: Google Earth 2020

Figure 2: Site MapTown Center Northwest
Signal Hill, CA

Mearns Consulting LLC

Base map: Google Earth 2020

Oil well location:

- Active injection well
- Active production well
- Idle production well
- Idle injection well
- Previously abandoned well

Pipeline

Above ground storage tank

Potential sump

Soil boring, sample depth indicated in feet bgs, sample concentrations in milligrams per kilogram,

As = arsenic

Figure 4: Concentrations of Metals and **Carbon Chains That Exceed Screening Thresholds**

Town Center Northwest Signal Hill, CA

Mearns Consulting LLC

APPENDIX A

Sierra Analytical Labs, Inc. Soil Matrix Analytical Data July 13 & 14, 2021

19 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:Town Center Northwest

Work Order No.: 2107160

Attached are the results of the analyses for samples received by the laboratory on 07/12/21 15:44.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Kuhand T. Foryth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/19/21 09:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV1-5	2107160-01	Soil	07/12/21 08:54	07/12/21 15:44
SV1-10	2107160-02	Soil	07/12/21 10:39	07/12/21 15:44
SV1-15	2107160-03	Soil	07/12/21 10:43	07/12/21 15:44
SV2-5	2107160-04	Soil	07/12/21 11:20	07/12/21 15:44
SV2-10	2107160-05	Soil	07/12/21 11:23	07/12/21 15:44
SV2-15	2107160-06	Soil	07/12/21 11:36	07/12/21 15:44
SV3-5	2107160-07	Soil	07/12/21 12:35	07/12/21 15:44
SV3-10	2107160-08	Soil	07/12/21 12:39	07/12/21 15:44
SV3-15	2107160-09	Soil	07/12/21 12:44	07/12/21 15:44
SV4-5	2107160-10	Soil	07/12/21 13:09	07/12/21 15:44
SV4-10	2107160-11	Soil	07/12/21 13:18	07/12/21 15:44
SV4-15	2107160-12	Soil	07/12/21 13:21	07/12/21 15:44
SV5-5	2107160-13	Soil	07/12/21 13:50	07/12/21 15:44
SV5-10	2107160-14	Soil	07/12/21 14:02	07/12/21 15:44
SV5-15	2107160-15	Soil	07/12/21 14:07	07/12/21 15:44

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

		Reporting	** .						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV1-5 (2107160-01) Soil Sample	led: 07/12/21 08:54 Received: 0	7/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	68	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.4	3.3	"	"	"	"	"	"	
Chromium	9.8	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	8.8	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	6.4	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Гhallium	ND	17	"	"	"	"	"	"	
Vanadium	15	5.1	"	"	"	"	"	"	
Zinc	27	7.0	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil Samp	pled: 07/12/21 10:39 Received:	07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	77	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	7.1	3.3	"	"	"	"	"	"	
Chromium	21	2.3	"	"	"	"	"	"	
		-			D101207	07/13/21	07/14/21 17:48	EPA 7199A	
Hexavalent Chromium	ND	0.10	"	"	B1G1307				
Hexavalent Chromium Copper			"	"			07/14/21 17:06	EPA 6010B	
Copper	20	5.0			B1G1308	07/13/21	07/14/21 17:06 07/13/21 20:26	EPA 6010B EPA 7471A	
C opper Mercury	20 ND	5.0 0.81	"	"	B1G1308 B1G1309	07/13/21 07/13/21	07/13/21 20:26	EPA 7471A	
C opper Mercury Molybdenum	20 ND ND	5.0 0.81 5.2	"	"	B1G1308	07/13/21			
C opper Mercury Molybdenum Nickel	20 ND ND 12	5.0 0.81 5.2 3.0	"	" "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
C opper Mercury Molybdenum Nickel Lead	20 ND ND 12 ND	5.0 0.81 5.2 3.0 7.1	" "	" " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
C opper Mercury Molybdenum Nickel Lead Antimony	20 ND ND 12 ND ND	5.0 0.81 5.2 3.0 7.1 8.0	" " " "	" " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead Antimony Selenium	20 ND ND 12 ND ND ND	5.0 0.81 5.2 3.0 7.1 8.0 6.9	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	20 ND ND 12 ND ND	5.0 0.81 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06 "	EPA 7471A EPA 6010B	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received:	07/12/21 15:	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		45	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		ND	3.3	"	"	"	"	"	"	
Chromium		7.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		ND	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		3.6	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	,,	"	"	
Vanadium		6.6	5.1	"	"	"	,,	"	"	
Zinc		22	7.0	"	"	"	"	"	"	
SV2-5 (2107160-04) Soil	Sampled: 07/12/21 11:20 F	Received: 0	7/12/21 15:4	4						
Silver	<u> </u>	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	mg kg	"	"	"	"	"	
Barium		74	6.0	,,	,,	,,	,,	"	"	
Beryllium		ND	2.2	,,	,,	,,	,,	"	"	
Cadmium		ND	2.5	,,	,,	,,	,,	"	"	
Cobalt		5.5	3.3	,,	"	"	,,	"	,,	
Chromium		3.3 11	2.3	,,	,,	"	,,	"	,,	
Hexavalent Chromium		ND	0.10	,,	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
		13	5.0	,,	,,					
Copper		ND	0.90	,,	,,	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury				,,	,,	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	,,	,,	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		6.2	3.0	.,	"	,,	,	",	"	
Lead		ND	7.1		"	"	"	"	"	
Antimony		ND	8.0							
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		13	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		82	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.3	3.3	"	"	"	"	"	"	
Chromium		18	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		18	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		12	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		31	5.1	"	"	"	"	"	"	
Zinc		36	7.0	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"						
Barium			5.5	"	"	"	"	"	"	
		81	6.0	"	"	"	"	"	"	
		81 ND								
Beryllium			6.0	"	"	"	"	"	"	
Beryllium Cadmium		ND	6.0 2.2	"	"	"	"	"	"	
Beryllium Cadmium Cobalt		ND ND	6.0 2.2 2.5	"	" "	"	"	" "	" "	
Beryllium Cadmium Cobalt Chromium		ND ND 6.6	6.0 2.2 2.5 3.3	" "	" "	" " "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium		ND ND 6.6 21	6.0 2.2 2.5 3.3 2.3	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper		ND ND 6.6 21 ND	6.0 2.2 2.5 3.3 2.3 0.10	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307	" " " 07/13/21	" " " 07/14/21 17:48	" " " EPA 7199A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury		ND ND 6.6 21 ND 14	6.0 2.2 2.5 3.3 2.3 0.10 5.0	n n n	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308	""""""""""""""""""""""""""""""""""""""	" " " 07/14/21 17:48 07/14/21 17:06	" " " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		ND ND 6.6 21 ND 14 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308 B1G1309	" " 07/13/21 07/13/21 07/13/21	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26	" " " EPA 7199A EPA 6010B EPA 7471A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		ND ND 6.6 21 ND 14 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 07/13/21	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		ND ND 6.6 21 ND 14 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " "		" " " B1G1307 B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 07/13/21 "	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06 "	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		ND ND 6.6 21 ND 14 ND ND ND 11	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " "		" " " B1G1307 B1G1308 B1G1309 B1G1308 "	07/13/21 07/13/21 07/13/21 07/13/21 "	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		ND ND 6.6 21 ND 14 ND ND 11 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " " " " B1G1307 B1G1308 B1G1309 B1G1308 " "	07/13/21 07/13/21 07/13/21 07/13/21 "	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium		ND ND 6.6 21 ND 14 ND ND 11 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " " B1G1307 B1G1308 B1G1309 B1G1308 " "	07/13/21 07/13/21 07/13/21 07/13/21 ""	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

		Sicritaria	•	2405, 111					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35 Received:	07/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	67	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.6	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	11	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.81	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	4.3	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	18	5.1	"	"	"	"	"	"	
Zinc	25	7.0	"	"	"	"	"	"	
SV3-10 (2107160-08) Soi	l Sampled: 07/12/21 12:39 Received	: 07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	50	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"		"	"	"	
Cadmium	ND	2.5	"	"		"	"	"	
Cobalt	6.4	3.3	"	"		"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	17	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.78	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	9.5	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	,,	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND ND	17	,,	,,	,,	,,	"	"	
Vanadium	31	5.1	,,	,,	,,	,,	"	"	
Zinc	34	7.0	,,	,,	,,	,,	,,	"	
Zanc	34	7.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received	: 07/12/21 15:4	14						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		32	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.7	3.3	"	"	"	"	"	"	
Chromium		8.3	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		6.2	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		5.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		18	5.1	"	"	"	"	"	"	
Zinc		18	7.0	"	"	"	"	"	"	
SV4-5 (2107160-10) Soil S	ampled: 07/12/21 13:09 F	Received:	07/12/21 15:44	4						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		63	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		8.2	3.3	"	"	"	"	"	"	
Chromium		13	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		14	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		8.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		25	5.1	"	"	"	"	"	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	14						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		40	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.6	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		12	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		7.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		21	5.1	"	"	"	"	"	"	
Zinc		25	7.0	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		26	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.7	3.3	"	"	"	"	"	"	
Chromium		8.1	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		6.8	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		5.7	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		14	5.1	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50 Received:	07/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	82	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	8.1	3.3	"	"	"	"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	17	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	10	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	,,	"	"	
Vanadium	34	5.1	"	"	"	,,	"	"	
Zinc	34	7.0	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02 Received	: 07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	47	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.1	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	11	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	7.8	3.0	"	"	B1G1500	"	"	"	
Lead	ND	7.1	"	"	"	,,	"	"	
Antimony	ND	8.0	"	"	,,	,,	"	"	
Selenium	ND ND	6.9	,,	"	"	,,	"	"	
Thallium	ND ND	17	,,	"	"	,,	"	"	
Vanadium	21	5.1	,,	,,	,,	,,	,,	,	
Zinc	24	7.0	,,	,,	,,	,,	"	,	
Zilic	24	7.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		61	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		6.1	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		15	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		8.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	"	"	"	"	"	"	
Zinc		30	7.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-5 (2107160-01) Soil Sampled: 07/12/2	21 08:54 Received:	07/12/21 15:44	l						
Surrogate: o-Terphenyl		67.5 %	60-17		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.4 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil Sampled: 07/12	/21 10:39 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		91.5 %	60-17	'5	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV1-15 (2107160-03) Soil Sampled: 07/12	/21 10:43 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		66.4 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	35-13	0	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV2-5 (2107160-04) Soil Sampled: 07/12/2	21 11:20 Received: (07/12/21 15:44	ļ						
Surrogate: o-Terphenyl		69.9 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	35	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.9 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21	11:23 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		91.3 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.045	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil Sampled: 07/12/21	11:36 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		68.0 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.4 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12	2:35 Received:	07/12/21 15:44	1						
Surrogate: o-Terphenyl		73.0 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.7 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	
SV3-10 (2107160-08) Soil Sampled: 07/12/21	12:39 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		76.6 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12	2:44 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		77.7 %	60-1		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:	09 Received:	07/12/21 15:44	ļ						
Surrogate: o-Terphenyl		74.6 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.7 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13	3:18 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		76.4 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	35-1.	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13	3:21 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		65.2 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		84.3 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil Sampled: 07/12/21 1	3:50 Received: 0	07/12/21 15:44	4						
Surrogate: o-Terphenyl		67.5 %	60-1		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.6 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil Sampled: 07/12/21	14:02 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		71.2 %	60-1	175	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		87.6 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV5-15 (2107160-15) Soil Sampled: 07/12/21	14:07 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		73.6 %	60-1	175	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		87.4 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
SV1-5 (2107160-01) Soil Sampled: 07/12/21 08:54	Received: 0	7/12/21 15:44							
Surrogate: Dibromofluoromethane		112 %	80-1	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-1	!17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	74-1	121	"	"	"	"	
Benzene	ND	4.5	"	"	"	"	"	"	
Bromobenzene	ND	4.5	"	"	"	"	"	"	
Bromochloromethane	ND	4.5	"	"	"	"	"	"	
Bromodichloromethane	ND	4.5	"	"	"	"	"	"	
Bromoform	ND	4.5	"	"	"	"	"	"	
Bromomethane	ND	4.5	"	"	"	"	"	"	
n-Butylbenzene	ND	4.5	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.5	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.5	"	"	"	"	"	"	
Chlorobenzene	ND	4.5	"	"	"	"	"	"	
Chloroethane	ND	4.5	"	"	"	"	"	"	
Chloroform	ND	4.5	"	"	"	"	"	"	
Chloromethane	ND	4.5	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.5	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.5	"	"	"	"	"	"	
Dibromochloromethane	ND	4.5	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.5	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.5	"	"	"	"	"	"	
Dibromomethane	ND	4.5	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.5	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.5	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.5	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.5	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.5	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.5	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.5	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.5	"	"	"	"	"	"	
Ethylbenzene	ND	4.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.5	"	"	"	"	"	"	
Isopropylbenzene	ND	4.5	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•	0 1 1 0 2 11 2 2 2 2 2 2				Dilution	Baten	rrepared	Anaryzou	Method	1100
SV1-5 (2107160-01) Soil	Sampled: 07/12/21 08:54									
p-Isopropyltoluene		ND	4.5	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.5	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.5	"	"	"	"	"	"	
Naphthalene		ND	4.5	"	"	"	"	"	"	
n-Propylbenzene		ND	4.5	"	"	"	"	"	"	
Styrene		ND	4.5	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.5	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.5	"	"	"	"	"	"	
Tetrachloroethene		ND	4.5	"	"	"	"	"	"	
Toluene		ND	4.5	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.5	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.5	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.5	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.5	"	"	"	"	"	"	
Trichloroethene		ND	4.5	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.5	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.5	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.5	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.5	"	"	"	"	"	"	
Vinyl chloride		ND	4.5	"	"	"	"	"	"	
m,p-Xylene		ND	4.5	"	"	"	"	"	"	
o-Xylene		ND	4.5	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil	Sampled: 07/12/21 10:39	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		114 %	80-	-120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			99.4 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorob	enzene		95.0 %	74-	-121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tout Dutylhoussons		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
•				"	,,	"	"	"	"	
Carbon tetrachloride		ND	5.0							
Carbon tetrachloride Chlorobenzene		ND ND	5.0 5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND ND ND	5.0 5.0 5.0		"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV1-10 (2107160-02) Soil Sampled: 07/12/21 10:39	Received:	07/12/21 15:	44						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	,,	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	,,	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	,,	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0		,,	,,	"	"	"	
Naphthalene	ND	5.0		,,	,,	"	"	"	
n-Propylbenzene	ND	5.0	,,	,,	,,	,,	"	"	
Styrene	ND	5.0	,,	,,	,,	,,	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	,,	"	"	,,	,,	,,	
1,1,2,2-Tetrachloroethane	ND	5.0	,,	"	"	,,	,,	,,	
Tetrachloroethene	ND	5.0	,,	"	"	,,	,,	,,	
Toluene	ND	5.0	,,	,,	"	,,	,,	,,	
1,2,3-Trichlorobenzene	ND ND	5.0	,,	,,	,,	,,	,,	"	
, ,			,,	,,	,	"	,,	,,	
1,2,4-Trichlorobenzene	ND	5.0		,,	,,	,,	,,	,,	
1,1,1-Trichloroethane	ND	5.0	,,	,,	,,	,,	,,	"	
1,1,2-Trichloroethane	ND	5.0						"	
Trichloroethene	ND	5.0				"	"		
Trichlorofluoromethane	ND	5.0		"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil Sampled: 07/12/21 1	0:39 Received:	07/12/21 15:4	44						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV1-15 (2107160-03) Soil Sampled: 07/12/21	0:43 Received:	07/12/21 15:4	44						
Surrogate: Dibromofluoromethane		115 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.9 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
>	1.12								

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received	: 07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-5 (2107160-04) Soil Sampled: 07/12/21 11:20	Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		113 %	80-		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %		117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	74-		"	"	"	"	
Benzene	ND	4.2	"	"	"	"	"	"	
Bromobenzene	ND	4.2	"	"	"	"	"	"	
Bromochloromethane	ND	4.2	"	"	"	"	"	"	
Bromodichloromethane	ND	4.2	"	"	"	"	"	"	
Bromoform	ND	4.2	"	"	"	"	"	"	
Bromomethane	ND	4.2	"	"	"	"	"	"	
n-Butylbenzene	ND	4.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.2	"	"	"	"	"	"	
Chlorobenzene	ND	4.2	"	"	"	"	"	"	
Chloroethane	ND	4.2	"	"	"	"	"	"	
Chloroform	ND	4.2	"	"	"	"	"	"	
Chloromethane	ND	4.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
Dibromochloromethane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.2	"	"	"	"	"	"	
Dibromomethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.2	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
Ethylbenzene	ND	4.2	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.2	"	"	"	"	"	"	
Isopropylbenzene	ND	4.2		"	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-5 (2107160-04) Soil S	Sampled: 07/12/21 11:20	Received: (07/12/21 15:44							
p-Isopropyltoluene		ND	4.2	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.2	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.2	"	"	"	"	"	"	
Naphthalene		ND	4.2	"	"	"	"	"	"	
n-Propylbenzene		ND	4.2	"	"	"	"	"	"	
Styrene		ND	4.2	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
Tetrachloroethene		ND	4.2	"	"	"	"	"	"	
Toluene		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.2	"	"	"	"	"	"	
Trichloroethene		ND	4.2	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.2	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
Vinyl chloride		ND	4.2	"	"	"	"	"	"	
m,p-Xylene		ND	4.2	"	"	"	"	"	"	
o-Xylene		ND	4.2	"	"	"	"	"	"	
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received:	07/12/21 15:4	4						
	ethane		111 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			100 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		95.5 %	74-	121	"	"	"	"	
Benzene		ND	3.9	"	"	"	"	"	"	
Bromobenzene		ND	3.9	"	"	"	"	"	"	
Bromochloromethane		ND	3.9	"	"	"	"	"	"	
Bromodichloromethane		ND	3.9	"	"	"	"	"	"	
Bromoform		ND	3.9	"	"	"	"	"	"	
Bromomethane		ND	3.9	"	"	"	"	"	"	
n-Butylbenzene		ND	3.9	"	"	"	"	"	"	
D11		ND	3.9	"	"	"	"	"	"	
sec-Butylbenzene		ND	3.9	"	"	"	"	"	"	
				"	,,	"	"	"	"	
tert-Butylbenzene		ND	3.9	"						
tert-Butylbenzene Carbon tetrachloride		ND ND	3.9 3.9	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene						"	"	"	"	
sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND	3.9	"	"				" "	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-10 (2107160-05) Soil Sampled: 07/12/21 1						-			
					D. C. C.	0.7/1.2/21	05/11/01 00 00	TD. 02.00	
2-Chlorotoluene 4-Chlorotoluene	ND ND	3.9 3.9	μg/kg "	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Dibromochloromethane	ND ND	3.9 3.9	.,		,	,,	,,	,,	
	ND ND	3.9	,,	"		"	,,		
1,2-Dibromo-3-chloropropane			,,	,,		,,	,,		
1,2-Dibromoethane (EDB)	ND	3.9	,,	,,		,,			
Dibromomethane	ND	3.9	,,	,,		,,	,,		
1,2-Dichlorobenzene	ND	3.9	,,	,,		,,	,,		
1,3-Dichlorobenzene	ND	3.9	,,	,,		,,			
1,4-Dichlorobenzene	ND	3.9	.,		,,	,,		,,	
Dichlorodifluoromethane	ND	3.9	"	"	,	"	"	"	
1,1-Dichloroethane	ND	3.9	"	"	,	"		"	
1,2-Dichloroethane	ND	3.9	"	"	,	"	"	"	
1,1-Dichloroethene	ND	3.9		,,	,	,,		"	
cis-1,2-Dichloroethene	ND	3.9	.,	"	,	,,	,,	"	
trans-1,2-Dichloroethene	ND	3.9	.,		,	,,	,,	,,	
1,2-Dichloropropane	ND	3.9	"	"	,	"	,	"	
1,3-Dichloropropane	ND	3.9	"	"	,	"	,	"	
2,2-Dichloropropane	ND	3.9	"	"	,	"	,	"	
1,1-Dichloropropene	ND	3.9	"	"	,	"	,	"	
cis-1,3-Dichloropropene	ND	3.9	"	"	,	"	,,	"	
trans-1,3-Dichloropropene	ND	3.9	"	"	,	"	"	"	
Ethylbenzene	ND	3.9	"	"	,	"	,	"	
Hexachlorobutadiene	ND	3.9	"	"	,	"	"	"	
Isopropylbenzene	ND	3.9			,		"	"	
p-Isopropyltoluene	ND	3.9	"	"		"			
Methylene chloride	ND	3.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.9	"		"		"	"	
Naphthalene	ND	3.9	"	"	"	"	"	"	
n-Propylbenzene	ND	3.9	"	"	"	"	"	"	
Styrene	ND	3.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	3.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	3.9	"	"	"	"	"	"	
Tetrachloroethene	ND	3.9	"	"	"	"	"	"	
Toluene	ND	3.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	3.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	3.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	3.9	"	"	"	"	"	"	
Trichloroethene	ND	3.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	3.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	3.9	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21 1	1:23 Received	: 07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	3.9	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	3.9	"	"	"	"	"	"	
Vinyl chloride	ND	3.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.9	"	"	"	"	"	"	
o-Xylene	ND	3.9	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil Sampled: 07/12/21 1	1:36 Received	: 07/12/21 15:4	44						
Surrogate: Dibromofluoromethane		116 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	74-	121	"	"	"	"	
Benzene	ND	4.4	"	"	"	"	"	"	
Bromobenzene	ND	4.4	"	"	"	"	"	"	
Bromochloromethane	ND	4.4	"	"	"	"	"	"	
Bromodichloromethane	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	4.4	"	"	"	"	"	"	
Bromomethane	ND	4.4	"	"	"	"	"	"	
n-Butylbenzene	ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.4	"	"	"	"	"	"	
Chlorobenzene	ND	4.4	"	"	"	"	"	"	
Chloroethane	ND	4.4	"	"	"	"	"	"	
Chloroform	ND	4.4	"	"	"	"	"	"	
Chloromethane	ND	4.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received:	Received: 07/12/21 15:44								
2,2-Dichloropropane		ND	4.4	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B		
1,1-Dichloropropene		ND	4.4	"	"	"	"	"	"		
cis-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"		
trans-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"		
Ethylbenzene		ND	4.4	"	"	"	"	"	"		
Hexachlorobutadiene		ND	4.4	"	"	"	"	"	"		
Isopropylbenzene		ND	4.4	"	"	"	"	"	"		
p-Isopropyltoluene		ND	4.4	"	"	"	"	"	"		
Methylene chloride		ND	4.4	"	"	"	"	"	"		
Methyl tert-butyl ether		ND	4.4	"	"	"	"	"	"		
Naphthalene		ND	4.4	"	"	"	"	"	"		
n-Propylbenzene		ND	4.4	"	"	"	"	"	"		
Styrene		ND	4.4	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"		
Tetrachloroethene		ND	4.4	"	"	"	"	"	"		
Toluene		ND	4.4	"	"	"	"	"	"		
1,2,3-Trichlorobenzene		ND	4.4	"	"	"	"	"	"		
1,2,4-Trichlorobenzene		ND	4.4	"	"	"	"	"	"		
1,1,1-Trichloroethane		ND	4.4	"	"	"	"	"	"		
1,1,2-Trichloroethane		ND	4.4	"	"	"	"	"	"		
Trichloroethene		ND	4.4	"	"	"	"	"	"		
Trichlorofluoromethane		ND	4.4	"	"	"	"	"	"		
1,2,3-Trichloropropane		ND	4.4	"	"	"	"	"	"		
1,2,4-Trimethylbenzene		ND	4.4	"	"	"	"	"	"		
1,3,5-Trimethylbenzene		ND	4.4	"	"	"	"	"	"		
Vinyl chloride		ND	4.4	"	"	"	"	"	"		
m,p-Xylene		ND	4.4	"	"	"	"	"	"		
o-Xylene		ND	4.4	"	"	"	"	"	"		

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12:35	Received: (07/12/21 15:44							
Surrogate: Dibromofluoromethane		114 %	80-1		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.7 %	74-1	21	"	"	"	"	
Benzene	ND	4.2	"	"	"	"	"	"	
Bromobenzene	ND	4.2	"	"	"	"	"	"	
Bromochloromethane	ND	4.2	"	"	"	"	"	"	
Bromodichloromethane	ND	4.2	"	"	"	"	"	"	
Bromoform	ND	4.2	"	"	"	"	"	"	
Bromomethane	ND	4.2	"	"	"	"	"	"	
n-Butylbenzene	ND	4.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.2	"	"	"	"	"	"	
Chlorobenzene	ND	4.2	"	"	"	"	"	"	
Chloroethane	ND	4.2	"	"	"	"	"	"	
Chloroform	ND	4.2	"	"	"	"	"	"	
Chloromethane	ND	4.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
Dibromochloromethane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.2	"	"	"	"	"	"	
Dibromomethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.2	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
Ethylbenzene	ND	4.2	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.2	"	"	"	"	"	"	
Isopropylbenzene	ND	4.2	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•	a				Dilution	Datell	1 repared	Analyzeu	Menion	1100
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35		07/12/21 15:44							
p-Isopropyltoluene		ND	4.2	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.2	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.2	"	"	"	"	"	"	
Naphthalene		ND	4.2	"	"	"	"	"	"	
n-Propylbenzene		ND	4.2	"	"	"	"	"	"	
Styrene		ND	4.2	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
Tetrachloroethene		ND	4.2	"	"	"	"	"	"	
Toluene		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.2	"	"	"	"	"	"	
Trichloroethene		ND	4.2	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.2	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
Vinyl chloride		ND	4.2	"	"	"	"	"	"	
m,p-Xylene		ND	4.2	"	"	"	"	"	"	
o-Xylene		ND	4.2	"	"	"	"	"	"	
SV3-10 (2107160-08) Soil	Sampled: 07/12/21 12:39	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		116 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		95.2 %		121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
_ *		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
							,,	,,	"	
Carbon tetrachloride			5.0	"	"	"			"	
Carbon tetrachloride Chlorobenzene		ND	5.0 5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform			5.0 5.0 5.0		"		"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:39	9 Received	: 07/12/21 15:	44						
2-Chlorotoluene	ND	5.0	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:35	Received:	07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12:44	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoromethane		118 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	,,	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	,,	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	,,	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	,,	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	,,	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	,,	"	"	,,	"	"	
1,3-Dichloropropane	ND ND	5.0	,,	"	"	,,	"	"	
1,5-Dienioropropane	מאז	5.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received:	07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0		,,	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:0	09 Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		117 %		120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.6 %		121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"		"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"		"	"	"	"	
Ethylbenzene	ND	5.0	"	,,	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	,,	"	"	,,	,,	,,	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	0 1 1 0 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Dilution	Daton	1 repared	, mary zou	Memou	1100
SV4-5 (2107160-10) Soil	Sampled: 07/12/21 13:09									
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0		"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"		"	"	
Trichloroethene		ND	5.0	"	"	"	"	"		
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"		"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluorom	ethane		119 %	80-	-120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			99.8 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		94.6 %	74-	-121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
Chlorobenzene				,,		"	"	"	"	
Chlorobenzene Chloroethane		ND	5.0	"						
		ND ND	5.0	"	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13:18	Received:	07/12/21 15:4	44						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13	:18 Received	: 07/12/21 15:4	44						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13	:21 Received	: 07/12/21 15:4	44						
Surrogate: Dibromofluoromethane		118 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

738 Ashland AvenueProject Number:
[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received:	07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0		"	"	"	"	"	
Vinyl chloride		ND	5.0		"	"	"	"	"	
m,p-Xylene		ND	5.0		"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-5 (2107160-13) Soil Sampled: 07/12/21 13:5	50 Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		118 %	80-		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•					Dilution	Datell	1 repared	Analyzeu	Menion	1100
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50		7/12/21 15:44	1						
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		100 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		93.4 %	74-	121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
•						"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"					
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane		ND ND	5.0 5.0	"	"	,,	"	"	"	
Carbon tetrachloride		ND ND ND	5.0 5.0 5.0		"		"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14:02	2 Received:	07/12/21 15:	44				<u> </u>		
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	μg/kg "	"	B1G1312	"	"	" "	
Dibromochloromethane	ND	5.0		"	,,	,,	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	,,	"	"	"	
Dibromomethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	,,	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	,,	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	,,	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	,,	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
Ethylbenzene	ND	5.0	"	"	"	"	,,	"	
Hexachlorobutadiene	ND	5.0	"	"	,,	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	,,	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	,,	"	
Methylene chloride	ND	5.0	"	"	"	"	,,	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	,,	"	
Naphthalene	ND	5.0	"	"	"	"	,,	"	
n-Propylbenzene	ND	5.0	"	"	"	"	,,	"	
Styrene	ND	5.0	"	"	"	"	,,	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	,,	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	,,	"	
Tetrachloroethene	ND	5.0	"	"	"	"	,,	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	,,	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	,,	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	,,	,,	,,	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14	:02 Received:	07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV5-15 (2107160-15) Soil Sampled: 07/12/21 14	:07 Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoromethane		100 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.1 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
,- FF		***							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
			JII.03	Dianon	Dateii	Trepared	7 mary 200	menou	Note
SV1-5 (2107160-01) Soil Sampled: 07/12/21 08:54	Received: 0	7/12/21 15:44							
Surrogate: 2-Fluorophenol		99.9 %	25-1		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		102 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		67.5 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.6 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		28.7 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		119 %	18-1		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-5 (2107160-01) Soil	Sampled: 07/12/21 08:54	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	e	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil Sampled: 07/12/21 10:39	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		107 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		104 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		64.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		31.5 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		73.0 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil	Sampled: 07/12/21 10:39	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil Sampled: 07/12/21 10:43	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		118 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		101 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		64.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		58.7 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		27.1 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		94.1 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received	: 07/12/21 15:	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-5 (2107160-04) Soil Sampled: 07/12/21 11:20	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		115 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		105 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		75.7 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		76.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		96.6 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	,,	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33		,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-5 (2107160-04) Soil	Sampled: 07/12/21 11:20	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	,,	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21 11:23	Received:	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		63.4 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		90.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		82.0 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		53.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		92.7 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-15 (2107160-06) Soil Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		61.9 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		110 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.1 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		94.3 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		51.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		111 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12:3	5 Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		63.7 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		70.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		83.4 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		82.1 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		56.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		89.4 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:39	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		72.1 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		59.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		97.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		114 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		35.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		87.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil	Sampled: 07/12/21 12:39	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"		"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"		"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12:44	Received	l: 07/12/21 15:4	14						
Surrogate: 2-Fluorophenol		103 %	25-12		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		69.7 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		102 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.5 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		53.9 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		89.7 %	18-13	<i>37</i>	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:09	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		103 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		65.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		95.9 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		48.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		58.5 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		88.0 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-5 (2107160-10) Soil	Sampled: 07/12/21 13:09	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	e	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		106 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		53.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		74.9 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		51.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		94.0 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	14						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						pmed	, 2.00		1.500
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13:21	Keceived:	0//12/21 15:4	4						
Surrogate: 2-Fluorophenol		109 %	25-12		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		82.7 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		99.5 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.4 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		49.5 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		78.1 %	18-1.		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil Sampled: 07/12/21 13:50	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		111 %	25-1		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		85.4 %	24-	!13	"	"	"	"	
Surrogate: Nitrobenzene-d5		101 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		49.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		35.5 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		88.2 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	,,		"	"	
Di-n-butyl phthalate	ND	0.33	"	"	,,	,,	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	,,	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	2	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14:02	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		55.4 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		98.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		60.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		81.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		39.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		117 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02	Received	: 07/12/21 15:	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil Sampled: 07/12/21 14:07	Received	1: 07/12/21 15:4	14						
Surrogate: 2-Fluorophenol		91.5 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		61.0 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		39.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		85.4 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	,,	,,	,,	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	,,	"	"	
4,0-Dimuo-2-ineuryiphenoi	ND	0.33							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	14						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B1G1307 - EPA 3060A										
Blank (B1G1307-BLK1)				Prepared: 0	07/13/21 A	nalyzed: 07	/14/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G1307-BS1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Hexavalent Chromium	0.151	0.10	mg/kg	0.150		101	80-120			
Matrix Spike (B1G1307-MS1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Hexavalent Chromium	0.160	0.10	mg/kg	0.149	ND	107	75-125			
Matrix Spike Dup (B1G1307-MSD1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Hexavalent Chromium	0.154	0.10	mg/kg	0.149	ND	104	75-125	3.48	20	
Batch B1G1308 - EPA 3050B										
Blank (B1G1308-BLK1)				Prepared: 0	07/13/21 A	nalyzed: 07	/14/21			
Barium	ND	6.0	mg/kg							
Beryllium	ND	2.2	"							
Antimony	ND	8.0	"							
Cadmium	ND	2.5	"							
Lead	ND	7.1	"							
Thallium	ND	17	"							
Nickel	ND	3.0	"							
Selenium	ND	6.9	"							
Chromium	ND	2.3	"							
Molybdenum	ND	5.2	"							
Copper	ND	5.0	"							
Cobalt	ND	3.3	"							
Zinc	ND	7.0	"							
Silver	ND	2.0	"							
Arsenic	ND	5.5	"							
Vanadium	ND	5.1	"							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1308 - EPA 3050B									
LCS (B1G1308-BS1)				Prepared: 07/1	3/21 Analyzed: 07	/14/21			
Cadmium	94.4	2.5	mg/kg	100	94.4	80-120			
Zinc	99.5	7.0	"	100	99.5	80-120			
Molybdenum	111	5.2	"	100	111	80-120			
Chromium	85.0	2.3	"	100	85.0	80-120			
Nickel	113	3.0	"	100	113	80-120			
Cobalt	80.4	3.3	"	100	80.4	80-120			
Silver	89.3	2.0	"	100	89.3	60-140			
Lead	101	7.1	"	100	101	80-120			
Copper	103	5.0	"	100	103	78-122			
Arsenic	109	5.5	"	100	109	78-122			
Barium	99.8	6.0	"	100	99.8	80-120			
Selenium	95.1	6.9	"	100	95.1	76-124			
Thallium	97.4	17	"	100	97.4	80-120			
Vanadium	99.8	5.1	"	100	99.8	80-120			
Beryllium	98.2	2.2	"	100	98.2	80-120			
Antimony	110	8.0	"	100	110	75-125			
LCS Dup (B1G1308-BSD1)				Prepared: 07/1	3/21 Analyzed: 07	/14/21			
Nickel	116	3.0	mg/kg	100	116	80-120	2.60	20	
Vanadium	95.9	5.1	"	100	95.9	80-120	3.99	20	
Antimony	94.0	8.0	"	100	94.0	75-125	16.0	20	
Lead	96.8	7.1	"	100	96.8	80-120	4.37	20	
Thallium	96.3	17	"	100	96.3	80-120	1.11	20	
Selenium	94.0	6.9	"	100	94.0	76-124	1.22	20	
Copper	113	5.0	"	100	113	78-122	9.46	20	
Zinc	87.6	7.0	"	100	87.6	80-120	12.6	20	
Molybdenum	96.4	5.2	"	100	96.4	80-120	13.8	20	
Cadmium	94.6	2.5	"	100	94.6	80-120	0.212	20	
Arsenic	105	5.5	"	100	105	78-122	3.43	20	
Barium	101	6.0	"	100	101	80-120	0.948	20	
Beryllium	104	2.2	"	100	104	80-120	5.48	20	
Silver	92.1	2.0	"	100	92.1	60-140	3.03	40	
Cobalt	97.7	3.3	"	100	97.7	80-120	19.5	20	
Chromium	99.7	2.3	"	100	99.7	80-120	15.9	20	

Cobalt

Mearns Consulting LLC Project: Town Center Northwest

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1308 - EPA 3050B									
Matrix Spike (B1G1308-MS1)	Source: 2	107160-	01	Prepared: (07/13/21 A	nalyzed: 07	//14/21		
Lead	95.9	7.1	mg/kg	99.0	5.52	91.3	70-130		
Arsenic	88.1	5.5	"	99.0	ND	89.0	70-130		
Copper	114	5.0	"	99.0	8.79	106	70-130		
Barium	160	6.0	"	99.0	67.9	93.5	70-130		
Antimony	91.4	8.0	"	99.0	1.56	90.8	60-140		
Chromium	95.2	2.3	"	99.0	9.80	86.2	70-130		
Cadmium	92.0	2.5	"	99.0	0.470	92.4	70-130		
Silver	100	2.0	"	99.0	ND	101	60-140		
Molybdenum	80.0	5.2	"	99.0	0.644	80.2	70-130		
Thallium	91.3	17	"	99.0	ND	92.2	70-130		
Selenium	87.0	6.9	"	99.0	ND	87.8	70-130		
Vanadium	97.6	5.1	"	99.0	14.8	83.6	70-130		
Nickel	93.3	3.0	"	99.0	6.44	87.7	70-130		
Cobalt	99.8	3.3	"	99.0	5.40	95.4	70-130		
Zinc	114	7.0	"	99.0	27.3	87.7	70-130		
Beryllium	79.7	2.2	"	99.0	0.446	80.0	70-130		
Matrix Spike Dup (B1G1308-MSD1)	Source: 2	107160-	01	Prepared: (07/13/21 A	nalyzed: 07	7/14/21		
Silver	95.7	2.0	mg/kg	98.4	ND	97.3	60-140	4.62	40
Vanadium	104	5.1	"	98.4	14.8	90.6	70-130	6.34	20
Thallium	99.6	17	"	98.4	ND	101	70-130	8.64	20
Zinc	122	7.0	"	98.4	27.3	96.6	70-130	7.05	20
Chromium	99.0	2.3	"	98.4	9.80	90.7	70-130	3.96	20
Molybdenum	85.9	5.2	"	98.4	0.644	86.7	70-130	7.17	20
Copper	123	5.0	"	98.4	8.79	116	70-130	7.73	30
Antimony	98.7	8.0	"	98.4	1.56	98.7	60-140	7.69	20
Barium	175	6.0	"	98.4	67.9	109	70-130	8.76	20
Lead	104	7.1	"	98.4	5.52	100	70-130	8.31	30
Beryllium	85.1	2.2	"	98.4	0.446	86.0	70-130	6.57	20
Nickel	98.9	3.0	"	98.4	6.44	93.9	70-130	5.80	20
Cadmium	95.7	2.5	"	98.4	0.470	96.8	70-130	3.98	20
Arsenic	97.4	5.5	"	98.4	ND	98.9	70-130	10.0	20
Selenium	96.1	6.9	"	98.4	ND	97.6	70-130	10.0	20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3.3

105

5.40

102

70-130

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1309 - EPA 7471A										
Blank (B1G1309-BLK1)				Prepared &	Analyzed:	07/13/21				
Mercury	ND	0.90	mg/kg							
LCS (B1G1309-BS1)				Prepared &	Analyzed:	07/13/21				
Mercury	0.16	0.90	mg/kg	0.167		94.9	70-130			
Matrix Spike (B1G1309-MS1)	Source	: 2107160-0)1	Prepared &	Analyzed:	07/13/21				
Mercury	0.15	0.90	mg/kg	0.158	ND	97.6	70-130			
Matrix Spike Dup (B1G1309-MSD1)	Source	: 2107160-0)1	Prepared &	Analyzed:	07/13/21				
Mercury	0.16	0.90	mg/kg	0.157	ND	99.4	70-130	1.67	30	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1302 - EPA 5035 P & T										
Blank (B1G1302-BLK1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1302-BS1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.525	0.050	mg/kg	0.600		87.5	80-120			
Matrix Spike (B1G1302-MS1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.493	0.050	mg/kg	0.600	ND	82.2	50-150			
Matrix Spike Dup (B1G1302-MSD1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.551	0.050	mg/kg	0.600	ND	91.8	50-150	11.1	30	
Batch B1G1401 - EPA 3550B Solid Ext										
Blank (B1G1401-BLK1)				Prepared &	: Analyzed:	07/14/21				
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							
LCS (B1G1401-BS1)				Prepared &	Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	16.9	5.0	mg/kg	20.0		84.4	80-120			
Matrix Spike (B1G1401-MS1)	Sour	ce: 2107164-	04	Prepared &	: Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	15.4	5.0	mg/kg	20.0	ND	77.0	50-150			
Matrix Spike Dup (B1G1401-MSD1)	Sour	ce: 2107164-	04	Prepared &	Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	14.7	5.0	mg/kg	20.0	ND	73.4	50-150	4.74	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1312 - EPA 5035 P & T

Blank (B1G1312-BLK1)				Prepared: 07/13/21 Analyzed: 07/14/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G1	312 -	EPA	5035	P & T

Blank (B1G1312-BLK1)				Prepared: 07/13/	21 Analyzed: 07	/14/21	
Isopropylbenzene	ND	5.0	μg/kg		-		
p-Isopropyltoluene	ND	5.0	"				
Methylene chloride	ND	5.0	"				
Methyl tert-butyl ether	ND	5.0	"				
Naphthalene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"				
Tetrachloroethene	ND	5.0	"				
Toluene	ND	5.0	"				
1,2,3-Trichlorobenzene	ND	5.0	"				
1,2,4-Trichlorobenzene	ND	5.0	"				
,1,1-Trichloroethane	ND	5.0	"				
1,1,2-Trichloroethane	ND	5.0	"				
Trichloroethene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
1,2,3-Trichloropropane	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
,3,5-Trimethylbenzene	ND	5.0	"				
Vinyl chloride	ND	5.0	"				
n,p-Xylene	ND	5.0	"				
o-Xylene	ND	5.0	"				
LCS (B1G1312-BS1)				Prepared: 07/13/	21 Analyzed: 07	/14/21	
Benzene	54.6	5.0	μg/kg	50.0	109	80-120	
Chlorobenzene	47.7	5.0	"	50.0	95.4	80-120	
1,1-Dichloroethene	56.6	5.0	"	50.0	113	80-120	
Toluene	47.8	5.0	"	50.0	95.6	80-120	
Trichloroethene	55.3	5.0	"	50.0	111	80-120	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G	1312 -	FPA	5035	P & T

Matrix Spike (B1G1312-MS1)	Source	: 2107160-	01	Prepared: 0	7/13/21 A	nalyzed: 07	7/14/21		
Benzene	50.2	5.0	$\mu g/kg$	50.0	ND	100	37-151		
Chlorobenzene	41.5	5.0	"	50.0	ND	83.0	37-160		
1,1-Dichloroethene	51.2	5.0	"	50.0	ND	102	50-150		
Toluene	43.5	5.0	"	50.0	ND	86.9	47-150		
Trichloroethene	50.2	5.0	"	50.0	ND	100	71-157		
Matrix Spike Dup (B1G1312-MSD1)	Source	: 2107160-	01	Prepared: 0	07/13/21 A	nalyzed: 07	7/14/21		
Benzene	51.0	5.0	μg/kg	50.0	ND	102	37-151	1.40	30
Chlorobenzene	42.0	5.0	"	50.0	ND	84.0	37-160	1.20	30
1,1-Dichloroethene	49.6	5.0	"	50.0	ND	99.2	50-150	3.21	30
Toluene	43.3	5.0	"	50.0	ND	86.5	47-150	0.461	30
Trichloroethene	56.5	5.0	"	50.0	ND	113	71-157	11.8	30

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1405 - EPA 3550B Solid Ext

Blank (B1G1405-BLK1)				Prepared & Analyzed: 07/14/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1405 - EPA 3550B Solid Ext

Blank (B1G1405-BLK1)				Prepared & Analyzed: 07/14/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B1G1405 - EPA 3550B Solid Ext										

LCS (B1G1405-BS1)				Prepared &	Analyzed:	07/14/21				
Acenaphthene	0.858	0.33	mg/kg	1.00		85.8	47-145			
2-Chlorophenol	1.86	0.33	"	2.00		93.2	23-134			
4-Chloro-3-methylphenol	2.15	0.33	"	2.00		108	22-147			
1,4-Dichlorobenzene	0.795	0.33	"	1.00		79.5	20-124			
2,4-Dinitrotoluene	0.517	0.33	"	1.00		51.7	39-139			
4-Nitrophenol	0.628	0.33	"	2.00		31.4	0-132			
N-Nitrosodi-n-propylamine	0.741	0.33	"	1.00		74.1	0-230			
Pentachlorophenol	0.387	0.33	"	2.00		19.4	14-176			
Phenol	1.56	0.33	"	2.00		77.9	5-112			
Pyrene	1.09	0.33	"	1.00		109	52-115			
1,2,4-Trichlorobenzene	0.632	0.33	"	1.00		63.2	44-142			
Matrix Spike (B1G1405-MS1)	Sourc	e: 2107160-	01	Prepared &	Analyzed:	07/14/21				
Acenaphthene	0.942	0.33	mg/kg	1.00	ND	94.2	47-145			
2-Chlorophenol	1.93	0.33	"	2.00	ND	96.3	23-134			
-Chloro-3-methylphenol	1.89	0.33	"	2.00	ND	94.4	22-147			
,4-Dichlorobenzene	0.919	0.33	"	1.00	ND	91.9	20-124			
2,4-Dinitrotoluene	0.541	0.33	"	1.00	ND	54.1	39-139			
-Nitrophenol	0.607	0.33	"	2.00	ND	30.4	0-132			
N-Nitrosodi-n-propylamine	0.885	0.33	"	1.00	ND	88.5	0-230			
Pentachlorophenol	0.571	0.33	"	2.00	ND	28.6	14-176			
Phenol	1.62	0.33	"	2.00	ND	81.0	5-112			
Pyrene	0.917	0.33	"	1.00	ND	91.7	52-115			
,2,4-Trichlorobenzene	0.831	0.33	"	1.00	ND	83.1	44-142			
Matrix Spike Dup (B1G1405-MSD1)	Sourc	e: 2107160-	01	Prepared &	Analyzed:	07/14/21				
Acenaphthene	1.02	0.33	mg/kg	1.00	ND	102	47-145	7.46	30	
-Chlorophenol	2.10	0.33	"	2.00	ND	105	23-134	8.88	30	
-Chloro-3-methylphenol	1.81	0.33	"	2.00	ND	90.3	22-147	4.49	30	
1,4-Dichlorobenzene	0.983	0.33	"	1.00	ND	98.3	20-124	6.73	30	
2,4-Dinitrotoluene	0.466	0.33	"	1.00	ND	46.6	39-139	14.9	30	
4-Nitrophenol	0.644	0.33	"	2.00	ND	32.2	0-132	5.92	30	
N-Nitrosodi-n-propylamine	0.913	0.33	"	1.00	ND	91.3	0-230	3.11	30	
Pentachlorophenol	0.595	0.33	"	2.00	ND	29.8	14-176	4.12	30	
Phenol	1.63	0.33	"	2.00	ND	81.4	5-112	0.492	30	
Pyrene	1.15	0.33	"	1.00	ND	115	52-115	22.3	30	
1,2,4-Trichlorobenzene	0.863	0.33	"	1.00	ND	86.3	44-142	3.78	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Rev. 120121

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 · 348 · 9115 Date: 7 / 12 / 21 Page: 1 of 2

2107160. 26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653 Client: MEARNS Analyses Requested Client Project ID: Client Address: CONGULTING COPP Geotracker EDD Info: 5035B 738 ASHLAND AJE TOWN CENTER NORTHWEST SANTA MONICA 90405 Sol5B 8015B 801513 Client LOGCODE Immediate 24 Hour Turn Around 82boB 310 403 1921 Time Requested: METALS Client Tel. No.: 48 Hour 72 Hour Client Fax. No.: 4 Day ☐ 5 Day MEARNS HID Client Proj. Mgr.: Normai Site Global ID Mobile Mobile है さらさ No. of Sierra Container Client Sample ID. Date Time Matrix Preservative Containers No Field Point Names / Type Comments WE STAIGHT 541-5 01. 7-12-21 401L 0854 D048V VOA VIAIC SVI. lo 07 1039 03 SVI-15 1043 SV2.5 OY 1120 05 SV2-10 1123 06 SV2-15 1136 07 SV3.5 1235 X 00 1239 543.6 SV3.15 04 1244 12 544.5 1309 SHOPER VILL HAND DELIVERED Total Number of Containers Submitted to Sample Disposal: Ó Return to Client The delivery of samples and the signature on this chain of custody form constitutes A) 7/12/41 outborization to perform the analyses specified above under SIERRA's Terms and Lab Dhoese! * Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. 1544 Archive ____ mos. * - Samples determined to be bazardous by STERRA will be returned to CLIENT. Total Number of Containers Received by Relinquished By Received By Laboratory FOR LABORATORY USE ONLY. Sample Receipt Conditions:

Chillot. Temp (CO) ⅓ Rolinguation Dy Received By: Protoryanives - Verified By Smuple Sesia Special Instructions: Other Property Labelled

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

Date: 7 / 12 / 21 Page: 7 of 2

Lab Work Order No.: 2107160

Client: MEARNS CONSULTING COPP Client Project ID:									Analyses Requested											
Client Address: 738 ASHLAND	AVE	1						128				1				-	·	T		Geotracker EDD Info:
	A 90	1405			_	(4									- 1	İ	1	Georgacker EDD Into:
		, (+ <u>)</u>			Town Ca	лтер. Мол	LITHWEST	À				:	6 0							
							24 Hour	ĝ			3	8	/5035B							Client LOGCODE
Client Tel. No.: 310 403 1921					. In			7		23	5 B	8015B		ی						
Client Fax. No.:							72 Hour	Metars		2015	8015	38	Saw B	270C				1		
]	Arianal	- 1).					3 5 Day	8		~		ام	13	82						
Client Proj. Mgr.: DUGAN L	IBAKA	5 7 14 17			<u> </u>	Normal	Mobile		ا ه ا	2	11	उँ	:							Site Global ID
Client Sample ID.	Bierra Ng.	Date	Time	Matrix	Preservative	Type	No. of Containers	#120	₹	C4.C12	C13.C22	Ċ	70%	SVDC						Field Paint Names / Comments
SV4-10	11	7-12-21	1318	SOIL	DRSRV	ACCIAIC SU VOA VIAL		Х	Х	X	X	X	Χ	X						231-111-1-2
5V4·15	12-	1	1321)		X	X	X	X	Х	X	X			_			
SVS-5	13		1350					Х	X	X	Х	X	X	X			1			
SV5-10	14		1402	·				χ	X	X	又	X	Χ	Х						
SV5·15	15	J	1407	4		V		X	х	X	X	X	X	×			_			
		¥		<u>~</u>			<u> </u>											\top		
																	1			
ž.					 												-	\dashv	-	
(d	1						:				• • • • • • • • • • • • • • • • • • • •						\dashv			
TAI CULT	ago	tr. I	Shipped Vir.	D DELAK	-D-=D	L	<u> </u>	ليا	IJ.	<u>_</u> }		Total i	Mussik	ar of t	Contair				\dashv	Sample Disposal:
MEAN (MEANNY PH) 05	A		(Cortier/Waybill No.)	3 20010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				6	0		Labor		CI OI	Contan	icis sui	Olillis	en io		Salaspite Disposal: Return to Client
Retinquished By (20 4 aga)	- W-	2/12/21	Received By:	10			Dat /12/21								in of custo under Sti	-				Lab Disposal *
Соптраву.	У	1244	Company:	-51 J	RKA		Time: 1544	Condi	ltions, un	ılesı otb	erwise	egreed u	pon io	oritlag l	between S will be n	IERRA s	end CL	JENT.	- 1	Archive mos.
		7					Time: 43 /		armbice e	iccer min	eo 10 D					•				
Rohaquished By:	·	Date:	Received By:		 		Date:		60)			Nurr rator		f Conta	iners R	eceiv	ed by		Other
Company:		Time:	Сепиралу:				Time:		_						···					
Retinquished By:		Date:	heonyad By:				Date	ă	annira Idaet	I ORY (I)	SE ONT	r Samp	to Recel		eterica; Chilledia	famp (°C	5			ϛ ′′
Соприну:		Time:	Сопрыну:				Time:		Reropiu !					X53/60	Preservati	Treation	***	11.77		
Special Instructions;									Property		roja J.M			7 3.5	Sec. 25. 25		300	X**\V		
								ч	Properly	Labelies					Other					
								Ø	Appropr	iale Sam	pie Con	alpet"			Ausrage L	(canon				93 kaw - Lebwahky Copy, Pink - Field Personnel Copy
Rev. (2032)	•			· · · · · · · · · · · · · · · · · · ·				كتنتشا	The state of	<u> </u>	20.35	and the second	1 J. C. V.	erse steel	DISTRUBI	שוי אוטוייט	re To Acc	corcoany Sa	notes Yel	law - Laboratory Coox, Pink - Field Personnel Coox

22 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:Town Center Northwest

Work Order No.: 2107188

Attached are the results of the analyses for samples received by the laboratory on 07/13/21 17:07.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Kuhand T. Foryth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV6-5	2107188-01	Soil	07/13/21 07:35	07/13/21 17:07
SV6-10	2107188-02	Soil	07/13/21 07:44	07/13/21 17:07
SV6-15	2107188-03	Soil	07/13/21 07:51	07/13/21 17:07
SV7-5	2107188-04	Soil	07/13/21 08:15	07/13/21 17:07
SV7-10	2107188-05	Soil	07/13/21 08:25	07/13/21 17:07
SV7-15	2107188-06	Soil	07/13/21 08:30	07/13/21 17:07
SV8-5	2107188-07	Soil	07/13/21 08:56	07/13/21 17:07
SV8-10	2107188-08	Soil	07/13/21 08:58	07/13/21 17:07
SV8-15	2107188-09	Soil	07/13/21 09:06	07/13/21 17:07
SV9-5	2107188-10	Soil	07/13/21 09:19	07/13/21 17:07
SV9-10	2107188-11	Soil	07/13/21 09:22	07/13/21 17:07
SV9-15	2107188-12	Soil	07/13/21 09:24	07/13/21 17:07
SV10-5	2107188-13	Soil	07/13/21 09:32	07/13/21 17:07
SV10-10	2107188-14	Soil	07/13/21 09:36	07/13/21 17:07
SV10-15	2107188-15	Soil	07/13/21 09:52	07/13/21 17:07
SV11-5	2107188-16	Soil	07/13/21 10:16	07/13/21 17:07

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV11-10	2107188-17	Soil	07/13/21 10:20	07/13/21 17:07
SV11-15	2107188-18	Soil	07/13/21 10:26	07/13/21 17:07
SV12-5	2107188-19	Soil	07/13/21 10:49	07/13/21 17:07
SV12-10	2107188-20	Soil	07/13/21 10:58	07/13/21 17:07
SV12-15	2107188-21	Soil	07/13/21 11:07	07/13/21 17:07
SV13-5	2107188-22	Soil	07/13/21 11:26	07/13/21 17:07
SV13-10	2107188-23	Soil	07/13/21 11:31	07/13/21 17:07
SV13-15	2107188-24	Soil	07/13/21 11:38	07/13/21 17:07
SV14-5	2107188-25	Soil	07/13/21 12:49	07/13/21 17:07
SV14-10	2107188-26	Soil	07/13/21 12:54	07/13/21 17:07
SV14-15	2107188-27	Soil	07/13/21 13:01	07/13/21 17:07
SV15-5	2107188-28	Soil	07/13/21 13:19	07/13/21 17:07
SV15-10	2107188-29	Soil	07/13/21 13:23	07/13/21 17:07
SV15-15	2107188-30	Soil	07/13/21 13:27	07/13/21 17:07
SV16-5	2107188-31	Soil	07/13/21 13:54	07/13/21 17:07
SV16-10	2107188-32	Soil	07/13/21 13:57	07/13/21 17:07
SV16-15	2107188-33	Soil	07/13/21 14:00	07/13/21 17:07

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV17-5	2107188-34	Soil	07/13/21 14:44	07/13/21 17:07
SV17-10	2107188-35	Soil	07/13/21 14:48	07/13/21 17:07
01/15 15	2107100 24	a "	07/10/01 14 50	05/10/01 15 05
SV17-15	2107188-36	Soil	07/13/21 14:53	07/13/21 17:07
SV18-5	2107188-37	Soil	07/13/21 15:19	07/13/21 17:07
SV18-10	2107188-38	Soil	07/13/21 15:25	07/13/21 17:07
SV18-15	2107188-39	Soil	07/13/21 15:29	07/13/21 17:07
SV19-5	2107188-40	Soil	07/13/21 15:49	07/13/21 17:07
3 17-3	210/188-40	3011	07/13/21 13:49	0//13/21 1/:0/
SV19-10	2107188-41	Soil	07/13/21 15:54	07/13/21 17:07
SV19-15	2107188-42	Soil	07/13/21 15:59	07/13/21 17:07

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

			Sierra Ai							
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35	Received:	07/13/21 17:0	7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		83	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.6	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		14	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		8.5	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		24	5.1	"	"	"	"	"	"	
		24 28	5.1 7.0	"	"	"	"	"	"	
Zinc	il Sampled: 07/13/21 07:44	28	7.0	"						
Zinc SV6-10 (2107188-02) Soi	il Sampled: 07/13/21 07:44	28 Received:	7.0 07/13/21 17:	07	"	"	"	"	"	
Zinc SV6-10 (2107188-02) Soi Silver	il Sampled: 07/13/21 07:44	28 Received:	7.0 07/13/21 17: 2.0	"						
Zinc SV6-10 (2107188-02) Soi Silver Arsenic	il Sampled: 07/13/21 07:44	28 Received: ND ND	7.0 07/13/21 17: 2.0 5.5	07 mg/kg	1	" B1G1411	07/14/21	07/19/21 14:17	" EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium	d Sampled: 07/13/21 07:44	ND ND 66	7.0 07/13/21 17: 2.0 5.5 6.0	" 07 mg/kg	1 "	B1G1411	07/14/21	07/19/21 14:17	" EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium	il Sampled: 07/13/21 07:44	28 Received: ND ND ND 66 ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2	" 07 mg/kg "	1 "	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium	il Sampled: 07/13/21 07:44	Received: ND ND ND 66 ND ND ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5	07 mg/kg " "	1 "	B1G1411 "	07/14/21	07/19/21 14:17	"EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6,4	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3	07 mg/kg	1 "	B1G1411	07/14/21	07/19/21 14:17	" " " " "	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 64 21	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G1411	07/14/21	07/19/21 14:17	" " " " " " " " " " " " " " " " " " "	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10	""""""""""""""""""""""""""""""""""""""	1 " " " " " " " " " " " " " " " " " " "	B1G1411 " " " " " " B1G1417	07/14/21	07/19/21 14:17	EPA 6010B " " " " " EPA 7199A	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " " " " " " " " " " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B1G1411 " " " " " " B1G1417 B1G1411	07/14/21	07/19/21 14:17 " " " " " " 07/19/21 15:20 07/19/21 14:17	EPA 6010B " " " " " EPA 7199A EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16 ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	BIG1411 " " " " " BIG1417 BIG1411 BIG1414	07/14/21 " " " " " 07/14/21 07/14/21 07/14/21	07/19/21 14:17 " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16 ND ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " "	1	B1G1411 " " " " " " B1G1417 B1G1411	07/14/21	07/19/21 14:17 " " " " " " 07/19/21 15:20 07/19/21 14:17	EPA 6010B " " " " " EPA 7199A EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16 ND ND 12	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " "	1	BIG1411 " " " " " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 " " " " " 07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 14:17 " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16 ND ND 12 ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " "	1	BIG1411 " " " " " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 " " " " " 07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 14:17 " " " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17 "	EPA 6010B " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	il Sampled: 07/13/21 07:44	ND ND 664 ND ND 16 ND ND 12 ND ND ND ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg " " " " " " " "	1	BIG1411 " " " " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 " " " " " 07/14/21 07/14/21 07/14/21 " "	07/19/21 14:17 " " " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17 " "	EPA 6010B " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	il Sampled: 07/13/21 07:44	28 Received: ND ND 66 ND ND 6.4 21 ND 16 ND ND ND ND ND ND ND ND ND N	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg " " " " " " " " "		BIG1411 " " " " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 " " " " " 07/14/21 07/14/21 07/14/21 " " " "	07/19/21 14:17 " " " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17 " "	EPA 6010B " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Vanadium Zinc SV6-10 (2107188-02) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	il Sampled: 07/13/21 07:44	ND ND 664 ND ND 16 ND ND 12 ND ND ND ND	7.0 07/13/21 17: 2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg		BIG1411 " " " " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 " " " " " " 07/14/21 07/14/21 07/14/21 " " " " " "	07/19/21 14:17 " " " " " " " " " " " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17 " " " "	EPA 6010B " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		42	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.3	3.3	"	"	"	"	"	"	
Chromium		9.4	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		9.0	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		6.4	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		14	5.1	"	"	"	"	"	"	
Zinc		27	7.0	"	"	"	"	"	"	
SV7-5 (2107188-04) Soil	Sampled: 07/13/21 08:15	Received:	07/13/21 17:0	7						
Silver	P	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		73	6.0	,,	"	,,	"	,,	"	
Beryllium		ND	2.2	,,	"	,,	"	"	"	
Cadmium		ND	2.5	,,	"	,,	"	"	"	
Cobalt		7.2	3.3	,,	"	,,	"	,,	"	
Chromium		16	2.3	,,	,,	,,	,,	"	"	
Hexavalent Chromium		ND	0.10	,,	,,	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		13	5.0	,,	,,	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	,,	,,	B1G1411	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND ND	5.2	,,	,,	B1G1414	07/14/21	07/10/21 20:28	EPA /4/1A EPA 6010B	
Nickel		ND 11	3.2	,,	,,	BIG1411 "	0//14/21	07/19/21 14:17	EPA 0010B	
Lead		7.2	7.1	,,	,,	,,	,,	"	,,	
		7.2 ND	8.0	"	,	,	,			
Antimony			8.0 6.9		,,	,,	,,		"	
Selenium		ND		.,	"	,,	"	,,	"	
Thallium		ND	17	"	"	,	"	,,	"	
Vanadium		27	5.1	.,	"	,,	"	"	"	
Zinc		34	7.0		.,	"	.,			

Mearns Consulting LLCProjectTown Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 07/13/21 08:25	Received:	07/13/21 17:	07						
	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	5.5	"	"	"	"	"	"	
	50	6.0	"	"	"	"	"	"	
	ND	2.2	"	"	"	"	"	"	
	ND	2.5	"	"	"	"	"	"	
	6.6	3.3	"	"	"	"	"	"	
	13	2.3	"	"	"	"	"	"	
	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
	11	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	7.6	3.0	"	"	"	"	"	"	
	ND	7.1	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
	ND		"	"	"	"	"	"	
	ND		"	"	"	"	"	"	
			"	,,	"	,,	"	"	
	25	7.0	"	"	"	"	"	"	
Sampled: 07/13/21 08:30	Received	07/13/21 17:	07						
	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND		"	"	"	"	"	"	
	37		"	"	"	"	"	"	
			"	,,	"	,,	"	"	
			"	,,	"	,,	"	"	
			"	"	"	"	"	"	
			"	,,	"	,,	"	"	
	ND	0.10	"	,,	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
	8.4	5.0	"	,,	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
					• • • •				
			"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
	ND	0.90	"	"	B1G1414 B1G1411	07/14/21 07/14/21	07/16/21 20:28 07/19/21 14:17	EPA 7471A EPA 6010B	
	ND ND	0.90 5.2			B1G1414 B1G1411	07/14/21 07/14/21	07/16/21 20:28 07/19/21 14:17	EPA 7471A EPA 6010B	
	ND ND 6.7	0.90 5.2 3.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND ND 6.7 ND	0.90 5.2 3.0 7.1	"	"	B1G1411 "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND ND 6.7 ND ND	0.90 5.2 3.0 7.1 8.0	"	" "	B1G1411 " "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND ND 6.7 ND ND ND	0.90 5.2 3.0 7.1 8.0 6.9	" "	" "	B1G1411 " "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND ND 6.7 ND ND	0.90 5.2 3.0 7.1 8.0	" " "	" " " " " " " " " " " " " " " " " " " "	B1G1411 " " " "	07/14/21	07/19/21 14:17	EPA 6010B	
		Sampled: 07/13/21 08:25 Received: ND ND S0 ND ND 6.6 13 ND 11 ND ND 7.6 ND N	ND 2.0	Result Limit Units	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 ND 2.0 mg/kg 1 ND 5.5 " " 50 6.0 " " ND 2.2 " " ND 2.5 " " 13 2.3 " " ND 0.10 " " ND 0.90 " " ND 5.2 " " ND 7.1 " " ND 7.1 " " ND 8.0 " " ND 6.9 " " ND 17 " " 25 7.0 " " Sampled: 07/13/21 08:30 Received: 07/13/21 17:07 " " ND 2.0 mg/kg 1 ND 5.5 " " ND 2.2 " " ND	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Dilution Batch ND 2.0 mg/kg 1 B1G1411 ND 5.5 " " " 50 6.0 " " " ND 2.2 " " " ND 2.5 " " " 13 2.3 " " " ND 0.10 " " B1G1417 11 5.0 " " B1G1417 11 5.0 " " B1G1417 ND 0.10 " " B1G1417 ND 5.2 " " B1G1417 ND 5.2 " " B1G1411 ND 6.9 " " " ND 6.9 " " " ND 17 " " " 25 7.0 " "	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Dilution Batch Prepared ND 2.0 mg/kg 1 BIG1411 07/14/21 ND 5.5 " " " " ND 2.2 " " " " ND 2.5 " " " " 6.6 3.3 " " " " ND 0.10 " " BIG1417 07/14/21 11 5.0 " " BIG1411 07/14/21 ND 0.10 " " BIG1411 07/14/21 ND 0.10 " " BIG1411 07/14/21 ND 5.2 " " BIG1411 07/14/21 ND 7.1 " " " " ND 7.1 " " " " ND 5.1 " " " "	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Units Dilution Batch Prepared Analyzed ND 2.0 mg/kg 1 B1G1411 07/14/21 07/19/21 14:17 ND 5.5 " " " " " 50 6.0 " " " " " ND 2.2 " " " " " ND 2.5 " " " " " 13 2.3 " " " " " ND 0.10 " " B1G1417 07/14/21 07/19/21 18:20 11 5.0 " " B1G1411 07/14/21 07/19/21 14:17 ND 0.90 " " B1G1411 07/14/21 07/19/21 14:17 " ND 7.1 " " " " " ND 6.9 " " " "	ND 2.0 mg/kg 1 B1G141 07/14/21 07/19/21 14:17 EPA 6010B ND 5.5 " " " " " " " " " " " " " " " " " "

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV8-5 (2107188-07) Soil	Sampled: 07/13/21 08:56	Received:	07/13/21 17:07	7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		30	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		ND	3.3	"	"	"	"	"	"	
Chromium		5.7	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		7.8	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		4.0	3.0	"	"	"	"	"	"	
Lead		19	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		9.1	5.1	"	"	"	"	"	"	
Zinc		26	7.0	"	"	"	"	"	"	
SV8-10 (2107188-08) Soi	Sampled: 07/13/21 08:58	Received	l: 07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		58	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		10	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		11	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		7.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		21	5.1	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06	Received	: 07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		50	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.6	3.3	"	"	"	"	"	"	
Chromium		17	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		12	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.81	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		9.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	,,	"	"	
Selenium		ND	6.9	"	"	"	"	"	,,	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		19	5.1	"	"	"	"	"	,,	
Zinc		29	7.0	"	"	"	"	"	"	
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received:	07/13/21 17:0	7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		3100	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		5.1	3.3	"	"	"	"	"	"	
Chromium		26	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		31	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		20	3.0	"	"	"	"	"	"	
		24	7.1	"	"	"	"	"	"	
Lead		ND	8.0	"	"	"	"	"	"	
			6.9	"	"	"	"	"	"	
Antimony		ND	0.9							
Antimony Selenium		ND ND	17	"	"	"	"	"	"	
Lead Antimony Selenium Thallium Vanadium				"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

			Reporting							
Analyte		Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received	: 07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		77	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		6.2	3.3	"	"	"	"	"	"	
Chromium		17	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		12	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		8.3	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		23	5.1	"	"	"	"	"	"	
Zinc		27	7.0	"	"	"	"	"	"	
SV9-15 (2107188-12) Soil	Sampled: 07/13/21 00:24	ъ	05/12/21 15							
	Sampleu: 07/15/21 09:24	Received	1: 07/13/21 17:	07						
	Sampleu: 07/13/21 09:24	ND	2.0		1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Silver	Sampled: 07/13/21 09:24			mg/kg	1 "	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Silver Arsenic	Sampleu. 07/13/21 05.24	ND	2.0	mg/kg						
Silver Arsenic Barium	Sampleu. 07/13/21 05.24	ND ND	2.0 5.5	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	Sampleu. 07/13/21 05.24	ND ND 110	2.0 5.5 6.0	mg/kg "	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	Sampleu. 07/13/21 05.24	ND ND 110 ND	2.0 5.5 6.0 2.2	mg/kg " "	" "	"	"	" " "	"	
Silver Arsenic Barium Beryllium Cadmium Cobalt	Sampleu. 0//13/21 05.24	ND ND 110 ND ND ND	2.0 5.5 6.0 2.2 2.5	mg/kg " " "	" "	" " "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	Sampleu. 0//13/21 05.24	ND ND 110 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " " 07/14/21	" " " " 07/19/21 15:20	" " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	Sampleu. 0//13/21 05.24	ND ND 110 ND ND ND 10 30	2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414	""""""""""""""""""""""""""""""""""""""	"" "" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND ND 16	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414 B1G1411	07/14/21 07/14/21 07/14/21 07/14/21	"" "" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND ND 16 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND ND 16 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND ND 16 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		" " " B1G1417 B1G1411 B1G1414 B1G1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	Sampleu. 0//13/21 05.24	ND ND 110 ND ND 10 30 ND 17 ND ND 16 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV10-5 (2107188-13) Soil S	Sampled: 07/13/21 09:32 Receive	ed: 07/13/21 17:	:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	650	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	10	3.3	"	"	"	"	"	"	
Chromium	25	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper	31	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel	24	3.0	"	"	"	"	"	"	
Lead	42	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	36	5.1	"	"	"	"	"	"	
Zinc	100	7.0	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil	Sampled: 07/13/21 09:36 Recei	ved: 07/13/21 17	7:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	49						"		
Beryllium		6.0	"	"	"	"	"	"	
Dei viiiuiii	ND	6.0 2.2	"	"	"	"	"	"	
•		6.0 2.2 2.5		"				"	
Cadmium	ND ND 4.9	2.2	"	"	"	"	"	"	
Cadmium C obalt	ND 4.9	2.2 2.5 3.3	"	"	"	"	"	"	
Cadmium Cobalt Chromium	ND 4.9 10	2.2 2.5 3.3 2.3	" "	" "	" " "	" "	" " "	" " "	
Cadmium Cobalt Chromium Hexavalent Chromium	ND 4.9 10 ND	2.2 2.5 3.3 2.3 0.10	" "	" " "	" " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20	" " " EPA 7199A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper	ND 4.9 10 ND 8.3	2.2 2.5 3.3 2.3 0.10 5.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " " 07/14/21 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	ND 4.9 10 ND	2.2 2.5 3.3 2.3 0.10 5.0	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411	" " " 07/14/21	" " " 07/19/21 15:20	" " " EPA 7199A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND 4.9 10 ND 8.3 ND ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411	07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " EPA 7199A EPA 6010B EPA 7471A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND 4.9 10 ND 8.3 ND ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414 B1G1411	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND 4.9 10 ND 8.3 ND ND ND ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17 "	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND 4.9 10 ND 8.3 ND ND ND 6.0 ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	ND 4.9 10 ND 8.3 ND ND ND ND 6.0 ND ND ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0 6.9	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	ND 4.9 10 ND 8.3 ND ND ND 6.0 ND	2.2 2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0			" " " B1G1417 B1G1411 B1G1414 B1G1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		81	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		11	3.3	"	"	"	"	"	"	
Chromium		21	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		15	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		13	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		36	5.1	"	"	"	"	"	"	
Zinc		42	7.0	"	"	"	"	"	"	
SV11-5 (2107188-16) Soil	Sampled: 07/13/21 10:16	Received:	07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		150	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		10	3.3	"	"	"	"	"	"	
Chromium		19	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		21	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.78	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
1.101, 000110111		15	3.0	"	"	"	"	"	"	
Nickel						"	"	"	"	
•		17	7.1	"	"					
Nickel		17 ND	7.1 8.0	"	"	"	"	"	"	
Nickel Lead							"	"	"	
Nickel Lead Antimony		ND	8.0	"	"	"				
Nickel Lead Antimony Selenium		ND ND	8.0 6.9	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

1			Danortin a							
Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV11-10 (2107188-17) Soil	Sampled: 07/13/21 10:20	Received: 0	7/13/21 17	':07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		130	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		8.5	3.3	"	"	"	"	"	"	
Chromium		15	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		10	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		8.1	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		23	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	
SV11-15 (2107188-18) Soil	Sampled: 07/13/21 10:26	Received: 0	7/13/21 17	:07						
, ,	Sampled: 07/13/21 10:26				1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Silver	Sampled: 07/13/21 10:26	ND ND	2.0	mg/kg	1 "	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Silver Arsenic	Sampled: 07/13/21 10:26	ND ND	2.0 5.5	mg/kg						
Silver Arsenic Barium	Sampled: 07/13/21 10:26	ND ND 64	2.0 5.5 6.0	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	Sampled: 07/13/21 10:26	ND ND	2.0 5.5 6.0 2.2	mg/kg "	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	Sampled: 07/13/21 10:26	ND ND 64 ND ND	2.0 5.5 6.0 2.2 2.5	mg/kg " "	" "	"	"	" " "	" "	
Silver Arsenic Barium Beryllium Cadmium	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0	2.0 5.5 6.0 2.2	mg/kg " "	" "	" " "	" "	" " " "	" " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	Sampled: 07/13/21 10:26	ND ND 64 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " " 07/14/21	" " " " 07/19/21 15:20	" " " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " 07/19/21 15:20 07/19/21 14:17	" " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 B1G1411 B1G1414	""""""""""""""""""""""""""""""""""""""	"" "" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 B1G1411 B1G1414 B1G1411	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND ND 11 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
SV11-15 (2107188-18) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	Sampled: 07/13/21 10:26	ND ND 64 ND ND 6.0 19 ND 11 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg		BIG1417 BIG1411 BIG1411 BIG1411 ""	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-5 (2107188-19) Soil Sampled: 07/1	13/21 10:49 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	83	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.4	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper	7.8	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel	6.4	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	,,	,,	"	
Vanadium	18	5.1	"	"	"	,,	"	"	
Zinc	23	7.0	"	"	"	"	"	"	
SV12-10 (2107188-20) Soil Sampled: 07/	/13/21 10:58 Received	: 07/13/21 17	7:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"		,,	,,	"	,,	
				"	"				
Barium	46		,,	"	"	,,	"	"	
	46 ND	6.0					" "	"	
Beryllium	ND	6.0 2.2	"	"	"	"			
Beryllium Cadmium	ND ND	6.0 2.2 2.5	"	"	"	"	"	"	
Barium Beryllium Cadmium Cobalt Chromium	ND ND 5.4	6.0 2.2 2.5 3.3	"	" "	"	" "	"	"	
Beryllium Cadmium Cobalt Chromium	ND ND 5.4 10	6.0 2.2 2.5 3.3 2.3	" "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	ND ND 5.4 10 ND	6.0 2.2 2.5 3.3	" " " "	" " " "	" " " B1G1417	" " " 07/14/21	" " 07/19/21 15:20	" " " EPA 7199A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	ND ND 5.4 10 ND 6.7	6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	"" " 07/14/21	" " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	ND ND 5.4 10 ND 6.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414	" " " 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " EPA 7199A EPA 6010B EPA 7471A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND ND 5.4 10 ND 6.7 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	n n n	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	"" " 07/14/21	" " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND ND 5.4 10 ND 6.7 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411	" " " 07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 5.4 10 ND 6.7 ND ND 5.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND ND 5.4 10 ND 6.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0		" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	ND ND 5.4 10 ND 6.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 5.4 10 ND 6.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-15 (2107188-21) Soil Sampled: 07/13/21 11						1			
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	32	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	3.3	3.3	"	"	"	"	"	"	
Chromium	7.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	ND	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	4.5	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	9.2	5.1	"	"	"	"	"	"	
Zinc	16	7.0	"	"	"	"	"	"	
SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:2	26 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	83	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2						"	
-		2.2	"	"	"		,,	"	
Cadmium	ND	2.2 2.5	"	"	"	"			
Cadmium Cobalt		2.5					"	"	
Cobalt	7.1	2.5 3.3	"	"	"	"	"	"	
		2.5	"	"	"	"	" "	" "	
Cobalt Chromium Hexavalent Chromium	7.1 15 ND	2.5 3.3 2.3	" "	" "	" " B1G1418	" " 07/14/21	" " 07/19/21 16:44	" " " EPA 7199A	
Cobalt Chromium Hexavalent Chromium Copper	7.1 15 ND 9.8	2.5 3.3 2.3 0.10 5.0	" "	" "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury	7.1 15 ND 9.8 ND	2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	7.1 15 ND 9.8 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	7.1 15 ND 9.8 ND ND 8.7	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	" " 07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	7.1 15 ND 9.8 ND ND ND 8.7 ND ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	" " " " " " " " " " " " " " " " " " " "		" B1G1418 B1G1412 B1G1415 B1G1412 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 6010B " " "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " B1G1418 B1G1412 B1G1415 B1G1412 " " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil	Sampled: 07/13/21 11:31	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		100	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		5.7	3.3	"	"	"	"	"	"	
Chromium		21	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		13	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		10	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		26	5.1	"	"	"	"	"	"	
Zinc		37	7.0	"	"	"	"	"	"	
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		46	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"		,,	"	"	"	
					"					
Cobalt		4.5	3.3	"	"	"	"	"	"	
		4.5 12		"		"	"	"	"	
Chromium			3.3		"					
Chromium Hexavalent Chromium		12	3.3 2.3	"	"	"	"	"	"	
Chromium Hexavalent Chromium Copper		12 ND	3.3 2.3 0.10	"	" "	" B1G1418	07/14/21	" 07/19/21 16:44	" EPA 7199A	
Chromium Hexavalent Chromium Copper Mercury		12 ND 8.0	3.3 2.3 0.10 5.0	"	" "	" B1G1418 B1G1412	07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58	" EPA 7199A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum		12 ND 8.0 ND	3.3 2.3 0.10 5.0 0.90	" " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415	" 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" EPA 7199A EPA 6010B EPA 7471A	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		12 ND 8.0 ND ND	3.3 2.3 0.10 5.0 0.90 5.2	" " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		12 ND 8.0 ND ND ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		12 ND 8.0 ND ND 7.0 ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "		" B1G1418 B1G1412 B1G1415 B1G1412 "	" 07/14/21 07/14/21 07/14/21 07/14/21 " "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		12 ND 8.0 ND ND 7.0 ND ND ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	" " " " " " " "		"B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 07/14/21 " "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		12 ND 8.0 ND ND 7.0 ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			"B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 07/14/21 " " "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " " "	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV14-5 (2107188-25) Soil Samp	led: 07/13/21 12:49 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	50	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	4.7	3.3	"	"	"	"	"	"	
Chromium	11	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	7.4	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	5.9	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	15	5.1	"	"	"	"	"	"	
Zinc	22	7.0	"	"	"	"	"	"	
SV14-10 (2107188-26) Soil Sam	pled: 07/13/21 12:54 Received	: 07/13/21 17	7:07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	88	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.6	3.3	"	"	"	"	"	"	
Chromium	22	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	12	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.78	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
		5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
•	ND				"	"	"	"	
Molybdenum	ND 9.1	3.0	"	"	"				
Molybdenum Nickel			"	"	"	"	"	"	
Molybdenum Nickel Lead	9.1	3.0				"	"	"	
Molybdenum Nickel Lead Antimony	9.1 26	3.0 7.1	"	"	"				
Molybdenum Nickel Lead Antimony Selenium Thallium	9.1 26 ND ND	3.0 7.1 8.0 6.9	"	"	"	"	"	"	
Molybdenum Nickel Lead Antimony Selenium	9.1 26 ND	3.0 7.1 8.0	"	" "	"	"	"	"	

Mearns Consulting LLC

738 Ashland Avenue

Project: Town Center Northwest

Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Received	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		38	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.8	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		6.9	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		6.4	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		13	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	
SV15-5 (2107188-28) Soil	Sampled: 07/13/21 13:19	Received	: 07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		110	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.9	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		9.0	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		6.7	3.0	"	"	"	"	"	"	
MICKEI		ND	7.1	"	"	"	"	"	"	
Lead		ND	,							
		ND	8.0	"	"	"	"	"	"	
Lead				"	"	"	"	"	"	
Lead Antimony		ND	8.0							
Lead Antimony Selenium		ND ND	8.0 6.9	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil	Sampled: 07/13/21 13:23	Receive	d: 07/13/21 17	':07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		79	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.8	3.3	"	"	"	"	"	"	
Chromium		16	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		13	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		12	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		26	5.1	"	"	"	"	"	"	
Zinc		38	7.0	"	"	"	"	"	"	
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Receive	d: 07/13/21 17	':07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		64	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.9	3.3	"	"	"	"	"	"	
Chromium		11	2.3	"	"	"	"	"	"	
II 1 (CL)		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Hexavalent Chromium						D101412	07/14/21	07/19/21 15:58	EPA 6010B	
		6.9	5.0	"	"	B1G1412	0//14/21	0 // 1 // 21 10 10 0	LITTOOTOD	
Copper		6.9 ND	5.0 0.90	"	"	B1G1412 B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Copper Mercury										
Copper Mercury Molybdenum		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Copper Mercury Molybdenum Nickel		ND ND	0.90 5.2	"	"	B1G1415 B1G1412	07/14/21 07/14/21	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead		ND ND 7.7	0.90 5.2 3.0	"	"	B1G1415 B1G1412	07/14/21 07/14/21	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead Antimony		ND ND 7.7 ND	0.90 5.2 3.0 7.1 8.0	" "	" " "	B1G1415 B1G1412	07/14/21 07/14/21 "	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		ND ND 7.7 ND ND	0.90 5.2 3.0 7.1	" " "	" " "	B1G1415 B1G1412 "	07/14/21 07/14/21 "	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B "	
Copper Mercury Molybdenum Nickel Lead Antimony Selenium		ND ND 7.7 ND ND ND	0.90 5.2 3.0 7.1 8.0 6.9	" " " "	" " " " " " " " " " " " " " " " " " " "	B1G1415 B1G1412 "	07/14/21 07/14/21 " " "	07/16/21 20:30 07/19/21 15:58 "	EPA 7471A EPA 6010B "	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-5 (2107188-31) Soil										
·										
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"		"	.,	,,	"	
Barium		160	6.0	"	.,	,,	,,	"	"	
Beryllium		ND	2.2	"	.,	,,	,,	,,	"	
Cadmium		ND	2.5	,,	,,	,,	,,	,,	"	
Cobalt		7.4	3.3 2.3	,,		,,	,,			
Chromium		17 ND		,,	,,					
Hexavalent Chromium		ND	0.10	"	.,	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		20	5.0	"	,,	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	,	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	,	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		11	3.0	"	.,	"	"	"	"	
Lead		19	7.1	"	.,	,,	,,	"	"	
Antimony		ND	8.0	"		"	.,	,	"	
Selenium		ND	6.9	"		"	"	,	"	
Thallium		ND	17			"	.,	,,	"	
Vanadium		24	5.1	"	"			"		
Zinc		63	7.0	"	"	"	"	"	"	
SV16-10 (2107188-32) Soil	Sampled: 07/13/21 13:57	Received	1: 07/13/21 17:	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		130	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		11	3.3	"	"	"	"	"	"	
Chromium		24	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		27	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		27	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		36	5.1	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	F	tesult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		720	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		8.0	3.3	"	"	"	"	"	"	
Chromium		23	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		37	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		61	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	"	"	"	"	"	"	
Zinc		90	7.0	"	"	"	"	"	"	
SV17-5 (2107188-34) Soil	Sampled: 07/13/21 14:44	Received:	07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		20	5.5	"	"	"	"	"	"	
Barium		88	6.0	"	"	"	"	"	"	
Beryllium		ND								
Codmissm			2.2	"	"	"	"	"	"	
Caumium		ND	2.2 2.5	"	"	"	"	"	"	
		ND 6.7								
Cobalt			2.5	"	"	"	"	"	"	
Cobalt Chromium		6.7	2.5 3.3	"	"	"	"	"	" "	
Cobalt Chromium Hexavalent Chromium		6.7 18	2.5 3.3 2.3	" "	" "	"	"	n n	11 11	
Cobalt Chromium Hexavalent Chromium Copper		6.7 18 ND	2.5 3.3 2.3 0.10	" "	" "	" " B1G1418	" " 07/14/21	" " 07/19/21 16:44	" " EPA 7199A	
Cobalt Chromium Hexavalent Chromium Copper Mercury		6.7 18 ND 47	2.5 3.3 2.3 0.10 5.0	" " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		6.7 18 ND 47 ND	2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415	" " 07/14/21 07/14/21	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		6.7 18 ND 47 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	" " 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		6.7 18 ND 47 ND ND 17	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		6.7 18 ND 47 ND ND 17 57	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "		" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		6.7 18 ND 47 ND ND 17 57	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" B1G1418 B1G1412 B1G1415 B1G1412 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium		6.7 18 ND 47 ND ND 17 57 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " B1G1418 B1G1412 B1G1415 B1G1412 " " "	07/14/21 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV17-10 (2107188-35) Soil	Sampled: 07/13/21 14:48	Receive	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		170	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.2	3.3	"	"	"	"	"	"	
Chromium		20	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		21	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		13	3.0	"	"	"	"	"	"	
Lead		12	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	,,	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	,,	"	"	"	"	"	
Zinc		61	7.0	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		240	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		16	3.3	"	"	"	"	"	"	
Chromium		35	2.3	"	"	"	,,	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		35	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		19	3.0	"	"	"	"	"	"	
Lead		12	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	,,	"	"	,,	,,	,,	
Selenium		7.4	6.9		"	,,	,,	"	"	
Thallium		ND	17		"	,,	,,	"	"	
Vanadium		47	5.1	,,	,,	"	,,	"	"	
Vanaulum Zinc		120	7.0	,,	,,	"	,,	"	"	
Zinc		140	7.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

1									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-5 (2107188-37) Soil	Sampled: 07/13/21 15:19 Received	ed: 07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	110	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	8.2	3.3	"	"	"	"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	16	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	12	3.0	"	"	"	"	"	"	
Lead	14	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	28	5.1	"	"	"	"	"	"	
Zinc	66	7.0	"	"	"	"	"	"	
SV18-10 (2107188-38) Soi	l Sampled: 07/13/21 15:25 Receiv	ved: 07/13/21 17	7:07						
,	*			1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Silver	ND ND	2.0	7:07 mg/kg	1 "	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Silver Arsenic	ND ND	2.0 5.5	mg/kg						
Silver Arsenic Barium	ND ND 94	2.0 5.5 6.0	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	ND ND 94 ND	2.0 5.5 6.0 2.2	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	ND ND 94	2.0 5.5 6.0	mg/kg " "	" "	"	"	" "	"	
Silver Arsenic Barium Beryllium Cadmium Cobalt	ND ND 94 ND ND 9.8	2.0 5.5 6.0 2.2 2.5	mg/kg " "	" "	" "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	ND ND 94 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	ND ND 94 ND ND 9.8 18 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1418	" " " " 07/14/21	" " " " 07/19/21 16:44	" " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	ND ND 94 ND ND 9.8 18 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " " 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	ND ND 94 ND ND 9.8 18 ND 14 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " BIG1418 B1G1412 B1G1415	""""""""""""""""""""""""""""""""""""""	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND ND 94 ND ND 9.8 18 ND 14 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " " 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND ND 94 ND ND 9.8 18 ND 14 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " "	" " " BIG1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	"" "" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	ND ND 94 ND ND 14 ND ND 12 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 6010B " "	
SV18-10 (2107188-38) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Received	l: 07/13/21 17	7:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		100	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.7	3.3	"	"	"	"	"	"	
Chromium		25	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		16	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		35	5.1	"	"	"	"	"	"	
Zinc		54	7.0	"	"	"	"	"	"	
SV19-5 (2107188-40) Soil	Sampled: 07/13/21 15:49	Received	07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	,,		,,	"	"	"	
Barium			5.5		"	"				
		74	5.5 6.0	"	"	"	"	"	"	
Beryllium							"	"	"	
•		74	6.0	"	"	"				
Cadmium		74 ND	6.0 2.2	"	"	"	"	"	"	
Cadmium Cobalt		74 ND ND	6.0 2.2 2.5	"	" "	"	"	"	"	
Cadmium Cobalt Chromium		74 ND ND 6.9	6.0 2.2 2.5 3.3	" "	" " "	" " "	" "	" "	" "	
Cadmium Cobalt Chromium Hexavalent Chromium		74 ND ND 6.9 14	6.0 2.2 2.5 3.3 2.3	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" "	" " "	" " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper		74 ND ND 6.9 14 ND	6.0 2.2 2.5 3.3 2.3 0.10	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418	" " " 07/14/21	" " 07/19/21 16:44	" " " EPA 7199A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury		74 ND ND 6.9 14 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		74 ND ND 6.9 14 ND 11 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412 B1G1415	07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		74 ND ND 6.9 14 ND 11 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		74 ND ND 6.9 14 ND 11 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 "	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		74 ND ND 6.9 14 ND 11 ND ND 11	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0		" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 6010B " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		74 ND ND ND 6.9 14 ND 11 ND ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		74 ND ND 6.9 14 ND 11 ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Santa Monica CA, 90405 Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

					Laus, III					
Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil	Sampled: 07/13/21 15:54	Received: 0	07/13/21 17	7:07						
Silver		ND	2.0	mg/kg	1	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		66	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.3	3.3	"	"	"	"	"	"	
Chromium		17	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1419	07/14/21	07/19/21 17:00	EPA 7199A	
Copper		12	5.0	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1416	07/14/21	07/16/21 20:32	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Nickel		12	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		23	5.1	"	"	"	"	"	"	
Zinc		35	7.0	"	"	"	"	"	"	
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59	Received: ()7/13/21 17	7:07						
Silver		ND	2.0	mg/kg	1	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		46	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		5.2	3.3	"	"	"	"	"	"	
Chromium		10	2.3	"	"	"	,,	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1419	07/14/21	07/19/21 17:00	EPA 7199A	
Copper		7.8	5.0	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1416	07/14/21	07/16/21 20:32	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B	
Nickel		8.1	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	,,	"	,,	"	
Selenium		ND	6.9	"	"	"	"	,,	"	
Thallium		ND	17	"	"	"	"		"	
Vanadium		15	5.1	"	"	,,	,,	"	"	
Zinc		28	7.0	"	"	,,	,,	"	"	
Zime		20	7.0							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/22/21 13:51

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-5 (2107188-01) Soil Sampled: 07/13	/21 07:35 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		61.2 %	60-1		B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	35-1.		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV6-10 (2107188-02) Soil Sampled: 07/1	3/21 07:44 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		78.5 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.5 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV6-15 (2107188-03) Soil Sampled: 07/1	3/21 07:51 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		73.8 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.4 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV7-5 (2107188-04) Soil Sampled: 07/13	/21 08:15 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		78.6 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.3 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.062	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21	08:25 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	ND	74.3 % 5.0	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons	ND	5.0	"	"	"	"	"	"	
(C23-C40)		90.3 %	25 1	20	DIGI503	"	07/15/21 12 20	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	0.071	35-1	"	B1G1502	"	07/15/21 12:38	"	
SV7-15 (2107188-06) Soil Sampled: 07/13/21	08:30 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		65.6 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		86.7 %	35-1		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV8-5 (2107188-07) Soil Sampled: 07/13/21 0	8:56 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		129 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	27	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	35-1	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	
SV8-10 (2107188-08) Soil Sampled: 07/13/21	08:58 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		60.8 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		93.9 %	35-1	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:
[none][none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil Sampled: 07/13	/21 09:06 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		66.0 %	60-17		B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		101 %	35-13		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV9-5 (2107188-10) Soil Sampled: 07/13/2	21 09:19 Received:	07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	S-03
Total Petroleum Hydrocarbons	110	100	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	550	100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.3 %	35-13	80	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.067	"	"	"	"	"	"	
SV9-10 (2107188-11) Soil Sampled: 07/13	/21 09:22 Received:	: 07/13/21 17:0)7						
Surrogate: o-Terphenyl		100 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	50	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.4 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.043	"	"	"	"	"	"	
SV9-15 (2107188-12) Soil Sampled: 07/13	/21 09:24 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		90.6 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons	ND	5.0	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.3 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 0	9:32 Received	: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	S-0.
Total Petroleum Hydrocarbons (C13-C22)	510	100	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	650	100	"	"	"	"	u	"	
Surrogate: a,a,a-Trifluorotoluene		80.6 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.084	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil Sampled: 07/13/21	09:36 Receive	d: 07/13/21 17:	07						
Surrogate: o-Terphenyl		79.0 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	52	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		88.6 %	35-		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV10-15 (2107188-15) Soil Sampled: 07/13/21	09:52 Receive	d: 07/13/21 17:	07						
Surrogate: o-Terphenyl		68.8 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		97.1 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV11-5 (2107188-16) Soil Sampled: 07/13/21 1	0:16 Received	: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		86.1 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	160	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil Sampled: 07/13/2	21 10:20 Received	1: 07/13/21 17	:07						
Surrogate: o-Terphenyl	20	120 % 5.0	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	39								
Total Petroleum Hydrocarbons (C23-C40)	200	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	91.6 % 0.050	35-13	30	B1G1502	"	07/15/21 12:38	"	
SV11-15 (2107188-18) Soil Sampled: 07/13/2	21 10:26 Received	1: 07/13/21 17:	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	72.6 % 5.0	60-12	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	95.7 % 0.050	35-1.	30	B1G1502	"	07/15/21 12:38	"	
SV12-5 (2107188-19) Soil Sampled: 07/13/2	1 10:49 Received	: 07/13/21 17:0)7						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	97.9 % 5.0	60-12	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	83.5 % 0.070	35-1.	30	B1G1502	"	07/15/21 12:38	"	
SV12-10 (2107188-20) Soil Sampled: 07/13/2	21 10:58 Received	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	111 % 5.0	60-1	75	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	79.2 % 0.050	35-1.	30	B1G1502	"	07/15/21 12:38	"	

738 Ashland Avenue Project Number: [none]
Santa Monica CA, 90405 Project Manager: Susan Mearns

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil Sampled: 07/13/	21 11:07 Received	1: 07/13/21 17:	:07						
Surrogate: o-Terphenyl		91.5 %	60	175	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		88.6 %	35-	130	B1G1503	"	07/15/21 13:57	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-5 (2107188-22) Soil Sampled: 07/13/2	1 11:26 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		107 %	60	175	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		79.8 %	35-	130	B1G1503	"	07/15/21 13:57	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-10 (2107188-23) Soil Sampled: 07/13/2	21 11:31 Received	1: 07/13/21 17	:07						
Surrogate: o-Terphenyl		80.4 %	60	175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.1 %	35-	130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-15 (2107188-24) Soil Sampled: 07/13/2	21 11:38 Received	1: 07/13/21 17	:07						
Surrogate: o-Terphenyl		111 %	60	175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		90.6 %	35-	130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/22/21 13:51

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

			·						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 1	2:49 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	133 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	99.2 % 0.050	35-13	"	B1G1913 "	07/19/21	07/20/21 10:02 "	"	
SV14-10 (2107188-26) Soil Sampled: 07/13/21	12:54 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	53	183 % 5.0	60-17	75 "	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-07
Total Petroleum Hydrocarbons (C23-C40)	180	5.0	"	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	0.21	91.6 % 0.050	35-13	"	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV14-15 (2107188-27) Soil Sampled: 07/13/21	13:01 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	71.9 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	96.1 % 0.050	35-13	BO "	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV15-5 (2107188-28) Soil Sampled: 07/13/21 1	3:19 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	85.8 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	82.0 % 0.060	35-13	30	B1G1913	07/19/21	07/20/21 10:02	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil Sampled: 07/13/2	1 13:23 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	ND	66.1 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	90.3 % 0.056	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV15-15 (2107188-30) Soil Sampled: 07/13/2	1 13:27 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	98.6 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	83.7 % 0.065	35-1 <u>2</u>	30	B1G1913 "	07/19/21	07/20/21 10:02 "	"	
SV16-5 (2107188-31) Soil Sampled: 07/13/21	13:54 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	190	148 % 10	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	500	10	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	89.3 % 0.058	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02 "	" "	
SV16-10 (2107188-32) Soil Sampled: 07/13/2	1 13:57 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	106 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	88.7 % 0.063	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02 "	"	

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-15 (2107188-33) Soil Sampled: 07/13/2	21 14:00 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		134 %	60-1		B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	150	10	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	200	10	"	"	"	"	11	"	
Surrogate: a,a,a-Trifluorotoluene		86.4 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	0.26	0.059	"	"	"	"	"	"	
SV17-5 (2107188-34) Soil Sampled: 07/13/2	1 14:44 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		85.6 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons	34	10	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	650	10	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.3 %	35-1		B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	0.052	0.050	"	"	"	"	"	"	
SV17-10 (2107188-35) Soil Sampled: 07/13/2	21 14:48 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		155 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	79	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil Sampled: 07/13/2	21 14:53 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		137 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons	ND	5.0	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	78	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received	d: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		196 %	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-0
Total Petroleum Hydrocarbons	110	5.0	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	600	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	76.6 % 0.10	35	-130	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV18-10 (2107188-38) Soil Sampled: 07/13/21 15:	25 Receive	ed: 07/13/21 17:	07						
Surrogate: o-Terphenyl		%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbons (C13-C22)	1300	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	2200	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		108 %		-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	1100	6.3	"	100	"	"	"	"	
SV18-15 (2107188-39) Soil Sampled: 07/13/21 15:	29 Receive	ed: 07/13/21 17:	07						
Surrogate: o-Terphenyl		94.7 %	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		133 %	35	-130	B1G1913	07/19/21	07/20/21 10:02	"	S-07
Total Petroleum Hydrocarbons (C4-C12)	0.48	0.044	"	"	"	"	"	"	
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:4	9 Received	d: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbons (C13-C22)	2400	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	35	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	2600	25	"	500	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil S	Sampled: 07/13/21 15:54	Received:	07/13/21 17	:07						
Surrogate: o-Terphenyl			%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbon (C13-C22)	ns	590	25	"	"	"	"	"	"	
Total Petroleum Hydrocarbon (C23-C40)	ns	270	25	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotolue	ne		94.8 %	35-	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbo (C4-C12)	ns	510	22	"	500	"	"	"	"	
SV19-15 (2107188-42) Soil S	Sampled: 07/13/21 15:59	Received:	07/13/21 17	:07						
Surrogate: o-Terphenyl			%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbon (C13-C22)	ns 2	500	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbon (C23-C40)	ns	530	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotolue	ne		116 %	35-	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbon (C4-C12)	ns 1	500	25	"	500	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil Sampled: 07/13/21 07:35	Received:	07/13/21 17:07							
Surrogate: Dibromofluoromethane		120 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.9 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %		121	"	"	"	"	
Benzene	ND	5.8	"	"	"	"	"	"	
Bromobenzene	ND	5.8	"	"	"	"	"	"	
Bromochloromethane	ND	5.8	"	"	"	"	"	"	
Bromodichloromethane	ND	5.8	"	"	"	"	"	"	
Bromoform	ND	5.8	"	"	"	"	"	"	
Bromomethane	ND	5.8	"	"	"	"	"	"	
n-Butylbenzene	ND	5.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.8	"	"	"	"	"	"	
Chlorobenzene	ND	5.8	"	"	"	"	"	"	
Chloroethane	ND	5.8	"	"	"	"	"	"	
Chloroform	ND	5.8	"	"	"	"	"	"	
Chloromethane	ND	5.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
Dibromochloromethane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.8	"	"	"	"	"	"	
Dibromomethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
Ethylbenzene	ND	5.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.8	"	"	"	"	"	"	
Isopropylbenzene	ND	5.8		"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

		ъ							
Analyte	Resu	Reporting It Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35 Rece	ived: 07/13/21 17:0)7						
p-Isopropyltoluene	NI	5.8	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	NI	5.8	"	"	"	"	"	"	
Methyl tert-butyl ether	NI	5.8	"	"	"	"	"	"	
Naphthalene	NI	5.8	"	"	"	"	"	"	
n-Propylbenzene	NI	5.8	"	"	"	"	"	"	
Styrene	NI	5.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NI	5.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NI	5.8	"	"	"	"	"	"	
Tetrachloroethene	NI	5.8	"	"	"	"	"	"	
Toluene	NI	5.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	NI	5.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	NI	5.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	NI	5.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	NI	5.8	"	"	"	"	"	"	
Trichloroethene	NI	5.8	"	"	"	"	"	"	
Trichlorofluoromethane	NI	5.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	NI	5.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	NI	5.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	NI	5.8	"	"	"	"	"	"	
Vinyl chloride	NI	5.8	"	"	"	"	"	"	
m,p-Xylene	NI	5.8	"	"	"	"	"	"	
o-Xylene	NI	5.8	"	"	"	"	"	"	
SV6-10 (2107188-02) Soil	Sampled: 07/13/21 07:44 Rec	eived: 07/13/21 17:	:07						
Surrogate: Dibromofluoron	nethane	100 %	80-	-120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81	-117	"	"	"	"	
Surrogate: 4-Bromofluorol	penzene	97.4 %		-121	"	"	"	"	
Benzene	NI	9.9	"	"	"	"	"	"	
Bromobenzene	NI		"	"	"	"	"	"	
Bromochloromethane	NI		"	"	"	"	"	"	
Bromodichloromethane	NI		"	"	"	"	"	"	
Bromoform	NI		"	"	"	"	"	"	
Bromomethane	NI		"	"	"	"	"	"	
n-Butylbenzene	NI		"	"	"	"	"	"	
sec-Butylbenzene	NI		"	"	"	"	"	"	
tert-Butylbenzene	NI		"	"	"	"	"	"	
Carbon tetrachloride	NI		"	"	"	"	"	"	
Chlorobenzene	NI		"	"	,,	"	"	"	
Chloroethane	NI		"	"	,,	"	"	"	
Chloroform	NI		"	"	"	"	"	"	
Chloromethane	NI		"	"	,,	,,	"	"	
Chronomeniane	INI	9.9							

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-10 (2107188-02) Soil Sampled: 07/13/21 0	7:44 Received	: 07/13/21 17:0)7						
2-Chlorotoluene	ND	9.9	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	9.9	"	"	"	"	"	"	
Dibromochloromethane	ND	9.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	9.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.9	"	"	"	"	"	"	
Dibromomethane	ND	9.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	9.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	9.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
Ethylbenzene	ND	9.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	9.9	"	"	"	"	"	"	
Isopropylbenzene	ND	9.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	9.9	"	"	"	"	"	"	
Methylene chloride	ND	9.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	9.9	"	"	"	"	"	"	
Naphthalene	ND	9.9	"	"	"	"	"	"	
n-Propylbenzene	ND	9.9	"	"	"	"	"	"	
Styrene	ND	9.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	9.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.9	"	"	"	"	"	"	
Tetrachloroethene	ND	9.9	"	"	"	"	"	"	
Toluene	ND	9.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.9	"	"	"	"	"	"	
Trichloroethene	ND	9.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	9.9	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil Sampled: 07/13/21 0	7:44 Received:	07/13/21 17:0	07						
1,2,4-Trimethylbenzene	ND	9.9	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	9.9	"	"	"	"	"	"	
Vinyl chloride	ND	9.9	"	"	"	"	"	"	
m,p-Xylene	ND	9.9	"	"	"	"	"	"	
o-Xylene	ND	9.9	"	"	"	"	"	"	
SV6-15 (2107188-03) Soil Sampled: 07/13/21 0	7:51 Received:	07/13/21 17:0	07						
Surrogate: Dibromofluoromethane		105 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

6V7-5 (2107188-04) Soil Sampled: 07/13/21 08:15		Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Received:	07/13/21 17:07					-		
Surrogate: Dibromofluoromethane		104 %	80-1	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-1	121	"	"	"	"	
Benzene	ND	6.0	"	"	"	"	"	"	
Bromobenzene	ND	6.0	"	"	"	"	"	"	
Bromochloromethane	ND	6.0	"	"	"	"	"	"	
Bromodichloromethane	ND	6.0	"	"	"	"	"	"	
Bromoform	ND	6.0	"	"	"	"	"	"	
Bromomethane	ND	6.0	"	"	"	"	"	"	
-Butylbenzene	ND	6.0	"	"	"	"	"	"	
ec-Butylbenzene	ND	6.0	"	"	"	"	"	"	
ert-Butylbenzene	ND	6.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.0	"	"	"	"	"	"	
Chlorobenzene	ND	6.0	"	"	"	"	"	"	
Chloroethane	ND	6.0	"	"	"	"	"	"	
Chloroform	ND	6.0	"	"	"	"	"	"	
Chloromethane	ND	6.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
Dibromochloromethane	ND	6.0	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	6.0	"	"	"	"	"	"	
,2-Dibromoethane (EDB)	ND	6.0	"	"	"	"	"	"	
Dibromomethane	ND	6.0	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
,4-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.0	"	"	"	"	"	"	
,1-Dichloroethane	ND	6.0	"	"	"	"	"	"	
,2-Dichloroethane	ND	6.0	"	"	"	"	"	"	
,1-Dichloroethene	ND	6.0	"	"	"	"	"	"	
is-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
,3-Dichloropropane	ND	6.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
,1-Dichloropropene	ND	6.0	"	"	"	"	"	"	
sis-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
Ethylbenzene	ND	6.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.0	"	"	"	"	"	"	
sopropylbenzene	ND	6.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-	a				Dilution	Datell	rrepared	Analyzeu	wichiou	1100
·	Sampled: 07/13/21 08:15			1						
p-Isopropyltoluene		ND	6.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	6.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	6.0	"	"	"	"	"	"	
Naphthalene		ND	6.0	"	"	"	"	"	"	
n-Propylbenzene		ND	6.0	"	"	"	"	"	"	
Styrene		ND	6.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	6.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	6.0	"	"	"	"	"	"	
Tetrachloroethene		ND	6.0	"	"	"	"	"	"	
Toluene		ND	6.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	6.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	6.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	6.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	6.0	"	"	"	"	"	"	
Trichloroethene		ND	6.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	6.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	6.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	6.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	6.0	"	"	"	"	"	"	
Vinyl chloride		ND	6.0	"	"	"	"	"	"	
m,p-Xylene		ND	6.0	"	"	"	"	"	"	
o-Xylene		ND	6.0	"	"	"	"	"	"	
SV7-10 (2107188-05) Soil	Sampled: 07/13/21 08:25	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoron	nethane		103 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		98.0 %	74-	121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
Chlorobenzene Chloroethane		ND	5.0	"	"	"	"	"	"	
Chlorobenzene		ND ND	5.0 5.0	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:25	Received:	07/13/21 17:	07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	,,	,,	,,	"	"	
Trichlorofluoromethane	ND	5.0	"	,,	,,	,,	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	"	,,	,,	"	"	
1,2,3-111011010p10pane	ND	3.0							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:2	5 Received	: 07/13/21 17:	07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV7-15 (2107188-06) Soil Sampled: 07/13/21 08:3	0 Received	07/13/21 17:	07						
Surrogate: Dibromofluoromethane		101 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.2 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	,,	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil	Sampled: 07/13/21 08:30	Received	: 07/13/21 17:	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0		"	"	"	"	"	
m,p-Xylene		ND	5.0		"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-5 (2107188-07) Soil Sampled: 07/13/21 08:56	Received:	07/13/21 17:07		-		-	_	-	
Surrogate: Dibromofluoromethane		109 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		97.4 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	74-		"	"	"	"	
Benzene	ND	4.0	"	"	"	"	"	"	
Bromobenzene	ND	4.0	"	"	"	"	"	"	
Bromochloromethane	ND	4.0	"	"	"	"	"	"	
Bromodichloromethane	ND	4.0	"	"	"	"	"	"	
Bromoform	ND	4.0	"	"	"	"	"	"	
Bromomethane	ND	4.0	"	"	"	"	"	"	
n-Butylbenzene	ND	4.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.0	"	"	"	"	"	"	
Chloroethane	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.0	"	"	"	"	"	"	
Chloromethane	ND	4.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.0	"	"	"	"	"	"	
Dibromochloromethane	ND	4.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.0	"	"	"	"	"	"	
Dibromomethane	ND	4.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.0	"	"	"	"	"	"	
Ethylbenzene	ND	4.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.0	"	"	"	"	"	"	
Isopropylbenzene	ND	4.0	"	"	"	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•					Dilution	Datell	1 repared	Anaryzeu	wichiou	1100
·	Sampled: 07/13/21 08:56			<u> </u>						
p-Isopropyltoluene		ND	4.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	4.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.0	"	"	"	"	"	"	
Naphthalene		ND	4.0	"	"	"	"	"	"	
n-Propylbenzene		ND	4.0	"	"	"	"	"	"	
Styrene		ND	4.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.0	"	"	"	"	"	"	
Tetrachloroethene		ND	4.0	"	"	"	"	"	"	
Toluene		ND	4.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.0	"	"	"	"	"	"	
Trichloroethene		ND	4.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.0	"	"	"	"	"	"	
Vinyl chloride		ND	4.0	"	"	"	"	"	"	
m,p-Xylene		ND	4.0	"	"	"	"	"	"	
o-Xylene		ND	4.0	"	"	"	"	"	"	
SV8-10 (2107188-08) Soil	Sampled: 07/13/21 08:58	Received:	07/13/21 17:0)7						
Surrogate: Dibromofluoron	nethane		108 %	80-	-120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			99.9 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		97.1 %		-121	"	"	"	"	
Benzene		ND	4.4	"	"	"	"	"	"	
Bromobenzene		ND	4.4	"	"	"	"	"	"	
Bromochloromethane		ND	4.4	"	"	"	"	"	"	
Bromodichloromethane		ND	4.4	"	"	"	"	"	"	
Bromoform		ND	4.4	"	"	"	"	"	"	
Bromomethane		ND	4.4	"	"	"	"	"	"	
n-Butylbenzene		ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene		ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene		ND	4.4	"	"	"	"	"	"	
•		ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride			4.4	"	"	"	"	"	"	
		ND	7.7							
Chlorobenzene		ND ND	4.4		"	"	"	"	"	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND ND ND		"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV8-10 (2107188-08) Soil Sampled: 07/13/21 08:58	8 Received:	: 07/13/21 17:0	07						
2-Chlorotoluene	ND	4.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.4	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.4	"	"	"	"	"	"	
Isopropylbenzene	ND	4.4	"	"	"	"	"	"	
p-Isopropyltoluene	ND	4.4	"	"	"	"	"	"	
Methylene chloride	ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	4.4	"	"	"	"	"	"	
Naphthalene	ND	4.4	"	"	"	"	"	"	
n-Propylbenzene	ND	4.4	"	"	"	"	"	"	
Styrene	ND	4.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	4.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	4.4	"	"	"	"	"	"	
Tetrachloroethene	ND	4.4	"	"	"	"	"	"	
Toluene	ND	4.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	4.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	4.4	"	"	"	"	"	"	
Trichloroethene	ND	4.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	4.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-10 (2107188-08) Soil Sampled: 07/13/21 08	58 Received:	07/13/21 17:	07						
1,2,4-Trimethylbenzene	ND	4.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	4.4	"	"	"	"	"	"	
Vinyl chloride	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	4.4	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
SV8-15 (2107188-09) Soil Sampled: 07/13/21 09	06 Received:	07/13/21 17:	07						
Surrogate: Dibromofluoromethane		108 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.7 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	R		orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06 R	Received: 07/13/	21 17:0)7						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane			5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride			5.0	"	"	"	"	"	"	
m,p-Xylene			5.0	"	"	"	"	"	"	
o-Xylene			5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-5 (2107188-10) Soil Sampled: 07/13/21 09:19	Received: 0					•	•		
Surrogate: Dibromofluoromethane		115 %	80-1	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.0 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	74-1		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received: (07/13/21 17:07	7						
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
n,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received:	07/13/21 17:0)7						
Surrogate: Dibromofluoron	nethane		104 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			99.6 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorob	enzene		95.7 %	74-1	21	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
)		ND	5.0	"	"	"	"	"	"	
sromomeinane		ND	5.0	"	"	"	"	"	"	
			5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0			"	,,	,,	"	
-Butylbenzene ec-Butylbenzene		ND ND	5.0	"	"	"				
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene				"	"	"	"	"	"	
Bromomethane n-Butylbenzene sec-Butylbenzene eert-Butylbenzene Carbon tetrachloride Chlorobenzene		ND	5.0		"		"	"	"	
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene		ND ND	5.0 5.0	"		"	"	" " "	" "	
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride		ND ND ND	5.0 5.0 5.0	"	"	"			" " " " " " " " " " " " " " " " " " " "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Diffution	DalCII	тератец	Anaiyzeu	Menion	note
SV9-10 (2107188-11) Soil Sampled: 07/13/21 09:22	Received: 0	7/13/21 17:0	07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil Sampled: 07/13/21 0	9:22 Received	: 07/13/21 17:0	07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV9-15 (2107188-12) Soil Sampled: 07/13/21 0	9:24 Received	1: 07/13/21 17:	07						
Surrogate: Dibromofluoromethane		107 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"		,,	"	"	
Dichlorodifluoromethane	ND	5.0	"	"		,,	"	"	
1,1-Dichloroethane	ND	5.0	"	"		,,	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"		"	"	
1,1-Dichloroethene	ND	5.0	"	"	"		"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	,,	,,	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	,,	,,	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,5 2.temoropropune	112	5.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-15 (2107188-12) Soil	Sampled: 07/13/21 09:24	Received:	07/13/21 17:	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	,,	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 09:32	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		116 %	80		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	74		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dawii	1 repared	Anaryzeu	Meniod	1101
SV10-5 (2107188-13) Soil Sampled: 07/13/	/21 09:32 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil Sampled: 07/13	3/21 09:36 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		106 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.0 %	74		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		5.0	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene	ND								
tert-Butylbenzene	ND ND		"	"	"	"	"	"	
•	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0		"			" "		
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	" "	"		" " "		

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						Parea			1.00
SV10-10 (2107188-14) Soil Sampled: 07/13/21 0									
2-Chlorotoluene	ND	5.0	μg/kg 	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	,,	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	,,	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	,,	"	,,	,,	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	,,	"	,,	,,	"	"	
Tetrachloroethene	ND	5.0	,,	"	,,	,,	"	"	
Toluene	ND	5.0	"	,,	,,	"	"	"	
1.2.3-Trichlorobenzene	ND ND	5.0	,,	,,	,,	"	"	"	
1,2,4-Trichlorobenzene	ND ND	5.0	,,	,,	,,	"	"	,,	
1,1,1-Trichloroethane	ND ND	5.0	"	,,	,,	"	,,	,,	
1,1,2-Trichloroethane			,,	,,	,,	,,	,,	,,	
* *	ND	5.0	,,		,,	,,	,,	,,	
Trichloroethene	ND	5.0			,	"	"	"	
Trichlorofluoromethane	ND	5.0	"						
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV10-10 (2107188-14) Soil Sampled: 07/13/21 09:36	Received	: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV10-15 (2107188-15) Soil Sampled: 07/13/21 09:52	Received	: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		119 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received:	07/13/21 17	':07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil Sampled: 07/13/21 10:10	6 Received:	: 07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		105 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	74-		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV11-5 (2107188-16) Soil Sampled: 07/13	/21 10:16 Received	: 07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV11-10 (2107188-17) Soil Sampled: 07/1	3/21 10:20 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		102 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		98.3 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %	74-1	21	"	"	"	"	
Benzene	ND	5.8	"	"	"	"	"	"	
Bromobenzene	ND	5.8	"	"	"	"	"	"	
Bromochloromethane	ND	5.8	"	"	"	"	"	"	
Bromodichloromethane	ND	5.8	"	"	"	"	"	"	
Bromoform	ND	5.8	"	"	"	"	"	"	
Bromomethane	ND	5.8	"	"	"	"	"	"	
n-Butylbenzene	ND	5.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.8	"	"	"	"	"	"	
	ND	5.8	"	"	"	"	"	"	
tert-Butylbenzene	110		"	,,	"	"	"	"	
tert-Butylbenzene	ND	5.8	"						
tert-Butylbenzene Carbon tetrachloride		5.8 5.8	"	"	"	"	"	"	
	ND					"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.8	"	"	"			" "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				2 HutiOII	Dutell	. repared			11010
SV11-10 (2107188-17) Soil Sampled: 07/13/21			:07						
2-Chlorotoluene	ND	5.8	$\mu g/kg$	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
Dibromochloromethane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.8	"	"	"	"	"	"	
Dibromomethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
Ethylbenzene	ND	5.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.8	"	"	"	"	"	"	
Isopropylbenzene	ND	5.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.8	"	"	"	"	"	"	
Methylene chloride	ND	5.8	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.8	"	"	"	"	"	"	
Naphthalene	ND	5.8	"	"	"	"	"	"	
n-Propylbenzene	ND	5.8	"	"	"	"	"	"	
Styrene	ND	5.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.8	"	"	"	"	"	"	
Tetrachloroethene	ND	5.8	"	"	"	"	"	"	
Toluene	ND	5.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.8	"	"	"	"	"	"	
Trichloroethene	ND	5.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.8	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil Sampled: 07/13/21	10:20 Receive	d: 07/13/21 17:	:07						
1,2,4-Trimethylbenzene	ND	5.8	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.8	"	"	"	"	"	"	
Vinyl chloride	ND	5.8	"	"	"	"	"	"	
m,p-Xylene	ND	5.8	"	"	"	"	"	"	
o-Xylene	ND	5.8	"	"	"	"	"	"	
SV11-15 (2107188-18) Soil Sampled: 07/13/21	10:26 Receive	d: 07/13/21 17:	:07						
Surrogate: Dibromofluoromethane		106 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	74-	121	"	"	"	"	
Benzene	ND	6.4	"	"	"	"	"	"	
Bromobenzene	ND	6.4	"	"	"	"	"	"	
Bromochloromethane	ND	6.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.4	"	"	"	"	"	"	
Bromoform	ND	6.4	"	"	"	"	"	"	
Bromomethane	ND	6.4	"	"	"	"	"	"	
n-Butylbenzene	ND	6.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	6.4	"	"	"	"	"	"	
Chloroethane	ND	6.4	"	"	"	"	"	"	
Chloroform	ND	6.4	"	"	"	"	"	"	
Chloromethane	ND	6.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
Dibromochloromethane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.4	"	"	"	"	"	"	
Dibromomethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil 5	Sampled: 07/13/21 10:26	Received:	07/13/21 17	:07						
2,2-Dichloropropane		ND	6.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	6.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	6.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	6.4	"	"	"	"	"	"	
Ethylbenzene		ND	6.4	"	"	"	"	"	"	
Hexachlorobutadiene		ND	6.4	"	"	"	"	"	"	
Isopropylbenzene		ND	6.4	"	"	"	"	"	"	
p-Isopropyltoluene		ND	6.4	"	"	"	"	"	"	
Methylene chloride		ND	6.4	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	6.4	"	"	"	"	"	"	
Naphthalene		ND	6.4	"	"	"	"	"	"	
n-Propylbenzene		ND	6.4	"	"	"	"	"	"	
Styrene		ND	6.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	6.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	6.4	"	"	"	"	"	"	
Tetrachloroethene		ND	6.4	"	"	"	"	"	"	
Toluene		ND	6.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	6.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	6.4	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	6.4	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	6.4	"	"	"	"	"	"	
Trichloroethene		ND	6.4	"	"	"	"	"	"	
Trichlorofluoromethane		ND	6.4	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	6.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	6.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	6.4	"	"	"	"	"	"	
Vinyl chloride		ND	6.4	"	"	"	"	"	"	
m,p-Xylene		ND	6.4	"	"	"	"	"	"	
o-Xylene		ND	6.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil Sampled: 07/13/21 10:4	49 Received	: 07/13/21 17:0)7						
Surrogate: Dibromofluoromethane		110 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.6 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

		D	•	<u> </u>					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-5 (2107188-19) Soil Sampled: 07/13/2	21 10:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV12-10 (2107188-20) Soil Sampled: 07/13	3/21 10:58 Received	l: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		106 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-1			,,			
Surrogate: 4-Bromofluorobenzene		101/0	01-1	17	"	"	"	"	
		97.4 %	74-1		"	"	"	"	
Benzene	ND								
Benzene Bromobenzene	ND ND	97.4 %	74-1	21	"	"	"	"	
		97.4 % 5.0	74-1 "	21	"	"	"	"	
Bromobenzene Bromochloromethane	ND	97.4 % 5.0 5.0	74-1 "	21	" "	"	" "	" "	
Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	97.4 % 5.0 5.0 5.0	74-1 " "	21	" " "	" "	" " " "	" "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	97.4 % 5.0 5.0 5.0 5.0	74-1 " "	21	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene	ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	" " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ND ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND N	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	# # # # # # # # # # # # # # # # # # #	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-10 (2107188-20) Soil Sampled: 07/13/21 10:5	8 Received	d: 07/13/21 17	:07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	,,	"	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-10 (2107188-20) Soil Sampled: 07/13/2	1 10:58 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV12-15 (2107188-21) Soil Sampled: 07/13/2	1 11:07 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		102 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		99.5 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.6 %	74-1	21	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil Sa	ampled: 07/13/21 11:07	Received: 0	7/13/21 17	:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Surrogate: Inhuene-als	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Inhuene-als	SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:26	Received:	07/13/21 17:0	7						
Surrogate: 4-Bromofluorobenzene	Surrogate: Dibromofluoromethane									
Samogale - 9-binnightorouterace	Surrogate: Toluene-d8			81-	117		"			
Bromokenzene ND S.0 " " " " " " " " "	Surrogate: 4-Bromofluorobenzene									
Bromochloromethane ND S.0	Benzene									
Bromodichloromethane ND S.0 "				"					"	
Bromoform ND 5.0 " <t< td=""><td></td><td></td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>				"	"	"	"	"	"	
Bromomethane									"	
ND S.0 ND S.0									"	
sec-Buylbenzene ND 5.0 "									"	
tert-Butylbenzene				"		"	"		"	
Carbon tetrachloride ND 5.0 "	sec-Butylbenzene					"			"	
Chlorochtane	-									
Chlorochtane									"	
Chloroform							"		"	
Chloromethane				"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloroform			"	"	"	"	"	"	
A-Chlorotoluene	Chloromethane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane ND 5.0 "	2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 5.0 " <td< td=""><td>4-Chlorotoluene</td><td>ND</td><td>5.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 " " " " " " "	Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 " " " " " " " " "	1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 5.0 " <td>1,2-Dibromoethane (EDB)</td> <td></td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromoethane (EDB)		5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " <td>Dibromomethane</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane			"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 "	1,2-Dichlorobenzene			"	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 " " " " " " " " " " " " " " " " " " "	1,3-Dichlorobenzene	ND	5.0				"		"	
1,1-Dichloroethane ND 5.0 "	1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	Dichlorodifluoromethane	ND	5.0		"	"	"	"	"	
1,1-Dichloroethene ND 5.0 "	1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND 5.0 "<	1,2-Dichloroethane		5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND 5.0 " " " " " " " " " " " " " " " 1,2-Dichloropropane ND 5.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane ND 5.0 " <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane ND 5.0 " <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane ND 5.0 " <td>1,2-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene ND 5.0 " <td>1,3-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene ND 5.0 " </td <td>2,2-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene ND 5.0 " <th< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>5.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene ND 5.0 " " " " " " " " " Hexachlorobutadiene ND 5.0 " " " " " " " " " " "	cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene ND 5.0 " " " " " "	trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
	Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene ND 5.0 " " " " " "	Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
	Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
			Dilution	Dateii	1 Tepated	Anaryzeu	Menion	INOL
1 11:26 Received:	07/13/21 17:0	07						
ND	5.0	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
		"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
21 11:31 Received	: 07/13/21 17	:07						
	104 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EP4 8260B	
					.			
	101 %	81-		"	"	"	"	
	101 % 100 %	81-1 74-1	17		"	"		
ND	100 %	81-1 74-1	17	"			"	
ND ND	100 % 5.0	74-1	17 21	"	"	"	"	
ND	100 % 5.0 5.0	74-1	117 21	"	"	"	" "	
ND ND	100 % 5.0 5.0 5.0	74-1 "	117 121 "	"	" "	" " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND	5.0 5.0 5.0 5.0 5.0	74-1 " "	117 21 "	" " " "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	74-1 " " "	17 21 "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-i	17 21 " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
	ND N	ND S.0 ND S.0	Result Limit Units 111:26 Received: 07/13/21 17:07 ND 5.0 μg/kg ND 5.0 " ND 5.0 <td>Result Limit Units Dilution I 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 ND 5.0 " " ND 5.0 "</td> <td> Result Limit Units Dilution Batch 11:26 Received: 07/13/21 17:07 </td> <td> Result Limit Units Dilution Batch Prepared 11:26 Received: 07/13/21 17:07 </td> <td>Result Limit Units Dilution Batch Prepared Analyzed 1 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 B1G1505 07/15/21 07/15/21 13:22 ND 5.0 " " " " " " ND 5.0 " " " " " " " <td> Result</td></td>	Result Limit Units Dilution I 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 ND 5.0 " " ND 5.0 "	Result Limit Units Dilution Batch 11:26 Received: 07/13/21 17:07	Result Limit Units Dilution Batch Prepared 11:26 Received: 07/13/21 17:07	Result Limit Units Dilution Batch Prepared Analyzed 1 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 B1G1505 07/15/21 07/15/21 13:22 ND 5.0 " " " " " " ND 5.0 " " " " " " " <td> Result</td>	Result

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						Parea	,2		1,010
SV13-10 (2107188-23) Soil Sampled: 07/13/21 11::									
2-Chlorotoluene	ND	5.0	μg/kg 	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1.2.3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	,,	"	"	,,	"	"	
Trichlorofluoromethane	ND ND	5.0	,,	,,	"	"	"	"	
1,2,3-Trichloropropane	ND ND	5.0	,,	,,	"	"	"	"	
1,2,3-111cmoropropane	עאו	5.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

	μg/kg " " "	117 121	B1G1505	07/15/21	07/15/21 13:22 " " " " " " " " " " " " " " " " " "	EPA 8260B " " " " " EPA 8260B " "	
5.0 5.0 5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " " " " " " " " " " " " " " " " " "	B1G1505	07/15/21	07/15/21 13:22	" " " " " " " " " " " " " " " " " " "	
5.0 5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " " " " " " " " " " " " " " " " " "	B1G1505	07/15/21	07/15/21 13:22	" " " EPA 8260B "	
5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " 120 117 121	B1G1505	07/15/21	07/15/21 13:22	" " " " EPA 8260B "	
5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	80- 81- 74-	" 120 117 121	B1G1505	07/15/21	07/15/21 13:22	" EPA 8260B "	
106 % 101 % 97.4 % 5.0 5.0 5.0	80- 81- 74-	120 117 121	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
106 % 101 % 97.4 % 5.0 5.0	80- 81- 74-	117 121	"	"	"	"	
101 % 97.4 % 5.0 5.0 5.0	81- 74-	117 121	"	"	"	"	
97.4 % 5.0 5.0 5.0	74- "	121	"	"			
5.0 5.0 5.0	"	"			"	"	
5.0 5.0	"		,,				
5.0	"			"	"	"	
	"	"	"	"	"	"	
5.0		"	"	"	"	"	
	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	,,	"	"	
	"	"	"	,,	"	"	
	"	"	"	,,	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	,,	"	
	"	"	"	"	,,	"	
	"	"	"	,,	,,	"	
	"	"	"	,,	"	"	
	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 " 5.0 "	5.0 " " " " 5.0 " " 5.0 " " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " " 5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " " " " " " " " " " " " " "	5.0 "

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Received:	07/13/21 17	:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 12:49	9 Received:	: 07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		104 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %		117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.6 %	74-		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Daten	1 repared	Anaryzeu	Menion	NOL
SV14-5 (2107188-25) Soil Sampled: 07/13/	/21 12:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV14-10 (2107188-26) Soil Sampled: 07/13	3/21 12:54 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		104 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	74-	121	"	"	"	"	
Benzene	ND	5.9	"	"	"	"	"	"	
Bromobenzene	ND	5.9	"	"	"	"	"	"	
Bromochloromethane	ND	5.9	"	"	"	"	"	"	
Bromodichloromethane	ND	5.9	"	"	"	"	"	"	
Bromoform	ND	5.9	"	"	"	"	"	"	
Bromomethane	ND	5.9	"	"	"	"	"	"	
n-Butylbenzene	ND	5.9		"	"	"	"	"	
	ND	5.9	"	"	"	"	"	"	
sec-Butylbenzene		5.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	3.9							
sec-Butylbenzene tert-Butylbenzene	ND ND			"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND	5.9	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.9 5.9		" "			" " "		
sec-Butylbenzene tert-Butylbenzene	ND	5.9	"	" " "	"		" " "		

