APPENDIX E Hydrology Study and WQMP

WQ XX-XXXX

City of Yorba Linda/Santa Ana Region Priority Project Preliminary Water Quality Management Plan (PWQMP)

Project Name: Hilltop 3 Development, LLC APN 350-331-06, 326-021-50 YORBA LINDA, CA 92886

Prepared for: Hilltop 3 Development, LLC 3875 CREST DRIVE YORBA LINDA, CA 92886 714-742-7965

Prepared by: Gilbert Engineering & Associates Engineer R. William Gilbert, P.E. Registration No. 53251 2 Merriweather Place Ladera Ranch, CA 92694 949-218-8075

November 17, 2020

Project Owner's Certification				
Planning Application No. (If applicable)	Not issued	Grading Permit No.	Not issued	
Tract/Parcel Map and Lot(s) No.	TENT. PARCEL MAP NO. 2020-125 G.P.A. 2020-02 Z.C. 2020-01	Building Permit No.	Not issued	
Address of Project Site and APN (If no address, specify Tract/Parcel Map and Lot Numbers)			350-331-06 326-021-50	

This Water Quality Management Plan (WQMP) has been prepared for Hilltop 3 Development by Gilbert Engineering & Associates, Inc.. The WQMP is intended to comply with the requirements of the County of Orange NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan , including the ongoing operation and maintenance of all best management practices (BMPs), and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the Santa Ana Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner:			
Title	Owner		
Company	Hilltop 3 Development, LLC		
Address	3875 Crest Drive, Yorba Linda, CA 92886		
Email	rhoff73776@aol.com		
Telephone #	714-742-7965		
	d my responsibility to implement the provisions of the aration and maintenance of the best management practice.		
Owner Signature		Date	

Preparer (Eng	gineer):				
Title	President	PE Regist	tration #	CA53251	
Company	Gilbert Engineering & Associates, Inc.				
Address	2 Merriweather Place, Ladera Ranch, CA 92694				
Email	bill@gilbert-engineering.com				
Telephone #	949-218-8075				
requirement	I hereby certify that this Water Quality Management Plan is in compliance with, and meets the requirements set forth in, Order No. R8-2009-0030/NPDES No. CAS618030, of the Santa Ana Regional Water Quality Control Board.				
Preparer Signature	ÆB		Date	11-17-20	
Place Stamp Here	PROFESSIONA PROFE				

Notice of Transfer of Responsibility Water Quality Management Plan (WQMP)

WQMP Number – As assigned by the City:

Submission of this Notice of Transfer of Responsibility constitutes notice to the City that responsibility for the Water Quality Management Plan (WQMP) for the subject property identified below, and implementation of that plan, is being transferred from the Previous Owner (and his/her agent) of the site (or portion thereof) to the New Owner, as further described below.

I. <u>Owner/ Responsible Party Information</u>

Company/ Individual: Hilltop 3 Development, LLC Contact Person: Robert Hoff

Street Address: <u>3875 Crest Drive</u> Title: <u>Owner</u>

City: <u>Yorba Linda</u> State: CA Zip: <u>92886</u> Phone: <u>714-742-7965</u>

II. Information about Site Relevant to WQMP

Name of Project: <u>Hilltop 3 Development, LLC</u>

Title of WQMP applicable to site: <u>Hilltop 3 Development, LLC</u>

Street Address of the site: <u>APN 350-331-06, 326-021-50</u>

Date of Transfer of Responsibility: _____

III. <u>New Owner (Upon Transfer)/ Responsible Party Information</u>

Company/ Individual:			Contact Person:	
Street Address:			Title:	
City	State	Zip	Phone:	

	REVISIONS					
No.	Date	By Description Accepted		Accepted	Date	

Contents

Page No.

Section I	Permit(s) and Water Quality Conditions of Approval or Issuance	1
Section II	Project Description	3
Section III	Site Description	9
Section IV	Best Management Practices (BMPs)	12
Section V	Inspection/Maintenance Responsibility for BMPs	26
Section VI	BMP Exhibit (Site Plan)	29
Section VII	Educational Materials	30

Attachments

Appendix A	Educational Materials
Appendix B	O & M Plan
Appendix C	Geotechnical Study
Appendix D	BioClean Modular Wetland System
Appendix E	Covenant and Agreement
Appendix F	Hydrology & Hydraulic Calculations
Appendix G	Rainfall Zone Exhibit, Drainage Area Map, Hydrology Soil Map
Appendix H	WQMP Exhibit

Section I Permit(s) and Water Quality Conditions of Approval or Issuance

Project Infomation				
Permit/Application No. (If applicable)	T.P.M. 2020-125 G.P.A. 2020-02 Z.C. 2020-01	Grading or Building Permit No. (If applicable)	Not Issued	
Address of Project Site (or Tract Map and Lot Number if no address) and APN	Parcel 1: THAT PORTION OF THE SOUTH HALF OF SECTION 13, TOWNSHIP 3 SOUTH, RANGE 9 WEST, SAN BERNARDINO MERIDIAN, ACCORDING TO THE OFFICIAL PLAT OF SAID LAND FILED IN THE DISTRICT LAND OFFICE ON JANUARY 07, 1868, AND LYING SOUTHERLY OF THE SOUTHERLY LINE OF THAT CERTAIN LAND CONVEYED TO THE STATE OF CALIFORNIA BY DEED RECORDED JUNE 30, 1983, IN THE CITY OF YORBA LINDA, COUNTY OF ORANGE, STATE OF CALIFORNIA Parcel 2: LOT A OF TRACT NO. 11485, IN THE CITY OF YORBA LINDA, COUNTY OF ORANGE, STATE OF CALIFORNIA, AS SHOWN ON A MAP FILED IN BOOK 575, PAGES 26 TO 33 INCLUSIVE OF MISCELLANEOUS MAPS, IN THE OFFICE OF THE COUNTY RECORDER OF SAID COUNTY APN 350-331-06, 326-021-50			
Water	Quality Condition	s of Approval or Issu	ance	
Water Quality Conditions of Approval or Issuance applied to this project. (Please list verbatim.)	Pending conditions of a	pproval from City of Yorba Li	nda	

	Conceptual WQMP		
Was a Conceptual Water Quality Management Plan previously approved for this project?	This is the conceptual WQMP		
Watershed-Based Plan Conditions			
Provide applicable conditions from watershed based plans including WHIMPs and TMDLS.	There are currently no applicable conditions		

Section II Project Description

II.1 Project Description

Description of Proposed Project					
Development Category (From Model WQMP, Table 7.11-2; or -3):	1. New development projects that create 10,000 square feet or more of impervious surface. This category includes commercial, industrial, residential housing subdivisions, mixed-use, and public projects on private or public property that falls under the planning and building authority or the Permittees				
Project Area (ft ²): 1,857,398	Number of Dwelli	ing Units: 1	SIC Code:	1522	
	Pervi	ous	Imper	vious	
Project Area	Area (acres or sq ft)	Percentage		Percentage	
Pre-Project Conditions	42.64	100	0	0	
Post-Project Conditions	DMA 1- 0.13 ac DMA 2- 40.72 ac	96 100	DMA 1 - 1.79 ac DMA 2 - 0 ac	4 0	
In the existing condition, the proposed graded area of the project site drainage flows to several areas. The western edge of the undeveloped area flows to Ravenswood Drive to an existing 27" R.C.P. storm drain. The southerly edge of the property has two outlets into an existing 24" R.C.P. storm drain that flows to Ravenswood Drive. The eastern edge of the property has three outlets into Fairmont Blvd.				e undeveloped P. storm drain. an existing 24" he eastern edge of	
Drainage Patterns/Connections	The open space area drains through natural ravines to the south and will not be altered.				
	The proposed condition will continue the same flow patterns. The western edge will continue to go to Ravenswood to a storm drain is into an existing 27" R.C.P. storm drain. The southerly edge will continue to flow into a proposed v-ditch and will send it to the exist 24" R.C.P. storm drain headed to Ravenswood Drive. There will be outlets into Fairmont Blvd which is where the treated water will trate to and enter the existing City storm drain in Fairmont Blvd.				

Do to the nature of the hillside grading some runoff area will be diverted into Fairmont Blvd. During a 100 year storm event there w be an 8% increase in flows to Fairmont and an 8% decrease to the ar going to Ravenswood Drive or about 3.4 c.f.s of runoff added to the Fairmont Blvd. storm drain.	eas
--	-----

II.2 Potential Stormwater Pollutants

Pollutants of Concern				
Pollutant	Check One for each: E=Expected to be of concern N=Not Expected to be of concern		Additional Information and Comments	
Suspended-Solid/ Sediment	Ε⊠	N 🗆		
Nutrients	E 🖂	N 🗆		
Heavy Metals	Е 🗆	N 🖾		
Pathogens (Bacteria/Virus)	E 🖂	N 🗆		
Pesticides	E 🖂	N 🗆		
Oil and Grease	Ε⊠	N 🗆		
Toxic Organic Compounds	Е 🗆	N 🛛		
Trash and Debris	E 🖂	N 🗆		

II.3 Hydrologic Conditions of Concern

 \square No – Show map

Yes – Describe applicable hydrologic conditions of concern below.

Down Stream Channels are stabilized earth or stabilized engineered channels

II.4 Post Development Drainage Characteristics

The proposed condition will take the runoff that is flowing into the southerly residential area and capture by v-ditch and carry it to Fairmont where it will outlet and flow into the City Storm Drain System. The proposed hillside grading and project pad will drain to the proposed driveway and flow out to Fairmont Blvd.

The storm runoff will be collected via roof drains and area drains and it will flow down the hill and outlet into the proposed driveway which will flow into a BioClean Modular Wetland System (Model No. MWS-L-8-12-C) for biofiltration treatment before flowing into the existing v-ditch on the south side of the property and will outlet into Fairmont Blvd.

The BioClean Modular Wetland System will treat the entire design capture volume.

DMA # 1

Design Capture Volume = $V = C \times d \times A \times (1/12) \text{ in/ft}$

Where V = runoff volume during the design storm event, cu-ft

C = runoff coefficient = $(0.75 \times \% \text{ imp}) + 0.15$

Imp = impervious fraction of drainage area (0 for existing condition, 0.93 for developed site)

d = storm depth (inches) = 0.75''

A= tributary area (ac) = 1.92 acres

After Development:

V = $(0.75 \times .93 \text{ imp} + 0.15) \times 0.75'' \times 1.92 \text{ ac } \times 43560 \text{ sf/ac } \times (1/12) \text{ in/ft} = 4,430 \text{ cf}$

DMA#2

Project area will be left natural or replanted and irrigated with drought tolerant material, but is not part of the drainage runoff of the proposed project.

II.5 Property Ownership/Management

The property will be maintained by the owner, Hillside 3 Development, LLC

Section III Site Description

III.1 Physical Setting

Name of Planned Community/Planning Area (if applicable)	PD11 Yorba Linda Hills
Location/Address	APN 350-331-06, 326-021-50
General Plan Land Use Designation	Residential and Open Space
Zoning	PD-11 Sub Area A, PD-11 Sub Area D,
Acreage of Project Site	42.64 acres
Predominant Soil Type	Soil Type D

III.2 Site Characteristics

Site Characteristics			
Precipitation Zone	Coastal - 0.75" per Orange County Rainfall Zones Map, Figure XVI-1 of Technical Guidance Document		
Topography	The project resides on a hillside lot. It has a flat pad surrounded by steep slopes to the North, South, East and West.		
Drainage Patterns/Connections	Do to the nature of the hillside grading some runoff area will be diverted into Fairmont Blvd. During a 100 year storm event there will be an increase of about 1.81 c.f.s of runoff added to the Fairmont Blvd. storm drain.		

	The proposed condition will take the runoff that is flowing into the southerly residential area and capture by v-ditch and carry it to Fairmont where it will outlet and flow into the City Storm Drain System. The proposed hillside grading and project pad will drain to the proposed driveway and flow out to Fairmont Blvd. The storm runoff will be collected via roof drains and area drains and it will flow down the hill and outlet into the proposed driveway which will flow into a BioClean Modular Wetland System (Model No. MWS-L-8-12-C) for biofiltration treatment before flowing into the existing v-ditch on the south side of the property and exiting into Fairmont Blvd. The BioClean Modular Wetland System will treat the entire design capture volume.
Soil Type, Geology, and Infiltration Properties	Sandy Silt, Sand Stone Per the Geotechnical Report: Based on the referenced report (TGR, 2020b), infiltration rates were very low and ranged from 0.44 to 0.56 inch per hour without factor of safety. Infiltration near the toe of the proposed slope may also adversely impacted the stability of the slope. Therefore, infiltration is not recommended from a geotechnical viewpoint. Although we were unable to achieve the proposed drilling depth of 40 feet below existing grade in P-2 due to refusal in very dense bedrock, it is our opinion that the infiltration rates to a depth of 40 feet below existing grade would be equal to or less than the values obtained.
Hydrogeologic (Groundwater) Conditions	No groundwater encountered at boring depths up to 75' deep
Geotechnical Conditions (relevant to infiltration)	Depending on the distance of the infiltration area to the toe of the proposed slope, the stability of the slope may be adversely impacted due to water mounding from infiltration.

Off-Site Drainage	There is no off-site drainage entering the property.
Utility and Infrastructure Information	There are no existing utilities on the project site.

III.3 Watershed Description

Receiving Waters	Santa Ana River, Reach 2
303(d) Listed Impairments	None
Applicable TMDLs	None
Pollutants of Concern for the Project	Heavy Metals, Pathogens (Bacteria/Virus), Oil and Grease, Toxic Organic Compounds, Trash and Debris
Environmentally Sensitive and Special Biological Significant Areas	None

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

(NOC Permit Area only) Is to for the project area that inclu- criteria or if there are opport on regional or sub-regional	YES 🗌	NO 🔀	
If yes, describe WIHMP feasibility criteria or regional/sub-regional LID opportunities.			

Project Performance Criteria			
If HCOC exists, list applicable hydromodification control			
performance criteria (Section 7.II-2.4.2.2 in MWQMP)	There are no Hydrologic Conditions of Concern		

List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	Priority Development projects must infiltrate, harvest & re-use, evapotranspire, or biofiltrate, the 85th percentile, 24-hour storm event (design capture volume)
List applicable treatment control BMP performance criteria (Section 7.II-3.2.2 from MWQMP)	Capture and infiltrate, filter or treat the runoff from the 24-hour, 85th percentile storm event as determined from the County of Orange 85th percentile Precipitation Isopluvial Map and draw down the stored volume in no more than 48 hours following the end of precipitation.
Calculate LID design storm capture volume for Project.	DMA # 1 Design Capture Volume = V= C x d x A x (1/12) in/ft Where V = runoff volume during the design storm event, cu-ft C = runoff coefficient = (0.75 x % imp) + 0.15 Imp = impervious fraction of drainage area (0 for existing condition, 0.93 for developed site) d = storm depth (inches) = 0.75" A= tributary area (ac) = 1.92 acres After Development: V = (0.75 x .93 imp + 0.15) x 0.75" x 1.92 ac x 43560 sf/ac x (1/12) in/ft = 4,430 cf DMA#2 Project area will be left natural or replanted and irrigated with drought tolerant material, but is not part of the drainage runoff of the proposed project.

IV.2. Site Design and Drainage

The proposed condition will take the runoff that is flowing into the southerly residential area and capture by v-ditch and carry it to Fairmont where it will outlet and flow into the City Storm Drain System. The proposed hillside grading and project pad will drain to the proposed driveway and flow out to Fairmont Blvd.

The storm runoff will be collected via roof drains and area drains and it will flow down the hill and outlet into the proposed driveway which will flow into a BioClean Modular Wetland System (Model No. MWS-L-8-12-C) for biofiltration treatment before flowing into the existing v-ditch on the south side of the property and out-letting into Fairmont Blvd.

The BioClean Modular Wetland System will treat the entire design capture volume.

See BMP Exhibit for storm drain and BioClean Modular Wetland System,

(Model No. MWS-L-8-12-C)

GIS Coordinates for BioClean Modular Wetland System: Latitude: N 33° 54' 21"

Longitude: W 117° 46' 05"

IV.3 LID BMP Selection and Project Conformance Analysis

IV.3.1 Hydrologic Source Controls (HSCs)

Name	Included?
Localized on-lot infiltration	
Impervious area dispersion (e.g. roof top disconnection)	
Street trees (canopy interception)	
Residential rain barrels (not actively managed)	
Green roofs/Brown roofs	
Blue roofs	
Impervious area reduction (e.g. permeable pavers, site design)	
Other:	

Hydrologic Source Controls are not required with this project type.

IV.3.2 Infiltration BMPs

Name	Included?
Bioretention without underdrains	
Rain gardens	
Porous landscaping	
Infiltration planters	
Retention swales	
Infiltration trenches	
Infiltration basins	
Drywells	
Subsurface infiltration galleries	
French drains	
Permeable asphalt	
Permeable concrete	
Permeable concrete pavers	
Other:	
Other:	

Per the Geotechnical Engineer's Report Recommendations, infiltration will have a risk of affecting building foundations, slabs, slope stability, hardscape, pavements and other site improvements due to the physical characteristics of the site earth materials.

IV.3.3 Evapotranspiration, Rainwater Harvesting BMPs

Name	Included?
All HSCs; See Section IV.3.1	
Surface-based infiltration BMPs	
Biotreatment BMPs	
Above-ground cisterns and basins	
Underground detention	
Other:	
Other:	
Other:	

Per Worksheet J in Appendix, there is not enough irrigated landscape area to meet the volume required to drawdown the design capture volume through a drip irrigation system with drought tolerant landscaping proposed.

IV.3.4 Biotreatment BMPs

Name	Included?
Bioretention with underdrains	
Stormwater planter boxes with underdrains	
Rain gardens with underdrains	
Constructed wetlands	
Vegetated swales	
Vegetated filter strips	
Proprietary vegetated biotreatment systems	\boxtimes
Wet extended detention basin	
Dry extended detention basins	
Other:	
Other:	

The proposed BioClean Modular Wetlands Systems (Model No. MWS-L-8-12-C) will treat the design capture volume (85th percentile storm) of 4,430 c.f. and will filter the water to remove pollutants.

The removal efficiencies include:

Total Phosphorus - 64% removal rate

Metals (Cu, Zn, Pb) - 69% removal rate

Total Suspended Solids - 85% removal rate

Organics - 90% removal rate

Bacteria - 90% removal rate

Not applicable to project type

IV.3.5 Hydromodification Control BMPs

Hydromodification Control BMPs			
BMP Name	BMP Description		

Not Applicable to Project Type

IV.3.6 Regional/Sub-Regional LID BMPs

Not applicable to project type

IV.3.7 Treatment Control BMPs

Treatment Control BMPs			
BMP Name	BMP Description		

Not Applicable to Project Type

IV.3.8 Non-structural Source Control BMPs

Non-Structural Source Control BMPs				
			ck One	If not applicable, state brief
Identifier	Name	Included	Not Applicable	reason
N1	Education for Property Owners, Tenants and Occupants	\boxtimes		
N2	Activity Restrictions			Not applicable to project type
N3	Common Area Landscape Management			
N4	BMP Maintenance			
N5	Title 22 CCR Compliance (How development will comply)			Not applicable to project type
N6	Local Industrial Permit Compliance			Not applicable to project type
N7	Spill Contingency Plan			Not applicable to project type
N8	Underground Storage Tank Compliance			Not applicable to project type
N9	Hazardous Materials Disclosure Compliance			Not applicable to project type
N10	Uniform Fire Code Implementation			Not applicable to project type
N11	Common Area Litter Control			
N12	Employee Training			Not applicable to project type
N13	Housekeeping of Loading Docks			Not applicable to project type
N14	Common Area Catch Basin Inspection			
N15	Street Sweeping Private Streets and Parking Lots			Not applicable to project type
N16	Retail Gasoline Outlets			Not applicable to project type

IV.3.9 Structural Source Control BMPs

Structural Source Control BMPs				
		Chec	k One	If not applicable, state brief
Identifier	Name	Included	Not Applicable	reason
S1	Provide storm drain system stenciling and signage			
S2	Design and construct outdoor material storage areas to reduce pollution introduction			Not applicable to project type
S3	Design and construct trash and waste storage areas to reduce pollution introduction			Not applicable to project type
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control			
S5	Protect slopes and channels and provide energy dissipation			
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)			
S6	Dock areas			Not applicable to project type
S7	Maintenance bays			Not applicable to project type
S8	Vehicle wash areas			Not applicable to project type
S9	Outdoor processing areas			Not applicable to project type
S10	Equipment wash areas			Not applicable to project type
S11	Fueling areas			Not applicable to project type
S12	Hillside landscaping			Not applicable to project type
S13	Wash water control for food preparation areas			Not applicable to project type
S14	Community car wash racks			Not applicable to project type

IV.4 Alternative Compliance Plan (If Applicable)

Not applicable to project type

IV.4.1 Water Quality Credits

Not applicable to project type

Description of Proposed Project					
Project Types that Qu	Project Types that Qualify for Water Quality Credits (Select all that apply):				
Redevelopment projects that reduce the overall impervious footprint of the project site.	Brownfield redevelopment, meaning redevelopment, expansion, or reuse of real property which may be complicated by the presence or potential presence of hazardous substances, pollutants or contaminants, and which have the potential to contribute to adverse ground or surface WQ if not redeveloped.		Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance).		
Mixed use developmen combination of residential industrial, office, institution uses which incorporate de can demonstrate environm would not be realized throup projects (e.g. reduced vehing the potential to reduce soup pollution).	, commercial, onal, or other land sign principles that nental benefits that ough single use cle trip traffic with	at transportation; similar to abo t where the development center half mile of a mass transit cer light rail or commuter train s projects would not be able to both categories, but may have		nmercial area s to public ove criterion, but ter is within one enter (e.g. bus, rail, station). Such o take credit for	Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).
Developments with dedication of undeveloped portions to parks, preservation areas and other pervious uses.	Developments in a city center area.	assigned Image: Construct of the system of the sy		In-fill projects, the conversion of empty lots and other underused spaces into more beneficially used spaces, such as residential or commercial areas.	

Calculation of	
Water Quality	
Credits	
Calculation of Water Quality Credits (if applicable)	

IV.4.2 Alternative Compliance Plan Information

Not applicable to project type

Section V Inspection/Maintenance Responsibility for BMPs

BMP Inspection/Maintenance					
ВМР	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities		
N1 -Education for Property Owners, Tenants and Occupants	Hilltop 3 Development, LLC	Train employees on storm water protection activities. (Education materials in appendix B or other resources will be used.)	Upon hire and annually thereafter		
N3 - Common Area Landscape Management	Hilltop 3 Development, LLC	Maintain landscaping, with low drought tolerant plant life. Test irrigation controls.	Maintain weekly. Monthly testing.		
N4 - BMP Maintenance	Hilltop 3 Development, LLC	Inspect BMPs, catchbasin and storm drain to insure no build up or pollutants.	Before the rainy season and before and after rain events.		
N11 - Common Area Litter Control	Hilltop 3 Development, LLC	Clean up litter when seen onsite and keep trash enclosure clean. Keep lids secure.	Daily		

BMP Inspection/Maintenance					
ВМР	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities		
N14 - Common Area Catch Basin Inspection	Hilltop 3 Development, LLC	Inspect and clean for debris and sediment.	Before and after rainy season and before and after rain events.		
S1 - Provide Storm Drain System Stencilling and Signage	Hilltop 3 Development, LLC	Paint, or use permanent placard with statement "NO DUMPING - DRAINS TO OCEAN".	Inspect annually to maintain legibility		
S4 - Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	Hilltop 3 Development, LLC	Visual Maintenance and Repair	Inspect weekly to ensure irrigation is working properly		
S5 - Protect slopes and channels and provide energy dissipation	Hilltop 3 Development, LLC	Visual Maintenance and Repair	Before and after rainy season and before and after rain events.		

1			I
BioClean Modular	Hilltop 3	Follow	
Wetland System	Development, LLC	Manufacturer's	
(Model No. MWS-L-	-	Maintenance	
4-8-V)		Guidelines in	
		Appendix D	
		rippendix D	
		Remove Trash from	Errome (to 1) months
		Screening Device	Every 6 to 12 months
		Trim Vegetation	Every 6 to 12 months
		0	
			Every 12 to 24
		Remove Sediment	months
		from Separation	monuns
		Chamber	
		Replace Cartridge	Every 12 to 24
		Filter Media	months
			111011115
		Replace Down Drain	
		Filter Media	Every 12 to 24
		ritter ivieula	months

Section VI BMP Exhibit (Site Plan)

VI.1 BMP Exhibit (Site Plan)

See WQMP Exhibit in Appendix

VI.2 Submittal and Recordation of Water Quality Management Plan

See WQMP Exhibit in Appendix

Section VII Educational Materials

Education Materials				
Residential Material (http://www.ocwatersheds.com)	Check If Applicable	Business Material (http://www.ocwatersheds.com)	Check If Applicable	
The Ocean Begins at Your Front Door	\boxtimes	Tips for the Automotive Industry		
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar		
Tips for the Home Mechanic	\boxtimes	Tips for the Food Service Industry		
Homeowners Guide for Sustainable Water Use	\boxtimes	Proper Maintenance Practices for Your Business		
Household Tips	\boxtimes		Check If	
Proper Disposal of Household Hazardous Waste	\boxtimes	Other Material	Attached	
Recycle at Your Local Used Oil Collection Center (North County)				
Recycle at Your Local Used Oil Collection Center (Central County)	\boxtimes			
Recycle at Your Local Used Oil Collection Center (South County)				
Tips for Maintaining a Septic Tank System				
Responsible Pest Control	\boxtimes			
Sewer Spill	\boxtimes			
Tips for the Home Improvement Projects	\boxtimes			
Tips for Horse Care				
Tips for Landscaping and Gardening	\boxtimes			
Tips for Pet Care	\boxtimes			
Tips for Pool Maintenance	\boxtimes			
Tips for Residential Pool, Landscape and Hardscape Drains	\boxtimes			
Tips for Projects Using Paint				

Appendix A

Tips for Projects Using Paint

Paint can cause significant damage to our environment. Whether you hire a contractor or do it yourself, it is important to follow these simple tips when purchasing, using, cleaning, storing and disposing of paint.

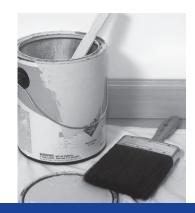
Purchasing Paint

- Measure the room or object to be painted, then buy only the amount needed.
- Whenever possible, use water-based paint since it usually does not require hazardous solvents such as paint thinner for cleanup.

Painting

- Use only one brush or roller per color of paint to reduce the amount of water needed for cleaning.
- Place open paint containers or trays on a stable surface and in a position that is unlikely to spill.
- Always use a tarp under the area or object being painted to collect paint drips and contain spills.

Cleaning


- Never clean brushes or rinse paint containers in the street, gutter or storm drain.
- For oil-based products, use as much of the paint on the brushes as possible. Clean brushes with thinner. To reuse thinner, pour it through a fine filter (e.g. nylon, metal gauze or filter paper) to remove solids such as leftover traces of paint.
- For water-based products, use as much of the paint on the brushes as possible, then rinse in the sink.
- Collect all paint chips and dust. Chips and dust from marine paints or paints containing lead, mercury or tributyl tin are hazardous waste. Sweep up and dispose of at a Household Hazardous Waste Collection Center (HHWCC).

Storing Paint

- Store paint in a dry location away from the elements.
- Store leftover water-based paint, oil-based paint and solvents separately in original or clearly marked containers.
- Avoid storing paint cans directly on cement floors. The bottom of the can will rust much faster on cement.
- Place the lid on firmly and store the paint can upsidedown to prevent air from entering. This will keep the paint usable longer. Oil-based paint is usable for up to 15 years. Water-based paint remains usable for up to 10 years.

Alternatives to Disposal

- Use excess paint to apply another coat, for touch-ups, or to paint a closet, garage, basement or attic.
- Give extra paint to friends or family. Extra paint can also be donated to a local theatre group, low-income housing program or school.
- Take extra paint to an exchange program such as the "Stop & Swap" that allows you to drop off or pick up partially used home care products free of charge.
 "Stop & Swap" programs are available at most HHWCCs.
- For HHWCC locations and hours, call (714) 834-6752 or visit www.oclandfills.com.

Disposing of Paint

Never put wet paint in the trash.

For water-based paint:

- If possible, brush the leftover paint on cardboard or newspaper. Otherwise, allow the paint to dry in the can with the lid off in a well-ventilated area protected from the elements, children and pets. Stirring the paint every few days will speed up the drying.
- Large quantities of extra paint should be taken to a HHWCC.
- Once dried, paint and painted surfaces may be disposed of in the trash. When setting a dried paint can out for trash collection, leave the lid off so the collector will see that the paint has dried.

For oil-based paint:

Oil-based paint is a household hazardous waste. All leftover paint should be taken to a HHWCC.

Aerosol paint:

Dispose of aerosol paint cans at a HHWCC.

Spills

- Never hose down pavement or other impermeable surfaces where paint has spilled.
- Clean up spills immediately by using an absorbent material such as cat litter. Cat litter used to clean water-based paint spills can be disposed of in the trash. When cleaning oil-based paint spills with cat litter, it must be taken to a HHWCC.
- Immediately report spills that have entered the street, gutter or storm drain to the County's 24-Hour Water Pollution Problem Reporting Hotline at (714) 567-6363 or visit www.ocwatersheds.com to fill out an incident reporting form.

The Ocean Begins at Your Front Door

Follow these simple steps to help reduce water pollution:

Household Activities

- Do not rinse spills with water. Use dry cleanup methods such as applying cat litter or another absorbent material, sweep and dispose of in the trash. Take items such as used or excess batteries, oven cleaners, automotive fluids, painting products and cathode ray tubes, like TVs and computer monitors, to a Household Hazardous Waste Collection Center (HHWCC).
- For a HHWCC near you call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveway, sidewalk or patio to the street, gutter or storm drain. Sweep up debris and dispose of it in the trash.

Automotive

- Take your vehicle to a commercial car wash whenever possible. If you wash your vehicle at home, choose soaps, cleaners, or detergents labeled non-toxic, phosphate- free or biodegradable. Vegetable and citrus-based products are typically safest for the environment.
- Do not allow washwater from vehicle washing to drain into the street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewer (through a sink or toilet) or onto an absorbent surface like your lawn.
- Monitor your vehicles for leaks and place a pan under leaks. Keep your vehicles well maintained to stop and prevent leaks.
- Never pour oil or antifreeze in the street, gutter or storm drain. Recycle these substances at a service station, a waste oil collection center or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.1800cleanup.org.

Pool Maintenance

- Pool and spa water must be dechlorinated and free of excess acid, alkali or color to be allowed in the street, gutter or storm drain.
- When it is not raining, drain dechlorinated pool and spa water directly into the sanitary sewer.
- Some cities may have ordinances that do not allow pool water to be disposed of in the storm drain. Check with your city.

Landscape and Gardening

- Do not over-water. Water your lawn and garden by hand to control the amount of water you use or set irrigation systems to reflect seasonal water needs. If water flows off your yard onto your driveway or sidewalk, your system is over-watering. Periodically inspect and fix leaks and misdirected sprinklers.
- Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Instead, dispose of waste by composting, hauling it to a permitted landfill, or as green waste through your city's recycling program.
- Follow directions on pesticides and fertilizer, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Take unwanted pesticides to a HHWCC to be recycled. For locations and hours of HHWCC, call (714) 834-6752 or visit www.oclandfills.com.

Trash

- Place trash and litter that cannot be recycled in securely covered trash cans.
- Whenever possible, buy recycled products.
- Remember: Reduce, Reuse, Recycle.

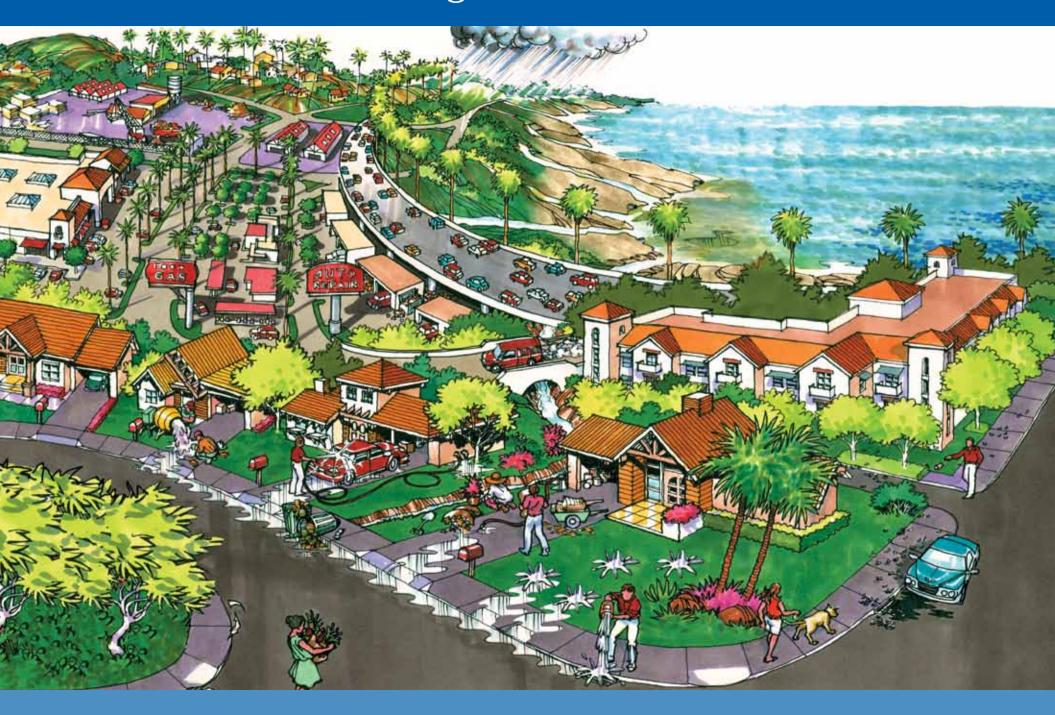
Pet Care

- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash. Pet waste, if left outdoors, can wash into the street, gutter or storm drain.
- If possible, bathe your pets indoors. If you must bathe your pet outside, wash it on your lawn or another absorbent/permeable surface to keep the washwater from entering the street, gutter or storm drain.
- Follow directions for use of pet care products and dispose of any unused products at a HHWCC.

Common Pollutants

Home Maintenance

- Detergents, cleaners and solvents
- Oil and latex paint
- Swimming pool chemicals
- Outdoor trash and litter


Lawn and Garden

- Pet and animal waste
- Pesticides
- Clippings, leaves and soil
- Fertilizer

Automobile

- Oil and grease
- Radiator fluids and antifreeze
- Cleaning chemicals
- Brake pad dust

The Ocean Begins at Your Front Door

Never allow pollutants to enter the street, gutter or storm drain!

Did You Know?

- Most people believe that the largest source of water pollution in urban areas comes from specific sources such as factories and sewage treatment plants. In fact, the largest source of water pollution comes from city streets, neighborhoods, construction sites and parking lots. This type of pollution is sometimes called "non-point source" pollution.
- There are two types of non-point source pollution: stormwater and urban runoff pollution.
- Stormwater runoff results from rainfall. When rainstorms cause large volumes of water to rinse the urban landscape, picking up pollutants along the way.
- Urban runoff can happen any time of the year when excessive water use from irrigation, vehicle washing and other sources carries trash, lawn clippings and other urban pollutants into storm drains.

Where Does It Go?

- Anything we use outside homes, vehicles and businesses – like motor oil, paint, pesticides, fertilizers and cleaners – can be blown or washed into storm drains.
- A little water from a garden hose or rain can also send materials into storm drains.
- Storm drains are separate from our sanitary sewer systems; unlike water in sanitary sewers (from sinks or toilets), water in storm drains is not treated before entering our waterways.

Sources of Non-Point Source Pollution

- Automotive leaks and spills.
- Improper disposal of used oil and other engine fluids.
- Metals found in vehicle exhaust, weathered paint, rust, metal plating and tires.
- Pesticides and fertilizers from lawns, gardens and farms.
- Improper disposal of cleaners, paint and paint removers.
- Soil erosion and dust debris from landscape and construction activities.
- Litter, lawn clippings, animal waste, and other organic matter.
- Oil stains on parking lots and paved surfaces.

The Effect on the Ocean

Non-point source pollution can have a serious impact on water quality in Orange County. Pollutants from the storm drain system can harm marine life

as well as coastal and wetland habitats. They can also degrade recreation areas such as beaches, harbors and bays.

Stormwater quality management programs have been developed throughout Orange County to educate and encourage the public to protect water quality, monitor runoff in the storm drain system, investigate illegal dumping and maintain storm drains.

Support from Orange County residents and businesses is needed to improve water quality and reduce urban runoff pollution. Proper use and disposal of materials will help stop pollution before it reaches the storm drain and the ocean.

For More Information

California Environmental Protection Agency www.calepa.ca.gov

- Air Resources Board www.arb.ca.gov
- Department of Pesticide Regulation
 www.cdpr.ca.gov
- Department of Toxic Substances Control
 www.dtsc.ca.gov
- Integrated Waste Management Board www.ciwmb.ca.gov
- Office of Environmental Health Hazard Assessment www.oehha.ca.gov
- State Water Resources Control Board www.waterboards.ca.gov

Earth 911 - Community-Specific Environmental Information 1-800-cleanup or visit www.1800cleanup. org

Health Care Agency's Ocean and Bay Water Closure and Posting Hotline

(714) 433-6400 or visit www.ocbeachinfo.com

Integrated Waste Management Dept. of Orange

County (714) 834-6752 or visit www.oclandfills.com for information on household hazardous waste collection centers, recycling centers and solid waste collection

O.C. Agriculture Commissioner

(714) 447-7100 or visit www.ocagcomm.com

Stormwater Best Management Practice Handbook Visit www.cabmphandbooks.com

UC Master Gardener Hotline

(714) 708-1646 or visit www.uccemg.com

The Orange County Stormwater Program has created and moderates an electronic mailing list to facilitate communications, take questions and exchange ideas among its users about issues and topics related to stormwater and urban runoff and the implementation of program elements. To join the list, please send an email to ocstormwaterinfo-join@list.ocwatersheds.com

Orange County Stormwater Program

	105 0505
Aliso Viejo	425-2535
Anaheim Public Works Operations (714)	765-6860
Brea Engineering	990-7666
Buena Park Public Works	562-3655
Costa Mesa Public Services	754-5323
Cypress Public Works	229-6740
Dana Point Public Works	248-3584
Fountain Valley Public Works	593-4441
Fullerton Engineering Dept	738-6853
Garden Grove Public Works	741-5956
Huntington Beach Public Works (714)	536 - 5431
Irvine Public Works	724-6315
La Habra Public Services	905-9792
La Palma Public Works	690-3310
Laguna Beach Water Quality	497-0378
Laguna Hills Public Services	707-2650
Laguna Niguel Public Works	362-4337
Laguna Woods Public Works	639-0500
Lake Forest Public Works	461-3480
Los Alamitos Community Dev (562)	431-3538
Mission Viejo Public Works	470-3056
Newport Beach, Code & Water	
Quality Enforcement	644-3215
Orange Public Works	532-6480
Placentia Public Works	993-8245
Rancho Santa Margarita	635-1800
San Clemente Environmental Programs (949)	361-6143
San Juan Capistrano Engineering (949)	234-4413
Santa Ana Public Works	647-3380
Seal Beach Engineering	2527 x317
Stanton Public Works	
Tustin Public Works/Engineering (714)	573-3150
Villa Park Engineering	998-1500
Westminster Public Works/Engineering (714) 898-5	3311 x446
Yorba Linda Engineering	961-7138
Orange County Stormwater Program (877)	897-7455
Orange County 24-Hour	
Water Pollution Problem Reporting Hotline	2º
1-877-89-SPILL (1-877-897-7455)	

On-line Water Pollution Problem Reporting Form

www.ocwatersheds.com

Help Prevent Ocean Pollution:

lean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, not properly disposing of used oil is illegal and can lead to fines. If you pour or drain oil onto driveways, sidewalks or streets, it can be washed into the storm drain.

Help prevent water pollution by taking your used oil and oil filters to a used oil collection center. Most major automotive maintenance centers will accept up to five gallons of used motor oil at no cost. For a list of locations, please visit www.cleanup.org. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com.

For information about the proper disposal of household hazardous waste, call the **Household Waste Hotline** at 1-877-89-SPILL (1-877-897-7455) or visit www.oclandfills.com.

For additional information about the nearest oil recycling center, call the **Used Oil Program** at **1-800-CLEANUP** or visit www.cleanup.org.

emc/rev9/08

Tips for the Home Mechanic

The Ocean Begins at Your Front Door

Tips for the Home Mechanic

WORK SITE

- Locate the storm drains on or near your property. Do not allow used oil or any materials to flow into these drains.
- Examine your home for sources of pollution.
- Perform automotive projects under cover and in a controlled area to prevent stormwater runoff.
- Sweep or vacuum your automotive workspace regularly
- Use a
 damp mop
 to clean
 work areas.
 Never
 hose down
 surfaces
 into the

street, gutter or storm drain.

• Pour mop water into a sink or toilet. Never dispose of water in a parking lot, street, gutter or storm drain.