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SV14-10 (2107188-26) Soil Sampled: 07/13/21	12:54 Received	: 07/13/21 17	':07			· · · · · · · · · · · · · · · · · · ·			
2-Chlorotoluene	ND	5.9		1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND ND	5.9	μg/kg "	1 "	B1G1505	0//15/21	0//13/21 13:22	EPA 8200B	
Dibromochloromethane	ND	5.9	"	,,	,,	,,	"	"	
1,2-Dibromo-3-chloropropane	ND	5.9	,,	"	,,	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.9		,,	"	,,	"	"	
Dibromomethane	ND	5.9		,,	"	,,	"	"	
1,2-Dichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.9	"	"	"	"	,,	"	
1,4-Dichlorobenzene	ND	5.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.9	"	"	"	"	,,	"	
trans-1,2-Dichloroethene	ND	5.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.9	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	5.9	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	5.9	"	"	"	"	"	"	
Ethylbenzene	23	5.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.9	"	"	"	"	"	"	
Isopropylbenzene	ND	5.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.9	"	"	"	"	"	"	
Methylene chloride	ND	5.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.9	"	"	"	"	"	"	
Naphthalene	ND	5.9	"	"	"	"	"	"	
n-Propylbenzene	ND	5.9	"	"	"	"	"	"	
Styrene	ND	5.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.9	"	"	"	"	"	"	
Tetrachloroethene	ND	5.9	"	"	"	"	"	"	
Toluene	ND	5.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.9	"	"	"	"	"	"	
Trichloroethene	ND	5.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.9	,,	,,	"	,,	,,	,,	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-10 (2107188-26) Soil Sampled: 07/13/21 12	:54 Received	1: 07/13/21 17	':07						
1,2,4-Trimethylbenzene	ND	5.9	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.9	"	"	"	"	"	"	
Vinyl chloride	ND	5.9	"	"	"	"	"	"	
m,p-Xylene	110	5.9	"	"	"	"	"	"	
o-Xylene	43	5.9	"	"	"	"	"	"	
SV14-15 (2107188-27) Soil Sampled: 07/13/21 13	:01 Received	d: 07/13/21 17	':07						
Surrogate: Dibromofluoromethane		101 %	80	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	74-	121	"	"	"	"	
Benzene	ND	5.7	"	"	"	"	"	"	
Bromobenzene	ND	5.7	"	"	"	"	"	"	
Bromochloromethane	ND	5.7	"	"	"	"	"	"	
Bromodichloromethane	ND	5.7	"	"	"	"	"	"	
Bromoform	ND	5.7	"	"	"	"	"	"	
Bromomethane	ND	5.7	"	"	"	"	"	"	
n-Butylbenzene	ND	5.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.7	"	"	"	"	"	"	
Chlorobenzene	ND	5.7	"	"	"	"	"	"	
Chloroethane	ND	5.7	"	"	"	"	"	"	
Chloroform	ND	5.7	"	"	"	"	"	"	
Chloromethane	ND	5.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.7	"	"	"	"	"	"	
Dibromochloromethane	ND	5.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.7	"	"	"	"	"	"	
Dibromomethane	ND	5.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.7	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.7	"	"	,,	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Receive	ed: 07/13/21 17	:07						
2,2-Dichloropropane		ND	5.7	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.7	"	"	"	"	"	"	
Ethylbenzene		ND	5.7	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.7	"	"	"	"	"	"	
Isopropylbenzene		ND	5.7	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.7	"	"	"	"	"	"	
Methylene chloride		ND	5.7	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.7	"	"	"	"	"	"	
Naphthalene		ND	5.7	"	"	"	"	"	"	
n-Propylbenzene		ND	5.7	"	"	"	"	"	"	
Styrene		ND	5.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.7	"	"	"	"	"	"	
Tetrachloroethene		ND	5.7	"	"	"	"	"	"	
Toluene		ND	5.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.7	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.7	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.7	"	"	"	"	"	"	
Trichloroethene		ND	5.7	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.7	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.7	"	"	"	"	"	"	
Vinyl chloride		ND	5.7	"	"	"	"	"	"	
m,p-Xylene		ND	5.7	"	"	"	"	"	"	
o-Xylene		ND	5.7	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil Sampled: 07/13/21 13:19	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		101 %	80-1	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-1	121	"	"	"	"	
Benzene	ND	8.7	"	"	"	"	"	"	
Bromobenzene	ND	8.7	"	"	"	"	"	"	
Bromochloromethane	ND	8.7	"	"	"	"	"	"	
Bromodichloromethane	ND	8.7	"	"	"	"	"	"	
Bromoform	ND	8.7	"	"	"	"	"	"	
Bromomethane	ND	8.7	"	"	"	"	"	"	
n-Butylbenzene	ND	8.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	8.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	8.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.7	"	"	"	"	"	"	
Chlorobenzene	ND	8.7	"	"	"	"	"	"	
Chloroethane	ND	8.7	"	"	"	"	"	"	
Chloroform	ND	8.7	"	"	"	"	"	"	
Chloromethane	ND	8.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	8.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	8.7	"	"	"	"	"	"	
Dibromochloromethane	ND	8.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.7	"	"	"	"	"	"	
Dibromomethane	ND	8.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	8.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	8.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.7	"	"	"	"	"	"	
Ethylbenzene	ND	8.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.7	"	"	"	"	"	"	
Isopropylbenzene	ND	8.7	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Daten	1 repared	Allalyzeu	Meniod	NOL
SV15-5 (2107188-28) Soil Sampled: 07/13/	21 13:19 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	8.7	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	8.7	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	8.7	"	"	"	"	"	"	
Naphthalene	ND	8.7	"	"	"	"	"	"	
n-Propylbenzene	ND	8.7	"	"	"	"	"	"	
Styrene	ND	8.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	8.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.7	"	"	"	"	"	"	
Tetrachloroethene	ND	8.7	"	"	"	"	"	"	
Toluene	ND	8.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	8.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.7	"	"	"	"	"	"	
Trichloroethene	ND	8.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	8.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.7	"	"	"	"	"	"	
Vinyl chloride	ND	8.7	"	"	"	"	"	"	
m,p-Xylene	ND	8.7	"	"	"	"	"	"	
o-Xylene	ND	8.7	"	"	"	"	"	"	
SV15-10 (2107188-29) Soil Sampled: 07/13	3/21 13:23 Received	l: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		107 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	74-		"	"	"	"	
Benzene	ND	6.0	"	"	"	"	"	"	
Bromobenzene	ND	6.0	"	"	"	"	"	"	
Bromochloromethane	ND	6.0	"	"	"	"	"	"	
Bromodichloromethane	ND	6.0	"	"	"	"	"	"	
Bromoform	ND	6.0	"	"	"	"	"	"	
Bromomethane	ND	6.0	"	"	"	"	"	"	
n-Butylbenzene	ND	6.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.0	"	"	"	"	"	"	
•	ND	6.0	"	"	"	"	"	"	
tert-Butylbenzene			,,	"	"	"	"	"	
	ND	6.0							
Carbon tetrachloride	ND ND	6.0 6.0		"	"	"	"	"	
Carbon tetrachloride Chlorobenzene	ND	6.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform			"	" "		"	" "	" "	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV15-10 (2107188-29) Soil Sampled: 07/13/2	21 13:23 Received	d: 07/13/21 17	':07						
2-Chlorotoluene	ND	6.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
Dibromochloromethane	ND	6.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.0	"	"	"	"	"	"	
Dibromomethane	ND	6.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	6.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
Ethylbenzene	ND	6.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.0	"	"	"	"	"	"	
Isopropylbenzene	ND	6.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	6.0	"	"	"	"	"	"	
Methylene chloride	ND	6.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	6.0	"	"	"	"	"	"	
Naphthalene	ND	6.0	"	"	"	"	"	"	
n-Propylbenzene	ND	6.0	"	"	"	"	"	"	
Styrene	ND	6.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	6.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	6.0	"	"	"	"	"	"	
Tetrachloroethene	ND	6.0	"	"	"	"	"	"	
Toluene	ND	6.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.0	"	"	"	"	"	"	
Trichloroethene	ND	6.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV15-10 (2107188-29) Soil Sampled: 07/13/2	21 13:23 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	6.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.0	"	"	"	"	"	"	
Vinyl chloride	ND	6.0	"	"	"	"	"	"	
m,p-Xylene	ND	6.0	"	"	"	"	"	"	
o-Xylene	ND	6.0	"	"	"	"	"	"	
SV15-15 (2107188-30) Soil Sampled: 07/13/2	21 13:27 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		109 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.1 %	74-1	21	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"		,,	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Lesult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil Sampled: 07/13/21 13:54	Received	07/13/21 17:0	17						
Surrogate: Dibromofluoromethane		105 %	80-1		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	74-1	21	"	"	"	"	
Benzene	ND	6.4	"	"	"	"	"	"	
Bromobenzene	ND	6.4	"	"	"	"	"	"	
Bromochloromethane	ND	6.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.4	"	"	"	"	"	"	
Bromoform	ND	6.4	"	"	"	"	"	"	
Bromomethane	ND	6.4	"	"	"	"	"	"	
n-Butylbenzene	ND	6.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	6.4	"	"	"	"	"	"	
Chloroethane	ND	6.4	"	"	"	"	"	"	
Chloroform	ND	6.4	"	"	"	"	"	"	
Chloromethane	ND	6.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
Dibromochloromethane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.4	"	"	"	"	"	"	
Dibromomethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	6.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	6.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	6.4	"	"	"	"	"	"	
Ethylbenzene	ND	6.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.4	"	"	"	"	"	"	
Isopropylbenzene	ND	6.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dalvii	1 repared	Analyzeu	Menion	INOU
SV16-5 (2107188-31) Soil Sampled: 07/13/	/21 13:54 Received:	07/13/21 17:	07						
p-Isopropyltoluene	ND	6.4	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	6.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	6.4	"	"	"	"	"	"	
Naphthalene	ND	6.4	"	"	"	"	"	"	
n-Propylbenzene	ND	6.4	"	"	"	"	"	"	
Styrene	ND	6.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	6.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	6.4	"	"	"	"	"	"	
Tetrachloroethene	ND	6.4	"	"	"	"	"	"	
Toluene	ND	6.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	6.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	6.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	6.4	"	"	"	"	"	"	
Vinyl chloride	ND	6.4	"	"	"	"	"	"	
m,p-Xylene	ND	6.4	"	"	"	"	"	"	
o-Xylene	ND	6.4	"	"	"	"	"	"	
SV16-10 (2107188-32) Soil Sampled: 07/13	3/21 13:57 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		107 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		104 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.3 %	74-		"	"	"	"	
Benzene	ND	6.7	"	"	"	"	"	"	
Bromobenzene	ND	6.7	"	"	"	"	"	"	
Bromochloromethane	ND	6.7	"	"	"	"	"	"	
Bromodichloromethane	ND	6.7	"	"	"	"	"	"	
Bromoform	ND	6.7	"	"	"	"	"	"	
Bromomethane	ND	6.7	"	"	"	"	"	"	
n-Butylbenzene	ND	6.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.7	"	"	"	"	"	"	
	ND	6.7	"	"	"	"	"	"	
						,,		,,	
Carbon tetrachloride		6.7	"	"	"	"	"	"	
Carbon tetrachloride Chlorobenzene	ND	6.7 6.7	"	"	"	"	"	"	
Carbon tetrachloride		6.7 6.7 6.7	"	" "		"	"	" " "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

ND ND ND ND ND ND	6.7 6.7 6.7 6.7 6.7 6.7	μg/kg "	1 "	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
ND ND ND ND ND ND	6.7 6.7 6.7	μg/kg "				07/15/21 13:22	EPA 8260B	
ND ND ND ND	6.7 6.7 6.7	"				07/13/21 13.22		
ND ND ND ND	6.7 6.7				"	"	"	
ND ND ND	6.7		"	"	"	"	"	
ND ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
	6.7	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		,,	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	,,	"	
		"	"	"	"	"	"	
		"	"	"	"	,,	"	
		"	"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	,,	"	,,	"	"	
		,,	,,	"	"	,,	"	
		,,	,,	"	,,	"	"	
		,,	,,	"	"	,,	"	
		"	"	,,	"	"	"	
		"	"	,,	"	"	"	
		,,	,,	"	"	"	"	
		,,	,,	,,	"	"	"	
		,,		"		,,	"	
		,,	,,	,,	,,	,,	"	
		,,	,,	,,	,,	,,		
	ND N	ND 6.7	ND 6.7 "	ND 6.7 " " ND 6.7 " " " ND 6.7 " " " "	ND 6.7 " " " " ND 6.7 " " " " " " " ND 6.7 " " " " " " " " ND 6.7 " " " " " " " " ND 6.7 " " " " " " " " " ND 6.7 " " " " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " " " " " " " " " " "

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-10 (2107188-32) Soil Sampled:	07/13/21 13:57 Received	d: 07/13/21 17:	:07						
1,2,4-Trimethylbenzene	ND	6.7	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.7	"	"	"	"	"	"	
Vinyl chloride	ND	6.7	"	"	"	"	"	"	
m,p-Xylene	ND	6.7	"	"	"	"	"	"	
o-Xylene	ND	6.7	"	"	"	"	"	"	
SV16-15 (2107188-33) Soil Sampled:	07/13/21 14:00 Received	d: 07/13/21 17:	:07						
Surrogate: Dibromofluoromethane		111 %	80-	-120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0		"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0		"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	,,	"	"	"	"	"	
			.,	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		14	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil Sampled: 07/13/21 14:4	4 Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		119 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		104 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dateii	1 repared	Anaryzeu	Meniod	1101
SV17-5 (2107188-34) Soil Sampled: 07/13/	/21 14:44 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV17-10 (2107188-35) Soil Sampled: 07/13	3/21 14:48 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		120 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		106 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"		"	"	
Bromomethane	ND	5.0	"	"	"	,,	,,	"	
n-Butylbenzene	ND	5.0	"	"	"	,,	"	"	
	ND	5.0	"	"	"	,,	"	"	
sec-Butylbenzene		5.0	"	"	"	,,	"	"	
•	ND					,,		"	
tert-Butylbenzene	ND ND		"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0		"			" "		
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	" " "	"		" " " " "		

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Diffution	Бакп	riepared	Anaiyzeu	Memod	note
SV17-10 (2107188-35) Soil Sampled: 07/13/21 14:48	Received:	07/13/21 17	:07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-10 (2107188-35) Soil Sampled: 07/13/21 1	4:48 Received	d: 07/13/21 17	':07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil Sampled: 07/13/21 1	4:53 Received	d: 07/13/21 17	':07						
Surrogate: Dibromofluoromethane		102 %	80	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		106 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
			,,	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received		7			-			
Surrogate: Dibromofluoromethane		106 %	80-12	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	74-12		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
1 17									

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dateii	1 repared	Allalyzeu	Meniod	1101
SV18-5 (2107188-37) Soil Sampled: 07/13/	21 15:19 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV18-10 (2107188-38) Soil Sampled: 07/13	3/21 15:25 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		116 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		108 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	74-		"	"	"	"	
Benzene	8.1	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	5.2	5.0	"	"	"	"	"	"	
	35	5.0	"	"	"	"	"	"	
sec-Butylbenzene		5.0	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene	5.0							"	
tert-Butylbenzene	5.0 ND		"	"	"	"	"		
•	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0	"	"					
tert-Butylbenzene Carbon tetrachloride	ND	5.0		" " "	"				

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-10 (2107188-38) Soil Sampled: 07/1	13/21 15:25 Receive	d: 07/13/21 17	':07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	23	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	31	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	36	5.0	"	"	"	"	"	"	
n-Propylbenzene	35	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-10 (2107188-38) Soil Sampled: 07/13/2	21 15:25 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV18-15 (2107188-39) Soil Sampled: 07/13/2	21 15:29 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		110 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-1	21	"	"	"	"	
Benzene	ND	4.4	"	"	"	"	"	"	
Bromobenzene	ND	4.4	"	"	"	"	"	"	
Bromochloromethane	ND	4.4	"	"	"	"	"	"	
Bromodichloromethane	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	4.4	"	"	"	"	"	"	
Bromomethane	ND	4.4	"	"	"	"	"	"	
n-Butylbenzene	ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.4	"	"	"	"	"	"	
Chlorobenzene	ND	4.4	"	"	"	"	"	"	
Chloroethane	ND	4.4	"	"	"	"	"	"	
Chloroform	ND	4.4	"	"	"	"	"	"	
Chloromethane	ND	4.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Receive	d: 07/13/21 17	:07						
2,2-Dichloropropane		ND	4.4	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	4.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
Ethylbenzene		ND	4.4	"	"	"	"	"	"	
Hexachlorobutadiene		ND	4.4	"	"	"	"	"	"	
Isopropylbenzene		ND	4.4	"	"	"	"	"	"	
p-Isopropyltoluene		ND	4.4	"	"	"	"	"	"	
Methylene chloride		ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.4	"	"	"	"	"	"	
Naphthalene		ND	4.4	"	"	"	"	"	"	
n-Propylbenzene		ND	4.4	"	"	"	"	"	"	
Styrene		ND	4.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
Tetrachloroethene		ND	4.4	"	"	"	"	"	"	
Toluene		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.4	"	"	"	"	"	"	
Trichloroethene		ND	4.4	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
Vinyl chloride		ND	4.4	"	"	"	"	"	"	
m,p-Xylene		ND	4.4	"	"	"	"	"	"	
o-Xylene		ND	4.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Volatile\ Organic\ Compounds\ by\ EPA\ Method\ 8260B$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:49	Received:	07/13/21 17:0	17						
Surrogate: Dibromofluoromethane		100 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		105 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	74		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	1000	500	"	100	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	1	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	3000	500	"	100	"	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Dilution	Datell	rrepared	Anatyzeu	wichiou	1100
SV19-5 (2107188-40) Soil Sampled: 07/13	3/21 15:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1200	500	"	100	"	"	"	"	
Naphthalene	7700	500	"	"	"	"	"	"	
n-Propylbenzene	5700	500	"	"	"	"	"	"	
Styrene	ND	5.0	"	1	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV19-10 (2107188-41) Soil Sampled: 07/1	3/21 15:54 Received	: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		104 %	80-	120	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
Surrogate: Toluene-d8		112 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		117 %	74-	121	"	"	"	"	
Benzene	ND	6.9	"	"	"	"	"	"	
Bromobenzene	ND	6.9	"	"	"	"	"	"	
Bromochloromethane	ND	6.9	"	"	"	"	"	"	
Bromodichloromethane	ND	6.9	"	"	"	"	"	"	
Bromoform	ND	6.9	"	"	"	"	"	"	
Bromomethane	ND	6.9	"	"	"	"	"	"	
n-Butylbenzene	ND	6.9	"	"	"	"	"	"	
sec-Butylbenzene	68	6.9	"	"	"	"	"	"	
tert-Butylbenzene	12	6.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.9	"	"	"	"	"	"	
	ND	6.9	"	"	"	"	"	"	
Chlorobenzene	ND								
		6.9	"	"	"	"	"	"	
Chlorobenzene Chloroethane Chloroform	ND ND		"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13	/21 15:54 Receive	d: 07/13/21 17	:07						
2-Chlorotoluene	ND	6.9	μg/kg	1	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
4-Chlorotoluene	ND	6.9	"	"	"	"	"	"	
Dibromochloromethane	ND	6.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.9	"	"	"	"	"	"	
Dibromomethane	ND	6.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	6.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	6.9	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	6.9		,,	"	"	,,	"	
Ethylbenzene	ND	6.9	,,	,,	,,	,,	"	"	
Hexachlorobutadiene	ND	6.9	,,	"	,,	,,	,,	"	
Isopropylbenzene	1000	690	,,	100	"	"	,,	"	
	ND	6.9	,,	100	,,	,,	,,	"	
p-Isopropyltoluene	ND ND	6.9	,,	1 "	,,	,,	"	"	
Methylene chloride			,,		,,	,	,,	"	
Methyl tert-butyl ether	14000	690	,,	100	,,				
Naphthalene	ND	690	"	"	,,	"	,"	"	
n-Propylbenzene	1600	690	"		"	"	"	"	
Styrene	ND	6.9	"	1	.1	"			
1,1,1,2-Tetrachloroethane	ND	6.9			"		"	"	
1,1,2,2-Tetrachloroethane	ND	6.9	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
Toluene	ND	6.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.9	"	"	"	"	"	"	
Trichloroethene	ND	6.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.9	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13/2	21 15:54 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	6.9	μg/kg	1	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.9	"	"	"	"	"	"	
Vinyl chloride	ND	6.9	"	"	"	"	"	"	
m,p-Xylene	7.5	6.9	"	"	"	"	"	"	
o-Xylene	ND	6.9	"	"	"	"	"	"	
SV19-15 (2107188-42) Soil Sampled: 07/13/2	21 15:59 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		105 %	80-	120	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
Surrogate: Toluene-d8		109 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	74-	121	"	"	"	"	
Benzene	ND	500	"	100	"	"	"	"	
Bromobenzene	ND	500	"	"	"	"	"	"	
Bromochloromethane	ND	500	"	"	"	"	"	"	
Bromodichloromethane	ND	500	"	"	"	"	"	"	
Bromoform	ND	500	"	"	"	"	"	"	
Bromomethane	ND	500	"	"	"	"	"	"	
n-Butylbenzene	1700	500	"	"	"	"	"	"	
sec-Butylbenzene	ND	500	"	"	"	"	"	"	
tert-Butylbenzene	ND	500	"	"	"	"	"	"	
Carbon tetrachloride	ND	500	"	"	"	"	"	"	
Chlorobenzene	ND	500	"	"	"	"	"	"	
Chloroethane	ND	500	"	"	"	"	"	"	
Chloroform	ND	500	"	"	"	"	"	"	
Chloromethane	ND	500	"	"	"	"	"	"	
2-Chlorotoluene	ND	500	"	"	"	"	"	"	
4-Chlorotoluene	ND	500	"	"	"	"	"	"	
Dibromochloromethane	ND	500	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	500	"	"	"	"	"	"	
Dibromomethane	ND	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	500	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	500	"	"	"	"	"	"	
1,2-Dichloroethane	ND	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
1,2-Dichloropropane	ND	500	"	"	"	"	"	"	
1,3-Dichloropropane	ND	500	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Resul	Reporting t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59 Rec	ceived: 07/13/21 17	7:07						
2,2-Dichloropropane	ND	500	μg/kg	100	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
1,1-Dichloropropene	ND	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
Ethylbenzene	ND	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	500	"	"	"	"	"	"	
Isopropylbenzene	1700	500	"	"	"	"	"	"	
p-Isopropyltoluene	ND	500	"	"	"	"	"	"	
Methylene chloride	ND	500	"	"	"	"	"	"	
Methyl tert-butyl ether	12000	500	"	"	"	"	"	"	
Naphthalene	13000	500	"	"	"	"	"	"	
n-Propylbenzene	4100	500	"	"	"	"	"	"	
Styrene	ND	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NE	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NE	500	"	"	"	"	"	"	
Tetrachloroethene	ND	500	"	"	"	"	"	"	
Toluene	ND	500	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	NE	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	500	"	"	"	"	"	"	
1,1,1-Trichloroethane	NE	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	NE	500	"	"	"	"	"	"	
Trichloroethene	NE	500	"	"	"	"	"	"	
Trichlorofluoromethane	NE	500	"	"	"	"	"	"	
1,2,3-Trichloropropane	NE	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	500	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
m,p-Xylene	ND	500	"	"	"	"	"	"	
o-Xylene	ND	500	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil Sampled: 07/13/21 07:35	5 Received:	07/13/21 17:07							
Surrogate: 2-Fluorophenol		101 %		121	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		72.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		48.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		92.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		97.3 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		129 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil Sampled: 07/13/21 07:	44 Received	1: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		90.3 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		42.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		58.8 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.3 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		34.4 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		113 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	,,	,,	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	,,	,,	,,	,,	,,	"	
+,0-Dimu0-2-incuryiphenoi	ND	0.33							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil	Sampled: 07/13/21 07:44	Received	: 07/13/21 17:0)7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil Sampled: 07/13/21 07:51	Received	: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		83.7 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		34.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		48.1 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		23.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		44.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	,,	"	"	"	
Pyrene		ND	0.33	"	"	,,	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV7-5 (2107188-04) Soil Sampled: 07/13/21 08:15						1 -			
	1100011041			1	DICIO2	07/15/21	07/16/21 00 50	ED4 93797	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6		77.3 % 85.9 %	25-12 24-11		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
_			24-11 23-12		"	,,	,,	"	
Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl		41.2 % 104 %	23-12 30-11		,,	,,	,,	"	
Surrogate: 2-Fluorobipnenyi Surrogate: 2,4,6-Tribromophenol		104 % 82.9 %	30-11 19-12		,,	,,	"	"	
		77.4 %	19-12		,,	,,	,,	"	
Surrogate: Terphenyl-d14 Acenaphthene	ND	0.33	10-13	/ "	,,	,,	,,	"	
Acenaphthylene	ND ND	0.33	"	"	,,	"	"	"	
Anthracene	ND ND	0.33	"	"	,,	"	"	"	
Benzidine	ND ND	0.33	,,	,,	,,	,,	"	"	
Benzo (a) anthracene	ND ND	0.33	,,	,,	,,	,,	"	"	
Benzo (a) anuracene Benzo (b) fluoranthene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (k) fluoranthene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (a) pyrene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (g,h,i) perylene	ND ND	0.33	"	"	,,	"	,,	"	
Benzyl alcohol	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-chloroethyl)ether	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-chloroethoxy)methane	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-ethylhexyl)phthalate	ND ND	0.33	"	"	,,	"	"	"	
Bis(2-chloroisopropyl)ether	ND ND	0.33	"	"	,,	,,	,,	"	
4-Bromophenyl phenyl ether	ND ND	0.33	"	"	,,	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	,,	,,	"	"	
4-Chloroaniline	ND ND	0.33	"	"	,,	"	"	"	
2-Chlorophenol	ND	0.33	"	"	,,	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	,,	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	,,	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	,,	"	,,	,,	
Chrysene	ND	0.33	"	"	,,	"	,,	,,	
Dibenz (a,h) anthracene	ND	0.33	"	"	,,	"	,,	,,	
Dibenzofuran	ND	0.33	"	"	,,	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	,,	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	,,	"	,,	,,	
1,4-Dichlorobenzene	ND	0.33	"	"	,,	"	,,	,,	
3,3'-Dichlorobenzidine	ND	0.33	"	"	,,	"	,,	,,	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	,,	"	
Diethyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dimethylphenol	ND	0.33	"	"	,,	"	,,	,,	
Dimethyl phthalate	ND	0.33	"	"	,,	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	,,	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	,,	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	"	"	"	
7,0-Dilliu 0-2-ilicii yipiiciioi	עאו	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-5 (2107188-04) Soil	Sampled: 07/13/21 08:15	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	2	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:25					*****	r	-,		- 10101
	. Acteived:								
Surrogate: 2-Fluorophenol		89.6 %	25-12		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		43.5 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		47.5 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.5 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.8 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		102 %	18-13		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	,,	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	,,	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	
,,, Dimuo 2 memyiphenoi	110	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil	Sampled: 07/13/21 08:25	Received	: 07/13/21 17:	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil Sampled: 07/13/21 08:30	Received	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		69.8 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		64.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		36.9 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78.2 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		129 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil	Sampled: 07/13/21 08:30	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"		"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"		"	"	"	
Pentachlorophenol		ND	0.33	"	"		"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

SV8-5 (2107188-07) Soil Sampled: 07/13/21 08:56 Received: 07/13/21 17:07 Surrogate: 2-Fluorophenol 119 % 25-121 B1GIO Surrogate: Phenol-d6 31.3 % 24-113 " Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: Terphenyl-d14 45.6 % 19-122 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene	603 07/15/21 0		
Surrogate: Phenol-d6 31.3 % 24-113 " Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "			
Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " Acenaphthylene ND 0.33 " " Anthracene ND 0.33 " " Benzidine ND 0.33 " " Benzo (a) anthracene ND 0.33 " " Benzo (b) fluoranthene ND 0.33 " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"		PA 8270C
Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " Benzidine ND 0.33 " " " " Benzo (a) anthracene ND 0.33 " " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "		"	"
Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " Acenaphthylene ND 0.33 " " Anthracene ND 0.33 " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " " Benzidine ND 0.33 " " " " Benzo (a) anthracene ND 0.33 " " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 "	"	"	"
Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"	"	"
Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzidine ND 0.33 " <	"	"	"
Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (k) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"	"	"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	"
Benzyl alcohol ND 0.33 " " "	"	"	"
	"	"	"
Bis(2-chloroethyl)ether ND 0.33 " " "	"	"	"
	"	"	m .
Bis(2-chloroethoxy)methane ND 0.33 " " "	"	"	m .
Bis(2-ethylhexyl)phthalate ND 0.33 " " "	"	"	"
Bis(2-chloroisopropyl)ether ND 0.33 " " "	"	"	"
4-Bromophenyl phenyl ether ND 0.33 " " "	"	"	"
Butyl benzyl phthalate ND 0.33 " " "	"	"	"
4-Chloroaniline ND 0.33 " " "	"	"	"
2-Chlorophenol ND 0.33 " " "	"	"	m .
4-Chloro-3-methylphenol ND 0.33 " " "	"	"	m .
2-Chloronaphthalene ND 0.33 " " "	"	"	m .
4-Chlorophenyl phenyl ether ND 0.33 " " "	"	"	"
Chrysene ND 0.33 " " "	"	"	"
Dibenz (a,h) anthracene ND 0.33 " " "	"	"	"
Dibenzofuran ND 0.33 " " "	"	"	"
1,3-Dichlorobenzene ND 0.33 " " "	"	"	"
1,2-Dichlorobenzene ND 0.33 " " "	"	"	"
1,4-Dichlorobenzene ND 0.33 " " "	"	"	"
3,3'-Dichlorobenzidine ND 0.33 " " "	"	"	"
2,4-Dichlorophenol ND 0.33 " " "	"	"	"
Diethyl phthalate ND 0.33 " " "		"	"
2,4-Dimethylphenol ND 0.33 " " "	"		
Dimethyl phthalate ND 0.33 " " "	"	"	"
Di-n-butyl phthalate ND 0.33 " " "		"	"
• •	"		
, 1	"	"	"
4,6-Dinitro-2-methylphenol ND 0.33 " " "	" "	"	"

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-5 (2107188-07) Soil	Sampled: 07/13/21 08:56	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Received	: 07/13/21 17:0			*****	r	-,		-10101
Received								
				B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
					"			
					"			
				"				
		"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
	ND N	ND 0.33	79.2 % 24-1. 51.9 % 23-1. 61.3 % 30-1. 53.7 % 19-1. 90.2 % 18-1. ND 0.33 "	79.2 % 24-113 51.9 % 23-120 61.3 % 30-115 53.7 % 19-122 90.2 % 18-137 ND 0.33 " " ND 0.33	79.2 % 24-113 " 51.9 % 23-120 " 61.3 % 30-115 " 53.7 % 19-122 " 90.2 % 18-137 " ND 0.33 " " " "	79.2 % 24-113 " " 51.9 % 23-120 " " 61.3 % 30-115 " " 53.7 % 19-122 " " 90.2 % 18-137 " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " " ND 0.33 " " " " " " " " " " ND 0.33 " " " " " " " " " " ND 0.33 " " " " " " " " " " " ND 0.33 " " " " " " " " " " " " " " " " " "	79.2 % 24-113 " " " " " 151.9 % 23-120 " " " " " " 151.9 % 30-115 " " " " " " 19-122 " " " " " " 19.2 2 " " " " " " " 19.2 2 " " " " " " " 19.2 2 " " " " " " " " " 19.2 2 " " " " " " " " " 19.2 2 " " " " " " " " " " " " " " " " " "	79.2 % 24-113 " <td< td=""></td<>

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-10 (2107188-08) Soil	Sampled: 07/13/21 08:58	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil Sampled: 07/13/21 09:00	6 Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		95.7 %		121	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		28.9 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		85.6 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		105 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		50.9 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		122 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-5 (2107188-10) Soil Sampled: 07/13/21 09:19	Received:	07/13/21 17:07							
Surrogate: 2-Fluorophenol		99.3 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		52.5 %	23		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.8 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		59.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		99.6 %	18-		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil Sampled: 07/13/21 09:22	Received	: 07/13/21 17:0	7	-		-	_	_	
Surrogate: 2-Fluorophenol		90.1 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		56.8 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		44.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		38.5 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		95.3 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received:	07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-15 (2107188-12) Soil Sampled: 07/13/21 09:2	4 Received	1: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		95.9 %		121	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		47.9 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		64.1 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		49.9 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		71.1 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-15 (2107188-12) Soil	Sampled: 07/13/21 09:24	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 09:32	Received	: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		103 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		71.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		73.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83.4 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		44.3 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil	Sampled: 07/13/21 09:32	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-10 (2107188-14) Soil Sampled: 07/13/21 09	36 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		103 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		65.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		51.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.2 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		57.1 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		87.8 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-10 (2107188-14) Soil	Sampled: 07/13/21 09:36	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Surrogate: 2-Fluorophenol 101 % 25-121	07/16/21 08:50	EPA 8270C " " " " " " "	
Surrogate: Phenol-d6 32.2 % 24-113 " " Surrogate: Nitrobenzene-d5 48.3 % 23-120 " " Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2-Fluorobiphenyl 82.8 % 19-122 " " Surrogate: Terphenyl-d14 ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Acthracene ND 0.33 " " " " Benzol (a) anthracene ND 0.33 "	" " " " " " "	" " " " " " " "	
Surrogate: Nitrobenzene-d5 48.3 % 23-120 " " Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2-fluorobiphenyl 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (c) (s), i) perylene ND <td>"" "" "" "" "" "" "" "" "" "" "" "" ""</td> <td>" " " " " "</td> <td></td>	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " "	
Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2,4,6-Tribromophenol 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " " Acenaphthylene ND 0.33 "	" " " " " "	" " " "	
Surrogate: 2,4,6-Tribromophenol 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " Benzidine ND 0.33 " " " " " Benzidine ND 0.33 " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	
Acenaphthene ND 0.33 "	" "	"	
Acenaphthylene Acenaphthylene ND	"	"	
Anthracene ND 0.33 "	"		
Benzidine ND 0.33 " <		"	
Benzo (a) anthracene ND 0.33 " <td>"</td> <td></td> <td></td>	"		
Benzo (b) fluoranthene ND 0.33 " </td <td></td> <td>"</td> <td></td>		"	
Benzo (k) fluoranthene ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " " Benzyl alcohol ND 0.33 " " " " " Benzyl alcohol ND 0.33 " " " " " " Bis(2-chloroethyl)ether ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " Butyl benzyl phthalate ND 0.33 " " " " " Butyl benzyl phthalate ND 0.33 " " " " " " 2-Chlorophenol ND 0.33 " " " " " " " " "	"	"	
Benzo (g,h,i) perylene ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
Benzyl alcohol ND 0.33 " " " " " Bis(2-chloroethyl)ether ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " " 4-Bromophenyl phenyl ether ND 0.33 " " " " " Butyl benzyl phthalate ND 0.33 " " " " " " 4-Chloroaniline ND 0.33 " " " " " " 2-Chlorophenol ND 0.33 " " " " " " " " "	"	"	
Bis(2-chloroethyl)ether ND 0.33 "<	"	"	
Bis(2-chloroethoxy)methane ND 0.33 " <th< td=""><td>"</td><td>"</td><td></td></th<>	"	"	
Bis(2-ethylhexyl)phthalate ND 0.33 " <th< td=""><td>"</td><td>"</td><td></td></th<>	"	"	
Bis(2-chloroisopropyl)ether ND 0.33 " <t< td=""><td>"</td><td>"</td><td></td></t<>	"	"	
4-Bromophenyl phenyl ether ND 0.33 " " " " Butyl benzyl phthalate ND 0.33 " " " " 4-Chloroaniline ND 0.33 " " " " 2-Chlorophenol ND 0.33 " " " "	"	"	
4-Bromophenyl phenyl ether ND 0.33 " <	"	"	
Butyl benzyl phthalate ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
4-Chloroaniline ND 0.33 "	"	"	
1	"	"	
* * * * * * * * * * * * * * * * * * * *	"	"	
4-Chloro-3-methylphenol ND 0.33 " " " "	"	"	
2-Chloronaphthalene ND 0.33 " " " "	"	"	
4-Chlorophenyl phenyl ether ND 0.33 " " " "	"	"	
Chrysene ND 0.33 " " " "	"	"	
Dibenz (a,h) anthracene ND 0.33 " " "	"	"	
Dibenzofuran ND 0.33 " " "	"	"	
1,3-Dichlorobenzene ND 0.33 " " " "	"	"	
1,2-Dichlorobenzene ND 0.33 " " " "	"	"	
1,4-Dichlorobenzene ND 0.33 " " " "	"	"	
3,3'-Dichlorobenzidine ND 0.33 " " " "	"	"	
2,4-Dichlorophenol ND 0.33 " " " "	"	"	
Diethyl phthalate ND 0.33 " " " "	"	"	
2,4-Dimethylphenol ND 0.33 " " " "	"	"	
Dimethyl phthalate ND 0.33 " " " "	"	"	
Di-n-butyl phthalate ND 0.33 " " "	"	"	
2,4-Dinitrophenol ND 0.33 " " "	"	"	
	,,	"	
4,6-Dinitro-2-methylphenol ND 0.33 " " " "			

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil Sampled: 07/13/21 10:16	Received	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		104 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.2 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		54.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		48.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		73.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		102 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil	Sampled: 07/13/21 10:16	Received	07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						pmv4	, 200		1.00
SV11-10 (2107188-17) Soil Sampled: 07/13/21 10:2	o Keceived								
Surrogate: 2-Fluorophenol		93.7 %	25-1		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.7 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		52.6 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80.9 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		45.2 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		52.4 %	18-1		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil	Sampled: 07/13/21 10:20	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units D	ilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil Sampled: 07/13/21					20001	Tropulou		1,100100	1.0003
	10:20 Received								
Surrogate: 2-Fluorophenol		95.9 %	25-121		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		25.9 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		59.6 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.7 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		39.3 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		56.2 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	
• • •									

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil	Sampled: 07/13/21 10:26	Received	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil Sampled: 07/13/21 10:4	9 Received	l: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		93.4 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		68.0 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		36.9 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.9 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.3 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		72.7 %	18-137	,	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Re		orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil	Sampled: 07/13/21 10:49 R	eceived: 07/13/	21 17:0)7						
2,4-Dinitrotoluene	1	ND 0	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene	1	ND 0	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate	1	ND 0	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine	1	ND 0	0.33	"	"	"	"	"	"	
Fluoranthene	1	ND 0	0.33	"	"	"	"	"	"	
Fluorene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorobenzene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorobutadiene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachloroethane	1	ND 0	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	1	ND 0	0.33	"	"	"	"	"	"	
Isophorone	1	ND 0	0.33	"	"	"	"	"	"	
2-Methylnaphthalene	1	ND 0	0.33	"	"	"	"	"	"	
2-Methylphenol	1	ND 0	0.33	"	"	"	"	"	"	
4-Methylphenol	1	ND 0	0.33	"	"	"	"	"	"	
Naphthalene	1	ND 0	0.33	"	"	"	"	"	"	
2-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
3-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
4-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
Nitrobenzene	1	ND (0.33	"	"	"	"	"	"	
2-Nitrophenol	1	ND (0.33	"	"	"	"	"	"	
4-Nitrophenol			0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine	1		0.33	"	"	"	"	"	"	
Diphenylamine	1		0.33	"	"	"		"	"	
N-Nitrosodi-n-propylamine	1		0.33	"	"	"		"	"	
Pentachlorophenol			0.33	"	"	"	"	"	"	
Phenanthrene			0.33	"	"	"	,,	"	"	
Phenol).33	"	"	"	,,	"	"	
Pyrene).33	"	"	"	,,	"	"	
1,2,4-Trichlorobenzene).33	"	"	"	,,	"	"	
2,4,5-Trichlorophenol).33	"	"	"	"	"	"	
2,4,6-Trichlorophenol			0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-10 (2107188-20) Soil Sampled: 07/13/21 1	0:58 Receive	d: 07/13/21 17	:07		<u> </u>				
Surrogate: 2-Fluorophenol		78.5 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		31.5 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		42.5 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		106 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.9 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		49.7 %	18-1	37	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-10 (2107188-20) Soil	Sampled: 07/13/21 10:58	Received:	07/13/21 17	':07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	,,	"	"	"	,,	,,	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-15 (2107188-21) Soil Sampled: 07/13/21 11:0	07 Received	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		89.4 %		121	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		26.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		35.1 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		27.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		114 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil	Sampled: 07/13/21 11:07	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:26	Received:	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		101 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		67.4 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		89.7 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		52.0 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		68.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-5 (2107188-22) Soil	Sampled: 07/13/21 11:26	Received:	07/13/21 17:0)7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil Sampled: 07/13/21 11:	31 Receive	ed: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		95.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		27.2 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		44.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		44.4 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		110 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	"	,,	"	"	"	"	
*	ND	0.33	,,	,,	,,	,,	,,	"	
4,6-Dinitro-2-methylphenol	ND	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil	Sampled: 07/13/21 11:31	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV13-15 (2107188-24) Soil Sampled: 07/13/21 11:	38 Receive	d: 07/13/21 17	:07		<u> </u>				
Surrogate: 2-Fluorophenol		92.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		35.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		36.8 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		136 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 12:49	Received	: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		95.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		57.3 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		41.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.1 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		34.0 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		88.9 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil	Sampled: 07/13/21 12:49	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV14-10 (2107188-26) Soil Sampled: 07/13/21 12	2:54 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		104 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		50.1 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		59.2 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		90.4 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.9 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		60.8 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-10 (2107188-26) Soil	Sampled: 07/13/21 12:54	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units D	ilution	Batch	Dramanad	Anglygad	Method	Not
Analyte				, iidiloli	Datcii	Prepared	Analyzed	iviculou	Notes
SV14-15 (2107188-27) Soil Sampled: 07/13/21 13:0	1 Received	: 07/13/21 17:							
Surrogate: 2-Fluorophenol		105 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		86.3 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		55.4 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		89.5 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		50.5 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		105 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Received	l: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil Sampled: 07/13/21 13:1	9 Received	l: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		96.8 %	25-12		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		64.7 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		87.3 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		87.0 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		55.8 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		131 %	18-13	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil	Sampled: 07/13/21 13:19	Received	: 07/13/21 17:	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil Sampled: 07/13/21	13:23 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		102 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		90.7 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		41.6 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.2 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		46.7 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		66.1 %	18-1	37	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil	Sampled: 07/13/21 13:23	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units Dilut	ion Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil Sampled: 07/13/21 13	:27 Receive	d: 07/13/21 17	:07					
Surrogate: 2-Fluorophenol		99.9 %	25-121	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		77.6 %	24-113	"	"	"	"	
Surrogate: Nitrobenzene-d5		32.5 %	23-120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		40.6 %	30-115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		47.3 %	19-122	"	"	"	"	
Surrogate: Terphenyl-d14		132 %	18-137	"	"	"	"	
Acenaphthene	ND	0.33	" "	"	"	"	"	
Acenaphthylene	ND	0.33	" "	"	"	"	"	
Anthracene	ND	0.33	" "	"	"	"	"	
Benzidine	ND	0.33	" "	"	"	"	"	
Benzo (a) anthracene	ND	0.33	" "	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	" "	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	" "	"	"	"	"	
Benzo (a) pyrene	ND	0.33	" "	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	" "	"	"	"	"	
Benzyl alcohol	ND	0.33	" "	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	" "	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	" "	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	" "	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	" "	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	" "	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	" "	"	"	"	"	
4-Chloroaniline	ND	0.33	" "	"	"	"	"	
2-Chlorophenol	ND	0.33	" "	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	" "	"	"	"	"	
2-Chloronaphthalene	ND	0.33	" "	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	" "	"	"	"	"	
Chrysene	ND	0.33	" "	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	" "	"	"	"	"	
Dibenzofuran	ND	0.33	" "	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	" "	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	" "	"	"	"	"	
Diethyl phthalate	ND	0.33	" "	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	" "	"	"	"	"	
Dimethyl phthalate	ND	0.33	" "	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	" "	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	" "	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	" "	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Received	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil Sampled: 07/13/21 13:54	Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		94.6 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		62.9 %	24		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.6 %	30		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		65.8 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		115 %	18-		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33		"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33		"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil	Sampled: 07/13/21 13:54	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-10 (2107188-32) Soil Sampled: 07/13/21 13	:57 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		76.5 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		52.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.1 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.6 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		70.6 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		101 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-10 (2107188-32) Soil	Sampled: 07/13/21 13:57	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyta	Result	Reporting Limit	Units	Dilution	Batch	Dranared	Anglyzad	Method	Notes
Analyte				Dilution	Бакп	Prepared	Analyzed	ivicuiod	Notes
SV16-15 (2107188-33) Soil Sampled: 07/13/21 14:0	0 Received	1: 07/13/21 17:	07						
Surrogate: 2-Fluorophenol		104 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		65.4 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		58.6 %	23-120)	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.7 %	30-115	5	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		32.6 %	19-122	2	"	"	"	"	
Surrogate: Terphenyl-d14		43.7 %	18-137	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil Sampled: 07/13/21 14:44	Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		99.3 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		65.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		65.8 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		56.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		75.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		110 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil	Sampled: 07/13/21 14:44	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
				UII	Dutell	. repareu	, 200	eurod	140105
SV17-10 (2107188-35) Soil Sampled: 07/13/21 14:4	ю Keceived	ı: v//13/21 17:	U/						
Surrogate: 2-Fluorophenol		98.1 %	25-12		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		55.7 %	24-11.		"	"	"	"	
Surrogate: Nitrobenzene-d5		46.4 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.0 %	30-11.		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.1 %	19-12.		"	"	"	"	
Surrogate: Terphenyl-d14		99.1 %	18-13		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-10 (2107188-35) Soil	Sampled: 07/13/21 14:48	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV17-15 (2107188-36) Soil Sampled: 07/13/21 14:	53 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		102 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		31.3 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		51.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.5 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		61.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		92.1 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units 1	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received	l: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		98.7 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		24.4 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		63.4 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.5 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		67.6 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		66.6 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil	Sampled: 07/13/21 15:19	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

	D 1	Reporting	TT '-	Dil di	D. I	n i		Mala	N 7 :
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-10 (2107188-38) Soil Sampled: 07/13/21	15:25 Receive	d: 07/13/21 17:	07						
Surrogate: 2-Fluorophenol		115 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		76.7 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		56.5 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.9 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		102 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		64.9 %	18-137	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	0.82	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	0.92	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-10 (2107188-38) Soil	Sampled: 07/13/21 15:25	Receive	ed: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		2.2	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		0.44	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		0.77	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil Sampled: 07/13/21 15:2	9 Received	l: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		81.6 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		52.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		33.1 %	23-	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		40.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		58.5 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		129 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Received	: 07/13/21 17	':07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	,,	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:49	Received:	07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		57.3 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		100 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		53.3 %	30		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		60.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		90.7 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	2.1	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	0.40	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-5 (2107188-40) Soil Sampled: 07/13/21 1	5:49 Received:	07/13/21 17:	07						
2,4-Dinitrotoluene	1.1	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene	1.2	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine	ND	0.33	"	"	"	"	"	"	
Fluoranthene	ND	0.33	"	"	"	"	"	"	
Fluorene	1.1	0.33	"	"	"	"	"	"	
Hexachlorobenzene	ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	0.33	"	"	"	"	"	"	
Hexachloroethane	ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	"	"	"	"	"	
Isophorone	ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene	12	0.33	"	"	"	"	"	"	
2-Methylphenol	ND	0.33	"	"	"	"	"	"	
4-Methylphenol	ND	0.33	"	"	"	"	"	"	
Naphthalene	5.2	0.33	"	"	"	"	"	"	
2-Nitroaniline	ND	0.33	"	"	"	"	"	"	
3-Nitroaniline	ND	0.33	"	"	"	"	"	"	
4-Nitroaniline	0.85	0.33	"	"	"	"	"	"	
Nitrobenzene	ND	0.33	"	"	,,	,,	"	"	
2-Nitrophenol	ND	0.33	"	"	,,	"	"	"	
4-Nitrophenol	ND	0.33	"	"	,,	"	"	"	
N-Nitrosodimethylamine	ND	0.33	"	"	,,	,,	"	"	
Diphenylamine	ND	0.33	"	"	,,	,,	"	"	
N-Nitrosodi-n-propylamine	0.91	0.33	"	"	,,	,,	"	"	
Pentachlorophenol	ND	0.33	"	"	"	"	"	"	
Phenanthrene	2.0	0.33	"	"	"	"	"	"	
Phenol	ND	0.33	"	"	"	"	"	"	
Pyrene	0.87	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	0.33	"	"	,,	,,	"	"	
2,4,6-Trichlorophenol	ND	0.33	,,	,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13/21 15	5:54 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		109 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		83.5 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		70.9 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.0 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		94.5 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		117 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil	Sampled: 07/13/21 15:54	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV19-15 (2107188-42) Soil Sampled: 07/13/21	15:59 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		61.7 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		110 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		87.4 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		108 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		103 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		90.2 %	18-1	37	"	"	"	"	
Acenaphthene	1.6	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	1.1	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	1.3	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	1.5	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		3.0	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		4.0	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		9.7	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		8.5	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1411 - EPA 3050B							
Blank (B1G1411-BLK1)				Prepared: 07/14	/21 Analyzed: 07	//19/21	
Silver	ND	2.0	mg/kg				
Cadmium	ND	2.5	"				
Barium	ND	6.0	"				
lickel	ND	3.0	"				
ead	ND	7.1	"				
anadium	ND	5.1	"				
rsenic	ND	5.5	"				
obalt	ND	3.3	"				
hallium	ND	17	"				
opper	ND	5.0	"				
elenium	ND	6.9	"				
olybdenum	ND	5.2	"				
ntimony	ND	8.0	"				
eryllium	ND	2.2	"				
inc	ND	7.0	"				
hromium	ND	2.3	"				
CS (B1G1411-BS1)				Prepared: 07/14	/21 Analyzed: 07	//19/21	
lickel	104	3.0	mg/kg	100	104	80-120	
Iolybdenum	103	5.2	"	100	103	80-120	
rsenic	98.8	5.5	"	100	98.8	78-122	
eryllium	97.9	2.2	"	100	97.9	80-120	
hromium	102	2.3	"	100	102	80-120	
arium	105	6.0	"	100	105	80-120	
admium	102	2.5	"	100	102	80-120	
ilver	98.5	2.0	"	100	98.5	60-140	
anadium	98.2	5.1	"	100	98.2	80-120	
ntimony	112	8.0	"	100	112	75-125	
opper	113	5.0	"	100	113	78-122	
inc	101	7.0	"	100	101	80-120	
elenium	97.3	6.9	"	100	97.3	76-124	
ead	99.3	7.1	"	100	99.3	80-120	
obalt	107	3.3	"	100	107	80-120	
hallium	104	17	"	100	104	80-120	

Analyte

Mearns Consulting LLC Project: Town Center Northwest

Result

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Units

Spike

Level

Source

Result

%REC

Limits

RPD

%REC

Reporting

Limit

LCS Dup (B1G1411-BSD1)				Prepared: 0	07/14/21 A1	nalyzed: 07	7/19/21		
Zinc	100	7.0	mg/kg	100		100	80-120	0.670	20
Chromium	101	2.3	"	100		101	80-120	1.01	20
Selenium	95.4	6.9	"	100		95.4	76-124	1.97	20
<u> Phallium</u>	103	17	"	100		103	80-120	0.897	20
<i>V</i> anadium	96.9	5.1	"	100		96.9	80-120	1.33	20
Cobalt	106	3.3	"	100		106	80-120	0.962	20
Lead	98.2	7.1	"	100		98.2	80-120	1.11	20
Silver	93.1	2.0	"	100		93.1	60-140	5.64	40
Antimony	109	8.0	"	100		109	75-125	2.95	20
Arsenic	96.4	5.5	"	100		96.4	78-122	2.56	20
Molybdenum	100	5.2	"	100		100	80-120	2.66	20
Copper	110	5.0	"	100		110	78-122	2.58	20
3arium	104	6.0	"	100		104	80-120	0.887	20
Nickel	104	3.0	"	100		104	80-120	0.817	20
Cadmium	101	2.5	"	100		101	80-120	1.06	20
Beryllium	98.0	2.2	"	100		98.0	80-120	0.0255	20
Matrix Spike (B1G1411-MS1)	Source	: 2107188-	01	Prepared: 0)7/14/21 Aı	nalyzed: 07	7/19/21		
Selenium	96.5	6.9	mg/kg	98.8	ND	97.7	70-130		
Molybdenum	98.2	5.2	"	98.8	0.661	98.8	70-130		

Selenium	96.5	6.9	mg/kg	98.8	ND	97.7	70-130	
Molybdenum	98.2	5.2	"	98.8	0.661	98.8	70-130	
Cobalt	107	3.3	"	98.8	7.64	101	70-130	
Thallium	98.5	17	"	98.8	ND	99.7	70-130	
Lead	101	7.1	"	98.8	4.55	97.8	70-130	
Silver	108	2.0	"	98.8	0.220	109	60-140	
Barium	238	6.0	"	98.8	82.6	158	70-130	QM-
Beryllium	94.0	2.2	"	98.8	ND	95.1	70-130	
Nickel	106	3.0	"	98.8	8.55	98.6	70-130	
Vanadium	118	5.1	"	98.8	24.0	94.8	70-130	
Arsenic	98.8	5.5	"	98.8	ND	100	70-130	
Zine	143	7.0	"	98.8	28.5	116	70-130	
Copper	115	5.0	"	98.8	13.6	103	70-130	
Chromium	110	2.3	"	98.8	13.7	97.2	70-130	
Cadmium	98.0	2.5	"	98.8	ND	99.2	70-130	
Antimony	91.6	8.0	"	98.8	ND	92.7	60-140	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

Limit

Notes

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B1G1411	- EPA	3050R

Matrix Spike Dup (B1G1411-MSD1)	Source	: 2107188-0	01	Prepared: (07/14/21 At	nalyzed: 07	7/19/21			
Antimony	92.1	8.0	mg/kg	98.4	ND	93.6	60-140	0.599	20	
Cobalt	108	3.3	"	98.4	7.64	102	70-130	0.817	20	
Arsenic	99.3	5.5	"	98.4	ND	101	70-130	0.452	20	
Silver	109	2.0	"	98.4	0.220	110	60-140	0.790	40	
Beryllium	94.4	2.2	"	98.4	ND	95.9	70-130	0.469	20	
Chromium	110	2.3	"	98.4	13.7	97.9	70-130	0.279	20	
Molybdenum	93.1	5.2	"	98.4	0.661	93.9	70-130	5.42	20	
Thallium	98.8	17	"	98.4	ND	100	70-130	0.255	20	
Selenium	96.6	6.9	"	98.4	ND	98.2	70-130	0.116	20	
Cadmium	98.8	2.5	"	98.4	ND	100	70-130	0.758	20	
Vanadium	118	5.1	"	98.4	24.0	95.5	70-130	0.296	20	
Zinc	127	7.0	"	98.4	28.5	99.9	70-130	12.1	20	
Lead	102	7.1	"	98.4	4.55	98.7	70-130	0.480	30	
Nickel	106	3.0	"	98.4	8.55	99.2	70-130	0.187	20	
Copper	116	5.0	"	98.4	13.6	104	70-130	0.758	30	
Barium	240	6.0	"	98.4	82.6	160	70-130	0.493	20	QM-07

Batch B1G1412 - EPA 3050B

Blank (B1G1412-BLK1)				Prepared: 07/14/21 Analyzed: 07/19/21
Zinc	ND	7.0	mg/kg	
Thallium	ND	17	"	
Selenium	ND	6.9	"	
Lead	ND	7.1	"	
Copper	ND	5.0	"	
Antimony	ND	8.0	"	
Nickel	ND	3.0	"	
Molybdenum	ND	5.2	"	
Barium	ND	6.0	"	
Chromium	ND	2.3	"	
Arsenic	ND	5.5	"	
Vanadium	ND	5.1	"	
Cobalt	ND	3.3	"	
Silver	ND	2.0	"	
Beryllium	ND	2.2	"	
Cadmium	ND	2.5	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1412-BS1)				Prepared: 07/14	1/21 Analyzed: 07	//19/21		
Thallium	104	17	mg/kg	100	104	80-120		
Cadmium	104	2.5	"	100	104	80-120		
Beryllium	94.1	2.2	"	100	94.1	80-120		
Lead	95.0	7.1	"	100	95.0	80-120		
<i>V</i> anadium	91.6	5.1	"	100	91.6	80-120		
Copper	100	5.0	"	100	100	78-122		
ilver	101	2.0	"	100	101	60-140		
ntimony	102	8.0	"	100	102	75-125		
lickel	98.4	3.0	"	100	98.4	80-120		
obalt	107	3.3	"	100	107	80-120		
inc	100	7.0	"	100	100	80-120		
lolybdenum	99.8	5.2	"	100	99.8	80-120		
arium	106	6.0	"	100	106	80-120		
hromium	98.3	2.3	"	100	98.3	80-120		
rsenic	95.4	5.5	"	100	95.4	78-122		
elenium	93.8	6.9	"	100	93.8	76-124		
.CS Dup (B1G1412-BSD1)				Prepared: 07/14	1/21 Analyzed: 07	7/19/21		
eryllium	88.7	2.2	mg/kg	100	88.7	80-120	5.85	20
opper	104	5.0	"	100	104	78-122	3.97	20
ead	90.2	7.1	"	100	90.2	80-120	5.18	20
ntimony	96.2	8.0	"	100	96.2	75-125	5.41	20
hromium	92.4	2.3	"	100	92.4	80-120	6.16	20
ilver	92.1	2.0	"	100	92.1	60-140	8.97	40
Iolybdenum	94.6	5.2	"	100	94.6	80-120	5.30	20
arium	99.2	6.0	"	100	99.2	80-120	6.23	20
lickel	93.0	3.0	"	100	93.0	80-120	5.67	20
obalt	100	3.3	"	100	100	80-120	6.16	20
admium	97.6	2.5	"	100	97.6	80-120	6.06	20
elenium	88.5	6.9	"	100	88.5	76-124	5.79	20
rsenic	90.0	5.5	"	100	90.0	78-122	5.72	20
hallium	98.6	17	"	100	98.6	80-120	5.26	20
inc	95.2	7.0	"	100	95.2	80-120	5.29	20
⁷ anadium	86.4	5.1	"	100	86.4	80-120	5.87	20

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R 16	C14	12 _	FΡΔ	3050B
Daten	DI	LTI4	12-	LEA	ういういわ

Matrix Spike (B1G1412-MS1)	Source: 2107188-21			Prepared: 0	7/14/21 A	7/19/21			
Antimony	87.8	8.0	mg/kg	97.5	ND	90.1	60-140		
Chromium	100	2.3	"	97.5	7.00	95.6	70-130		
Lead	91.1	7.1	"	97.5	1.24	92.2	70-130		
Nickel	96.1	3.0	"	97.5	4.45	94.0	70-130		
Beryllium	90.5	2.2	"	97.5	ND	92.8	70-130		
Copper	96.9	5.0	"	97.5	4.43	94.9	70-130		
ilver	91.4	2.0	"	97.5	ND	93.8	60-140		
arium	140	6.0	"	97.5	32.0	110	70-130		
obalt	103	3.3	"	97.5	3.34	102	70-130		
rsenic	93.7	5.5	"	97.5	ND	96.1	70-130		
elenium	91.6	6.9	"	97.5	ND	94.0	70-130		
1olybdenum	91.7	5.2	"	97.5	ND	94.1	70-130		
anadium	99.3	5.1	"	97.5	9.20	92.4	70-130		
hallium	96.4	17	"	97.5	ND	98.9	70-130		
inc	113	7.0	"	97.5	15.9	99.4	70-130		
admium	99.5	2.5	"	97.5	ND	102	70-130		
Matrix Spike Dup (B1G1412-MSD1)	Source	: 2107188-2	21	Prepared: 0	7/14/21 A	nalyzed: 07	7/19/21		
Cadmium	96.2	2.5	mg/kg	97.0	ND	99.2	70-130	3.32	20
opper	111	5.0	"	97.0	4.43	110	70-130	14.0	30
ilver	91.1	2.0	"	97.0	ND	94.0	60-140	0.326	40
rsenic	91.1	5.5	"	97.0	ND	93.9	70-130	2.80	20
	91.1 85.4	5.5 8.0	"	97.0 97.0	ND ND	93.9 88.0	70-130 60-140	2.80 2.84	20 20
ntimony									
ntimony obalt	85.4	8.0	"	97.0	ND	88.0	60-140	2.84	20
ntimony obalt ead	85.4 101	8.0 3.3	"	97.0 97.0	ND 3.34	88.0 100	60-140 70-130	2.84 2.40	20 20
antimony Pobalt ead Beryllium	85.4 101 88.7	8.0 3.3 7.1	"	97.0 97.0 97.0	ND 3.34 1.24	88.0 100 90.2	60-140 70-130 70-130	2.84 2.40 2.65	20 20 30
ntimony obalt ead eryllium folybdenum	85.4 101 88.7 88.7	8.0 3.3 7.1 2.2	" " "	97.0 97.0 97.0 97.0	ND 3.34 1.24 ND	88.0 100 90.2 91.4	60-140 70-130 70-130 70-130	2.84 2.40 2.65 2.01	20 20 30 20
ntimony obalt ead eryllium folybdenum hallium	85.4 101 88.7 88.7 89.6	8.0 3.3 7.1 2.2 5.2	" " "	97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND	88.0 100 90.2 91.4 92.4	60-140 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28	20 20 30 20 20
ntimony obalt ead eryllium folybdenum hallium elenium	85.4 101 88.7 88.7 89.6 93.5	8.0 3.3 7.1 2.2 5.2	" " " " " " " " " " " " " " " " " " " "	97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND	88.0 100 90.2 91.4 92.4 96.4	60-140 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99	20 20 30 20 20 20
ntimony obalt ead eryllium Iolybdenum hallium elenium anadium	85.4 101 88.7 88.7 89.6 93.5	8.0 3.3 7.1 2.2 5.2 17 6.9	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND	88.0 100 90.2 91.4 92.4 96.4 91.8	60-140 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85	20 20 30 20 20 20 20
ontimony Cobalt Lead Lead Leryllium Lolybdenum Lhallium Lelenium Lanadium Lanadium Lanadium	85.4 101 88.7 88.7 89.6 93.5 89.1 97.1	8.0 3.3 7.1 2.2 5.2 17 6.9 5.1	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND ND 9.20	88.0 100 90.2 91.4 92.4 96.4 91.8 90.6	60-140 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85 2.24	20 20 30 20 20 20 20 20
Arsenic Antimony Cobalt Acead Beryllium Molybdenum Thallium Belenium Sarium Chromium	85.4 101 88.7 88.7 89.6 93.5 89.1 97.1	8.0 3.3 7.1 2.2 5.2 17 6.9 5.1 6.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND ND 2.20 32.0	88.0 100 90.2 91.4 92.4 96.4 91.8 90.6 108	60-140 70-130 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85 2.24 2.35	20 20 30 20 20 20 20 20 20

Mearns Consulting LLC Project: Town Center Northwest 738 Ashland Avenue Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1413 - EPA 3050B							
Blank (B1G1413-BLK1)				Prepared: 07/14	4/21 Analyzed: 07	/19/21	
Selenium	ND	6.9	mg/kg	•	•		
Vanadium	ND	5.1	"				
Copper	ND	5.0	"				
Antimony	ND	8.0	"				
Silver	ND	2.0	"				
ead	ND	7.1	"				
Molybdenum	ND	5.2	"				
hallium	ND	17	"				
admium	ND	2.5	"				
rsenic	ND	5.5	"				
obalt	ND	3.3	"				
ickel	ND	3.0	"				
eryllium	ND	2.2	"				
nromium	ND	2.3	"				
nrium	ND	6.0	"				
nc	ND	7.0	"				
CS (B1G1413-BS1)				Prepared: 07/14	4/21 Analyzed: 07	/19/21	
Chromium	99.8	2.3	mg/kg	100	99.8	80-120	
ne	109	7.0	"	100	109	80-120	
rium	108	6.0	"	100	108	80-120	
nadium	90.2	5.1	"	100	90.2	80-120	
ryllium	93.3	2.2	"	100	93.3	80-120	
ckel	101	3.0	"	100	101	80-120	
dmium	106	2.5	"	100	106	80-120	
ntimony	104	8.0	"	100	104	75-125	
elenium	102	6.9	"	100	102	76-124	
lver	107	2.0	"	100	107	60-140	
opper	96.1	5.0	"	100	96.1	78-122	
ad	102	7.1	"	100	102	80-120	
rsenic	103	5.5	"	100	103	78-122	
olybdenum	96.6	5.2	"	100	96.6	80-120	
allium	108	17	"	100	108	80-120	
balt	111	3.3	"	100	111	80-120	

Arsenic

Antimony

Cadmium

Mearns Consulting LLC Project: Town Center Northwest

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Reporting

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

%REC

RPD

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1413 - EPA 3050B										
LCS Dup (B1G1413-BSD1)				Prepared: (07/14/21 Aı	nalyzed: 07	//19/21			
Silver	108	2.0	mg/kg	100		108	60-140	1.37	40	
Molybdenum	101	5.2	"	100		101	80-120	4.23	20	
Nickel	98.9	3.0	"	100		98.9	80-120	1.93	20	
Barium	107	6.0	"	100		107	80-120	1.32	20	
Chromium	98.9	2.3	"	100		98.9	80-120	0.931	20	
Lead	99.9	7.1	"	100		99.9	80-120	2.35	20	
Thallium	107	17	"	100		107	80-120	0.535	20	
Zinc	109	7.0	"	100		109	80-120	0.459	20	
Cadmium	104	2.5	"	100		104	80-120	2.29	20	
Arsenic	102	5.5	"	100		102	78-122	1.78	20	
Antimony	101	8.0	"	100		101	75-125	2.83	20	
Selenium	100	6.9	"	100		100	76-124	1.88	20	
<i>J</i> anadium	88.6	5.1	"	100		88.6	80-120	1.76	20	
Beryllium	92.1	2.2	"	100		92.1	80-120	1.27	20	
Cobalt	109	3.3	"	100		109	80-120	1.30	20	
Copper	95.7	5.0	"	100		95.7	78-122	0.417	20	
Matrix Spike (B1G1413-MS1)	Sourc	e: 2107188-	41	Prepared: (07/14/21 Aı	nalyzed: 07	7/19/21			
Barium	185	6.0	mg/kg	99.2	65.7	120	70-130			
Nickel	101	3.0	"	99.2	11.6	89.7	70-130			
Zinc	137	7.0	"	99.2	34.9	103	70-130			
Vanadium	110	5.1	"	99.2	22.6	88.4	70-130			
Гhallium	90.3	17	"	99.2	ND	91.0	70-130			
Selenium	90.7	6.9	"	99.2	ND	91.5	70-130			
Silver	108	2.0	"	99.2	ND	109	60-140			
Lead	89.6	7.1	"	99.2	4.09	86.2	70-130			
Molybdenum	83.6	5.2	"	99.2	0.725	83.5	70-130			
Copper	97.7	5.0	"	99.2	12.2	86.2	70-130			
Chromium	107	2.3	"	99.2	17.0	90.9	70-130			
Cobalt	101	3.3	"	99.2	7.33	94.8	70-130			
Beryllium	83.1	2.2	"	99.2	ND	83.8	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5.5

8.0

2.5

93.8

73.9

98.4

99.2

99.2

99.2

ND

ND

94.6

74.4

99.2

70-130

60-140

70-130

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G1	413 -	EPA	3050B

Matrix Spike Dup (B1G1413-MSD1)	Source	: 2107188-4	41	Prepared: (07/14/21 At					
Antimony	65.3	8.0	mg/kg	99.8	ND	65.4	60-140	12.3	20	
Selenium	86.7	6.9	"	99.8	ND	86.9	70-130	4.56	20	
Vanadium	103	5.1	"	99.8	22.6	80.7	70-130	6.68	20	
Barium	172	6.0	"	99.8	65.7	107	70-130	7.03	20	
Zinc	129	7.0	"	99.8	34.9	94.2	70-130	6.12	20	
Arsenic	82.3	5.5	"	99.8	ND	82.5	70-130	13.1	20	
Lead	79.1	7.1	"	99.8	4.09	75.2	70-130	12.4	30	
Thallium	81.9	17	"	99.8	ND	82.0	70-130	9.75	20	
Beryllium	77.9	2.2	"	99.8	ND	78.1	70-130	6.48	20	
Cobalt	94.9	3.3	"	99.8	7.33	87.8	70-130	6.63	20	
Chromium	100	2.3	"	99.8	17.0	83.3	70-130	6.76	20	
Nickel	87.8	3.0	"	99.8	11.6	76.4	70-130	13.6	20	
Cadmium	91.8	2.5	"	99.8	ND	92.0	70-130	6.88	20	
Copper	110	5.0	"	99.8	12.2	97.9	70-130	11.7	30	
Silver	104	2.0	"	99.8	ND	105	60-140	3.66	40	
Molybdenum	95.4	5.2	"	99.8	0.725	94.8	70-130	13.1	20	

Batch B1G1414 - EPA 7471A

Blank (B1G1414-BLK1)				Prepared: 0	7/14/21 A	Analyzed: 0'	7/16/21		
Mercury	ND	0.90	mg/kg						
LCS (B1G1414-BS1)				Prepared: 0	7/14/21 A	Analyzed: 0'	7/16/21		
Mercury	0.12	0.90	mg/kg	0.167		70.5	70-130		
Matrix Spike (B1G1414-MS1)	Source:	2107188-0)1	Prepared: 07/14/21 Analyzed: 07/16/21			7/16/21		
Mercury	0.16	0.90	mg/kg	0.163	ND	100	70-130		

Mearns Consulting LLC Project: Town Center Northwest 738 Ashland Avenue Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1414 - EPA 7471A										
Matrix Spike Dup (B1G1414-MSD1)	Sour	ce: 2107188-	01	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.162	ND	99.9	70-130	0.871	30	
Batch B1G1415 - EPA 7471A										
Blank (B1G1415-BLK1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	ND	0.90	mg/kg							
LCS (B1G1415-BS1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.12	0.90	mg/kg	0.167		70.6	70-130			
Matrix Spike (B1G1415-MS1)	Sour	ce: 2107188-	21	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.161	ND	101	70-130			
Matrix Spike Dup (B1G1415-MSD1)	Sour	ce: 2107188-	21	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.158	ND	100	70-130	1.79	30	
Batch B1G1416 - EPA 7471A										
Blank (B1G1416-BLK1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	ND	0.90	mg/kg							
LCS (B1G1416-BS1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.12	0.90	mg/kg	0.167		70.7	70-130			
Matrix Spike (B1G1416-MS1)	Sour	ce: 2107188-	41	Prepared: (07/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.20	0.90	mg/kg	0.161	ND	124	70-130			

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1416 - EPA 7471A										
Matrix Spike Dup (B1G1416-MSD1)	Sour	ce: 2107188-	41	Prepared: ()7/14/21 Aı	nalyzed: 07	//16/21			
Mercury	0.19	0.90	mg/kg	0.158	ND	122	70-130	4.05	30	
Batch B1G1417 - EPA 3060A										
Blank (B1G1417-BLK1)				Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G1417-BS1)				Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	0.161	0.10	mg/kg	0.150		107	80-120			
Matrix Spike (B1G1417-MS1)	Sour	Source: 2107188-01 Pre		Prepared: ()7/14/21 Aı	nalyzed: 07	//19/21			
Hexavalent Chromium	0.200	0.10	mg/kg	0.149	0.0624	92.3	75-125			
Matrix Spike Dup (B1G1417-MSD1)	Sour	ce: 2107188-	01	Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	0.199	0.10	mg/kg	0.149	0.0624	91.4	75-125	0.823	20	
Batch B1G1418 - EPA 3060A										
Blank (B1G1418-BLK1)				Prepared: ()7/14/21 Aı	nalyzed: 07	//19/21			
Hexavalent Chromium	ND	0.10	mg/kg	•						
LCS (B1G1418-BS1)				Prepared: ()7/14/21 Aı	nalyzed: 07	//19/21			
Hexavalent Chromium	0.152	0.10	mg/kg	0.150		101	80-120			
Matrix Spike (B1G1418-MS1)	Source	ce: 2107188-	21	Prepared: ()7/14/21 Aı	nalyzed: 07	//19/21			
Hexavalent Chromium	0.149	0.10	mg/kg	0.149	ND	99.9	75-125			

Mearns Consulting LLC

Project: Town Center Northwest

738 Ashland Avenue

Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Source	: 2107188-2	21	Prepared: 0	7/14/21 At	nalyzed: 07	/19/21			
0.142	0.10	mg/kg	0.149	ND	95.6	75-125	4.53	20	
			Prepared: 0	7/14/21 At	nalyzed: 07	/19/21			
ND	0.10	mg/kg							
			Prepared: 0	7/14/21 At	nalyzed: 07	/19/21			
0.144	0.10	mg/kg	0.150		96.2	80-120			
Source	: 2107188-4	41	Prepared: 0	7/14/21 Aı	nalyzed: 07	/19/21			
0.146	0.10	mg/kg	0.145	0.0341	77.2	75-125			
Source	: 2107188-4	41	Prepared: 0	7/14/21 At	nalyzed: 07	/19/21			
0.145	0.10	mg/kg	0.145	0.0341	76.9	75-125	0.525	20	
	ND 0.144 Source 0.146 Source	Result Limit Source: 2107188-2 0.142 0.10 ND 0.10 0.144 0.10 Source: 2107188-2 0.146 0.10 Source: 2107188-2	Result Limit Units Source: 2107188-21 0.142 0.10 mg/kg ND 0.10 mg/kg 0.144 0.10 mg/kg Source: 2107188-41 0.146 0.10 mg/kg Source: 2107188-41	ND 0.10 mg/kg 0.149	Source: 2107188-21 Prepared: 07/14/21 An	Result Limit Units Level Result %REC Source: 2107188-21 Prepared: 07/14/21 Analyzed: 07 0.142 0.10 mg/kg 0.149 ND 95.6 Prepared: 07/14/21 Analyzed: 07 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07 0.144 0.10 mg/kg 0.150 96.2 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07 0.146 0.10 mg/kg 0.145 0.0341 77.2 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07	Source: 2107188-21 Prepared: 07/14/21 Analyzed: 07/19/21 0.142 0.10 mg/kg 0.149 ND 95.6 75-125 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 0.144 0.10 mg/kg 0.150 96.2 80-120 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21 0.146 0.10 mg/kg 0.145 0.0341 77.2 75-125 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21	Source: 2107188-21 Prepared: 07/14/21 Analyzed: 07/19/21 0.142 0.10 mg/kg 0.149 ND 95.6 75-125 4.53 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 0.144 0.10 mg/kg 0.150 96.2 80-120 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21 0.146 0.10 mg/kg 0.145 0.0341 77.2 75-125 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21	Source: 2107188-21 Prepared: 07/14/21 Analyzed: 07/19/21 0.142 0.10 mg/kg 0.149 ND 95.6 75-125 4.53 20 ND 0.10 mg/kg 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 ND 0.10 mg/kg Prepared: 07/14/21 Analyzed: 07/19/21 0.144 0.10 mg/kg 0.150 96.2 80-120 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21 0.146 0.10 mg/kg 0.145 0.0341 77.2 75-125 Source: 2107188-41 Prepared: 07/14/21 Analyzed: 07/19/21

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1502 - EPA 5035 P & T										
Blank (B1G1502-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg				·			
LCS (B1G1502-BS1)				Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.570	0.050	mg/kg	0.600		95.0	80-120			
Matrix Spike (B1G1502-MS1)	Sour	ce: 2107188-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.455	0.050	mg/kg	0.600	ND	75.8	50-150			
Matrix Spike Dup (B1G1502-MSD1)	Sour	ce: 2107188-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.480	0.050	mg/kg	0.600	ND	80.0	50-150	5.35	30	
Batch B1G1503 - EPA 5035 P & T										
Blank (B1G1503-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1503-BS1)				Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.531	0.050	mg/kg	0.600		88.5	80-120			
Matrix Spike (B1G1503-MS1)	Sour	ce: 2107204-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.466	0.050	mg/kg	0.600	ND	77.7	50-150			
Matrix Spike Dup (B1G1503-MSD1)	Sour	ce: 2107204-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.371	0.050	mg/kg	0.600	ND	61.8	50-150	22.7	30	
Batch B1G1504 - EPA 3550B Solid Ext										
Blank (B1G1504-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1504 - EPA 3550B Solid Ext										
LCS (B1G1504-BS1)				Prepared &	k Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	18.1	5.0	mg/kg	20.0		90.7	80-120			
Matrix Spike (B1G1504-MS1)	Sourc	e: 2107188-	01	Prepared &	ե Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	19.6	5.0	mg/kg	20.0	ND	98.1	50-150			
Matrix Spike Dup (B1G1504-MSD1)	Sourc	e: 2107188-	01	Prepared &	k Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	20.2	5.0	mg/kg	20.0	ND	101	50-150	2.77	30	
Batch B1G1601 - EPA 3550B Solid Ext										
Blank (B1G1601-BLK1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							
LCS (B1G1601-BS1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.3	5.0	mg/kg	20.0		81.5	80-120			
Matrix Spike (B1G1601-MS1)	Sourc	e: 2107204-	01	Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	19.7	5.0	mg/kg	20.0	ND	98.6	50-150			
Matrix Spike Dup (B1G1601-MSD1)	Sourc	e: 2107204-	01	Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	22.5	5.0	mg/kg	20.0	ND	112	50-150	13.1	30	
Batch B1G1602 - EPA 3550B Solid Ext										
Blank (B1G1602-BLK1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1602 - EPA 3550B Solid Ext										
LCS (B1G1602-BS1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.9	5.0	mg/kg	20.0		84.7	80-120			
Matrix Spike (B1G1602-MS1)	Sour	ce: 2107188-	23	Prepared: ()7/15/21 A	analyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.0	5.0	mg/kg	20.0	ND	79.8	50-150			
Matrix Spike Dup (B1G1602-MSD1)	Sour	ce: 2107188-	23	Prepared: ()7/15/21 A	analyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	18.3	5.0	mg/kg	20.0	ND	91.4	50-150	13.6	30	
Batch B1G1913 - EPA 5035 P & T										
Blank (B1G1913-BLK1)				Prepared: (07/19/21 A	analyzed: 07	7/20/21			
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1913-BS1)				Prepared: ()7/19/21 A	analyzed: 07	7/20/21			
Gasoline Range Hydrocarbons (C4-C12)	0.697	0.050	mg/kg	0.600		116	80-120			
Matrix Spike (B1G1913-MS1)	Sour	ce: 2107188-	23	Prepared: ()7/19/21 A	analyzed: 07	7/20/21			
Gasoline Range Hydrocarbons (C4-C12)	0.570	0.050	mg/kg	0.600	ND	95.0	50-150			
Matrix Spike Dup (B1G1913-MSD1)	Sour	ce: 2107188-	23	Prepared: (07/19/21 A	nalyzed: 07	7/20/21			
Gasoline Range Hydrocarbons (C4-C12)	0.456	0.050	mg/kg	0.600	ND	76.0	50-150	22.2	30	

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1407 - EPA 5035 P & T

Blank (B1G1407-BLK1)				Prepared: 07/14/21 Analyzed: 07/15/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	R1C	1407.	. FPA	5035	P & T	١

Blank (B1G1407-BLK1)				Prepared: 07/1	4/21 Analyzed: 07	/15/21	
Isopropylbenzene	ND	5.0	μg/kg				
p-Isopropyltoluene	ND	5.0	"				
Methylene chloride	ND	5.0	"				
Methyl tert-butyl ether	ND	5.0	"				
Naphthalene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"				
Tetrachloroethene	ND	5.0	"				
Toluene	ND	5.0	"				
1,2,3-Trichlorobenzene	ND	5.0	"				
1,2,4-Trichlorobenzene	ND	5.0	"				
1,1,1-Trichloroethane	ND	5.0	"				
1,1,2-Trichloroethane	ND	5.0	"				
Trichloroethene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
1,2,3-Trichloropropane	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
Vinyl chloride	ND	5.0	"				
m,p-Xylene	ND	5.0	"				
o-Xylene	ND	5.0	"				
LCS (B1G1407-BS1)				Prepared: 07/1	4/21 Analyzed: 07	/15/21	
Benzene	50.3	5.0	μg/kg	50.0	101	80-120	
Chlorobenzene	40.1	5.0	"	50.0	80.2	80-120	
1,1-Dichloroethene	49.0	5.0	"	50.0	98.0	80-120	
Toluene	42.3	5.0	"	50.0	84.7	80-120	
Trichloroethene	50.2	5.0	"	50.0	100	80-120	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1407 - EPA 5035 P & T

Matrix Spike (B1G1407-MS1)	Source: 2107188-01			Prepared: 07	7/14/21 A	nalyzed: 07	/15/21		
Benzene	49.1	5.0	μg/kg	50.0	ND	98.2	37-151		
Chlorobenzene	38.2	5.0	"	50.0	ND	76.4	37-160		
1,1-Dichloroethene	48.0	5.0	"	50.0	ND	96.0	50-150		
Toluene	40.2	5.0	"	50.0	ND	80.3	47-150		
Trichloroethene	48.1	5.0	"	50.0	ND	96.2	71-157		
Matrix Spike Dup (B1G1407-MSD1)	Source: 2107188-01			Prepared: 07	7/14/21 A	nalyzed: 07	/15/21		
Benzene	47.4	5.0	μg/kg	50.0	ND	94.8	37-151	3.56	30
Chlorobenzene	36.9	5.0	"	50.0	ND	73.9	37-160	3.33	30
1,1-Dichloroethene	44.6	5.0	"	50.0	ND	89.2	50-150	7.37	30
Toluene	37.8	5.0	"	50.0	ND	75.5	47-150	6.14	30
Trichloroethene	46.2	5.0	"	50.0	ND	92.5	71-157	3.92	30

Blank (B1G1505-BLK1)				Prepared & Analyzed: 07/15/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
,2-Dichlorobenzene	ND	5.0	"	
3-Dichlorobenzene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1505 - EPA 5035 P & T

Blank (B1G1505-BLK1)				Prepared & Analyzed: 07/15/21
1,4-Dichlorobenzene	ND	5.0	μg/kg	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Methyl tert-butyl ether	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
Toluene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
Trichloroethene	ND	5.0	"	
Trichlorofluoromethane	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
Vinyl chloride	ND	5.0	"	
m,p-Xylene	ND	5.0	"	

Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloroform

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

%REC

		Reporting		Spike	Source		%REC		KPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		
Batch B1G1505 - EPA 5035 P & T												
Blank (B1G1505-BLK1)				Prepared &	Analyzed:	07/15/21						
o-Xylene	ND	5.0	μg/kg									
LCS (B1G1505-BS1)				Prepared &	Analyzed:	07/15/21						
Benzene	48.1	5.0	μg/kg	50.0		96.2	80-120					
Chlorobenzene	47.1	5.0	"	50.0		94.2	80-120					
1,1-Dichloroethene	45.5	5.0	"	50.0		90.9	80-120					
Toluene	40.0	5.0	"	50.0		80.0	80-120					
Trichloroethene	54.0	5.0	"	50.0		108	80-120					
Matrix Spike (B1G1505-MS1)	Sour	ce: 2107188-	21	Prepared &	Analyzed:	07/15/21						
Benzene	47.2	5.0	μg/kg	50.0	ND	94.5	37-151					
Chlorobenzene	41.2	5.0	"	50.0	ND	82.3	37-160					
1,1-Dichloroethene	42.9	5.0	"	50.0	ND	85.8	50-150					
Toluene	43.1	5.0	"	50.0	ND	86.3	47-150					
Trichloroethene	55.4	5.0	"	50.0	ND	111	71-157					
Matrix Spike Dup (B1G1505-MSD1)	Sour	ce: 2107188-	21	Prepared &	Analyzed:	07/15/21						
Benzene	48.8	5.0	μg/kg	50.0	ND	97.6	37-151	3.23	30			
Chlorobenzene	41.6	5.0	"	50.0	ND	83.2	37-160	1.04	30			
1,1-Dichloroethene	44.7	5.0	"	50.0	ND	89.4	50-150	4.13	30			
Toluene	45.5	5.0	"	50.0	ND	90.9	47-150	5.26	30			
Trichloroethene	56.1	5.0	"	50.0	ND	112	71-157	1.18	30			
Batch B1G1507 - EPA 5035 P & T												
				Prepared: ()	ared: 07/16/21 Analyzed: 07/19/21							
Blank (B1G1507-BLK1)				r repared. 0								
	ND	5.0	μg/kg	rrepared. o		•						
Benzene	ND ND	5.0 5.0	μg/kg "	Trepared. 0		•						
Benzene Bromobenzene				Trepared. 0								
Benzene Bromobenzene Bromochloromethane	ND	5.0	"	Trepared. 0		•						
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	5.0 5.0	"	Trepared. 0								
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	5.0 5.0 5.0	"	Trepared. 0		·						
Blank (B1G1507-BLK1) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	ND ND ND ND	5.0 5.0 5.0 5.0	" "	Trepared. 0								
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	5.0 5.0 5.0 5.0 5.0	" " "	Trepared. 0								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5.0

5.0

5.0

5.0

ND

ND

ND

ND

Reported:

RPD

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1507 - EPA 5035 P & T

Blank (B1G1507-BLK1)				Prepared: 07/16/21 Analyzed: 07/19/21
Chloromethane	ND	5.0	μg/kg	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Methyl tert-butyl ether	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
Toluene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1507 - EPA 5035 P & T										
Blank (B1G1507-BLK1)				Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
1,1,1-Trichloroethane	ND	5.0	μg/kg							
1,1,2-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
LCS (B1G1507-BS1)	Pre		Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21				
Benzene	48.2	5.0	μg/kg	50.0		96.4	80-120			
Chlorobenzene	47.1	5.0	"	50.0		94.2	80-120			
1,1-Dichloroethene	44.3	5.0	"	50.0		88.6	80-120			
Toluene	42.8	5.0	"	50.0		85.7	80-120			
Trichloroethene	50.8	5.0	"	50.0		102	80-120			
Matrix Spike (B1G1507-MS1)	Source	e: 2107118-0	05	Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
Benzene	40.2	5.0	μg/kg	50.0	ND	80.4	37-151			
Chlorobenzene	34.2	5.0	"	50.0	ND	68.4	37-160			
1,1-Dichloroethene	36.1	5.0	"	50.0	ND	72.3	50-150			
Toluene	36.4	5.0	"	50.0	ND	72.7	47-150			
Trichloroethene	43.2	5.0	"	50.0	ND	86.5	71-157			
Matrix Spike Dup (B1G1507-MSD1)	Source	e: 2107118-0	05	Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
Benzene	44.9	5.0	μg/kg	50.0	ND	89.8	37-151	11.0	30	
Chlorobenzene	37.3	5.0	"	50.0	ND	74.6	37-160	8.73	30	
1,1-Dichloroethene	39.1	5.0	"	50.0	ND	78.1	50-150	7.79	30	
Toluene	39.4	5.0	"	50.0	ND	78.9	47-150	8.12	30	
Trichloroethene	48.5	5.0	"	50.0	ND	97.0	71-157	11.4	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1603 - EPA 3550B Solid Ext

Blank (B1G1603-BLK1)				Prepared: 07/15/21 Analyzed: 07/16/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1603 - EPA 3550B Solid Ext

Blank (B1G1603-BLK1)				Prepared: 07/15/21 Analyzed: 07/16/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1603-BS1)				Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21		
Acenaphthene	0.843	0.33	mg/kg	1.00		84.3	47-145		
2-Chlorophenol	2.07	0.33	"	2.00		104	23-134		
4-Chloro-3-methylphenol	1.94	0.33	"	2.00		96.8	22-147		
1,4-Dichlorobenzene	0.791	0.33	"	1.00		79.1	20-124		
2,4-Dinitrotoluene	0.496	0.33	"	1.00		49.6	39-139		
4-Nitrophenol	0.636	0.33	"	2.00		31.8	0-132		
N-Nitrosodi-n-propylamine	0.683	0.33	"	1.00		68.3	0-230		
Pentachlorophenol	0.446	0.33	"	2.00		22.3	14-176		
Phenol	1.73	0.33	"	2.00		86.4	5-112		
Pyrene	0.831	0.33	"	1.00		83.1	52-115		
1,2,4-Trichlorobenzene	0.729	0.33	"	1.00		72.9	44-142		
Matrix Spike (B1G1603-MS1)	Sourc	e: 2107188-	01	Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21		
Acenaphthene	0.909	0.33	mg/kg	1.00	ND	90.9	47-145		
2-Chlorophenol	1.84	0.33	"	2.00	ND	91.8	23-134		
4-Chloro-3-methylphenol	1.65	0.33	"	2.00	ND	82.6	22-147		
1,4-Dichlorobenzene	0.894	0.33	"	1.00	ND	89.4	20-124		
2,4-Dinitrotoluene	0.537	0.33	"	1.00	ND	53.7	39-139		
4-Nitrophenol	0.655	0.33	"	2.00	ND	32.8	0-132		
N-Nitrosodi-n-propylamine	0.881	0.33	"	1.00	ND	88.1	0-230		
Pentachlorophenol	0.351	0.33	"	2.00	ND	17.6	14-176		
Phenol	1.59	0.33	"	2.00	ND	79.5	5-112		
Pyrene	0.953	0.33	"	1.00	ND	95.3	52-115		
1,2,4-Trichlorobenzene	0.820	0.33	"	1.00	ND	82.0	44-142		
Matrix Spike Dup (B1G1603-MSD1)	Sourc	e: 2107188-	01	Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21		
Acenaphthene	1.03	0.33	mg/kg	1.00	ND	103	47-145	12.8	30
2-Chlorophenol	1.90	0.33	"	2.00	ND	95.0	23-134	3.37	30
4-Chloro-3-methylphenol	1.90	0.33	"	2.00	ND	94.8	22-147	13.7	30
1,4-Dichlorobenzene	0.981	0.33	"	1.00	ND	98.1	20-124	9.28	30
2,4-Dinitrotoluene	0.527	0.33	"	1.00	ND	52.7	39-139	1.88	30
4-Nitrophenol	0.642	0.33	"	2.00	ND	32.1	0-132	2.00	30
N-Nitrosodi-n-propylamine	0.938	0.33	"	1.00	ND	93.8	0-230	6.27	30
Pentachlorophenol	0.414	0.33		2.00	ND	20.7	14-176	16.5	30
Phenol	1.84	0.33		2.00	ND	92.1	5-112	14.7	30
Pyrene	0.846	0.33	"	1.00	ND	84.6	52-115	11.9	30
1,2,4-Trichlorobenzene	0.708	0.33	"	1.00	ND	70.8	44-142	14.7	30

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK1)				Prepared: 07/19/21 Analyzed: 07/20/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK1)				Prepared: 07/19/21 Analyzed: 07/20/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK2)				Prepared: 07/19/21 Analyzed: 07/20/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK2)				Prepared: 07/19/21 Analyzed: 07/20/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1916-BS1)				Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.848	0.33	mg/kg	1.00		84.8	47-145
2-Chlorophenol	1.85	0.33	"	2.00		92.3	23-134
4-Chloro-3-methylphenol	1.96	0.33	"	2.00		98.2	22-147
1,4-Dichlorobenzene	0.815	0.33	"	1.00		81.5	20-124
2,4-Dinitrotoluene	0.479	0.33	"	1.00		47.9	39-139
4-Nitrophenol	0.664	0.33	"	2.00		33.2	0-132
N-Nitrosodi-n-propylamine	0.797	0.33	"	1.00		79.7	0-230
Pentachlorophenol	0.379	0.33	"	2.00		19.0	14-176
Phenol	1.78	0.33	"	2.00		89.0	5-112
Pyrene	0.709	0.33	"	1.00		70.9	52-115
1,2,4-Trichlorobenzene	0.729	0.33	"	1.00		72.9	44-142
LCS (B1G1916-BS2)				Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.844	0.33	mg/kg	1.00		84.4	47-145
2-Chlorophenol	1.81	0.33	"	2.00		90.6	23-134
4-Chloro-3-methylphenol	2.16	0.33	"	2.00		108	22-147
1,4-Dichlorobenzene	0.796	0.33	"	1.00		79.6	20-124
2,4-Dinitrotoluene	0.523	0.33	"	1.00		52.3	39-139
4-Nitrophenol	0.642	0.33	"	2.00		32.1	0-132
N-Nitrosodi-n-propylamine	0.711	0.33	"	1.00		71.1	0-230
Pentachlorophenol	0.351	0.33	"	2.00		17.6	14-176
Phenol	1.65	0.33	"	2.00		82.6	5-112
Pyrene	0.694	0.33	"	1.00		69.4	52-115
1,2,4-Trichlorobenzene	0.615	0.33	"	1.00		61.5	44-142
Matrix Spike (B1G1916-MS1)	Source	e: 2107188-	19	Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.919	0.33	mg/kg	1.00	ND	91.9	47-145
2-Chlorophenol	1.82	0.33	"	2.00	ND	91.2	23-134
4-Chloro-3-methylphenol	1.84	0.33	"	2.00	ND	91.9	22-147
1,4-Dichlorobenzene	0.880	0.33	"	1.00	ND	88.0	20-124
2,4-Dinitrotoluene	0.899	0.33	"	1.00	ND	89.9	39-139
4-Nitrophenol	0.634	0.33	"	2.00	ND	31.7	0-132
N-Nitrosodi-n-propylamine	0.834	0.33	"	1.00	ND	83.4	0-230
Pentachlorophenol	0.413	0.33	"	2.00	ND	20.6	14-176
Phenol	1.68	0.33	"	2.00	ND	84.2	5-112
Pyrene	0.866	0.33	"	1.00	ND	86.6	52-115
1,2,4-Trichlorobenzene	0.810	0.33	"	1.00	ND	81.0	44-142

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B1G1916-MS2)	Sourc	e: 2107188-	30	Prepared: 0	7/19/21 A	Analyzed: 07	7/20/21			
Acenaphthene	0.919	0.33	mg/kg	1.00	ND	91.9	47-145			
2-Chlorophenol	1.82	0.33	"	2.00	ND	91.2	23-134			
4-Chloro-3-methylphenol	1.84	0.33	"	2.00	ND	91.9	22-147			
1,4-Dichlorobenzene	0.880	0.33	"	1.00	ND	88.0	20-124			
2,4-Dinitrotoluene	0.544	0.33	"	1.00	ND	54.4	39-139			
4-Nitrophenol	0.634	0.33	"	2.00	ND	31.7	0-132			
N-Nitrosodi-n-propylamine	0.834	0.33	"	1.00	ND	83.4	0-230			
Pentachlorophenol	0.413	0.33	"	2.00	ND	20.6	14-176			
Phenol	1.68	0.33	"	2.00	ND	84.2	5-112			
Pyrene	0.866	0.33	"	1.00	ND	86.6	52-115			
1,2,4-Trichlorobenzene	0.810	0.33	"	1.00	ND	81.0	44-142			
Matrix Spike Dup (B1G1916-MSD1)	Sourc	e: 2107188-	19	Prepared: 0	7/19/21 A	Analyzed: 07	7/20/21			
Acenaphthene	0.968	0.33	mg/kg	1.00	ND	96.8	47-145	5.19	30	
2-Chlorophenol	1.85	0.33	"	2.00	ND	92.3	23-134	1.25	30	
4-Chloro-3-methylphenol	2.06	0.33	"	2.00	ND	103	22-147	11.2	30	
,4-Dichlorobenzene	0.923	0.33	"	1.00	ND	92.3	20-124	4.77	30	
2,4-Dinitrotoluene	0.920	0.33	"	1.00	ND	92.0	39-139	2.31	30	
-Nitrophenol	0.629	0.33	"	2.00	ND	31.4	0-132	0.792	30	
N-Nitrosodi-n-propylamine	0.847	0.33	"	1.00	ND	84.7	0-230	1.55	30	
Pentachlorophenol	0.458	0.33	"	2.00	ND	22.9	14-176	10.3	30	
Phenol	1.67	0.33	"	2.00	ND	83.4	5-112	0.955	30	
Pyrene	0.995	0.33	"	1.00	ND	99.5	52-115	13.9	30	
,2,4-Trichlorobenzene	0.710	0.33	"	1.00	ND	71.0	44-142	13.2	30	
Matrix Spike Dup (B1G1916-MSD2)	Sourc	e: 2107188-	30	Prepared: 0	7/19/21 A	Analyzed: 07	7/20/21			
Acenaphthene	1.00	0.33	mg/kg	1.00	ND	100	47-145	8.44	30	
2-Chlorophenol	1.92	0.33	"	2.00	ND	96.0	23-134	5.13	30	
1-Chloro-3-methylphenol	1.99	0.33	"	2.00	ND	99.4	22-147	7.79	30	
,4-Dichlorobenzene	0.920	0.33	"	1.00	ND	92.0	20-124	4.44	30	
,4-Dinitrotoluene	0.594	0.33	"	1.00	ND	59.4	39-139	8.79	30	
-Nitrophenol	0.650	0.33	"	2.00	ND	32.5	0-132	2.49	30	
N-Nitrosodi-n-propylamine	0.899	0.33	"	1.00	ND	89.9	0-230	7.50	30	
Pentachlorophenol	0.489	0.33	"	2.00	ND	24.4	14-176	16.9	30	
Phenol	1.72	0.33	"	2.00	ND	86.2	5-112	2.35	30	
Dr. man a	0.679	0.33	"	1.00	ND	67.9	52-115	24.2	30	
Pyrene	0.077	0.55		1.00	110	07.5	32 113	22	20	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Notes and Definitions

S-07 Surrogate recovery outside of control limits due to coelution with high levels of petroleum hydrocarbons.

S-03 Surrogate diluted out.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

A

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

13 Date: 7 / 12 / 21

Page: 1 8 of 5

TEL: 949 • 348 • 9389

FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Leonna Hills, CA • 92653

ah Work Order No.:

2001198

Client: MEARNS (DNSULTING COP) Client Project ID: Analyses Requested																			
Client Address: 738 ASHLAN					ient rroject LO:	•			8			ZUS1)	363 1	cequ	ested	·	1	i"	1
								ئے ا	Ħ					j		ļ			Geotracker EDD Info:
SANTA MONICA (CA 904	05			 ,:	*1	_						(C)	Į	j				
					Town Cen	rap No	4HWEST	غ بر بر	3	1	i		5035B	•		ł			
				Tun	n Around	Immediate	24 Hour	- 11	1	ا م			~						Client LOGCODE
Client Tel. No.: 310 403	921			Tim	n Danuariadi		72 Hour	A ACTA	釒	SOUTE	8015B	8015B	82bo B	827cx		i			
CP Prov. No.	`	·			1	3	શ્ચિ	જી	8	-३।	78	į							
Client Proj. Mgr.: SUSAN L	MEADAYS !	(II)			Day Day						_,	۵	23	-					Site Global ID
Chent Proj. Mgr.: 20444 2 5	VID (1-12)	117 <i>V</i>				Normal	Mobile	- 11	, i	CIJ-CI2	C13. C12	Сho		3					
CN + C 1 - VD	Sierra	_	A 71			Containe	r No. of	- \ • F	4	<u>ن</u>	3. ((y)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SVOG	ļ			i i	
Client Sample ID.	No.	Pate	Time	Matrix	Preservative	Type	Container	* 	- 3	5	Ü	5	⋽	S	ļ	l			Field Point Names / Comments
SV6-5	Ø	7-12-21	6735	SOIL	PRERV	YOU VI	54 1/4 K	У	×	×	×		×	X					
5V610	02	1	6744	1			j	×	X	×	X	χ	X	X					
SV6-15	ഖ		0751					<u> </u>	+	×	×	×	X	Х					
SV4.5	04		0815)	+	×	Χ	Х		X		-			
5√7·6	05		0825		 				`	X	X	×	X	X			-		
	1973-57		+					$+\frac{x}{2}$	Ή	· -	X		χ			+			
sva·15	96	<u> </u>	0830					<u> </u> ×		٨		X		×					j
SV 8.5	07		0856					<u> </u>	X	Χ	×	X	X	X					
2/8/10	<i>9</i> 8_		0 858						(<u>X</u>	X	×	X	<u> </u>	Х					
SV8-15	09		0906					X	×	×	×	×	X	×					
a. SV9.5/	J WO	A	0919	V	₩.	W	A	Х	X	X	ス	X	X	٨					
The cart	700g	1	Shipped Vis:	AND PELI	VERED				- -			Total	Numb	er of (Containe	rs Subi	nitted to	,	Sample Disposal:
"SHEAR LANGARANG PHD "SC	av:a" <u> </u>	isan	(Carrior/Weybill No.)		<u> </u>							Labor	atory						Return to Client
Refisquished By: Al Fay	an	Zlist	Z Decirco Br.	12	-1		7/13/2	The	-	_					of custody				Lab Disposal -
777		120	7	52 2m	~		170	Cos	ıditləns, ı	ales of	nerwise :	agreed (Hon (a) л	sritting b	etween SIE	RRA an	d CLIENT	. [<u> </u>
Company:	·-···	me e	Соворнану:		<u> </u>	· · · · · · · · · · · · · · · · · · ·	Time: 7 70	- 	Samples	determi	red to be	hazard	ous by S	IERRA	wW bo retu	rned to t	CLIENT.		
Relateuished By.		Date:	Received By:				Date:					Tota	l Num	ber of	Contain	ers Re	eived b	у	Other
Companys		Time:	Сопірвиу.				Time:						ratory						
	······································							FOR	i Alien	TORY U	9R ONL	Y Bray	ls fleedy	rt Coadji	lòns; Chilici - Te			o	
Relanguation By:		Dete:	Reotaved By:				Date:	2.600,000	* C `A ^.	Frank 65.5					Chilled - Te	np (°C)	.	2	
Социралу:		Time:	Сопряду:				Time:	_ _	Sample	Séels				ta i	Preservative	- Yerif	a1 87 . (V	Z
Special Instructions:									Properi					Д,					
								- 15 A	Properi	y Labello					Other		ترسم ويهد		
								=	Approp	rinte San	ple Con	arret		D	Storage Loca	tion (25	By	: 50a\
¥ev: 129321								R-/T	0,450	228/02	11899 ()	-000	<u> </u>	. Y Y.	DISTRIBUTE	N White	Yo Acommun	Samples Ye	place - Laborator: Copy, Polit - Picks Personnel Copy

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389

FAX: 949 • 348 • 9115

Date: 7 / 13 / 21 Page: 2 of 5

Lab Work Order No.: 2107199 26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653 CHEAT: MEARNS CONSULTING COPP Client Project ID: Analyses Requested Client Address: 738 ASHLAND AVE Geotracker EDD Info: STIMAL MONICA CA 96405 925g TOWN CONTER NORTHWEST Client LOGCODE Immediate 24 Hour 4 9 Client Tel. No.: 310 403 1921 Time Requested: 8015 48 Hour 72 Hour Client Fax. No.: 4 Day Day 5 Day Site Global ID Client Proj. Mgr.: ☐ Mobile Normal Cq. Cl2 No. of Container Sierra Client Sample 1D. Date Time Preservative Matrix Containers Field Point Names / No. Type Comments Acetate Guv 146 Х SV9.10 501L X 6972 7-13-21 VOA VIACE PRSRAI SV9-15 12 X 0924 х ß X SV10.5 0932 SVID . 10 0936 X, SV10-15 15 X х 0952 SVII-5 1016 Х SVII-10 T 1020 5111-15 W) 1026 X SV12.5 × 1049 SV12-10 1058 Shippoul Vas: HEXLID DELIVERED Total Number of Containers Submitted to Sample Disposal: Laboratory Return to Client (Carrier/Waybill No.) The delivery of samples and the signature on this chain of curtody form constitutes 7/13/21 Lab Disposal * authorization to perform the analyses specified above under SIRRA's Terms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. 515 rens 1707 * - Samples determined to be hazardoos by SIERRA will be returned to CLIENT. 3 Total Number of Containers Received by Relinquished H Laboratory FOR LANGUATORY USE ONLY - Sample Receipt Combinate: 0 Relinquished By Treservatives - Vended By (TO Sample Seals Special Instructions: Rev: 120321

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115 Date: 4/13/21 Page: 3 of 5

26052 Merit Circl	e • Suite 1	04 • Lagui	na Hills, CA	• 92653									I	ab Wor	rk Orde	r No.:	_3	to	<u> </u>
Client: MEARAS CONSULTING	Coop			CL	ent Project ID:						A	nalvs	es R	leques	sted	•			
Client Address: 738 ASHLAA		JE.			•									- T		T	Ţ		Geotracker EDD lafo:
SANTA MONICA		0405						🖇		Ì									Geografic EDD 1810,
	<u> </u>	0402			town Conti	as Nobr	24West		i				12			ł			
								oco/ Face				~	2828						Client LOGCODE
Client Tel. No.: 310 403 192					Pa . 1		24 Hour	-2		80	9 B	10	$\overline{}$	J	•		İ		
	<u>·/</u>						72 Hour	3		8015 B	Sois B	\$€	87PP B	827oc					
Client Fag. No.:	115.0	s PHD			ا ا		3 Day	1					27	8			-		
Client Proj. Mgr.: SUGAN L	MEARN	s thu		L	X	Normal)	Mobile	METALS		=4	42. Ch	<u> </u>	- 1						Site Global ID
Client Famula ID	Sierra	D-4-	707	35.44		Container	No. of	12	چ چ	442	٦	(23)	200	5N04					
Client Sample ID.	No.	Date	Time	Matrix	Preservative	Туре	Containers	≒	3	2	اخ	2	>	3					Field Point Names / Comments
SV12-15	21	7-13-21	1107	501L	PRSRV	VOD VIA	W /4	Х	X	X	X	X	X	х					
SV13-5	22,		1126	1	1		1	X	X	X	X	Х	X	X					
SV13-10	23		1131					X	X	X.	X	X	X	X					
SV13 · 15	24		1138					Х	x	\times	x	X	X	X			<u> </u>		
574.75	25		1249					X	×		x	X	X	×			 		
SVI4-lo	26		1254		† į		<u> </u>	X	X	X	刘	X	X	X		-	-		
5014-15	27		1301				 	X	X	X	X	X	X	×			-		
(A) SHA SN(5.5	28		1319					х			X			X	+-	-			
5415-10	29	1	1323	1	 	7	1 1,	X	X	対	X	X		x	-	1			
Q. SVI5-150	30		1327	\forall			W	X	<u>X</u>	- 	x	X		X		1			
All ratter	100	<u> </u>	Slupped Var.	and Deli	\trackso	L	. !			l.	-	*1 3 1		60		- 5	:44 - 3 4 -		O
SKAN LANGARNE, 14D SCI	41	19011	(Carrier/Waybill No.)	and red	VERAD							aborat		r of Co	ntainer	s Suom	itteg ic	'	Sample Disposal: Return to Client
	m (2/0/2)	10			7/13/21					-		is chain of					_
7 7 7		77/37	Received By:	<i></i>	•			-						above and riting betw				.	in bilbion
Company:	·	fine: [U]	Соперану:	ي برحر	rus	 	Time: 1727	• Sa	mples de	termine	i lo be l	hazardon	s by SII	ERRA WI	ll be retur	ned to Cl	LIENT.		Archive mos.
Refunquiated By:		Dare:	Received By:				Dane.					Total l	Vumb	er of C	ontaine	rs Rece	ived b	y	Other
Continuery:		Time,	C									Labora	itory						
<u> </u>		1416	Сопрыну:	····			Time:	FORL	PORAT	ONY USA	ONLY	- Sample	Receipt	Conditions Club		5775	2000	- 1 - 1	
Relinquistred By:		Date:	Received By:				Date:	3	nisci					🗖 വം	lled - Ten	p (°C)_	ÇÇ		
Company		Tianq:	Сопраму:				Tone;	D ,	emple S	aks				٦.,	ervetives.	- Verified	6	Þ	
Special Instructions:								Property of	5.5										
									requestly !	abolise				— Ota	e	7			<u> </u>
								প্র	potopeil	te Some)	е Совіа	cosex	` }		nge Local	T.	45-	8-	e soeds
lev: F20321				•				<u> ranasia</u>	- Alexander	500 0 V				D Company	ISTRIBUTIO	N: White-T	Accompany	Samples, Valle	pp - 1 glumdary Copy, Pink - Field Personnel Copy

CHAIN OF CUSTODY RECORD

Date:	ב	,	13	į	21	
Date:	7		.,	•	-1	

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

6052 Merit Circle	 Suite 104 	· Laguna Hills,	CA • 92653

Lah Work Order No.: 21071098

Client: MEARN'S CONSULTING COPP Client Project ID: Analyses Requested																			
Client Address: 738 ASHLAN	D AVE							400											Geotracker EDD Info:
SANTA MONKA		10405				_1							40						
					TOWN GA	ITER NOT	HHWEST	PODO:					50358						
						Immediate C	24 Hour	1 1		~	24	8	2						Client LOGCODE
Client Tel. No.: 310 463 1921				Tim	e Requested:	148 Hour [72 Hour	METALS		8015B	Solf B	8015	ď	1270C					
Client Fax. No.:	1	-0-								ζç	8		8266 B	23					
Client Proj. Mgr.: SUGAN	MEARNS	KHD		L	- K	Normal)	Mobile			7	(12	\$	•∞	_					Site Global ID
Client Sample 1D.	Sierra No.	Date	Time	Matrix	Preservative	Container Type	No. of Containers	12	₹ 3	C4·Ω2	(43· ((13 · (48%	5/10/2					Field Point Names / Comments
SV16-5	3(7-13-21	1354	501L	PERV	ACCIDITE S VOA VIAIS	1/4	X	X	入	X	X	X	X					Contidents
546.60	32	1	1357]			1	X	×	X	λ	X	X	λ					
5416-15	33		140D					X	Х	X	Х	X	X	X					
SVI7-5	34		1444					X	×	X	Ϋ́	×	Х	X					
SV17-lo	3 50		1448					X	X	X	Χ	Х	X	X					
5417-15	36		1453					X	X	χ	X	×	χ	X					
SV18-5	31		1519					X	X	X	×	Х	X	X					
SV18/10	38		1525					Х	×	X	X	×	X	Х					
SV18/15	34		1529					χ	×	Υ	×	×	×	X					
SV19-5	40		1549	V	V	4	V	λ	x	X	Χ	X	Y	X					
	7) A)	· ·	Shipped Via:	D DELIV	GHED									er of	Containe	rs Subi	nitted to		Sample Disposal:
LOUSAN O MEDONS PUD 30	I Fa	6411.	(Carrico/Waybill No.)									Labor							Return to Client
Relinquisted BX QUI - Tage	m	<i>II</i> 3/2	Received By:	40	<u> </u>		7/13/21	nutilvos	ization I	o perío	rm the i	ınalyses	specifies	i above	a of curtody under SIER	RA's Te	rms and		Lab Disposal •
Соппрваву:		#7 <i>0</i> 7	Сопераку:	1500	an		Time: 1707					_	•	_	between SEE will be reti				Archivemos.
3 Refraqueshed Dy:		Date:	Received By:				Dete;					Tota	Num	ber of	f Contain	ers Re	eived by	.	Other
Соправу:		Трпи:	Соптравну:				Tires:					Labo	ratory	•					
A Rebisquished fly:		Date:	Received By:					FORT	ABONA'	ORY U	SE ON!	Y - Бигар	la Roceig	a Consti	fens: Chilled : Te	- rom	Ğ,	Ö	
							Dute:		inusis Saroplo 1						Project stive		7.	-16	
Company: Special Instructions:	!	Time:	Company:				Tinje							A	F	The same of the same	x0 By_\		
									Proporty	Cabello					Ods				
								4	Арреорг	ate Saco	ple Con	lainef		ď	Storage Loc	ation			
Rw. 120321								H DAV	3/36/13			<u> </u>	(1 to 3) of	4.3,7407			To Accompany	angles, Yel	low - Laboretury Copy, Pink - Field Personnel Copy

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

Date: 7 / 13 / 21 Page: 5 of 5

26052 Merit Circle								Lab W	ork O	rder N	D.; ,		ĮΩ	(69)						
Client: MEARNS CONSULTIN	h Copp	•		Cli	ent Project ID:	·					-	\nai	vses l	Reque	ested	 [
Client Address: 738 ASH	IAND	Ave			•			3	-									····]		Control PDD Inte
SANTA MON			.60-					100	1					1						Geotracker EDD Info:
- TITE NON	104 4	-1 10-7	ν υ		Town Co	NTER NOO	1111) PS-	_	·				5 5	ı	- 1	ł		1		
								88					5035	l		Ì				
						Immediate C	24 Hour	11	1	80	60	ďΩ	_	V		1	ŀ	- 1		Client LOGCODE
Client Tel. No.: 310 403 19	21			Time	Requested:	48 Hour	72 Hour	Metals		SOUS B	BOUF B	8015B	Siles B	52700	- 1					
Client Fax. No.:		_			. [4 Day	3 Day	1 4	İ	∞		82	8	8	-	İ				
Client Proj. Mgr.; SISAN L	<i>learns</i>	PUD				\	Mobile	😤	'	વ	બ	उ	20				Ì			Site Global ID
	I DOMESTICATION	- FT V				(Ixormar C		1		C4-C12	C13 · C22	3	- 1							
Client Sample ID,	Sierra	Date	Time	Matrix	Preservative	Container	No. of] ₹	(R. tt	4	2	Ü	ğ	2002	1					
	No.		7,540	172DUILA	1	Type	Containers	=	2	Ũ	ਹ	ဃူ	ا حج	3	1					Field Point Names / Comments
SV19-10	чі	7.13.21	1554	Sal	PISAV	ACETALE S VOA VIA	¥ 1/4	X	Ϋ́	X	X	X		X						
SV19-15	42))	1559	11		11	1/	Х	~-		χ		X	×						·
2014-13			דעניי		 	· · · · · ·			X	X		×	$\overline{}$	$^{\sim}$						
										- 1			-		- 1					
					T	·														
	(A-2017-1)		 	<u> </u>	<u> </u>			ļ								_				
										ļ		l		- 1						
								1												
							ļ	-							_			-		
											Ì	ŀ				1		- 1		
					T			1												
				<u></u>	ļ		<u> </u>									<u> </u>	_			
/7														[ŀ			-	ļ	
	/																			
1911	10	-3	1[.				1)	t		— .								
Sampler Standard	100	ZV -	Shipped Via:	mo De	MAEDED			1						er of C	ontair	ners Su	ıbmit	ted to		Sample Disposal:
MEARNS 14D 5	CUT I FO	again	(Carries/Waybill No.)								- 1	Labora	atory						- 10	Return to Client
I X STATE		1/12/2	1	1			7/13/4	Į.						hla chain					1.	_
telimiquethed By		Yate //	Received By:	<i>C.</i> /	<u> </u>	·····		4					-	l sbove ut vriting be					- ['	Lob Disposal *
Company:		<u> 1707 </u>	Сотрыну:	م کر	~~ <u>~</u>		Time 1707							TERRA Y					- [1	Archive mos.
3 Letinquabed By:												70 a 4 = 1				.				Other
		Date:	Reserved By:				Dote:	{			Ī		ratory	ber of (Conta	mers r	tecen	ea by	- ['	Other
Zompany:		Time:	Сопиралу:			·	Time						•							
4.3 Kelinquished By:		Date:	Received By:				Date:	FORL	ABORA	ORY D	F ONL	· Sampl	a Receip							
					•		Date:			4					* Del lito	ream L.(المنتدرات (أيارات	·υ	C XAV	
Company: Special Instructions:		Time:	Company:				Time:		Sample :	eals				(3 7),	esca Vall	ves - Ve	illed B	, €€		Annual Control of the
- Process - South Maritonian									Property					□ 。						
									rioperly	1,4000160				 ∪						
								'	Αρφιορεί	ase Sam	de Conta	MINERY		⊘ ′s₁	orage L	ocation	P	5-	34	کیمو
n: 120021						·· -· -· ···		ta in di ilik	<u>01.00</u>			(-43.75)	<u> </u>	- 20et 2000	INSTRUM	UTION W	ila - To A	CONTRACTO SA	erolm, Yelfor	or - Laboratory Comy, Pink - Pink Personnel Com

APPENDIX B

Jones Environmental Inc. Soil Vapor Analytical Results July 27 & 28, 2021

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Mearns Consulting Group Report date: **Client:**

738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Susan L Mearns PhD Attn: Date Sampled: 7/27/2021

> **Date Received:** 7/27/2021 7/27/2021 Date Analyzed:

7/27/2021

Town Center Northwest **Project: Project Address:**

2690 Walnut Ave **Physical State:** Soil Gas

Signal Hill, CA

ANALYSES REQUESTED

Client Address:

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWOCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical - Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Mobile Lab Manager

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

Report date:

Jones Ref. No.:

Date Sampled:

Date Received:

Date Analyzed:

Physical State:

7/27/2021

7/27/2021

7/27/2021

7/27/2021

Soil Gas

E-1172

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group
Client Address: 738 Ashland Avenue,

Santa Monica CA 90405

Attn: Susan L Mearns PhD

Project: Town Center Northwest

Project Address: 2690 Walnut Ave

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV1-5'	SV1-15'	SV2-5'	SV2-15'	SV2-15' REP		
Jones ID:	E-1172-01	E-1172-02	E-1172-03	E-1172-04	E-1172-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	13	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics												
Sample ID:	SV1-5'	SV1-15'	SV2-5'	SV2-15'	SV2-15' REP							
Jones ID:	E-1172-01	E-1172-02	E-1172-03	E-1172-04	E-1172-05	Reporting Limit	<u>Units</u>					
Analytes:	N.D.	N.D.	N.I.D.	ND) ID	0	, 2					
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3					
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3					
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3					
Freon 113	ND	ND	ND	ND	ND	16	μg/m3					
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3					
Isopropylbenzene	ND	57	ND	ND	ND	8	μg/m3					
4-Isopropyltoluene	ND	321	ND	ND	ND	8	μg/m3					
Methylene chloride	ND	20 ND	ND	17 ND	26	8	μg/m3					
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3					
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3					
Styrene	ND	ND	ND	ND	ND	8	μg/m3					
1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3					
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3					
Tetrachloroethene	ND	ND	ND	ND	ND	8	μg/m3					
Toluene	ND	16	ND	ND	ND	8	μg/m3					
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3					
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3					
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3					
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3					
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3					
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3					
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3					
1,2,4-Trimethylbenzene						8	μg/m3					
1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3					
Vinyl chloride						8	μg/m3					
m,p-Xylene	ND ND	ND ND	ND ND	ND ND	ND ND	16	μg/m3					
o-Xylene		ND ND				8	μg/m3					
MTBE	ND	ND	ND	ND	ND	40	μg/m3					
Ethyl-tert-butylether	ND ND	ND ND	ND ND	ND ND	ND ND	40 40	μg/m3					
Di-isopropylether	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3					
tert-amylmethylether	ND ND	ND ND					μg/m3					
tert-Butylalcohol			ND	ND	ND	400	μg/m3					
Gasoline Range Organics (C4-C12)	ND	25000	ND	ND	ND	2000	μg/m3					
Tracer:	ND	NID	NID	ND	NID	00	/ 2					
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3					
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3					
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3					
Dilution Factor	1	1	1	1	1							
Surrogate Recoveries:	Surrogate Recoveries: QC Limits											
Dibromofluoromethane	104%	101%	102%	101%	100%	60 - 140						
Toluene-d ₈	94%	95%	94%	92%	93%	60 - 140						
4-Bromofluorobenzene	94%	97%	94%	92%	92%	60 - 140						
Batch ID:	E3-072721-			E3-072721-								
Davii ID.	01	01	01	01	01							

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Mearns Consulting Group Report date: **Client:** 738 Ashland Avenue, Jones Ref. No.: **Client Address:**

SV3-15'

Santa Monica CA 90405

Susan L Mearns PhD Attn: **Date Sampled:** 7/27/2021

> **Date Received:** 7/27/2021 7/27/2021 Date Analyzed:

7/27/2021

E-1172

Town Center Northwest **Project:** 2690 Walnut Ave **Physical State:** Soil Gas **Project Address:**

Signal Hill, CA

SV3-5'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV4-15'

SV5-5'

SV4-5'

Jones ID: E-1172-06 E-1172-07 E-1172-08 E-1172-09 E-1172-10 **Reporting Limit Units Analytes:** Benzene ND ND ND ND ND 8 $\mu g/m3$ 8 ND ND ND ND ND Bromobenzene $\mu g/m3$ 8 Bromodichloromethane ND ND ND ND ND $\mu g/m3$ Bromoform ND ND ND ND ND 8 $\mu g/m3$ 12 n-Butylbenzene ND ND ND ND ND $\mu g/m3$ sec-Butylbenzene ND ND ND ND ND 12 $\mu g/m3$ tert-Butylbenzene 12 ND ND ND ND ND μg/m3 Carbon tetrachloride ND ND ND ND ND 8 $\mu g/m3$ 8 Chlorobenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 Chloroform ND ND ND $\mu g/m3$ 2-Chlorotoluene ND ND ND ND ND 12 $\mu g/m3$ ND ND 12 4-Chlorotoluene ND ND ND $\mu g/m3$ 8 Dibromochloromethane ND ND ND ND ND μg/m3 8 1,2-Dibromo-3-chloropropane ND ND ND ND ND $\mu g/m3$ 1,2-Dibromoethane (EDB) ND ND ND ND ND 8 $\mu g/m3$ 8 Dibromomethane ND ND ND ND ND $\mu g/m3$ 1.2- Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,3-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,4-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ Dichlorodifluoromethane ND ND ND 32 ND ND $\mu g/m3$ 8 1,1-Dichloroethane ND ND ND ND ND $\mu g/m3$ 8 1,2-Dichloroethane ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 8 1.1-Dichloroethene $\mu g/m3$ 8 ND ND ND ND ND cis-1,2-Dichloroethene $\mu g/m3$ 8 trans-1,2-Dichloroethene ND ND ND ND ND $\mu g/m3$ 8 1,2-Dichloropropane ND ND ND ND ND $\mu g/m3$ 8 1,3-Dichloropropane ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 16 $\mu g/m3$ 2,2-Dichloropropane 1,1-Dichloropropene ND ND ND ND ND 10 $\mu g/m3$

EPA 8260B - V	Volatile Organics by	GC/MS + Oxygenates/	Gasoline Range Organics
---------------	----------------------	---------------------	-------------------------

Sample ID:	SV3-5'	SV3-15'	SV4-5'	SV4-15'	SV5-5'		
Jones ID:	E-1172-06	E-1172-07	E-1172-08	E-1172-09	E-1172-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	8	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	18	17	22	12	ND	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	104%	102%	104%	100%	106%	60 - 140	
Toluene-d ₈	93%	94%	93%	92%	93%	60 - 140	
4-Bromofluorobenzene	93%	92%	94%	93%	92%	60 - 140	
	E3-072721-	E3-072721-	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01	01		

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Date Received: 7/27/2021 **Date Analyzed:** 7/27/2021

Project:Town Center NorthwestDaProject Address:2690 Walnut AvePh

SV6-5'

Physical State: Soil Gas

Signal Hill, CA

SV5-15'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV7-5'

SV7-15'

SV6-15'

<u></u>							
Jones ID:	E-1172-11	E-1172-12	E-1172-13	E-1172-14	E-1172-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	243	ND	8850	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile O	Organics by GC/MS	+ Oxygenates/Gasoline	Range Organics
------------------------	-------------------	-----------------------	----------------

Sample ID:	SV5-15'	SV6-5'	SV6-15'	SV7-5'	SV7-15'		
Jones ID:	E-1172-11	E-1172-12	E-1172-13	E-1172-14	E-1172-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	9	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	ND	17	8	ND	ND	8	$\mu g/m3$
Toluene	ND	ND	ND	ND	4210	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
m,p-Xylene	ND	ND	ND	ND	799	16	$\mu g/m3$
o-Xylene	ND	ND	ND	ND	441	8	$\mu g/m3$
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	317000	ND	46300000	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	30		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	102%	100%	97%	100%	97%	60 - 140	
Toluene-d ₈	95%	92%	101%	93%	97%	60 - 140	
4-Bromofluorobenzene	94%	94%	91%	93%	96%	60 - 140	
	E3-072721-	E3-072721-	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01	01		

Mearns Consulting Group Report date: 7/27/2021 **Client:** 738 Ashland Avenue, Jones Ref. No.: E-1172 **Client Address:**

Santa Monica CA 90405

Susan L Mearns PhD **Date Sampled:** 7/27/2021 Attn:

> **Date Received:** 7/27/2021 **Date Analyzed:** 7/27/2021

Project: Town Center Northwest **Project Address:** 2690 Walnut Ave **Physical State:** Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: SV8-5' SV8-15' SV9-5'

Jones ID:	E-1172-16	E-1172-17	E-1172-18	Reporting Limit	<u>Units</u>
Analytes:					
Benzene	20	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV8-5'	SV8-15'	SV9-5'		
Jones ID:	E-1172-16	E-1172-17	E-1172-18	Reporting Limit Uni	<u>iits</u>
Analytes:					
cis-1,3-Dichloropropene	ND	ND	ND	8 μg/1	m3
trans-1,3-Dichloropropene	ND	ND	ND	8 μg/1	m3
Ethylbenzene	ND	ND	ND	8 μg/1	m3
Freon 113	ND	ND	ND	16 μg/1	m3
Hexachlorobutadiene	ND	ND	ND	24 μg/1	m3
Isopropylbenzene	ND	ND	ND	8 μg/1	m3
4-Isopropyltoluene	ND	ND	ND	8 $\mu g/r$	m3
Methylene chloride	ND	ND	ND	8 μg/1	m3
Naphthalene	ND	ND	ND	40 μg/1	m3
n-Propylbenzene	ND	ND	ND	8 μg/1	m3
Styrene	ND	ND	ND	8 μg/1	m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	8 μg/1	m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	16 μg/1	m3
Tetrachloroethene	23	ND	ND	8 μg/1	m3
Toluene	15	ND	ND	8 μg/1	m3
1,2,3-Trichlorobenzene	ND	ND	ND	16 μg/1	m3
1,2,4-Trichlorobenzene	ND	ND	ND	16 μg/1	m3
1,1,1-Trichloroethane	ND	ND	ND	8 μg/1	m3
1,1,2-Trichloroethane	ND	ND	ND	8 μg/1	
Trichloroethene	ND	ND	ND	8 μg/ι	
Trichlorofluoromethane	ND	ND	ND	32 µg/1	
1,2,3-Trichloropropane	ND	ND	ND	8 μg/ι	
1,2,4-Trimethylbenzene	ND	ND	ND	8 μg/ι	
1,3,5-Trimethylbenzene	ND	ND	ND	8 μg/ι	
Vinyl chloride	ND	ND	ND	8 μg/ι	
m,p-Xylene	ND	ND	ND	16 μg/ι	
o-Xylene	ND	ND	ND	8 μg/ι	
MTBE	ND	ND	ND	40 μg/1	
Ethyl-tert-butylether	ND	ND	ND	40 μg/1	
Di-isopropylether	ND	ND	ND	40 μg/1	
tert-amylmethylether	ND	ND	ND	40 μg/1	
tert-Butylalcohol	ND	ND	ND	400 μg/1	
Gasoline Range Organics (C4-C12)	ND	ND	ND	2000 μg/1	m3
Tracer:					
n-Pentane	ND	ND	ND	80 μg/1	m3
n-Hexane	ND	ND	ND	80 μg/1	
n-Heptane	ND	ND	ND	80 μg/1	
Dilution Factor	1	1	1		
Surrogate Recoveries:				OC Limits	
Dibromofluoromethane	95%	96%	95%	60 - 140	
Toluene-d ₈	94%	92%	93%	60 - 140	
4-Bromofluorobenzene	95%	96%	94%	60 - 140	
Dotah ID.	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01		

ND = Value below reporting limit

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Date Received: 7/27/2021 **Date Analyzed:** 7/27/2021

Project:Town Center NorthwestDate Analyzed:7/27/2021Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072721- E3MB1	072721- E3SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072721- E3MB1	072721- E3SB1	Reporting Limit U	<u>nits</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND		g/m3
trans-1,3-Dichloropropene	ND	ND	8 μg	g/m3
Ethylbenzene	ND	ND		g/m3
Freon 113	ND	ND	16 μg	g/m3
Hexachlorobutadiene	ND	ND		g/m3
Isopropylbenzene	ND	ND		g/m3
4-Isopropyltoluene	ND	ND		g/m3
Methylene chloride	ND	ND		g/m3
Naphthalene	ND	ND		g/m3
n-Propylbenzene	ND	ND		g/m3
Styrene	ND	ND		g/m3
1,1,1,2-Tetrachloroethane	ND	ND		g/m3
1,1,2,2-Tetrachloroethane	ND	ND	16 μg	g/m3
Tetrachloroethene	ND	ND		g/m3
Toluene	ND	ND	8 μg	g/m3
1,2,3-Trichlorobenzene	ND	ND	16 μg	g/m3
1,2,4-Trichlorobenzene	ND	ND		g/m3
1,1,1-Trichloroethane	ND	ND		g/m3
1,1,2-Trichloroethane	ND	ND		g/m3
Trichloroethene	ND	ND		g/m3
Trichlorofluoromethane	ND	ND		g/m3
1,2,3-Trichloropropane	ND	ND		g/m3
1,2,4-Trimethylbenzene	ND	ND		g/m3
1,3,5-Trimethylbenzene	ND	ND	8 μg	g/m3
Vinyl chloride	ND	ND	8 μg	g/m3
m,p-Xylene	ND	ND	16 μg	g/m3
o-Xylene	ND	ND		g/m3
MTBE	ND	ND	40 μ g	g/m3
Ethyl-tert-butylether	ND	ND	40 μ g	g/m3
Di-isopropylether	ND	ND	40 μ g	g/m3
tert-amylmethylether	ND	ND	40 μ g	g/m3
tert-Butylalcohol	ND	ND	400 μg	g/m3
Gasoline Range Organics (C4-C12)	ND	ND	2000 μg	g/m3
Tracer:				
n-Pentane	ND	ND	80 μg	g/m3
n-Hexane	ND	ND	80 μg	g/m3
n-Heptane	ND	ND	80 μg	g/m3
Dilution Factor	1	1		
Surrogate Recoveries:			OC Limits	
Dibromofluoromethane	106%	100%	60 - 140	
Toluene-d ₈	96%	96%	60 - 140	
4-Bromofluorobenzene	93%	95%	60 - 140	
Batch ID:	E3-072721-	E3-072721-		
Datti ID.	01	01		

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Client Address: 738 Ashland Avenue, Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Project: Town Center Northwest Date Analyzed: 7/27/2021
Project Address: 2690 Walnut Ave Physical State: Soil Gas

Project Address: 2690 Walnut Ave Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

QC ID: E3-072721-01

Jones ID:	072721-E3LCS1	072721-E3LCSD1		072721-E3CCV1							
	LCS	LCSD		Acceptability		Acceptability					
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)					
Vinyl chloride	yl chloride 121% 114%		5.7%	60 - 140	109%	80 - 120					
1,1-Dichloroethene	110%	101%	8.1%	60 - 140	80%	80 - 120					
Cis-1,2-Dichloroethene	105%	102%	3.5%	70 - 130	86%	80 - 120					
1,1,1-Trichloroethane	98%	104%	6.6%	70 - 130	85%	80 - 120					
Benzene	113%	119%	4.9%	70 - 130	101%	80 - 120					
Trichloroethene	115%	119%	3.7%	70 - 130	101%	80 - 120					
Toluene	104%	109%	4.2%	70 - 130	97%	80 - 120					
Tetrachloroethene	116%	114%	2.0%	70 - 130	97%	80 - 120					
Chlorobenzene	109%	113%	3.7%	70 - 130	95%	80 - 120					
Ethylbenzene	99%	108%	9.2%	70 - 130	94%	80 - 120					
1,2,4 Trimethylbenzene	92%	93%	1.2%	70 - 130	87%	80 - 120					
Gasoline Range Organics (C4-C12)	102%	107%	5.0%	70 - 130	95%	80 - 120					
Surrogate Recovery:											
Dibromofluoromethane	102%	102%		60 - 140	100%	60 - 140					
Toluene-d ₈	97%	96%		60 - 140	95%	60 - 140					
4-Bromofluorobenzene	96%	96%		60 - 140	97%	60 - 140					

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl. Senia Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9885 week foresteny COM

Client Meanns Consulting Grou India Name Town Center Northwest	v			:		Date 7/27/202 Glient Project if	!1	_ 1P↑		3P p 7P a 10P EDF - 10% Sural			Surc		lenes Brolest #		
2690 Walnut Ave Signel Hill, CA Head						Turn Around Re Immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal Mobile Lab Reportin	tion	ton-penta of n-hexa acn-hepta	ne ine pyl Alchohol	Material (A)	නි	Organica	Rec	Public	Vacanum (In/H ₂ O)	idvara	Page 1 of 2 Semple Container: GASTIGHT GLASS SYRINGE Follows then above, see Heres.
Report To Super L Mearns PhD		Sempler Casey	Elis			KStendard o		n MDL*	Unite 1/2/25	• Metric	82BOB (VO	e Range			Nelic Vac	r of Cont	
Sample ID	Purge Number	Purge Volume (cal.)	Dete	Bample Collection Time	Sample Analysis Ylmo	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehells	Serración des	EPA 82	Gasoline	:		Magnet	едшту	Notes & Special Instructions
SV1-6'	3	1310	7/27/21	7:54	7:56	E-1172-01	200	CASEY.1	118012	SG	х	X		ļ	<2	1	
SV1-15'	3	1470	7/27/21	8:12	8.14	E-1172-02	200	CASEY.2	M100.114	SG	х	X			8	.1	,
SV2-6	3	1310	7/27/21	8:30	6:32	E-1172-03	200	CASEY.1	M100.201	SG	х	х			6	1,	
SV2-15	3	1470	7/27/21	8:51	8:52	E-1172-04	200	CASEY.2	M100.203	SG	x	x			<2	1	
SV2-15' REP	3	1470	7/27/21	10:05	10:06	E-1172-05	200	CASEY.2	M100.203	€G	×	х			<2	1	
SV3-5'	3	1310	7/27/21	9:24	9:27	E-1172-06	200	CASEY.1	118012	SG	X	x			<2	1	
SV3-15'	3	1470	7/27/21	9:43	9:46	E-1172-07	200	CASEY.2	M100.114	SG	×	×			<2	1	
\$V4-5'	3	1310	7/27/21	10:24	10:26	E-1172-08	200	CASEY.1	M100.201	SG	×	X.			<2	1	
SV4-15'	3	1470	7/27/21	10:42	10:44	E-1172-09	200	CASEY.2	M100.203	SG	×	х			<2	1	
SV5-5	3	1310	7/27/21	11:01	11:03	E-1172-10	200	CASEY.1	118012	SG	х	х			<2	1	
Representative Signature		Printed New SUSAN ME		<u> </u>	<u> </u>	Laberatory Signature	SIL			ed Na EY EL		<u> </u>				10	Total Number of Containers
Company Means Consulting Group	* (.5.	Deto 7/27	/2021	Time 14	l:30	Company JONES ENVIRONMENTA	NL, INC.		Cab	7 <i>12712</i> ()21	T	ime 14:	30		014	nt algorature on this Chain of Custody form constitutes
Representative Signature		Printed Na	(TIG			Laboratory Signature	****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		and Na	me					ac.	in agricults on any Chain or Casicary form constitution denowledgement that the above analyses have been pasted, and the information provided herein is correct and accurate.
Company		Date		Time		Company			Det	•		Ti	irina				

11007 Forest Pt. Santa Fe Springe, CA 90870 (714) 448-9937 Fax (714) 449-9885 www.jonesenv.com

Clare Mearns Consulting Grou Project Name Town Conter Northwest Project Address	Northwest		· · · · · · · · · · · · · · · · · · ·	Date 7/27/202 Citient Project 9	Purge Number: □ 1P \$/3P □ 7P □ 10P Shut-in Test: (*\forall)/ N					Report Options EDD EDF* - 10% Surch *Giobal 10					Jones Project # E-1172							
2690 Walnut Ave Signal Hill, CA Sinal Phone		Sampler				Turn Around Re Immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal (Mobile Lab Reportin	tion g Limits Low Level*	tr-penti tr-head vr-hepti a leoproj a 1,1-DF	rie irie iyl Alchohol A	e (Medición: 80), As (A), alamata (M)	(NOCe)	Range Organics &	Re	que	illo Viscuum (InMI ₂ O)	Containers			GASTIG	Of Container: HT GLASS S then shows a		•
Susan L Mearns PhD Sample 1D	Purgo	Purpo Velume (mL)	Elits Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnobolic	Barnepte M Bol Gas (84),	EPA 62606	Gasoline R			Magneheli	Number of		Not	ac & S pr	nciel instr	actions	
SV5-15'	3	1470	7/27/21		11:21	E-1172-11	200	CASEY.2	M100.114	SG		х			<2	1						
S V6-5'	3	1310	7/27/21	11:35	11:40	E-1172-12	200	CASEY.1	M100.201	SG	x	х			<2	1						
SV6-15'	3	1470	7/27/21	11:57	12:00	E-1172-13	200	CASEY.2	M100.203	SG	x	x			<2	1						
SV7-5'	3	1310	7/27/21	12:08	12:18	E-1172-14	200	CASEY.1	118012	SG	x	х			<2	1						
SV7-15	3 %	1470	7/27/21	12:34	12:38	E-1172-15	200	CASEY.2	M100.114	SG	x	x			<2	1		-				
SV8-5	3	1310	7/27/21	12:55	12:57	E-1172-16	200	CASEY.1	M100.201	ŞG	×	x			<2	1						
SV8-15'	3	1470	7/27/21	13:13	13:16	E-1172-17	200	CASEY.2	M100.203	SG	×	x			8	1						
SV9-5'	3	1310	7/27/21	13:54	13:56	E-1172-18	200	CASEY.1	118012	SG	×	х			<2	1						
										Ü												
SV7-15' DIL	1 -		7/27/21	13:32	13:37	-	-	-	M100.114	SG	×	×			<2	1						
Paper material from the state of the state o	<u> </u>	Printed Na SUSAN ME		<u> </u>	<u>. </u>	Labopatory Signature	Ch		CAS	eed Na EY EU						9	Total N	iumbe	r of Conta	hers		
Company Meetres Consulting Group Representative Signature		Date 7/27 Printed Na	7/2021 sne	Time 14	4:30	Company JONES ENVIRONMENT Laboratory Signature	AL, INC.			7/27/20 And Na		Ť	14	1:30		80	knowled	Ідете	ni that the Informatic	n of Custody above analy on provided	rses have i	peen
Company		Deto		Time		Company	go 14 of 1	<u> </u>	Deb	•		Ť	ine ine		-ve		<u>, </u>		and ac	curate.		

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date:

Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/202Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

Physical State: Soil C

ANALYSES REQUESTED

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWOCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Annalise O'Toole Mobile Lab Manager

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Soil Gas

Project:Town Center NorthwestDate Analyzed:Project Address:2690 Walnut AvePhysical State:

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV9-15'	SV9-15' REP	SV10-5'	SV10-15'	SV11-5'		
Jones ID:	E-1173-01	E-1173-02	E-1173-03	E-1173-04	E-1173-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics										
Sample ID:	SV9-15'	SV9-15' REP	SV10-5'	SV10-15'	SV11-5'					
Jones ID:	E-1173-01	E-1173-02	E-1173-03	E-1173-04	E-1173-05	Reporting Limit	<u>Units</u>			
Analytes:										
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$			
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$			
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$			
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$			
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$			
Tetrachloroethene	34	34	9	8	24	8	$\mu g/m3$			
Toluene	13	14	ND	ND	ND	8	$\mu g/m3$			
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$			
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3			
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$			
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3			
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3			
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3			
m,p-Xylene	ND	ND	ND	ND	ND	16	$\mu g/m3$			
o-Xylene	ND	ND	ND	ND	ND	8	$\mu g/m3$			
MTBE	ND	ND	ND	ND	ND	40	μg/m3			
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3			
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3			
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3			
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3			
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3			
Tracer:										
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3			
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3			
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3			
Dilution Factor	1	1	1	1	1					
Surrogate Recoveries:						QC Limi	<u>ts</u>			
Dibromofluoromethane	114%^	119%^	108%	123%^	107%	60 - 140				
Toluene-d ₈	103%	104%	89%	102%	89%	60 - 140				
4-Bromofluorobenzene	108%	@	97%	108%	96%	60 - 140				
Batch ID:	E2-072821-	E2-072821-	E3-072821-	E2-072821-	E3-072821-					
Duttii ID.	01	01	01	01	01					

ND = Value below reporting limit

^{@=} Surrogate outside acceptable limits. All other QC parameters in control, therefore data was accepted.