PREVENT LEAKS AND SPILLS

- Keep absorbent materials such as rags and/or cat litter in the work area
- Empty drip pans into a labeled, seal container before they are full
- Wipe up any spills or repair leaks as they happen. Don't let them sit.
- Place large pans under any wrecked cars until all fluids are drained.
- Promptly dispose of collected fluids into a hazardous waste drum or deliver them to an oil recycling center. Used oil recycling locations can be found at http://www.ochealthinfo.com/regulatory/usedoil.htm

CLEANING SPILLS

• Clean up spills immediately by using absorbent material such as rags, cat litter

or sand. If the material spilled is hazardous, dispose of the rag, litter or sand in the same manner as hazardous

waste. If the material spill is nonhazardous, dispose of it in the trash.

• Immediately report spills that have entered the street, gutter or storm

drain to the County's 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com to fill out an incident report.

• Report emergencies to 911.

VEHICLE FLUID MANAGEMENT

- Vehicle fluids are hazardous waste and must be stored and disposed of in accordance with all local, state and federal laws.
- Designate an area to drain vehicle fluids away from storm drains and sanitary drains.
- When possible, drain vehicle fluids indoors or within covered areas, and only over floors that are constructed

of a nonporous material such as concrete. Asphalt and dirt floors

absorb spilled or leaked fluids, making the cleanup extremely difficult.

The Pollution Solution

Several residential activities can result in water pollution. Among these activities are car washing and hosing off driveways and sidewalks. Both activities can waste water and result in excess runoff. Water conservation methods described in this pamphlet can prevent considerable amounts of runoff and conserve water. By taking your car to a commercial car wash and by sweeping driveways and sidewalks, you can further prevent the transport of pollutants to Orange County waterways. Here are some of the common pollutants for which you can be part of the solution:

Pesticides and Fertilizer

Pollution: The same pesticides that are designed to be toxic to pests can have an equally leth impact on our marine life. The same fertilizer that promotes pla growth in lawns and gardens can also create nuisance alga blooms, which remove oxyger from the water and clog waterwa when it decomposes.

• **Solution:** Never use pesticides or fertilizer within 48 hours of an anticipated rainstorm. Use only as much as is directed on the label and keep it off driveways and

2 Dirt and Sediment

- **Pollution:** Dirt or sediment can impede the flow of the stormwater and negatively impact stream habitat as it travels through waterways and deposits downstream. Pollutants can attach to sediment, which can then be transported through our waterways.
- **Solution:** Protect dirt stockpiles by covering them with tarps or secure plastic sheets to prevent wind or rain from allowing dirt or sediment to enter the storm drain system.

- **Pollution:** Metals and other toxins present in car wash water can harm important plankton, which forms the base of the aquatic food chain.
- Solution: Take your car to a commercial car wash where the wash water is captured and treated at a local wastewater treatment plant.

DID YOU KNOW?

Did you know that most of the pollution found in our waterways is not from a single source, but from a "nonpoint" source meaning the accumulation of pollution from residents and businesses throughout the community

Pet Waste

- **Pollution:** Pet waste carries bacteria through our watersheds and eventually will be washed out to the ocean. This can pose a health risk to swimmers and surfers.
- **Solution:** Pick up after your pets!

ash and Debris

Pollution: Trash and debris can enter waterways by wind, littering and careless maintenance of trash receptacles. Street sweeping collects some of this trash however, much of what isn't captured ends up in our storm

drain system where it flows untreated out to the

Solution: Don't litter and make sure trash containers are properly covered. It is far more expensive to clean up the litter and trash that ends up in our waterways than it is to prevent it in the first place. Come out to one of Orange County's many locations for Coastal and Inner-Coastal Cleanup Day, which is held in September.

Motor Oil / Vehicle Fluids

- **Pollution:** Oil and petroleum products from our vehicles are toxic to people, wildlife and plants.
- Solution: Fix any leaks from your vehicle and keep the maintenance up on your car. Use absorbent material such as cat litter on oil spills then sweep it up and dispose of it in the trash.

at a local Household Hazardous Waste Collection Center.

A TEAM EFFORT

pamphlet.

Low Impact Development (LID) and sustainable water use prevents water pollution and conserves water for drinking and reuse. Reducing your water use and the amount of water flowing from your home protects the environment and saves you money.

Thank you for making water protection a priority!

For more information. olease visit www.ocwatersheds. com/publiced/

www.mwdoc.com

www.uccemg.com

To report a spill, call the Orange County 24-Hour Water Pollution Prevention Reporting Hotline at 1-877-89-SPILL \ (1-877-897-7455)

Special Thanks to

The Metropolitan Water District of Southern California for the use of the California-Friendly Plant and Native Habitat photos

The Orange County Stormwater Program has teamed with the Municipal Water District of Orange County (MWDOC) and the University of California Cooperative Extension Program (UCCE) to develop this

The City of Los Angeles Stormwater Program for the use of its artwork

& Pollution Prevention

-

The Ocean Begins at Your Front Door

RUNOFF, RAINWATER AND REUSE

Where Does Water Runoff Go?

Stormwater, or water from rainfall events, and runoff from outdoor water use such as sprinklers and hoses flows from homes directly into catch basins and the storm drain system. After entering the storm drain, the water flows untreated into streams, rivers, bays and ultimately the Pacific Ocean. Runoff can come from lawns, gardens, driveways, sidewalks and roofs. As it flows over hard, impervious surfaces, it picks up pollutants. Some pollutants carried by the water runoff include trash, pet waste, pesticides, fertilizer, motor oil and more.

Water Conservation

Pollution not only impairs the water quality for habitat and recreation, it can also reduce the water available for reuse. Runoff allowed to soak into the ground is cleaned as it percolates through the soil, replenishing depleted groundwater supplies. Groundwater provides at least 50% of the total water for drinking and other indoor household activities in north and central Orange County. When land is covered with roads, parking lots, homes, etc., there is less land to take in the water and more hard surfaces over which the water can flow.

In Orange County, 60-70% of water used by residents and businesses goes to irrigation and other outdoor uses. Reusing rainwater to irrigate our lawn not only reduces the impact of water pollution from runoff, but it also is a great way to conserve our precious water resources and replenish our groundwater basin.

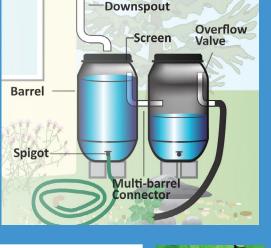
What is Low Impact Development (LID)?

Low Impact Development (LID) is a method of development that seeks to maintain the natural hydrologic character of an area. LID provides a more sustainable and pollution-preventative approach to water management.

New water quality regulations require implementation of LID in larger new developments and encourage implementation of LID and other sustainable practices in existing residential areas. Implementing modifications to your lawn or garden can reduce pollution in our environment, conserve water and reduce your water bill.

Permeable pavement allows wate runoff to infiltrate through the soil and prevents most pollutants from eaching the storm drain system.

OPTIONS FOR RAINWATER HARVESTING AND REUSE


Rainwater harvesting is a great way to save money, prevent pollution and reduce potable water use. To harvest your rainwater, simply redirect the runoff from roofs and downspouts to rain barrels. Rain gardens are another option; these reduce runoff as well as encourage infiltration.

Downspout **Disconnection/Redirection**

Disconnecting downspouts from pipes running to the gutter prevents runoff from transporting pollutants to the storm drain. Once disconnected, downspouts can be redirected to rain gardens or other vegetated areas, or be connected to a rain barrel.

Rain Barrels

Rain barrels capture rainwater flow from roofs for reuse in landscape irrigation. Capacity of rain barrels needed for your home will depend on the amount of roof area and rainfall received. When purchasing your rain barrel, make sure it includes a screen, a spigot to siphon water for use, an overflow tube to allow for excess water to run out and a connector if

you wish to connect multiple barrels to add capacity of water storage.

Mosquito growth prevention is very important when installing a rain barrel. The best way to prevent mosquito breeding is to eliminate entry points by ensuring all openings are sealed tightly. If these methods are unsuccessful, products are available to kill mosquito larvae, but that are harmless to animals and humans. Regular application of these products is essential. Please visit the Orange County Vector Control website for more information at www.ocvcd.org/mosquitoes3.php.

Rain Gardens

Rain gardens allow runoff to be directed from your roof downspout into a landscaped area. Vegetation and rocks in the garden will slow the flow of water to allow for infiltration into the soil. Plants and soil particles will absorb pollutants from the roof runoff. By utilizing a native plant palate, rain gardens can be maintained all year with minimal additional irrigation. These plants are adapted to the semi-arid climate of Southern California, require less water and can reduce your water bill.

Before modifying your yard to install a rain garden, please consult your local building and/or planning departments to ensure your garden plan follows pertinent building codes and ordinances. Besides codes and ordinances, some home owner associations also have guidelines for yard modifications. If your property is in hill areas or includes engineered slopes, please seek

professional advice before proceeding with changes.

For information on how to disconnect a downspout or to install and maintain a rain barrel or rain garden at your home, please see the Los Angeles Rainwater Harvesting Program, A Homeowner's "How-To" Guide, November 2009 at www.larainwaterharvesting.org/

OTHER WATER CONSERVATION AND POLLUTION PREVENTION TECHNIQUES

Native Vegetation and Maintenance

"California Friendly" plants or native vegetation can significantly reduce water use. These plants often require far less fertilizers and pesticides, which are two significant pollutants found in Orange County waterways. Replacing water "thirsty" plants and grass types with water efficient natives is a great way to save water and reduce the need for potentially harmful pesticides and fertilizer.

Please see the California Friendly Garden Guide produced by the Metropolitan Water District of Southern California and associated Southern California Water Agencies for a catalog of California friendly plants and other garden resources at www.bewaterwise.com/Gardensoft.

Weed Free Yards

Weeds are water thieves. They often reproduce quickly and rob your yard of both water and nutrients. Weed your yard by hand if possible. If you use herbicides to control the weeds, use only the amount recommended on the label and never use it if rain is forecast within the next 48 hours.

Soil Amendments

Soil amendments such as green waste (e.g. grass clippings, compost, etc.) can be a significant source of nutrients and can help keep the soil near the roots of plants moist. However, they can cause algal booms if they get into our waterways, which reduces the amount of oxygen in the water and impacts most aquatic organisms. It is important to apply soil amendments more than 48 hours prior to predicted rainfall.

IRRIGATE **EFFICIENTLY**

Smart Irrigation Controllers

rnal clocks as well as sensors nat will turn off the sprinklers

- Aim your sprinklers at your lawn, not the sidewalk –
- **Set a timer for your sprinklers** lawns absorb the water they need to stay healthy within a few sprinklers; when water begins running off your
- Water at Sunrise Watering early in the morning Additionally, winds tend to die down in the early
- Water by hand Instead of using sprinklers, runoff, which wastes water and carries pollutants into our waterways.
- Fix leaks Nationwide, households waste one enough water to serve the entire state of Texas for 00000000

Help Prevent Ocean Pollution:

Do your part to prevent water pollution in our creeks, rivers, bays and ocean.

Clean beaches and healthy creeks, rivers, bays, and ocean are important to Orange County. However, many common household

Remember the Water in Your Storm Drain is Not Treated BEFORE It Enters Our Waterways activities can lead to water pollution if you're not careful.

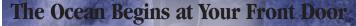
Litter, oil, chemicals and other substances that are left on your yard or driveway can be blown or washed into storm drains that flow to the ocean. Over-watering your lawn and washing your car can also flush materials into the storm

drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated.

You would never pour soap, fertilizers or oil into the ocean, so don't let them enter streets, gutters or storm drains. Follow the easy tips in this brochure to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455)

> or visit www.ocwatersheds.com

To report a spill, call the **Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL** (1-877-897-7455).


For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing everyday household activities. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Household Tips

Pollution Prevention

Household Activities

- Do not rinse spills with water! Sweep outdoor spills and dispose of in the trash. For wet spills like oil, apply cat litter or another absorbent material, then sweep and bring to a household hazardous waste collection center (HHWCC).
- Securely cover trash cans.
- Take household hazardous waste to a household hazardous waste collection center.
- Store household hazardous waste in closed, labeled containers inside or under a cover.
- Do not hose down your driveway, sidewalk or patio. Sweep up debris and dispose of in trash.
- Always pick up after your pet. Flush waste down the toilet or dispose of in the trash.
- Bathe pets indoors or have them professionally groomed.

Household Hazardous Wastes include:

- ▲ Batteries
- ▲ Paint thinners, paint strippers and removers
- ▲ Adhesives
- ▲ Drain openers
- ▲ Oven cleaners
- ▲ Wood and metal cleaners and polishes
- ▲ Herbicides and pesticides
- ▲ Fungicides/wood preservatives
- ▲ Automotive fluids and products
- ▲ Grease and rust solvents
- ▲ Thermometers and other products containing mercury
- ▲ Fluorescent lamps
- ▲ Cathode ray tubes, e.g. TVs, computer monitors

▲ Pool and spa chemicals

Gardening Activities

- Follow directions on pesticides and fertilizers, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Water your lawn and garden by hand to control the amount of water you use. Set irrigation systems to reflect seasonal water needs. If water flows off your yard and onto your driveway or sidewalk, your system is over-watering.
- Mulch clippings or leave them on the lawn. If necessary, dispose in a green waste container.
- Cultivate your garden often to control weeds.

Washing and Maintaining Your Car

- Take your car to a commercial car wash whenever possible.
- Choose soaps, cleaners, or detergents labeled "non-toxic," "phosphate free" or "biodegradable." Vegetable and citrusbased products are typically safest for the environment, but even these should not be allowed into the storm drain.
- Shake floor mats into a trash can or vacuum to clean.

- Do not use acid-based wheel cleaners and "hose off" engine degreasers at home. They can be used at a commercial facility, which can properly process the washwater.
- Do not dump washwater onto your driveway, sidewalk, street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewers (through a sink, or toilet) or onto an absorbent surface like your lawn.
- Use a nozzle to turn off water when not actively washing down automobile.
- Monitor vehicles for leaks and place pans under leaks. Keep your car well maintained to stop and prevent leaks.
- Use cat litter or other absorbents and sweep to remove any materials deposited by vehicles. Contain sweepings and dispose of at a HHWCC.
- Perform automobile repair and maintenance under a covered area and use drip pans or plastic sheeting to keep spills and waste material from reaching storm drains.
- Never pour oil or antifreeze in the street, gutter or storm drains.

Recycle these substances at a service station, HHWCC, or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.ciwmb.ca.gov/UsedOil.

For locations and hours of Household Hazardous Waste Collection Centers in Anabeim, Huntington Beach, Irvine and San Juan Capistrano, call (714)834-6752 or visit www.oclandfills.com.

Do your part to prevent water pollution in our creeks, rivers, bays and ocean.

Clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, not properly disposing of household hazardous waste can lead to water pollution. Batteries, electronics, paint, oil, gardening chemicals, cleaners and other hazardous materials cannot be thrown in the trash. They also must never be poured or thrown into yards, sidewalks, driveways, gutters or streets. Rain or other water could wash the materials into the storm

drain and eventually into our waterways and the ocean. In addition, hazardous waste must not be poured in the sanitary sewers (sinks and toilets).

NEVER DISPOSE OF HOUSEHOLD HAZARDOUS WASTE IN THE TRASH, STREET, GUTTER, STORM DRAIN OR SEWER. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To Report Illegal Dumping of Household Hazardous Waste call 1-800-69-TOXIC

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

Printed on Recycled Paper

Household

Help Prevent Ocean Pollution:

Proper Disposal of

Hazardous Waste

The Ocean Begins at Your Front Door

ORANGE COUNTY

Pollution Prevention

Leftover household products that contain corrosive, toxic, ignitable, or reactive

WHEN POSSIBLE, USE NON-HAZARDOUS OR LESS-HAZARDOUS PRODUCTS. ingredients are considered to be "household hazardous waste" or "HHW." HHW can be found throughout your home, including the bathroom, kitchen, laundry room and garage.

Disposal of HHW down the drain, on the ground, into storm drains, or in the trash is illegal and unsafe.

Proper disposal of HHW is actually easy. Simply drop them off at a Household Hazardous Waste Collection Center (HHWCC) for free disposal and recycling. Many materials including anti-freeze, latexbased paint, motor oil and batteries can be recycled. Some centers have a "Stop & Swap" program that lets you take partially used home, garden, and automobile products free of charge. There are four HHWCCs in Orange County:

Centers are open Tuesday-Saturday, 9 a.m.-3 p.m. Centers are closed on rainy days and major holidays. For more information, call (714) 834-6752 or visit www.oclandfills.com.

Common household hazardous wastes

- Batteries
- Paint and paint products
- Adhesives
- Drain openers
- Household cleaning products
- Wood and metal cleaners and polishes
- Pesticides
- Fungicides/wood preservatives
- Automotive products (antifreeze, motor oil, fluids)
- Grease and rust solvents
- Fluorescent lamps
- Mercury (thermometers & thermostats)
- All forms of electronic waste including computers and microwaves
- Pool & spa chemicals
- Cleaners
- Medications
- Propane (camping & BBQ)
- Mercury-containing lamps

Television & monitors (CRTs, flatscreens)

Tips for household hazardous waste

- Never dispose of HHW in the trash, street, gutter, storm drain or sewer.
- Keep these materials in closed, labeled containers and store materials indoors or under a cover.
- When possible, use non-hazardous products.
- Reuse products whenever possible or share with family and friends.
- Purchase only as much of a product as you'll need. Empty containers may be disposed of in the trash.
- HHW can be harmful to humans, pets and the environment. Report emergencies to 911.

Did you know that just one quart of oil can pollute 250,000 gallons of water?

A clean ocean and healthy creeks, rivers, bays and beaches are important to Orange County. However, not properly disposing of used oil can lead to water pollution. If you pour or drain oil onto driveways, sidewalks or streets, it can be washed into the storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering the ocean. Help prevent water pollution by taking your used oil to a used oil collection center.

Included in this brochure is a list of locations that will accept up to five gallons of used motor oil at no cost. Many also accept used oil filters. Please contact the facility before delivering your used oil. This listing of companies is for your reference and does not constitute a recommendation or endorsement of the company.

Please note that used oil filters may not be disposed of with regular household trash. They must be taken to a household hazardous waste collection or recycling center in Anaheim, Huntington Beach, Irvine or San Juan Capistrano. For information about these centers, visit www.oclandfills.com.

Please do not mix your oil with other substances!

For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.watersheds.com.

For information about the proper disposal of household hazardous waste, call the Household Waste Hotline at (714) 834-6752 or visit www.oclandfills.com.

For additional information about the nearest oil recycling center, call the Used Oil Program at 1-800-CLEANUP or visit www.cleanup.org.

Help Prevent Ocean Pollution:

Recycle at Your Local Used Oil Collection Center

The Ocean Begins at Your Front Door

Cont of the

SOUTH COUNTY

Used Oil Collection Centers

ALISO VIEJO

Big O Tires 27812 Aliso Creek Rd, Suite E-100 (949) 362-4225

Econo Lube N' Tune 22932 Glenwood Dr. (949) 643-9667

Jiffy Lube 27832 Aliso Creek Road (949) 362-0005

Pep Boys 26881 Aliso Creek Road (949) 362-9254

DANA POINT

Dana Point Fuel Dock 34661 Puerto Pl. (949) 496-6113

EZ Lube Inc. 34242 Doheny Park Rd. (949) 477-1223

FOOTHILL RANCH

USA Express Tire & Service 26492 Town Center Dr. (714) 826-1001

LAGUNA BEACH

USA Express Tire & Service Inc. 350 Broadway (949) 494-7111

LAKE FOREST

Big O Tires 20742 Lake Forest Dr. (949) 443-4155 EZ Lube 26731 Rancho Parkway (949) 465-9912

Firestone Store 24421 Rockfield Blvd. (949) 581-2660

Jiffy Lube 20781 Lake Forest Dr. (949) 583-0470

Kragen Auto Parts 24601 Raymond Way (949) 829-8292

Pep Boys 22671 Lake Forest Dr. (949) 855-9593

Ryan's Foothill Ranch Transmission 20622 Pascal Way (949) 770-6888

USA Express Tire & Service 24561 Trabuco Rd (949) 454-8001

LAGUNA NIGUEL

Econo Lube N Tune 27912 Forbes Rd. (949) 364-5833

Laguna Niguel Auto Center 26042 Cape Dr. #12 (949) 582-2191

LAGUNA HILLS

David J Phillips Buick 24888 Alicia Pkwy. (949) 831-0434 EZ Lube 24281 Moulton Pkwy. (949) 830-9840

EZ Lube 26921 Moulton Pkwy. (949) 751-3436

Kragen Auto Parts 26562 Moulton Ave. (949) 831-0434

Firestone Store 24196 Laguna Hills Mall (949) 581-4700

MISSION VIEJO

AAA Complete Auto Care & Tire 27913 Center Street (949) 347-8200

Autobahn West 25800 Jeronimo Rd. Suite 401 (949) 770-2312

Auto Zone 22942 Los Alisos (949) 830-8181

Econo Lube & Tune 25902 El Paseo (949) 582-5483

Jiffy Lube 27240 La Paz Rd. (949) 455-0470

Kragen Auto Parts 24510 Alicia Pkwy. (949) 951-9175

Mission Viejo Chevron 27742 Crown Vly. Pkwy. (949) 364-0137 Oilmax 10 Minute Lube 25800 Jeronimo Rd. #300 (949) 859-9271

Ramona Auto Service 27210 La Paz Rd. (949) 583-1233

RANCHO SANTA MARGARITA

Jiffy Lube 23401 Antonio Parkway (949) 589-7447

SAN CLEMENTE

EZ Lube 525 Avenida Pico (949) 940-1850

Kragen Auto Parts 1113 S. El Camino Real (949) 492-9850

Kragen Auto Parts 400 Camino de Estrella (949) 240-9195

San Clemente Car Wash & Oil 1731 N. El Camino Real (949) 847-4924

SAN JUAN CAPISTRANO

Saturn of San Juan Capistrano 33033 Camino Capistrano (949) 248-5411

Texaco Xpress Lube 27201 Ortega Hwy. (949) 489-8008

This information was provided by the County of Orange Integrated Waste Management Department and the California Integrated Waste Management Board (CIWMB).

Before Buying Pest Control Products

- Identify the pest.
- Decide if pest control products are the best control measure or if there are alternatives available.
- Are integrated pest management guidelines available for this pest?
- Read the product label:
 Is the pest listed on the label?
 Is it the best product for the pest?

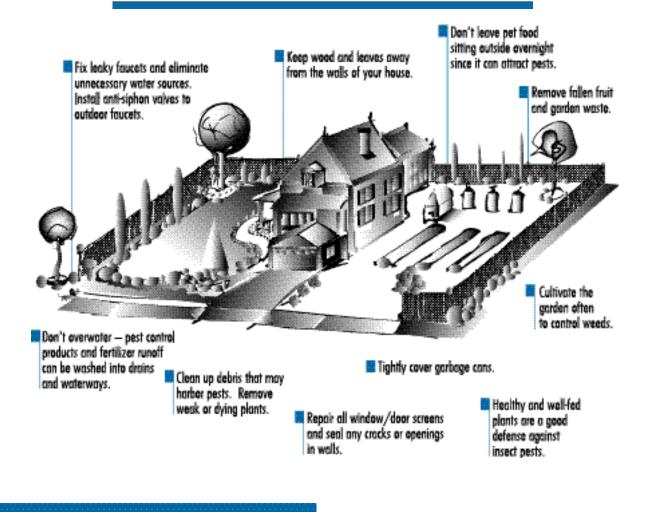
Before Mixing Your Sprayer

- Read the label carefully.
- Buy only enough pesticide to treat the area affected by the pest.
- Check the weather and don't apply if it's windy or about to rain
- Measure the area you're treating.
- Calculate how much spray to mix.
- Wear long sleeve shirt, long pants, shoes and any other protective equipment listed on the label and follow all the label precautions.
- Be prepared for spills and know how to clean them up.

When You're Ready To Spray

- Mix and load spray in an area where any spilled pesticide will not be able to drain or be washed away into storm drains, ditches, streams, ponds or other bodies of water.
- Mix sprayer on grass, not the sidewalk or driveway.
- · Mix only as much as needed.

When You're Spraying


- AVOID spraying in or near storm drains, ditches, streams, and ponds!
- Leave an untreated strip around these areas to protect the water.

When You're done

- Never dump leftovers down any drain; Save for a future application.
- Triple-rinse sprayer and apply rinsewater to treated area.
- Take any old or unwanted pesticides to a Household Hazardous Waste Collection Center (714) 834-6752.

Using Pest Control Products. It's Your Responsibility To Do It Right!

IPM... OUTSMARTING PESTS WHILE PROTECTING WATER

With Integrated Pest Management (IPM), homeowners use common sense and nature to make it difficult for pests to survive. IPM techniques include cultural practices (such as mulching to prevent weeds), encouraging natural enemies (good bugs), and judicious use of pest control products.

- First, identify your pest problem. To find the best solution, you need to pin down the problem. Consult gardening books, your county cooperative extension office or your local nursery.
- Decide how much pest control is necessary. If you can live with some
 pest damage, you can avoid intensive pest control product treatments.

- Choose an effective option. Try various types of controls first: washing bugs off plants, pruning diseased parts of plants. If you need to use pest control products, choose one that targets the problem and poses the least hazard.
- Finally, it's easier to prevent pests than to control them.

Think ahead.

This brochure is being distributed in order to reduce the impacts of pesticides on water quality. It was produced with support from the Orange County Storm Water Program, the Coalition for Urban/Rural Environmental Stewardship (CURES) and a 319(h) grant from the State Water Resources Control Board.

Orange County Storm Water Program Participants:


Orange County Storm Water Program	
Anaheim Public Works/Engineering	
Brea Engineering	(714) 990-7666
Buena Park Public Works	(714) 562-3655
Costa Mesa Public Services	
Cypress Engineering	(714) 229-6752
Dana Point Public Works	
Fountain Valley Public Works	(714) 593-4400 x347
Fullerton Engineering Dept	(714) 738-6853
Garden Grove Development Services	(714) 741-5554
Huntington Beach Public Works	(714) 536-5432
Irvine Public Works	(949)724-6515
La Habra Public Services	(562) 905-9792
La Palma Public Works	. (714) 523-1140 x102
Laguna Beach Municipal Services	
Laguna Hills Engineering	
Laguna Niguel Public Works	
Lake Forest Public Works	(949) 461-3480
Los Alamitos Community Dev	(562) 431-3538 x301
Mission Viejo Public Works	
Newport Beach Public works	(949) 644-3311
Orange Public Works	(714) 744-5551
Placentia Engineering	(714) 993-8131
San Clemente Engineering	
San Juan Capistrano Engineering	(949) 493-1171
Santa Ana Public Works	(714) 647-3380
Seal Beach Engineering	(562) 431-2527 x318
Stanton Public Works	
Tustin Public Works Engineering	(714) 573-3150
Villa Park Engineering	
Westminster Public Works Eng	. (714) 898-3311 x215
Yorba Linda Engineering	
O.C. Storm Water Program1-877-89-5	
24 Hour Water Pollution Hotline	(714) 567-6363 or
ashbyk@	<pre>Deprive provide a state of the state of</pre>
Chemical and Hazardous Material Spill Emerger	icies 911
Other Important Phone Numbers:	
For Additional Brochures1-877-89-8	SPILL (1-877-897-7455)
UC Masters & Coop Extension	(714) 708-1646
ucmastergardeners@yahoo.com	
O.C. Household Hazardous Waste Information	(714) 834-6752
or www.oc.ca.gov/IWMD	
Information on agriculture chemicals, pesticides	
alternatives, O.C. Agriculture Commissioner	(714) 447-7115
Original graphics developed with support from:	
Coalition For Urban/Rural Environmental Stewar	dship (CURES)

Western Crop Protection Association (WCPA) Responsible Industry for a Sound Environment (RISE)

Sewage Spill Regulatory Requirements

Allowing sewage to discharge to a gutter or storm drain may subject you to penalties and/or out-ofpocket costs to reimburse cities or public agencies for clean-up efforts.

Here are the pertinent codes, fines, and agency contact information that apply.

Orange County Stormwater Program 24 Hour Water Pollution Reporting Hotline **1-877-89-SPILL** (1-877-897-7455)

• County and city water quality ordinances prohibit discharges containing pollutants.

Orange County Health Care Agency Environmental Health (714) 433-6419

California Health and Safety Code, Sections 5410-5416

- No person shall discharge raw or treated sewage or other waste in a manner that results in contamination, pollution or a nuisance.
- Any person who causes or permits a sewage discharge to any state waters:
- must immediately notify the local health agency of the discharge.
- shall reimburse the local health agency for services that protect the public's health and safety (water-contact receiving waters).
- who fails to provide the required notice to the local health agency is guilty of a misdemeanor and shall be punished by a fine (between \$500-\$1,000) and/or imprisonment for less than one year.

Regional Water Quality Control Board
Santa Ana Region
(951) 782-4130San Diego Region
(858) 467-2952

 Requires the prevention, mitigation, response to and reporting of sewage spills.

California Office of Emergency Services (800) 852-7550

California Water Code, Article 4, Chapter 4, Sections 13268-13271 California Code of Regulations, Title 23, Division 3, Chapter 9.2, Article 2, Sections 2250-2260

- Any person who causes or permits sewage in excess of 1,000 gallons to be discharged to state waters shall immediately notify the Office of Emergency Services.
- Any person who fails to provide the notice required by this section is **guilty of a misdemeanor** and shall be punished by a fine (less than \$20,000) and/or imprisonment for not more than one year.

Sewage Spill

Reference Guide

Your Responsibilities as a Private Property Owner

Residences Businesses Homeowner/Condominium Associations Federal and State Complexes Military Facilities

Environmental Health www.ocwatersheds.com

This brochure was designed courtesy of the Orange County Sanitation District (OCSD). For additional information, call (714) 962-2411, or visit their website at www.ocsd.com

What is a Sewage Spill?

Sewage spills occur when the wastewater being transported via underground pipes overflows through a manhole, cleanout or broken pipe. Sewage spills can cause health hazards, damage to homes and businesses, and threaten the environment, local waterways and beaches.

Common Causes of Sewage Spills

Grease builds up inside and eventually blocks sewer pipes. Grease gets into the sewer from food establishments, household drains, as well as from poorly maintained commercial grease traps and interceptors.

Structure problems caused by tree roots in the lines, broken/cracked pipes, missing or broken cleanout caps or undersized sewers can cause blockages.

Infiltration and inflow (I/I) impacts pipe capacity and is caused when groundwater or rainwater enters the sewer system through pipe defects and illegal connections.

You Are Responsible for a Sewage Spill Caused by a Blockage or Break in Your Sewer Lines!

Time is of the essence in dealing with sewage spills. You are required to **immediately**:

Control and minimize the spill. Keep spills contained on private property and out of gutters, storm drains and public waterways by shutting off or not using the water.

Use sandbags, dirt and/or plastic sheeting to prevent sewage from entering the storm drain system.

Clear the sewer blockage. Always wear gloves and wash your hands. It is recommended that a plumbing professional be called for clearing blockages and making necessary repairs.

Always notify your city sewer/public works department or public sewer district of sewage spills. If the spill enters the storm drains also notify the Health Care Agency. In addition, if it exceeds 1,000 gallons notify the Office of Emergency Services. Refer to the numbers listed in this brochure.

You Could Be Liable

Allowing sewage from your home, business or property to discharge to a gutter or storm drain may subject you to penalties and/or out-of-pocket costs to reimburse cities or public agencies for clean-up and enforcement efforts. See Regulatory Codes & Fines section for pertinent codes and fines that apply.

What to Look For

Sewage spills can be a very noticeable gushing of water from a manhole or a slow water leak that may take time to be noticed. Don't dismiss unaccounted-for wet areas.

Look for:

- Drain backups inside the building.
- Wet ground and water leaking around manhole lids onto your street.
- · Leaking water from cleanouts or outside drains.
- Unusual odorous wet areas: sidewalks, external walls or ground/landscape around a building.

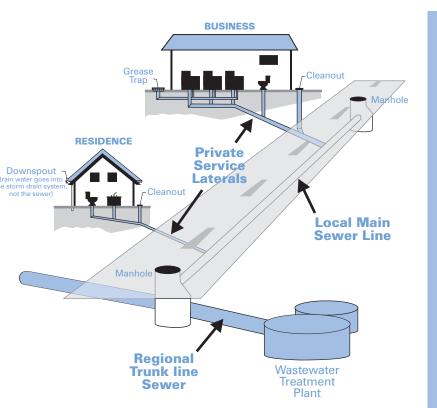
Caution

Keep people and pets away from the affected area. Untreated sewage has high levels of disease-causing viruses and bacteria. Call your local health care agency listed on the back for more information.

If You See a Sewage Spill Occurring, Notify Your City Sewer/Public Works Department or Public Sewer District IMMEDIATELY!

DTP113 Rev 4/06 printed on recycled paper

How a Sewer System Works


A property owner's sewer pipes are called service laterals and are connected to larger local main and regional trunk lines. Service laterals run from the connection at the home to the connection with the public sewer (including the area under the street). These laterals are the responsibility of the property owner and must be maintained by the property owner. Many city agencies have adopted ordinances requiring maintenance of service laterals. Check with your city sewer/local public works department for more information.

Operation and maintenance of **local and regional sewer lines** are the responsibility of the city sewer/public works departments and public sewer districts.

How You Can Prevent Sewage Spills

- **1** Never put grease down garbage disposals, drains or toilets.
- 2 Perform periodic cleaning to eliminate grease, debris and roots in your service laterals.
- **3** Repair any structural problems in your sewer system and eliminate any rainwater infiltration/inflow leaks into your service laterals.

Preventing Grease Blockages

The drain is not a dump! Recycle or dispose of grease properly and never pour grease down the drain.

Homeowners should mix fats, oils and grease with absorbent waste materials such as paper, coffee grounds, or kitty litter and place it in the trash. Wipe food scraps from plates and pans and dump them in the trash.

Restaurants and commercial food service establishments should always use "Kitchen Best Management Practices." These include:

- Collecting all cooking grease and liquid oil from pots, pans and fryers in covered grease containers for recycling.
- Scraping or dry-wiping excess food and grease from dishes, pots, pans and fryers into the trash.
- Installing drain screens on all kitchen drains.
- Having spill kits readily available for cleaning up spills.
- Properly maintaining grease traps or interceptors by having them serviced regularly. Check your local city codes.

Orange County Agency Responsibilites

- City Sewer/Public Works Departments— Responsible for protecting city property and streets, the local storm drain system, sewage collection system and other public areas.
- Public Sewer/Sanitation District— Responsible for collecting, treating and disposing of wastewater.
- County of Orange Health Care Agency— Responsible for protecting public health by closing ocean/bay waters and may close food-service businesses if a spill poses a threat to public health.
- **Regional Water Quality Control Boards** Responsible for protecting State waters.
- Orange County Stormwater Program— Responsible for preventing harmful pollutants from being discharged or washed by stormwater runoff into the municipal storm drain system, creeks, bays and the ocean.

You Could Be Liable for Not Protecting the Environment

Local and state agencies have legal jurisdiction and enforcement authority to ensure that sewage spills are remedied.

They may respond and assist with containment, relieving pipe blockages, and/or clean-up of the sewage spill, especially if the spill is flowing into storm drains or onto public property.

A property owner may be charged for costs incurred by these agencies responding to spills from private properties.

Report Sewage Spills!

City Sewer/Public Works	
Aliso Viejo	(949) 425-2500
Anaheim	(714) 765-6860
Brea	(714) 990-7691
Buena Park	
Costa Mesa	(949) 645-8400
Cypress	
Dana Point	
Fountain Valley	
	1 1
Fullerton	
Garden Grove	
Huntington Beach	
Irvine	
Laguna Beach	
Laguna Hills	
Laguna Niguel	
Laguna Woods	(949) 639-0500
La Habra	
Lake Forest	(949) 461-3480
La Palma	(714) 690-3310
Los Alamitos	(562) 431-3538
Mission Viejo	(949) 831-2500
Newport Beach	
Orange	
Orange County	
Placentia	
Rancho Santa Margarita	
San Clemente.	
San Juan Capistrano	(949) 443-6363
Santa Ana	
Seal Beach.	· · ·
Stanton	· · ·
Tustin	
Villa Park	
Westminster	
Yorba Linda	(/14) 961-/1/0
Public Sewer/Water	Districts
Costa Mesa Sanitary District	
	(949) 645-8400
El Toro Water District	
Emerald Bay Service District	(949) 494-8371
Garden Grove Sanitary District	(/14) /41-53/5
Irvine Ranch Water District	(949) 453-5300
Los Alamitos/Rossmoor Sewer Distric	t (562) 431-2223
Midway City Sanitary District (Westmins	ster) (714) 893-3553
Moulton Niguel Water District	(949) 831-2500

Other Agencies Orange County Health Care Agency (714) 433-6419 Office of Emergency Services (800) 852-7550

Orange County Sanitation District. (714) 962-2411

South Orange County Wastewater Authority (949) 234-5400

Trabuco Canyon Sanitary District (949) 858-0277

lean beaches and healthy creeks, rivers, bays and ocean are important to **Orange County.** However, many common activities can lead to water pollution if you're not careful. Home improvement projects and work sites must be maintained to ensure that building materials do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump building materials into the ocean, so don't let them enter the storm drains. Follow these tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing home improvement projects. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution: Tips for Home Improvement Projects

Tips for Home Improvement Projects

Home improvement projects can cause significant damage to the environment. Whether you hire a contractor or work on the house yourself, it is important to follow these simple tips while renovating, remodeling or improving your home:

General Construction

- Schedule projects for dry weather.
- Keep all construction debris away from the street, gutter and storm drain.
- Store materials under cover with temporary roofs or plastic sheets to eliminate or reduce the possibility that rainfall, runoff or wind will carry materials from the project site to the street, storm drain or adjacent properties.

Building Materials

- Never hose materials into a street, gutter or storm drain.
- Exposed piles of construction material should not be stored on the street or sidewalk.
- Minimize waste by ordering only the amount of materials needed to complete the job.
- Do not mix more fresh concrete than is needed for each project.
- Wash concrete mixers and equipment in a designated washout area where the water can flow into a containment area or onto dirt.
- Dispose of small amounts of dry excess materials in the trash. Powdery waste, such as dry concrete, must be properly contained within a box or bag prior to disposal. Call your local trash hauler for weight and size limits.

Paint

- Measure the room or object to be painted, then buy only the amount needed.
- Place the lid on firmly and store the paint can upsidedown in a dry location away from the elements.
- Tools such as brushes, buckets and rags should never be washed where excess water can drain into the street, gutter or storm drain. All tools should be rinsed in a sink connected to the sanitary sewer.
- When disposing of paint, never put wet paint in the trash.
- Dispose of water-based paint by removing the lid and letting it dry

in the can. Large amounts must be taken to a Household Hazardous Waste Collection Center (HHWCC).

- Oil-based paint is a household hazardous waste. All leftover paint should be taken to a HHWCC.
- For HHWCC locations and hours, call (714) 834-6752 or visit www.oclandfills.com.

Erosion Control

- Schedule grading and excavation projects for dry weather.
- When temporarily removing soil, pile it in a contained, covered area where it cannot spill into the street, or obtain the required temporary encroachment or street closure permit and follow the conditions instructed by the permit.

- When permanently removing large quantities of soil, a disposal location must be found prior to excavation. Numerous businesses are available to handle disposal needs. For disposal options, visit www.ciwmb.ca.gov/SWIS.
- Prevent erosion by planting fast-growing annual and perennial grasses. They will shield and bind the soil.

Recycle

Use a construction and demolition recycling

company to recycle lumber, paper, cardboard, metals, masonry (bricks, concrete, etc.), carpet, plastic, pipes (plastic, metal and clay), drywall, rocks, dirt and green waste.

For a listing of construction and demolition recycling locations in your area, visit www.ciwmb.ca.gov/recycle.

Spills

- Clean up spills immediately by using an absorbent material such as cat litter, then sweep it up and dispose of it in the trash.
- Immediately report spills that have entered the street, gutter or storm drain to the County's 24-Hour Water Pollution Problem Reporting Hotline at (714) 567-6363 or visit www.ocwatersheds.com to fill out an incident reporting form.

lean beaches and healthy creeks, rivers, bays and ocean are important to **Orange County.** However, many common activities can lead to water pollution if you're not careful. Fertilizers, pesticides and other chemicals that are left on yards or driveways can be blown or washed into storm drains that flow to the ocean. Overwatering lawns can also send materials into storm drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never pour gardening products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

UCCE Master Gardener Hotline: (714) 708-1646

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while landscaping or gardening. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Landscape & Gardening

E C 1

Tips for Landscape & Gardening

Never allow gardening products or polluted water to enter the street, gutter or storm drain.

General Landscaping Tips

- Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.
- Prevent erosion of slopes by planting fast-growing, dense ground covering plants. These will shield and bind the soil.
- Plant native vegetation to reduce the amount of water, fertilizers, and pesticide applied to the landscape.

Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.

Garden & Lawn Maintenance

Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or micro spray systems. Periodically inspect and fix leaks and misdirected sprinklers. Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain.
 Instead, dispose of green waste by composting, hauling it to a permitted

landfill, or recycling it through your city's program.

- Use slow-release fertilizers to minimize leaching, and use organic fertilizers.
- Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.
- Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result

in the deterioration of containers and packaging.

Rinse empty pesticide containers and re-use rinse water as you would use the

product. Do not dump rinse water down storm drains. Dispose of empty containers in the trash.

- When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting. For more information, visit www.ipm.ucdavis.edu.
- If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.
- Take unwanted pesticides to a Household Hazardous Waste Collection Center to be recycled. Locations are provided below.

Household Hazardous Waste Collection Centers

Anaheim: 1	.071 N. Blue Gum St.
Huntington Beach:	17121 Nichols St.
Irvine:	6411 Oak Canyon
San Juan Capistrano	: 32250 La Pata Ave.

For more information, call (714) 834-6752 or visit www.oclandfills.com

lean beaches and healthy creeks, rivers, bays and ocean are important to **Orange County.** However, many common activities can lead to water pollution if you're not careful. Pet waste and pet care products can be washed into the storm drains that flow to the ocean. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never put pet waste or pet care products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while caring for your pet. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Pet Care

The Ocean Begins at Your Front Door

ECT

ation

EVENTION

Tips for Pet Care

Never let any pet care products or washwater run off your yard and into the street, gutter or storm drain.

Washing Your Pets

Even biodegradable soaps and shampoos can be harmful to marine life and the environment.

- ■If possible, bathe your pets indoors using less-toxic shampoos or have your pet professionally groomed. Follow instructions on the products and clean up spills.
- ■If you bathe your pet outside, wash it on your lawn or another absorbent/ permeable surface to keep the washwater from running into the street, gutter or storm drain.

Flea Control

- Consider using oral or topical flea control products.
- If you use flea control products such as shampoos, sprays or collars, make sure to dispose of any unused

products at a Household Hazardous Waste Collection Center. For location information,

call (714) 834-6752.

Why You Should Pick Up After Your Pet

It's the law! Every city has an ordinance requiring you to pick up after your pet. Besides being a nuisance, pet

waste can lead to water pollution, even if you live inland. During rainfall, pet waste left outdoors can wash into storm drains. This waste flows directly into our waterways and the ocean where it can harm human health, marine life and the environment.

As it decomposes, pet waste demands a high level of oxygen from water. This decomposition can contribute to

killing marine life by reducing the amount of dissolved oxygen available to them.

Have fun with your pets, but please be a responsible pet owner by taking

care of them and the environment.

- Take a bag with you on walks to pick up after your pet.
- Dispose of the waste in the trash or in a toilet.

Help Prevent Ocean Pollution:

lean beaches and healthy creeks, rivers, bays, and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Swimming pools and spas are common in Orange County, but they must be maintained properly to guarantee that chemicals aren't allowed to enter the street, where they can flow into the storm drains and then into the waterways. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump pool chemicals into the ocean, so don't let it enter the storm drains. Follow these easy tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while maintaining your pool. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Tips for Pool Maintenance

The Ocean Begins at Your Front Door

JECT

Tips for Pool Maintenance

Many pools are plumbed to allow the pool to drain directly to the sanitary sewer. If yours is not, follow these instructions for disposing of pool and spa water.

Acceptable and Preferred Method of Disposal

When you cannot dispose of pool water in the sanitary sewer, the release of dechlorinated swimming pool water is allowed if all of these tips are followed:

- The residual chlorine does not exceed 0.1 mg/l (parts per million).
- The pH is between 6.5 and 8.5.
- The water is free of any unusual coloration, dirt or algae.
- There is no discharge of filter media.
- There is no discharge of acid cleaning wastes.

Some cities may have ordinances that do not allow pool water to be disposed into a storm drain. Check with your city.

How to Know if You're Following the Standards

You can find out how much chlorine is in your water by using a pool testing kit. Excess chlorine can be removed by discontinuing the use of chlorine for a few days prior to discharge or by purchasing dechlorinating chemicals from a local pool supply company. Always make sure to follow the instructions that come with any products you use.

Doing Your Part

By complying with these guidelines, you will make a significant contribution toward keeping pollutants out of Orange County's creeks, streams, rivers, bays and the ocean. This helps to protect organisms that are sensitive to pool chemicals, and helps to maintain the health of our environment.

For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the **Orange County 24-Hour Water Pollution Problem Reporting Hotline** at **1-877-89-SPILL** (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Residential Pool, Landscape and Hardscape Drains

> The Ocean Begins at Your Front Door

Tips for Residential Pool, Landscape and Hardscape Drains

Pool Maintenance

All pool water discharged to the curb, gutter or permitted pool drain from your property must meet the following water quality criteria:

- The residual chlorine does not exceed 0.1 mg/L (parts per
- million). The pH is between
- 6.5 and 8.5.The water is free of any unusual coloration.
- There is no discharge of filter media or acid cleaning wastes.

Some cities have ordinances that do not allow pool water to be discharged to the storm drain. Check with your city.

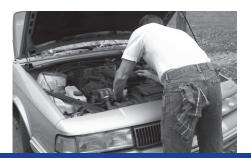
Landscape and Hardscape Drains

The following recommendations will help reduce or prevent pollutants from your landscape and hardscape drains from entering the street, gutter or storm drain. Unlike water that enters the sewer (from sinks and toilets), water that enters a landscape or hardscape drain is not treated before entering our creeks, rivers, bays and ocean.

Household Activities

- Do not rinse spills of materials or chemicals to any drain.
- Use dry cleanup methods such as applying cat litter or another absorbent material, then sweep it up and dispose of it in the trash. If the material is hazardous, dispose of it at a Household Hazardous Waste Collection Center (HHWCC). For locations, call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveways, sidewalks or patios to your landscape or hardscape drain. Sweep up debris and dispose of it in the trash.
- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash.

Do not store items such as cleaners, batteries, automotive fluids, paint products, TVs, or computer monitors uncovered outdoors. Take them to a HHWCC for disposal.


Yard Maintenance

- Do not overwater. Water by hand or set automated irrigation systems to reflect seasonal water needs.
- Follow directions on pesticides and fertilizers (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Cultivate your garden often to control weeds and reduce the need to use chemicals.

Vehicle Maintenance

- Never pour oil or antifreeze down your landscape or hardscape drain. Recycle these substances at a service station, a waste collection center or used oil recycling center. For locations, contact the Used Oil Program at 1-800-CLEANUP or visit www.CLEANUP.org.
- Whenever possible, take your vehicle to a commercial car wash.
- If you do wash your vehicle at home, do not allow the washwater to go down your landscape or hardscape drain. Instead, dispose of it in the sanitary sewer (a sink or toilet) or onto an absorbent surface such as your lawn.
- Use a spray nozzle that will shut off the water when not in use.

lean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities such as painting can lead to water pollution if you're not careful. Paint must be used, stored and disposed of properly to ensure that it does not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump paint into the ocean, so don't let it enter the storm drains. Follow these easy tips to help prevent water pollution.

For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the **Orange County 24-Hour Water Pollution Problem Reporting Hotline** at **1-877-89-SPILL** (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while using, storing and disposing of paint. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Projects Using Paint

JECT

Tips for Projects Using Paint

Paint can cause significant damage to our environment. Whether you hire a contractor or do it yourself, it is important to follow these simple tips when purchasing, using, cleaning, storing and disposing of paint.

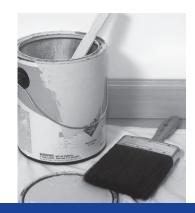
Purchasing Paint

- Measure the room or object to be painted, then buy only the amount needed.
- Whenever possible, use water-based paint since it usually does not require hazardous solvents such as paint thinner for cleanup.

Painting

- Use only one brush or roller per color of paint to reduce the amount of water needed for cleaning.
- Place open paint containers or trays on a stable surface and in a position that is unlikely to spill.
- Always use a tarp under the area or object being painted to collect paint drips and contain spills.

Cleaning


- Never clean brushes or rinse paint containers in the street, gutter or storm drain.
- For oil-based products, use as much of the paint on the brushes as possible. Clean brushes with thinner. To reuse thinner, pour it through a fine filter (e.g. nylon, metal gauze or filter paper) to remove solids such as leftover traces of paint.
- For water-based products, use as much of the paint on the brushes as possible, then rinse in the sink.
- Collect all paint chips and dust. Chips and dust from marine paints or paints containing lead, mercury or tributyl tin are hazardous waste. Sweep up and dispose of at a Household Hazardous Waste Collection Center (HHWCC).

Storing Paint

- Store paint in a dry location away from the elements.
- Store leftover water-based paint, oil-based paint and solvents separately in original or clearly marked containers.
- Avoid storing paint cans directly on cement floors. The bottom of the can will rust much faster on cement.
- Place the lid on firmly and store the paint can upsidedown to prevent air from entering. This will keep the paint usable longer. Oil-based paint is usable for up to 15 years. Water-based paint remains usable for up to 10 years.

Alternatives to Disposal

- Use excess paint to apply another coat, for touch-ups, or to paint a closet, garage, basement or attic.
- Give extra paint to friends or family. Extra paint can also be donated to a local theatre group, low-income housing program or school.
- Take extra paint to an exchange program such as the "Stop & Swap" that allows you to drop off or pick up partially used home care products free of charge.
 "Stop & Swap" programs are available at most HHWCCs.
- For HHWCC locations and hours, call (714) 834-6752 or visit www.oclandfills.com.

Disposing of Paint

Never put wet paint in the trash.

For water-based paint:

- If possible, brush the leftover paint on cardboard or newspaper. Otherwise, allow the paint to dry in the can with the lid off in a well-ventilated area protected from the elements, children and pets. Stirring the paint every few days will speed up the drying.
- Large quantities of extra paint should be taken to a HHWCC.
- Once dried, paint and painted surfaces may be disposed of in the trash. When setting a dried paint can out for trash collection, leave the lid off so the collector will see that the paint has dried.

For oil-based paint:

Oil-based paint is a household hazardous waste. All leftover paint should be taken to a HHWCC.

Aerosol paint:

Dispose of aerosol paint cans at a HHWCC.

Spills

- Never hose down pavement or other impermeable surfaces where paint has spilled.
- Clean up spills immediately by using an absorbent material such as cat litter. Cat litter used to clean water-based paint spills can be disposed of in the trash. When cleaning oil-based paint spills with cat litter, it must be taken to a HHWCC.
- Immediately report spills that have entered the street, gutter or storm drain to the County's 24-Hour Water Pollution Problem Reporting Hotline at (714) 567-6363 or visit www.ocwatersheds.com to fill out an incident reporting form.

Appendix B

Operation and Maintenance (O&M) Plan

Water Quality Management Plan

for

Hilltop 3 Development, LLC APN 350-331-06, 326-021-50 YORBA LINDA, CA 92886 714-742-7965

BMP Applicable? Yes/No	BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility
	Non-Structu		
YES	N1. Education for Property Owners, Tenants and Occupants	Education Materials in Appendix A to be reviewed annually	Hilltop 3 Development, LLC
	Insert BMP narrative from TGD Section 6.2.	· · · · · · · · · · · · · · · · · · ·	Hilltop 3 Development, LLC
YES	N3. Common Area Landscape Management Insert BMP narrative from TGD Section 6.2.	Maintain landscaping with low drought tolerant plant life. Test irrigation controls	
YES	N4. BMP Maintenance Insert BMP narrative from TGD Section 6.2.	Inspect BMP's, catchbasin and storm drain to insure no build up or pollutants	Hilltop 3 Development, LLC
YES	N11. Common Area Litter Control Insert BMP narrative from TGD Section 6.2.	Clean up litter when seen onsite and keep trash enclosure clean. Keep lids secure	Hilltop 3 Development, LLC
YES	N14. Common Area Catch Basin Inspection Insert BMP narrative from TGD Section 6.2.	Inspect and clean for debris and sediment	Hilltop 3 Development, LLC
Structural Source Control BMPs			
YES	S1. Provide Storm Drain System Stenciling and Signage Insert BMP narrative TGD Section 6.3.	Inspect and clean debris for sediment	Hilltop 3 Development, LLC
YES	S3. Design Trash Enclosures to Reduce Pollutant Introduction Insert BMP narrative from TGD Section 6.3.	Paint, or use permanent placard with statement "NO DUMPING- DRAINS TO OCEAN	Hilltop 3 Development, LLC
YES	S4. Use Efficient Irrigation Systems and Landscape Design Insert BMP narrative from TGD Section 6.3.	Visual I Maintenance and Repair	Hilltop 3 Development, LLC
YES	S5. Protect Slopes and Channels Insert BMP narrative from TGD Section 6.3.	Visual I Maintenance and Repair	Hilltop 3 Development, LLC

BMP Name and BMP Implementation, Maintenance and Inspection Procedures	Implementation, Maintenance, and Inspection Frequency and Schedule	Person or Entity with Operation & Maintenance Responsibility
L		
Biotreatment BMP # 1 BioClean Modular Wetland System (Model MWS-L-4-8-V)	BioClean Modular Wetland System (Model MWS- L-8-12-C) is to be serviced and maintained by BioClean (855-566-3938) or the project owner	Hilltop 3 Development, LLC

Required Permits

No permits are required for the implementation of the BMP's for this project site

Forms to Record BMP Implementation, Maintenance, and Inspection

The form that will be used to record implementation, maintenance, and inspection of BMPs is attached.

Recordkeeping

All records must be maintained for at least five (5) years and must be made available for review upon request.

Today's Date:

Name of Person Performing Activity (Printed):

Signature:

Brief Description of Implementation, Maintenance, and Inspection Activity Performed

Appendix C

June 28, 2020

Project No. 20-7009

Robert Hoff Hilltop 3 Development, LLC 3875 Crest Drive Yorba Linda, CA 92886

- Subject: Preliminary Geotechnical Investigation Report, Tentative Parcel Map No. 2020-125, Yorba Linda, California
- Reference: TGR Geotechnical, Inc., 2020b, Preliminary Geotechnical Investigation Report, Tentative Parcel Map No. 2020-125, Yorba Linda, California, dated May 8, 2020

TGR Geotechnical, Inc., 2020a, Percolation Testing Report for WQMP, Fairmont Boulevard, Yorba Linda, CA 92886, Parcel 1 (APN: 326-021-50), dated March 20, 2020

City of Yorba Linda Public Works/Engineering Comments dated June 10, 2020

Robert,

In accordance with your request and authorization, TGR Geotechnical, Inc. (TGR) is proving this letter presenting response to comments by City of Yorba Linda Public Works/Engineering dated June 10, 2020. A copy of the review comments is attached.

Item 1:

One page 10, the setback for freestanding walls is 15 feet from the top of the slope and then another phrase says "to the slope face". The second phrase appears to be a typographical error.

Response:

The paragraph should read as: "A minimum foundation setback of 15 feet from the outer edge of the footing to the slope face is recommended for top of slope freestanding walls."

Item 2:

One page 11, slab recommendations are given which appear to use CBC Section 1808.6.4 for subgrade stabilization. However, the last sentence says to follow CBC requirements which is CBC Section 1808.6.2 that requires either WRI/CRSI Design of Slab on Grade Foundations or PT DC 10.5.

Response:

At the completion of rough grading the slab subgrade soils shall be tested for expansion index and revised recommendations shall be provided as necessary which will include the effects of differential fill thickness and the expansion characteristics.

Item 3:

The report generally recommends compaction to 95% which is understandable for deep fills to limit settlement, but denser soil increases the expansion potential directly below slabs.

Response:

It is recommended that the upper 5 feet of the fill placed for the building pad shall be compacted to a minimum 90 percent relative compaction to reduce the impact of expansive soils.

Item 4:

Review and approve the grading, foundation and retaining wall plans and details when available. Provide comments/recommendations if/as necessary.

Response:

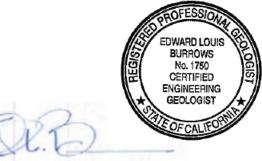
Acknowledge. TGR will review the grading, foundation and retaining wall plans and details, when available and provide additional recommendations, as necessary.

Item 5:

Provide comment on infiltration infeasibility of water quality best management practices.

Response:

Based on the referenced report (TGR, 2020b), infiltration rates were very low and ranged from 0.44 to 0.56 inch per hour without factor of safety. Infiltration near the toe of the proposed slope may also adversely impacted the stability of the slope. Therefore, infiltration is not recommended from a geotechnical viewpoint.


If you have any questions regarding this letter, please do not hesitate to contact this office. We appreciate this opportunity to be of service.

Respectfully submitted,

Sanjay Govil, PhD, PE, GE 2382 Principal Geotechnical Engineer

Distribution: (4) Addressee

Edward L. Burrows, M.S, PG, CEG 1750 Principal Engineering Geologist

Attachments

City of Yorba Linda, Public Works/Engineering Comments Dated June 10, 2020

CITY OF YORBA LINDA

4845 Casa Loma Avenue CALIFORNIA 92885-8714 (714) 961-7170 FAX (714) 986-1010

PUBLIC WORKS / ENGINEERING

June 10, 2020

TGR Geotechnical Attn: Sanjay Govil 3037 S. Harbor Blvd Santa Ana, CA 92704

Re: Geotechnical Report Dated May 8, 2020 for Single Family Dwelling, TPM 20-125

Dear Mr. Govil,

The geotechnical report was reviewed and is not acceptable. Please address the following comments below:

1.One page 10, the setback for freestanding walls is 15 feet from the top of the slope and then another phrase says "to the slope face". The second phrase appears to be a typographical error.

2. One page 11, slab recommendations are given which appear to use CBC Section 1808.6.4 for subgrade stabilization. However, the last sentence says to follow CBC requirements which is CBC Section 1808.6.2 that requires either WRI/CRSI Design of Slab on Grade Foundations or PT DC 10.5.

3. The report generally recommends compaction to 95% which is understandable for deep fills to limit settlement but denser soil increases the expansion potential directly below slabs.

4. Review and approve the grading, foundation and retaining wall plans and details when available. Provide comments/recommendations if/as necessary.

5. Provide comment on infiltration infeasibility of water quality best management practices.

If you have any questions regarding this plan check, please contact me at (714) 961-7174 or email <u>msimonetti@yorbalindaca.gov</u>

Sincerely,

CITY OF YORBA LINDA

Min

Matt Simonetti, PE, QSD Senior Civil Engineer

cc: File

Geotechnical Environmental Hydrogeology Material Testing Construction Inspection

Project No. 20-7009

March 23, 2020

Robert Hoff Hilltop 3 Development, LLC 3875 Crest Drive Yorba Linda, CA 92886

Subject: Percolation Testing Report for WQMP, Fairmont Boulevard, Yorba Linda, CA 92886, Parcel 1 (APN: 326-021-50).

Robert,

In accordance with your request and authorization, TGR Geotechnical, Inc. (TGR) has completed the percolation testing at the subject site (Figure 1). The work was performed in accordance with our proposal dated January 27, 2020 and your subsequent authorization to proceed with the following exception: The above-mentioned scope of work called for percolation testing at 0 to 40 feet in P-2. Due to the presence of very dense bedrock the boring could only be advanced to a depth of 10 feet.

The site is currently an undeveloped 49-acre lot, located on Fairmont Boulevard within the City of Yorba Linda. A stormwater infiltration system is proposed along the southwest portion of the property (Plate 1).

SCOPE OF WORK

The proposed scope of work for this investigation included the following:

- Site reconnaissance and mark the locations of borings for infiltration test and notify Dig-Alert.
- Drilling four (4) hollow stem auger borings:
 - P-1, P-2, P-3 and P-4 to a depth of 10 feet
- Percolation testing for the borings at:
 - P-1 and P-4 at a depth of 5-10 feet
 - P-2 at a depth of 5-10 feet
 - P-3 at a depth of 0-10 feet.
- Laboratory testing of select samples to include in situ moisture content and passing No. 200 sieve.
- Preparation of this report summarizing our findings, conclusions, and recommendations.

FIELD INVESTIGATION

Field exploration was performed on March 16, 2020 by a staff engineer from our firm who logged the borings and obtained representative samples, which were subsequently transported

to the laboratory for further review and testing. The approximate location of the borings are indicated on the enclosed Boring Location Map (Plate 1).

The subsurface conditions were explored by drilling, sampling, and logging four (4) hollow stem auger borings. Drilling was performed with a limited access hollow stem auger drilling rig with 8-inch diameter augers. Borings P-1, P-2, P-3 and P-4 were advanced to a maximum depth of 10 feet below existing grade to perform percolation testing. Subsequent to drilling and testing, all borings were backfilled with soil cuttings.

Driven samples of the earth materials encountered at selected intervals were recovered from the borings. The samples were driven using an automatic 140-pound hammer falling freely from a height of 30 inches. Soil descriptions were entered on the log in general accordance with the Unified Soil Classification System (USCS).

From the borings, all samples were secured in moisture-resistant bags as soon as taken to minimize the loss of field moisture while being transported to the laboratory. The locations and depths of the soil samples recovered are indicated on the boring logs, Plates 2 through 5.

Existing Soil

During our field investigation, the upper 2 feet subsurface soils were classified as clay. Underneath the clay, very dense sandy siltstone bedrock of the Puente Formation was encountered to the maximum depth explored, approximately 10 feet below grade. Detailed descriptions of the earth units encountered are presented in the boring logs, Plates 2 through 5.

Groundwater

No groundwater was encountered during our subsurface exploration to a maximum depth of 10 feet below existing grade during this investigation. Based on our review of available historical groundwater information for the Yorba Linda 7.5-minute quadrangle, (CDMG, 2005) regional historic high groundwater has not been mapped in the general area. (Figure 2). Per USGS groundwater well data for the surrounding area, the historic high groundwater is approximately 25 feet below existing grade, at an elevation of approximately 304 feet above NVGD 1929.

Seasonal and long-term fluctuations in the groundwater may occur as a result of variations in subsurface conditions, rainfall, run-off conditions and other factors. Therefore, variations from our observations may occur.

LABORATORY TESTING

Laboratory tests were performed on representative samples to verify the field classification of the recovered samples and to evaluate the geotechnical properties of the subsurface soils. Laboratory tests for geotechnical characteristics were performed in general accordance with the ASTM procedures. The following tests were performed:

<u>Moisture and Density Determination Tests</u>: Moisture content and dry density determinations were performed on relatively undisturbed samples obtained from the test borings. The results of these tests are presented in the boring logs. Where applicable, only moisture content was determined from "undisturbed" or disturbed samples.

<u>Wash Sieve Test</u>: Typical materials were washed over No. 200 sieve (ASTM Test Method D1140). The test results are presented below:

Sample Location	% Passing No. 200 Sieve
P-1 @ 4 feet	29.7
P-1 @ 9 feet	15.6
P-2 @ 4 feet	40.9
P-2 @ 9 feet	37.4
P-3 @ 4 feet	30.8
P-3 @ 9 feet	27.5
P-4 @ 4 feet	32.1
P-9 @ 9 feet	25.3

PERCOLATION TESTING

Percolation testing was performed at the subject site utilizing the Porchet Method. Presented below are the infiltration rates from the percolation tests performed at the subject site. <u>These do not include any factor of safety.</u>

- P-1 at 5-10 feet 0.85 inches per hour
- P-2 at 5-10 feet 0.92 inches per hour
- P-3 at 0-10 feet 0.44 inches per hour
- P-4 at 5-10 feet 0.97 inches per hour

The infiltration test rates were determined in general accordance with Orange County Public Works Technical Guidance Document (2011).

CONCLUSIONS

Based on the results of our percolation testing we have determined the infiltration rates in the proposed locations to range from 0.44 inches per hour to 0.97 inches per hour, with no factor of safety.

Although we were unable to achieve the proposed drilling depth of 40 feet below existing grade in P-2 due to refusal in very dense bedrock, it is our opinion that the infiltration rates to a depth of 40 feet below existing grade would be <u>equal to or less</u> than the values obtained.

Depending on the distance of the infiltration area to the toe of the proposed slope, the stability of the slope may be adversely impacted due to water mounding from infiltration.

LIMITATIONS

This report was prepared for the subject project based on the client's needs, directions and requirements at the time.

This report was necessarily based in part upon data obtained from a limited number of observances, site visits, soil and/or other samples, tests, analyses, histories of occurrences,

spaced subsurface exploration and limited information on historical events and observations. Such information is necessarily incomplete. Variations can be experienced within small distances and under various climatic conditions. Changes in subsurface conditions can and do occur over time.

This report is not authorized for use by, and is not to be relied upon by, any party except the client with whom TGR contracted for the work. Use or reliance on this report by any other party is that party's sole risk. Unauthorized use of or reliance on this report constitutes an agreement to defend and indemnify TGR from and against any liability which may arise as a result of such use or reliance, regardless of any fault, negligence, or strict liability of TGR.

If you have any questions regarding this report, please do not hesitate to contact this office. We appreciate this opportunity to be of service.

Respectfully submitted,

Sanjay Govil, PhD, PE, GE 2382 Principal Geotechnical Engineer

ATTACHMENTS

Plate 1 – Boring Location Map

Figure 1 – Site Location Map

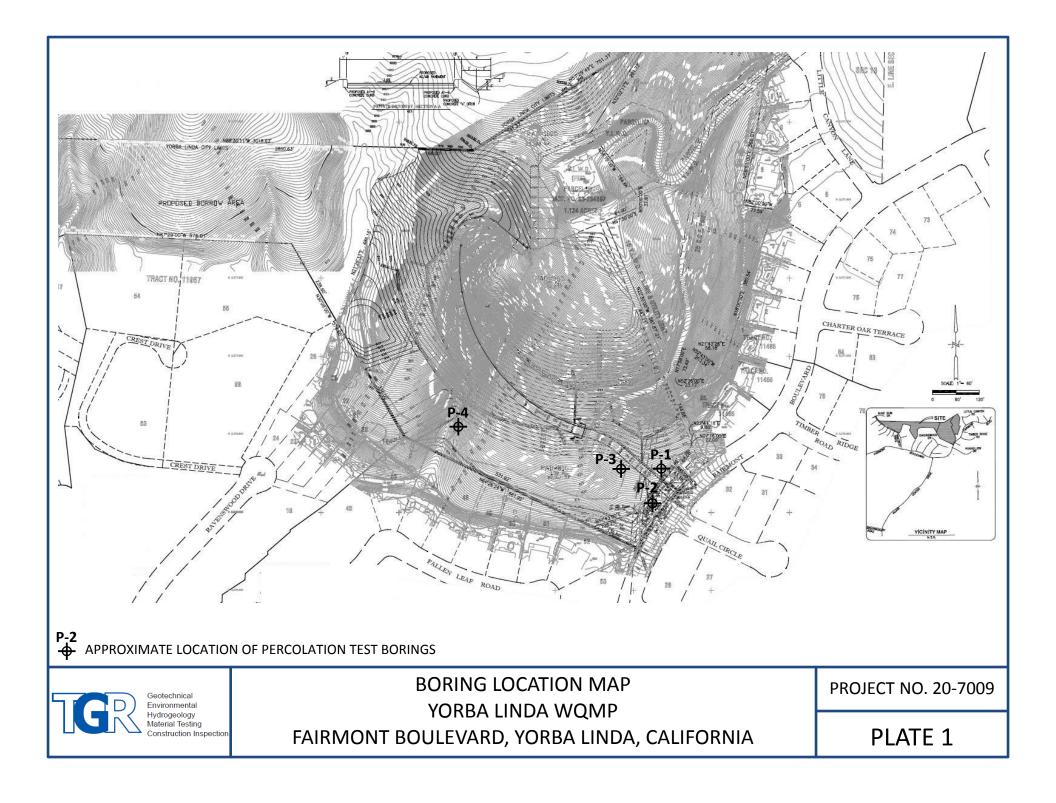
Figure 2 – Historic High Groundwater Map

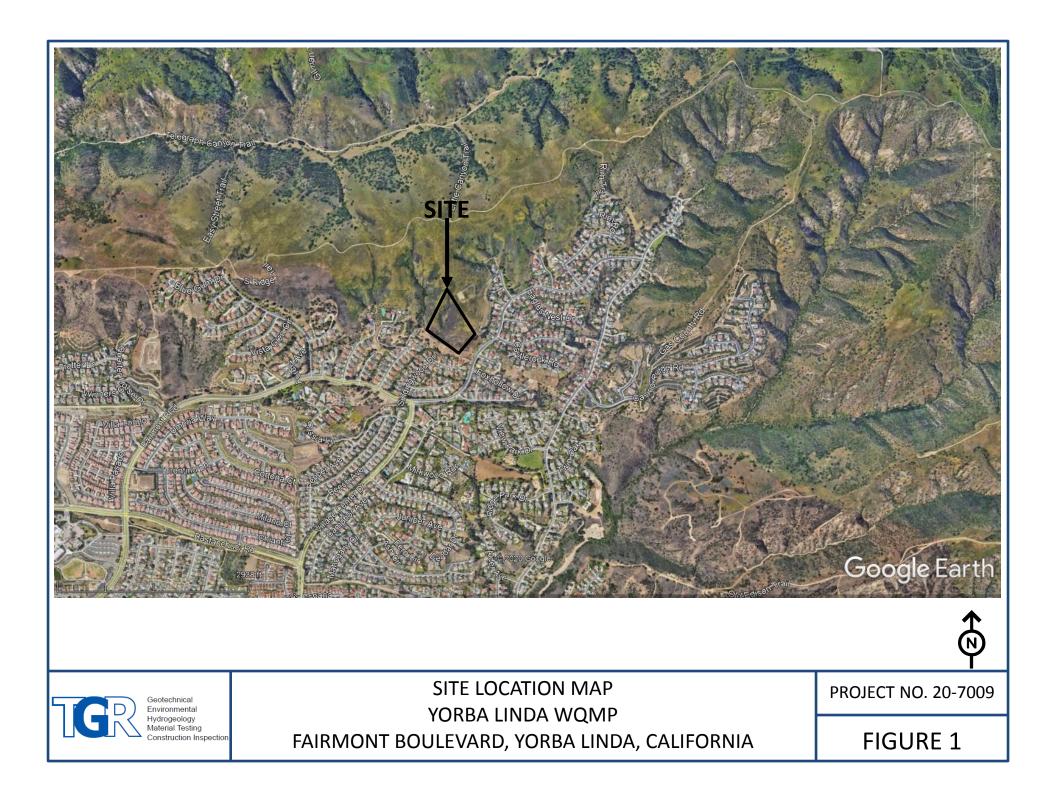
Plates 2 through 5 – Log of Borings

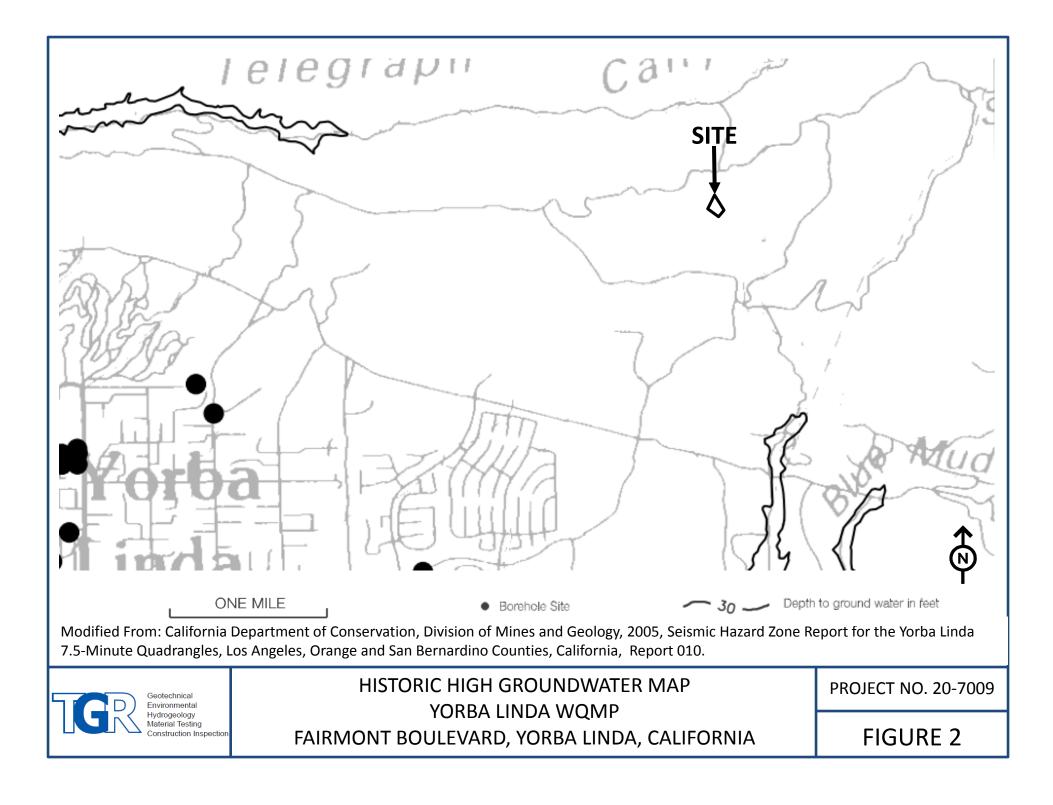
Table 1 – Percolation Test Worksheet

Distribution: (1) Addressee

Edward L. Burrows, M.S, PG, CEG 1750 Principal Engineering Geologist




REFERENCES


- California, State of, Department of Conservation, Division of Mines and Geology, 1998, Seismic Hazard Zone Report for the Yorba Linda 7.5-Minute Quadrangle, Los Angeles, Orange and San Bernardino Counties, California, Seismic Hazard Zone Report 010.
- County of Orange, OC Public Works, OC Watersheds, 2011, Orange County Public Works Technical Guidance Document.

International Code Council, 2019, California Building Code, Title 24, Part 1 and 2.

							LOG OF EXPLORATORY BORING P-1 Shee	et 1	of	1			
Proje Proje Date Grou	ect N Drill	lam led:	e:	١		a Lin	Logged By:RAda WQMPProject Engineer:SG/16/20Drill Type:Limited AccessDrive Wt & Drop:140lbs / 30in						
			FIEI	LD RE	SULT	S		LAB RESUL					
	bo-	le	ole	/ft t N)	n		Shelby Tube Standard Split Spoon No recovery	()	y,				
Depth (ft)	Graphic Log	Bulk Sample	Drive Sample	SPT blows/ft (or equivalent N)	Pocket Pen (tsf)	NSCS	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests			
		ы	ō	Or e	٩.		SUMMARY OF SUBSURFACE CONDITIONS	-ŭ	ā				
	<u>×17</u>						_ Surface is a vegetation covered hillside.						
							Clay- brown, very moist, soft to firm, some small pieces of gravel and bedrock.						
							Bedrock: Puente Formation (Tpl): Sandy Siltstone- tan, moist, very dense, some fine to medium grained sand.	-					
- 5 -		z	\times	>50			Same as above.	7		-200= 29.7%			
	K		$\overline{\langle}$	>50			Same as above.	5		-200=			
- 10 - 		2					Total Depth: 10 feet. No groundwater encountered during drilling. No caving observed. Boring utilized for percolation testing.			15.6%			
- 15 - 	-												
- 02 - 3/33/ 	-												
- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	-												
3 20-7009 YOKE	-												
This B geotec d at the population	chnical specifi	repo c loca	rt. TI ation	his Bor and d	ing Log ate indi	repres	junction with the complete ents conditions observed t is not warranted to be other locations and times. PLATE 2	, AL, INC	,				

							LOG OF EXPLORATORY BORING P-2 Shee	et 1	of	1
Proj Date	ect N ect N e Drill und E	lam led:	e:	١		a Lin	Logged By:RAda WQMPProject Engineer:SG/16/20Drill Type:Limited AccessDrive Wt & Drop:140lbs / 30in			
			FIEI	_D RE	SULT	s		LAB	RES	ULTS
	bo.		e	£ L	_		Shelby Tube Standard Split Spoon No recovery			
Depth (ft)	Graphic Log	Bulk Sample	Drive Sample	SPT blows/ft (or equivalent N)	Pocket Pen (tsf)	NSCS	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests
		Bu	D	or e	Ъ		SUMMARY OF SUBSURFACE CONDITIONS	20	ā	
	<u>, 17</u> , 1			<u> </u>			_ Surface is a vegetation covered hillside.			
							Clay- brown, very moist, soft to firm, some small pieces of gravel and	1		
							bedrock.			
							Bedrock: Puente Formation (Tpl): Sandy Siltstone- tan, moist, very dense, some fine to medium grained sand.			
			\times	>50			Same as above.	9		-200=
										32.1%
-	K									
			\mathbf{X}	>50			Same as above.	13		-200=
- 10 -							Total Depth: 10 feet due to refusal in hard bedrock. No groundwater encountered during drilling.			25.3%
							No caving observed. Boring utilized for percolation testing.			
- 15 -	-									
- 20 -										
DTECH.G	-									
TGR GEO										
G9 – 25 –										
NDA WC	$\left \right $									
YORBAL										
20-7009										
b geoted	chnical specifi	repoi c loca	rt. Th ation	his Bor and da	ing Log ate indi	repres	junction with the complete ents conditions observed t is not warranted to be other locations and times. PLATE 3	AL, INC	<u>.</u>	1

							LOG OF EXPLORATORY BORING P-3 Shee	et 1	of	1			
Proje Proje Date Grou	ect N Drill	am ed:	e:	١		a Lin	Logged By:RAda WQMPProject Engineer:SG/16/20Drill Type:Limited AccessDrive Wt & Drop:140lbs / 30in						
			FIEI	_D RE	SULT	S		LAB RESULTS					
	bo-	le	ole	ht N)	c		Shelby TubeStandard Split SpoonImage: Standard No recovery	()	۲,				
Depth (ft)	Graphic Log	Bulk Sample	Drive Sample	SPT blows/ft (or equivalent N)	Pocket Pen (tsf)	NSCS	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests			
	Ŭ	B	Ē	Or e	ď		SUMMARY OF SUBSURFACE CONDITIONS	- ŭ	ā				
	<u>, 17.</u>						_ Surface is a vegetation covered hillside.						
							Clay- brown, very moist, soft to firm, some pieces of bedrock and						
							gravel. Bedrock: Puente Formation (Tpl): Sandy Siltstone- tan, moist, very	-					
							dense, some fine to medium grained sand.						
- 5 -		2	X	58			Same as above.	16		-200= 30.8%			
			\checkmark	>50			Same as above, reddish brown, some orange oxidation.	14		-200=			
- 10 - 		2					Total Depth: 10 feet. No groundwater encountered during drilling. No caving observed. Boring utilized for percolation testing.	-		27.5%			
 - 15 	-												
 - 02 	-												
- 20 - 323/20 	-												
This Be geotec at the s represe	hnical specifi	repoi c loca	rt. Th ation	his Bor and da	ing Log ate indi	repres	junction with the complete ents conditions observed t is not warranted to be ther locations and times. PLATE 4						

							LOG OF EXPLORATORY BORING P-4 Shee	et 1	of	1	
Proje Proje Date Grou	ect N Drill	am ed:	e:	•		a Lin	Logged By:RAda WQMPProject Engineer:SGb/16/20Drill Type:Limited AccessDrive Wt & Drop:140lbs / 30in				
			FIELD RESULTS								
Depth (ft)	Graphic Log		ample	SPT blows/ft	Pen (Shelby TubeStandard Split SpoonImage: No recovery			ULTS	
De	Graph	Bulk Sample	Drive Sample	SPT blc equiva	Pocket Pen (tsf)	NSCS	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests	
		-		Ű Ū			SUMMARY OF SUBSURFACE CONDITIONS		_		
							Surface is a vegetation covered hillside. Clay- brown, very moist, soft to firm, some pieces of bedrock and	-			
							gravel.				
							Bedrock: Puente Formation (Tpl): Sandy Siltstone- tan, moist, dense, some fine to medium grained sand.				
- 5 -		2	X	40			Same as above.	15		-200= 40.9%	
- 10 -		4	Х	57			Same as above, reddish brown, very dense, some orange	13		-200= 37.4%	
	-						Total Depth: 10 feet. No groundwater encountered during drilling. No caving observed. Boring utilized for percolation testing.				
- 15 - 	-										
- 20 -	-										
- 25 -	$\left \right $										
	$\left \right $										
	$\left \right $										
geotec at the	hnical specific	repo c loca	ort. Ti ation	his Bo and d	ring Loo late indi	g represicated,	njunction with the complete sents conditions observed it is not warranted to be other locations and times.	, AL, INC	, ,		

	-		- 1				Δ	Initial			
T	Total	1	Final	Δ Water	to it is 1 Time a	Fired Times		-	Final Height	-	1
Test	Depth	Initial	Depth		Initial Time	Final Time	Time	Water	of Water	Height of	Infiltration
Hole	(in)	Depth (in)	(in)	Level (in)	(min)	(min)	(min)	(in)	(in)		Rate (in/hr)
P-1	120	61.25	64.5	3.25	0.0	5.0	5.0	58.75	55.5	57.13	1.32
	120	64.5	66.5	2	5.0	10.0	5.0	55.5	53.5	54.50	0.85
	120	66.5	69.25	2.75	10.0	15.0	5.0	53.5	50.75	52.13	1.22
	120	69.25	71.25	2	15.0	20.0	5.0	50.75	48.75	49.75	0.93
	120	71.25	73.25	2	20.0	25.0	5.0	48.75	46.75	47.75	0.96
	120	73.25	75.5	2.25	25.0	30.0	5.0	46.75	44.5	45.63	1.13
	120	75.5	85.5	10	30.0	35.0	5.0	44.5	34.5	39.50	5.78
	120	85.5	87.25	1.75	35.0	40.0	5.0	34.5	32.75	33.63	1.18
	120	87.25	88.75	1.5	40.0	45.0	5.0	32.75	31.25	32.00	1.06
P-2	120	62	64.25	2.25	0.0	5.0	5.0	58	55.75	56.88	0.92
	120	64.25	67	2.75	5.0	10.0	5.0	55.75	53	54.38	1.17
	120	67	69.25	2.25	10.0	15.0	5.0	53	50.75	51.88	1.00
	120	69.25	71.5	2.25	15.0	20.0	5.0	50.75	48.5	49.63	1.05
	120	71.5	73.75	2.25	20.0	25.0	5.0	48.5	46.25	47.38	1.09
	120	73.75	76	2.25	25.0	30.0	5.0	46.25	44	45.13	1.15
P-3	120	15.25	17.5	2.25	0.0	5.0	5.0	104.75	102.5	103.63	0.51
	120	17.5	20	2.5	5.0	10.0	5.0	102.5	100	101.25	0.58
	120	20	22.25	2.25	10.0	15.0	5.0	100	97.75	98.88	0.54
	120	22.5	25	2.5	15.0	20.0	5.0	97.5	95	96.25	0.61
	120	25	26.75	1.75	20.0	25.0	5.0	95	93.25	94.13	0.44
	120	26.75	28.5	1.75	25.0	30.0	5.0	93.25	91.5	92.38	0.45
P-4	120	58.25	62	3.75	0.0	5.0	5.0	61.75	58	59.88	1.45
	120	62	65.25	3.25	5.0	10.0	5.0	58	54.75	56.38	1.34
	120	65.25	67.5	2.25	10.0	15.0	5.0	54.75	52.5	53.63	0.97
	120	67.5	70.25	2.75	15.0	20.0	5.0	52.5	49.75	51.13	1.24
	120	70.25	72.75	2.5	20.0	25.0	5.0	49.75	47.25	48.50	1.19
	120	72.75	75.25	2.5	25.0	30.0	5.0	47.25	44.75	46.00	1.25
	-	-		-							

$$I_t = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}$$

 ΔH = Change in height

 Δt = Time interval

r = Radius

I_t Infiltration Rate

 \mathbf{H}_{ave} $% \mathbf{H}_{\text{ave}}$ Average Head Height over the time interval

Geotechnical Environmental Hydrogeology Material Testing Construction Inspection

Project No. 20-7009

May 8, 2020

Robert Hoff Hilltop 3 Development, LLC 3875 Crest Drive Yorba Linda, CA 92886

Subject: Preliminary Geotechnical Investigation Report, Tentative Parcel Map No. 2020-125, Yorba Linda, California

Robert,

In accordance with your request and authorization, TGR Geotechnical, Inc. (TGR) has performed a preliminary geotechnical investigation for the proposed development at the subject site. This report presents the findings of our limited geotechnical investigation, including site seismicity and provides preliminary design geotechnical recommendations for the proposed development. The work was performed in general accordance with our proposal dated February 5, 2020 and your subsequent authorization to proceed.