^{^ = 1,2-}dichloroethane-d4 used as surrogate for this batch.

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/202Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV11-15'	SV12-5'	SV12-15'	SV13-5'	SV13-5' REP		
Jones ID:	E-1173-06	E-1173-07	E-1173-08	E-1173-09	E-1173-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics SV13-5' SV11-15' SV12-5' SV12-15' SV13-5' Sample ID: REP Jones ID: E-1173-06 E-1173-07 E-1173-08 E-1173-09 E-1173-10 **Reporting Limit Units Analytes:** ND ND ND ND ND 8 cis-1,3-Dichloropropene $\mu g/m3$ 8 trans-1,3-Dichloropropene ND ND ND ND ND $\mu g/m3$ Ethylbenzene ND ND ND ND ND 8 $\mu g/m3$ 16 Freon 113 ND ND ND ND ND $\mu g/m3$ Hexachlorobutadiene ND ND ND ND ND 24 $\mu g/m3$ 8 Isopropylbenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 $\mu g/m3$ 4-Isopropyltoluene ND ND ND 8 Methylene chloride ND ND ND ND ND $\mu g/m3$ $\mu g/m3$ Naphthalene ND ND ND ND ND 40 8 n-Propylbenzene ND ND ND ND ND $\mu g/m3$ Styrene ND ND ND ND ND 8 $\mu g/m3$ ND ND ND ND ND 8 1,1,1,2-Tetrachloroethane $\mu g/m3$ 1,1,2,2-Tetrachloroethane ND ND ND ND ND 16 $\mu g/m3$ Tetrachloroethene ND 8 9 16 25 8 $\mu g/m3$ ND ND 8 ND ND ND $\mu g/m3$ Toluene 1,2,3-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,2,4-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,1,1-Trichloroethane ND ND ND ND ND 8 $\mu g/m3$ 8 1,1,2-Trichloroethane ND ND ND ND ND $\mu g/m3$ Trichloroethene ND ND ND ND ND 8 $\mu g/m3$ Trichlorofluoromethane ND 32 ND ND ND ND $\mu g/m3$ 8 1.2.3-Trichloropropane ND ND ND ND ND $\mu g/m3$ 1,2,4-Trimethylbenzene ND ND ND ND ND 8 $\mu g/m3$ 1,3,5-Trimethylbenzene 8 ND ND ND ND ND $\mu g/m3$ Vinyl chloride ND ND ND ND ND 8 $\mu g/m3$ ND 16 m,p-Xylene ND ND ND ND $\mu g/m3$ o-Xylene ND ND ND ND ND 8 $\mu g/m3$ **MTBE** ND ND ND ND ND 40 $\mu g/m3$ 40 Ethyl-tert-butylether ND ND ND ND ND $\mu g/m3$ Di-isopropylether 40 ND ND ND ND ND $\mu g/m3$ tert-amylmethylether ND ND ND ND ND 40 $\mu g/m3$ tert-Butylalcohol ND ND ND ND ND 400 $\mu g/m3$ Gasoline Range Organics (C4-C12) ND ND ND ND ND 2000 μg/m3 Tracer: ND ND ND ND ND 80 n-Pentane $\mu g/m3$ ND ND ND ND ND 80 n-Hexane $\mu g/m3$ ND ND ND ND ND 80 $\mu g/m3$ n-Heptane **Dilution Factor** 1 1 1 1 1 **QC** Limits **Surrogate Recoveries:** 60 - 140 Dibromofluoromethane 122%^ 105% 124%^ 106% 108% Toluene-d₈ 105% 87% 102% 87% 88% 60 - 1404-Bromofluorobenzene 107% 97% 105% 96% 96% 60 - 140

ND = Value below reporting limit

Batch ID:

E2-072821-

01

E3-072821-

01

E2-072821-

01

E3-072821-

01

E3-072821-

01

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Town Center Northwest

SV14-5'

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Soil Gas

Physical State:

Project Address: 2690 Walnut Ave

Project:

Sample ID:

Signal Hill, CA

SV13-15'

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV15-5'

SV15-15'

SV14-15'

<u></u>							
Jones ID:	E-1173-11	E-1173-12	E-1173-13	E-1173-14	E-1173-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV13-15'	SV14-5'	SV14-15'	SV15-5'	SV15-15'		
Jones ID:	E-1173-11	E-1173-12	E-1173-13	E-1173-14	E-1173-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	ND	10	ND	37	29	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	126%^	108%	123%^	105%	119%^	60 - 140	
Toluene-d ₈	106%	85%	102%	86%	101%	60 - 140	
4-Bromofluorobenzene	106%	98%	104%	95%	82%	60 - 140	
Dotah IDa	E2-072821-	E3-072821-	E2-072821-	E3-072821-	E2-072821-		
Batch ID:	01	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

SV16-15'

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/2021Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

SV16-5'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV17-15'

SV18-5'

SV17-5'

Sample 1D.	57105	5110 13	51175	5117 15	5 10 5		
Jones ID:	E-1173-16	E-1173-17	E-1173-18	E-1173-19	E-1173-20	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	27	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	51	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV16-5'	SV16-15'	SV17-5'	SV17-15'	SV18-5'		
Jones ID:	E-1173-16	E-1173-17	E-1173-18	E-1173-19	E-1173-20	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	74	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	16	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	41	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	15	18	32	10	13	8	μg/m3
Toluene	ND	44	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	287	ND	ND	ND	16	μg/m3
o-Xylene	ND	84	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	46800	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	112%	124%^	108%	121%^	106%	60 - 140	
Toluene-d ₈	86%	101%	85%	99%	86%	60 - 140	
4-Bromofluorobenzene	97%	114%	96%	104%	97%	60 - 140	
D / L ID	E3-072821-	E2-072821-	E3-072821-	E2-072821-	E3-072821-		
Batch ID:	01	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021

Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Town Center Northwest

Date Received: 7/28/2021

Date Analyzed: 7/28/2021

Project Address: 2690 Walnut Ave Physical State: Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: SV18-15' SV19-5'

Project:

Jones ID:	E-1173-21	E-1173-22	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	1150	18	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	649	12	$\mu g/m3$
sec-Butylbenzene	ND	2380	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV18-15'	SV19-5'

Jones ID:	E-1173-21	E-1173-22	Reporting Limit	<u>Units</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	8	$\mu g/m3$
Ethylbenzene	1910	2730	8	$\mu g/m3$
Freon 113	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	24	$\mu g/m3$
Isopropylbenzene	2490	4290	8	$\mu g/m3$
4-Isopropyltoluene	ND	13	8	$\mu g/m3$
Methylene chloride	ND	ND	8	$\mu g/m3$
Naphthalene	826	405	40	$\mu g/m3$
n-Propylbenzene	2640	5810	8	$\mu g/m3$
Styrene	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	16	$\mu g/m3$
Tetrachloroethene	ND	42	8	$\mu g/m3$
Toluene	ND	25	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	ND	32	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	ND	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	8	$\mu g/m3$
m,p-Xylene	1720	ND	16	$\mu g/m3$
o-Xylene	ND	ND	8	$\mu g/m3$
MTBE	8610	121000*	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	40	$\mu g/m3$
Di-isopropylether	4780	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	3380000	900000	2000	$\mu g/m3$
Tracer:				, =
n-Pentane	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	80	μg/m3
n-Heptane	ND	ND	80	μg/m3
Dilution Factor	12.5	1/3*		
Surrogate Recoveries:			QC Limits	<u>i</u>
Dibromofluoromethane	115%	103%	60 - 140	
Toluene-d ₈	106%	115%	60 - 140	
4-Bromofluorobenzene	123%	•	60 - 140	
D (1 1 D	E2-072721-	E3-072721-		
Batch ID:	01	01		

^{• =} Hydrocarbon interference prevented adequate surrogate recovery.

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021
Date Analyzed: 7/28/2021
Physical State: Soil Gas

Project: Town Center Northwest
Project Address: 2690 Walnut Ave

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072821- E2MB1	072821- E2SB1	072821- E3MB1	072821- E3SB1	Reporting Limit	<u>Units</u>
Analytes:						
Benzene	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072821- E2MB1	072821- E2SB1	072821- E3MB1	072821- E3SB1	Reporting Limit	<u>Units</u>
Analytes:						
cis-1,3-Dichloropropene	ND	ND	ND	ND		$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND		$\mu g/m3$
Freon 113	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND		μg/m3
n-Propylbenzene	ND	ND	ND	ND		μg/m3
Styrene	ND	ND	ND	ND		μg/m3
1,1,2-Tetrachloroethane	ND	ND	ND	ND		μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND		μg/m3
Tetrachloroethene	ND	ND	ND	ND		μg/m3
Toluene	ND	ND	ND	ND		μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND		μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND		μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND		μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND ND		μg/m3
Trichloroethene	ND ND	ND	ND	ND ND		
Trichlorofluoromethane	ND ND	ND	ND ND	ND ND		μg/m3
	ND ND	ND ND	ND ND	ND ND		μg/m3
1,2,3-Trichloropropane			ND ND			μg/m3
1,2,4-Trimethylbenzene	ND	ND		ND		μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND		$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND		$\mu g/m3$
m,p-Xylene	ND	ND	ND	ND		$\mu g/m3$
o-Xylene	ND	ND	ND	ND		μg/m3
MTBE	ND	ND	ND	ND		μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND		μg/m3
Di-isopropylether	ND	ND	ND	ND		μg/m3
tert-amylmethylether	ND	ND	ND	ND		μg/m3
tert-Butylalcohol	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:						
n-Pentane	ND	ND	ND	ND		μg/m3
n-Hexane	ND	ND	ND	ND		μg/m3
n-Heptane	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1		
Surrogate Recoveries:					QC Limits	
Dibromofluoromethane	121%^	114%^	105%	100%	60 - 140	
Toluene-d ₈	100%	104%	93%	90%	60 - 140	
4-Bromofluorobenzene	106%	107%	98%	96%	60 - 140	
D (L ID	E2-072821-	E2-072821-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

072821-E2LCS1

072821-E2CCV1

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Town Center Northwest

2690 Walnut Ave

Date Received: 7/28/2021

Date Analyzed: 7/28/2021

Physical State: Soil Gas

Project Address: 2690 Walnut Ave Signal Hill, CA

Project:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

072821-E2LCSD1

Batch ID: E2-072821-01

Jones ID:

Jones ID.	072021-E2ECS1	072021-E2LCSD1		07	2021-E2CC	V 1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	142% ¹	151%1	6.2%	60 - 140	50% ¹	80 - 120
1,1-Dichloroethene	121%	126%	3.7%	60 - 140	103%	80 - 120
Cis-1,2-Dichloroethene	124%	129%	4.0%	70 - 130	106%	80 - 120
1,1,1-Trichloroethane	124%	121%	2.5%	70 - 130	112%	80 - 120
Benzene	119%	124%	4.4%	70 - 130	110%	80 - 120
Trichloroethene	106%	112%	5.9%	70 - 130	103%	80 - 120
Toluene	120%	128%	6.8%	70 - 130	116%	80 - 120
Tetrachloroethene	129%	134% ²	3.9%	70 - 130	120%	80 - 120
Chlorobenzene	99%	101%	2.3%	70 - 130	96%	80 - 120
Ethylbenzene	78%	83%	6.3%	70 - 130	87%	80 - 120
1,2,4 Trimethylbenzene	119%	123%	3.1%	70 - 130	118%	80 - 120
Gasoline Range Organics (C4-C12)	109%	115%	5.0%	70 - 130	108%	80 - 120
Surrogate Recovery:						
1,2-Dichloroethane-d4	120%	119%		60 - 140	110%	60 - 140
Toluene-d ₈	101%	102%		60 - 140	102%	60 - 140
4-Bromofluorobenzene	105%	105%		60 - 140	108%	60 - 140

¹Recovery outside of acceptable limits. If compound was found in sample, the sample would have been re-ran for confirmation.

²Recovery outside of acceptable limits. CCV and LCS recoveries and LCS/LCSD RPD were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group **Report date:** 7/28/2021

738 Ashland Avenue, Jones Ref. No.: E-1173 **Client Address:**

Santa Monica CA 90405

Susan L Mearns PhD **Date Sampled:** 7/28/2021 Attn:

> **Date Received:** 7/28/2021 Town Center Northwest **Date Analyzed:** 7/28/2021 2690 Walnut Ave Physical State: Soil Gas

Project Address: Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

QC ID: E3-072821-01

Project:

Jones ID:	072821-E3LCS1	072821-E3LCSD1		07	2821-E3CC	V1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	CCV	Range (%)
Vinyl chloride	83%	81%	2.2%	60 - 140	100%	80 - 120
1,1-Dichloroethene	110%	101%	8.9%	60 - 140	94%	80 - 120
Cis-1,2-Dichloroethene	111%	109%	1.8%	70 - 130	101%	80 - 120
1,1,1-Trichloroethane	100%	98%	2.4%	70 - 130	99%	80 - 120
Benzene	124%	124%	0.3%	70 - 130	118%	80 - 120
Trichloroethene	126%	112%	12.1%	70 - 130	109%	80 - 120
Toluene	104%	103%	1.6%	70 - 130	105%	80 - 120
Tetrachloroethene	106%	112%	5.8%	70 - 130	103%	80 - 120
Chlorobenzene	110%	109%	0.7%	70 - 130	112%	80 - 120
Ethylbenzene	103%	99%	4.3%	70 - 130	106%	80 - 120
1,2,4 Trimethylbenzene	91%	91%	0.3%	70 - 130	99%	80 - 120
Gasoline Range Organics (C4-C12)	106%	104%	1.4%	70 - 130	107%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	100%	102%		60 - 140	100%	60 - 140
Toluene-d ₈	94%	94%		60 - 140	93%	60 - 140
4-Bromofluorobenzene	97%	100%		60 - 140	98%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl. Senta Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.ioneseny.com

Client Mearns Consulting Grou Project Name Town Center Northwest	· ;	:				7/28/202 Client Project #	:1	0.1P.)	urge Numbe \$13P in 7P in In Test: (Y	□ 10F			Rej EDD_ EDF* -		_		•	Jones	Project		÷
Project Address 2890 Walinut Ave Signal Hill, CA Grad Phone						Turn Around Rec immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal Mobile Lab Reportin	tion g Limite	n-penti it n-hexe tt n-hepti isoproj il 1,1-DF	ne ine był Alchohol A	Material (94)	? 5	lyeki százáso e	Rec	Jues	ecuum (firffig.O)	dainers		GASTIG	Of Container: HT GLASS SY than show, see		
Report To Susan L Mearns PhD	and Arthur Caracher	Sempler Casey	Eliks			KStandard B	Low Level* wichings for	n MDL* these limits	JO/17	######################################	3	Reng			2	of Co					
Sample ID	Purge Hualbar	Purgs Volume (mL)	Deta	Sample Collection Time	Sarupiu Analysia Timo	Laboratory Sample ID	Perge Rate (inLinkin)	Pump Used	Magnehelit	Sample of Cas (B	EPA 828	Geechine			Magnah	Number	No	tes & Spe	icial Instru	ctions	
SV9-15	3	1470	7/28/21	7:13	7:15	E-1173-01	200	CASEY.2	M100.203	SG	X	X			10	1			***		
SV9-15 REP	3	1470	7/28/21	7:23	7:31	E-1173-02	200	CASEY.2	M100.203	SG	x	Х			10	1					
8V10-5	3	1310	7/28/21	7:25	7:28	E-1173-03	200	CASEY.1	118012	SG	×	х			⋖	1			• • • • • • • • • • • • • • • • • • • •		
SV10-15	3	1470	7/28/21	7:44	7:49	E-1173-04	200	CASEY.2	M100.114	SG	х	х			<2	1					
SV11.5	3	1310	7/28/21	7:41	7:47	E-1173-06	200	CASEY.1	M100.201	SG	х	х			<2	1					
SV11-15'	3	1470	7/28/21	8:03	8:07	E-1173-08	200	CASEY.2	M100.203	SG	×	×			<2	1					
SV12-5	3	1310	7/28/21	8:00	8:05	E-1173-07	200	CASEY.1	118012	SG	×	x			<2	1			·	<u> </u>	-
SV12-15'	3	1470	7/28/21	8:20	8:25	E-1173-06	200	CASEY.2	M100.114	SG	x	х			<2	1		·			
SV13-5	3.	1310	7/28/21	8:23	8:24	E-1173-09	200	CASEY.1	M100.201	SG	х	х			<2	1					
SV13-5' REP	3	1310	7/28/21	8:33	8:42	E-1173-10	200	CASEY.1	M100.201	SG	X	x		寸	<2	1		···			
Paper un and Andrew	1	Printed Nati SUSAM ME		<u> </u>		Leberatory Signature	5/10	\		ted Na		<u> </u>		!		10	Total Numb	er of Contai	inent		
Company		Date		Time		Company JONES ENVIRONMENTA			Det	7/28/20	71	Ť	ime 11:	46							
Magms Consuling Group Representative Signature		Printed Nat	/2021		:45	Laboratory Signature	<u></u>	<u>.</u>		ted No.			143			ac	knowledgerr	ent that the re information	of Custody above analys in provided h	ee have be	en
Company		Date	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Time		Company			Dat	•		Ti	ree					and ec	cursie.		

11007 Forest PI Sente Fe Springs, CA 90870 (714) 449-9397 Fax (714) 449-9395 MANN IONBERTY (201

clent Mearns Consulting Grou	ıp .					Data 7/28/202	2j		urge Numbe (3P a 79 i				Ra EDP EDF*	port (15	LAB USE ONLY Jones Project #
Project Name						Cleant Project #	•			٠			(1 ⁹⁸).			3117	E.4476
Town Center Northwest		 	in the second	<u> </u>	2.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.9	SINI	·In Teat 🏵)/ N	14.			m 4D	<u> </u>	May Artist Table 1	
Project Address 2890 Walkeut Ave		- 22-1-1				Turn Abound Re			ecer		he	lye k		dno	ted		
Signal Hill, CA Empl	#44 ***********************************					o Ruite 34 Hours o Ruite 48 Hours o Ruite 48 Hours		if n-penti st n-hees if n-hees a leopiti							8	X	2 of 3 Sample Challege
Phone						□ Normal s Mobile Lab Reportin	a Limie	o 1,1-DF		\$ 1	ĵ.	Crosses			THE STATE OF	•	CARACTICANT CHARAS SYRBOGE
Report to Susan L Mearns PhD		Sampler Casey	Ells			Standard o	Low Level*		LIES/N2	2 4 5 E	DE (VOCE)	Range			3	Of Confe	
Sample EV	Purgo Number	Purge Volume (shL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample C	Purgo Pitto (mL/mit)	Pump Vood	Magashella	Service Servic	EPA 624	e dascina			1	Number	Notes & Special Instructions
SV13-15'	3	1470	7/28/21	8:34	8:43	E-1173-11	200	CASEY.2	M100,203	SG	X	X			<2	1.	
SV14-5'	3	1310	7/28/21	8:56	9:01	E-1173-12	200	CASEY.1	118012	SG	X	X.	12.		<2	1	
SV14-15'	3	1470	7/28/21	8:57	9:02	E-1173-13	200	CASEY.2	M100.114	SG	X	×		8 7 y 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<2	1	
SV15-5	3	1310	7/26/21	9:16	9:19	E-1173-14	200	CASEY.1	M100,201	8 G	X	X			<2	1	
SV15-15'	3	1470	7/28/21	9 :17	9:20	E-1173-15	200	CASEY.2	M100.203	SG	X	X	673		<2	1	A many transfer of the second
SV16-5'	3	1310	7/28/21	9:33	9:38	E-1173-16	200	CASEY.1	118012	SG	X	X			₹2	1	
SV16-15'	3	1470	7/28/21	9:34	9:39	E-1173-17	200	CASEY.2	M100.114	SG	X	X			<2	1	<u> </u>
SV17-5'	3	1310	7/28/21	9:52	9:57	E-1173-18	200	CASEY.1	M100.201	SG	X	х	145		<2	1	
SV17-15'	3	1470	7/28/21	9:53	9:58	E-1173-19	200	CASEY.2	M100.203	SG	X	X			<2	1	~
SV18-5'	- 3	1310	7/28/21	10:13	10:16	Ę-1173-20	200	CASEY.1	118012	SG	X	X			<2	1	
Rapro contactly Signature		Printed Ne SUSAN ME				Laboratory Signature	Ell	1		ied Han EY ELL						10	Total Number of Continers
Company Means Considing Group			/2021	Time 11	:48	Company JONES ENVIRONMENT/	AL, INC.			7/29/202		Ī	me 11:	:46			nt signature on this Cheir of Custody form constitutes
Representative Signature Company		Printed Na Cate		Time		Laboratory Signature Company		· • • • • • • • • • • • • • • • • • • •	Date	ted Nam		Ŧ	ine				knowledgement that the above analyses have been ested, and the information provided herein is correct and accurate.

11007 Forest Pl Santa Fe Springs, CA 90876 (714) 449-9937 Fax (714) 449-9681 www.jonesenv.com

Chert Means Consulting Grou Project Name Town Center Northwest	P		. 2. ·			7/28/202 Client Project #	: 1	o 1P	inge Numbe 163P a 7P In Test: (V	# 10f	•		EDD EDF*	109 al ID	Sun		• <u> </u>		Project (E-117	
Project Address 2699 Walnest Ave Signal Hill, CA Excel			751			Turn Around Received Attention Rush 24 Hours or Rush 48 Hours or Rush 72 Hours or Normal Mobile Lab	tion	pt n-penti pt n-hexa ptn-hepti	ne me syl Alchohol	00 1141		Organics Organics	Re	que	(Ornertico)	in the second			Of Intainer: GLASS SYRI In show, see M	
Report To Susan L Moarns PhD		Sampler Casey	Ellie			ं श्रिशकाderd a	Low Level* surcharge for		40/11 ³	b Metric:	EPA &2608 (VOCs)	e Range			helic Vacaus	rof Con				
Sample ID	Purge Number	Volume (mL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Parge Rate (mL/min)	Pemp Used	Magnehelit	A STATE	₽¥G∃	Gastifine			Magre	1	No	tes & Spec	lel Inetruc	tions
SV18-15'	3	1470	7/28/21	10:14	10:17	E-1173-21	200	CASEY.2	M100.114	SG	X	Х			36	1				•
SV19-5'	3	1310	7/28/21	10:32	10:36	E-1173-22	200	CASEY.1	M100.201	SG	×	X			٧	1				
SV18-15' DIL	-	- '	7/28/21	10:46	10:48	-	-	CASEY.2	M100.114	SG	×	Х		٠,	38	1	<u></u>			
SV19-5' DIL	-	-	7/28/21	11:10	11:12	_	-	CASEY.1	M100.201	SG	x	X			٧	1	}			
															٠				, <u>-</u>	
	1																			
C																				
911		Printed Na SUSAN ME				Cumf	(Gl	5		and Ma KEY EU						•	Total Numb	ber of Contains	int	
Company Means Consulting Group Representative Signature		Date 7/25 Printed No.	/2021 mie	Time 11	:45	Company JONES ENVIRONMENT/ Laboratory Signature	NL, INC.			7/28/20 Red No.				1:45	<u> </u>	*	negbelvans:	ie off laft tree relianneist ec	cve analyee provided he	
Сотрану		Date		Time		Company	oc 18-6-1		Det	•		Ťì	M+					and accu		

APPENDIX C

Boring Logs

Boring Location	SV1			Elevation	n and Date	um	GROU	JND SURFACE
Drilling Company	Kehoe Dril	ling		Comple	etion Depth	THE		15 FEET
Drilling Equipment	Geoprobe 78	800		Numbe	r of Sample	es		3
Boring	2 1/4 INCH DIA	METER	3	Water [Depth at Da	ate of Ins	tallation	NA
Type of Perforation	6" SS slotted	probe		Start Da	ate 7/	12/21	Completion	on Date 7/12/21
Type of Perforation Backfill	#3 Sand	d		Date De	eveloped a	nd Samp	led	NA
Type of Seal	BENTONI	TE		Logged	By S	RF	Checked	By SRF
<u> </u>			L	OG DATA	4	SAM	PLE DATA	
DESCR	IPTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, d Pr Plasticity 6 — 7 — 8 — 6	ense, masive		CL		#3 San 0 ■ Bentoni — 1/4 " poly	SV1-	5' 5-5.	5' NO STAIN NO ODOR
10— CLAY: Lt-med brn, f pr plastivity	irm, dense, massive	772	CL		0	SV1-	10' 10.0-1	0.5 NO STAIN NO ODOR
13— 14— SAND: Gry-Grn, v fn 15— TD 15.5'	massive, "sugar San	d"	SP	i/a	— Hydrated — 6" SS P	d bentonite rabe SV1-1		NO STAIN NO ODOR
MEAF CONSU COF	LTING		Pro	ject Numb	per	Town	G LOG Center N Hill, Califo	1W

Drilling Company Drilling Equipment	Kehoe Drill								SURFACE
Orilling Equipment	Tronog Brill	ing		Comple	tion Dept	h		15 F	EET
0 171	Geoprobe 78	300		Number	of Samp	les			3
Boring	2 1/4 INCH DIAI	METER	3	Water D	Depth at D	ate of	nstalla	tion	NA
Type of Perforation	6" SS slotted j	probe		Start Da	ate	7/12/21	Con	npletion D	Date 7/12/21
Type of Perforation Backfill	#3 Sand	7		Date De	eveloped	and Sa	mpled		NA
Type of Seal	BENTONIT	ΓE		Logged	Ву	SRF	Che	cked By	SRF
6			L	OG DATA	1	S	AMPLE	DATA	
DESCRI	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMDIE	NUMBER	SAMPLE	REMARKS
0 Dirt Surface						+	-		
1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — 9 — 40		7772	CL			S\ nite ly tubinç		5-5.5'	NO STAIN NO ODOR
10— CLAY: Lt-med brn, file pr plasticity 11— 12— 13— 14—					O Hydrati	ed bento		10.0-10.5	NO ODOR
15 Buff, massive, TD 15.5'	v fn sandy	KBKBKE	ML	Ū/A	0	sv	2-15'	15-15.5	NO STAIN NO ODOR
MEAF	RNS		T					og sv	2
CONSU	TING							nter NW California	
COR			Dro	ject Numb	er	Date	ai rilli,	PM	

Boring Location	SV3			Elevation	and Datum	1	GROUND	SURFACE
Orilling Company	Kehoe Dr	rilling		Completio	on Depth	77-	15 FI	EET
Drilling Equipment	Geoprobe 1	7800		Number o	f Samples			3
Boring	2 1/4 INCH DI	AMETER	7	Water De	pth at Date	e of Installa	ation	NA
Type of Perforation	6" SS slotte	d probe		Start Date	7/12	2/21 Coi	mpletion D	ate 7/12/21
Type of Perforation Backfill	#3 Sar	nd		Date Dev	eloped and	d Sampled		NA
Type of Seal	BENTON	IITE		Logged B	y SRI	F Ch	ecked By	SRF
			L	OG DATA		SAMPLE	DATA	
DESCRI	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface								
3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity	ense, masive	272	CL		- #3 Sand 0 - Bentonite	A	5-5.5'	NO STAIN NO ODOR
9 — CLAY: Lt-med brn, fi pr plasticity	rm, dense, massiv	/e /// /	CL		0	SV3-10'	10.0-10.5	NO STAIN NO ODOR
13— 14— 15— SILT: Buff, massive, TD 15.5'	v fn sandy	Rexexe	ML		Hydrated I - 6" SS Pro 0		15-15.5	NO STAIN NO ODOR
MEAF	LTING					Signal Hill	enter NW , California	1
COF	rP.		Pro	ject Numbe		ate 2, 2021	PN	n Page

Boring Location	SV4	3007	Elevation	and Datum	1 (GROUND S	BURFACE
Drilling Company	Kehoe Drilling		Complet	ion Depth		15 FE	ET
Orilling Equipment	Geoprobe 7800		Number	of Samples		7	3
Boring	2 1/4 INCH DIAME	TER	Water D	epth at Date	of Installa	tion	NA
ype of Perforation	6" SS slotted pro	be	Start Da	te 7/12	/21 Con	pletion D	ate 7/12/21
ype of Perforation Backfill	#3 Sand		Date De	veloped and	Sampled		NA
ype of Seal	BENTONITE		Logged	By SRF	Che	cked By	SRF
6 1			OG DATA		SAMPLE	DATA	
DESCRII	PTION	USCS	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — Macro core refusal 8', 6		CL	#1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	#3 Sand 0 Bentonite − 1/4 " poly t		5-5.5'	NO STAIN NO ODOR
10— CLAY: Lt-med brn, fi pr plasticity 11— 12— 13—	rm, dense, massive Z	CL CL		0		10.0-10.5	NO STAIN NO ODOR
15— SILT: Buff, massive, TD 15.5'	, v fn sandy	ML	1/4	— Hydrated I — 6" SS Pro 0	be	15-15.5	NO STAIN NO ODOR
MEAF	RNS			E	BORING I Town Ce Signal Hill,	enter NW	
COF		Pr	oject Numb		ate 2, 2021	PM	n Page 1 of 1

Boring Lo	ocation	SV5			Elevation	n and D	atum		GROUND	SURFACE
Drilling C	Company	Kehoe Dr	rilling		Comple	tion De	oth		15 F	EET
Drilling E	Equipment	Geoprobe 1	7800		Numbe	r of Sam	ples			3
Boring		2 1/4 INCH DI	AMETER	3	Water I	Depth at	Date o	f Installa	ation	NA
Type of I	Perforation	6" SS slotte	d probe		Start Da	ate	7/12/2	Cor	mpletion D)ate 7/12/21
Type of I	Perforation Backfill	#3 Sar	nd		Date De	evelope	d and S	ampled	W	NA
Type of S	Seal	BENTON	IITE		Logged	Ву	SRF	Che	ecked By	SRF
fi I				L	OG DATA	1	= 1/ ju	SAMPLE	DATA	
DEPTH (FEET)	DESCRI	PTION	ПТНОГОВУ	nscs	WELL	OVA-PPM		SAMPLE	SAMPLE	REMARKS
0 1	Dirt Surface			A THE	*					
6 -	CLAY: Med brn, firm, Pr Plasticity	dense, masive	7/2	CL		0 ← Ben	Sand tonite poly tub	SV5-5' ing	5-5.5'	NO STAIN NO ODOR
9 — 10 — <u>c</u> 11 —	CLAY: Lt-med brn, fi silty, pr plasti		/e ////	CL		0		SV5-10'	10.0-10.5	NO STAIN NO ODOR
13	SILT: Buff, massive,	v fn sandy	KENEK	ML			ated be		15-15.5	NO STAIN NO ODOR
	MEAF CONSUI COF	LTING		Pro	J Dject Num	ber		Town Co gnal Hill	LOG SV enter NW , Californi	a

Boring	Location	SV6			Elevation	and Datur	n	GROUND S	SURFACE
Drilling	Company	Kehoe Dril	ling		Complet	ion Depth		15 FI	EET
Drilling	Equipment	Geoprobe 78	B00		Number	of Samples	3		3
Boring		2 1/4 INCH DIA	METER	7	Water D	epth at Dat	e of Installa	ation	NA
Гуре о	f Perforation	6" SS slotted	probe	robe Sta		te 7/1	3/21 Co	mpletion Date 7/13/	
Type of	Perforation Backfill	#3 Sand	ı		Date De	veloped an	Depth Samples 3 th at Date of Installation NA 7/13/21 Completion Date 7/10 Oped and Sampled NA SRF Checked By SRF SAMPLE DATA WILLIAM WAS NA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA NO STAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA WHAT SAMPLE DATA NO STAMPLE DATA WHAT SAMPLE DATA NO STAMPLE DATA WHAT SAMPLE		NA
Type of	Seal	BENTONI	TE		Logged	By SR	F Ch	ecked By	SRF
6				L	OG DATA		SAMPLE	DATA	
DEPTH (FEET)	DESCRI	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0	Dirt Surface				8 9 9				
1 — 2 — 3 — 4 — 5 — 7 — 8 — 9 —	CLAY: Lt brn, firm, de Pr Plasticity	ense, masive	777	CL		0 ← Bentonit	SV6-5'	5-5.5'	NO STAIN NO ODOR
10-	CLAY: Lt-med brn, finger plasticity	rm, dense, massive	<i>777</i>	CL				10.0-10.5	NO STAIN NO ODOR
14— 15— 16—	SILT: Off wht, massi	ve, v fn sandy	SEXESS	ML				15-15.5	NO STAIN NO ODOR
	MEAF	LTING						LOG SV enter NW I, California	
	COF	P.		Pro	oject Numb	er [Date 13, 2021	PN	// Pag

Boring Location	SV7			Elevation	n and Datu	m	GROUND	SURFACE
Drilling Company	Kehoe Drilli	ing		Comple	etion Depth		15 F	EET
Orilling Equipment	Geoprobe 78	00		Numbe	r of Sample:	3		3
Boring	2 1/4 INCH DIAM	METER	3	Water [Depth at Dat	e of Installa	ation	NA
Type of Perforation	6" SS slotted p	orobe	obe		ate 7/1	3/21 Co	mpletion D	Date 7/13/21
Type of Perforation Backfill	#3 Sand			Date De	eveloped an	d Sampled	the second	NA
Type of Seal	BENTONIT	E		Logged	By SF	F Ch	ecked By	SRF
6			L	OG DATA	4	SAMPLE	DATA	
DESCRIF	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, der Pr Plasticity 6 — 7 — 8 — 9 —	nse, masive	7772	CL		#3 Sand 0 Bentonite 1/4 " poly	SV7-5'	5-5.5'	NO STAIN NO ODOR
10— CLAY: Lt-med bm, fir pr plasticity 11— 12— 13— 14—	m, dense, massive	<i>///</i>	CL		O Hydrated		10.0-10.5	NO STAIN NO ODOR
15 SILT: Buff, massive, 15 TD 15.5'	v fn sandy	KBKBKE	ML		- 6" SS Pr 0	SV7-15'	15-15.5	NO STAIN NO ODOR
MEAR	TING				E	BORING Town Ce Signal Hill	enter NW	
COR	P.		Pro	ject Numb		ate 13, 2021	PN	Page 1 of 1

Boring Location	SV8			Elevation	and Datur	n	GROUND S	BURFACE
Orilling Company	Kehoe Dri	illing		Completion	on Depth		15 FE	
Orilling Equipment	Geoprobe 7	800		Number of	of Samples		- 7-1	3
Boring	2 1/4 INCH DI/	AMETER	3	Water De	epth at Dat	e of Installa	tion	NA
Type of Perforation	6" SS slotted	probe			e 7/1	3/21 Con	npletion D	ate 7/13/21
Type of Perforation Backfil	#3 San	d		Date Dev	eloped an	d Sampled		NA
Type of Seal	BENTON	ITE		Logged E	By SR	F Che	ecked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DEPTH	RIPTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0 Dirt Surface				81818				
1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, Pr Plasticity 6 — 7 — 8 — 9 —	dense, masive	777	CL		— #3 Sand 0 — Bentonit - 1/4 " poly	SV8-5'	5-5.5'	SLT STAIN NO ODOR
10— CLAY: Lt-med brr pr plasticit	n, firm, dense, massiv y	re ZZZ	CL		0	SV8-10 ¹	10.0-10.5	NO STAIN NO ODOR
13—						bentonite		
CLAY Buff, firm, r	nassive, silty asticity	777	CL		— 6" SS Pr 0	SV8-15'	15-15.5	NO STAIN NO ODOR
MEA	RNS		T			BORING Town Co	enter NW	
	RP.		Pr	oject Numb		Date 13, 2021	P	

Boring Loca	tion	SV9			Elevation	and Datur	n	GROUND S	SURFACE	
Drilling Com	pany	Kehoe Dril	ling		Complet	ion Depth		15 FI	EET	
rilling Equi	pment	Geoprobe 7	800		Number	of Samples	8		3	
Boring		2 1/4 INCH DIA	METER	1	Water D	epth at Dat	e of Installa	ation	NA	
ype of Per	foration	6" SS slotted	probe		Start Da	te 7/1	3/21 Cor	mpletion D	ate 7/13/21	
ype of Per	foration Backfill	#3 Sand	d	Date Develo		veloped an	d Sampled		NA	
ype of Sea	L	BENTONI	TE		Logged	By SF	RF Che	ecked By	SRF	
<u> </u>				L	OG DATA		SAMPLE	DATA		
DEPTH (FEET)	DESCRI	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
0 Dirt	Surface				S. (2)					
1 — 2 — 3 — 4 — 5 — CLA 6 — 7 — 8 — 9 —	LY: Dk brn, firm, o	lense, masive	772	CL		#3 Sand 0 Bentonit - 1/4 " poly	SV9-5.0	5-5.5'	NO STAIN NO ODOR	
10— CLA	Med brn, firm pr plasticity	, dense, massive	777	CL		0	SV9-10'	10.0-10.5	NO STAIN NO ODOR	
1						- Hydrated	Dentonite	1 1		
14—					30,000,000,000	- 6" SS P	robe			
13-	Med brn, firm 15.5' massiv	, firm, dense e, pr plasticity	777	CL	i/a	0	SV9-15'	15-15.5	NO STAIN NO ODOR	
	MEARNS CONSULTING CORP.				oject Numb		BORING Town C Signal Hill Date	enter NW	a	

Boring Location	SV10			Elevation	n and Datur	n (GROUND :	SURFACE
Drilling Company	Kehoe Dr	illing		Complet	ion Depth		15 F	EET
Drilling Equipment	Geoprobe	7800		Number	of Samples			3
Boring	2 1/4 INCH DI	AMETER	3	Water D	epth at Dat	e of Installa	tion	NA
Type of Perforation	6" SS slotted	d probe		Start Da	te 7/1:	3/21 Con	npletion D	ate 7/13/21
Type of Perforation Backfill	#3 Sar	nd		Date De	veloped an	d Sampled		NA
Type of Seal	BENTON	IITE		Logged	By SR	F Che	cked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DEPT	RIPTION	ПТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0 Dirt Surface		+-						
1 — 2 — 3 — 4 — 5 — CLAY: Dk brn, firm Pr Plasticity 6 — 7 — 8 — 9 —	, dense, masive	7772	CL		#3 Sand 0 Bentonite 1/4 " poly to	SV10-5.0	5-5.5'	NO STAIN NO ODOR
10— CLAY: Med brn, fin pr plasticity		777	CL		0	SV10-10'	10.0-10.5	NO STAIN NO ODOR
13— 14— 15— CLAY Med brn, first TD 15.5' mass	m, firm, dense ive, pr plasticity	777	CL	i'A	Hydrated6" SS Pro0	Harry Control	15-15.5	NO STAIN NO ODOR
MEARNS CONSULTING CORP.				ject Numb	er D	ORING L Town Ce Signal Hill, Pate 13, 2021	nter NW	i

Boring Location	SV11			Elevation	and Datur	n (GROUND	SURFACE	
Orilling Company	Kehoe Dr	illing		Completi	ion Depth		15 F	EET	
Orilling Equipment	Geoprobe 7	7800		Number	of Samples			3	
Boring	2 1/4 INCH DI	AMETER	3	Water De	epth at Dat	e of Installa	tion	NA	
Type of Perforation	6" SS slotted	d probe	obe Start Date		te 7/10	3/21 Con	npletion D	Date 7/13/21	
Type of Perforation Backfill	#3 San	ıd		Date De	veloped an	d Sampled		NA	
Type of Seal	BENTON	IITE		Logged I	By SR	F Che	cked By	SRF	
6			L	OG DATA		SAMPLE	DATA		
DESCRI	IPTION	ПТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
0 Dirt Surface 1 - 2 - 3 - 4 - 4 -		1							
5 — CLAY: Dk brn, firm, of Pr Plasticity	dense, masive	777	CL		- #3 Sand 0 Bentonite - 1/4 " poly t	SV11-5.0	5-5.5'	SLT STAIN V SLT ODOR	
9 — 10 — CLAY: Med brn, firm pr plasticity 11 —	n, dense, massive	777	CL		0	SV11-10'	10.0-10.5	NO STAIN NO ODOR	
13— 14— 15— CLAY Med brn, firm, TD 15.5' massive	, firm, dense e, pr plasticity	777	CL		- Hydrated - 6" SS Pro 0		15-15.5	NO STAIN NO ODOR	
CONSU	MEARNS CONSULTING CORP.				er D	ORING L Town Ce Signal Hill, ate 3, 2021	nter NW	a	

Geoprobe 7 2 1/4 INCH DIA 6" SS slotted #3 San BENTON	'800 AMETER I probe d		Number Water D Start Da	eveloped and By SRI	of Installated 1/21 Com	ion pletion D	3 NA
2 1/4 INCH DIA 6" SS slotted #3 San BENTON	AMETER I probe d ITE	L	Water Date De Logged	pepth at Date te 7/13 eveloped and By SRI	of Installation of Installatio	pletion D cked By	NA Pate 7/13/21 NA SRF
6" SS slotted #3 San BENTON	l probe d ITE	L	Start Da Date De Logged OG DATA	eveloped and By SRI	S/21 Com Sampled Check SAMPLE I	pletion D cked By	NA SRF
#3 San	ITE		Date De Logged LOG DATA	eveloped and By SRI	SAMPLE	cked By	NA SRF
BENTON	ITE		Logged LOG DATA	By SRI	SAMPLE I	DATA	SRF
			OG DATA		SAMPLE	DATA	
RIPTION	ПТНОГОВУ		E E			42.02	REMARKS
RIPTION	LITHOLOGY	nscs	WELL	уд-РРМ	MBER	MPLE	REMARKS
				0	SZ	SAI	
			W. S. W.				
dense, masive	772	CL				5-5.5'	NO STAIN NO ODOR
	7//	CL		0	SV12-10'1	0.0-10.5	NO STAIN NO ODOR
e, v fn sandv	F(19).F(1	IM	DESCRIPTION OF THE PERSON OF T				NO STAIN
	1313131	IVIL		U	SV12-15'	15-15.5	NO ODOR
JLTING		T			Town Cer	nter NW	
	m, dense, massive e, v in sandy RNS JLTING RP.	m, dense, massive ZZZ e, v in sandy RNS JLTING	m, dense, massive ZZZ CL e, v fn sandy RNS JLTING	e, v fin sandy RNS JLTING	dense, masive ZZ CL	dense, masive CL Bentonite 1/4 " poly tubing Told Probe e, v fin sandy RNS BORING LO Town Cer Signal Hill,	dense, masive CL Bentonite 1/4 " poly tubing Thydrated bentonite Hydrated bentonite 6" SS Probe SV12-10" 10.0-10.5 Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date Project Number Date

Rehoe Drilling eoprobe 7800 INCH DIAMETE SS slotted probe #3 Sand BENTONITE ASSOCIATION AND ADDRESS A		Number I Water I	eveloped and	of Installation for Installation Sampled	npletion D	3 NA
INCH DIAMETE SS slotted probe #3 Sand BENTONITE		Water I Start Da Date De Logged	Depth at Date ate 7/13 eveloped and By SRE	of Installation i/21 Control Sampled Che SAMPLE	npletion D cked By	NA Date 7/13/21 NA SRF
#3 Sand BENTONITE		Start Date De Logged	eveloped and By SRF	SAMPLE	npletion D cked By DATA	NA SRF
#3 Sand BENTONITE		Date De Logged	eveloped and I By SRF	Sampled Che	cked By	NA SRF
BENTONITE		Logged OG DATA	By SRE	SAMPLE	DATA	SRF
		OG DATA	Α	SAMPLE	DATA	
ГТНОГОВУ						REMARKS
гітногову	SOSN	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
ssive	CL			ubing		NO STAIN NO ODOR
dy GREEK	ML	1/4		be	15-15.5	NO STAIN NO ODOR
RNS			В	Town Ce	enter NW	
NG.	_		Later Control			
1	ly 38368	NG	V PREREE ML IV	TRATE ML O Hydrated 6" SS Pro 0 Project Number	Hydrated bentonite — 6" SS Probe O SV13-15' BORING I Town Ce Signal Hill	Town Center NW Signal Hill, Californi Project Number Date Project Number Date Project Number Date SV13-10' 10.0-10.5 A SV13-10' 10.0-10.5 BY SV13-10' 10.0-10.5 A SV13-10' 10.0-10.5 BY SV13-10' 10.0-10.5 A SV13-10' 10.0-10.5 BORING LOG SV Town Center NW Signal Hill, Californi Project Number Date

Boring Location	SV14			Elevation	n and Dati	ım	C	ROUND	SURFACE
rilling Company	Kehoe Di	rilling		Complet	tion Depth			15 FI	EET
Prilling Equipment	Geoprobe	7800		Number	of Sample	es			3
Boring	2 1/4 INCH DI	AMETER	3	Water D	epth at Da	ate of Ins	stalla	tion	NA
Type of Perforation	6" SS slotte	d probe		Start Da	ite 7/	13/21	Com	pletion D	ate 7/13/21
Type of Perforation Backfill	#3 Sai	nd		Date De	veloped a	nd Sam	oled		NA
Type of Seal	BENTON	NITE		Logged	By S	RF	Che	cked By	SRF
6			L	OG DATA		SAM	IPLE	DATA	
DESCF	RIPTION	ПТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	NOMBER	SAMPLE	REMARKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, Pr Plasticity 6 — 7 — 8 —	dense, masive	777	CL		#3 San0■ Benton1/4 " pol	SV1	4-5.0	5-5,5'	NO STAIN NO ODOR
9 — CLAY: Lt brn, firm, pr plasticity		777	CL		0	SV1	4-10'	10.0-10.5	NO STAIN NO ODOR
13— 14— 15— CLAY: Lt bm, silty, TD 15.5'	massive, pr plastici	ty ///	GL		— Hydrate — 6" SS F 0			15-15.5	NO STAIN NO ODOR
	RNS					Tov	n Ce	OG SV nter NW California	
	RP.		Pro	oject Numl	oer Jul	Date y 13, 202	1	PI	M Page

Boring Location	SV15			Elevation	n and Datun	n (GROUND	SURFACE
Drilling Company	Kehoe D	rilling		Complet	ion Depth		15 F	EET
Orilling Equipment	Geoprobe	7800		Number	of Samples			3
Boring	2 1/4 INCH D	IAMETER	4	Water D	epth at Date	e of Installa	tion	NA
Type of Perforation	6" SS slotte	ed probe		Start Da	te 7/13	3/21 Con	pletion D	Pate 7/13/21
ype of Perforation Backfill	#3 Sa	nd		Date De	veloped and	d Sampled		NA
ype of Seal	BENTO	VITE		Logged	By SR	F Che	cked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DEPT	IPTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface Dirt Surface CLAY: Lt brn, firm, control of the present of the pre	lense, masive		CL		#3 Sand 0 Bentonite - 1/4 " poly 1	SV15-5.0	5-5.5'	NO STAIN NO ODOR
9 — CLAY: Lt brn, firm, pr plasticity	dense, massive	777	CL		0	SV15-10¹	10.0-10.5	NO STAIN NO ODOR
14— 15— CLAY: Buff, massive TD 15.5'		777	ML	i'A	- Hydrated - 6" SS Pro 0	SV15-15'		NO STAIN NO ODOR
CONSU	ILTING					ORING L Town Ce Signal Hill,	nter NW	a
COI	RP.		Pro	ject Numb		ate 13, 2021	PN	A Page

Boring Location		SV16			Elevatio	n and Datun	n (GROUND	SURFACE	
Orilling Company		Kehoe Dri	lling		Comple	tion Depth		15 F	EET	
Drilling Equipment		Geoprobe 7	800		Number	of Samples			3	
Boring		2 1/4 INCH DIA	METER	3	Water I	Depth at Date	e of Installa	tion	NA	
Type of Perforation	ment Geoprotice 2 1/4 INCH ation 6" SS slow ation Backfill #3 ST BENTO DESCRIPTION Inface Med brn, firm, dense, massive Pr Plasticity Lt brn, firm, dense, massive pr plasticity	6" SS slotted	probe		Start Da	ate 7/13	3/21 Con	npletion D	Date 7/13/21	
Type of Perforation	Backfill	#3 Sand	d		Date De	eveloped and	d Sampled		NA	
Type of Seal		BENTONI	TE		Logged	By SR	F Che	cked By	SRF	
6				T	OG DATA	1	SAMPLE	DATA		
DEPT	DESCRIP	TION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
0 Dirt Surfac	е		1							
1 — 2 — 3 — 4 — 5 — CLAY: Mei Pri	d brn, firm, o	lense, masive	777	CL		#3 Sand 0 Bentonite 1/4 " poly t		5-5.5'	NO STAIN NO ODOR	
		nse, massive	777	CL		0	SV16-10'	10.0-10.5	NO STAIN NO ODOR	
13— 14— 15— CLAY: Dk TD 15.5'			777	CL		→ Hydrated I → 6" SS Pro 4.7		15-15.5	SLT STAIN SLT ODOR	
COI	MEARNS CONSULTING CORP.				ject Numb	per D	ORING L Town Ce Signal Hill, ate 3, 2021	nter NW	a	

Boring Location	SV17			Elevation	and Date	ım	GROU	IND SURFACE	
Drilling Company	Kehoe Dril	lling		Complet	ion Depth			15 FEET	
Orilling Equipment	Geoprobe 7	800		Number	of Sample	es		3	
Boring	2 1/4 INCH DIA	METER	}	Water D	epth at Da	te of Insta	lation	NA	
Type of Perforation	6" SS slotted	probe		Start Da	te 7/	13/21 C	ompleti	on Date 7	7/13/21
Type of Perforation Backfill	#3 Sand	d		Date De	veloped a	nd Sample	d	NA	
Type of Seal	BENTONI	TE		Logged	By s	RF C	necked	By SRF	
6			L	LOG DATA SAI		SAMPL	E DATA	4	
DESCRIF		LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMA	RKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Med brn, firm, Pr Plasticity 7 — 8 — 9 — 10 — CLAY: Lt brn, firm, de			CL		#3 San 0 Bentoni - 1/4 " poly	SV17-5 tel	.0 5-5. 0' 10.0-1	STAIN NO ODO	I DR
11— 12— 13—	ense, massive		CL			d bentonite		NO OD	
15 CLAY: Dk brn, firm, de TD 15.5' pr plassti			CL	##i//	0	SV17-1	5' 15-15	V SLT S NO OE	
MEAC	PMC		T			BORING	LOG	SV17	
MEAF CONSUI	CVII						Center N		
CONSU	LIING					Signal H	II, Calif	ornia	
COR	P.		Pro	ject Numb		Date 13, 2021		PM	Page 1 of

Boring Location	SV18			Elevation	and Datun	n G	ROUND	SURFACE	
Orilling Company	Kehoe D	rilling		Completion	on Depth		15 FI	EET	
Drilling Equipment	Geoprobe	7800		Number of	of Samples			3	
Boring	2 1/4 INCH D	IAMETER	R	Water De	pth at Date	e of Installat	ion	NA	
Type of Perforation	6" SS slotte	d probe		Start Date	e 7/13	3/21 Com	pletion D	ate 7/13/21	
Type of Perforation Backfill	#3 Sa	nd		Date Dev	eloped and	d Sampled		NA	
Type of Seal	BENTO	NITE		Logged E	By SRI	F Chec	cked By	SRF	
E			1	OG DATA		SAMPLE	DATA		
DESCRIF		ПТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
Dirt Surface Dirt Surface Dirt Surface Dirt Surface Dirt Surface	dense, masive		CL		- #3 Sand 0 - Bentonite 1/4 " poly t		5-5.5'	V SLT STAIN NO ODOR	
9 — CLAY: Blk, firm, dens pr plasticity	se, massive		CL		16.7	SV18-10'1	0.0-10.5	MOD SLT STAIN SLT ODOR	
13— 14— 15— CLAY: Blk,, firm, dens TD 15.5' pr plasst		777	CL		- Hydrated I - 6" SS Pro		15-15.5	MOD STAIN SLT ODOR	
MEAF	LTING					ORING LO Town Cer Signal Hill,	nter NW California	ı	
COR	Ρ.		Pro	ject Numbe		ate 3, 2021	PM	Page 1 of	

Boring Location	SV19			Elevation	n and D	atum	(GROUND	SURFACE
Orilling Company	Kehoe Dri	illing		Comple	tion De	oth		15 F	EET
Orilling Equipment	Geoprobe 7	800		Number	r of Sam	ples			3
Boring	2 1/4 INCH DI/	AMETER	3	Water I	Depth at	Date of	Installa	tion	NA
Type of Perforation	6" SS slotted	probe		Start Da	ate	7/13/21	Con	npletion [Date 7/13/21
Type of Perforation Backfill	#3 San	d		Date De	evelope	d and Sa	ampled		NA
Type of Seal	BENTON	ITE		Logged	Ву	SRF	Che	cked By	SRF
6			L	OG DATA	1	5	AMPLE	DATA	
DESCRI		LITHOLOGY	nscs	WELL	OVA-PPM		SAMPLE	SAMPLE	REMARKS
Dirt Surface					— 1/4"	poly tubii	ng		
5 — CLAY: Blk, firm, dense Pr Plasticity 6 — 7 — 8 —	e, masive		CL		#3 S	Sand	entonite		GD STAIN MOD ODOR
9 — 10 — CLAY: Blk,, dense, r pr plasticity	nassive, moist	222	CL		68	1 8	V19-10'	10.0-10.5	GD STAIN MOD ODOR
13— 14— 15— CLAY: Blk,, firm, den TD 15.5' pr plass		7111	CL		90	98 S	V19-15'	15-15.5	GD STAIN MOD ODOR
CONSU				ject Numl		Т	own Ce nal Hill,	OG SV enter NW Californi	a

APPENDIX D

Sierra Analytical Labs, Inc.
Background Soil Matrix Analytical Data
April 2005 & July 2021

Mearns Consulting Corporation 738 Ashland Avenue

Santa Monica CA, 90405

Project: City of Signal Hill

Project Number: Las Brisas
Project Manager: Susan Mearns

Reported: 04/12/05 14:01

Metals by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

Sierra Anarytea Labs, Inc.												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Offsite-1 (0504072-33) Soil	Sampled: 04/04/05 13:20	Received: 04	<u>4/04/05</u> 14	l:15								
Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B				
Arsenic	5.2	1.7	"	"	"	"	"	"				
Barium	97	3.3	"	"	"	"	"	"				
Beryllium	ND	0.75	"	"	"	"	"	"				
Cadmium	ND	0.51	"	"	"	"	"	"				
Cobalt	8.1	2.2	"	"	"	"	"	"				
Chromium	21	0.98	"	"	"	"	"	"				
Copper	25	2.2	"	"	"	"	"	"				
Mercury	ND	0.16	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A				
Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B				
Nickel	12	0.79	"	"	"	"	"	"				
Lead	12	1.3	"	"	"	"	"	"				
Antimony	ND	1.6	"	"	"	"	"	"				
Selenium	ND	1.9	"	"	"	"	"	"				
Thallium	ND	1.5	"	"	"	"	"	"				
Vanadium	35	0.73	"	"	"	"	"	"				
Zinc	62	1.3	"	"	"	"	"	"				
Offsite-5 (0504072-34) Soil	Sampled: 04/04/05 13:25	Received: 04	4/04/05 14	l:15								
Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B				
Arsenic	12	1.7	"	"	"	"	"	"				
Barium	160	3.3	"	"	"	"	"	"				
Beryllium	1.1	0.75	"	"	"	"	"	"				
Cadmium	ND	0.51	"	"	"	"	"	"				
Cobalt	17	2.2	"	"	"	"	"	"				
Chromium	50	0.98	"	"	"	"	"	"				
Copper	64	2.2	"	"	"	"	"	"				
Mercury	ND	0.18	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A				
Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B				
Nickel	30	0.79	"	"	"	"	"	"				
Lead	8.1	1.3	"	"	"	"	"	"				
Antimony	2.3	1.6	"	"	"	"	"	"				
Selenium	ND	1.9	"	"	"	"	"	"				
Thallium	ND	1.5	"	"	"	"	"	"				
Vanadium	75	0.73	"	"	"	"	"	"				
Zinc	99	1.3	"	"	"	"	"	"				

Mearns Consulting Corporation

Project: City of Signal Hill

738 Ashland Avenue Project Number: Las Brisas
Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 04/12/05 14:01

Metals by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

Silver		Sierra Anarytea Labs, inc.												
ND	Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Arsenic 12	Offsite-10 (0504072-35) Soil	Sampled: 04/04/05 13:29	Received:	04/04/05 1	14:15									
Barium	Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B					
Beryllium	Arsenic	12		"	"	"	"	"	"					
Cadmium ND 0.51 " <th< td=""><td>Barium</td><th>170</th><td>3.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Barium	170	3.3	"	"	"	"	"	"					
Cobalt 14 2.2 "	Beryllium	ND	0.75	"	"	"	"	"	"					
Chromium 32 0.98 " <t< td=""><td>Cadmium</td><th>ND</th><td>0.51</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Cadmium	ND	0.51	"	"	"	"	"	"					
Copper 35 2.2 "	Cobalt	14	2.2	"	"	"	"	"	"					
Mercury ND 0.18 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 "	Chromium	32	0.98	"	"	"	"	"	"					
Molybdenum	Copper	35	2.2	"	"	"	"	"	"					
Nickel 22 0.79 "	Mercury	ND	0.18	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A					
Cade	Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B					
Antimony ND 1.6 " " " " " " " " " " " " Thallium ND 1.9 " " " " " " " " " " " " " " " " " " "	Nickel	22	0.79	"	"	"	"	"	"					
ND	Lead	5.6	1.3	"	"	"	"	"	"					
ND	Antimony	ND	1.6	"	"	"	"	"	"					
Thailium	Selenium	ND	1.9	"	"	"	"	"	"					
Zinc 67 1.3 " </td <td>Thallium</td> <th>ND</th> <td>1.5</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Thallium	ND	1.5	"	"	"	"	"	"					
ND 0.80 mg/kg 1 B5D0709 04/07/05 04/11/05 EPA 6010B	Vanadium	58	0.73	"	"	"	"	"	"					
ND	Zinc	67	1.3	"	"	"	"	"	"					
Arsenic 14 1.7 " " " " " " " " " " " " " " " " " " "	Offsite-20 (0504072-36) Soil	Sampled: 04/04/05 13:36	Received:	04/04/05 1	14:15									
Arsenic 14 1.7 " " " " " " " " " " " " " " " " " " "	Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B					
Barium 73 3.3 """"""""""""""""""""""""""""""""""""	Arsenic	14			"	"	"		"					
Beryllium 0.95 0.75 " " " " " " " " " " " " " " " " " " "	Barium	73	3.3	"	"	"	"	"	"					
Cobalt 17 2.2 " " " " " " " " " " " " " " " " " " "	Beryllium	0.95		"	"	"	"	"	"					
Chromium 35 0.98 " " " " " " " " " " " " " " " " " " "	Cadmium	ND	0.51	"	"	"	"	"	"					
Copper 80 2.2 " " " " " " " " " " " " " " " " " " "	Cobalt	17	2.2	"	"	"	"	"	"					
Mercury ND 0.15 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 " <t< td=""><td>Chromium</td><th>35</th><td>0.98</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Chromium	35	0.98	"	"	"	"	"	"					
Mercury ND 0.15 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 " <t< td=""><td>Copper</td><th>80</th><td>2.2</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Copper	80	2.2	"	"	"	"	"	"					
Nickel 22 0.79 "	Mercury	ND	0.15	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A					
Nickel 22 0.79 "	Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B					
Lead 10 1.3 " </td <td>Nickel</td> <th></th> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Nickel			"	"	"	"	"	"					
Antimony ND 1.6 " " " " " " " " " " " " " " " " " " "	Lead			"	"	"	"	"	"					
Selenium ND 1.9 " <th< td=""><td>Antimony</td><th></th><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Antimony			"	"	"	"	"	"					
Thallium ND 1.5 " " " " " " " " " " " Vanadium 67 0.73 " " " " " " " " " " " " " " " " " " "	Selenium			"	"	"	"	"	"					
	Thallium		1.5	"	"	"	"	"	"					
	Vanadium	67	0.73	"	"	"	"	"	"					
	Zinc		1.3	"	"	"	"	"	"					

13 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:1905 E 21st St. - Spud Field Work Order No.: 2107058

Attached are the results of the analyses for samples received by the laboratory on 07/06/21 14:35.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB1-5	2107058-01	Soil	07/06/21 07:40	07/06/21 14:35
SB2-5	2107058-02	Soil	07/06/21 07:51	07/06/21 14:35
SB3-5	2107058-03	Soil	07/06/21 08:01	07/06/21 14:35
SB4-5	2107058-04	Soil	07/06/21 08:08	07/06/21 14:35
SB5-5	2107058-05	Soil	07/06/21 08:16	07/06/21 14:35
SB6-5	2107058-06	Soil	07/06/21 08:23	07/06/21 14:35
SB7-5	2107058-07	Soil	07/06/21 08:31	07/06/21 14:35
SB8-5	2107058-08	Soil	07/06/21 08:38	07/06/21 14:35
SB9-5	2107058-09	Soil	07/06/21 08:47	07/06/21 14:35
SB10-5	2107058-10	Soil	07/06/21 08:58	07/06/21 14:35
SB11-5	2107058-11	Soil	07/06/21 09:10	07/06/21 14:35

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

	D14	Reporting	T.T:4-	Diletie	Detal	D 1	A 1 d	Mada d	NT /
	Kesult	Lımit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 07/06/21 07:40	Received: 0	7/06/21 14:3	5						
	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	ND	5.5	"	"	"	"	"	"	
	84	6.0	"	"	"	"	"	"	
	ND	2.2	"	"	"	"	"	"	
	ND	2.5	"	"	"	"	"	"	
	11	3.3	"	"	"	"	"	"	
	36	2.3	"	"	"	"	"	"	
	ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
	40	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
	ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	21	3.0	"	"	"	"	"	"	
	8.8	7.1	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
	ND	6.9	"	"	"	"	"	"	
	ND	17	"	"	"	"	"	"	
	46	5.1	"	"	"	"	"	"	
	54	7.0	"	"	"	"	"	"	
Sampled: 07/06/21 07:51	Received: 0	7/06/21 14:3	5						
	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	,,	"	
			"	"	"	"	"	"	
			,,	"	"	"	"	"	
	ND		,,	,,	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
		0.10				37707721	J//J/21 12.7/		
		0.10 5.0	,,		B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	26	5.0	"		B1G0611	07/06/21	07/07/21 13:55	EPA 6010B EPA 7471A	
	26 ND	5.0 0.90		"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
	26 ND ND	5.0 0.90 5.2	"	"					
	26 ND ND 15	5.0 0.90 5.2 3.0	"	" "	B1G0613 B1G0611	07/06/21 07/06/21	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND	5.0 0.90 5.2 3.0 7.1	"	" "	B1G0613 B1G0611	07/06/21 07/06/21	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND	5.0 0.90 5.2 3.0 7.1 8.0	" " "	" " "	B1G0613 B1G0611 "	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND ND	5.0 0.90 5.2 3.0 7.1 8.0 6.9	" "	" " " " " " " " " " " " " " " " " " " "	B1G0613 B1G0611	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND	5.0 0.90 5.2 3.0 7.1 8.0	" " " " "	" " " " " " " " " " " " " " " " " " " "	B1G0613 B1G0611 "	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55 "	EPA 7471A EPA 6010B	
		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Result Limit	Result Limit Units	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 ND 2.0 mg/kg 1 ND 5.5 " " 84 6.0 " " ND 2.2 " " ND 2.5 " " 11 3.3 " " ND 0.10 " " ND 0.90 " " ND 5.2 " " ND 5.2 " " ND 8.8 7.1 " " ND 8.9 " " " ND 6.9 " " " ND 17 " " " Sampled: 07/06/21 07:51 Received: 07/06/21 14:35 " " " ND 2.0 mg/kg 1 " " ND 5.5 " " " ND 5.5 "	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 ND 2.0 mg/kg 1 B1G0611 ND 5.5 " " " 84 6.0 " " " ND 2.2 " " " ND 2.5 " " " 11 3.3 " " " ND 0.10 " " B1G0711 40 5.0 " " B1G0611 ND 0.90 " " B1G0613 ND 5.2 " " B1G0611 ND 5.2 " " B1G0611 ND 8.8 7.1 " " " ND 8.0 " " " " ND 6.9 " " " " ND 17 " " " " ND 2.0 mg/kg	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 Units Dilution Batch Prepared ND 2.0 mg/kg 1 B1G0611 07/06/21 ND 5.5 " " " " 84 6.0 " " " " ND 2.2 " " " " ND 2.5 " " " " 36 2.3 " " " " ND 0.10 " " B1G0611 07/06/21 ND 0.90 " " B1G0611 07/06/21 ND 5.2 " " B1G0611 07/06/21 ND 5.2 " " B1G0611 07/06/21 ND 5.2 " " " " ND 6.9 " " " " ND 6.9 " " " "	Result	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 Units Dilution Batch Prepared Analyzed Method Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 SEPA 6010B ND 2.0 mg/kg 1 BIG0611 07/06/21 07/07/21 13:55 EPA 6010B ND 5.5 " " " " " " ND 2.2 " " " " " " ND 2.5 " " " " " " 11 3.3 " " " " " " ND 0.10 "

Mearns Consulting LLC 738 Ashland Avenue

Santa Monica CA, 90405

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SR3-5 (2107058-03) Soil	Sampled: 07/06/21 08:01	Received: 0	7/06/21 14:3	5				<u> </u>		
Silver	54mpreur 07/00/21 00/01	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	mg/kg	"	"	07/00/21	0//0//21 13.33	EFA 0010B	
Barium		48	6.0	,,	,,	,,	,,	"	"	
Beryllium		ND	2.2	,,	,,	,,	,,	"	"	
Cadmium		ND	2.5	,,	"	,,	,,	"	"	
Cobalt		4.6	3.3		"	,,	,,	"	"	
Chromium		9.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		16	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		6.2	3.0	"	"	"	"	"	"	
_ead		ND	7.1	"	"	"	,,	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Challium		ND	17	"	"	"	"	"	"	
Vanadium		16	5.1	"	"	"	"	"	"	
Zinc		29	7.0	"	"	"	"	"	"	
SB4-5 (2107058-04) Soil	Sampled: 07/06/21 08:08	Received: 0	7/06/21 14:3:	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		170	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		14	3.3	"	"	"	"	"	"	
Chromium		42	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		45	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		26	3.0	"	"	"	"	"	"	
Lead		9.5	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
1111111111111		ND	6.9	"	"	"	"	"	"	
•					,,	,,	"	"	"	
Selenium		ND	17	"	"					
Selenium Thallium Vanadium		ND 58	17 5.1	"	"	,,	"	"	"	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB5-5 (2107058-05) Soil	Sampled: 07/06/21 08:16	Received:	07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		97	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		16	3.3	"	"	"	"	"	"	
Chromium		30	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		40	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		27	3.0	"	"	"	"	"	"	
Lead		8.5	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		52	5.1	"	"	"	"	"	"	
Zinc			7.0				,,			
ZIIIC		56	7.0	"	"	"	"	"	"	
	Sampled: 07/06/21 08:23				"	"	"	"	"	
SB6-5 (2107058-06) Soil	Sampled: 07/06/21 08:23	Received:		5	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil	Sampled: 07/06/21 08:23		07/06/21 14:3 :							
SB6-5 (2107058-06) Soil Silver Arsenic	Sampled: 07/06/21 08:23	ND ND	07/06/21 14:3: 2.0 5.5	5 mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium	Sampled: 07/06/21 08:23	ND ND ND 130	2.0 5.5 6.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium	Sampled: 07/06/21 08:23	ND ND 130 ND	2.0 5.5 6.0 2.2	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium	Sampled: 07/06/21 08:23	ND ND ND 130	2.0 5.5 6.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22	2.0 5.5 6.0 2.2 2.5	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	Sampled: 07/06/21 08:23	ND ND 130 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611 " " " " " " " B1G0711	07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55	EPA 6010B " " " " " " EPA 7199A	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	Sampled: 07/06/21 08:23	ND ND 130 ND ND 22 42 ND 46 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611 " " " " " " B1G0711 B1G0611 B1G0613	07/06/21 " " " " " 07/07/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/09/21 13:55 07/06/21 20:35	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	Sampled: 07/06/21 08:23	ND ND 130 ND ND 22 42 ND 46 ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	1	B1G0611 " " " " " " B1G0711 B1G0611	07/06/21 " " " " " 07/07/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55	EPA 6010B " " " " " " EPA 7199A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND 33	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg		B1G0611 " " " " " " B1G0711 B1G0611 B1G0613 B1G0611	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND 33	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " " B1G0711 B1G0611 B1G0613	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " " B1G0711 B1G0613 B1G0611 "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G0611 " " " " " B1G0711 B1G0613 B1G0611 " "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " " " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 " "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " B1G0711 B1G0613 B1G0611 " "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " " " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 " " "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/13/21 12:23

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods$

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB7-5 (2107058-07) Soil	Sampled: 07/06/21 08:31	Received:	07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		80	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		12	3.3	"	"	"	"	"	"	
Chromium		24	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		26	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		19	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		43	5.1	"	"	"	"	"	"	
Zinc		47	7.0	"	"	"	"	"	"	
SB8-5 (2107058-08) Soil	Sampled: 07/06/21 08:38	Received:	07/06/21 14:3:	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		180	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		17	3.3	"	"	"	"	"	"	
Chromium		38	2.3		"	,,	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		37	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		32	3.0		"	"	"	"	"	
Lead		11	7.1		"	"	"	"	"	
Antimony		ND	8.0		"	,,	"	"	"	
Selenium		ND	6.9	,,	"	,,	,,	"	"	
Thallium		ND ND	17	,,	,,	,,	,,	,,	"	
Vanadium		68	5.1	,,	,,	,,	,,	"	,,	
Zinc		68 51	7.0	,,	,,	,,	,,	"	,,	
Zanc		31	7.0							

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

1										
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB9-5 (2107058-09) Soil	Sampled: 07/06/21 08:47	Received: (07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		87	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		14	3.3	"	"	"	"	"	"	
Chromium		30	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		28	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		24	3.0	"	"	"	"	"	"	
Lead		9.0	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		54	5.1	"	"	"	"	"	"	
Zinc		38	7.0	"	"	"	"	"	"	
SB10-5 (2107058-10) Soi	il Sampled: 07/06/21 08:58			35						
	il Sampled: 07/06/21 08:58	Received:	07/06/21 14:		1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Silver	il Sampled: 07/06/21 08:58		07/06/21 14: 2.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Silver Arsenic	il Sampled: 07/06/21 08:58	ND ND	07/06/21 14:: 2.0 5.5	mg/kg						
Silver Arsenic Barium	il Sampled: 07/06/21 08:58	ND ND ND 98	2.0 5.5 6.0	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	il Sampled: 07/06/21 08:58	ND ND	07/06/21 14:: 2.0 5.5	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	il Sampled: 07/06/21 08:58	ND ND ND 98 ND	2.0 5.5 6.0 2.2	mg/kg " "	" "	"	"	" "	"	
Silver Arsenic Barium Beryllium Cadmium Cobalt	il Sampled: 07/06/21 08:58	ND ND 98 ND ND ND 13	2.0 5.5 6.0 2.2 2.5	mg/kg " "	" "	" " "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	il Sampled: 07/06/21 08:58	ND ND ND 98 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G0711	" " " " 07/07/21	" " " " 07/09/21 12:47	" " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611	" " " 07/07/21 07/06/21	" " " 07/09/21 12:47 07/07/21 13:55	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611 B1G0613	""""""""""""""""""""""""""""""""""""""	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611	" " " 07/07/21 07/06/21	" " " 07/09/21 12:47 07/07/21 13:55	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND ND 23	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " "	" " " " B1G0711 B1G0611 B1G0613 B1G0611	07/07/21 07/06/21 07/06/21 07/06/21	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	" " " " " B1G0711 B1G0613 B1G0611 "	07/07/21 07/06/21 07/06/21 07/06/21	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	B1G0711 B1G0611 B1G0613 B1G0611	07/07/21 07/06/21 07/06/21 "	07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G0711 B1G0611 B1G0611 B1G0611	07/07/21 07/06/21 07/06/21 ""	07/09/21 12:47 07/09/21 13:55 07/06/21 20:35 07/07/21 13:55 "	" " EPA 7199A EPA 6010B EPA 6010B " "	
SB10-5 (2107058-10) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0711 B1G0611 B1G0611 """	07/07/21 07/06/21 07/06/21 """"""""""""""""""""""""""""""""""""	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 "" "" ""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/13/21 12:23

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB11-5 (2107058-11) Soil	Sampled: 07/06/21 09:10	Received:	07/06/21 14:3	35						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		120	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.8	3.3	"	"	"	"	"	"	
Chromium		22	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		14	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		39	5.1	"	"	"	"	"	"	
Zinc		31	7.0	"	"	"	"	"	"	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported:

07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G0611 - EPA 3050B							
Blank (B1G0611-BLK1)				Prepared: 07/06/	21 Analyzed: 07	7/07/21	
Antimony	ND	8.0	mg/kg				
Selenium	ND	6.9	"				
Cadmium	ND	2.5	"				
Vanadium	ND	5.1	"				
Chromium	ND	2.3	"				
Cobalt	ND	3.3	"				
Zinc	ND	7.0	"				
Thallium	ND	17	"				
Copper	ND	5.0	"				
Barium	ND	6.0	"				
Lead	ND	7.1	"				
Arsenic	ND	5.5	"				
Molybdenum	ND	5.2	"				
Nickel	ND	3.0	"				
Silver	ND	2.0	"				
Beryllium	ND	2.2	"				
LCS (B1G0611-BS1)				Prepared: 07/06/	21 Analyzed: 07	7/07/21	
Copper	107	5.0	mg/kg	100	107	78-122	
Lead	112	7.1	"	100	112	80-120	
Antimony	103	8.0	"	100	103	75-125	
Chromium	111	2.3	"	100	111	80-120	
Selenium	105	6.9	"	100	105	76-124	
Cobalt	119	3.3	"	100	119	80-120	
Beryllium	107	2.2	"	100	107	80-120	
Silver	106	2.0	"	100	106	60-140	
Arsenic	105	5.5	"	100	105	78-122	
Barium	112	6.0	"	100	112	80-120	
Zinc	110	7.0	"	100	110	80-120	
Nickel	119	3.0	"	100	119	80-120	
Vanadium	107	5.1	"	100	107	80-120	
Cadmium	103	2.5	"	100	103	80-120	
Molybdenum	108	5.2	"	100	108	80-120	
Thallium	114	17	"	100	114	80-120	

Mearns Consulting LLC 738 Ashland Avenue

Analyte

Antimony

Chromium

Nickel

Lead

Copper

Thallium

Project: 1905 E 21st St. - Spud Field

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

RPD

Limit

Notes

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

Units

Reporting

Limit

Result

LCS Dup (B1G0611-BSD1)		Prepared: 07/06/21 Analyzed: 07/07/21												
Beryllium	105	2.2	mg/kg	100		105	80-120	1.49	20					
Chromium	106	2.3	"	100		106	80-120	4.14	20					
Cadmium	97.5	2.5	"	100		97.5	80-120	5.78	20					
Copper	112	5.0	"	100		112	78-122	4.64	20					
Arsenic	101	5.5	"	100		101	78-122	3.70	20					
Cobalt	116	3.3	"	100		116	80-120	2.58	20					
Silver	108	2.0	"	100		108	60-140	1.96	40					
Molybdenum	105	5.2	"	100		105	80-120	3.50	20					
Barium	109	6.0	"	100		109	80-120	2.55	20					
Vanadium	105	5.1	"	100		105	80-120	1.32	20					
Selenium	100	6.9	"	100		100	76-124	4.29	20					
Antimony	112	8.0	"	100		112	75-125	8.57	20					
Nickel	115	3.0	"	100		115	80-120	3.21	20					
Lead	115	7.1	"	100		115	80-120	3.08	20					
Thallium	107	17	"	100		107	80-120	6.02	20					
Zine	109	7.0	"	100		109	80-120	1.23	20					
Matrix Spike (B1G0611-MS1)	Source	e: 2107028-	01	Prepared: (07/06/21 A	7/07/21								
Vanadium	126	5.1	mg/kg	96.8	32.6	96.9	70-130							
Barium	192	6.0	"	96.8	83.1	113	70-130							
Cobalt	102	3.3	"	96.8	7.94	97.4	70-130							
Molybdenum	82.1	5.2	"	96.8	0.635	84.2	70-130							
Cadmium	84.1	2.5	"	96.8	1.03	85.8	70-130							
Zinc	132	7.0	"	96.8	46.6	88.5	70-130							
Arsenic	86.3	5.5	"	96.8	ND	89.2	70-130							
Selenium	86.0	6.9	"	96.8	1.66	87.2	70-130							
Silver	99.9	2.0	"	96.8	0.269	103	60-140							
Beryllium	88.1	2.2	"	96.8	0.220	91.1	70-130							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

8.0

2.3

3.0

17

7.1

5.0

96.8

96.8

96.8

96.8

96.8

96.8

5.77

17.4

15.2

ND

22.8

91.8

94.5

97.7

87.8

109

113

60-140

70-130

70-130

70-130

70-130

70-130

94.6

109

110

85.0

129

135

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B1G0611	- EPA	3050R	

Matrix Spike Dup (B1G0611-MSD1)	Source	Prepared: (07/06/21 Ar	nalyzed: 07						
Barium	193	6.0	mg/kg	96.7	83.1	114	70-130	0.455	20	
Molybdenum	82.3	5.2	"	96.7	0.635	84.4	70-130	0.168	20	
Silver	98.4	2.0	"	96.7	0.269	101	60-140	1.49	40	
Arsenic	87.1	5.5	"	96.7	ND	90.0	70-130	0.880	20	
Zinc	148	7.0	"	96.7	46.6	105	70-130	11.0	20	
Nickel	107	3.0	"	96.7	15.2	95.2	70-130	2.37	20	
Cobalt	103	3.3	"	96.7	7.94	98.1	70-130	0.588	20	
Copper	136	5.0	"	96.7	25.5	115	70-130	1.31	30	
Beryllium	87.0	2.2	"	96.7	0.220	90.0	70-130	1.31	20	
Thallium	85.1	17	"	96.7	ND	88.0	70-130	0.102	20	
Lead	127	7.1	"	96.7	22.8	108	70-130	1.16	30	
Chromium	110	2.3	"	96.7	17.4	95.8	70-130	1.07	20	
Cadmium	86.2	2.5	"	96.7	1.03	88.1	70-130	2.52	20	
Vanadium	124	5.1	"	96.7	32.6	94.2	70-130	2.17	20	
Antimony	91.9	8.0	"	96.7	5.77	89.1	60-140	2.90	20	
Selenium	87.0	6.9	"	96.7	1.66	88.3	70-130	1.16	20	

Batch B1G0613 - EPA 7471A

Blank (B1G0613-BLK1)				Prepared &	Analyzed:	07/06/21		
Mercury	ND	0.90	mg/kg					
LCS (B1G0613-BS1)								
Mercury	0.20	0.90	mg/kg	0.167		118	70-130	
Matrix Spike (B1G0613-MS1)	Source:	Source: 2107028-01			Analyzed:	07/06/21		
Mercury	0.24	0.90	mg/kg	0.163	0.09	90.8	70-130	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit Units		Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B1G0613 - EPA 7471A											
Matrix Spike Dup (B1G0613-MSD1)	Sour	ce: 2107028-									
Mercury	0.24	0.90	mg/kg	0.162	0.09	89.1	70-130	1.57	30		
Batch B1G0711 - EPA 3060A											
Blank (B1G0711-BLK1)				Prepared: (07/07/21 Aı						
Hexavalent Chromium	ND	0.10	mg/kg								
LCS (B1G0711-BS1)				Prepared: (07/07/21 Aı	nalyzed: 07	7/09/21				
Hexavalent Chromium	0.158	0.10	mg/kg	0.150		105	80-120				
Matrix Spike (B1G0711-MS1)	Sour	ce: 2107058-	01	Prepared: (07/07/21 Aı	nalyzed: 07	7/09/21				
Hexavalent Chromium	0.175	0.10	mg/kg	0.149	0.0273	99.1	75-125				
Matrix Spike Dup (B1G0711-MSD1)	Sour	ce: 2107058-	01	Prepared: ()7/07/21 Aı	nalyzed: 07	7/09/21				
Hexavalent Chromium	0.183	0.10	mg/kg	0.150	0.0273	104	75-125	4.44	20		

Mearns Consulting LLC Project: 1905 E 21st St. - Spud Field

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/13/21 12:23

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

Date: 7 / 6 / 21 Page: 1 of 4/2

Lab Work Order No.: 2107058

Client: WEAPAS CONSULTIN	Analyses Requested																	
Client Address: 738 AGHLANI	D AVE	1 						700							<u> </u>			Geotracker EDD Info:
SANTA MONICA	CA	90405			- 5	16	۳	_										
				<u> </u>	905 E 21 St	st. Spud	HELD	book						İ				
																	:	Client LOGCODE
Client Tel. No.: 310 403 1921 Time Requested: 48 Hour 72 Hour																-		
Client Fax. No.: 310 396 6878										İ				ĺ				
Client Proj. Mgr.: SASAN	- MEA	ray Yi	1)		X	Normal	Mobile 1	METALS										Site Global ID
011.40	Sierra		T			Container	No. of		5							1		
Client Sample ID.	No.	Date	Time	Matrix	Preservative	Type	Containers	Ħ	၁		<u> </u>							Field Point Names / Comments
S81-5	٥١	7.6.21	0740	SOIL	ICE	ACETATE Y	<i>y</i> 1	X	X									
SB2·5	0 2		0751		<u> </u>	1		χ	X							}		
S b 3-5	03		0801					Х	X									
584-5	04		0808					×	X						Ţ			
SB5-5	05		0816					Х	X					***				
\$86-5	06		0823					×	X									
S87.5	0 7		0831					Х	X							†		
SB8.5	•8		0838					X	X			-						· · · · · · · · · · · · · · · · · · ·
SB9.5	24		0847	,	1			Х	X									
(11 SB10-5	.10	, V	0 858	V	4	4	V	Х	X									
Sample Conference & Carl	7 7	Ta av) Shipped Via: HA	ND DELLY	arad				4	'	Total	Numb	er of Co	ntainer	s Subm	itted to	,	Sample Disposal:
MEARING PHD J	. T. 12.	Link	(CarnenWaybelt No.)			,			(Labo	ratory						Return to Client
2 Retinguished By Cat Jayay	, , , , , , , , , , , , , , , , , , ,	Z1617	tocenved By:	11			7/6/21				and the signs							Leh Disposal *
Сощрену:		12:35	Сопарыну:	5,5			1435	Cendi	itions, uni	ess other	wise agreed to be bazar	nboa ju	rciting bet	ween SIE)	UKA and	CLEENT	:	Archivemat.
<u> </u>					<u> </u>		110%		ţ	1								Other
Retinguished By:		Date:	Received By:			· · · · · · · · · · · · · · · · · · ·	Data;		t	•		oratory	ber of C	ontaine	13 Kece	avea o	^y	Other
Company:			Соптраву:			<u></u>	Terre:	FOR	AMORAT	DKY USE	ONLY - Sam	ple Beceip	Condigue	i: illed - Test				- 27.4
Relinguished By:		Date:	Received By:	····			Date:	2.38		32443						N. Take)
Company:	- Da -	Time:	Company:				Time:		Sample S	als .			П гл	Servatives	- Verified	Dy		
Special Lantenectors: COWECIED VIA GE	ъ rkoв	G 5410	5 bas					4	Property I	alsellad			П .	.				
			•								Custamer			tege Local	kon .			32
Rev: 20321				.				DA WAX	36, 15					OISTIUBUTIO		Асстароку	Samples, Ye	low - Laboratory Copy, Plak - Field Personnel Copy

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

Date: 7 / 6 / 21 Page; 2 of 2

2107053 Lab Work Order No.: MEARNS CONSULTING COPP Analyses Requested Client Project ID: Client Address: 738 ASHLAND AVE Geotracker EDD Info: SANTA MONICA CA 1905 = 21 St. - Soud Flew Client LOGCODE Turn Around Time Requested: Client Tel. No.: 403 1921 Merans 12 Hour 48 Hour Client Fax. No.: 396 6878 4 Day Day 5 Day MEARN Client Proj. Mgr.: MAZNIK Site Global ID X Normal Mobile Sierra Container Client Sample ID. Date Time Matrix Preservative Containers No. Fleld Point Names / Type Comments ALF TATE SB11-5 7-6-21 401L X 0910 105 × SW Shippou Vis: HAND DELIVERED Total Number of Containers Submitted to Sample Disposal: Laboratory Return to Client The delivery of samples and the signature on this chain of custody form constitutes 7/4/4 authorization to perform the analyses specified above under SEERRA's Terms and Lab Disposal * Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. SIEVEN Archive ____ mos. * - Samples determined to be hazardous by SIERRA will be returned to CLIENT. Total Number of Containers Received by Laboratory FOR LABORATORY USE ONLY - Sample Receipt Considerer intact Chilled (Temp (CC) Relinquoted By Received By: Smalle Spain Tresenauvas - Varilled By Special Instructions: Troporty Labelled

Human Health Risk Assessment, Town Center Northwest

MEARNS CONSULTING LLC ENVIRONMENTAL CONSULTANTS RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405 Cell 310.403.1921 Tel 310.396.9606 Fax310.396.6878 Mearns.Consulting@verizon.net www.MearnsConsulting.com

Human Health Risk Assessment Northeast Corner E Willow St. and Walnut Avenue Town Center Northwest Signal Hill, California 90755

August 11, 2021

Prepared for:

City of Signal Hill 2175 Cherry Avenue Signal Hill, California 90755

Prepared by:

Mearns Consulting LLC 738 Ashland Avenue Santa Monica, California 90405

MEARNS CONSULTING LLC

ENVIRONMENTAL CONSULTANTS RISK ASSESSORS

738 Ashland Avenue, Santa Monica, California 90405

Cell 310.403.1921

Tel 310.396.9606 Fax 310.396.6878

Mearns.Consulting@verizon.net

www.MearnsConsulting.com

August 11, 2021

via email

Ms. Elise McCaleb, Economic Development and Redevelopment Manager Ms. Colleen Doan, Community Development Director City of Signal Hill 2175 Cherry Avenue Signal Hill, Ca 90755

RE: Human Health Risk Assessment

Northeast Corner E Willow St., and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755

Dear Ms. McCaleb and Ms. Doan:

I am pleased to present this Human Health Risk Assessment (HHRA) for the 8.35–acre site located at the northeast corner of the intersection of East Willow Street and Walnut Avenue, known as Town Center Northwest, in Signal Hill, Los Angeles County, California 90755 (the site) pursuant to the contract executed on November 12, 2020.

The historical use of the site is an oil field. Ten previously abandoned oil wells, associated piping runs, historic aboveground storage tanks and oil well sumps are located onsite in addition to operating units, idle units, pipelines and a stormwater drainage system with swales. The Signal Hill Petroleum, Inc. Drill Site located in the northeast portion of the site is not a part of the project.

The objectives of this baseline human health risk assessment are to evaluate potential health risks to human receptors posed by concentrations of constituents detected at least one time in the soil matrix and soil vapor underlying the 8.35-acre property, and (2) to determine mitigation measures protective of human health for the proposed residential development.

This baseline human health risk assessment followed the guidance in the Department of Toxic Substances Control (DTSC) Preliminary Endangerment Assessment (PEA) guidance manual (DTSC 2015), U.S. Environmental Protection Agency Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the DTSC Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, October 2011), the DRAFT DTSC Supplemental Guidance: Screening and Evaluating Vapor Intrusion (DTSC, February 2020), the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESL) model and the Virginia Department of Environmental Quality Virginia Unified Risk Assessment Model (VURAM).

The results of the human health risk assessment indicate the summed risk of the carcinogenic constituents did exceed the target threshold of $1x10^{-6}$ for the residential occupants and did exceed the target threshold of $1x10^{-5}$ for commercial workers. However, the estimated risks for commercial workers are between 10^{-6} and one in $10,000 (10^{-4})$ which are "safe and protective of public health" (Federal Register 56(20):3535, 1991) within a risk range acceptable to DTSC (February 2020).

The estimated risk for the construction worker scenario did not exceed the target threshold of 1x10⁻⁵.

The results of the human health risk assessment indicate that the estimated summed hazard index of the noncarcinogenic constituents did exceed the target hazard threshold of 1 for the residential occupants and the commercial worker and construction worker scenarios.

Conclusions and Recommendations

A potential future use of the site is multi-family residential. The residual concentrations of benzene, ethylbenzene, methyl tert-butyl ether, naphthalene, tetrachloroethene and gasoline range organics detected in the soil vapor and C13-C22 in the soil matrix poses an adverse impact to future residential occupants. The residual concentration of benzene, ethylbenzene, methyl tert-butyl ether, naphthalene and gasoline range organics in the soil vapor poses an adverse impact to commercial workers. The residual concentration of gasoline range organics in the soil vapor poses an adverse impact to construction workers.

The previously abandoned oil wells should be located, daylighted and methane gas leak tested prior to the installation of vent cones and vent risers pursuant to the City of Signal Hill's Oil and Gas Code §16.24.030 and §16.24.040.

Institutional controls, i.e., a methane mitigation system to be installed subslab of any proposed buildings, pursuant to the City of Signal Hill's Oil and Gas Code §16.24.080 will effectively mitigate risks and hazards due to vapor intrusion to negligible conditions ensuring the site is safe for any future intended use including as a residential property. A redeveloped property precludes exposure to site soils by future residential occupants.

A soil management plan should be prepared prior to any grading activities to be conducted onsite. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations. A R1166 permit should be obtained from the AQMD due to the presence of volatiles onsite prior to the start of grading operations.

Additionally construction workers are advised to practice good hygiene and wash their hands prior to smoking or eating or drinking pursuant to 29CFR 1926.1910, 8CCR 4 and 22CCR 2.4 to mitigate contact with soils containing residual concentrations of carbon chains.

Should you have any questions or desire additional information, please contact me at your earliest convenience at 310.403.1921.

Sincerely,

Susan L. Mearns, Ph.D.

x Susan Mearns

Mearns Consulting LLC

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	3
2.0 SITE BACKGROUND	4
3.0 SUMMARY OF FIELD ACTIVITIES	7
3.2 Soil Matrix Analytical Results 3.3 Soil Vapor Anlytical Results 3.4 Conclusions and Recommendations	8
4.0 CONCEPTUAL SITE MODEL	9
5.0 IDENTIFYING CHEMICALS OF CONCERN	10
6.0 TOXICITY ASSESSMENT	11
7.0 EXPOSURE ASSESSMENT	
8.0 RISK CHARACTERIZATION 8.1 Ingestion and Dermal Contact Exposure Pathways 8.2 Inhalation Pathway Soil Matrix 8.3 SFRWQCB ESL Model 8.4 VURAM Model 8.5 Noncancer Adverse Health Effects 8.6 Lifetime Excess Cancer Risk 8.7 Multipathway Cancer Risk 8.8 Estimation of Risks and Hazards	
9.0 MITIGATION MEASURES	20
10.0 UNCERTAINTY ANALYSIS 10.1 Data Collection and Evaluation 10.2 Exposure Assessment 10.2.1 Exposure Pathways 10.3 Toxicity Assessment 10.4 Risk Characterization 10.5 Summary of Risk Assessment Uncertainties	21 21 21 22
11.0 REFERENCES	23

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

TABLES

- Table 1 TPH and Metals Analytical Results in Soil Matrix
- Table 2 Background Metals Analytical Results in Soil Matrix
- Table 3 VOCs Analytical Results in Soil Matrix
- Table 4 SVOCs Analytical Results in Soil Matrix
- Table 5 Soil Vapor Analytical Results
- Table 6 EPCs, Slope Factors, Reference Doses
- Table 7 Exposure Parameters
- Table 8 Estimated Risks and Hazards Residential Scenario
- Table 9 Estimated Risks and Hazards Commercial Scenario
- Table 10 Estimated Risks and Hazards Construction Scenario
- Table 11 Summed Estimated Risks and Hazards

FIGURES

- Figure 1 Site Location
- Figure 2 Site Map
- Figure 3 Oil Wells: Active, Idle and Previously Abandoned
- Figure 4 Concentrations of Metals and Carbon Chains that Exceed Thresholds
- Figure 5 Detected Concentrations of VOCs and SVOCs in Soil
- Figure 6 Soil Vapor Analytical Results
- Figure 7 Conceptual Site Model

APPENDICES

- Appendix A Sierra Analytical Labs, Inc. July 12 & 13, 2021 Soil Matrix Analytical Data
- Appendix B Jones Environmental, Inc. July 27 & 28, 2021 Soil Vapor Data
- Appendix C Sierra Analytical Labs, Inc. April 2005 & July 2021 Background Metals Analytical Data
- Appendix D- Boring Logs
- Appendix E Metals Statistical Analyses
- Appendix F ProUCL Statistical Analyses
- Appendix G ESL Model Results Soil Vapor Residential
- Appendix H ESL Model Results Soil Vapor Commercial
- Appendix I VURAM
- Appendix J LeadSpread

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

EXECUTIVE SUMMARY

The 8.35–acre site located at the northeast corner of the intersection of East Willow Street and Walnut Avenue, is known as Town Center Northwest, in Signal Hill, Los Angeles County, California 90755.

The objectives of this HHRA are: (1) to evaluate potential health risks to human receptors posed by concentrations of constituents detected at least one time in the soil matrix and soil vapor underlying the 8.35-acre property, and (2) to determine mitigation measures protective of human health for the proposed residential/commercial development.

This baseline human health risk assessment followed the guidance in the Department of Toxic Substances Control (DTSC) *Preliminary Endangerment Assessment* (PEA) guidance manual (DTSC 2015), U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, October 2011), the *DRAFT DTSC Supplemental Guidance: Screening and Evaluating Vapor Intrusion* (DTSC, February 2020), the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESL) model and the Virginia Department of Environmental Quality Virginia Unified Risk Assessment Model (VURAM).

The site is being considered as a multi-family residential redevelopment.

The results of the human health risk assessment indicate the summed risk of the carcinogenic constituents exceeded the target threshold of $1x10^{-6}$ for the residential occupants and exceeded the target threshold of $1x10^{-5}$ for the commercial worker scenario. However these estimated risks are between 10^{-6} and one in $10,000 \ (10^{-4})$ which are "safe and protective of public health" (Federal Register 56(20):3535, 1991) and within a risk range acceptable to DTSC (February 2020).

The results of the human health risk assessment indicate that the estimated summed hazard index of the noncarcinogenic constituents exceeded the target hazard threshold of 1 for the residential occupants, the commercial worker and construction worker scenarios.

The estimated risk for the construction worker scenario did not exceed the target threshold of 1x10⁻⁵.

A methane assessment of the 8.35-acre site was performed in July 2021 in accordance with the City of Signal Hill Oil and Gas Code §16.24.080, City of Signal Hill Project Development Guide (June 20, 2017), the Los Angeles Department of Building and Safety (LADBS) published, *Site Testing Standards for Methane (Reference No. 91.7104.1, Document No. P/BC 2002- 101)*, effective 11/30/04, and the DTSC Methane Advisories (2005 and 2012). Methane was consistently detected in the field at concentrations as great as 861,000 parts per million by volume (ppmv) in soil vapor probes at 5-ft, 10-ft and 20-ft bgs.

Methane was detected in seven of eight soil vapor samples collected from 10-ft and 20-ft bgs and submitted to the Eurofins stationary laboratory at concentrations of 1.5 ppmv, 3,000 ppmv, 2 ppmv, 8,200 ppmv, 11,000 ppmv, 17,000 ppmv and 74,000 ppmv.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

Methane mitigation subslab of proposed buildings is recommended (DL Science, Inc. July 15, 2021). The methane mitigation system should consist of a subslab impervious membrane placed inbetween geotextile or geocloth to protect it from sand above and the 4" thick gravel blanket below in conformance with the City of Signal Hill Oil and Gas Code §16.24.080 and City of Signal Hill Project Development Guide (June 20, 2017). Perforated horizontal vent pipes should be placed in the 4" thick gravel blanket and tied into vertical vent risers (typically cast iron) placed inbetween the interior and exterior walls, less than 100-feet apart, extending a minimum of 3-feet above the roof line and should not terminate less than 100-feet from any opening (City of Signal Hill June 2020).

Although designed to capture and vent methane to the atmosphere, other volatile organic compounds (VOCs) in the subsurface (both in the soil matrix and soil vapor) also will be captured and vented by this system.

Conclusions and Recommendations – A potential future use of the site is residential. The residual concentrations of benzene, ethylbenzene, methyl tert-butyl ether, naphthalene, tetrachloroethene and gasoline range organics detected in the soil vapor and naphthalene, 2,6-dinitrotoluene, 4-nitrosodin-propylamine and carbon chains C13-C22 in the soil matrix poses an adverse impact to future residential occupants. The residual concentration of benzene, ethylbenzene, methyl tert-butyl ether, naphthalene and gasoline range organics in the soil vapor poses an adverse impact to commercial workers. The residual concentration of gasoline range organics in the soil vapor poses an adverse impact to construction workers.

The previously abandoned oil wells should be located, daylighted and methane gas leak tested prior to the installation of vent cones and vent risers pursuant to the City of Signal Hill's Oil and Gas Code §16.24.030 and §16.24.040.

Institutional controls, i.e., a methane mitigation system to be installed subslab of any proposed buildings, pursuant to the City of Signal Hill's Oil and Gas Code §16.24.080 will effectively mitigate risks and hazards due to vapor intrusion to negligible conditions ensuring the site is safe for any future intended use including as a residential property. A redeveloped property precludes exposure to site soils by future residential occupants.

A soil management plan should be prepared prior to any grading activities to be conducted onsite. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations. A R1166 permit should be obtained from the AQMD due to the presence of volatiles onsite prior to the start of grading operations.

Additionally construction workers are advised to practice good hygiene and wash their hands prior to smoking or eating or drinking pursuant to 29CFR 1926.1910, 8CCR 4 and 22CCR 2.4 to mitigate contact with soils containing residual concentrations of constituents assessed.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

1.0 INTRODUCTION

This report presents the results of a baseline Human Health Risk Assessment (HHRA) for 8.35–acre site located at the northeast corner of the intersection of East Willow Street and Walnut Avenue, known as Town Center Northwest, in Signal Hill, Los Angeles County, California 90755 (the site) (Figures 1 and 2).

The purpose of this human health risk assessment is to evaluate the potential adverse health impacts due to exposure to concentrations of constituents detected in the soil matrix and soil vapor underlying the site. If a constituent was detected one time in soil sampled at 5-ft, 10-ft, 15-ft, or the boring terminus, and/or one time in soil vapor at 5-ft or 15-ft bgs it was retained and quantitatively assessed in this human health risk assessment.

This baseline human health risk assessment followed the guidance in the Department of Toxic Substances Control (DTSC) *Preliminary Endangerment Assessment* (PEA) guidance manual (DTSC 2015), U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (RAGs) (USEPA 2004), the U.S. Environmental Protection Agency *Risk Assessment Guidance for Superfund volume 1, Human Health Evaluation Manual* (Part F, Supplemental Guidance for Inhalation Risk Assessment) (USEPA 2009), the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, October 2011), the *DRAFT DTSC Supplemental Guidance: Screening and Evaluating Vapor Intrusion* (DTSC, February 2020), the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESL) model and the Virginia Department of Environmental Quality Virginia Unified Risk Assessment Model (VURAM).

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

2.0 SITE BACKGROUND

The 8.35-acre site has been and is an oil field since at least 1928. Historically, the site had oil derricks, sumps and aboveground storage tanks.

The site is bounded by East Willow street on the south and Walnut Avenue on the west, located at the northeast corner of the intersection of East Willow Street and Walnut Avenue and known as Town Center Northwest in Signal Hill, California 90755 (Figures 1 and 2). The latitude of the site is 33° 48' 19.13" north and the longitude is 118° 10' 15.02" west. The Los Angeles County Assessor's Parcel Number for the site is 7212-011-034.

Pursuant to the authorization of Ms. Colleen Doan (Community Development Director, City of Signal Hill) on November 12, 2020 and to comply with the City of Signal Hill Project Development Guide (2020) Mearns Consulting LLC performed a Phase I Environmental Site Assessment (Phase I ESA) for the site in May 2021.

The Phase I ESA had the following conclusions:

- The historical use of the site is an oil field. There are 34 oil wells onsite or contiguous to the site (19 onsite and 15 within the eastern two-thirds of the Drill Site which is not a part of the project site). Operating units, a stormwater system with detention basins, swales, berms and piping currently are onsite.
- Recognized Environmental Conditions onsite include: (1) the previously abandoned oil wells, (2) the historic aboveground storage tanks, (3) historic pipelines associated with the previously abandoned oil wells and/or the aboveground storage tanks, (4) historic sumps associated with the previously abandoned and/or operating oil wells, (5) the storage of 55-gallon containers of used oil, (6) retail-sized containers of motor oil, (7) 5-gallon buckets of oil, (8) residue in catch basins, (9) gasoline containers, (10) surface staining, (11) transformers, (12) forklifts and (13) the northeastern corner drainage are Recognized Environmental Conditions.
- The adjacent properties include commercial/industrial businesses, an oilfield and multifamily residences. The adjacent oilfield and operating units are Potential Recognized Environmental Conditions that may impact the site. The contiguous former Dico Oil Company property with a LURA designation from DTSC also is a Potential Recognized Environmental Condition that may impact the site.
- The adjacent properties include oilfields, operating units and commercial/industrial businesses.
 The adjacent oilfields and operating units are Potential Recognized Environmental Conditions that may impact the site.

The Phase I ESA had the following recommendations:

Pursuant to the City of Signal Hill Project Development Guide (2020) and the City of Signal Hill Oil and Gas Code (2015) a Phase II Environmental Site Assessment (Phase II ESA) should be performed. The Phase II ESA should include soil matrix and soil vapor sampling adjacent to the previously abandoned oil wells, the historic location of the aboveground storage tanks, and within the footprint of the proposed multifamily units.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

A baseline human health risk assessment should be performed with the data generated from the Phase II ESA.

A methane assessment should be performed in accordance with the City of Signal Hill Oil and Gas Code §16.24.080.

The previously abandoned oil wells should be daylighted and leak tested pursuant to the City of Signal Hill Oil and Gas Code §16.24.030 and §16.24.040

Piping runs should be identified and removed.

A soil management plan should be prepared prior to any grading activities to be conducted onsite. This soil management plan should provide instructions for the contractor to implement in the event discolored or odiferous soils are discovered during any grading operations.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

3.0 SUMMARY OF FIELD ACTIVITIES

Phase II Environmental Site Assessment - Soil samples were collected at 5-ft, 10-ft and 15-ft bgs from 19 locations (Figure 4) in accordance with SW846. A truck mounted direct push rig was used to collect the soil samples. The sampling system was appropriately cleaned between each borehole; rinsate from cleaning was appropriately disposed. Soil was collected in acetate sleeves with Teflon liners and end caps with minimal headspace.

Fifty-six soil samples were logged onto a chain-of-custody form and stored in a cooler at 4°C until delivered to Sierra Analytical Labs, Inc. (a State of California Department of Health Services [DOHS] ELAP accredited laboratory; ELAP No. 2320). Analyses requested were carbon chain ranges C4-C12, C13-C23, C23-C40 via USEPA method GC/FID 8015B, total threshold limit concentration (TTLC) metals and hexavalent chromium via USEPA methods 6010B/7471, volatile organic compounds via USEPA 8260B, collected via USEPA 5035B in the field by placing 5g of soil into volatile organic analyte vials to which preservative had been added and semi-volatile organic compounds via USEPA 8270C. Soil matrix analytical results are included as Appendix A.

These soil borings were then developed as dual-nested soil vapor probes at 5-feet and 15-feet bgs (SV1-SV19) in accordance with Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), DTSC, October 2011, the Advisory Active Soil Gas Investigations, DTSC, LARWQCB, SFRWQCB, July 2015 and the DRAFT Supplemental Guidance Screening and Evaluating Vapor Intrusion (CalEPA, DTSC, SWRCB February 2020).

A new section of ½-inch diameter nylaflow tubing with a new 6-inch stainless steel probe tip at the terminal end was inserted into the borehole to the desired sampling depth. One-inch diameter polyvinyl chloride (PVC) casing was used as a guide for the tubing to ensure that the desired sampling depth was achieved. Sand was poured into the boring annulus to form an approximately one-foot long sand pack around the probe tip, at which time the PVC piping was withdrawn. Approximately one foot of dry, granular bentonite was placed atop the sand pack and the remainder of the borehole was backfilled with hydrated bentonite to the ground surface to form a seal. The sampling end of the tubing was fitted with a three-way valve and the probe was labeled for identification.

Soil gas samples were collected in general accordance with the July 2015 DTSC and LARWQCB) "Advisory – Active Soil Gas Investigations."

Each probe was allowed to equilibrate for a minimum of 48-hours after installation prior to sampling by a mobile laboratory. Soil vapor samples were collected in glass gas-tight syringes equipped with Teflon plungers. A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of three purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents. Prior to purging and sampling of soil vapor at each location, a shut-in test was conducted to check for leaks in the aboveground fittings. The shut-in test was performed on the aboveground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there is any observable loss of

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then collected. No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Forty soil vapor samples, including three duplicates, were collected from these soil vapor probes by a Jones Environmental, Inc. (ELAP 2882) chemist and analyzed in a mobile laboratory on July 27 and 28, 2021. Three duplicates, one per 10 soil vapor samples, were collected and analyzed by the chemist. One deep probe SV19 was unable to be set at 15-feet bgs due to oily conditions. Soil vapor analytical results are included as Appendix B.

Soil matrix samples were collected from Spud Field, 1905 East 21st Street, in Signal Hill, California in April 2005 and July 2021 and analyzed for TTLC metals including hexavalent chromium. The analytical data was used as Signal Hill specific background metal concentrations in two-way statistical analyses to prove the Null Hypothesis, i.e., the sample population of metals concentrations onsite is less than or equal to the sample population representative of background. These background metals analytical results are included as Appendix C.

All drilling, logging and sampling activities were conducted by or under the direct supervision of a State of California registered Professional Geologist, and in accordance with California Well Standards presented in the Department of Water Resources (DWR) Bulletins 74-81 and 74-90. The Site Geology and Hydrogeology section and boring logs were prepared by Mr. Scott R. Fagan, a State of California Professional Geologist PG #4289. Boring logs are included as Appendix D.

3.1 Site Geology - The site is located on the west flank of the Signal Hill uplift created by lateral movement on the Cherry Hill Fault (CHF) (part of the Newport Inglewood fault zone). The CHF is located north of the site and the site overlies the Gardena Syncline, an east-west trending down-fold of the local stratigraphy.

The surface sediments are Recent Alluvium consisting of sand, silt and clay which overlie the Lakewood Formation. Borings are logged as predominantly silt and clay with thin sections of sand.

The Gaspur Aquifer is the first groundwater below the site, below any boring depths achieved during drilling activities. No groundwater was detected in any soil boring.

3.2 Soil Matrix Analytical Results – Carbon chains C4-C12 were detected eight times in 57 soil matrix samples at a concentrations ranging from 0.052 mg/kg to 2,600 mg/kg; four detected concentrations: 1,100 mg/kg, 2,600 mg/kg, 510 mg/kg and 1,500 mg/kg exceed the screening threshold of 82 mg/kg. Carbon chains C13-C22 were detected 12 times in 57 soil matrix samples at concentrations ranging from 34 mg/kg to 2,500 mg/kg; five detected concentrations exceeded the screening threshold of 97 mg/kg. Carbon chains C23-C40 were detected 15 times in 57 soil matrix samples at concentrations ranging from 35 mg/kg to 2,200 mg/kg; none of these detected concentrations were greater than the screening threshold of 2,400 mg/kg (Table 1 and Figure 4).

The following metals were detected in concentrations greater than their respective reporting limits: arsenic, barium, cobalt, trivalent chromium, copper, lead, nickel, selenium, vanadium and zinc (Table 1 and Figure 4). A detected concentration of arsenic, 20 mg/kg, exceeded the screening threshold.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

The volatile organic compounds (VOCs) benzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, ethylbenzene, isopropylbenzene (cumene), methyl tert-butyl ether (MTBE), naphthalene, n-propylbenzene, m,p-xylenes and o-xylene were detected in concentrations greater than their respective reporting limits (Table 3 and Figure 5). Detected concentrations of naphthalene exceed the screening limit.

Semi-volatile organic compounds (SVOCs) acenaphthene, anthracene, benzo(a)anthracene, 2,4-dinitrophenol, chrysene, 4,6-dinitro-2-methylphenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, fluorene, 2-methylnaphthalene, naphthalene, 4-nitroaniline, n-nitrosodi-n-propylamine, phenanthrene and pyrene were detected in the soil matrix at concentrations greater than their respective reporting limits. Detected concentrations of benzo(a)anthracene, 2,6-dinitrotoluene and naphthalene exceeded their respective screening levels (Table 4 and Figure 5).

3.3 Soil Vapor Analytical Results – The VOCs, benzene, n-butylbenzene, sec-butylbenzene, cis-1,2-dichloroethene, di-isopropylether, ethylbenzene, isopropylbenzene (cumene), 4-isopropyltoluene (cymene), methylene chloride, naphthalene, n-propylbenzene, tetrachloroethene, toluene, total xylenes and gasoline range organics (GRO) were detected in concentrations greater than their respective reporting limits in the vapor phase (Table 5 and Figure 6). All of these volatiles were detected at concentrations that exceeded their respective screening thresholds. The greatest detected concentration of benzene, 8,850 micrograms per cubic meter (μ g/m3) was detected at SV7-15 adjacent to a previously abandoned oil well and along a pipeline corridor. Generally concentrations of volatiles in the vapor phase increased with depth.

3.4 Conclusions and Recommendations

Carbon chains, C4-C12, C13-C22, C23-C40, metals VOCs and SVOCs were detected in the soil matrix. Sixteen volatile organic compounds were detected in the vapor phase in soil vapor underlying the site (Table 5 and Figure 6).

The carbon chains C4-C12 and C13-C22 were detected at concentrations greater than their respective screening thresholds (Table 1 and Figure 4). Arsenic was detected at concentrations greater than the screening threshold (Table 1 and Figure 4). Three VOCs/SVOCs in the soil matrix exceeded their respective screening thresholds. Seventeen volatile organic compounds in the vapor phase were detected at concentrations that exceeded their respective screening thresholds (Tables 3-5 and Figures 5 and 6).

As the proposed future development for the site is residential, a human health risk assessment is warranted based on the results of this Phase II ESA. The human health risk assessment should include an evaluation of potential health impacts to future residential, commercial and construction workers.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

4.0 CONCEPTUAL SITE MODEL

A conceptual site model was developed to identify the potential complete exposure pathways by which constituents detected in soil could impact human health (Figure 7).

The conceptual site model identifies potential sources, environmental release mechanisms, potential migration pathways, potential exposure pathways, potential exposure routes and potential human receptors onsite.

The conceptual site model identified the following potential complete exposure pathways:

- Future onsite resident
 - 1. ingestion/dermal contact with surface soil
 - 2. inhalation of constituents from surface soil entrained in dust
 - 3. inhalation of VOCs from soil vapor in surface and subsurface soil that have migrated to indoor air
- Future commercial building occupant
 - 1. ingestion/dermal contact with surface soil
 - 2. inhalation of constituents from surface soil entrained in dust
 - 3. inhalation of VOCs from soil vapor in surface and subsurface soil that have migrated to indoor air
- Future construction worker
 - 1. ingestion/dermal contact with surface soil
 - 2. inhalation of constituents from surface and subsurface soil entrained in dust
 - 3. inhalation of VOCs from soil vapor in surface and subsurface soil that have migrated to outdoor air, including trenches

Consumption of fruit or vegetables grown in soil is not considered to be a complete potential exposure pathway under future site conditions.

Potential direct exposures (ingestion and dermal contact) to groundwater are not complete pathways as drinking water is provided by a remote municipal water supply, so there is little chance of incidental exposure. Discharge of groundwater to surface water also is not considered to be a complete migration pathway since there are no surface water bodies that are recharged by artesian flow or groundwater seepage in the vicinity of the site.

The potential for chemicals in soil to leach to underlying groundwater used as a drinking water source is considered very low as several aquitards or aquicludes exist below the maximum depth of impacted soils and groundwater used as a drinking water source.

There is very limited ecological habitat at and near the site. Wetlands were not observed onsite or at adjacent sites. There are no natural or undisturbed areas onsite. Based on the lack of viable ecological habitat at and near the site, there are no complete ecological pathways onsite.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

5.0 IDENTIFYING CHEMICALS OF CONCERN

All constituents detected at least one time in the soil matrix and in soil vapor underlying the site were quantitatively assessed using the appropriate exposure pathway in this risk assessment.

Pursuant to the following guidance documents, Selecting Inorganic Constituents as Chemicals of Concern for Risk Assessments at Hazardous Waste Sites and Permitted Facilities (DTSC 1997), Background Metals at Los Angeles Unified School Sites – Arsenic (DTSC 2005) and Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals (DTSC 2009) the following statistical tests: (a) Wilcoxon-Mann-Whitney, (b) Gehan, (c) Tarone-Ware, (d) Multiple Box Plots, (e) Multiple Histograms and (f) Q-Q Plots, were used to determine whether detected concentrations of metals in the soil matrix onsite were within background concentrations. The results of these statistical analyses are included as Appendix E.

These two sample hypotheses tests with non-detects are based on the null hypothesis. The Null hypothesis tests whether the mean and median of the concentrations of each metal detected in onsite soils are less than or equal to the mean and median concentrations of the concentrations of the same metal detected in offsite or background soil samples.

The alternative hypothesis tested was whether the mean and median of the concentrations of detected metals in soils onsite are greater than the mean and median concentrations of the concentrations of the same metals in offsite or background soil samples.

The graphs (1) Multiple Box Plots, (2) Multiple Histograms and (3) Q-Q Plots with non-detects visually indicate whether the detected concentrations of metals in onsite soils are within the population of background metals.

The conclusion based on these quantitative statistical tests was all detected concentrations of metals onsite were within the background population. Selenium was not detected in the background samples, therefore this metal was quantitatively assessed in the human health risk assessment via the ingestion, dermal contact and inhalation routes of exposure.

Chemicals of concern quantitatively assessed in the risk assessment include: C4-C12, C13-C22, C23-C40, benzene, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, ethylbenzene, isopropylbenzene, methyl tert-butyl ether, naphthalene, n-propylbenzene, m,p-xylenes, o-xylene, acenaphthene, anthracene, benzo(a)anthracene, 2,4-dinitrophenol, chrysene, 4,6-dinitro-2-methylphenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, fluorene, 2-methylnaphthalene, 4-nitoaniline, 4-nitrosodi-n-propylamine, pyrene, lead (via LeadSpread), and selenium in the soil matrix; benzene, di-isopropylether, ethylbenzene, isopropylbenzene, isopropyltoluene, methylene chloride, methyl tert-butyl ether, naphthalene, n-propylbenzene, tetrachloroethylene (PCE), toluene, xylenes and gasoline range organics in the vapor phase via either or both the SFRWQCB ESL model or the Virginia DEQ VURAM model.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

6.0 TOXICITY ASSESSMENT

Toxicity values are combined with exposure factors to estimate noncancer adverse health effects and cancer risks. Toxicity values include reference doses (RfDs), reference concentrations (RfCs), unit risk factors (URFs) and slope factors (SFs) that are used to evaluate noncancer adverse health effects and cancer risks.

The State of California Office of Environmental Health Hazard Assessment (OEHHA) and the State of California Department of Toxic Substances Control (DTSC) Office of Human and Ecological Risk (HERO) have developed URFs SFs, RfCs and RfDs. Pursuant to regulatory agency guidance OEHHA's and HERO's values are preferentially used instead of USEPA's when available, as OEHHA's and HERO's values are generally more conservative than USEPA's (DTSC 2015, USEPA 2004).

If a constituent had both a risk factor and a reference concentration it was assessed as a carcinogen and as a noncarcinogen. The unit risk factors and reference concentrations were obtained from DTSC HERO (DTSC 2020), ATSDR, IRIS, OEHHA, PPRTV as listed in USEPA's Regional Screening Levels (May 2021) and DTSC's HERO Note 10 (February 2019).

The exposure point concentrations, the slope factors and reference doses for the constituents detected in the soil matrix and quantitatively assessed are presented in Table 6.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

7.0 EXPOSURE ASSESSMENT

The exposure assessment provides a scientifically defensible basis for the identification of potentially exposed human receptors and the most likely ways they might be exposed to chemicals of concern at the site. As defined by USEPA (1989), the following four components are necessary for chemical exposure to occur:

- A chemical source and a mechanism of chemical release to the environment
- An environmental transport medium (e.g., soil) for the released chemical
- A point of contact between the contaminated medium and the receptor (i.e., the exposure point)
- An exposure route (e.g., ingesting chemically-impacted soil) at the exposure point

All four of these elements must be present for an exposure pathway to be considered complete and for chemical exposure to occur (USEPA 1989).

This HHRA evaluated the potential for receptors to be exposed to the maximum detected concentrations or the upper confidence level (UCL), whichever value was less, pursuant to the ProUCL User's Guide (USEPA 2004) of the constituents detected in the top 15-ft of soil. The ProUCL model output is included as Appendix F.

The maximum concentrations of the VOCs detected in soil vapor at 5-ft or 20-ft underlying the site were used as the exposure point concentrations in the SFRWQCB ESL vapor intrusion model. Data collected from the soil matrix and soil vapor investigation in 2018 were used in the risk assessment. Exposure point concentrations are presented in Table 6.

7.1 Average and Reasonable Maximum Exposures - Typically two types of exposure scenarios are evaluated in a risk assessment; an average exposure scenario, and a reasonable maximum exposure (RME) scenario. The average exposure scenario represents a more typical exposure, believed to be most likely to occur, while the reasonable maximum exposure scenario represents a plausible worst case situation - one that is not very likely to occur. USEPA guidance (1989) recommends evaluating a reasonable maximum exposure scenario. The reasonable maximum exposure scenario estimates the exposure a receptor might receive using highly conservative intake assumptions (e.g., 90th or 95th percentile for most intake assumptions) and the upper confidence limit (UCL) on the mean of the chemical concentrations. It is assumed that by evaluating a reasonable maximum exposure scenario potential health risks to extremely sensitive individuals within a particular receptor population will be adequately addressed. As an added measure of conservatism, only a reasonable maximum exposure scenario was evaluated in this HHRA.

The DTSC PEA and USEPA guidance contain formulae that incorporate default values which were selected to be health protective. Some of these default values, such as, the exposure frequency, exposure time and exposure duration, were modified when evaluating the commercial worker and construction worker scenarios (DTSC 2015, USEPA 2004).

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

8.0 RISK CHARACTERIZATION

The risk characterization process incorporates data from the exposure and toxicity assessments. The exposure assessment information necessary to estimate risks and hazards includes the estimated chemical intakes, exposure modeling assumptions, and the exposure pathways assumed to contribute to the majority of exposure for each receptor over a given time period (USEPA 1989a). The exposure parameters for assessing the constituents detected in the soil matrix are included as Table 7.

The method by which chemicals with carcinogenic and/or noncarcinogenic effects are evaluated to determine whether they pose a risk or an adverse impact to human health is discussed below, relative to the exposure pathways by which the receptors may be exposed to the exposure point concentrations of the chemicals of concern.

8.1 Ingestion and Dermal Contact Pathways - To provide an evaluation of chronic risk along the ingestion and dermal contact pathways the following equations for risk and hazard were used consistent with PEA guidance (DTSC 2015).

$$Risk_{soil} = SF_o \ x \ C_s \ x \ \underline{IR_{s, \ adult} \ x \ EF \ x \ ED_{adult} \ x \ 10^{-6} \ kg/mg} \\ = BW_{adult} \ x \ AT \ x \ EF$$

$$+ SF_o \ x \ C_s \ x \ \underline{SA_{adult} \ x \ AF \ x \ ABS \ x \ EF \ x \ ED_{adult} \ x \ 10^{-6} \ kg/mg} \\ = BW_{adult} \ x \ AT \ x \ EF$$

$$+ SF_o \ x \ C_s \ x \ \underline{IR_{s, \ child} \ x \ EF \ x \ ED_{child} \ x \ 10^{-6} \ kg/mg} \\ = BW_{child} \ x \ AT \ x \ EF$$

$$+ SF_o \ x \ C_s \ x \ \underline{SA_{child} \ x \ AF \ x \ ABS \ x \ EF \ x \ ED_{child} \ x \ 10^{-6} \ kg/mg} \\ = BW_{child} \ x \ AT \ x \ EF$$

Where:

 SF_o = cancer slope factor (mg/kg-day) ⁻¹ C_s = concentration in soil (mg/kg) RfD_o = oral reference dose (mg/kg-day)

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

ABS = absorption fraction (dimensionless)

ED = exposure duration (years)

EF = exposure frequency (days/year)

BW = body weight (kg)

IRs = incidental soil ingestion rate (mg/day)

SA = skin surface area (cm²/event)

AF = soil to skin adherence factor (mg/cm²)

AT = averaging time (days)

Chemical specific values for the absorption fractions (ABS) parameter were obtained from USEPA and DTSC (USEPA June 2021; DTSC May 2020). Toxicity and exposure point concentrations are found in Table 6. Exposure parameters for assessing constituents detected in the soil matrix are presented in Table 7. The maximum concentration or the upper confidence level, whichever was less, of the constituents detected in the top 15-ft of soils were evaluated in this risk assessment for the residential, commercial worker and construction worker scenarios.

The exposure factors presented in Tables 6 and 7 provide a conservative estimate of chronic risk and hazard to human health due to exposure to the chemicals of concern detected in the soil matrix via the ingestion and dermal contact routes of exposure. The calculated estimates of risk and hazard due to exposure to constituents detected in the soil matrix are provided in Tables 8-11.

8.2 Inhalation Pathway Soil Matrix - To provide an evaluation of chronic risk along the inhalation pathway the following equations (DTSC 2015, USEPA 2009) for estimating risk and hazard due to exposure to constituents of concern detected in the soil matrix were used consistent with PEA guidance (DTSC 2015, USEPA 2009).

Semi-volatile organic compounds and metals in soil are evaluated in outdoor air using particulate emission factors (PEFs) to obtain concentrations of chemicals in dust. PEFs are used to develop an estimate of the concentration of a chemical in dust based on its concentration in soil. It assumes that the dust from the site is caused by the wind and not created by mechanical means (e.g. construction activities, tilling, automobile traffic, etc.) (DTSC 2015).

A default PEF of 1.36E+09 (m³/kg) is used for the residential and commercial worker scenarios, and a PEF of 1.00E+06 is used for the construction worker scenario (DTSC 2015, USEPA 2009). It assumes an infinite source of chemicals, a vegetative cover of 50%, and a mean annual wind speed of 4.69 m/s. This is equivalent to a dust concentration of 0.76 g/m³ at the receptor. The default dispersion term (Q/C) of 90.80 (g/m²-s per kg/m³) is based on a site of 0.5 acres and dispersion modeling runs of 29 sites across the United States. The default Q/C provides a conservative estimate of the long-term exposure to dust (DTSC 2015).

$$C_a = (C_s/PEF) \times 1000 \mu g/mg$$

Where:

 $C_a = \text{concentration in air, mg/m}^3$

 C_s = concentration in soil, mg/kg

PEF = particulate emission factor

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

 $Risk_{air} = IUR \ x \ C_a \ x \ \underline{ET \ x \ EF \ x \ ED} \\ AT \\ Hazard_{air} = (1/RfC \ x \ 1000 \mu g/mg) \ x \ C_a \ x \ \underline{ET \ x \ EF \ x \ ED} \\ AT$

Where:

IUR = inhalation unit risk factor $(\mu g/m^3)^{-1}$ RfC = reference concentration $(\mu g/m^3)$

 C_a = contaminant concentration in air (mg/m³)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (years)

AT = averaging time (hours)

The risk and hazard for the air pathway are based on either the exposure to volatile emissions for VOCs or the exposure to fugitive dust emissions for non-VOCs. The Office of Scientific Affairs defines a VOC as a chemical with a vapor pressure of 0.001 mm mercury or higher and a Henry's Law Constant of 1 x 10^{-5} or higher. Exposure to a chemical via the air pathway can be adequately performed using either volatilization or fugitive dust scenarios; it is not necessary to do both (DTSC 2015).

For this risk assessment exposure to non-VOCs detected in the soil matrix via the inhalation pathway was performed using the fugitive dust scenario.

8.3 SFRWQCB ESL Vapor Intrusion Model - The SFRWQCB Environmental Screening Levels vapor intrusion model (2019, Rev. 2) was used to estimate potential risk and hazard due to exposure to volatiles in soil vapor in shallow soil (10-feet bgs or less) and in deeper soil (greater than 10-feet bgs).

Either the 95UCL or the maximum detected concentration was used as the exposure point concentration in this vapor intrusion model. Those chemicals of concern that had both reference doses and slope factors available were assessed as both noncarcinogenic and carcinogenic compounds.

The results of the vapor intrusion risk assessment due to exposure to carcinogenic VOCs in both shallow and deep soil is 3.03×10^{-3} for the residential scenario and 6.9×10^{-4} for the commercial worker scenario. The results of the vapor intrusion risk assessment due to exposure to noncarcinogenic VOCs in both shallow and deep soil is 502 for the residential scenario and 117 for the commercial worker scenario. The model results are included on Tables 8 and 9 and in Appendices G and H.

The individual estimated risk value for benzene, ethylbenzene, methyl tert-butyl ether, naphthalene and tetrachloroethene exceeds the threshold of 1 x 10⁻⁶ for residential receptors. The individual estimated risk value for benzene, ethylbenzene, methyl tert-butyl ether and naphthalene exceeds the threshold of 1 x 10⁻⁵ for commercial worker receptors. The individual estimated hazard value for benzene, methyl tert-butyl ether, naphthalene and gasoline range organics exceeds the threshold of 1 for residential occupants. The individual estimated hazard value for benzene, naphthalene and gasoline range organics exceeds the threshold of 1 for commercial workers.

8.4 VURAM - The Virginia Unified Risk Assessment Model (VURAM) was used to estimate the potential risks and hazards due to inhalation of VOCs by construction workers while working in a trench. Either the 95UCL or maximum detected concentrations of the volatiles detected in soil vapor were used

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

as the exposure point concentrations in VURAM.

The results of the vapor intrusion risk assessment due to exposure to carcinogenic volatiles in soil vapor for construction workers exposed in a trench estimated using the VURAM model was 9.18 x 10⁻⁷ and the hazard was 4 and are included in Table 10 and as Appendix I.

This estimated risk value does not exceed the threshold of 1 x 10⁻⁵ for construction workers working in a trench. The estimated hazard value of 4 does exceed the threshold and is attributable to gasoline range organics.

- 8.5 Noncancer Adverse Health Effects- Noncarcinogenic effects or hazards are typically evaluated by comparing an exposure level over a specified time period (e.g., a lifetime or 25 years), with a reference dose based on a similar time period. Hazard quotient values less than 1 indicate that potential exposures to noncarcinogenic COCs are not expected to result in toxicity (USEPA 1989). Summing the hazard quotient values to derive a hazard index (HI) provides an estimation of the total potential hazard due to a simultaneous exposure to all the noncarcinogenic COCs. However, summing hazard quotient values is not necessary when the chemicals of concern target different organs within the body (USEPA 1989, DTSC 2015). Although the noncarcinogenic chemicals of concern quantitatively assessed in this risk assessment target different organs within the body, the estimated hazard quotients were summed to derive a HI.
- 8.6 Lifetime Excess Cancer Risk Slope factors are used to estimate the potential risk associated with exposure to individual COCs. The slope factor is multiplied by the chronic daily intake averaged over 70 years to estimate lifetime excess cancer risk. "Excess" or "incremental" cancer risk represents the probability of an individual developing cancer over a lifetime as a result of chemical exposure, over and above the baseline or "background" cancer risk in the general population. Cancer risks and noncancer health hazards estimated in the HHRA are regarded as estimated or theoretical results developed on the basis of the toxicity factors, chemical fate and transport, exposure assumption, and other inputs previously described. Cancer risks do not represent actual cancer cases in actual people. Rather, risks are calculated on the basis of an entirely hypothetical set of conditions. This assumed "exposure scenario" is developed to protect human health, and is based on standard USEPA and Cal-EPA methods and assumptions.

USEPA characterizes theoretical excess lifetime cancer risks below one in one million (10⁻⁶) as not of concern and has stated that risks between 10⁻⁶ and one in 10,000 (10⁻⁴) are "safe and protective of public health" (Federal Register 56(20):3535, 1991). Remedial action is not generally required by USEPA for sites with a theoretical lifetime excess risk of less than 10⁻⁴; whereas the State of California uses a risk-management approach (DTSC 2011). The DRAFT guidance indicates DTSC considers the risk range between 10⁻⁴ and 10⁻⁶ in risk management decisions (DTSC February 2020).

The more stringent target risk of 10⁻⁶ is typically applied to residential receptors. To provide perspective, a total theoretical lifetime excess cancer risk of one in 100,000 (10⁻⁵) is frequently accepted by Cal-EPA for worker receptors at California sites, and the target risk for chemicals evaluated under State Proposition 65 regulations is 10⁻⁵ (22CCR 12703).

8.7 Multipathway Cancer Risk - Based on regulatory guidelines, it is appropriate to combine risk estimates across exposure pathways for a given receptor. At the same time, exposure to multiple carcinogenic COCs is also typically considered to be additive. For exposures to multiple pathways and

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

chemicals, the following equation was used to estimate total theoretical lifetime excess carcinogenic risks:

Where:

Total Risk = Excess cancer risk from exposure to n chemicals via m pathways

m = Number of exposure pathways

n = Number of chemicals

CR _{i,p} = Potential cancer risk from exposure to chemical i via pathway p

This equation was used to estimate the total potential cancer risks due to exposure to the carcinogenic COCs via the ingestion, dermal contact and inhalation routes of exposure. The estimated risks, total risk, estimated hazards and hazard index are presented in Tables 8-11.

8.8 Estimation of Risks and Hazards

Residential Scenario -

Estimated Risk Soil Ingestion and Dermal contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 1.99×10^{-5} greater than the target threshold 1×10^{-6} .

Estimated Risk Soil & Soil Vapor Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix and soil vapor via the inhalation exposure route is 3.03×10^{-3} greater than the target threshold 1×10^{-6} and is attributable to benzene, ethylbenzene, methyl tert-butyl ether, naphthalene and tetrachloroethene in the vapor phase.

Hazard Quotients Soil Ingestion and Dermal Contact - The sum of the estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 2.88, greater than 1, the target hazard value, and is attributable to C13-C22.

Hazard Quotients Soil & Soil Vapor Inhalation - The sum of the estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 3, greater than 1, the target hazard value. The sum of the estimated hazard quotients due to exposure to constituents detected in soil vapor is 503, greater than the target threshold value and is attributable to benzene, methyl tert-butyl ether, naphthalene and gasoline range organics.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix and soil vapor, is 3.02×10^{-3} , greater than the target risk.

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix and soil vapor is 506, greater than the target hazard value. These estimated risk and hazards values are presented in Tables 8 and 11.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

Commercial Worker Scenario

Estimated Risk Soil Ingestion and Dermal contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 7.23×10^{-6} less than the target threshold 1×10^{-5} .

Estimated Risk Soil & Soil Vapor Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix and soil vapor via the inhalation exposure route is 6.84×10^{-4} greater than the target threshold 1 x 10^{-5} and is attributable to benzene, ethylbenzene, methyl tert-butyl ether and naphthalene.

Hazard Quotients Soil Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 0.30, less than 1, the target hazard value.

Hazard Quotients Soil & Soil Vapor Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route, 1.6E-05, is less than 1, the target hazard value. The sum of the estimated hazard quotients due to exposure to constituents detected in soil vapor is 117, greater than the target threshold value and is attributable to benzene, naphthalene and gasoline range organics.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix and soil vapor, is 6.91×10^{-4} , greater than the target threshold 1×10^{-5} .

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix and soil vapor is 117, greater than the target hazard value. These estimated risk and hazards values are presented in Tables 9 and 11.

Construction Worker Scenario – Soil Matrix

Estimated Risk Soil Ingestion and Dermal contact - The estimated risk due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 1.07×10^{-6} less than the target threshold 1×10^{-5} .

Estimated Risk Soil & Soil Vapor Inhalation - The estimated risk due to exposure to constituents detected in the soil matrix and soil vapor via the inhalation exposure route is 9.38×10^{-7} less than the target threshold 1×10^{-5} .

Hazard Quotients Ingestion and Dermal Contact - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the ingestion and dermal contact exposure routes is 1.55, greater than 1, the target hazard value.

Hazard Quotients Soil & Soil Vapor Inhalation - The estimated hazard quotients due to exposure to constituents detected in the soil matrix via the inhalation exposure route is 0.04, less than 1, the target hazard value. The sum of the estimated hazard quotients due to exposure to constituents detected in soil vapor is 4, greater than the target threshold value.

Summed Risk - The total risk, summed across all exposure pathways for all carcinogenic chemicals of concern in the soil matrix, is 2×10^{-6} , less than the target threshold 1×10^{-5} .

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

Hazard Index – The total hazard, summed across all exposure pathways for all noncarcinogenic chemicals of concern in the soil matrix is 6, greater than the target hazard value. These estimated risk and hazards values are presented in Tables 10 and 11.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

9.0 MITIGATION MEASURES

Institutional controls, i.e., the required methane mitigation system to be installed subslab of the proposed buildings and paving of surface soils for parking effectively mitigates the risks and hazards to negligible conditions ensuring the site is safe for the future intended use as a residential/commercial property.

Methane mitigation subslab of proposed buildings is recommended based on the Methane Assessment (DL Science, Inc. July 15, 2021). The methane mitigation system should consist of a subslab impervious membrane placed inbetween geotextile or geocloth to protect it from sand above and the 4" thick gravel blanket below in conformance with the City of Signal Hill Oil and Gas Code §16.24.080 and City of Signal Hill Project Development Guide (June 2020). Perforated horizontal vent pipes should be placed in the 4" thick gravel blanket and tied into vertical vent risers (typically cast iron) placed inbetween the interior and exterior walls, less than 100-feet apart, extending a minimum of 3-feet above the roof line and should not terminate less than 100-feet from any opening (City of Signal Hill June 2020).

Although designed to capture and vent methane to the atmosphere, other volatile organic compounds in the subsurface (both in the soil matrix and soil vapor) also will be captured and vented by this system.

If an impervious surface paving area is 5,000 square feet or greater and contiguous to the proposed buildings, the paving should have vents spaced less than 100-ft apart consisting of four sided concrete boxes with traffic rated grates and 4" thick gravel blanket at the base. The vents should be designed to prevent surface water infiltration.

If a level of the parking structure that is below ground surface it should have an exhaust ventilation system that is in compliance with the California Mechanical Code.

All enclosed parking garages in North America are subject to ventilation standards established by the International Mechanical Code (IMC) and the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). The IMC and ASHRAE stipulate that garage ventilation systems run continuously during building-occupied hours, with an exception made for those that deploy carbon monoxide sensor-based, demand-controlled ventilation systems.

A soil management plan should be prepared to provide guidance to building contractors in the event discolored or odiferous soils or soils with elevated VOCs are discovered during onsite excavation and grading activities.

Additionally construction workers are advised to practice good hygiene and wash their hands prior to smoking or eating or drinking pursuant to 29CFR 1926.1910, 8CCR 4 and 22CCR 2.4 to mitigate contact with soils containing petroleum hydrocarbons.

A Rule 1166 Permit/Compliance Plan should be obtained from the South Coast Air Quality Management District prior to site grading. VOC monitoring under an Air Quality Management District R1166 Permit ensures construction workers are protected from VOCs during earthwork.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

10.0 UNCERTAINTY ANALYSIS

The uncertainty analysis characterizes the propagated uncertainty in health risk assessments. These uncertainties are driven by variability in:

- The chemical data selection and assumptions used in the models with which concentrations at receptor locations were estimated.
- The variability of receptor intake parameters.
- The accuracy of toxicity values used to characterize exposure, hazards and cancer risks.

Additionally, uncertainties are introduced in the risk assessment when exposures to several substances across multiple pathways are summed.

Quantifying uncertainty is an essential element of the risk assessment process. According to USEPA's Guidance on Risk Characterization for Risk Managers and Risk Assessors, point estimates of risk "do not fully convey the range of information considered and used in developing the assessment" (USEPA 1992). The following components of the risk assessment process can introduce uncertainties:

- Data Collection and Evaluation
- Exposure Assessment
- Toxicity Assessment
- Risk Characterization
- **10.1 Data Collection and Evaluation -** The techniques used for data sampling and analysis and the methods used for identifying chemicals for evaluation in this risk assessment, may result in a number of uncertainties. These uncertainties are itemized below in the form of assumptions.
 - It was assumed that the nature and extent of chemical impacts on and near the site have been adequately characterized. If this assumption is not valid, then potential health impacts may be over- or underestimated.
 - Systematic or random errors in the chemical analyses may yield erroneous data. These types of errors may result in a slight over- or underestimation of risk.
- **10.2 Exposure Assessment -** A number of uncertainties are associated with the exposure assessment, including estimation of exposure point concentrations and assumptions used to estimate chemical intakes. Key uncertainties associated with these components of the HHRA are summarized below.
- 10.2.1 Exposure Pathways The exposure pathways evaluated in this HHRA are expected to represent the primary pathways of exposure, based on the results of the chemical analyses, and the expected fate and transport of these chemicals in the environment. Minor or secondary pathways may also exist, but often cannot be identified or evaluated using the available data. The contribution of secondary pathways to the overall risk from the site is not likely to be significant. In addition, intake assumptions are reflective of trends (usually for the most sensitive individual within an entire population), and as such are subject to intrinsic variability. In both cases, their presence introduces a level of uncertainty to this risk assessment process.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

- **10.3 Toxicity Assessment -** Toxicity information for many chemicals is often limited. Consequently, there are varying degrees of uncertainty with the calculated toxicity values. Sources of uncertainty associated with toxicity values include:
 - Using dose-response information from effects observed at high doses to predict the adverse
 health effects that may occur following exposure to the low levels expected from human
 contact with the agent in the environment.
 - Using dose-response information from short-term exposures to predict the effects of long-term exposures.
 - Using dose-response information from animal studies to predict effects in humans.
 - Using dose-response information from homogeneous animal populations or human populations to predict the effects likely to be observed in the general population consisting of individuals with a wide range of sensitivities.

To compensate for these uncertainties, USEPA typically applies a margin of safety when promulgating human toxicity values. Therefore, use of USEPA toxicity values likely results in an overestimation of potential hazard and risk.

- **10.4 Risk Characterization** The reasonable maximum exposure scenario risk characterization represents an over-estimation of risk. Site-specific information regarding depth below ground at which the constituents of concern were detected was not used in the equations. The reasonable maximum exposure scenario estimated the risk to the receptors based on the maximum detected concentrations or the UCLs for the constituents quantitatively assessed in this risk assessment.
- 10.5 Summary of Risk Assessment Uncertainties The analysis of the uncertainties associated with this risk assessment indicates that the estimated risks and hazards derived from the equations in the PEA Manual (DTSC 2015), the RAGs Manual (USEPA 2009), the LeadSpread Model (DTSC) and the ESL and VURAM vapor intrusion models for the reasonable maximum exposure scenario represent an overestimation of risk. Although as outlined in the sections above, many factors can contribute to the over- or underestimation of risk, in general, a mixture of conservative and upper-bound input values were identified to estimate potential exposures. Compounding conservative and upper-bound input values in the risk assessment process are intended to lead to reasonable, maximum, health-conservative estimates. The actual impacts to human health are most likely less than those estimated in this HHRA for the evaluated receptors and pathways.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

11.0 REFERENCES

California Environmental Protection Agency (Cal-EPA). 1992. Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 1997. Selecting Inorganic Constituents as Chemicals of Potential Concern at Risk Assessments at Hazardous Waste Sites and Permitted Facilities. February 1997.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2005. Final Report, Background Metals at Los Angeles Unified School Sites – Arsenic. June 6, 2005.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2007. Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals for Proposed and Existing School Sites. March 21, 2007.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air October 2011.

California Environmental Protection Agency (Cal-EPA) Department of Toxic Substances Control (DTSC). 2015. Preliminary Endangerment Assessment Guidance Manual.

Chernoff, G., W. Bosan and D. Oudiz. Determination of a Southern California Regional Background Arsenic Concentration in Soil.

DL Science, Inc. July 15, 2021. Summary Report for Methane Soil Gas Investigation at Town Center North West Site, Northeast Corner of Intersection of East Willow Ave. and Walnut Ave., Signal Hill, California (90755).

DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3. June 2020.

DTSC HERO Human Health Risk Assessment Note Number 10. February 2019.

DTSC's LeadSpread 8.0 Model.

Mearns Consulting, LLC. May 27, 2021. Phase I Environmental Site Assessment Northeast Corner of E Willow St. and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755 (2 volumes).

Mearns Consulting, LLC. July 30, 2021. Phase II Environmental Site Assessment Northeast Corner of E Willow St. and Walnut Avenue, Town Center Northwest, Signal Hill, California 90755.

USEPA. May 2021. Regional Screening Levels.

United States Environmental Protection Agency (USEPA). July, 1996. Soil Screening Guidance: User's Guide. Office of Solid Waste and Emergency Response. Publication 9355.4-23.

Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest site Signal Hill, California 90755

United States Environmental Protection Agency (USEPA). December, 2004. Risk Assessment Guidance for Superfund (RAGs), Office of Emergency and Remedial Response. EPA/540/1-9/002.

United States Environmental Protection Agency (USEPA). 2004. Risk Assessment Guidance for Superfund - Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). Office of Emergency and Remedial Response. Publication 9285.7-01B.

United States Environmental Protection Agency (USEPA). 2009. Risk Assessment Guidance for Superfund - Volume I - Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment).

United States Environmental Protection Agency (USEPA). April, 2004. ProUCL Guidance.

United States Environmental Protection Agency (USEPA). ProUCL version 5.1.02

Table 1 - Carbon Chains and Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Со	Cr	Cu	Ni	Pb	Se	V	Zn	C4-C12	C13-C22	C23-C40
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000	82	97	230,000
DTSC-SLr		0.11			36,000		820	80		390			97	2,400
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000	420	560	3,500,000
DTSC-SLi		0.36			170,000		11,000	320		1,000			500	18,000
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340			
SV1-5	7/12/2021	< 5.5	68	5.4	9.8	8.8	6.4	<7.1	< 6.9	15	27	< 0.05	<5	<5
SV1-10	7/12/2021	< 5.5	77	7.1	21	20	12	<7.1	< 6.9	24	42	< 0.05	<5	<5
SV1-15	7/12/2021	< 5.5	45	<3.3	7	<5	3.6	<7.1	< 6.9	6.6	22	< 0.05	<5	<5
SV2-5	7/12/2021	< 5.5	74	5.5	11	13	6.2	<7.1	< 6.9	13	28	< 0.042	<5	35
SV2-10	7/12/2021	< 5.5	82	9.3	18	18	12	<7.1	< 6.9	31	36	< 0.045	<5	<5
SV2-15	7/12/2021	< 5.5	81	6.6	21	14	11	<7.1	< 6.9	28	36	< 0.05	<5	<5
SV3-5	7/12/2021	< 5.5	67	5.6	12	11	4.3	<7.1	< 6.9	18	25	< 0.042	<5	<5
SV3-10	7/12/2021	< 5.5	50	6.4	18	17	9.5	<7.1	< 6.9	31	34	< 0.05	<5	<5
SV3-15	7/12/2021	< 5.5	32	3.7	8.3	6.2	5	<7.1	< 6.9	18	18	< 0.05	<5	<5
SV4-5	7/12/2021	< 5.5	63	8.2	13	14	8	<7.1	< 6.9	25	26	< 0.05	<5	<5
SV4-10	7/12/2021	< 5.5	40	4.6	14	12	7	<7.1	< 6.9	21	25	< 0.05	<5	<5
SV4-15	7/12/2021	< 5.5	26	3.7	8.1	6.8	5.7	<7.1	< 6.9	14	20	< 0.05	<5	<5
SV5-5	7/12/2021	< 5.5	82	8.1	18	17	10	<7.1	< 6.9	34	34	< 0.05	<5	<5
SV5-10	7/12/2021	< 5.5	47	5.1	12	11	7.8	<7.1	< 6.9	21	24	< 0.05	<5	<5
SV5-15	7/12/2021	< 5.5	61	6.1	14	15	8.8	<7.1	< 6.9	28	30	< 0.05	<5	<5
SV6-5	7/13/2021	< 5.5	83	7.6	14	14	8.5	<7.1	< 6.9	24	28	< 0.05	<5	<5
SV6-10	7/13/2021	< 5.5	66	6.4	21	16	12	<7.1	< 6.9	31	40	< 0.05	<5	<5
SV6-15	7/13/2021	< 5.5	42	4.3	9.4	9	6.4	<7.1	< 6.9	14	27	< 0.05	<5	<5
SV7-5	7/13/2021	< 5.5	73	7.2	16	13	11	7.2	< 6.9	27	34	< 0.062	<5	<5
SV7-10	7/13/2021	< 5.5	50	6.6	13	11	7.6	<7.1	< 6.9	19	25	< 0.071	<5	<5
SV7-15	7/13/2021	< 5.5	37	3.6	10	8.4	6.7	<7.1	< 6.9	16	20	< 0.05	<5	<5
SV8-5	7/13/2021	< 5.5	30	<3.3	5.7	7.8	4	19	< 6.9	9.1	26	< 0.042	<5	<5
SV8-10	7/13/2021	< 5.5	58	10	12	11	7.8	<7.1	< 6.9	21	25	< 0.05	<5	<5
SV8-15	7/13/2021	< 5.5	50	4.6	17	12	9.8	<7.1	< 6.9	19	29	< 0.05	<5	<5
SV9-5	7/13/2021	<5.5	3100	5.1	26	31	20	24	< 6.9	28	73	< 0.067	110	550
SV9-10	7/13/2021	<5.5	77	6.2	17	12	8.3	<7.1	< 6.9	23	27	< 0.043	<5	50
SV9-15	7/13/2021	< 5.5	110	10	30	17	16	<7.1	< 6.9	33	45	< 0.05	<5	<5
SV10-5	7/13/2021	< 5.5	650	10	25	31	24	42	< 6.9	36	100	< 0.084	510	650
SV10-10	7/13/2021	< 5.5	49	4.9	10	8.3	6	<7.1	< 6.9	16	20	< 0.05	<5	52
SV10-15	7/13/2021	< 5.5	81	11	21	15	13	<7.1	< 6.9	36	42	< 0.05	<5	<5
SV11-5	7/13/2021	< 5.5	150	10	19	21	15	17	< 6.9	29	60	< 0.05	<5	160
SV11-10	7/13/2021	< 5.5	130	8.5	15	10	8.1	<7.1	< 6.9	23	28	< 0.05	39	200
SV11-15	7/13/2021	< 5.5	64	6	19	11	11	<7.1	< 6.9	23	31	< 0.05	<5	<5
SV12-5	7/13/2021	< 5.5	83	5.4	12	7.8	6.4	<7.1	< 6.9	18	23	< 0.07	<5	<5
SV12-10	7/13/2021	< 5.5	46	5.4	10	6.7	5.7	<7.1	< 6.9	16	20	< 0.05	<5	<5
SV12-15	7/13/2021	< 5.5	32	3.3	7	<5	4.5	<7.1	<6.9	9.2	16	< 0.05	<5	<5
SV13-5	7/13/2021	< 5.5	83	7.1	15	9.8	8.7	<7.1	< 6.9	23	31	< 0.05	<5	<5

Table 1 - Carbon Chains and Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Co	Cr	Cu	Ni	Pb	Se	V	Zn	C4-C12	C13-C22	C23-C40
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000	82	97	230,000
DTSC-SLr		0.11			36,000		820	80		390			97	2,400
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000	420	560	3,500,000
DTSC-SLi		0.36			170,000		11,000	320		1,000			500	18,000
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340			
SV13-10	7/13/2021	<5.5	100	5.7	21	13	10	<7.1	< 6.9	26	37	< 0.05	<5	<5
SV13-15	7/13/2021	< 5.5	46	4.5	12	8	7	<7.1	< 6.9	16	26	< 0.05	<5	<5
SV14-5	7/13/2021	< 5.5	50	4.7	11	7.4	5.9	<7.1	< 6.9	15	22	< 0.05	<5	<5
SV14-10	7/13/2021	< 5.5	88	5.6	22	12	9.1	26	< 6.9	17	61	0.21	53	180
SV14-15	7/13/2021	< 5.5	38	3.8	12	6.9	6.4	<7.1	< 6.9	13	28	< 0.05	<5	<5
SV15-5	7/13/2021	< 5.5	110	4.9	12	9	6.7	<7.1	< 6.9	19	28	< 0.06	<5	<5
SV15-10	7/13/2021	< 5.5	79	7.8	16	13	12	<7.1	< 6.9	26	38	< 0.056	<5	<5
SV15-15	7/13/2021	< 5.5	64	4.9	11	6.9	7.7	<7.1	< 6.9	16	26	< 0.065	<5	<5
SV16-5	7/13/2021	< 5.5	160	7.4	17	20	11	19	< 6.9	24	63	< 0.058	190	500
SV16-10	7/13/2021	< 5.5	130	11	24	27	16	27	< 6.9	36	86	< 0.063	<5	<5
SV16-15	7/13/2021	< 5.5	720	8	23	37	16	61	< 6.9	28	90	0.26	150	200
SV17-5	7/13/2021	20	88	6.7	18	47	17	57	< 6.9	21	180	0.052	34	650
SV17-10	7/13/2021	< 5.5	170	9.2	20	21	13	12	< 6.9	28	61	< 0.05	<5	79
SV17-15	7/13/2021	< 5.5	240	16	35	35	19	12	7.4	47	120	< 0.05	<5	78
SV18-5	7/13/2021	< 5.5	110	8.2	18	16	12	14	< 6.9	28	66	< 0.10	110	600
SV18-10	7/13/2021	< 5.5	94	9.8	18	14	12	<7.1	< 6.9	32	40	1100	1300	2200
SV18-15	7/13/2021	< 5.5	100	7.7	25	16	16	<7.1	< 6.9	35	54	0.48	<5	<5
SV19-5	7/13/2021	< 5.5	74	6.9	14	11	11	<7.1	< 6.9	24	33	2600	2400	<250
SV19-10	7/13/2021	< 5.5	66	7.3	17	12	12	<7.1	< 6.9	23	35	510	590	270
SV19-15	7/13/2021	< 5.5	46	5.2	10	7.8	8.1	<7.1	< 6.9	15	28	1500	2500	530
Notes:		•				•				•				

Notes:

mg/kg = milligram per kilogram

As = arsenic, Ba = barium, Co = cobalt, Cr = trivalent chromium, Cu = copper, Ni = nickel, Pb = lead, Se = selenium, V = vanadium, Zn = zinc

 $\langle x \rangle = \text{concentration is less than the Reporting Limit}(x), i.e., not detected (ND)$

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs)

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of metals are presented in this table. All other metals were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels, except nickel and TPH

DTSC SL C17-C32, aromatic high and USEPA aromatic high values were used for C23-C40

DTSC SL C9-C16, aromatic medium and USEPA aromatic medium values were used for C13-C22

Mearns Consulting LLC August 11, 2021

Table 2 - Background Metals Analytical Results in Soil Matrix

SAMPLE	DATE	As	Ba	Co	Cr	Cu	Ni	Pb	Se	V	Zn
ID	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		0.68	15,000	23	120,000	3,100		400	390	390	23,000
DTSC-SLr		0.11			36,000		820	80		390	
RSLi		3	220,000	350	1,800,000	47,000		800	5,800	5,800	350,000
DTSC-SLi		0.36			170,000		11,000	320		1,000	
ESL Tier 1		0.067	390	23	120,000	180	86	32	2.4	18	340
Offsite-1	4/4/2005	5.2	97	8.1	21	25	12	12	<1.9	35	62
Offsite-5	4/4/2005	12	160	17	50	64	30	8.1	<1.9	75	99
Offsite-10	4/4/2005	12	170	14	32	35	22	5.6	<1.9	58	67
Offsite-20	4/4/2005	14	73	17	35	80	22	10	<1.9	67	95
SB1-5	7/6/2021	< 5.5	84	11	36	40	21	8.8	< 6.9	46	54
SB2-5	7/6/2021	< 5.5	69	9.3	21	26	15	<7.1	< 6.9	36	39
SB3-5	7/6/2021	<5.5	48	4.6	9	16	6.2	<7.1	< 6.9	16	29
SB4-5	7/6/2021	< 5.5	170	14	42	45	26	9.5	< 6.9	58	74
SB5-5	7/6/2021	< 5.5	97	16	30	40	27	8.5	< 6.9	52	56
SB6-5	7/6/2021	< 5.5	130	22	42	46	33	11	< 6.9	71	85
SB7-5	7/6/2021	< 5.5	80	12	24	26	19	<7.1	< 6.9	43	47
SB8-5	7/6/2021	< 5.5	180	17	38	37	32	11	< 6.9	68	51
SB9-5	7/6/2021	<5.5	87	14	30	28	24	9	< 6.9	54	38
SB10-5	7/6/2021	< 5.5	98	13	27	30	23	7.5	< 6.9	51	39
SB11-5	7/6/2021	< 5.5	120	9.8	22	14	16	<7.1	< 6.9	39	31

Notes:

mg/kg = milligram per kilogram

As = arsenic, Ba = barium, Co = cobalt, Cr = trivalent chromium, Cu = copper, Ni = nickel, Pb = lead, Se = selenium, V = vanadium, Zn = zinc $\langle x \rangle$ = concentration is less than the Reporting Limit $\langle x \rangle$, i.e., not detected (ND)

SB1-5 = Soil Boring1, 5-feet below ground surface (bgs)

Analytical results are included as Appendix B

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020) carcinogenic values were preferentially used for all screening levels, except nickel

Table 3 - VOCs Analytical Results in Soil Matrix

								1				
								Methyl tert-butyl ether				
				<u> </u>	ne		ne	yl e		ə		
			n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	۵.	Isopropylbenzene	out		n-Propylbenzene		
			nze	oen	рег	Ethylbenzene	per	£	Naphthalene	en	<u>ə</u>	
		e	lbe	Ę.	ıty	enz	pyl	l te	nale	y Je	/ler	ne
		Benzene	uty	Bui	-Bu	al v	l lo	hy]	ht	rop	m,p-Xylene	o-Xylene
SAMPLE	DATE	3en	-B	-59	ert	[th	dos	/let	\ap	- <u>-</u> -	n,p	X
ID	SAMPLED	mg/kg	= mg/kg	∞ mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSLr		1.2	3,900	7,800	7,800	5.8	1,900	47	2	3,800	550	650
DTSC-SLr		0.33	2,400	2,200	2,200		-,,		2	-,		
RSLi		5.1	58,000	120,000	120,000	25	9,900	210	8.6	24,000	2,400	2,800
DTSC-SLi		1.4	18,000	12,000	12,000		,		6.5	,		,
ESL Tier 1		0.025				0.43		0.028	0.042		2.1	2.1
SV1-5	7/12/2021	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
SV1-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV1-15	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV2-5	7/12/2021	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042		< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042
SV2-10	7/12/2021	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039
SV2-15	7/12/2021	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
SV3-5	7/12/2021	<0.0042	<0.0042	< 0.0042	< 0.0042	<0.0042	< 0.0042	<0.0042	< 0.0042	< 0.0042	< 0.0042	<0.0042
SV3-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV3-15 SV4-5	7/12/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SV4-3 SV4-10	7/12/2021 7/12/2021	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SV4-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV5-5	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV5-10	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV5-15	7/12/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV6-5	7/13/2021	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058		< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058
SV6-10	7/13/2021	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099
SV6-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV7-5	7/13/2021	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
SV7-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV7-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV8-5	7/13/2021	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
SV8-10	7/13/2021	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
SV8-15	7/13/2021	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005
SV9-5	7/13/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
SV9-10 SV9-15	7/13/2021 7/13/2021	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
SV10-5	7/13/2021	< 0.0056						< 0.0056				< 0.0056
SV10-3	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005		< 0.005
SV10-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV11-5	7/13/2021	< 0.0056		< 0.0056			< 0.0056			< 0.0056		
SV11-10	7/13/2021	< 0.0058	< 0.0058	< 0.0058	< 0.0058			< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058
SV11-15	7/13/2021	< 0.0064	< 0.0064	< 0.0064	< 0.0064			< 0.0064	< 0.0064			< 0.0064
SV12-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV12-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV12-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV13-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV13-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV13-15	7/13/2021	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
SV14-5	7/13/2021	<0.0056	< 0.0056		< 0.0056	<0.0056		<0.0056	< 0.0056	< 0.0056	<0.0056	< 0.0056
SV14-10	7/13/2021	<0.0059		<0.0059	<0.0059	0.023	<0.0059	<0.0059		< 0.0059	0.11	0.043
SV14-15	7/13/2021	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	< 0.0057	< 0.0057	<0.0057	<0.0057	< 0.0057
SV15-5	7/13/2021	<0.0087	<0.0087	<0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	<0.0087	<0.0087
SV15-10 SV15-15	7/13/2021 7/13/2021	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
SV13-13 SV16-5	7/13/2021	< 0.003	< 0.003	< 0.003	< 0.003			< 0.003				< 0.003
S V 10-3	1/13/2021	~v.0004	~0.0004	~v.0004	\v.0004	<u>~0.0064</u>	<u>~0.0064</u>	\v.0004	\v.0004	<u>~0.0064</u>	\v.0004	\u.\u\ 0.

Table 3 - VOCs Analytical Results in Soil Matrix

SAMPLE ID	DATE SAMPLED	Benzene	ଞ୍ଚ ନ୍ଧ n-Butylbenzene	ա ^{rg} sec-Butylbenzene ra	म हिंदिन-Butylbenzene हे	교 역 Fthylbenzene	프 전 Isopropylbenzene	프 전 제 제 제 제 제 제 제 제 제 제 제 제 M ethyl tert-butyl ether	ա Թ Տո	ա Թ թեր n-Propylbenzene	ա ^{rg} m,p-Xylene ra	mg/sgn o-Xylene
RSLr		1.2	3,900	7,800	7,800	5.8	1,900	47	2	3,800	550	650
DTSC-SLr		0.33	2,400	2,200	2,200				2			
RSLi		5.1	58,000	120,000	120,000	25	9,900	210	8.6	24,000	2,400	2,800
DTSC-SLi		1.4	18,000	12,000	12,000				6.5			
ESL Tier 1		0.025				0.43		0.028	0.042		2.1	2.1
SV16-10	7/13/2021	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067	< 0.0067
SV16-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.014	< 0.005	< 0.005	< 0.005
SV17-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV17-10	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV17-15	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV18-5	7/13/2021	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SV18-10	7/13/2021	0.0081	0.0052	0.035	0.005	0.023	0.031	< 0.005	0.036	0.035	< 0.005	< 0.005
SV18-15	7/13/2021	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
SV19-5	7/13/2021	< 0.005	1	< 0.005	< 0.005	< 0.005	3	1.2	7.7	5.7	< 0.005	< 0.005
SV19-10	7/13/2021	< 0.0069	< 0.0069	0.068	0.012	< 0.0069	1	14	< 0.69	1.6	0.0075	< 0.0069
SV19-15	7/13/2021	< 0.5	1.7	< 0.5	< 0.5	< 0.5	1.7	12	13	4.1	< 0.5	< 0.5

Notes:

mg/kg = milligram per kilogram

< x = concentration is less than the Reporting Limit (x), i.e., not detected (ND)

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs)

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of VOCs are presented in this table. All other VOCs were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels

Table 4 - SVOCs Analytical Results in Soil Matrix

SAMPLE	DATE	Acenaphthene	Anthracene	Benzo (a) anthracene	2,4-Dinitrophenol	Chrysene	4,6-Dinitro-2-methylphenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	Fluorene	2-Methylnaphthalene	Naphthalene	4-Nitroaniline	N-Nitrosodi-n-propylamine	Phenanthrene -	Pyrene
ID DCL ::	SAMPLED	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSL <i>r</i> DTSC-SL <i>r</i>		3,600	18,000	1.1	130	110	5.1	1.7	0.36	2,400	240 190	2	27	0.078		1,800
RSLi		45,000	17,000 230,000	21	1,600	2,100		7.4	1.5	2,300 30,000	3,000	8.6	110	0.33		23,000
DTSC-SLi		23,000	130,000	12.0	1,100	1,300	42	4.7	0.99	17,000	1,300	6.5	74	0.21		13,000
ESL Tier 1		12	1.9	0.63	3	1,500	12	0.023	0.77	6	0.88	0.042	/ !	0.21	7.8	45
SV1-5	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV1-10	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV1-15	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV2-5	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV2-10	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV2-15	7/12/2021	<0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33
SV3-5	7/12/2021	< 0.33	<0.33	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	<0.33	<0.33	< 0.33	< 0.33	<0.33
SV3-10 SV3-15	7/12/2021 7/12/2021	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
SV4-5	7/12/2021	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33
SV4-10	7/12/2021	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV4-15	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV5-5	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV5-10	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV5-15	7/12/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV6-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV6-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV6-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV7-5	7/13/2021	<0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33
SV7-10	7/13/2021	<0.33	<0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	<0.33	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	<0.33
SV7-15 SV8-5	7/13/2021 7/13/2021	< 0.33	<0.33	<0.33	<0.33	<0.33	< 0.33	<0.33	<0.33	<0.33	<0.33	< 0.33	<0.33	<0.33	<0.33	<0.33
SV8-10	7/13/2021	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	< 0.33	<0.33	< 0.33	<0.33
SV8-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	<0.33
SV9-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV9-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33			< 0.33	< 0.33	< 0.33				< 0.33	< 0.33
SV9-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV10-5	7/13/2021	< 0.33	< 0.33				< 0.33		< 0.33				< 0.33			< 0.33
SV10-10	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV10-15	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV11-5	7/13/2021	<0.33	<0.33				< 0.33		< 0.33				< 0.33			
SV11-10 SV11-15	7/13/2021 7/13/2021	<0.33	<0.33		<0.33		<0.33		<0.33				<0.33			
SV11-13	7/13/2021	< 0.33	<0.33		< 0.33				< 0.33				<0.33			
SV12-3	7/13/2021	< 0.33	<0.33		< 0.33								< 0.33			
SV12-15	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV13-5	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV13-10	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV13-15	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV14-5	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV14-10	7/13/2021	< 0.33	< 0.33		< 0.33								< 0.33			
SV14-15	7/13/2021	<0.33	<0.33		< 0.33								< 0.33			
SV15-5	7/13/2021	< 0.33	<0.33		<0.33				< 0.33				< 0.33			<0.33
SV15-10	7/13/2021	<0.33	<0.33		<0.33								<0.33			
SV15-15	7/13/2021	< 0.33	< 0.33	\0.33	< 0.33	\U.33	\U.33	~ 0.33	\U.33	< 0.33	~ 0.33	\U.33	< 0.33	\0.33	\U.33	< 0.33

Table 4 - SVOCs Analytical Results in Soil Matrix

SAMPLE ID	DATE SAMPLED	ង ខ្មុ ភ្ន	տ թ Anthracene	g Benzo (a) anthracene	ਭ ਲੂੰ 2,4-Dinitrophenol	m gg Chrysene ss	ਜੂ ਲੂੰ 4,6-Dinitro-2-methylphenol	គ្ន ភ្នំ 2,4-Dinitrotoluene	g g 2,6-Dinitrotoluene g	ա թ Fluorene ռ	ਭ ਲੂੰ 2-Methylnaphthalene ਲੂੰ	m % Naphthalene %	ធ្ន ក្នុ ភ្ន		ធ្ន ក្ក ភ	^{my/R} Pyrene
RSLr		3,600	18,000	1.1	130	110	5.1	1.7	0.36	2,400	240	2	27	0.078		1,800
DTSC-SLr		3,300	17,000							2,300	190	2				
RSLi		45,000	230,000	21	1,600	2,100		7.4	1.5	30,000	3,000	8.6	110	0.33		23,000
DTSC-SLi		23,000	130,000	12.0	1,100	1,300	42	4.7	0.99	17,000	1,300	6.5	74	0.21		13,000
ESL Tier 1		12	1.9	0.63	3			0.023		6	0.88	0.042			7.8	45
SV16-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV16-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV16-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV17-15	7/13/2021	< 0.33	< 0.33	< 0.33		< 0.33	< 0.33	< 0.33		< 0.33	< 0.33	< 0.33	< 0.33	< 0.33		< 0.33
SV18-5	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV18-10	7/13/2021	< 0.33	0.82	< 0.33	0.92	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	2.2	0.44	< 0.33	< 0.33	0.77	< 0.33
SV18-15	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV19-5	7/13/2021	< 0.33	2.1	< 0.33	< 0.33	< 0.33	0.4	1.1	1.2	1.1	12	5.2	0.85	0.91	2	0.87
SV19-10	7/13/2021	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	< 0.33
SV19-15	7/13/2021	1.6	1.1	1.3	< 0.33	1.5	< 0.33	< 0.33	< 0.33	3	< 0.33	4	< 0.33	< 0.33	9.7	8.5

Notes:

mg/kg = milligram per kilogram

< x = concentration is less than the Reporting Limit, i.e., not detected (ND)

SV1-5 = Soil Boring1, 5-feet below ground surface (bgs)

BOLD = value exceeds the DTSC or USEPA screening level

Analytical results are included as Appendix A

Soil was collected from 5-feet, 10-feet bgs and 15-feet bgs from the same boring.

Only detected concentrations of SVOCs are presented in this table. All other SVOCs were ND.

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential soils, RSLi = USEPA Regional Screening Levels for industrial soils (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential soils, DTSC SLi = CalEPA DTSC Screening Level for industrial soils (June 2020)

carcinogenic values were preferentially used for all screening levels

Table 5 - Soil Vapor Analytical Results

SAMPLE ID	DATE SAMPLED	, Benzene 로, Benzene	ਸੂੰ ਸੂੰ n-Butylbenzene	표 를 sec-Butylbenzene	ਜੂੰ cis-1,2-Dichloroethene	로 Di-isopropylether	를 Ethylbenzene	편 를 Isopropylbenzene	로 4-Isopropyltoluene	ਨੂੰ B. Methylene chloride	ỗ. 로. Methyl tert-butyl ether	R. Naphthalene	ក E n-Propylbenzene	됹 로 Tetrachloroethene	표 Je Toluene	F. m.p-Xylenes	ng o-Xylene	ਜੁ ਭੂੰ Gasoline Range Organics (GRO)
RSLr		0.36	210	120	0.2	730	1.1	420		100	11	0.83	1,000	11	5,200	100	100	31
DTSC-SLr		0.097	210	420	8.3					1				0.46	83			
RSLi		1.6	000	1.000	2.5	2 100	4.9	1,800		1,200	47	0.36	4,400	47	22,000	440	440	130
DTSC-SLi		0.42	880	1,800	35	3,100	27			12	260	2.0		2	350	2.500	2.500	2 200
ESL Tier 1	5/05/0001	3.2	10	10	280	40	37	0	0	34	360	2.8	0	15	10,000	3,500	3,500	3,300
SV1-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV1-15	7/27/2021	13	<12	<12	<8	<40	<8	57	321	20	<40	<40	<8	<8	16	<16	<8	25,000
SV2-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV2-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	17	<40	<40	<8	<8	<8	<16	<8	<2,000
SV2-15 REP	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	26	<40	<40	<8	<8	<8	<16	<8	<2,000
SV3-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	18	<8	<16	<8	<2,000
SV3-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	8	<40	<40	<8	17	<8	<16	<8	<2,000
SV4-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	22	<8	<16	<8	<2,000
SV4-15	7/27/2021	<8	<12	<12	<8	<40 <40	<8	<8	<8	<8	<40 <40	<40 <40	<8	12	<8	<16	<8	<2,000
SV5-5 SV5-15	7/27/2021 7/27/2021	<8 <8	<12 <12	<12 <12	<8 <8	<40	<8 <8	<8 <8	<8 <8	<8 9	<40	<40	<8	<8 <8	<8 <8	<16	<8	<2,000 <2,000
SV6-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8 <8	17	<8	<16 <16	<8 <8	<2,000
SV6-15	7/27/2021	243	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	317,000
SV7-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV7-15	7/27/2021	8,850	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	4,210	799	441	46,300,000
SV8-5	7/27/2021	20	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	23	15	<16	<8	<2,000
SV8-15	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV9-5	7/27/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV9-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	34	13	<16	<8	<2,000
SV9-15 REP	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	34	14	<16	<8	<2,000
SV10-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	9	<8	<16	<8	<2,000
SV10-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	<2,000
SV11-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	24	<8	<16	<8	<2,000
SV11-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV12-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	8	<8	<16	<8	<2,000
SV12-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	9	<8	<16	<8	<2,000

Table 5 - Soil Vapor Analytical Results

SAMPLE ID	DATE SAMPLED	हैं. डे. Benzene	편 je n-Butylbenzene	를 sec-Butylbenzene	長 cis-1,2-Dichloroethene	ਨੂੰ B. Di-isopropylether	ਨੂੰ ਭੂ. Ethylbenzene	हूँ । Sopropylbenzene	표 로 4-Isopropyltoluene	로 Methylene chloride	हु . हु .Methyl tert-butyl ether	ਨੂੰ B. Naphthalene	表 B. n-Propylbenzene	표 로 Tetrachloroethene	ਸ਼੍ਰੇ Journe Journe	ក g-m,p-Xylenes	g o-Xylene	편 글 로
RSLr		0.36				730	1.1	420		100	11	0.83	1,000	11	5,200	100	100	31
DTSC-SLr		0.097	210	420	8.3					1				0.46	83			
RSLi		1.6					4.9	1,800		1,200	47	0.36	4,400	47	22,000	440	440	130
DTSC-SLi		0.42	880	1,800	35	3,100				12				2	350			
ESL Tier 1		3.2			280		37			34	360	2.8		15	10,000	3,500	3,500	3,300
SV13-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	16	<8	<16	<8	<2,000
SV13-5 REP	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	25	<8	<16	<8	<2,000
SV13-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV14-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	10	<8	<16	<8	<2,000
SV14-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	<8	<8	<16	<8	<2,000
SV15-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	37	<8	<16	<8	<2,000
SV15-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	29	<8	<16	<8	<2,000
SV16-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	15	<8	<16	<8	<2,000
SV16-15	7/28/2021	27	<12	<12	51	<40	74	<8	16	<8	<40	41	<8	18	44	287	84	46,800
SV17-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	32	<8	<16	<8	<2,000
SV17-15	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	10	<8	<16	<8	<2,000
SV18-5	7/28/2021	<8	<12	<12	<8	<40	<8	<8	<8	<8	<40	<40	<8	13	<8	<16	<8	<2,000
SV18-15	7/28/2021	1,150	<12	<12	<8	4,780	1,910	2,490	<8	<8	8,610	826	2,640	<8	<8	1,720	<8	3,380,000
SV19-5	7/28/2021	18	649	2,380	<8	<40	2,730	4,290	13	<8	121,000*	405	5,810	42	25	<16	<8	900,000

Notes: $\mu g/m^3 = 1$

 $\mu g/m^3 = micrograms per cubic meter$

< x = concentration is less than the Reporting Limit, i.e., not detected; **BOLD** exceeds the screening level

Blank cell screening threshold not available

Analytical results are included as Appendix C

Only detected concentrations of volatiles in the vapor phase are presented in this table

Soil vapor was collected from dual-nested soil vapor probes installed at 5-feet bgs and 15-feet bgs

ESL Tier 1 = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels 2019 (Rev. 2)

RSLr = USEPA Regional Screening Level for residential air, RSLi = USEPA Regional Screening Levels for industrial air (May 2021)

DTSC SLr = CalEPA DTSC Screening Level for residential air, DTSC SLi = CalEPA DTSC Screening Level for industrial air (June 2020) carcinogenic values were preferentially used for all screening levels

* = dilution factor 1/3

Table 6 - Exposure Point Concentrations, Slope Factors and Reference Doses

SOIL MATRIX ANALYTE	MAX mg/kg	95UCL mg/kg	SFo	IUR	RfDo	RfCi
C4-C12	2,600	199			4.0E-03 ^b	3.0E+01 ^b
C13-C22	2,500	346.3			4.0E-03 ^b	3.0E+00 ^b
C23-C40	2,200	246.7			4.0E-02 ^b	
benzene	0.0081		1.0E-01 ^a	2.9E-05 ^a	4.0E-03 ^a	3.0E+00 ^a
n-butylbenzene	1.7				5.0E-02 ^a	2.0E+02 ^a
sec-butylbenzene	0.068				1.0E-01 ^a	4.0E+02 ^a
tert-butylbenzene	0.012				1.0E-01 ^a	4.0E+02 ^a
-			1.1E-02 ^a	2.5E-06 ^a	1.0E-01 ^a	1.0E+03 ^a
ethylbenzene	0.023		1.1L-02	2.3E-00	1.0E-01 1.0E-01 ^a	
isopropylbenzene	3		1 05 028	2 (5 0 7 8	1.0E-01	4.0E+02 ^a
methyl tert-butyl ether	14		1.8E-03 ^a	2.6E-07 ^a		3.0E+03 ^a
naphthalene	13		1.2E-01 ^a	3.4E-05 ^a	2.0E-02 ^a	3.0E+00 ^a
n-propylbenzene	5.7				1.0E-01 ^b	1.0E+03 ^b
m,p-xylenes	0.11				2.0E-01 ^a	1.0E+02 ^a
o-xylene	0.43				2.0E-01 ^a	1.0E+02 ^a
acenaphthene	1.6				6.0E-02 ^a	2.4E+02 ^a
anthracene	2.1				3.0E-01 ^a	1.2E+03 ^a
benzo(a)anthracene	1.3		1.0E-01 ^a	1.1E-04 ^a		
2,4-dinitrophenol	0.92				2.0E-03 ^a	
chrysene	1.5		1.0E-03 ^a	1.1E-05 ^a		
4,6-dinitro-2-methylphenol	0.4			-	8.0E-05 ^a	
2,4-dinitrotoluene	1.1		3.1E-01 ^a	8.9E-05 ^a	2.0E-03 ^a	
2,6-dinotrotoluene	1.2		1.5E+00 ^a	0.712 03	3.0E-04 ^a	
fluorene			1.31.00		4.0E-02 ^a	1.6E+02 ^a
	3 12				4.0E-02 4.0E-03 ^a	1.0E+02
2-methylnaphthalene			1.25.018	2.45.058		2.05.008
naphthalene	5.2		1.2E-01 ^a	3.4E-05 ^a	2.0E-02 ^a	3.0E+00 ^a
4-nitroaniline	0.85		2.0E-02 ^a	b	4.0E-03 ^a	6.0E+00 ^a
4-nitrosodi-n-propylamine	0.91		$7.0E+00^{b}$	2.0E-03 ^b		
phenanthrene*	9.7					
pyrene	8.5				3.0E-02 ^a	1.2E+02 ^a
selenium	7.4				5.0E-03 ^a	2.0E+01 ^a
lead	61	14.37	LeadSpread	LeadSpread	LeadSpread	LeadSpread
SOIL VAPOR ANALYTE		95UCL μg/m3		EGI O MIDANG 11		EGY O MUDANG 11
benzene n-butylbenzene**	8,850 649	1,558		ESL & VURAM models		ESL & VURAM models VURAM model
sec-butylbenzene**	2,380					VURAM model
cis-1,2-dichloroethene**	51					VURAM model
di-isopropylether**	4,780					VURAM model
ethylbenzene	2,730	292.3		ESL & VURAM models		ESL & VURAM models
isopropylbenzene**	4,290	427.5				VURAM model
p-isopropyltoluene**	321	32.1				VURAM model
methylene chloride	26	10.06		ESL & VURAM models		ESL & VURAM models
methyl tert-butyl ether	121,000	21,698		ESL & VURAM models		ESL & VURAM models
naphthalene	826	112.5		ESL & VURAM models		ESL & VURAM models
n-propylbenzene**	5,810	1,179	-		-	VURAM model
tetrachloroethene	42	17.88		ESL & VURAM models		ESL & VURAM models
toluene	4,210	814.4				ESL & VURAM models
m,p-xylenes	1,720	180.1				ESL & VURAM models
o-xylene	441	87.33				ESL & VURAM models
gasoline range organics Notes:	46,300,000	8,550,284				ESL & VURAM models

95UCL calculated using ProUCL version 5.1.02

EPCs are highlighted

SFo = Slope Factor, oral route of exposure (mg/kg-day)⁻¹

IUR = inhalation unit risk factor, inhalation route of exposure $(\mu g/m^3)^{\text{-}1}$

RfDo = Reference Dose, oral route of exposure (mg/kg-day)

RfCi = Reference Concentration, inhalation route of exposure ($\mu g/m^3$)

^aDTSC HERO Note 10 (February 2019), ^bUSEPA RSL tables (May 2021)

aromatic values were used for carbon chains (USEPA RSL May 2021)

^{**} chemical specific data unavailable in ESL model, therefore analyte was not quantitatively assessed using the ESL model naphthalene was detected as a VOC and SVOC in the soil matrix, the greatest detected concentration was used as the EPC *phenanthrene was not quantitatively assessed as toxicity criteria is unavailable

Table 7 - Exposure Parameters

			Receptor Populati	ons			
Exposure Parameter	Notation	Commercial Worker	Construction Worker	Residential User Adult Child		Units	Reference
General Parameters							
Body Weight	BW	80	80	80	15	kg	DTSC
Exposure Duration	ED	25	1	20	6	years	DTSC
Exposure Frequency	EF	250	250	350	350	days/year	DTSC
Exposure Time	ET	8	8	24	24	hours/day	DTSC
Soil Ingestion Pathway			T	T			
Soil Ingestion Rate	IR	100	330	100	200	mg/day	DTSC
Averaging Time carcinogens 70dx365d/yr	Atc	25550	25550	25550	25550	days	DTSC
Averaging Time noncarcinogens EDx365d/yr	Atnc	9125	365	7300	2190	days	DTSC
Dermal Contact with Soil							
Skin Surface Area	SA	6,032	6,032	6,032	2,900	cm ² /event	ОЕННА
Soil-to-Skin Adherence factor	AF	0.2	0.8	0.07	0.2	mg/cm ²	ОЕННА
Fraction of Chemical Dermally Absorbed	ABS	chem specific	chem specific	ch sp	ch sp	unitless	DTSC
Averaging Time carcinogens 70dx365d/yr	Atc	25550	25550	25550	25550	days	DTSC
Averaging Time noncarcinogens EDx365d/yr	Atnc	9125	365	7300	2190	days	DTSC
Inhalation of Outdoor Air							
Particulate Emission Factor	PEF	1.36E+09	1.00E+06	1.36E+09	1.36E+09	m ³ /kg	DTSC
Exposure Time (site visit duration)	ET	6	12	6	6	hours/day	USEPA
Averaging Time carcinogens 70dx365d/yrx24hr/d	Atc	613200	613200	613200	613200	hours	DTSC
Averaging Time noncarcinogens EDx365d/yrx24h/d	Atnc	219000	8760	175200	52560	hours	DTSC

Notes:

 $ABS = 0.1 \ for \ VOCs, \ 0.13 \ for \ naphthalene, \ 0.01 \ for \ most \ metals \ (DTSC \ June \ 2020; \ USEPA \ RSL \ May \ 2021)$

Table 8
Estimated Risks and Hazards - Residential

ANALYTE	RISKo	RISKi	HAZARD ₀	HAZARDi
soil			Ì	
C4-C12			9.05E-01	4.67E-06
C13-C22			1.58E+00	8.15E-05
C23-C40			1.12E-01	
benzene	1.54E-09	1.54E-14	3.69E-05	1.905E-09
n-butylbenzene			6.19E-04	5.993E-09
sec-butylbenzene			1.24E-05	1.20E-10
tert-butylbenzene			2.18E-06	2.11E-11
ethylbenzene	4.81E-10	3.76E-15	4.19E-06	1.62E-11
isopropylbenzene			5.46E-04	5.30E-09
methyl tert-butyl ether	4.79E-08	2.38E-13		3.29E-09
naphthalene	3.33E-06	2.89E-11	1.32E-02	3.06E-06
n-propylbenzene			1.04E-03	4.02E-09
m,p-xylenes			1.00E-05	7.76E-10
o-xylene			3.91E-05	3.03E-09
acenaphthene			5.20E-04	4.71E-09
anthracene			1.28E-04	1.23E-09
benzo(a)anthracene	2.77E-07	9.36E-12		
2,4-dinitrophenol			8.37E-03	
chrysene	3.20E-09	1.08E-12		
4,6-dinitro-2-methylphenol			9.10E-02	
2,4-dinitrotoluene	6.48E-07	6.48E-07	1.00E-02	
2,6-dinotrotoluene	3.42E-06		7.28E-02	
fluorene			1.52E-03	1.32E-08
2-methylnaphthalene			5.46E-02	
4-nitroaniline	3.23E-08	1.19E-10	3.87E-03	9.99E-08
4-nitrosodi-n-propylamine	1.21E-05			
pyrene			5.70E-03	4.99E-08
selenium			2.13E-02	2.61E-07
soil vapor				
benzene		4.80E-04		1.50E+01
ethylbenzene		7.30E-05		7.90E-02
methylene chloride		3.00E-07		7.20E-04
methyl tert-butyl ether		3.40E-04		1.20E+00
naphthalene		2.10E-03		5.60E+01
tetrachloroethene		1.20E-06		1.30E-02
toluene				7.80E-02
xylenes				6.20E-01
gasoline range organics				4.30E+02
Sum	1.99E-05	3.00E-03	2.88	503
Total Risk = 3.02E-03				
Total Hazard = 506				

Table 9
Estimated Risks and Hazards - Commercial

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
soil				
C4-C12			9.40E-02	8.33E-07
C13-C22			1.64E-01	1.46E-05
C23-C40			1.17E-02	
benzene	5.47E-10	1.06E-14	3.83E-06	3.40E-10
n-butylbenzene			6.42E-05	1.07E-09
sec-butylbenzene			1.28E-06	2.14E-11
tert-butylbenzene			2.27E-07	3.78E-12
ethylbenzene	1.71E-10	2.58E-15	4.34E-07	2.89E-12
isopropylbenzene			5.67E-05	9.46E-10
methyl tert-butyl ether	1.70E-08	1.64E-13		5.88E-10
naphthalene	1.34E-06	1.99E-11	1.56E-03	5.46E-07
n-propylbenzene			1.08E-04	7.17E-10
m,p-xylenes			1.04E-06	1.39E-10
o-xylene			4.06E-06	5.41E-10
acenaphthene			6.16E-05	8.42E-10
anthracene			1.52E-05	2.20E-10
benzo(a)anthracene	1.12E-07	6.43E-12		
2,4-dinitrophenol			8.69E-04	
chrysene	1.29E-09	7.42E-13		
4,6-dinitro-2-methylphenol			9.44E-03	
2,4-dinitrotoluene	2.30E-07	4.40E-12	1.04E-03	
2,6-dinotrotoluene	1.22E-06		7.56E-03	
fluorene			1.80E-04	2.37E-09
2-methylnaphthalene			5.67E-03	
4-nitroaniline	1.15E-08	8.18E-11	4.01E-04	1.78E-08
4-nitrosodi-n-propylamine	4.30E-06			
pyrene			6.75E-04	8.92E-09
selenium			1.42E-03	4.66E-08
soil vapor				
benzene		1.10E-04		3.60E+00
ethylbenzene		1.70E-05		1.90E-02
methylene chloride		2.50E-08		1.70E-04
methyl tert-butyl ether		7.70E-05		2.80E-01
naphthalene		4.80E-04		1.30E+01
tetrachloroethene		2.70E-07		3.10E-03
toluene				1.90E-02
xylenes				1.50E-01
gasoline range organics				1.00E+02
Sum	7.23E-06	6.84E-04	0.30	117
Total Risk = 6.91E-04				
Total Hazard = 117				

Table 10
Estimated Risks and Hazards - Construction Worker

ANALYTE	RISKo	RISKi	HAZARDo	HAZARDi
soil				
C4-C12			4.85E-01	2.27E-03
C13-C22			8.43E-01	3.95E-02
C23-C40			6.01E-02	
benzene	8.02E-11	4.11E-12	1.97E-05	9.25E-07
n-butylbenzene			3.31E-04	2.91E-06
sec-butylbenzene			6.62E-06	5.82E-09
tert-butylbenzene			1.17E-06	1.03E-08
ethylbenzene	2.50E-11	3.06E-14	2.24E-06	7.88E-09
isopropylbenzene			2.92E-04	2.57E-06
methyl tert-butyl ether	2.49E-09	3.31E-16		1.60E-06
naphthalene	2.01E-07	5.66E-12	8.21E-03	1.48E-03
n-propylbenzene			5.55E-04	1.95E-06
m,p-xylenes			5.36E-06	3.77E-07
o-xylene			2.09E-05	1.47E-06
acenaphthene			3.23E-04	2.28E-06
anthracene			7.96E-05	5.99E-07
benzo(a)anthracene	1.68E-08	5.92E-11		
2,4-dinitrophenol			4.48E-03	
chrysene	1.94E-10	5.92E-13		
4,6-dinitro-2-methylphenol			4.87E-02	
2,4-dinitrotoluene	3.38E-08	3.88E-11	5.36E-03	
2,6-dinotrotoluene	1.78E-07		3.90E-02	
fluorene			9.47E-04	6.42E-06
2-methylnaphthalene	1.605.00	1.065.00	2.92E-02	4.055.05
4-nitroaniline	1.68E-09	1.96E-08	2.07E-03	4.85E-05
4-nitrosodi-n-propylamine	6.31E-07		2.545.02	2.425.05
pyrene			3.54E-03	2.43E-05
selenium			1.44E-02	1.27E-04
soil vapor		1.78E-07		2.08E-02
di-isopropylether		1./6E-0/		5.33E-03
ethylbenzene		7.63E-08		2.48E-04
isopropylbenzene		7.03E-08		3.40E-02
isopropyltoluene				2.38E-03
methylene chloride		1.64E-12		1.15E-05
methyl tert-butyl ether		3.87E-07		4.30E-02
naphthalene		2.77E-07		1.99E-01
n-propylbenzene		2.11L-01	+	4.17E-03
tetrachloroethene		3.83E-11	+	2.69E-04
toluene		J.0JL 11	+	1.51E-04
xylenes			+	4.41E-03
gasoline range organics			+	3.73E+00
Sum	1.07E-06	9.38E-07	1.55	4
Total Risk = 2.0E-06	1.0/L-00	7.50L-07	1.55	т
Total Hazard = 6	 		+	
Total Hazalu — V			1	

Table 11 Summary of Risks and Hazards

		Receptor Population								
	Residential	Construction	Commercial							
∑ Risk	3.02E-03	2.00E-06	6.91E-04							
Hazard Index	506	6	117							

Notes:

ΣRisk = Estimated risks due to ingestion and dermal contact and inhalation of constituents in soil and soil vapor

Hazard Index = Estimated hazards due to ingestion and dermal contact and inhalation of constituents in soil and soil vapor

Figure 1: Site Location Map Town Center Northwest Signal Hill, CA

Mearns Consulting LLC

Base map: Google Earth 2020

Figure 2: Site MapTown Center Northwest
Signal Hill, CA

Mearns Consulting LLC

Base map: Google Earth 2020

- Active injection well
- Active production well
- Idle production well
- Idle injection well
- Previously abandoned well

Above ground storage tank

Potential sump

▲ Soil boring, sample depth indicated in feet bgs, sample concentrations in milligrams per kilogram,

As = arsenic

Figure 4: Concentrations of Metals and Carbon Chains That Exceed Screening Thresholds

Town Center Northwest Signal Hill, CA

Mearns Consulting LLC

Potential Receptors Ecological Receptors Construction and Excavation Occupational Residential **Primary Primary** Release Secondary **Transport Exposure Exposure Routes Sources** Mechanisms **Sources** Mechanisms Media Outdoor air Inhalation Volatilization and migration in soil gas Inhalation Indoor air Surface soils Ingestion • Oil field • Historic above Contact Soil Dermal contact ground storage tanks Disposal • Inoperable and practices operating pipelines Inhalation leaking • Previously particulates abandoned oil wells • Historic sumps Outdoor air Inhalation Volatilization and Subsurface migration in soil soils gas Indoor air Inhalation Figure 7: Conceptual Site Model Town Center Northwest Signal Hill, CA Mearns Consulting LLC

APPENDIX A

Sierra Analytical Labs, Inc. July 12 and 13, 2021 Soil Matrix Data

19 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:Town Center Northwest

Work Order No.: 2107160

Attached are the results of the analyses for samples received by the laboratory on 07/12/21 15:44.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Kuhand T. Foryth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/19/21 09:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV1-5	2107160-01	Soil	07/12/21 08:54	07/12/21 15:44
SV1-10	2107160-02	Soil	07/12/21 10:39	07/12/21 15:44
SV1-15	2107160-03	Soil	07/12/21 10:43	07/12/21 15:44
SV2-5	2107160-04	Soil	07/12/21 11:20	07/12/21 15:44
SV2-10	2107160-05	Soil	07/12/21 11:23	07/12/21 15:44
SV2-15	2107160-06	Soil	07/12/21 11:36	07/12/21 15:44
SV3-5	2107160-07	Soil	07/12/21 12:35	07/12/21 15:44
SV3-10	2107160-08	Soil	07/12/21 12:39	07/12/21 15:44
SV3-15	2107160-09	Soil	07/12/21 12:44	07/12/21 15:44
SV4-5	2107160-10	Soil	07/12/21 13:09	07/12/21 15:44
SV4-10	2107160-11	Soil	07/12/21 13:18	07/12/21 15:44
SV4-15	2107160-12	Soil	07/12/21 13:21	07/12/21 15:44
SV5-5	2107160-13	Soil	07/12/21 13:50	07/12/21 15:44
SV5-10	2107160-14	Soil	07/12/21 14:02	07/12/21 15:44
SV5-15	2107160-15	Soil	07/12/21 14:07	07/12/21 15:44

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

		Reporting	** .						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV1-5 (2107160-01) Soil Sample	led: 07/12/21 08:54 Received: 0	7/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	68	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.4	3.3	"	"	"	"	"	"	
Chromium	9.8	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	8.8	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	6.4	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Гhallium	ND	17	"	"	"	"	"	"	
Vanadium	15	5.1	"	"	"	"	"	"	
Zinc	27	7.0	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil Samp	pled: 07/12/21 10:39 Received:	07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	77	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	7.1	3.3	"	"	"	"	"	"	
Chromium	21	2.3	"	"	"	"	"	"	
		-			D101207	07/13/21	07/14/21 17:48	EPA 7199A	
Hexavalent Chromium	ND	0.10	"	"	B1G1307				
Hexavalent Chromium Copper			"	"			07/14/21 17:06	EPA 6010B	
Copper	20	5.0			B1G1308	07/13/21	07/14/21 17:06 07/13/21 20:26	EPA 6010B EPA 7471A	
C opper Mercury	20 ND	5.0 0.81	"	"	B1G1308 B1G1309	07/13/21 07/13/21	07/13/21 20:26	EPA 7471A	
C opper Mercury Molybdenum	20 ND ND	5.0 0.81 5.2	"	"	B1G1308	07/13/21			
C opper Mercury Molybdenum Nickel	20 ND ND 12	5.0 0.81 5.2 3.0	"	" "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
C opper Mercury Molybdenum Nickel Lead	20 ND ND 12 ND	5.0 0.81 5.2 3.0 7.1	" "	" " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
C opper Mercury Molybdenum Nickel Lead Antimony	20 ND ND 12 ND ND	5.0 0.81 5.2 3.0 7.1 8.0	" " " "	" " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead Antimony Selenium	20 ND ND 12 ND ND ND	5.0 0.81 5.2 3.0 7.1 8.0 6.9	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06	EPA 7471A EPA 6010B	
Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	20 ND ND 12 ND ND	5.0 0.81 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 "	07/13/21 20:26 07/14/21 17:06 "	EPA 7471A EPA 6010B	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received:	07/12/21 15:	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		45	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		ND	3.3	"	"	"	"	"	"	
Chromium		7.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		ND	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		3.6	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	,,	"	"	
Vanadium		6.6	5.1	"	"	"	,,	"	"	
Zinc		22	7.0	"	"	"	"	"	"	
SV2-5 (2107160-04) Soil	Sampled: 07/12/21 11:20 F	Received: 0	7/12/21 15:4	4						
Silver	<u> </u>	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	mg kg	"	"	"	"	"	
Barium		74	6.0	,,	,,	,,	,,	"	"	
Beryllium		ND	2.2	,,	,,	,,	,,	"	"	
Cadmium		ND	2.5	,,	,,	,,	,,	"	"	
Cobalt		5.5	3.3	,,	"	"	,,	"	,,	
Chromium		3.3 11	2.3	,,	,,	"	,,	"	,,	
Hexavalent Chromium		ND	0.10	,,	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
		13	5.0	,,	,,					
Copper		ND	0.90	,,	,,	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury				,,	,,	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	,,	,,	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		6.2	3.0	.,	"	,,	,	",	"	
Lead		ND	7.1		"	"	"	"	"	
Antimony		ND	8.0							
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		13	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		82	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.3	3.3	"	"	"	"	"	"	
Chromium		18	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		18	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		12	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		31	5.1	"	"	"	"	"	"	
Zinc		36	7.0	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"						
Barium			5.5	"	"	"	"	"	"	
		81	6.0	"	"	"	"	"	"	
		81 ND								
Beryllium			6.0	"	"	"	"	"	"	
Beryllium Cadmium		ND	6.0 2.2	"	"	"	"	"	"	
Beryllium Cadmium Cobalt		ND ND	6.0 2.2 2.5	"	" "	"	"	" "	" "	
Beryllium Cadmium Cobalt Chromium		ND ND 6.6	6.0 2.2 2.5 3.3	" "	" "	" " "	" "	" " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium		ND ND 6.6 21	6.0 2.2 2.5 3.3 2.3	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper		ND ND 6.6 21 ND	6.0 2.2 2.5 3.3 2.3 0.10	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307	" " " 07/13/21	" " " 07/14/21 17:48	" " " EPA 7199A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury		ND ND 6.6 21 ND 14	6.0 2.2 2.5 3.3 2.3 0.10 5.0	n n n	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308	""""""""""""""""""""""""""""""""""""""	" " " 07/14/21 17:48 07/14/21 17:06	" " " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		ND ND 6.6 21 ND 14 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308 B1G1309	" " 07/13/21 07/13/21 07/13/21	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26	" " " EPA 7199A EPA 6010B EPA 7471A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		ND ND 6.6 21 ND 14 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1307 B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 07/13/21	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		ND ND 6.6 21 ND 14 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " "		" " " B1G1307 B1G1308 B1G1309 B1G1308	07/13/21 07/13/21 07/13/21 07/13/21 "	" " " 07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06 "	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		ND ND 6.6 21 ND 14 ND ND ND 11	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " "		" " " B1G1307 B1G1308 B1G1309 B1G1308 "	07/13/21 07/13/21 07/13/21 07/13/21 "	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		ND ND 6.6 21 ND 14 ND ND 11 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " " B1G1307 B1G1308 B1G1309 B1G1308 " "	07/13/21 07/13/21 07/13/21 07/13/21 "	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium		ND ND 6.6 21 ND 14 ND ND 11 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " " B1G1307 B1G1308 B1G1309 B1G1308 " "	07/13/21 07/13/21 07/13/21 07/13/21 ""	07/14/21 17:48 07/14/21 17:06 07/13/21 20:26 07/14/21 17:06	EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

		Sicritaria	•	2405, 111					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35 Received:	07/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	67	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.6	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	11	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.81	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	4.3	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	18	5.1	"	"	"	"	"	"	
Zinc	25	7.0	"	"	"	"	"	"	
SV3-10 (2107160-08) Soi	l Sampled: 07/12/21 12:39 Received	: 07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	50	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	,,	"	"	"	
Cadmium	ND	2.5	"	"	,,	"	"	"	
Cobalt	6.4	3.3	"	"	,,	"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	17	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.78	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	9.5	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	,,	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND ND	17	,,	,,	,,	,,	"	"	
Vanadium	31	5.1	,,	,,	,,	,,	"	"	
Zinc	34	7.0	,,	,,	,,	,,	,,	"	
Zanc	34	7.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received	: 07/12/21 15:4	14						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		32	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.7	3.3	"	"	"	"	"	"	
Chromium		8.3	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		6.2	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		5.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		18	5.1	"	"	"	"	"	"	
Zinc		18	7.0	"	"	"	"	"	"	
SV4-5 (2107160-10) Soil S	ampled: 07/12/21 13:09 F	Received:	07/12/21 15:44	4						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		63	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		8.2	3.3	"	"	"	"	"	"	
Chromium		13	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		14	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		8.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		25	5.1	"	"	"	"	"	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	14						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		40	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.6	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		12	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		7.0	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		21	5.1	"	"	"	"	"	"	
Zinc		25	7.0	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received	: 07/12/21 15:4	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		26	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.7	3.3	"	"	"	"	"	"	
Chromium		8.1	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		6.8	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		5.7	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		14	5.1	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50 Received:	07/12/21 15:4	4						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	82	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	8.1	3.3	"	"	"	"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	17	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	10	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	,,	"	"	
Vanadium	34	5.1	"	"	"	,,	"	"	
Zinc	34	7.0	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02 Received	: 07/12/21 15:	44						
Silver	ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	47	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.1	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper	11	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel	7.8	3.0	"	"	B1G1500	"	"	"	
Lead	ND	7.1	"	"	"	,,	"	"	
Antimony	ND	8.0	"	"	,,	,,	"	"	
Selenium	ND ND	6.9	,,	"	"	,,	"	"	
Thallium	ND ND	17	,,	"	"	,,	"	"	
Vanadium	21	5.1	,,	,,	,,	,,	,,	,	
Zinc	24	7.0	,,	,,	,,	,,	"	,	
Zilic	24	7.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	44						
Silver		ND	2.0	mg/kg	1	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		61	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		6.1	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1307	07/13/21	07/14/21 17:48	EPA 7199A	
Copper		15	5.0	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1309	07/13/21	07/13/21 20:26	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1308	07/13/21	07/14/21 17:06	EPA 6010B	
Nickel		8.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	"	"	"	"	"	"	
Zinc		30	7.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-5 (2107160-01) Soil Sampled: 07/12/2	21 08:54 Received:	07/12/21 15:44	l						
Surrogate: o-Terphenyl		67.5 %	60-17		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.4 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil Sampled: 07/12	/21 10:39 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		91.5 %	60-17	'5	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV1-15 (2107160-03) Soil Sampled: 07/12	/21 10:43 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		66.4 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	35-13	0	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV2-5 (2107160-04) Soil Sampled: 07/12/2	21 11:20 Received: (07/12/21 15:44	ļ						
Surrogate: o-Terphenyl		69.9 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	35	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.9 %	35-13		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21	11:23 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		91.3 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.045	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil Sampled: 07/12/21	11:36 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		68.0 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.4 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12	2:35 Received:	07/12/21 15:44	1						
Surrogate: o-Terphenyl		73.0 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.7 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	
SV3-10 (2107160-08) Soil Sampled: 07/12/21	12:39 Received	: 07/12/21 15:4	14						
Surrogate: o-Terphenyl		76.6 %	60-17	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	35-13	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12	2:44 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		77.7 %	60-1		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:	09 Received:	07/12/21 15:44	ļ						
Surrogate: o-Terphenyl		74.6 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.7 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13	3:18 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		76.4 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	35-1.	30	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13	3:21 Received	: 07/12/21 15:4	4						
Surrogate: o-Terphenyl		65.2 %	60-1	75	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		84.3 %	35-1.		B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil Sampled: 07/12/21 1	3:50 Received: 0	07/12/21 15:44	4						
Surrogate: o-Terphenyl		67.5 %	60-1		B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.6 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil Sampled: 07/12/21	14:02 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		71.2 %	60-1	175	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		87.6 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV5-15 (2107160-15) Soil Sampled: 07/12/21	14:07 Received:	07/12/21 15:4	14						
Surrogate: o-Terphenyl		73.6 %	60-1	175	B1G1401	07/14/21	07/14/21 12:21	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		87.4 %	35-1	130	B1G1302	07/13/21	07/14/21 08:03	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
SV1-5 (2107160-01) Soil Sampled: 07/12/21 08:54	Received: 0	7/12/21 15:44							
Surrogate: Dibromofluoromethane		112 %	80-1	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-1	!17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	74-1	121	"	"	"	"	
Benzene	ND	4.5	"	"	"	"	"	"	
Bromobenzene	ND	4.5	"	"	"	"	"	"	
Bromochloromethane	ND	4.5	"	"	"	"	"	"	
Bromodichloromethane	ND	4.5	"	"	"	"	"	"	
Bromoform	ND	4.5	"	"	"	"	"	"	
Bromomethane	ND	4.5	"	"	"	"	"	"	
n-Butylbenzene	ND	4.5	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.5	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.5	"	"	"	"	"	"	
Chlorobenzene	ND	4.5	"	"	"	"	"	"	
Chloroethane	ND	4.5	"	"	"	"	"	"	
Chloroform	ND	4.5	"	"	"	"	"	"	
Chloromethane	ND	4.5	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.5	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.5	"	"	"	"	"	"	
Dibromochloromethane	ND	4.5	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.5	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.5	"	"	"	"	"	"	
Dibromomethane	ND	4.5	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.5	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.5	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.5	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.5	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.5	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.5	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.5	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.5	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.5	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.5	"	"	"	"	"	"	
Ethylbenzene	ND	4.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.5	"	"	"	"	"	"	
Isopropylbenzene	ND	4.5	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•	0 1 1 0 2 11 2 2 2 2 2 2				Dilution	Baten	rrepared	Anaryzou	Method	1100
SV1-5 (2107160-01) Soil	Sampled: 07/12/21 08:54									
p-Isopropyltoluene		ND	4.5	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.5	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.5	"	"	"	"	"	"	
Naphthalene		ND	4.5	"	"	"	"	"	"	
n-Propylbenzene		ND	4.5	"	"	"	"	"	"	
Styrene		ND	4.5	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.5	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.5	"	"	"	"	"	"	
Tetrachloroethene		ND	4.5	"	"	"	"	"	"	
Toluene		ND	4.5	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.5	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.5	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.5	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.5	"	"	"	"	"	"	
Trichloroethene		ND	4.5	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.5	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.5	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.5	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.5	"	"	"	"	"	"	
Vinyl chloride		ND	4.5	"	"	"	"	"	"	
m,p-Xylene		ND	4.5	"	"	"	"	"	"	
o-Xylene		ND	4.5	"	"	"	"	"	"	
SV1-10 (2107160-02) Soil	Sampled: 07/12/21 10:39	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		114 %	80-	-120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			99.4 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorob	enzene		95.0 %	74-	-121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tout Dutylhoussons		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
•				"	,,	"	"	"	"	
Carbon tetrachloride		ND	5.0							
Carbon tetrachloride Chlorobenzene		ND ND	5.0 5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND ND ND	5.0 5.0 5.0		"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV1-10 (2107160-02) Soil Sampled: 07/12/21 10:39	Received:	07/12/21 15:	44						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	,,	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	,,	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	,,	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0		,,	"	"	"	"	
Naphthalene	ND	5.0		,,	"	"	"	"	
n-Propylbenzene	ND	5.0	,,	,,	,,	,,	"	"	
Styrene	ND	5.0	,,	,,	,,	,,	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	,,	"	"	,,	,,	,,	
1,1,2,2-Tetrachloroethane	ND	5.0	,,	"	"	,,	,,	,,	
Tetrachloroethene	ND	5.0	,,	"	"	,,	,,	,,	
Toluene	ND	5.0	,,	,,	"	,,	,,	,,	
1,2,3-Trichlorobenzene	ND ND	5.0	,,	,,	,,	,,	,,	"	
, ,			,,	,,	,	"	,,	,,	
1,2,4-Trichlorobenzene	ND	5.0		,,	,,	,,	,,	,,	
1,1,1-Trichloroethane	ND	5.0	,,	,,	,,	,,	,,	"	
1,1,2-Trichloroethane	ND	5.0						"	
Trichloroethene	ND	5.0				"	"		
Trichlorofluoromethane	ND	5.0		"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil Sampled: 07/12/21 1	0:39 Received:	07/12/21 15:4	44						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV1-15 (2107160-03) Soil Sampled: 07/12/21	0:43 Received:	07/12/21 15:4	44						
Surrogate: Dibromofluoromethane		115 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.9 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
>	1.12								

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received	: 07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-5 (2107160-04) Soil Sampled: 07/12/21 11:20	Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		113 %	80-120		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %		117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %		121	"	"	"	"	
Benzene	ND	4.2	"	"	"	"	"	"	
Bromobenzene	ND	4.2	"	"	"	"	"	"	
Bromochloromethane	ND	4.2	"	"	"	"	"	"	
Bromodichloromethane	ND	4.2	"	"	"	"	"	"	
Bromoform	ND	4.2	"	"	"	"	"	"	
Bromomethane	ND	4.2	"	"	"	"	"	"	
n-Butylbenzene	ND	4.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.2	"	"	"	"	"	"	
Chlorobenzene	ND	4.2	"	"	"	"	"	"	
Chloroethane	ND	4.2	"	"	"	"	"	"	
Chloroform	ND	4.2	"	"	"	"	"	"	
Chloromethane	ND	4.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
Dibromochloromethane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.2	"	"	"	"	"	"	
Dibromomethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.2	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
Ethylbenzene	ND	4.2	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.2	"	"	"	"	"	"	
Isopropylbenzene	ND	4.2	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•					Diludill	Dateii	1 repared	Allalyzeu	Meniod	1101
SV2-5 (2107160-04) Soil	Sampled: 07/12/21 11:20	Received: 0	07/12/21 15:44							
p-Isopropyltoluene		ND	4.2	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.2	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.2	"	"	"	"	"	"	
Naphthalene		ND	4.2	"	"	"	"	"	"	
n-Propylbenzene		ND	4.2	"	"	"	"	"	"	
Styrene		ND	4.2	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
Tetrachloroethene		ND	4.2	"	"	"	"	"	"	
Toluene		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.2	"	"	"	"	"	"	
Trichloroethene		ND	4.2	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.2	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
Vinyl chloride		ND	4.2	"	"	"	"	"	"	
m,p-Xylene		ND	4.2	"	"	"	"	"	"	
o-Xylene		ND	4.2	"	"	"	"	"	"	
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluorom	nethane		111 %	80	-120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			100 %	81	-117	"	"	"	"	
Surrogate: 4-Bromofluorob	enzene		95.5 %	74	-121	"	"	"	"	
Benzene		ND	3.9	"	"	"	"	"	"	
Bromobenzene		ND	3.9	"	"	"	"	"	"	
Bromochloromethane		ND	3.9	"	"	"	"	"	"	
Bromodichloromethane		ND	3.9	"	"	"	"	"	"	
Bromoform		ND	3.9	"	"	"	"	"	"	
Bromomethane		ND	3.9	"	"	"	"	"	"	
n-Butylbenzene		ND	3.9	"	"	"	"	"	"	
sec-Butylbenzene		ND	3.9	"	"	"	"	"	"	
tert-Butylbenzene		ND	3.9	"	"	"	"	"	"	
•		ND	3.9	"	"	"	"	"	"	
Carbon tetrachloride			3.9	"	"	"	"	"	"	
		ND	3.9							
Chlorobenzene		ND ND		"	"	"	"	"	"	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND ND ND	3.9 3.9 3.9	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV2-10 (2107160-05) Soil Sampled: 07/12/21						*			
					D. C. 10.10	0.7/1.2/21	05/11/01 00 00	TD. 02.00	
2-Chlorotoluene 4-Chlorotoluene	ND ND	3.9 3.9	μg/kg "	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Dibromochloromethane	ND ND	3.9 3.9	"		,,	,,	,,	,,	
	ND ND	3.9	"	"		"	,,		
1,2-Dibromo-3-chloropropane			"	,,		,,	,,		
1,2-Dibromoethane (EDB)	ND ND	3.9 3.9	,,	,,		,,			
Dibromomethane			,,	,,	,,	,,	,,	,,	
1,2-Dichlorobenzene	ND	3.9	,,	,,		,,	,,		
1,3-Dichlorobenzene	ND	3.9		,,		,,			
1,4-Dichlorobenzene	ND	3.9	"		"	,,		,,	
Dichlorodifluoromethane	ND	3.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	3.9	"	"	"	"		"	
1,2-Dichloroethane	ND	3.9	"	"	"	"	,	"	
1,1-Dichloroethene	ND	3.9	,,	,,	"	,,		"	
cis-1,2-Dichloroethene	ND	3.9	"	"	,,	,,	,,	"	
trans-1,2-Dichloroethene	ND	3.9	"		,,	,,	,,	,,	
1,2-Dichloropropane	ND	3.9	"	"	"	"	,	"	
1,3-Dichloropropane	ND	3.9	"	"	"	"	,	"	
2,2-Dichloropropane	ND	3.9	"	"	"	"	,	"	
1,1-Dichloropropene	ND	3.9	"	"	"	"	,	"	
cis-1,3-Dichloropropene	ND	3.9	"	"	,,	"	,,	,,	
trans-1,3-Dichloropropene	ND	3.9	"	"	"	"	"	"	
Ethylbenzene	ND	3.9	"	"	"	"	,	"	
Hexachlorobutadiene	ND	3.9	"	"	"	"	"	"	
Isopropylbenzene	ND	3.9			"		"	"	
p-Isopropyltoluene	ND	3.9	"	"		"			
Methylene chloride	ND	3.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.9	"		"		"	"	
Naphthalene	ND	3.9	"	"	"	"	"	"	
n-Propylbenzene	ND	3.9	"	"	"	"	"	"	
Styrene	ND	3.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	3.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	3.9	"	"	"	"	"	"	
Tetrachloroethene	ND	3.9	"	"	"	"	"	"	
Toluene	ND	3.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	3.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	3.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	3.9	"	"	"	"	"	"	
Trichloroethene	ND	3.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	3.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	3.9	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21 11	:23 Received:	07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	3.9	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	3.9	"	"	"	"	"	"	
Vinyl chloride	ND	3.9	"	"	"	"	"	"	
m,p-Xylene	ND	3.9	"	"	"	"	"	"	
o-Xylene	ND	3.9	"	"	"	"	"	"	
SV2-15 (2107160-06) Soil Sampled: 07/12/21 11	:36 Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoromethane		116 %	80	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	74-	121	"	"	"	"	
Benzene	ND	4.4	"	"	"	"	"	"	
Bromobenzene	ND	4.4	"	"	"	"	"	"	
Bromochloromethane	ND	4.4	"	"	"	"	"	"	
Bromodichloromethane	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	4.4	"	"	"	"	"	"	
Bromomethane	ND	4.4	"	"	"	"	"	"	
n-Butylbenzene	ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.4	"	"	"	"	"	"	
Chlorobenzene	ND	4.4	"	"	"	"	"	"	
Chloroethane	ND	4.4	"	"	"	"	"	"	
Chloroform	ND	4.4	"	"	"	"	"	"	
Chloromethane	ND	4.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received:	07/12/21 15:4	14						
2,2-Dichloropropane		ND	4.4	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	4.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
Ethylbenzene		ND	4.4	"	"	"	"	"	"	
Hexachlorobutadiene		ND	4.4	"	"	"	"	"	"	
Isopropylbenzene		ND	4.4	"	"	"	"	"	"	
p-Isopropyltoluene		ND	4.4	"	"	"	"	"	"	
Methylene chloride		ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.4	"	"	"	"	"	"	
Naphthalene		ND	4.4	"	"	"	"	"	"	
n-Propylbenzene		ND	4.4	"	"	"	"	"	"	
Styrene		ND	4.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
Tetrachloroethene		ND	4.4	"	"	"	"	"	"	
Toluene		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.4	"	"	"	"	"	"	
Trichloroethene		ND	4.4	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
Vinyl chloride		ND	4.4	"	"	"	"	"	"	
m,p-Xylene		ND	4.4	"	"	"	"	"	"	
o-Xylene		ND	4.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12:35	Received: (07/12/21 15:44							
Surrogate: Dibromofluoromethane		114 %	80-1		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.7 %	74-1	21	"	"	"	"	
Benzene	ND	4.2	"	"	"	"	"	"	
Bromobenzene	ND	4.2	"	"	"	"	"	"	
Bromochloromethane	ND	4.2	"	"	"	"	"	"	
Bromodichloromethane	ND	4.2	"	"	"	"	"	"	
Bromoform	ND	4.2	"	"	"	"	"	"	
Bromomethane	ND	4.2	"	"	"	"	"	"	
n-Butylbenzene	ND	4.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.2	"	"	"	"	"	"	
Chlorobenzene	ND	4.2	"	"	"	"	"	"	
Chloroethane	ND	4.2	"	"	"	"	"	"	
Chloroform	ND	4.2	"	"	"	"	"	"	
Chloromethane	ND	4.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.2	"	"	"	"	"	"	
Dibromochloromethane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.2	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.2	"	"	"	"	"	"	
Dibromomethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.2	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.2	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.2	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.2	"	"	"	"	"	"	
Ethylbenzene	ND	4.2	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.2	"	"	"	"	"	"	
Isopropylbenzene	ND	4.2	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•	a				Dilution	Datell	1 repared	Analyzeu	Menion	1100
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35		07/12/21 15:44							
p-Isopropyltoluene		ND	4.2	$\mu g/kg$	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	4.2	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.2	"	"	"	"	"	"	
Naphthalene		ND	4.2	"	"	"	"	"	"	
n-Propylbenzene		ND	4.2	"	"	"	"	"	"	
Styrene		ND	4.2	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.2	"	"	"	"	"	"	
Tetrachloroethene		ND	4.2	"	"	"	"	"	"	
Toluene		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.2	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.2	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.2	"	"	"	"	"	"	
Trichloroethene		ND	4.2	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.2	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.2	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.2	"	"	"	"	"	"	
Vinyl chloride		ND	4.2	"	"	"	"	"	"	
m,p-Xylene		ND	4.2	"	"	"	"	"	"	
o-Xylene		ND	4.2	"	"	"	"	"	"	
SV3-10 (2107160-08) Soil	Sampled: 07/12/21 12:39	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		116 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		95.2 %		121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
_ *		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
							,,	,,	"	
Carbon tetrachloride			5.0	"	"	"			"	
Carbon tetrachloride Chlorobenzene		ND	5.0 5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform			5.0 5.0 5.0		"		"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:39	9 Received	: 07/12/21 15:	44						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:35	Received:	07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12:44	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoromethane		118 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	,,	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	,,	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	,,	
1,4-Dichlorobenzene	ND	5.0	"	,,	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	,,	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	,,	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	,,	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	,,	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	,,	"	"	,,	"	"	
1,3-Dichloropropane	ND ND	5.0	,,	"	"	,,	"	"	
1,5-Dienioropropane	מאז	5.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received:	07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0		,,	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:0	09 Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		117 %		120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.6 %		121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"		"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"		"	"	"	"	
Ethylbenzene	ND	5.0	"	,,	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	,,	"	"	,,	,,	,,	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	0 1 1 0 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Dilution	Daton	1 repared	, mary zou	Memou	1100
SV4-5 (2107160-10) Soil	Sampled: 07/12/21 13:09									
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0		"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"		"	"	
Trichloroethene		ND	5.0	"	"	"	"	"		
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"		"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluorom	ethane		119 %	80-	-120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			99.8 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		94.6 %	74-	-121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
Chlorobenzene				,,		"	"	"	"	
Chlorobenzene Chloroethane		ND	5.0	"						
		ND ND	5.0	"	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13:18	Received:	07/12/21 15:4	44						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13	:18 Received	: 07/12/21 15:4	44						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13	:21 Received	: 07/12/21 15:4	44						
Surrogate: Dibromofluoromethane		118 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

738 Ashland AvenueProject Number:
[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received:	07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0		"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-5 (2107160-13) Soil Sampled: 07/12/21 13:5	50 Received:	07/12/21 15:44							
Surrogate: Dibromofluoromethane		118 %	80-		B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•					Dilution	Datell	1 repared	Analyzeu	Menion	1100
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50		7/12/21 15:44	1						
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02	Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoron	nethane		100 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8			101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		93.4 %	74-	121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
•						"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"					
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane		ND ND	5.0 5.0	"	"	,,	"	"	"	
Carbon tetrachloride		ND ND ND	5.0 5.0 5.0		"		"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14:02	2 Received:	07/12/21 15:	44				<u> </u>		
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
4-Chlorotoluene	ND	5.0	μg/kg "	"	B1G1312	"	"	" "	
Dibromochloromethane	ND	5.0		"	,,	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	,,	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	,,	"	"	"	
Dibromomethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	,,	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	,,	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	,,	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	,,	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	,,	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	,,	"	
Ethylbenzene	ND	5.0	"	"	"	"	,,	"	
Hexachlorobutadiene	ND	5.0	"	"	,,	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	,,	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	,,	"	
Methylene chloride	ND	5.0	"	"	"	"	,,	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	,,	"	
Naphthalene	ND	5.0	"	"	"	"	,,	"	
n-Propylbenzene	ND	5.0	"	"	"	"	,,	"	
Styrene	ND	5.0	"	"	"	"	,,	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	,,	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	,,	"	
Tetrachloroethene	ND	5.0	"	"	"	"	,,	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	,,	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	,,	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	,,	,,	,,	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14	:02 Received:	07/12/21 15:4	14						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV5-15 (2107160-15) Soil Sampled: 07/12/21 14	:07 Received:	07/12/21 15:4	14						
Surrogate: Dibromofluoromethane		100 %	80-	120	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.1 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
,- FF		***							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	44						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1312	07/13/21	07/14/21 08:23	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
			JII.03	Dianon	Dateii	Trepared	7 mary 200	meniou	Note
SV1-5 (2107160-01) Soil Sampled: 07/12/21 08:54	Received: 0	7/12/21 15:44							
Surrogate: 2-Fluorophenol		99.9 %	25-1		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		102 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		67.5 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.6 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		28.7 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		119 %	18-1		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-5 (2107160-01) Soil	Sampled: 07/12/21 08:54	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	e	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil Sampled: 07/12/21 10:39	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		107 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		104 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		64.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		31.5 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		73.0 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-10 (2107160-02) Soil	Sampled: 07/12/21 10:39	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil Sampled: 07/12/21 10:43	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		118 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		101 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		64.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		58.7 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		27.1 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		94.1 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV1-15 (2107160-03) Soil	Sampled: 07/12/21 10:43	Received	: 07/12/21 15:	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-5 (2107160-04) Soil Sampled: 07/12/21 11:20	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		115 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		105 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		75.7 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		76.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		96.6 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	,,	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33		,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-5 (2107160-04) Soil	Sampled: 07/12/21 11:20	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	,,	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil Sampled: 07/12/21 11:23	Received:	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		63.4 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		90.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		82.0 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		53.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		92.7 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-10 (2107160-05) Soil	Sampled: 07/12/21 11:23	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-15 (2107160-06) Soil Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		61.9 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		110 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.1 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		94.3 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		51.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		111 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV2-15 (2107160-06) Soil	Sampled: 07/12/21 11:36	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV3-5 (2107160-07) Soil Sampled: 07/12/21 12:3	5 Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		63.7 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		70.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		83.4 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		82.1 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		56.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		89.4 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-5 (2107160-07) Soil	Sampled: 07/12/21 12:35	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil Sampled: 07/12/21 12:39	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		72.1 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		59.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		97.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		114 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		35.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		87.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-10 (2107160-08) Soil	Sampled: 07/12/21 12:39	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"		"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"		"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil Sampled: 07/12/21 12:44	Received	l: 07/12/21 15:4	14						
Surrogate: 2-Fluorophenol		103 %	25-12		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		69.7 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		102 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.5 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		53.9 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		89.7 %	18-13	<i>37</i>	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV3-15 (2107160-09) Soil	Sampled: 07/12/21 12:44	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV4-5 (2107160-10) Soil Sampled: 07/12/21 13:09	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		103 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		65.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		95.9 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		48.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		58.5 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		88.0 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-5 (2107160-10) Soil	Sampled: 07/12/21 13:09	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	:	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-10 (2107160-11) Soil Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		106 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		53.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		74.9 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		51.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		94.0 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-10 (2107160-11) Soil	Sampled: 07/12/21 13:18	Received	: 07/12/21 15:4	14						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						pmed	, 2.00		1.500
SV4-15 (2107160-12) Soil Sampled: 07/12/21 13:21	Keceived:	0//12/21 15:4	4						
Surrogate: 2-Fluorophenol		109 %	25-12		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		82.7 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		99.5 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.4 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		49.5 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		78.1 %	18-1.		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV4-15 (2107160-12) Soil	Sampled: 07/12/21 13:21	Received	: 07/12/21 15:4	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil Sampled: 07/12/21 13:50	Received:	07/12/21 15:44							
Surrogate: 2-Fluorophenol		111 %	25-1		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		85.4 %	24-	!13	"	"	"	"	
Surrogate: Nitrobenzene-d5		101 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		49.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		35.5 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		88.2 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	,,		"	"	
Di-n-butyl phthalate	ND	0.33	"	"	,,	,,	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	,,	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-5 (2107160-13) Soil	Sampled: 07/12/21 13:50	Received:	07/12/21 15:4	4						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	2	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil Sampled: 07/12/21 14:02	Received	: 07/12/21 15:4	4						
Surrogate: 2-Fluorophenol		55.4 %	25-		B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		98.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		60.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		81.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		39.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		117 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-10 (2107160-14) Soil	Sampled: 07/12/21 14:02	Received	: 07/12/21 15:	44						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil Sampled: 07/12/21 14:07	Received	1: 07/12/21 15:4	14						
Surrogate: 2-Fluorophenol		91.5 %		121	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
Surrogate: Phenol-d6		61.0 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		39.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83.1 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		85.4 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	,,	,,	,,	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	,,	"	"	
4,0-Dimuo-2-ineuryiphenoi	ND	0.33							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV5-15 (2107160-15) Soil	Sampled: 07/12/21 14:07	Received	: 07/12/21 15:	14						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1405	07/14/21	07/14/21 14:33	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1307 - EPA 3060A										
Blank (B1G1307-BLK1)				Prepared: 0	7/13/21 A	nalyzed: 07	7/14/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G1307-BS1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	//14/21			
Hexavalent Chromium	0.151	0.10	mg/kg	0.150		101	80-120			
Matrix Spike (B1G1307-MS1)	Sourc	e: 2107160-	01	Prepared: 0	07/13/21 At	nalyzed: 07	//14/21			
Hexavalent Chromium	0.160	0.10	mg/kg	0.149	ND	107	75-125			
Matrix Spike Dup (B1G1307-MSD1)	Sourc	e: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	7/14/21			
Hexavalent Chromium	0.154	0.10	mg/kg	0.149	ND	104	75-125	3.48	20	
Batch B1G1308 - EPA 3050B										
Blank (B1G1308-BLK1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	7/14/21			
Barium	ND	6.0	mg/kg							
Beryllium	ND	2.2	"							
Antimony	ND	8.0	"							
Cadmium	ND	2.5	"							
Lead	ND	7.1	"							
Thallium	ND	17	"							
Nickel	ND	3.0	"							
Selenium	ND	6.9	"							
Chromium	ND	2.3	"							
Molybdenum	ND	5.2	"							
Copper	ND	5.0	"							
Cobalt	ND	3.3	"							
Zinc	ND	7.0	"							
Silver	ND	2.0	"							
Arsenic	ND	5.5	"							
Vanadium	ND	5.1	,,							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1308 - EPA 3050B									
LCS (B1G1308-BS1)				Prepared: 07/1	3/21 Analyzed: 07	/14/21			
Cadmium	94.4	2.5	mg/kg	100	94.4	80-120			
Zinc	99.5	7.0	"	100	99.5	80-120			
Molybdenum	111	5.2	"	100	111	80-120			
Chromium	85.0	2.3	"	100	85.0	80-120			
Nickel	113	3.0	"	100	113	80-120			
Cobalt	80.4	3.3	"	100	80.4	80-120			
Silver	89.3	2.0	"	100	89.3	60-140			
Lead	101	7.1	"	100	101	80-120			
Copper	103	5.0	"	100	103	78-122			
Arsenic	109	5.5	"	100	109	78-122			
Barium	99.8	6.0	"	100	99.8	80-120			
Selenium	95.1	6.9	"	100	95.1	76-124			
Thallium	97.4	17	"	100	97.4	80-120			
Vanadium	99.8	5.1	"	100	99.8	80-120			
Beryllium	98.2	2.2	"	100	98.2	80-120			
Antimony	110	8.0	"	100	110	75-125			
LCS Dup (B1G1308-BSD1)				Prepared: 07/1	3/21 Analyzed: 07	/14/21			
Nickel	116	3.0	mg/kg	100	116	80-120	2.60	20	
Vanadium	95.9	5.1	"	100	95.9	80-120	3.99	20	
Antimony	94.0	8.0	"	100	94.0	75-125	16.0	20	
Lead	96.8	7.1	"	100	96.8	80-120	4.37	20	
Thallium	96.3	17	"	100	96.3	80-120	1.11	20	
Selenium	94.0	6.9	"	100	94.0	76-124	1.22	20	
Copper	113	5.0	"	100	113	78-122	9.46	20	
Zinc	87.6	7.0	"	100	87.6	80-120	12.6	20	
Molybdenum	96.4	5.2	"	100	96.4	80-120	13.8	20	
Cadmium	94.6	2.5	"	100	94.6	80-120	0.212	20	
Arsenic	105	5.5	"	100	105	78-122	3.43	20	
Barium	101	6.0	"	100	101	80-120	0.948	20	
Beryllium	104	2.2	"	100	104	80-120	5.48	20	
Silver	92.1	2.0	"	100	92.1	60-140	3.03	40	
Cobalt	97.7	3.3	"	100	97.7	80-120	19.5	20	
Chromium	99.7	2.3	"	100	99.7	80-120	15.9	20	

Cobalt

Mearns Consulting LLC Project: Town Center Northwest

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1308 - EPA 3050B									
Matrix Spike (B1G1308-MS1)	Source: 2	107160-	01	Prepared: (07/13/21 A	nalyzed: 07	//14/21		
Lead	95.9	7.1	mg/kg	99.0	5.52	91.3	70-130		
Arsenic	88.1	5.5	"	99.0	ND	89.0	70-130		
Copper	114	5.0	"	99.0	8.79	106	70-130		
Barium	160	6.0	"	99.0	67.9	93.5	70-130		
Antimony	91.4	8.0	"	99.0	1.56	90.8	60-140		
Chromium	95.2	2.3	"	99.0	9.80	86.2	70-130		
Cadmium	92.0	2.5	"	99.0	0.470	92.4	70-130		
Silver	100	2.0	"	99.0	ND	101	60-140		
Molybdenum	80.0	5.2	"	99.0	0.644	80.2	70-130		
Thallium	91.3	17	"	99.0	ND	92.2	70-130		
Selenium	87.0	6.9	"	99.0	ND	87.8	70-130		
Vanadium	97.6	5.1	"	99.0	14.8	83.6	70-130		
Nickel	93.3	3.0	"	99.0	6.44	87.7	70-130		
Cobalt	99.8	3.3	"	99.0	5.40	95.4	70-130		
Zinc	114	7.0	"	99.0	27.3	87.7	70-130		
Beryllium	79.7	2.2	"	99.0	0.446	80.0	70-130		
Matrix Spike Dup (B1G1308-MSD1)	Source: 2	107160-	01	Prepared: (07/13/21 A	nalyzed: 07	7/14/21		
Silver	95.7	2.0	mg/kg	98.4	ND	97.3	60-140	4.62	40
Vanadium	104	5.1	"	98.4	14.8	90.6	70-130	6.34	20
Thallium	99.6	17	"	98.4	ND	101	70-130	8.64	20
Zinc	122	7.0	"	98.4	27.3	96.6	70-130	7.05	20
Chromium	99.0	2.3	"	98.4	9.80	90.7	70-130	3.96	20
Molybdenum	85.9	5.2	"	98.4	0.644	86.7	70-130	7.17	20
Copper	123	5.0	"	98.4	8.79	116	70-130	7.73	30
Antimony	98.7	8.0	"	98.4	1.56	98.7	60-140	7.69	20
Barium	175	6.0	"	98.4	67.9	109	70-130	8.76	20
Lead	104	7.1	"	98.4	5.52	100	70-130	8.31	30
Beryllium	85.1	2.2	"	98.4	0.446	86.0	70-130	6.57	20
Nickel	98.9	3.0	"	98.4	6.44	93.9	70-130	5.80	20
Cadmium	95.7	2.5	"	98.4	0.470	96.8	70-130	3.98	20
Arsenic	97.4	5.5	"	98.4	ND	98.9	70-130	10.0	20
Selenium	96.1	6.9	"	98.4	ND	97.6	70-130	10.0	20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3.3

105

5.40

102

70-130

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/19/21 09:26

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1309 - EPA 7471A										
Blank (B1G1309-BLK1)				Prepared &	Analyzed:	07/13/21				
Mercury	ND	0.90	mg/kg							
LCS (B1G1309-BS1)				Prepared &	Analyzed:	07/13/21				
Mercury	0.16	0.90	mg/kg	0.167		94.9	70-130			
Matrix Spike (B1G1309-MS1)	Source	: 2107160-0)1	Prepared &	Analyzed:	07/13/21				
Mercury	0.15	0.90	mg/kg	0.158	ND	97.6	70-130			
Matrix Spike Dup (B1G1309-MSD1)	Source	: 2107160-0)1	Prepared &	Analyzed:	07/13/21				
Mercury	0.16	0.90	mg/kg	0.157	ND	99.4	70-130	1.67	30	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1302 - EPA 5035 P & T										
Blank (B1G1302-BLK1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1302-BS1)				Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.525	0.050	mg/kg	0.600		87.5	80-120			
Matrix Spike (B1G1302-MS1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.493	0.050	mg/kg	0.600	ND	82.2	50-150			
Matrix Spike Dup (B1G1302-MSD1)	Sour	ce: 2107160-	01	Prepared: 0)7/13/21 Aı	nalyzed: 07	/14/21			
Gasoline Range Hydrocarbons (C4-C12)	0.551	0.050	mg/kg	0.600	ND	91.8	50-150	11.1	30	
Batch B1G1401 - EPA 3550B Solid Ext										
Blank (B1G1401-BLK1)				Prepared &	: Analyzed:	07/14/21				
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							
LCS (B1G1401-BS1)				Prepared &	Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	16.9	5.0	mg/kg	20.0		84.4	80-120			
Matrix Spike (B1G1401-MS1)	Sour	ce: 2107164-	04	Prepared &	: Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	15.4	5.0	mg/kg	20.0	ND	77.0	50-150			
Matrix Spike Dup (B1G1401-MSD1)	Sour	ce: 2107164-	04	Prepared &	Analyzed:	07/14/21				
Diesel Range Organics (C10-C24)	14.7	5.0	mg/kg	20.0	ND	73.4	50-150	4.74	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1312 - EPA 5035 P & T

Blank (B1G1312-BLK1)				Prepared: 07/13/21 Analyzed: 07/14/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G1	312 -	EPA	5035	P & T

Blank (B1G1312-BLK1)				Prepared: 07/13/	21 Analyzed: 07	/14/21	
Isopropylbenzene	ND	5.0	μg/kg		-		
p-Isopropyltoluene	ND	5.0	"				
Methylene chloride	ND	5.0	"				
Methyl tert-butyl ether	ND	5.0	"				
Naphthalene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"				
Tetrachloroethene	ND	5.0	"				
Toluene	ND	5.0	"				
1,2,3-Trichlorobenzene	ND	5.0	"				
1,2,4-Trichlorobenzene	ND	5.0	"				
,1,1-Trichloroethane	ND	5.0	"				
1,1,2-Trichloroethane	ND	5.0	"				
Trichloroethene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
1,2,3-Trichloropropane	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
,3,5-Trimethylbenzene	ND	5.0	"				
Vinyl chloride	ND	5.0	"				
n,p-Xylene	ND	5.0	"				
o-Xylene	ND	5.0	"				
LCS (B1G1312-BS1)				Prepared: 07/13/	21 Analyzed: 07	/14/21	
Benzene	54.6	5.0	μg/kg	50.0	109	80-120	
Chlorobenzene	47.7	5.0	"	50.0	95.4	80-120	
1,1-Dichloroethene	56.6	5.0	"	50.0	113	80-120	
Toluene	47.8	5.0	"	50.0	95.6	80-120	
Trichloroethene	55.3	5.0	"	50.0	111	80-120	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G	1312 -	FPA	5035	P & T

Matrix Spike (B1G1312-MS1)	Source	: 2107160-	01	Prepared: 0	7/13/21 A	nalyzed: 07	7/14/21		
Benzene	50.2	5.0	μg/kg	50.0	ND	100	37-151		
Chlorobenzene	41.5	5.0	"	50.0	ND	83.0	37-160		
1,1-Dichloroethene	51.2	5.0	"	50.0	ND	102	50-150		
Toluene	43.5	5.0	"	50.0	ND	86.9	47-150		
Trichloroethene	50.2	5.0	"	50.0	ND	100	71-157		
Matrix Spike Dup (B1G1312-MSD1)	Source	: 2107160-	01	Prepared: 0	07/13/21 A	nalyzed: 07	7/14/21		
Benzene	51.0	5.0	μg/kg	50.0	ND	102	37-151	1.40	30
Chlorobenzene	42.0	5.0	"	50.0	ND	84.0	37-160	1.20	30
1,1-Dichloroethene	49.6	5.0	"	50.0	ND	99.2	50-150	3.21	30
Toluene	43.3	5.0	"	50.0	ND	86.5	47-150	0.461	30
Trichloroethene	56.5	5.0	"	50.0	ND	113	71-157	11.8	30

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1405 - EPA 3550B Solid Ext

Blank (B1G1405-BLK1)				Prepared & Analyzed: 07/14/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1405 - EPA 3550B Solid Ext

Blank (B1G1405-BLK1)				Prepared & Analyzed: 07/14/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/19/21 09:26

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B1G1405 - EPA 3550B Solid Ext										

LCS (B1G1405-BS1)				Prepared &	Analyzed:	07/14/21				
Acenaphthene	0.858	0.33	mg/kg	1.00		85.8	47-145			
2-Chlorophenol	1.86	0.33	"	2.00		93.2	23-134			
4-Chloro-3-methylphenol	2.15	0.33	"	2.00		108	22-147			
1,4-Dichlorobenzene	0.795	0.33	"	1.00		79.5	20-124			
2,4-Dinitrotoluene	0.517	0.33	"	1.00		51.7	39-139			
4-Nitrophenol	0.628	0.33	"	2.00		31.4	0-132			
N-Nitrosodi-n-propylamine	0.741	0.33	"	1.00		74.1	0-230			
Pentachlorophenol	0.387	0.33	"	2.00		19.4	14-176			
Phenol	1.56	0.33	"	2.00		77.9	5-112			
Pyrene	1.09	0.33	"	1.00		109	52-115			
1,2,4-Trichlorobenzene	0.632	0.33	"	1.00		63.2	44-142			
Matrix Spike (B1G1405-MS1)	Sourc	e: 2107160-	01	Prepared &	Analyzed:	07/14/21				
Acenaphthene	0.942	0.33	mg/kg	1.00	ND	94.2	47-145			
2-Chlorophenol	1.93	0.33	"	2.00	ND	96.3	23-134			
-Chloro-3-methylphenol	1.89	0.33	"	2.00	ND	94.4	22-147			
,4-Dichlorobenzene	0.919	0.33	"	1.00	ND	91.9	20-124			
2,4-Dinitrotoluene	0.541	0.33	"	1.00	ND	54.1	39-139			
-Nitrophenol	0.607	0.33	"	2.00	ND	30.4	0-132			
N-Nitrosodi-n-propylamine	0.885	0.33	"	1.00	ND	88.5	0-230			
Pentachlorophenol	0.571	0.33	"	2.00	ND	28.6	14-176			
Phenol	1.62	0.33	"	2.00	ND	81.0	5-112			
Pyrene	0.917	0.33	"	1.00	ND	91.7	52-115			
,2,4-Trichlorobenzene	0.831	0.33	"	1.00	ND	83.1	44-142			
Matrix Spike Dup (B1G1405-MSD1)	Sourc	e: 2107160-	01	Prepared &	Analyzed:	07/14/21				
Acenaphthene	1.02	0.33	mg/kg	1.00	ND	102	47-145	7.46	30	
-Chlorophenol	2.10	0.33	"	2.00	ND	105	23-134	8.88	30	
-Chloro-3-methylphenol	1.81	0.33	"	2.00	ND	90.3	22-147	4.49	30	
1,4-Dichlorobenzene	0.983	0.33	"	1.00	ND	98.3	20-124	6.73	30	
2,4-Dinitrotoluene	0.466	0.33	"	1.00	ND	46.6	39-139	14.9	30	
4-Nitrophenol	0.644	0.33	"	2.00	ND	32.2	0-132	5.92	30	
N-Nitrosodi-n-propylamine	0.913	0.33	"	1.00	ND	91.3	0-230	3.11	30	
Pentachlorophenol	0.595	0.33	"	2.00	ND	29.8	14-176	4.12	30	
Phenol	1.63	0.33	"	2.00	ND	81.4	5-112	0.492	30	
Pyrene	1.15	0.33	"	1.00	ND	115	52-115	22.3	30	
1,2,4-Trichlorobenzene	0.863	0.33	"	1.00	ND	86.3	44-142	3.78	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/19/21 09:26

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

Page: l of

Date: 7 / 12 / 21

2127160.

SIERRA ANALYTICAL

TEL: 949 · 348 · 9389 FAX: 949 · 348 · 9115 26052 Merit Circle · Suite 104 · Laguna Hills, CA · 92653

26052 Merit Circle · Suite 104 · Laguna Hills, CA · 92653	cle • Suite 1	04 · Lagur	na Hills, CA	4 - 92653							Lab Work Order No.:		(10 (100.
Client: MEARNS			:		Client Project ID;	é		:	A	nalyses]	Analyses Requested		
⊋ા	9							00		9			Geotracker EDD Info:
HLAND A					f		1	ot,		ase			
) ANTA MONIA	A Joules	10		1	None	Sexter S	lown center NorthWest					·· ·	
				<u> </u>	ura Around	Immediate	24 Hour		99		~		Client LOGCODE
310 4103	1921			<u></u> 	Time Requested:	T 48 Hour		57	5108	1997 193	<u></u>		
		<i>C</i>				O 4 Day	C S Day		5		9		
Client Proj. Mgr.: WASAN L	MEARNS KI	r _{tt} D				Normal	Mobile			Q 1		<u>-</u>	Site Global ID
Client Sample ID.	Sierra No.	Date	ТІте	Matrix		· ———	er No. of Containers	カル ファル でも	5 ED	590K	109N5		Field Point Names /
5/1/5	0	7.12.21	1580	2012	20/5RV	VOA VIAIO	7/ X 0/8	×	×	×	×		e paramata a
SVI. 10	1.0		1039		- - -			×	×	×	*		
SVI-15	50		क्रिनु					×	×	×	×		
SV2.5	<u>ه</u>		1120					×	×	×	×		
SV2.60	(S)		1123					×	×	×	×		
SV2-15	96		13%					×	×	×	×		
5.43.5	L 0		1235					×	×	×	×	-	
543.6	30		1239					×	×	×	×		
SV3-15	90	-	124					× ×	×	×	×		
Sv4.5	<u>6</u>	Ϡ	1304		>	>	>	×	×	×	×		
The Carlo	Tona	an	Shoped Vie HAND		DELIVEREN			3/		otal Numb	Total Number of Containers Submitted to	mitted to	Sample Disposal:
SUMMA LUGARACTUD SC	AWF.	agan	(Center-Waybill No.	~) '9		aboratory			Return to Clean
inqualed By:	^ \ <u>'</u>	12/14	Received By:	1	J		J(17/L)	_	amples and the perform the an	signature on the	The delivery of semples and the apparature on this chain of custody form constitutes eachorization to perform the analyses specified above under SERRA's Terms and	ग्धरीमध्य रामड कार्व	Cab Dispess
construction ()		654	Company	15,	Sichur		1544		ss otherwise age	reed upon in	Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT: * - Samples determined to be tarsardous by SIERRA will be returned to CLIENT.	Id CLIENT. CLIENT.	Arehie .
- Efrequisted By:		Dut;	Received By:				Dage			Total Nutr	Total Number of Containers Received by	ceived by	l
ntipatny:		Tune:	Сопрану.				Time	ာ မာ	·····	Laboratory		•	
ltiquished Dy:		Date:	Received By:				Date:	FOR IA BRIEATORY USE ONLY. Manufic Receips	KY LIST ONLY	Sample Reen	College tempto		2.5
.Xin.disv		Time:	Congressy				Time:		.5		D Protections - Verified By	Ed By	
pecial Instructions:									77		i		
									Samuel Conta				2.3
								Control of the Contro	- Continue to the state of		deligate residence		

CHAIN OF CUSTODY RECORD

~

Page:

Date: 7 / 12 / 21

SIERRA ANALYTICAL

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115 26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653	s Suite 104 • L	явипа Н	Ils, CA •	92653								Ľ	ıb Work	Lab Work Order No.:		2107160	
INS CONSULTIN	8			CHE	Client Project ID:						Analy	ses Re	Analyses Requested	70			
8 ASHLAND	AVE			}				100¥								Geotracker EDD Info:	Info:
SANTA MONICA CA	A gottos			\	; ; <u>}</u>	1	400	:/ <u>`</u>	<u>-</u>			•					
				<u>[</u> 	on Co	LOWN CONTER INDITAMENT	LTHWEST	7000				ઇ ક્દ					
				T.		Timmediate (D 24 Hour	<u>)</u>	•			09,				Client LOGCODE	300
Client Tel. No.: 310 403 1921				<u></u>	ij	48 Hour	72 Hour	57 \		<u> ५।०</u>	108	/8	<u>کو</u>				
		,		• • • •			O 5 Day	La				09	ŁZ:				
Clent Proj. Mgr.: 8/4/44/ [Mg	MEARING PLID	()					Mobile	γ			917	23	ġ			Site Gtobal ID	e
Client Sample ID.	Sterra D	Date	Time	Matrix	Preservative	Containe	No. of Containers	ク山 1	14 Y)	D.P.	13. (5701	אַסַכּי			Ffeld Point Names	
		+			27	\$	-	-	\dagger		1		5			Comments	1
ol-has	1.4.1.21	\dashv	3)61	FOIL	28 88.80 88.80		7	×	×	×	×	×	×				
5).4/15	3		132(-			×	$\frac{}{\times}$	$\frac{\times}{\times}$	×	×	~				
5.5ns	(3		<u> </u> %					×	×	×	×	X	×				
SV510	5 2)		14º2		-			×	×	×	×	×					
91·5VS	Y)		±@1	>	∍	>		×	×	×	×	×	×				
												 	-				
									<u></u>				-				
													ļ				
C. C.																	
Sample Sold Land	agan) Shipp	Shipped Vis. HARLD	DELIVERED	Ped				'		Total	Number	of Cont	ainers Su	Total Number of Containers Submitted to	Sample Disposal:	
SHOW (Mayors PH) O Chi	tt Fan	(611 Com	Contra Way 601 Ho.)						٥ ع	Λ	Laboratory	ttory				Return to Client	
<	K	(2/2) Remark	Reserved By:	4	7		1/12/20	┝	Mivery of se Estation to p	mples and erform the	the signation	are on this specified al	chatn of co	stody form SIERRA's	The delivery of samples and the signature on this chain of custody form constitutes astitutestation to perform the analyses specified above under SIERRA's Terms and	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•••
Compuny	17	14 J	nay.	A 5. CAR	nest		1+S1 :	-	bozs, unks imples dete	otherwharmined to	e greed u	pon io wrd	lag betwoo RRA will b	a SIERRA o returned	Conditions, unless otherwise agreed upon in wriding between SIERRA and CLIENT. * - Samples determined to be bazardom by SIERRA will be returned to CLIENT.	Acchive	
Topingwithm By:	Dser	Ranci	accival By:				Date	 	,		Tota	Numbe	rofCor	tainers I	Total Number of Containers Received by		
Company:	Time:	Compary	-A46-				1	I	09		Labo	Laboratory			<u>.</u>		
4 Refineutished By:	Date:	lleber	Moonved By:				Date	žΌ	PON JAMMANTORY USE DINGY Sample Receipt Considering	V OSE ON	OY-Samp	Package C		Antibed - Teresp (PC):	6	ナ シ。 シ	
Соверану:	Timbe:	Comp	eny:				Time	П	T Service Seals				Ì	,	O Presidents, Verified By		
Special instructions;								<u>a</u>		7			į O				
								<i>j</i> Ż	A Appropriate Sample Container	3. Sample:	Obsigned		Ĩ			63	

22 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:Town Center Northwest

Work Order No.: 2107188

Attached are the results of the analyses for samples received by the laboratory on 07/13/21 17:07.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Kuhand T. Foryth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV6-5	2107188-01	Soil	07/13/21 07:35	07/13/21 17:07
SV6-10	2107188-02	Soil	07/13/21 07:44	07/13/21 17:07
SV6-15	2107188-03	Soil	07/13/21 07:51	07/13/21 17:07
SV7-5	2107188-04	Soil	07/13/21 08:15	07/13/21 17:07
SV7-10	2107188-05	Soil	07/13/21 08:25	07/13/21 17:07
SV7-15	2107188-06	Soil	07/13/21 08:30	07/13/21 17:07
SV8-5	2107188-07	Soil	07/13/21 08:56	07/13/21 17:07
SV8-10	2107188-08	Soil	07/13/21 08:58	07/13/21 17:07
SV8-15	2107188-09	Soil	07/13/21 09:06	07/13/21 17:07
SV9-5	2107188-10	Soil	07/13/21 09:19	07/13/21 17:07
SV9-10	2107188-11	Soil	07/13/21 09:22	07/13/21 17:07
SV9-15	2107188-12	Soil	07/13/21 09:24	07/13/21 17:07
SV10-5	2107188-13	Soil	07/13/21 09:32	07/13/21 17:07
SV10-10	2107188-14	Soil	07/13/21 09:36	07/13/21 17:07
SV10-15	2107188-15	Soil	07/13/21 09:52	07/13/21 17:07
SV11-5	2107188-16	Soil	07/13/21 10:16	07/13/21 17:07

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV11-10	2107188-17	Soil	07/13/21 10:20	07/13/21 17:07
SV11-15	2107188-18	Soil	07/13/21 10:26	07/13/21 17:07
SV12-5	2107188-19	Soil	07/13/21 10:49	07/13/21 17:07
SV12-10	2107188-20	Soil	07/13/21 10:58	07/13/21 17:07
SV12-15	2107188-21	Soil	07/13/21 11:07	07/13/21 17:07
SV13-5	2107188-22	Soil	07/13/21 11:26	07/13/21 17:07
SV13-10	2107188-23	Soil	07/13/21 11:31	07/13/21 17:07
SV13-15	2107188-24	Soil	07/13/21 11:38	07/13/21 17:07
SV14-5	2107188-25	Soil	07/13/21 12:49	07/13/21 17:07
SV14-10	2107188-26	Soil	07/13/21 12:54	07/13/21 17:07
SV14-15	2107188-27	Soil	07/13/21 13:01	07/13/21 17:07
SV15-5	2107188-28	Soil	07/13/21 13:19	07/13/21 17:07
SV15-10	2107188-29	Soil	07/13/21 13:23	07/13/21 17:07
SV15-15	2107188-30	Soil	07/13/21 13:27	07/13/21 17:07
SV16-5	2107188-31	Soil	07/13/21 13:54	07/13/21 17:07
SV16-10	2107188-32	Soil	07/13/21 13:57	07/13/21 17:07
SV16-15	2107188-33	Soil	07/13/21 14:00	07/13/21 17:07

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV17-5	2107188-34	Soil	07/13/21 14:44	07/13/21 17:07
SV17-10	2107188-35	Soil	07/13/21 14:48	07/13/21 17:07
01/15 15	2107100 24	a "	07/10/01 14 50	05/10/01 15 05
SV17-15	2107188-36	Soil	07/13/21 14:53	07/13/21 17:07
SV18-5	2107188-37	Soil	07/13/21 15:19	07/13/21 17:07
SV18-10	2107188-38	Soil	07/13/21 15:25	07/13/21 17:07
SV18-15	2107188-39	Soil	07/13/21 15:29	07/13/21 17:07
SV19-5	2107188-40	Soil	07/13/21 15:49	07/13/21 17:07
3 17-5	210/100-40	3011	07/13/21 13:49	0 // 13/21 1 / .0 /
SV19-10	2107188-41	Soil	07/13/21 15:54	07/13/21 17:07
SV19-15	2107188-42	Soil	07/13/21 15:59	07/13/21 17:07

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

			Sicirari	iiaiy ticai	Laus, III					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35	Received:	07/13/21 17:0	7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		83	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.6	3.3	"	"	"	"	"	"	
Chromium		14	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		14	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		8.5	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		24	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	
SV6-10 (2107188-02) So	il Sampled: 07/13/21 07:44	Received:	: 07/13/21 17:	07						
Silver	F	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	mg/kg	"	B101411	"	"	"	
Barium		66	6.0	"	,,	"	"	"	"	
Beryllium		ND	2.2	"	,,	"	"	"	"	
Cadmium		ND	2.5	"	,,	"	"	"	"	
Cobalt		6.4	3.3	"	,,	"	"	"	"	
Chromium		21	2.3	"	,,	"	,,	,,	,,	
Hexavalent Chromium		ND	0.10	"	,,	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
		16	5.0	"	"	B1G1417	07/14/21	07/19/21 14:17	EPA 6010B	
Copper Mercury		ND	0.90	,,	"	B1G1411	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND ND	5.2	,,	"	B1G1414	07/14/21	07/10/21 20:28	EPA 6010B	
Nickel		ND 12	3.2	,,	"	BIG1411 "	0//14/21	07/19/21 14:17	EPA 0010B	
Lead		ND	7.1	,,	,,	"	"	"	,,	
		ND ND	7.1 8.0	"	,,	"	,,	"		
Antimony				"		"	"	"	"	
Selenium		ND	6.9	"		"	"	"	"	
Thallium		ND	17	"	"	"	"	,"	"	
Vanadium		31	5.1			"	"	"	"	
Zinc		40	7.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		42	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.3	3.3	"	"	"	"	"	"	
Chromium		9.4	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		9.0	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		6.4	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		14	5.1	"	"	"	"	"	"	
Zinc		27	7.0	"	"	"	"	"	"	
SV7-5 (2107188-04) Soil	Sampled: 07/13/21 08:15	Received:	07/13/21 17:0	7						
Silver	P	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		73	6.0	,,	"	"	"	,,	"	
Beryllium		ND	2.2	,,	"	"	"	"	"	
Cadmium		ND	2.5	,,	"	"	"	"	"	
Cobalt		7.2	3.3	,,	"	"	"	,,	"	
Chromium		16	2.3	,,	,,	,,	,,	"	"	
Hexavalent Chromium		ND	0.10	,,	,,	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		13	5.0	,,	,,	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	,,	,,	B1G1411	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND ND	5.2	,,	,,	B1G1414	07/14/21	07/10/21 20:28	EPA /4/1A EPA 6010B	
Nickel		ND 11	3.2	,,	,,	BIG1411 "	0//14/21	07/19/21 14:17	EPA 0010B	
Lead		7.2	7.1	,,	,,	,,	,,	"	,,	
		7.2 ND	8.0	"	,	,,	,			
Antimony			8.0 6.9	.,	,,	,,	,,		"	
Selenium		ND		.,	"	"	"	,,	"	
Thallium		ND	17	"	"	"	"	,"	"	
Vanadium		27	5.1	.,	"	,,	"	"	"	
Zinc		34	7.0		.,	.,	.,			

Mearns Consulting LLCProjectTown Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 07/13/21 08:25	Received:	07/13/21 17:	07						
	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	5.5	"	"	"	"	"	"	
	50	6.0	"	"	"	"	"	"	
	ND	2.2	"	"	"	"	"	"	
	ND	2.5	"	"	"	"	"	"	
	6.6	3.3	"	"	"	"	"	"	
	13	2.3	"	"	"	"	"	"	
	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
	11	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	7.6	3.0	"	"	"	"	"	"	
	ND	7.1	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
	ND		"	"	"	"	"	"	
	ND		"	"	,,	"	"	"	
			"	"	,,	,,	"	"	
	25	7.0	"	"	"	"	"	"	
Sampled: 07/13/21 08:30	Received	07/13/21 17:	07						
	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND		"	"	"	"	"	"	
	37		"	"	"	"	"	"	
			"	"	,,	,,	"	"	
			"	"	,,	,,	"	"	
			"	"	,,	,,	"	"	
			"	"	,,	,,	"	"	
	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
	8.4	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	٠	2.0				07/14/21	07/16/21 20:28	EPA 7471A	
	ND	0.90	"	"	B1G1414		07/10/21 20:20		
	ND ND	0.90	"	"	B1G1414 B1G1411				
	ND	5.2			B1G1414 B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND 6.7	5.2 3.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND 6.7 ND	5.2 3.0 7.1	"	"	B1G1411 "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND 6.7 ND ND	5.2 3.0 7.1 8.0	"	" "	B1G1411 " "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND 6.7 ND ND ND	5.2 3.0 7.1 8.0 6.9	" "	" "	B1G1411 " "	07/14/21	07/19/21 14:17	EPA 6010B	
	ND 6.7 ND ND	5.2 3.0 7.1 8.0	" " " "	" " " "	B1G1411 " " " "	07/14/21	07/19/21 14:17	EPA 6010B	
		Sampled: 07/13/21 08:25 Received: ND ND S0 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 2.0	Result Limit Units	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 ND 2.0 mg/kg 1 ND 5.5 " " ND 2.2 " " ND 2.5 " " ND 2.5 " " ND 0.10 " " ND 0.10 " " ND 0.90 " " ND 5.2 " " ND 7.1 " " ND 7.1 " " ND 6.9 " " ND 17 " " 19 5.1 " " 25 7.0 " " Sampled: 07/13/21 08:30 Received: 07/13/21 17:07 " " ND 2.0 mg/kg 1 ND 5.5 " " ND 2.2 " " ND	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Dilution Batch ND 2.0 mg/kg 1 B1G1411 ND 5.5 " " " 50 6.0 " " " ND 2.2 " " " ND 2.5 " " " 13 2.3 " " " ND 0.10 " " B1G1417 11 5.0 " " B1G1417 ND 0.10 " " B1G1417 ND 0.90 " " B1G1414 ND 5.2 " " B1G1411 ND 5.2 " " " " ND 6.9 " " " " ND 17 " " " " ND 2.0 mg/kg 1 B1G1411 ND	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Dilution Batch Prepared ND 2.0 mg/kg 1 BIG1411 07/14/21 ND 5.5 " " " " ND 2.2 " " " " ND 2.5 " " " " 6.6 3.3 " " " " ND 0.10 " " BIG1417 07/14/21 11 5.0 " " BIG1411 07/14/21 ND 0.10 " " BIG1411 07/14/21 ND 0.10 " " BIG1411 07/14/21 ND 5.2 " " BIG1411 07/14/21 ND 7.1 " " " " ND 7.1 " " " " ND 5.1 " " " "	Sampled: 07/13/21 08:25 Received: 07/13/21 17:07 Units Dilution Batch Prepared Analyzed ND 2.0 mg/kg 1 B1G1411 07/14/21 07/19/21 14:17 ND 5.5 " " " " " 50 6.0 " " " " " ND 2.2 " " " " " ND 2.5 " " " " " 13 2.3 " " " " " ND 0.10 " " B1G1417 07/14/21 07/19/21 18:20 11 5.0 " " B1G1411 07/14/21 07/19/21 14:17 ND 0.90 " " B1G1411 07/14/21 07/19/21 14:17 " ND 7.1 " " " " " ND 6.9 " " " "	ND 2.0 mg/kg 1 B1G141 07/14/21 07/19/21 14:17 EPA 6010B ND 2.0 mg/kg 1 B1G141 07/14/21 07/19/21 14:17 EPA 6010B ND 2.2 " " " " " " " " " " " " " " " " " "

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV8-5 (2107188-07) Soil	Sampled: 07/13/21 08:56	Received:	07/13/21 17:07	7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		30	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		ND	3.3	"	"	"	"	"	"	
Chromium		5.7	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		7.8	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		4.0	3.0	"	"	"	"	"	"	
Lead		19	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		9.1	5.1	"	"	"	"	"	"	
Zinc		26	7.0	"	"	"	"	"	"	
SV8-10 (2107188-08) Soi	Sampled: 07/13/21 08:58	Received	1: 07/13/21 17:0)7						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		58	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		10	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		11	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		7.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		21	5.1	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06	Received	: 07/13/21 17:0	07						
Silver	<u> </u>	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		50	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.6	3.3	"	"	"	"	"	"	
Chromium		17	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		12	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.81	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		9.8	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Γhallium		ND	17	"	"	"	"	"	"	
Vanadium		19	5.1	"	"	"	"	"	"	
Zinc		29	7.0	"	"	"	"	"	"	
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received:	07/13/21 17:0'	7						
Silver	•	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	mg/kg	"	BIGITII	"	"	"	
Barium		3100	6.0	"	"	,,	"	"	"	
Beryllium		ND	2.2	"	"	,,	"	"	"	
Cadmium		ND	2.5	"	"	,,	"	"	"	
Cobalt		5.1	3.3	"	"	,,	,,	"	"	
Chromium		26	2.3	,,	"	,,	"	"	"	
Hexavalent Chromium		ND	0.10	,,	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		31	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1411	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	,,	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		20	3.2	"	,,	"	0//14/21	0//19/21 14.1/	" "	
Nickei Lead		24	7.1	"	,,	,,	,,	"	"	
Antimony		ND	8.0	"	"	"	,,	,,	"	
Selenium		ND ND	6.9	"	"	"	"	,,	"	
Seienium Fhallium		ND ND	6.9 17		"	,,		,,	,,	
r namum Vanadium		28	5.1	,,	"	,,		"	,,	
vanagium Zinc		28 73	7.0	,,		,,				
		7.5	7.0		**		.,			

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received:	07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		77	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		6.2	3.3	"	"	"	"	"	"	
Chromium		17	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		12	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		8.3	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	,,	"	"	
Vanadium		23	5.1	"	"	"	,,	"	"	
Zinc		27	7.0	"	"	"	,,	"	"	
CVO 15 (2107100 12) C-11	C1- J. 07/12/21 00:24		07/12/21 17.	07						
	Sampled: 07/13/21 09:24		0//13/21 1/:	U /						
Silver										
		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		ND 110	5.5 6.0	"	"	"	"	"	"	
Barium		ND	5.5	"	"	"	"	"	"	
Barium		ND 110	5.5 6.0	"	"	"	"	"	"	
Barium Beryllium		ND 110 ND	5.5 6.0 2.2	"	"	"	"	" " "	" "	
Barium Beryllium Cadmium		ND 110 ND ND	5.5 6.0 2.2 2.5	"	"	" " "	" "	" " " "	" " " "	
Barium Beryllium Cadmium Cobalt		ND 110 ND ND 10	5.5 6.0 2.2 2.5 3.3	" " " "		" " " " " " " " " " " " " " " " " " " "	" " "	n n n	" " " "	
Barium Beryllium Cadmium Cobalt Chromium		ND 110 ND ND 10 30	5.5 6.0 2.2 2.5 3.3 2.3	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium		ND 110 ND ND 10 30 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10	" " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	"""""""""""""""""""""""""""""""""""""""	" " " " 07/19/21 15:20	" " " " EPA 7199A	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper		ND 110 ND ND 10 30 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " " EPA 7199A EPA 6010B	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury		ND 110 ND ND 10 30 ND 17 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 B1G1411 B1G1414	""""""""""""""""""""""""""""""""""""""	"" "" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " " EPA 7199A EPA 6010B EPA 7471A	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		ND 110 ND ND 10 30 ND 17 ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		ND 110 ND ND 10 30 ND 17 ND ND 16	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0		"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " B1G1417 B1G1411 B1G1414 B1G1411 "	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		ND 110 ND ND 10 30 ND 17 ND ND 16 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1		"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		ND 110 ND ND 10 30 ND 17 ND ND 16 ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " " B1G1417 B1G1411 B1G1414 B1G1411 " "	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium		ND 110 ND ND 10 30 ND 17 ND ND 16 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV10-5 (2107188-13) Soil S	Sampled: 07/13/21 09:32 Received	d: 07/13/21 17:	:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	650	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	10	3.3	"	"	"	"	"	"	
Chromium	25	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper	31	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel	24	3.0	"	"	"	"	"	"	
Lead	42	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	36	5.1	"	"	"	"	"	"	
Zinc	100	7.0	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil	Sampled: 07/13/21 09:36 Receiv	ed: 07/13/21 1	7:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	49	6.0	"		"	,,	"	"	
Beryllium				"					
	ND	2.2	"	"	"	"	"	"	
Cadmium		2.2 2.5		"				"	
	ND ND 4.9		"	"	"	"	"	"	
Cobalt	ND 4.9	2.5 3.3	"	"	"	"	"	"	
Cobalt Chromium	ND 4.9 10	2.5 3.3 2.3	" "	" "	" " "	" "	" " "	" " "	
Cobalt Chromium Hexavalent Chromium	ND 4.9 10 ND	2.5 3.3	" " "	" " "	"	" "	" "	" "	
C obalt C hromium Hexavalent Chromium C opper	ND 4.9 10 ND 8.3	2.5 3.3 2.3 0.10 5.0	" " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	" " 07/14/21 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury	ND 4.9 10 ND	2.5 3.3 2.3 0.10 5.0 0.79	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411	" " " 07/14/21	" " " 07/19/21 15:20	" " " EPA 7199A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND 4.9 10 ND 8.3 ND ND	2.5 3.3 2.3 0.10 5.0 0.79 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411	07/14/21 07/14/21 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " EPA 7199A EPA 6010B EPA 7471A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND 4.9 10 ND 8.3 ND ND 6.0	2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414 B1G1411	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND 4.9 10 ND 8.3 ND ND ND ND ND	2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND 4.9 10 ND 8.3 ND ND ND ND ND 6.0 ND ND	2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium	ND 4.9 10 ND 8.3 ND ND ND ND ND ND ND ND ND ND ND	2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0 6.9	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND 4.9 10 ND 8.3 ND ND ND ND ND 6.0 ND ND	2.5 3.3 2.3 0.10 5.0 0.79 5.2 3.0 7.1 8.0			" " " B1G1417 B1G1411 B1G1414 B1G1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		81	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		11	3.3	"	"	"	"	"	"	
Chromium		21	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		15	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel		13	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		36	5.1	"	"	"	"	"	"	
Zinc		42	7.0	"	"	"	"	"	"	
SV11-5 (2107188-16) Soil	Sampled: 07/13/21 10:16	Received:	07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		150	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		10	3.3	"	"	"	"	"	"	
Chromium		19	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper		21	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury		ND	0.78	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
		15	3.0	"	"	"	"	"	"	
Nickel					"	"	"	"	"	
•		17	7.1	"	"					
Nickel		17 ND	7.1 8.0	"	"	"	"	"	"	
Nickel Lead							"	"	"	
Nickel Lead Antimony		ND	8.0	"	"	"				
Nickel Lead Antimony Selenium		ND ND	8.0 6.9	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

		Danastina							
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 07/13/21 10:20	Received: 0	7/13/21 17	':07						
	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	5.5	"	"	"	"	"	"	
	130	6.0	"	"	"	"	"	"	
	ND	2.2	"	"	"	"	"	"	
	ND	2.5	"	"	"	"	"	"	
	8.5	3.3	"	"	"	"	"	"	
	15	2.3	"	"	"	"	"	"	
	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
	10	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	8.1	3.0	"	"	"	"	"	"	
	ND	7.1	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
	ND	6.9	"	"	"	"	"	"	
	ND	17	"	"	"	"	"	"	
	23	5.1	"	"	"	,,	"	"	
	28	7.0	"	"	"	"	"	"	
Sampled: 07/13/21 10:26	Received: 0	7/13/21 17	':07						
	ND	2.0		1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND ND	2.0 5.5	mg/kg	1 "	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
	ND	5.5	mg/kg						
	ND 64	5.5 6.0	mg/kg	"	"	"	"	"	
	ND	5.5 6.0 2.2	mg/kg "	"	"	"	"	"	
	ND 64 ND ND	5.5 6.0 2.2 2.5	mg/kg " "	" "	"	" "	" "	" "	
	ND 64 ND ND 6.0	5.5 6.0 2.2	mg/kg " "	" "	" "	" "	" " " "	" " " "	
	ND 64 ND ND	5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
	ND 64 ND ND 6.0 19 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	"""""""""""""""""""""""""""""""""""""""	" " " " 07/19/21 15:20	" " " " EPA 7199A	
	ND 64 ND ND 6.0 19 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " " EPA 7199A EPA 6010B	
	ND 64 ND ND 6.0 19 ND 11 ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " BIG1417 BIG1411 BIG1414	""""""""""""""""""""""""""""""""""""""	"" "" 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " " EPA 7199A EPA 6010B EPA 7471A	
	ND 64 ND ND 6.0 19 ND 11 ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1417	" " " 07/14/21	" " " 07/19/21 15:20 07/19/21 14:17	" " " EPA 7199A EPA 6010B	
	ND 64 ND ND 6.0 19 ND 11 ND ND 11	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411	""""""""""""""""""""""""""""""""""""""	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
	ND 64 ND ND 6.0 19 ND 11 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
	ND 64 ND ND 6.0 19 ND 11 ND ND ND ND ND ND ND ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 6010B " "	
	ND 64 ND ND 6.0 19 ND 11 ND ND ND ND ND ND ND ND ND ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 6010B " "	
	ND 64 ND ND 6.0 19 ND 11 ND ND ND ND ND ND ND ND ND ND ND	5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	mg/kg		" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
	Sampled: 07/13/21 10:20	ND ND 130 ND ND ND 8.5 15 ND 10 ND ND ND ND ND ND ND 23 28	Sampled: 07/13/21 10:20 Received: 07/13/21 17 ND 2.0 ND 5.5 130 6.0 ND 2.2 ND 2.5 8.5 3.3 15 2.3 ND 0.10 10 5.0 ND 0.90 ND 5.2 8.1 3.0 ND 7.1 ND 8.0 ND 6.9 ND 17 23 5.1 28 7.0	ND 2.0 mg/kg ND 5.5 " 130 6.0 " ND 2.5 " ND 2.3 " ND 2.5 " ND 2.5 " ND 2.5 " ND 2.5 " ND 0.10 " ND 0.10 " ND 0.90 " ND 0.90 " ND 0.90 " ND 7.1 " ND 8.0 " ND 6.9 " ND 17 " 23 5.1 "	Result Limit Units Dilution	Result Limit Units Dilution Batch Sampled: 07/13/21 10:20 Received: 07/13/21 17:07 Total Control of the product of	Result Limit Units Dilution Batch Prepared Sampled: 07/13/21 10:20 Received: 07/13/21 17:07 Dilution Batch Prepared ND 2.0 mg/kg 1 B1G1411 07/14/21 ND 5.5 " " " " ND 2.2 " " " " ND 2.5 " " " " ND 2.5 " " " " ND 2.5 " " " " ND 0.10 " " B1G1417 07/14/21 ND 5.0 " " B1G1417 07/14/21 ND 5.2 " " B1G1411 07/14/21 ND 5.2 " " B1G1411 07/14/21 ND 7.1 " " " " ND 7.1 " " "	Result Limit Units Dilution Batch Prepared Analyzed Sampled: 07/13/21 10:20 Received: 07/13/21 17:07 ND 2.0 mg/kg 1 B1G1411 07/14/21 07/19/21 14:17 ND 5.5 " " " " " ND 2.2 " " " " " ND 2.5 " " " " " " ND 0.10 " " B1G1417 07/14/21 07/19/21 15:20 ND 0.5 " " B1G1411 07/14/21 07/19/21 14:17 ND 5.2 " " B1G1411 07/14/21 07/19/21 14:17 8.1 3.0 "	ND 2.0 mg/kg 1 B1G141 07/14/21 07/19/21 14:17 EPA 6010B ND 5.5 " " " " " " " " " " " " " " " " " "