It is our understanding that the proposed development will consist of the construction of a single-family residence. The proposed development is suitable from a geotechnical viewpoint provided the recommendations presented in this report are incorporated during design and construction.

If you have any questions regarding this report, please do not hesitate to contact this office. We appreciate this opportunity to be of service.

Respectfully submitted,

TGR GEOTECHNICAL, INC.

Sanjay Govil, PhD, PE, GE 2382 Principal Geotechnical Engineer

Distribution: (4) Addressee

Edward L. Burrows, M.S, PG, CEG 1750 Principal Engineering Geologist

TGR GEOTECHNICAL DBE & 8(a) firm 3037 S. HARBOR BLVD SANTAANA, CA 92704 P 714.641.7189 F 714.641.7190 www.tgrgeotech.com

Attachments

Plate 1 – Geotechnical Map

Plate 2 – Geotechnical Cross-Section A-A', B-B' and C-C'

Figure 1 – Site Location Map

Figure 2 – Geologic Map

Figure 3 – Historic High Groundwater Map

Figure 4 – Regional Fault Map

Figure 5 – Seismic Hazard Zone Map

Appendix A – References

Appendix B – Log of Borings

Appendix C – Laboratory Test Results

Appendix D – Slope Stability Analysis

Appendix E – Earthwork and Grading Guidelines

INTRODUCTION

Site Description and Proposed Project Development

It is our understanding that the proposed development consists of a single-family residence located off of Fairmont Boulevard, Yorba Linda, California. The subject property is an ascending slope and hilltop. The site is bounded on the north by the Yorba Linda Water District (YLWD) Little Canyon Reservoir; on the south by residential development and Fallen Leaf Road; on the east by residential development and Fairmont Blvd; and on the west by undeveloped land The approximate site location is presented in the Site Location Map (Figure 1).

The proposed residential development will consist of a single building pad at the northeast portion of the site with a pad elevation of 965 feet above mean sea level (amsl). A large fill/cut slope ranging up to approximately 185 feet in height is proposed to the south and west of the building pad. Access to the pad area will be via a road constructed within the slope area. The maximum anticipated cut is approximately 50 feet at the southwest portion of the site. The maximum anticipated fill is approximately 50 feet in the central portion of the site. The maximum proposed cut slope is 185 feet and the maximum proposed fill slope is 150 feet. Fill and cut slope gradients are 2H:1V (horizontal:vertical).

Reports by Others

A geotechnical investigation report was previously prepared by Converse Ward Davis Dixon, Inc. (Converse, 1981) for the existing YLWD Little Canyon Reservoir which is located directly north of the subject site. TGR reviewed Converse's report in preparing this report.

Scope of Work

The scope of work for this geotechnical investigation included the following:

- Site reconnaissance.
- Review of readily available geotechnical and geologic reports for nearby properties.
- Sampling and logging three (3) large diameter (24") borings utilizing a bucket auger drill rig to depths ranging from 31 to 75 feet at the subject site to evaluate subsurface soil conditions. The borings were backfilled with cuttings and any excess soil was disposed onsite.
- Laboratory testing of selected samples to include in-situ moisture density, maximum density and optimum moisture content, shear, expansion, and sulfate.
- Engineering analysis including static slope stability, seismic slope stability including evaluation of seismic displacement, foundation and retaining wall design.
- Preparation of this appropriately illustrated report, including geologic cross-sections. The report summarizes the results of the geologic and geotechnical investigation, evaluate subsurface soil condition, site seismicity, and slope stability.

Field Investigation

Field exploration was performed on April 20 and 21, 2020 by a certified engineering geologist from our firm who logged the borings and obtained representative samples, which were subsequently transported to the laboratory for further review and testing. The approximate locations of the borings are indicated on the enclosed Geotechnical Map (Plate 1).

The subsurface conditions were explored by drilling, sampling, and down-hole logging three borings with a truck mounted bucket auger drill rig to approximate depths ranging from thirty-one (31) to seventy-five (75) feet below existing grade. Subsequent to drilling and logging, all borings were backfilled with cuttings. Soil descriptions were entered on the logs in general accordance with the Unified Soil Classification System (USCS). The logs of borings presenting soil conditions and descriptions are given in Appendix B.

The drill rig was equipped with a sampling apparatus to allow for recovery of driven modified California Ring Sampler (CRS), 3-inch outside diameter, and 2.42-inch inside diameter. Driven samples and bulk samples of the earth materials encountered at selected intervals were recovered from the borings.

The samples were driven using a Kelly bar falling freely from a height of 30 inches. The weight of the Kelly bar changed with increasing depth and was 3300 pounds in the upper 25 feet below ground surface, 2200 pounds between 25 and 50 feet below ground surface and 1100 pounds between 50 and 75 feet below ground surface. The locations and depths of the soil samples recovered are indicated on the logs in Appendix B.

Laboratory Testing

Laboratory tests were performed on representative samples to verify the field classification of the recovered samples and to evaluate the geotechnical properties of the subsurface soils. The following tests were performed:

- In-situ moisture content (ASTM D2216) and dry density (ASTM D7263);
- Maximum Dry Density and Optimum Moisture Content (ASTM D1557);
- Direct Shear Strength (ASTM D3080);
- Expansion Potential (ASTM D4829);
- Atterberg (ASTM D423); and
- Soluble Sulfate (CAL.417A)

Laboratory tests for geotechnical characteristics were performed in general accordance with the ASTM procedures. The results of the in-situ moisture content and density tests are shown on the borings logs. The results of the laboratory tests are presented in Appendix C.

GEOTECHNICAL FINDINGS

Earth Units/Geology

The Bedrock exposed at the surface and underlying the general site area is part of the late Miocene aged Puente Formation. According to the USGS Professional Paper 420-B, Geologic Map of the Prado Dam and Yorba Linda Quadrangles, (Dunham and Yerkes, 1964), the bedrock at the subject site is the La Vida member of the Puente Formation which generally consists of interbedded siltstone and sandstone.

<u>Groundwater</u>

During the field exploration, groundwater was not encountered to the maximum depth drilled (approximately 75 feet). This site is underlain by bedrock and a review of the seismic hazard zone maps for the Yorba Linda quadrangle does not show groundwater mapped beneath the subject site.

Generally, seasonal and long-term fluctuations in the groundwater may occur as a result of variations in subsurface conditions, rainfall, run-off conditions and other factors. Therefore, variations from our observations may occur.

Faulting and Seismicity

We consider the most significant geologic hazard to be the potential for moderate to strong seismic shaking that is likely to occur at the subject site. The subject site is located in the highly seismic Southern California region within the influence of several faults that are considered to be active or potentially active. An active fault is defined by the State of California as a "sufficiently active and well-defined fault" that has exhibited surface displacement within the Holocene time (about the last 11,000 years). A potentially active fault is defined by the State as a fault with a history of movement within Pleistocene time (between 11,000 and 1.6 million years ago).

These active and potentially active faults are capable of producing potentially damaging seismic shaking at the site. It is anticipated that the subject site will periodically experience ground acceleration as a result of small to moderate magnitude earthquakes. Other active faults without surface expression (blind faults) or other potentially active seismic sources that are not currently zoned and may be capable of generating an earthquake are known to be present under the region.

Based on our review of the referenced geologic maps, as well as our field reconnaissance, the subject site is not included within any Earthquake Fault Zones as created by the Alquist-Priolo Earthquake Fault Zoning Act (Hart, 1997). Our review of geologic literature pertaining to the site area indicates that there are no known active or potentially active faults located within or immediately adjacent to the subject property. The nearest fault is the Whittier Fault located approximately 0.5 miles from the subject site. Other faults close to the site are Chino Fault (5.0 miles away), and Peralta Hills Fault (5.5 miles away). The Regional Fault Map (Figure 4) presents the location of the site with respect to the regional faults

Surface Fault Rupture and Ground Shaking

Since no known faults are located within the site, surface fault rupture is not anticipated. However, due to the close proximity of known active and potentially active faults, severe ground shaking should be expected during the life of the proposed structures.

Liquefaction

Liquefaction is a seismic phenomenon in which loose, saturated, fine-grained granular soils behave similarly to a fluid when subjected to high-intensity ground shaking. Liquefaction occurs when these ground conditions exist: 1) Shallow groundwater; 2) Low density, fine, clean sandy soils; and 3) High-intensity ground motion. Effects of liquefaction can include sand boils, settlement, and bearing capacity failures below foundations.

The site is underlain by bedrock. A review of the seismic hazard zone map of the Yorba Linda Quadrangle indicates that the subject site is not located within an area having a potential for earthquake induced liquefaction (Figure 5). As such, the potential for liquefaction at the subject site is considered to be negligible.

Seismically Induced Settlement

Ground accelerations generated from a seismic event can produce settlements in sands or in granular earth materials both above and below the groundwater table. This phenomenon is often referred to as seismic settlement and is most common in relatively clean sands, although it can also occur in other soil materials. Based on the nature of the soils (bedrock) underlying the site the potential for seismically induced settlement is considered negligible.

Lateral Spreading

Seismically induced lateral spreading involves primarily movement of earth materials due to earth shaking. Lateral spreading is demonstrated by near-vertical cracks with predominantly horizontal movement of the soil mass involved. Based on the nature of the soils (bedrock) underlying the site the potential for lateral spreading at the subject site is considered negligible.

Earthquake Induced Landsliding

A review of the seismic hazard zone map of the Yorba Linda Quadrangle indicates that the subject site is not located within an area having a potential for earthquake induced landsliding (Figure 5). The site is underlain by bedrock. The bedrock is overlain by approximately 2 to 3.5 feet of topsoil/colluvium. Evidence of ancient or recent landsliding was not observed on the property at the time of our field study and site visit. In addition, the property did not reveal the presence of past surficial slope failures.

Slope Stability

Slope stability calculations are presented in Appendix D on geologic cross-sections A-A', B-B' and C-C'. Based on the calculations, site slopes are considered grossly stable. Seismic displacement was calculated by evaluating the yield acceleration that corresponds to a safety factor of 1.0 and calculating seismic displacement per Bray and Travasarou (2007; 2009), Rathje and Antonakos (2011) and Song and Marek (2015) and taking the average of the two. The design minimum factors of safety under static loading conditions is 1.5. The acceptable seismic displacement is 5 cm for slide planes going through structures, 15 cm otherwise.

Presented below are the results of our slope stability analyses for cross sections A-A', B-B' and C-C':

Cross Section	Static Safety Factor	Ky (g)	Displacement (cm)	Seismic Safety Factor
A – A'	1.62	0.30	3.75	1.00
B - B'	1.70	0.36	1.22	1.01
C-C'	1.61	0.35	2.25	1.02

The soil shear strength parameters utilized in the slope stability calculations are presented below.

Geologic Unit	Unit Weight	Static Stabili	ty (Ultimate)	Seismic Stability (Ultimate)		
	(pcf)	Cohesion (Psf)	Friction Angle (degree)	Cohesion (Psf)	Friction Angle (degree)	
Fill (95%)	130	275	28	460	30	
(Tpl) Bedrock: Across Bedding	130	198	36	428	47	
(Tpl) Bedrock:	130	336	18	336	18	
Along Bedding						

The surficial stability analysis indicated an adequate factor of safety. Calculations are presented in Appendix D.

DISCUSSIONS AND CONCLUSIONS

<u>General</u>

Based on our field exploration by others and geotechnical engineering analysis, the proposed development is considered suitable from a geotechnical viewpoint, provided the recommendations contained in this report are incorporated into the design and construction phases of the project. It is our opinion that the proposed development and proposed grading will be safe against hazard from landslide, settlement, or slippage, and the proposed construction will have no adverse effect on the geologic stability of the adjacent properties provided our recommendations presented in this report are followed.

Conclusions

Based on our findings and analyses, the subject site is likely to be subjected to moderate to severe ground shaking due to the proximity of known active and potentially active faults. This may reasonably be expected during the life of the structure and should be designed accordingly.

The engineering evaluation performed concerning site preparation and the recommendations presented are based on information provided to us and obtained by us during our office and fieldwork. This report is prepared for the proposed residential development at the subject site. In the event that any significant changes are made to the proposed development, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed, and the recommendations of this report are verified or modified in writing by TGR.

TGR GEOTECHNICAL DBE & 8(a) firm 3037 S. HARBOR BLVD SANTA ANA, CA 92704 P 714.641.7189 F 714.641.7190 www.tgrgeotech.com

RECOMMENDATIONS

Seismic Design Parameters

When reviewing the 2019 California Building Code, the following data should be incorporated into the design:

Latitude (degree)	33.908
Longitude (degree)	-117.769
Site Class	С
Site Coefficient, F _a	1.2
Site Coefficient, F _v	1.4
Mapped Spectral Acceleration at 0.2-sec Period, S_s	1.986 g
Mapped Spectral Acceleration at 1.0-sec Period, S ₁	0.694 g
Spectral Acceleration at 0.2-sec Period Adjusted for Site Class, S_{MS}	2.383 g
Spectral Acceleration at 1.0-sec Period Adjusted for Site Class, S_{M1}	0.972 g
Design Spectral Acceleration at 0.2-sec Period, S_{DS}	1.589 g
Design Spectral Acceleration at 1.0-sec Period, S _{D1}	0.648 g

The structural consultant should review the above parameters and the 2019 California Building Code to evaluate the seismic design.

Conformance to the criteria presented in the above table for seismic design does not constitute any type of guarantee or assurance that significant structural damage or ground failure will not occur during a large earthquake event. The intent of the code is "life safety" and not to completely prevent damage of the structure, since such design may be economically prohibitive.

Shallow Foundation Design Recommendations

Shallow foundations may be utilized to support the proposed development. Continuous or pad footings shall be supported on a minimum of three feet of engineered fill. It is recommended that the continuous footings be a minimum of 18 inches wide and a minimum of 24 inches deep. An allowable bearing capacity of 2500 psf is recommended for both pad and continuous footings. The minimum horizontal foundation setback for descending slopes is H/3 (maximum 40 feet), where H is the height of the slope. Deepened footings may be required to meet the setback requirement. The minimum horizontal setback for ascending slopes is H/2 (maximum 15 feet).

Fill slopes and pad areas consisting of expansive soils are expected to have some degree of slope creep and lot stretching/lateral fill extension. Slope creep and lot stretching/lateral fill extension are expected to be particularly prevalent within the outer fifteen (15) feet of the slope face. The amount of movement is difficult to determine and is dependent to some extent upon the height and angle of the slope, the degree of the expansion potential, and irrigation practices.

A minimum foundation setback of 15 feet from the outer edge of the top of slope for freesanding walls to the slope face daylight is recommended.

The total settlement is not expected to exceed 1 inch. The differential settlement between columns is estimated as 1/2 inch.

The above values may be increased by one-third when considering short duration seismic or wind loads. The reinforcement should be designed by the project structural engineer.

Resistance to lateral loads including wind and seismic forces may be provided by frictional resistance between the bottom of concrete and the underlying fill soils and by passive pressure against the sides of the foundations. A coefficient of friction of 0.40 may be used between concrete foundation and underlying soil. The recommended passive pressure of the engineered fill may be taken as an equivalent fluid pressure of 250 pounds per cubic foot (2,500 psf max).

Retaining Wall Design Recommendations

Proposed retaining walls may be supported on shallow foundations or drilled piers as described below. The following soil parameters may be used for the design of retaining walls up to 10 feet high with level backfill or 2:1 backfill:

Conditions	Equivalent Fluid Pressure
	<u>(psf/ft)</u>
Active (Level)	45
Active (2:1 Backfill)	65
At Rest (Level)	60
Allowable Passive	275 (maximum 2750)

- An allowable coefficient of friction between on-site soil and concrete of 0.35 may be used with the dead-load forces.
- Passive pressure and frictional resistance could be combined in determining the total lateral resistance. However, one of them shall be reduced by 50 percent.
- Walls near ascending slopes should be designed for creep loading.
- The passive pressure of the soil within the creep zone shall be ignored in the design.
- Retaining walls over 6 feet high shall be designed for a seismic lateral load of 17H² pounds. The seismic load shall be applied at a distance of 0.6H above the base of the wall.
- Drilled piers should be designed for the passive pressure presented above.

Retaining structures should be provided with a drainage system to prevent buildup of hydrostatic pressure behind the walls unless the wall is designed for the added hydrostatic pressure. Provisions should be made to collect and dispose of excess water away from the wall. Wall drainage may be provided by a perforated pipe encased in gravel or crushed rock and enclosed by geo-synthetic filter fabric. We do not recommend omitting the drains behind walls.

In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent walkway, should be considered in the design of the retaining wall. A minimum vertical surcharge load of 300 psf should be used in design of walls due to adjacent traffic unless the traffic is kept at least 10 feet from the walls. Loads applied within a 1:1 projection from any surcharging structure on the stem of the wall shall be considered as lateral surcharge. For uniform lateral surcharge conditions applied to free-to-deflect walls we recommend utilizing a minimum horizontal load equal to 33 percent of the vertical load and should be applied uniformly over the entire height of the wall.

Cement Type and Corrosion

Preliminary testing indicates that concrete used should be designed in accordance with the provisions of ACI 318 for Exposure Class S0. However, due to the presence of gypsum within the bedrock, testing of soils at the completion of grading should be performed to determine sulfate content.

TGR does not practice corrosion engineering. If needed, a qualified specialist should review the site conditions and evaluate the corrosion potential of the site soil to the proposed improvements and to provide the appropriate corrosion mitigations for the project.

Expansive Soils

The near surface site soils have an expansion index of 41-58, which correlates to a low to medium expansion potential.

Shrinkage/Bulking

Removal and recompaction of the near surface soils (topsoil/colluvium) is estimated to result in shrinkage ranging from 10 to 15 percent. Removal and recompaction of the bedrock is estimated to result in bulking ranging from 0 to 5 percent.

Excavatability of Onsite Bedrock

The major portion of the proposed excavation is expected to be within bedrock. This material is expected to be excavatable by conventional earth-moving equipment. It is anticipated that, within the expected depth of excavation, no blasting will be required; However, some well cemented discontinuous zones which might require heavy ripping might be encountered during excavation. Zones of well cemented sandstone were encountered in boring BA-1 at depths ranging from 31 to 32 feet, 38 to 41 feet and 48 to 51 feet.

Slabs on Grade

Interior slabs may be supported on grade. The slab should be a minimum of 5-inches thick and reinforced with a minimum of No. 4 rebars at 12-inches on center. The slabs shall be supported on a minimum of three feet of engineered fill. All the interior slabs should be underlain by a minimum of fifteen- (15) mil thick Visqueen vapor barrier with all laps sealed. Two (2) inches of sand should be placed over the membrane as well as under the membrane. The subgrade material should be compacted to a minimum of 95 percent of the maximum laboratory dry density (ASTM 1557). Prior to placement of concrete, the subgrade soils should be well moistened to at least optimum moisture content to a depth of 18 inches. The slab should also be designed in accordance with 2019 CBC to include the expansive nature of the soil.

The structural details, such as slab thickness, concrete strength, amount and type of reinforcements, joint spacing, etc., should be established by the structural engineer.

Depending on the location of the building footprint, the slab may be underlain by a differential fill thickness. As such, consideration should be given to the use of a post-tensioned slab or interior grade beams to limit differential movement. Geotechnical recommendations can be provided upon request.

Flatwork Design

Flatwork should be a minimum of 4-inches thick should be reinforced with a minimum of No. 3 reinforcing bar on 12-inch centers in two horizontally perpendicular directions. Reinforcing should be properly supported to ensure placement near the vertical midpoint of the slab. "Hooking" of the reinforcement is not considered an acceptable method of positioning the steel. The slab should not be structurally connected to the buildings. The actual thickness, reinforcement, and spacing of control joints of the slab shall be designed by the structural engineer and should include the anticipated loading condition. The subgrade material should be compacted to a minimum of 95 percent of the maximum laboratory dry density (ASTM 1557) to a minimum depth of 12-inches. Prior to placement of concrete, the subgrade soils should be well moistened to at least optimum moisture content and verified by our field representative.

Site Development Recommendations

<u>General</u>

During earthwork construction, all site preparation and the general procedures of the contractor should be observed, and the fill selectively tested by a representative of TGR. If unusual or unexpected conditions are exposed in the field, they should be reviewed by this office and if warranted, modified and/or additional recommendations will be offered.

Grading

All grading should conform to the guidelines presented in the Appendix E, California Building Code (2019 edition), except where specifically superseded in the text of this report. Prior to grading, TGR's representative should be present at the pre-construction meeting to provide grading guidelines, if needed, and review any earthwork.

Site Preparation

Prior to initiating grading operations, any existing vegetation, debris, oversized materials (greater than 4 inches), and other deleterious materials within fill areas should be removed.

Surficial Soil Removals

The existing fill, topsoil, colluvium and weathered bedrock materials should be removed to expose competent bedrock as directed by the project geotechnical engineer or engineering geologist. Based on our subsurface exploration the upper approximately 3 to 9 feet of onsite materials will require removal. The actual removal depths should be determined in the field as conditions are exposed.

Treatment of Removal Bottoms

Soils exposed within areas approved for fill placement should be scarified to a depth of 6 inches, conditioned to near-optimum moisture content, then compacted in-place to project standards.

Fill Placement

The onsite soils may be used as compacted fill provided, they are free or organic materials and debris. Fills should be placed in relatively thin lifts, brought to near optimum moisture content, then compacted to at least 95 percent relative compaction based on laboratory standard ASTM D-1557.

Compaction

Prior to fill placement, the exposed surface should be scarified to a minimum depth of six (6) inches, fill placed in six (6) inches loose lifts, moisture conditioned to at least optimum moisture content, and compacted to a minimum relative compaction of ninety-five (95) percent in accordance with ASTM D 1557.

Fill Slopes

Permanent fill slopes should be constructed no steeper than 2H:1V and keyed and benched into approved bedrock materials. A minimum relative compaction of 95 percent out to the finish slope face for fill slopes is required. This may be achieved by either overbuilding the slope and cutting back to the compacted core, or by direct compaction of the slope face with suitable equipment, or by any other procedure which produces the required compaction.

The fill slopes shall have a subdrain system. Vertical spacing, outlet spacing, pipe and filter material should be in accordance with the recommendations presented in Appendix E – Earthwork and Grading Guidelines, Typical Stabilization and Buttress Fill Subdrain Detail.

Fill Keys and Benching

Fill keys should be constructed at the toe of the fill slope at the southeast portion of the site near the site entrance off Fairmont Blvd. See Plate 1, Geotechnical Map, for proposed fill key locations. The fill keys should have a minimum width of 25 feet and a minimum depth of 5 feet into competent bedrock. All fill keys should be observed and approved by the project geotechnical consultant prior to placing fill. Fills placed on slopes steeper than 5H:1V should be keyed and benched into competent bedrock as the fills are placed. See Appendix E. Earthwork and grading Guidelines (Typical Fill over Natural Slope detail) for benching recommendations.

Cut Slopes

The proposed cut slope located in the west-southwest portion of the site is anticipated to expose bedrock with bedding favorable to slope stability. As such, this slope is anticipated to be grossly stable. The cut slope should be observed during excavation to verify that existing conditions are consistent with those anticipated. If adverse bedrock conditions are encountered, appropriate remedial recommendations shall be provided by the geotechnical consultant.

Cut/Fill Transition

The building pad will have a cut/fill transition. Typical recommendations for over-excavation of the cut portion of the cut/fill transition are presented in Appendix E, Earthwork and grading Guidelines (Typical Overexcavation of Daylight Line detail). However, due to the anticipated differential pad fill thickness, TGR recommends that the cut portion of the cut fill transition be overexcavated a minimum of 10 feet below pad grade.

Trenching

All excavations should conform to CAL-OSHA and local safety codes.

TGR GEOTECHNICAL DBE & 8(a) firm 3037 S. HARBOR BLVD SANTAANA, CA 92704 P 714.641.7189 F 714.641.7190 www.tgrgeotech.com

Drainage

Positive site drainage should be maintained at all times. Drainage should not flow uncontrolled down any descending slope or retaining wall. Water should be directed away from foundations and not allowed to pond and/or seep into the ground. Pad drainage should be directed towards the street/parking or other approved area. Roof gutters and down spouts should be utilized to control roof drainage. Down spouts should outlet a minimum of 5 feet from the proposed structure or into an approved subsurface drainage system. We would recommend that any proposed open-bottom planters adjacent to proposed structures be eliminated for a minimum distance of 10 feet. As an alternative, closed-bottom type planters could be utilized. An outlet placed in the bottom of the planter could be installed to direct drainage away from structures or any exterior concrete flatwork.

Utility Trench Backfill

All utility trench backfills in structural areas and beneath hardscape features should be brought to at least optimum moisture content and compacted to a minimum relative compaction of 90 percent of the laboratory standard. Flooding/jetting is not recommended.

Sand backfill, (unless trench excavation material), should not be allowed in parallel exterior trenches adjacent to and within an area extending below a 1:1 plane projected from the outside bottom edge of the footing. All trench excavations should minimally conform to CAL-OSHA and local safety codes. Soils generated from utility trench excavations may be used provided it is moisture conditioned and compacted to 90 percent minimum relative compaction.

Temporary Excavation Recommendations

Soils may be cut vertically without shoring to a depth of approximately four (4) feet below adjacent grade. For deeper cuts, the slopes should be properly shored or sloped back to at least 1H:1V or flatter. The exposed slope face should be kept moist (but not saturated) during construction to reduce local sloughing. No surcharge loads should be permitted within a horizontal distance equal to the height of cut from the toe of excavation unless the cut is properly shored. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of any nearby adjacent existing site facilities should be properly shored to maintain foundation support for the adjacent structures.

Preventative Slope Maintenance

For the slopes, it is important to reduce the risk of problems relating to slope instability. It is recommended that a program be implemented for aggressive slope maintenance to include; annual cleanout of drains, elimination of burrowing rodents, maintaining drought and fire resistant, deep-rooted ground cover, and proper irrigation.

Hillside properties are typically subject to potential geotechnical hazards including mudslides, spalling of slopes, erosion, and concentrated flows. It must be emphasized that responsible maintenance of these slopes, and the property in general, by the owner, using proper methods, can reduce the risk of these hazards significantly.

Geotechnical Review of Plans

All grading and foundation plans should be reviewed and accepted by the geotechnical consultant prior to construction. If significant time elapses since preparation of this report, the geotechnical consultant should verify the current site conditions, and provide any additional recommendations (if necessary) prior to construction.

Geotechnical Observation/Testing During Construction

Per sections 1705.6 and table 1705.6 of the 2019 California Building Code, periodic special inspection shall be performed to:

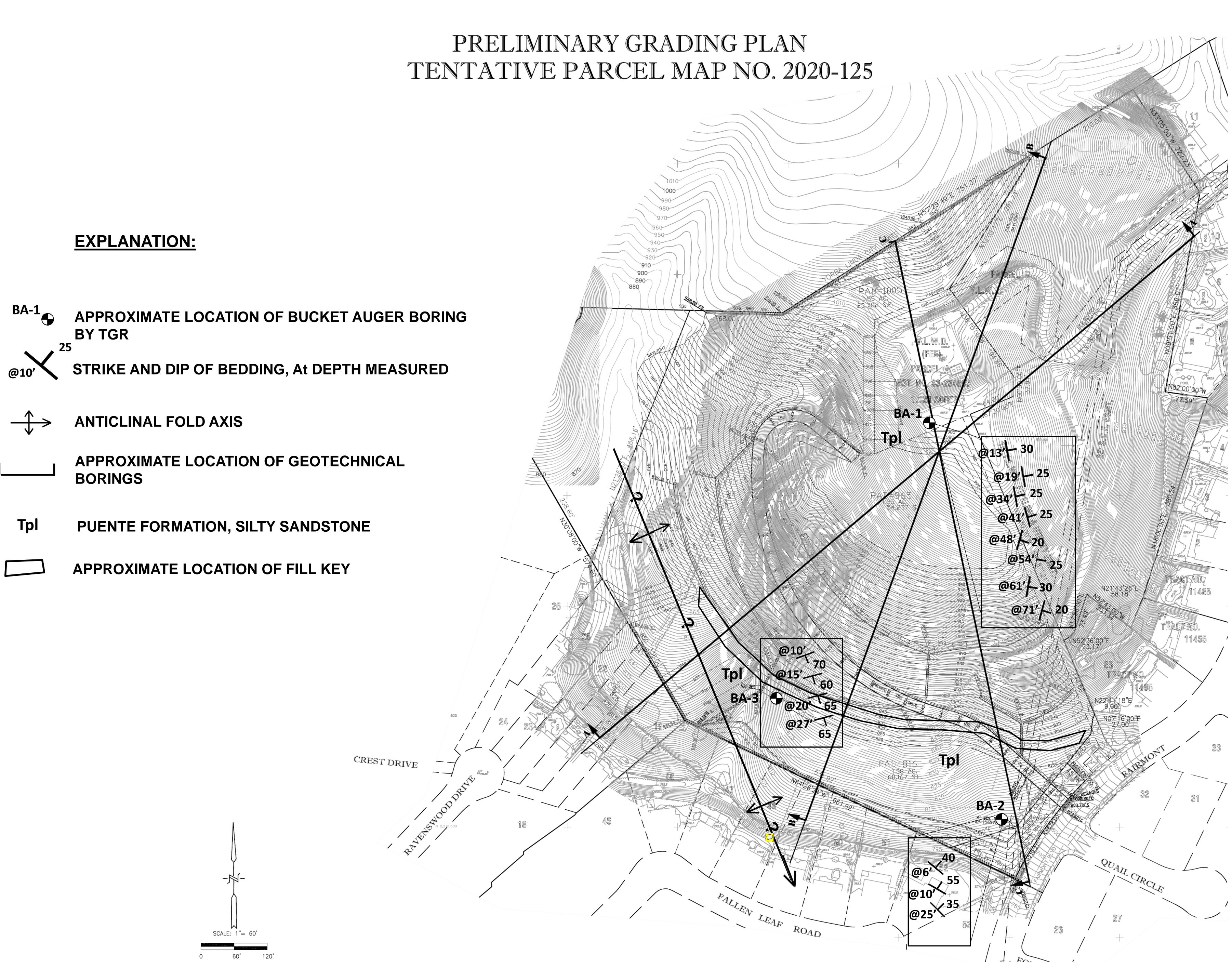
- Verify materials below shallow foundations are adequate to achieve the design bearing capacity;
- Verify excavations are extended to the proper depth and have reached proper material;
- Verify classification and test compacted materials; and
- Prior to placement of compacted fill, inspect subgrade and verify that the site has been prepared properly

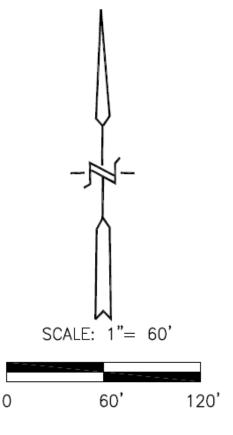
Per sections 1705.6 and table 1705.6 of the 2019 California Building Code, continuous special inspection shall be performed to:

• Verify use of proper materials, densities and lift thickness during placement and compaction of compacted fill.

The geotechnical consultant should also perform observation and/or testing at the following stages:

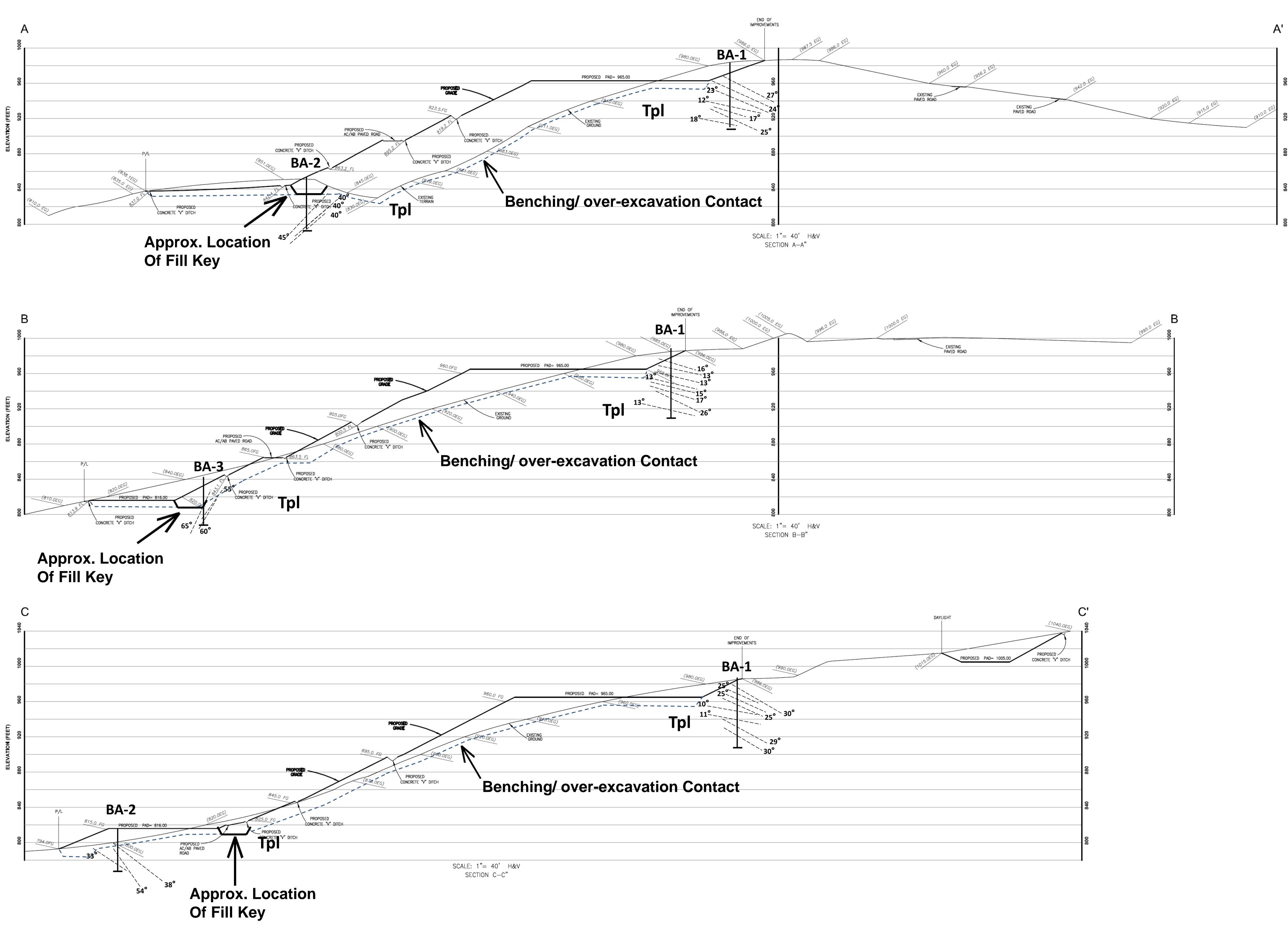
- During any grading and fill placement;
- Prior to pouring foundation or flatwork concrete;
- During trench excavation;
- Excavation bottom;
- Placement of bedding material;
- During trench backfill;
- Subgrade for flatwork;
- When any unusual soil conditions are encountered during any construction operation subsequent to issuance of this report.

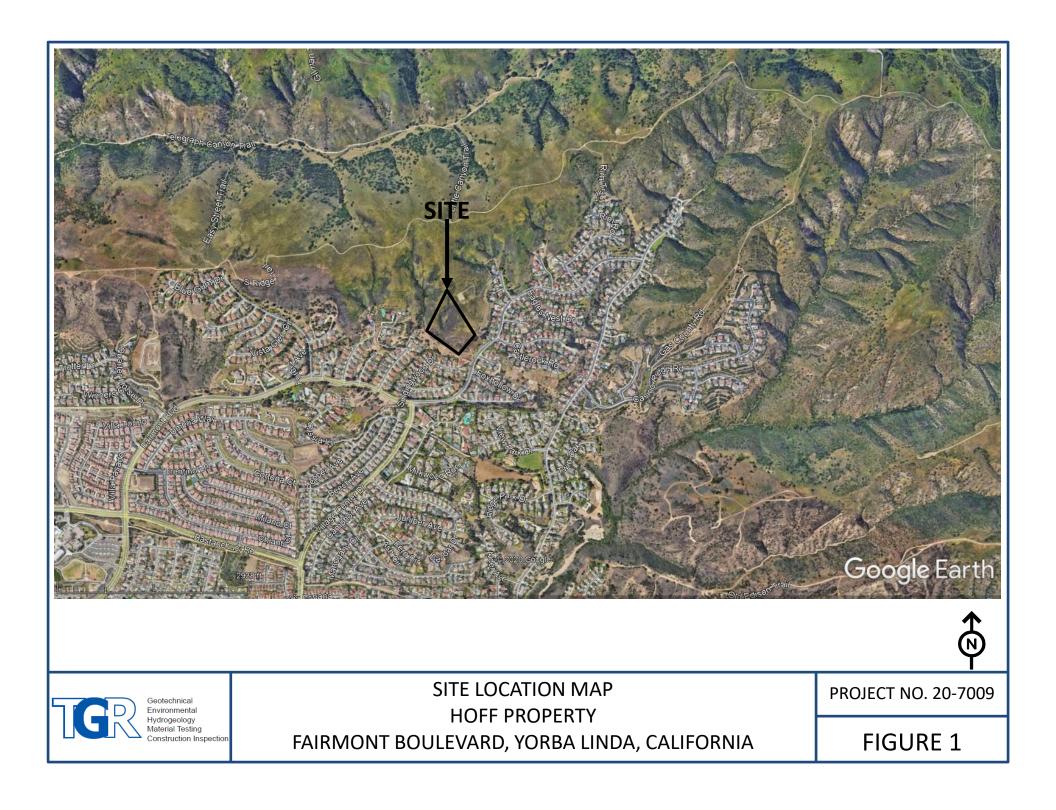

Limitations

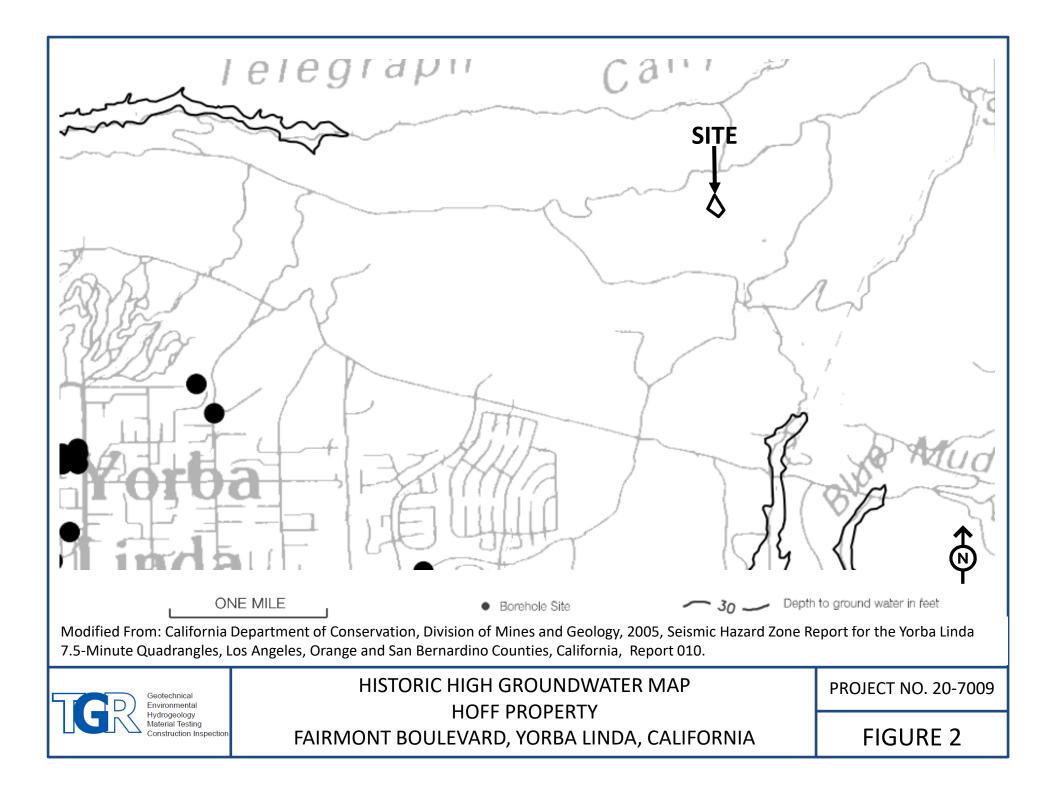

This report was prepared for a specific client and a specific project, based on the client's needs, directions and requirements at the time.

This report was necessarily based in part upon data obtained from a limited number of observances, site visits, soil and/or other samples, tests, analyses, histories of occurrences, spaced subsurface exploration and limited information on historical events and observations. Such information is necessarily incomplete. Variations can be experienced within small distances and under various climatic conditions. Changes in subsurface conditions can and do occur over time.

This report is not authorized for use by and is not to be relied upon by any party except the client with whom TGR contracted for the work. Use or reliance on this report by any other party is that party's sole risk. Unauthorized use of or reliance on this report constitutes and agreement to defend and indemnify TGR from and against any liability which may arise as a result of such use or reliance, regardless of any fault, negligence, or strict liability of TGR.






SEE PLATE 1 FOR EXPLANATION

PROJECT NO. 20-7009

PLATE 2

Sycamore Canyon member

Light-yellowish-brown to brown pebble conglomerate and conglomeratic sandstone; light-yellowish-brown fine- to medium-grained thin-bedded to massive feldspathic sandstone; and light-gray fairly well bedded to massive siltstone. Rapid lateral gradations in lithology. In Prado Dam quadrangle, uppermost part is white sandstone, gravel, and siltstone, possibly of Pliocene age in part. Sandstone and conglomerate units shown by lithologic symbols

Yorha member

Dark-brown to pinkish-gray poorly bedded siltstone with hackly fracture; light-gray to white platy siltstone; soft brownish-gray paper-thin siltstone; lightgray punky diatomaceous siltstone; locally with brownish-gray medium- to coarse-grained sandstone beds. Sandstone units shown by lithologic symbol

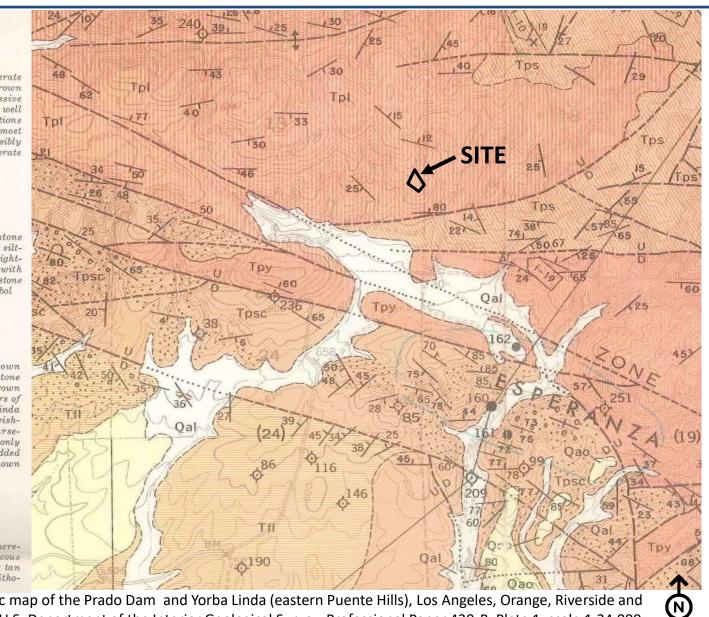
Soquel member

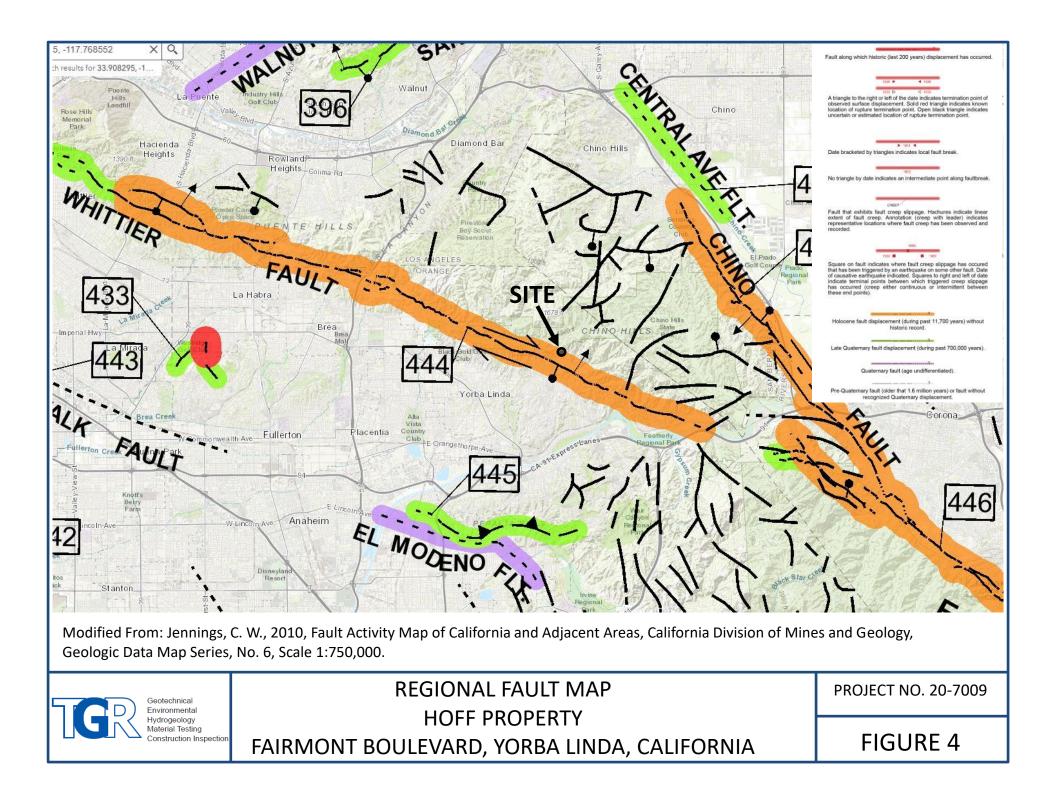
Upper part: light-gray to light-yellowish-brown medium-grained to pebbly feldspathic sandstone with interbedded light-gray to light-yellowish-brown siltstone; numerous 2- to 12-foot rounded boulders of granitic rock along northern border of Yorba Linda quadrangle; lower part: light-gray to light-yellowishbrown thick-bedded to massive medium- to coarsegrained and pebbly feldspathic sandstone, commonly with large concretions; minor amounts of interbedded siltstone. Sandstone and conglomerate units shown by lithologic symbols

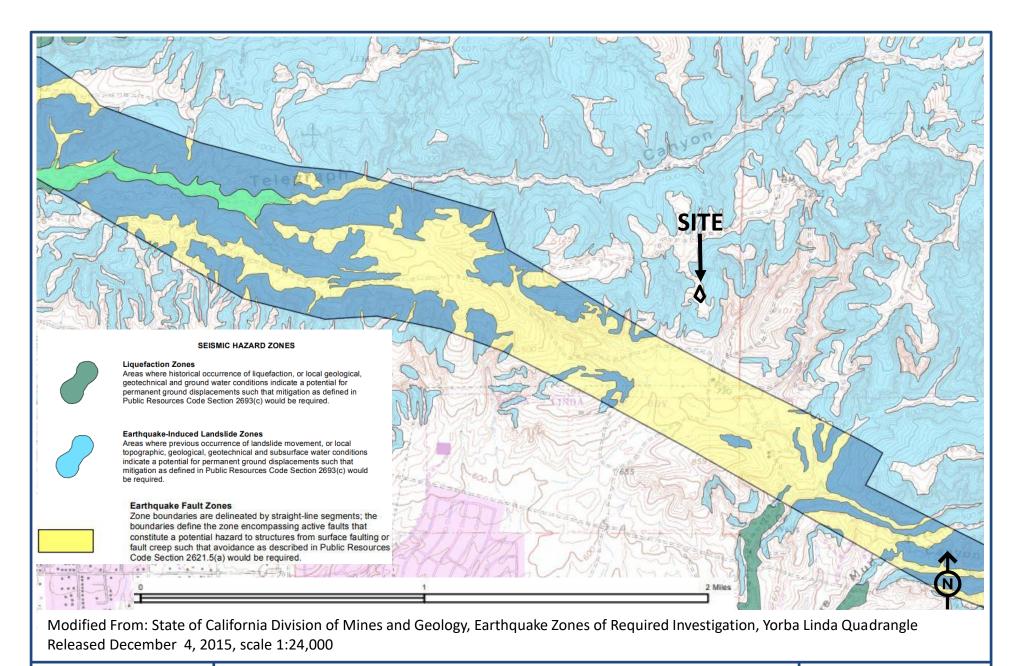
La Vida member

Gray to white platy siltstone with white limy concretions and brownish-gray to light-gray soft micaccous siltstone; thin interbedded light-gray sandstone; tan andesitic tuff, tu. Sandstone units shown by lithologic symbol

D.L. Durham and R.F. Yerkes, Geologic map of the Prado Dam and Yorba Linda (eastern Puente Hills), Los Angeles, Orange, Riverside and San Bernardino Counties, California: U.S. Department of the Interior Geological Survey, Professional Paper 420-B, Plate 1, scale 1:24,000.


REGIONAL GEOLOGY MAP


HOFF PROPERTY


FAIRMONT BOULEVARD, YORBA LINDA, CALIFORNIA

PROJECT NO. 19-6969

FIGURE 3

Geotechnical Environmental Hydrogeology Material Testing Construction Inspection SEISMIC HAZARD ZONE MAP

PROJECT NO. 20-7009

HOFF PROPERTY

FAIRMONT BOULEVARD, YORBA LINDA, CALIFORNIA

FIGURE 5

APPENDIX A REFERENCES

APPENDIX A

References

- California, State of, Department of Conservation, Division of Mines and Geology, 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CDMG Special Publication 117A.
 - _____, 1984, Environmental Geology of Parts of the La Habra, Yorba Linda and Prado Dam Quadrangles, Orange County, California, Open-File Report 84-24
- , 2005, Seismic Hazard Zone Report for the Yorba Linda 7.5–Minute Quadrangle, Los Angeles, Orange and San Bernardino Counties, California, SHZR 010
- _____, 2015, Earthquake Zones of Required Investigation, Yorba Linda Quadrangle, Orange County, California, dated December 4, 2015
- _____, 1998, Maps of Known Active Fault Near Source Zones in California and Adjacent Portions of Nevada.
- Converse Ward Davis Dixon, Inc., 1981, Foundation and Geologic/Seismic Investigation, Proposed 800,000-Gallon Water Storage Tank, Baldwin Property, Site 6, Yorba Linda, California, P.N. 80-1230-06, dated July 29, 1981
- Dibblee, T. W. and Ehrenspeck, H.E., 2001, Geologic Map of the Yorba Linda and Prado Dam Quadrangles (Eastern Puente Hills), Los Angeles, Orange, San Bernardino and Riverside Counties, California, DF-75
- Bray, J.D. and Travasarou, T. (2007), "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 4, pp. 381-392.
- Bray, J.D. and Travasarou, T. (2009), "Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation, Technical Note," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9, pp. 1336-1340.
- Rathje, E.M. and Antonakos, G. (2011), "A Unified Modal for Predicting Earthquake-Induced Sliding Displacements of Rigid and Flexible Slopes," Engineering Geology, V. 122, nos. 1-2, pp. 51-60.
- Song, J. and Rodriguez-Marek, A. (2015), "Sliding Displacement of Flexible Earth Slopes Subject to Near-Fault Ground Motions, Technical Paper," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No. 3.

- Durham, D. L. and Yerkes, R. F., 1964, Geology and Oil Resources of the Eastern Puente Hills Area, Southern California, Geological Survey Professional Paper 420-B
- Hart, E. W., 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning with Index to Special Study Zones Maps: Department of Conservation, Division of Mines and Geology, Special Publication 42.

International Conference of Building Officials, 2019, California Building Code, Part 1 and 2.

Fault Activity Map of California, 2010, California Geological Survey, Geologic Data Map No. 6 Compilation and Interpretation by: Charles W. Jennings and William A. Bryant, Graphics by: Milind Patel, Ellen Sander, Jim Thompson, Barbara Wanish and Milton Fonseca

APPENDIX B LOG OF BORINGS

THE FOLLOWING DESCRIBES THE TERMS AND SYMBOLS USED ON THE LOG OF BORINGS TO SUMMARIZE THE RESULTS OBTAINED IN THE FIELD INVESTIGATION AND SUBSEQUENT LABORATORY TESTING.

DENSITY AND CONSISTENCY

The consistency of fine grained soils and the density of coarse grained soils are described on the basis of the Standard Penetration Test as follows:

COARSE GRAIN	ED SOILS	Estimated Unconfined Compressive Strength (Tsf)	FINE GRAINED	SOILS
Very Loose	< 4	< 0.25	Very soft	< 2
Loose	4 - 10	0.35 - 0.50	Soft	2 - 4
Medium	10 - 30	0.50 - 1.0	Firm (medium)	4 - 8
Dense	30 - 50	1.0 - 2.0	Stiff	8 - 15
Very dense	> 50	2.0 - 4.0	Very stiff	15 - 30
		>4.0	Hard	> 30

PARTICULE SIZE DEFINITION (As per ASTM D2487 And D422)

Boulder	\Rightarrow Larger than 12 inches	Coarse Sands	\Rightarrow No. 10 to No. 4 sieve
Cobbles	\Rightarrow 3 to 12 inches	Medium Sands	\Rightarrow No. 40 to No. 10 sieve
Coarse Gravel	\Rightarrow 3/4 to 3 inches	Fine Sands	\Rightarrow No. 200 to 40 sieve
Fine Gravel	\Rightarrow No. 4 to 3/4 inches	Silt	\Rightarrow 5µm to No. 200 sieve
		Clay	\Rightarrow Smaller than 5µm

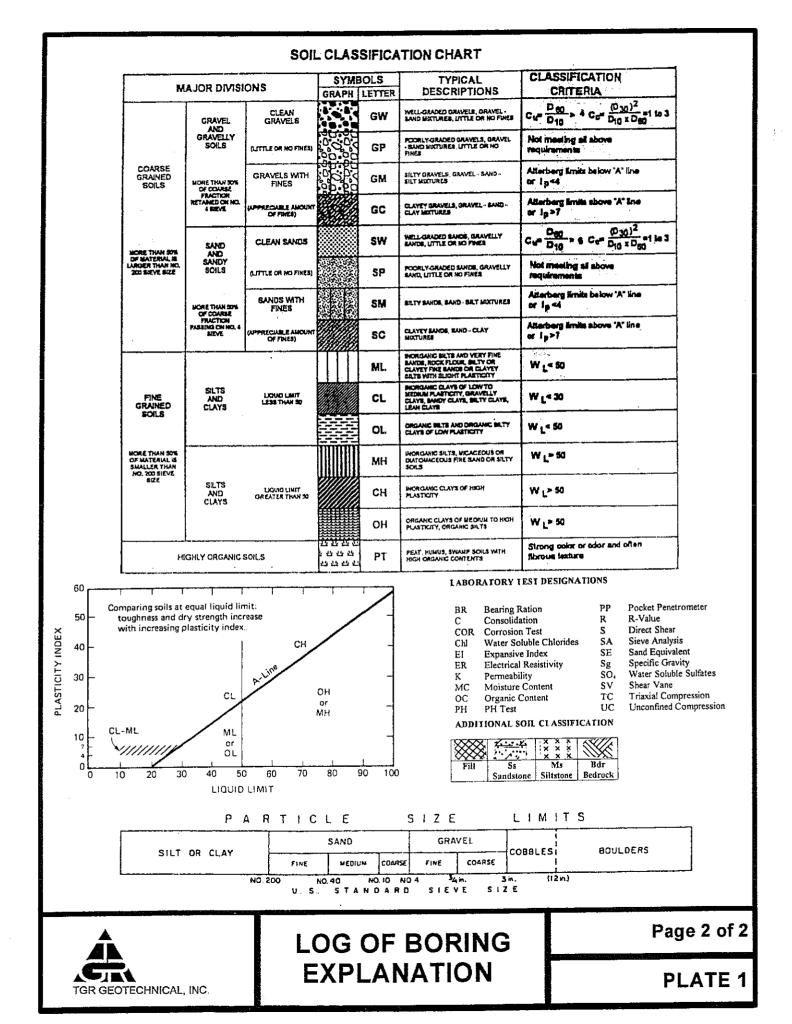
SOIL CLASSIFICATION

Soils and bedrock are classified and described based on their engineering properties and characteristics and using ASTM D2487 and D2488

Percentage description of minor components

Trace1-10 %Some20-35 %Little10-20 %And or y35-50 %

Stratified soils description


Parting	0 to 1/16 inch thick	Layer	$\frac{1}{2}$ to 12 inches thick
Seam	$1/16$ to $\frac{1}{2}$ inch thick	Stratum	> 12 inches thick

LOG OF BORING EXPLANATION

Page 1 of 2

PLATE 1

						LOG OF EXPLORATORY BORING BA-1 She	et 1	of	3
-	ect Nu			20-70		Logged By: ELB			
-	ect Na				-	erty, Yorba Linda Project Engineer: SG			
	Drille			4/20/2	20 - 4	/20/20 Drill Type: Bucket Auger			
Grou	ING EI			ESULT	-0	Drive Wt & Drop: 140lbs / 30in		RES	
	0		-	1		Shelby Tube Standard Split Spoon No recovery			
) th	C L C	Sample	ws/fi ent	Pen	0		lre (%)	sity,	<u>ب</u>
Depth (ft)	Graphic Log	Buik Sample Drive Sample	SPT blows/ft or equivalent N)	Pocket I (tsf)	nscs	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests
	· ا		or s	<u>ل</u>		SUMMARY OF SUBSURFACE CONDITIONS			
		_				Fill/ Slopewash/ Colluvium: Sandy Silt- brown, moist, loose			
									EI,
									Sulfate Max,
								F	emolde
- 5 -									Shear
						BEDROCK: Puente Formation(Tpl)- Silty Sandstone- light	-		
- 10 -			2			brown-tan, slightly moist, medium dense, upper 5 feet highly	20	109	
						weathered, bedrock contact N70W, 15SW, moderately fractured, orange oxidation			
						@13': Sandstone and siltstone beds, bedding attitude- N10W, 30NE			
- 15 -						@15: increase from medium dense to dense			
- 20 -						@19': bedding attitude- N10W, 25NE		105	
			2			@20': Silty Sandstone- light brown to tan, slightly moist, dense, moderately fractured, orange oxidation	20	105	
						moderately fractured, orange oxidation			
- 25 -									
- 30 -			4			@201: hadding attituda N105 2055	21	107	Shear
						@30': bedding attitude- N10E, 20SE	21		Griear
L -						@ 31-32'- well cemented sandstone layer			
L -									
						@34': Sandstone and siltstone beds- moderately fractured, dense,			
						moderately oxidized, bedding attitude- N10W, 25NE			
						Inction with the complete			
geotec	hnical re	port. T	his Bori	ing Log i	represe	Ints conditions observed PLATE 2			
						her locations and times. TGR GEOTECHNIC	AL, INC)	
						· · ·			

							LOG OF EXPLORATORY BORING BA-1 Shee	et 2	of	3
Proje					20-70		Logged By: ELB			
Proje			9:				erty, Yorba LindaProject Engineer:SG/20/20Drill Type:Bucket Auger			
Date Drilled: 4/20/20 - 4/20/20 Drill Type: Bucket Auger Ground Elev: Drive Wt & Drop: 140lbs / 30in										
				LD RE	SULT	S		LAB	RES	ULTS
	-og	e	ole	ft N)	ч		Shelby TubeStandard Split SpoonImage: Standard No recovery	()	۲,	
Depth (ft)	hic I	amp	Sample	lows /aler	st Pe sf)	nscs	Modified Vater Table	sture nt (%	ensit cf)	Other Tests
	Graphic Log	Bulk Sample	Drive S	SPT blows/ft or equivalent N)	Pocket Pen (tsf)	NS	Modified California Water Table ATD	Moisture Content (%)	Dry Density, (pcf)	10 10 10
		B	à	(or e	д.		SUMMARY OF SUBSURFACE CONDITIONS	0	ā	
 - 40 			×	9			@38-41': Sandstone- well cemented @41': bedding attitude- N15W, 25NE	10	125	
- 45 - - 50 - 			×	12			@48-51': Sandstone layer- well cemented, gypsum along fractures, bedding attitude @ 48'- N15E, 20SE	18	F 117	EI, Max, Remolde Shear Shear
							@54': bedding attitude- N10E, 25SE			
							@56': Siltstone- gray to dark gray, slightly moist, hard, minor fracturing, minor oxidation, gypsum along fracture, bedding			
				22			@61': bedding attitude- N10W, 30NE	14	115	Shear
							increase in hardness			
geotecl	This Boring Log should be evaluated in conjunction with the complete geotechnical report. This Boring Log represents conditions observed at the specific location and date indicated, it is not warranted to be representative of subsurface conditions at other locations and times.							<u> </u>		

	LOG OF EXPLORATORY BORING BA-1 Sheet 3 of 3											
Pro Dat	ject N ject N e Dril und I	lam led:	e:	ł		Prope	erty, Yorba Linda 20/20	Logged By: Project Enginee Drill Type: Drive Wt & Drop	Bucket Auger			
			FIEI	LD RE	SULT	S	Shelb	y Standard		LAB	RES	JLTS
	Log	e	ple	s/ft nt N	ue		Tube	Split Spoon	No recovery	8	, t	
Depth (ft)	Graphic Log	Bulk Sample	Drive Sample	SPT blows/ft (or equivalent N)	Pocket Pen (tsf)	NSCS	Modif Califo	ied <u>▼</u> Water Table rnia ATD	9	Moisture Content (%)	Dry Density, (pcf)	Other Tests
		ā	Ď	(or e	д		SUMMARY C	F SUBSURFACE CONDITIC	ONS	- 0	Ō	
Los of BORING 20-7009 HOFF PROPERTY, YORBA LINDA.GPU TGR GEOTECH.GDT 5/8/20				23			@71': bedding attitude- N1: Total Depth: 75' No groundwater No caving Hole backfilled with cuttings Kelly Weight: 0'-25': 3300lb	5W, 20NE			131	Shear
This E geote at the	chnical	repor	t. Thi	is Borir	ng Log r	eprese	nction with the complete nts conditions observed s not warranted to be	PLATE 4	<u>A</u>			
ပို repre	at the specific location and date indicated, it is not warranted to be representative of subsurface conditions at other locations and times.											

							LOG OF EXPLORATORY BORING BA-2 Shee	et 1	of	1
Proje Proje Date Grou	ct N Drill	ame: ed:		He		Prope	Logged By:ELBProject Engineer:SG/21/20Drill Type:Bucket AugerDrive Wt & Drop:140lbs / 30in			
			ELD		ULT	S		LAE	RES	ULTS
L_C	Log	ele ele	s/ft	ר) בי	Len		Shelby TubeStandard Split SpoonNo recovery	 ∞	ťy,	
Depth (ft)	Graphic Log	Bulk Sample Drive Sample	SPT blows/ft	or equivalent N)	Pocket Pr (tsf)	NSCS	Modified California Water Table ATD	Moisture Content (%)	Dry Density (pcf)	Other Tests
			ິ່ິ	<u>o</u>	-		SUMMARY OF SUBSURFACE CONDITIONS		Δ	
							Topsoil: Sandy Silt- light brown, moist, loose			
							BEDROCK: Puente Formation(Tpl)- Silty Sandstone- light brown-tan, slightly moist, dense, moderately fractured, orange oxidation			
- 5 -							@6': bedding attitude- N50W, 40NE			
- 10			4				@10': Sandstone and siltstone beds, light brown to dark gray, slightly moist, dense, moderately fractured, orange oxidation, bedding attitude- N60W, 55NE	12	115 F	Max, emolde Shear
- 15 -			5	i			Same as above	13	125	
							@25': bedding attitude- N45W, 35NE			
30			1 0	D			Total Depth: 31' No Groundwater. No caving. Hole backfilled with cuttings Kelly Weight: 0'-25': 3300lbs, 25'-50': 2200lbs, 50'-75': 1100lbs	14	117	
geotech at the s	nical r pecific	eport. locatio	Γhis Βα n and	oring date	Log re indica	eprese ated, it i	Inction with the complete ths conditions observed is not warranted to be ther locations and times. PLATE 5 TGR GEOTECHNIC.	L AL, INC	I ;	L

							LOG OF EXPLORATORY BORING BA-3 Sheet	et 1	of	1
Proje					20-70		Logged By: ELB			
Proje						-	rty, Yorba Linda Project Engineer: SG			
Date Grou				4	4/21/2	20 - 4/	21/20 Drill Type: Bucket Auger Drive Wt & Drop: 140lbs / 30in			
Grou					SULT	2			RESI	II TS
	bc			, 2			Shelby Tube Standard Split Spoon No recovery			
Depth (ft)	ic Lo	mple	Sample	ws/f lent	Pen	S		lre (%)))	۲s
Del (f	Graphic Log	Bulk Sample	/e Sa	SPT blows/ft (or equivalent N)	Pocket Pen (tsf)	uscs	Modified Water Table California ATD	Moisture Content (%)	Dry Density, (pcf)	Other Tests
		Bu	Drive	or e	P		SUMMARY OF SUBSURFACE CONDITIONS	- ° °	Ď	
							Topsoil: Sandy Silt- light brown, moist, loose			
 - 5 							BEDROCK: Puente Formation(Tpl)- Silty Sandstone- light brown, slightly moist, dense, moderately fractured, orange oxidation	-		
 - 10 				3			Sandstone- siltstone beds, light brown/tan- light gray/ gray, slightly moist, moderately fractured, orange oxidation, gypsum along bedding, @10': bedding attitude- N70E, 70SE	17	111	
 - 15 							@15': bedding attitude- N75E, 60SE			
- 20 -				8/6"			@20': Sandstone, light brown- tan, slightly moist, dense, moderately fractured, orange oxidation, bedding attitude- N75E, 65SE	8	106	
- 25				9			 @27': Sandstone- siltstone beds, light brown/tan-gray, slightly moist, moderately fractured, orange oxidation, bedding attitude- N75E, 65SE Total Depth: 31 feet No Ground water. No caving. 	18	116	
geotec	hnical specific	repor loca	t. Th	is Borii and da	ng Log r te indica	epreser ated, it i	Hole backfilled with cuttings Kelly Weight: 0'-25': 3300lbs, 25'-50': 2200lbs, 50'-75': 1100lbs			

APPENDIX C LABORATORY TEST RESULTS

APPENDIX C

Laboratory Testing Procedures and Results

<u>Moisture and Density Determination Tests</u>: Moisture content and dry density determinations were performed on relatively undisturbed samples obtained from the test borings. The results of these tests are presented in the boring logs. Where applicable, only moisture content was determined from "undisturbed" or disturbed samples.

<u>Maximum Density Tests</u>: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM Test Method D1557. The results of these tests are presented in the test data and in the table below:

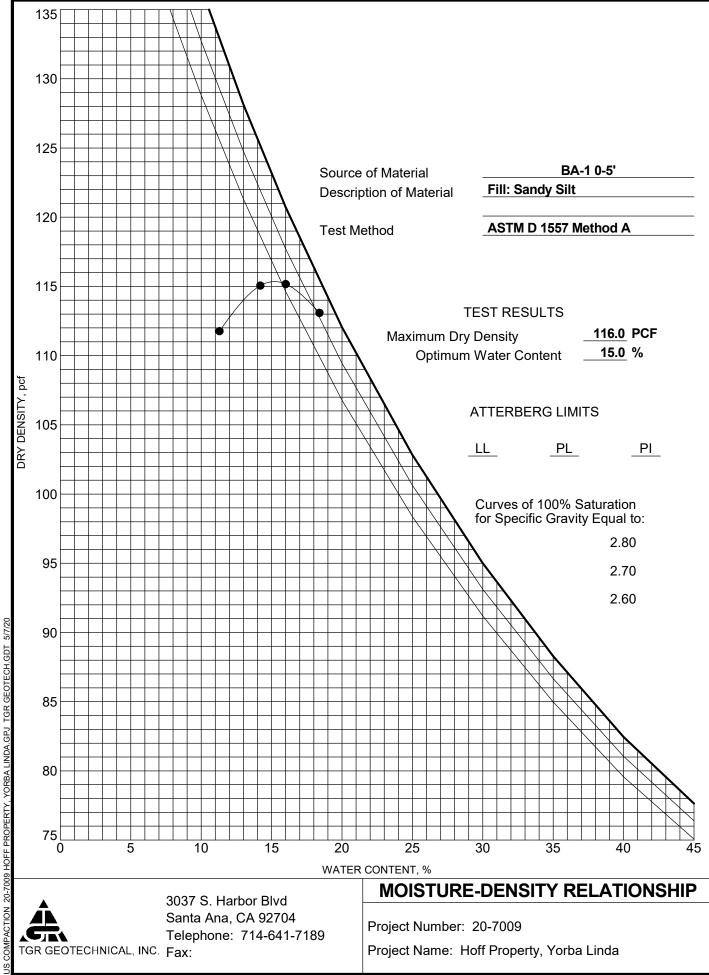
Sample Location	Sample Description	Maximum Dry Density (Pcf)	Optimum Moisture Content (%)
BA-1 @ 0-5 feet	Sandy Silt	116.0	15.0
BA-1@ 45 feet	Sandstone	111.0	17.5
BA-2 @ 10 feet	Sandstone and siltstone	108.0	20.0

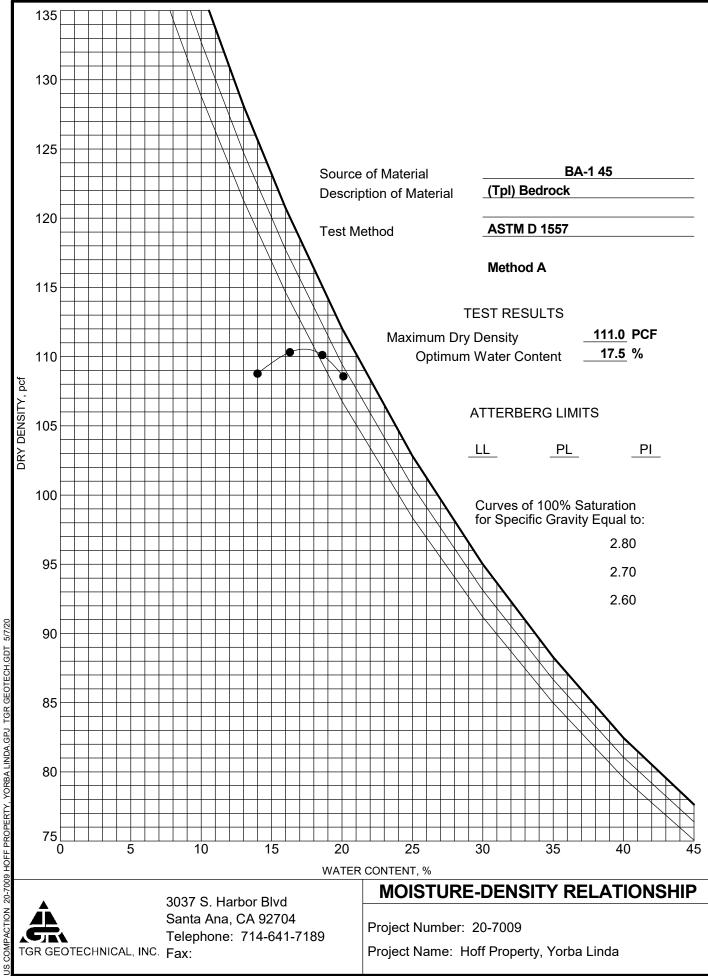
<u>Direct Shear Tests</u>: Direct shear test was performed on selected remolded and/or undisturbed sample, which was soaked for a minimum of 24 hours under a surcharge equal to the applied normal force during testing. After transfer of the sample to the shear box, and reloading the sample, pore pressures set up in the sample due to the transfer were allowed to dissipate for a period of approximately 1-hour prior to application of shearing force. The sample was tested under various normal loads, a motor-driven, strain-controlled, direct-shear testing apparatus at a strain rate of less than 0.001 to 0.5 inches per minute (depending upon the soil type). The test results are presented in the test data:

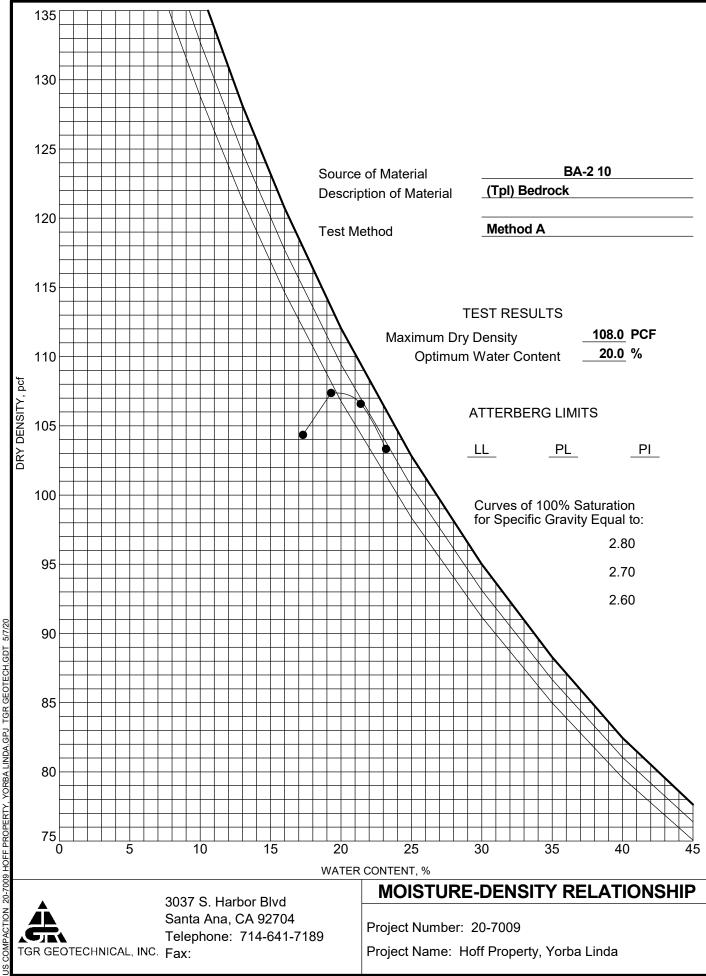
<u>Soluble Sulfates</u>: The soluble sulfate content of selected sample was determined by standard geochemical methods. The test result is presented in the table below:

Sample Location	Sample Description	Water Soluble Sulfate in Soil, (% by Weight)	Sulfate Content (ppm)	Exposure Class*
BA-1 @ 0-5 feet	Sandy Silt	0.0765	765	S0

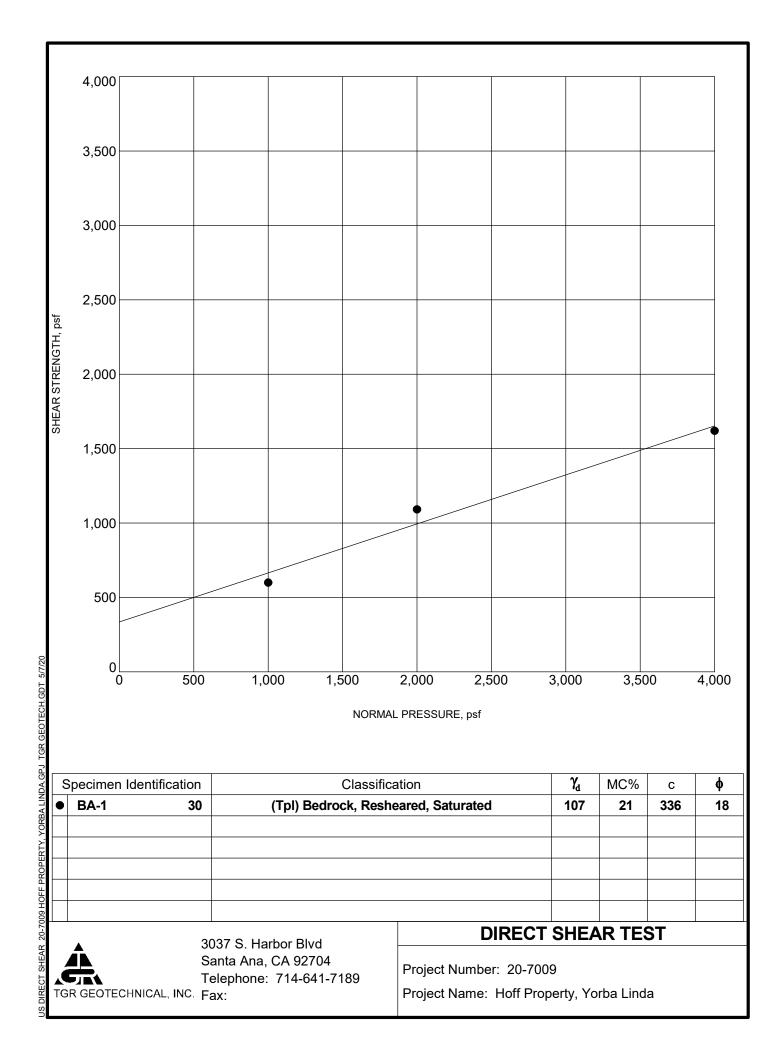
Based on the current version of ACI 318-14 Building Code, Table No. 19.3.1.1; Exposure Categories and Classes.