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-5 (2107188-19) Soil Sampled: 07/1	13/21 10:49 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	83	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.4	3.3	"	"	"	"	"	"	
Chromium	12	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1417	07/14/21	07/19/21 15:20	EPA 7199A	
Copper	7.8	5.0	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1414	07/14/21	07/16/21 20:28	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Nickel	6.4	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	,,	,,	,,	"	
Vanadium	18	5.1	"	"	,,	,,	"	"	
Zinc	23	7.0	"	"	"	"	"	"	
SV12-10 (2107188-20) Soil Sampled: 07/	/13/21 10:58 Received	: 07/13/21 17	7:07						
Silver	ND	2.0	mg/kg	1	B1G1411	07/14/21	07/19/21 14:17	EPA 6010B	
Arsenic	ND	5.5	"		,,	,,	"	,,	
				"	"				
Barium	46		,,	"	"	,,	"	"	
	46 ND	6.0					" "	"	
Beryllium	ND	6.0 2.2	"	"	"	"			
Beryllium Cadmium	ND ND	6.0 2.2 2.5	"	"	"	"	"	"	
Barium Beryllium Cadmium Cobalt Chromium	ND ND 5.4	6.0 2.2 2.5 3.3	"	" "	"	" "	"	"	
Beryllium Cadmium Cobalt Chromium	ND ND 5.4 10	6.0 2.2 2.5 3.3 2.3	" "	" " "	" " " " " " " " " " " " " " " " " " " "	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	ND ND 5.4 10 ND	6.0 2.2 2.5 3.3	" " " "	" " " "	" " " B1G1417	" " " 07/14/21	" " 07/19/21 15:20	" " " EPA 7199A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	ND ND 5.4 10 ND 6.7	6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	" " " 07/14/21	" " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	ND ND 5.4 10 ND 6.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417 B1G1411 B1G1414	" " " 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28	" " EPA 7199A EPA 6010B EPA 7471A	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND ND 5.4 10 ND 6.7 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	n n n	" " " " " " " " " " " " " " " " " " " "	" " " B1G1417	" " " 07/14/21	" " 07/19/21 15:20 07/19/21 14:17	" " EPA 7199A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND ND 5.4 10 ND 6.7 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411	" " " 07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 5.4 10 ND 6.7 ND ND 5.7 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND ND 5.4 10 ND 6.7 ND ND ND ND ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0		" " " " " " " " " " " " " " " " " " " "	" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	ND ND 5.4 10 ND 6.7 ND ND ND ND ND ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " " BIG1417 BIG1411 BIG1414 BIG1411 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 5.4 10 ND 6.7 ND ND ND ND ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " " BIG1417 BIG1411 BIG1414 BIG1411 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 15:20 07/19/21 14:17 07/16/21 20:28 07/19/21 14:17	EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-15 (2107188-21) Soil Sampled: 07/13/21 11						1			
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	32	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	3.3	3.3	"	"	"	"	"	"	
Chromium	7.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	ND	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	4.5	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	9.2	5.1	"	"	"	"	"	"	
Zinc	16	7.0	"	"	"	"	"	"	
SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:2	26 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	83	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2						"	
-		2.2	"	"	"		,,	"	
Cadmium	ND	2.2 2.5	"	"	"	"			
Cadmium Cobalt		2.5					"	"	
Cobalt	7.1	2.5 3.3	"	"	"	"	"	"	
		2.5	"	"	"	"	" "	" "	
Cobalt Chromium Hexavalent Chromium	7.1 15 ND	2.5 3.3 2.3	" "	" "	" " B1G1418	" " 07/14/21	" " 07/19/21 16:44	" " " EPA 7199A	
Cobalt Chromium Hexavalent Chromium Copper	7.1 15 ND 9.8	2.5 3.3 2.3 0.10 5.0	" "	" "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury	7.1 15 ND 9.8 ND	2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	7.1 15 ND 9.8 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	7.1 15 ND 9.8 ND ND 8.7	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	" " 07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	7.1 15 ND 9.8 ND ND ND 8.7 ND ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	" " " " " " " " " " " " " " " " " " " "		" B1G1418 B1G1412 B1G1415 B1G1412 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 6010B " " "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	7.1 15 ND 9.8 ND ND 8.7 ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " B1G1418 B1G1412 B1G1415 B1G1412 " " "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil	Sampled: 07/13/21 11:31	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		100	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		5.7	3.3	"	"	"	"	"	"	
Chromium		21	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		13	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		10	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		26	5.1	"	"	"	"	"	"	
Zinc		37	7.0	"	"	"	"	"	"	
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		46	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"		,,	"	"	"	
					"					
Cobalt		4.5	3.3	"	"	"	"	"	"	
		4.5 12		"		"	"	"	"	
Chromium			3.3		"					
Chromium Hexavalent Chromium		12	3.3 2.3	"	"	"	"	"	"	
Chromium Hexavalent Chromium Copper		12 ND	3.3 2.3 0.10	"	" "	" B1G1418	07/14/21	" 07/19/21 16:44	" EPA 7199A	
Chromium Hexavalent Chromium Copper Mercury		12 ND 8.0	3.3 2.3 0.10 5.0	"	" "	" B1G1418 B1G1412	07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58	" EPA 7199A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum		12 ND 8.0 ND	3.3 2.3 0.10 5.0 0.90	" " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415	" 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" EPA 7199A EPA 6010B EPA 7471A	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		12 ND 8.0 ND ND	3.3 2.3 0.10 5.0 0.90 5.2	" " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		12 ND 8.0 ND ND ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		12 ND 8.0 ND ND 7.0 ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0	" " " " " " " " " " " " " " " " " " " "		" B1G1418 B1G1412 B1G1415 B1G1412 "	" 07/14/21 07/14/21 07/14/21 07/14/21 " "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		12 ND 8.0 ND ND 7.0 ND ND ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	" " " " " " " "		"B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 07/14/21 " "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		12 ND 8.0 ND ND 7.0 ND	3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			"B1G1418 B1G1412 B1G1415 B1G1412	" 07/14/21 07/14/21 07/14/21 07/14/21 " " "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " " "	"EPA 7199A EPA 6010B EPA 7471A EPA 6010B	

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV14-5 (2107188-25) Soil Samp	led: 07/13/21 12:49 Received:	07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	50	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	4.7	3.3	"	"	"	"	"	"	
Chromium	11	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	7.4	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	5.9	3.0	"	"	"	"	"	"	
Lead	ND	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	15	5.1	"	"	"	"	"	"	
Zinc	22	7.0	"	"	"	"	"	"	
SV14-10 (2107188-26) Soil Sam	pled: 07/13/21 12:54 Received	: 07/13/21 17	7:07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	88	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	5.6	3.3	"	"	"	"	"	"	
Chromium	22	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	12	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.78	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
		5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
•	ND				"	"	"	"	
Molybdenum	ND 9.1	3.0	"	"	"				
Molybdenum Nickel			"	"	"	"	"	"	
Molybdenum Nickel Lead	9.1	3.0				"	"	"	
Molybdenum Nickel Lead Antimony	9.1 26	3.0 7.1	"	"	"				
Molybdenum Nickel Lead Antimony Selenium Thallium	9.1 26 ND ND	3.0 7.1 8.0 6.9	"	"	"	"	"	"	
Molybdenum Nickel Lead Antimony Selenium	9.1 26 ND	3.0 7.1 8.0	"	" "	"	"	"	"	

Mearns Consulting LLC

738 Ashland Avenue

Project: Town Center Northwest

Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Received	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		38	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		3.8	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		6.9	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		6.4	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		13	5.1	"	"	"	"	"	"	
Zinc		28	7.0	"	"	"	"	"	"	
SV15-5 (2107188-28) Soil	Sampled: 07/13/21 13:19	Received	: 07/13/21 17:0	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		110	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.9	3.3	"	"	"	"	"	"	
Chromium		12	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		9.0	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.79	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		6.7	3.0	"	"	"	"	"	"	
MICKEI		ND	7.1	"	"	"	"	"	"	
Lead		ND	,							
		ND	8.0	"	"	"	"	"	"	
Lead				"	"	"	"	"	"	
Lead Antimony		ND	8.0							
Lead Antimony Selenium		ND ND	8.0 6.9	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil	Sampled: 07/13/21 13:23	Receive	d: 07/13/21 17	':07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		79	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.8	3.3	"	"	"	"	"	"	
Chromium		16	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		13	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		12	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		26	5.1	"	"	"	"	"	"	
Zinc		38	7.0	"	"	"	"	"	"	
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Receive	d: 07/13/21 17	':07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		64	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		4.9	3.3	"	"	"	"	"	"	
Chromium		11	2.3	"	"	"	"	"	"	
II 1 (CL)		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Hexavalent Chromium						D101412	07/14/21	07/19/21 15:58	EPA 6010B	
		6.9	5.0	"	"	B1G1412	0//14/21	0 // 1 // 21 10 10 0	LITTOOTOD	
Copper		6.9 ND	5.0 0.90	"	"	B1G1412 B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Copper Mercury										
Copper Mercury Molybdenum		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Copper Mercury Molybdenum Nickel		ND ND	0.90 5.2	"	"	B1G1415 B1G1412	07/14/21 07/14/21	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead		ND ND 7.7	0.90 5.2 3.0	"	"	B1G1415 B1G1412	07/14/21 07/14/21	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Copper Mercury Molybdenum Nickel Lead Antimony		ND ND 7.7 ND	0.90 5.2 3.0 7.1 8.0	" "	" " "	B1G1415 B1G1412	07/14/21 07/14/21 "	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B	
Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		ND ND 7.7 ND ND	0.90 5.2 3.0 7.1	" " "	" " "	B1G1415 B1G1412 "	07/14/21 07/14/21 "	07/16/21 20:30 07/19/21 15:58	EPA 7471A EPA 6010B "	
Copper Mercury Molybdenum Nickel Lead Antimony Selenium		ND ND 7.7 ND ND ND	0.90 5.2 3.0 7.1 8.0 6.9	" " " "	" " " " " " " " " " " " " " " " " " " "	B1G1415 B1G1412 "	07/14/21 07/14/21 " " "	07/16/21 20:30 07/19/21 15:58 "	EPA 7471A EPA 6010B "	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-5 (2107188-31) Soil										
·										
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"		"	.,	,,	"	
Barium		160	6.0	"	.,	,,	,,	"	"	
Beryllium		ND	2.2	"	.,	,,	,,	,,	"	
Cadmium		ND	2.5	,,	,,	,,	,,	,,	"	
Cobalt		7.4	3.3 2.3	,,		,,	,,		,,	
Chromium		17 ND		,,	,,					
Hexavalent Chromium		ND	0.10	"	,,	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		20	5.0	"	,,	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	,	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	,	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		11	3.0	"	.,	"	"	"	"	
Lead		19	7.1	"	.,	,,	,,	"	"	
Antimony		ND	8.0	"		"	.,	,	"	
Selenium		ND	6.9	"		"	"	,	"	
Thallium		ND	17			"	.,	,,	"	
Vanadium		24	5.1	"	"			"		
Zinc		63	7.0	"	"	"	"	"	"	
SV16-10 (2107188-32) Soil	Sampled: 07/13/21 13:57	Received	1: 07/13/21 17:	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		130	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		11	3.3	"	"	"	"	"	"	
Chromium		24	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		27	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		27	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		36	5.1	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	F	tesult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		720	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		8.0	3.3	"	"	"	"	"	"	
Chromium		23	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		37	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		61	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	"	"	"	"	"	"	
Zinc		90	7.0	"	"	"	"	"	"	
SV17-5 (2107188-34) Soil	Sampled: 07/13/21 14:44	Received:	07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		20	5.5	"	"	"	"	"	"	
Barium		88	6.0	"	"	"	"	"	"	
Beryllium		ND								
Codmissm			2.2	"	"	"	"	"	"	
Caumium		ND	2.2 2.5	"	"	"	"	"	"	
		ND 6.7								
Cobalt			2.5	"	"	"	"	"	"	
Cobalt Chromium		6.7	2.5 3.3	"	"	"	"	"	" "	
Cobalt Chromium Hexavalent Chromium		6.7 18	2.5 3.3 2.3	" "	" "	"	"	n n	11 11	
Cobalt Chromium Hexavalent Chromium Copper		6.7 18 ND	2.5 3.3 2.3 0.10	" "	" "	" " B1G1418	" " 07/14/21	" " 07/19/21 16:44	" " EPA 7199A	
Cobalt Chromium Hexavalent Chromium Copper Mercury		6.7 18 ND 47	2.5 3.3 2.3 0.10 5.0	" " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		6.7 18 ND 47 ND	2.5 3.3 2.3 0.10 5.0 0.90	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415	" " 07/14/21 07/14/21	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		6.7 18 ND 47 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	" " 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		6.7 18 ND 47 ND ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		6.7 18 ND 47 ND ND 17 57	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	" " " " " " " " " " " " " " " " " " " "		" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		6.7 18 ND 47 ND ND 17 57	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" B1G1418 B1G1412 B1G1415 B1G1412 " "	07/14/21 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium		6.7 18 ND 47 ND ND 17 57 ND ND	2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			" " B1G1418 B1G1412 B1G1415 B1G1412 " " "	07/14/21 07/14/21 07/14/21 07/14/21 "	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 " " "	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV17-10 (2107188-35) Soil	Sampled: 07/13/21 14:48	Receive	1: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		170	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.2	3.3	"	"	"	"	"	"	
Chromium		20	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		21	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		13	3.0	"	"	"	"	"	"	
Lead		12	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	,,	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		28	5.1	,,	"	"	"	"	"	
Zinc		61	7.0	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Receive	d: 07/13/21 17	:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		240	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		16	3.3	"	"	"	"	"	"	
Chromium		35	2.3	"	"	"	,,	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		35	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		19	3.0	"	"	"	"	"	"	
Lead		12	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	,,	"	"	,,	,,	,,	
Selenium		7.4	6.9		"	,,	,,	"	"	
Thallium		ND	17		"	,,	,,	"	"	
Vanadium		47	5.1	,,	,,	"	,,	"	"	
Vanaulum Zinc		120	7.0	,,	,,	"	,,	"	"	
Zinc		140	7.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

1									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-5 (2107188-37) Soil	Sampled: 07/13/21 15:19 Received	ed: 07/13/21 17:	07						
Silver	ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic	ND	5.5	"	"	"	"	"	"	
Barium	110	6.0	"	"	"	"	"	"	
Beryllium	ND	2.2	"	"	"	"	"	"	
Cadmium	ND	2.5	"	"	"	"	"	"	
Cobalt	8.2	3.3	"	"	"	"	"	"	
Chromium	18	2.3	"	"	"	"	"	"	
Hexavalent Chromium	ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper	16	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury	ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum	ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel	12	3.0	"	"	"	"	"	"	
Lead	14	7.1	"	"	"	"	"	"	
Antimony	ND	8.0	"	"	"	"	"	"	
Selenium	ND	6.9	"	"	"	"	"	"	
Thallium	ND	17	"	"	"	"	"	"	
Vanadium	28	5.1	"	"	"	"	"	"	
Zinc	66	7.0	"	"	"	"	"	"	
SV18-10 (2107188-38) Soi	l Sampled: 07/13/21 15:25 Receiv	ved: 07/13/21 17	7:07						
,	*			1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Silver	ND ND	2.0	7:07 mg/kg	1 "	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Silver Arsenic	ND ND	2.0 5.5	mg/kg						
Silver Arsenic Barium	ND ND 94	2.0 5.5 6.0	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	ND ND 94 ND	2.0 5.5 6.0 2.2	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	ND ND 94	2.0 5.5 6.0	mg/kg " "	" "	"	"	" "	"	
Silver Arsenic Barium Beryllium Cadmium Cobalt	ND ND 94 ND ND 9.8	2.0 5.5 6.0 2.2 2.5	mg/kg " "	" "	" "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	ND ND 94 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	ND ND 94 ND ND 9.8 18 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G1418	" " " " 07/14/21	" " " " 07/19/21 16:44	" " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	ND ND 94 ND ND 9.8 18 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " " 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	ND ND 94 ND ND 9.8 18 ND 14 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " BIG1418 B1G1412 B1G1415	""""""""""""""""""""""""""""""""""""""	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	ND ND 94 ND ND 9.8 18 ND 14 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " " 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	ND ND 94 ND ND 9.8 18 ND 14 ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " "	" " " BIG1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	""""""""""""""""""""""""""""""""""""""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"" "" "" "" "" "" "" "" "" "" "" "" ""	BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	"" "" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	ND ND 94 ND ND 14 ND ND 12 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 6010B " "	
SV18-10 (2107188-38) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	ND ND 94 ND ND 9.8 18 ND 14 ND ND ND 12 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Received	l: 07/13/21 17	7:07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		100	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		7.7	3.3	"	"	"	"	"	"	
Chromium		25	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G1418	07/14/21	07/19/21 16:44	EPA 7199A	
Copper		16	5.0	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Mercury		ND	0.90	"	"	B1G1415	07/14/21	07/16/21 20:30	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		35	5.1	"	"	"	"	"	"	
Zinc		54	7.0	"	"	"	"	"	"	
SV19-5 (2107188-40) Soil	Sampled: 07/13/21 15:49	Received	07/13/21 17:	07						
Silver		ND	2.0	mg/kg	1	B1G1412	07/14/21	07/19/21 15:58	EPA 6010B	
Arsenic		ND	5.5	,,		,,	"	"	"	
Barium			3.3		"	"				
		74	5.5 6.0	"	"	"	"	"	"	
Beryllium							"	"	"	
•		74	6.0	"	"	"				
Cadmium		74 ND	6.0 2.2	"	"	"	"	"	"	
Cadmium Cobalt		74 ND ND	6.0 2.2 2.5	"	" "	"	"	"	"	
Cadmium Cobalt Chromium		74 ND ND 6.9	6.0 2.2 2.5 3.3	" "	" " "	" " "	" "	" "	" "	
Cadmium Cobalt Chromium Hexavalent Chromium		74 ND ND 6.9 14	6.0 2.2 2.5 3.3 2.3	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" "	" " "	" " " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper		74 ND ND 6.9 14 ND	6.0 2.2 2.5 3.3 2.3 0.10	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418	" " " 07/14/21	" " 07/19/21 16:44	" " " EPA 7199A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury		74 ND ND 6.9 14 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412	" " 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58	" " EPA 7199A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum		74 ND ND 6.9 14 ND 11 ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	n n n	" " " " " " " " " " " " " " " " " " "	" " " B1G1418 B1G1412 B1G1415	07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30	" " EPA 7199A EPA 6010B EPA 7471A	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel		74 ND ND 6.9 14 ND 11 ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	" " 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead		74 ND ND 6.9 14 ND 11 ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " BIG1418 BIG1412 BIG1415 BIG1412	07/14/21 07/14/21 07/14/21 07/14/21	" 07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58 "	" " EPA 7199A EPA 6010B EPA 7471A EPA 6010B "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		74 ND ND 6.9 14 ND 11 ND ND 11	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			" " B1G1418 B1G1412 B1G1415 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 6010B " "	
Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium		74 ND ND ND 6.9 14 ND 11 ND ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9			B1G1418 B1G1412 B1G1412 B1G1412	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony		74 ND ND 6.9 14 ND 11 ND ND ND ND ND ND ND	6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0			B1G1418 B1G1412 B1G1412 B1G1412 "	07/14/21 07/14/21 07/14/21 07/14/21 "	07/19/21 16:44 07/19/21 15:58 07/16/21 20:30 07/19/21 15:58	" EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

Santa Monica CA, 90405 Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Sicila Analytical Labs, Inc.												
Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SV19-10 (2107188-41) Soil	Sampled: 07/13/21 15:54	Received: 0	07/13/21 17	7:07								
Silver		ND	2.0	mg/kg	1	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Arsenic		ND	5.5	"	"	"	"	"	"			
Barium		66	6.0	"	"	"	"	"	"			
Beryllium		ND	2.2	"	"	"	"	"	"			
Cadmium		ND	2.5	"	"	"	"	"	"			
Cobalt		7.3	3.3	"	"	"	"	"	"			
Chromium		17	2.3	"	"	"	"	"	"			
Hexavalent Chromium		ND	0.10	"	"	B1G1419	07/14/21	07/19/21 17:00	EPA 7199A			
Copper		12	5.0	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Mercury		ND	0.90	"	"	B1G1416	07/14/21	07/16/21 20:32	EPA 7471A			
Molybdenum		ND	5.2	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Nickel		12	3.0	"	"	"	"	"	"			
Lead		ND	7.1	"	"	"	"	"	"			
Antimony		ND	8.0	"	"	"	"	"	"			
Selenium		ND	6.9	"	"	"	"	"	"			
Thallium		ND	17	"	"	"	"	"	"			
Vanadium		23	5.1	"	"	"	"	"	"			
Zinc		35	7.0	"	"	"	"	"	"			
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59	Received: ()7/13/21 17	7:07								
Silver		ND	2.0	mg/kg	1	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Arsenic		ND	5.5	"	"	"	"	"	"			
Barium		46	6.0	"	"	"	"	"	"			
Beryllium		ND	2.2	"	"	"	"	"	"			
Cadmium		ND	2.5	"	"	"	"	"	"			
Cobalt		5.2	3.3	"	"	"	"	"	"			
Chromium		10	2.3	"	"	"	,,	"	"			
Hexavalent Chromium		ND	0.10	"	"	B1G1419	07/14/21	07/19/21 17:00	EPA 7199A			
Copper		7.8	5.0	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Mercury		ND	0.90	"	"	B1G1416	07/14/21	07/16/21 20:32	EPA 7471A			
Molybdenum		ND	5.2	"	"	B1G1413	07/14/21	07/19/21 16:48	EPA 6010B			
Nickel		8.1	3.0	"	"	"	"	"	"			
Lead		ND	7.1	"	"	"	"	"	"			
Antimony		ND	8.0	"	"	,,	"	,,	"			
Selenium		ND	6.9	"	"	"	"	,,	"			
Thallium		ND	17	"	"	"	"		"			
Vanadium		15	5.1	"	"	,,	,,	"	"			
Zinc		28	7.0	"	"	,,	,,	"	"			
Zime		20	7.0									

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/22/21 13:51

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-5 (2107188-01) Soil Sampled: 07/13	/21 07:35 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		61.2 %	60-1		B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	35-1.		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV6-10 (2107188-02) Soil Sampled: 07/1	3/21 07:44 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		78.5 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.5 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV6-15 (2107188-03) Soil Sampled: 07/1	3/21 07:51 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		73.8 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.4 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV7-5 (2107188-04) Soil Sampled: 07/13	/21 08:15 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		78.6 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.3 %	35-1.	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.062	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21	08:25 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	ND	74.3 % 5.0	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons	ND	5.0	"	"	"	"	"	"	
(C23-C40)		90.3 %	25 1	20	DIGI503	"	07/15/21 12 20	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	0.071	35-1	"	B1G1502	"	07/15/21 12:38	"	
SV7-15 (2107188-06) Soil Sampled: 07/13/21	08:30 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		65.6 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		86.7 %	35-1		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV8-5 (2107188-07) Soil Sampled: 07/13/21 0	8:56 Received:	07/13/21 17:07	7						
Surrogate: o-Terphenyl		129 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	27	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	35-1	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.042	"	"	"	"	"	"	
SV8-10 (2107188-08) Soil Sampled: 07/13/21	08:58 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		60.8 %	60-1	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		93.9 %	35-1	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland AvenueProject Number:
[none][none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil Sampled: 07/13	/21 09:06 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		66.0 %	60-17		B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		101 %	35-13		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV9-5 (2107188-10) Soil Sampled: 07/13/2	21 09:19 Received:	07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	S-03
Total Petroleum Hydrocarbons	110	100	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	550	100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.3 %	35-13	80	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.067	"	"	"	"	"	"	
SV9-10 (2107188-11) Soil Sampled: 07/13	/21 09:22 Received:	: 07/13/21 17:0)7						
Surrogate: o-Terphenyl		100 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	50	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.4 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.043	"	"	"	"	"	"	
SV9-15 (2107188-12) Soil Sampled: 07/13	/21 09:24 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		90.6 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons	ND	5.0	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.3 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 0	9:32 Received	: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	S-0.
Total Petroleum Hydrocarbons (C13-C22)	510	100	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	650	100	"	"	"	"	u	"	
Surrogate: a,a,a-Trifluorotoluene		80.6 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.084	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil Sampled: 07/13/21	09:36 Receive	d: 07/13/21 17:	07						
Surrogate: o-Terphenyl		79.0 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	52	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		88.6 %	35-		B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV10-15 (2107188-15) Soil Sampled: 07/13/21	09:52 Receive	d: 07/13/21 17:	07						
Surrogate: o-Terphenyl		68.8 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		97.1 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV11-5 (2107188-16) Soil Sampled: 07/13/21 1	0:16 Received	: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		86.1 %	60-	175	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	160	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	35-	130	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil Sampled: 07/13/21 10:	20 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		120 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	39	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	200	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.6 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV11-15 (2107188-18) Soil Sampled: 07/13/21 10:	26 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		72.6 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.7 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV12-5 (2107188-19) Soil Sampled: 07/13/21 10:4	9 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl		97.9 %	60-17	75	B1G1504	07/15/21	07/15/21 14:41	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.070	"	"	"	"	"	"	
SV12-10 (2107188-20) Soil Sampled: 07/13/21 10:	58 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		111 %	60-17	75	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		79.2 %	35-13	30	B1G1502	"	07/15/21 12:38	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none]
Santa Monica CA, 90405 Project Manager: Susan Mearns

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil Sampled: 07/13/	21 11:07 Received	1: 07/13/21 17:	:07						
Surrogate: o-Terphenyl		91.5 %	60	175	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		88.6 %	35-	130	B1G1503	"	07/15/21 13:57	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-5 (2107188-22) Soil Sampled: 07/13/2	1 11:26 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl		107 %	60	175	B1G1601	07/15/21	07/16/21 08:00	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		79.8 %	35-	130	B1G1503	"	07/15/21 13:57	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-10 (2107188-23) Soil Sampled: 07/13/2	21 11:31 Received	1: 07/13/21 17	:07						
Surrogate: o-Terphenyl		80.4 %	60	175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.1 %	35-	130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV13-15 (2107188-24) Soil Sampled: 07/13/2	21 11:38 Received	1: 07/13/21 17	:07						
Surrogate: o-Terphenyl		111 %	60	175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		90.6 %	35-	130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/22/21 13:51

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

			·						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 1	2:49 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	133 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	99.2 % 0.050	35-13	"	B1G1913 "	07/19/21	07/20/21 10:02 "	"	
SV14-10 (2107188-26) Soil Sampled: 07/13/21	12:54 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	53	183 % 5.0	60-17	75 "	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-07
Total Petroleum Hydrocarbons (C23-C40)	180	5.0	"	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	0.21	91.6 % 0.050	35-13	"	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV14-15 (2107188-27) Soil Sampled: 07/13/21	13:01 Receive	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	71.9 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	96.1 % 0.050	35-13	BO "	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV15-5 (2107188-28) Soil Sampled: 07/13/21 1	3:19 Received	: 07/13/21 17:0	07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	85.8 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	82.0 % 0.060	35-13	30	B1G1913	07/19/21	07/20/21 10:02	" "	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil Sampled: 07/13/2	1 13:23 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	ND	66.1 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	90.3 % 0.056	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV15-15 (2107188-30) Soil Sampled: 07/13/2	1 13:27 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	98.6 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	83.7 % 0.065	35-1 <u>2</u>	30	B1G1913 "	07/19/21	07/20/21 10:02 "	"	
SV16-5 (2107188-31) Soil Sampled: 07/13/21	13:54 Received:	07/13/21 17:0)7						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons	190	148 % 10	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	500	10	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	89.3 % 0.058	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02 "	" "	
SV16-10 (2107188-32) Soil Sampled: 07/13/2	1 13:57 Received	l: 07/13/21 17	:07						
Surrogate: o-Terphenyl Total Petroleum Hydrocarbons (C13-C22)	ND	106 % 5.0	60-17	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	88.7 % 0.063	35-13	30	B1G1913 "	07/19/21	07/20/21 10:02 "	"	

738 Ashland AvenueProject Number:
[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-15 (2107188-33) Soil Sampled: 07/13	/21 14:00 Received	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		134 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	150	10	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	200	10	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		86.4 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	0.26	0.059	"	"	"	"	"	"	
SV17-5 (2107188-34) Soil Sampled: 07/13/2	1 14:44 Received	: 07/13/21 17:0)7						
Surrogate: o-Terphenyl		85.6 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons	34	10	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	650	10	"	"	"	"	11	"	
Surrogate: a,a,a-Trifluorotoluene		98.3 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	0.052	0.050	"	"	"	"	"	"	
SV17-10 (2107188-35) Soil Sampled: 07/13	/21 14:48 Received	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		155 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	79	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil Sampled: 07/13	/21 14:53 Received	d: 07/13/21 17	:07						
Surrogate: o-Terphenyl		137 %	60-1	75	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	78	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	35-1	30	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	"	"	"	"	"	"	

Mearns Consulting LLC 738 Ashland Avenue Santa Monica CA, 90405 Project: Town Center Northwest

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received	d: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		196 %	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-0
Total Petroleum Hydrocarbons	110	5.0	"	"	"	"	"	"	
(C13-C22) Total Petroleum Hydrocarbons (C23-C40)	600	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene Total Petroleum Hydrocarbons (C4-C12)	ND	76.6 % 0.10	35	-130	B1G1913 "	07/19/21	07/20/21 10:02	"	
SV18-10 (2107188-38) Soil Sampled: 07/13/21 15:	25 Receive	ed: 07/13/21 17:	07						
Surrogate: o-Terphenyl		%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbons (C13-C22)	1300	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	2200	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		108 %		-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	1100	6.3	"	100	"	"	"	"	
SV18-15 (2107188-39) Soil Sampled: 07/13/21 15:	29 Receive	ed: 07/13/21 17:	07						
Surrogate: o-Terphenyl		94.7 %	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		133 %	35	-130	B1G1913	07/19/21	07/20/21 10:02	"	S-07
Total Petroleum Hydrocarbons (C4-C12)	0.48	0.044	"	"	"	"	"	"	
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:4	9 Received	d: 07/13/21 17:0	7						
Surrogate: o-Terphenyl		%	60	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbons (C13-C22)	2400	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C23-C40)	ND	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	35	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbons (C4-C12)	2600	25	"	500	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil S	Sampled: 07/13/21 15:54	Received:	07/13/21 17	:07						
Surrogate: o-Terphenyl			%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbon (C13-C22)	ns	590	25	"	"	"	"	"	"	
Total Petroleum Hydrocarbon (C23-C40)	ns	270	25	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotolue	ne		94.8 %	35-	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbo (C4-C12)	ns	510	22	"	500	"	"	"	"	
SV19-15 (2107188-42) Soil S	Sampled: 07/13/21 15:59	Received:	07/13/21 17	:07						
Surrogate: o-Terphenyl			%	60-	-175	B1G1602	07/15/21	07/16/21 08:18	EPA 8015B	S-03
Total Petroleum Hydrocarbon (C13-C22)	ns 2	500	250	"	"	"	"	"	"	
Total Petroleum Hydrocarbon (C23-C40)	ns	530	250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotolue	ne		116 %	35-	-130	B1G1913	07/19/21	07/20/21 10:02	"	
Total Petroleum Hydrocarbon (C4-C12)	ns 1	500	25	"	500	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil Sampled: 07/13/21 07:35	Received:	07/13/21 17:07							
Surrogate: Dibromofluoromethane		120 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.9 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %		121	"	"	"	"	
Benzene	ND	5.8	"	"	"	"	"	"	
Bromobenzene	ND	5.8	"	"	"	"	"	"	
Bromochloromethane	ND	5.8	"	"	"	"	"	"	
Bromodichloromethane	ND	5.8	"	"	"	"	"	"	
Bromoform	ND	5.8	"	"	"	"	"	"	
Bromomethane	ND	5.8	"	"	"	"	"	"	
n-Butylbenzene	ND	5.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.8	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.8	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.8	"	"	"	"	"	"	
Chlorobenzene	ND	5.8	"	"	"	"	"	"	
Chloroethane	ND	5.8	"	"	"	"	"	"	
Chloroform	ND	5.8	"	"	"	"	"	"	
Chloromethane	ND	5.8	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
Dibromochloromethane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.8	"	"	"	"	"	"	
Dibromomethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
Ethylbenzene	ND	5.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.8	"	"	"	"	"	"	
Isopropylbenzene	ND	5.8		"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

		ъ							
Analyte	Resu	Reporting It Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35 Rece	ived: 07/13/21 17:0)7						
p-Isopropyltoluene	NI	5.8	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	NI	5.8	"	"	"	"	"	"	
Methyl tert-butyl ether	NI	5.8	"	"	"	"	"	"	
Naphthalene	NI	5.8	"	"	"	"	"	"	
n-Propylbenzene	NI	5.8	"	"	"	"	"	"	
Styrene	NI	5.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NI	5.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NI	5.8	"	"	"	"	"	"	
Tetrachloroethene	NI	5.8	"	"	"	"	"	"	
Toluene	NI	5.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	NI	5.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	NI	5.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	NI	5.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	NI	5.8	"	"	"	"	"	"	
Trichloroethene	NI	5.8	"	"	"	"	"	"	
Trichlorofluoromethane	NI	5.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	NI	5.8	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	NI	5.8	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	NI	5.8	"	"	"	"	"	"	
Vinyl chloride	NI	5.8	"	"	"	"	"	"	
m,p-Xylene	NI	5.8	"	"	"	"	"	"	
o-Xylene	NI	5.8	"	"	"	"	"	"	
SV6-10 (2107188-02) Soil	Sampled: 07/13/21 07:44 Rec	eived: 07/13/21 17:	:07						
Surrogate: Dibromofluoron	nethane	100 %	80-	-120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81	-117	"	"	"	"	
Surrogate: 4-Bromofluorol	penzene	97.4 %		-121	"	"	"	"	
Benzene	NI	9.9	"	"	"	"	"	"	
Bromobenzene	NI		"	"	"	"	"	"	
Bromochloromethane	NI		"	"	"	"	"	"	
Bromodichloromethane	NI		"	"	"	"	"	"	
Bromoform	NI		"	"	"	"	"	"	
Bromomethane	NI		"	"	,,	"	"	"	
n-Butylbenzene	NI		"	"	"	"	"	"	
sec-Butylbenzene	NI		"	"	"	"	"	"	
tert-Butylbenzene	NI		"	"	"	"	"	"	
Carbon tetrachloride	NI		"	"	"	"	"	"	
Chlorobenzene	NI		"	"	,,	"	"	"	
Chloroethane	NI		"	"	,,	"	"	"	
Chloroform	NI		"	"	"	"	"	"	
Chloromethane	NI		"	"	,,	,,	"	"	
Chioroniculane	INI	9.9							

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-10 (2107188-02) Soil Sampled: 07/13/21 0	7:44 Received	: 07/13/21 17:0)7						
2-Chlorotoluene	ND	9.9	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	9.9	"	"	"	"	"	"	
Dibromochloromethane	ND	9.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	9.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	9.9	"	"	"	"	"	"	
Dibromomethane	ND	9.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	9.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	9.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	9.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	9.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	9.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	9.9	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.9	"	"	"	"	"	"	
Ethylbenzene	ND	9.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	9.9	"	"	"	"	"	"	
Isopropylbenzene	ND	9.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	9.9	"	"	"	"	"	"	
Methylene chloride	ND	9.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	9.9	"	"	"	"	"	"	
Naphthalene	ND	9.9	"	"	"	"	"	"	
n-Propylbenzene	ND	9.9	"	"	"	"	"	"	
Styrene	ND	9.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	9.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	9.9	"	"	"	"	"	"	
Tetrachloroethene	ND	9.9	"	"	"	"	"	"	
Toluene	ND	9.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	9.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	9.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	9.9	"	"	"	"	"	"	
Trichloroethene	ND	9.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	9.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	9.9	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil Sampled: 07/13/21 0	7:44 Received:	07/13/21 17:0	07						
1,2,4-Trimethylbenzene	ND	9.9	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	9.9	"	"	"	"	"	"	
Vinyl chloride	ND	9.9	"	"	"	"	"	"	
m,p-Xylene	ND	9.9	"	"	"	"	"	"	
o-Xylene	ND	9.9	"	"	"	"	"	"	
SV6-15 (2107188-03) Soil Sampled: 07/13/21 0	7:51 Received:	07/13/21 17:0	07						
Surrogate: Dibromofluoromethane		105 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

6V7-5 (2107188-04) Soil Sampled: 07/13/21 08:15		Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Received:	07/13/21 17:07					-		
Surrogate: Dibromofluoromethane		104 %	80-1	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-1	121	"	"	"	"	
Benzene	ND	6.0	"	"	"	"	"	"	
Bromobenzene	ND	6.0	"	"	"	"	"	"	
Bromochloromethane	ND	6.0	"	"	"	"	"	"	
Bromodichloromethane	ND	6.0	"	"	"	"	"	"	
Bromoform	ND	6.0	"	"	"	"	"	"	
Bromomethane	ND	6.0	"	"	"	"	"	"	
-Butylbenzene	ND	6.0	"	"	"	"	"	"	
ec-Butylbenzene	ND	6.0	"	"	"	"	"	"	
ert-Butylbenzene	ND	6.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.0	"	"	"	"	"	"	
Chlorobenzene	ND	6.0	"	"	"	"	"	"	
Chloroethane	ND	6.0	"	"	"	"	"	"	
Chloroform	ND	6.0	"	"	"	"	"	"	
Chloromethane	ND	6.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
Dibromochloromethane	ND	6.0	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	6.0	"	"	"	"	"	"	
,2-Dibromoethane (EDB)	ND	6.0	"	"	"	"	"	"	
Dibromomethane	ND	6.0	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
,4-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.0	"	"	"	"	"	"	
,1-Dichloroethane	ND	6.0	"	"	"	"	"	"	
,2-Dichloroethane	ND	6.0	"	"	"	"	"	"	
,1-Dichloroethene	ND	6.0	"	"	"	"	"	"	
is-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
,3-Dichloropropane	ND	6.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
,1-Dichloropropene	ND	6.0	"	"	"	"	"	"	
sis-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
Ethylbenzene	ND	6.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.0	"	"	"	"	"	"	
sopropylbenzene	ND	6.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-	a				Dilution	Datell	rrepared	Analyzeu	wichiou	1100
·	Sampled: 07/13/21 08:15			1						
p-Isopropyltoluene		ND	6.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	6.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	6.0	"	"	"	"	"	"	
Naphthalene		ND	6.0	"	"	"	"	"	"	
n-Propylbenzene		ND	6.0	"	"	"	"	"	"	
Styrene		ND	6.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	6.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	6.0	"	"	"	"	"	"	
Tetrachloroethene		ND	6.0	"	"	"	"	"	"	
Toluene		ND	6.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	6.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	6.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	6.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	6.0	"	"	"	"	"	"	
Trichloroethene		ND	6.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	6.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	6.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	6.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	6.0	"	"	"	"	"	"	
Vinyl chloride		ND	6.0	"	"	"	"	"	"	
m,p-Xylene		ND	6.0	"	"	"	"	"	"	
o-Xylene		ND	6.0	"	"	"	"	"	"	
SV7-10 (2107188-05) Soil	Sampled: 07/13/21 08:25	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoron	nethane		103 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		98.0 %	74-	121	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
Bromomethane		ND	5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene		ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride		ND	5.0	"	"	"	"	"	"	
		ND	5.0	"	"	"	"	"	"	
Chlorobenzene Chloroethane		ND	5.0	"	"	"	"	"	"	
Chlorobenzene		ND ND	5.0 5.0	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:25	Received:	07/13/21 17:	07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	,,	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	,,	,,	,,	"	"	
Trichlorofluoromethane	ND	5.0	"	,,	,,	,,	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	"	,,	,,	"	"	
1,2,3-111011010p10pane	ND	3.0							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:2	5 Received	: 07/13/21 17:	07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV7-15 (2107188-06) Soil Sampled: 07/13/21 08:3	0 Received	07/13/21 17:	07						
Surrogate: Dibromofluoromethane		101 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.2 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil	Sampled: 07/13/21 08:30	Received:	07/13/21 17:0	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-5 (2107188-07) Soil Sampled: 07/13/21 08:56	Received:	07/13/21 17:07		-		-	_	-	
Surrogate: Dibromofluoromethane		109 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		97.4 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	74-		"	"	"	"	
Benzene	ND	4.0	"	"	"	"	"	"	
Bromobenzene	ND	4.0	"	"	"	"	"	"	
Bromochloromethane	ND	4.0	"	"	"	"	"	"	
Bromodichloromethane	ND	4.0	"	"	"	"	"	"	
Bromoform	ND	4.0	"	"	"	"	"	"	
Bromomethane	ND	4.0	"	"	"	"	"	"	
n-Butylbenzene	ND	4.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.0	"	"	"	"	"	"	
Chloroethane	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.0	"	"	"	"	"	"	
Chloromethane	ND	4.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.0	"	"	"	"	"	"	
Dibromochloromethane	ND	4.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.0	"	"	"	"	"	"	
Dibromomethane	ND	4.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.0	"	"	"	"	"	"	
Ethylbenzene	ND	4.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.0	"	"	"	"	"	"	
Isopropylbenzene	ND	4.0	"	"	"	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
•					Dilution	Datell	1 repared	Anaryzeu	wichiou	1100
<u>.</u>	Sampled: 07/13/21 08:56			<u> </u>						
p-Isopropyltoluene		ND	4.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	4.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.0	"	"	"	"	"	"	
Naphthalene		ND	4.0	"	"	"	"	"	"	
n-Propylbenzene		ND	4.0	"	"	"	"	"	"	
Styrene		ND	4.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.0	"	"	"	"	"	"	
Tetrachloroethene		ND	4.0	"	"	"	"	"	"	
Toluene		ND	4.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.0	"	"	"	"	"	"	
Trichloroethene		ND	4.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.0	"	"	"	"	"	"	
Vinyl chloride		ND	4.0	"	"	"	"	"	"	
m,p-Xylene		ND	4.0	"	"	"	"	"	"	
o-Xylene		ND	4.0	"	"	"	"	"	"	
SV8-10 (2107188-08) Soil	Sampled: 07/13/21 08:58	Received:	07/13/21 17:0)7						
Surrogate: Dibromofluoron	nethane		108 %	80-	-120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			99.9 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorob	penzene		97.1 %		-121	"	"	"	"	
Benzene		ND	4.4	"	"	"	"	"	"	
Bromobenzene		ND	4.4	"	"	"	"	"	"	
Bromochloromethane		ND	4.4	"	"	"	"	"	"	
Bromodichloromethane		ND	4.4	"	"	"	"	"	"	
Bromoform		ND	4.4	"	"	"	"	"	"	
Bromomethane		ND	4.4	"	"	"	"	"	"	
n-Butylbenzene		ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene		ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene		ND	4.4	"	"	"	"	"	"	
•		ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride			4.4	"	"	"	"	"	"	
		ND	7.7							
Chlorobenzene		ND ND	4.4		"	"	"	"	"	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform		ND ND ND		"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV8-10 (2107188-08) Soil Sampled: 07/13/21 08	:58 Received	: 07/13/21 17:0	07						
2-Chlorotoluene	ND	4.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	4.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.4	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	4.4	"	"	"	"	"	"	
Isopropylbenzene	ND	4.4	"	"	"	"	"	"	
p-Isopropyltoluene	ND	4.4	"	"	"	"	"	"	
Methylene chloride	ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	4.4	"	"	"	"	"	"	
Naphthalene	ND	4.4	"	"	"	"	"	"	
n-Propylbenzene	ND	4.4	"	"	"	"	"	"	
Styrene	ND	4.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	4.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	4.4	"	"	"	"	"	"	
Tetrachloroethene	ND	4.4	"	"	"	"	"	"	
Toluene	ND	4.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	4.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	4.4	"	"	"	"	"	"	
Trichloroethene	ND	4.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	4.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-10 (2107188-08) Soil Sampled: 07/13/21 08	58 Received:	07/13/21 17:	07						
1,2,4-Trimethylbenzene	ND	4.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	4.4	"	"	"	"	"	"	
Vinyl chloride	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	4.4	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
SV8-15 (2107188-09) Soil Sampled: 07/13/21 09	06 Received:	07/13/21 17:	07						
Surrogate: Dibromofluoromethane		108 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.7 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	R		orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06 R	Received: 07/13/	21 17:0)7						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane			5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride			5.0	"	"	"	"	"	"	
m,p-Xylene			5.0	"	"	"	"	"	"	
o-Xylene			5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-5 (2107188-10) Soil Sampled: 07/13/21 09:19	Received: 0					•	•		
Surrogate: Dibromofluoromethane		115 %	80-1	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.0 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	74-1		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received: (07/13/21 17:07	7						
p-Isopropyltoluene		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
n,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received:	07/13/21 17:0)7						
Surrogate: Dibromofluoron	nethane		104 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8			99.6 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorob	enzene		95.7 %	74-1	21	"	"	"	"	
Benzene		ND	5.0	"	"	"	"	"	"	
Bromobenzene		ND	5.0	"	"	"	"	"	"	
Bromochloromethane		ND	5.0	"	"	"	"	"	"	
Bromodichloromethane		ND	5.0	"	"	"	"	"	"	
Bromoform		ND	5.0	"	"	"	"	"	"	
)		ND	5.0	"	"	"	"	"	"	
sromomeinane		ND	5.0	"	"	"	"	"	"	
			5.0	"	"	"	"	"	"	
n-Butylbenzene		ND	5.0			"	,,	,,	"	
-Butylbenzene ec-Butylbenzene		ND ND	5.0	"	"	"				
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene				"	"	"	"	"	"	
Bromomethane n-Butylbenzene sec-Butylbenzene eert-Butylbenzene Carbon tetrachloride Chlorobenzene		ND	5.0		"		"	"	"	
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene		ND ND	5.0 5.0	"		"	"	" " "	" "	
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride		ND ND ND	5.0 5.0 5.0	"	"	"			" " " " " " " " " " " " " " " " " " " "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Difficial	DalCII	тератец	Anaiyzeu	Menion	note
SV9-10 (2107188-11) Soil Sampled: 07/13/21 09:22	Received: 0	7/13/21 17:0	07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil Sampled: 07/13/21 0	9:22 Received	: 07/13/21 17:0	07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV9-15 (2107188-12) Soil Sampled: 07/13/21 0	9:24 Received	1: 07/13/21 17:	07						
Surrogate: Dibromofluoromethane		107 %	80	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	n .	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	,,	,,	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	,,	,,	"	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	,,	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"		"	"	
1,1-Dichloroethene	ND	5.0	"	"	"		"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	,,	,,	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	,,	,,	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,5 2.temoropropune	112	5.0							

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-15 (2107188-12) Soil	Sampled: 07/13/21 09:24	Received:	07/13/21 17:	07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	,,	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 09:32	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		116 %	80		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		99.7 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	74		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dawii	1 repared	Anaryzeu	Memod	1101
SV10-5 (2107188-13) Soil Sampled: 07/13/	/21 09:32 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV10-10 (2107188-14) Soil Sampled: 07/13	3/21 09:36 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		106 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.0 %	74		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene		5.0	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene	ND								
tert-Butylbenzene	ND ND		"	"	"	"	"	"	
•	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0		"			" "		
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	" "	"		" " "		

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						Parea			1.00
SV10-10 (2107188-14) Soil Sampled: 07/13/21 0									
2-Chlorotoluene	ND	5.0	μg/kg 	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	,,	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	,,	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	,,	"	,,	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	,,	"	,,	,,	"	"	
Tetrachloroethene	ND	5.0	,,	"	,,	,,	"	"	
Toluene	ND	5.0	"	,,	,,	"	"	"	
1.2.3-Trichlorobenzene	ND ND	5.0	,,	,,	,,	"	"	"	
1,2,4-Trichlorobenzene	ND ND	5.0	,,	,,	,,	"	"	,,	
1,1,1-Trichloroethane	ND ND	5.0	"	,,	,,	"	,,	,,	
1,1,2-Trichloroethane			,,	,,	,,	,,	,,	,,	
* *	ND	5.0	,,		,,	,,	,,	,,	
Trichloroethene	ND	5.0			,	"	"	"	
Trichlorofluoromethane	ND	5.0	"						
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV10-10 (2107188-14) Soil Sampled: 07/13/21 09:36	Received	: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV10-15 (2107188-15) Soil Sampled: 07/13/21 09:52	Received	: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		119 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.3 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received:	07/13/21 17	':07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil Sampled: 07/13/21 10:10	6 Received:	: 07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		105 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	74-		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV11-5 (2107188-16) Soil Sampled: 07/13	/21 10:16 Received	: 07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV11-10 (2107188-17) Soil Sampled: 07/1	3/21 10:20 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		102 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		98.3 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %	74-1	21	"	"	"	"	
Benzene	ND	5.8	"	"	"	"	"	"	
Bromobenzene	ND	5.8	"	"	"	"	"	"	
Bromochloromethane	ND	5.8	"	"	"	"	"	"	
Bromodichloromethane	ND	5.8	"	"	"	"	"	"	
Bromoform	ND	5.8	"	"	"	"	"	"	
Bromomethane	ND	5.8	"	"	"	"	"	"	
n-Butylbenzene	ND	5.8	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.8	"	"	"	"	"	"	
	ND	5.8	"	"	"	"	"	"	
tert-Butylbenzene	110		"	,,	"	"	"	"	
tert-Butylbenzene	ND	5.8	"						
tert-Butylbenzene Carbon tetrachloride		5.8 5.8	"	"	"	"	"	"	
	ND					"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.8	"	"	"			" "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				2 HutiOII	Dutell	. repared			11010
SV11-10 (2107188-17) Soil Sampled: 07/13/21			:07						
2-Chlorotoluene	ND	5.8	$\mu g/kg$	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.8	"	"	"	"	"	"	
Dibromochloromethane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.8	"	"	"	"	"	"	
Dibromomethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.8	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.8	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.8	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.8	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.8	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.8	"	"	"	"	"	"	
Ethylbenzene	ND	5.8	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.8	"	"	"	"	"	"	
Isopropylbenzene	ND	5.8	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.8	"	"	"	"	"	"	
Methylene chloride	ND	5.8	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.8	"	"	"	"	"	"	
Naphthalene	ND	5.8	"	"	"	"	"	"	
n-Propylbenzene	ND	5.8	"	"	"	"	"	"	
Styrene	ND	5.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.8	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.8	"	"	"	"	"	"	
Tetrachloroethene	ND	5.8	"	"	"	"	"	"	
Toluene	ND	5.8	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.8	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.8	"	"	"	"	"	"	
Trichloroethene	ND	5.8	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.8	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.8	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil Sampled: 07/13/21	10:20 Receive	d: 07/13/21 17:	:07						
1,2,4-Trimethylbenzene	ND	5.8	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.8	"	"	"	"	"	"	
Vinyl chloride	ND	5.8	"	"	"	"	"	"	
m,p-Xylene	ND	5.8	"	"	"	"	"	"	
o-Xylene	ND	5.8	"	"	"	"	"	"	
SV11-15 (2107188-18) Soil Sampled: 07/13/21	10:26 Receive	d: 07/13/21 17:	:07						
Surrogate: Dibromofluoromethane		106 %	80-	120	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	74-	121	"	"	"	"	
Benzene	ND	6.4	"	"	"	"	"	"	
Bromobenzene	ND	6.4	"	"	"	"	"	"	
Bromochloromethane	ND	6.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.4	"	"	"	"	"	"	
Bromoform	ND	6.4	"	"	"	"	"	"	
Bromomethane	ND	6.4	"	"	"	"	"	"	
n-Butylbenzene	ND	6.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	6.4	"	"	"	"	"	"	
Chloroethane	ND	6.4	"	"	"	"	"	"	
Chloroform	ND	6.4	"	"	"	"	"	"	
Chloromethane	ND	6.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
Dibromochloromethane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.4	"	"	"	"	"	"	
Dibromomethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil 5	Sampled: 07/13/21 10:26	Received:	07/13/21 17	:07						
2,2-Dichloropropane		ND	6.4	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,1-Dichloropropene		ND	6.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	6.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	6.4	"	"	"	"	"	"	
Ethylbenzene		ND	6.4	"	"	"	"	"	"	
Hexachlorobutadiene		ND	6.4	"	"	"	"	"	"	
Isopropylbenzene		ND	6.4	"	"	"	"	"	"	
p-Isopropyltoluene		ND	6.4	"	"	"	"	"	"	
Methylene chloride		ND	6.4	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	6.4	"	"	"	"	"	"	
Naphthalene		ND	6.4	"	"	"	"	"	"	
n-Propylbenzene		ND	6.4	"	"	"	"	"	"	
Styrene		ND	6.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	6.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	6.4	"	"	"	"	"	"	
Tetrachloroethene		ND	6.4	"	"	"	"	"	"	
Toluene		ND	6.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	6.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	6.4	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	6.4	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	6.4	"	"	"	"	"	"	
Trichloroethene		ND	6.4	"	"	"	"	"	"	
Trichlorofluoromethane		ND	6.4	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	6.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	6.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	6.4	"	"	"	"	"	"	
Vinyl chloride		ND	6.4	"	"	"	"	"	"	
m,p-Xylene		ND	6.4	"	"	"	"	"	"	
o-Xylene		ND	6.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil Sampled: 07/13/21 10:4	49 Received	: 07/13/21 17:0)7						
Surrogate: Dibromofluoromethane		110 %	80-		B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.6 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

		D	•	<u> </u>					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-5 (2107188-19) Soil Sampled: 07/13/2	21 10:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV12-10 (2107188-20) Soil Sampled: 07/13	3/21 10:58 Received	l: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		106 %	80-1	20	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-1			,,			
Surrogate: 4-Bromofluorobenzene		101/0	01-1	17	"	"	"	"	
		97.4 %	74-1		"	"	"	"	
Benzene	ND								
Benzene Bromobenzene	ND ND	97.4 %	74-1	21	"	"	"	"	
		97.4 % 5.0	74-1 "	21	"	"	"	"	
Bromobenzene Bromochloromethane	ND	97.4 % 5.0 5.0	74-1 "	21	" "	"	" "	" "	
Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	97.4 % 5.0 5.0 5.0	74-1 " "	21	" " "	" "	" " " "	" "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	97.4 % 5.0 5.0 5.0 5.0	74-1 " "	21	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene	ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " " " " " " " "	" " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ND ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND ND ND ND ND ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	# " " " " " " " " " " " " " " " " " " "	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	" " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	ND ND ND ND ND ND ND ND ND ND ND	97.4 % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	21	# # # # # # # # # # # # # # # # # # #	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	# # # # # # # # # # # # # # # # # # #	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-10 (2107188-20) Soil Sampled: 07/13/21 10:5	8 Received	d: 07/13/21 17	:07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	,,	"	"	"	
1,2,3-Trichloropropane	ND	5.0	,,	,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-10 (2107188-20) Soil Sampled: 07/13/2	1 10:58 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1407	07/14/21	07/15/21 07:36	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV12-15 (2107188-21) Soil Sampled: 07/13/2	1 11:07 Received	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		102 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		99.5 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.6 %	74-1	21	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil Sa	ampled: 07/13/21 11:07	Received: 0	7/13/21 17	:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Surrogate: Inhuene-als	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Inhuene-als	SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:26	Received:	07/13/21 17:0	7						
Surrogate: 4-Bromofluorobenzene	Surrogate: Dibromofluoromethane									
Samogale - 9-binnightorouterace	Surrogate: Toluene-d8			81-	117		"			
Bromokenzene ND S.0 " " " " " " " " "	Surrogate: 4-Bromofluorobenzene									
Bromochloromethane ND S.0	Benzene									
Bromodichloromethane ND S.0 "				"					"	
Bromoform ND 5.0 " <t< td=""><td></td><td></td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>				"	"	"	"	"	"	
Bromomethane									"	
ND S.0 ND S.0									"	
sec-Buylbenzene ND 5.0 "									"	
tert-Butylbenzene				"		"	"		"	
Carbon tetrachloride ND 5.0 "	sec-Butylbenzene					"			"	
Chlorochtane	-									
Chlorochtane									"	
Chloroform							"		"	
Chloromethane				"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloroform			"	"	"	"	"	"	
A-Chlorotoluene	Chloromethane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane ND 5.0 "	2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 5.0 " <td< td=""><td>4-Chlorotoluene</td><td>ND</td><td>5.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 " " " " " " "	Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 " " " " " " " " "	1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 5.0 " <td>1,2-Dibromoethane (EDB)</td> <td></td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromoethane (EDB)		5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " <td>Dibromomethane</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane			"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 "	1,2-Dichlorobenzene			"	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 " " " " " " " " " " " " " " " " " " "	1,3-Dichlorobenzene	ND	5.0				"		"	
1,1-Dichloroethane ND 5.0 "	1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	Dichlorodifluoromethane	ND	5.0		"	"	"	"	"	
1,1-Dichloroethene ND 5.0 "	1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND 5.0 "<	1,2-Dichloroethane		5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND 5.0 " " " " " " " " " " " " " " " 1,2-Dichloropropane ND 5.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane ND 5.0 " <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane ND 5.0 " <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane ND 5.0 " <td>1,2-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene ND 5.0 " <td>1,3-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene ND 5.0 " </td <td>2,2-Dichloropropane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene ND 5.0 " <th< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>5.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene ND 5.0 " " " " " " " " " Hexachlorobutadiene ND 5.0 " " " " " " " " " " "	cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene ND 5.0 " " " " " "	trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
	Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene ND 5.0 " " " " " "	Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
	Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
			Dilution	Dateii	1 Tepated	Anaryzeu	Menion	INOL
1 11:26 Received:	07/13/21 17:0	07						
ND	5.0	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
		"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
21 11:31 Received	: 07/13/21 17	:07						
	104 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
					.			
	101 %	81-		"	"	"	"	
	101 % 100 %	81-1 74-1	17		"	"		
ND	100 %	81-1 74-1	17	"			"	
ND ND	100 % 5.0	74-1	17 21	"	"	"	"	
ND	100 % 5.0 5.0	74-1	117 21	"	"	"	" "	
ND ND	100 % 5.0 5.0 5.0	74-1 "	117 121 "	"	" "	" " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND	5.0 5.0 5.0 5.0 5.0	74-1 " "	117 21 "	" " " "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	74-1 " "	17 21 "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-i	17 21 "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
ND ND ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND ND ND ND ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
ND ND ND ND ND ND ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	74-1	17 21 """"""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND S.0 ND S.0	Result Limit Units 111:26 Received: 07/13/21 17:07 ND 5.0 μg/kg ND 5.0 " ND 5.0 <td>Result Limit Units Dilution I 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 ND 5.0 " " ND 5.0 "</td> <td> Result Limit Units Dilution Batch 11:26 Received: 07/13/21 17:07 </td> <td> Result Limit Units Dilution Batch Prepared 11:26 Received: 07/13/21 17:07 </td> <td>Result Limit Units Dilution Batch Prepared Analyzed 1 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 B1G1505 07/15/21 07/15/21 13:22 ND 5.0 " " " " " " <td> Result</td></td>	Result Limit Units Dilution I 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 ND 5.0 " " ND 5.0 "	Result Limit Units Dilution Batch 11:26 Received: 07/13/21 17:07	Result Limit Units Dilution Batch Prepared 11:26 Received: 07/13/21 17:07	Result Limit Units Dilution Batch Prepared Analyzed 1 11:26 Received: 07/13/21 17:07 ND 5.0 μg/kg 1 B1G1505 07/15/21 07/15/21 13:22 ND 5.0 " " " " " " <td> Result</td>	Result

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						Parea	,2		1,010
SV13-10 (2107188-23) Soil Sampled: 07/13/21 11::									
2-Chlorotoluene	ND	5.0	μg/kg 	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1.2.3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	,,	"	"	,,	"	"	
Trichlorofluoromethane	ND ND	5.0	,,	,,	"	"	"	"	
1,2,3-Trichloropropane	ND ND	5.0	,,	,,	"	"	"	"	
1,2,3-111cmoropropane	עאו	5.0							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

	μg/kg " " "	117 121	B1G1505	07/15/21	07/15/21 13:22 " " " " " " " " " " " " " " " " " "	EPA 8260B " " " " " EPA 8260B " "	
5.0 5.0 5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " " " " " " " " " " " " " " " " " "	B1G1505	07/15/21	07/15/21 13:22	" " " " " " " " " " " " " " " " " " "	
5.0 5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " " " " " " " " " " " " " " " " " "	B1G1505	07/15/21	07/15/21 13:22	" " " EPA 8260B "	
5.0 5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	7:07 80- 81- 74-	" " 120 117 121	B1G1505	07/15/21	07/15/21 13:22	" " " " EPA 8260B "	
5.0 eived: 07/13/21 17 106 % 101 % 97.4 % 5.0 5.0 5.0	80- 81- 74-	" 120 117 121	B1G1505	07/15/21	07/15/21 13:22	" EPA 8260B "	
106 % 101 % 97.4 % 5.0 5.0 5.0	80- 81- 74-	120 117 121	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
106 % 101 % 97.4 % 5.0 5.0	80- 81- 74-	117 121	"	"	"	"	
101 % 97.4 % 5.0 5.0 5.0	81- 74-	117 121	"	"	"	"	
97.4 % 5.0 5.0 5.0	74- "	121	"	"			
5.0 5.0 5.0	"	"			"	"	
5.0 5.0	"		,,				
5.0	"			"	"	"	
	"	"	"	"	"	"	
5.0		"	"	"	"	"	
	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
5.0	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	,,	"	"	
	"	"	"	,,	"	"	
	"	"	"	,,	"	"	
	"	"	"	"	"	"	
	"	"	"	"	"	"	
	"	"	"	"	,,	"	
	"	"	"	"	,,	"	
	"	"	"	,,	,,	"	
	"	"	"	,,	"	"	
	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 " 5.0 "	5.0 " " " " 5.0 " " 5.0 " " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " " 5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " 5.0 " " " " " " 5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " " " " " " " " " " " " " "	5.0 " " " " " " " " " " " " " " " " " " "	5.0 "

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Received:	07/13/21 17	:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 12:49	9 Received:	: 07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		104 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %		117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.6 %	74-		"	"	"	"	
Benzene	ND	5.6	"	"	"	"	"	"	
Bromobenzene	ND	5.6	"	"	"	"	"	"	
Bromochloromethane	ND	5.6	"	"	"	"	"	"	
Bromodichloromethane	ND	5.6	"	"	"	"	"	"	
Bromoform	ND	5.6	"	"	"	"	"	"	
Bromomethane	ND	5.6	"	"	"	"	"	"	
n-Butylbenzene	ND	5.6	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.6	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.6	"	"	"	"	"	"	
Chlorobenzene	ND	5.6	"	"	"	"	"	"	
Chloroethane	ND	5.6	"	"	"	"	"	"	
Chloroform	ND	5.6	"	"	"	"	"	"	
Chloromethane	ND	5.6	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.6	"	"	"	"	"	"	
Dibromochloromethane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.6	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.6	"	"	"	"	"	"	
Dibromomethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.6	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.6	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.6	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.6	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.6	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.6	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.6	"	"	"	"	"	"	
Ethylbenzene	ND	5.6	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.6	"	"	"	"	"	"	
Isopropylbenzene	ND	5.6	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Daten	1 repared	Anaryzeu	Menion	NOL
SV14-5 (2107188-25) Soil Sampled: 07/13/	/21 12:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.6	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.6	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.6	"	"	"	"	"	"	
Naphthalene	ND	5.6	"	"	"	"	"	"	
n-Propylbenzene	ND	5.6	"	"	"	"	"	"	
Styrene	ND	5.6	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.6	"	"	"	"	"	"	
Tetrachloroethene	ND	5.6	"	"	"	"	"	"	
Toluene	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.6	"	"	"	"	"	"	
Trichloroethene	ND	5.6	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.6	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.6	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.6	"	"	"	"	"	"	
Vinyl chloride	ND	5.6	"	"	"	"	"	"	
m,p-Xylene	ND	5.6	"	"	"	"	"	"	
o-Xylene	ND	5.6	"	"	"	"	"	"	
SV14-10 (2107188-26) Soil Sampled: 07/13	3/21 12:54 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		104 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	74-	121	"	"	"	"	
Benzene	ND	5.9	"	"	"	"	"	"	
Bromobenzene	ND	5.9	"	"	"	"	"	"	
Bromochloromethane	ND	5.9	"	"	"	"	"	"	
Bromodichloromethane	ND	5.9	"	"	"	"	"	"	
Bromoform	ND	5.9	"	"	"	"	"	"	
Bromomethane	ND	5.9	"	"	"	"	"	"	
n-Butylbenzene	ND	5.9		"	"	"	"	"	
	ND	5.9	"	"	"	"	"	"	
sec-Butylbenzene		5.9	"	"	"	"	"	"	
sec-Butylbenzene	ND	3.9							
sec-Butylbenzene tert-Butylbenzene	ND ND			"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride	ND	5.9	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.9 5.9		" "			" " "		
sec-Butylbenzene tert-Butylbenzene	ND	5.9	"	" " "	"		" " "		

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SV14-10 (2107188-26) Soil Sampled: 07/13/21	12:54 Received	: 07/13/21 17	':07			· · · · · · · · · · · · · · · · · · ·			
2-Chlorotoluene	ND	5.9		1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND ND	5.9	μg/kg "	1 "	B1G1505	0//15/21	0//13/21 13:22	EPA 8200B	
Dibromochloromethane	ND	5.9	"	,,	,,	,,	"	"	
1,2-Dibromo-3-chloropropane	ND	5.9	,,	"	,,	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.9		,,	"	,,	"	"	
Dibromomethane	ND	5.9		,,	"	,,	"	"	
1,2-Dichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.9	"	"	"	"	,,	"	
1,4-Dichlorobenzene	ND	5.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.9	"	"	"	"	,,	"	
trans-1,2-Dichloroethene	ND	5.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.9	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.9	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	5.9	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	5.9	"	"	"	"	"	"	
Ethylbenzene	23	5.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.9	"	"	"	"	"	"	
Isopropylbenzene	ND	5.9	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.9	"	"	"	"	"	"	
Methylene chloride	ND	5.9	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.9	"	"	"	"	"	"	
Naphthalene	ND	5.9	"	"	"	"	"	"	
n-Propylbenzene	ND	5.9	"	"	"	"	"	"	
Styrene	ND	5.9	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.9	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.9	"	"	"	"	"	"	
Tetrachloroethene	ND	5.9	"	"	"	"	"	"	
Toluene	ND	5.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.9	"	"	"	"	"	"	
Trichloroethene	ND	5.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.9	,,	,,	"	,,	,,	,,	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-10 (2107188-26) Soil Sampled: 07/13/21 12	:54 Received	1: 07/13/21 17	':07						
1,2,4-Trimethylbenzene	ND	5.9	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.9	"	"	"	"	"	"	
Vinyl chloride	ND	5.9	"	"	"	"	"	"	
m,p-Xylene	110	5.9	"	"	"	"	"	"	
o-Xylene	43	5.9	"	"	"	"	"	"	
SV14-15 (2107188-27) Soil Sampled: 07/13/21 13	:01 Received	d: 07/13/21 17	':07						
Surrogate: Dibromofluoromethane		101 %	80	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.9 %	74-	121	"	"	"	"	
Benzene	ND	5.7	"	"	"	"	"	"	
Bromobenzene	ND	5.7	"	"	"	"	"	"	
Bromochloromethane	ND	5.7	"	"	"	"	"	"	
Bromodichloromethane	ND	5.7	"	"	"	"	"	"	
Bromoform	ND	5.7	"	"	"	"	"	"	
Bromomethane	ND	5.7	"	"	"	"	"	"	
n-Butylbenzene	ND	5.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.7	"	"	"	"	"	"	
Chlorobenzene	ND	5.7	"	"	"	"	"	"	
Chloroethane	ND	5.7	"	"	"	"	"	"	
Chloroform	ND	5.7	"	"	"	"	"	"	
Chloromethane	ND	5.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.7	"	"	"	"	"	"	
Dibromochloromethane	ND	5.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.7	"	"	"	"	"	"	
Dibromomethane	ND	5.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.7	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.7	"	"	,,	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Receive	ed: 07/13/21 17	:07						
2,2-Dichloropropane		ND	5.7	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.7	"	"	"	"	"	"	
Ethylbenzene		ND	5.7	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.7	"	"	"	"	"	"	
Isopropylbenzene		ND	5.7	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.7	"	"	"	"	"	"	
Methylene chloride		ND	5.7	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.7	"	"	"	"	"	"	
Naphthalene		ND	5.7	"	"	"	"	"	"	
n-Propylbenzene		ND	5.7	"	"	"	"	"	"	
Styrene		ND	5.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.7	"	"	"	"	"	"	
Tetrachloroethene		ND	5.7	"	"	"	"	"	"	
Toluene		ND	5.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.7	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.7	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.7	"	"	"	"	"	"	
Trichloroethene		ND	5.7	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.7	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.7	"	"	"	"	"	"	
Vinyl chloride		ND	5.7	"	"	"	"	"	"	
m,p-Xylene		ND	5.7	"	"	"	"	"	"	
o-Xylene		ND	5.7	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil Sampled: 07/13/21 13:19	Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		101 %	80-1	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-1	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.7 %	74-1	121	"	"	"	"	
Benzene	ND	8.7	"	"	"	"	"	"	
Bromobenzene	ND	8.7	"	"	"	"	"	"	
Bromochloromethane	ND	8.7	"	"	"	"	"	"	
Bromodichloromethane	ND	8.7	"	"	"	"	"	"	
Bromoform	ND	8.7	"	"	"	"	"	"	
Bromomethane	ND	8.7	"	"	"	"	"	"	
n-Butylbenzene	ND	8.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	8.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	8.7	"	"	"	"	"	"	
Carbon tetrachloride	ND	8.7	"	"	"	"	"	"	
Chlorobenzene	ND	8.7	"	"	"	"	"	"	
Chloroethane	ND	8.7	"	"	"	"	"	"	
Chloroform	ND	8.7	"	"	"	"	"	"	
Chloromethane	ND	8.7	"	"	"	"	"	"	
2-Chlorotoluene	ND	8.7	"	"	"	"	"	"	
4-Chlorotoluene	ND	8.7	"	"	"	"	"	"	
Dibromochloromethane	ND	8.7	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	8.7	"	"	"	"	"	"	
Dibromomethane	ND	8.7	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	8.7	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.7	"	"	"	"	"	"	
1,2-Dichloroethane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.7	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.7	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.7	"	"	"	"	"	"	
1,2-Dichloropropane	ND	8.7	"	"	"	"	"	"	
1,3-Dichloropropane	ND	8.7	"	"	"	"	"	"	
2,2-Dichloropropane	ND	8.7	"	"	"	"	"	"	
1,1-Dichloropropene	ND	8.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	8.7	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	8.7	"	"	"	"	"	"	
Ethylbenzene	ND	8.7	"	"	"	"	"	"	
Hexachlorobutadiene	ND	8.7	"	"	"	"	"	"	
Isopropylbenzene	ND	8.7	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Daten	1 repared	Allalyzeu	Meniod	NOL
SV15-5 (2107188-28) Soil Sampled: 07/13/	21 13:19 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	8.7	$\mu g/kg$	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	8.7	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	8.7	"	"	"	"	"	"	
Naphthalene	ND	8.7	"	"	"	"	"	"	
n-Propylbenzene	ND	8.7	"	"	"	"	"	"	
Styrene	ND	8.7	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	8.7	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	8.7	"	"	"	"	"	"	
Tetrachloroethene	ND	8.7	"	"	"	"	"	"	
Toluene	ND	8.7	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	8.7	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	8.7	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	8.7	"	"	"	"	"	"	
Trichloroethene	ND	8.7	"	"	"	"	"	"	
Trichlorofluoromethane	ND	8.7	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	8.7	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	8.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	8.7	"	"	"	"	"	"	
Vinyl chloride	ND	8.7	"	"	"	"	"	"	
m,p-Xylene	ND	8.7	"	"	"	"	"	"	
o-Xylene	ND	8.7	"	"	"	"	"	"	
SV15-10 (2107188-29) Soil Sampled: 07/13	3/21 13:23 Received	l: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		107 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		101 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	74-		"	"	"	"	
Benzene	ND	6.0	"	"	"	"	"	"	
Bromobenzene	ND	6.0	"	"	"	"	"	"	
Bromochloromethane	ND	6.0	"	"	"	"	"	"	
Bromodichloromethane	ND	6.0	"	"	"	"	"	"	
Bromoform	ND	6.0	"	"	"	"	"	"	
Bromomethane	ND	6.0	"	"	"	"	"	"	
n-Butylbenzene	ND	6.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.0	"	"	"	"	"	"	
•	ND	6.0	"	"	"	"	"	"	
tert-Butylbenzene			,,	"	"	"	"	"	
	ND	6.0							
Carbon tetrachloride	ND ND	6.0 6.0		"	"	"	"	"	
Carbon tetrachloride Chlorobenzene	ND	6.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform			"	" "		"	" "	" "	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV15-10 (2107188-29) Soil Sampled: 07/13/2	21 13:23 Received	d: 07/13/21 17	':07						
2-Chlorotoluene	ND	6.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	6.0	"	"	"	"	"	"	
Dibromochloromethane	ND	6.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.0	"	"	"	"	"	"	
Dibromomethane	ND	6.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	6.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	6.0	"	"	"	"	"	"	
Ethylbenzene	ND	6.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.0	"	"	"	"	"	"	
Isopropylbenzene	ND	6.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	6.0	"	"	"	"	"	"	
Methylene chloride	ND	6.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	6.0	"	"	"	"	"	"	
Naphthalene	ND	6.0	"	"	"	"	"	"	
n-Propylbenzene	ND	6.0	"	"	"	"	"	"	
Styrene	ND	6.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	6.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	6.0	"	"	"	"	"	"	
Tetrachloroethene	ND	6.0	"	"	"	"	"	"	
Toluene	ND	6.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.0	"	"	"	"	"	"	
Trichloroethene	ND	6.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV15-10 (2107188-29) Soil Sampled: 07/13/2	21 13:23 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	6.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.0	"	"	"	"	"	"	
Vinyl chloride	ND	6.0	"	"	"	"	"	"	
m,p-Xylene	ND	6.0	"	"	"	"	"	"	
o-Xylene	ND	6.0	"	"	"	"	"	"	
SV15-15 (2107188-30) Soil Sampled: 07/13/2	21 13:27 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		109 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.1 %	74-1	21	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"		,,	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Lesult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil Sampled: 07/13/21 13:54	Received	07/13/21 17:0	17						
Surrogate: Dibromofluoromethane		105 %	80-1		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		100 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	74-1	21	"	"	"	"	
Benzene	ND	6.4	"	"	"	"	"	"	
Bromobenzene	ND	6.4	"	"	"	"	"	"	
Bromochloromethane	ND	6.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.4	"	"	"	"	"	"	
Bromoform	ND	6.4	"	"	"	"	"	"	
Bromomethane	ND	6.4	"	"	"	"	"	"	
n-Butylbenzene	ND	6.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	6.4	"	"	"	"	"	"	
Chloroethane	ND	6.4	"	"	"	"	"	"	
Chloroform	ND	6.4	"	"	"	"	"	"	
Chloromethane	ND	6.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	6.4	"	"	"	"	"	"	
Dibromochloromethane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.4	"	"	"	"	"	"	
Dibromomethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.4	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.4	"	"	"	"	"	"	
1,1-Dichloropropene	ND	6.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	6.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	6.4	"	"	"	"	"	"	
Ethylbenzene	ND	6.4	"	"	"	"	"	"	
Hexachlorobutadiene	ND	6.4	"	"	"	"	"	"	
Isopropylbenzene	ND	6.4	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dalvii	1 repared	Analyzeu	Menion	INOU
SV16-5 (2107188-31) Soil Sampled: 07/13/	/21 13:54 Received:	07/13/21 17:	07						
p-Isopropyltoluene	ND	6.4	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	6.4	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	6.4	"	"	"	"	"	"	
Naphthalene	ND	6.4	"	"	"	"	"	"	
n-Propylbenzene	ND	6.4	"	"	"	"	"	"	
Styrene	ND	6.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	6.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	6.4	"	"	"	"	"	"	
Tetrachloroethene	ND	6.4	"	"	"	"	"	"	
Toluene	ND	6.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.4	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.4	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	6.4	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.4	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	6.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	6.4	"	"	"	"	"	"	
Vinyl chloride	ND	6.4	"	"	"	"	"	"	
m,p-Xylene	ND	6.4	"	"	"	"	"	"	
o-Xylene	ND	6.4	"	"	"	"	"	"	
SV16-10 (2107188-32) Soil Sampled: 07/13	3/21 13:57 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		107 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		104 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.3 %	74-		"	"	"	"	
Benzene	ND	6.7	"	"	"	"	"	"	
Bromobenzene	ND	6.7	"	"	"	"	"	"	
Bromochloromethane	ND	6.7	"	"	"	"	"	"	
Bromodichloromethane	ND	6.7	"	"	"	"	"	"	
Bromoform	ND	6.7	"	"	"	"	"	"	
Bromomethane	ND	6.7	"	"	"	"	"	"	
n-Butylbenzene	ND	6.7	"	"	"	"	"	"	
sec-Butylbenzene	ND	6.7	"	"	"	"	"	"	
tert-Butylbenzene	ND	6.7	"	"	"	"	"	"	
	ND	6.7	"	"	"	"	"	"	
						,,		,,	
Carbon tetrachloride		6.7	"	"	"	"	"	"	
Carbon tetrachloride Chlorobenzene	ND	6.7 6.7	"	"	"	"	"	"	
Carbon tetrachloride		6.7 6.7 6.7	"	" "		"	"	" "	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

ND ND ND ND ND ND	6.7 6.7 6.7 6.7 6.7 6.7	μg/kg "	1 "	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
ND ND ND ND ND ND	6.7 6.7 6.7	μg/kg "				07/15/21 13:22	EPA 8260B	
ND ND ND ND	6.7 6.7 6.7	"				07/13/21 13.22		
ND ND ND ND	6.7 6.7				"	"	"	
ND ND ND	6.7		"	"	"	,,	"	
ND ND		"	"	"	"	"	"	
ND		"	"	"	"	"	"	
	6.7	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	,,	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	,,	"	
		"	"	"	"	"	"	
		"	"	"	"	,,	"	
		"	"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
			"	"	"	,,	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	"	"	"	"	"	
		,,	,,	"	,,	"	"	
		,,	,,	"	,,	,,	"	
		,,	,,	"	,,	"	"	
		,,	,,	"	,,	,,	"	
		"	"	,,	"	"	"	
		"	"	,,	"	"	"	
		,,	,,	"	"	"	"	
		,,	,,	,,	"	"	"	
		,,		"		,,	"	
		,,	,,	,,	,,	,,	"	
		,,	,,	,,	,,	,,		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 6.7 ND 6.7	ND 6.7 " ND 6.7 "	ND 6.7 " " ND 6.7 " " ND 6.7 " " " ND 6.7 " " ND 6.7 " " ND 6.7 " " ND 6.7 " " ND 6.7 " " " " ND 6.7 " " " ND 6.7 " " " ND 6.7 " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " "	ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " ND 6.7 " " " " " ND 6.7 " " " " " ND 6.7 " " " " " ND 6.7 " " " " " ND 6.7 " " " " " " ND 6.7 " " " " " " ND 6.7 " " " " " " ND 6.7 " " " " " " ND 6.7 " " " " " " ND 6.7 " " " " " " " ND 6.7 " " " " " " " " ND 6.7 " " " " " " " " ND 6.7 " " " " " " " " " ND 6.7 " " " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " " ND 6.7 " " " " " " " " " " " " " " " " " " "	ND 6.7 " " " " " " " " " " " " " " " " " " "

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-10 (2107188-32) Soil Sampled:	07/13/21 13:57 Received	d: 07/13/21 17:	:07						
1,2,4-Trimethylbenzene	ND	6.7	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.7	"	"	"	"	"	"	
Vinyl chloride	ND	6.7	"	"	"	"	"	"	
m,p-Xylene	ND	6.7	"	"	"	"	"	"	
o-Xylene	ND	6.7	"	"	"	"	"	"	
SV16-15 (2107188-33) Soil Sampled:	07/13/21 14:00 Received	d: 07/13/21 17:	:07						
Surrogate: Dibromofluoromethane		111 %	80-	-120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-	-117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0		"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0		"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	,,	"	"	"	"	"	
			.,	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		14	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil Sampled: 07/13/21 14:4	4 Received:	07/13/21 17:0	7						
Surrogate: Dibromofluoromethane		119 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		104 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dateii	1 repared	Anaryzeu	Meniod	1101
SV17-5 (2107188-34) Soil Sampled: 07/13/	/21 14:44 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV17-10 (2107188-35) Soil Sampled: 07/13	3/21 14:48 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		120 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		106 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	74-		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"		"	"	
Bromomethane	ND	5.0	"	"	"	,,	,,	"	
n-Butylbenzene	ND	5.0	"	"	"	,,	"	"	
	ND	5.0	"	"	"	,,	"	"	
sec-Butylbenzene		5.0	"	"	"	,,	"	"	
•	ND					,,		"	
tert-Butylbenzene	ND ND		"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0		"			" "		
tert-Butylbenzene Carbon tetrachloride	ND	5.0	"	" " "	"		" " " " "		

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Diffution	Бакп	riepared	Anaiyzeu	Memod	note
SV17-10 (2107188-35) Soil Sampled: 07/13/21 14:48	Received:	07/13/21 17	:07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-10 (2107188-35) Soil Sampled: 07/13/21 1	4:48 Received	d: 07/13/21 17	':07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV17-15 (2107188-36) Soil Sampled: 07/13/21 1	4:53 Received	d: 07/13/21 17	':07						
Surrogate: Dibromofluoromethane		102 %	80	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		106 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-	121	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	,,	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	,,	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
			.,	"	,,	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Received: 0	7/13/21 17	7:07						
2,2-Dichloropropane		ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	5.0	"	"	"	"	"	"	
Ethylbenzene		ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene		ND	5.0	"	"	"	"	"	"	
Isopropylbenzene		ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene		ND	5.0	"	"	"	"	"	"	
Methylene chloride		ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	5.0	"	"	"	"	"	"	
Naphthalene		ND	5.0	"	"	"	"	"	"	
n-Propylbenzene		ND	5.0	"	"	"	"	"	"	
Styrene		ND	5.0	"	"	"	"	"	"	
1,1,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	5.0	"	"	"	"	"	"	
Tetrachloroethene		ND	5.0	"	"	"	"	"	"	
Toluene		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	5.0	"	"	"	"	"	"	
Trichloroethene		ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane		ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	5.0	"	"	"	"	"	"	
Vinyl chloride		ND	5.0	"	"	"	"	"	"	
m,p-Xylene		ND	5.0	"	"	"	"	"	"	
o-Xylene		ND	5.0	"	,,	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received		7			-			
Surrogate: Dibromofluoromethane		106 %	80-12	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		102 %	81-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	74-12		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
1 17									

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
-				Dilution	Dateii	1 repared	Allalyzeu	Meniod	1101
SV18-5 (2107188-37) Soil Sampled: 07/13/	21 15:19 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV18-10 (2107188-38) Soil Sampled: 07/13	3/21 15:25 Received	1: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		116 %	80-	120	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		108 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.6 %	74-		"	"	"	"	
Benzene	8.1	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	5.2	5.0	"	"	"	"	"	"	
	35	5.0	"	"	"	"	"	"	
sec-Butylbenzene		5.0	"	"	"	"	"	"	
sec-Butylbenzene tert-Butylbenzene	5.0							"	
tert-Butylbenzene	5.0 ND		"	"	"	"	"		
•	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene Carbon tetrachloride Chlorobenzene	ND ND	5.0 5.0	"	"					
tert-Butylbenzene Carbon tetrachloride	ND	5.0		" " "	"				

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-10 (2107188-38) Soil Sampled: 07/1	13/21 15:25 Receive	d: 07/13/21 17	':07						
2-Chlorotoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	23	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	31	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Naphthalene	36	5.0	"	"	"	"	"	"	
n-Propylbenzene	35	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV18-10 (2107188-38) Soil Sampled: 07/13/2	21 15:25 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV18-15 (2107188-39) Soil Sampled: 07/13/2	21 15:29 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		110 %	80-1	20	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		103 %	81-1	17	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	74-1	21	"	"	"	"	
Benzene	ND	4.4	"	"	"	"	"	"	
Bromobenzene	ND	4.4	"	"	"	"	"	"	
Bromochloromethane	ND	4.4	"	"	"	"	"	"	
Bromodichloromethane	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	4.4	"	"	"	"	"	"	
Bromomethane	ND	4.4	"	"	"	"	"	"	
n-Butylbenzene	ND	4.4	"	"	"	"	"	"	
sec-Butylbenzene	ND	4.4	"	"	"	"	"	"	
tert-Butylbenzene	ND	4.4	"	"	"	"	"	"	
Carbon tetrachloride	ND	4.4	"	"	"	"	"	"	
Chlorobenzene	ND	4.4	"	"	"	"	"	"	
Chloroethane	ND	4.4	"	"	"	"	"	"	
Chloroform	ND	4.4	"	"	"	"	"	"	
Chloromethane	ND	4.4	"	"	"	"	"	"	
2-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
4-Chlorotoluene	ND	4.4	"	"	"	"	"	"	
Dibromochloromethane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	4.4	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	4.4	"	"	"	"	"	"	
Dibromomethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	4.4	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,2-Dichloroethane	ND	4.4	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	4.4	"	"	"	"	"	"	
1,2-Dichloropropane	ND	4.4	"	"	"	"	"	"	
1,3-Dichloropropane	ND	4.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Receive	d: 07/13/21 17	:07						
2,2-Dichloropropane		ND	4.4	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
1,1-Dichloropropene		ND	4.4	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	4.4	"	"	"	"	"	"	
Ethylbenzene		ND	4.4	"	"	"	"	"	"	
Hexachlorobutadiene		ND	4.4	"	"	"	"	"	"	
Isopropylbenzene		ND	4.4	"	"	"	"	"	"	
p-Isopropyltoluene		ND	4.4	"	"	"	"	"	"	
Methylene chloride		ND	4.4	"	"	"	"	"	"	
Methyl tert-butyl ether		ND	4.4	"	"	"	"	"	"	
Naphthalene		ND	4.4	"	"	"	"	"	"	
n-Propylbenzene		ND	4.4	"	"	"	"	"	"	
Styrene		ND	4.4	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	4.4	"	"	"	"	"	"	
Tetrachloroethene		ND	4.4	"	"	"	"	"	"	
Toluene		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	4.4	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	4.4	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	4.4	"	"	"	"	"	"	
Trichloroethene		ND	4.4	"	"	"	"	"	"	
Trichlorofluoromethane		ND	4.4	"	"	"	"	"	"	
1,2,3-Trichloropropane		ND	4.4	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	4.4	"	"	"	"	"	"	
Vinyl chloride		ND	4.4	"	"	"	"	"	"	
m,p-Xylene		ND	4.4	"	"	"	"	"	"	
o-Xylene		ND	4.4	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Volatile\ Organic\ Compounds\ by\ EPA\ Method\ 8260B$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:49	Received:	07/13/21 17:0	17						
Surrogate: Dibromofluoromethane		100 %	80-		B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Surrogate: Toluene-d8		105 %	81-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	74		"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	1000	500	"	100	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	1	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	3000	500	"	100	"	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
				Dilution	Datell	rrepared	Anatyzeu	wichiou	1100
SV19-5 (2107188-40) Soil Sampled: 07/13	3/21 15:49 Received:	07/13/21 17:0	07						
p-Isopropyltoluene	ND	5.0	μg/kg	1	B1G1505	07/15/21	07/15/21 13:22	EPA 8260B	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1200	500	"	100	"	"	"	"	
Naphthalene	7700	500	"	"	"	"	"	"	
n-Propylbenzene	5700	500	"	"	"	"	"	"	
Styrene	ND	5.0	"	1	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
SV19-10 (2107188-41) Soil Sampled: 07/1	3/21 15:54 Received	: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		104 %	80-	120	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
Surrogate: Toluene-d8		112 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		117 %	74-	121	"	"	"	"	
Benzene	ND	6.9	"	"	"	"	"	"	
Bromobenzene	ND	6.9	"	"	"	"	"	"	
Bromochloromethane	ND	6.9	"	"	"	"	"	"	
Bromodichloromethane	ND	6.9	"	"	"	"	"	"	
Bromoform	ND	6.9	"	"	"	"	"	"	
Bromomethane	ND	6.9	"	"	"	"	"	"	
n-Butylbenzene	ND	6.9	"	"	"	"	"	"	
sec-Butylbenzene	68	6.9	"	"	"	"	"	"	
tert-Butylbenzene	12	6.9	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.9	"	"	"	"	"	"	
	ND	6.9	"	"	"	"	"	"	
Chlorobenzene	ND								
		6.9	"	"	"	"	"	"	
Chlorobenzene Chloroethane Chloroform	ND ND		"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13	/21 15:54 Receive	d: 07/13/21 17	:07						
2-Chlorotoluene	ND	6.9	μg/kg	1	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
4-Chlorotoluene	ND	6.9	"	"	"	"	"	"	
Dibromochloromethane	ND	6.9	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	6.9	"	"	"	"	"	"	
Dibromomethane	ND	6.9	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	6.9	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	6.9	"	"	"	"	"	"	
1,1-Dichloroethane	ND	6.9	"	"	"	"	"	"	
1,2-Dichloroethane	ND	6.9	"	"	"	"	"	"	
1,1-Dichloroethene	ND	6.9	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	6.9	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dichloropropane	ND	6.9	"	"	"	"	"	"	
1,3-Dichloropropane	ND	6.9	"	"	"	"	"	"	
2,2-Dichloropropane	ND	6.9	"	"	"	"	,,	"	
1,1-Dichloropropene	ND	6.9	"	"	"	"	,,	"	
cis-1,3-Dichloropropene	ND	6.9	"	"	"	"	,,	"	
trans-1,3-Dichloropropene	ND	6.9		,,	"	"	,,	"	
Ethylbenzene	ND	6.9	,,	,,	,,	,,	"	"	
Hexachlorobutadiene	ND	6.9	,,	"	,,	,,	,,	"	
Isopropylbenzene	1000	690	,,	100	"	"	,,	"	
	ND	6.9	,,	100	,,	,,	,,	"	
p-Isopropyltoluene	ND ND	6.9	,,	1 "	,,	,,	,,	"	
Methylene chloride			,,		,,	,	,,	"	
Methyl tert-butyl ether	14000	690	,,	100	,,				
Naphthalene	ND	690	"	"	,,	,	,"	"	
n-Propylbenzene	1600	690	"		"	"	"	"	
Styrene	ND	6.9	"	1	.1	"			
1,1,1,2-Tetrachloroethane	ND	6.9			"		"	"	
1,1,2,2-Tetrachloroethane	ND	6.9	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
Toluene	ND	6.9	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	6.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	6.9	"	"	"	"	"	"	
Trichloroethene	ND	6.9	"	"	"	"	"	"	
Trichlorofluoromethane	ND	6.9	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	6.9	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13/2	21 15:54 Receive	d: 07/13/21 17	:07						
1,2,4-Trimethylbenzene	ND	6.9	μg/kg	1	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
1,3,5-Trimethylbenzene	ND	6.9	"	"	"	"	"	"	
Vinyl chloride	ND	6.9	"	"	"	"	"	"	
m,p-Xylene	7.5	6.9	"	"	"	"	"	"	
o-Xylene	ND	6.9	"	"	"	"	"	"	
SV19-15 (2107188-42) Soil Sampled: 07/13/2	21 15:59 Receive	d: 07/13/21 17	:07						
Surrogate: Dibromofluoromethane		105 %	80-	120	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
Surrogate: Toluene-d8		109 %	81-	117	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	74-	121	"	"	"	"	
Benzene	ND	500	"	100	"	"	"	"	
Bromobenzene	ND	500	"	"	"	"	"	"	
Bromochloromethane	ND	500	"	"	"	"	"	"	
Bromodichloromethane	ND	500	"	"	"	"	"	"	
Bromoform	ND	500	"	"	"	"	"	"	
Bromomethane	ND	500	"	"	"	"	"	"	
n-Butylbenzene	1700	500	"	"	"	"	"	"	
sec-Butylbenzene	ND	500	"	"	"	"	"	"	
tert-Butylbenzene	ND	500	"	"	"	"	"	"	
Carbon tetrachloride	ND	500	"	"	"	"	"	"	
Chlorobenzene	ND	500	"	"	"	"	"	"	
Chloroethane	ND	500	"	"	"	"	"	"	
Chloroform	ND	500	"	"	"	"	"	"	
Chloromethane	ND	500	"	"	"	"	"	"	
2-Chlorotoluene	ND	500	"	"	"	"	"	"	
4-Chlorotoluene	ND	500	"	"	"	"	"	"	
Dibromochloromethane	ND	500	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	500	"	"	"	"	"	"	
Dibromomethane	ND	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	500	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	500	"	"	"	"	"	"	
1,2-Dichloroethane	ND	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
1,2-Dichloropropane	ND	500	"	"	"	"	"	"	
1,3-Dichloropropane	ND	500	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B

Sierra Analytical Labs, Inc.

Analyte	Resul	Reporting t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59 Rec	ceived: 07/13/21 17	7:07						
2,2-Dichloropropane	ND	500	μg/kg	100	B1G1507	07/16/21	07/19/21 13:35	EPA 8260B	
1,1-Dichloropropene	ND	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
Ethylbenzene	ND	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	500	"	"	"	"	"	"	
Isopropylbenzene	1700	500	"	"	"	"	"	"	
p-Isopropyltoluene	ND	500	"	"	"	"	"	"	
Methylene chloride	ND	500	"	"	"	"	"	"	
Methyl tert-butyl ether	12000	500	"	"	"	"	"	"	
Naphthalene	13000	500	"	"	"	"	"	"	
n-Propylbenzene	4100	500	"	"	"	"	"	"	
Styrene	ND	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	NE	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	NE	500	"	"	"	"	"	"	
Tetrachloroethene	ND	500	"	"	"	"	"	"	
Toluene	ND	500	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	NE	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	500	"	"	"	"	"	"	
1,1,1-Trichloroethane	NE	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	NE	500	"	"	"	"	"	"	
Trichloroethene	NE	500	"	"	"	"	"	"	
Trichlorofluoromethane	NE	500	"	"	"	"	"	"	
1,2,3-Trichloropropane	NE	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	500	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
m,p-Xylene	ND	500	"	"	"	"	"	"	
o-Xylene	ND	500	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV6-5 (2107188-01) Soil Sampled: 07/13/21 07:35	5 Received:	07/13/21 17:07							
Surrogate: 2-Fluorophenol		101 %		121	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		72.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		48.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		92.5 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		97.3 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		129 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-5 (2107188-01) Soil	Sampled: 07/13/21 07:35	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil Sampled: 07/13/21 07:	44 Received	1: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		90.3 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		42.7 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		58.8 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.3 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		34.4 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		113 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	,,	,,	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	,,	,,	,,	,,	,,	"	
+,0-Dimu0-2-incuryiphenoi	ND	0.33							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-10 (2107188-02) Soil	Sampled: 07/13/21 07:44	Received	: 07/13/21 17:0)7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil Sampled: 07/13/21 07:51	Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		83.7 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		34.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		48.1 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		23.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		44.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV6-15 (2107188-03) Soil	Sampled: 07/13/21 07:51	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"		"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"		"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	,,	"	"	"	
Pyrene		ND	0.33	"	"	,,	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV7-5 (2107188-04) Soil Sampled: 07/13/21 08:15						1 -			
	1100011041			1	DICIO2	07/15/21	07/16/21 00 50	ED4 93797	
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6		77.3 % 85.9 %	25-12 24-11		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
_			24-11 23-12		"	,,	,,	"	
Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl		41.2 % 104 %	23-12 30-11		,,	,,	,,	"	
Surrogate: 2-Fluorobipnenyi Surrogate: 2,4,6-Tribromophenol		104 % 82.9 %	30-11 19-12		,,	,,	"	"	
		77.4 %	19-12		,,	,,	,,	"	
Surrogate: Terphenyl-d14 Acenaphthene	ND	0.33	10-13	/ "	,,	,,	,,	"	
Acenaphthylene	ND ND	0.33	"	"	,,	"	"	"	
Anthracene	ND ND	0.33	"	"	,,	"	"	"	
Benzidine	ND ND	0.33	,,	,,	,,	,,	"	"	
Benzo (a) anthracene	ND ND	0.33	,,	,,	,,	,,	"	"	
Benzo (a) anuracene Benzo (b) fluoranthene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (k) fluoranthene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (a) pyrene	ND ND	0.33	"	"	,,	,,	,,	"	
Benzo (g,h,i) perylene	ND ND	0.33	"	"	,,	"	,,	"	
Benzyl alcohol	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-chloroethyl)ether	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-chloroethoxy)methane	ND ND	0.33	"	"	,,	,,	,,	"	
Bis(2-ethylhexyl)phthalate	ND ND	0.33	"	"	,,	"	"	"	
Bis(2-chloroisopropyl)ether	ND ND	0.33	"	"	,,	,,	,,	"	
4-Bromophenyl phenyl ether	ND ND	0.33	"	"	,,	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	,,	,,	"	"	
4-Chloroaniline	ND ND	0.33	"	"	,,	"	"	"	
2-Chlorophenol	ND	0.33	"	"	,,	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	,,	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	,,	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	,,	"	,,	,,	
Chrysene	ND	0.33	"	"	,,	"	,,	,,	
Dibenz (a,h) anthracene	ND	0.33	"	"	,,	"	,,	,,	
Dibenzofuran	ND	0.33	"	"	,,	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	,,	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	,,	"	,,	,,	
1,4-Dichlorobenzene	ND	0.33	"	"	,,	"	,,	,,	
3,3'-Dichlorobenzidine	ND	0.33	"	"	,,	"	,,	,,	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	,,	"	
Diethyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dimethylphenol	ND	0.33	"	"	,,	"	,,	,,	
Dimethyl phthalate	ND	0.33	"	"	,,	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	,,	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	,,	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	,,	"	"	"	
7,0-Dilliu 0-2-ilicii yipiiciioi	עאו	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-5 (2107188-04) Soil	Sampled: 07/13/21 08:15	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	2	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	;	ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil Sampled: 07/13/21 08:25					*****	r	-,		- 10101
	. Acteived:								
Surrogate: 2-Fluorophenol		89.6 %	25-12		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		43.5 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		47.5 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.5 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.8 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		102 %	18-13		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	,,	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	
,,, Dimuo 2 memyiphenoi	110	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-10 (2107188-05) Soil	Sampled: 07/13/21 08:25	Received	: 07/13/21 17:	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil Sampled: 07/13/21 08:30	Received	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		69.8 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		64.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		36.9 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78.2 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		129 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV7-15 (2107188-06) Soil	Sampled: 07/13/21 08:30	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"		"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"		"	"	"	
Pentachlorophenol		ND	0.33	"	"		"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

SV8-5 (2107188-07) Soil Sampled: 07/13/21 08:56 Received: 07/13/21 17:07 Surrogate: 2-Fluorophenol 119 % 25-121 B1GIO Surrogate: Phenol-d6 31.3 % 24-113 " Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: Terphenyl-d14 45.6 % 19-122 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene	603 07/15/21 0		
Surrogate: Phenol-d6 31.3 % 24-113 " Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "			
Surrogate: Nitrobenzene-d5 48.1 % 23-120 " Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " Acenaphthylene ND 0.33 " " Anthracene ND 0.33 " " Benzidine ND 0.33 " " Benzo (a) anthracene ND 0.33 " " Benzo (b) fluoranthene ND 0.33 " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"		PA 8270C
Surrogate: 2-Fluorobiphenyl 42.5 % 30-115 " Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " Benzidine ND 0.33 " " " " Benzo (a) anthracene ND 0.33 " " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "		"	"
Surrogate: 2,4,6-Tribromophenol 29.5 % 19-122 " Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " Acenaphthylene ND 0.33 " " Anthracene ND 0.33 " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Surrogate: Terphenyl-d14 45.6 % 18-137 " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " " Benzidine ND 0.33 " " " " Benzo (a) anthracene ND 0.33 " " " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 "	"	"	"
Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"	"	"
Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzidine ND 0.33 " <	"	"	"
Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " " Benzo (k) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " " Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " " "	"	"	"
Benzo (a) pyrene ND 0.33 " " " Benzo (g,h,i) perylene ND 0.33 " " " Benzyl alcohol ND 0.33 " " "	"	"	"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	"
Benzyl alcohol ND 0.33 " " "	"	"	"
	"	"	"
Bis(2-chloroethyl)ether ND 0.33 " " "	"	"	"
	"	"	m .
Bis(2-chloroethoxy)methane ND 0.33 " " "	"	"	m .
Bis(2-ethylhexyl)phthalate ND 0.33 " " "	"	"	"
Bis(2-chloroisopropyl)ether ND 0.33 " " "	"	"	"
4-Bromophenyl phenyl ether ND 0.33 " " "	"	"	"
Butyl benzyl phthalate ND 0.33 " " "	"	"	"
4-Chloroaniline ND 0.33 " " "	"	"	"
2-Chlorophenol ND 0.33 " " "	"	"	m .
4-Chloro-3-methylphenol ND 0.33 " " "	"	"	m .
2-Chloronaphthalene ND 0.33 " " "	"	"	m .
4-Chlorophenyl phenyl ether ND 0.33 " " "	"	"	"
Chrysene ND 0.33 " " "	"	"	"
Dibenz (a,h) anthracene ND 0.33 " " "	"	"	"
Dibenzofuran ND 0.33 " " "	"	"	"
1,3-Dichlorobenzene ND 0.33 " " "	"	"	"
1,2-Dichlorobenzene ND 0.33 " " "	"	"	"
1,4-Dichlorobenzene ND 0.33 " " "	"	"	"
3,3'-Dichlorobenzidine ND 0.33 " " "	"	"	"
2,4-Dichlorophenol ND 0.33 " " "	"	"	"
Diethyl phthalate ND 0.33 " " "		"	"
2,4-Dimethylphenol ND 0.33 " " "	"		
Dimethyl phthalate ND 0.33 " " "	"	"	"
Di-n-butyl phthalate ND 0.33 " " "		"	"
• •	"		
, 1	"	"	"
4,6-Dinitro-2-methylphenol ND 0.33 " " "	" "	"	"

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-5 (2107188-07) Soil	Sampled: 07/13/21 08:56	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	;	ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Received	: 07/13/21 17:0			*****	r	-,		-10101
Received								
				B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
					"			
					"			
				"				
		"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND	0.33	"	"	"	"	"	"	
ND		"	"	"	"	"	"	
		"	"	"	"	"	"	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.33 ND 0.33	79.2 % 24-1. 51.9 % 23-1. 61.3 % 30-1. 53.7 % 19-1. 90.2 % 18-1. ND 0.33 "	79.2 % 24-113 51.9 % 23-120 61.3 % 30-115 53.7 % 19-122 90.2 % 18-137 ND 0.33 " " ND 0.33	79.2 % 24-113 " 51.9 % 23-120 " 61.3 % 30-115 " 53.7 % 19-122 " 90.2 % 18-137 " ND 0.33 " " " " ND 0.33 " " " "	79.2 % 24-113 " " 51.9 % 23-120 " " 61.3 % 30-115 " " 53.7 % 19-122 " " 90.2 % 18-137 " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " ND 0.33 " " " " " " ND 0.33 " " " " " " ND 0.33 " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " ND 0.33 " " " " " " " " " ND 0.33 " " " " " " " " " ND 0.33 " " " " " " " " " " ND 0.33 " " " " " " " " " " ND 0.33 " " " " " " " " " " " " " ND 0.33 " " " " " " " " " " " " " " " " " "	79.2 % 24-113 " " " " " 151.9 % 23-120 " " " " " " 151.9 % 30-115 " " " " " " 19-122 " " " " " " 19.2 2 " " " " " " " 19.2 2 " " " " " " " 19.2 2 " " " " " " " " " 19.2 2 " " " " " " " " " 19.2 2 " " " " " " " " " " " " " " " " " "	79.2 % 24-113 " <td< td=""></td<>

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-10 (2107188-08) Soil	Sampled: 07/13/21 08:58	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte SV8-15 (2107188-09) Soil Sampled: 07/13/21 09:06	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
, , r	Received								
Surrogate: 2-Fluorophenol		95.7 %	25-12	71	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		28.9 %	23-12 24-11		B1G1003	"	"	EFA 8270C	
Surrogate: Nitrobenzene-d5		85.6 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		105 %	30-11		"	"	"	"	
Surrogate: 2-1 tuorootphenyt Surrogate: 2,4,6-Tribromophenol		50.9 %	19-12		"	"	"	"	
Surrogate: 2,4,0 17toromophenoi Surrogate: Terphenyl-d14		122 %	18-13		"	"	"	"	
Acenaphthene	ND	0.33	"	"	,,	,,	"	"	
Acenaphthylene	ND	0.33	"	,,	,,	,,	"	"	
Anthracene	ND	0.33	"	,,	,,	,,	,,	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	,,	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	,,	"	"	
2-Chlorophenol	ND	0.33	"	"	"	,,	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	,,	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"		"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	,,	"	"	
Chrysene	ND	0.33	"	"	"	,,	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	,,	"	"	
Dibenzofuran	ND	0.33	"	"	"	,,	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"		"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"		"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	,,	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	,,	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	,,	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	,,	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	,,	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV8-15 (2107188-09) Soil	Sampled: 07/13/21 09:06	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-5 (2107188-10) Soil Sampled: 07/13/21 09:19	Received:	07/13/21 17:07							
Surrogate: 2-Fluorophenol		99.3 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		52.5 %	23		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.8 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		59.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		99.6 %	18-		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-5 (2107188-10) Soil	Sampled: 07/13/21 09:19	Received:	07/13/21 17:0	7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil Sampled: 07/13/21 09:22	Received	: 07/13/21 17:0	7	-	-	-	_	_	
Surrogate: 2-Fluorophenol		90.1 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		56.8 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		44.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		38.5 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		95.3 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-10 (2107188-11) Soil	Sampled: 07/13/21 09:22	Received:	07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV9-15 (2107188-12) Soil Sampled: 07/13/21 09:2	4 Received	1: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		95.9 %		121	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		47.9 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.5 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		64.1 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		49.9 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		71.1 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV9-15 (2107188-12) Soil	Sampled: 07/13/21 09:24	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil Sampled: 07/13/21 09:32	Received	: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		103 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		71.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		73.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83.4 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		44.3 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-5 (2107188-13) Soil	Sampled: 07/13/21 09:32	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-10 (2107188-14) Soil Sampled: 07/13/21 09	36 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		103 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		65.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		51.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.2 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		57.1 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		87.8 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-10 (2107188-14) Soil	Sampled: 07/13/21 09:36	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Surrogate: 2-Fluorophenol 101 % 25-121	07/16/21 08:50	EPA 8270C " " " " " " "	
Surrogate: Phenol-d6 32.2 % 24-113 " " Surrogate: Nitrobenzene-d5 48.3 % 23-120 " " Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2-Fluorobiphenyl 82.8 % 19-122 " " Surrogate: Terphenyl-d14 ND 0.33 " " " Acenaphthylene ND 0.33 " " " " Acenaphthylene ND 0.33 " " " " " Acenaphthylene ND 0.33 " <th>" " " " " " "</th> <th>" " " " " " " "</th> <th></th>	" " " " " " "	" " " " " " " "	
Surrogate: Nitrobenzene-d5 48.3 % 23-120 " " Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2-fluorobiphenyl 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " " Benzidine ND 0.33 " " " " " Benzo (a) anthracene ND 0.33 " <t< td=""><td>"" "" "" "" "" "" "" "" "" "" "" "" ""</td><td>" " " " " "</td><td></td></t<>	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " "	
Surrogate: 2-Fluorobiphenyl 76.0 % 30-115 " " Surrogate: 2,4,6-Tribromophenol 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " " Acenaphthylene ND 0.33 "	" " " " " "	" " " "	
Surrogate: 2,4,6-Tribromophenol 82.8 % 19-122 " " Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " Acenaphthylene ND 0.33 " " " Anthracene ND 0.33 " " " Benzidine ND 0.33 " " " Benzidine ND 0.33 " " " Benzo (a) anthracene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (b) fluoranthene ND 0.33 " " " Benzo (k) fluoranthene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND 0.33 " " " Benzo (a) pyrene ND	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Surrogate: Terphenyl-d14 58.0 % 18-137 " " Acenaphthene ND 0.33 " " " " Acenaphthylene ND 0.33 " " " " Anthracene ND 0.33 " " " " Benzidine ND 0.33	" " " " " " " " " " " " " " " " " " " "	"	
Acenaphthene ND 0.33 "	" "	"	
Acenaphthylene Acenaphthylene ND ND ND ND ND ND ND ND ND ND ND ND ND	"	"	
Anthracene ND 0.33 "	"		
Benzidine ND 0.33 " <		"	
Benzo (a) anthracene ND 0.33 " <td>"</td> <td></td> <td></td>	"		
Benzo (b) fluoranthene ND 0.33 " </td <td></td> <td>"</td> <td></td>		"	
Benzo (k) fluoranthene ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
Benzo (a) pyrene ND 0.33 " " " " Benzo (g,h,i) perylene ND 0.33 " " " " " Benzyl alcohol ND 0.33 " " " " " Benzyl alcohol ND 0.33 " " " " " " Bis(2-chloroethyl)ether ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " Butyl benzyl phthalate ND 0.33 " " " " " Butyl benzyl phthalate ND 0.33 " " " " " " 2-Chlorophenol ND 0.33 " " " " " " " " "	"	"	
Benzo (g,h,i) perylene ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
Benzyl alcohol ND 0.33 " " " " " Bis(2-chloroethyl)ether ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroethoxy)methane ND 0.33 " " " " " Bis(2-chloroisopropyl)ether ND 0.33 " " " " " " " 4-Bromophenyl phenyl ether ND 0.33 " " " " " Butyl benzyl phthalate ND 0.33 " " " " " " 4-Chloroaniline ND 0.33 " " " " " " 2-Chlorophenol ND 0.33 " " " " " " " " "	"	"	
Bis(2-chloroethyl)ether ND 0.33 "<	"	"	
Bis(2-chloroethoxy)methane ND 0.33 " <th< td=""><td>"</td><td>"</td><td></td></th<>	"	"	
Bis(2-ethylhexyl)phthalate ND 0.33 " <th< td=""><td>"</td><td>"</td><td></td></th<>	"	"	
Bis(2-chloroisopropyl)ether ND 0.33 " <t< td=""><td>"</td><td>"</td><td></td></t<>	"	"	
4-Bromophenyl phenyl ether ND 0.33 " " " " Butyl benzyl phthalate ND 0.33 " " " " 4-Chloroaniline ND 0.33 " " " " 2-Chlorophenol ND 0.33 " " " "	"	"	
4-Bromophenyl phenyl ether ND 0.33 " <	"	"	
Butyl benzyl phthalate ND 0.33 " </td <td>"</td> <td>"</td> <td></td>	"	"	
4-Chloroaniline ND 0.33 "	"	"	
1	"	"	
* * * * * * * * * * * * * * * * * * * *	"	"	
4-Chloro-3-methylphenol ND 0.33 " " " "	"	"	
2-Chloronaphthalene ND 0.33 " " " "	"	"	
4-Chlorophenyl phenyl ether ND 0.33 " " " "	"	"	
Chrysene ND 0.33 " " " "	"	"	
Dibenz (a,h) anthracene ND 0.33 " " "	"	"	
Dibenzofuran ND 0.33 " " "	"	"	
1,3-Dichlorobenzene ND 0.33 " " " "	"	"	
1,2-Dichlorobenzene ND 0.33 " " " "	"	"	
1,4-Dichlorobenzene ND 0.33 " " " "	"	"	
3,3'-Dichlorobenzidine ND 0.33 " " " "	"	"	
2,4-Dichlorophenol ND 0.33 " " " "	"	"	
Diethyl phthalate ND 0.33 " " " "	"	"	
2,4-Dimethylphenol ND 0.33 " " " "	"	"	
Dimethyl phthalate ND 0.33 " " " "	"	"	
Di-n-butyl phthalate ND 0.33 " " "	"	"	
2,4-Dinitrophenol ND 0.33 " " "	"	"	
	,,	"	
4,6-Dinitro-2-methylphenol ND 0.33 " " " "			

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV10-15 (2107188-15) Soil	Sampled: 07/13/21 09:52	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil Sampled: 07/13/21 10:16	Received	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		104 %	25-		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.2 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		54.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		48.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		73.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		102 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-5 (2107188-16) Soil	Sampled: 07/13/21 10:16	Received	07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						pmv4	, 200		1.00
SV11-10 (2107188-17) Soil Sampled: 07/13/21 10:2	o Keceived								
Surrogate: 2-Fluorophenol		93.7 %	25-1		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		77.7 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		52.6 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80.9 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		45.2 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		52.4 %	18-1		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-10 (2107188-17) Soil	Sampled: 07/13/21 10:20	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units D	ilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil Sampled: 07/13/21					20001	Tropulou		1,100100	1.0003
	10:20 Received								
Surrogate: 2-Fluorophenol		95.9 %	25-121		B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
Surrogate: Phenol-d6		25.9 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		59.6 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		86.7 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		39.3 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		56.2 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	
• • •									

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV11-15 (2107188-18) Soil	Sampled: 07/13/21 10:26	Received	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1603	07/15/21	07/16/21 08:50	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil Sampled: 07/13/21 10:4	9 Received	l: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		93.4 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		68.0 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		36.9 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.9 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.3 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		72.7 %	18-137	,	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Re		orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-5 (2107188-19) Soil	Sampled: 07/13/21 10:49 R	eceived: 07/13/	21 17:0)7						
2,4-Dinitrotoluene	1	ND 0	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene	1	ND 0	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate	1	ND 0	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine	1	ND 0	0.33	"	"	"	"	"	"	
Fluoranthene	1	ND 0	0.33	"	"	"	"	"	"	
Fluorene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorobenzene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorobutadiene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	1	ND 0	0.33	"	"	"	"	"	"	
Hexachloroethane	1	ND 0	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	1	ND 0	0.33	"	"	"	"	"	"	
Isophorone	1	ND 0	0.33	"	"	"	"	"	"	
2-Methylnaphthalene	1	ND 0	0.33	"	"	"	"	"	"	
2-Methylphenol	1	ND 0	0.33	"	"	"	"	"	"	
4-Methylphenol	1	ND 0	0.33	"	"	"	"	"	"	
Naphthalene	1	ND 0	0.33	"	"	"	"	"	"	
2-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
3-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
4-Nitroaniline	1	ND 0	0.33	"	"	"	"	"	"	
Nitrobenzene	1	ND (0.33	"	"	"	"	"	"	
2-Nitrophenol	1	ND (0.33	"	"	"	"	"	"	
4-Nitrophenol			0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine	1		0.33	"	"	"	"	"	"	
Diphenylamine	1		0.33	"	"	"	,,	"	"	
N-Nitrosodi-n-propylamine	1		0.33	"	"	"	,,	"	"	
Pentachlorophenol			0.33	"	"	"	"	"	"	
Phenanthrene			0.33	"	"	"	,,	"	"	
Phenol).33	"	"	"	,,	"	"	
Pyrene).33	"	"	"	,,	"	"	
1,2,4-Trichlorobenzene).33	"	"	"	,,	"	"	
2,4,5-Trichlorophenol).33	"	"	"	"	"	"	
2,4,6-Trichlorophenol			0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-10 (2107188-20) Soil Sampled: 07/13/21 1	0:58 Receive	d: 07/13/21 17	:07		<u> </u>				
Surrogate: 2-Fluorophenol		78.5 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		31.5 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		42.5 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		106 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		80.9 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		49.7 %	18-1	37	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-10 (2107188-20) Soil	Sampled: 07/13/21 10:58	Received:	07/13/21 17	':07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	,,	"	"	"	,,	,,	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV12-15 (2107188-21) Soil Sampled: 07/13/21 11:0	07 Received	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		89.4 %		121	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		26.1 %		113	"	"	"	"	
Surrogate: Nitrobenzene-d5		35.1 %		120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.8 %		115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		27.8 %		122	"	"	"	"	
Surrogate: Terphenyl-d14		114 %		137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV12-15 (2107188-21) Soil	Sampled: 07/13/21 11:07	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-5 (2107188-22) Soil Sampled: 07/13/21 11:26	Received:	: 07/13/21 17:0	7						
Surrogate: 2-Fluorophenol		101 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		67.4 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		89.7 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		52.0 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		68.6 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-5 (2107188-22) Soil	Sampled: 07/13/21 11:26	Received:	07/13/21 17:0)7						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil Sampled: 07/13/21 11:	31 Receive	ed: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		95.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		27.2 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		44.5 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		44.4 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		110 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	,,	"	
2,4-Dinitrophenol	ND	0.33	"	,,	"	"	"	"	
*	ND	0.33	,,	,,	,,	,,	,,	"	
4,6-Dinitro-2-methylphenol	ND	0.55							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-10 (2107188-23) Soil	Sampled: 07/13/21 11:31	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV13-15 (2107188-24) Soil Sampled: 07/13/21 11:	38 Receive	d: 07/13/21 17	:07		<u> </u>				
Surrogate: 2-Fluorophenol		92.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		35.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		36.8 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.0 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		136 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV13-15 (2107188-24) Soil	Sampled: 07/13/21 11:38	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil Sampled: 07/13/21 12:49	Received	: 07/13/21 17:0	07						
Surrogate: 2-Fluorophenol		95.9 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		57.3 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		41.2 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74.1 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		34.0 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		88.9 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-5 (2107188-25) Soil	Sampled: 07/13/21 12:49	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	,,	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	,,	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV14-10 (2107188-26) Soil Sampled: 07/13/21 12	2:54 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		104 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		50.1 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		59.2 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		90.4 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		42.9 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		60.8 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-10 (2107188-26) Soil	Sampled: 07/13/21 12:54	Received	1: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units D	ilution	Batch	Dramanad	Anglygad	Method	Not
Analyte				, iidiloli	Datcii	Prepared	Analyzed	iviculou	Notes
SV14-15 (2107188-27) Soil Sampled: 07/13/21 13:0	1 Received	: 07/13/21 17:							
Surrogate: 2-Fluorophenol		105 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		86.3 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		55.4 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		89.5 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		50.5 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		105 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV14-15 (2107188-27) Soil	Sampled: 07/13/21 13:01	Received	l: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil Sampled: 07/13/21 13:1	9 Received	l: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		96.8 %	25-12		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		64.7 %	24-11		"	"	"	"	
Surrogate: Nitrobenzene-d5		87.3 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		87.0 %	30-11		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		55.8 %	19-12		"	"	"	"	
Surrogate: Terphenyl-d14		131 %	18-13	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-5 (2107188-28) Soil	Sampled: 07/13/21 13:19	Received	: 07/13/21 17:	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil Sampled: 07/13/21	13:23 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		102 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		90.7 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		41.6 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.2 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		46.7 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		66.1 %	18-1	37	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-10 (2107188-29) Soil	Sampled: 07/13/21 13:23	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	,,	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units Dilut	ion Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil Sampled: 07/13/21 13	:27 Receive	d: 07/13/21 17	:07					
Surrogate: 2-Fluorophenol		99.9 %	25-121	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		77.6 %	24-113	"	"	"	"	
Surrogate: Nitrobenzene-d5		32.5 %	23-120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		40.6 %	30-115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		47.3 %	19-122	"	"	"	"	
Surrogate: Terphenyl-d14		132 %	18-137	"	"	"	"	
Acenaphthene	ND	0.33	" "	"	"	"	"	
Acenaphthylene	ND	0.33	" "	"	"	"	"	
Anthracene	ND	0.33	" "	"	"	"	"	
Benzidine	ND	0.33	" "	"	"	"	"	
Benzo (a) anthracene	ND	0.33	" "	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	" "	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	" "	"	"	"	"	
Benzo (a) pyrene	ND	0.33	" "	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	" "	"	"	"	"	
Benzyl alcohol	ND	0.33	" "	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	" "	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	" "	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	" "	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	" "	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	" "	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	" "	"	"	"	"	
4-Chloroaniline	ND	0.33	" "	"	"	"	"	
2-Chlorophenol	ND	0.33	" "	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	" "	"	"	"	"	
2-Chloronaphthalene	ND	0.33	" "	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	" "	"	"	"	"	
Chrysene	ND	0.33	" "	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	" "	"	"	"	"	
Dibenzofuran	ND	0.33	" "	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	" "	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	" "	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	" "	"	"	"	"	
Diethyl phthalate	ND	0.33	" "	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	" "	"	"	"	"	
Dimethyl phthalate	ND	0.33	" "	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	" "	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	" "	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	" "	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV15-15 (2107188-30) Soil	Sampled: 07/13/21 13:27	Received	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil Sampled: 07/13/21 13:54	Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		94.6 %	25		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		62.9 %	24		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.6 %	30		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		65.8 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		115 %	18-		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33		"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33		"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	,,	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-5 (2107188-31) Soil	Sampled: 07/13/21 13:54	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV16-10 (2107188-32) Soil Sampled: 07/13/21 13	:57 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		76.5 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		52.7 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		50.1 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.6 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		70.6 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		101 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-10 (2107188-32) Soil	Sampled: 07/13/21 13:57	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dranared	Anglyzad	Method	Notes
Analyte				Dilution	Бакп	Prepared	Analyzed	ivicuiod	Notes
SV16-15 (2107188-33) Soil Sampled: 07/13/21 14:0	0 Received	1: 07/13/21 17:	07						
Surrogate: 2-Fluorophenol		104 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		65.4 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		58.6 %	23-120)	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		50.7 %	30-115	5	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		32.6 %	19-122	2	"	"	"	"	
Surrogate: Terphenyl-d14		43.7 %	18-137	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV16-15 (2107188-33) Soil	Sampled: 07/13/21 14:00	Received	d: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil Sampled: 07/13/21 14:44	Received	: 07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		99.3 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		65.9 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		65.8 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		56.3 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		75.3 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		110 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-5 (2107188-34) Soil	Sampled: 07/13/21 14:44	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	,,	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
				UII	Dutell	. repareu	, 200	enod	140105
SV17-10 (2107188-35) Soil Sampled: 07/13/21 14:4	ю Keceived	ı: v//13/21 17:	U/						
Surrogate: 2-Fluorophenol		98.1 %	25-12		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		55.7 %	24-11.		"	"	"	"	
Surrogate: Nitrobenzene-d5		46.4 %	23-12		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		45.0 %	30-11.		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.1 %	19-12.		"	"	"	"	
Surrogate: Terphenyl-d14		99.1 %	18-13		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-10 (2107188-35) Soil	Sampled: 07/13/21 14:48	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV17-15 (2107188-36) Soil Sampled: 07/13/21 14:	53 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		102 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		31.3 %	24-		"	"	"	"	
Surrogate: Nitrobenzene-d5		51.3 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		41.5 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		61.9 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		92.1 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV17-15 (2107188-36) Soil	Sampled: 07/13/21 14:53	Received:	07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units 1	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil Sampled: 07/13/21 15:1	9 Received	l: 07/13/21 17:0)7						
Surrogate: 2-Fluorophenol		98.7 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		24.4 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		63.4 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		60.5 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		67.6 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		66.6 %	18-137		"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-5 (2107188-37) Soil	Sampled: 07/13/21 15:19	Received	: 07/13/21 17:0	07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	,,	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

	D 1	Reporting	TT '-	Dil di	D. I	n i		Mala	N 7 :
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-10 (2107188-38) Soil Sampled: 07/13/21	15:25 Receive	d: 07/13/21 17:	07						
Surrogate: 2-Fluorophenol		115 %	25-121		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		76.7 %	24-113		"	"	"	"	
Surrogate: Nitrobenzene-d5		56.5 %	23-120		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77.9 %	30-115		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		102 %	19-122		"	"	"	"	
Surrogate: Terphenyl-d14		64.9 %	18-137	7	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	0.82	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	0.92	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-10 (2107188-38) Soil	Sampled: 07/13/21 15:25	Receive	ed: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		2.2	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		0.44	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		0.77	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil Sampled: 07/13/21 15:2	9 Received	l: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		81.6 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		52.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		33.1 %	23-	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		40.9 %	30-		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		58.5 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		129 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV18-15 (2107188-39) Soil	Sampled: 07/13/21 15:29	Received	: 07/13/21 17	':07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	,,	"	,,	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV19-5 (2107188-40) Soil Sampled: 07/13/21 15:49	Received:	07/13/21 17:0	17						
Surrogate: 2-Fluorophenol		57.3 %	25-		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		100 %	24	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		78.4 %	23-		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		53.3 %	30		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		60.7 %	19-		"	"	"	"	
Surrogate: Terphenyl-d14		90.7 %	18-	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	2.1	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	0.40	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-5 (2107188-40) Soil Sampled: 07/13/21 1	5:49 Received:	07/13/21 17:	07						
2,4-Dinitrotoluene	1.1	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene	1.2	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine	ND	0.33	"	"	"	"	"	"	
Fluoranthene	ND	0.33	"	"	"	"	"	"	
Fluorene	1.1	0.33	"	"	"	"	"	"	
Hexachlorobenzene	ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	0.33	"	"	"	"	"	"	
Hexachloroethane	ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	"	"	"	"	"	
Isophorone	ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene	12	0.33	"	"	"	"	"	"	
2-Methylphenol	ND	0.33	"	"	"	"	"	"	
4-Methylphenol	ND	0.33	"	"	"	"	"	"	
Naphthalene	5.2	0.33	"	"	"	"	"	"	
2-Nitroaniline	ND	0.33	"	"	"	"	"	"	
3-Nitroaniline	ND	0.33	"	"	"	"	"	"	
4-Nitroaniline	0.85	0.33	"	"	"	"	"	"	
Nitrobenzene	ND	0.33	"	"	,,	,,	"	"	
2-Nitrophenol	ND	0.33	"	"	,,	"	"	"	
4-Nitrophenol	ND	0.33	"	"	,,	"	"	"	
N-Nitrosodimethylamine	ND	0.33	"	"	,,	,,	"	"	
Diphenylamine	ND	0.33	"	"	,,	,,	"	"	
N-Nitrosodi-n-propylamine	0.91	0.33	"	"	,,	,,	"	"	
Pentachlorophenol	ND	0.33	"	"	"	"	"	"	
Phenanthrene	2.0	0.33	"	"	"	"	"	"	
Phenol	ND	0.33	"	"	"	"	"	"	
Pyrene	0.87	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	0.33	"	"	,,	,,	"	"	
2,4,6-Trichlorophenol	ND ND	0.33	,,	,,	,,	,,	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil Sampled: 07/13/21 15	5:54 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		109 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		83.5 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		70.9 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		84.0 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		94.5 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		117 %	18-1	137	"	"	"	"	
Acenaphthene	ND	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	ND	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	ND	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	1	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-10 (2107188-41) Soil	Sampled: 07/13/21 15:54	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		ND	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		ND	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		ND	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		ND	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	,,	"	"	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SV19-15 (2107188-42) Soil Sampled: 07/13/21	15:59 Receive	d: 07/13/21 17	:07						
Surrogate: 2-Fluorophenol		61.7 %	25-1		B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
Surrogate: Phenol-d6		110 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		87.4 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		108 %	30-1		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		103 %	19-1		"	"	"	"	
Surrogate: Terphenyl-d14		90.2 %	18-1	37	"	"	"	"	
Acenaphthene	1.6	0.33	"	"	"	"	"	"	
Acenaphthylene	ND	0.33	"	"	"	"	"	"	
Anthracene	1.1	0.33	"	"	"	"	"	"	
Benzidine	ND	0.33	"	"	"	"	"	"	
Benzo (a) anthracene	1.3	0.33	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.33	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.33	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.33	"	"	"	"	"	"	
Benzyl alcohol	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.33	"	"	"	"	"	"	
4-Chloroaniline	ND	0.33	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	0.33	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.33	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	"	"	"	"	"	
Chrysene	1.5	0.33	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.33	"	"	"	"	"	"	
Dibenzofuran	ND	0.33	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.33	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	0.33	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.33	"	"	"	"	"	"	
Diethyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.33	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.33	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.33	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.33	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	"	"	"	"	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C $\,$

Sierra Analytical Labs, Inc.

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SV19-15 (2107188-42) Soil	Sampled: 07/13/21 15:59	Received	: 07/13/21 17	:07						
2,4-Dinitrotoluene		ND	0.33	mg/kg	1	B1G1916	07/19/21	07/20/21 10:43	EPA 8270C	
2,6-Dinitrotoluene		ND	0.33	"	"	"	"	"	"	
Di-n-octyl phthalate		ND	0.33	"	"	"	"	"	"	
1,2-Diphenylhydrazine		ND	0.33	"	"	"	"	"	"	
Fluoranthene		ND	0.33	"	"	"	"	"	"	
Fluorene		3.0	0.33	"	"	"	"	"	"	
Hexachlorobenzene		ND	0.33	"	"	"	"	"	"	
Hexachlorobutadiene		ND	0.33	"	"	"	"	"	"	
Hexachlorocyclopentadiene		ND	0.33	"	"	"	"	"	"	
Hexachloroethane		ND	0.33	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene		ND	0.33	"	"	"	"	"	"	
Isophorone		ND	0.33	"	"	"	"	"	"	
2-Methylnaphthalene		ND	0.33	"	"	"	"	"	"	
2-Methylphenol		ND	0.33	"	"	"	"	"	"	
4-Methylphenol		ND	0.33	"	"	"	"	"	"	
Naphthalene		4.0	0.33	"	"	"	"	"	"	
2-Nitroaniline		ND	0.33	"	"	"	"	"	"	
3-Nitroaniline		ND	0.33	"	"	"	"	"	"	
4-Nitroaniline		ND	0.33	"	"	"	"	"	"	
Nitrobenzene		ND	0.33	"	"	"	"	"	"	
2-Nitrophenol		ND	0.33	"	"	"	"	"	"	
4-Nitrophenol		ND	0.33	"	"	"	"	"	"	
N-Nitrosodimethylamine		ND	0.33	"	"	"	"	"	"	
Diphenylamine		ND	0.33	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine		ND	0.33	"	"	"	"	"	"	
Pentachlorophenol		ND	0.33	"	"	"	"	"	"	
Phenanthrene		9.7	0.33	"	"	"	"	"	"	
Phenol		ND	0.33	"	"	"	"	"	"	
Pyrene		8.5	0.33	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	0.33	"	"	"	"	"	"	
2,4,5-Trichlorophenol		ND	0.33	"	"	"	"	"	"	
2,4,6-Trichlorophenol		ND	0.33	"	"	"	"	"	"	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1411 - EPA 3050B							
Blank (B1G1411-BLK1)				Prepared: 07/14	/21 Analyzed: 07	//19/21	
Silver	ND	2.0	mg/kg				
Cadmium	ND	2.5	"				
Barium	ND	6.0	"				
lickel	ND	3.0	"				
ead	ND	7.1	"				
anadium	ND	5.1	"				
rsenic	ND	5.5	"				
obalt	ND	3.3	"				
hallium	ND	17	"				
opper	ND	5.0	"				
elenium	ND	6.9	"				
olybdenum	ND	5.2	"				
ntimony	ND	8.0	"				
eryllium	ND	2.2	"				
inc	ND	7.0	"				
hromium	ND	2.3	"				
CS (B1G1411-BS1)				Prepared: 07/14	/21 Analyzed: 07	//19/21	
lickel	104	3.0	mg/kg	100	104	80-120	
Iolybdenum	103	5.2	"	100	103	80-120	
rsenic	98.8	5.5	"	100	98.8	78-122	
eryllium	97.9	2.2	"	100	97.9	80-120	
hromium	102	2.3	"	100	102	80-120	
arium	105	6.0	"	100	105	80-120	
admium	102	2.5	"	100	102	80-120	
ilver	98.5	2.0	"	100	98.5	60-140	
anadium	98.2	5.1	"	100	98.2	80-120	
ntimony	112	8.0	"	100	112	75-125	
opper	113	5.0	"	100	113	78-122	
inc	101	7.0	"	100	101	80-120	
elenium	97.3	6.9	"	100	97.3	76-124	
ead	99.3	7.1	"	100	99.3	80-120	
obalt	107	3.3	"	100	107	80-120	
hallium	104	17	"	100	104	80-120	

Analyte

Mearns Consulting LLC Project: Town Center Northwest

Result

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Units

Spike

Level

Source

Result

%REC

Limits

RPD

%REC

Reporting

Limit

LCS Dup (B1G1411-BSD1)				Prepared: 0	07/14/21 A1	nalyzed: 07	7/19/21		
Zinc	100	7.0	mg/kg	100		100	80-120	0.670	20
Chromium	101	2.3	"	100		101	80-120	1.01	20
Selenium	95.4	6.9	"	100		95.4	76-124	1.97	20
<u> Phallium</u>	103	17	"	100		103	80-120	0.897	20
<i>V</i> anadium	96.9	5.1	"	100		96.9	80-120	1.33	20
Cobalt	106	3.3	"	100		106	80-120	0.962	20
Lead	98.2	7.1	"	100		98.2	80-120	1.11	20
Silver	93.1	2.0	"	100		93.1	60-140	5.64	40
Antimony	109	8.0	"	100		109	75-125	2.95	20
Arsenic	96.4	5.5	"	100		96.4	78-122	2.56	20
Molybdenum	100	5.2	"	100		100	80-120	2.66	20
Copper	110	5.0	"	100		110	78-122	2.58	20
3arium	104	6.0	"	100		104	80-120	0.887	20
Nickel	104	3.0	"	100		104	80-120	0.817	20
Cadmium	101	2.5	"	100		101	80-120	1.06	20
Beryllium	98.0	2.2	"	100		98.0	80-120	0.0255	20
Matrix Spike (B1G1411-MS1)	Source	: 2107188-	01	Prepared: 0)7/14/21 Aı	nalyzed: 07	7/19/21		
Selenium	96.5	6.9	mg/kg	98.8	ND	97.7	70-130		
Molybdenum	98.2	5.2	"	98.8	0.661	98.8	70-130		

Selenium	96.5	6.9	mg/kg	98.8	ND	97.7	70-130	
Molybdenum	98.2	5.2	"	98.8	0.661	98.8	70-130	
Cobalt	107	3.3	"	98.8	7.64	101	70-130	
Thallium	98.5	17	"	98.8	ND	99.7	70-130	
Lead	101	7.1	"	98.8	4.55	97.8	70-130	
Silver	108	2.0	"	98.8	0.220	109	60-140	
Barium	238	6.0	"	98.8	82.6	158	70-130	QM-
Beryllium	94.0	2.2	"	98.8	ND	95.1	70-130	
Nickel	106	3.0	"	98.8	8.55	98.6	70-130	
Vanadium	118	5.1	"	98.8	24.0	94.8	70-130	
Arsenic	98.8	5.5	"	98.8	ND	100	70-130	
Zinc	143	7.0	"	98.8	28.5	116	70-130	
Copper	115	5.0	"	98.8	13.6	103	70-130	
Chromium	110	2.3	"	98.8	13.7	97.2	70-130	
Cadmium	98.0	2.5	"	98.8	ND	99.2	70-130	
Antimony	91.6	8.0	"	98.8	ND	92.7	60-140	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

Limit

Notes

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B1G1411	- EPA	3050R

Matrix Spike Dup (B1G1411-MSD1)	Source	: 2107188-0	01	Prepared: (07/14/21 At	nalyzed: 07	7/19/21			
Antimony	92.1	8.0	mg/kg	98.4	ND	93.6	60-140	0.599	20	
Cobalt	108	3.3	"	98.4	7.64	102	70-130	0.817	20	
Arsenic	99.3	5.5	"	98.4	ND	101	70-130	0.452	20	
Silver	109	2.0	"	98.4	0.220	110	60-140	0.790	40	
Beryllium	94.4	2.2	"	98.4	ND	95.9	70-130	0.469	20	
Chromium	110	2.3	"	98.4	13.7	97.9	70-130	0.279	20	
Molybdenum	93.1	5.2	"	98.4	0.661	93.9	70-130	5.42	20	
Thallium	98.8	17	"	98.4	ND	100	70-130	0.255	20	
Selenium	96.6	6.9	"	98.4	ND	98.2	70-130	0.116	20	
Cadmium	98.8	2.5	"	98.4	ND	100	70-130	0.758	20	
Vanadium	118	5.1	"	98.4	24.0	95.5	70-130	0.296	20	
Zinc	127	7.0	"	98.4	28.5	99.9	70-130	12.1	20	
Lead	102	7.1	"	98.4	4.55	98.7	70-130	0.480	30	
Nickel	106	3.0	"	98.4	8.55	99.2	70-130	0.187	20	
Copper	116	5.0	"	98.4	13.6	104	70-130	0.758	30	
Barium	240	6.0	"	98.4	82.6	160	70-130	0.493	20	QM-07

Batch B1G1412 - EPA 3050B

Blank (B1G1412-BLK1)				Prepared: 07/14/21 Analyzed: 07/19/21
Zinc	ND	7.0	mg/kg	
Thallium	ND	17	"	
Selenium	ND	6.9	"	
Lead	ND	7.1	"	
Copper	ND	5.0	"	
Antimony	ND	8.0	"	
Nickel	ND	3.0	"	
Molybdenum	ND	5.2	"	
Barium	ND	6.0	"	
Chromium	ND	2.3	"	
Arsenic	ND	5.5	"	
Vanadium	ND	5.1	"	
Cobalt	ND	3.3	"	
Silver	ND	2.0	"	
Beryllium	ND	2.2	"	
Cadmium	ND	2.5	"	

Mearns Consulting LLC
Project: Town Center Northwest
738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1412-BS1)				Prepared: 07/14	1/21 Analyzed: 07	//19/21		
Thallium	104	17	mg/kg	100	104	80-120		
Cadmium	104	2.5	"	100	104	80-120		
Beryllium	94.1	2.2	"	100	94.1	80-120		
Lead	95.0	7.1	"	100	95.0	80-120		
<i>V</i> anadium	91.6	5.1	"	100	91.6	80-120		
Copper	100	5.0	"	100	100	78-122		
ilver	101	2.0	"	100	101	60-140		
ntimony	102	8.0	"	100	102	75-125		
lickel	98.4	3.0	"	100	98.4	80-120		
obalt	107	3.3	"	100	107	80-120		
inc	100	7.0	"	100	100	80-120		
lolybdenum	99.8	5.2	"	100	99.8	80-120		
arium	106	6.0	"	100	106	80-120		
hromium	98.3	2.3	"	100	98.3	80-120		
rsenic	95.4	5.5	"	100	95.4	78-122		
elenium	93.8	6.9	"	100	93.8	76-124		
.CS Dup (B1G1412-BSD1)				Prepared: 07/14	1/21 Analyzed: 07	7/19/21		
eryllium	88.7	2.2	mg/kg	100	88.7	80-120	5.85	20
opper	104	5.0	"	100	104	78-122	3.97	20
ead	90.2	7.1	"	100	90.2	80-120	5.18	20
ntimony	96.2	8.0	"	100	96.2	75-125	5.41	20
hromium	92.4	2.3	"	100	92.4	80-120	6.16	20
ilver	92.1	2.0	"	100	92.1	60-140	8.97	40
Iolybdenum	94.6	5.2	"	100	94.6	80-120	5.30	20
arium	99.2	6.0	"	100	99.2	80-120	6.23	20
lickel	93.0	3.0	"	100	93.0	80-120	5.67	20
obalt	100	3.3	"	100	100	80-120	6.16	20
admium	97.6	2.5	"	100	97.6	80-120	6.06	20
elenium	88.5	6.9	"	100	88.5	76-124	5.79	20
rsenic	90.0	5.5	"	100	90.0	78-122	5.72	20
hallium	98.6	17	"	100	98.6	80-120	5.26	20
inc	95.2	7.0	"	100	95.2	80-120	5.29	20
⁷ anadium	86.4	5.1	"	100	86.4	80-120	5.87	20

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R 16	C14	12 _	FΡΔ	3050B
Daten	DI	LTI4	12-	LEA	ういういわ

Matrix Spike (B1G1412-MS1)	Source	: 2107188-2	21	Prepared: 0	7/14/21 A	nalyzed: 07	7/19/21		
Antimony	87.8	8.0	mg/kg	97.5	ND	90.1	60-140		
Chromium	100	2.3	"	97.5	7.00	95.6	70-130		
Lead	91.1	7.1	"	97.5	1.24	92.2	70-130		
Nickel	96.1	3.0	"	97.5	4.45	94.0	70-130		
Beryllium	90.5	2.2	"	97.5	ND	92.8	70-130		
Copper	96.9	5.0	"	97.5	4.43	94.9	70-130		
ilver	91.4	2.0	"	97.5	ND	93.8	60-140		
arium	140	6.0	"	97.5	32.0	110	70-130		
obalt	103	3.3	"	97.5	3.34	102	70-130		
rsenic	93.7	5.5	"	97.5	ND	96.1	70-130		
elenium	91.6	6.9	"	97.5	ND	94.0	70-130		
1olybdenum	91.7	5.2	"	97.5	ND	94.1	70-130		
anadium	99.3	5.1	"	97.5	9.20	92.4	70-130		
hallium	96.4	17	"	97.5	ND	98.9	70-130		
inc	113	7.0	"	97.5	15.9	99.4	70-130		
admium	99.5	2.5	"	97.5	ND	102	70-130		
Matrix Spike Dup (B1G1412-MSD1)	Source	: 2107188-2	21	Prepared: 0	7/14/21 A	nalyzed: 07	7/19/21		
Cadmium	96.2	2.5	mg/kg	97.0	ND	99.2	70-130	3.32	20
opper	111	5.0	"	97.0	4.43	110	70-130	14.0	30
ilver	91.1	2.0	"	97.0	ND	94.0	60-140	0.326	40
rsenic	91.1	5.5	"	97.0	ND	93.9	70-130	2.80	20
	91.1 85.4	5.5 8.0	"	97.0 97.0	ND ND	93.9 88.0	70-130 60-140	2.80 2.84	20 20
ntimony									
ntimony obalt	85.4	8.0	"	97.0	ND	88.0	60-140	2.84	20
ntimony obalt ead	85.4 101	8.0 3.3	"	97.0 97.0	ND 3.34	88.0 100	60-140 70-130	2.84 2.40	20 20
antimony Pobalt ead Beryllium	85.4 101 88.7	8.0 3.3 7.1	"	97.0 97.0 97.0	ND 3.34 1.24	88.0 100 90.2	60-140 70-130 70-130	2.84 2.40 2.65	20 20 30
ntimony obalt ead eryllium folybdenum	85.4 101 88.7 88.7	8.0 3.3 7.1 2.2	" " "	97.0 97.0 97.0 97.0	ND 3.34 1.24 ND	88.0 100 90.2 91.4	60-140 70-130 70-130 70-130	2.84 2.40 2.65 2.01	20 20 30 20
ntimony obalt ead eryllium folybdenum hallium	85.4 101 88.7 88.7 89.6	8.0 3.3 7.1 2.2 5.2	" " "	97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND	88.0 100 90.2 91.4 92.4	60-140 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28	20 20 30 20 20
ntimony obalt ead eryllium folybdenum hallium elenium	85.4 101 88.7 88.7 89.6 93.5	8.0 3.3 7.1 2.2 5.2	" " " " " " " " " " " " " " " " " " " "	97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND	88.0 100 90.2 91.4 92.4 96.4	60-140 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99	20 20 30 20 20 20
ntimony obalt ead eryllium Iolybdenum hallium elenium anadium	85.4 101 88.7 88.7 89.6 93.5	8.0 3.3 7.1 2.2 5.2 17 6.9	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND	88.0 100 90.2 91.4 92.4 96.4 91.8	60-140 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85	20 20 30 20 20 20 20
ontimony Cobalt Lead Lead Leryllium Lolybdenum Lhallium Lelenium Lanadium Lanadium Lanadium	85.4 101 88.7 88.7 89.6 93.5 89.1 97.1	8.0 3.3 7.1 2.2 5.2 17 6.9 5.1	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND ND 9.20	88.0 100 90.2 91.4 92.4 96.4 91.8 90.6	60-140 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85 2.24	20 20 30 20 20 20 20 20
Arsenic Antimony Cobalt Acead Beryllium Molybdenum Thallium Belenium Sarium Chromium	85.4 101 88.7 88.7 89.6 93.5 89.1 97.1	8.0 3.3 7.1 2.2 5.2 17 6.9 5.1 6.0	"" "" "" "" "" "" "" "" "" "" "" "" ""	97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	ND 3.34 1.24 ND ND ND ND ND 2.20 32.0	88.0 100 90.2 91.4 92.4 96.4 91.8 90.6 108	60-140 70-130 70-130 70-130 70-130 70-130 70-130 70-130	2.84 2.40 2.65 2.01 2.28 2.99 2.85 2.24 2.35	20 20 30 20 20 20 20 20 20

Mearns Consulting LLC Project: Town Center Northwest 738 Ashland Avenue Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1413 - EPA 3050B							
Blank (B1G1413-BLK1)				Prepared: 07/14	4/21 Analyzed: 07	/19/21	
Selenium	ND	6.9	mg/kg	•	•		
Vanadium	ND	5.1	"				
Copper	ND	5.0	"				
Antimony	ND	8.0	"				
Silver	ND	2.0	"				
ead	ND	7.1	"				
Molybdenum	ND	5.2	"				
hallium	ND	17	"				
admium	ND	2.5	"				
rsenic	ND	5.5	"				
obalt	ND	3.3	"				
ickel	ND	3.0	"				
eryllium	ND	2.2	"				
nromium	ND	2.3	"				
nrium	ND	6.0	"				
nc	ND	7.0	"				
CS (B1G1413-BS1)				Prepared: 07/14	4/21 Analyzed: 07	/19/21	
Chromium	99.8	2.3	mg/kg	100	99.8	80-120	
ne	109	7.0	"	100	109	80-120	
rium	108	6.0	"	100	108	80-120	
nadium	90.2	5.1	"	100	90.2	80-120	
ryllium	93.3	2.2	"	100	93.3	80-120	
ckel	101	3.0	"	100	101	80-120	
dmium	106	2.5	"	100	106	80-120	
ntimony	104	8.0	"	100	104	75-125	
elenium	102	6.9	"	100	102	76-124	
lver	107	2.0	"	100	107	60-140	
opper	96.1	5.0	"	100	96.1	78-122	
ad	102	7.1	"	100	102	80-120	
rsenic	103	5.5	"	100	103	78-122	
olybdenum	96.6	5.2	"	100	96.6	80-120	
allium	108	17	"	100	108	80-120	
balt	111	3.3	"	100	111	80-120	

Arsenic

Antimony Cadmium

Mearns Consulting LLC Project: Town Center Northwest

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

%REC

RPD

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1413 - EPA 3050B										
LCS Dup (B1G1413-BSD1)				Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Silver	108	2.0	mg/kg	100		108	60-140	1.37	40	
Molybdenum	101	5.2	"	100		101	80-120	4.23	20	
Nickel	98.9	3.0	"	100		98.9	80-120	1.93	20	
Barium	107	6.0	"	100		107	80-120	1.32	20	
Chromium	98.9	2.3	"	100		98.9	80-120	0.931	20	
Lead	99.9	7.1	"	100		99.9	80-120	2.35	20	
Гhallium	107	17	"	100		107	80-120	0.535	20	
Zinc	109	7.0	"	100		109	80-120	0.459	20	
Cadmium	104	2.5	"	100		104	80-120	2.29	20	
Arsenic	102	5.5	"	100		102	78-122	1.78	20	
Antimony	101	8.0	"	100		101	75-125	2.83	20	
Selenium	100	6.9	"	100		100	76-124	1.88	20	
Vanadium	88.6	5.1	"	100		88.6	80-120	1.76	20	
Beryllium	92.1	2.2	"	100		92.1	80-120	1.27	20	
Cobalt	109	3.3	"	100		109	80-120	1.30	20	
Copper	95.7	5.0	"	100		95.7	78-122	0.417	20	
Matrix Spike (B1G1413-MS1)	Sourc	e: 2107188-	41	Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Barium	185	6.0	mg/kg	99.2	65.7	120	70-130			
Nickel	101	3.0	"	99.2	11.6	89.7	70-130			
Zinc	137	7.0	"	99.2	34.9	103	70-130			
Vanadium	110	5.1	"	99.2	22.6	88.4	70-130			
Thallium	90.3	17	"	99.2	ND	91.0	70-130			
Selenium	90.7	6.9	"	99.2	ND	91.5	70-130			
Silver	108	2.0	"	99.2	ND	109	60-140			
Lead	89.6	7.1	"	99.2	4.09	86.2	70-130			
Molybdenum	83.6	5.2	"	99.2	0.725	83.5	70-130			
Copper	97.7	5.0	"	99.2	12.2	86.2	70-130			
Chromium	107	2.3	"	99.2	17.0	90.9	70-130			
Cobalt	101	3.3	"	99.2	7.33	94.8	70-130			
Beryllium	83.1	2.2	"	99.2	ND	83.8	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5.5

8.0

2.5

93.8

73.9

98.4

99.2

99.2

99.2

ND

ND

94.6

74.4

99.2

70-130

60-140

70-130

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	R1G1	413 -	EPA	3050B

Matrix Spike Dup (B1G1413-MSD1)	Source	Source: 2107188-41				Prepared: 07/14/21 Analyzed: 07/19/21				
Antimony	65.3	8.0	mg/kg	99.8	ND	65.4	60-140	12.3	20	
Selenium	86.7	6.9	"	99.8	ND	86.9	70-130	4.56	20	
Vanadium	103	5.1	"	99.8	22.6	80.7	70-130	6.68	20	
Barium	172	6.0	"	99.8	65.7	107	70-130	7.03	20	
Zinc	129	7.0	"	99.8	34.9	94.2	70-130	6.12	20	
Arsenic	82.3	5.5	"	99.8	ND	82.5	70-130	13.1	20	
Lead	79.1	7.1	"	99.8	4.09	75.2	70-130	12.4	30	
Thallium	81.9	17	"	99.8	ND	82.0	70-130	9.75	20	
Beryllium	77.9	2.2	"	99.8	ND	78.1	70-130	6.48	20	
Cobalt	94.9	3.3	"	99.8	7.33	87.8	70-130	6.63	20	
Chromium	100	2.3	"	99.8	17.0	83.3	70-130	6.76	20	
Nickel	87.8	3.0	"	99.8	11.6	76.4	70-130	13.6	20	
Cadmium	91.8	2.5	"	99.8	ND	92.0	70-130	6.88	20	
Copper	110	5.0	"	99.8	12.2	97.9	70-130	11.7	30	
Silver	104	2.0	"	99.8	ND	105	60-140	3.66	40	
Molybdenum	95.4	5.2	"	99.8	0.725	94.8	70-130	13.1	20	

Batch B1G1414 - EPA 7471A

Blank (B1G1414-BLK1)				Prepared: 0	7/14/21 A	Analyzed: 0'	7/16/21		
Mercury	ND	0.90	mg/kg						
LCS (B1G1414-BS1)				Prepared: 0	7/14/21 A	Analyzed: 0'	7/16/21		
Mercury	0.12	0.90	mg/kg	0.167		70.5	70-130		
Matrix Spike (B1G1414-MS1)	Source:	2107188-0)1	Prepared: 0	7/14/21 A	Analyzed: 0'	7/16/21		
Mercury	0.16	0.90	mg/kg	0.163	ND	100	70-130		

Mearns Consulting LLC Project: Town Center Northwest 738 Ashland Avenue Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1414 - EPA 7471A										
Matrix Spike Dup (B1G1414-MSD1)	Sour	ce: 2107188-	01	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.162	ND	99.9	70-130	0.871	30	
Batch B1G1415 - EPA 7471A										
Blank (B1G1415-BLK1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	ND	0.90	mg/kg							
LCS (B1G1415-BS1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.12	0.90	mg/kg	0.167		70.6	70-130			
Matrix Spike (B1G1415-MS1)	Sour	ce: 2107188-	21	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.161	ND	101	70-130			
Matrix Spike Dup (B1G1415-MSD1)	Sour	ce: 2107188-	21	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.16	0.90	mg/kg	0.158	ND	100	70-130	1.79	30	
Batch B1G1416 - EPA 7471A										
Blank (B1G1416-BLK1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	ND	0.90	mg/kg							
LCS (B1G1416-BS1)				Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.12	0.90	mg/kg	0.167		70.7	70-130			
Matrix Spike (B1G1416-MS1)	Sour	ce: 2107188-	41	Prepared: ()7/14/21 A	Analyzed: 07	7/16/21			
Mercury	0.20	0.90	mg/kg	0.161	ND	124	70-130			

Mearns Consulting LLC

Project: Town Center Northwest

738 Ashland Avenue

Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1416 - EPA 7471A							-		-	
Matrix Spike Dup (B1G1416-MSD1)	Source	ce: 2107188-	41	Prepared: (07/14/21 At	nalyzed: 07	//16/21			
Mercury	0.19	0.90	mg/kg	0.158	ND	122	70-130	4.05	30	
Batch B1G1417 - EPA 3060A										
Blank (B1G1417-BLK1)				Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G1417-BS1)				Prepared: (07/14/21 At	nalyzed: 07	//19/21			
Hexavalent Chromium	0.161	0.10	mg/kg	0.150		107	80-120			
Matrix Spike (B1G1417-MS1)	Source	ce: 2107188-	01	Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	0.200	0.10	mg/kg	0.149	0.0624	92.3	75-125			
Matrix Spike Dup (B1G1417-MSD1)	Source	ce: 2107188-	01	Prepared: (07/14/21 At	nalyzed: 07	//19/21			
Hexavalent Chromium	0.199	0.10	mg/kg	0.149	0.0624	91.4	75-125	0.823	20	
Batch B1G1418 - EPA 3060A										
Blank (B1G1418-BLK1)	<u> </u>			Prepared: (07/14/21 Aı	nalyzed: 07	//19/21			
Hexavalent Chromium	ND	0.10	mg/kg	-						
LCS (B1G1418-BS1)				Prepared: (07/14/21 A	nalyzed: 07	//19/21			
Hexavalent Chromium	0.152	0.10	mg/kg	0.150		101	80-120			
Matrix Spike (B1G1418-MS1)	Source	ce: 2107188-	21	Prepared: (07/14/21 At	nalyzed: 07	//19/21			
Hexavalent Chromium	0.149	0.10	mg/kg	0.149	ND	99.9	75-125			

Mearns Consulting LLC

Project: Town Center Northwest

738 Ashland Avenue

Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 07/22/21 13:51

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1418 - EPA 3060A										
Matrix Spike Dup (B1G1418-MSD1)	Source	: 2107188-2	21	Prepared: 0)7/14/21 At	nalyzed: 07	/19/21			
Hexavalent Chromium	0.142	0.10	mg/kg	0.149	ND	95.6	75-125	4.53	20	
Batch B1G1419 - EPA 3060A										
Blank (B1G1419-BLK1)				Prepared: 0)7/14/21 At	nalyzed: 07	/19/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G1419-BS1)				Prepared: 0)7/14/21 At	nalyzed: 07	/19/21			
Hexavalent Chromium	0.144	0.10	mg/kg	0.150		96.2	80-120			
Matrix Spike (B1G1419-MS1)	Source	: 2107188-4	41	Prepared: 0)7/14/21 Aı	nalyzed: 07	/19/21			
Hexavalent Chromium	0.146	0.10	mg/kg	0.145	0.0341	77.2	75-125			
Matrix Spike Dup (B1G1419-MSD1)	Source	: 2107188-4	41	Prepared: 0)7/14/21 Aı	nalyzed: 07	/19/21			
Hexavalent Chromium	0.145	0.10	mg/kg	0.145	0.0341	76.9	75-125	0.525	20	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1502 - EPA 5035 P & T										
Blank (B1G1502-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg				·			
LCS (B1G1502-BS1)				Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.570	0.050	mg/kg	0.600		95.0	80-120			
Matrix Spike (B1G1502-MS1)	Sour	ce: 2107188-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.455	0.050	mg/kg	0.600	ND	75.8	50-150			
Matrix Spike Dup (B1G1502-MSD1)	Sour	ce: 2107188-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.480	0.050	mg/kg	0.600	ND	80.0	50-150	5.35	30	
Batch B1G1503 - EPA 5035 P & T										
Blank (B1G1503-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1503-BS1)				Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.531	0.050	mg/kg	0.600		88.5	80-120			
Matrix Spike (B1G1503-MS1)	Sour	ce: 2107204-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.466	0.050	mg/kg	0.600	ND	77.7	50-150			
Matrix Spike Dup (B1G1503-MSD1)	Sour	ce: 2107204-	01	Prepared &	Analyzed:	07/15/21				
Gasoline Range Hydrocarbons (C4-C12)	0.371	0.050	mg/kg	0.600	ND	61.8	50-150	22.7	30	
Batch B1G1504 - EPA 3550B Solid Ext										
Blank (B1G1504-BLK1)				Prepared &	Analyzed:	07/15/21				
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1504 - EPA 3550B Solid Ext										
LCS (B1G1504-BS1)				Prepared &	k Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	18.1	5.0	mg/kg	20.0		90.7	80-120			
Matrix Spike (B1G1504-MS1)	Sourc	e: 2107188-	01	Prepared &	ե Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	19.6	5.0	mg/kg	20.0	ND	98.1	50-150			
Matrix Spike Dup (B1G1504-MSD1)	Sourc	e: 2107188-	01	Prepared &	k Analyzed:	07/15/21				
Diesel Range Organics (C10-C24)	20.2	5.0	mg/kg	20.0	ND	101	50-150	2.77	30	
Batch B1G1601 - EPA 3550B Solid Ext										
Blank (B1G1601-BLK1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							
LCS (B1G1601-BS1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.3	5.0	mg/kg	20.0		81.5	80-120			
Matrix Spike (B1G1601-MS1)	Sourc	e: 2107204-	01	Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	19.7	5.0	mg/kg	20.0	ND	98.6	50-150			
Matrix Spike Dup (B1G1601-MSD1)	Sourc	e: 2107204-	01	Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	22.5	5.0	mg/kg	20.0	ND	112	50-150	13.1	30	
Batch B1G1602 - EPA 3550B Solid Ext										
Blank (B1G1602-BLK1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Total Petroleum Hydrocarbons (C13-C22)	ND	5.0	mg/kg							
Total Petroleum Hydrocarbons (C23-C40)	ND	5.0	"							

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B1G1602 - EPA 3550B Solid Ext										
LCS (B1G1602-BS1)				Prepared: (07/15/21 A	nalyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.9	5.0	mg/kg	20.0		84.7	80-120			
Matrix Spike (B1G1602-MS1)	Sour	ce: 2107188-	23	Prepared: ()7/15/21 A	analyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	16.0	5.0	mg/kg	20.0	ND	79.8	50-150			
Matrix Spike Dup (B1G1602-MSD1)	Sour	ce: 2107188-	23	Prepared: ()7/15/21 A	analyzed: 07	7/16/21			
Diesel Range Organics (C10-C24)	18.3	5.0	mg/kg	20.0	ND	91.4	50-150	13.6	30	
Batch B1G1913 - EPA 5035 P & T										
Blank (B1G1913-BLK1)				Prepared: (07/19/21 A	analyzed: 07	7/20/21			
Total Petroleum Hydrocarbons (C4-C12)	ND	0.050	mg/kg							
LCS (B1G1913-BS1)				Prepared: ()7/19/21 A	analyzed: 07	7/20/21			
Gasoline Range Hydrocarbons (C4-C12)	0.697	0.050	mg/kg	0.600		116	80-120			
Matrix Spike (B1G1913-MS1)	Sour	ce: 2107188-	23	Prepared: ()7/19/21 A	analyzed: 07	7/20/21			
Gasoline Range Hydrocarbons (C4-C12)	0.570	0.050	mg/kg	0.600	ND	95.0	50-150			
Matrix Spike Dup (B1G1913-MSD1)	Source: 2107188-23			Prepared: (07/19/21 A	nalyzed: 07				
Gasoline Range Hydrocarbons (C4-C12)	0.456	0.050	mg/kg	0.600	ND	76.0	50-150	22.2	30	

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1407 - EPA 5035 P & T

Blank (B1G1407-BLK1)				Prepared: 07/14/21 Analyzed: 07/15/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	R1C	1407.	. FPA	5035	P & T	١

Blank (B1G1407-BLK1)				Prepared: 07/1	4/21 Analyzed: 07	/15/21	
Isopropylbenzene	ND	5.0	μg/kg				
p-Isopropyltoluene	ND	5.0	"				
Methylene chloride	ND	5.0	"				
Methyl tert-butyl ether	ND	5.0	"				
Naphthalene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"				
Tetrachloroethene	ND	5.0	"				
Toluene	ND	5.0	"				
1,2,3-Trichlorobenzene	ND	5.0	"				
1,2,4-Trichlorobenzene	ND	5.0	"				
1,1,1-Trichloroethane	ND	5.0	"				
1,1,2-Trichloroethane	ND	5.0	"				
Trichloroethene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
1,2,3-Trichloropropane	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
Vinyl chloride	ND	5.0	"				
m,p-Xylene	ND	5.0	"				
o-Xylene	ND	5.0	"				
LCS (B1G1407-BS1)				Prepared: 07/1	4/21 Analyzed: 07	/15/21	
Benzene	50.3	5.0	μg/kg	50.0	101	80-120	
Chlorobenzene	40.1	5.0	"	50.0	80.2	80-120	
1,1-Dichloroethene	49.0	5.0	"	50.0	98.0	80-120	
Toluene	42.3	5.0	"	50.0	84.7	80-120	
Trichloroethene	50.2	5.0	"	50.0	100	80-120	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1407 - EPA 5035 P & T

Matrix Spike (B1G1407-MS1)	Source: 210)7188-(1	Prepared: 07	7/14/21 A	nalyzed: 07	/15/21		
Benzene	49.1	5.0	μg/kg	50.0	ND	98.2	37-151		
Chlorobenzene	38.2	5.0	"	50.0	ND	76.4	37-160		
1,1-Dichloroethene	48.0	5.0	"	50.0	ND	96.0	50-150		
Toluene	40.2	5.0	"	50.0	ND	80.3	47-150		
Trichloroethene	48.1	5.0	"	50.0	ND	96.2	71-157		
Matrix Spike Dup (B1G1407-MSD1)	Source: 210)7188-()1	Prepared: 07	7/14/21 A	nalyzed: 07	/15/21		
Benzene	47.4	5.0	μg/kg	50.0	ND	94.8	37-151	3.56	30
Chlorobenzene	36.9	5.0	"	50.0	ND	73.9	37-160	3.33	30
1,1-Dichloroethene	44.6	5.0	"	50.0	ND	89.2	50-150	7.37	30
Toluene	37.8	5.0	"	50.0	ND	75.5	47-150	6.14	30
Trichloroethene	46.2	5.0	"	50.0	ND	92.5	71-157	3.92	30

Blank (B1G1505-BLK1)				Prepared & Analyzed: 07/15/21
Benzene	ND	5.0	μg/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
,2-Dichlorobenzene	ND	5.0	"	
3-Dichlorobenzene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1505 - EPA 5035 P & T

Blank (B1G1505-BLK1)				Prepared & Analyzed: 07/15/21
1,4-Dichlorobenzene	ND	5.0	μg/kg	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Methyl tert-butyl ether	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
Toluene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
Trichloroethene	ND	5.0	"	
Trichlorofluoromethane	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
Vinyl chloride	ND	5.0	"	
m,p-Xylene	ND	5.0	"	

Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloroform

Mearns Consulting LLC
Project: Town Center Northwest

738 Ashland Avenue
Project Number: [none]

Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

%REC

		Reporting		Spike	Source		%REC		KPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B1G1505 - EPA 5035 P & T											
Blank (B1G1505-BLK1)				Prepared &	Analyzed:	07/15/21					
o-Xylene	ND	5.0	μg/kg								
LCS (B1G1505-BS1)				Prepared &	Analyzed:	07/15/21					
Benzene	48.1	5.0	μg/kg	50.0		96.2	80-120				
Chlorobenzene	47.1	5.0	"	50.0		94.2	80-120				
1,1-Dichloroethene	45.5	5.0	"	50.0		90.9	80-120				
Toluene	40.0	5.0	"	50.0		80.0	80-120				
Trichloroethene	54.0	5.0	"	50.0		108	80-120				
Matrix Spike (B1G1505-MS1)	Sour				Analyzed:	07/15/21					
Benzene	47.2	5.0	μg/kg	50.0	ND	94.5	37-151				
Chlorobenzene	41.2	5.0	"	50.0	ND	82.3	37-160				
1,1-Dichloroethene	42.9	5.0	"	50.0	ND	85.8	50-150				
Toluene	43.1	5.0	"	50.0	ND	86.3	47-150				
Trichloroethene	55.4	5.0	"	50.0	ND	111	71-157				
Matrix Spike Dup (B1G1505-MSD1)	Sour	ce: 2107188-	21	Prepared & Analyzed: 07/15/21							
Benzene	48.8	5.0	μg/kg	50.0	ND	97.6	37-151	3.23	30		
Chlorobenzene	41.6	5.0	"	50.0	ND	83.2	37-160	1.04	30		
1,1-Dichloroethene	44.7	5.0	"	50.0	ND	89.4	50-150	4.13	30		
Toluene	45.5	5.0	"	50.0	ND	90.9	47-150	5.26	30		
Trichloroethene	56.1	5.0	"	50.0	ND	112	71-157	1.18	30		
Batch B1G1507 - EPA 5035 P & T											
				Prepared: ()	7/16/21 Aı	nalyzed: 07	//19/21				
Blank (B1G1507-BLK1)				r repared. 0							
	ND	5.0	μg/kg	rrepared. o		•					
Benzene	ND ND	5.0 5.0	μg/kg "	Trepared. 0		•					
Benzene Bromobenzene				Trepared. 0							
Benzene Bromobenzene Bromochloromethane	ND	5.0	"	Trepared. 0		•					
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND	5.0 5.0	"	Trepared. 0							
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND	5.0 5.0 5.0	"	Trepared. 0		·					
Blank (B1G1507-BLK1) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene	ND ND ND ND	5.0 5.0 5.0 5.0	" "	Trepared. 0							
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	5.0 5.0 5.0 5.0 5.0	" " "	Trepared. 0							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5.0

5.0

5.0

5.0

ND

ND

ND

ND

Reported:

RPD

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1507 - EPA 5035 P & T

Blank (B1G1507-BLK1)				Prepared: 07/16/21 Analyzed: 07/19/21
Chloromethane	ND	5.0	μg/kg	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Methyl tert-butyl ether	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
Toluene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1507 - EPA 5035 P & T										
Blank (B1G1507-BLK1)				Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
1,1,1-Trichloroethane	ND	5.0	μg/kg							
1,1,2-Trichloroethane	ND	5.0	"							
Trichloroethene	ND	5.0	"							
Trichlorofluoromethane	ND	5.0	"							
1,2,3-Trichloropropane	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
LCS (B1G1507-BS1)	Prep		Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21				
Benzene	48.2	5.0	μg/kg	50.0		96.4	80-120			
Chlorobenzene	47.1	5.0	"	50.0		94.2	80-120			
1,1-Dichloroethene	44.3	5.0	"	50.0		88.6	80-120			
Toluene	42.8	5.0	"	50.0		85.7	80-120			
Trichloroethene	50.8	5.0	"	50.0		102	80-120			
Matrix Spike (B1G1507-MS1)	Source	e: 2107118-0	05	Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
Benzene	40.2	5.0	μg/kg	50.0	ND	80.4	37-151			
Chlorobenzene	34.2	5.0	"	50.0	ND	68.4	37-160			
1,1-Dichloroethene	36.1	5.0	"	50.0	ND	72.3	50-150			
Toluene	36.4	5.0	"	50.0	ND	72.7	47-150			
Trichloroethene	43.2	5.0	"	50.0	ND	86.5	71-157			
Matrix Spike Dup (B1G1507-MSD1)	Source	e: 2107118-0	05	Prepared: 0	7/16/21 A	Analyzed: 07	7/19/21			
Benzene	44.9	5.0	μg/kg	50.0	ND	89.8	37-151	11.0	30	
Chlorobenzene	37.3	5.0	"	50.0	ND	74.6	37-160	8.73	30	
1,1-Dichloroethene	39.1	5.0	"	50.0	ND	78.1	50-150	7.79	30	
Toluene	39.4	5.0	"	50.0	ND	78.9	47-150	8.12	30	
Trichloroethene	48.5	5.0	"	50.0	ND	97.0	71-157	11.4	30	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1603 - EPA 3550B Solid Ext

Blank (B1G1603-BLK1)				Prepared: 07/15/21 Analyzed: 07/16/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1603 - EPA 3550B Solid Ext

Blank (B1G1603-BLK1)				Prepared: 07/15/21 Analyzed: 07/16/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1603-BS1)				Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21		
Acenaphthene	0.843	0.33	mg/kg	1.00		84.3	47-145		
2-Chlorophenol	2.07	0.33	"	2.00		104	23-134		
4-Chloro-3-methylphenol	1.94	0.33	"	2.00		96.8	22-147		
1,4-Dichlorobenzene	0.791	0.33	"	1.00		79.1	20-124		
2,4-Dinitrotoluene	0.496	0.33	"	1.00		49.6	39-139		
4-Nitrophenol	0.636	0.33	"	2.00		31.8	0-132		
N-Nitrosodi-n-propylamine	0.683	0.33	"	1.00		68.3	0-230		
Pentachlorophenol	0.446	0.33	"	2.00		22.3	14-176		
Phenol	1.73	0.33	"	2.00		86.4	5-112		
Pyrene	0.831	0.33	"	1.00		83.1	52-115		
1,2,4-Trichlorobenzene	0.729	0.33	"	1.00		72.9	44-142		
Matrix Spike (B1G1603-MS1)	-		Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21			
Acenaphthene	0.909	0.33	mg/kg	1.00	ND	90.9	47-145		
2-Chlorophenol	1.84	0.33	"	2.00	ND	91.8	23-134		
4-Chloro-3-methylphenol	1.65	0.33	"	2.00	ND	82.6	22-147		
1,4-Dichlorobenzene	0.894	0.33	"	1.00	ND	89.4	20-124		
2,4-Dinitrotoluene	0.537	0.33	"	1.00	ND	53.7	39-139		
4-Nitrophenol	0.655	0.33	"	2.00	ND	32.8	0-132		
N-Nitrosodi-n-propylamine	0.881	0.33	"	1.00	ND	88.1	0-230		
Pentachlorophenol	0.351	0.33	"	2.00	ND	17.6	14-176		
Phenol	1.59	0.33	"	2.00	ND	79.5	5-112		
Pyrene	0.953	0.33	"	1.00	ND	95.3	52-115		
1,2,4-Trichlorobenzene	0.820	0.33	"	1.00	ND	82.0	44-142		
Matrix Spike Dup (B1G1603-MSD1)	Sourc	e: 2107188-	01	Prepared: 0	7/15/21 A	nalyzed: 07	7/16/21		
Acenaphthene	1.03	0.33	mg/kg	1.00	ND	103	47-145	12.8	30
2-Chlorophenol	1.90	0.33	"	2.00	ND	95.0	23-134	3.37	30
4-Chloro-3-methylphenol	1.90	0.33	"	2.00	ND	94.8	22-147	13.7	30
1,4-Dichlorobenzene	0.981	0.33	"	1.00	ND	98.1	20-124	9.28	30
2,4-Dinitrotoluene	0.527	0.33	"	1.00	ND	52.7	39-139	1.88	30
4-Nitrophenol	0.642	0.33	"	2.00	ND	32.1	0-132	2.00	30
N-Nitrosodi-n-propylamine	0.938	0.33	"	1.00	ND	93.8	0-230	6.27	30
Pentachlorophenol	0.414	0.33		2.00	ND	20.7	14-176	16.5	30
Phenol	1.84	0.33		2.00	ND	92.1	5-112	14.7	30
Pyrene	0.846	0.33	"	1.00	ND	84.6	52-115	11.9	30
1,2,4-Trichlorobenzene	0.708	0.33	"	1.00	ND	70.8	44-142	14.7	30

738 Ashland AvenueProject Number: [none]Reported:Santa Monica CA, 90405Project Manager: Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK1)				Prepared: 07/19/21 Analyzed: 07/20/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK1)				Prepared: 07/19/21 Analyzed: 07/20/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK2)				Prepared: 07/19/21 Analyzed: 07/20/21
Acenaphthene	ND	0.33	mg/kg	
Acenaphthylene	ND	0.33	"	
Anthracene	ND	0.33	"	
Benzidine	ND	0.33	"	
Benzo (a) anthracene	ND	0.33	"	
Benzo (b) fluoranthene	ND	0.33	"	
Benzo (k) fluoranthene	ND	0.33	"	
Benzo (a) pyrene	ND	0.33	"	
Benzo (g,h,i) perylene	ND	0.33	"	
Benzyl alcohol	ND	0.33	"	
Bis(2-chloroethyl)ether	ND	0.33	"	
Bis(2-chloroethoxy)methane	ND	0.33	"	
Bis(2-ethylhexyl)phthalate	ND	0.33	"	
Bis(2-chloroisopropyl)ether	ND	0.33	"	
4-Bromophenyl phenyl ether	ND	0.33	"	
Butyl benzyl phthalate	ND	0.33	"	
4-Chloroaniline	ND	0.33	"	
2-Chlorophenol	ND	0.33	"	
4-Chloro-3-methylphenol	ND	0.33	"	
2-Chloronaphthalene	ND	0.33	"	
4-Chlorophenyl phenyl ether	ND	0.33	"	
Chrysene	ND	0.33	"	
Dibenz (a,h) anthracene	ND	0.33	"	
Dibenzofuran	ND	0.33	"	
1,3-Dichlorobenzene	ND	0.33	"	
1,2-Dichlorobenzene	ND	0.33	"	
1,4-Dichlorobenzene	ND	0.33	"	
3,3'-Dichlorobenzidine	ND	0.33	"	
2,4-Dichlorophenol	ND	0.33	"	
Diethyl phthalate	ND	0.33	"	
2,4-Dimethylphenol	ND	0.33	"	
Dimethyl phthalate	ND	0.33	"	
Di-n-butyl phthalate	ND	0.33	"	
2,4-Dinitrophenol	ND	0.33	"	
4,6-Dinitro-2-methylphenol	ND	0.33	"	
2,4-Dinitrotoluene	ND	0.33	"	
2,6-Dinitrotoluene	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch B1G1916 - EPA 3550B Solid Ext

Blank (B1G1916-BLK2)				Prepared: 07/19/21 Analyzed: 07/20/21
Di-n-octyl phthalate	ND	0.33	mg/kg	
1,2-Diphenylhydrazine	ND	0.33	"	
Fluoranthene	ND	0.33	"	
Fluorene	ND	0.33	"	
Hexachlorobenzene	ND	0.33	"	
Hexachlorobutadiene	ND	0.33	"	
Hexachlorocyclopentadiene	ND	0.33	"	
Hexachloroethane	ND	0.33	"	
Indeno (1,2,3-cd) pyrene	ND	0.33	"	
Isophorone	ND	0.33	"	
2-Methylnaphthalene	ND	0.33	"	
2-Methylphenol	ND	0.33	"	
4-Methylphenol	ND	0.33	"	
Naphthalene	ND	0.33	"	
2-Nitroaniline	ND	0.33	"	
3-Nitroaniline	ND	0.33	"	
4-Nitroaniline	ND	0.33	"	
Nitrobenzene	ND	0.33	"	
2-Nitrophenol	ND	0.33	"	
4-Nitrophenol	ND	0.33	"	
N-Nitrosodimethylamine	ND	0.33	"	
Diphenylamine	ND	0.33	"	
N-Nitrosodi-n-propylamine	ND	0.33	"	
Pentachlorophenol	ND	0.33	"	
Phenanthrene	ND	0.33	"	
Phenol	ND	0.33	"	
Pyrene	ND	0.33	"	
1,2,4-Trichlorobenzene	ND	0.33	"	
2,4,5-Trichlorophenol	ND	0.33	"	
2,4,6-Trichlorophenol	ND	0.33	"	

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (B1G1916-BS1)				Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.848	0.33	mg/kg	1.00		84.8	47-145
2-Chlorophenol	1.85	0.33	"	2.00		92.3	23-134
4-Chloro-3-methylphenol	1.96	0.33	"	2.00		98.2	22-147
1,4-Dichlorobenzene	0.815	0.33	"	1.00		81.5	20-124
2,4-Dinitrotoluene	0.479	0.33	"	1.00		47.9	39-139
4-Nitrophenol	0.664	0.33	"	2.00		33.2	0-132
N-Nitrosodi-n-propylamine	0.797	0.33	"	1.00		79.7	0-230
Pentachlorophenol	0.379	0.33	"	2.00		19.0	14-176
Phenol	1.78	0.33	"	2.00		89.0	5-112
Pyrene	0.709	0.33	"	1.00		70.9	52-115
1,2,4-Trichlorobenzene	0.729	0.33	"	1.00		72.9	44-142
LCS (B1G1916-BS2)				Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.844	0.33	mg/kg	1.00		84.4	47-145
2-Chlorophenol	1.81	0.33	"	2.00		90.6	23-134
4-Chloro-3-methylphenol	2.16	0.33	"	2.00		108	22-147
1,4-Dichlorobenzene	0.796	0.33	"	1.00		79.6	20-124
2,4-Dinitrotoluene	0.523	0.33	"	1.00		52.3	39-139
4-Nitrophenol	0.642	0.33	"	2.00		32.1	0-132
N-Nitrosodi-n-propylamine	0.711	0.33	"	1.00		71.1	0-230
Pentachlorophenol	0.351	0.33	"	2.00		17.6	14-176
Phenol	1.65	0.33	"	2.00		82.6	5-112
Pyrene	0.694	0.33	"	1.00		69.4	52-115
1,2,4-Trichlorobenzene	0.615	0.33	"	1.00		61.5	44-142
Matrix Spike (B1G1916-MS1)	Source	e: 2107188-	19	Prepared: 0	7/19/21 A	nalyzed: 07	7/20/21
Acenaphthene	0.919	0.33	mg/kg	1.00	ND	91.9	47-145
2-Chlorophenol	1.82	0.33	"	2.00	ND	91.2	23-134
4-Chloro-3-methylphenol	1.84	0.33	"	2.00	ND	91.9	22-147
1,4-Dichlorobenzene	0.880	0.33	"	1.00	ND	88.0	20-124
2,4-Dinitrotoluene	0.899	0.33	"	1.00	ND	89.9	39-139
4-Nitrophenol	0.634	0.33	"	2.00	ND	31.7	0-132
N-Nitrosodi-n-propylamine	0.834	0.33	"	1.00	ND	83.4	0-230
Pentachlorophenol	0.413	0.33	"	2.00	ND	20.6	14-176
Phenol	1.68	0.33	"	2.00	ND	84.2	5-112
Pyrene	0.866	0.33	"	1.00	ND	86.6	52-115
1,2,4-Trichlorobenzene	0.810	0.33	"	1.00	ND	81.0	44-142

738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B1G1916-MS2)	Sourc	e: 2107188-	30	Prepared: 0	7/19/21	Analyzed: 07	7/20/21			
Acenaphthene	0.919	0.33	mg/kg	1.00	ND	91.9	47-145			
2-Chlorophenol	1.82	0.33	"	2.00	ND	91.2	23-134			
4-Chloro-3-methylphenol	1.84	0.33	"	2.00	ND	91.9	22-147			
,4-Dichlorobenzene	0.880	0.33	"	1.00	ND	88.0	20-124			
2,4-Dinitrotoluene	0.544	0.33	"	1.00	ND	54.4	39-139			
4-Nitrophenol	0.634	0.33	"	2.00	ND	31.7	0-132			
N-Nitrosodi-n-propylamine	0.834	0.33	"	1.00	ND	83.4	0-230			
Pentachlorophenol	0.413	0.33	"	2.00	ND	20.6	14-176			
Phenol	1.68	0.33	"	2.00	ND	84.2	5-112			
Pyrene	0.866	0.33	"	1.00	ND	86.6	52-115			
,2,4-Trichlorobenzene	0.810	0.33	"	1.00	ND	81.0	44-142			
Matrix Spike Dup (B1G1916-MSD1)	Sourc	e: 2107188-	19	Prepared: 0	7/19/21	Analyzed: 07	7/20/21			
Acenaphthene	0.968	0.33	mg/kg	1.00	ND	96.8	47-145	5.19	30	
-Chlorophenol	1.85	0.33	"	2.00	ND	92.3	23-134	1.25	30	
-Chloro-3-methylphenol	2.06	0.33	"	2.00	ND	103	22-147	11.2	30	
,4-Dichlorobenzene	0.923	0.33	"	1.00	ND	92.3	20-124	4.77	30	
,4-Dinitrotoluene	0.920	0.33	"	1.00	ND	92.0	39-139	2.31	30	
-Nitrophenol	0.629	0.33	"	2.00	ND	31.4	0-132	0.792	30	
I-Nitrosodi-n-propylamine	0.847	0.33	"	1.00	ND	84.7	0-230	1.55	30	
entachlorophenol	0.458	0.33	"	2.00	ND	22.9	14-176	10.3	30	
henol	1.67	0.33	"	2.00	ND	83.4	5-112	0.955	30	
yrene	0.995	0.33	"	1.00	ND	99.5	52-115	13.9	30	
,2,4-Trichlorobenzene	0.710	0.33	"	1.00	ND	71.0	44-142	13.2	30	
Matrix Spike Dup (B1G1916-MSD2)	Sourc	e: 2107188-	30	Prepared: 0	7/19/21	Analyzed: 07	7/20/21			
cenaphthene	1.00	0.33	mg/kg	1.00	ND	100	47-145	8.44	30	
-Chlorophenol	1.92	0.33	"	2.00	ND	96.0	23-134	5.13	30	
-Chloro-3-methylphenol	1.99	0.33	"	2.00	ND	99.4	22-147	7.79	30	
,4-Dichlorobenzene	0.920	0.33	"	1.00	ND	92.0	20-124	4.44	30	
,4-Dinitrotoluene	0.594	0.33	"	1.00	ND	59.4	39-139	8.79	30	
-Nitrophenol	0.650	0.33	"	2.00	ND	32.5	0-132	2.49	30	
I-Nitrosodi-n-propylamine	0.899	0.33	"	1.00	ND	89.9	0-230	7.50	30	
Pentachlorophenol	0.489	0.33	"	2.00	ND	24.4	14-176	16.9	30	
Phenol	1.72	0.33	"	2.00	ND	86.2	5-112	2.35	30	
yrene	0.679	0.33	"	1.00	ND	67.9	52-115	24.2	30	
1,2,4-Trichlorobenzene	0.723	0.33	"	1.00	ND	72.3	44-142	11.4	30	

Mearns Consulting LLCProject:Town Center Northwest738 Ashland AvenueProject Number:[none]Reported:Santa Monica CA, 90405Project Manager:Susan Mearns07/22/21 13:51

Notes and Definitions

S-07 Surrogate recovery outside of control limits due to coelution with high levels of petroleum hydrocarbons.

S-03 Surrogate diluted out.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

A

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

13 Date: 7 / 12 / 21

Page: 1 8 of 5

TEL: 949 • 348 • 9389

FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Leonna Hills, CA • 92653

ah Work Order No.:

2001198

		o- cagai	in IIIIis, Cri		lant Dualant ITA		Client: MEARNS (ONSULTING CORP Client Project ID:													
Client Address: 738 ASHLAN					ient rroject LO:	•			Analyses Requested											
								ئے ا	Ħ					j		ļ			Geotracker EDD Info:	
SANTA MONICA (CA 904	05											(C)	Į	j					
TOWN CENTER NORTHWEST											i		5035B	•		ł				
	24 Hour	غ ق ر	1	ا م			~						Client LOGCODE							
Client Tel. No.: 310 403	921			Tim	o Damaniado	Immediate	72 Hour	A ACTA	釒	SOUTE	8015B	8015B	82bo B	827cx		i				
CP Prov. No.	`	·				Larbay	5 Day	1	3	શ્ચિ	જી	8	্ব	78	į					
Client Proj. Mgr.: SUSAN L	MEADAYS !	(II)			7	5 ~ ~ 1			•		_,	۵	23	-					Site Global ID	
Chent Proj. Mgr.: 20444 2 5	VID (1-12)	117 <i>V</i>				Normal	Mobile	- 11	, i	C4.C12	C13. C12	Сho		3						
CN + C 1 - VD	Sierra	_	A 71			Containe	r No. of	- \ • F	4	<u>ن</u>	3. ((a)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SVOG	ļ			i i		
Client Sample ID.	No.	Pate	Time	Matrix	Preservative	Type	Container	* 	- 3	5	Ü	5	⋽	S	ļ	l			Field Point Names / Comments	
SV6-5	Ø	7-12-21	6735	SOIL	PRERV	YOU VI	54 1/4 K	У	×	×	×		×	X						
5V610	02	1	6744	1			j	×	X	×	X	χ	X	X						
SV6-15	ഖ		0751					<u> </u>	+	×	×	×	X	Х						
SV4.5	04		0815)	+	×	Χ	Х		X		-				
5√7·6	05		0825		 		- -		`	X	X	×	X	X			-			
	1973-57		+					$+\frac{x}{2}$	Ή	· -	X		χ			+				
sva·15	96	<u> </u>	0830					<u> </u> ×		٨		X		×					j	
SV 8.5	07		0856					<u> </u>	X	Χ	×	X	X	X						
2/8/10	<i>9</i> 8_		0 858						(<u>X</u>	X	×	X	<u> </u>	Х						
SV8-15	09		0906					X	×	×	×	×	X	×						
a. SV9.5/	J WO	A	0919	V	₩.	W	A	Х	X	X	ス	X	X	٨						
The cart	700g	1	Shipped Vis:	AND PELI	VERED				-			Total	Numb	er of (Containe	rs Subi	nitted to	,	Sample Disposal:	
"SHEAR LANGARANG PHD "SC	av:a" <u> </u>	isan	(Carrior/Weybill No.)		<u> </u>				Laboratory										Return to Client	
Refisquished By: Al Fay	an	Zlist	Z Decirco Br.	12	-1		7/13/2	The	-	_					of custody				Lab Disposal -	
777		120	7	52 2m	~		170	Cos	ıditləns, ı	ales of	nerwise :	agreed (Hon (a) л	<u> </u>						
Company:	·-···	me e	Соворнану:		<u> </u>	· · · · · · · · · · · · · · · · · · ·	Time: 7 70	- 	Samples	determi	red to be	hazard	ous by S	IERRA	wW bo retu	rned to t	CLIENT.			
Relateuished By.		Date:	Received By:				Date:					Tota	l Num	ber of	Contain	ers Re	eived b	у	Other	
Companys		Time:	Сопірвиу.				Time:						ratory							
	······································						Date:	FOR	i Alien	TORY U	9R OXL	Y Bray	ls fleedy	rt Coadji	lòns; Chilici - Te			o		
Relanguaghed By: Date: Received By:								2.600,000	* C \ A ^ .	Frank 65.5					Chilled - Te	np (°C)	.	2		
Company: Trite: Company:								_ _	Sample	Séels				ta i	Preservative	- Yerif	a1 87 . (V	Z	
Special Instructions:									Properi					Д,						
								- 15 A	Properi	y Labello					Other		ترسم ويهد			
								=	Approp	rinte San	ple Con	arret		D	Storage Loca	tion (25	By	: 50a\	
¥ev: 129321								R-/T	0,450	228/02	11899 ()	-000	<u> </u>	. Y Y.	DISTRIBUTE	N White	Yo Acommun	Samples Ye	place - Laborator: Corv. Polit - Picki Personnel Corv.	

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389

FAX: 949 • 348 • 9115

Date: 7 / 13 / 21 Page: 2 of 5

Lab Work Order No.: 2107199 26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653 CHEAR CONSULTING COPP Client Project ID: Analyses Requested Client Address: 738 ASHLAND AVE Geotracker EDD Info: STIMAL MONICA CA 96405 925g TOWN CONTER NORTHWEST Client LOGCODE Immediate 24 Hour 4 9 Client Tel. No.: 310 403 1921 Time Roquested: 8015 48 Hour 72 Hour Client Fax. No.: 4 Day Day 5 Day Site Global ID Client Proj. Mgr.: ☐ Mobile Normal Cq. Cl2 No. of Container Sierra Client Sample 1D. Date Time Preservative Matrix Containers Field Point Names / No. Type Comments Acetate Guv 146 Х SV9.10 501L X 6972 7-13-21 VOA VIACE PRSRAI SV9-15 12 X 0924 х ß X SV10.5 0932 SVID . 10 0936 X, SV10-15 15 X х 0952 SVII-5 1016 Х SVII-10 T 1020 5111-15 W) 1026 X SV12.5 × 1049 SV12-10 1058 Shippoul Vas: HEXILD DELIVERED Total Number of Containers Submitted to Sample Disposal: Laboratory Return to Client (Carrier/Waybill No.) The delivery of samples and the signature on this chain of curtody form constitutes 7/13/21 Lab Disposal * authorization to perform the analyses specified above under SIRRA's Terms and Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. 515 rens 1707 * - Samples determined to be hazardoos by SIERRA will be returned to CLIENT. 3 Total Number of Containers Received by Relinquished H Laboratory FOR LANGUATORY USE ONLY - Sample Receipt Combinate: 0 Relinquished By Treservatives - Vended By (TO Sample Seals Special Instructions: Rev: 120321

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115 Date: 4/13/21 Page: 3 of 5

26052 Merit Circl	Lab Work Order No.: 2107188										<u> </u>								
Client: MEARAS CONSULTING	Coop			CL	ient Project ID;							naly	ses I	Reque	sted	•			
Client Address: 738 ASHLAN		JE.															Ţ		Geotracker EDD lufo:
SANTA MONICA		0405	······					\$		Ì									Geografic EDD 1810.
		0402			Town (and	es Nobr	ZHUGGT	1	j				2						
					Town Contract Northwest \$							-C	Sorts						Client LOGCODE
Client Tel. No.: 310 403 192					- lan pa							8015B	$\overline{}$	J					
							72 Hour	3		8015 B	Sois B	\$€	8260 B	82700					
Client Fag. No.:	115.4	S PHD				<u> </u>	5 Day	1		ૐ			275	82					
Client Proj. Mgr.: SUGAN L	MEARN	is thu			X	Normal)	Mobile	METALS		=4	72)· (A)	\$	- 1						Site Global ID
Client Famula ID	Sierra	D-4-	707	3.5		Container	No. of	#15	(A ⁺ A)	442	ې	4	200	3					
Client Sample ID.	No.	Date	Time	Matrix	Preservative	Туре	Containers	₩	2	2	څ	3	>	57064					Field Point Names / Comments
SV12-15	21	7-13-21	1107	501L	PRSRV	VOD VIA	50 /4	Х	X	X	X	X	X	Х					
SV13.5	22,		1126	1	1		1	X	Х	Х	乂	Х	X	X					
SV13-10	23		1131					X	χ	X	X	X	X	X			<u> </u>		
SV13 · 15	24		1138					Х	χ	×	×	X	X	X			<u> </u>		
514.5	25		1249					X	X	x	х	X	X	×		-			
SV14-lo	26		1254					X	Χ	X	文	×	X	X		•	+	-	
541-15	27		1301				 	X	X	X	χ	$\overline{\mathbf{x}}$	X	×	+				
(A) SHA SN(5.5	28		1319					х	Х	Х	X		X	X	_	+-			
5415-10	29		1323		 	7		X	x	쥤	X	X		$\frac{1}{x}$	\dashv	+			
Q. SVI5-150	30		1327	─			 	X	X	$\overrightarrow{\mathbf{x}}$	X	X		$\frac{2}{x}$			+		<u></u>
All ratte	100	<u> </u>	Sluipped Via:	and deli			.]			l.		~	•						
GKAN LAMBARNE, HD SC	*1	aget (1)		and hely	VEKED			-				Labora		er of Co	ontainei	rs Subm	ntted to	,	Sample Disposal:
		2/3/2	(Carrier/Waybill No.)	12			7/13/24					-		is chain o					Return to Client
Retinguished By:	in (77/27	Received By:	<i></i>										above un rriting het				.	Lab Disposal *
Company:	····	Tine: [U]	Сопаралу:	ي برحم	rus		Time: 1707	* · Si	amples é	letermin	rd to be	bazardo	ns by S	IERRA W	UI be retu	rued to C	LIENT.		Archive mos.
Refinquiated fly:		Dare:	Received By:				Dane.					Total	Numi	ber of C	Contain	ers Rece	eived b	y	Other
		Time,						1				Labor							
Continuory:		1 13/106	Сопрыу:				Tone:	FOR L	APATRA'	YORY US	E ONLY	- Sample	Receip	Condition		NW.	25,230		
Relinquished By:		Date:	Received By:				Date:	13	lmset					₽T ca	illed - Ter	¤ар (°°С)	روح	turijanisini) jenga san	· ·
Совърыну		Time:	Соправу:				Tope;	J 🗖 .	Sample (ionis		\$ 3.		<u>ک</u> ۔۔	exervatives	-Verifice	6	>	
Special Instructions:						<u> </u>		179 A.K.	5.5										
									Prograty	Labelise				 1 01	1ec	7			
								্র প্র	Appropr	ate Some	te Cost	urosex			enge Loca		45 ·	-6-	esod.
lev: F2032 L								10050	Cale Bur	3.0.0	41.32	7.	<u> </u>	1.00	DESTRUCTO	ON: White-T	о Алексения	Sarphes, Vall	pp - 1 glamatory Copy, Pink - Field Personnel Copy

CHAIN OF CUSTODY RECORD

Date:	ב	,	13	į	21	
Date:	7		.,	•	-1	

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

6052 Merit Circle	 Suite 104 	· Laguna Hills,	CA • 92653

Lah Work Order No.: 21071098

Client: MEARN'S CONSULTI	Analyses Requested																		
Client Address: 738 ASHLAN	D AVE				ent Project 1D:			4000											Geotracker EDD Info:
SANTA MONKA		10405				_1		· ` \					40						
Town GNTEP NORTHWES													50358						
	Immediate	24 Hour	paso,		~	22	В	5						Client LOGCODE					
Client Tel. No.: 310 463 1921	72 Hour	WETALS		8015B	Solf B	5199	ď	1270C											
Client Fax. No.:	1	-0-					☐ 5 Day			\$	8		\$260 B	25					
Client Proj. Mgr.: SUGAN	MEARNS	KHD		L	- K	Normal)	Mobile			7	(12	3	•∞	_					Site Global ID
Client Sample 1D.	Sierra No.	Date	Time	Matrix	Preservative	Container Type	No. of Containers	12	₹ 3	C+Ω7	(4)· ((13 · (ź	5/10/2					Field Point Names / Comments
SV16-5	3(7-13-21	1354	501L	PERV	ACCIDITE S VOA VIAIS	1/4	X	X	X	X	Х	X	X					Company
546.60	32	1	1357]		1	1	X	×	X	λ	X	X	入 入					
5416-15	33		140D					X	Χ	X	Х	X	X	X					
SVI7-5	34		1444					X	×	X	X	×	X	X					
SV17-lo	3 50		1448					X	X	Χ	X	Х	X	X	ĺ				
5417-15	36		1453					X	X	χ	×	×	X	X					
SV18-5	31		1519					Х	X	X	×	Х	X	X					
SV18/10	38		1525					Χ	×	X	X	×	X	Х					
SV18/15	34		1529					χ	ĸ	Υ	\times	×	×	X					
SV19-5	40		1549	V	V	4	V	χ	x	×	Χ	X	Y	X					
	7) A)	· ·	Shipped Via:	D DELIV	GHFD									er of	Containe	rs Sub	mitted to	, [Sample Disposat:
LOUSAN O MEDONS PUD 30	I Fa	6911.	(Carrier/Waybill No.)									Labor	•						Return to Client
Relinquisted BX QUI - Tage	m	<i>II</i> 3/2	Received By:	40	<u> </u>		7/13/21	nuther	ization (o perío	rm the r	ınalyses	specifie	i above	a of curtody under SIER	RA's Te	erma and	l	Lab Disposal •
Сопрвау:		#7 <i>0</i> 7	Сопераку:	1500	and		Time: 1707					_	•	_	between SEE will be reti			.	Archive mos.
3 Refraqueshed Dy:		Date:	Received By:				Dete;					Tota	l Num	ber of	f Contain	ers Re	ceived b	γ	Other
Соправу:		Трпи:	Соптравну:				Tires:					Labo	ratory	,		- 1			
A Rebisquished fly:		Date:	Received By:	•				FORT	BONA)	ORY U	SE ON!	У - Басар	la Receip	d Consti	fees: Chilled , Te		ς,	0	
							Dute:		nuses Sample f						Project stive	ew Vi	7.	- N	
Company: Special Instructions:	!	Time:	Company:				Tinje							. C	7" - Part 199 . 1"	********	led By . V		<i></i>
									roporty	Catello					Ods				
									Чуресург)	ate Saxe	pie Con	laine¢		ď	Storage Loc	alion			
Rw. 120321								H DAM	1/20/1-3		<u></u>	<u>. 75.95</u>	(1 to \$1 or	- 3,7457			To Accompany	Samples, Yo	llow - Laboretury Copy, Pink - Field Personnel Copy

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

Date: 7 / 13 / 21 Page: 5 of 5

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653												Lab Work Order No.:											
Client: MEARNS CONSULTIN	h Copp)		Cli	ent Project ID:			Analyses Requested															
Client Address: 738 ASH	IAND	Ave			•			\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	3		T									Control PDD Inte			
SANTA MON			.60-					100	4											Geotracker EDD Info:			
7 11 10 10 10 10 10 10 10 10 10 10 10 10	104 4	107	ν υ		Town Co	NTER NOO	1111)ES+	· ~					5 5		- 1	ł		1					
						8	}				5035			İ									
						Immediate C	24 Hour	1 ł	1	80	8	ďΩ		O		- 1		1		Client LOGCODE			
Client Tel. No.: 310 403 16	21			Time	Requested:	48 Hour	☐ 72 Hour	Merrans		8065.8	BOIS B	8015B	SULOB,	52700	- 1								
Client Fax. No.:			4 Day 5 Day							100		8	8	8		İ	1						
Client Proj. Mgr.; WAN L	<i>learns</i>	PUD	Normal Mobile							61	લ	उ	62							Site Global ID			
	228 BROK	- F1				(Normal C		'	1	C4-C12	C13 · C22	9				l							
Client Sample ID,	Sierra	Date	Time	Matrix	Preservative	Container	No. of] ₺	\$	1+	5	F	3	8	1		ļ	•					
	No.					Type	Containers	1	2	10	J	$^{\circ}$	1 000	2002				l		Field Point Nomes / Comments			
SV19-10	4ા	7.13.21	1554	Sal	PISAV	ACETALE S VOA VIA	¥ 1/4	X	X	X	X	χ		X									
SV19-15	42	J)	1559	11		11	17	×	~	X	χ	×	X	×					\dashv				
2014-13			1777		· · · · · · · · · · · · · · · · · · ·		ļ	1	X	-				$\stackrel{\frown}{-}$	 -								
					.1.		ļ		İ				-		- 1		l						
							1					•											
			 	<u> </u>	<u> </u>			 		├					_		— - -						
													- 1	}	- 1				İ				
									-					+	\dashv								
	14.600 (14.00) -2.000 (14.00)		<u> </u>		<u></u>				ļ	-													
									1	ļi	i]						
0																	Ī						
City	1													\neg									
1911	1	-3	1[.				<u> </u>			J		—					<u>i</u>						
Sampler Startury!	100	TV .	Shipped Via:	MD DE	MAEDED			1						er of C	ontair	ners Si	ubmit	ted to		Sample Disposal:			
MEARNS 14D S	CONTE	79911	(Carrier/Waybill No.)								İ	Labora	atory						- la	Return to Client			
2 X STATE		A 112/2	,	4			7/13/4							hla chain					1.	_			
Reliniqueshed Biss	W (Vac / /	Received By:	<i>(</i>	<u> </u>			-					-	l above u vriting be					- 1'	Lob Disposal *			
Company:		<u> 1707</u>	Сотрыну:	س کسر	~~ <u></u>		Time 1707							TERRA Y						Archive mos.			
3 Kelinquabed By:												70.4-1				.				Other			
		Date:	Reserved By:				Date:	-			ŀ		ratory	ber of (Conta	mers i	tecen	ea by	- ['	Other			
Company:		Time:	Сопирыму:				Time						•										
Lelinquished By:	į,	Date:	Received By:				Date:	PORL	ABORA	TORY D	SE ONL	(-Sampl	s Rrceip		DL:			F					
							Date.			1.00					•, 1920 +	· Hear Alb 1 _e (المندر (م ا	·υ					
Company: Special Instructions:		Time:	Company:				Time:		Sample	Seals				7.	reservan	ives - Ve	nilied B	, L E					
•								7		/ Labella				□。									
														7	ioer								
								4	Аругор	rieuc Sam	ple Cont	MIEX.		Z.	orago L	ocation	P	5-	34	کیمو			
n: 120321						·· -·		Landinii	85.4.4 <u>.</u>	**********		· · · · · · · · · · · · · · · · · · ·	:81,316:	- 300 PAS	INSTRUM	UTION W	hila - To A	PORCEAU S	erolm, Yelfor	y - Laboratory Comy, Pink - Pink Personnel Com			

APPENDIX B

Sierra Analytical Labs Background Soil Matrix Data April 4, 2005 and July 6, 2021

Mearns Consulting Corporation 738 Ashland Avenue

Santa Monica CA, 90405

Project: City of Signal Hill

Project Number: Las Brisas
Project Manager: Susan Mearns

Reported: 04/12/05 14:01

Metals by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

		Dici i a Ai							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Offsite-1 (0504072-33) Soil	Sampled: 04/04/05 13:20	Received: 04	<u>4/04/05</u> 14	l:15					
Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B	
Arsenic	5.2	1.7	"	"	"	"	"	"	
Barium	97	3.3	"	"	"	"	"	"	
Beryllium	ND	0.75	"	"	"	"	"	"	
Cadmium	ND	0.51	"	"	"	"	"	"	
Cobalt	8.1	2.2	"	"	"	"	"	"	
Chromium	21	0.98	"	"	"	"	"	"	
Copper	25	2.2	"	"	"	"	"	"	
Mercury	ND	0.16	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A	
Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B	
Nickel	12	0.79	"	"	"	"	"	"	
Lead	12	1.3	"	"	"	"	"	"	
Antimony	ND	1.6	"	"	"	"	"	"	
Selenium	ND	1.9	"	"	"	"	"	"	
Thallium	ND	1.5	"	"	"	"	"	"	
Vanadium	35	0.73	"	"	"	"	"	"	
Zinc	62	1.3	"	"	"	"	"	"	
Offsite-5 (0504072-34) Soil	Sampled: 04/04/05 13:25	Received: 04	4/04/05 14	l:15					
Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B	
Arsenic	12	1.7	"	"	"	"	"	"	
Barium	160	3.3	"	"	"	"	"	"	
Beryllium	1.1	0.75	"	"	"	"	"	"	
Cadmium	ND	0.51	"	"	"	"	"	"	
Cobalt	17	2.2	"	"	"	"	"	"	
Chromium	50	0.98	"	"	"	"	"	"	
Copper	64	2.2	"	"	"	"	"	"	
Mercury	ND	0.18	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A	
Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B	
Nickel	30	0.79	"	"	"	"	"	"	
Lead	8.1	1.3	"	"	"	"	"	"	
Antimony	2.3	1.6	"	"	"	"	"	"	
Selenium	ND	1.9	"	"	"	"	"	"	
Thallium	ND	1.5	"	"	"	"	"	"	
Vanadium	75	0.73	"	"	"	"	"	"	
Zinc	99	1.3	"	"	"	"	"	"	

Mearns Consulting Corporation

Project: City of Signal Hill

738 Ashland Avenue Project Number: Las Brisas
Santa Monica CA, 90405 Project Manager: Susan Mearns

Reported: 04/12/05 14:01

Metals by EPA 6000/7000 Series Methods Sierra Analytical Labs, Inc.

Silver			Dici i a Ai							
ND	Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Arsenic 12	Offsite-10 (0504072-35) Soil	Sampled: 04/04/05 13:29	Received:	04/04/05 1	14:15					
Barium	Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B	
Beryllium	Arsenic	12		"	"	"	"	"	"	
Cadmium ND 0.51 " <th< td=""><td>Barium</td><th>170</th><td>3.3</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Barium	170	3.3	"	"	"	"	"	"	
Cobalt 14 2.2 "	Beryllium	ND	0.75	"	"	"	"	"	"	
Chromium 32 0.98 " <t< td=""><td>Cadmium</td><th>ND</th><td>0.51</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Cadmium	ND	0.51	"	"	"	"	"	"	
Copper 35 2.2 "	Cobalt	14	2.2	"	"	"	"	"	"	
Mercury ND 0.18 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 "	Chromium	32	0.98	"	"	"	"	"	"	
Molybdenum	Copper	35	2.2	"	"	"	"	"	"	
Nickel 22 0.79 "	Mercury	ND	0.18	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A	
Cade	Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B	
Antimony ND 1.6 " " " " " " " " " " " " Thallium ND 1.9 " " " " " " " " " " " " " " " " " " "	Nickel	22	0.79	"	"	"	"	"	"	
ND	Lead	5.6	1.3	"	"	"	"	"	"	
ND	Antimony	ND	1.6	"	"	"	"	"	"	
Thailium	Selenium	ND	1.9	"	"	"	"	"	"	
Zinc 67 1.3 " </td <td>Thallium</td> <th>ND</th> <td>1.5</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Thallium	ND	1.5	"	"	"	"	"	"	
ND 0.80 mg/kg 1 B5D0709 04/07/05 04/11/05 EPA 6010B	Vanadium	58	0.73	"	"	"	"	"	"	
ND	Zinc	67	1.3	"	"	"	"	"	"	
Arsenic 14 1.7 " " " " " " " " " " " " " " " " " " "	Offsite-20 (0504072-36) Soil	Sampled: 04/04/05 13:36	Received:	04/04/05 1	14:15					
Arsenic 14 1.7 " " " " " " " " " " " " " " " " " " "	Silver	ND	0.80	mg/kg	1	B5D0709	04/07/05	04/11/05	EPA 6010B	
Barium 73 3.3 """"""""""""""""""""""""""""""""""""	Arsenic	14			"	"	"		"	
Beryllium 0.95 0.75 " " " " " " " " " " " " " " " " " " "	Barium	73	3.3	"	"	"	"	"	"	
Cobalt 17 2.2 " " " " " " " " " " " " " " " " " " "	Beryllium	0.95		"	"	"	"	"	"	
Chromium 35 0.98 " " " " " " " " " " " " " " " " " " "	Cadmium	ND	0.51	"	"	"	"	"	"	
Copper 80 2.2 " " " " " " " " " " " " " " " " " " "	Cobalt	17	2.2	"	"	"	"	"	"	
Mercury ND 0.15 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 " <t< td=""><td>Chromium</td><th>35</th><td>0.98</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Chromium	35	0.98	"	"	"	"	"	"	
Mercury ND 0.15 " B5D0711 04/07/05 04/08/05 EPA 7471A Molybdenum ND 1.7 " B5D0709 04/07/05 04/11/05 EPA 6010B Nickel 22 0.79 " <t< td=""><td>Copper</td><th>80</th><td>2.2</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Copper	80	2.2	"	"	"	"	"	"	
Nickel 22 0.79 "	Mercury	ND	0.15	"	"	B5D0711	04/07/05	04/08/05	EPA 7471A	
Nickel 22 0.79 "	Molybdenum	ND	1.7	"	"	B5D0709	04/07/05	04/11/05	EPA 6010B	
Lead 10 1.3 " </td <td>Nickel</td> <th></th> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Nickel			"	"	"	"	"	"	
Antimony ND 1.6 " " " " " " " " " " " " " " " " " " "	Lead			"	"	"	"	"	"	
Selenium ND 1.9 " <th< td=""><td>Antimony</td><th></th><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Antimony			"	"	"	"	"	"	
Thallium ND 1.5 " " " " " " " " " " " Vanadium 67 0.73 " " " " " " " " " " " " " " " " " " "	Selenium			"	"	"	"	"	"	
	Thallium		1.5	"	"	"	"	"	"	
	Vanadium	67	0.73	"	"	"	"	"	"	
	Zinc		1.3	"	"	"	"	"	"	

13 July 2021

Susan Mearns Mearns Consulting LLC 738 Ashland Avenue Santa Monica, CA 90405

RE:1905 E 21st St. - Spud Field Work Order No.: 2107058

Attached are the results of the analyses for samples received by the laboratory on 07/06/21 14:35.

The samples were received by Sierra Analytical Labs, Inc. with a chain of custody record attached or completed at the submittal of the samples.

The analyses were performed according to the prescribed method as outlined by EPA, Standard Methods, and A.S.T.M.

The remaining portions of the samples will be disposed of within 30 days from the date of this report. If you require any additional retaining time, please advise us.

Sincerely,

Richard K. Forsyth

Laboratory Director

Sierra Analytical Labs, Inc. is certified by the California Department of Health Services (DOHS), Environmental Laboratory Accredidation Program (ELAP) No. 2320.

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB1-5	2107058-01	Soil	07/06/21 07:40	07/06/21 14:35
SB2-5	2107058-02	Soil	07/06/21 07:51	07/06/21 14:35
SB3-5	2107058-03	Soil	07/06/21 08:01	07/06/21 14:35
SB4-5	2107058-04	Soil	07/06/21 08:08	07/06/21 14:35
SB5-5	2107058-05	Soil	07/06/21 08:16	07/06/21 14:35
SB6-5	2107058-06	Soil	07/06/21 08:23	07/06/21 14:35
SB7-5	2107058-07	Soil	07/06/21 08:31	07/06/21 14:35
SB8-5	2107058-08	Soil	07/06/21 08:38	07/06/21 14:35
SB9-5	2107058-09	Soil	07/06/21 08:47	07/06/21 14:35
SB10-5	2107058-10	Soil	07/06/21 08:58	07/06/21 14:35
SB11-5	2107058-11	Soil	07/06/21 09:10	07/06/21 14:35

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

	D14	Reporting	T.T:4-	Diletie	Detal	D 1	A 1 d	Mada d	NT /
	Kesult	Lımit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Sampled: 07/06/21 07:40	Received: 0	7/06/21 14:3	5						
	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	ND	5.5	"	"	"	"	"	"	
	84	6.0	"	"	"	"	"	"	
	ND	2.2	"	"	"	"	"	"	
	ND	2.5	"	"	"	"	"	"	
	11	3.3	"	"	"	"	"	"	
	36	2.3	"	"	"	"	"	"	
	ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
	40	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
	ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	21	3.0	"	"	"	"	"	"	
	8.8	7.1	"	"	"	"	"	"	
	ND	8.0	"	"	"	"	"	"	
	ND	6.9	"	"	"	"	"	"	
	ND	17	"	"	"	"	"	"	
	46	5.1	"	"	"	"	"	"	
	54	7.0	"	"	"	"	"	"	
Sampled: 07/06/21 07:51	Received: 0	7/06/21 14:3	5						
	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	"	"	
			"	"	"	"	,,	"	
			"	"	"	"	"	"	
			,,	"	"	"	"	"	
	ND		,,	,,	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
		0.10				37707721	J//J/21 12.7/		
		0.10 5.0	,,		B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
	26	5.0	"		B1G0611	07/06/21	07/07/21 13:55	EPA 6010B EPA 7471A	
	26 ND	5.0 0.90		"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
	26 ND ND	5.0 0.90 5.2	"	"					
	26 ND ND 15	5.0 0.90 5.2 3.0	"	" "	B1G0613 B1G0611	07/06/21 07/06/21	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND	5.0 0.90 5.2 3.0 7.1	"	" "	B1G0613 B1G0611	07/06/21 07/06/21	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND	5.0 0.90 5.2 3.0 7.1 8.0	" " "	" " "	B1G0613 B1G0611 "	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND ND	5.0 0.90 5.2 3.0 7.1 8.0 6.9	" "	" " " " " " " " " " " " " " " " " " " "	B1G0613 B1G0611	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55	EPA 7471A EPA 6010B	
	26 ND ND 15 ND ND	5.0 0.90 5.2 3.0 7.1 8.0	" " " " "	" " " " " " " " " " " " " " " " " " " "	B1G0613 B1G0611 "	07/06/21 07/06/21 "	07/06/21 20:35 07/07/21 13:55 "	EPA 7471A EPA 6010B	
		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Result Limit	Result Limit Units	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 ND 2.0 mg/kg 1 ND 5.5 " " 84 6.0 " " ND 2.2 " " ND 2.5 " " 11 3.3 " " ND 0.10 " " ND 0.90 " " ND 5.2 " " ND 5.2 " " ND 8.8 7.1 " " ND 8.9 " " " ND 6.9 " " " ND 17 " " " Sampled: 07/06/21 07:51 Received: 07/06/21 14:35 " " " ND 2.0 mg/kg 1 " " ND 5.5 " " " ND 5.5 "	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 ND 2.0 mg/kg 1 B1G0611 ND 5.5 " " " 84 6.0 " " " ND 2.2 " " " ND 2.5 " " " 11 3.3 " " " ND 0.10 " " B1G0711 40 5.0 " " B1G0611 ND 0.90 " " B1G0613 ND 5.2 " " B1G0611 ND 5.2 " " B1G0611 ND 8.8 7.1 " " " ND 8.0 " " " " ND 6.9 " " " " ND 17 " " " " ND 2.0 mg/kg	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 Units Dilution Batch Prepared ND 2.0 mg/kg 1 B1G0611 07/06/21 ND 5.5 " " " " 84 6.0 " " " " ND 2.2 " " " " ND 2.5 " " " " 36 2.3 " " " " ND 0.10 " " B1G0611 07/06/21 ND 0.90 " " B1G0611 07/06/21 ND 5.2 " " B1G0611 07/06/21 ND 5.2 " " B1G0611 07/06/21 ND 5.2 " " " " ND 6.9 " " " " ND 6.9 " " " "	Result	Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 Units Dilution Batch Prepared Analyzed Method Sampled: 07/06/21 07:40 Received: 07/06/21 14:35 SEPA 6010B ND 2.0 mg/kg 1 BIG0611 07/06/21 07/07/21 13:55 EPA 6010B ND 5.5 " " " " " " ND 2.2 " " " " " " ND 2.5 " " " " " " 11 3.3 " " " " " " ND 0.10 "

Mearns Consulting LLC 738 Ashland Avenue

Santa Monica CA, 90405

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SR3-5 (2107058-03) Soil	Sampled: 07/06/21 08:01	Received: 0	7/06/21 14:3	<u> </u>				<u> </u>		
Silver	54mpreur 07/00/21 00/01	ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	mg/kg	"	"	07/00/21	0//0//21 13.33	EFA 0010B	
Barium		48	6.0	,,	,,	,,	,,	"	"	
Beryllium		ND	2.2	,,	,,	,,	,,	"	"	
Cadmium		ND	2.5	,,	"	,,	,,	"	"	
Cobalt		4.6	3.3		"	,,	,,	"	"	
Chromium		9.0	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	,,	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		16	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		6.2	3.0	"	"	"	"	"	"	
_ead		ND	7.1	"	"	"	,,	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Challium		ND	17	"	"	"	"	"	"	
Vanadium		16	5.1	"	"	"	"	"	"	
Zinc		29	7.0	"	"	"	"	"	"	
SB4-5 (2107058-04) Soil	Sampled: 07/06/21 08:08	Received: 0	7/06/21 14:3:	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		170	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		14	3.3	"	"	"	"	"	"	
Chromium		42	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		45	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		26	3.0	"	"	"	"	"	"	
Lead		9.5	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
1111111111111		ND	6.9	"	"	"	"	"	"	
•					,,	,,	"	"	"	
Selenium		ND	17	"	"					
Selenium Thallium Vanadium		ND 58	17 5.1	"	"	,	"	"	"	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB5-5 (2107058-05) Soil	Sampled: 07/06/21 08:16	Received:	07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		97	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		16	3.3	"	"	"	"	"	"	
Chromium		30	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		40	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		27	3.0	"	"	"	"	"	"	
Lead		8.5	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		52	5.1	"	"	"	"	"	"	
Zinc			7.0				,,			
Line		56	7.0	"	"	"	"	"	"	
	Sampled: 07/06/21 08:23				"	"	"	"	"	
SB6-5 (2107058-06) Soil	Sampled: 07/06/21 08:23	Received:		5	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil	Sampled: 07/06/21 08:23		07/06/21 14:3 :							
SB6-5 (2107058-06) Soil Silver Arsenic	Sampled: 07/06/21 08:23	ND ND	07/06/21 14:3: 2.0 5.5	5 mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium	Sampled: 07/06/21 08:23	ND ND ND 130	2.0 5.5 6.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium	Sampled: 07/06/21 08:23	ND ND 130 ND	2.0 5.5 6.0 2.2	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium	Sampled: 07/06/21 08:23	ND ND ND 130	2.0 5.5 6.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22	2.0 5.5 6.0 2.2 2.5	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	Sampled: 07/06/21 08:23	ND ND 130 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611 " " " " " " " B1G0711	07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55	EPA 6010B " " " " " " EPA 7199A	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	Sampled: 07/06/21 08:23	ND ND 130 ND ND 22 42 ND 46 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	1 " " " " " " " " " " " " " " " " " " "	B1G0611 " " " " " " B1G0711 B1G0611 B1G0613	07/06/21 " " " " " 07/07/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/09/21 13:55 07/06/21 20:35	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	Sampled: 07/06/21 08:23	ND ND 130 ND ND 22 42 ND 46 ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	1	B1G0611 " " " " " " B1G0711 B1G0611	07/06/21 " " " " " 07/07/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55	EPA 6010B " " " " " " EPA 7199A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND 33	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg		B1G0611 " " " " " " B1G0711 B1G0611 B1G0613 B1G0611	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND 33	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " " B1G0711 B1G0611 B1G0613	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " " B1G0711 B1G0613 B1G0611 "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
SB6-5 (2107058-06) Soil Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G0611 " " " " " B1G0711 B1G0613 B1G0611 " "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " " " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 " "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	
	Sampled: 07/06/21 08:23	ND ND 130 ND ND ND 22 42 ND 46 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0611 " " " " " B1G0711 B1G0613 B1G0611 " "	07/06/21 " " " " " 07/07/21 07/06/21 07/06/21 " " " "	07/07/21 13:55 " " " " " 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 " " "	EPA 6010B " " " " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/13/21 12:23

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods$

Sierra Analytical Labs, Inc.

					2405, 111					
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB7-5 (2107058-07) Soil	Sampled: 07/06/21 08:31	Received:	07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		80	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		12	3.3	"	"	"	"	"	"	
Chromium		24	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		26	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		19	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		43	5.1	"	"	"	"	"	"	
Zinc		47	7.0	"	"	"	"	"	"	
SB8-5 (2107058-08) Soil	Sampled: 07/06/21 08:38	Received:	07/06/21 14:3:	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		180	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		17	3.3	"	"	"	"	"	"	
Chromium		38	2.3		"	,,	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		37	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		32	3.0		"	"	"	"	"	
Lead		11	7.1		"	"	"	"	"	
Antimony		ND	8.0		"	,,	"	"	"	
Selenium		ND	6.9	,,	"	,,	,,	"	"	
Thallium		ND ND	17	,,	,,	,,	,,	,,	"	
Vanadium		68	5.1	,,	,,	,,	,,	"	,	
Zinc		68 51	7.0	,,	,,	,,	,,	"	,	
Zanc		31	7.0							

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

1										
Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB9-5 (2107058-09) Soil	Sampled: 07/06/21 08:47	Received: (07/06/21 14:3	5						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		87	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		14	3.3	"	"	"	"	"	"	
Chromium		30	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		28	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		24	3.0	"	"	"	"	"	"	
Lead		9.0	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		54	5.1	"	"	"	"	"	"	
Zinc		38	7.0	"	"	"	"	"	"	
SB10-5 (2107058-10) Soi	il Sampled: 07/06/21 08:58			35						
	il Sampled: 07/06/21 08:58	Received:	07/06/21 14:		1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Silver	il Sampled: 07/06/21 08:58		07/06/21 14: 2.0	mg/kg	1 "	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Silver Arsenic	il Sampled: 07/06/21 08:58	ND ND	07/06/21 14:: 2.0 5.5	mg/kg						
Silver Arsenic Barium	il Sampled: 07/06/21 08:58	ND ND ND 98	2.0 5.5 6.0	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium	il Sampled: 07/06/21 08:58	ND ND	07/06/21 14:: 2.0 5.5	mg/kg	"	"	"	"	"	
Silver Arsenic Barium Beryllium Cadmium	il Sampled: 07/06/21 08:58	ND ND ND 98 ND	2.0 5.5 6.0 2.2	mg/kg " "	" "	"	"	" "	"	
Silver Arsenic Barium Beryllium Cadmium Cobalt	il Sampled: 07/06/21 08:58	ND ND 98 ND ND ND 13	2.0 5.5 6.0 2.2 2.5	mg/kg " "	" "	" " "	" "	" " " "	" " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium	il Sampled: 07/06/21 08:58	ND ND ND 98 ND ND	2.0 5.5 6.0 2.2 2.5 3.3	mg/kg " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " "	" " " " " " " " " " " " " " " " " " " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " " B1G0711	" " " " 07/07/21	" " " 07/09/21 12:47	" " " EPA 7199A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611	" " " 07/07/21 07/06/21	" " " 07/09/21 12:47 07/07/21 13:55	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611 B1G0613	""""""""""""""""""""""""""""""""""""""	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35	" " " EPA 7199A EPA 6010B EPA 7471A	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2	mg/kg	" " " " " " " " " " " " " " " " " " " "	" " " B1G0711 B1G0611	" " " 07/07/21 07/06/21	" " " 07/09/21 12:47 07/07/21 13:55	" " " EPA 7199A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND ND 23	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0	mg/kg	" " " " " " " " " "	" " " " B1G0711 B1G0611 B1G0613 B1G0611	07/07/21 07/06/21 07/06/21 07/06/21	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	" " " " " B1G0711 B1G0613 B1G0611 "	07/07/21 07/06/21 07/06/21 07/06/21	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg	"""""""""""""""""""""""""""""""""""""""	B1G0711 B1G0611 B1G0613 B1G0611	07/07/21 07/06/21 07/06/21 "	07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55	" " " EPA 7199A EPA 6010B EPA 6010B " "	
Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1 8.0 6.9	mg/kg		B1G0711 B1G0611 B1G0611 B1G0611	07/07/21 07/06/21 07/06/21 ""	07/09/21 12:47 07/09/21 13:55 07/06/21 20:35 07/07/21 13:55	" " EPA 7199A EPA 6010B EPA 6010B " "	
SB10-5 (2107058-10) Soi Silver Arsenic Barium Beryllium Cadmium Cobalt Chromium Hexavalent Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Thallium Vanadium	il Sampled: 07/06/21 08:58	ND ND 98 ND ND 13 27 ND 30 ND ND 23 7.5 ND	2.0 5.5 6.0 2.2 2.5 3.3 2.3 0.10 5.0 0.90 5.2 3.0 7.1	mg/kg		B1G0711 B1G0611 B1G0611 """	07/07/21 07/06/21 07/06/21 """"""""""""""""""""""""""""""""""""	"" "" 07/09/21 12:47 07/07/21 13:55 07/06/21 20:35 07/07/21 13:55 "" "" ""	" " " EPA 7199A EPA 6010B EPA 7471A EPA 6010B " "	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported:

07/13/21 12:23

Project: 1905 E 21st St. - Spud Field

Project Number:[none]Reported:Project Manager:Susan Mearns07/13/21 12:23

Metals by EPA 6000/7000 Series Methods

Sierra Analytical Labs, Inc.

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB11-5 (2107058-11) Soil	Sampled: 07/06/21 09:10	Received:	07/06/21 14:3	35						
Silver		ND	2.0	mg/kg	1	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Arsenic		ND	5.5	"	"	"	"	"	"	
Barium		120	6.0	"	"	"	"	"	"	
Beryllium		ND	2.2	"	"	"	"	"	"	
Cadmium		ND	2.5	"	"	"	"	"	"	
Cobalt		9.8	3.3	"	"	"	"	"	"	
Chromium		22	2.3	"	"	"	"	"	"	
Hexavalent Chromium		ND	0.10	"	"	B1G0711	07/07/21	07/09/21 12:47	EPA 7199A	
Copper		14	5.0	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Mercury		ND	0.90	"	"	B1G0613	07/06/21	07/06/21 20:35	EPA 7471A	
Molybdenum		ND	5.2	"	"	B1G0611	07/06/21	07/07/21 13:55	EPA 6010B	
Nickel		16	3.0	"	"	"	"	"	"	
Lead		ND	7.1	"	"	"	"	"	"	
Antimony		ND	8.0	"	"	"	"	"	"	
Selenium		ND	6.9	"	"	"	"	"	"	
Thallium		ND	17	"	"	"	"	"	"	
Vanadium		39	5.1	"	"	"	"	"	"	
Zinc		31	7.0	"	"	"	"	"	"	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B1G0611 - EPA 3050B							
Blank (B1G0611-BLK1)				Prepared: 07/06/	/21 Analyzed: 07	7/07/21	
Antimony	ND	8.0	mg/kg				
Selenium	ND	6.9	"				
Cadmium	ND	2.5	"				
Vanadium	ND	5.1	"				
Chromium	ND	2.3	"				
Cobalt	ND	3.3	"				
Zinc	ND	7.0	"				
Thallium	ND	17	"				
Copper	ND	5.0	"				
Barium	ND	6.0	"				
Lead	ND	7.1	"				
Arsenic	ND	5.5	"				
Molybdenum	ND	5.2	"				
Nickel	ND	3.0	"				
Silver	ND	2.0	"				
Beryllium	ND	2.2	"				
LCS (B1G0611-BS1)				Prepared: 07/06/	/21 Analyzed: 07	7/07/21	
Copper	107	5.0	mg/kg	100	107	78-122	
Lead	112	7.1	"	100	112	80-120	
Antimony	103	8.0	"	100	103	75-125	
Chromium	111	2.3	"	100	111	80-120	
Selenium	105	6.9	"	100	105	76-124	
Cobalt	119	3.3	"	100	119	80-120	
Beryllium	107	2.2	"	100	107	80-120	
Silver	106	2.0	"	100	106	60-140	
Arsenic	105	5.5	"	100	105	78-122	
Barium	112	6.0	"	100	112	80-120	
Zinc	110	7.0	"	100	110	80-120	
Nickel	119	3.0	"	100	119	80-120	
Vanadium	107	5.1	"	100	107	80-120	
Cadmium	103	2.5	"	100	103	80-120	
Molybdenum	108	5.2	"	100	108	80-120	
Thallium	114	17	"	100	114	80-120	

Mearns Consulting LLC 738 Ashland Avenue

Analyte

Antimony

Chromium

Nickel

Lead

Copper

Thallium

Project: 1905 E 21st St. - Spud Field

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

RPD

Limit

Notes

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

Units

Reporting

Limit

Result

LCS Dup (B1G0611-BSD1)				Prepared: (07/06/21 A	nalyzed: 0'	7/07/21		
Beryllium	105	2.2	mg/kg	100		105	80-120	1.49	20
Chromium	106	2.3	"	100		106	80-120	4.14	20
Cadmium	97.5	2.5	"	100		97.5	80-120	5.78	20
Copper	112	5.0	"	100		112	78-122	4.64	20
Arsenic	101	5.5	"	100		101	78-122	3.70	20
Cobalt	116	3.3	"	100		116	80-120	2.58	20
Silver	108	2.0	"	100		108	60-140	1.96	40
Molybdenum	105	5.2	"	100		105	80-120	3.50	20
Barium	109	6.0	"	100		109	80-120	2.55	20
Vanadium	105	5.1	"	100		105	80-120	1.32	20
Selenium	100	6.9	"	100		100	76-124	4.29	20
Antimony	112	8.0	"	100		112	75-125	8.57	20
Nickel	115	3.0	"	100		115	80-120	3.21	20
Lead	115	7.1	"	100		115	80-120	3.08	20
Thallium	107	17	"	100		107	80-120	6.02	20
Zine	109	7.0	"	100		109	80-120	1.23	20
Matrix Spike (B1G0611-MS1)	Source	e: 2107028-	01	Prepared: (07/06/21 A	nalyzed: 0'	7/07/21		
Vanadium	126	5.1	mg/kg	96.8	32.6	96.9	70-130		
Barium	192	6.0	"	96.8	83.1	113	70-130		
Cobalt	102	3.3	"	96.8	7.94	97.4	70-130		
Molybdenum	82.1	5.2	"	96.8	0.635	84.2	70-130		
Cadmium	84.1	2.5	"	96.8	1.03	85.8	70-130		
Zinc	132	7.0	"	96.8	46.6	88.5	70-130		
Arsenic	86.3	5.5	"	96.8	ND	89.2	70-130		
Selenium	86.0	6.9	"	96.8	1.66	87.2	70-130		
Silver	99.9	2.0	"	96.8	0.269	103	60-140		
Beryllium	88.1	2.2	"	96.8	0.220	91.1	70-130		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

8.0

2.3

3.0

17

7.1

5.0

96.8

96.8

96.8

96.8

96.8

96.8

5.77

17.4

15.2

ND

22.8

91.8

94.5

97.7

87.8

109

113

60-140

70-130

70-130

70-130

70-130

70-130

94.6

109

110

85.0

129

135

Project: 1905 E 21st St. - Spud Field

Project Number: [none] Reported:
Project Manager: Susan Mearns 07/13/21 12:23

$Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B1G0611	- EPA	3050R	

Source	e: 2107028-0)1	Prepared: (07/06/21 Aı	nalyzed: 07	7/07/21			
193	6.0	mg/kg	96.7	83.1	114	70-130	0.455	20	
82.3	5.2	"	96.7	0.635	84.4	70-130	0.168	20	
98.4	2.0	"	96.7	0.269	101	60-140	1.49	40	
87.1	5.5	"	96.7	ND	90.0	70-130	0.880	20	
148	7.0	"	96.7	46.6	105	70-130	11.0	20	
107	3.0	"	96.7	15.2	95.2	70-130	2.37	20	
103	3.3	"	96.7	7.94	98.1	70-130	0.588	20	
136	5.0	"	96.7	25.5	115	70-130	1.31	30	
87.0	2.2	"	96.7	0.220	90.0	70-130	1.31	20	
85.1	17	"	96.7	ND	88.0	70-130	0.102	20	
127	7.1	"	96.7	22.8	108	70-130	1.16	30	
110	2.3	"	96.7	17.4	95.8	70-130	1.07	20	
86.2	2.5	"	96.7	1.03	88.1	70-130	2.52	20	
124	5.1	"	96.7	32.6	94.2	70-130	2.17	20	
91.9	8.0	"	96.7	5.77	89.1	60-140	2.90	20	
87.0	6.9	"	96.7	1.66	88.3	70-130	1.16	20	
	193 82.3 98.4 87.1 148 107 103 136 87.0 85.1 127 110 86.2 124 91.9	193 6.0 82.3 5.2 98.4 2.0 87.1 5.5 148 7.0 107 3.0 103 3.3 136 5.0 87.0 2.2 85.1 17 127 7.1 110 2.3 86.2 2.5 124 5.1 91.9 8.0	82.3 5.2 " 98.4 2.0 " 87.1 5.5 " 148 7.0 " 107 3.0 " 103 3.3 " 87.0 2.2 " 85.1 17 " 127 7.1 " 110 2.3 " 86.2 2.5 " 124 5.1 " 91.9 8.0 "	193 6.0 mg/kg 96.7 82.3 5.2 " 96.7 98.4 2.0 " 96.7 87.1 5.5 " 96.7 148 7.0 " 96.7 107 3.0 " 96.7 103 3.3 " 96.7 136 5.0 " 96.7 87.0 2.2 " 96.7 85.1 17 " 96.7 127 7.1 " 96.7 110 2.3 " 96.7 110 2.3 " 96.7 124 5.1 " 96.7 91.9 8.0 " 96.7	193 6.0 mg/kg 96.7 83.1 82.3 5.2 " 96.7 0.635 98.4 2.0 " 96.7 0.269 87.1 5.5 " 96.7 ND 148 7.0 " 96.7 46.6 107 3.0 " 96.7 15.2 103 3.3 " 96.7 7.94 136 5.0 " 96.7 25.5 87.0 2.2 " 96.7 0.220 85.1 17 " 96.7 ND 127 7.1 " 96.7 ND 127 7.1 " 96.7 22.8 110 2.3 " 96.7 17.4 86.2 2.5 " 96.7 1.03 124 5.1 " 96.7 32.6 91.9 8.0 " 96.7 5.77	193 6.0 mg/kg 96.7 83.1 114 82.3 5.2 " 96.7 0.635 84.4 98.4 2.0 " 96.7 0.269 101 87.1 5.5 " 96.7 ND 90.0 148 7.0 " 96.7 46.6 105 107 3.0 " 96.7 15.2 95.2 103 3.3 " 96.7 7.94 98.1 136 5.0 " 96.7 25.5 115 87.0 2.2 " 96.7 0.220 90.0 85.1 17 " 96.7 ND 88.0 127 7.1 " 96.7 ND 88.0 110 2.3 " 96.7 17.4 95.8 86.2 2.5 " 96.7 1.03 88.1 124 5.1 " 96.7 32.6 94.2 91.9 8.0 " 96.7 5.77 89.1	193 6.0 mg/kg 96.7 83.1 114 70-130 82.3 5.2 " 96.7 0.635 84.4 70-130 98.4 2.0 " 96.7 0.269 101 60-140 87.1 5.5 " 96.7 ND 90.0 70-130 148 7.0 " 96.7 46.6 105 70-130 107 3.0 " 96.7 15.2 95.2 70-130 103 3.3 " 96.7 7.94 98.1 70-130 136 5.0 " 96.7 25.5 115 70-130 87.0 2.2 " 96.7 0.220 90.0 70-130 85.1 17 " 96.7 ND 88.0 70-130 127 7.1 " 96.7 ND 88.0 70-130 110 2.3 " 96.7 17.4 95.8 70-130 110 2.3 " 96.7 17.4 95.8 70-130 86.2 2.5 " 96.7 1.03 88.1 70-130 124 5.1 " 96.7 32.6 94.2 70-130 91.9 8.0 " 96.7 5.77 89.1 60-140	193 6.0 mg/kg 96.7 83.1 114 70-130 0.455 82.3 5.2 " 96.7 0.635 84.4 70-130 0.168 98.4 2.0 " 96.7 0.269 101 60-140 1.49 87.1 5.5 " 96.7 ND 90.0 70-130 0.880 148 7.0 " 96.7 46.6 105 70-130 11.0 107 3.0 " 96.7 15.2 95.2 70-130 2.37 103 3.3 " 96.7 7.94 98.1 70-130 0.588 136 5.0 " 96.7 25.5 115 70-130 1.31 87.0 2.2 " 96.7 0.220 90.0 70-130 1.31 85.1 17 " 96.7 ND 88.0 70-130 1.31 85.1 17 " 96.7 ND 88.0 70-130 0.102 127 7.1 " 96.7 22.8 108 70-130 1.16 110 2.3 " 96.7 17.4 95.8 70-130 1.07 86.2 2.5 " 96.7 1.03 88.1 70-130 2.52 124 5.1 " 96.7 32.6 94.2 70-130 2.17 91.9 8.0 " 96.7 5.77 89.1 60-140 2.90	193 6.0 mg/kg 96.7 83.1 114 70-130 0.455 20 82.3 5.2 " 96.7 0.635 84.4 70-130 0.168 20 98.4 2.0 " 96.7 0.269 101 60-140 1.49 40 87.1 5.5 " 96.7 ND 90.0 70-130 0.880 20 148 7.0 " 96.7 46.6 105 70-130 11.0 20 107 3.0 " 96.7 15.2 95.2 70-130 2.37 20 103 3.3 " 96.7 7.94 98.1 70-130 0.588 20 136 5.0 " 96.7 25.5 115 70-130 1.31 30 87.0 2.2 " 96.7 0.220 90.0 70-130 1.31 20 85.1 17 " 96.7 ND 88.0 70-130 1.16 30 110 2.3 " 96.7 17.4 95.8 70-130 1.16 30 110 2.3 " 96.7 17.4 95.8 70-130 1.07 20 86.2 2.5 " 96.7 1.03 88.1 70-130 2.52 20 124 5.1 " 96.7 32.6 94.2 70-130 2.17 20 91.9 8.0 " 96.7 5.77 89.1 60-140 2.90 20

Batch B1G0613 - EPA 7471A

Blank (B1G0613-BLK1)				Prepared &	Analyzed:	07/06/21		
Mercury	ND	0.90	mg/kg					
LCS (B1G0613-BS1)				Prepared &	Analyzed:	07/06/21		
Mercury	0.20	0.90	mg/kg	0.167		118	70-130	
Matrix Spike (B1G0613-MS1)	Source:	2107028-0)1	Prepared &	Analyzed:	07/06/21		
Mercury	0.24	0.90	mg/kg	0.163	0.09	90.8	70-130	

Project: 1905 E 21st St. - Spud Field

Project Number: [none]
Project Manager: Susan Mearns

Reported: 07/13/21 12:23

Metals by EPA 6000/7000 Series Methods - Quality Control

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Rosun	Ziiiit	Cinto	Level	resuit	, unche	Limito		Limit	110103
Batch B1G0613 - EPA 7471A										
Matrix Spike Dup (B1G0613-MSD1)	Source:	: 2107028-0)1	Prepared &	Analyzed:	07/06/21				
Mercury	0.24	0.90	mg/kg	0.162	0.09	89.1	70-130	1.57	30	
Batch B1G0711 - EPA 3060A										
Blank (B1G0711-BLK1)				Prepared: 0	7/07/21 Ar	nalyzed: 07	/09/21			
Hexavalent Chromium	ND	0.10	mg/kg							
LCS (B1G0711-BS1)				Prepared: 0	7/07/21 Ar	nalyzed: 07	/09/21			
Hexavalent Chromium	0.158	0.10	mg/kg	0.150		105	80-120			
Matrix Spike (B1G0711-MS1)	Source:	: 2107058-0)1	Prepared: 0	7/07/21 Ar	nalyzed: 07	/09/21			
Hexavalent Chromium	0.175	0.10	mg/kg	0.149	0.0273	99.1	75-125			
Matrix Spike Dup (B1G0711-MSD1)	Source:	: 2107058-0)1	Prepared: 0	7/07/21 Ar	nalyzed: 07	/09/21			
Hexavalent Chromium	0.183	0.10	mg/kg	0.150	0.0273	104	75-125	4.44	20	

Mearns Consulting LLC Project: 1905 E 21st St. - Spud Field

738 Ashland Avenue Project Number: [none] Reported:
Santa Monica CA, 90405 Project Manager: Susan Mearns 07/13/21 12:23

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

Date: 7 / 6 / 21 Page: 1 of 4/2

Lab Work Order No.: 2107058

Client: WEAPAS CONSULTIN	ih Cop	ρ		Cli	ent Project ID:				·		Aual	yses J	Reque	sted				
Client Address: 738 AGHLANI	D AVE	1 						700							<u> </u>			Geotracker EDD Info:
SANTA MONICA	CA	90405			- 5	16	۳	_										
				<u> </u>	905 E 21 St	st. Spud	HELD	book						İ				
						Immediate	24 Hour											Client LOGCODE
Client Tel. No.: 315 4D3 192				Time	Requested:	48 Hour	72 Hour	WETALS								-		
	78					4 Day	3 5 Day	应						İ				
Client Proj. Mgr.: SASAN	- MEA	ray Yi	1 1)		X	Normal	Mobile 1											Site Global ID
011.40	Sierra					Container	No. of		5							1		
Client Sample ID.	No.	Date	Time	Matrix	Preservative	Type	Containers	Ħ	၁		<u> </u>							Field Point Names / Comments
S81-5	٥١	7.6.21	0740	SOIL	ICE	ACETATE Y	<i>y</i> 1	X	X									
SB2·5	0 2		0751		<u> </u>	1		χ	X							}		
S b 3-5	03		0801					Х	X									
584-5	04		0808					×	X						Ţ			
SB5-5	05		0816					Х	X					***				
\$86-5	06		0823					×	X									
S87.5	0 77		0831					Х	X							†		
SB8.5	•8		0838					X	X			-						· · · · · · · · · · · · · · · · · · ·
SB9.5	24		0847	,	1			Х	X									
(11 SB10-5	.10	, V	0 858	V	4	4	V	Х	X									
Sample Color	7.	Ta av) Shipped Via: HA	ND DELLY	arad				4	'	Total	Numb	er of Co	ntainen	s Subm	itted to	,	Sample Disposal:
MEARING PHD J	. T. 12.	Link	(CarnenWaybel No.)			,			(Labo	ratory						Return to Client
2 Retinguished By Cat Jayay	, , , , , , , , , , , , , , , , , , ,	Z1617	tocerved By:	11			7/6/21				and the signs							Leh Disposal *
Сощрену:		12:35	Сопарыну:	5,5			1435	Cendi	itions, uni	ess other	wise agreed to be bazar	nboa ju	rciting bet	ween SIE)	UKA and	CLEENT	:	Archivemat.
<u> </u>					<u> </u>		110%		ţ	1								Other
Retinguished By:		Date:	Received By:			· · · · · · · · · · · · · · · · · · ·	Data;		t	•		oratory	ber of C	ontaine	13 Kece	avea o	^y	Other
Company:			Соптраву:			<u></u>	Terre:	FOR	AMORAT	DRA CAR	ONLY - Sam	ple Beceip	Condigue	i: illed - Test				- 27.4
Relinguished By:		Date:	Received By:	····			Date:	2.38		32443						N. Take)
Company:	- Da -	Time:	Company:				Time:		Sample S	als .			П гл	Servatives	- Verified	Dy		4
Special Lantenectors: COWEOTED VIA GE	ъ rkoв	G 5410	5 bas					4	Property I	alsellad			□ .,	.				
			•								Custamer			tege Local	kon			32
Rev: 20321				.				DA WAX	36, 15					OISTINAUTRO		Асстароку	Samples, Ye	low - Laboratory Copy, Plak - Field Personnel Copy

SIERRA ANALYTICAL

CHAIN OF CUSTODY RECORD

TEL: 949 • 348 • 9389 FAX: 949 • 348 • 9115

26052 Merit Circle • Suite 104 • Laguna Hills, CA • 92653

Date: 7 / 6 / 21 Page; 2 of 2

2107053 Lab Work Order No.: MEARNS CONSULTING COPP Analyses Requested Client Project ID: Client Address: 738 ASHLAND AVE Geotracker EDD Info: SANTA MONICA CA 1905 = 21 St. - Soud Flew Client LOGCODE Turn Around Time Requested; Client Tel. No.: 403 1921 Merans 12 Hour 48 Hour Client Fax. No.: 396 6878 4 Day Day 5 Day MEARN Client Proj. Mgr.: MAZNIK Site Global ID X Normal Mobile Sierra Container Client Sample ID. Date Time Matrix Preservative Containers No. Fleld Point Names / Type Comments ALF TATE SB11-5 7.6.21 401L X 0910 105 × SW Shippou Vis: HAND DELIVERED Total Number of Containers Submitted to Sample Disposal: Laboratory Return to Client The delivery of samples and the signature on this chain of custody form constitutes 7/4/4 authorization to perform the analyses specified above under SEERRA's Terms and Lab Disposal * Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. SIEVEN Archive ____ mos. * - Samples determined to be hazardous by SIERRA will be returned to CLIENT. Total Number of Containers Received by Laboratory FOR LABORATORY USE ONLY - Sample Receipt Considerer intact Chilled (Temp (CC) Relinquoted By Received By: Smalle Spain Tresenauvas - Varilled By Special Instructions: Troporty Labelled

APPENDIX C

Jones Environmental Labs, Inc. July 27 and 28, 2021 Soil Vapor Data

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Mearns Consulting Group Report date: **Client:**

738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Susan L Mearns PhD Attn: Date Sampled: 7/27/2021

> **Date Received:** 7/27/2021 7/27/2021 Date Analyzed:

7/27/2021

Town Center Northwest **Project: Project Address:**

2690 Walnut Ave **Physical State:** Soil Gas

Signal Hill, CA

ANALYSES REQUESTED

Client Address:

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWOCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical - Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Mobile Lab Manager

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 714-449-9937 562-646-1611 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Mearns Consulting Group Report date: 7/27/2021 **Client:** 738 Ashland Avenue, Jones Ref. No.: E-1172 **Client Address:**

Santa Monica CA 90405

Susan L Mearns PhD **Date Sampled:** 7/27/2021 Attn:

> **Date Received:** 7/27/2021 **Date Analyzed:** 7/27/2021

Project: Town Center Northwest **Project Address:** 2690 Walnut Ave **Physical State:** Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV1-5'	SV1-15'	SV2-5'	SV2-15'	SV2-15' REP		
Jones ID:	E-1172-01	E-1172-02	E-1172-03	E-1172-04	E-1172-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	13	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics										
Sample ID:	SV1-5'	SV1-15'	SV2-5'	SV2-15'	SV2-15' REP					
Jones ID:	E-1172-01	E-1172-02	E-1172-03	E-1172-04	E-1172-05	Reporting Limit	<u>Units</u>			
Analytes:	N.D.	N.D.	N.I.D.	ND) ID	0	, 2			
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3			
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3			
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3			
Freon 113	ND	ND	ND	ND	ND	16	μg/m3			
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3			
Isopropylbenzene	ND	57	ND	ND	ND	8	μg/m3			
4-Isopropyltoluene	ND	321	ND	ND	ND	8	μg/m3			
Methylene chloride	ND	20 ND	ND	17 ND	26	8	μg/m3			
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3			
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3			
Styrene	ND	ND	ND	ND	ND	8	μg/m3			
1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3			
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3			
Tetrachloroethene	ND	ND	ND	ND	ND	8	μg/m3			
Toluene	ND	16	ND	ND	ND	8	μg/m3			
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3			
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3			
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3			
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3			
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3			
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3			
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3			
1,2,4-Trimethylbenzene						8	μg/m3			
1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3			
Vinyl chloride						8	μg/m3			
m,p-Xylene	ND ND	ND ND	ND ND	ND ND	ND ND	16	μg/m3			
o-Xylene		ND ND				8	μg/m3			
MTBE	ND	ND	ND	ND	ND	40	μg/m3			
Ethyl-tert-butylether	ND ND	ND ND	ND ND	ND ND	ND ND	40 40	μg/m3			
Di-isopropylether	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3			
tert-amylmethylether	ND ND	ND ND					μg/m3			
tert-Butylalcohol			ND	ND	ND	400	μg/m3			
Gasoline Range Organics (C4-C12)	ND	25000	ND	ND	ND	2000	μg/m3			
Tracer:	ND	NID	NID	ND	NID	00	/ 2			
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3			
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3			
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3			
Dilution Factor	1	1	1	1	1					
Surrogate Recoveries:						QC Limit				
Dibromofluoromethane	104%	101%	102%	101%	100%	60 - 140				
Toluene-d ₈	94%	95%	94%	92%	93%	60 - 140				
4-Bromofluorobenzene	94%	97%	94%	92%	92%	60 - 140				
Batch ID:	E3-072721-	E3-072721-	E3-072721-	E3-072721-	E3-072721-					
Davii ID.	01	01	01	01	01					

ND = Value below reporting limit

11007 FOREST PLACE 714-449-9937 SANTA FE SPRINGS, CA 90670 562-646-1611 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Mearns Consulting Group Report date: Client: 738 Ashland Avenue, Jones Ref. No.: **Client Address:**

SV3-15'

Santa Monica CA 90405

Susan L Mearns PhD Attn: **Date Sampled:** 7/27/2021

> **Date Received:** 7/27/2021 7/27/2021 Date Analyzed:

7/27/2021

E-1172

Town Center Northwest **Project:** 2690 Walnut Ave **Physical State:** Soil Gas **Project Address:**

Signal Hill, CA

SV3-5'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV4-15'

SV5-5'

SV4-5'

Jones ID: E-1172-06 E-1172-07 E-1172-08 E-1172-09 E-1172-10 **Reporting Limit Units Analytes:** Benzene ND ND ND ND ND 8 $\mu g/m3$ 8 ND ND ND ND ND Bromobenzene $\mu g/m3$ 8 Bromodichloromethane ND ND ND ND ND $\mu g/m3$ Bromoform ND ND ND ND ND 8 $\mu g/m3$ 12 n-Butylbenzene ND ND ND ND ND $\mu g/m3$ sec-Butylbenzene ND ND ND ND ND 12 $\mu g/m3$ tert-Butylbenzene 12 ND ND ND ND ND μg/m3 Carbon tetrachloride ND ND ND ND ND 8 $\mu g/m3$ 8 Chlorobenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 Chloroform ND ND ND $\mu g/m3$ 2-Chlorotoluene ND ND ND ND ND 12 $\mu g/m3$ ND ND 12 4-Chlorotoluene ND ND ND $\mu g/m3$ 8 Dibromochloromethane ND ND ND ND ND μg/m3 8 1,2-Dibromo-3-chloropropane ND ND ND ND ND $\mu g/m3$ 1,2-Dibromoethane (EDB) ND ND ND ND ND 8 $\mu g/m3$ 8 Dibromomethane ND ND ND ND ND $\mu g/m3$ 1.2- Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,3-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,4-Dichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ Dichlorodifluoromethane ND ND ND 32 ND ND $\mu g/m3$ 8 1,1-Dichloroethane ND ND ND ND ND $\mu g/m3$ 8 1,2-Dichloroethane ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 8 1.1-Dichloroethene $\mu g/m3$ 8 ND ND ND ND ND cis-1,2-Dichloroethene $\mu g/m3$ 8 trans-1,2-Dichloroethene ND ND ND ND ND $\mu g/m3$ 8 1,2-Dichloropropane ND ND ND ND ND $\mu g/m3$ 8 1,3-Dichloropropane ND ND ND ND ND $\mu g/m3$ ND ND ND ND ND 16 $\mu g/m3$ 2,2-Dichloropropane 1,1-Dichloropropene ND ND ND ND ND 10 $\mu g/m3$

EPA 8260B - V	Volatile Organics by	GC/MS + Oxygenates/	Gasoline Range Organics
---------------	----------------------	---------------------	-------------------------

Sample ID:	SV3-5'	SV3-15'	SV4-5'	SV4-15'	SV5-5'		
Jones ID:	E-1172-06	E-1172-07	E-1172-08	E-1172-09	E-1172-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	8	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	18	17	22	12	ND	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	<u>ts</u>
Dibromofluoromethane	104%	102%	104%	100%	106%	60 - 140	
Toluene-d ₈	93%	94%	93%	92%	93%	60 - 140	
4-Bromofluorobenzene	93%	92%	94%	93%	92%	60 - 140	
	E3-072721-	E3-072721-	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01	01		

ND = Value below reporting limit

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Date Received: 7/27/2021 **Date Analyzed:** 7/27/2021

Project:Town Center NorthwestDaProject Address:2690 Walnut AvePh

SV6-5'

Physical State: Soil Gas

Signal Hill, CA

SV5-15'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV7-5'

SV7-15'

SV6-15'

<u></u>							
Jones ID:	E-1172-11	E-1172-12	E-1172-13	E-1172-14	E-1172-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	243	ND	8850	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile O	Organics by GC/MS	+ Oxygenates/Gasoline	Range Organics
------------------------	-------------------	-----------------------	----------------

Sample ID:	SV5-15'	SV6-5'	SV6-15'	SV7-5'	SV7-15'		
Jones ID:	E-1172-11	E-1172-12	E-1172-13	E-1172-14	E-1172-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	9	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$
Tetrachloroethene	ND	17	8	ND	ND	8	$\mu g/m3$
Toluene	ND	ND	ND	ND	4210	8	$\mu g/m3$
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
m,p-Xylene	ND	ND	ND	ND	799	16	$\mu g/m3$
o-Xylene	ND	ND	ND	ND	441	8	$\mu g/m3$
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-amylmethylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	317000	ND	46300000	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$
Dilution Factor	1	1	1	1	30		
Surrogate Recoveries:						QC Limit	<u>ts</u>
Dibromofluoromethane	102%	100%	97%	100%	97%	60 - 140	
Toluene-d ₈	95%	92%	101%	93%	97%	60 - 140	
4-Bromofluorobenzene	94%	94%	91%	93%	96%	60 - 140	
	E3-072721-	E3-072721-	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01	01		

ND = Value below reporting limit

Mearns Consulting Group Report date: 7/27/2021 **Client:** 738 Ashland Avenue, Jones Ref. No.: E-1172 **Client Address:**

Santa Monica CA 90405

Susan L Mearns PhD **Date Sampled:** 7/27/2021 Attn:

> **Date Received:** 7/27/2021 **Date Analyzed:** 7/27/2021

Project: Town Center Northwest **Project Address:** 2690 Walnut Ave **Physical State:** Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: SV8-5' SV8-15' SV9-5'

Jones ID:	E-1172-16	E-1172-17	E-1172-18	Reporting Limit	<u>Units</u>
Analytes:					
Benzene	20	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV8-5'	SV8-15'	SV9-5'		
Jones ID:	E-1172-16	E-1172-17	E-1172-18	Reporting Limit Uni	<u>its</u>
Analytes:					
cis-1,3-Dichloropropene	ND	ND	ND	8 $\mu g/r$	m3
trans-1,3-Dichloropropene	ND	ND	ND	8 μg/r	m3
Ethylbenzene	ND	ND	ND	8 $\mu g/r$	m3
Freon 113	ND	ND	ND	16 μg/r	m3
Hexachlorobutadiene	ND	ND	ND	24 μg/r	m3
Isopropylbenzene	ND	ND	ND	8 μg/r	m3
4-Isopropyltoluene	ND	ND	ND	8 μg/r	m3
Methylene chloride	ND	ND	ND	8 μg/r	m3
Naphthalene	ND	ND	ND	$40 \mu g/r$	m3
n-Propylbenzene	ND	ND	ND	8 μg/r	m3
Styrene	ND	ND	ND	8 μg/r	m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	8 μg/r	m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	16 μg/r	m3
Tetrachloroethene	23	ND	ND	8 μg/r	m3
Toluene	15	ND	ND	8 μg/r	m3
1,2,3-Trichlorobenzene	ND	ND	ND	16 μg/r	m3
1,2,4-Trichlorobenzene	ND	ND	ND	16 μg/r	m3
1,1,1-Trichloroethane	ND	ND	ND	8 μg/r	m3
1,1,2-Trichloroethane	ND	ND	ND	8 μg/r	
Trichloroethene	ND	ND	ND	8 μg/r	
Trichlorofluoromethane	ND	ND	ND	32 µg/r	
1,2,3-Trichloropropane	ND	ND	ND	8 μg/r	
1,2,4-Trimethylbenzene	ND	ND	ND	8 μg/r	
1,3,5-Trimethylbenzene	ND	ND	ND	8 μg/r	
Vinyl chloride	ND	ND	ND	8 μg/r	
m,p-Xylene	ND	ND	ND	16 µg/r	
o-Xylene	ND	ND	ND	8 μg/r	
MTBE	ND	ND	ND	40 μg/r	
Ethyl-tert-butylether	ND	ND	ND	40 μg/r	
Di-isopropylether	ND	ND	ND	40 μg/r	
tert-amylmethylether	ND	ND	ND	40 μg/r	
tert-Butylalcohol	ND	ND	ND	400 μg/r	
Gasoline Range Organics (C4-C12)	ND	ND	ND	2000 μg/r	m3
Tracer:					
n-Pentane	ND	ND	ND	80 μg/r	m3
n-Hexane	ND	ND	ND	80 μg/r	
n-Heptane	ND	ND	ND	80 μg/r	
Dilution Factor	1	1	1		
Surrogate Recoveries:				OC Limits	
Dibromofluoromethane	95%	96%	95%	60 - 140	
Toluene-d ₈	94%	92%	93%	60 - 140	
4-Bromofluorobenzene	95%	96%	94%	60 - 140	
D / L ID	E3-072721-	E3-072721-	E3-072721-		
Batch ID:	01	01	01		

ND = Value below reporting limit

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Date Received: 7/27/2021 **Date Analyzed:** 7/27/2021

Project:Town Center NorthwestDate Analyzed:7/27/2021Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072721- E3MB1	072721- E3SB1	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	10	μg/m3

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organi	cs by GC/MS + (Oxygenates/Gasoline	Range Organics
-----------------------------	-----------------	---------------------	----------------

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072721- E3MB1	072721- E3SB1	Reporting Limit U	<u>nits</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND		g/m3
trans-1,3-Dichloropropene	ND	ND	8 μg	g/m3
Ethylbenzene	ND	ND		g/m3
Freon 113	ND	ND	16 μg	g/m3
Hexachlorobutadiene	ND	ND		g/m3
Isopropylbenzene	ND	ND	· -	g/m3
4-Isopropyltoluene	ND	ND		g/m3
Methylene chloride	ND	ND		g/m3
Naphthalene	ND	ND		g/m3
n-Propylbenzene	ND	ND		g/m3
Styrene	ND	ND		g/m3
1,1,1,2-Tetrachloroethane	ND	ND		g/m3
1,1,2,2-Tetrachloroethane	ND	ND	16 μg	g/m3
Tetrachloroethene	ND	ND		g/m3
Toluene	ND	ND	8 μg	g/m3
1,2,3-Trichlorobenzene	ND	ND	16 μg	g/m3
1,2,4-Trichlorobenzene	ND	ND		g/m3
1,1,1-Trichloroethane	ND	ND		g/m3
1,1,2-Trichloroethane	ND	ND		g/m3
Trichloroethene	ND	ND		g/m3
Trichlorofluoromethane	ND	ND		g/m3
1,2,3-Trichloropropane	ND	ND		g/m3
1,2,4-Trimethylbenzene	ND	ND		g/m3
1,3,5-Trimethylbenzene	ND	ND	8 μg	g/m3
Vinyl chloride	ND	ND	8 μg	g/m3
m,p-Xylene	ND	ND	16 μg	g/m3
o-Xylene	ND	ND		g/m3
MTBE	ND	ND	40 μg	g/m3
Ethyl-tert-butylether	ND	ND	40 μg	g/m3
Di-isopropylether	ND	ND	40 μg	g/m3
tert-amylmethylether	ND	ND	40 μg	g/m3
tert-Butylalcohol	ND	ND	400 μg	g/m3
Gasoline Range Organics (C4-C12)	ND	ND	2000 μg	g/m3
Tracer:				
n-Pentane	ND	ND	80 μg	g/m3
n-Hexane	ND	ND	80 μg	g/m3
n-Heptane	ND	ND	80 µg	g/m3
Dilution Factor	1	1		
Surrogate Recoveries:			OC Limits	
Dibromofluoromethane	106%	100%	60 - 140	
Toluene-d ₈	96%	96%	60 - 140	
4-Bromofluorobenzene	93%	95%	60 - 140	
Batch ID:	E3-072721-	E3-072721-		
Datell ID.	01	01		

ND = Value below reporting limit

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/27/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1172

Client Address: 738 Ashland Avenue, Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/27/2021

Project: Town Center Northwest Date Analyzed: 7/27/2021
Project Address: 2690 Walnut Ave Physical State: Soil Gas

Project Address: 2690 Walnut Ave Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

QC ID: E3-072721-01

Jones ID:	072721-E3LCS1	072721-E3LCSD1		07	72721-E3CC	V1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	121%	114%	5.7%	60 - 140	109%	80 - 120
1,1-Dichloroethene	110%	101%	8.1%	60 - 140	80%	80 - 120
Cis-1,2-Dichloroethene	105%	102%	3.5%	70 - 130	86%	80 - 120
1,1,1-Trichloroethane	98%	104%	6.6%	70 - 130	85%	80 - 120
Benzene	113%	119%	4.9%	70 - 130	101%	80 - 120
Trichloroethene	115%	119%	3.7%	70 - 130	101%	80 - 120
Toluene	104%	109%	4.2%	70 - 130	97%	80 - 120
Tetrachloroethene	116%	114%	2.0%	70 - 130	97%	80 - 120
Chlorobenzene	109%	113%	3.7%	70 - 130	95%	80 - 120
Ethylbenzene	99%	108%	9.2%	70 - 130	94%	80 - 120
1,2,4 Trimethylbenzene	92%	93%	1.2%	70 - 130	87%	80 - 120
Gasoline Range Organics (C4-C12)	102%	107%	5.0%	70 - 130	95%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	102%	102%		60 - 140	100%	60 - 140
Toluene-d ₈	97%	96%		60 - 140	95%	60 - 140
4-Bromofluorobenzene	96%	96%		60 - 140	97%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl. Senia Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9885 week foresteny COM

Soil-Gas Chain-of-Custody Record

Client Mearns Consulting Group Project Mane Town Center Northwest					Date 7/27/202 Glient Project if	Purge Number: Rep 1P)(3P n 7P n 10P EDF*- Shut-in Test: Y/ N 'Globel							Surc		Jones Project # E-1172		
Polec Address 2690 Walnut Ave Signal Hill, CA					Turn Around Requested in Immediate Attention Rush 24 Hours Rush 46 Hours Rush 72 Hours Normal Mobile Lab Reporting Limits		Tracer Itn-pentane It n-hexane Itn-heptane Isopropyl Alchohol In-heptane		1.0		Organica	Rec	quec	(In/H ₂ O)		Page 1 of 2 Semple Container: GASTIGHT GLASS SYRINGE Fallinger than above, see lines.	
Report To Susan L Mearns PhD	en vi	Sampler Casey	Ellis	'		MStandard of	Low Level* surcharge for		Unite LQ/m ^S	e Meduto:	8280B (VOCs)	e Range O			Netic Vacuum	r of Contain	
Sample ID	Purge Number	Purge Volume (ml.)	Dete	Bample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnehelic	Semple Sel Ges	1 %	Gesolin			Magne	Mumbe	Notes & Special instructions
SV1-6'	3	1310	7/27/21	7:54	7:56	E-1172-01	200	CASEY.1	118012	SG	х	x			<2	1	
SV1-15'	3	1470	7/27/21	8:12	8.14	E-1172-02	200	CASEY.2	M100.114	SG	х	x			8	.1	-
SV2-6"	3	1310	<i>7/</i> 27/21	8:30	6:32	E-1172-03	200	CASEY.1	M100.201	SG	х	x			6	1,	
SV2-15	3	1470	7/27/21	8:51	8:52	E-1172-04	200	CASEY.2	M100.203	SG	x	x			<2	1	
SV2-15 REP	3	1470	7/27/21	10:05	10:06	E-1172-05	200	CASEY.2	M100.203	€G	х	х			<2	1	
SV3-5	3	1310	7/27/21	9:24	9:27	E-1172-06	200	CASEY.1	118012	SG	X	x			<2	1	
SV3-15'	3	1470	7/27/21	9:43	9:46	E-1172-07	200	CASEY.2	M100.114	SG	×	x			<2	1	
\$V4-5'	3	1310	7/27/21	10:24	10:26	E-1172-08	200	CASEY.1	M100.201	SG	X	X			₹2	1	
SV4-15'	3	1470	7/27/21	10:42	10:44	E-1172-09	200	CASEY.2	M100.203	SG	x	Х	·		Ą	1	-
SV5-5	3	1310	7/27/21	11:01	11:03	E-1172-10	200	CASEY.1	118012	SG	x	х			<2	1	
Representative Signature		Printed Na SUSAN ME	•••	•		Laberatory Signature	SIL			eed Na EY EL						10	Total Humber of Containers
Company Date Time Mearns Consulting Group 7/27/2021 14:30 Representative Signature Printed Name				k30	Company JONES ENVIRONMENT/ Laboratory Signature	Date Time 7/27/2021 14:30 Printed Name						Client algorature on this Chain of Custody form constitutes acknowledgement that the above analyses have been regasted, and the information provided herein is correct					
Company		Date		Time		Company			Deti	•		Ť	rne	*****		1	and accurate.

11007 Forest Pt. Santa Fe Springe, CA 90870 (714) 448-9937 Fax (714) 449-9885 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Cliens Mearns Consulting Group Project Name Town Center Northwest Project Address				· · · · · · · · · · · · · · · · · · ·	Date 7/27/202 Citient Project 9	Pi a 1P) Shut	Report Options EDD EDF* - 10% Surcharge								FONLY Projec E-11							
2690 Walnut Ave Signal Hill, CA Sinal Phone		Sampler				Turn Around Re Immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours Normal (Mobile Lab Reportin	tion g Limits Low Level*	tr-penti tr-head vr-hepti a leoproj a 1,1-DF	rie irie iyl Alchohol A	e (Medición: 80), As (A), alamata (M)	(NOCe)	Range Organics &	Re	que	illo Viscuum (InMI ₂ O)	Containers			GASTIG	Of Container: HT GLASS S then shows a		•
Susan L Mearns PhD Sample 1D	Purge (function	Purpo Vetures (mL)	EIIIS Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate (mL/min)	Pump Used	Magnobolic	Barnepte M Bol Gas (84),	EPA 62606	Gasoline R			Magneheli	Number of		Not	№ & S p	nciel instr	actions	
SV5-15'	3	1470	7/27/21		11:21	E-1172-11	200	CASEY.2	M100.114	SG		х			<2	1						
S V6-5'	3	1310	7/27/21	11:36	11:40	E-1172-12	200	CASEY.1	M100.201	SG	x	х			<2	1						
SV6-15'	3	1470	7/27/21	11:57	12:00	E-1172-13	200	CASEY.2	M100.203	SG	x	x			<2	1						
SV7-5'	3	1310	7/27/21	12:08	12:18	E-1172-14	200	CASEY.1	118012	SG	x	х			<2	1						
SV7-15	3 %	1470	7/27/21	12:34	12:38	E-1172-15	200	CASEY.2	M100.114	SG	x	x			<2	1		<u> </u>				
SV8-5	3	1310	7/27/21	12:55	12:57	E-1172-16	200	CASEY.1	M100.201	ŞG	×	x			<2	1						
SV8-15'	3	1470	7/27/21	13:13	13:16	E-1172-17	200	CASEY.2	M100.203	SG	×	x			8	1						
SV9-5'	3	1310	7/27/21	13:54	13:56	E-1172-18	200	CASEY.1	118012	SG	×	х			<2	1						
										Ü												
SV7-15' DIL	1 -		7/27/21	13:32	13:37	-	-	-	M100.114	SG	×	×			<2	1						
Paper material from the state of the state o	<u> </u>	Printed Na SUSAN ME		<u> </u>	<u>. </u>	Labopatory Signature	Ch		CAS	eed Na EY EU						9	Total N	lumbe	r of Conta	hers		
Company Date Time Mearus Consulting Group 7/27/2021 14:30 Representative Signature Printed Name				4:30	Company JONES ENVIRONMENTAL, INC. Laboratory Signature			Sate Time 7/27/2021 14:30 Printed Name					Client signature on this Chain of Custody form constitutes admovisedgement that the above analyses have been requited, and the information provided herein is correct.									
Company Date Time						Costpany Date					Time					and accurate.						

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date:

Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/202Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

Physical State: Soil C

ANALYSES REQUESTED

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWOCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of collection.

Approval:

Annalise O'Toole Mobile Lab Manager

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Soil Gas

Project:Town Center NorthwestDate Analyzed:Project Address:2690 Walnut AvePhysical State:

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV9-15'	SV9-15' REP	SV10-5'	SV10-15'	SV11-5'		
Jones ID:	E-1173-01	E-1173-02	E-1173-03	E-1173-04	E-1173-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics												
Sample ID:	SV9-15'	SV9-15' REP	SV10-5'	SV10-15'	SV11-5'							
Jones ID:	E-1173-01	E-1173-02	E-1173-03	E-1173-04	E-1173-05	Reporting Limit	<u>Units</u>					
Analytes:												
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Freon 113	ND	ND	ND	ND	ND	16	μg/m3					
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$					
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$					
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$					
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	$\mu g/m3$					
Tetrachloroethene	34	34	9	8	24	8	$\mu g/m3$					
Toluene	13	14	ND	ND	ND	8	$\mu g/m3$					
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$					
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$					
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$					
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Trichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$					
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3					
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3					
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3					
m,p-Xylene	ND	ND	ND	ND	ND	16	$\mu g/m3$					
o-Xylene	ND	ND	ND	ND	ND	8	$\mu g/m3$					
MTBE	ND	ND	ND	ND	ND	40	μg/m3					
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3					
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3					
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3					
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3					
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3					
Tracer:												
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3					
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$					
n-Heptane	ND	ND	ND	ND	ND	80	$\mu g/m3$					
Dilution Factor	1	1	1	1	1							
Surrogate Recoveries:						QC Limit	t <u>s</u>					
Dibromofluoromethane	114%^	119%^	108%	123%^	107%	60 - 140						
Toluene-d ₈	103%	104%	89%	102%	89%	60 - 140						
4-Bromofluorobenzene	108%	@	97%	108%	96%	60 - 140						
Batch ID:	E2-072821- 01	E2-072821- 01	E3-072821- 01	E2-072821- 01	E3-072821- 01							
	01	01	01	01	01							

ND = Value below reporting limit

^{@=} Surrogate outside acceptable limits. All other QC parameters in control, therefore data was accepted.

^{^ = 1,2-}dichloroethane-d4 used as surrogate for this batch.