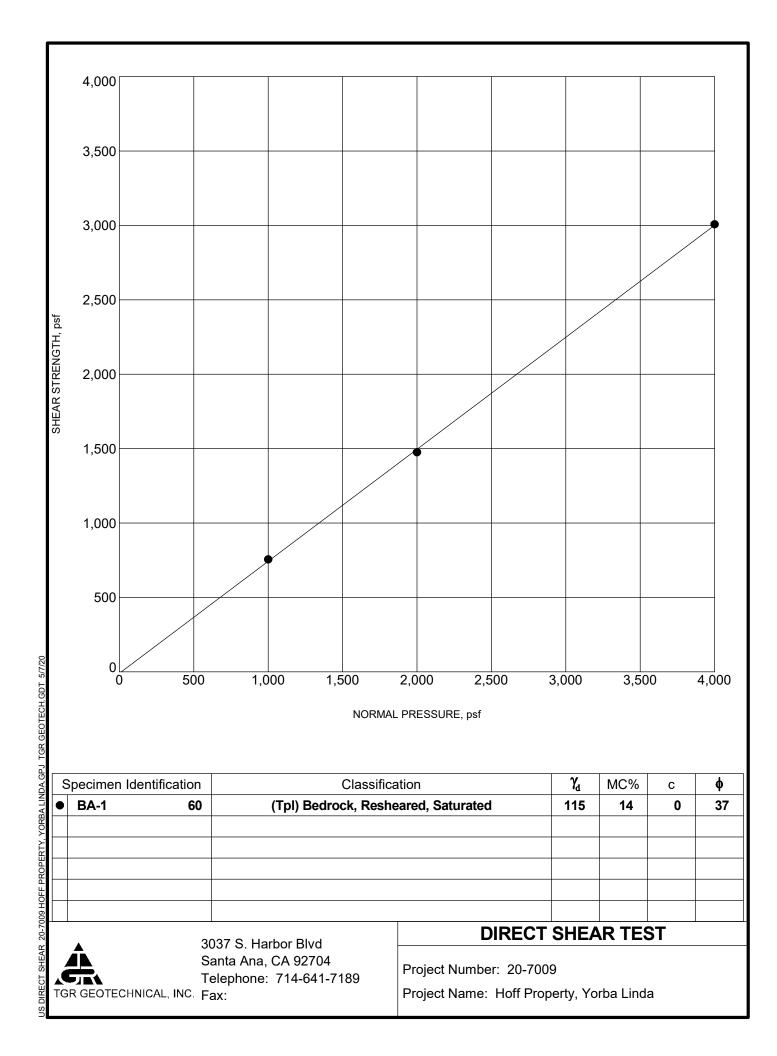

<u>Expansion Index Tests</u>: The expansion potential of selected materials was evaluated by the Expansion Index Test, ASTM D4829. Specimens are molded under a given compactive energy to approximately the optimum moisture content and approximately 50 percent saturation or approximately 90 percent relative compaction. The prepared 1-inch thick by 4-inch diameter

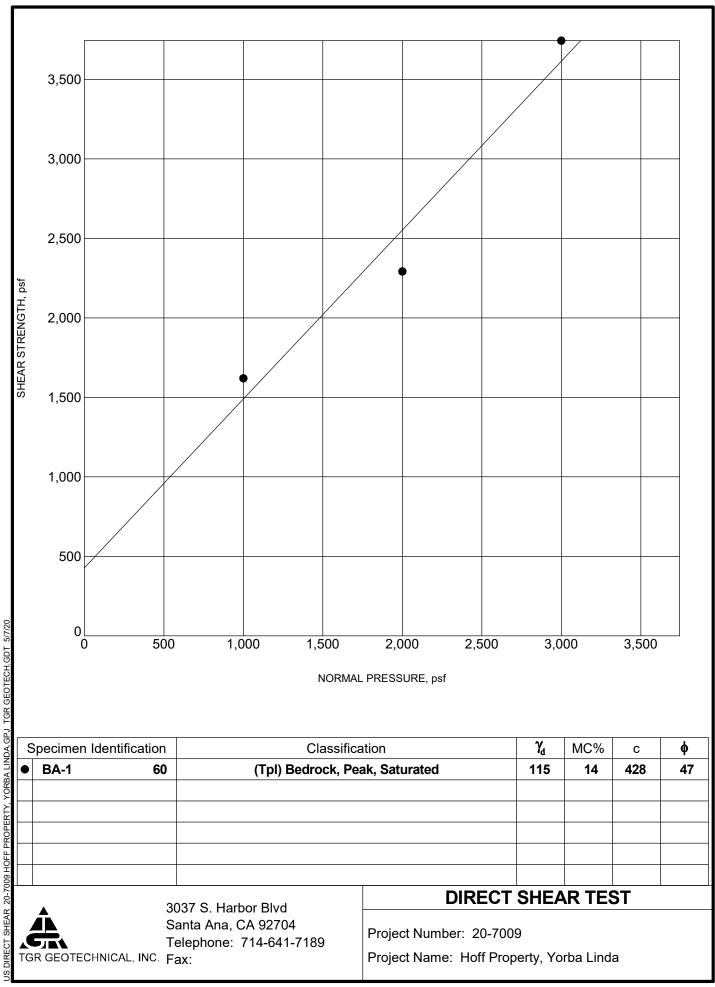


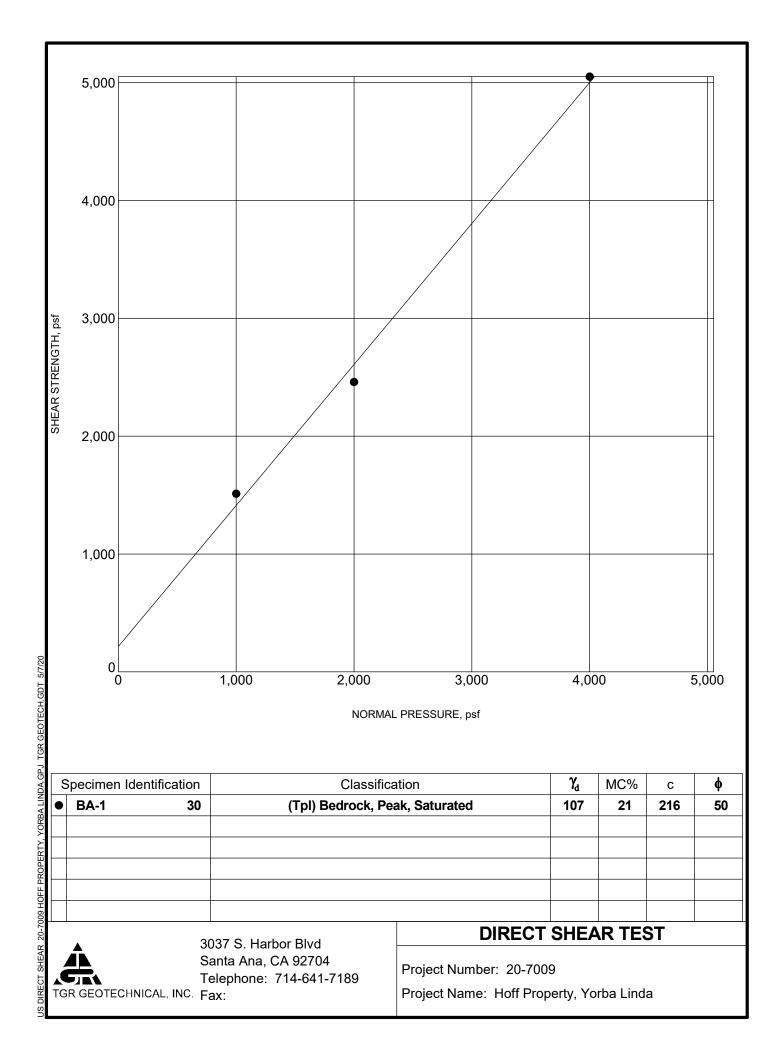

specimens are loaded to an equivalent 144 psf surcharge and are inundated with tap water until volumetric equilibrium is reached. The results of these tests are presented in the table below:

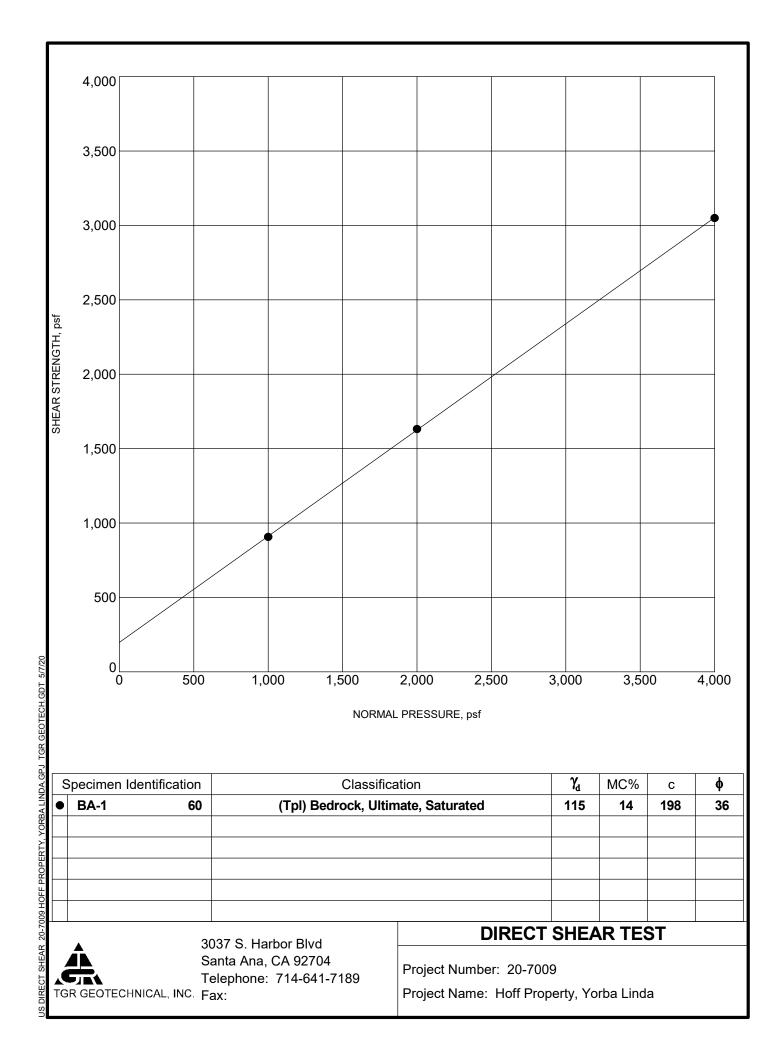
Sample Location	Sample Description	Expansion Index	Expansion Potential
BA-1 @ 0-5 feet	Sandy Silt	58	Medium
BA-1 @ 45 feet	Siltstone	41	Low

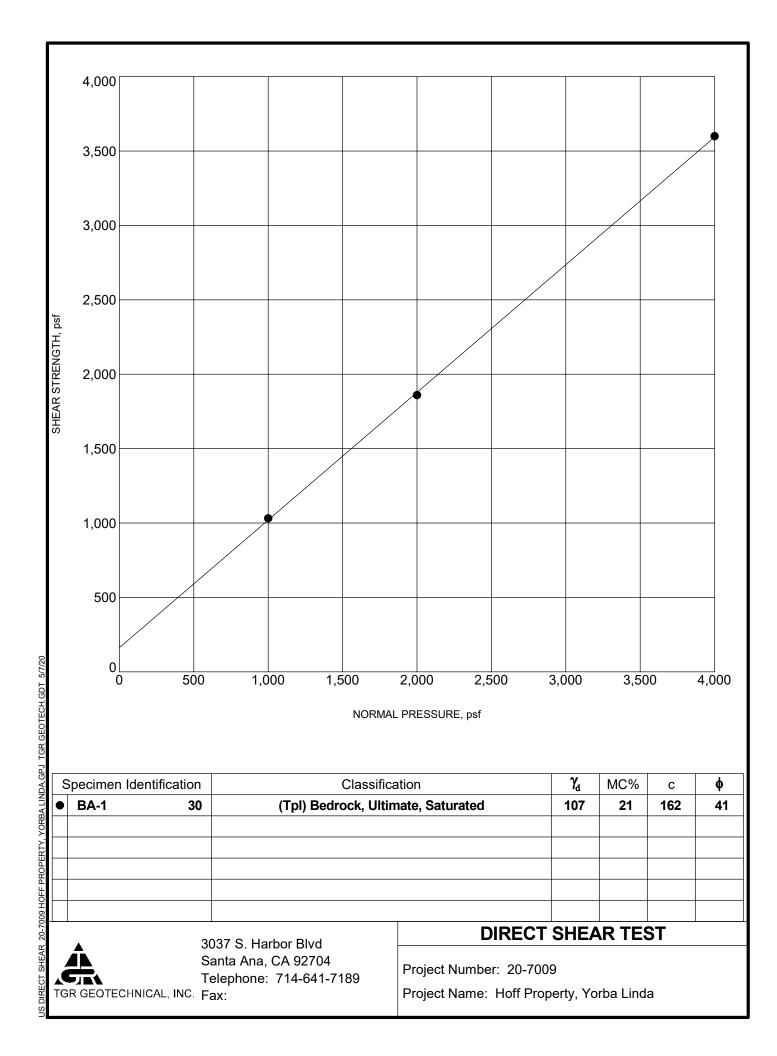


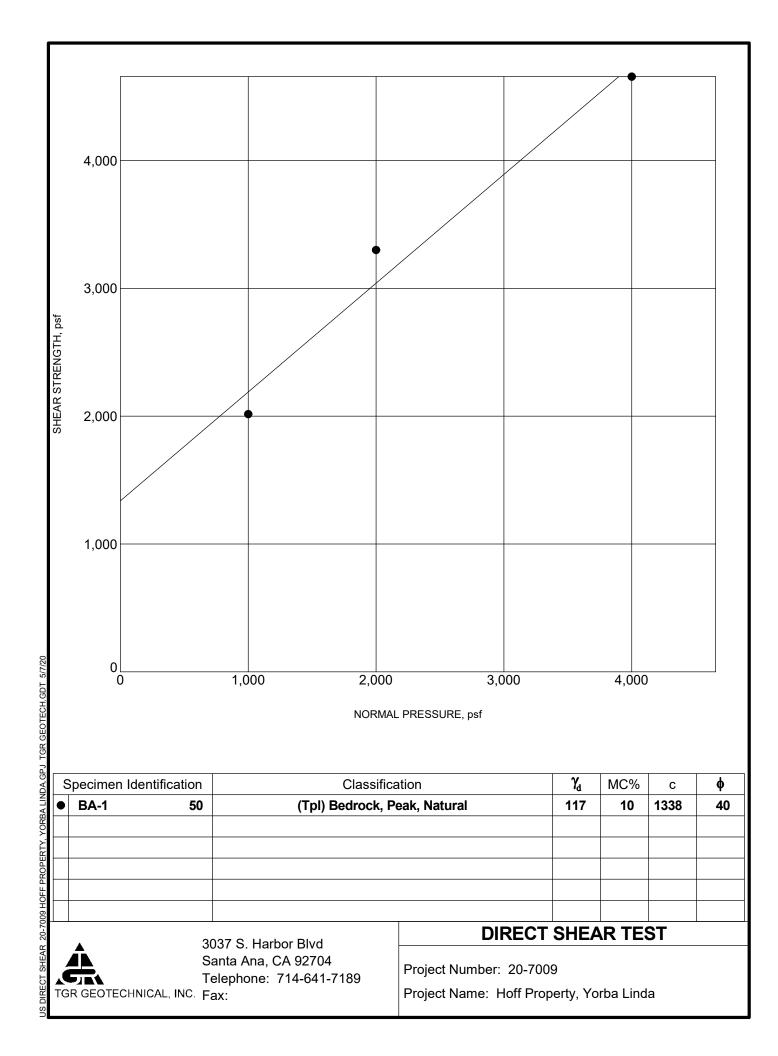


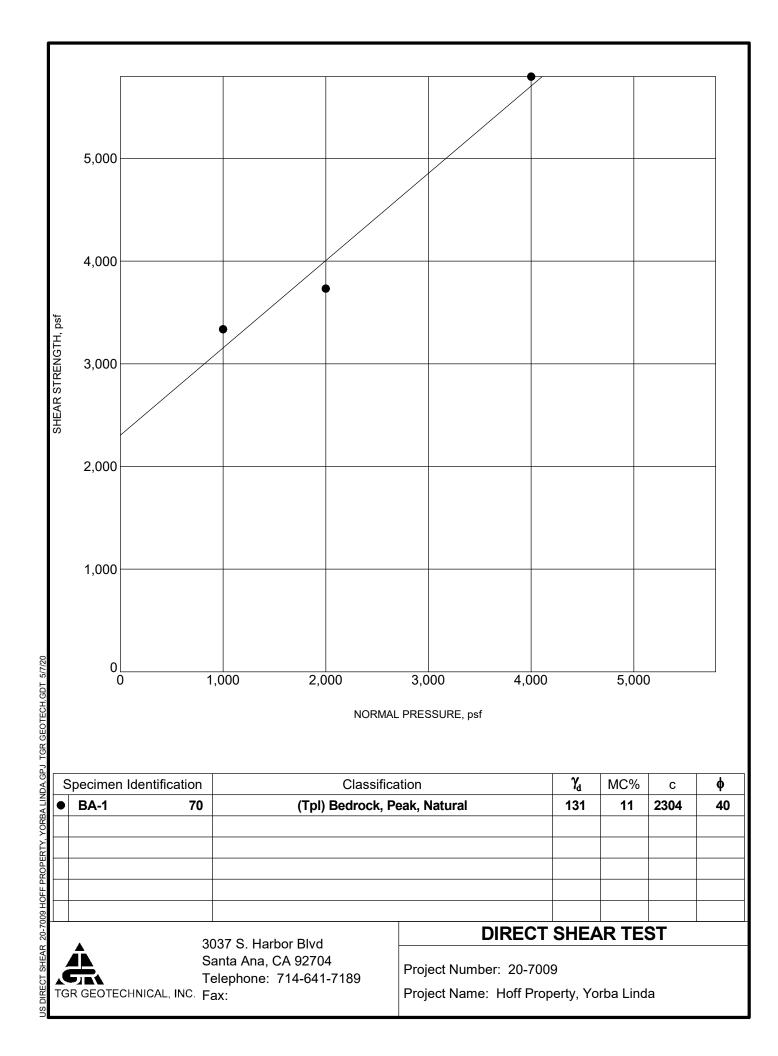


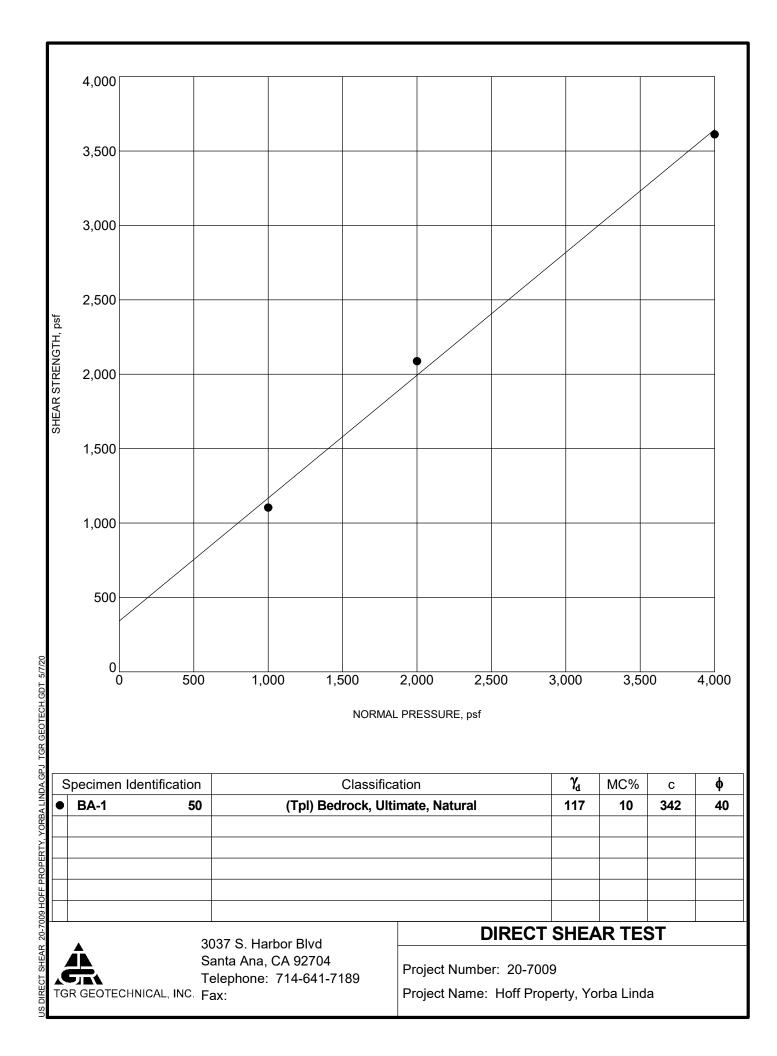


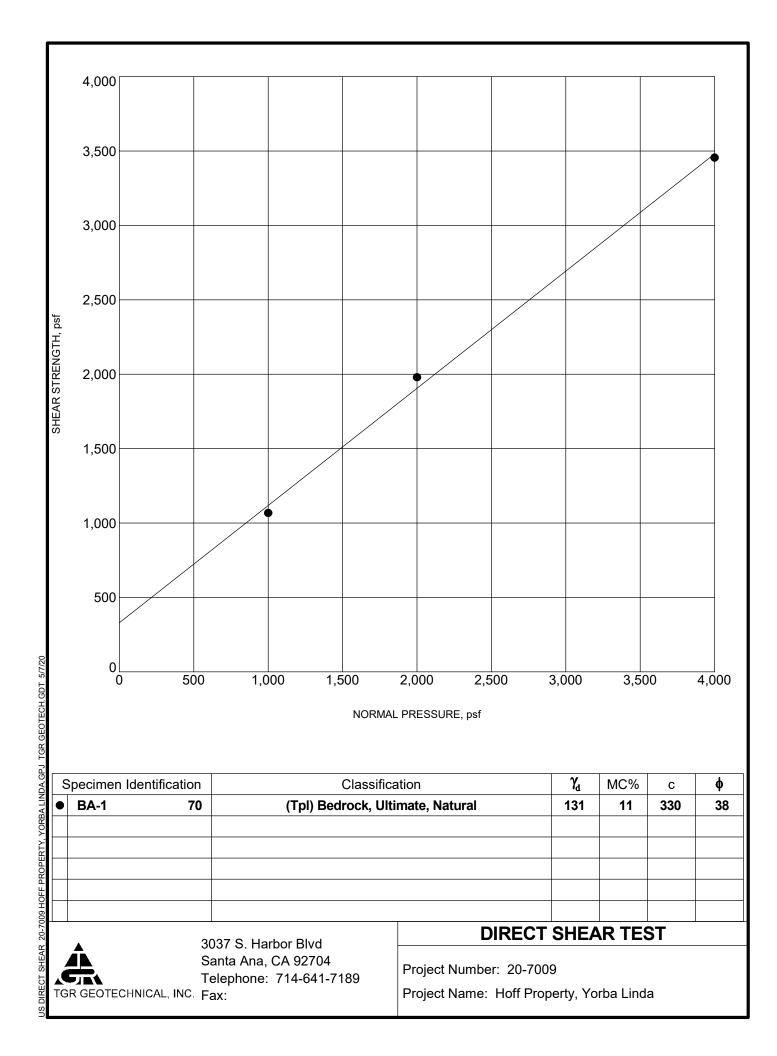

20-7009 HOFF PROPERTY, YORBA LINDA.GPJ TGR GEOTECH.GDT 5/7/20

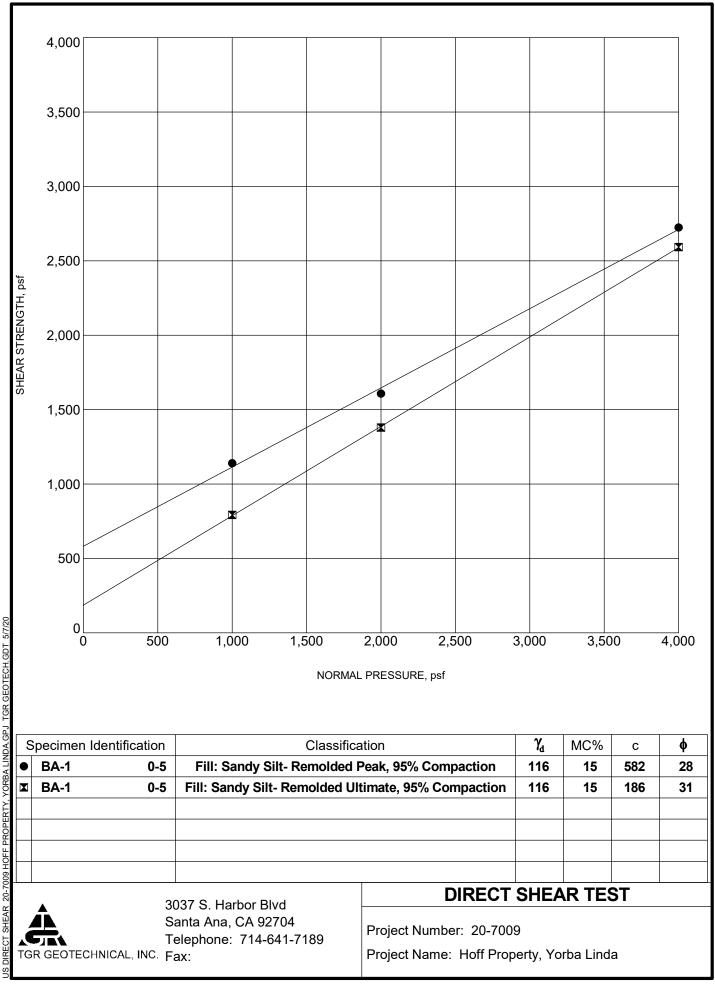


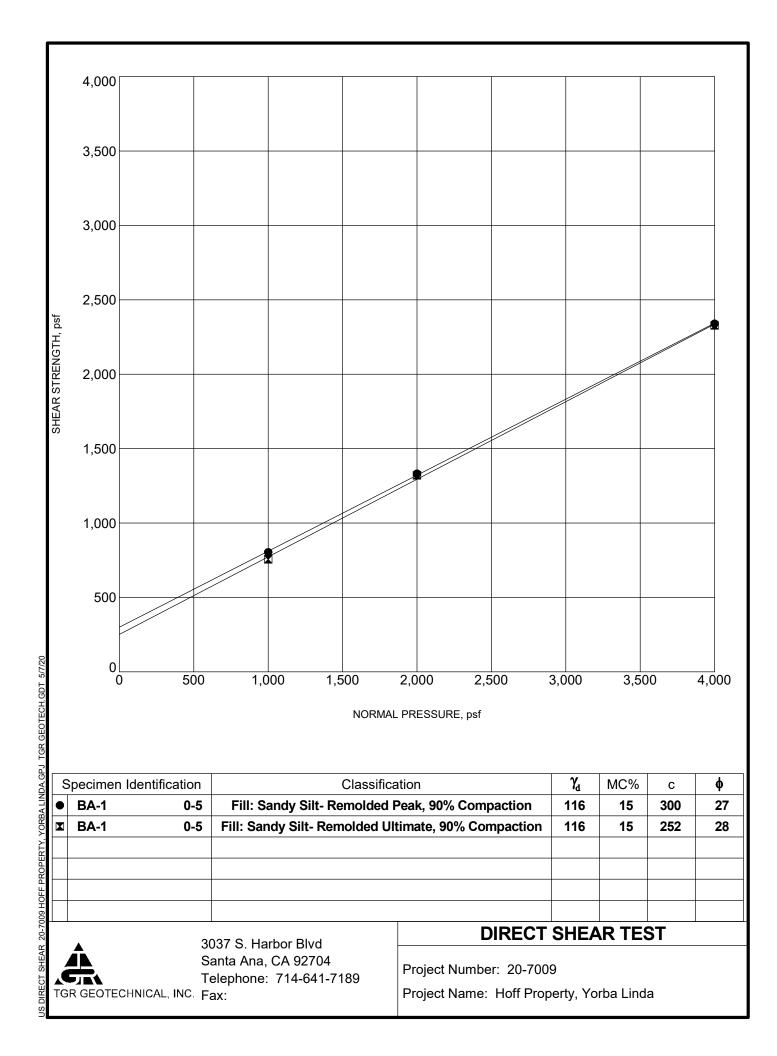


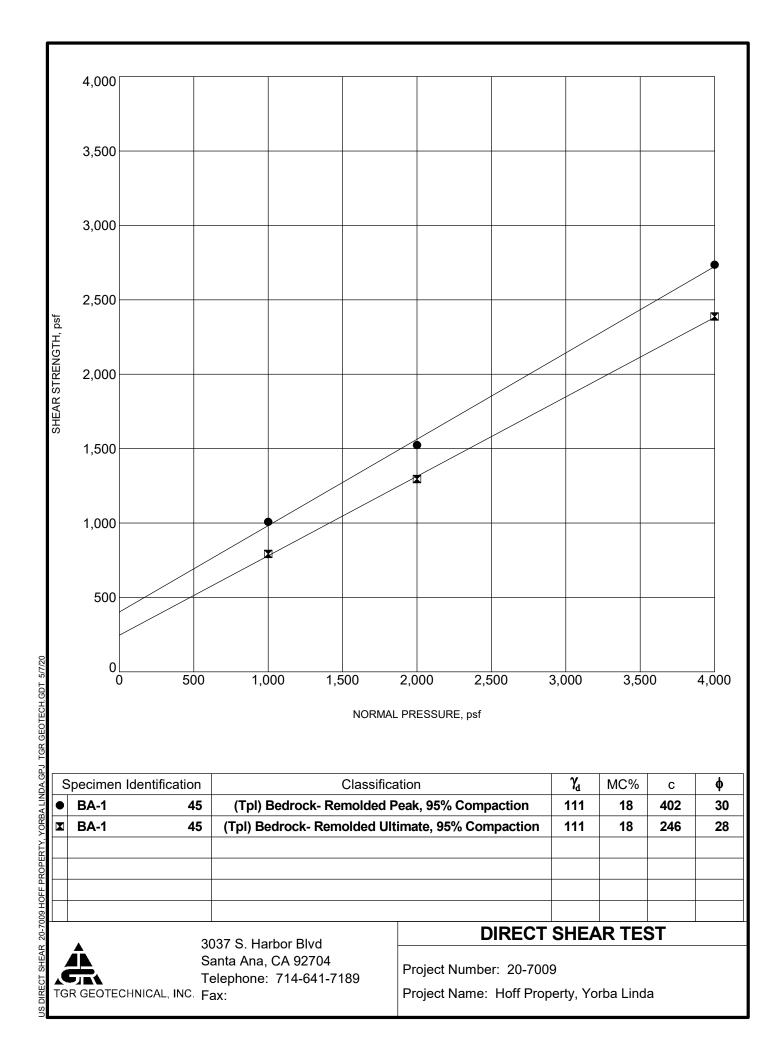


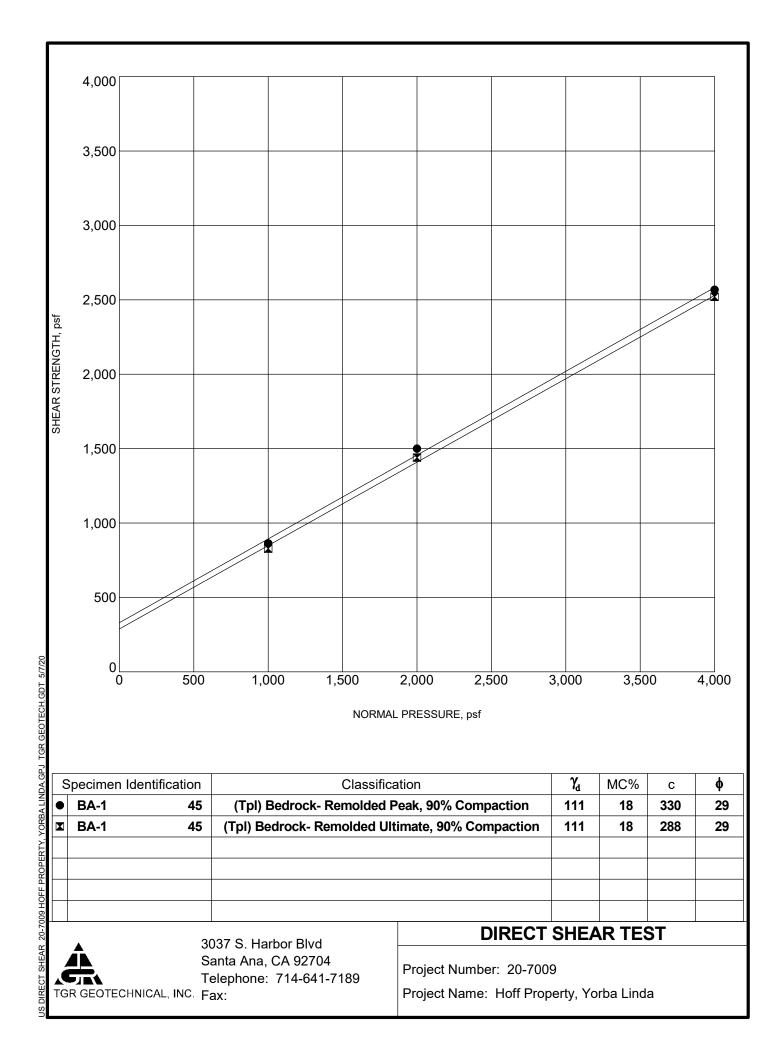


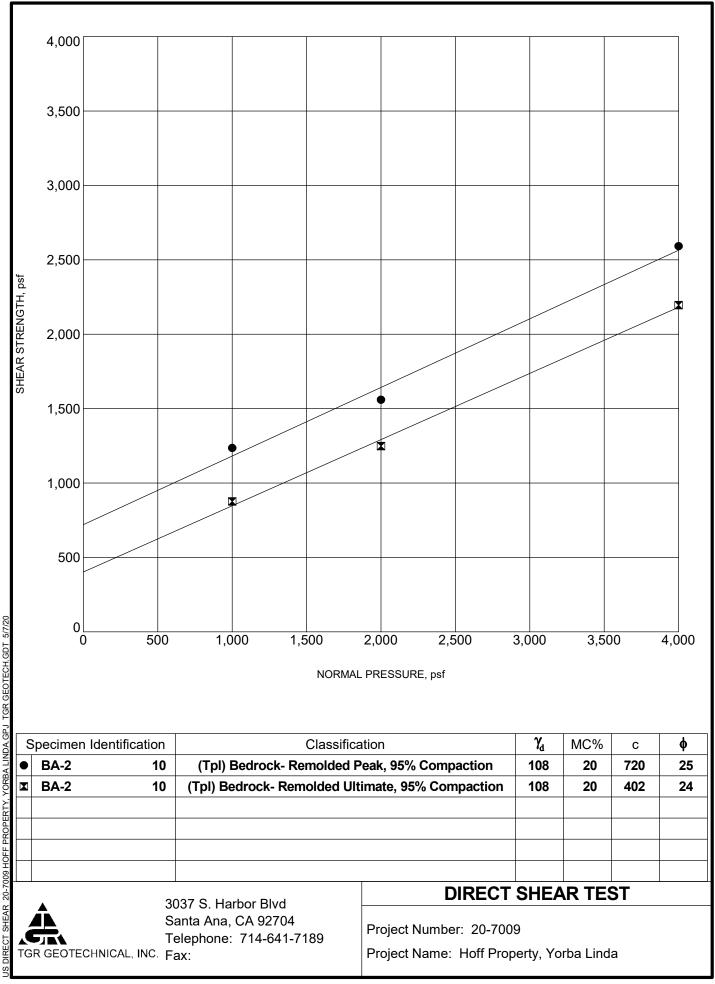




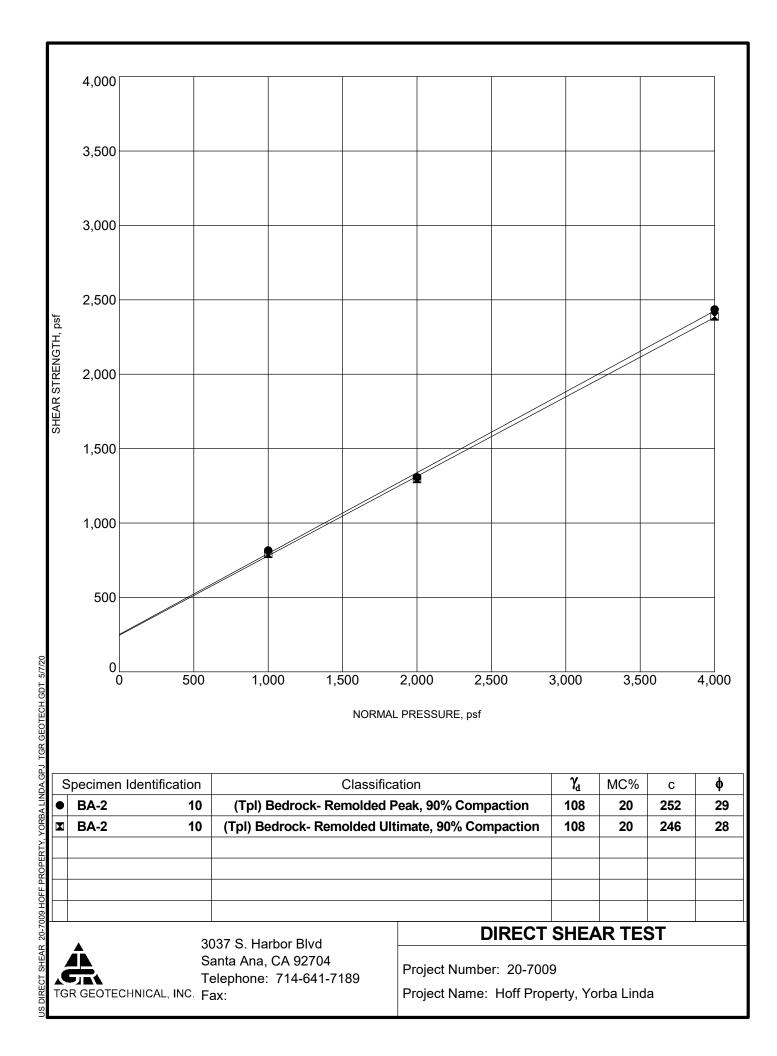








20-7009 HOFF PROPERTY, YORBA LINDA.GPJ TGR GEOTECH.GDT 5/7/20



20-7009 HOFF PROPERTY, YORBA LINDA.GPJ TGR GEOTECH.GDT 5/7/20

ANAHEIM TEST LAB, INC.