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/202Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV11-15'	SV12-5'	SV12-15'	SV13-5'	SV13-5' REP		
Jones ID:	E-1173-06	E-1173-07	E-1173-08	E-1173-09	E-1173-10	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics SV13-5' SV11-15' SV12-5' SV12-15' SV13-5' Sample ID: REP Jones ID: E-1173-06 E-1173-07 E-1173-08 E-1173-09 E-1173-10 **Reporting Limit Units Analytes:** ND ND ND ND ND 8 cis-1,3-Dichloropropene $\mu g/m3$ 8 trans-1,3-Dichloropropene ND ND ND ND ND $\mu g/m3$ Ethylbenzene ND ND ND ND ND 8 $\mu g/m3$ 16 Freon 113 ND ND ND ND ND $\mu g/m3$ Hexachlorobutadiene ND ND ND ND ND 24 $\mu g/m3$ 8 Isopropylbenzene ND ND ND ND ND $\mu g/m3$ ND ND 8 $\mu g/m3$ 4-Isopropyltoluene ND ND ND 8 Methylene chloride ND ND ND ND ND $\mu g/m3$ $\mu g/m3$ Naphthalene ND ND ND ND ND 40 8 n-Propylbenzene ND ND ND ND ND $\mu g/m3$ Styrene ND ND ND ND ND 8 $\mu g/m3$ ND ND ND ND ND 8 1,1,1,2-Tetrachloroethane $\mu g/m3$ 1,1,2,2-Tetrachloroethane ND ND ND ND ND 16 $\mu g/m3$ Tetrachloroethene ND 8 9 16 25 8 $\mu g/m3$ ND ND 8 ND ND ND $\mu g/m3$ Toluene 1,2,3-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,2,4-Trichlorobenzene ND ND ND ND ND 16 $\mu g/m3$ 1,1,1-Trichloroethane ND ND ND ND ND 8 $\mu g/m3$ 8 1,1,2-Trichloroethane ND ND ND ND ND $\mu g/m3$ Trichloroethene ND ND ND ND ND 8 $\mu g/m3$ Trichlorofluoromethane ND 32 ND ND ND ND $\mu g/m3$ 8 1.2.3-Trichloropropane ND ND ND ND ND $\mu g/m3$ 1,2,4-Trimethylbenzene ND ND ND ND ND 8 $\mu g/m3$ 1,3,5-Trimethylbenzene 8 ND ND ND ND ND $\mu g/m3$ Vinyl chloride ND ND ND ND ND 8 $\mu g/m3$ ND 16 m,p-Xylene ND ND ND ND $\mu g/m3$ o-Xylene ND ND ND ND ND 8 $\mu g/m3$ **MTBE** ND ND ND ND ND 40 $\mu g/m3$ 40 Ethyl-tert-butylether ND ND ND ND ND $\mu g/m3$ Di-isopropylether 40 ND ND ND ND ND $\mu g/m3$ tert-amylmethylether ND ND ND ND ND 40 $\mu g/m3$ tert-Butylalcohol ND ND ND ND ND 400 $\mu g/m3$ Gasoline Range Organics (C4-C12) ND ND ND ND ND 2000 μg/m3 Tracer: ND ND ND ND ND 80 n-Pentane $\mu g/m3$ ND ND ND ND ND 80 n-Hexane $\mu g/m3$ ND ND ND ND ND 80 $\mu g/m3$ n-Heptane **Dilution Factor** 1 1 1 1 1 **QC** Limits **Surrogate Recoveries:** 60 - 140 Dibromofluoromethane 122%^ 105% 124%^ 106% 108% Toluene-d₈ 105% 87% 102% 87% 88% 60 - 1404-Bromofluorobenzene 107% 97% 105% 96% 96% 60 - 140

ND = Value below reporting limit

Batch ID:

E2-072821-

01

E3-072821-

01

E2-072821-

01

E3-072821-

01

E3-072821-

01

 $^{^{\}land}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

714-449-9937 562-646-1611 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Town Center Northwest

SV14-5'

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Soil Gas

Physical State:

Project Address: 2690 Walnut Ave

Project:

Sample ID:

Signal Hill, CA

SV13-15'

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV15-5'

SV15-15'

SV14-15'

<u></u>							
Jones ID:	E-1173-11	E-1173-12	E-1173-13	E-1173-14	E-1173-15	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV13-15'	SV14-5'	SV14-15'	SV15-5'	SV15-15'		
Jones ID:	E-1173-11	E-1173-12	E-1173-13	E-1173-14	E-1173-15	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	ND	ND	ND	40	$\mu g/m3$
n-Propylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	ND	10	ND	37	29	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	ND	2000	μg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	126%^	108%	123%^	105%	119%^	60 - 140	
Toluene-d ₈	106%	85%	102%	86%	101%	60 - 140	
4-Bromofluorobenzene	106%	98%	104%	95%	82%	60 - 140	
Dotah IDa	E2-072821-	E3-072821-	E2-072821-	E3-072821-	E2-072821-		
Batch ID:	01	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

SV16-15'

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021 **Date Analyzed:** 7/28/2021

Project:Town Center NorthwestDate Analyzed:7/28/2021Project Address:2690 Walnut AvePhysical State:Soil Gas

Signal Hill, CA

SV16-5'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

SV17-15'

SV18-5'

SV17-5'

Sample 1D.	57105	5110 13	51175	5117 15	5 10 5		
Jones ID:	E-1173-16	E-1173-17	E-1173-18	E-1173-19	E-1173-20	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	27	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	ND	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	51	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	$\mu g/m3$

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV16-5'	SV16-15'	SV17-5'	SV17-15'	SV18-5'		
Jones ID:	E-1173-16	E-1173-17	E-1173-18	E-1173-19	E-1173-20	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	74	ND	ND	ND	8	$\mu g/m3$
Freon 113	ND	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	16	ND	ND	ND	8	$\mu g/m3$
Methylene chloride	ND	ND	ND	ND	ND	8	$\mu g/m3$
Naphthalene	ND	41	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	15	18	32	10	13	8	μg/m3
Toluene	ND	44	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	ND	287	ND	ND	ND	16	μg/m3
o-Xylene	ND	84	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	46800	ND	ND	ND	2000	$\mu g/m3$
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	ND	ND	ND	80	μg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limit	t <u>s</u>
Dibromofluoromethane	112%	124%^	108%	121%^	106%	60 - 140	
Toluene-d ₈	86%	101%	85%	99%	86%	60 - 140	
4-Bromofluorobenzene	97%	114%	96%	104%	97%	60 - 140	
D / L ID	E3-072821-	E2-072821-	E3-072821-	E2-072821-	E3-072821-		
Batch ID:	01	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Mearns Consulting Group Report date: 7/28/2021

Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Town Center Northwest

Date Received: 7/28/2021

Date Analyzed: 7/28/2021

Project Address: 2690 Walnut Ave Physical State: Soil Gas

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID: SV18-15' SV19-5'

Project:

Jones ID:	E-1173-21	E-1173-22	Reporting Limit	<u>Units</u>
Analytes:				
Benzene	1150	18	8	$\mu g/m3$
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	649	12	$\mu g/m3$
sec-Butylbenzene	ND	2380	12	$\mu g/m3$
tert-Butylbenzene	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	12	$\mu g/m3$
4-Chlorotoluene	ND	ND	12	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	$\mu g/m3$
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	16	$\mu g/m3$
Dichlorodifluoromethane	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	16	$\mu g/m3$
1,1-Dichloropropene	ND	ND	10	$\mu g/m3$

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	SV18-15'	SV19-5'

Jones ID:	E-1173-21	E-1173-22	Reporting Limit	<u>Units</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	8	μg/m3
Ethylbenzene	1910	2730	8	μg/m3
Freon 113	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	24	μg/m3
Isopropylbenzene	2490	4290	8	μg/m3
4-Isopropyltoluene	ND	13	8	μg/m3
Methylene chloride	ND	ND	8	μg/m3
Naphthalene	826	405	40	μg/m3
n-Propylbenzene	2640	5810	8	μg/m3
Styrene	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	16	μg/m3
Tetrachloroethene	ND	42	8	μg/m3
Toluene	ND	25	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	8	μg/m3
Trichloroethene	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	32	μg/m3
1,2,3-Trichloropropane	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	8	μg/m3
m,p-Xylene	1720	ND	16	μg/m3
o-Xylene	ND	ND	8	μg/m3
MTBE	8610	121000*	40	μg/m3
Ethyl-tert-butylether	ND	ND	40	μg/m3
Di-isopropylether	4780	ND	40	μg/m3
tert-amylmethylether	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	3380000	900000	2000	μg/m3
Tracer:				
n-Pentane	ND	ND	80	$\mu g/m3$
n-Hexane	ND	ND	80	$\mu g/m3$
n-Heptane	ND	ND	80	μg/m3
Dilution Factor	12.5	1/3*		
Surrogate Recoveries:			OC Limits	<u>i</u>
Dibromofluoromethane	115%	103%	60 - 140	•
Toluene-d ₈	106%	115%	60 - 140	
4-Bromofluorobenzene	123%	•	60 - 140	
	E2-072721-	E3-072721-		
Batch ID:	01	01		

^{• =} Hydrocarbon interference prevented adequate surrogate recovery.

 $^{^{\}sim}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

^{* =} Dilutions for these compound(s); first number for all others

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Date Received: 7/28/2021
Date Analyzed: 7/28/2021
Physical State: Soil Gas

Project: Town Center Northwest
Project Address: 2690 Walnut Ave

Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072821- E2MB1	072821- E2SB1	072821- E3MB1	072821- E3SB1	Reporting Limit	<u>Units</u>
Analytes:						
Benzene	ND	ND	ND	ND	8	μg/m3
Bromobenzene	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	8	$\mu g/m3$
n-Butylbenzene	ND	ND	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	12	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	16	$\mu g/m3$
1,3-Dichlorobenzene	ND	ND	ND	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	32	$\mu g/m3$
1,1-Dichloroethane	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	ND	ND	ND	8	$\mu g/m3$
1,1-Dichloroethene	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	8	$\mu g/m3$
trans-1,2-Dichloroethene	ND	ND	ND	ND	8	$\mu g/m3$
1,2-Dichloropropane	ND	ND	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	16	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	10	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	METHOD BLANK	SAMPLING BLANK	METHOD BLANK	SAMPLING BLANK		
Jones ID:	072821- E2MB1	072821- E2SB1	072821- E3MB1	072821- E3SB1	Reporting Limit	<u>Units</u>
Analytes:						
cis-1,3-Dichloropropene	ND	ND	ND	ND		$\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	ND	ND	8	$\mu g/m3$
Ethylbenzene	ND	ND	ND	ND		$\mu g/m3$
Freon 113	ND	ND	ND	ND	16	$\mu g/m3$
Hexachlorobutadiene	ND	ND	ND	ND	24	$\mu g/m3$
Isopropylbenzene	ND	ND	ND	ND	8	$\mu g/m3$
4-Isopropyltoluene	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND		μg/m3
n-Propylbenzene	ND	ND	ND	ND		μg/m3
Styrene	ND	ND	ND	ND		μg/m3
1,1,2-Tetrachloroethane	ND	ND	ND	ND		μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND		μg/m3
Tetrachloroethene	ND	ND	ND	ND		μg/m3
Toluene	ND	ND	ND	ND		μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND		μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND		μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND		μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND ND		μg/m3
Trichloroethene	ND ND	ND	ND	ND ND		
Trichlorofluoromethane	ND ND	ND	ND ND	ND ND		μg/m3
	ND ND	ND ND	ND ND	ND ND		μg/m3
1,2,3-Trichloropropane			ND ND			μg/m3
1,2,4-Trimethylbenzene	ND	ND		ND		μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND		$\mu g/m3$
Vinyl chloride	ND	ND	ND	ND		$\mu g/m3$
m,p-Xylene	ND	ND	ND	ND		$\mu g/m3$
o-Xylene	ND	ND	ND	ND		μg/m3
MTBE	ND	ND	ND	ND		μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND		μg/m3
Di-isopropylether	ND	ND	ND	ND		μg/m3
tert-amylmethylether	ND	ND	ND	ND		μg/m3
tert-Butylalcohol	ND	ND	ND	ND	400	μg/m3
Gasoline Range Organics (C4-C12)	ND	ND	ND	ND	2000	$\mu g/m3$
Tracer:						
n-Pentane	ND	ND	ND	ND		μg/m3
n-Hexane	ND	ND	ND	ND		μg/m3
n-Heptane	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1		
Surrogate Recoveries:					QC Limits	
Dibromofluoromethane	121%^	114%^	105%	100%	60 - 140	
Toluene-d ₈	100%	104%	93%	90%	60 - 140	
4-Bromofluorobenzene	106%	107%	98%	96%	60 - 140	
D (L ID	E2-072821-	E2-072821-	E3-072721-	E3-072721-		
Batch ID:	01	01	01	01		

 $^{^{\}wedge}$ = 1,2-dichloroethane-d4 used as surrogate for this batch.

072821-E2LCS1

072821-E2CCV1

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group Report date: 7/28/2021
Client Address: 738 Ashland Avenue, Jones Ref. No.: E-1173

Santa Monica CA 90405

Attn: Susan L Mearns PhD Date Sampled: 7/28/2021

Town Center Northwest

2690 Walnut Ave

Date Received: 7/28/2021

Date Analyzed: 7/28/2021

Physical State: Soil Gas

Project Address: 2690 Walnut Ave Signal Hill, CA

Project:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

072821-E2LCSD1

Batch ID: E2-072821-01

Jones ID:

Jones ID.	072021-E2ECS1	0/2021-E2LCSD1		0/2021-E2CC VI		
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	RPD	Range (%)	CCV	Range (%)
Vinyl chloride	142% ¹	151%1	6.2%	60 - 140	50% ¹	80 - 120
1,1-Dichloroethene	121%	126%	3.7%	60 - 140	103%	80 - 120
Cis-1,2-Dichloroethene	124%	129%	4.0%	70 - 130	106%	80 - 120
1,1,1-Trichloroethane	124%	121%	2.5%	70 - 130	112%	80 - 120
Benzene	119%	124%	4.4%	70 - 130	110%	80 - 120
Trichloroethene	106%	112%	5.9%	70 - 130	103%	80 - 120
Toluene	120%	128%	6.8%	70 - 130	116%	80 - 120
Tetrachloroethene	129%	134% ²	3.9%	70 - 130	120%	80 - 120
Chlorobenzene	99%	101%	2.3%	70 - 130	96%	80 - 120
Ethylbenzene	78%	83%	6.3%	70 - 130	87%	80 - 120
1,2,4 Trimethylbenzene	119%	123%	3.1%	70 - 130	118%	80 - 120
Gasoline Range Organics (C4-C12)	109%	115%	5.0%	70 - 130	108%	80 - 120
Surrogate Recovery:						
1,2-Dichloroethane-d4	120%	119%		60 - 140	110%	60 - 140
Toluene-d ₈	101%	102%		60 - 140	102%	60 - 140
4-Bromofluorobenzene	105%	105%		60 - 140	108%	60 - 140

¹Recovery outside of acceptable limits. If compound was found in sample, the sample would have been re-ran for confirmation.

²Recovery outside of acceptable limits. CCV and LCS recoveries and LCS/LCSD RPD were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Mearns Consulting Group **Report date:** 7/28/2021

738 Ashland Avenue, Jones Ref. No.: E-1173 **Client Address:**

Santa Monica CA 90405

Susan L Mearns PhD **Date Sampled:** 7/28/2021 Attn:

> **Date Received:** 7/28/2021 Town Center Northwest **Date Analyzed:** 7/28/2021 2690 Walnut Ave Physical State: Soil Gas

Project Address: Signal Hill, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

QC ID: E3-072821-01

Project:

Jones ID:	072821-E3LCS1	072821-E3LCSD1		072821-E3CCV1		
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	CCV	Range (%)
Vinyl chloride	83%	81%	2.2%	60 - 140	100%	80 - 120
1,1-Dichloroethene	110%	101%	8.9%	60 - 140	94%	80 - 120
Cis-1,2-Dichloroethene	111%	109%	1.8%	70 - 130	101%	80 - 120
1,1,1-Trichloroethane	100%	98%	2.4%	70 - 130	99%	80 - 120
Benzene	124%	124%	0.3%	70 - 130	118%	80 - 120
Trichloroethene	126%	112%	12.1%	70 - 130	109%	80 - 120
Toluene	104%	103%	1.6%	70 - 130	105%	80 - 120
Tetrachloroethene	106%	112%	5.8%	70 - 130	103%	80 - 120
Chlorobenzene	110%	109%	0.7%	70 - 130	112%	80 - 120
Ethylbenzene	103%	99%	4.3%	70 - 130	106%	80 - 120
1,2,4 Trimethylbenzene	91%	91%	0.3%	70 - 130	99%	80 - 120
Gasoline Range Organics (C4-C12)	106%	104%	1.4%	70 - 130	107%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	100%	102%		60 - 140	100%	60 - 140
Toluene-d ₈	94%	94%		60 - 140	93%	60 - 140
4-Bromofluorobenzene	97%	100%		60 - 140	98%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 20%

11007 Forest Pl. Senta Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.ioneseny.com

Soil-Gas Chain-of-Custody Record

Client Mearns Consulting Grou Project Name Town Center Northwest		: :				7/28/202 Client Project #	<u>!1</u>	o 1P :	urge Numbe \$13P ::: 7P -In Test: (Y	□ 10F			Re EDO (EDF*					Jones	Project E-11		ř
Project Address 2890 Walinut Ave Signel Hill, CA Grade Phone						Turn Around Record Resh 24 Hours DRush 48 Hours DRush 72 Hours DRush 72 Hours DRush 72 Hours Rosmal	tion g Limite	n-pent it n-hexe it n-hept isoproj in 1,1-DF	ne ine był Alchohol A	Material (94)	8	lyel:	Rei	que	tourn (frifty.O)	tainers		GASTIG	Of Container: IT GLASS SY than show, see		
Report To Sussan L. Mearns PhD	. 1	Sempler Casey	Eilis			KStandard B	Low Level* wrcharge for	n MOL*	AQ/TI ³	9.44E	3	1			, A	Q Co					
Semple ID	Purge Humiber	Purge Volume (mL)	Deta	Sample Collection Time	Sarupiu Analysia Timo	Laboratory Sample ID	Perge Rate (mLimin)	Pump Used	Magnehelic	Sample of Cas (d	EPA 82	Seech			Magneh	P P	No	tes & Spr	olal Instru	etions	
SV9-15	3	1470	7/28/21	7:13	7:15	E-1173-01	200	CASEY.2	M100.203	SG	X	X			10	1			<u> </u>		
SV9-15 REP	3	1470	7/28/21	7:23	7:31	E-1173-02	200	CASEY.2	M100.203	SG	X.	Х		٠. ^	10	1					
8V10-5	3	1310	7/28/21	7:25	7:28	E-1173-03	200	CASEY.1	118012	SG	x	x			<2	1		•			
SV10-15	3	1470	7/28/21	7:44	7:49	E-1173-04	200	CASEY.2	M100.114	SG	x	×			<2	1				-· ·	
SV11.5	3	1310	7/28/21	7:41	7:47	E-1173-06	200	CASEY.1	M100.201	SG	х	x			<2	1					
SV11-15'	3	1470	7/28/21	8:03	8:07	E-1173-08	200	CASEY.2	M100.203	SG	×	×			<2	1					
SV12-5	3	1310	7/28/21	8:00	8:05	E-1173-07	200	CASEY.1	118012	SG	×	×			<2	1			·	<u> </u>	•
SV12-15'	3	1470	7/28/21	8:20	8:25	E-1173-06	200	CASEY.2	M100.114	SG	x	x			<2	1					
SV13-5	3	1310	7/28/21	8:23	8:24	E-1173-09	200	CASEY.1	M100.201	SG	x	x			<2	1					
SV13-5' REP	3	1310	7/28/21	8:33	8:42	E-1173-10	200	CASEY.1	M100.201	SG	×	×			<2	1					
Paper una market and fight flaure	1	Printed Na SUSAM ME		<u>!</u>	<u> </u>	Laberatory Signature	5/10	\		ted Na EY EU						10	Total Numi	per of Contai	nert		
Company		Date		Time		Company JONES ENVIRONMENTA			Det	7/28/20	71	Ť	ime 11	46							
Meems Consulting Group . Representative Signature		Printed Na	/2021		:45	Laboratory Signature		<u>.</u>		ted No.			-11			ac	knowledger	ent that the ve information	of Custody I above analys in provided h	ee have be	en
Company		Date		Time		Company			Dat	•		Ť	ree			1		and ec	curale.		

11007 Forest PI Sente Fe Springs, CA 90870 (714) 449-9397 Fax (714) 449-9395 MANN IONBERTY (201

Soil-Gas Chain-of-Custody Record

Clerk Mearns Consulting Group					Data 7/28/202	2 j		urge Numbe (3P a 7P a				FDF*	port 0 - 10%			LAB USE ONLY Jones Proje	ct#
Project Name					Client Project #				٠			(** * **).				E-4	173
Town Center Northwest		11111	·	2.3		3.9	Shut	In Test 😢)/ N	ĺψ.			M AD	* ***			
Project Address 2680 Walkisit Avo					Turn Abound Re			eceir		Me	Jek		juge j	ted		Page	
Signal Hill, CA Empl					o kumadiste Atas o Rust 24 Hours o Rust 48 Hours o Rust 72 Hours			ria ime nyi Akthohol		1*. 7//				₹		Sample Circump	
					□ Normal s.Mobile Lab Reportin	g Limits	a 1,1-DF		8]	æ	Crostina			TE ES		SATISHI GASS	-
Report To Susan L Mearns PhD	Sampler Casey	Ells				Low Level* surcharge fo		LO/M3	13 4 % S	ROBE (VOCE)	Range			\$	å	19-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Sample E3 Purps Number	Purge Volume (shL)	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ©	Purge Pide (mLimit)	Pump Vood	Magpelolic		EPA 62	Name D			101	Namber Name	tee & Special ins	ructions
SV13-15' 3	1470	7/28/21	8:34	8:43	E-1173-11	200	CASEY.2	M100,203	SG	X	X			<2			
SV14-5' 3	1310	7/28/21	8:56	9:01	E-1173-12	200	CASEY.1	118012	SG	X	X.	¥1.		<2	1		
SV14-15' 3	1470	7/28/21	8:57	9:02	E-1173-13	200	CASEY.2	M100.114	SG	X	×			<2	1		
SV15-5* 3	1310	7/28/21	9:16	9:19	E-1173-14	200	CASEY.1	M100,201	S G	X	X		V.	42	1		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co
SV15-15' 3	1470	7/28/21	9:17	9:20	E-1173-15	200	CASEY.2	M100.203	SG	X	X	ej i		2	1		
SV16-5' 3	1310	7/28/21	9:33	9:38	E-1173-16	200	CASEY.1	118012	SG	X	X			2	1		. ·
SV16-15' 3	1470	7/28/21	9:34	9:39	E-1173-17	200	CASEY.2	M100.114	SG	X	X		. 7,5° . k	2	1		
SV17-5' 3	1310	7/28/21	9:52	9:57	E-1173-18	200	CASEY.1	M100.201	SG	X	х			<2	1		
SV17-15' 3	1470	7/28/21	9:53	9:58	E-1173-19	200	CASEY.2	M100.203	SG	x	X			<2	1	, 14 ²	
SV18-5' 3	1310	7/28/21	10:13	10:16	Ę-1173-20	200	CASEY.1	118012	SG	X	X			<2	1		
Representative Statesture	Printed Ne SUSAN ME				Laboratory Signature	Ell	1		ed Han Ey Elli						10 Total Num	per of Contilinaria	
Company Meams Consulting Group		/2021	Time 11	:45	Company JONES ENVIRONMENT/	AL, INC.			7/29/202		T	me 112	46		Client signature	on this Chain of Custo	ly form constitutes
Representative Signature Company	Printed Na Date		Time		Laboratory Signature Company			Prin	ted Nam	•	Ŧ				actonowiedgen	ent that the above and is information provide and accurate.	ilyses have been

11007 Forest Pl Santa Fe Springs, CA 90876 (714) 449-9937 Fax (714) 449-9681 www.jonesenv.com

Soil-Gas Chain-of-Custody Record

Client Mearns Consulting Group Project Name Town Center Northwest)					7/28/202 Client Project #	<u>:1</u>	o 1P	inge Numbe 163P a 7P In Test: (V	# 10f	•		EDD EDF*	- 109 - 109 al ID	Sun		• <u> </u>	Jones	only Project (E-117	
Project Address 2690 Walnut Ave Signal Hill, CA Excel			7 78			Turn Around Recommendate Attenton Rush 24 Hours on Rush 48 Hours on Normal Mobile Lab	tion	pt n-penti pt n-hexa ptn-hepti	ne me syl Alchohol	00 1141		Organics Organics	Re	Que:	(Ornertico)	in the second			Of ontainer: I GLASS SYR	
Report To Susan L Mearns PhD	· · · · · · · · · · · · · · · · · · ·	Sampler Casey	Ellie			'≰Standard o	Low Level* surcharge for		10/m²	b Metric:	EPA &2608 (VOCs)	e Range			helic Vacatum	o Con				· .
Sample ID	Purpe Number	Polys Votate (m)	Data	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purga Rate (mL/min)	Pemp Used	Magnehelic	Agenda agenta	EPA &2	Gastifine			Magne		No	tes & Spec	iel Instruc	tions
SV18-15'	3	1470	7/28/21	10:14	10:17	E-1173-21	200	CASEY.2	M100.114	SG	X	Х			36	1				
SV19-5'	3	1310	7/28/21	10:32	10:36	E-1173-22	200	CASEY.1	M100.201	SG	×	X			٧	1				
SV18-15' DIL	•	- '	7/28/21	10:46	10:48	-	-	CASEY.2	M100.114	SG	X	Х		,	36	1	<u></u>			. ,
SV19-6' DIL		•	7/28/21	11:10	11:12	-	-	CASEY.1	M100.201	SG	x	X			8	1			· 	
							•						_							
	:							}												
			·																	
C																				
800		Printed No. SUSAN ME				Cumf	(Gl	5		and Ma KEY EU						•	Total Numb	er of Contain	ens .	
Company Mearns Consulting Group Representative Signature		Date 7/25/ Printed No	72021 No	Three 11	:45	Company JONES EAVIRONMENT/ Laboratory Signature	AL, INC.			7/28/20 20d Na				:45	<u> </u>	*	megbelwansk	ont that the al e information	bove analyse provided he	rm constitutes is have been rein is correct
Соптрану		Date		Time		Company	oc 181		Det	•		Ťì	100 100					and acci		

APPENDIX D Boring Logs

Kehoe Drilling Geoprobe 7800 2 1/4 INCH DIAMETE 6" SS slotted probe #3 Sand BENTONITE ON		Numbe Water I	eveloped and	e of Install 2/21 Co d Sampled	ation mpletion D	NA Date 7/12/21 NA SRF REMARKS		
2 1/4 INCH DIAMETE 6" SS slotted probe #3 Sand BENTONITE ON		Water I Start Do Date Do Logged	Depth at Date ate 7/12 eveloped and By SR	e of Install 2/21 Co d Sampled F Ch	mpletion D ecked By	NA Date 7/12/21 NA SRF		
6" SS slotted probe #3 Sand BENTONITE ON		Start Date Date Date Dogged	ate 7/12 eveloped and i By SR	2/21 Co d Sampled F Ch	mpletion D ecked By	Date 7/12/21 NA SRF		
#3 Sand BENTONITE ON		Date D Logged	eveloped and I By SR	d Sampled F Ch	ecked By	NA SRF		
DN PINOTOGY		Logged OG DATA	By SR	F Ch	ecked By	SRF		
ПТНОГОВУ		OG DATA	A	SAMPLE	DATA			
						REMARKS		
	SOSA	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS		
Lt brn, firm, dense, masive Pr Plasticity	lasticity	CLAY: Lt brn, firm, dense, massive Pr Plasticity CLAY: Lt-med brn, firm, dense, massive pr plastivity CL				SV1-5'	5-5.5'	NO STAIN NO ODOR
ense, massive	CL		0	SV1-10'	10.0-10.5	NO STAIN NO ODOR		
ve, "sugar Sand"	QD.	iá	- 6" SS Pro	be		NO STAIN		
MEARNS					LOG SV	NO ODOR		
	ve, "sugar Sand" ⊡∷∷∷	ve, "sugar Sand" SP	ve, "sugar Sand"	ense, massive ZZZ CL 0 Hydrated 6" SS Pro SP 0	Hydrated bentonite - 6" SS Probe 0 SV1-15" BORING Town Ce Signal Hill	ense, massive ZZZ CL 0 SV1-10' 10.0-10.5 We, "sugar Sand" Hydrated bentonite 6" SS Probe 0 SV1-15' 15-15.5 BORING LOG SV Town Center NW Signal Hill, California Project Number Date PM		

and the second s	SV2			Elevation	n and Datu	m	GROUND S	SURFACE
Orilling Company	Kehoe Dril	ling		Complet	tion Depth		15 FI	EET
Orilling Equipment	Geoprobe 7	800		Number	of Samples	s		3
Boring	2 1/4 INCH DIA	METER	3	Water D	epth at Dat	te of Installa	ition	NA
Type of Perforation	6" SS slotted	probe		Start Da	te 7/1	2/21 Cor	npletion D	ate 7/12/21
Type of Perforation Backfill	#3 Sand	t		Date De	veloped an	d Sampled		NA
Type of Seal	BENTONI	TE		Logged	By SF	F Che	ecked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DESCRI	PTION	ІТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0 Dirt Surface		1-1						
1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — 9 — 40 — 40 — 40 — 40 — 40 — 40 — 40		7//	CL		#3 Sand 0 Bentonite 1/4 " poly	SV2-5' e tubing	5-5.5'	NO STAIN NO ODOR
10— CLAY: Lt-med brn, fi pr plasticity 11— 12— 13— 14—					O Hydrated 6" SS Pre	bentonite	10.0-10.5	NO ODOR
15 Buff, massive, TD 15.5'	, v fn sandy	KEKEKE	ML	I/A	0	SV2-15'	15-15.5	NO STAIN NO ODOR
MEAF	T		E	BORING I		2		
CONGI	MEARNS CONSULTING					Town Ce		
CONSU		_	ject Numb		Signal Hill,	California		

Boring Lo	cation	SV3			Elevation	and Datum	1	GROUND	SURFACE			
Orilling Co	ompany	Kehoe Dr	illing		Completion	on Depth	77-	15 FI	EET			
Drilling Ed	quipment	Geoprobe 7	7800		Number of	of Samples			3			
Boring		2 1/4 INCH DI/	AMETER	7	Water De	pth at Date	e of Installa	ation	NA			
Type of P	erforation	6" SS slotted	probe		Start Date	e 7/12	2/21 Coi	mpletion D	ate 7/12/21			
Type of P	erforation Backfill	#3 San	d		Date Dev	eloped and	d Sampled		NA			
Type of S	eal	BENTON	ITE		Logged E	Sy SRI	F Ch	ecked By	SRF			
				L	OG DATA		SAMPLE	DATA				
DEPTH (FEET)	DESCRIF	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS			
0 0	irt Surface		1									
1 — 2 — 3 — 4 — 5 — CI = 7 — 9 —	LAY: Lt brn, firm, de Pr Plasticity	nse, masive	222	CL		- #3 Sand 0 - Bentonite 1/4 " poly t	A	5-5.5'	NO STAIN NO ODOR			
10 <u>CI</u> 11 <u>12 </u> 13 <u>13 </u>	LAY: Lt-med brn, fir pr plasticity	m, dense, massiv	e 777	CL		0	SV3-10'	10.0-10.5	NO STAIN NO ODOR			
14— 15— <u>SI</u>	ILT: Buff, massive, 「D 15.5'	v fn sandy	Spanac	ML		- Hydrated I - 6" SS Pro 0		15-15.5	NO STAIN NO ODOR			
MEARNS CONSULTING					BORING LOG SV3 Town Center NW Signal Hill, California							
	COR			Pro	oject Numbe	r D	ate 2, 2021	PN				

Boring Location	SV4			Elevation	and Datu	m	GROUND S	BURFACE
Drilling Company	Kehoe Drillin	ng		Complet	ion Depth		15 FI	EET
Orilling Equipment	Geoprobe 780	00		Number	of Sample	S		3
Boring	2 1/4 INCH DIAM	ETER		Water D	epth at Da	te of Installa	tion	NA
ype of Perforation	6" SS slotted pr	robe		Start Da	te 7/1	2/21 Cor	npletion D	ate 7/12/21
Type of Perforation Backfill	#3 Sand			Date De	veloped ar	d Sampled		NA
Type of Seal	BENTONITE	E		Logged	By SF	RF Che	ecked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DESCRI	PTION	ПТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — Macro core refusal 8', s			CL		— #3 Sand 0 — Bentonii — 1/4 " poly	SV4-5'	5-5.5'	NO STAIN NO ODOR
10— CLAY: Lt-med brn, fi pr plasticity 11— 12— 13—	rm, dense, massive	""	CL		0	SV4-10'	10.0-10.5	NO STAIN NO ODOR
15— SILT: Buff, massive, TD 15.5'	v fn sandy	RENERE	ML	1/4	— 6" SS P		15-15.5	NO STAIN NO ODOR
MEAF	BORING LOG SV4 Town Center NW Signal Hill, California							
COF			Pro	ject Numb		Date 12, 2021	PN	/ Page 1 of 1

Boring L	_ocation	SV5			Elevation	n and D	atum	GROUND SURFACE			
Drilling (Company	Kehoe Di	rilling		Comple	tion Dep	oth		15 F	EET	
Drilling	Equipment	Geoprobe	7800		Numbe	r of Sam	ples			3	
Boring		2 1/4 INCH DI	AMETER	}	Water I	Depth at	Date of	Installa	ation	NA	
Type of	Perforation	6" SS slotte	d probe		Start Da	ate	7/12/21	Cor	mpletion D	ate 7/12/21	
Type of	Perforation Backfill	#3 Sar	nd		Date De	evelope	and S	ampled	W	NA	
Type of	Seal	BENTON	NITE		Logged	Ву	SRF	Che	ecked By	SRF	
fi I				L	OG DATA	1		SAMPLE	DATA		
DEPTH (FEET)	DESCRI	PTION	ПТНОГОВУ	nscs	WELL	OVA-PPM		SAMPLE	SAMPLE	REMARKS	
0	Dirt Surface		-	1							
6 - 7 - 8	CLAY: Med brn, firm, Pr Plasticity	dense, masive	7/2	CL		0 Ben	Sand S tonite poly tubi	SV5-5'	5-5.5'	NO STAIN NO ODOR	
9 — 10— 11— 12—	CLAY: Lt-med brn, fi silty, pr plasti		/e ////	CL		0	\$	SV5-10'	10.0-10.5	NO STAIN NO ODOR	
13—	SILT: Buff, massive,	v fn sandy	KENEK	ML			ated ber S Probe		15-15.5	NO STAIN NO ODOR	
MEARNS CONSULTING CORP.					J Dject Num	ber		Fown Cognal Hill	LOG SV enter NW , California	a	

Boring	Location	SV6			Elevation	and Datur	n	GROUND SURFACE				
Drilling	Company	Kehoe Dril	ling		Complet	ion Depth		15 FI	EET			
Drilling	Equipment	Geoprobe 78	B00		Number	of Samples	3		3			
Boring		2 1/4 INCH DIA	METER	7	Water D	epth at Dat	e of Installa	ation	NA			
Гуре о	f Perforation	6" SS slotted	probe		Start Da	te 7/1	3/21 Co	mpletion D	ate 7/13/21			
Type of	Perforation Backfill	#3 Sand	ı		Date De	veloped an	d Sampled		NA			
Type of	Seal	BENTONI	TE		Logged	By SR	F Ch	ecked By	SRF			
6				L	OG DATA		SAMPLE	DATA				
DEPTH (FEET)	DESCRI	PTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS			
0	Dirt Surface				8 9 9							
1 — 2 — 3 — 4 — 5 — 7 — 8 — 9 —	CLAY: Lt brn, firm, de Pr Plasticity	ense, masive	777	CL		#3 Sand 0 Bentonite - 1/4 " poly	SV6-5'	5-5.5'	NO STAIN NO ODOR			
10-	CLAY: Lt-med brn, finger plasticity	rm, dense, massive	<i>777</i>	CL		0	SV6-10'	10.0-10.5	NO STAIN NO ODOR			
14— 15— 16—	SILT: Off wht, massi	ve, v fn sandy	SEXESS	ML		— Hydrated — 6" SS Pr 0	bentonite obe SV6-15'	15-15.5	NO STAIN NO ODOR			
MEARNS CONSULTING					BORING LOG SV6 Town Center NW Signal Hill, California							
	COF	P.		Pro	oject Numb	er [Date 13, 2021	PN	// Pag			

Boring Location	SV7			Elevation	n and Datu	n	GROUND	SURFACE
Drilling Company	Kehoe Dri	lling		Comple	tion Depth		15 F	EET
Orilling Equipment	Geoprobe 7	800		Numbe	r of Sample:	3		3
Boring	2 1/4 INCH DIA	METER	3	Water [Depth at Dat	e of Install	ation	NA
Type of Perforation	6" SS slotted	probe		Start Da	ate 7/1	3/21 Co	mpletion D	ate 7/13/21
Type of Perforation Backfill	#3 San	d		Date De	eveloped an	d Sampleo		NA
Type of Seal	BENTON	ITE		Logged	By SF	F Ch	ecked By	SRF
6			L	OG DATA	1	SAMPLE	DATA	
DESCRI	PTION	LITHOLOGY	USCS	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — 9 —	ense, masive	2772	CL		#3 Sand 0 Bentonite − 1/4 " poly	SV7-5'	5-5.5'	NÓ STAIN NO ODOR
10— CLAY: Lt-med bm, fi pr plasticity	rm, dense, massive	///	CL		O	SV7-10 ⁴	10.0-10.5	NO STAIN NO ODOR
14— 15— SILT: Buff, massive, TD 15.5'	v fn sandy	None	ML		— Hydrated ← 6" SS Pro 0	1	15-15.5	NO STAIN NO ODOR
MEAF CONSU COF	BORING LOG SV7 Town Center NW Signal Hill, California Project Number Date PM Page							

Boring Location	SV8			Elevation	and Datur	n	GROUND S	BURFACE
Orilling Company	Kehoe Dri	illing		Completion	on Depth		15 FE	
Orilling Equipment	Geoprobe 7	800		Number of	of Samples		- 7-1	3
Boring	2 1/4 INCH DI/	AMETER	3	Water De	epth at Dat	e of Installa	tion	NA
Type of Perforation	6" SS slotted	probe		Start Date	e 7/1	3/21 Con	npletion D	ate 7/13/21
Type of Perforation Backfil	#3 San	d		Date Dev	eloped an	d Sampled		NA
Type of Seal	BENTON	ITE		Logged E	By SR	F Che	ecked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DEPTH	RIPTION	LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0 Dirt Surface				81818				
1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, Pr Plasticity 6 — 7 — 8 — 9 —	dense, masive	777	CL		— #3 Sand 0 — Bentonit - 1/4 " poly	SV8-5'	5-5.5'	SLT STAIN NO ODOR
10— CLAY: Lt-med brr pr plasticit	n, firm, dense, massiv y	re ZZZ	CL		0	SV8-10 ¹	10.0-10.5	NO STAIN NO ODOR
13—						bentonite		
CLAY Buff, firm, r	nassive, silty asticity	777	CL		— 6" SS Pr 0	SV8-15'	15-15.5	NO STAIN NO ODOR
MEA	T			BORING Town Co	enter NW			
	RP.		Pr	oject Numb		Date 13, 2021	P	

Boring Location	SV9			Elevation	and Datum	1 (GROUND	SURFACE
Orilling Company	Kehoe Dril	lling		Completi	ion Depth		15 F	EET
rilling Equipment	Geoprobe 7	800		Number	of Samples			3
Boring	2 1/4 INCH DIA	METER	3	Water De	epth at Date	of Installa	tion	NA
ype of Perforation	6" SS slotted	probe		Start Dat	te 7/13	/21 Con	npletion D	rate 7/13/21
Type of Perforation Backfill	#3 Sand	d		Date Dev	veloped and	Sampled		NA
ype of Seal	BENTON	ITE		Logged I	By SRF	Che	cked By	SRF
6			L	OG DATA		SAMPLE	DATA	
DESCRI	PTION	ІТНОГОВУ	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
0 Dirt Surface		1		0.000				
1 — 2 — 3 — 4 — 5 — CLAY: Dk brn, firm, control of the presentation of the presentatio	lense, masive	772	CL		#3 Sand 0 Bentonite 1/4 " poly t		5-5.5'	NO STAIN NO ODOR
10— CLAY: Med brn, firm pr plasticity 11— 12— 13—	i, dense, massive	ZZZ	CL		0		10.0-10.5	NO STAIN NO ODOR
15— CLAY Med brn, firm, TD 15.5' massiv	, firm, dense e, pr plasticity	777	CL		— Hydrated — 6" SS Pro 0		15-15.5	NO STAIN NO ODOR
MEAR			E	BORING Town Co Signal Hill	enter NW			
COF	RP.		Pro	oject Numb	er D July	ate 13, 2021	PI	

Boring Location	SV10			Elevation	n and Datur	m (GROUND :	SURFACE	
Drilling Company	Kehoe Dr	illing		Comple	tion Depth		15 FEET		
Drilling Equipment	Geoprobe 7	7800		Number	of Samples	3	3		
Boring	2 1/4 INCH DI/	AMETER	7	Water D	epth at Dat	e of Installa	tion	NA	
Type of Perforation	6" SS slotted	probe	ij.	Start Da	ite 7/1	3/21 Con	npletion D)ate 7/13/21	
Type of Perforation Backfill	#3 San	d		Date De	eveloped and Samp			NA	
Type of Seal	BENTON	ITE		Logged	By SR	F Che	ecked By	SRF	
DESCRI			L	OG DATA		SAMPLE	DATA		
		LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
0 Dirt Surface		+-		01818					
1 — 2 — 3 — 4 — 5 — CLAY: Dk brn, firm, control of the property of the propert	dense, masive	7//2	CL		#3 Sand 0 Bentonite - 1/4 " poly	SV10-5.0	5-5.5'	NO STAIN NO ODOR	
10— CLAY: Med brn, firm pr plasticity	n, dense, massive	777	CL		0	SV10-10 ¹	10.0-10.5	NO STAIN NO ODOR	
13— 14— 15— CLAY Med brn, firm, massive 16— TD 15.5' TD 15.5'	, firm, dense e, pr plasticity	777	CL	i'a	— Hydrated — 6" SS Pri 0	ibentonite dbe SV10-15'	15-15.5	NO STAIN NO ODOR	
MEARNS CONSULTING			Pro	eject Numb	er D	Town Ce Signal Hill, Date 13, 2021	nter NW	a	

Prilling Company Prilling Equipment Boring		illing		200					
				Complet	ion Depth	4	15 FEET		
Poring	Geoprobe 7	7800		Number	of Samples		3		
oning	2 1/4 INCH DI/	AMETER	3	Water D	epth at Dat	e of Installa	tion	NA	
ype of Perforation	6" SS slotted	d probe		Start Dat	te 7/1:	3/21 Con	Completion Date 7/13/21		
ype of Perforation Backfil	#3 San	ıd		Date De	veloped an	d Sampled		NA	
ype of Seal	BENTON	ITE		Logged	By SR	F Che	ecked By	SRF	
			- 1	LOG DATA		SAMPLE	DATA	REMARKS	
	DESCRIPTION		nscs	WELL	OVA-PPM	SAMPLE	SAMPLE		
Dirt Surface		ГТНОГОВУ							
CLAY: Dk brn, firm Pr Plasticity	dense, masive	772	CL		#3 Sand 0 Bentonite - 1/4 " poly	SV11-5.0	5-5.5'	SLT STAIN V SLT ODOR	
9 — CLAY: Med brn, fin pr plasticity		777	CL		0	SV11-10 ¹	10.0-10.5	NO STAIN NO ODOR	
13— 14— 15— CLAY Med brn, fire	n, firm, dense ive, pr plasticity	777	CL		- Hydrated - 6" SS Pro 0		15-15.5	NO STAIN NO ODOR	
MEARNS CONSULTING CORP.			I	ject Numbe		ORING L Town Ce Signal Hill,	nter NW	i	

etion Depth r of Samples Depth at Date of Samples Depth at Date of Samples Reveloped and Samples By SRF A Wdd-YAAO	Checke SAMPLE DA	NA SRF			
Depth at Date of the Triangle	Checke SAMPLE DA	n NA etion Date 7/13/2 NA ed By SRF			
ate 7/13/2 eveloped and S By SRF	Checke SAMPLE DA	NA ed By SRF			
By SRF	Sampled Checke	NA ed By SRF			
By SRF	Checke SAMPLE DA	ed By SRF			
1	SAMPLE DA	iTA .			
OVA-PPM	SAMPLE NUMBER	REMARKS			
#3 Sand 0 Bentonite 1/4 " poly tub		-5.5' NO STAIN NO ODOR			
0	SV12-10' 10.0	0-10.5 NO STAIN NO ODOR			
0	SV12-15' 15-	-15.5 NO STAIN NO ODOR			
BORING LOG SV12 Town Center NW Signal Hill, California					
	— 6" SS Prob	BORING LO			

Boring Location	SV13			Elevatio	n and Dat	um	C	ROUND	SURFACE	
Orilling Company	Kehoe Di	rilling		Comple	tion Depth			15 FEET		
Orilling Equipment	Geoprobe	7800		Number	of Sample	es		3		
Boring	2 1/4 INCH DI	AMETER	}	Water D	epth at D	ate of l	Installation NA		NA	
Type of Perforation	6" SS slotte	d probe		Start Da	ate 7/13/21		Completion D		Date 7/13/21	
Type of Perforation Backfill	#3 Sai	nd		Date De	eveloped a	eloped and Sample			NA	
Type of Seal	BENTON	VITE		Logged	By S	RF	Checked By		SRF	
6			L	OG DATA		SA	MPLE	DATA		
DESCRII	PTION	гтногову	nscs	WELL	OVA-PPM	SAMPLE	NUMBER	SAMPLE	REMARKS	
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Lt brn, firm, de Pr Plasticity 6 — 7 — 8 — 9 — 10 — CLAY: Lt brn, firm, d pr plasticity 11 — 11 — 11 — 11 — 11 — 11 — 11 — 11			CL		#3 Sai 0 Bentor − 1/4 " po 0	SV nite ly tubing		5-5.5'	NO STAIN NO ODOR	
12— 13— 14— 15— SILT: Buff, massive, TD 15.5'	, v fn sandy	3898988	ML		— Hydrato — 6" SS 0	Probe		15-15.5	NO STAIN NO ODOR	
MEAF	RNS					To	wn Ce	OG SV	1	
CONSU	LIING					Sigr	nal Hill,	, Californ	nia	
CONSU			Pro	oject Num	ber	Date	nal Hill, 021		PM Pag 1 of	

Boring Location	SV14			Elevation	n and Datu	m	GROUND :	SURFACE	
Prilling Company	Kehoe D	rilling		Complet	tion Depth		15 FEET		
Orilling Equipment	Geoprobe	7800		Number	of Sample	S		3	
Boring	2 1/4 INCH DI	AMETER	3	Water D	epth at Da	te of Install	nstallation NA		
Type of Perforation	6" SS slotte	d probe		Start Da	ite 7/1	3/21 Co	mpletion D	7/13/21	
Type of Perforation Ba	ackfill #3 Sai	nd		Date Developed and San		nd Sampled	1	NA	
Type of Seal	BENTON	VITE		Logged	By Sf	RF Ch	ecked By	SRF	
6		13 =	L	OG DATA		SAMPLI	DATA		
DEPT.	DESCRIPTION		nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
7 — Pr Plas	firm, dense, masive sticity		CL		#3 Sand0■ Bentoni= 1/4 " poly	SV14-5.	0 5-5.5'	NO STAIN NO ODOR	
pr pla:	, firm, dense, massive sticity	777	CL		0	SV14-10)'10.0-10.5	NO STAIN NO ODOR	
13— 14— 15— CLAY: Lt bm, TD 15.5'	silty, massive, pr plastici	ty ///	GL		— Hydrated — 6" SS P		1 15-15.5	NO STAIN NO ODOR	
	EARNS SULTING						LOG SV center NW		
	ORP.		Pro	oject Numb	oer July	Date 13, 2021	PI	M Page 1 of	

Boring Location	SV15			Elevation	n and Datun	n (GROUND	SURFACE	
Drilling Company	Kehoe D	rilling		Complet	ion Depth		15 FEET		
Drilling Equipment	Geoprobe	7800			of Samples		3		
Boring	2 1/4 INCH D	IAMETER	P	Water D	epth at Date	e of Installa	tion	NA	
ype of Perforation	6" SS slotte	ed probe		Start Da	te 7/13	3/21 Con	npletion D	Pate 7/13/21	
Type of Perforation Backfill	#3 Sa	nd		Date De	Date Developed and S			NA	
ype of Seal	BENTO	NITE		Logged	By SR	F Che	cked By	SRF	
<u> </u>			L	OG DATA		SAMPLE	DATA		
DEPT	DESCRIPTION		nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS	
Dirt Surface Dirt Surface CLAY: Lt brn, firm, Pr Plasticity	dense, masive	7772	CL		#3 Sand 0 Bentonite - 1/4 " poly 1	SV15-5.0	5-5.5'	NO STAIN NO ODOR	
9 — CLAY: Lt brn, firm, pr plasticity		777	CL		0	SV15-10¹	10.0-10.5	NO STAIN NO ODOR	
14— 15— CLAY: Buff, massiv TD 15.5'	/e	711	ML		- Hydrated - 6" SS Pro 0	SV15-15'		NO STAIN NO ODOR	
MEA	JLTING				В	ORING L Town Ce Signal Hill,	nter NW		
CO	RP.		Pro	ject Numb		ate 13, 2021	PN	A Page	

Boring Location		SV16			Elevatio	n and Datun	n (GROUND	SURFACE		
Drilling Company		Kehoe Dri	lling		Comple	tion Depth		15 FEET			
Orilling Equipmen	nt	Geoprobe 7	800		Number	of Samples		3			
Boring		2 1/4 INCH DIA	METER	3	Water D	Depth at Date	e of Installa	tion	NA		
Type of Perforation	on	6" SS slotted	probe		Start Da	ate 7/13	3/21 Con	Completion Date 7/1			
Type of Perforation	on Backfill	#3 Sand	d		Date De	ate Developed and Sample			NA		
Type of Seal		BENTONI	TE		Logged	By SR	F Che	cked By	SRF		
E .				T	OG DATA	1	SAMPLE DATA		REMARKS		
DEPTH (FEET)			LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE			
0 Dirt Surfa	ice	×	1								
1 — 2 — 3 — 4 — 5 — CLAY: M Pr	ed brn, firm, o	dense, masive	7772	CL		#3 Sand 0 Bentonite 1/4 " poly t		5-5.5'	NO STAIN NO ODOR		
	t brn, firm, de r plasticity	ense, massive	777	CL		0	SV16-10 ⁴	10.0-10.5	NO STAIN NO ODOR		
13— 14— 15— CLAY: DI TD 15.5'	na planet	, dense, massive city	777	CL		Hydrated I6" SS Pro4.7		15-15.5	SLT STAIN SLT ODOR		
MEARNS CONSULTING CORP.				Pro	ject Numb	per D	ORING L Town Ce Signal Hill, ate 3, 2021	nter NW	a		

Boring Location	SV17			Elevation	and Date	ım	GROU	IND SURFACE	j 4,2
Drilling Company	Kehoe Dril	lling		Complet	ion Depth			15 FEET	
Orilling Equipment	Geoprobe 7	800		Number	of Sample	es		3	
Boring	2 1/4 INCH DIA	METER	}	Water D	epth at Da	te of Insta	lation	NA	
Type of Perforation	6" SS slotted	probe		Start Da	te 7/	13/21 C	ompleti	on Date	7/13/21
Type of Perforation Backfill	#3 Sand	d		Date De	veloped a	nd Sample	d	NA	
Type of Seal	BENTONI	TE		Logged I	By s	RF C	necked	By SRF	
6			L	OG DATA		SAMPL	E DATA	4	
DESCRIF		LITHOLOGY	nscs	WELL	OVA-PPM	SAMPLE	SAMPLE	REMA	RKS
Dirt Surface 1 — 2 — 3 — 4 — 5 — CLAY: Med brn, firm, Pr Plasticity 7 — 8 — 9 — 10 — CLAY: Lt brn, firm, de			CL		— #3 San 0 — Bentoni - 1/4 " poly	SV17-5 tel	0' 10.0-1	STAIN NO ODG	N OR
11— 12— 13— 14—	ense, massive		CL			d bentonite		NO OE	
15 CLAY: Dk brn, firm, de TD 15.5' pr plassti			CL		0	SV17-18	5' 15-15	5.5 NO O	
MEARNS CONSULTING						BORING	LOG	SV17	
OONOLI	CVII					Town C			
CONSU	LIING					Signal H	II, Calif	ornia	
COR	P.		Pro	ject Numb		Date 13, 2021		PM	Page 1 of

Type of Perforation Back Type of Seal DESC Macro Core Dirt Surface CLAY: Med brn, f Pr Plastici Type of Seal DESC Macro Core Dirt Surface Blk, firm, pr plastic DESC Macro Core Dirt Surface	Geoprobe 2 1/4 INCH E 6" SS slotte ill #3 Sa BENTO CRIPTION Continous Sampling	7800 DIAMETER ed probe		Start Date Date Deve Logged By OG DATA	Samples oth at Date of 7/13/2 cloped and S	Sampled Chec	pletion Da	3 NA
Soring Type of Perforation Type of Perforation Back Type of Seal DESC Macro Core Dirt Surface 1 - 2 - 3 - 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	2 1/4 INCH E 6" SS slotte iii #3 Sa BENTO	DIAMETER ed probe and NITE	1	Water Dep Start Date Date Deve Logged By OG DATA	7/13/2 loped and S	Sampled Chec	pletion Da	NA ate 7/13/21 NA
Type of Perforation Back Type of Seal DESC Macro Core Dirt Surface Dirt Surface CLAY: Med brn, f Pr Plastici Bull Bull Bull Bull Bull Bull Bull Bu	6" SS slotte #3 Sa BENTO	ed probe and NITE	1	Start Date Date Deve Logged By OG DATA	7/13/2 loped and S	Sampled Chec	pletion Da	7/13/21 NA
DESC Macro Core Dirt Surface Dirt Surface CLAY: Med brn, f Pr Plastici Blk, firm, pr plastic DESC Macro Core Dirt Surface	BENTO	and NITE		Date Deve Logged By .OG DATA	loped and S	Sampled Chec	oked By	NA
DESC Macro Core Dirt Surface Dirt Surface CLAY: Med brn, f Pr Plastici CLAY: Blk, firm, pr plastic	BENTO	NITE		Logged By	SRF	Chec SAMPLE D	DATA	
Macro Core Dirt Surface Dirt Surface CLAY: Med brn, f Pr Plastici Blk, firm, pr plastic Dirt Surface	CRIPTION			OG DATA		SAMPLE D	DATA	SRF
0 Dirt Surface 1		ПТНОГОВУ			Md			
0 Dirt Surface 1		LITHOLOGY	SOS	STR	Md	шæ		
1 — 2 — 3 — 4 — 5 — CLAY: Med brn, f Pr Plastici 6 — 7 — 8 — 9 — 10 — CLAY: Blk, firm, pr plastic 11 — 12 — 13 — 7			2	WELL	OVA-PPM	SAMPLE	SAMPLE	REMARKS
10— CLAY: Blk, firm, pr plastic	irm, dense, masive ly		CL		#3 Sand 0 Bentonite	SV18-5.0	5-5.5'	V SLT STAIN NO ODOR
-	dense, massive ty		CL		16.7	SV18-10'1	0.0-10.5	MOD SLT STAIN SLT ODOR
15 CLAY: Blk,, firm, TD 15.5' pr pl	dense, massive assticity	777	CL		Hydrated be 6" SS Prob 11.7		15-15.5	MOD STAIN SLT ODOR
CONS	RNS		Dro	oject Number		RING LO	nter NW	

Boring Location	SV19			Elevation	n and [Datum		ROUND	SURFACE	
Orilling Company	Kehoe Dri	illing		Comple	tion De	pth		15 F	EET	
Orilling Equipment	Geoprobe 7	800		Number	r of Sar	nples		3		
Boring	2 1/4 INCH DI/	AMETER	3	Water I	Depth a	t Date	of Installa	tion	NA	
Type of Perforation	6" SS slotted	probe		Start Da	ate	7/13/2	21 Con	Completion Date 7/		
Type of Perforation Backfill	#3 San	d	Date Develope			d and	Sampled		NA	
Type of Seal	BENTON	ITE		Logged	Ву	SRF	Che	cked By	SRF	
6			L	OG DATA	1		SAMPLE	DATA		
Macro Core Con	DESCRIPTION Macro Core Continous Sampling		nscs	WELL	OVA-PPM	SAMPLE		SAMPLE	REMARKS	
Dirt Surface		LITHOLOGY			— 1/4"	poly tu	bing			
5 — CLAY: Blk, firm, dens Pr Plasticity	e, masive		CL		#3 13	lydrated Sand 884 ntonite	d bentonite SV19-5.0	5	GD STAIN MOD ODOR	
9 — 10 — CLAY: Blk,, dense, r pr plasticity	nassive, moist	222	CL		68	31	SV19-10'	10.0-10.5	GD STAIN MOD ODOR	
13— 14— 15— CLAY: Blk,, firm, den TD 15.5' pr plass		7//	CL		9(08	SV19-15'	15-15.5	GD STAIN MOD ODOR	
MEAF CONSU COF	LTING		Pro	oject Numl				nter NW	a	

APPENDIX E

Metals Statistical Analyses

	A B C D		E	l F	G	Н	1	J	K	
1	Tarone-Ware Sampl			-			a Sets with			
2										
3	User Selected Options									
4	Date/Time of Computation ProUCL	_ 5.18/7/20	021 10:	:47:43 AM						
5	From File Metals i	in Soil TCI	NW.xls	3						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Selected Null Hypothesis Sample	1 Mean/N	/ledian	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample	1 Mean/N	/ledian	> Sample 2	Mean/Mediar	1				
10										
11										
12	Sample 1 Data: As									
13	Sample 2 Data: Bkgrnd As									
14										
15	Raw Stat	tistics								
16		Sam	ple 1	Sample 2						
17	Number of Valid Dat	ta 57	7	15						
18	Number of Non-Detect	ts 56	3	11						
19	Number of Detect	ts 1		4						
20	Minimum Non-Detec	ct 5	.5	5.5						
21	Maximum Non-Detec	ct 5	.5	5.5						
22	Percent Non-detect	ts 98.25	5%	73.33%						
23	Minimum Detec	ct 20)	5.2						
24	Maximum Detec	ct 20)	14						
25	Mean of Detect	ts 20)	10.8						
26	Median of Detect	ts 20)	12						
27	SD of Detect	ts N/	A	3.851						
28	KM Mea	an 5	.754	6.693						
29	KM S	D 1	.904	3.016						
30										
31	Sample 1 vs Sample 2	? Tarone-V	Vare T	est						
32										
33	H0: Mean/Median of Sample 1 <= Mean/Med	dian of Sa	mple 2	2						
34					T					
35	TW Stati		699							
36	TW Critical Value (0	1	.645							
37	P-Va	alue 0	.997							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1 <=	Sample 2	2							
41	P-Value >= alpha (0.05)									
42										

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1			Wilcoxon-Ma	ann-Whitney	y Sample 1 v	vs Sample 2	Comparison	Test for Da	nta Sets with	Non-Detects	;	
2												
3			ected Options									
4	Dat	e/Time of C			8/7/2021 10							
5					oil TCNW.xls	5						
6				OFF								
7		Confidence		95%								
8		elected Null		-		<= Sample 2						
9		Alternative	Hypothesis	Sample 1 M	lean/Median	> Sample 2	Mean/Mediar	1				
10											1	
11												
12	Sample 1 D											
13	Sample 2 D	ata: Bkgrnd	l As									
14												
15			F	Raw Statistic		1						
16					Sample 1	Sample 2	1					
17			Number of \		57	15						
18			Number of No		56	11						
19			Number of De		1	4						
20			Minimum No		5.5	5.5						
21			Maximum No		5.5	5.5						
22			Percent No		98.25%	73.33%						
23				um Detect	20	5.2						
24				ım Detect	20	14						
25				of Detects	20	10.8						
26				of Detects	20	12						
27			20 (of Detects	N/A	3.851						
28		\A/k#\A/ +	est is meant f	for a Single	Detection Li	imit Casa						
29	Lise of Ge		test is sugge				re present					
30	USE OF GE		ervations <= 5		-		ile bieseilt					
31		All ODSE	rauono <u> </u>	(HIGA DE)	, are rankeu	are same						
32			Wilcoxon-Ma	nn-Whitney	(WMW) Ta	st						
33				771muley	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
34	H0: Mean/M	ledian of Sa	ample 1 <= M	ean/Median	of Sample :	2						
33					3. Junipio 1	_						
36		Sa	mple 1 Rank	Sum W-Stat	2004							
37			tandardized V									
38				Mean (U)								
39			SD((U) - Adj ties								
40	An	proximate U	I-Stat Critical \									
41			-Value (Adjus									
42			, .,	/								
44	Conclusion	with Alpha	= 0.05									
45				ple 1 <= Sai	mple 2							
46		Do Not Reject H0, Conclude Sample 1 <= Sample 2 P-Value >= alpha (0.05)										
			= /									
47												

	A B C	D	E	F	G	Н	ı	J	К	<u> </u>
1				mparison Hy			Sets with No		1 13	
2				<u> </u>						
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.1	8/7/2021 10:	46:30 AM						
5	From File	Metals in Sc	oil TCNW.xls	;						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Mediar	n				
10	1									
11										
	Sample 1 Data: As									
13	Sample 2 Data: Bkgrnd As									
14										
15	R	aw Statistic	s							
16			Sample 1	Sample 2						
17	Number of V	alid Data	57	15						
18	Number of Nor	-Detects	56	11						
19	Number of De	tect Data	1	4						
20	Minimum No	n-Detect	5.5	5.5						
21	Maximum No	n-Detect	5.5	5.5						
22	Percent Nor	n-detects	98.25%	73.33%						
23	Minimu	m Detect	20	5.2						
24	Maximu	m Detect	20	14						
25	Mean o	f Detects	20	10.8						
26	Median o		20	12						
27	SD o	f Detects	N/A	3.851						
28	ŀ	KM Mean	5.754	6.693						
29		KM SD	1.904	3.016						
30										
31	Sample 1 vs	Sample 2	Gehan Test							
32										
33	H0: Mean/Median of Sample 1 <= Me	an/Median	of backgrou	ınd						
34				1						
35		Test Value	-2.672							
36	Criti	cal z (0.05)	1.645							
37		P-Value	0.996							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Samp	ole 1 <= Sar	mple 2							
41	P-Value >= alpha (0.05)									
42										

	A B C	D	Е	F	G	Н	ı	J	К	1
1				omparison Hy			Sets with No		1 1	
2										
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.1	8/7/2021 10	:50:43 AM						
5	From File	Metals in Sc	oil TCNW.xls	3						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Mediar	า				
10	l									
11										
	Sample 1 Data: Ba									
13	Sample 2 Data: Bkgrnd Ba									
14										
15	R	aw Statistic	s							
16			Sample 1	Sample 2						
17	Number of V	alid Data	57	15						
18	Number of Nor	n-Detects	0	0						
19	Number of De	tect Data	57	15						
20	Minimum No	n-Detect	N/A	N/A						
21	Maximum No	n-Detect	N/A	N/A						
22	Percent No	n-detects	0.00%	0.00%						
23	Minimu	m Detect	26	48						
24	Maximu	m Detect	3100	180						
25	Mean o	f Detects	151.1	110.9						
26	Median o	f Detects	74	97						
27	SD o	f Detects	415.1	41.89						
28	ŀ	KM Mean	151.1	110.9						
29		KM SD	415.1	41.89						
30										
31	Sample 1 vs	Sample 2	Gehan Test							
32										
33	H0: Mean/Median of Sample 1 <= Me	ean/Median	of backgrou	ınd						
34										
35		Test Value	-2.655							
36	Criti	cal z (0.05)	1.645							
37		P-Value	0.996							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Samp	ole 1 <= Sar	mple 2							
41	P-Value >= alpha (0.05)									
42										

	A B C D	D I	E	l F	G	Н	ı	J	K	<u> </u>
1	Tarone-Ware Sam			-			a Sets with	-		
2										
3	User Selected Options									
4	Date/Time of Computation ProUC	CL 5.18/7	7/2021 10:	51:09 AM						
5	From File Metals	s in Soil	TCNW.xls	;						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Selected Null Hypothesis Samp	ole 1 Mea	n/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis Samp	ole 1 Mea	n/Median	> Sample 2 I	Mean/Mediar	า				
10										
11										
12	Sample 1 Data: Ba									
13	Sample 2 Data: Bkgrnd Ba									
14										
15	Raw St	tatistics								
16		Sa	ample 1	Sample 2						
17	Number of Valid D	Data	57	15						
18	Number of Non-Dete	ects	0	0						
19	Number of Dete	ects	57	15						
20	Minimum Non-Det	tect	N/A	N/A						
21	Maximum Non-Det	tect	N/A	N/A						
22	Percent Non-dete	ects 0.	00%	0.00%						
23	Minimum Det	tect	26	48						
24	Maximum Det	tect 3	3100	180						
25	Mean of Dete	ects	151.1	110.9						
26	Median of Dete	ects	74	97						
27	SD of Dete	ects	415.1	41.89						
28	KM Me	ean	151.1	110.9						
29	KM	SD	415.1	41.89						
30										
31	Sample 1 vs Sample	2 Taron	e-Ware T	est						
32										
33	H0: Mean/Median of Sample 1 <= Mean/M	ledian of	Sample 2	2						
34				1						
35	TW Sta		-3.113							
36	TW Critical Value (` '	1.645							
37	P-'	-Value	0.999							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1 <	<= Samp	le 2							
41	P-Value >= alpha (0.05)									
42										

	A B C D	Е	F	G	Н	I	J	K	L
1	Wilcoxon-Mann-Whitne	y Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects	3	
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.	18/7/2021 10	:51:36 AM						
5	From File Metals in S	oil TCNW.xls	S						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Selected Null Hypothesis Sample 1 I	Mean/Median	<= Sample	2 Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample 1 I	Mean/Median	> Sample 2	Mean/Media	n				
10									
11									
12	Sample 1 Data: Ba								
13	Sample 2 Data: Bkgrnd Ba								
14									
15	Raw Statist	cs							
16		Sample 1	Sample 2						
17	Number of Valid Data	57	15						
18	Number of Non-Detects	0	0						
19	Number of Detect Data	57	15						
20	Minimum Non-Detect	N/A	N/A						
21	Maximum Non-Detect	N/A	N/A						
22	Percent Non-detects	0.00%	0.00%						
23	Minimum Detect	26	48						
24	Maximum Detect	3100	180						
25	Mean of Detects	151.1	110.9						
26	Median of Detects	74	97						
27	SD of Detects	415.1	41.89						
28									
29	Wilcoxon-Mann-Whitne	y (WMW) Te	st						
30									
31	H0: Mean/Median of Sample 1 <= Mean/Media	n of Sample	2						
32									
33	Sample 1 Rank Sum W-Sta								
34	Standardized WMW U-Sta								
35	Mean (U								
36	SD(U) - Adj tie								
37	Approximate U-Stat Critical Value (0.05	-							
38	P-Value (Adjusted for Ties	0.996							
39	_								
40	Conclusion with Alpha = 0.05								
41	Do Not Reject H0, Conclude Sample 1 <= Sa	ample 2							
42	P-Value >= alpha (0.05)								
43									

	A B C	D	E	F	G	Н	ı	J	К	
1				mparison Hy			Sets with No		1 13	
2				<u> </u>						
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.1	8/7/2021 10:	53:47 AM						
5	From File	Metals in Sc	oil TCNW.xls	;						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Mediar	n				
10										
11										
	Sample 1 Data: Co									
13	Sample 2 Data: Bkgrnd Co									
14										
15	R	aw Statistic	s							
16			Sample 1	Sample 2						
17	Number of V	alid Data	57	15						
18	Number of Nor	n-Detects	2	0						
19	Number of De	tect Data	55	15						
20	Minimum No	on-Detect	3.3	N/A						
21	Maximum No	on-Detect	3.3	N/A						
22	Percent No	n-detects	3.51%	0.00%						
23	Minimu	m Detect	3.3	4.6						
24	Maximu	m Detect	16	22						
25	Mean o	of Detects	6.798	13.25						
26	Median o	of Detects	6.4	14						
27	SD o	of Detects	2.374	4.339						
28	ı	KM Mean	6.675	13.25						
29		KM SD	2.399	4.339						
30										
31	Sample 1 vs	s Sample 2	Gehan Test							
32										
33	H0: Mean/Median of Sample 1 <= Me	ean/Median	of backgrou	ınd						
34				1						
35		Test Value	-4.818							
36	Crit	ical z (0.05)	1.645							
37		P-Value	1							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Samp	ole 1 <= Sar	mple 2							
41	P-Value >= alpha (0.05)									
42										

	A B C D	<u> </u>		l F	G	Н	ı	J	K	<u> </u>
1	Tarone-Ware Samp			-	_		a Sets with			
2										
3	User Selected Options									
4	Date/Time of Computation ProUC	CL 5.18/7	7/2021 10:	54:12 AM						
5	From File Metals	s in Soil 7	TCNW.xls							
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Selected Null Hypothesis Sample	le 1 Meai	n/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample	le 1 Mea	n/Median	> Sample 2 I	Mean/Mediar	า				
10										
11										
	Sample 1 Data: Co									
13	Sample 2 Data: Bkgrnd Co									
14										
15	Raw Sta	atistics								
16		Sa	ample 1	Sample 2						
17	Number of Valid Da	ata	57	15						
18	Number of Non-Detec	ects	2	0						
19	Number of Detec	ects	55	15						
20	Minimum Non-Dete	tect	3.3	N/A						
21	Maximum Non-Dete	tect	3.3	N/A						
22	Percent Non-detec	ects 3.5	51%	0.00%						
23	Minimum Dete	tect	3.3	4.6						
24	Maximum Dete	tect	16	22						
25	Mean of Detec	ects	6.798	13.25						
26	Median of Detec	ects	6.4	14						
27	SD of Detec	ects	2.374	4.339						
28	KM Me	ean	6.675	13.25						
29	KM S	SD	2.399	4.339						
30										
31	Sample 1 vs Sample 2	2 Taron	e-Ware T	est						
32										
33	H0: Mean/Median of Sample 1 <= Mean/Me	edian of	Sample 2	?						
34										
35	TW Sta		-6.311							
36	TW Critical Value (1.645							
37	P-\	Value	1							
38			<u></u>							
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1 <	<= Sampl	le 2							
41	P-Value >= alpha (0.05)									
42										

	A B C	D	E	F	G	Н	l	J	K	L
1	Wilcoxon-Ma	nn-Whitney	/ Sample 1 v	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects	3	
2										
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.1	8/7/2021 10	:54:40 AM						
5	From File	Metals in So	oil TCNW.xls	5						
6		OFF								
7		95%								
8		-		<= Sample 2		•				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Median	l				
10										
11										
12	Sample 1 Data: Co									
13	Sample 2 Data: Bkgrnd Co									
14										
15	R	aw Statistic								
16			Sample 1	Sample 2						
17	Number of V		57	15						
18	Number of Nor		2	0						
19	Number of De		55	15						
20	Minimum No		3.3	N/A						
21	Maximum No		3.3	N/A						
22	Percent No.		3.51%	0.00%						
23		m Detect	3.3	4.6						
24		m Detect	16	22						
25		f Detects	6.798	13.25						
26	Median o		6.4	14						
27	SD o	f Detects	2.374	4.339						
28										
29	Wilcoxon-Ma	nn-Whitney	(WMW) Tes	st						
30										
31	H0: Mean/Median of Sample 1 <= Me	ean/Median	of Sample 2	2						
32	<u> </u>		170-							
33	Sample 1 Rank S									
34	Standardized W									
35		Mean (U)	427.5							
36		U) - Adj ties								
37	Approximate U-Stat Critical \									
38	P-Value (Adjust	ed for Ties)	1							
39										
40	Conclusion with Alpha = 0.05									
41	Do Not Reject H0, Conclude Samp	ole 1 <= Sar	mple 2							
42	P-Value >= alpha (0.05)									
43										

	A B C I	D I	E	l F	l G	Н	ı	l j	К	<u> </u>
1	Gehan Sample	_					ets with No	_	I K	<u> </u>
2	<u> </u>									
3	User Selected Options									
4	Date/Time of Computation ProUC	CL 5.18/7	7/2021 11:	:00:48 AM						
5	From File Metals	ls in Soil 7	TCNW.xls	;						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Selected Null Hypothesis Samp	ple 1 Mea	n/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9	Alternative Hypothesis Samp	ole 1 Mea	n/Median	> Sample 2	Mean/Media	n				
10										
11										
	Sample 1 Data: Cu									
13	Sample 2 Data: Bkgrnd Cu									
14										
15	Raw St	tatistics								
16		Sa	ample 1	Sample 2						
17	Number of Valid D	Data	57	15						
18	Number of Non-Dete	ects	2	0						
19	Number of Detect D	Data	55	15						
20	Minimum Non-De	etect	5	N/A						
21	Maximum Non-De	etect	5	N/A						
22	Percent Non-dete	ects 3.	51%	0.00%						
23	Minimum De	etect	6.2	14						
24	Maximum De	etect	47	80						
25	Mean of Dete	ects	14.67	36.8						
26	Median of Dete	ects	12	35						
27	SD of Dete	ects	8.303	17.38						
28	KM Me	lean	14.33	36.8						
29	КМ	ISD	8.275	17.38						
30										
31	Sample 1 vs Sam	nple 2 Ge	han Test							
32										
33	H0: Mean/Median of Sample 1 <= Mean/M	/ledian of	backgrou	ınd						
34										
35	Gehan z Test	Value	-4.985							
36	Critical z		1.645							
37	P-	-Value	1							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1	<= Samp	le 2							
41	P-Value >= alpha (0.05)									
42										

	A B C D	T E	l F	G	Н	1	J	K	
1	Tarone-Ware Sample		-			a Sets with	-		
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL	5.18/7/2021	I 11:01:15 AM						
5	From File Metals in	n Soil TCNW	V.xls						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Selected Null Hypothesis Sample	1 Mean/Med	dian <= Sample 2	2 Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample	1 Mean/Med	dian > Sample 2	Mean/Media	n				
10									
11									
	Sample 1 Data: Cu								
13	Sample 2 Data: Bkgrnd Cu								
14									
15	Raw Stati	istics							
16		Sample	1 Sample 2						
17	Number of Valid Data	a 57	15						
18	Number of Non-Detects	s 2	0						
19	Number of Detects	s 55	15						
20	Minimum Non-Detec	t 5	N/A						
21	Maximum Non-Detec	t 5	N/A						
22	Percent Non-detects	s 3.51%	0.00%						
23	Minimum Detec	t 6.2	14						
24	Maximum Detec	t 47	80						
25	Mean of Detects	s 14.6	7 36.8						
26	Median of Detects	s 12	35						
27	SD of Detects	s 8.30	17.38						
28	KM Mear	n 14.3	3 36.8						
29	KM SE	8.27	75 17.38						
30									
31	Sample 1 vs Sample 2	Tarone-Wa	re Test						
32									
33	H0: Mean/Median of Sample 1 <= Mean/Med	lian of Samp	ple 2						
34									
35	TW Statis								
36	TW Critical Value (0.	·	15						
37	P-Va	lue 1							
38									
39	Conclusion with Alpha = 0.05								
40	Do Not Reject H0, Conclude Sample 1 <=	Sample 2							
41	P-Value >= alpha (0.05)								
42									

	_	D	E	F	G	Н	I	J	К	L
1	Wilcoxon-Mann-V	Vhitney	Sample 1 v	s Sample 2	Comparisor	Test for Da	ta Sets with	Non-Detects	3	
2										
3	User Selected Options									
4	'	CL 5.18	8/7/2021 11:	01:41 AM						
5	From File Meta	ls in So	il TCNW.xls	1						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	• •				2 Mean/Medi					
9	Alternative Hypothesis Sam	ple 1 M	ean/Median	> Sample 2	Mean/Media	n				
10							1	1		
11										
12	Sample 1 Data: Cu									
13	Sample 2 Data: Bkgrnd Cu									
14										
15	Raw S	statistic		10 : 5						
16			Sample 1	Sample 2						
17	Number of Valid I		57	15						
18	Number of Non-Det		2	0						
19	Number of Detect I		55	15						
20	Minimum Non-De		5	N/A						
21	Maximum Non-De		5	N/A						
22	Percent Non-det		3.51%	0.00%						
23	Minimum De		6.2	14						
24	Maximum De		47	80						
25	Mean of Det		14.67	36.8						
26	Median of Det		12	35						
27	SD of Det	ects	8.303	17.38						
28	Mills and Many M	<i>(</i> -	04/4 040 T-							
29	Wilcoxon-Mann-W	nitney	(vvivivv) i es	ST						
30	H0: Mean/Median of Sample 1 <= Mean/M	Andian	of Comple)						
31	no. Mean/Median of Sample 1 <- Mean/M	vieuiaii	oi Sample 2	4						
32	Sample 1 Rank Sum	M Stat	1726	1						
33	Standardized WMW									
34		ean (U)								
35	SD(U) - A		72.05							
36	Approximate U-Stat Critical Value	-								
37	P-Value (Adjusted for									
38	i value (, lajusteu le		•							
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1	<= Sar	nnle 2							
41	P-Value >= alpha (0.05)	- Cai	iipio £							
42	i valuo – aipila (0.00)									
43										

	A B C	D	E	F	G	Н	l i	J	К	 		
1				mparison Hy			Sets with No	_	1 13			
2												
3	User Selected Options	User Selected Options										
4	Date/Time of Computation	ProUCL 5.1	UCL 5.18/7/2021 11:02:04 AM									
5	From File	Metals in Sc	als in Soil TCNW.xls									
6	Full Precision	OFF										
7	Confidence Coefficient	95%										
8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)						
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Mediar	า						
10			<u> </u>									
11												
	Sample 1 Data: Ni											
13	Sample 2 Data: Bkgrnd Ni											
14												
15	R	aw Statistic	s									
16			Sample 1	Sample 2								
17	Number of V	'alid Data	57	15								
18	Number of Nor	n-Detects	0	0								
19	Number of De	tect Data	57	15								
20	Minimum No	on-Detect	N/A	N/A								
21	Maximum No	on-Detect	N/A	N/A								
22	Percent No	n-detects	0.00%	0.00%								
23	Minimu	m Detect	3.6	6.2								
24	Maximu	m Detect	24	33								
25	Mean o	of Detects	9.925	21.88								
26	Median o	of Detects	8.8	22								
27	SD o	of Detects	4.284	7.442								
28	I	KM Mean	9.925	21.88								
29		KM SD	4.284	7.442								
30												
31	Sample 1 vs	s Sample 2	Gehan Test									
32												
33	H0: Mean/Median of Sample 1 <= Me	ean/Median	of backgrou	ınd								
34												
35		Test Value	-4.874									
36	Crit	ical z (0.05)	1.645									
37		P-Value	1									
38												
39	Conclusion with Alpha = 0.05											
40	D N - D											
41	P-Value >= alpha (0.05)											
42												

	A B C	D	E	l F	G	Н	1	J	K	Π ι	
1	Tarone-Ware S			-			a Sets with				
2											
3	User Selected Options										
4	Date/Time of Computation Pr	roUCL 5.18	8/7/2021 11								
5	From File M	letals in So	il TCNW.xls	3							
6	Full Precision O										
7	Confidence Coefficient 95										
8	Selected Null Hypothesis Sa	an (Form 1)									
9	Alternative Hypothesis Sa	n									
10	Alternative Hypothesis Sample 1 Mean/Median > Sample 2 Mean/Median										
11											
12	Sample 1 Data: Ni										
13	Sample 2 Data: Bkgrnd Ni										
14											
15	Ra	w Statistic	s								
16			Sample 1	Sample 2							
17	Number of Val	lid Data	57	15							
18	Number of Non-l	Detects	0	0							
19	Number of I	57	15								
20	Minimum Non	-Detect	N/A	N/A							
21	Maximum Non	-Detect	N/A	N/A							
22	Percent Non-	detects	0.00%	0.00%							
23	Minimum	Detect	3.6	6.2							
24	Maximum	Detect	24	33							
25	Mean of I	Detects	9.925	21.88							
26	Median of I	Detects	8.8	22							
27	SD of I	Detects	4.284	7.442							
28		M Mean	9.925	21.88							
29		KM SD	4.284	7.442							
30	<u> </u>										
31	Sample 1 vs San	nple 2 Tar	one-Ware T	est							
32											
33	H0: Mean/Median of Sample 1 <= Mea	n/Median	of Sample 2	2							
34				T.	T.						
35		V Statistic	-6.342								
36	TW Critical Va	` ,	1.645								
37		P-Value	1								
38											
39	Conclusion with Alpha = 0.05										
40	Do Not Reject H0, Conclude Sample	e 1 <= San	nple 2								
41	P-Value >= alpha (0.05)										
42											

	A B C D	Е	F	G	Н	1	J	K			
1	Wilcoxon-Mann-Whitne	y Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects				
2											
3	User Selected Options										
4	Date/Time of Computation ProUCL 5.1	CL 5.18/7/2021 11:02:53 AM									
5	From File Metals in S	ls in Soil TCNW.xls									
6	Full Precision OFF										
7	Confidence Coefficient 95%										
8	* * * * * * * * * * * * * * * * * * * *		n <= Sample 2								
9	Alternative Hypothesis Sample 1 N	lean/Media	n > Sample 2	Mean/Mediar	1						
10											
11											
12	Sample 1 Data: Ni										
13	Sample 2 Data: Bkgrnd Ni										
14											
15	Raw Statistic										
16		Sample 1	Sample 2								
17	Number of Valid Data	57	15								
18	Number of Non-Detects	0	0								
19	Number of Detect Data	57	15								
20		Minimum Non-Detect N/A N/A									
21	Maximum Non-Detect	N/A	N/A								
22	Percent Non-detects	0.00%	0.00%								
23	Minimum Detect	3.6	6.2								
24	Maximum Detect	24	33								
25	Mean of Detects	9.925	21.88								
26	Median of Detects	8.8	22								
27	SD of Detects	4.284	7.442								
28	NOT 14 140 14	040 DAG T									
29	Wilcoxon-Mann-Whitney	(VVMVV) Fe	est								
30	LIO. Many (Madien of Completed on Many (Madien	of Openius									
31	H0: Mean/Median of Sample 1 <= Mean/Median	oi sampie									
32	Sample 1 Rank Sum W-Sta	1737									
33	Sample 1 Rank Sum W-Sta										
34	Standardized vviviv U-Sta Mean (U)										
35	SD(U) - Adj ties										
36	Approximate U-Stat Critical Value (0.05)										
37	P-Value (Adjusted for Ties)										
38	r-value (Aujusteu for Hes)	1									
39	Conclusion with Alpha = 0.05										
40	Do Not Reject H0, Conclude Sample 1 <= Sa	mnle ?							_		
41											
42	P-Value >= alpha (0.05)										
43											

_
_

	A B C D	l E	l F	G	Н	1	J	K			
1	Tarone-Ware Sample		-			a Sets with	-				
2											
3	User Selected Options										
4	Date/Time of Computation ProUCL										
5	From File Metals in	Soil TCNW.	xls								
6	Full Precision OFF										
7	Confidence Coefficient 95%										
8	Selected Null Hypothesis Sample	an (Form 1)									
9	Alternative Hypothesis Sample	n									
10											
11											
	Sample 1 Data: Cr										
13	Sample 2 Data: Bkgrnd Cr										
14											
15	Raw Stati	stics									
16		Sample 7	Sample 2								
17	Number of Valid Data	a 57	15								
18	Number of Non-Detects	s 0	0								
19	Number of Detects	s 57	15								
20	Minimum Non-Detec	t N/A	N/A								
21	Maximum Non-Detec	t N/A	N/A								
22	Percent Non-detects	s 0.00%	0.00%								
23	Minimum Detec	t 5.7	9								
24	Maximum Detec	t 35	50								
25	Mean of Detects	s 15.88	30.6								
26	Median of Detects	s 15	30								
27	SD of Detects	5.966	10.43								
28	KM Mear	n 15.88	30.6								
29	KM SE	5.966	10.43								
30		'									
31	Sample 1 vs Sample 2	Tarone-Ware	e Test								
32											
33	H0: Mean/Median of Sample 1 <= Mean/Med	ian of Sampl	e 2								
34											
35	TW Statis										
36	TW Critical Value (0.	05) 1.645	5								
37	P-Va	lue 1									
38		·	•								
39	Conclusion with Alpha = 0.05										
40	Do Not Reject H0, Conclude Sample 1 <=	Sample 2									
41	P-Value >= alpha (0.05)										
42											

	A B C D	Е	F	G	Н	I	J	K	L			
1	Wilcoxon-Mann-Whitne	y Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects					
2												
3	User Selected Options											
4	Date/Time of Computation ProUCL 5.1	8/7/2021 10	:58:13 AM									
5	From File Metals in So	etals in Soil TCNW.xls										
6	Full Precision OFF											
7	Confidence Coefficient 95%											
8	Selected Null Hypothesis Sample 1 N	lean/Mediar	<= Sample 2									
9	Alternative Hypothesis Sample 1 M	lean/Mediar	> Sample 2	Mean/Mediar	1							
10												
11												
12	Sample 1 Data: Cr											
13	Sample 2 Data: Bkgrnd Cr											
14												
15	Raw Statistic											
16		Sample 1	Sample 2									
17	Number of Valid Data	57	15									
18	Number of Non-Detects	0	0									
19	Number of Detect Data	57	15									
20	Minimum Non-Detect	Minimum Non-Detect N/A N/A										
21	Maximum Non-Detect	Maximum Non-Detect N/A N/A										
22	Percent Non-detects	0.00%	0.00%									
23	Minimum Detect	5.7	9									
24	Maximum Detect	35	50									
25	Mean of Detects	15.88	30.6									
26	Median of Detects	15	30									
27	SD of Detects	5.966	10.43									
28												
29	Wilcoxon-Mann-Whitney	(WMW) Te	st									
30												
31	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample	2									
32		4740										
33	Sample 1 Rank Sum W-Stat											
34	Standardized WMW U-Stat											
35	Mean (U)											
36	SD(U) - Adj ties		1									
37	Approximate U-Stat Critical Value (0.05)		1									
38	P-Value (Adjusted for Ties)	1										
39												
40	Conclusion with Alpha = 0.05											
41	Do Not Reject H0, Conclude Sample 1 <= Sa											
42	P-Value >= alpha (0.05)											
43												

П	A B C D	1	E	F	G	Н	ı	<u> </u>	K	
1	Tarone-Ware Sample	1 vs Sa		-			ta Sets with	Non-Detects		
	·			<u> </u>						
2	User Selected Options									
3	Date/Time of Computation ProUCL	5 18/7/2	021 11:0	13·44 AM						
4	From File Metals in									
5	Full Precision OFF	1001110	, , , , , , , , , , , , , , , , , , ,							
6	Confidence Coefficient 95%									
7		1 Maan/I	Madian	c= Comple 2	Moon/Modia	n (Form 1)				
8					Mean/Media					
9	Alternative Hypothesis Sample	i wean/i	viedian -	> Sample 2 r	Mean/Median					
10					ı					1
11	Occupied Dates V									
12	Sample 1 Data: V									
13	Sample 2 Data: Bkgrnd V									
14										
15	Raw Statis									
16			-	Sample 2 15						
17	Number of Valid Data									
18	Number of Non-Detects)							
19	Number of Detects	5	7	15						
20	Minimum Non-Detect	t N/	/A	N/A						
21	Maximum Non-Detect	t N	/A	N/A						
22	Percent Non-detects	0.00	%	0.00%						
23	Minimum Detect	t 6	6.6	16						
24	Maximum Detect	t 4	7	75						
25	Mean of Detects	5 2	2.98	51.27						
26	Median of Detects	5 2	3	52						
27	SD of Detects	5 7	7.991	15.96						
28	KM Mear	1 2	2.98	51.27						
29	KM SE	7	7.991	15.96						
30					1					
31	Sample 1 vs Sample 2	Tarone-\	Ware Te	est						
32										
	H0: Mean/Median of Sample 1 <= Mean/Med	ian of Sa	ample 2							
34										
35	TW Statis	stic -7	.434							
36	TW Critical Value (0.0	05) 1	1.645							
37	P-Val									
38										
	Conclusion with Alpha = 0.05									
39	Do Not Reject H0, Conclude Sample 1 <=	Sample	2							
40	P-Value >= alpha (0.05)									
41	. value valpila (0.00)									
42										

	A B C D	Е	F	G	Н	I	J	K	L
1	Wilcoxon-Mann-Whitne	y Sample 1	vs Sample 2	Comparison	Test for Dat	a Sets with	Non-Detects		
2									
3	User Selected Options								
4	Date/Time of Computation ProUCL 5.1	8/7/2021 11	:04:08 AM						
5	From File Metals in Se	oil TCNW.xl	S						
6	Full Precision OFF								
7	Confidence Coefficient 95%								
8	Selected Null Hypothesis Sample 1 M	lean/Mediar	<= Sample 2	2 Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample 1 M	lean/Mediar	> Sample 2	Mean/Mediar	1				
10									
11									
12	Sample 1 Data: V								
13	Sample 2 Data: Bkgrnd V								
14									
15	Raw Statistic								
16		Sample 1	Sample 2						
17	Number of Valid Data	57	15						
18	Number of Non-Detects	0	0						
19	Number of Detect Data	57	15						
20	Minimum Non-Detect	N/A	N/A						
21	Maximum Non-Detect	N/A	N/A						
22	Percent Non-detects	0.00%	0.00%						
23	Minimum Detect	6.6	16						
24	Maximum Detect	47	75						
25	Mean of Detects	22.98	51.27						
26	Median of Detects	23	52						
27	SD of Detects	7.991	15.96						
28									
29	Wilcoxon-Mann-Whitney	(WMW) Te	st						
30									
31	H0: Mean/Median of Sample 1 <= Mean/Median	of Sample	2						
32				1					
33	Sample 1 Rank Sum W-Stat								
34	Standardized WMW U-Stat		1						
35	Mean (U)								
36	SD(U) - Adj ties								
37	Approximate U-Stat Critical Value (0.05)								
38	P-Value (Adjusted for Ties)	1							
39									
40	Conclusion with Alpha = 0.05								
41	Do Not Reject H0, Conclude Sample 1 <= Sa	mple 2							
42	P-Value >= alpha (0.05)								
43									

	A B C	D	Е	F	G	Н	ı	J	K	ı
1				mparison Hy			Sets with No		1 13	, -
2				<u> </u>						
3	User Selected Options									
4	Date/Time of Computation	ProUCL 5.1	8/7/2021 11:	03:19 AM						
5	From File	Metals in Sc	oil TCNW.xls	;						
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Selected Null Hypothesis	Sample 1 M	ean/Median	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis	Sample 1 M	ean/Median	> Sample 2 l	Mean/Mediar	า				
10	1									
11										
	Sample 1 Data: V									
13	Sample 2 Data: Bkgrnd V									
14										
15	R	aw Statistic	s							
16			Sample 1	Sample 2						
17	Number of V	alid Data	57	15						
18	Number of Nor	n-Detects	0							
19	Number of De	tect Data	57							
20	Minimum No	n-Detect	N/A	N/A						
21	Maximum No	n-Detect	N/A	N/A						
22	Percent No.	n-detects	0.00%	0.00%						
23	Minimu	m Detect	6.6	16						
24	Maximu	m Detect	47	75						
25	Mean o	f Detects	22.98	51.27						
26	Median o	f Detects	23	52						
27	SD o	f Detects	7.991	15.96						
28	ŀ	KM Mean	22.98	51.27						
29		KM SD	7.991	15.96						
30										
31	Sample 1 vs	Sample 2	Gehan Test							
32										
33	H0: Mean/Median of Sample 1 <= Me	ean/Median	of backgrou	ınd						
34										
35		Test Value	-5.234							
36	Criti	cal z (0.05)	1.645							
37		P-Value	1							
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Samp	ole 1 <= Sar	mple 2							
41	P-Value >= alpha (0.05)									
42										

A B C D E F G H I J J K	
2 3	
3	
A	
5 From File Metals in Soil TCNW.xls 6 Full Precision OFF 7 Confidence Coefficient 95% 8 Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)	
6 Full Precision OFF 7 Confidence Coefficient 95% 8 Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)	
7 Confidence Coefficient 95% 8 Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)	
Selected Null Hypothesis Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)	
9	
10	
11 12 Sample 1 Data: Zn	
12 Sample 1 Data: Zn	
13 Sample 2 Data: Bkgrnd Zn 14	
14 15 Raw Statistics 16 Sample 1 Sample 2 17 Number of Valid Data 57 15 18 Number of Non-Detects 0 0 19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
Tag Sam Statistics 16 Sample 1 Sample 2 17 Number of Valid Data 57 15 18 Number of Non-Detects 0 0 19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
16 Sample 1 Sample 2 17 Number of Valid Data 57 15 18 Number of Non-Detects 0 0 19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
17 Number of Valid Data 57 15 18 Number of Non-Detects 0 0 19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
18 Number of Non-Detects 0 0 19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
19 Number of Detect Data 57 15 20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
20 Minimum Non-Detect N/A N/A 21 Maximum Non-Detect N/A N/A	
21 Maximum Non-Detect N/A N/A	
Percent Non-detects 0.00% 0.00%	
23 Minimum Detect 16 29	
24 Maximum Detect 180 99	
25 Mean of Detects 40.68 57.73	
26 Median of Detects 30 54	
27 SD of Detects 28.51 22.38	
28 KM Mean 40.68 57.73	
29 KM SD 28.51 22.38	
30	
31 Sample 1 vs Sample 2 Gehan Test	
32	
33 H0: Mean/Median of Sample 1 <= Mean/Median of background	
34	
Gehan z Test Value -3.404	
36 Critical z (0.05) 1.645	
37 P-Value 1	
38	
39 Conclusion with Alpha = 0.05	
40 Do Not Reject H0, Conclude Sample 1 <= Sample 2	
41 P-Value >= alpha (0.05)	
42	

	A B C D		E	l F	G	Н	1	J	K	Π ι
1	Tarone-Ware Sample			-			a Sets with			
2										
3	User Selected Options									
4	Date/Time of Computation ProUCL	5.18/7/20	021 11:	:04:56 AM						
5	From File Metals i	in Soil TCI	NW.xls	3						
6	Full Precision OFF									
7	Confidence Coefficient 95%									
8	Selected Null Hypothesis Sample	1 Mean/N	/ledian	<= Sample 2	Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sample	1 Mean/N	/ledian	> Sample 2	Mean/Mediar	1				
10										
11										
	Sample 1 Data: Zn									
13	Sample 2 Data: Bkgrnd Zn									
14										
15	Raw Stat	tistics								
16		Sam	ple 1	Sample 2						
17	Number of Valid Dat	ta 57	7	15						
18	Number of Non-Detect	ts 0								
19	Number of Detect	ts 57	7	15						
20	Minimum Non-Detec	ct N/	A	N/A						
21	Maximum Non-Detec	ct N/	A	N/A						
22	Percent Non-detect	ts 0.00°	%	0.00%						
23	Minimum Detec	ct 16	6	29						
24	Maximum Detec	ct 180)	99						
25	Mean of Detect	ts 40	0.68	57.73						
26	Median of Detect	ts 30)	54						
27	SD of Detect	ts 28	3.51	22.38						
28	KM Mea	in 40	0.68	57.73						
29	KM SI	D 28	3.51	22.38						
30		ı		•	•					
31	Sample 1 vs Sample 2	Tarone-V	Vare T	est						
32										
33	H0: Mean/Median of Sample 1 <= Mean/Med	dian of Sa	mple 2	2						
34										
35	TW Stati		224							
36	TW Critical Value (0	.05) 1	.645							
37	P-Va	alue 1								
38										
39	Conclusion with Alpha = 0.05									
40	Do Not Reject H0, Conclude Sample 1 <=	Sample 2	2							
41	P-Value >= alpha (0.05)									
42										

	A B C	D	E	F	G	Н	ı	J	K	L
1	Wilcoxon-Mani	n-Whitney	Sample 1 v	vs Sample 2		Test for Da	a Sets with	Non-Detects		
2										
3	User Selected Options									
4	Date/Time of Computation Pro	oUCL 5.18	8/7/2021 11:	:05:20 AM						
5	From File Me	etals in So	il TCNW.xls	5						
6	Full Precision OF	F								
7	Confidence Coefficient 95	%								
8	Selected Null Hypothesis Sa	mple 1 M	ean/Median	<= Sample 2	2 Mean/Media	an (Form 1)				
9	Alternative Hypothesis Sa	mple 1 M	ean/Median	> Sample 2	Mean/Mediar	า				
10										
11										
12	Sample 1 Data: Zn									
13	Sample 2 Data: Bkgrnd Zn									
14										
15	Rav	v Statistic	s							
16			Sample 1	Sample 2						
17	Number of Vali	d Data	57	15						
18	Number of Non-D	Detects	0							
19	Number of Detec	ct Data	57	15						
20	Minimum Non-	Detect	N/A	N/A						
21	Maximum Non-		N/A	N/A						
22	Percent Non-o	detects	0.00%	0.00%						
23	Minimum	Detect	16	29						
24	Maximum	Detect	180	99						
25	Mean of D		40.68	57.73						
26	Median of E		30	54						
27	SD of D	Detects	28.51	22.38						
28										
29	Wilcoxon-Mann	-Whitney	(WMW) Te	st						
30										
31	H0: Mean/Median of Sample 1 <= Mea	n/Median	of Sample 2	2						
32				T						
33	Sample 1 Rank Su									
34	Standardized WM									
35		Mean (U)	427.5							
36		- Adj ties	72.08							
37	Approximate U-Stat Critical Val									
38	P-Value (Adjusted	itor Hes)	1							1
39	Our dealers with All I Com									
40	Conclusion with Alpha = 0.05	4 . =								
41	Do Not Reject H0, Conclude Sample	1 <= Sar	nple 2							
42	P-Value >= alpha (0.05)									
43										

APPENDIX F

ProUCL Statistical Analyses

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					CL Statis	stics for Data	Sets with No	n-Detects				
2												
3			ected Options		10001 10	00 00 414						
4	Dat	te/Time of C	Computation	ProUCL 5.18/7		39:02 AM						
5			From File	Soil Vapor TCN	NVV.XIS							
6			III Precision	OFF								
7			Coefficient	95%								
8	Number o	or Bootstrap	Operations	2000								
9	4 leenmenvil	teluene										
10	4-Isopropyl	loluerie										
11						General	Statistics					
12			Total	Number of Obs	ervations		Otatiotics		Numbe	r of Distinct O	hservations	4
13			Total	Number of		-			Numbe	Number of N		37
14			N	umber of Distinc		_			Numb	er of Distinct N		1
15					m Detect				- INGINIO		Non-Detect	8
16					m Detect						Non-Detect	8
17					e Detects						Ion-Detects	92.5%
18					n Detects						SD Detects	177
19					n Detects						CV Detects	1.517
20				Skewnes							sis Detects	N/A
21				Mean of Logge							ged Detects	1.794
22				mount of Loggo	u 2010010	0.700				02 0, 2095	Jou 2010010	1.701
23				w	/arning: D	ata set has	only 3 Detecte	ed Values.				
24			Т	his is not enoug			·-			es.		
25 26					•	•						
27												
28					Norn	nal GOF Tes	st on Detects C	Only				
29			5	Shapiro Wilk Tes	t Statistic	0.757			Shapiro W	ilk GOF Test		
30			5% S	hapiro Wilk Criti	cal Value	0.767	De	etected Da	ita Not Norm	al at 5% Signif	ficance Leve	I
31				Lilliefors Tes	t Statistic	0.382			Lilliefors	GOF Test		
32			5	% Lilliefors Criti	cal Value	0.425	Dete	ected Data	appear Nor	mal at 5% Sigr	nificance Lev	/el
33				Detected Da	ta appear	Approximat	te Normal at 5	% Signific	ance Level			
34												
35			Kaplan-	Meier (KM) Sta	tistics usi	ng Normal C	Critical Values	and other	Nonparame	tric UCLs		
36				1	KM Mean	16.15			KI	M Standard Er	ror of Mean	9.457
37					KM SD	48.84				95% KM	(BCA) UCL	N/A
38				95% KI	M (t) UCL	32.08			95% KM (F	Percentile Boo	tstrap) UCL	N/A
39				95% KN	I (z) UCL	31.71				95% KM Boot	strap t UCL	N/A
40			!	90% KM Chebys	shev UCL	44.52				95% KM Cheb	yshev UCL	57.37
41			97	.5% KM Chebys	shev UCL	75.21				99% KM Cheb	yshev UCL	110.2
42							1					
43				Gan	nma GOF	Tests on De	etected Obser	vations O	nly			
44					–	ough Data to	o Perform GOI	F Test				
-					Not En							
45					Not En							
45 46							n Detected Da					
				k ł		Statistics or	n Detected Da		k	star (bias corr	ected MLE)	N/A
46					Gamma	Statistics or 0.587	n Detected Da			star (bias corr star (bias corr	,	N/A N/A
46 47				Theta h	Gamma	Statistics or 0.587 198.8	n Detected Da				ected MLE)	

	Α	В	С		D		E	F	G	ŀ	ł	I		J		K	L
51																	
52								S Statistics u									
53				•				set has > 50%		•				•			
54		GROS ma	•					small such a				•		•	e.g., <1	15-20)	
55			F	or su				method may					I BT\	√s			
56							-	ially true who									
57		For ga	ımma distribi	uted (detected			and UCLs ma	ay be com	outed usi	ng ga	mma distri	ibutio	on on KM e	stimate		
58							linimum									Mean	8.759
59						Ma	aximum	-							N	/ledian	0.01
60							SD									CV	5.792
61							it (MLE)							ar (bias cor		,	0.135
62					Th		it (MLE)					Thet		ar (bias cor		,	64.94
63							it (MLE)							nu star (bia	as corr	ected)	10.79
64			Adjuste														
65		-	proximate C			-						-		Square Val	-		4.289
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	21.28		9	% G	amma Adji	uste	d UCL (use	when	n<50)	N/A
67																	
68								Samma Para	meters us	ing KM E	stima	ates					
69							an (KM)) (KM)	48.84
70							ce (KM)							SE 0	of Mear	n (KM) r (KM)	9.457
71							at (KM)						0.118				
72							at (KM)								nu sta	` ,	9.426
73				.0.			at (KM)			theta star (KM) 90% gamma percentile (KM)							
74					ımma po		. ,										45.52
75	95% gamma percentile (KM) 92.37											9	99%	gamma pe	rcentile	e (KIVI)	236
76							0	na Kaplan-M	laiar (IZNA)	Ctatlatia							
77		Δ	pproximate (Chi C	augra \	/alua /		=		Statistics	•	A diviste d	4 Ch	i Square Va	alua (O	42 0)	3.452
78	0.5	A 5% Gamma Ap	• •		•	•	. ,			0E9/ (`amm			//-UCL (use	•	. ,	44.1
79		7/6 Gaiiiiia Aț	ріохіпале к	IVI-U	CL (use	wileii	11/-50)	42.45		95 /6 (aaiiiii	ia Aujustet	u Ki	W-OCL (use		11<50)	44.1
80						ogno	rmal G	OF Test on D	Ontantad C	hoonyoti	νno Ω	anh.					
81				Shan	iro Wilk					vusei vali	JIIS O		\A/iIL	GOF Test			
82					iro Wilk					otoctod [)ata a			mal at 5% S		anco I	ovol
83			5/0 (illiefors				L	retected t	Jala c			OF Test		ance L	
84					illiefors				Г	letected [)ata a			mal at 5% S	Signific	ance I	evel
85				J /0 L				ppear Logno					JIIOII	iliai at 5 /0 C	Jigriilic	ance L	
86					Dei	lecteu	Dala a	ppear Logiic	illiai at 57	o Signific	alice	LEVEI					
87					1	Oanor	mal PC	S Statistics	Usina Imn	uted Nor	-Deta	ects					
88				N/	lean in (-a.cu 1101				Mean	in Log	Scale	-8.607
89				IV			al Scale								in Log		6.455
90		95% +	UCL (assum	es no		•						QE.	% P4	ercentile Bo	_		24.83
91		33 /0 L	OOL (assull)		BCA E							90.	/U F	95% Boo			217.7
92							•	1.775E+10						33 /0 DOC		, JOL	<u> </u>
93				90	, ,o i i - U(JL (LU	91100)	1.775LT10									
94	Statistics using VM estimates on Lagged Date and Assuming Lagranged Distribution																
95			Giai	logged)		Jaka and /	.oounnil	, _og	o.mai Dis	Juid		M Geo	Mean	9.036			
96						-	logged)					950	% Cı	ritical H Val			1.99
97	KM Standard Error of Mean (log												,u OI	95% H-UC	•	•	12.94
98	KM SD (lo											950	% Cı	ritical H Val	` .	•	1.99
99			KM Standa	ard F										vai		og)	
100			ixivi Otaliu	uiu E		vicali (iogg c u)	0.114									

	Α	В	С	D	Е	F	G	Н	I	J	K	L
101												
102						DL/2 S	Statistics					
103			DL/2	Normal					DL/2 Log-1	ransformed	I	
104				Mean in C	riginal Scale	12.45				Mean	in Log Scale	1.56
105				SD in C	riginal Scale	50.09				SD	in Log Scale	0.74
106			95% t l	JCL (Assum	es normality)	25.79				95%	6 H-Stat UCL	8.05
107			DL/2	is not a reco	mmended m	ethod, prov	ided for com	parisons and	l historical re	easons		
108												
109					Nonparame	etric Distribi	ution Free UC	CL Statistics				
110			De	tected Data	appear Appr	oximate No	rmal Distribu	ted at 5% Si	gnificance L	evel		
111												
112						Suggested	UCL to Use					
113				95%	6 KM (t) UCL	32.08						
114												
115			When a d	lata set follo	ws an approx	imate (e.g.,	normal) distr	ibution passi	ng one of the	GOF test		
116		When app	olicable, it is s	suggested to	use a UCL b	ased upon a	a distribution ((e.g., gamma) passing bo	th GOF test	s in ProUCL	
117												
118		Note: Sugge	stions regard	ling the sele	ction of a 95%	6 UCL are p	rovided to he	lp the user to	select the m	nost appropr	iate 95% UCL	
119			F	Recommend	ations are bas	sed upon da	ita size, data	distribution, a	and skewnes	SS.		
120		These reco	mmendations	are based	upon the resu	lts of the sir	nulation stud	es summariz	ed in Singh,	Maichle, an	d Lee (2006).	
121	Но	wever, simu	ılations result	s will not co	ver all Real W	orld data se	ets; for addition	onal insight th	ne user may	want to cons	sult a statistici	an.
122												

	Α	В	С	D	Е	F	G	Н	l	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				T								
3			cted Options									
4	Dat	te/Time of C	•	ProUCL 5.18		35:30 AM						
5			From File	Soil Vapor To	CNW.xls							
6			Il Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	Donmono											
10	Benzene											
11						General	Statistics					
12			Total	Number of O	hearvations	40	Statistics		Numbe	r of Distinct (Observations	8
13			Total		r of Detects	7			Number		Non-Detects	33
14			Nı	umber of Disti		7			Numbe		Non-Detects	1
15					num Detect	-			- Trumbe		Non-Detect	8
16					num Detect						Non-Detect	8
17					nce Detects						Non-Detects	82.5%
18					ean Detects						SD Detects	3278
19 20				Med	ian Detects	27					CV Detects	2.224
21				Skewne	ess Detects	2.563				Kurt	tosis Detects	6.636
22				Mean of Logo	ged Detects	4.768				SD of Log	ged Detects	2.519
23												
24					Norm	nal GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.537			Shapiro Wi	lk GOF Test	1	
26			5% SI	napiro Wilk Cı	ritical Value	0.803	Γ	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	·I
27				Lilliefors T	est Statistic	0.397			Lilliefors	GOF Test		
28			5	% Lilliefors Ci	ritical Value	0.304	Γ	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	d
29				De	etected Data	a Not Norma	l at 5% Sign	ificance Lev	rel .			
30												
31			Kaplan-l	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
32					KM Mean	264.6			KN	/I Standard E	rror of Mean	236.8
33					KM SD	1387					I (BCA) UCL	706.3
34					KM (t) UCL				,		otstrap) UCL	706
35					KM (z) UCL	654.1					otstrap t UCL	9577
36				00% KM Cheb	•						byshev UCL	
37			97	.5% KM Cheb	yshev UCL	1743			(99% KM Che	byshev UCL	2621
38												
39							etected Obse		•			
40					est Statistic	0.798	<u> </u>		nderson-Da			
41					ritical Value	0.793	Detect				% Significance) Level
42					est Statistic	0.314	Datasta		Colmogorov-			11
43					ritical Value	0.337					5% Significan	Le Level
44				Detected dat	ьа юнож АР	pr. Garnma	JISUIDUUON 8	at 3% SIGNIT	ICATICE LEVE	I		
45					Gamma	Statistics of	Detected D	ata Only				
46				1	k hat (MLE)	0.276	Detected D	ata Offiy	L .	star (hias co	rrected MLE)	0.253
47					a hat (MLE)					,	rrected MLE)	5823
48					u hat (MLE)				i iieta :	•	as corrected)	3.545
49					an (detects)					ווע אנמו (טומ	ao con ecteu)	0.040
50				iviea	an (uetects)	14/4						

	Α	В	С		D		E	F	G	Н		ı	J		ŀ	<	L
51																	
52								Statistics u									
53				-				set has > 50%		•							
54		GROS ma	•					small such a						nall (e	.g., <1	5-20)	
55			F	or su				method may				s and E	BTVs				
56							-	ially true whe	-								
57		For ga	mma distrib	uted o	detected			and UCLs ma	y be comp	uted using (gamma	distribu	ution on h	KM es	stimate	es	
58						M	linimum									Mean	258
59						Ma	aximum								M	ledian	0.01
60							SD									CV	5.447
61							t (MLE)						star (bia			,	0.105
62					Th		t (MLE)					Theta	star (bia			•	2450
63							t (MLE)						nu sta	ır (bia	s corre	ected)	8.426
64			Adjuste														
65			pproximate (-							-	Chi Squai		-		2.864
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	728.6		95%	Gamm	a Adjus	sted UCL	(use	when	n<50)	759.2
67																	
68					E	Estima	tes of G	amma Para	meters usir	ng KM Estir	mates						
69							an (KM)									(KM)	1387
70					\		. ,	1922668					;	SE of	f Mean	(KM)	236.8
71							at (KM)					(KM)	0.0504 4.029				
72						nu h	at (KM)	2.914			nu star (KM						
73					t	theta h	at (KM)	7266						the	ta star	(KM)	5255
74			80)% ga	mma pe	ercenti	ile (KM)	36.8				90	% gamm	a per	centile	(KM)	407.7
75			95	% ga	mma pe	ercenti	ile (KM)	1411		99% gamma percentile (KN						(KM)	5740
76																	
77								na Kaplan-M	eier (KM) S	Statistics							
78			pproximate (•	•						•	Chi Squai		,		0.684
79	95	5% Gamma Ap	proximate K	(M-U	CL (use	when	n>=50)	1454		95% Gan	nma Ad	djusted	KM-UCL	(use	when	n<50)	1558
80					95% (Gamma	a Adjust	ted KM-UCL	(use when	k<=1 and 1	5 < n <	50)					
81																	
82								OF Test on D	etected Ob	servations							
83							Statistic						/ilk GOF				
84			5% \$				al Value		De	tected Data	• • •	•			ignifica	ance L	evel
85							Statistic						GOF Te				
86				5% L			al Value			tected Data			ormal at	5% S	ignifica	ance L	evel
87					Det	tected	Data a	ppear Logno	rmal at 5%	Significand	ce Lev	el					
88																	
89								S Statistics	Using Impu	ted Non-D	etects						
90				M		-	al Scale						M		n Log		-5.21
91			al Scale								n Log		6.67				
92	95% t UCL (assumes normality of ROS											95%	Percenti				693.8
93							ap UCL						95%	6 Boo	tstrap	t UCL	9479
94				95	% H-U(CL (Lo	g ROS)	4.639E+12									
95																	
96			Stat	tistics				on Logged	Data and A	ssuming Lo	ognorn	nal Disti	ribution				
97							logged)								/I Geo		12.81
98	KM SD (log											95%	Critical F		•	•	2.929
99			KM Stand	ard E	rror of N	Mean (logged)	0.241	.241 95% H-UCL (KM -Log					-Log)	67.37		
100					KN	ИSD (logged)	1.413				95%	Critical H	l Valu	ue (KN	1-Log)	2.929

	Α	В	С	D	Е	F	G	Н	I		J		K	L
101			KM Standa	rd Error of N	lean (logged)	0.241	Î	•	•					
102														
103						DL/2 S	Statistics							
104			DL/2	Normal					DL/2 Lo	g-Tra	ansforme	d		
105				Mean in (Original Scale	261.3					Mear	n in Log	Scale	1.978
106					Original Scale) in Log		1.634
107				•	nes normality)							% H-Sta	at UCL	64.07
108			DL/2	is not a rec	ommended m	ethod, prov	ided for com	parisons an	d historica	al rea	sons			
109														
110					Nonparame	etric Distrib	ution Free U	CL Statistics	5					
111			De	tected Data	appear Appro	oximate Ga	mma Distrib	uted at 5% S	Significanc	e Le	vel			
112														
113							UCL to Use	•						
114	Adjusted KI	M-UCL (use	when k<=1	and 15 < n <	50 but k<=1)	1558								
115														
116					ws an approx	, •		•						
117		When app	olicable, it is s	suggested to	use a UCL b	ased upon a	a distribution	(e.g., gamm	a) passing	both	GOF tes	ts in Pro	oUCL	
118														
119	1	Note: Sugge			ection of a 95%							riate 95	5% UCL.	
120					lations are bas									
121					upon the resu									
122	Но	wever, simu	llations resul	ts will not co	ver all Real W	Vorld data s	ets; for additi	onal insight	the user m	ay wa	ant to con	sult a s	tatisticia	an.
123														

	Α	В	С	D	Е	F	G	H	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				T								
3			cted Options									
4	Dat	te/Time of C		ProUCL 5.18		32:06 AM						
5			From File	CC in Soil To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	04.040											
10	C4-C12											
11						0	Otatianiaa					
12			Total	Number of O	haanuatiana	57	Statistics		Numba	of Diatinat C	Observations	23
13			TOlai		r of Detects	8			Numbe		Non-Detects	49
14			Ni	mber of Disti		8			Numbe		Non-Detects	15
15			INC		num Detect	0.052			Numbe		Non-Detect	0.042
16					num Detect						Non-Detect	0.042
17					nce Detects						Non-Detects	85.96%
18					ean Detects	713.9				T CICCIII	SD Detects	956.4
19					ian Detects	255.2					CV Detects	1.34
20					ess Detects	1.261				Kurt	tosis Detects	0.877
21				Mean of Logo		2.727					ged Detects	4.74
22					,						9	
23					Norm	al GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T		0.804			Shapiro Wi	lk GOF Test		
26			5% SI	napiro Wilk C	ritical Value	0.818	[Detected Da	ta Not Norma	al at 5% Sign	ificance Leve)
27				Lilliefors T	est Statistic	0.272			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.283	De	etected Data	appear Norr	nal at 5% Sig	gnificance Lev	/el
29				Detected [Data appear	Approximat	e Normal at	5% Significa	ance Level			
30												
31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
32					KM Mean	100.2			KI	/I Standard E	rror of Mean	59.03
33					KM SD	416.9				95% KN	(BCA) UCL	208.8
34				95%	KM (t) UCL	199			95% KM (P	ercentile Boo	otstrap) UCL	191.5
35				95%	KM (z) UCL	197.3				95% KM Boo	otstrap t UCL	328.1
36			g	00% KM Cheb	yshev UCL	277.3					byshev UCL	357.6
37			97	.5% KM Cheb	yshev UCL	468.9			(99% KM Che	byshev UCL	687.6
38												
39							etected Obse		•			
40					est Statistic	0.813				rling GOF Te		
41					ritical Value	0.842	Detected	• • • • • • • • • • • • • • • • • • • •			5% Significan	ce Level
42					est Statistic	0.306				Smirnov GO		
43					ritical Value	0.324		• • • • • • • • • • • • • • • • • • • •		stributed at 5	5% Significan	ce Level
44				Detected	data appeai	Gamma Di	stributed at §	o% Significa	nce Level			
45						<u> </u>	<u> </u>					
46							Detected D	ata Only				
47					k hat (MLE)	0.193				•	rected MLE)	0.204
48					a hat (MLE)				Theta	•	rected MLE)	3505
49					u hat (MLE)	3.081				nu star (bia	as corrected)	3.259
50				Mea	an (detects)	713.9						

	Α	В	С		D		Е	F	G	Н			J		K	L
51																
52								Statistics u								
53				•									t multiple DL			
54		GROS ma	•							•			size is small	(e.g., <	15-20)	
55			F	or su				method may				Ls and E	BTVs			
56								ially true whe								
57		For ga	mma distrib	uted	detected				y be comp	uted using	gamm	na distrib	ution on KM	estimat	tes	
58						M	linimum								Mean	100.2
59						Ma	aximum							<u> </u>	Median	0.01
60							SD								CV	4.198
61							it (MLE)						star (bias co		,	0.106
62					Th	eta ha	t (MLE)	1009				Theta	star (bias co		,	947.1
63							t (MLE)						nu star (b	ias con	rected)	12.06
64							ance (β)									
65		Ар	proximate C	hi Sc	uare Va	alue (1	2.06, α)	5.267			Ad	ljusted C	hi Square Va	alue (12	2.06, β)	5.15
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	229.4		95%	Gamı	ma Adjus	sted UCL (us	e when	n <50)	234.6
67																
68					E	Estima	tes of C	amma Para	meters usi	ng KM Esti	mates	3				
69						Mea	an (KM)	100.2						SI	D (KM)	416.9
70					\	√arian	ce (KM)	173816					SE	of Mea	n (KM)	59.03
71						k h	at (KM)	0.0578						k sta	ar (KM)	0.0665
72						nu h	at (KM)	6.589						nu sta	ar (KM)	7.575
73					t	theta h	at (KM)	1734					th	heta sta	ar (KM)	1508
74			80)% ga	amma p	ercent	ile (KM)	31.69				90	% gamma pe	ercentil	e (KM)	207.2
75			95	5% ga	amma po	ercent	ile (KM)	572.5				99	% gamma pe	ercentil	e (KM)	1934
76																
77							Gamn	na Kaplan-M	eier (KM) S	Statistics						
78		А	pproximate	Chi S	quare V	/alue (7.58, α)	2.492			Α	djusted (Chi Square V	/alue (7	7.58, β)	2.417
79	95	5% Gamma Ap	proximate k	KM-U	CL (use	when	n>=50)	304.7		95% Gar	nma <i>A</i>	Adjusted	KM-UCL (us	e when	n<50)	314.2
80							-	1								
81					L	Logno	rmal GC	OF Test on D	etected Ob	servations	Only	,				
82				Shap	iro Wilk	Test	Statistic	0.798			S	hapiro W	/ilk GOF Tes	st		
83			5%	Shap	iro Wilk	Critica	al Value	0.818	[Detected Da	ata No	ot Lognor	rmal at 5% S	ignifica	nce Lev	vel
84				I	_illiefors	Test	Statistic	0.27				Lilliefors	s GOF Test			
85				5% L	illiefors	Critica	al Value	0.283	De	etected Dat	а арр	ear Logn	ormal at 5%	Signific	cance L	evel
86				De	etected	Data a	ppear /	Approximate	Lognorma	l at 5% Sig	nifica	nce Leve	əl			
87																
88					L	.ognor	mal RO	S Statistics	Using Impu	ited Non-D	etects	S				
89				N	lean in (Origina	al Scale	100.2					Mear	n in Log	g Scale	-15.75
90					SD in (Origina	al Scale	420.6					SE	O in Log	g Scale	10.47
91		95% t	UCL (assun	nes n	ormality	of RC	S data)	193.4				95%	Percentile B	Bootstra	ap UCL	208.8
92				95%	6 BCA E	Bootstr	ap UCL	244.1					95% Bo	otstrap	t UCL	333.7
93				95	5% H-U	CL (Lo	g ROS)	N/A								
94								1	1							
95			Sta	tistics	susing	KM es	timates	on Logged	Data and A	ssuming L	ognor	mal Dist	ribution			
96					KM N	Mean ((logged)	-2.341					ŀ	KM Ged) Mean	0.0962
97					KI	M SD ((logged)	2.637				95%	Critical H Va	alue (Ki	M-Log)	4.912
98			KM Stand	lard E	rror of N	Mean (logged)	0.373					95% H-U	ICL (KN	И -Log)	17.57
99					KI	M SD ((logged)	2.637				95%	Critical H Va	alue (Ki	M-Log)	4.912
100			KM Stand	lard E	rror of N	Mean (logged)	0.373								
.00								1	I							

	Α	В	С	D	Е	F	G	Н	I	J	K	L
101												
102						DL/2	Statistics					
103			DL/2	Normal					DL/2 Log-1	Transformed	i	
104				Mean in C	riginal Scale	100.2				Mean	in Log Scale	-2.743
105				SD in C	riginal Scale	420.6				SD	in Log Scale	2.794
106			95% t l	JCL (Assum	es normality)	193.4				95%	% H-Stat UCL	21.78
107			DL/2	is not a reco	mmended m	ethod, prov	rided for comp	parisons and	l historical re	easons		
108												
109					Nonparame	etric Distrib	ution Free UC	CL Statistics				
110			De	tected Data	appear Appr	oximate No	rmal Distribu	ted at 5% Si	gnificance L	.evel		
111												
112						Suggeste	d UCL to Use					
113				95%	6 KM (t) UCL	199						
114												
115			When a d	data set follo	ws an approx	imate (e.g.,	normal) distri	ibution passi	ng one of the	e GOF test		
116		When app	olicable, it is s	suggested to	use a UCL b	ased upon	a distribution ((e.g., gamma	n) passing bo	th GOF test	s in ProUCL	
117												
118		Note: Sugge	stions regard	ling the sele	ction of a 95%	6 UCL are p	provided to he	lp the user to	select the n	nost appropr	iate 95% UCL	•
119			F	Recommenda	ations are bas	sed upon da	ata size, data	distribution, a	and skewnes	SS.		
120		These reco	mmendations	s are based i	upon the resu	lts of the si	mulation studi	ies summariz	zed in Singh,	, Maichle, an	nd Lee (2006).	
121	Но	wever, simu	ılations result	s will not co	ver all Real W	/orld data s	ets; for addition	onal insight th	ne user may	want to cons	sult a statistici	an.
122												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				T								
3			cted Options									
4	Dat	te/Time of C	<u> </u>	ProUCL 5.18		33:05 AM						
5			From File	CC in Soil To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	040 000											
10	C13-C22											
11						Gonoral	Statistics					
12			Total	Number of O	heenvations	57	Statistics		Number	of Distinct (Observations	12
13			Total		r of Detects	12			Nullibe		Non-Detects	45
14			Nı	umber of Dist		11			Numbe		Non-Detects	1
15					mum Detect				Numbe		Non-Detect	5
16					mum Detect						Non-Detect	5
17					nce Detects						Non-Detects	78.95%
18					ean Detects	665.5				. 0.00110	SD Detects	908.6
19					lian Detects	170					CV Detects	1.365
20					ess Detects	1.502				Kurt	tosis Detects	0.892
21				Mean of Log	ged Detects	5.518					ged Detects	1.535
23											,,,	
24					Norm	nal GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.712			Shapiro Wi	lk GOF Test	:	
26			5% SI	napiro Wilk C	ritical Value	0.859	Γ	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	1
27				Lilliefors T	est Statistic	0.283			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.243	Γ	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	I
29				D	etected Data	a Not Norma	l at 5% Sign	ificance Lev	rel .			
30												
31			Kaplan-l	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
32					KM Mean	144.1			KN	/I Standard E	rror of Mean	66.61
33					KM SD	481.5				95% KM	(BCA) UCL	267.4
34					KM (t) UCL	255.5			•		otstrap) UCL	259.6
35					KM (z) UCL	253.6					otstrap t UCL	399.4
36				00% KM Cheb	•						byshev UCL	434.4
37			97	.5% KM Chel	yshev UCL	560			(99% KM Che	byshev UCL	806.8
38												
39							etected Obse		•			
40					est Statistic	0.615				rling GOF Te		
41					ritical Value	0.775	Detected	• • • • • • • • • • • • • • • • • • • •			5% Significan	ce Level
42					est Statistic	0.228				Smirnov GO		
43					ritical Value	0.257		• • • • • • • • • • • • • • • • • • • •		stributed at 5	5% Significan	ce Level
44				Detected	data appeai	r Gamma Di	stributed at 5	o% Significa	nce Level			
45					0	Otal-ti-	Dott - 4 D	ata O-1				
46							Detected D	ata Only		. //:		0.504
47					k hat (MLE)	0.625				,	rected MLE)	0.524
48					a hat (MLE)				ı neta :	•	rrected MLE)	1270
49					u hat (MLE)					nu star (bia	as corrected)	12.58
50				Me	an (detects)	665.5						

	Α	В	С		D		E	F	G	Н		ı	J		K	L
51																
52								S Statistics u								
53				•				set has > 50%		•						
54		GROS ma	-					small such a	•	•				I (e.g.,	, <15-20)	
55			F	or su				method may				Ls and E	BTVs			
56								ially true whe								
57		For ga	mma distrib	uted	detected			and UCLs ma	y be comp	uted using	gamm	na distrib	ution on KM	l estim		
58							linimum								Mean	140.1
59						Ma	aximum								Median	0.01
60							SD								CV	3.475
61							it (MLE)						star (bias o			0.114
62					Th		it (MLE)					Theta	star (bias			1225
63							it (MLE)						nu star (bias c	orrected)	13.04
64			Adjuste				. ,									
65		-	proximate C			-	-					-	hi Square V	-		5.794
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	308.7		95%	Gamı	ma Adjus	sted UCL (u	se wh	en n<50)	315.3
67										101 = 1						
68					E			Samma Para	meters usi	ng KM Esti	mates	S				
69							an (KM)								SD (KM)	481.5
70					\			231839					SE		ean (KM)	66.61
71							at (KM)								star (KM)	0.0965
72							at (KM)								star (KM)	11
73							at (KM)								star (KM)	1493
74					ımma pe		. ,						% gamma ı		. ,	377.6
75			95	o% ga	ımma pe	ercenti	le (KM)	837.6				99	% gamma į	percen	ntile (KM)	2329
76								17 1 14	-1(1/14)	St. P. P.						
77				1.0		1 /4		na Kaplan-M	eler (KM) :	Statistics			1:0		(14.00.0)	4.400
78	0.5		proximate C			•				050/ 0		•	hi Square V	•		4.469
79	95	5% Gamma Ap	proximate r	NIVI-U	CL (use	wnen	n>=50)	346.3		95% Gar	nma <i>F</i>	Adjusted	KM-UCL (u	se wn	en n<50)	354.6
80								OF Test on D	atastad Ol		Only					
81				Chan	iro Wilk				etected Oi	oservations			AL COE T			
82					iro Wilk				D	stacted Dat			/ilk GOF Te		ificancal	
83			5%		illiefors				De				GOF Test		illicance L	.evei
84					illiefors				D	staatad Dat			ormal at 5%		ificanco I	ovol
85				3% L				ppear Logno					Offilal at 57	o Sign	illicarice L	.evei
86					Dei	lecteu	Data a	ppear Logno	mai at 5%	Significan	ce Le	vei				
87						ognor	mal BC	S Statistics	l loina Impi	stad Nan D	otoot					
88				N/					Using impo	JIEG NOII-D	eleci	5	Mod	on in I	og Soolo	0.463
89				IV	lean in (al Scale								og Scale	
90		0E9/ +	UCL (assum	200 n		-						050/	Percentile		•	259.8
91		95% t	OCL (assum									95%				
92					BCA B								95% E	ooistr	ap t UCL	431.6
93				95	5% H-U(∪L (L0	y KUS)	26830								
94			C4-4	tietie-	. uoisa i	V\4	timoto	on Logged	Date and A	ooumina !	0455-	mal Dist	ribution			
95			Siai	นธนตร				on Logged	vala and A	asuming L	vyrior	ıııaı DIST		KMO	ieo Mean	11.38
96						-	logged)					OE0/	Critical H \			3.396
97			KM Stand	ard F								95%			(KIVI-LOG) KM -Log)	111.5
98			VIAL SIGUE	aiu 🗀		-	loggea) logged)					OE0/	Critical H \	•		3.396
99			KM C+	ord F								95%	Chucal H V	aiue ((rxivi-LOG)	3.390
100			KM Stand	aro E	iror of N	viean (ioggea)	0.239								

	Α	В	С	D	Е	F	G	Н		J	K	L
101												
102						DL/2 S	tatistics					
103			DL/2	Normal					DL/2 Log-1	ransformed		
104				Mean in C	riginal Scale	142.1				Mean i	in Log Scale	1.885
105				SD in C	riginal Scale	486.4				SD i	in Log Scale	2.011
106			95% t l	JCL (Assum	es normality)	249.8				95%	H-Stat UCL	137.7
107			DL/2	is not a reco	mmended m	ethod, provi	ded for com	parisons and	l historical re	easons		
108												
109					Nonparame	etric Distribu	tion Free UC	CL Statistics				
110				Detected	d Data appea	r Gamma Di	stributed at	5% Significa	nce Level			
111												
112						Suggested	UCL to Use					
113			95% KM A	pproximate	Gamma UCL	346.3						
114												
115		Note: Sugge:	stions regard	ling the sele	ction of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ate 95% UCI	
116			F	Recommend	ations are bas	sed upon dat	a size, data	distribution,	and skewnes	SS.		
117		These recor	mmendations	s are based	upon the resu	ılts of the sim	nulation studi	ies summariz	zed in Singh,	Maichle, and	d Lee (2006).	
118	Но	wever, simu	lations result	s will not co	ver all Real W	Vorld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistic	ian.
119												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				T								
3			cted Options									
4	Dat	te/Time of C	<u> </u>	ProUCL 5.18		33:31 AM						
5			From File	CC in Soil To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	000 040											
10	C23-C40											
11						0	Otatianiaa					
12			Total	Number of O	boonyotions	57	Statistics		Numba	of Diatinat C	Observations	17
13			TOlai		er of Detects	18			Numbe		Non-Detects	39
14			Ni	ımber of Dist		16			Numbe		Non-Detects	2
15			INC		mum Detect	5			Numbe		Non-Detect	5
16					mum Detect						Non-Detect	250
17					nce Detects						Non-Detects	68.42%
18					ean Detects	388.3				T CICCIII	SD Detects	508.4
19					dian Detects	200					CV Detects	1.309
20					ess Detects	2.884				Kurt	tosis Detects	10.03
21				Mean of Log		5.226					ged Detects	1.429
22					9						19	
23					Norm	al GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T		0.657			Shapiro Wi	lk GOF Test	:	
26			5% SI	napiro Wilk C	ritical Value	0.897	[Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	,
27				Lilliefors T	est Statistic	0.248			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.202	[Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	
29				D	etected Data	Not Norma	l at 5% Sign	ificance Lev	el			
30												
31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
32					KM Mean	126.4			KN	/I Standard E	rror of Mean	44.97
33					KM SD	329.9				95% KN	I (BCA) UCL	207.7
34				95%	KM (t) UCL	201.6			95% KM (P	ercentile Boo	otstrap) UCL	203.4
35				95%	KM (z) UCL	200.4				95% KM Boo	otstrap t UCL	277.1
36			g	00% KM Cheb	yshev UCL	261.3					byshev UCL	322.4
37			97	.5% KM Chel	yshev UCL	407.2			(99% KM Che	byshev UCL	573.8
38												
39							etected Obse					
40					est Statistic	0.359				rling GOF Te		
41					ritical Value	0.775	Detected	• • • • • • • • • • • • • • • • • • • •			5% Significand	ce Level
42					est Statistic	0.137				Smirnov GO		
43					ritical Value	0.211		• • • • • • • • • • • • • • • • • • • •		stributed at 5	5% Significand	ce Level
44				Detected	data appea	Gamma Dis	stributed at §	5% Significa	nce Level			
45						<u> </u>	<u> </u>					
46							Detected D	ata Only				
47					k hat (MLE)	0.806				•	rrected MLE)	0.708
48					a hat (MLE)				Theta	•	rrected MLE)	548.1
49					u hat (MLE)					nu star (bia	as corrected)	25.5
50				Me	an (detects)	388.3						