196 Technology Drive, Unit D Irvine, CA 92618 Phone (949)336-6544

TO:

TGR GEOTECHNICAL 3037 S. HARBOR BLVD. SANTA ANA, CA. 92704 DATE: 04/28/2020

P.O. NO: VERBAL

LAB NO: C-3771

SPECIFICATION: CTM-417

MATERIAL: Soil

Project No.: 20-7009 Project: Huff Property Yorba Linda, CA Sample ID: B-1 @ 0'-5', Bulk

ANALYTICAL REPORT

SOLUBLE SULFATES per CT. 417 ppm

765

WES BRIDGER LAB MANAGER

20-7009

APPENDIX D SLOPE STABILITY

TGR GEOTECHNICAL DBE & 8(a) firm 3037 S. HARBOR BLVD SANTA ANA, CA 92704 P 714.641.7189 F 714.641.7190 www.tgrgeotech.com

SURFICIAL SLOPE STABILITY ANALYSIS

Friction Angle (degrees)= (radians)=		FACTORS OF SAFET	Y(FOS)
Cohesion (psf)=		Depth of Saturation (ft)	<u>FOS</u>
Saturated Unit Weight (pcf)=	140	1.0	5.5
Bouyant Unit Weight (pcf)=	77.6	2.0	3.0
Slope angle (degrees)=	26.6	3.0	2.2
(radians)=	0.4643	4.0	1.8

SLOPE DESCRIPTION: Fill slope @ 2:1

DATA FOR SEISMIC SLOPE DISPLACEMENT ANALYSES

Project: 20-7009, HOFF Property, Sec A

INPUT:

Slide h (ft):	31.09	RESULT
Slide Vs (ft/sec):	1200	For slide mass
Depth to Rx (km):	0.02	(Rx=Vs>5000 ft/s)
Site Vs(30) (m/s):	360	Material below slide
Ave. Site Class:	D	
Mean Magnitude:	6.57	
Mean Dist. (km):	10.28	
ky:	0.300	Insert from slope stability

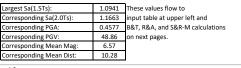
Average Height Calculation	on Using CAD Data:	1
Slide Mass Area =	9944.48	Insert from slope stability
Horiz.Lengh of Slide Mas	319.88	Insert from slope stability
Average Slide H (ft) =	31.09]

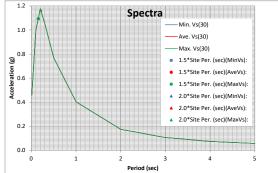
Ts: 4h/Vs

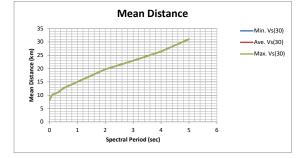
Tm: Rathje et al. (2004) PGV: Watson-Lamprey and Abrahamson (2006)

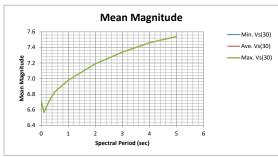
Duration: Bommer et al. (2009)

5-Percent Damped Spectra


Vs(30)	480	480	480
Period	Min. Vs ₍₃₀₎	Ave. Vs ₍₃₀₎	Max. Vs ₍₃₀₎
0.01	0.4577	0.4577	0.4577
0.1	0.9933	0.9933	0.9933
0.2	1.1751	1.1751	1.1751
0.3	1.0542	1.0542	1.0542
0.5	0.7690	0.7690	0.7690
1.0	0.4031	0.4031	0.4031
2.0	0.17402	0.17402	0.17402
3.0	0.10542	0.10542	0.10542
4.0	0.07383	0.07383	0.07383
5.0	0.05620	0.05620	0.05620


Period	Min. Vs ₍₃₀₎	Ave. Vs ₍₃₀₎	Max. Vs(30)
0.01	8.4	8.4	8.4
0.1	10.3	10.3	10.3
0.2	10.6	10.6	10.6
0.3	11.0	11.0	11.0
0.5	12.6	12.6	12.6
1.0	15.0	15.0	15.0
2.0	19.7	19.7	19.7
3.0	23.0	23.0	23.0
4.0	26.4	26.4	26.4
5.0	31.0	31.0	31.0


Mean Magnitude


Period	Min. Vs ₍₃₀₎	Ave. Vs ₍₃₀₎	Max. Vs ₍₃₀₎
0.01	6.70	6.70	6.70
0.1	6.57	6.57	6.57
0.2	6.64	6.64	6.64
0.3	6.72	6.72	6.72
0.5	6.83	6.83	6.83
1.0	6.98	6.98	6.98
2.0	7.19	7.19	7.19
3.0	7.34	7.34	7.34
4.0	7.46	7.46	7.46
5.0	7.54	7.54	7.54

Based on Min. Vs ₍₃₀		Based on Ave. Vs(30)		Based on Max. Vs ₍₃₀₎	
Site Period, Ts (sec):	0.1036	Site Period, Ts (sec):	0.1036	Site Period, Ts (sec):	0.1036
1.5*Site Per. (sec)(MinVs):	0.1554	1.5*Site Per. (sec)(AveVs):	0.1554	1.5*Site Per. (sec)(MaxVs):	0.1554
2.0*Site Per. (sec)(MinVs):	0.2073	2.0*Site Per. (sec)(AveVs):	0.2073	2.0*Site Per. (sec)(MaxVs):	0.2073
EQ Mean Period, Tm (sec):	0.556	EQ Mean Period, Tm (sec):	0.556	EQ Mean Period, Tm (sec):	0.556
Ts/Tm:	0.19	Ts/Tm:	0.19	Ts/Tm:	0.19
Estimated PGV (cm/sec):	48.86	Estimated PGV (cm/sec):	48.86	Estimated PGV (cm/sec):	48.86
Duration (D ₅ -D ₉₅) (sec):	12.7	Duration (D ₅ -D ₉₅) (sec):	12.7	Duration (D ₅ -D ₉₅) (sec):	12.7
Sa(1.5Ts) Min Vs ₍₃₀₎	1.0941	Sa(1.5Ts) Ave Vs ₍₃₀₎	1.0941	Sa(1.5Ts) Max Vs ₍₃₀₎	1.0941
Sa(2.0Ts) Min Vs(30)	1.1663	Sa(2.0Ts) Ave Vs ₍₃₀₎	1.1663	Sa(2.0Ts) Max Vs ₍₃₀₎	1.1663
Mean Mag at Site Per Min	6.57	Mean Mag at Site Per Ave	6.57	Mean Mag at Site Per Ave	6.57
Mean Dist at Site Per Min	10.28	Mean Dist at Site Per Ave	10.28	Mean Dist at Site Per Ave	10.28

Average Seismic Displacement

Seismic Displacement (Bray and Travasarou) = 50% Probability of Exceedance (D2)	7.89 cm	3.11 inch	
1cm = 0.393701 in.	Highlight in	ndicates < 1 cm was esti	imated
Seismic Displacement (Rathje and Antonakos) = [kmax, k-velmax]	1.20 cm	0.47 inch	
	Γ	r1	
Seismic Displacement (Song and Rodriguez-Marek) = 50% Probability of Exceedance (D2)	2.16 cm	0.85 inch	
Average Displacement (B&T and R&A) =	4.55 cm	1.79 inch	
Average Displacement (B&T, R&A, and S&R-A) =	3.75 cm	1.48 inch	

DATA FOR SEISMIC SLOPE DISPLACEMENT ANALYSES

Project: 20-7009, HOFF Property, Sec B

INPUT:	Slide h (ft):	15.26	RESULTS
	Slide Vs (ft/sec):	1200	For slide mass
	Depth to Rx (km):	0	(Rx=Vs>5000 ft/s)
	Site Vs(30) (m/s):	760	Material below slide
	Ave. Site Class:	С	
	Mean Magnitude:	6.64	
	Mean Dist. (km):	9.25	
	ky:	0.360	Insert from slope stability

Average Height Calculation	on Using CAD Data:	
Slide Mass Area =	3693.71	Insert from slope stability
Horiz.Lengh of Slide Mas	242.04	Insert from slope stability
Average Slide H (ft) =	15.26	

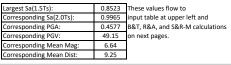
Ts: 4h/Vs

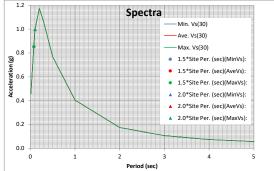
Tm: Rathje et al. (2004)

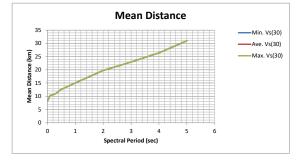
PGV: Watson-Lamprey and Abrahamson (2006) Duration: Bommer et al. (2009)

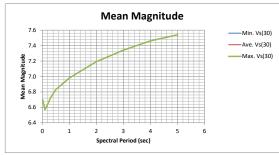
5-Percent Damped Spectra

Vs(30)	480	480	480
Period	Min. Vs ₍₃₀₎	Ave. Vs(30)	Max. Vs ₍₃₀₎
0.01	0.4577	0.4577	0.4577
0.1	0.9933	0.9933	0.9933
0.2	1.1751	1.1751	1.1751
0.3	1.0542	1.0542	1.0542
0.5	0.7690	0.7690	0.7690
1.0	0.4031	0.4031	0.4031
2.0	0.17402	0.17402	0.17402
3.0	0.10542	0.10542	0.10542
4.0	0.07383	0.07383	0.07383
5.0	0.05620	0.05620	0.05620


Mean Distance (km)


Period	Min. Vs ₍₃₀₎	Ave. Vs(30)	Max. Vs ₍₃₀₎
0.01	8.4	8.4	8.4
0.1	10.3	10.3	10.3
0.2	10.6	10.6	10.6
0.3	11.0	11.0	11.0
0.5	12.6	12.6	12.6
1.0	15.0	15.0	15.0
2.0	19.7	19.7	19.7
3.0	23.0	23.0	23.0
4.0	26.4	26.4	26.4
5.0	31.0	31.0	31.0


Mean Magnitude


Period	Min. Vs ₍₃₀₎	Ave. Vs ₍₃₀₎	Max. Vs ₍₃₀₎
0.01	6.70	6.70	6.70
0.1	6.57	6.57	6.57
0.2	6.64	6.64	6.64
0.3	6.72	6.72	6.72
0.5	6.83	6.83	6.83
1.0	6.98	6.98	6.98
2.0	7.19	7.19	7.19
3.0	7.34	7.34	7.34
4.0	7.46	7.46	7.46
5.0	7.54	7.54	7.54

Based on Min. Vs ₍₃	וס	Based on Ave. Vs ₍₃₎	2)	Based on Max. Vs ₍₃₎	וס
S: Site Period, Ts (sec):	0.0509	Site Period, Ts (sec):	0.0509	Site Period, Ts (sec):	0.0509
1.5*Site Per. (sec)(MinVs):	0.0763	1.5*Site Per. (sec)(AveVs):	0.0763	1.5*Site Per. (sec)(MaxVs):	0.0763
2.0*Site Per. (sec)(MinVs):	0.1017	2.0*Site Per. (sec)(AveVs):	0.1017	2.0*Site Per. (sec)(MaxVs):	0.1017
EQ Mean Period, Tm (sec):	0.462	EQ Mean Period, Tm (sec):	0.462	EQ Mean Period, Tm (sec):	0.462
Ts/Tm:	0.11	Ts/Tm:	0.11	Ts/Tm:	0.11
Estimated PGV (cm/sec):	49.15	Estimated PGV (cm/sec):	49.15	Estimated PGV (cm/sec):	49.15
Duration (D ₅ -D ₉₅) (sec):	9.9	Duration (D ₅ -D ₉₅) (sec):	9.9	Duration (D ₅ -D ₉₅) (sec):	9.9
Sa(1.5Ts) Min Vs ₍₃₀₎	0.8523	Sa(1.5Ts) Ave Vs ₍₃₀₎	0.8523	Sa(1.5Ts) Max Vs ₍₃₀₎	0.8523
Sa(2.0Ts) Min Vs ₍₃₀₎	0.9965	Sa(2.0Ts) Ave Vs ₍₃₀₎	0.9965	Sa(2.0Ts) Max Vs ₍₃₀₎	0.9965
Mean Mag at Site Per Min	6.64	Mean Mag at Site Per Ave	6.64	Mean Mag at Site Per Ave	6.64
Mean Dist at Site Per Min	9.25	Mean Dist at Site Per Ave	9.25	Mean Dist at Site Per Ave	9.25

Average Seismic Displacement

Seismic Displacement (Bray and Travasarou) = 50% Probability of Exceedance (D2)	2.36 cm	0.93 inch	
1cm = 0.393701 in.	Highlight in	ndicates < 1 cm was esti	imated
Seismic Displacement (Rathje and Antonakos) = [kmax, k-velmax]	0.29 cm	0.11 inch	
Seismic Displacement (Song and Rodriguez-Marek) = 50% Probability of Exceedance (D2)	1.00 cm	0.39 inch	
Average Displacement (B&T and R&A) =	1.33 cm	0.52 inch	

Average Displacement (B&T, R&A, and S&R-A) =	1.22 cm	0.48 inch

DATA FOR SEISMIC SLOPE DISPLACEMENT ANALYSES

Project: 20-7009, HOFF Property, Sec C

INPUT:	

Slide h (ft):	14.17	RESULTS
Slide Vs (ft/sec):	1200	For slide mass
Depth to Rx (km):	0	(Rx=Vs>5000 ft/s)
Site Vs(30) (m/s):	760	Material below slide
Ave. Site Class:	С	
Mean Magnitude:	6.65	
Mean Dist. (km):	9.17	
ky:	0.350	Insert from slope stability

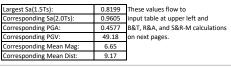
Average Height Calculation		
Slide Mass Area =	3451.00	Insert from slope stability
Horiz.Lengh of Slide Mas	243.50	Insert from slope stability
Average Slide H (ft) =	14.17	

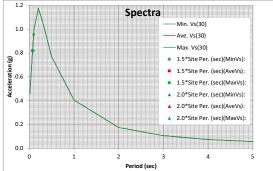
Ts: 4h/Vs

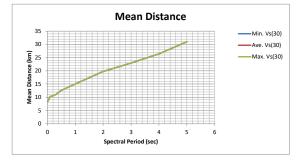
Tm: Rathje et al. (2004)

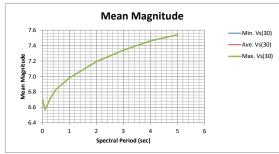
PGV: Watson-Lamprey and Abrahamson (2006) Duration: Bommer et al. (2009)

5-Percent Damped Spectra

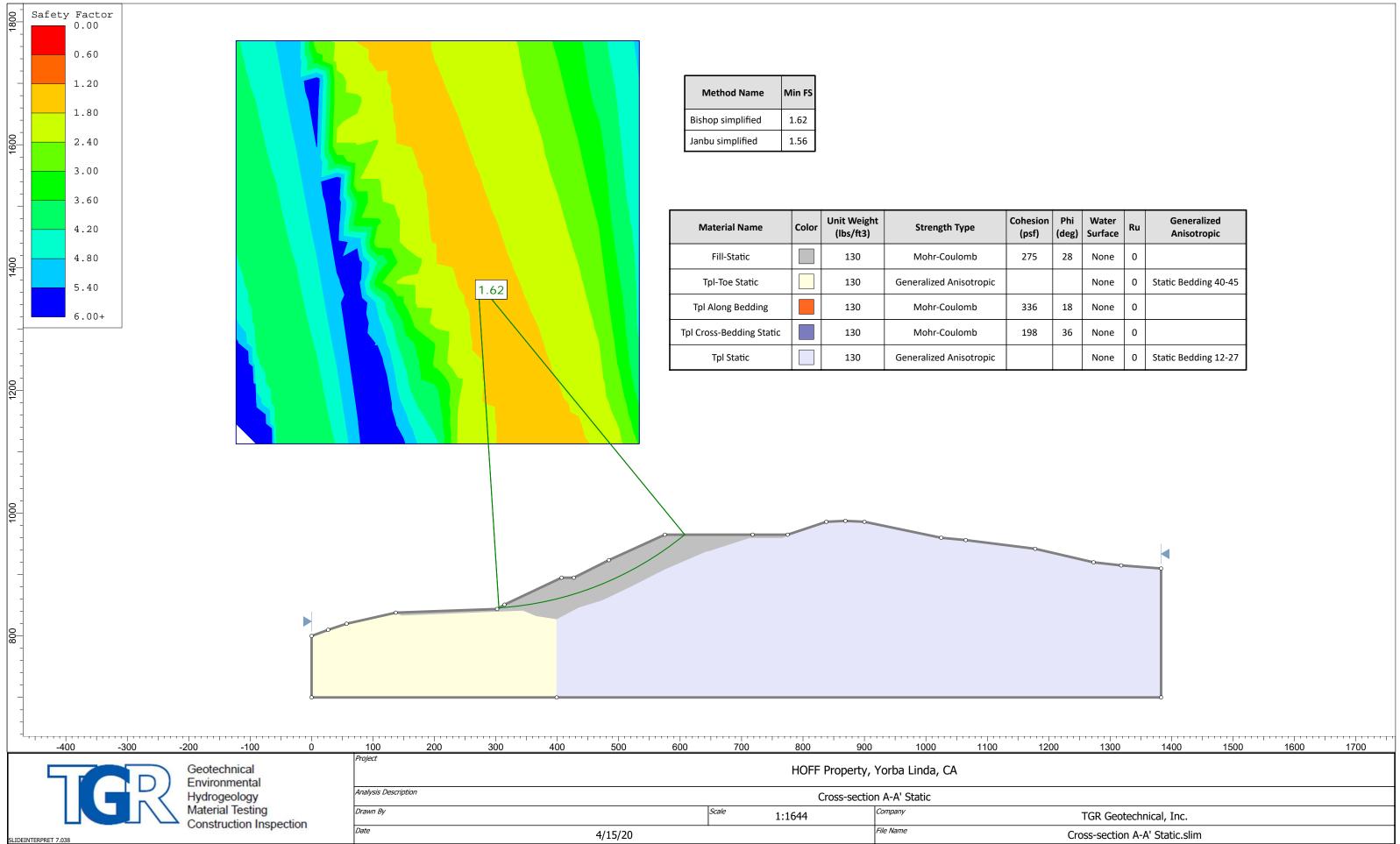

Vs(30)	480	480	480
Period	Min. Vs ₍₃₀₎	Ave. Vs(30)	Max. Vs ₍₃₀₎
0.01	0.4577	0.4577	0.4577
0.1	0.9933	0.9933	0.9933
0.2	1.1751	1.1751	1.1751
0.3	1.0542	1.0542	1.0542
0.5	0.7690	0.7690	0.7690
1.0	0.4031	0.4031	0.4031
2.0	0.17402	0.17402	0.17402
3.0	0.10542	0.10542	0.10542
4.0	0.07383	0.07383	0.07383
5.0	0.05620	0.05620	0.05620


Period	Min. Vs ₍₃₀₎	Ave. Vs(30)	Max. Vs ₍₃₀₎
0.01	8.4	8.4	8.4
0.1	10.3	10.3	10.3
0.2	10.6	10.6	10.6
0.3	11.0	11.0	11.0
0.5	12.6	12.6	12.6
1.0	15.0	15.0	15.0
2.0	19.7	19.7	19.7
3.0	23.0	23.0	23.0
4.0	26.4	26.4	26.4
5.0	31.0	31.0	31.0


Mean Magnitude


Period	Min. Vs ₍₃₀₎	Ave. Vs ₍₃₀₎	Max. Vs ₍₃₀₎		
0.01	6.70	6.70	6.70		
0.1	6.57	6.57	6.57		
0.2	6.64	6.64	6.64		
0.3	6.72	6.72	6.72		
0.5	6.83	6.83	6.83		
1.0	6.98	6.98	6.98		
2.0	7.19	7.19	7.19		
3.0	7.34	7.34	7.34		
4.0	7.46	7.46	7.46		
5.0	7.54	7.54	7.54		

Based on Min. Vs ₍₃	Based on Min. Vs(30)		Based on Ave. Vs ₍₃₀₎		Based on Max. Vs ₍₃₀₎	
Site Period, Ts (sec):	0.0472	Site Period, Ts (sec):	0.0472	Site Period, Ts (sec):	0.0472	
1.5*Site Per. (sec)(MinVs):	0.0709	1.5*Site Per. (sec)(AveVs):	0.0709	1.5*Site Per. (sec)(MaxVs):	0.0709	
2.0*Site Per. (sec)(MinVs):	0.0945	2.0*Site Per. (sec)(AveVs):	0.0945	2.0*Site Per. (sec)(MaxVs):	0.0945	
EQ Mean Period, Tm (sec):	0.463	EQ Mean Period, Tm (sec):	0.463	EQ Mean Period, Tm (sec):	0.463	
Ts/Tm:	0.10	Ts/Tm:	0.10	Ts/Tm:	0.10	
Estimated PGV (cm/sec):	49.18	Estimated PGV (cm/sec):	49.18	Estimated PGV (cm/sec):	49.18	
Duration (D ₅ -D ₉₅) (sec):	9.9	Duration (D ₅ -D ₉₅) (sec):	9.9	Duration (D ₅ -D ₉₅) (sec):	9.9	
Sa(1.5Ts) Min Vs(30)	0.8199	Sa(1.5Ts) Ave Vs ₍₃₀₎	0.8199	Sa(1.5Ts) Max Vs ₍₃₀₎	0.8199	
Sa(2.0Ts) Min Vs ₍₃₀₎	0.9605	Sa(2.0Ts) Ave Vs ₍₃₀₎	0.9605	Sa(2.0Ts) Max Vs ₍₃₀₎	0.9605	
Mean Mag at Site Per Min	6.65	Mean Mag at Site Per Ave	6.65	Mean Mag at Site Per Ave	6.65	
Mean Dist at Site Per Min	9.17	Mean Dist at Site Per Ave	9.17	Mean Dist at Site Per Ave	9.17	



Average Seismic Displacement

Seismic Displacement (Bray and Travasarou) = 50% Probability of Exceedance (D2)	5.40 cm	2.13 inch	
1cm = 0.393701 in.	Highlight ir	ndicates < 1 cm was esti	mated
Seismic Displacement (Rathje and Antonakos) = [kmax, k-velmax]	0.35 cm	0.14 inch	
Seismic Displacement (Song and Rodriguez-Marek) = 50% Probability of Exceedance (D2)	1.00 cm	0.39 inch	
Average Displacement (B&T and R&A) =	2.88 cm	1.13 inch	

Average Displacement (B&T, R&A, and S&R-A) =	2.25 cm	0.89 inch

ion [:])	Phi (deg)	Water Surface	Ru	Generalized Anisotropic
5	28	None	0	
		None	0	Static Bedding 40-45
5	18	None	0	
3	36	None	0	
		None	0	Static Bedding 12-27

Slide Analysis Information HOFF Property, Yorba Linda, CA

Project Summary

File Name:	Cross-section A-A' Static
Slide Modeler Version:	7.038
Project Title:	HOFF Property, Yorba Linda, CA
Analysis:	Cross-section A-A' Static
Company:	TGR Geotechnical, Inc.
Date Created:	4/15/20

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular	
Search Method:	Grid Search	
Radius Increment:	10	
Composite Surfaces:	Disabled	
Reverse Curvature:	Invalid Surfaces	
Minimum Elevation:	Not Defined	
Minimum Depth:	Not Defined	
Minimum Area:	Not Defined	
Minimum Weight:	Not Defined	

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Fill-Static	Tpl-Toe Static	Tpl Static
Color			
Strength Type	Mohr-Coulomb	Generalized Anisotropic	Generalized Anisotropic
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]	275		
Friction Angle [deg]	28		
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name	Static	Bedding	10-15
indille.	Static	Deuuing	40-45

Angle From		Material
40	-90	Tpl Cross-Bedding Static
45	40	Tpl Along Bedding
90	45	Tpl Cross-Bedding Static

Name: Static Bedding 12-27

Angle From		Material
-27	-90	Tpl Cross-Bedding Static
-12	-27	Tpl Along Bedding
90	-12	Tpl Along Bedding Tpl Cross-Bedding Static

Global Minimums

Method: bishop simplified

FS	1.618140
Center:	270.990, 1375.482
Radius:	530.809
Left Slip Surface Endpoint:	305.025, 845.765
Right Slip Surface Endpoint:	607.536, 965.000
Resisting Moment:	3.08296e+008 lb-ft
Driving Moment:	1.90525e+008 lb-ft
Total Slice Area:	7521.42 ft2
Surface Horizontal Width:	302.511 ft
Surface Average Height:	24.8633 ft

Method: janbu simplified

FS	1.562180
Center:	303.811, 1244.195
Radius:	404.150
Left Slip Surface Endpoint:	259.686, 842.461
Right Slip Surface Endpoint:	596.022, 965.000
Resisting Horizontal Force:	636385 lb
Driving Horizontal Force:	407369 lb
Total Slice Area:	9099.64 ft2
Surface Horizontal Width:	336.336 ft
Surface Average Height:	27.0552 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4601 Number of Invalid Surfaces: 250

Error Codes:

Error Code -103 reported for 232 surfaces Error Code -106 reported for 7 surfaces Error Code -1000 reported for 11 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4596 Number of Invalid Surfaces: 255

Error Codes:

Error Code -103 reported for 232 surfaces Error Code -106 reported for 7 surfaces Error Code -108 reported for 5 surfaces Error Code -1000 reported for 11 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.
 -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.61814

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	6.05022	1221.42	4.00363	Fill- Static	275	28	230.975	373.75	185.722	0	185.722	201.888	201.888
2	6.05022	3566.92	4.65858	Fill- Static	275	28	354.192	573.132	560.704	0	560.704	589.566	589.566
3	6.05022	5464.42	5.31414	Fill- Static	275	28	452.89	732.84	861.071	0	861.071	903.197	903.197
4	6.05022	7245.68	5.9704	Fill- Static	275	28	544.757	881.493	1140.65	0	1140.65	1197.62	1197.62
5	6.05022	8971.81	6.62744	Fill- Static Fill-	275	28	633.058	1024.38	1409.37	0	1409.37	1482.93	1482.93
6	6.05022	10642.6	7.28536	Static Fill-	275		717.817	1161.53	1667.33	0	1667.33	1759.1	1759.1
7	6.05022	12257.8	7.94425	Static	275	28	799.059	1292.99	1914.55	0	1914.55	2026.06	2026.06
8	6.05022	13817.2	8.6042	Fill- Static	275	28	876.797	1418.78	2151.14	0	2151.14	2283.81	2283.81
9	6.05022	15320.4	9.2653	Fill- Static	275	28	951.055	1538.94	2377.13	0	2377.13	2532.28	2532.28
10	6.05022	16767.2	9.92765	Fill- Static	275	28	1021.85	1653.5	2592.58	0	2592.58	2771.43	2771.43
11	6.05022	18157.3	10.5913	Fill- Static	275	28	1089.2	1762.47	2797.52	0	2797.52	3001.19	3001.19
12	6.05022	19490.2	11.2565	Fill- Static	275	28	1153.11	1865.89	2992.03	0	2992.03	3221.53	3221.53
13	6.05022	20765.7	11.9231	Fill- Static	275	28	1213.59	1963.76	3176.1	0	3176.1	3432.35	3432.35
14	6.05022	21983.2	12.5915	Fill- Static	275	28	1270.66	2056.11	3349.77	0	3349.77	3633.6	3633.6
15	6.05022	23142.4	13.2615	Fill- Static	275	28	1324.32	2142.94	3513.09	0	3513.09	3825.21	3825.21
16	6.05022	24242.7	13.9334	Fill- Static	275	28	1374.59	2224.28	3666.06	0	3666.06	4007.09	4007.09
17	6.05022	25260	14.6073	Fill- Static	275	28	1420.28	2298.21	3805.1	0	3805.1	4175.25	4175.25
18	6.05022	24812.2	15.2832	Fill- Static	275	28	1392.55	2253.34	3720.72	0	3720.72	4101.24	4101.24
19	6.05022	23481.5	15.9614	Fill- Static	275	28	1321.15	2137.81	3503.43	0	3503.43	3881.3	3881.3
20	6.05022	22089.8	16.6418	Fill- Static	275	28	1247.23	2018.19	3278.47	0	3278.47	3651.27	3651.27
21	6.05022	21475	17.3247	Fill- Static	275	28	1212.1	1961.34	3171.55	0	3171.55	3549.65	3549.65
22	6.05022	22307.9	18.0101	Fill- Static	275	28	1248.23	2019.81	3281.51	0	3281.51	3687.33	3687.33
23	6.05022	23108.4	18.6982	Fill- Static	275	28	1282.44	2075.17	3385.62	0	3385.62	3819.65	3819.65
24	6.05022	23845.1	19.3891	Fill- Static	275	28	1313.21	2124.95	3479.26	0	3479.26	3941.43	3941.43
25	6.05022	24517.1	20.0829	Fill- Static	275	28	1340.53	2169.17	3562.41	0	3562.41	4052.52	4052.52
26	6.05022	25123.7	20.7798	Fill- Static	275	28	1364.4	2207.79	3635.05	0	3635.05	4152.78	4152.78
27	6.05022	25663.9	21.48	Fill- Static	275	28	1384.81	2240.81	3697.16	0	3697.16	4242.09	4242.09
28	6.05022	26136.7	22.1835	Fill- Static	275	28	1401.74	2268.21	3748.69	0	3748.69	4320.25	4320.25
29	6.05022	26541.3	22.8906	Fill-	275	28	1415.19	2289.97	3789.61	0	3789.61	4387.13	4387.13

				Static									
30	6.05022	26858.1	23.6014	Fill- Static	275	28	1424.26	2304.65	3817.22	0	3817.22	4439.5	4439.5
31	6.05022	26949	24.3161	Fill- Static	275	28	1422.47	2301.76	3811.78	0	3811.78	4454.54	4454.54
32	6.05022	26932.8	25.0348	Fill- Static	275	28	1415.56	2290.57	3790.73	0	3790.73	4451.87	4451.87
33	6.05022	26843.6	25.7577	Fill- Static	275	28	1405.18	2273.77	3759.13	0	3759.13	4437.14	4437.14
34	6.05022	26680.2	26.4851	Fill- Static	275	28	1391.3	2251.32	3716.91	0	3716.91	4410.14	4410.14
35	6.05022	26441.1	27.2171	Fill- Static	275	28	1373.92	2223.19	3664.02	0	3664.02	4370.64	4370.64
36	6.05022	26124.9	27.954	Fill- Static	275	28	1353	2189.35	3600.37	0	3600.37	4318.38	4318.38
37	6.05022	25730	28.6959	Fill- Static	275	28	1328.53	2149.74	3525.88	0	3525.88	4253.1	4253.1
38	6.05022	25254.7	29.4431	Fill- Static	275	28	1300.47	2104.34	3440.49	0	3440.49	4174.55	4174.55
39	6.05022	24697.2	30.1959	Fill- Static	275	28	1268.79	2053.08	3344.08	0	3344.08	4082.41	4082.41
40	6.05022	24055.7	30.9544	Fill- Static	275	28	1233.47	1995.92	3236.57	0	3236.57	3976.38	3976.38
41	6.05022	23328.2	31.7191	Fill- Static	275	28	1194.46	1932.8	3117.88	0	3117.88	3856.14	3856.14
42	6.05022	22512.6	32.4901	Fill- Static	275	28	1151.74	1863.67	2987.86	0	2987.86	3721.32	3721.32
43	6.05022	21606.5	33.2677	Fill- Static	275	28	1105.26	1788.47	2846.42	0	2846.42	3571.55	3571.55
44	6.05022	20607.6	34.0524	Fill- Static	275	28	1055	1707.13	2693.45	0	2693.45	3406.45	3406.45
45	6.05022	19358.5	34.8444	Fill- Static	275	28	994.049	1608.51	2507.96	0	2507.96	3199.99	3199.99
46	6.05022	16416.2	35.644	Fill- Static	275	28	859.178	1390.27	2097.52	0	2097.52	2713.63	2713.63
47	6.05022	12952.5	36.4518	Fill- Static	275	28	702.89	1137.37	1621.9	0	1621.9	2141.09	2141.09
48	6.05022	9384.45	37.2681	Fill- Static	275	28	543.743	879.852	1137.56	0	1137.56	1551.3	1551.3
49	6.05022	5708.79	38.0933	Fill- Static	275	28	381.721	617.678	644.483	0	644.483	943.719	943.719
50	6.05022	1921.8	38.928	Fill- Static	275	28	216.81	350.828	142.612	0	142.612	317.73	317.73

Global Minimum Query (janbu simplified) - Safety Factor: 1.56218

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	6.72673	405.127	-5.78885	Fill- Static	275	28	203.551	317.983	80.8387	0	80.8387	60.2028	60.2028
2	6.72673	1165.79	-4.83105	Fill- Static	275	28	241.977	378.011	193.735	0	193.735	173.284	173.284
3	6.72673	1827.48	-3.87461	Fill- Static	275	28	274.832	429.337	290.267	0	290.267	271.653	271.653
4	6.72673	2390.56	-2.91925	Fill- Static	275	28	302.235	472.146	370.777	0	370.777	355.365	355.365
5	6.72673	2855.35	-1.9647	Fill- Static	275	28	324.295	506.607	435.59	0	435.59	424.466	424.466
6	6.72673	3222.03	-1.01069	Fill- Static	275	28	341.112	532.879	485	0	485	478.982	478.982
7	6.72673	4300.64	- 0.0569686	Fill- Static	275	28	393.776	615.149	639.727	0	639.727	639.335	639.335
8	6.72673	7553.17	0.89674	Fill- Static	275	28	555.262	867.419	1114.18	0	1114.18	1122.87	1122.87
٥	בדארד א	10565 7	1 9507	Fill-	77⊑	20	דרם רחד	1000 1	15/002	٥	15/10 02	1570 7/	1570 74

	Consequences inspects	00												
				Static										_
10	6.72673	13111.4	2.80517	Fill- Static	275	28	825.705	1289.9	1908.74	0	1908.74	1949.2	1949.2	
11	6.72673	15557.1	3.76042	Fill- Static	275	28	942.151	1471.81	2250.88	0	2250.88	2312.8	2312.8	
12	6.72673	17904.1	4.71672	Fill- Static	275	28	1052.44	1644.1	2574.9	0	2574.9	2661.73	2661.73	
13	6.72673	20152.3	5.67434	Fill- Static	275	28	1156.65	1806.89	2881.05	0	2881.05	2995.98	2995.98	
14	6.72673	22301	6.63355	Fill- Static	275	28	1254.82	1960.26	3169.52	0	3169.52	3315.45	3315.45	
15	6.72673	24349.9	7.59464	Fill- Static	275	28	1347.05	2104.33	3440.47	0	3440.47	3620.07	3620.07	
16	6.72673	26298.2	8.55787	Fill- Static	275	28	1433.36	2239.16	3694.06	0	3694.06	3909.75	3909.75	
17	6.72673	28145.2	9.52356	Fill- Static	275	28	1513.81	2364.84	3930.41	0	3930.41	4184.38	4184.38	
18	6.72673	29890.1	10.492	Fill- Static	275	28	1588.43	2481.41	4149.66	0	4149.66	4443.83	4443.83	
19	6.72673	31532	11.4634	Fill- Static	275	28	1657.26	2588.94	4351.88	0	4351.88	4687.96	4687.96	
20	6.72673	33069.9	12.4383	Fill- Static	275	28	1720.33	2687.47	4537.19	0	4537.19	4916.63	4916.63	
21	6.72673	34502.7	13.4168	Fill- Static	275	28	1777.66	2777.03	4705.63	0	4705.63	5129.68	5129.68	
22	6.72673	35815	14.3992	Fill- Static	275	28	1828.62	2856.63	4855.35	0	4855.35	5324.84	5324.84	
23	6.72673	35377.3	15.3861	Fill- Static	275	28	1797.88	2808.61	4765.04	0	4765.04	5259.79	5259.79	
24	6.72673	33703.5	16.3776	Fill- Static	275	28	1710.49	2672.09	4508.28	0	4508.28	5010.98	5010.98	
25	6.72673	31942.6	17.3742	Fill- Static	275	28	1619.97	2530.68	4242.32	0	4242.32	4749.19	4749.19	
26	6.72673	31865.5	18.3763	Fill- Static	275	28	1606.91	2510.28	4203.96	0	4203.96	4737.77	4737.77	
27	6.72673	32794.8	19.3842	Fill- Static	275	28	1639.32	2560.91	4299.17	0	4299.17	4875.96	4875.96	
28	6.72673	33607.4	20.3984	Fill- Static	275	28	1665.92	2602.46	4377.32	0	4377.32	4996.81	4996.81	
29	6.72673	34301.1	21.4194	Fill- Static	275	28	1686.68	2634.9	4438.33	0	4438.33	5100	5100	
30	6.72673	34873.4	22.4475	Fill- Static	275	28	1701.58	2658.18	4482.11	0	4482.11	5185.1	5185.1	
31	6.72673	35321.6	23.4833	Fill- Static	275	28	1710.6	2672.26	4508.59	0	4508.59	5251.79	5251.79	
32	6.72673	35642.9	24.5273	Fill- Static	275	28	1713.68	2677.07	4517.64	0	4517.64	5299.59	5299.59	
33	6.72673	35834.1	25.5801	Fill- Static	275	28	1710.78	2672.54	4509.13	0	4509.13	5328.07	5328.07	
34	6.72673	35836.6	26.6422	Fill- Static	275	28	1699.46	2654.87	4475.88	0	4475.88	5328.47	5328.47	
35	6.72673	35514.1	27.7143	Fill- Static	275	28	1674.03	2615.14	4401.16	0	4401.16	5280.57	5280.57	
36	6.72673	35034.9	28.797	Fill- Static	275	28	1641.92	2564.98	4306.82	0	4306.82	5209.37	5209.37	
37	6.72673	34410.2	29.8911	Fill- Static	275	28	1603.74	2505.33	4194.64	0	4194.64	5116.5	5116.5	
38	6.72673	33635.1	30.9974	Fill- Static	275	28	1559.41	2436.08	4064.41	0	4064.41	5001.3	5001.3	
39	6.72673	32704.5	32.1166	Fill- Static	275	28	1508.85	2357.1	3915.85	0	3915.85	4862.96	4862.96	
40	6.72673	31612.6	33.2498	Fill- Static	275	28	1451.96	2268.22	3748.71	0	3748.71	4700.64	4700.64	
41	6.72673	30353.2	34.3978	Fill- Static	275	28	1388.64	2169.31	3562.67	0	3562.67	4513.42	4513.42	
17	ברארד א	70010 <i>/</i>	25 5610	Fill-	775	20	1210 70	ንበሩበ 1 ହ	2257 12	n	2257 /2	1200.26	1200 25	

				Static									
43	6.72673	27303.6	36.743	Fill- Static	275	28	1242.27	1940.65	3132.63	0	3132.63	4060.04	4060.04
44	6.72673	25497.3	37.9427	Fill- Static	275	28	1158.96	1810.51	2887.87	0	2887.87	3791.49	3791.49
45	6.72673	23491.2	39.1623	Fill- Static	275	28	1068.72	1669.54	2622.75	0	2622.75	3493.21	3493.21
46	6.72673	21274.8	40.4035	Fill- Static	275	28	971.412	1517.52	2336.84	0	2336.84	3163.68	3163.68
47	6.72673	18815.4	41.668	Fill- Static	275	28	866.04	1352.91	2027.26	0	2027.26	2798	2798
48	6.72673	14485.8	42.9578	Fill- Static	275	28	690.433	1078.58	1511.31	0	1511.31	2154.2	2154.2
49	6.72673	8879.41	44.2753	Fill- Static	275	28	469.646	733.671	862.635	0	862.635	1320.55	1320.55
50	6.72673	3005.85	45.6231	Fill- Static	275	28	243.519	380.42	198.266	0	198.266	447.14	447.14

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.61814

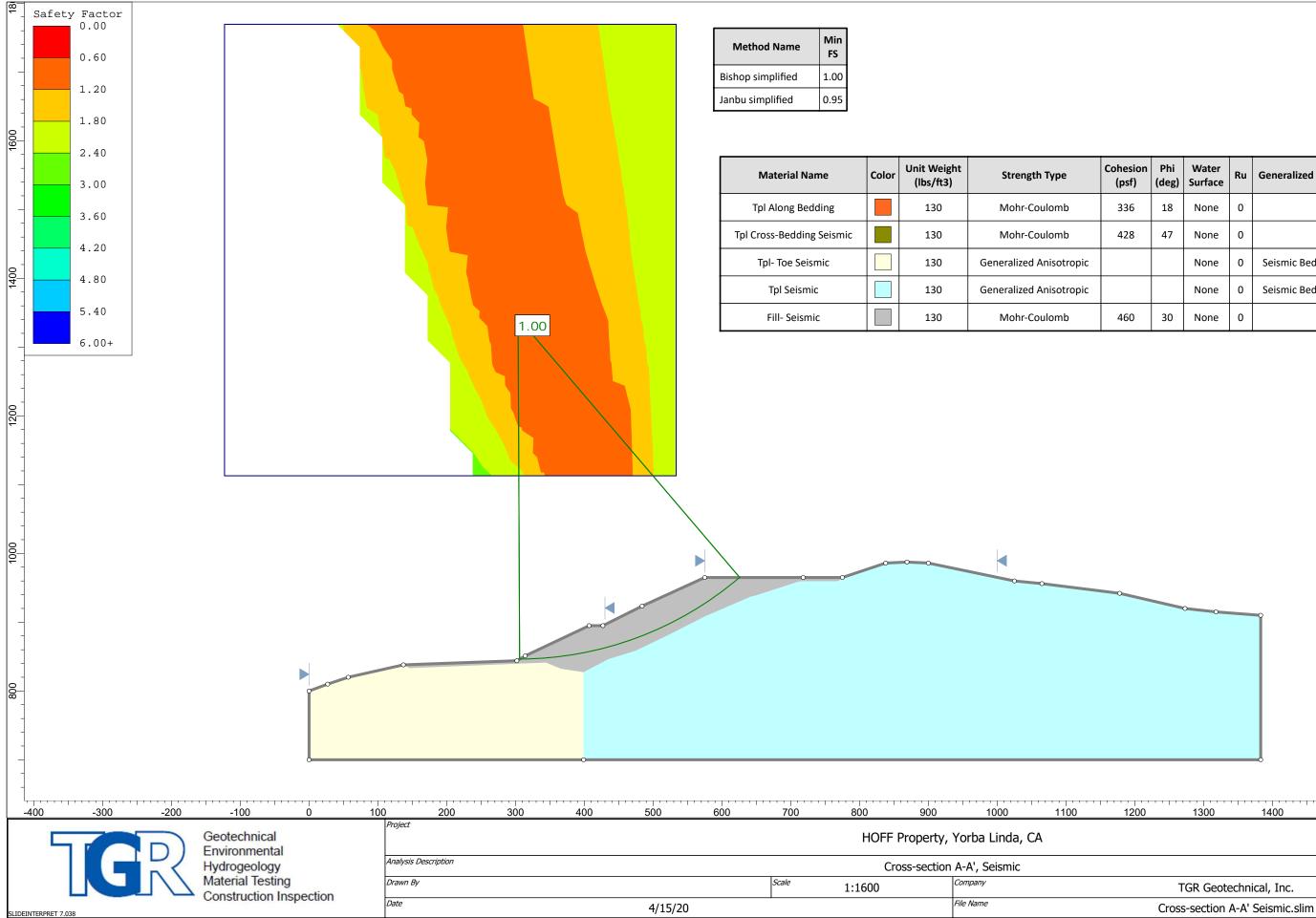
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	305.025	845.765	[]	[]	0
2	311.075	846.188	1318.09	0	0
3	317.125	846.681	3183.51	0	0
4	323.176	847.244	5437.62	0	0
5	329.226	847.877	8010.11	0	0
6	335.276	848.579	10847.6	0	0
7	341.326	849.353	13898.7	0	0
8	347.376	850.197	17114.2	0	0
9	353.427	851.113	20447.1	0	0
10	359.477	852.1	23852	0	0
10	365.527	853.159	27285.9	0	0
12	371.577	854.29	30707.5	0	0
13	377.628	855.494	34077.6	0	0
13	383.678	855.494	37358.8	0	0
14	389.728	858.123	40515.7	0	0
16	395.778	859.549 861.05	43514.7	0	0
17	401.828		46324.2 48913	0	-
18	407.879	862.627		0	0
19	413.929	864.28	51182.6	0	0
20	419.979	866.011	53109.3	0	0
21	426.029	867.819	54722.5	0	0
22	432.08	869.706	56066.6	0	0
23	438.13	871.673	57160	0	0
24	444.18	873.721	57982.5	0	0
25	450.23	875.85	58515.2	0	0
26	456.28	878.062	58741.4	0	0
27	462.331	880.358	58646.7	0	0
28	468.381	882.739	58218.7	0	0
29	474.431	885.206	57447.1	0	0
30	480.481	887.761	56324.2	0	0
31	486.532	890.404	54846.3	0	0
32	492.582	893.138	53027.4	0	0
33	498.632	895.964	50875.9	0	0
34	504.682	898.883	48399.2	0	0
35	510.732	901.897	45607.7	0	0
36	516.783	905.009	42514.8	0	0
37	522.833	908.22	39136.8	0	0
38	528.883	911.532	35493.5	0	0
39	534.933	914.947	31607.9	0	0
40	540.984	918.468	27506.9	0	0
41	547.034	922.096	23220.9	0	0
42	553.084	925.836	18784.8	0	0
43	559.134	929.689	14237.5	0	0
44	565.184	933.658	9622.63	0	0
45	571.235	937.747	4988.91	0	0
46	577.285	941.959	436.6	0	0
47	583.335	946.298	-3468.06	0	0
48	589.385	950.767	-6465.9	0	0
49	595.436	955.37	-8414.81	0	0
50	601.486	960.113	-9163.17	0	0
51	607.536	965	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.56218