	Α	В	С		D		E	F	G	Н		ı	J		K	L
51																
52								Statistics u								
53				•				set has > 50%		•			•			
54		GROS ma	•					small such a		•				(e.g., <	<15-20)	
55			F	or s	uch situa			method may				s and E	BTVs			
56								ially true whe								
57		For ga	mma distrib	uted	detecte			and UCLs ma	y be compu	ıted using g	gamma	a distrib	ution on KM	estima	ites	
58						M	linimum								Mean	122.6
59						Ma	aximum								Median	0.01
60							SD								CV	2.725
61							it (MLE)						star (bias co		,	0.13
62					Th	neta ha	it (MLE)	981.1				Theta	star (bias co	orrecte	d MLE)	942.5
63							it (MLE)						nu star (b	ias cor	rected)	14.83
64					vel of S		,									
65		Ар	proximate C	Chi So	quare Va	alue (1	4.83, α)	7.145			Adjı	usted C	hi Square Va	alue (14	4.83, β)	7.006
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	254.5		95%	Gamm	na Adjus	sted UCL (us	e wher	n n<50)	259.6
67															·	
68					E	Estima	tes of C	amma Para	meters usir	g KM Estir	mates					
69						Mea	an (KM)	126.4						S	D (KM)	329.9
70					'	Varian	ce (KM)	108801					SE	of Mea	an (KM)	44.97
71						k h	at (KM)	0.147						k sta	ar (KM)	0.151
72						nu h	at (KM)	16.74						nu sta	ar (KM)	17.19
73					1	theta h	at (KM)	860.8					tl	neta sta	ar (KM)	838.1
74			80	0% ga	amma p	ercenti	ile (KM)	138.2				90	% gamma p	ercenti	le (KM)	375.1
75			95	5% ga	amma p	ercenti	ile (KM)	694.9				99	% gamma p	ercenti	le (KM)	1622
76																
77							Gamn	na Kaplan-M	eier (KM) S	tatistics						
78		Ар	proximate C	Chi So	quare Va	alue (1	7.19, α)	8.809			Adjı	usted C	hi Square Va	alue (1	7.19, β)	8.653
79	95	5% Gamma Ap	proximate k	KM-U	CL (use	when	n>=50)	246.7		95% Gam	nma A	djusted	KM-UCL (us	e wher	n n<50)	251.1
80								1	I							
81						Lognoi	rmal GC	OF Test on D	etected Ob	servations	Only					
82				Shap	oiro Wilk	(Test S	Statistic	0.945			Sh	apiro W	/ilk GOF Tes	st		
83			5%	Shap	iro Wilk	Critica	al Value	0.897	De	tected Data	а арре	ar Logn	ormal at 5%	Signifi	cance L	evel
84					Lilliefors	Test S	Statistic	0.144			ı	_illiefors	GOF Test			
85				5% I	_illiefors	Critica	al Value	0.202	De	tected Data	а арре	ar Logn	ormal at 5%	Signifi	cance L	evel
86					De	tected	Data a	ppear Logno	rmal at 5%	Significand	ce Lev	el				
87																
88					L	ognor	mal RO	S Statistics	Using Impu	ted Non-De	etects					
89				N	/lean in	Origina	al Scale	127.2					Mea	n in Lo	g Scale	2.284
90					SD in	Origina	al Scale	332.5					SE) in Lo	g Scale	2.59
91		95% t	UCL (assun	nes n	ormality	of RO	S data)	200.9				95%	Percentile E	3ootstra	ap UCL	197.5
92				95%	% BCA E	Bootstr	ap UCL	244.9					95% Bo	otstra	p t UCL	267.8
93				9	5% H-U	CL (Lo	g ROS)	1496								
94								1	II.							
95			Sta	tistic	s using	KM es	timates	on Logged	Data and As	ssuming Lo	gnorn	nal Dist	ribution			
96					KMI	Mean (logged)	2.761					ŀ	KM Ge	o Mean	15.82
97					KI	M SD (logged)	1.855				95%	Critical H Va	alue (K	M-Log)	3.569
98			KM Stand	lard E	Error of I	Mean (logged)	0.254					95% H-U	ICL (KI	M -Log)	214.3
99					KI	M SD (logged)	1.855				95%	Critical H Va	alue (K	M-Log)	3.569
100			KM Stand	lard E		•										
100							, 55 /									

	Α	В	С	D	E	F	G	Н	I	J	K	L		
101														
102						DL/2 S	tatistics							
103			DL/2 I	Normal					DL/2 Log-1	ransformed				
104				Mean in C	riginal Scale	126.5				Mean	in Log Scale	2.346		
105				SD in C	riginal Scale	333.1				SDi	in Log Scale	2.187		
106			95% t l	JCL (Assum	es normality)	200.3				95%	H-Stat UCL	376		
107			DL/2	s not a reco	mmended m	ethod, provi	ded for comp	parisons and	d historical re	easons		•		
108		Nonparametric Distribution Free UCL Statistics												
109		Nonparametric Distribution Free UCL Statistics												
110				Detected	l Data appea	r Gamma Di	stributed at	5% Significa	nce Level					
111														
112						Suggested	UCL to Use							
113			95% KM A	pproximate (Gamma UCL	246.7								
114														
115	1	Note: Sugge	stions regard	ing the selec	ction of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ate 95% UCL			
116			F	Recommenda	ations are ba	sed upon dat	a size, data	distribution,	and skewnes	SS.				
117		These reco	mmendations	are based (upon the resu	ılts of the sim	nulation studi	ies summari:	zed in Singh,	Maichle, and	d Lee (2006).			
118	Но	wever, simu	lations result	s will not cov	ver all Real V	Vorld data se	ts; for addition	onal insight t	he user may	want to cons	ult a statistic	ian.		
119														

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	lon-Detects				
2												
3		User Sele	cted Options									
4	Da	ite/Time of Co	omputation	ProUCL 5.18	3/7/2021 10:	37:25 AM						
5			From File	Soil Vapor T	CNW.xls							
6		Ful	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap (Operations	2000								
9												
10	cis-1,2-Dic	hloroethene										
11												
12						General	Statistics					
13			Total	Number of O	bservations	40			Numbe	r of Distinct C	Observations	2
14				Numbe	r of Detects	1				Number of I	Non-Detects	39
15			N	umber of Dist	inct Detects	1			Numbe	er of Distinct I	Non-Detects	1
16												
17		Warning: On	ly one distin	ct data value	was detecte	ed! ProUCL	(or any othe	r software) s	hould not be	e used on su	ch a data set	
18	It is sugg	ested to use	alternative	site specific v	alues deterr	mined by the	Project Tea	am to estimat	te environm	ental parame	eters (e.g., Ef	PC, BTV).
19												
20				The data s	set for varial	ble cis-1,2-D	ichloroether	ne was not p	rocessed!			
21												
22												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options									
4	Da	ite/Time of Co	omputation	ProUCL 5.18	3/7/2021 10:	37:49 AM						
5			From File	Soil Vapor T	CNW.xls							
6		Ful	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap (Operations	2000								
9												
10	Di-isopropy	ylether										
11												
12							Statistics					
13			Total	Number of O	bservations	40			Numbe	r of Distinct C	Observations	2
14				Numbe	r of Detects	1				Number of I	Non-Detects	39
15			N	umber of Disti	inct Detects	1			Numbe	er of Distinct I	Non-Detects	1
16												
17		-	•	ct data value								
18	It is sugg	ested to use	alternative s	site specific v	alues deterr	mined by the	Project Tea	m to estimat	e environm	ental parame	eters (e.g., El	PC, BTV).
19												
20				The dat	ta set for va	riable Di-iso	propylether v	was not proc	essed!			
21												
22												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3			cted Options									
4	Dat	te/Time of C	·	ProUCL 5.18/		38:11 AM						
5			From File	Soil Vapor TC	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	Ethylbenze	ne										
11						0	Otatiania					
12			Total	Number of Ob	a a myatia na	40	Statistics		Numba	of Diatinat C	Observations	4
13			l Olai		of Detects	3			Numbe		Non-Detects	37
14			Ni	umber of Distir		3			Numbe		Non-Detects	1
15			INI		um Detect				Numbe		Non-Detect	8
16					um Detect						Non-Detect	8
17					ce Detects						Non-Detects	92.5%
18					an Detects					T CICCIII	SD Detects	1360
19					an Detects						CV Detects	0.866
20					ss Detects	-1.051				Kurt	osis Detects	N/A
21				Mean of Logg		6.59					ged Detects	1.988
23												
24				,	Warning: D	ata set has	only 3 Detec	ted Values.				
25			TI	his is not enou	igh to comp	oute meanin	gful or reliab	le statistics	and estimate	es.		
26												
27												
28					Norm	nal GOF Tes	t on Detects	Only				
29			S	hapiro Wilk Te	st Statistic	0.953			Shapiro Wi	lk GOF Test		
30			5% SI	hapiro Wilk Cri	tical Value	0.767	De	etected Data	appear Norr	nal at 5% Sig	nificance Lev	/el
31				Lilliefors Te	st Statistic	0.265			Lilliefors	GOF Test		
32			5	% Lilliefors Cri		0.425			• •	nal at 5% Sig	nificance Lev	/el
33				Dete	cted Data	appear Norn	nal at 5% Sig	nificance Le	evel			
34												
35			Kaplan-	Meier (KM) St			ritical Value	s and other	•			
36					KM Mean				KN		rror of Mean	99.13
37					KM SD						1 (BCA) UCL	N/A
38					KM (t) UCL				`	ercentile Bo	• /	N/A
39					(M (z) UCL	288.3				95% KM Boo	·	N/A
40				00% KM Cheby							byshev UCL	557.3
41			97	.5% KM Cheby	ysnev UCL	744.3				99% KM Che	byshev UCL	1112
42				0-	mma COT	Tooto on D	stantad Obs	motions O-	h.			
43				Ga			etected Obse		ııy			
44					NOT EN	ougn Data to	Perform G0	JE I EST				
45					Gamma	Statistics of	Detected D	ata Only				
46				L	hat (MLE)		Detected D	ala Olliy	le e	star (bias cor	rected MI EV	N/A
47					hat (MLE)					star (bias cor	*	N/A
48					hat (MLE)				i ileta :		s corrected)	N/A
49					n (detects)					ווע אנמו (טומ	io con ecteu)	11//
50				iviea	ii (ueletis)	13/1						

117.9 0.01 4.413 0.105 1121 8.413 2.856 N/A
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
0.01 4.413 0.105 1121 8.413
4.413 0.105 1121 8.413 2.856
0.105 1121 8.413 2.856
1121 8.413 2.856
8.413 2.856
2.856
N/A
511.9
99.13
0.072
5.764
1738
276.3
2329
1.441
501
.evel
.evel
-5.693
6.444
260.3
5265
5265
5265
5265
5265 11.22
11.22

	Α	В	С	D	E	F	G	Н		J	K	L	
101			KM Standar	rd Error of M	ean (logged)	0.246							
102													
103						DL/2 S	tatistics						
104			DL/2 N	Normal					DL/2 Log-1	ransformed			
105				Mean in O	riginal Scale	121.6		Mean in Log Scale					
106				SD in O	riginal Scale	519.3				SD	in Log Scale	1.459	
107		95% t UCL (Assumes normality) 259.9 95% H-Stat UCL									34.5		
108			DL/2 i	s not a reco	mmended m	ethod, provi	ded for comp	parisons and	d historical re	easons	"		
109													
110					Nonparame	etric Distribu	tion Free UC	CL Statistics	1				
111				Detected	l Data appea	r Normal Di	stributed at 5	5% Significa	nce Level				
112													
113						Suggested	UCL to Use						
114				95%	KM (t) UCL	292.3							
115													
116		Note: Sugg	estions regard	ing the selec	tion of a 95%	6 UCL are p	ovided to hel	lp the user to	select the n	nost appropri	ate 95% UCL	•	
117			F	Recommenda	ations are bas	sed upon da	ta size, data	distribution,	and skewnes	SS.			
118		These reco	ommendations	are based u	ipon the resu	ılts of the sin	nulation studi	ies summari	zed in Singh,	Maichle, and	d Lee (2006).		
119	Но	wever, sim	ulations result	s will not cov	er all Real W	Vorld data se	ts; for addition	onal insight t	he user may	want to cons	ult a statisticia	an.	
120													

	Α	В	С	D	E	F	G	H	I	J	K	L
1					UCL Statis	stics for Data	Sets with N	on-Detects				
2		Herr O. I										
3	D		ected Options		18/7/2021 10:	4F:4C AM						
4	Da	te/Time of C	Computation From File			45:46 AIVI						
5		Г.	III Precision	Soil Vapor	T CNVV.XIS							
6			Coefficient	95%								
7				2000								
8	Number	от воосѕатар	Operations	2000								
9	Gasoline R	ange Organ	nice (CPO)									
10	Casonile IV	ange Organ	iica (Gi (O)									
11						General	Statistics					
12			Total	Number of 0	Observations				Numbe	r of Distinct C)bservations	7
13			10101		er of Detects	_			- Trainibo		Non-Detects	34
14			N		stinct Detects				Numbe	er of Distinct		1
15					nimum Detect				- Trainib		Non-Detect	
16					imum Detect						Non-Detect	
17					ance Detects						Non-Detects	85%
18					Mean Detects						SD Detects	
19					edian Detects						CV Detects	2.185
20				Skew	ness Detects	2.425				Kurt	osis Detects	5.901
21					gged Detects						ged Detects	2.795
22					99						9	
23					Norn	nal GOF Tes	t on Detects	Only				
25			S	Shapiro Wilk	Test Statistic				Shapiro Wi	ilk GOF Test		
26			5% S	hapiro Wilk (Critical Value	0.788		Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	el
27				Lilliefors	Test Statistic	0.442			Lilliefors	GOF Test		
28			5	5% Lilliefors (Critical Value	0.325	Γ	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	el
29					Detected Dat	a Not Norma	l at 5% Sign	ificance Lev	rel			
30												
31			Kaplan-	Meier (KM)	Statistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32					KM Mean	1275920			KI	M Standard E	rror of Mean	1252271
33		KM SD								95% KN	(BCA) UCL	3599815
34		95% KM (t) UCL							95% KM (F	Percentile Boo	otstrap) UCL	3582945
35				95%	6 KM (z) UCL	3335722				95% KM Boo	tstrap t UCL	56368730
36			,	90% KM Che	ebyshev UCL	5032732			!	95% KM Che	byshev UCL	6734441
37			97	.5% KM Che	ebyshev UCL	9096348			!	99% KM Che	byshev UCL	13735855
38												
39				(Gamma GOF	Tests on De	etected Obse	ervations Or	nly			
40				A-D	Test Statistic	0.475		A	nderson-Da	rling GOF Te	est	
41				5% A-D (Critical Value	0.778	Detected	d data appea	ar Gamma D	istributed at 5	% Significan	ce Level
42				K-S	Test Statistic	0.242			-	-Smirnov GO		
43					Critical Value					istributed at 5	5% Significan	ce Level
44				Detected	d data appea	r Gamma Di	stributed at 5	5% Significa	nce Level			
45												
46						Statistics or	Detected D	ata Only				
47					k hat (MLE)		7 k star (bias corrected MLI					
48					eta hat (MLE)				Theta	star (bias cor	<u> </u>	
49					nu hat (MLE)					nu star (bia	as corrected)	2.936
50				Me	ean (detects)	8494800						

Median CV corrected MLE)	1274220				
I (e.g., <15-20) I estimates Mean Median CV corrected MLE)	0.01				
I (e.g., <15-20) I estimates Mean Median CV corrected MLE)	0.01				
M estimates Mean Median CV corrected MLE)	0.01				
Mean Median CV corrected MLE)	0.01				
Mean Median CV corrected MLE)	0.01				
Mean Median CV corrected MLE)	0.01				
Median CV corrected MLE)	0.01				
CV corrected MLE)					
corrected MLE)	F 7 4 7				
	5.747				
	0.067				
corrected MLE)	19031505 5.356				
LE) 4.349 nu star (bias corrected) (β) 0.044					
	1.248				
se when n<50)	5470073				
•					
E of Mean (KM)	1252271				
k star (KM)	0.0455				
· · ·					
<u> </u>					
percentile (KM)	1705881				
percentile (KM)	28788821				
	0.543				
se when n<50)	8550284				
· ·	.evel				
6 Significance L	.evel				
=					
<u> </u>					
ootstrap t UCL	65642478				
KM Geo Mean	4719				
/alue (KM-Log)	4.183				
UCL (KM -Log)	283682				
/alue (KM-Log)	4.183				
e u SE U SE U SE SE SE SE SE SE SE SE SE SE SE SE SE	SD (KM) SE of Mean (KM) k star (KM) nu star (KM) percentile (KM) percentile (KM) percentile (KM) se Value (3.64, β) use when n<50) Test % Significance L st % Significance L sean in Log Scale se Bootstrap UCL Bootstrap t UCL				

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
101		•	KM Standar	rd Error of M	ean (logged)	0.393		•	•	-			
102													
103						DL/2 S	tatistics						
104													
105				Mean in C	riginal Scale		Mean in Log Scale 7.87						
106				SD in C	riginal Scale	7322245				SD	in Log Scale	2.527	
107		95% t UCL (Assumes normality) 3225732 95% H-Stat UCL										406646	
108			DL/2 i	is not a reco	mmended m	ethod, provi	ded for com	parisons an	d historical r	easons		11	
109													
110					Nonparam	etric Distribu	tion Free U	CL Statistics	3				
111				Detected	l Data appea	ır Gamma Di	stributed at	5% Signific	ance Level				
112													
113						Suggested	UCL to Use						
114	Adjusted K	M-UCL (use	when k<=1 a	and 15 < n <	50 but k<=1)	8550284							
115													
116		Note: Sugge	estions regard	ling the sele	ction of a 95%	6 UCL are pr	ovided to he	lp the user t	o select the n	nost appropri	ate 95% UCI		
117			F	Recommenda	ations are ba	sed upon da	ta size, data	distribution,	and skewnes	SS.			
118		These reco	mmendations	s are based i	upon the resu	ults of the sin	nulation stud	ies summar	zed in Singh	Maichle, and	d Lee (2006).		
119	Но	wever, simu	ulations result	s will not co	ver all Real V	Vorld data se	ts; for addition	onal insight	the user may	want to cons	ult a statistic	ian.	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3			cted Options									
4	Dat	te/Time of C	omputation	ProUCL 5.18	/7/2021 10:	38:36 AM						
5			From File	Soil Vapor TO	CNW.xls							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	Isopropylbe	enzene										
11												
12						General	Statistics					
13			Total	Number of Ob	oservations	40			Numbe	of Distinct C	Observations	4
14					of Detects	3				Number of	Non-Detects	37
15			Νι	umber of Distir	nct Detects	3			Numbe	er of Distinct	Non-Detects	1
16					num Detect						Non-Detect	8
17				Maxim	num Detect	4290				Maximum	Non-Detect	8
18					ice Detects					Percent	Non-Detects	92.5%
19				Me	an Detects	2279					SD Detects	2124
20					ian Detects						CV Detects	0.932
21					ess Detects	-0.443					tosis Detects	N/A
22				Mean of Logg	ed Detects	6.742				SD of Log	ged Detects	2.353
23												
24							only 3 Detec					
25			TI	his is not enou	ugh to comp	oute meanin	gful or reliab	le statistics	and estimate	es.		
26												
27												
28							t on Detects	Only				
29				hapiro Wilk Te			_		•	lk GOF Test		
30			5% SI	hapiro Wilk Cr		0.767	De	etected Data			gnificance Lev	/el
31				Lilliefors Te		0.206				GOF Test		
32			5'	% Lilliefors Cr		0.425			• •	nal at 5% Sig	gnificance Lev	/el
33				Dete	ected Data	appear Norn	nal at 5% Sig	inificance Le	evel			
34												
35			Kaplan-l	Meier (KM) St			ritical Value	s and other	•			
36					KM Mean				KN		rror of Mean	147.9
37					KM SD	763.8					(BCA) UCL	N/A
38					KM (t) UCL				,		otstrap) UCL	N/A
39			-		(M (z) UCL	421.6					otstrap t UCL	N/A
40				00% KM Cheb	*						byshev UCL	823.1
41			97	.5% KM Cheb	ysnev UCL	1102				99% KM Che	byshev UCL	1650
42						Tooks P	to etc. d Oli	.m.co.tl =	.h.			
43				Ga			etected Obse		ııy			
44					Not En	ougn Data to	Perform GC	ו חכו ו est				
45					0	Otal-4	Detail 15	ata O-1				
46							Detected D	ata Uniy		- . / l- :		NI/A
47					(hat (MLE)					•	rected MLE)	N/A
48					hat (MLE)				I neta :		rected MLE)	N/A
49					u hat (MLE)					nu star (bia	as corrected)	N/A
50				Mea	n (detects)	2279						

	Α	В	С		D		Е	F	G	Н			J		K	L
51																
52								Statistics u								
53				•				set has > 50%		•			•			
54		GROS ma	•					small such a		•				(e.g., <	:15-20)	
55				For s	uch situ			method may				s and E	BTVs			
56								ially true whe								
57		For ga	ımma distril	buted	detecte			and UCLs ma	y be compu	ited using g	gamma	distribu	ution on KM	estima	tes	
58						N	/linimum	0.01							Mean	170.9
59						M	aximum	4290						ı	Median	0.01
60							SD	775.2							CV	4.535
61						k ha	at (MLE)	0.0922					star (bias co		,	0.102
62					Tł	neta ha	at (MLE)	1854				Theta	star (bias co	orrecte	d MLE)	1676
63							at (MLE)						nu star (b	ias cor	rected)	8.157
64			Adjust	ted Le	evel of S	Significa	ance (β)	0.044								
65		Α	pproximate	Chi	Square \	Value ((8.16, α)	2.826			Adj	justed (Chi Square V	/alue (8	3.16, β)	2.71
66		95% Gamm	a Approxim	nate l	JCL (use	e when	n>=50)	493.3		95%	Gamma	a Adjus	ted UCL (us	e wher	n <50)	N/A
67								•								
68					l	Estima	ites of C	amma Para	meters usin	g KM Estir	nates					
69						Me	an (KM)	178.3						S	D (KM)	763.8
70					,	Varian	ce (KM)	583446					SE	of Mea	ın (KM)	147.9
71						k h	nat (KM)	0.0545						k sta	ar (KM)	0.0671
72						nu h	nat (KM)	4.36						nu sta	ar (KM)	5.367
73						theta h	nat (KM)	3272					th	heta sta	ar (KM)	2658
74			8	80% g	jamma p	ercent	ile (KM)	57.71				90	% gamma pe	ercentil	le (KM)	371.7
75			9	5% g	jamma p	ercent	ile (KM)	1020				99	% gamma pe	ercentil	le (KM)	3426
76																
77							Gamn	na Kaplan-M	eier (KM) S	tatistics						
78		Α	pproximate	Chi	Square \	Value (5.37, α)	1.325			Adj	justed (Chi Square V	/alue (5	5.37, β)	1.253
79	95	5% Gamma Ap	proximate	KM-l	JCL (use	when	n>=50)	722.1		95% Gam	nma Ad	ljusted	KM-UCL (us	e wher	n <50)	764.1
80					95%	Gamm	a Adjus	ted KM-UCL	(use when l	<=1 and 1	5 < n <	50)				
81																
82						Logno	rmal G0	OF Test on D	etected Ob	servations	Only					
83				Sha	piro Will	k Test	Statistic	0.843			Sha	apiro W	ilk GOF Tes	st		
84			5%	Sha	piro Wilk	Critica	al Value	0.767	De	tected Data	appea	ar Logn	ormal at 5%	Signific	cance L	evel
85					Lilliefors	s Test	Statistic	0.343			L	illiefors	GOF Test			
86				5%	Lilliefors	Critica	al Value	0.425	De	tected Data	appea	ar Logn	ormal at 5%	Signific	cance L	evel
87					De	tected	Data a	ppear Logno	rmal at 5%	Significand	ce Leve	el				
88																
89					l	Lognor	mal RC	S Statistics	Using Impu	ted Non-De	etects					
90					Mean in	-							Mear	າ in Loç	g Scale	-8.029
91					SD in	Origina	al Scale	775.1					SE) in Loç	g Scale	7.748
92		95% t	UCL (assu	mes i	normality	y of RC)S data)	377.9				95%	Percentile B	Sootstra	ap UCL	387.3
93				95	% BCA I	Bootstr	ap UCL	512.8					95% Bo	otstrap	t UCL	14775
94				9	5% H-U	CL (Lo	g ROS)	4.332E+16								
95								1	.u							
96			Sta	atistic	s using	KM es	stimates	on Logged	Data and As	ssuming Lo	gnorm	al Disti	ribution			
97					KM	Mean ((logged)	2.429					ŀ	KM Ged	o Mean	11.35
98					K	M SD ((logged)	1.336				95%	Critical H Va	alue (K	M-Log)	2.827
99			KM Stan	dard	Error of	Mean ((logged)	0.259					95% H-U	CL (KI	И -Log)	50.74
100					K	M SD ((logged)	1.336				95%	Critical H Va	alue (K	M-Log)	2.827
100								1	1						٠,	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
101			KM Standar	d Error of M	ean (logged)	0.259						
102											·	
103						DL/2 S	tatistics					
104			DL/2 N	Normal					DL/2 Log-1	Transformed	t	
105				Mean in O	riginal Scale	174.6				Mear	n in Log Scale	1.788
106				SD in O	riginal Scale	774.4				SE	in Log Scale	1.525
107			95% t L	JCL (Assume	es normality)	380.9				959	% H-Stat UCL	40.6
108			DL/2 i	s not a reco	mmended m	ethod, provi	ded for com	parisons an	d historical re	easons		
109												
110					Nonparame	etric Distribu	tion Free U	CL Statistics	3			
111				Detected	l Data appea	r Normal Di	stributed at	5% Significa	nce Level			
112												
113							UCL to Use)				
114				95%	KM (t) UCL	427.5						
115												
116	1	Note: Sugge	estions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	lp the user t	select the n	nost approp	riate 95% UCL.	
117			R	Recommenda	tions are bas	sed upon da	ta size, data	distribution,	and skewnes	SS.		
118		These reco	ommendations	are based u	ipon the resu	ilts of the sin	nulation stud	ies summari	zed in Singh,	Maichle, ar	nd Lee (2006).	
119	Но	wever, sim	ulations result	s will not cov	er all Real W	orld data se	ts; for addition	onal insight t	he user may	want to con	sult a statisticia	an.
120												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statist	tics for Data	Sets with N	on-Detects				
2				T.								
3			cted Options									
4	Dat	te/Time of C		ProUCL 5.18		34:14 AM						
5			From File	Metals in So	il TCNW.xls							
6			Il Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	Dh											
10	Pb											
11						General	Statistics					
12			Total	Number of O	hservations	57	Statistics		Numhe	r of Distinct (Observations	12
13			Total		r of Detects	13			Numbe		Non-Detects	44
14			Nı	umber of Dist		11			Numbe		Non-Detects	1
15					mum Detect	7.2			Numbe		Non-Detect	7.1
16					num Detect	61					Non-Detect	7.1
17					nce Detects	292.9					Non-Detects	77.19%
18					ean Detects	25.94					SD Detects	17.12
19 20				Med	lian Detects	19					CV Detects	0.66
21				Skewn	ess Detects	1.22				Kurt	tosis Detects	0.473
22				Mean of Log	ged Detects	3.071				SD of Log	ged Detects	0.628
23												
24					Norm	al GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.845			Shapiro Wi	lk GOF Test	:	
26			5% SI	napiro Wilk C	ritical Value	0.866	Ι	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	ı
27				Lilliefors T	est Statistic	0.245			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.234]	Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	I
29				D	etected Data	Not Norma	l at 5% Sign	ificance Lev	'el			
30												
31			Kaplan-l	Meier (KM) S	tatistics usir	ng Normal C	ritical Value	s and other	Nonparame	ric UCLs		
32					KM Mean	11.4			KN	/I Standard E	rror of Mean	1.536
33					KM SD	11.14					(BCA) UCL	14.12
34					KM (t) UCL	13.97			`		otstrap) UCL	13.97
35					KM (z) UCL	13.92					otstrap t UCL	15.38
36				00% KM Cheb	-	16					byshev UCL	18.09
37			97	.5% KM Chet	yshev UCL	20.99				99% KM Che	byshev UCL	26.68
38												
39					amma GOF		etected Obse					
40					est Statistic	0.385	5			rling GOF Te		
41					ritical Value	0.74	Detected	• • • • • • • • • • • • • • • • • • • •			5% Significan	ce Level
42					est Statistic	0.164	Datasta			Smirnov GO		
43					ritical Value	0.238				surputed at 5	5% Significan	je Level
44				Detected	data appear	Gainina Di	Sulputed at t	on Significa	IICE LEVEI			
45					Gammo	Statistics of	Detected D	lata Only				
46					k hat (MLE)	2.869	Detected D	rata Offiy	L.	star (hias co	rected MLE)	2.258
47					a hat (MLE)	9.041				,	rected MLE)	11.49
48					u hat (MLE)	74.59			ineta	•	as corrected)	58.71
49					an (detects)	25.94				ווע אנמו (טומ	ao con ecteu)	
50				IVIE	un (uelecis)	2J.J4						

	Α	В	С		D		E	F	G	Н		I	J		K		L
51																	
52								S Statistics u									
53			-					set has > 50%		•							
54		GROS ma	y not be used							-				all (e.	.g., <15	-20)	
55			Fo	or sucl				method may					BTVs				
56							-	ially true who									
57		For ga	mma distribu	ted de	etected				ay be comp	outed using	gamr	na distrib	ution on K	(M es			
58							inimum									/lean	6.014
59						Ma	aximum	-							Me	dian	0.01
60							SD									CV	2.246
61							t (MLE)						star (bias			,	0.173
62							t (MLE)					Theta	a star (bias			,	34.71
63							t (MLE)						nu star	r (bias	s correc	:ted)	19.75
64			Adjusted														
65		-	proximate Ch	-		-						-	hi Square		-		10.49
66		95% Gamm	a Approximat	te UCI	L (use \	when	n>=50)	11.13		95%	Gam	nma Adjus	sted UCL	(use \	when n	<50)	11.32
67																	
68					E			Samma Para	meters usi	ing KM Est	imate	es					
69							an (KM)							<u> </u>	SD (` ′	11.14
70					Va		ce (KM)								Mean (` ′	1.536
71							at (KM)								k star (1.003
72					.,		at (KM)								nu star (` ′	114.3
73			200	.,			at (KM)						201		ta star (` ′	11.37
74							le (KM))% gamma		•		26.22
75			959	% gam	ıma pe	rcenti	le (KM)	34.11				99	9% gamma	a pero	centile (KIVI)	52.41
76									-i (IZM)	Otalala							
77		A	i	0	\ / - 1	- /11		na Kaplan-M	eler (KM)	Statistics	Λ -1:	: Ol-	: 0 1	<i>(</i> =1	/114	2 0	
78	0.0		roximate Chi			•				050/ 0-			i Square \		,		90.09
79	90	5% Gamma Ap	proximate Ki	VI-UCI	L (use \	wnen	n>=50)	14.37		95% Ga	mma	Adjusted	KM-UCL	(use \	wnen n	<5U)	14.46
80					1.			OF Toot on F	hatastad O	haamratian	- Onl						
81				honir			Statistic	OF Test on E	Petected O	bservation			WILL COE	Took			
82							al Value			etected Da			Vilk GOF		anificar		
83			5% 5				Statistic		U		ta app		s GOF Te		griilicai	ice L	evei
84			E				al Value		D	etected Da	to one				ianificar	200	
85				70 LIII				ppear Logno					iorriai at c)% SI	griilicai	ice L	evei
86					Dete	ecteu	Data a	ppear Logric	illiai at 5%	o Significat	ice Le	evei					
87					l a	anor	mal BC	S Statistics	l loina Imn	utad Nan F)otool	ha .					
88				Ma					Using imp	utea Mon-L	Jelec		NA	oon is	n l og S	oolo	1.135
89							al Scale								n Log S n Log S		1.135
90		QE0/ +	UCL (assume									050/	Percentil		•		1.442
91		95% t	•									95%					
92							ap UCL g ROS)						95%	DUOT	tstrap t l	UCL	12.33
93				90%	₀ ⊓ - ∪∪	,r (ro	 9 KO9)	15.75									
94			Ctati	otice :	ieina !	/M aa-	timotor	on Logged	Data and 1	\ooumiss 1	oarc	rmel Dist	ribution				
95			Statis	อนเวริ โ				on Logged 2.214	vala and A	-ssuriing L	.ogno	ınıdı DIST	แบบแบก	L/ N A	1 Geo M	1000	9.148
96						-	logged) logged)					OE0/	Critical H				1.919
97			KM Standa	rd Er-								95%			le (KM-I L (KM -I	•	12.24
98			KIVI Standa	iu Eff		-	loggea) logged)					OE0/			•	٠,	
99			/ N C+	rd F:			:		-			95%	Critical H	valu	ie (KIVI-I	∟og)	1.919
100			KM Standa	iu Err	UI OT IVI	iean (I	oygea)	0.0756									

	Α	В	С	D	Е	F	G	Н	I	J	K	L			
101															
102						DL/2 S	tatistics								
103			DL/2 I	Normal					DL/2 Log-1	ransformed					
104				Mean in C	riginal Scale	8.656				Mean	in Log Scale	1.678			
105				SD in C	riginal Scale	12.35				SDi	in Log Scale	0.817			
106			95% t l	JCL (Assum	es normality)	11.39				95%	H-Stat UCL	9.455			
107			DL/2	s not a reco	mmended m	ethod, provi	ded for com	parisons and	d historical re	easons					
108		DL/2 is not a recommended method, provided for comparisons and historical reasons													
109		Nonparametric Distribution Free UCL Statistics													
110				Detected	d Data appea	r Gamma Di	stributed at	5% Significa	ance Level						
111															
112						Suggested	UCL to Use								
113			95% KM A	pproximate	Gamma UCL	14.37		9	5% GROS A	pproximate C	Gamma UCL	11.13			
114															
115	l	Note: Sugge	stions regard	ing the sele	ction of a 95%	UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ate 95% UCL				
116			F	Recommend	ations are bas	sed upon dat	a size, data	distribution,	and skewnes	SS.					
117		These reco	mmendations	are based	upon the resu	Its of the sim	nulation stud	ies summari	zed in Singh,	Maichle, and	d Lee (2006).				
118	Но	wever, simu	lations result	s will not co	ver all Real W	orld data se	ts; for addition	onal insight t	he user may	want to cons	ult a statistici	an.			
119															

	Α	В	С	D	Е	F	G	Н	ļ	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3			cted Options									
4	Dat	e/Time of C		ProUCL 5.18		45:00 AM						
5			From File	Soil Vapor To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number c	of Bootstrap	Operations	2000								
9												
10	m,p-Xylene	S 										
11						Comerci	Ctatiatias					
12			Total	Number of Ob	haantatiana		Statistics		Numba	of Diatinat C	Observations	4
13			l Olai		r of Detects	3			Numbe		Non-Detects	37
14			Ni	umber of Disti		_			Numbe		Non-Detects	1
15			INI		num Detect				Numbe		Non-Detect	16
16					num Detect						Non-Detect	16
17					nce Detects						Non-Detects	92.5%
18					ean Detects					1 Groom	SD Detects	726.2
19					ian Detects						CV Detects	0.776
20					ess Detects					Kurt	osis Detects	N/A
22				Mean of Logg							ged Detects	0.898
23											,,,	
24					Warning: D	ata set has	only 3 Detec	ted Values.				
25			TI	his is not eno	ugh to com	pute meanin	gful or reliab	le statistics	and estimate	es.		
26												
27												
28							t on Detects	Only				
29				hapiro Wilk Te						lk GOF Test		
30			5% SI	hapiro Wilk Cr	ritical Value	0.767	De	etected Data			gnificance Lev	/el
31					est Statistic	0.241				GOF Test		
32			5	% Lilliefors Cr						nal at 5% Sig	gnificance Lev	/el
33				Dete	ected Data	appear Norn	nal at 5% Sig	gnificance Le	evel			
34												
35			Kaplan-	Meier (KM) St			critical Value	s and other	•			
36					KM Mean				KI		rror of Mean	56.46
37				0507	KM SD				050/ 1/14/5		1 (BCA) UCL	N/A
38					KM (t) UCL				,	ercentile Bo	• /	N/A
39				95% r 90% KM Cheb	KM (z) UCL					95% KM Boo 95% KM Che	·	N/A 331
40				.5% KM Cheb	•	437.5				95% KM Che	-	646.7
41			37	.c /o INIVI CITED	yonev OCL	707.0			•	70 AIVI GIR	Dydilev OCL	UTU. /
42				G	amma GOF	Tests on De	etected Obse	ervations On	ılv			
43							Perform GO					
44					HOLEIN		J.IJIIII GC					
45					Gamma	Statistics or	Detected D	ata Only				
46				ŀ	k hat (MLE)				k :	star (bias cor	rected MLE)	N/A
47					a hat (MLE)					star (bias cor	*	N/A
49					u hat (MLE)						as corrected)	N/A
50					an (detects)					, -	,	
อบ					,/							

	Α	В	С		D		Е	F	G	Н		ı	J		K	L
51																
52								S Statistics u								
53				•				set has > 50%		•			•			
54		GROS ma	•					small such a	•	•				(e.g., <	(15-20)	
55				For s	uch situ			method may				Ls and E	BTVs			
56								ially true whe								
57		For ga	mma distril	buted	detecte			and UCLs ma	y be comp	uted using (gamma	a distrib	ution on KM	estima	tes	
58						N	/linimum	0.01							Mean	70.16
59						M	laximum	_						l	Median	0.01
60							SD								CV	4.259
61							at (MLE)						star (bias co		,	0.11
62					Tł	neta ha	at (MLE)	693.5				Theta	star (bias co	orrecte	d MLE)	636.4
63						nu ha	at (MLE)	8.093					nu star (b	ias cor	rected)	8.82
64			Adjust	ted Le	evel of S	Significa	ance (β)	0.044								
65		Α	pproximate	Chi	Square \	Value ((8.82, α)	3.218			Ac	djusted (Chi Square V	alue (8	3.82, β)	3.092
66		95% Gamm	a Approxim	nate l	JCL (use	e when	n>=50)	192.3		95%	Gamn	na Adjus	sted UCL (us	e wher	n <50)	N/A
67								1	1							
68					l	Estima	ites of C	amma Para	meters usir	ng KM Estir	mates					
69						Me	an (KM)	84.95						S	D (KM)	291.5
70					,	Varian	ice (KM)	85000					SE	of Mea	n (KM)	56.46
71						k h	nat (KM)	0.0849						k sta	ar (KM)	0.0952
72						nu h	nat (KM)	6.792						nu sta	ar (KM)	7.616
73						theta h	nat (KM)	1001					th	neta sta	ar (KM)	892.3
74			8	80% g	jamma p	ercent	ile (KM)	54.75				90	% gamma pe	ercenti	le (KM)	221.3
75			9	5% g	jamma p	ercent	ile (KM)	494.2				99	% gamma pe	ercenti	le (KM)	1383
76									1							
77							Gamn	na Kaplan-M	eier (KM) S	Statistics						
78		Α	pproximate	Chi	Square \	Value ((7.62, α)	2.515			Ac	djusted (Chi Square V	alue (7	7.62, β)	2.406
79	95	5% Gamma Ap	proximate	KM-l	JCL (use	when	n>=50)	257.3		95% Gan	nma A	djusted	KM-UCL (us	e wher	n <50)	268.9
80					95%	Gamm	a Adjus	ted KM-UCL	(use when	k<=1 and 1	5 < n <	< 50)				-
81																
82						Logno	rmal G0	OF Test on D	etected Ob	servations	Only					
83				Sha	piro Will	k Test	Statistic	0.993			Sh	apiro W	ilk GOF Tes	st		
84			5%	Sha	piro Wilk	Critica	al Value	0.767	De	etected Data	а арре	ar Logn	ormal at 5%	Signifi	cance L	evel
85					Lilliefors	s Test	Statistic	0.205				Lilliefors	GOF Test			
86				5%	Lilliefors	Critica	al Value	0.425	De	etected Data	а арре	ar Logn	ormal at 5%	Signifi	cance L	evel
87					De	tected	Data a	ppear Logno	rmal at 5%	Significand	ce Lev	rel				
88																
89					l	Lognor	mal RC	S Statistics	Using Impu	ited Non-D	etects					
90					Mean in	Origina	al Scale	79.41					Mear	n in Lo	g Scale	0.195
91					SD in	Origina	al Scale	297.4					SE) in Lo	g Scale	3.357
92		95% t	UCL (assu	mes i	normality	y of RC)S data)	158.6				95%	Percentile B	Sootstra	ap UCL	162.9
93				95	% BCA I	Bootstr	rap UCL	215.2					95% Bo	otstrap	t UCL	523.3
94				9	5% H-U	CL (Lo	g ROS)	8101								
95						<u> </u>			1							
96			Sta	atistic	s using	KM es	stimates	on Logged	Data and A	ssuming Lo	ognorn	nal Dist	ribution			
97							(logged)							(M Ge	o Mean	21.32
98							(logged)					95%	Critical H Va			2.44
99			KM Stan	dard									95% H-U	•	٠,	53.97
							(logged)					95%	Critical H Va	`		2.44
100						\		1						(. •	=>8)	

	Α	В	С	D	Е	F	G	Н		J	K	L
101			KM Standar	rd Error of M	ean (logged)	0.199						
102												
103						DL/2 S	tatistics					
104			DL/2 N	Normal					DL/2 Log-1	ransformed		
105				Mean in O	riginal Scale	77.55				Mean	in Log Scale	2.418
106				SD in O	riginal Scale	297				SD	in Log Scale	1.222
107			95% t L	JCL (Assume	es normality)	156.7				95%	H-Stat UCL	40.03
108			DL/2 i	s not a reco	mmended m	ethod, provi	ded for comp	parisons and	d historical re	easons	"	
109												
110					Nonparame	etric Distribu	tion Free UC	CL Statistics	1			
111				Detected	l Data appea	r Normal Di	stributed at 5	5% Significa	nce Level			
112												
113						Suggested	UCL to Use					
114				95%	KM (t) UCL	180.1						
115												
116		Note: Sugg	estions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	lp the user to	select the n	nost appropri	ate 95% UCL	•
117			F	Recommenda	ations are bas	sed upon da	ta size, data	distribution,	and skewnes	SS.		
118		These reco	ommendations	are based u	ipon the resu	ilts of the sin	nulation studi	ies summari	zed in Singh,	Maichle, and	d Lee (2006).	
119	Но	wever, sim	ulations result	s will not cov	er all Real W	orld data se	ts; for addition	onal insight t	he user may	want to cons	ult a statisticia	an.
120												

	Α	В	С	D	Е	F	G	Н		J	K	L
1					UCL Statis	tics for Data	Sets with N	lon-Detects				
2												
3			ected Options									
4	Dat	te/Time of C		ProUCL 5.18		39:27 AM						
5			From File	Soil Vapor T	CNW.xls							
6			III Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9	Methylene o	abla vida										
10	wearylene (cilionae										
11						General	Statistics					
12			Total	Number of O	hservations	40	Statistics		Numhe	r of Distinct (Observations	5
13			Total		r of Detects	5			Numbe		Non-Detects	35
14			Nı	umber of Dist		5			Numbe		Non-Detects	1
15					mum Detect	8			- Trumbe		Non-Detect	8
16					num Detect	26					Non-Detect	8
17					nce Detects	57.5					Non-Detects	87.5%
18					ean Detects	16					SD Detects	7.583
19 20				Med	lian Detects	17					CV Detects	0.474
21				Skewn	ess Detects	0.201				Kurt	tosis Detects	-1.666
22				Mean of Log	ged Detects	2.673				SD of Log	ged Detects	0.513
23												
24					Norm	al GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.929			Shapiro Wi	ilk GOF Test	:	
26			5% SI	napiro Wilk C	ritical Value	0.762	De	etected Data	appear Norr	mal at 5% Sig	gnificance Lev	/el
27				Lilliefors T	est Statistic	0.222			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.343	De	etected Data	appear Norr	mal at 5% Sig	gnificance Lev	/el
29				Det	ected Data	appear Norn	nal at 5% Sig	gnificance L	evel			
30												
31			Kaplan-l	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32					KM Mean	9			KN	VI Standard E	rror of Mean	0.631
33					KM SD	3.571					(BCA) UCL	10.05
34					KM (t) UCL	10.06			`	Percentile Boo	' '	10.03
35					KM (z) UCL	10.04				95% KM Boo	·	10.24
36				00% KM Cheb	•	10.89					byshev UCL	11.75
37			97	.5% KM Cheb	yshev UCL	12.94				99% KM Che	byshev UCL	15.28
38												
39							etected Obse	ervations Or	•			
40					est Statistic	0.342	5			rling GOF Te		
41					ritical Value	0.681	Detected				5% Significan	ce Level
42					est Statistic	0.251	Datasta			-Smirnov GO		!!
43					ritical Value	0.358				istributed at 5	5% Significan	Je Level
44				Detected	uata appeal	Gamma Di	suivuted at t	5% Significa	IICE LEVEI			
45					Camma	Statistics of	Detected D	ata Only				
46					k hat (MLE)	5.169	Detected D	ala Olliy	L.	star (hias cor	rected MLE)	2.201
47					a hat (MLE)	3.096				star (bias cor star (bias cor	*	7.27
48					u hat (MLE)	51.69			i ileta	`	as corrected)	22.01
49					an (detects)	16				iiu stat (Dla	as contected)	
50				ivie	an (uetects)	10						

	Α	В	С		D		E	F	G	Н		ı	J	K		L
51																
52								S Statistics u								
53				-						•			t multiple DLs			
54		GROS ma	•							•			size is small (e.g., <15-2	20)	
55			F	or su				method may				Ls and E	BTVs			
56							-	ially true who								
57		For ga	mma distrib	uted	detecte				ay be comp	uted using (gamm	a distrib	ution on KM e			
58							/linimum								ean	2.136
59						M	aximum							Med		0.01
60							SD								CV	2.747
61							at (MLE)						star (bias co		- 1	0.182
62					Th		at (MLE)					Theta	star (bias co			11.72
63							et (MLE)						nu star (bi	as correct	ed)	14.58
64							ance (β)									
65		-	proximate C				•						hi Square Va			6.774
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	4.468		95%	Gamr	na Adjus	sted UCL (use	e when n<	50)	4.598
67																
68								Samma Para	meters usi	ng KM Esti	mates	;				
69							an (KM)							SD (K		3.571
70							ce (KM)						SE (of Mean (K		0.631
71							nat (KM)							k star (K		5.893
72							nat (KM)							nu star (K	- 1	471.5
73							nat (KM)							eta star (K	,	1.527
74							tile (KM)						% gamma pe			13.96
75			95	o% ga	amma p	ercent	tile (KM)	15.84				99	% gamma pe	ercentile (K	·M)	19.78
76								17 1 1	1 - 1 /1/2 3 4) /	N						
77				. 0		/47		na Kaplan-M	eler (KM) :	Statistics	A 1:			/474 45	<u> </u>	400.4
78	0.5		roximate Ch			•				050/ 0	-		Square Valu	•		420.4
79	95	5% Gamma Ap	oproximate r	\IVI-U	CL (use	wnen	n>=50)	10.05		95% Gan	nma <i>F</i>	Najustea	KM-UCL (use	e wnen n<	30)	10.09
80								OF Took on F	Natacted O	haan:a i lana	0-6					
81				Char				OF Test on D	Petected O	oservations			filk COE Too			
82							Statistic		D.	ata ata d Dat		-	/ilk GOF Tes			
83			5%				Statistic		De	etected Data			GOF Test	Significano	:е L	evei evei
84							al Value		D	atastad Date			ormal at 5%	Cianifican		ovol
85				3% L				ppear Logno					Offilal at 5%	Significant	.e L	
86					De	lecteu	Data a	ppear Logno	ormai at 5%	Significan	ce re	vei				
87						ognor	mal DC	S Statistics	Hoing Imp	stad Nan D	otooto					
88				N.						ulea Non-D	elecis	•	Moon	in Log So	مام	0.172
89				IV			al Scale							in Log Sc		1.499
90		059/ +	UCL (assum	200 0								050/	Percentile B	•		4.851
91		95% t	OCL (assum									95%				
92							rap UCL						95% B0	otstrap t U	UL	5.678
93				95	ν π-U(CL (LO	g ROS)	7.591								
94			Ct-	tiotio	uole-	VN4	timete:	on Logged	Data and A	coumina !	0000-	mal Dist	ribution			
95			Sta	แรนตร				on Logged 2.154	vala and A	sourning LC	vynor	וומו טואנ		M Geo Me	227	8.616
96							(logged)					0E0/	Critical H Va			1.766
97			KM Stand	lard F								95%		CL (KM -L		9.564
98			VINI Statio	iaiU E			(logged) (logged)					0E0/		`	٠,	
99			I/M C+ !	lord C								95%	Critical H Va	iue (KIVI-L	Jg)	1.766
100			KM Stand	iaiU E	1101011	viean ((iogged)	0.045								

	Α	В	С	D	Е	F	G	Н		J	K	L
101												
102						DL/2 S	tatistics					
103			DL/2	Normal					DL/2 Log-1	Transformed Transformed		
104				Mean in C	Original Scale	5.5				Mean i	in Log Scale	1.547
105				SD in C	Original Scale	4.696				SD i	in Log Scale	0.461
106			95% t l	JCL (Assum	es normality)	6.751				95%	H-Stat UCL	6.008
107			DL/2	is not a reco	mmended m	ethod, provi	ded for com	parisons and	l historical re	easons		
108												
109					Nonparame	tric Distribu	tion Free UC	CL Statistics				
110				Detecte	d Data appea	r Normal Di	stributed at	5% Significa	nce Level			
111												
112						Suggested	UCL to Use					
113				95%	% KM (t) UCL	10.06						
114												
115	I	Note: Sugges	stions regard	ling the sele	ction of a 95%	UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ate 95% UCL	
116			F	Recommend	ations are bas	sed upon dat	a size, data	distribution, a	and skewnes	SS.		
117		These recor	mmendations	s are based	upon the resu	Its of the sim	ulation studi	ies summariz	zed in Singh,	Maichle, and	d Lee (2006).	
118	Но	wever, simu	lations result	s will not co	ver all Real W	orld data se	ts; for addition	onal insight th	ne user may	want to cons	ult a statistici	an.
119												

\vdash	Α	В	С	D E	F	G H Sets with Non-Detects	I J K	L
1				OCE Sta	istics for Date	1 Oets With Non-Detects		
2		User Selec	cted Options					
3			omputation	ProUCL 5.18/7/2021 1	0:43:03 AM			
5			From File	Soil Vapor TCNW.xls				
6		Ful	II Precision	OFF				
7	Co	onfidence (Coefficient	95%				
8	Number of E	Bootstrap (Operations	2000				
9								
10	Methyl tert-bu	ıtyl ether						
11								
12						Statistics		-
13			Total	Number of Observation			Number of Distinct Observations	3
14				Number of Detec			Number of Non-Detects	38
15			N	umber of Distinct Detec			Number of Distinct Non-Detects	1
16				Minimum Dete			Minimum Non-Detect	40
17				Maximum Dete Variance Detec			Maximum Non-Detect Percent Non-Detects	40 95%
18								
19				Mean Detec Median Detec			SD Detects CV Detects	79472 1.226
20				Skewness Detec			Kurtosis Detects	N/A
21				Mean of Logged Detec			SD of Logged Detects	1.869
22				Wear or Logged Detec	3 10.50		OD of Logged Detects	1.005
23				Warning:	Data set has	only 2 Detected Values.		
24 25			Т			gful or reliable statistics		
26								
27								
28				No	mal GOF Tes	st on Detects Only		
29				Not E	nough Data to	Perform GOF Test		
30								
31								
32			Kaplan-	• •	_	Critical Values and other	<u> </u>	
33			Kaplan-	KM Mea	n 3278	critical Values and other	KM Standard Error of Mean	4226
			Kaplan-	KM Mea	n 3278 D 18898	Critical Values and other	KM Standard Error of Mean 95% KM (BCA) UCL	N/A
34			Kaplan-	KM Mea KM S 95% KM (t) UC	18898 L 10398	Critical Values and other	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A
35				KM Mea KM S 95% KM (t) UC 95% KM (z) UC	3278 D 18898 L 10398 L 10229	Critical Values and other	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A
35 36				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC	10398 L 10398 L 15955	Critical Values and other	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37				KM Mea KM S 95% KM (t) UC 95% KM (z) UC	10398 L 10398 L 15955	Critical Values and other	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	N/A N/A N/A
35 36 37 38				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC	10398 L 10398 L 10229 L 15955 L 29668		KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37 38 39				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 55% KM Chebyshev UC	n 3278 D 18898 L 10398 L 10229 L 15955 L 29668	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37 38 39 40				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 55% KM Chebyshev UC	n 3278 D 18898 L 10398 L 10229 L 15955 L 29668		KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37 38 39 40 41				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC .5% KM Chebyshev UC Gamma GC Not E	n 3278 D 18898 L 10398 L 10229 L 15955 L 29668 F Tests on Donough Data to	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37 38 39 40 41 42				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 55% KM Chebyshev UC Gamma GC Not E	n 3278 D 18898 L 10398 L 10229 L 15955 L 29668 F Tests on Donough Data to	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698
35 36 37 38 39 40 41 42 43				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC .5% KM Chebyshev UC Gamma GC Not E	n 3278 D 18898 L 10398 L 10229 L 15955 L 29668 F Tests on Donough Data to a Statistics on 50 0.845	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698 45324
35 36 37 38 39 40 41 42 43				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC .5% KM Chebyshev UC Gamma GC Not E Gamma	10398	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	N/A N/A N/A 21698 45324
35 36 37 38 39 40 41 42 43 44				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 5.5% KM Chebyshev UC Gamma GC Not E Gamm k hat (MLE	10398	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL nly k star (bias corrected MLE) Theta star (bias corrected MLE)	N/A N/A N/A 21698 45324
35 36 37 38 39 40 41 42 43 44 45				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 5% KM Chebyshev UC Gamma GC Not E Gamm k hat (MLE Theta hat (MLE	10398	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL nly k star (bias corrected MLE) Theta star (bias corrected MLE)	N/A N/A N/A 21698 45324
35 36 37 38 39 40 41 42 43 44 45 46 47				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 5% KM Chebyshev UC Gamma GC Not E Gamm k hat (MLE Theta hat (MLE nu hat (MLE	3278 D 18898 L 10398 L 10229 L 15955 L 29668 F Tests on Donough Data to 2000 S 76658 S 76658 S 3.382 S 6 64805	etected Observations O	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL nlly k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A N/A N/A 21698 45324
35 36 37 38 39 40 41 42 43 44 45				KM Mea KM S 95% KM (t) UC 95% KM (z) UC 90% KM Chebyshev UC 5% KM Chebyshev UC Gamma GC Not E Gamm k hat (MLE Theta hat (MLE nu hat (MLE	10398	etected Observations Of Depending OF Test Detected Data Only	KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL nlly k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	N/A N/A N/A 21698 45324

								-				
51	A	В	С	D	k hat (KM)	F 0.0301	G	Н		J	k star (KM)	0.0445
52					nu hat (KM)						nu star (KM)	3.56
53					theta hat (KM)	108940				the	eta star (KM)	73665
54			809	% gamma p	ercentile (KM)	285.8			90	% gamma pe	rcentile (KM)	4242
55			959	% gamma p	ercentile (KM)	16620			99	% gamma pe	rcentile (KM)	74567
56						1	1					
57					Gamn	na Kaplan-M	eier (KM) S	tatistics				
58									-		gnificance (β)	
59			•		Value (3.56, α)				-	•	alue (3.56, β)	
60	95%	Gamma Ap	proximate KI	,	e when n>=50)				•	KM-UCL (use	when n<50)	22604
61				95%	Gamma Adjus	ted KM-UCL	(use when k	<=1 and 15	< n < 50)			
62												
63					Lognormal GO				Only			
64					Not En	ough Data to	o Perform G	OF Test				
65					Lognormal RC	S Statiation	Lloina Imput	od Non Dot	ooto			
66					Original Scale		Using impul	ea Non-Det	ecis	Moan	in Log Scale	-7.361
67					Original Scale						in Log Scale	
68		95% t I	UCL (assume		y of ROS data)				95%		ootstrap UCL	
69		3370 11	`		Bootstrap UCL				3370		otstrap t UCL	
70					CL (Log ROS)							1017001
71 72					(9)							
73			Stati	stics using	KM estimates	on Logged	Data and As	suming Log	normal Distr	ibution		
74					Mean (logged)						M Geo Mean	55.9
75				K	M SD (logged)	1.488			95%	Critical H Val	lue (KM-Log)	3.033
76			KM Standa	rd Error of	Mean (logged)	0.333				95% H-U0	CL (KM -Log)	348.7
77				K	M SD (logged)	1.488			95%	Critical H Val	lue (KM-Log)	3.033
78			KM Standa	rd Error of	Mean (logged)	0.333						
79												1
80						DL/2 S	tatistics					
81			DL/2	Normal					DL/2 Log-	Transformed		
82					Original Scale					Mean	in Log Scale	3.365
83					Original Scale						in Log Scale	
84				•	mes normality)						6 H-Stat UCL	272.4
85			DL/2	is not a re	commended m	ethod, provi	ded for com	parisons an	d historical r	easons		
86												
87				- · ·		etric Distribu						
88				Data do	not follow a D	iscernible D	istribution a	t 5% Signific	cance Level			
89						Cuggootod	LICI to Lloo					
90			QI	5% KM (Ch	ebyshev) UCL		UCL to Use	,				
91			9:	70 IXIVI (CII	CDYSHEV) UCL	21030						
92	1	Note: Sugge	estions regard	ling the sel	ection of a 95%	6 UCL are pr	ovided to be	In the user to	n select the r	nost annronri	iate 95% LICI	
93	'	Jugge			dations are ba			•			55 /0 001	
94		These reco			d upon the resu						d Lee (2006)	
95	Но				over all Real V							
96							,, . J. uuuiti					
97												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3			cted Options									
4	Dat	e/Time of C		ProUCL 5.18		43:26 AM						
5			From File	Soil Vapor To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	Naphthalen	e 										
11						0	Otatiania					
12			Tatal	Normals are of O	h		Statistics		NI:ala a	of Distinct C)h = = m := ti = m =	
13			lotai	Number of Ol	r of Detects	40			Numbe		Observations	4
14			NI.			3			NII.		Non-Detects	37
15			N	umber of Disti		3			Numbe		Non-Detects	1
16					num Detect						Non-Detect	40
17											Non-Detect	40
18					nce Detects					Percent	Non-Detects	92.5%
19					ean Detects	424					SD Detects	392.8
20					ian Detects	405				IZ	CV Detects	0.927
21					ess Detects	0.217 5.478					osis Detects	N/A
22				Mean of Logg	jea Detects	5.478				SD of Log	ged Detects	1.569
23					Morning, D	oto oot boo	only 3 Detec	tod Voluge				
24			т.	his is not eno			=		and actimat			
25				ilis is flot ello	ugii to com	oute meanin	giui oi reilab	ie statistics	and esumad	28 .		
26												
27					Norm	nal GOF Tes	t on Detects	Only				
28			S	hapiro Wilk To			CON DOLOGIS	Olly	Shaniro Wi	lk GOF Test		
29				hapiro Wilk Cı		0.767	De	etected Data	-		gnificance Lev	vel
30					est Statistic	0.186				GOF Test		
31			5	% Lilliefors Cr		0.425	De	etected Data			gnificance Lev	vel
32							nal at 5% Sig		• •		,aa	
33						арроан тон		,oaoo E				
34			Kanlan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonnaramei	ric UCI s		
35				, -	KM Mean				•		rror of Mean	25.94
36					KM SD						1 (BCA) UCL	N/A
37				95%	KM (t) UCL				95% KM (P	ercentile Boo	` '	N/A
38					KM (z) UCL	111.5			`	95% KM Boo	• /	N/A
39			ç	00% KM Cheb						95% KM Che	·	181.9
40				.5% KM Cheb	•	230.8				99% KM Che	-	326.9
41											,	
42				Ga	amma GOF	Tests on De	etected Obse	ervations Or	ly			
43							Perform GC		•			
44						<u> </u>						
45					Gamma	Statistics or	Detected D	ata Only				
46					k hat (MLE)				k :	star (bias cor	rected MLE)	N/A
47					a hat (MLE)					star (bias cor	*	N/A
48					u hat (MLE)						as corrected)	N/A
49					an (detects)	424				(3.6	- 37	
50				14100	(20.00.0)							

	Α	В	С		D		E	F	G	Н		I	J		K	L
51																
52								S Statistics u								
53				•				set has > 50%		•						
54		GROS ma	-					small such a	-	-		-		(e.g.,	<15-20)	
55			F	or su				method may				Ls and E	BTVs			
56								ially true who								
57		For ga	ımma distrib	uted (detected			and UCLs ma	y be comp	uted using (gamm	a distrib	ution on KM	estima		
58							linimum								Mean	31.81
59						Ma	aximum								Median	0.01
60							SD								CV	4.524
61							at (MLE)						star (bias co			0.118
62					Th		at (MLE)					Theta	star (bias co			269.1
63							at (MLE)						nu star (b	ias co	rrected)	9.458
64							ance (β)									
65			pproximate		-							-	Chi Square \			3.471
66		95% Gamm	a Approxima	ate U	CL (use	when	n>=50)	83.43		95%	Gamr	na Adjus	sted UCL (us	e whe	en n<50)	N/A
67										101 = 1						
68								Samma Para	meters usir	ng KM Esti	mates	;				
69							an (KM)								SD (KM)	134
70								17946					SE		an (KM)	25.94
71							nat (KM)								tar (KM)	0.261
72							nat (KM)								tar (KM)	20.85
73				201			nat (KM)								tar (KM)	264
74							ile (KM)						9% gamma p			205.8
75			95	% ga	ımma po	ercent	ile (KM)	328.9				99	9% gamma p	ercent	tile (KIVI)	654.5
76								na Kaplan-M	olov (IZM) C	Natiotics						
77		Λ m	nrovimoto C	hi Ca	uoro Va	due (2		=	elei (Kivi) s	otaustics	٨٨	iveted C	hi Square Va	oluo /	00 0E 0\	11.22
78	0.5	Ap 5% Gamma Ap	proximate C			•				0E% Con			KM-UCL (us	,		127.9
79	90	7/0 Gaiiiiia A	рргохіппаце к	NIVI-U	CL (use	wileii		123		95 % Gail	IIIIIa F	Aujusteu	KIVI-UCL (us	e wile	#II II\50)	
80						ogno	rmal G(OF Test on D	otootod Oh	convotions	Only					
81				Shan			Statistic			osei valioi is			/ilk GOF Te:	ot .		
82							al Value		Do	stacted Date			ormal at 5%		ficanco I	ovol
83			5 /0 .				Statistic		De	elected Date			s GOF Test		ilcalice L	
84							al Value		De	stacted Date			ormal at 5%		ficance I	evel
85				J /0 L				ppear Logno					offilal at 5 %	Sigilii	iicaric e L	
86					Dei	lecteu	Dala a	ppear Logiic	illiai at 3 /6	Significan	CG LG	VGI				
87					-	oanor	mal RC	S Statistics	l leina Impu	ited Non-D	atacts	•				
88				N/			al Scale		Sang impu	14011-10	J.6013	•	Мез	n in L	og Scale	-4.961
89				IV			al Scale								og Scale	5.475
90		95% t	UCL (assum	nes no		•						95%	Percentile E		•	73.7
91		JJ 70 T	(assum				ap UCL					33 70			ap t UCL	721.1
92								83609377							-p : OOL	
93					. 70 11-00	J_ (LU		3000077								
94			Stat	tistics	usina	KM es	timates	on Logged	Data and A	ssumina I a	ognor	mal Dist	ribution			
95							(logged)		_ a.a a.ia A	inig E	-901	5100		KM G	eo Mean	45.74
96						-	(logged)					95%	Critical H Va			1.991
97			KM Stand	ard F									95% H-L	•		65.56
98			5.0.10			-	(logged)					95%	Critical H Va	,	•	1.991
99			KM Stand	ard F									2		=-9/	
100			Otalia	J. U L			. Jyycu)	0.117								

	Α	В	С	D	E	F	G	Н	I	J	K	L
101												
102						DL/2 S	tatistics					
103			DL/2 I	Normal					DL/2 Log-T	ransformed		
104				Mean in C	riginal Scale	50.3				Mean i	in Log Scale	3.182
105				SD in C	riginal Scale	139.7		in Log Scale	0.751			
106			95% t l	JCL (Assum	es normality)	87.53		H-Stat UCL	41.34			
107			DL/2	s not a reco	mmended m	ethod, provi	ded for com					
108												
109					Nonparame	etric Distribu	tion Free UC	CL Statistics				
110				Detected	d Data appea	r Normal Di	stributed at	5% Significa	nce Level			
111												
112						Suggested	UCL to Use					
113				95%	6 KM (t) UCL	112.5						
114												
115	١	Note: Sugge	stions regard	ing the selec	ction of a 95%	6 UCL are pr	ovided to he	lp the user to	select the m	nost appropria	ate 95% UCL	
116			F	Recommenda	ations are bas	sed upon dat	a size, data	distribution,	and skewnes	SS.		
117		These recor	mmendations	are based	upon the resu	Its of the sim	ulation studi	ies summariz	zed in Singh,	Maichle, and	d Lee (2006).	
118	Но	wever, simu	lations result	s will not co	ver all Real W	orld data se	ts; for addition	onal insight t	he user may	want to consi	ult a statistici	an.
119												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options									
4	Da	ite/Time of Co	omputation	ProUCL 5.18	3/7/2021 10:	36:18 AM						
5			From File	Soil Vapor To	CNW.xls							
6		Ful	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9				'								
10	n-Butylben	zene										
11												
12						General	Statistics					
13			Total	Number of O	bservations	40			Numbe	r of Distinct C	bservations	2
14				Numbe	r of Detects	1				Number of N	Non-Detects	39
15			N	umber of Disti	nct Detects	1			Numbe	er of Distinct I	Non-Detects	1
16											<u>, </u>	
17		Warning: On	ly one distin	ct data value	was detecte	ed! ProUCL	(or any othe	r software) s	hould not be	e used on suc	ch a data set	
18	It is sugg	ested to use	alternative s	site specific v	alues deterr	mined by the	Project Tea	m to estimat	te environm	ental parame	eters (e.g., Ef	PC, BTV).
19												
20				The da	ita set for va	ariable n-But	ylbenzene w	as not proce	essed!			
21												
22												

	Α	В	С	D	E	F	G	H		J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2		Lloor Cole	ected Options									
3	Dat		Computation	ProUCL 5.18	8/7/2021 10:	43·50 ΔM						
4		ter rime or e	From File	Soil Vapor To								
5		Fı	ull Precision	OFF								
6			e Coefficient	95%								
7 8	Number o	of Bootstrap	Operations	2000								
9												
	n-Propylbei	nzene										
11												
12						General	Statistics					
13			Total	Number of O	bservations	40			Numbe		Observations	3
14					r of Detects	2					Non-Detects	38
15			Nı	umber of Disti		2			Numbe		Non-Detects	1
16					num Detect						Non-Detect	8
17					num Detect						Non-Detect	8
18					nce Detects					Percent	Non-Detects	95%
19					ean Detects	_					SD Detects	
20					lian Detects	_				17	CV Detects	0.531
21					ess Detects	N/A					tosis Detects	N/A
22				Mean of Logo	ged Detects	8.273				SD of Log	ged Detects	0.558
23					Warning: D	ata set has	only 2 Detec	ted Values				
24			Т	nis is not eno					and estimat	es		
25 26					-g,		9.4. 0 04.					
27												
28					Norm	nal GOF Tes	t on Detects	Only				
29					Not En	ough Data to	Perform GC	OF Test				
30												
31			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32					KM Mean	218.9			KI	M Standard E	rror of Mean	220.3
33					KM SD					95% KM	(BCA) UCL	N/A
34					KM (t) UCL				•	Percentile Bo	. ,	N/A
35					KM (z) UCL					95% KM Boo	· ·	N/A
36				00% KM Cheb		879.6				95% KM Che	•	1179
37			97	.5% KM Cheb	yshev UCL	1594			!	99% KM Che	byshev UCL	2410
38												
39				G			etected Obse		ily			
40					Not En	ougn Data to	Perform GC	Jr lest				
41					Gomm-	Statistics ::	n Detected D	ata Only				
42				1	k hat (MLE)		i Detected D	ata Offiy	l.	star (bias cor	rected MI EV	N/A
43					a hat (MLE)					star (bias cor		N/A
44					u hat (MLE)				111614		as corrected)	N/A
45					an (detects)					5.01 (5)6		14// 1
46					(2010010)							
47				Est	timates of G	amma Para	meters using	ı KM Estima	tes			
48					Mean (KM)						SD (KM)	985
49 50					riance (KM)					SE o	of Mean (KM)	220.3
50				vai		2.000						0.0

							_				1.	
51	A	В	С	D	k hat (KM)	F 0.0494	G	Н	1 1	J	k star (KM)	0.0623
52					nu hat (KM)	3.949					nu star (KM)	4.986
53					theta hat (KM)	4434				th	eta star (KM)	3511
54			80)% gamma p	ercentile (KM)	58.66			90%	6 gamma pe	ercentile (KM)	427.2
55			95	5% gamma p	ercentile (KM)	1236			99%	6 gamma pe	ercentile (KM)	4343
56							I.					
57					Gamm	na Kaplan-M	eier (KM) St	atistics				
58									Adjusted	Level of Sig	gnificance (β)	0.044
59		P	Approximate	Chi Square \	/alue (4.99, α)	1.146			Adjusted C	hi Square V	alue (4.99, β)	1.08
60	95%	Gamma A	pproximate k	(M-UCL (use	when n>=50)	952.4		95% Gamm	na Adjusted K	M-UCL (use	e when n<50)	1011
61				95% (Gamma Adjust	ed KM-UCL	(use when k	<=1 and 15	< n < 50)			
62												
63					Lognormal GC	F Test on D	etected Obs	ervations O	nly			
64					Not En	ough Data to	Perform G	OF Test				
65												
66				L	ognormal RO	S Statistics	Using Imput	ed Non-Dete	ects			
67					Original Scale						in Log Scale	2.977
68					Original Scale	997.2					in Log Scale	2.544
69		95% t	UCL (assum		of ROS data)				95% F	Percentile B	ootstrap UCL	590.5
70				95% BCA E	Bootstrap UCL	752.1				95% Bo	otstrap t UCL	1513
71				95% H-U	CL (Log ROS)	3260						
72												
73			Sta		KM estimates		Data and As	suming Log	normal Distri			
74					Mean (logged)						M Geo Mean	10.9
75					M SD (logged)				95% (lue (KM-Log)	2.849
76			KM Stand		Mean (logged)	0.302					CL (KM -Log)	50.46
77					M SD (logged)				95% (Critical H Va	lue (KM-Log)	2.849
78			KM Stand	ard Error of I	Mean (logged)	0.302						
79												
80						DL/2 S	tatistics					
81			DL/2	2 Normal					DL/2 Log-T			
82					Original Scale						in Log Scale	1.731
83					Original Scale						in Log Scale	1.523
84				,	nes normality)						% H-Stat UCL	38.13
85			DL/2	2 is not a rec	commended m	ethod, provi	ded for comp	parisons and	d historical re	easons		
86							= 114					
87							tion Free UC					
88				Data do	not follow a D	iscernible D	istribution at	5% Signific	ance Level			
89												
90			,	DEO/ IZM /Ob	- - - - - - - - - - - - - -		UCL to Use				1	
91				oo% KIVI (Ch	ebyshev) UCL	1179						
92		Note: C:	ootio== ===	rdin a the cont	notion of - OFO	/ 1101	ovided + - I-	n the		noot comme	rioto OEO/ LICI	
93		ivote: Sugg	estions rega		ection of a 95%	·		•			iate 95% UCL	
94		These ===	ommondet:		dations are bas						od Loc (2006)	
95	11				l upon the resu							
96	Ho	wever, sim	iuiations rest	ins will not c	over all Real W	voria data se	is, for addition	niai insignt t	ne user may	want to con	suit a statistici	afi.
97												

	Α	В	С	D	E LICL Statio	F	G Sets with No	H n Detecto	1	J	K	L
1					OCL Statis	oucs for Date	i Sels Willi NO	II-Delects	•			
2		User Sele	cted Options									
3	Dat	e/Time of Co	•	ProUCL 5.18	8/7/2021 10:	45·24 AM						
4			From File	Soil Vapor T		10.21740						
5		Fu	II Precision	OFF								
6 7		Confidence		95%								
8	Number o	f Bootstrap	Operations	2000								
9			•									
	o-Xylene											
11												
12						General	Statistics					
13			Total	l Number of C	bservations	40			Numb		Observation	
14				Numbe	er of Detects	2				Number o	of Non-Detects	38
15			N	lumber of Dist		2			Numl		t Non-Detect	
16					mum Detect	_					m Non-Detec	_
17					mum Detect						m Non-Detec	-
18					nce Detects					Percer	t Non-Detects	
19					ean Detects	262.5					SD Detects	
20					dian Detects	262.5					CV Detects	
21					ess Detects	N/A					irtosis Detects	
22				Mean of Log	ged Detects	5.26				SD of Lo	ogged Detects	1.173
23					Mamina. D		amb O Data at	ad \/alaa				
24				'hio io not one			only 2 Detectory only 2 Detectory of the contract of the contr			****		
25				nis is not end	ough to comp	oute meanin	giui oi reliabit	e statistics	s and esuma	iles.		
26												
27					Norm	nal GOF Tes	t on Detects	Only				
28							Perform GO					
30												
31			Kaplan-	-Meier (KM) S	Statistics usi	ng Normal C	ritical Values	and other	r Nonparam	etric UCLs		
32					KM Mean	20.73			ŀ	(M Standard	Error of Mear	15.28
33					KM SD	68.34				95% K	(M (BCA) UCI	N/A
34				95%	KM (t) UCL	46.47			95% KM (Percentile B	ootstrap) UCI	N/A
35					KM (z) UCL	45.86				95% KM B	ootstrap t UCI	N/A
36				90% KM Chel	•	66.57					nebyshev UCI	
37			97	7.5% KM Chel	byshev UCL	116.1				99% KM Ch	nebyshev UCI	172.8
38												
39				G			etected Obser		nly			
40					Not En	ough Data to	Perform GO	F Test				
41						04-4' ''	D-1 : :-					
42							Detected Da	ita Uniy		, atas /b.*		N1/A
43					k hat (MLE)					•	orrected MLE	
44					ta hat (MLE) u hat (MLE)	149.2 7.038			ı neta		orrected MLE pias corrected	
45					an (detects)	262.5				nu stat (t	nas corrected) IN/A
46				ivie	an (ucidois)	202.J						
47				E	timates of C	amma Para	metere using	KM Fetim	ates			
48				Es			meters using	KM Estim	ates		SD (KM	68 34
					timates of G Mean (KM)	20.73	meters using	KM Estim	ates	0.5	SD (KM	

			_				•				T	1
F1	Α	В	С	D	k hat (KM)	F 0.092	G	Н	1	J	K k star (KM)	L 0.102
51 52					nu hat (KM)						nu star (KM)	8.14
53					theta hat (KM)	225.3				the	eta star (KM)	203.7
54			80%	% gamma p	ercentile (KM)	14.74			909	% gamma pe	rcentile (KM)	55.55
55			95%	% gamma p	ercentile (KM)	120.2			999	% gamma pe	rcentile (KM)	326.4
56							L					
57					Gamr	na Kaplan-M	leier (KM) S	tatistics				
58									•	d Level of Sig	" '	0.044
59			•	•	Value (8.14, α)				•	Chi Square Va	` '''	2.7
60	95%	Gamma Ap	proximate KN	,	e when n>=50)				•	KM-UCL (use	when n<50)	62.48
61				95%	Gamma Adjus	ted KM-UCL	(use when l	<=1 and 15	< n < 50)			
62												
63					Lognormal Go				Only			
64					Not Er	ough Data to	o Perform G	iOF Test				
65						O Otatiatias	Haine Inch	tad Nan Dat				
66					Lognormal RC		Using impu	tea Non-Det	ects	Maan	in I an Caala	-5.873
67					Original Scale Original Scale						in Log Scale in Log Scale	5.348
68		0E9/ +1	IICI /assuma		y of ROS data)				0E9/	Percentile Bo	J	35.33
69		95% []	•	-	Bootstrap UCL				95%		otstrap t UCL	637.4
70					CL (Log ROS)					95 / 600	oisiiap i OCL	037.4
71				93 /6 11-0	CL (LUG NOS)	11030031						
72			Statis	stics using	KM estimates	on Logged	Data and As	ssumina I oa	normal Distr	ibution		
73					Mean (logged)			Journing Log	mormar bioa		M Geo Mean	9.379
74					M SD (logged)				95%	Critical H Val		2.108
75 76			KM Standa		Mean (logged)						CL (KM -Log)	15.46
77					M SD (logged)				95%	Critical H Val	` 0,	2.108
78			KM Standa	rd Error of	Mean (logged)	0.16					, ,,	
79												
80						DL/2 S	statistics					
81			DL/2	Normal					DL/2 Log-	Transformed		
82				Mean in	Original Scale	16.93				Mean	in Log Scale	1.58
83				SD in	Original Scale	69.92				SD	in Log Scale	0.875
84			95% t l	JCL (Assu	mes normality)	35.55				95%	H-Stat UCL	9.788
85			DL/2	is not a red	commended m	ethod, provi	ded for com	parisons an	d historical r	easons		
86												
87					Nonparam	etric Distribu	ition Free U	CL Statistics	3			
88				Data do	not follow a D	iscernible D	istribution a	t 5% Signific	cance Level			
89												
90							UCL to Use	•				
91			95	5% KM (Ch	ebyshev) UCL	87.33						
92						, IIO:						
93	1	Note: Sugge			ection of a 959						ate 95% UCL	
94					dations are ba						(2000	
95					d upon the resu							
96	Но	wever, simu	ulations result	ts will not c	over all Real V	Vorld data se	ets; for additi	onal insight t	the user may	want to cons	ult a statistici	an.
97												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	Ion-Detects				
2												
3		User Selec	cted Options									
4	Dat	te/Time of Co	omputation	ProUCL 5.18	/7/2021 10:	37:01 AM						
5			From File	Soil Vapor To	CNW.xls							
6		Ful	I Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap (Operations	2000								
9												
10	sec-Butylbe	enzene										
11												
12						General	Statistics					
13			Total	Number of Ol	oservations	40			Number	of Distinct C	bservations	2
14				Number	of Detects	1				Number of I	Non-Detects	39
15			N	umber of Disti	nct Detects	1			Numbe	er of Distinct I	Non-Detects	1
16											<u>'</u>	
17	'	Warning: On	ly one distin	ct data value	was detect	ed! ProUCL	(or any othe	r software) s	should not be	used on su	ch a data set	1
18	It is sugge	ested to use	alternative	site specific va	alues deter	mined by the	Project Tea	am to estima	te environm	ental parame	eters (e.g., El	PC, BTV).
19												
20				The data	a set for va	riable sec-Bı	utylbenzene	was not pro	cessed!			
21												
22												

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options									
4	Da	ate/Time of Co	omputation	ProUCL 5.18	3/7/2021 10:	34:39 AM						
5			From File	Metals in So	il TCNW.xls							
6		Ful	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap (Operations	2000								
9												
10	Se											
11												
12						General	Statistics					
13			Total	Number of O	bservations	57			Numbe	r of Distinct C	bservations	2
14				Numbe	r of Detects	1				Number of I	Non-Detects	56
15			N	umber of Dist	inct Detects	1			Numbe	er of Distinct I	Non-Detects	1
16												
17		Warning: On	ly one distin	ct data value	was detecte	ed! ProUCL	(or any othe	r software) s	hould not be	e used on su	ch a data set	
18	It is sugg	jested to use	alternative	site specific v	alues deterr	mined by the	Project Tea	ım to estimat	te environm	ental parame	eters (e.g., Ef	PC, BTV).
19												
20					The data se	t for variable	e Se was not	t processed!				
21												
22												

	А	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2		0.1										
3	Do		ected Options Computation		18/7/2021 10: ₄	44.14 ANA						
4	Da	te/Time of C	From File	Soil Vapor		44. 14 AIVI						
5		E.	ull Precision	OFF	T CINVV.XIS							
6			Coefficient	95%								
7			Operations	2000								
8	- Trambor C		Орегинопо	2000								
9	Tetrachloro	ethene										
10												
11 12						General	Statistics					
13			Total	Number of 0	Observations	40			Numbe	r of Distinct C	Observations	18
14				Numb	er of Detects	25				Number of	Non-Detects	15
15			N	umber of Dis	tinct Detects	18			Numbe	er of Distinct	Non-Detects	1
16				Min	imum Detect	8				Minimum	n Non-Detect	8
17				Max	imum Detect	42				Maximum	n Non-Detect	8
18				Varia	ance Detects	103.9				Percent	Non-Detects	37.5%
19				N	lean Detects	19.6					SD Detects	10.19
20				Me	dian Detects	17					CV Detects	0.52
21				Skew	ness Detects	0.674				Kurt	tosis Detects	-0.616
22				Mean of Log	gged Detects	2.843				SD of Log	gged Detects	0.532
23							I					
24					Norm	nal GOF Tes	t on Detects	Only			-	-
25			S	Shapiro Wilk	Test Statistic	0.911			Shapiro W	ilk GOF Test		
26			5% S	hapiro Wilk (Critical Value	0.918	Ι	Detected Da		_	ificance Leve	A
27					Test Statistic	0.162				GOF Test		
28			5		Critical Value	0.173				mal at 5% Sig	gnificance Lev	/el
29				Detected	Data appear	Approximat	e Normal at	5% Signification	ance Level			
30												
31			Kaplan-	Meier (KM)	Statistics usi		ritical Value	s and other				
32					KM Mean	15.25			KI		rror of Mean	1.564
33					KM SD	9.69					I (BCA) UCL	17.65
34					6 KM (t) UCL	17.88			•	Percentile Boo		17.85
35					KM (z) UCL	17.82				95% KM Boo	·	18.28
36					ebyshev UCL	19.94				95% KM Che	•	22.07
37			97	.5% KIVI CHE	ebyshev UCL	25.01				99% KM Che	bysnev UCL	30.81
38					Gamma GOF	Tests on De	stacted Ohea	anvatione Or	alv			
39					Test Statistic	0.464	Tiecieu Obse			rling GOF Te		
40						0.749	Detected			_	5% Significan	ce I evel
41		5% A-D Critical Va K-S Test Statis					Delection			-Smirnov GO		
42		5% K-S Critical Val					Detected		-		5% Significan	ce Level
43		Detected data app										
44												
45					Gamma	Statistics or	Detected D	ata Only				
46 47					k hat (MLE)				k	star (bias cor	rrected MLE)	3.485
47				The	eta hat (MLE)					star (bias cor	,	5.624
49					nu hat (MLE)					`	as corrected)	174.2
50					ean (detects)	19.6				`	,	
ΟU					,							

	Α	В	С			D		Е		F	G		Н		I			J	\Box		K		L
51	Commo POS																						
52												•											
53													any tied										
54		GROS ma	ıy not be ι										-						(e.g	j., <	15-20)		
55				For	r such								ct values			nd B	3TVs						
56								-	-			-	size is										
57		For ga	ımma dist	tribute	ed de	tected					y be co	mput	ed using	gam	ma dis	stribu	ution	on KM	esti	mat			
58								/linimum		01											Mean		2.91
59							M	aximum												N	/ledian		9.5
60								SE		1.92											CV		0.923
61								at (MLE	′	.464								(bias c					0.446
62								at (MLE	′	7.83					TI	heta		(bias c					8.96
63								at (MLE	′	7.12							nı	ı star (b	oias	corr	ected)	3	5.67
64								ance (β	-	044													
65			proximate		-		-		-						-			uare Va					2.62
66		95% Gamm	a Approxi	imate	∍ UCL	_ (use	when	n>=50) 20	0.02			95%	Gar	nma A	djus	ted l	JCL (us	se w	hen	n<50)	20	0.36
67																							
68						E					meters	using	KM Est	imate	es								
69								an (KM	-	5.25											O (KM)		9.69
70						V		ce (KM		3.89								SE			n (KM)		1.564
71								nat (KM	,	.477											ır (KM)		2.308
72								nat (KM													ır (KM)		4.6
73		theta ha					•	′	.157											ır (KM)		5.608	
74		80% gamma percentile					•		2.45								ımma p					8.69	
75		95% gamma percentile						ile (KM) 34	1.59						999	% ga	mma p	erce	entile	∋ (KM)	4	7.58
76																							
77											eier (Kl	M) Sta	atistics										
78			roximate		•		•								•		•	are Val	,	`	,		3.2
79	95%	6 Gamma Ap	proximat	te KM	1-UCL	_ (use	when	n>=50) 18	3.26			95% Ga	mma	Adjus	ted l	KM-l	JCL (us	se w	hen	n<50)	18	8.38
80																							
81											etected	l Obs	ervation										
82								Statistic		.937								OF Te					
83			5	i% Sh				al Value		.918		Dete	ected Da	ta ap	•					nific	ance L	_evel	
84								Statistic		.125								F Test					
85				5%	% Lilli			al Value		.173			ected Da		•	.ogno	orma	al at 5%	Sig	nific	ance L	_evel	
86						Det	ected	Data a	ppear	Logno	rmal at	5% S	ignificar	nce L	.evel								
87																							
88											Using I	mpute	ed Non-[Detec	cts								
89								al Scale		1.07											Scale		2.342
90								al Scale		0.83										_	Scale).813
91		95% t	UCL (ass						′	6.95					9	95%		entile E			-		6.92
92	95% BCA Bootstrap V							7.1								95% Bo	oots	trap	t UCL	1	7.42		
93	95% H-UCL (Log RC					g ROS) 19	9.3															
94	Statistics using KM estimate																						
95			S	Statis	tics u						Data an	d Ass	suming L	.ogn	ormal	Distr	ributi						
96								(logged	-	.557											Mean		2.89
97								(logged	-	.553					9	95%		cal H V		•			1.963
98			KM Sta	andar	d Erro				-	0893								5% H-L		`			7.88
		KM SD (lo					(loaaed) 0	.553						35%	Criti	cal H V	عابيد	(1/8	41 001	. 1	1.963	
99		KM Standard Error of Mean							-	0893							<u></u>		aiuc	÷ (KI	vi-Log)	Ш.	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
101												
102						DL/2 S	Statistics					
103			DL/2	Normal					DL/2 Log-1	Transformed	İ	
104				Mean in C	riginal Scale	13.75				Mean	in Log Scale	2.297
105				SD in C	riginal Scale	11.07				SD	in Log Scale	0.827
106			95% t l	JCL (Assum	es normality)	16.7				95%	6 H-Stat UCL	18.78
107	DL/2 is not a recommended method, provided for comparisons and historical reasons											
108												
109	Nonpreparation Distribution Eron LICE Statistics											
110	Detected Data appear Approximate Normal Distributed at 5% Significance Level											
111												
112						Suggested	UCL to Use					
113				95%	6 KM (t) UCL	17.88						
114												
115			When a d	lata set follo	ws an approx	imate (e.g.,	normal) distr	ibution passi	ng one of the	e GOF test		
116		When app	olicable, it is s	suggested to	use a UCL b	ased upon a	distribution ((e.g., gamma) passing bo	oth GOF test	s in ProUCL	
117												
118		Note: Sugge	stions regard	ling the sele	ction of a 95%	6 UCL are p	rovided to he	lp the user to	select the n	nost appropr	iate 95% UCL	
119			F	Recommend	ations are bas	sed upon da	ta size, data	distribution, a	and skewnes	SS.		
120		These reco	mmendations	are based	upon the resu	ilts of the sir	nulation stud	ies summariz	ed in Singh,	, Maichle, an	d Lee (2006).	
121	Но	wever, simu	ılations result	s will not co	ver all Real W	orld data se	ets; for addition	onal insight th	ne user may	want to cons	sult a statistici	an.
122												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2				T								
3			cted Options									
4	Dat	te/Time of C	<u> </u>	ProUCL 5.18		44:37 AM						
5			From File	Soil Vapor To	CNW.xls							
6			II Precision	OFF								
7		Confidence		95%								
8	Number c	of Bootstrap	Operations	2000								
9	- .											
10	Toluene											
11						Gonoral	Statistics					
12			Total	Number of O	hearvations	40	Statistics		Numbo	of Distinct (Observations	8
13			Total		r of Detects	7			Nullibe		Non-Detects	33
14			Nı	umber of Disti		7			Numbe		Non-Detects	1
15					num Detect	-			Numbe		Non-Detect	8
16					num Detect	-					Non-Detect	8
17					nce Detects						Non-Detects	82.5%
18					ean Detects	619.6				. 0.00110	SD Detects	1583
19					ian Detects	16					CV Detects	2.555
20					ess Detects	2.645				Kurt	tosis Detects	6.999
21				Mean of Logo	ged Detects	3.719					ged Detects	2.085
23												
24					Norm	nal GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.459			Shapiro Wi	lk GOF Test	<u> </u>	
26			5% SI	napiro Wilk Cı	ritical Value	0.803	[Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	·I
27				Lilliefors T	est Statistic	0.499			Lilliefors	GOF Test		
28			5	% Lilliefors Ci	ritical Value	0.304		Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	l
29				De	etected Data	a Not Norma	l at 5% Sign	ificance Lev	rel			
30												
31			Kaplan-l	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
32					KM Mean	115			KN	/I Standard E	rror of Mean	112
33					KM SD	655.8				95% KM	I (BCA) UCL	326
34				95%	KM (t) UCL	303.7			95% KM (P	ercentile Bo	otstrap) UCL	324.8
35				95% I	KM (z) UCL	299.2				95% KM Boo	otstrap t UCL	20591
36				00% KM Cheb	•						byshev UCL	603.2
37			97	.5% KM Cheb	yshev UCL	814.4			(99% KM Che	byshev UCL	1229
38												
39							etected Obse		•			
40					est Statistic	1.712 0.799			nderson-Da			
41		5% A-D Critical V					Detect				% Significance	e Level
42		K-S Test Stat							Colmogorov-			
43		5% K-S Critical Va								tributed at 5%	% Significance	e Level
44				Detected	d Data Not (Jamma Dist	ributed at 5%	% Significan	ce Level			
45					0	04-41-41	D-4 15	ata Cal				
46							Detected D	ata Only		- t (1 ·		0.044
47					k hat (MLE)	0.26				,	rrected MLE)	0.244
48					a hat (MLE)				I heta :	•	rrected MLE)	2539
49					u hat (MLE)					nu star (bia	as corrected)	3.416
50				Mea	an (detects)	619.6						

	Α	В	С		D		E	F	G	Н		I	J		K	L
51																
52								Statistics u								
53				•				et has > 50%		-						
54		GROS ma	-					small such a						I (e.g.,	, <15-20)	
55			F	For su				method may				s and E	BTVs			
56							-	ially true whe	-							
57		For ga	mma distrib	uted	detected			and UCLs ma	y be compu	ited using g	gamma	a distribi	ution on KM	1 estim		,
58							linimum								Mean	108.4
59						Ma	aximum	-							Median	0.01
60							SD								CV	6.135
61							it (MLE)						star (bias o			0.112
62					Th		it (MLE)					Theta	star (bias			966.7
63							it (MLE)						nu star (bias c	orrected)	8.973
64			-				ance (β)									
65			pproximate		-							-	Chi Square			3.183
66		95% Gamm	a Approxim	ate U	CL (use	when	n>=50)	293.9		95%	Gamm	na Adjus	sted UCL (u	se wh	en n<50)	305.7
67																
68					E			amma Para	meters usin	g KM Estir	mates					
69							an (KM)								SD (KM)	655.8
70					\		. ,	430010					SE		ean (KM)	112
71							at (KM)								star (KM)	0.0451
72							at (KM)								star (KM)	3.61
73		theta h													star (KM)	2549
74		80% gamma percent											% gamma ı			152
75			95	5% ga	amma po	ercenti	ile (KM)	586.9				99	% gamma ı	percer	ntile (KM)	2603
76																
77								na Kaplan-M	eier (KM) S	tatistics						
78			pproximate		•	•	,					•	Chi Square			0.533
79	95	5% Gamma Ap	proximate l	KM-U									KM-UCL (u	se wh	en n<50)	778.6
80					95% (Gamma	a Adjust	ted KM-UCL	(use when l	<=1 and 1	5 < n <	< 50)				
81																
82						_		OF Test on D	etected Ob	servations						
83							Statistic						/ilk GOF Te			
84			5%				al Value		D	etected Da		•	mal at 5%	Ū	cance Le	vel
85							Statistic						GOF Test			
86				5% L			al Value						mal at 5%	Signifi	cance Le	vel
87					D	etecte	d Data	Not Lognorr	nal at 5% Si	ignificance	Level					
88																
89								S Statistics	Using Impu	ted Non-De	etects					
90				N		-	al Scale								og Scale	
91							al Scale								og Scale	
92	95% t UCL (assumes normality of ROS											95%	Percentile			318.8
93	95% BCA Bootstrap												95% B	Bootstr	ap t UCL	13248
94				95	5% H-U	CL (Lo	g ROS)	2938285								
95																
96			Sta	tistics				on Logged	Data and As	ssuming Lo	ognorn	nal Dist				,
97							logged)								ieo Mean	
98							logged)					95%	Critical H \		,	
99		KM Standard Error of Mean (•	KM -Log)	26.66
100				KI	ИSD (logged)	1.02	95% Critical H Value (KM-Log)							2.431	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
101			KM Standar	d Error of M	ean (logged)	0.174						
102							•				·	
103						DL/2 S	tatistics					
104			DL/2 N	Normal					DL/2 Log-	Transformed	i	
105				Mean in O	riginal Scale	111.7				Mear	in Log Scale	1.795
106				SD in O	riginal Scale	664.7				SD	in Log Scale	1.214
107			95% t L	JCL (Assume	es normality)	288.8				959	% H-Stat UCL	21.13
108			DL/2 i	s not a reco	mmended m	ethod, provi	ded for com	parisons an	d historical re	easons		
109												
110					Nonparame	etric Distribu	tion Free U	CL Statistics	}			
111				Data do n	ot follow a D	iscernible D	istribution a	t 5% Signific	ance Level			
112												
113						Suggested	UCL to Use)				
114			97.5	% KM (Cheb	yshev) UCL	814.4						
115												
116	1	Note: Sugge	estions regard	ing the selec	tion of a 95%	6 UCL are p	ovided to he	lp the user to	select the n	nost appropi	riate 95% UCL.	=
117			R	Recommenda	tions are bas	sed upon da	ta size, data	distribution,	and skewnes	SS.		
118		These reco	ommendations	are based ι	ipon the resu	ılts of the sin	nulation stud	ies summari	zed in Singh,	Maichle, ar	nd Lee (2006).	
119	Но	wever, sim	ulations result	s will not cov	er all Real W	Vorld data se	ets; for addition	onal insight t	he user may	want to con	sult a statisticia	an.
120												

APPENDIX G

ESL Model Results Soil Vapor – Residential

Select Site Contaminants:	Cont	Contaminant 1		minant 2	Conta	Contaminant 3		minant 4	Contaminant 5	
	В	enzene	Ethyl	benzene	Methyle	ne chloride		iary butyl ether ITBE)	Naphtha	alene [PAH]
Tier 2 ESLs:	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis
Soil (mg/kg):	2.5E-02	Leaching	4.3E-01	Leaching	1.9E-01	Leaching	2.5E+00	Leaching	1.2E+00	Leaching
Groundwater (μg/L):	4.2E-01	VI HHR	3.5E+00	VI HHR	7.8E+00	VI HHR	4.5E+02	VI HHR	4.6E+00	VI HHR
Subslab/ Soil Gas (μg/m³):	3.2E+00	VI HHR	3.7E+01	VI HHR	3.4E+01	VI HHR	3.6E+02	VI HHR	2.8E+00	VI HHR
Indoor Air (μg/m³):	9.7E-02	Dir Exp	1.1E+00	Dir Exp	1.0E+00	Dir Exp	1.1E+01	Dir Exp	8.3E-02	Dir Exp

1 of 1

Note:

Groundwater depth is no longer a toggle for evaluating vapor intrusion. See the notes in Workbook Table GW-3 and the User's Guide Chapter 5 for further information.

Environmental Screening Levels San Francisco Bay Regional Water Quality Control Board

2019 (Rev. 2)	Table T2-2:	Tier 2 – Site-Spe	d Calculator	Selected Site Scenario (from T2-1)		
	Enter Site Da	<mark>ta (Leave blank whe</mark>	en no data exits)			Land Use: Residential
Contaminant inputs from T2-1:	Contaminant 1 Benzene	Contaminant 2 Ethylbenzene	Contaminant 3 Methylene chloride	Contaminant 4 Methyl tertiary butyl ether (MTBE)	Contaminant 5 Naphthalene [PAH]	Vegetation Level: Minimal Groundwater Use: Resource MCL Priority vs Risk-Based: No
Soil Concentration (mg/kg) - dry weight:						Discharge to Surface Water: No Discharge Expected Soil Contamination Depth: Shallow & Deep Soil
Groundwater Concentration (µg/L):						Soil Contamination Depth. Shallow & Deep Soil
Subslab/ Soil Gas Concentration (µg/m³):	1,558.00	2,730	10	121,000	5,810	
Indoor Air Concentration (μg/m³):						
		Soil Gas	VI Attenuation Factor (Use 0.03 for Screening):	0.0300	
Cancer Risk:	Benzene	Ethylbenzene	Methylene chloride	Methyl tertiary butyl ether (MTE	BE Naphthalene [PAH]	Cumulative Risk
Soil Exposure Risk:						
Tapwater Exposure Risk:						
Current* Vapor Intrusion Exposure Risk: Basis:	4.8E-04 Subslab/Soil Gas VI	7.3E-05 Subslab/Soil Gas VI	3.0E-07 Subslab/Soil Gas VI	3.4E-04 Subslab/Soil Gas VI	2.1E-03 Subslab/Soil Gas VI	3.0E-03 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Risk: Basis:	4.8E-04 Subslab/Soil Gas VI	7.3E-05 Subslab/Soil Gas VI	3.0E-07 Subslab/Soil Gas VI	3.4E-04 Subslab/Soil Gas VI	2.1E-03 Subslab/Soil Gas VI	3.0E-03 Subslab/Soil Gas VI
Noncancer Hazard: Soil Exposure Hazard:	Benzene 	Ethylbenzene	Methylene chloride	Methyl tertiary butyl ether (MTE	BE Naphthalene [PAH]	Cumulative Hazard
Tap Water Exposure Hazard:						
Current* Vapor Intrusion Exposure Hazard: Basis:	1.5E+01 Subslab/Soil Gas VI	7.9E-02 Subslab/Soil Gas VI	7.2E-04 Subslab/Soil Gas VI	1.2E+00 Subslab/Soil Gas VI	5.6E+01 Subslab/Soil Gas VI	7.2E+01 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Hazard: Basis:	1.5E+01 Subslab/Soil Gas VI	7.9E-02 Subslab/Soil Gas VI	7.2E-04 Subslab/Soil Gas VI	1.2E+00 Subslab/Soil Gas VI	5.6E+01 Subslab/Soil Gas VI	7.2E+01 Subslab/Soil Gas VI
Notes:						
NOTES:						

Cumulative cancer risk and noncancer hazard are not automatically calculated across pathways because exposure via multiple pathways typically is not simultaneous. This may be performed separately as part of a site-specific evaluation. See the User's Guide Section 3.3 (Addressing Cumulative Risk and Hazard).

- * Current (VI exposure to current occupants of existing buildings) Primarily based on indoor air data. See User's Guide Chapter 5 for further information. In the absence of indoor air data, subslab/soil gas or groundwater data is used to predict current indoor air concentrations. Subslab/soil gas data is given priority over groundwater data for current exposure calculations. The cumulative risk calculation follows the same hierarchy.
- ** Future (VI exposure to future occupants of existing or future buildings) Primarily based on subslab/soil gas data. See User's Guide Chapter 5 for further information. In the absence of subslab/soil gas data, groundwater data is used to predict future indoor air concentrations. The cumulative risk calculation follows the same hierarchy.

Select Site Contaminants:	Conta	Contaminant 1		Contaminant 2		Contaminant 3		Contaminant 4		Contaminant 5	
	Petroleu	Petroleum - Gasoline		oroethene		T-	oluene	х	ylenes		
Tier 2 ESLs:	ESL	Basis	ESL	Basis		ESL	Basis	ESL	Basis	ESL	Basis
Soil (mg/kg):	1.0E+02	Odor/Nuis	8.0E-02	Leaching	1	.0E+01	Leaching	1.0E+01	Leaching	#N/A	#N/A
Groundwater (μg/L):	5.0E+03	Odor/Nuis	6.4E-01	VI HHR	4	.0E+02	Odor/Nuis	3.9E+02	VI HHR	#N/A	#N/A
Subslab/ Soil Gas (μg/m³):	3.3E+03	VI Odor/Nuis	1.5E+01	VI HHR	1	.0E+04	VI HHR	3.5E+03	VI HHR	#N/A	#N/A
Indoor Air (μg/m³):	1.0E+02	Odor/Nuis	4.6E-01	Dir Exp	3	.1E+02	Dir Exp	1.0E+02	Dir Exp	#N/A	#N/A

Note:

Groundwater depth is no longer a toggle for evaluating vapor intrusion. See the notes in Workbook Table GW-3 and the User's Guide Chapter 5 for further information.

Environmental Screening Levels San Francisco Bay Regional Water Quality Control Board

GAVE NEWSOM

GAVE BLUMENFELD

SCRETARY SOR

ENVIRONMENTAL PROTECTS

2019 (Rev. 2) Table T2-2: Tier 2 – Site-Specific Cumulative Risk and Hazard Calculator Enter Site Data (Leave blank when no data exits) Contaminant 1 Contaminant 2 **Contaminant 3** Contaminant 4 Contaminant 5 Toluene Contaminant inputs from T2-1: Petroleum - Gasoline Tetrachloroethene Xylenes Soil Concentration (mg/kg) - dry weight: Groundwater Concentration (µg/L): Subslab/ Soil Gas Concentration (µg/m³): 8,550,284.00 18 814 2,161 Indoor Air Concentration (µg/m³):

Selected Site Scenario (from T2-1)

Land Use: Residential

Vegetation Level: Minimal

Groundwater Use: Nondrinking Water Resource

MCL Priority vs Risk-Based: No

0.0300

Discharge to Surface Water: No Discharge Expected

Soil Contamination Depth: Shallow & Deep Soil

Cancer Risk:	Petroleum - Gasoline	Tetrachloroethene	Toluene	Xylenes	0.00	Cumulative Risk
Soil Exposure Risk:					#N/A	#N/A
Tapwater Exposure Risk:					#N/A	#N/A
Current* Vapor Intrusion Exposure Risk: Basis:	 Subslab/Soil Gas VI	1.2E-06 Subslab/Soil Gas VI	 Subslab/Soil Gas VI	 Subslab/Soil Gas VI		1.2E-06 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Risk: Basis:	 Subslab/Soil Gas VI	1.2E-06 Subslab/Soil Gas VI	 Subslab/Soil Gas VI	 Subslab/Soil Gas VI		1.2E-06 Subslab/Soil Gas VI

Soil Gas VI Attenuation Factor (Use 0.03 for Screening):

Noncancer Hazard:	Petroleum - Gasoline	Tetrachloroethene	Toluene	Xylenes	0	Cumulative Hazard
Soil Exposure Hazard:					#N/A	#N/A
Tap Water Exposure Hazard:					#N/A	#N/A
Current* Vapor Intrusion Exposure Hazard:	4.3E+02	1.3E-02	7.8E-02	6.2E-01		4.3E+02
Basis:	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI		Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Hazard: Basis:	4.3E+02	1.3E-02	7.8E-02	6.2E-01		4.3E+02
Dd515.	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI		Subslab/Soil Gas VI

Notes:

Cumulative cancer risk and noncancer hazard are not automatically calculated across pathways because exposure via multiple pathways typically is not simultaneous. This may be performed separately as part of a site-specific evaluation. See the User's Guide Section 3.3 (Addressing Cumulative Risk and Hazard).

- * Current (VI exposure to current occupants of existing buildings) Primarily based on indoor air data. See User's Guide Chapter 5 for further information. In the absence of indoor air data, subslab/soil gas or groundwater data is used to predict current indoor air concentrations.

 Subslab/soil gas data is given priority over groundwater data for current exposure calculations. The cumulative risk calculation follows the same hierarchy.
- ** Future (VI exposure to future occupants of existing or future buildings) Primarily based on subslab/soil gas data. See User's Guide Chapter 5 for further information. In the absence of subslab/soil gas data, groundwater data is used to predict future indoor air concentrations. The cumulative risk calculation follows the same hierarchy.

APPENDIX H

ESL Model Results Soil Vapor - Commercial

Select Site Contaminants:	Contaminant 1		Contaminant 2		Contaminant 3		Contaminant 4		Contaminant 5	
	В	Benzene Ethylbenzene		Methylene chloride		Methyl tertiary butyl ether (MTBE)		Naphthalene [PAH]		
Tier 2 ESLs:	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis
Soil (mg/kg):	2.5E-02	Leaching	4.3E-01	Leaching	1.9E-01	Leaching	2.5E+00	Leaching	1.2E+00	Leaching
Groundwater (μg/L):	1.8E+00	VI HHR	1.5E+01	VI HHR	9.4E+01	VI HHR	1.8E+03	Odor/Nuis	2.0E+01	VI HHR
Subslab/ Soil Gas (μg/m³):	1.4E+01	VI HHR	1.6E+02	VI HHR	4.1E+02	VI HHR	1.6E+03	VI HHR	1.2E+01	VI HHR
Indoor Air (μg/m³):	4.2E-01	Dir Exp	4.9E+00	Dir Exp	1.2E+01	Dir Exp	4.7E+01	Dir Exp	3.6E-01	Dir Exp

1 of 1

Note:

Groundwater depth is no longer a toggle for evaluating vapor intrusion. See the notes in Workbook Table GW-3 and the User's Guide Chapter 5 for further information.

Environmental Screening Levels San Francisco Bay Regional Water Quality Control Board

GAVIN NEWSOM GONTHMON

JARED BLUMENFELD SCORETANT SOM

2019 (Rev. 2) Table T2-2: Tier 2 – Site-Specific Cumulative Risk and Hazard Calculator Enter Site Data (Leave blank when no data exits) Contaminant 1 Contaminant 2 **Contaminant 3** Contaminant 4 Contaminant 5 Methyl tertiary butyl Naphthalene [PAH] Contaminant inputs from T2-1: Benzene Ethylbenzene Methylene chloride ether (MTBE) Soil Concentration (mg/kg) - dry weight: Groundwater Concentration (µg/L): Subslab/ Soil Gas Concentration (µg/m³): 1,558.00 2,730 121,000 5,810 10 Indoor Air Concentration (µg/m³):

Selected Site Scenario (from T2-1)

Land Use: Commercial or Industrial

Vegetation Level: Minimal

Groundwater Use: Nondrinking Water Resource

MCL Priority vs Risk-Based: No

Discharge to Surface Water: No Discharge Expected

Soil Contamination Depth: Shallow & Deep Soil

Cancer Risk:	Benzene	Ethylbenzene	Methylene chloride	Methyl tertiary butyl ether (MTBE	Naphthalene [PAH]	Cumulative Risk
Soil Exposure Risk:						
Tapwater Exposure Risk:						
Current* Vapor Intrusion Exposure Risk: Basis:	1.1E-04 Subslab/Soil Gas VI	1.7E-05 Subslab/Soil Gas VI	2.5E-08 Subslab/Soil Gas VI	7.7E-05 Subslab/Soil Gas VI	4.8E-04 Subslab/Soil Gas VI	6.9E-04 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Risk: Basis:	1.1E-04 Subslab/Soil Gas VI	1.7E-05 Subslab/Soil Gas VI	2.5E-08 Subslab/Soil Gas VI	7.7E-05 Subslab/Soil Gas VI	4.8E-04 Subslab/Soil Gas VI	6.9E-04 Subslab/Soil Gas VI

Soil Gas VI Attenuation Factor (Use 0.03 for Screening):

0.0300

Noncancer Hazard:	Benzene	Ethylbenzene	Methylene chloride /	lethyl tertiary butyl ether (MTBE	Naphthalene [PAH]	Cumulative Hazard
Soil Exposure Hazard:						
Tap Water Exposure Hazard:						
Current* Vapor Intrusion Exposure Hazard: Basis:	3.6E+00 Subslab/Soil Gas VI	1.9E-02 Subslab/Soil Gas VI	1.7E-04 Subslab/Soil Gas VI	2.8E-01 Subslab/Soil Gas VI	1.3E+01 Subslab/Soil Gas VI	1.7E+01 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Hazard: Basis:	3.6E+00 Subslab/Soil Gas VI	1.9E-02 Subslab/Soil Gas VI	1.7E-04 Subslab/Soil Gas VI	2.8E-01 Subslab/Soil Gas VI	1.3E+01 Subslab/Soil Gas VI	1.7E+01 Subslab/Soil Gas VI

Notes:

Cumulative cancer risk and noncancer hazard are not automatically calculated across pathways because exposure via multiple pathways typically is not simultaneous. This may be performed separately as part of a site-specific evaluation. See the User's Guide Section 3.3 (Addressing Cumulative Risk and Hazard).

- * Current (VI exposure to current occupants of existing buildings) Primarily based on indoor air data. See User's Guide Chapter 5 for further information. In the absence of indoor air data, subslab/soil gas or groundwater data is used to predict current indoor air concentrations.

 Subslab/soil gas data is given priority over groundwater data for current exposure calculations. The cumulative risk calculation follows the same hierarchy.
- ** Future (VI exposure to future occupants of existing or future buildings) Primarily based on subslab/soil gas data. See User's Guide Chapter 5 for further information.
- In the absence of subslab/soil gas data, groundwater data is used to predict future indoor air concentrations. The cumulative risk calculation follows the same hierarchy.

Select Site Contaminants:	Cor	Contaminant 1		Contaminant 2		Contaminant 3		Contaminant 4		Contaminant 5	
	Petrol	eum - Gasoline	Tetrachloroethene		Toluene		Xylenes				
Tier 2 ESLs:	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis	ESL	Basis	
Soil (mg/kg):	1.2E+02	Terrestrial Habitat	8.0E-02	Leaching	1.0E+01	Leaching	1.0E+01	Leaching	#N/A	#N/A	
Groundwater (μg/L):	5.0E+03	Odor/Nuis	2.8E+00	VI HHR	4.0E+02	Odor/Nuis	1.6E+03	VI HHR	#N/A	#N/A	
Subslab/ Soil Gas (μg/m³):	3.3E+03	VI Odor/Nuis	6.7E+01	VI HHR	4.4E+04	VI HHR	1.5E+04	VI HHR	#N/A	#N/A	
Indoor Air (μg/m³):	1.0E+02	Odor/Nuis	2.0E+00	Dir Exp	1.3E+03	Dir Exp	4.4E+02	Dir Exp	#N/A	#N/A	

1 of 1

Note:

Groundwater depth is no longer a toggle for evaluating vapor intrusion. See the notes in Workbook Table GW-3 and the User's Guide Chapter 5 for further information.

Environmental Screening Levels San Francisco Bay Regional Water Quality Control Board

GAVE NEWSOM GONTANON

JARED BLUMENFELD SOCKETAN FOR SOCKE

2019 (Rev. 2) Table T2-2: Tier 2 – Site-Specific Cumulative Risk and Hazard Calculator Enter Site Data (Leave blank when no data exits) Contaminant 1 Contaminant 2 **Contaminant 3** Contaminant 4 Contaminant 5 Toluene Contaminant inputs from T2-1: Petroleum - Gasoline Tetrachloroethene Xylenes Soil Concentration (mg/kg) - dry weight: Groundwater Concentration (µg/L): Subslab/ Soil Gas Concentration (µg/m³): 8,550,284.00 18 814 2,161 Indoor Air Concentration (µg/m³): Soil Gas VI Attenuation Factor (Use 0.03 for Screening): 0.0300

Selected Site Scenario (from T2-1)

Land Use: Commercial or Industrial

Vegetation Level: Minimal

Groundwater Use: Nondrinking Water Resource

MCL Priority vs Risk-Based: No

Discharge to Surface Water: No Discharge Expected

Soil Contamination Depth: Shallow & Deep Soil

Cancer Risk:	Petroleum - Gasoline	Tetrachloroethene	Toluene	Xylenes	0.00	Cumulative Risk
Soil Exposure Risk:					#N/A	#N/A
Tapwater Exposure Risk:					#N/A	#N/A
Current* Vapor Intrusion Exposure Risk: Basis:	 Subslab/Soil Gas VI	2.7E-07 Subslab/Soil Gas VI	 Subslab/Soil Gas VI	 Subslab/Soil Gas VI		2.7E-07 Subslab/Soil Gas VI
Future** Vapor Intrusion Exposure Risk: Basis:	 Subslab/Soil Gas VI	2.7E-07 Subslab/Soil Gas VI	 Subslab/Soil Gas VI	 Subslab/Soil Gas VI		2.7E-07 Subslab/Soil Gas VI

Ī	Noncancer Hazard:	Petroleum - Gasoline	Tetrachloroethene	Toluene	Xylenes	0	Cumulative Hazard
	Soil Exposure Hazard:					#N/A	#N/A
	Tap Water Exposure Hazard:					#N/A	#N/A
	Current* Vapor Intrusion Exposure Hazard:		3.1E-03	1.9E-02	1.5E-01		1.0E+02
	Basis:	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI		Subslab/Soil Gas VI
	Future** Vapor Intrusion Exposure Hazard:	1.0E+02	3.1E-03	1.9E-02	1.5E-01		1.0E+02
	Basis:	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI	Subslab/Soil Gas VI		Subslab/Soil Gas VI

Notes:

Cumulative cancer risk and noncancer hazard are not automatically calculated across pathways because exposure via multiple pathways typically is not simultaneous. This may be performed separately as part of a site-specific evaluation. See the User's Guide Section 3.3 (Addressing Cumulative Risk and Hazard).

- * Current (VI exposure to current occupants of existing buildings) Primarily based on indoor air data. See User's Guide Chapter 5 for further information. In the absence of indoor air data, subslab/soil gas or groundwater data is used to predict current indoor air concentrations.
- Subslab/soil gas data is given priority over groundwater data for current exposure calculations. The cumulative risk calculation follows the same hierarchy.

 ** Future (VI exposure to future occupants of existing or future buildings) Primarily based on subslab/soil gas data. See User's Guide Chapter 5 for further information.
- ** Future (VI exposure to future occupants of existing or future buildings) Primarily based on subslab/soil gas data. See User's Guide Chapter 5 for further information. In the absence of subslab/soil gas data, groundwater data is used to predict future indoor air concentrations. The cumulative risk calculation follows the same hierarchy.

APPENDIX I VURAM

Virginia Department of Environmental Quality

Virginia Unified Risk Assessment Model

VERSION: 2.2

Construction Worker Quantitative Risk Assessment Report

Site Name: Town Center Northwest Signal Hill CA

Program: Voluntary Remediation Program

1

Total Hazard Index/Risk for All Media

Non-Cancer Adult Cancer

Total: 4.04E+00 Total: 9.18E-07

Exceeds Hazard Index! does not exceed cumulative risk

Risk Based Performance Criteria

Default Hazard Index Default Cumulative Risk-All Chemicals

1.00E-04

All Report Pages are Required for Risk Assessment Submission
DETAILED REPORT FOLLOWS

Construction Site Name: Town Center Northwest Signal Hill CA

Voluntary Remediation Program Program:

Risk Based Performance Criteria

Default Risk Individual Chemical **Default Hazard Index Default Cumulative Risk-All Chemicals**

1.00E-06 1 1.00E-04

Air

Analyte: Benzene 71-43-2 CAS:

Concentration ug/m3: 1.56E+03

RfDo: RfCi: 8.00E-02

SFO:

IUR: 7.80E-06

Mutagen:

VOC: Υ

% Contribution to Media Risk 0.51%

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Dermal:

Inhalation: Inhalation: 2.08E-02 1.78E-07 Total: 2.08E-02 Total: 1.78E-07

19.35%

Analyte: Butylbenzene, n-

CAS: 104-51-8

Concentration ug/m3: 6.49E+02

RfDo:

RfCi: SFO: IUR:

Mutagen: VOC: Υ

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Dermal: Inhalation: Inhalation:

Total: 0.00E+00 Total: 0.00E+00

0.00% 0.00% % Contribution to Media Risk

Analyte: Butylbenzene, sec-

CAS: 135-98-8

Concentration ug/m3: 2.38E+03

RfDo:

RfCi: SFO: IUR: Mutagen:

VOC: Υ

Dermal: Inhalation:

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Inhalation:

Total: 0.00E+00 Total: 0.00E+00

% Contribution to Media Risk 0.00% 0.00%

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

Calculated Hazard Quotient/Risk

Calculated Hazard Quotient/Risk

Calculated Hazard Quotient/Risk

Cancer

Cancer

Cancer

0.00E+00

0.00E+00

0.00E+00

Ingestion:

Inhalation:

Ingestion:

Inhalation:

Ingestion:

Inhalation:

Dermal:

Total:

Dermal:

Total:

Dermal:

Total:

1 1.00E-06 1.00E-04

Air

IUR:

Analyte: Cumene CAS: 98-82-8

Concentration ug/m3: 4.29E+03

RfDo:

RfCi: 9.00E-02 SFO:

Mutagen:

VOC: Y

% Contribution to Media Risk 0.85% 0.00%

Non-Cancer Adult

Non-Cancer Adult

3.43E-02

3.43E-02

Ingestion:

Inhalation:

Ingestion:

Inhalation:

Ingestion:

Inhalation:

Dermal:

Total:

Dermal:

Total:

Dermal:

Total:

Analyte: Dichloroethylene, 1,2-cis-

CAS: 156-59-2

Concentration ug/m3: 5.10E+01

RfDo:

RfCi:
SFO:
IUR:

Mutagen:

VOC: Y

% Contribution to Media Risk 0.00% 0.00%

Non-Cancer Adult

0.00E+00

Analyte: Diisopropyl Ether

CAS: 108-20-3

Concentration ug/m3: 4.78E+03

RfDo:

RfCi: 7.00E-01

SFO: IUR:

Mutagen:

VOC: Y

% Contribution to Media Risk 0.13% 0.00%

5.33E-03

5.33E-03

Saturday, August 7, 2021 CHANGE Page 3 of 11

Construction Site Name: Town Center Northwest Signal Hill CA

Program: **Voluntary Remediation Program**

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical **Default Cumulative Risk-All Chemicals**

1.00E-06 1 1.00E-04

Air

Analyte: Ethylbenzene

CAS: 100-41-4

Concentration ug/m3: 2.73E+03 RfDo: RfCi: 9.00E+00 SFO: IUR: 2.50E-06 Mutagen: VOC: Υ

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Dermal:

Inhalation: Inhalation: 2.48E-04 7.63E-08

Total: Total: 2.48E-04 7.63E-08

0.01% 8.31% % Contribution to Media Risk

Analyte: isopropyltoluene

CAS: 99-87-6

Concentration ug/m3: 3.21E+02 RfDo: RfCi: 9.00E-02 SFO: IUR: Mutagen:

VOC:

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Dermal: Inhalation: 2.38E-03 Inhalation:

Total: 2.38E-03 Total: 0.00E+00

% Contribution to Media Risk 0.00% 0.06%

Analyte: Methyl tert-Butyl Ether (MTBE)

Υ

CAS: 1634-04-4

Concentration ug/m3: 1.21E+05 RfDo: RfCi: 2.52E+00 SFO: IUR: 2.60E-07 Mutagen:

VOC: Υ Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion: Dermal: Dermal:

Inhalation: Inhalation: 4.30E-02 3.87E-07 Total: 4.30E-02 Total: 3.87E-07

1.06% 42.11% % Contribution to Media Risk

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

1 1.00E-06 1.00E-04

Air

Analyte: Methylene Chloride

CAS: 75-09-2

1.01E+01
1.04E+00
1.00E-08
Υ
Υ

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:

 Inhalation:
 1.15E-05
 Inhalation:
 1.64E-12

 Total:
 1.15E-05
 Total:
 1.64E-12

% Contribution to Media Risk 0.00% 0.00%

Analyte: Naphthalene

CAS: 91-20-3

Concentration ug/m3:	8.26E+02
RfDo:	
RfCi:	3.00E-03
SFO:	
IUR:	3.40E-05
Mutagen:	
VOC:	Υ

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer Ingestion: Ingestion:

Dermal: Dermal:

Inhalation: 1.99E-01 Inhalation: 2.77E-07

Mutagen: 1.99E-01 Total: 2.77E-07

% Contribution to Media Risk 4.92% 30.22%

Analyte: Propyl benzene

CAS: 103-65-1

Concentration ug/m3: 5.81E+03
RfDo:
RfCi: 1.00E+00
SFO:
IUR:
Mutagen:
VOC: Y

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:

Inhalation: 4.17E-03 Inhalation:

Total: 4.17E-03 Total: 0.00E+00

% Contribution to Media Risk 0.10% 0.00%

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

1 1.00E-06 1.00E-04

Air

Analyte: Tetrachloroethylene

CAS: 127-18-4

Concentration ug/m3: 1.79E+01
RfDo:
RfCi: 4.00E-02
SFO:
IUR: 2.60E-07
Mutagen:
VOC: Y

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:

Inhalation: 2.69E-04 Inhalation: 3.83E-11

Total: 2.69E-04 Total: 3.83E-11

% Contribution to Media Risk 0.01% 0.00%

Analyte: Toluene CAS: 108-88-3

Concentration ug/m3: 8.14E+02
RfDo:
RfCi: 5.00E+00
SFO:
IUR:
Mutagen:

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:

Inhalation: 1.51E-04 Inhalation:

Total: 1.51E-04 Total: 0.00E+00

% Contribution to Media Risk 0.00% 0.00%

Analyte: Total Petroleum Hydrocarbons (Aliphatic Low)

Υ

CAS: E1790666

VOC:

Concentration ug/m3: 8.55E+06
RfDo:
RfCi: 2.00E+00
SFO:
IUR:

Mutagen: VOC: Y Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:

Inhalation: 3.73E+00 Inhalation:

Total: 3.73E+00 Total: 0.00E+00

% Contribution to Media Risk 92.24% 0.00%

Exceeds Hazard!

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

1 1.00E-06 1.00E-04

Air

Analyte: Xylenes CAS: 1330-20-7

Concentration ug/m3: 2.16E+03

RfDo:

RfCi: 4.00E-01 SFO:

SFO: IUR: Mutagen:

VOC: Y

Calculated Hazard Quotient/Risk

Non-Cancer Adult Cancer

Ingestion: Ingestion:

Dermal: Dermal:
Inhalation: 4.41E-03 Inhalation:

Total: 4.41E-03 Total: 0.00E+00

% Contribution to Media Risk 0.11% 0.00%

Total Calculated Hazard Index/Risk For Media: Air

Non-Cancer Adult Cancer Ingestion: 0.00E+00Ingestion: 0.00E+00 Dermal: 0.00E+00 Dermal: 0.00E+00 Inhalation: Inhalation: 4.04E+00 9.18E-07 Total: 4.04E+00 Total: 9.18E-07

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals

1 1.00E-06 1.00E-04

Total Hazard Index/Risk for All Media

Non-Cancer Adult Cancer

Ingestion: 0.00E+00 Ingestion: 0.00E+00 Dermal: 0.00E+00 Dermal: 0.00E+00 Inhalation: 4.04E+00 Inhalation: 9.18E-07 Total: 4.04E+00 Total: 9.18E-07

Exceeds Hazard Index! does not exceed cumulative risk

Program: Voluntary Remediation Program

Risk Based Performance Criteria

Default Hazard Index Default Risk Individual Chemical Default Cumulative Risk-All Chemicals
1 1.00E-06 1.00E-04

Construction Exposure Default Values

Symbol	Description	Value	Units
A	Construction Worker Soil Inhalation Dispersion Constant - Virginia DEQ	14.0111	(unitless)
AFcw	Construction Worker Soil Adherence Factor	0.3	(mg/cm2)
As	Areal extent of the site or contamination	0.5	(acres)
ATcw	Construction Worker Averaging Time: 365 x LT	25550	(days)
ATcw-a	Construction Worker Averaging Time: EWcw x 7 x EDcw	350	(days)
В	Construction Worker Soil Inhalation Dispersion Constant - Virginia DEQ	19.6154	(unitless)
BWcw	Construction Worker Body Weight	80	(kg)
С	Construction Worker Soil Inhalation Dispersion Constant - Virginia DEQ	225.3397	(unitless)
DWcw	Construction Worker Days Worked	5	(days/week)
EDcw	Construction Worker Exposure Duration	1	(yrs)
EFcw	Construction Worker Exposure Frequency	250	(days/yrs)
EFcw-vrp	Construction Worker Soil Exposure Frequency - VRP ONLY - Virginia DEQ	125	(days/yr)
ETcw	Construction Worker Exposure Time	8	(hrs/day)
EWcw	Construction Worker Weeks Worked	50	(weeks/yr)
F(x)	Function Dependent on 0.886 × (Ut/Um)	0.194	(unitless)
Fd	Dispersion Correction Factor	0.185	(unitless)
IRcw	Construction Worker Soil Ingestion Rate	330	(mg/day)
n	Total soil porosity: 1-(ρb/ρs)	0.433962264150943	(unitless)
PEFsc	Particulate Emission Factor Subchronic - Virginia DEQ calculated	1266503136.97919	(m3/kg)
RfCsc	Subchronic Inhalation Reference Concentration		(mg/m3)
RfDosc	Subchronic Oral Reference Dose		(mg/kg-day)
SAcw	Construction Worker Surface Area	3527	(cm2/day)
Тс	Total time over which construction occurs: EDcw*EWcw*7days/wk*24hrs/day*3600s/hr	30240000	(s)

Construction

Site Name: Town Center Northwest Signal Hill CA

Voluntary Remediation Program
Risk Based Performance Criteria Program:

Default Hazard Index

Default Risk Individual Chemical

Default Cumulative Risk-All Chemicals

1

1.00E-06 1.00E-04

TR-ACH	Trench Air Changes per Hour - Virginia DEQ	2	(h)-1
TR-ACvad	Trench Advection Coefficient Groundwater greater than 15ft - Virginia DEQ	0.25	(cm3/cm3)
TR-D-dir	Trench Depth - groundwater less Than 15ft - Virginia DEQ	2.44	(m)
TR-D-ind	Trench Depth - groundwater greater than 15ft - Virginia DEQ	4.57	(m)
TR-Dsg	Trench - Depth to soil gas vapor source - Virginia DEQ	1	(cm)
TR-EFcw	Trench Construction Worker Exposure Frequency - Virginia DEQ	125	(days/yr)
TR-ETcw	Trench Construction Worker Exposure Time - Virginia DEQ	4	(hrs/day)
TR-EVcw	Trench Construction Worker Events - Virginia DEQ	1	(events/day)
TR-F	Trench Fraction of floor through which contaminant can enter - Virginia DEQ	1	(unitless)
TR-HV	Trench Thickness of Vadose Zone - groundwater greater than 15 ft - Virginia DEQ	30	(cm)
TR-IRcw	Trench Construction Worker Groundwater Ingestion Rate - Virginia DEQ	0.02	(L/day)
TR-KGH2O	Trench Gas-phase mass transfer coefficient of water vapor at 25deg C - Virginia DEQ	0.833	(cm/s)
TR-KLO2	Trench Liquid-phase mass transfer coefficient of oxygen at 25deg C - Virginia DEQ	0.002	(cm/s)
TR-L	Trench Length - Virginia DEQ	2.44	(m)
TR-Lgw	Trench Depth to groundwater - Virginia DEQ	488	(cm)
TR-MWH2O	Trench Molecular Weight of Water - Virginia DEQ	18	(unitless)
TR-MWO2	Trench Molecular Weight of Oxygen - Virginia DEQ	32	(unitless)
TR-Porvad	Trench Porosity in Vadose Zone - groundwater greater than 15ft - Virginia DEQ	0.44	(cm3/cm3)
TR-R	Trench Ideal Gas Constant - Virginia DEQ	0.000082	(atm-m3/mol-K)
TR-Temp-F	Trench Temperature Fahrenheit - Virginia DEQ	77	(F)
TR-Temp-K	Trench Temperature - Virginia DEQ	298	(K)
TR-W	Trench Width - Virginia DEQ	0.91	(m)
TR-W/D	Trench Width to Depth Ratio - Virginia DEQ	0.38	(unitless)
Um	Mean Annual Wind Speed	4.69	(m/s)
Ut	Equivalent Threshold Value of Wind Speed at 7m	11.32	(m/s)
V	V Fraction of Vegetative Cover	0.5	(unitless)

Construction Site Name: Town Center Northwest Signal Hill CA

Voluntary Remediation Program
Risk Based Performance Criteria Program:

Default Risk Individual Chemical Default Hazard Index **Default Cumulative Risk-All Chemicals**

1.00E-06 1 1.00E-04

Θа	Air filled soil porosity: n-Ow	0.133962264150943	(unitless)
Θw	Water filled soil porosity	0.3	(unitless)
ρb	Dry soil bulk density	1.5	(kg/L)
ρς	Soil particle density	2.65	(kg/L)

END OF REPORT

CHANGE

APPENDIX J

LeadSpread Model

CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	61.0
Respirable Dust (ug/m ³)	1.5

EXPOSURE PARAMETERS				
	units	children		
Days per week	days/wk	7		
Geometric Standard Deviation		1.6		
Blood lead level of concern (ug/dl)		1		
Skin area, residential	cm ²	2900		
Soil adherence	ug/cm ²	200		
Dermal uptake constant	(ug/dl)/(ug/day	0.0001		
Soil ingestion	mg/day	100		
Soil ingestion, pica	mg/day	200		
Ingestion constant	(ug/dl)/(ug/day	0.16		
Bioavailability	unitless	0.44		
Breathing rate	m ³ /day	6.8		
Inhalation constant	(ug/dl)/(ug/day	0.192		

OUTPUT						
Percentile Estimate of Blood Pb (ug/dl)					PRG-90	
	50th	90th	95th	98th	99th	(ug/g)
BLOOD Pb, CHILD	0.4	8.0	0.9	1.1	1.3	77
BLOOD Pb, PICA CHILD	0.9	1.6	1.9	2.3	2.6	39

PATHWAYS						
CHILDREN	typical			with pica		
	Pathway contribution			Pathway contribution		
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent
Soil Contact	5.8E-5	0.00	1%		0.00	0%
Soil Ingestion	7.0E-3	0.43	99%	1.4E-2	0.86	100%
Inhalation	2.0E-6	0.00	0%		0.00	0%

Click here for REFERENCES

MODIFIED VERSION OF USEPA ADULT LEAD MODEL

CALCULATIONS OF BLOOD LEAD CONCENTRATIONS (PbBs) AND PRELMIINARY REMEDIATION GOAL (PRG)

EDIT RED CELL

Variable	Description of Variable	Units	
PbS	Soil lead concentration	ug/g or ppm	61
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	0.0
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)	-	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	250
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	0.1
PbB _{fetal, 0.90}	90th percentile PbB among fetuses of adult workers	ug/dL	0.2
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	1.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.0%

PRG90

318

Click here for REFERENCES

Review of Human Health Risk Assessment by OEHHA, Town Center Northwest

OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT

Gavin Newsom, Governor Jared Blumenfeld, Secretary for Environmental Protection Lauren Zeise, Ph.D., Director

MEMORANDUM

TO: Elise McCaleb,

City of Signal Hill 2175 Cherry Avenue Signal Hill, CA 90755

FROM: Jim Carlisle, DVM

Staff Toxicologist

Air and Site Assessment and Climate Indicators Branch Office of Environmental Health Hazard Assessment

DATE: August 26, 2021

SUBJECT: HUMAN HEALTH RISK ASSESSMENT, TOWN CENTER NORTHWEST,

SIGNAL HILL, CALIFORNIA **OEHHA # 830168-00**

Document Reviewed

Human Health Risk Assessment, Northeast Corner E. Willow St. and Walnut Avenue, Town Center Northwest, Signal Hill, California, prepared by: Mearns Consulting, LLC, dated August 11, 2021

Site Description and Background

The 8.35-acre site has been an oil field since 1928. There are 19 wells and associated infrastructure on-site.

Adjacent properties include oilfields, commercial/industrial businesses, and multifamily residences.

Chemicals of Potential Concern (COPCs)

COPCs included all detected volatile organic compounds (VOCs), petroleum hydrocarbons (TPH), and semi-volatile organic compounds (SVOCs).

All detected metals were deemed to be within local background levels. The maximum detected arsenic concentration (20 mg/kg) exceeded the DTSC (2020) upper tolerance limit (12 mg/kg), but this single elevated value (among 56 samples) may not pose a significant threat to the health of future site occupants.

Conceptual Site Model

Mearns evaluated potential exposure for current commercial workers, future residents, and construction workers (including trench workers).

Soil exposure pathways including ingestion, dermal contact, and inhalation, were evaluated for all three groups.

Inhalation exposure to contaminants in soil gas was evaluated indoors for residents and commercial workers, and outdoors for construction (trench) workers.

Exposure parameters were based on DTSC (2019).

Exposure point concentrations (EPCs)

Soil EPCs were the 95% upper confidence limit (UCL) of the mean when this statistic could be calculated, otherwise the maximum detected concentration was used as the soil EPC.

Soil gas EPCs were the UCL when Pro-UCL was able to calculate a reliable UCL, otherwise the maximum detected concentration was used as the EPC.

OEHHA typically recommends point-by-point results for single-family residences. However, UCLs may be more realistic for multi-family housing.

Risk Assessment

Mearns' estimated risks and hazard indices (HI) are summarized as follows:

Exposure scenario	Risk	Hazard index
Resident	3.0E-3	506
Commercial worker	6.9E-4	117
Construction worker	2.0E-6	6

All risks and hazard indices except the construction worker risk exceeded typical thresholds. OEHHA agrees with these estimates.

The risk drivers for residents were naphthalene, benzene, and methyl tert-butyl ether (MTBE) in soil gas and n-nitroso di-n-propylamine and 2,6-dinitrotoluene in soil. The hazard drivers were gasoline range organics, benzene, and naphthalene in soil gas and C13-C22 hydrocarbons in soil.

The risk drivers for commercial workers were naphthalene, benzene, and methyl tert-butyl ether (MTBE) in soil gas. The hazard drivers were gasoline range organics, benzene, and naphthalene in soil gas.

Elise McCaleb August 26, 2021 Page 3

The hazard drivers for construction workers were C4-C12 and C13-C22 hydrocarbons in soil and gasoline range organics in soil gas.

Risk and Hazard Mitigation

Mearns proposes installing a vapor barrier with a passive subsurface depressurization system to mitigate vapor intrusion. OEHHA recommends that care be used to ensure that preferential pathways connecting soil gas to occupied portions of the building are not created during construction. Indoor air sampling after construction of the new building and prior to being occupied by the tenants would help to determine whether indoor air is clean.

Mearns proposes a soil management plan to deal with discolored or odiferous soils discovered during excavation and grading. OEHHA recommends that soil contamination in excess of risk and hazard thresholds be addressed prior to excavation and grading.

Conclusions

All risks and hazard indices except the construction worker risk exceeded typical thresholds. OEHHA agrees with these estimates.

Given these exceedances, OEHHA agrees that soil and soil vapor remediation and/or mitigation will be needed for all scenarios.

Reviewed by

Amanda Palumbo, PhD Staff Toxicologist

Carmen Milanes, M.P.H. Chief, Climate Indicators and Site Assessment Section

References

DTSC (California Department of Toxic Substances Control). 2020. Human Health Risk Assessment (HHRA) Note Number 11. Southern California Ambient Arsenic Screening Level, Human and Ecological Risk Office (HERO). December 28, 2020.

DTSC 2019. Human Health Risk Assessment (HHRA) Note. HERO Note #1. Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. April 9.