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	259.686	842.461	0	0	0
2	266.412	841.779	1422.78	0	0
3	273.139	841.211	3158.75	0	0
4	279.866	840.755	5137.58	0	0
5	286.593	840.412	7295.47	0	0
6	293.319	840.181	9574.91	0	0
7	300.046	840.063	11924.4	0	0
8	306.773	840.056	14574.4	0	0
9	313.5	840.161	18187.9	0	0
10	320.226	840.379	22574.4	0	0
11	326.953	840.708	27493.1	0	0
12	333.68	841.15	32828.3	0	0
13	340.406	841.705	38470.5	0	0
14	347.133	842.374	44316.3	0	0
15	353.86	843.156	50267.9	0	0
15	360.587	844.053	56232.9	0	0
10	367.313	845.065	62124.2	0	0
17	374.04	846.194	67859.9	0	0
10	380.767	847.44	73363.1	0	0
20	387.494	848.804	78561.7	0	0
20	394.22	850.287	83388.9	0	0
21	400.947	851.892	87782.2	0	0
22	400.947 407.674	853.619	91683.3	0	0
					-
24	414.4	855.47	94942.6	0	0
25	421.127	857.447	97522.8	0	0
26	427.854	859.552	99478.5	0	0
27	434.581	861.786	100881	0	0
28	441.307	864.153	101720	0	0
29	448.034	866.655	101964	0	0
30	454.761	869.293	101585	0	0
31	461.488	872.072	100562	0	0
32	468.214	874.995	98878.6	0	0
33	474.941	878.064	96526.2	0	0
34	481.668	881.284	93501.4	0	0
35	488.394	884.659	89815.3	0	0
36	495.121	888.193	85510.4	0	0
37	501.848	891.89	80617.6	0	0
38	508.575	895.757	75173.9	0	0
39	515.301	899.798	69225.6	0	0
40	522.028	904.021	62829.2	0	0
41	528.755	908.431	56052.4	0	0
42	535.482	913.037	48974.7	0	0
43	542.208	917.846	41689.3	0	0
44	548.935	922.867	34304.6	0	0
45	555.662	928.112	26945.7	0	0
46	562.389	933.591	19756.8	0	0
47	569.115	939.317	12903.8	0	0
48	575.842	945.303	6586.46	0	0
49	582.569	951.567	1759.3	0	0
50	589.295	958.125	-742.923	0	0
51	596.022	965	0	0	0

List Of Coordinates

External Boundary


Х	Y	
0	700	
399	700	
1383	700	
1383	910	
1318	915	
1273	920	
1178	942	
1065	956.2	
1025	960	
900	986	
869	987.5	
838	986	
775	965	
718	965	
575	965	
484	923.5	
427	895	
407	895	
314	851	
302	844	
137	838	
57	820	
27	810	
0	800	

Material Boundary

Х	Y
137	838
148	833
344	841
366	832
399	827
435	846
474	858
520	880
575	908
642	937
713	960
770	960
775	965

Material Boundary

Х	Y
399	700
399	827

◀ 0.3 WW

sion sf)	Phi (deg)	Water Surface	Ru	Generalized Anisotropic
6	18	None	0	
8	47	None	0	
		None	0	Seismic Bedding 40-45
		None	0	Seismic Bedding 12-27
60	30	None	0	

1200	1300	1400	1500	1600	1700
	TGR Geoteo	hnical, Inc.			
Cr	oss-section A	-A' Seismic.slim			

Slide Analysis Information HOFF Property, Yorba Linda, CA

Project Summary

Cross-section A-A' Seismic
7.038
HOFF Property, Yorba Linda, CA
Cross-section A-A', Seismic
TGR Geotechnical, Inc.
4/15/20

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.3

Material Properties

Property	Tpl- Toe Seismic	Tpl Seismic	Fill- Seismic
Color			
Strength Type	Generalized Anisotropic	Generalized Anisotropic	Mohr-Coulomb
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]			460
Friction Angle [deg]			30
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name: Seismic Bedding 40-45

Angle To	Material
-90	Tpl Cross-Bedding Seismic
40	Tpl Along Bedding
45	Tpl Cross-Bedding Seismic
	-90 40

Name: Seismic Bedding 12-27

Angle From	Angle To	Material
-27	-90	Tpl Cross-Bedding Seismic
-12	-27	Tpl Along Bedding
90	-12	Tpl Cross-Bedding Seismic

Global Minimums

Method: bishop simplified

FS	1.000960
Center:	303.811, 1342.660
Radius:	496.336
Left Slip Surface Endpoint:	305.991, 846.328
Right Slip Surface Endpoint:	625.872, 965.000
Resisting Moment:	3.95434e+008 lb-ft
Driving Moment:	3.95056e+008 lb-ft
Total Slice Area:	9944.48 ft2
Surface Horizontal Width:	319.88 ft
Surface Average Height:	31.0882 ft

Method: janbu simplified

FS	0.954049
Center:	369.455, 1145.730
Radius:	296.930
Left Slip Surface Endpoint:	318.617, 853.184
Right Slip Surface Endpoint:	605.048, 965.000
Resisting Horizontal Force:	751235 lb
Driving Horizontal Force:	787418 lb
Total Slice Area:	10438.4 ft2
Surface Horizontal Width:	286.43 ft
Surface Average Height:	36.4432 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 2783 Number of Invalid Surfaces: 2068

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -103 reported for 141 surfaces Error Code -1000 reported for 1881 surfaces

Method: janbu simplified

Number of Valid Surfaces: 2783 Number of Invalid Surfaces: 2068

Error Codes:

Error Code -101 reported for 46 surfaces Error Code -103 reported for 141 surfaces Error Code -1000 reported for 1881 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.
 -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00096

Slice umber	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]	
1	6.3976	1523.07	0.620949	Fill- Seismic	460	30	593.165	593.734	231.634	0	231.634	238.063	238.063	
2	6.3976	4370.77	1.3596	Fill- Seismic	460	30	842.081	842.889	663.183	0	663.183	683.169	683.169	
3	6.3976	6746.11	2.09848	Fill- Seismic	460	30	1045.66	1046.66	1016.12	0	1016.12	1054.44	1054.44	
4	6.3976	9034.13	2.83771	Fill- Seismic	460	30	1238.61	1239.8	1350.66	0	1350.66	1412.05	1412.05	
5	6.3976	11253.3	3.57741	Fill- Seismic	460	30	1422.78	1424.15	1669.96	0	1669.96	1758.91	1758.91	
6	6.3976	13403.5	4.31771	Fill- Seismic	460	30	1598.33	1599.86	1974.29	0	1974.29	2094.97	2094.97	
7	6.3976	15484.5	5.05874	Fill- Seismic	460	30	1765.39	1767.08	2263.94	0	2263.94	2420.21	2420.21	
8	6.3976	17496.1	5.80061	Fill- Seismic	460	30	1924.12	1925.97	2539.14	0	2539.14	2734.6	2734.6	
9	6.3976	19438.1	6.54346	Fill- Seismic	460	30	2074.67	2076.66	2800.13	0	2800.13	3038.1	3038.1	
10	6.3976	21310.1	7.28741	Fill- Seismic	460	30	2217.14	2219.27	3047.15	0	3047.15	3330.68	3330.68	
11	6.3976	23111.8	8.03261	Fill- Seismic	460	30	2351.67	2353.93	3280.38	0	3280.38	3612.25	3612.25	
12	6.3976	24842.9	8.77917	Fill- Seismic	460	30	2478.37	2480.75	3500.04	0	3500.04	3882.79	3882.79	
13	6.3976	26502.9	9.52724	Fill- Seismic	460	30	2597.34	2599.83	3706.29	0	3706.29	4142.2	4142.2	
14	6.3976	28091.4	10.277	Fill- Seismic	460	30	2708.68	2711.28	3899.33	0	3899.33	4390.45	4390.45	
15	6.3976	29607.9	11.0285	Fill- Seismic	460	30	2812.48	2815.18	4079.3	0	4079.3	4627.44	4627.44	
16	6.3976	30995.5	11.7819	Fill- Seismic	460	30	2904.31	2907.1	4238.5	0	4238.5	4844.28	4844.28	
17	6.3976	30631.6	12.5374	Fill- Seismic	460	30	2854.73	2857.47	4152.53	0	4152.53	4787.36	4787.36	
18	6.3976	29411.3	13.2951	Fill- Seismic	460	30	2737.73	2740.36	3949.7	0	3949.7	4596.62	4596.62	
19	6.3976	28126.3	14.0552	Fill- Seismic	460	30	2617.1	2619.61	3740.57	0	3740.57	4395.76	4395.76	
20	6.3976	28304	14.8178	Fill- Seismic	460	30	2612.39	2614.9	3732.39	0	3732.39	4423.49	4423.49	
21	6.3976	29518.7	15.5831	Fill- Seismic	460	30	2688.08	2690.66	3863.62	0	3863.62	4613.3	4613.3	
22	6.3976	30656.6	16.3513	Fill- Seismic	460	30	2756.56	2759.21	3982.35	0	3982.35	4791.1	4791.1	
23	6.3976	31716.8	17.1225	Fill- Seismic	460	30	2817.88	2820.59	4088.66	0	4088.66	4956.77	4956.77	
24	6.3976	32698.5	17.897	Fill- Seismic	460	30	2872.1	2874.86	4182.66	0	4182.66	5110.16	5110.16	
25	6.3976	33600.6	18.6748	Fill- Seismic	460	30	2919.27	2922.07	4264.43	0	4264.43	5251.11	5251.11	
26	6.3976	34422	19.4562	Fill- Seismic	460	30	2959.4	2962.24	4334.01	0	4334.01	5379.44	5379.44	
27	6.3976	35161.6	20.2414	Fill- Seismic	460	30	2992.56	2995.43	4391.49	0	4391.49	5495	5495	
28	6.3976	35814.5	21.0306	Fill- Seismic	460	30	3018.49	3021.39	4436.45	0	4436.45	5596.99	5596.99	
29	6.3976	36232.2	21.824	Fill- Seismic	460	30	3026.46	3029.37	4450.27	0	4450.27	5662.24	5662.24	
30	6.3976	36484.7	22.6218	Fill- Seismic	460	30	3021.93	3024.83	4442.41	0	4442.41	5701.66	5701.66	
31	6.3976	36650.1	23.4243	Fill-	460	30	3010.77	3013.66	4423.07	0	4423.07	5727.46	5727.46	

														_
				Seismic									1	
32	6.3976	36726.6	24.2316	Fill- Seismic	460	30	2993.02	2995.89	4392.28	0	4392.28	5739.39	5739.39	
33	6.3976	36712.7	25.0442	Fill- Seismic	460	30	2968.66	2971.51	4350.07	0	4350.07	5737.17	5737.17	
34	6.3976	36606.5	25.8621	Fill- Seismic	460	30	2937.73	2940.55	4296.45	0	4296.45	5720.53	5720.53	
35	6.3976	36406.1	26.6858	Fill- Seismic	460	30	2900.23	2903.01	4231.43	0	4231.43	5689.19	5689.19	
36	6.3976	36109.6	27.5154	Fill- Seismic	460	30	2856.16	2858.9	4155.01	0	4155.01	5642.81	5642.81	
37	6.3976	35714.7	28.3514	Fill- Seismic	460	30	2805.51	2808.2	4067.21	0	4067.21	5581.07	5581.07	
38	6.3976	35219.2	29.194	Fill- Seismic	460	30	2748.29	2750.93	3968	0	3968	5503.59	5503.59	
39	6.3976	34620.6	30.0435	Fill- Seismic	460	30	2684.48	2687.06	3857.39	0	3857.39	5410	5410	
40	6.3976	33916.2	30.9005	Fill- Seismic	460	30	2614.1	2616.61	3735.36	0	3735.36	5299.89	5299.89	
41	6.3976	33103.2	31.7651	Fill- Seismic	460	30	2537.1	2539.54	3601.87	0	3601.87	5172.8	5172.8	
42	6.3976	32178.5	32.6379	Fill- Seismic	460	30	2453.48	2455.84	3456.91	0	3456.91	5028.27	5028.27	
43	6.3976	30040.2	33.5194	Fill- Seismic	460	30	2291.58	2293.78	3176.2	0	3176.2	4694.08	4694.08	
44	6.3976	26458.5	34.4099	Fill- Seismic	460	30	2038.75	2040.71	2737.87	0	2737.87	4134.35	4134.35	
45	6.3976	22751.9	35.31	Fill- Seismic	460	30	1782.07	1783.78	2292.85	0	2292.85	3555.09	3555.09	
46	6.3976	18918.9	36.2202	Fill- Seismic	460	30	1521.75	1523.21	1841.55	0	1841.55	2956.12	2956.12	
47	6.3976	14955.3	37.1412	Fill- Seismic	460	30	1257.85	1259.05	1384.01	0	1384.01	2336.73	2336.73	
48	6.3976	10856.2	38.0735	Fill- Seismic	460	30	990.406	991.357	920.337	0	920.337	1696.17	1696.17	
49	6.3976	6616.46	39.0178	Fill- Seismic	460	30	719.49	720.181	450.647	0	450.647	1033.65	1033.65	
50	6.3976	2230.37	39.975	Fill- Seismic	460	30	445.171	445.598	-24.9445	0	-24.9445	348.267	348.267	

Global Minimum Query (janbu simplified) - Safety Factor: 0.954049

Slice Number	Width [ft]	Weight [Ibs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	5.72861	1358.45	-9.29815	Fill- Seismic	460	30	694.457	662.546	350.819	0	350.819	237.12	237.12
2	5.72861	4032.72	-8.17969	Fill- Seismic	460	30	994.675	948.969	846.92	0	846.92	703.945	703.945
3	5.72861	6622.1	-7.06437	Fill- Seismic	460	30	1277.49	1218.79	1314.26	0	1314.26	1155.95	1155.95
4	5.72861	9127.24	-5.95173	Fill- Seismic	460	30	1543.72	1472.78	1754.18	0	1754.18	1593.25	1593.25
5	5.72861	11548.7	-4.84135	Fill- Seismic	460	30	1794.08	1711.64	2167.91	0	2167.91	2015.96	2015.96
6	5.72861	13887	-3.73278	Fill- Seismic	460	30	2029.26	1936.01	2556.51	0	2556.51	2424.12	2424.12
7	5.72861	16142.4	-2.62561	Fill- Seismic	460	30	2249.83	2146.45	2921.01	0	2921.01	2817.84	2817.84
8	5.72861	18315.2	-1.51942	Fill- Seismic	460	30	2456.36	2343.49	3262.3	0	3262.3	3197.14	3197.14
9	5.72861	20405.6	۔ 0.413799	Fill- Seismic	460	30	2649.34	2527.6	3581.18	0	3581.18	3562.04	3562.04
10	5.72861	22413.7	0.691669	Fill- Seismic	460	30	2829.23	2699.22	3878.44	0	3878.44	3912.6	3912.6

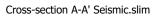
	Material Testing Construction Inspection	n								пон гюр	erty, rorba	Linua, CA. I	rage 0 01 10
11	5.72861	24339.4	1.79739	Fill- Seismic	460	30	2996.42	2858.73	4154.72	0	4154.72	4248.75	4248.75
12	5.72861	26182.7	2.90379	Fill- Seismic	460	30	3151.32	3006.51	4410.69	0	4410.69	4570.54	4570.54
13	5.72861	27943.3	4.01127	Fill- Seismic	460	30	3294.24	3142.87	4646.87	0	4646.87	4877.88	4877.88
14	5.72861	29621	5.12026	Fill- Seismic	460	30	3425.53	3268.12	4863.81	0	4863.81	5170.75	5170.75
15	5.72861	31215.4	6.23117	Fill- Seismic	460	30	3545.45	3382.53	5061.97	0	5061.97	5449.08	5449.08
16	5.72861	32396.2	7.34444	Fill- Seismic	460	30	3621.94	3455.51	5188.37	0	5188.37	5655.2	5655.2
17	5.72861	31989.1	8.46051	Fill- Seismic	460	30	3542.56	3379.78	5057.21	0	5057.21	5584.15	5584.15
18	5.72861	31311.8	9.57982	Fill- Seismic	460	30	3438.69	3280.68	4885.56	0	4885.56	5465.93	5465.93
19	5.72861	30555.5	10.7028	Fill- Seismic	460	30	3329.23	3176.25	4704.69	0	4704.69	5333.93	5333.93
20	5.72861	30936.8	11.83	Fill- Seismic	460	30	3328.4	3175.46	4703.32	0	4703.32	5400.48	5400.48
21	5.72861	32132.1	12.9619	Fill- Seismic	460	30	3402.63	3246.28	4825.98	0	4825.98	5609.15	5609.15
22	5.72861	33238.5	14.0989	Fill- Seismic	460	30	3466.56	3307.27	4931.62	0	4931.62	5802.29	5802.29
23	5.72861	34254.6	15.2416	Fill- Seismic	460	30	3520.33	3358.57	5020.48	0	5020.48	5979.69	5979.69
24	5.72861	35179.1	16.3906	Fill- Seismic	460	30	3564.06	3400.29	5092.74	0	5092.74	6141.07	6141.07
25	5.72861	36010.3	17.5464	Fill- Seismic	460	30	3597.86	3432.53	5148.57	0	5148.57	6286.18	6286.18
26	5.72861	36746.5	18.7096	Fill- Seismic	460	30	3621.78	3455.36	5188.12	0	5188.12	6414.71	6414.71
27	5.72861	37385.8	19.8809	Fill- Seismic	460	30	3635.93	3468.86	5211.5	0	5211.5	6526.32	6526.32
28	5.72861	37926.1	21.0609	Fill- Seismic	460	30	3640.35	3473.07	5218.79	0	5218.79	6620.63	6620.63
29	5.72861	38363.5	22.2504	Fill- Seismic	460	30	3634.95	3467.92	5209.88	0	5209.88	6697	6697
30	5.72861	38582	23.45	Fill- Seismic	460	30	3610.28	3444.38	5169.11	0	5169.11	6735.16	6735.16
31	5.72861	38623	24.6607	Fill- Seismic	460	30	3570.34	3406.28	5103.1	0	5103.1	6742.3	6742.3
32	5.72861	38554.2	25.8832	Fill- Seismic	460	30	3521.15	3359.35	5021.81	0	5021.81	6730.31	6730.31
33	5.72861	38372.3	27.1185	Fill- Seismic	460	30	3462.68	3303.57	4925.22	0	4925.22	6698.57	6698.57
34	5.72861	38073.7	28.3676	Fill- Seismic	460	30	3394.95	3238.95	4813.29	0	4813.29	6646.45	6646.45
35	5.72861	37654.1	29.6316	Fill- Seismic	460	30	3317.9	3165.44	4685.96	0	4685.96	6573.21	6573.21
36	5.72861	37109.1	30.9117	Fill- Seismic	460	30	3231.5	3083.01	4543.19	0	4543.19	6478.09	6478.09
37	5.72861	36433.7	32.2091	Fill- Seismic	460	30	3135.68	2991.59	4384.85	0	4384.85	6360.19	6360.19
38	5.72861	35622.3	33.5254	Fill- Seismic	460	30	3030.39	2891.14	4210.85	0	4210.85	6218.55	6218.55
39	5.72861	34668.7	34.862	Fill- Seismic	460	30	2915.53	2781.56	4021.06	0	4021.06	6052.09	6052.09
40	5.72861	33565.9	36.2207	Fill- Seismic	460	30	2791.02	2662.77	3815.32	0	3815.32	5859.59	5859.59
41	5.72861	32306.2	37.6035	Fill- Seismic	460	30	2656.76	2534.68	3593.45	0	3593.45	5639.69	5639.69
42	5.72861	30880.7	39.0124	Fill- Seismic	460	30	2512.62	2397.16	3355.27	0	3355.27	5390.85	5390.85
43	5.72861	29279.6	40.4501	Fill-	460	30	2358.48	2250.11	3100.56	0	3100.56	5111.35	5111.35

				Seismic									
44	5.72861	27491.3	41.9192	Fill- Seismic	460	30	2194.21	2093.38	2829.1	0	2829.1	4799.18	4799.18
45	5.72861	25444.4	43.423	Fill- Seismic	460	30	2015.71	1923.09	2534.15	0	2534.15	4441.86	4441.86
46	5.72861	21849.3	44.9652	Fill- Seismic	460	30	1739.19	1659.27	2077.19	0	2077.19	3814.27	3814.27
47	5.72861	17467	46.5501	Fill- Seismic	460	30	1420.19	1354.93	1550.07	0	1550.07	3049.27	3049.27
48	5.72861	12831	48.1828	Fill- Seismic	460	30	1096.19	1045.82	1014.67	0	1014.67	2239.95	2239.95
49	5.72861	7916.28	49.8693	Fill- Seismic	460	30	767.509	732.241	471.536	0	471.536	1381.99	1381.99
50	5.72861	2692.95	51.617	Fill- Seismic	460	30	434.625	414.653	-78.5428	0	-78.5428	470.151	470.151

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00096

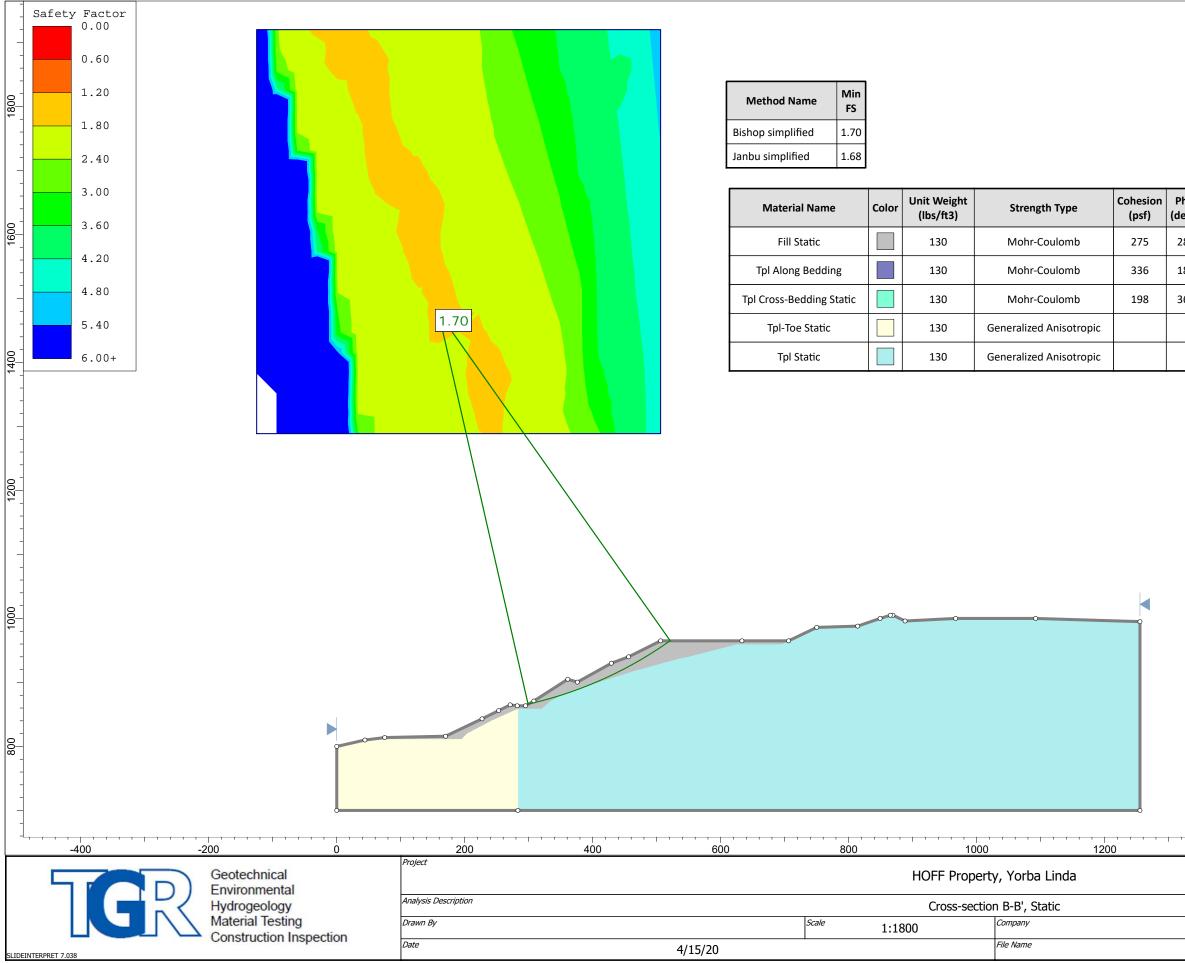
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	305.991	846.328	0	0	0
2	312.389	846.398	3325.49	0	0
3	318.787	846.549	7306.03	0	0
4	325.184	846.784	11740.1	0	0
5	331.582	847.101	16533.3	0	0
6	337.979	847.501	21600.5	0	0
7	344.377	847.984	26861.1	0	0
8	350.775	848.55	32238.7	0	0
9	357.172	849.2	37661.3	0	0
10	363.57	849.934	43060.7	0	0
11	369.967	850.752	48372.7	0	0
12	376.365	851.655	53537	0	0
13	382.763	852.643	58496.9	0	0
14	389.16	853.717	63199.2	0	0
15	395.558	854.877	67594.3	0	0
16	401.955	856.124	71636	0	0
17	408.353	857.458	75279.9	0	0
18	414.751	858.881	78463.6	0	0
19	421.148	860.392	81201	0	0
20	427.546	861.994	83531.3	0	0
21	433.943	863.687	85452.3	0	0
22	440.341	865.471	86917	0	0
23	446.739	867.348	87897.4	0	0
24	453.136	869.319	88369	0	0
25	459.534	871.385	88310.3	0	0
26	465.931	873.547	87703.3	0	0
27	472.329	875.807	86533	0	0
28	478.727	878.166	84788.1	0	0
29	485.124	880.626	82460.9	0	0
30	491.522	883.188	79570.5	0	0
31	497.92	885.854	76133.6	0	0
32	504.317	888.625	72159.3	0	0
33	510.715	891.505	67660.5	0	0
34	517.112	894.494	62653.8	0	0
35	523.51	897.595	57159.9	0	0
36	529.908	900.811	51203.5	0	0
37	536.305	904.144	44813.9	0	0
38	542.703	907.596	38024.6	0	0
39	549.1	911.17	30874.1	0	0
40	555.498	914.871	23405.8	0	0
41	561.896	918.7	15668.5	0	0
42	568.293	922.661	7716.45	0	0
43	574.691	926.758	-389.943	0	0
44	581.088	930.996	-8186.75	0	0
45	587.486	935.378	-15066.4	0	0
46	593.884	939.909	-20870	0	0
47	600.281	944.595	-25429.8	0	0
48	606.679	949.441	-28568	0	0
49	613.076	954.453	-30094.9	0	0
50	619.474	959.637	-29808.5	0	0
51	625.872	965	0	0	0


Global Minimum Query (janbu simplified) - Safety Factor: 0.954049

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	318.617	853.184	0	0	0
2	324.346	852.247	3899.31	0	0
3	330.074	851.423	9084.32	0	0
4	335.803	850.713	15348.1	0	0
5	341.532	850.116	22499.9	0	0
6	347.26	849.631	30363.6	0	0
7	352.989	849.257	38776.4	0	0
8	358.717	848.994	47588	0	0
9	364.446	848.842	56659	0	0
10	370.175	848.801	65860.7	0	0
11	375.903	848.87	75074	0	0
12	381.632	849.05	84188.6	0	0
13	387.36	849.34	93102.7	0	0
14	393.089	849.742	101722	0	0
15	398.818	850.256	109961	0	0
16	404.546	850.881	117738	0	0
17	410.275	851.619	124934	0	0
18	416.003	852.471	131320	0	0
19	421.732	853.438	136899	0	0
20	427.461	854.521	141709	0	0
21	433.189	855.721	145849	0	0
22	438.918	857.039	149336	0	0
23	444.647	858.478	152125	0	0
24	450.375	860.039	154177	0	0
25	456.104	861.724	155456	0	0
26	461.832	863.536	155936	0	0
27	467.561	865.476	155592	0	0
28	473.29	867.547	154406	0	0
29	479.018	869.753	152368	0	0
30	484.747	872.097	149469	0	0
31	490.475	874.582	145729	0	0
32	496.204	877.212	141171	0	0
33	501.933	879.991	135815	0	0
34	507.661	882.925	129688	0	0
35	513.39	886.019	122823	0	0
36	519.118	889.277	115263	0	0
37	524.847	892.707	107056	0	0
38	530.576	896.316	98263.2	0	0
39	536.304	900.111	88952.8	0	0
40	542.033	904.102	79205.4	0	0
41	547.761	908.298	69113.8	0	0
42	553.49	912.71	58784.8	0	0
43	559.219	917.351	48340.9	0	0
44	564.947	922.235	37923	0	0
45	570.676	927.379	27692.5	0	0
46	576.405	932.8	17865.8	0	0
40	570.405	938.522	9388	0	0
48	587.862	944.569	2908.97	0	0
49	593.59	950.972	-1158.55	0	0
50	599.319	957.768	-2341.53	0	0
50	605.048	965	-2541.55	0	0
51	005.048	305	0	0	0

List Of Coordinates

External Boundary


Х	Y
0	700
399	700
1383	700
1383	910
1318	915
1273	920
1178	942
1065	956.2
1025	960
900	986
869	987.5
838	986
775	965
718	965
575	965
484	923.5
427	895
407	895
314	851
302	844
137	838
57	820
27	810
0	800

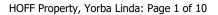
Material Boundary

Х	Υ	
137	838	
148	833	
344	841	
366	832	
399	827	
435	846	
474	858	
520	880	
575	908	
642	937	
713	960	
770	960	
775	965	

Material Boundary

х	Υ
399	700
399	827

Phi deg)	Water Surface	Ru	Generalized Anisotropic
28	None	0	
18	None	0	
36	None	0	
	None	0	Static Bedding 55-65
	None	0	Static Bedding 13-26


1400

1600

1800

TGR Geotechnical, Inc.

Cross-section B-B' Static.slim

Slide Analysis Information HOFF Property, Yorba Linda

Project Summary

File Name:	Cross-section B-B' Static	
Slide Modeler Version:	7.038	
Project Title:	HOFF Property, Yorba Linda	
Analysis:	Cross-section B-B', Static	
Company:	TGR Geotechnical, Inc.	
Date Created:	4/15/20	

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified
	Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Circular
Grid Search
10
Disabled
Invalid Surfaces
Not Defined
Not Defined
Not Defined
Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Fill Static	Tpl-Toe Static	Tpl Static
Color			
Strength Type	Mohr-Coulomb	Generalized Anisotropic	Generalized Anisotropic
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]	275		
Friction Angle [deg]	28		
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name: Static Bedding 13-26

Angle From		Material
-26	-90	Tpl Cross-Bedding Static
-13	-26	Tpl Along Bedding
90	-13	Tpl Cross-Bedding Static

Name: Static Bedding 55-65

Angle From	Angle To	Material
55	-90	Tpl Cross-Bedding Static
65	55	Tpl Along Bedding Tpl Cross-Bedding Static
90	65	Tpl Cross-Bedding Static

Global Minimums

Method: bishop simplified

FS	1.701430
Center:	158.893, 1478.144
Radius:	628.153
Left Slip Surface Endpoint:	299.023, 865.821
Right Slip Surface Endpoint:	521.190, 965.000
Resisting Moment:	1.67715e+008 lb-ft
Driving Moment:	9.85731e+007 lb-ft
Total Slice Area:	2995.4 ft2
Surface Horizontal Width:	222.168 ft
Surface Average Height:	13.4826 ft

Method: janbu simplified

FS	1.681820
Center:	222.008, 1383.472
Radius:	515.895
Left Slip Surface Endpoint:	316.173, 876.243
Right Slip Surface Endpoint:	523.718, 965.000
Resisting Horizontal Force:	218059 lb
Driving Horizontal Force:	129656 lb
Total Slice Area:	2755.33 ft2
Surface Horizontal Width:	207.545 ft
Surface Average Height:	13.2758 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4696 Number of Invalid Surfaces: 155

Error Codes:

Error Code -102 reported for 11 surfaces Error Code -103 reported for 84 surfaces Error Code -106 reported for 37 surfaces Error Code -108 reported for 1 surface Error Code -1000 reported for 22 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4687 Number of Invalid Surfaces: 164

Error Codes:

Error Code -102 reported for 11 surfaces Error Code -103 reported for 84 surfaces Error Code -106 reported for 37 surfaces Error Code -108 reported for 10 surfaces Error Code -1000 reported for 22 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very

small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.70143

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.37257	427.894	13.0949	Fill Static	275	28	179.195	304.888	56.2118	0	56.2118	97.8949	97.8949
2	4.37257	1274.3	13.5047	Fill Static	275	28	235.075	399.963	235.022	0	235.022	291.478	291.478
3	4.37257	2173.84	13.9152	Fill Static	275	28	294.232	500.615	424.319	0	424.319	497.217	497.217
4	4.37257	3142.81	14.3265	Fill Static	275	28	357.72	608.636	627.477	0	627.477	718.835	718.835
5	4.37257	4092.98	14.7385	Fill Static	275	28	419.682	714.06	825.752	0	825.752	936.155	936.155
6	4.37257	5024.02	15.1513	Fill Static	275	28	480.104	816.863	1019.1	0	1019.1	1149.1	1149.1
	4.37257	5935.82	15.5649	Fill Static	275	28	538.985	917.046	1207.51	0	1207.51	1357.64	1357.64
8	4.37257		15.9794	Fill Static	275	28	596.327	1014.61	1391	0	1391	1561.76	1561.76
9	4.37257	7701.24	16.3947	Fill Static	275	28	652.129	1109.55	1569.56	0	1569.56	1761.43	1761.43
10			16.8109	Fill Static	275	28	706.39	1201.87	1743.2	0	1743.2	1956.61	1956.61
	4.37257		17.228	Fill Static	275	28	759.109	1201.07	1911.9	0	1911.9	2147.29	2147.29
	4.37257		17.646	Fill Static	275	28	810.289	1378.65	2075.66	0	2075.66	2333.42	2333.42
12	4.37237	10202.1	17.040	Tpl Cross-	275	20	810.289	1378.05	2075.00	0	2075.00	2555.42	2333.42
13	4.74962	11980.3	18.0832	Bedding Static Tpl Cross-	198	36	1047.53	1782.3	2180.61	0	2180.61	2522.65	2522.65
14	4.74962	12891	18.5395	Bedding Static	198	36	1115.71	1898.31	2340.27	0	2340.27	2714.44	2714.44
15	4.74962	12399.5	18.9971	Tpl Cross- Bedding Static	198	36	1073.49	1826.46	2241.38	0	2241.38	2610.94	2610.94
16	4.74962	10496.9	19.4559	Tpl Cross- Bedding Static	198	36	921.254	1567.45	1884.89	0	1884.89	2210.33	2210.33
17	4.74962	8567.84	19.916	Tpl Cross- Bedding Static	198	36	767.96	1306.63	1525.9	0	1525.9	1804.14	1804.14
			20.3775	Tpl Cross- Bedding Static	198	36	682.431	1161.11	1325.6	0	1325.6	1579.09	1579.09
	4.41247		20.8239	Fill Static	275		613.711	1044.19	1446.63	0	1446.63	1680.05	1680.05
			21.2551	Fill Static	275	28	639.719	1088.44	1529.85	0	1529.85	1778.69	1778.69
21	4.41247		21.6876	Fill Static	275	28	664.205	1130.1	1608.21	0	1608.21	1872.36	1872.36
22	4.41247	8651.8	22.1214	Fill Static	275	28	687.164	1169.16	1681.67	0	1681.67	1961	1961
23	4.41247	9020.51	22.5565	Fill Static	275	28	708.593	1205.62	1750.25	0	1750.25	2044.57	2044.57
24	4.41247	9366.64	22.993	Fill Static	275	28	728.489	1239.47	1813.91	0	1813.91	2123.03	2123.03
25	4.41247	9689.99	23.431	Fill Static	275	28	746.847	1270.71	1872.65	0	1872.65	2196.32	2196.32
26	4.41247	9990.31	23.8703	Fill Static	275	28	763.664	1299.32	1926.46	0	1926.46	2264.4	2264.4
27	4.41247	10267.4	24.3112	Fill Static	275	28	778.933	1325.3	1975.32	0	1975.32	2327.2	2327.2
28	4.41247	10521	24.7536	Fill Static	275	28	792.645	1348.63	2019.21	0	2019.21	2384.68	2384.68
29	4.41247	10750.8	25.1976	Fill Static	275	28	804.805	1369.32	2058.12	0	2058.12	2436.79	2436.79
30	4.41247	10768.6	25.6433	Fill Static	275	28	803.818	1367.64	2054.96	0	2054.96	2440.83	2440.83
31	4.41247	10481.5	26.0906	Fill Static	275	28	784.082	1334.06	1991.8	0	1991.8	2375.76	2375.76
	4.41247		26.5396	Fill Static	275		762.758	1297.78	1923.56	0	1923.56	2304.52	2304.52
	4.41247		26.9903	Fill Static	275	28	740.002	1259.06	1850.75	0	1850.75	2227.64	2227.64
	4.41247		27.4429	Fill Static	275		715.813	1217.91	1773.35	0	1773.35	2145.07	2145.07
	4.41247	9073.9	27.8974	Fill Static	275		690.185	1174.3	1691.34	0	1691.34	2056.73	2056.73
	4.41247		28.3538	Fill Static	275	28	669.07	1138.38	1623.77	0	1623.77	1984.84	1984.84
	4.41247		28.8121	Fill Static	275		659.854	1122.7	1594.29	0	1594.29	1957.22	1957.22
			29.2725	Fill Static	275		649.577	1105.21	1561.4	0	1561.4	1925.51	1925.51
	4.41247		29.7349	Fill Static	275		637.722	1085.04	1523.46	0	1523.46	1887.73	1887.73
	4.41247		30.1995	Fill Static	275	28	624.281	1085.04	1480.45	0	1480.45	1843.79	1843.79
	4.41247		30.6663	Fill Static	275	28	609.247	1036.59	1432.34	0	1432.34	1793.6	1793.6
	4.41247		31.1354	Fill Static	275		592.609	1008.28	1379.1	0	1379.1	1737.09	1737.09
	4.41247		31.6068	Fill Static	275		574.358	977.23	1320.7	0	1320.7	1674.14	1674.14
	4.41247		32.0806	Fill Static	275		554.485	943.417	1257.11	0	1257.11	1604.67	1604.67
	4.41247		32.5568	Fill Static	275		532.979	906.826	1188.29	0	1188.29	1528.58	1528.58
			33.0356	Fill Static	275		509.829	867.439	1114.22	0	1114.22	1445.75	1445.75
	4.41247		33.517	Fill Static	275		477.752	812.861	1011.57	0	1011.57	1327.99	1327.99
	4.41247		34.0012	Fill Static	275	28	388.771	661.466	726.836	0	726.836	989.077	989.077
	4.41247		34.488	Fill Static	275	28	287.047	488.391	401.331	0	401.331	598.525	598.525
50	4.41247	885.414	34.9778	Fill Static	275	28	184.117	313.261	71.9592	0	71.9592	200.773	200.773
Global Mi	nimum Qu	iery (janbi	u simplified)	- Safety Factor:	1.68182								

Angle Base Shear Shear Base Dore Effective Base Effective

Number	[ft]	[lbs]	of Slice Base [degrees]	Material	Cohesion [psf]	Friction Angle [degrees]	Stress [psf]	Strength [psf]	Normal Stress [psf]	Pressure [psf]	Normal Stress [psf]	Vertical Stress [psf]	Vertical Stress [psf]
1	4.1509	505.795	10.7517	Fill Static	275	28	190.61	320.572	85.7088	0	85.7088	121.903	121.903
2	4.1509	1507.86	11.2213	Fill Static	275	28	261.952	440.556	311.366	0	311.366	363.335	363.335
3	4.1509	2490.82	11.6917	Fill Static	275	28	331.564	557.631	531.553	0	531.553	600.166	600.166
4	4.1509	3454.6	12.1629	Fill Static	275	28	399.451	671.805	746.281	0	746.281	832.374	832.374
5	4.1509	4399.08	12.6349	Fill Static	275	28	465.615	783.081	955.562	0	955.562	1059.94	1059.94
6	4.1509	5324.16	13.1078	Fill Static	275	28	530.06	891.465	1159.4	0	1159.4	1282.83	1282.83
7	4.1509	6229.73	13.5816	Fill Static	275	28	592.786	996.96	1357.81	0	1357.81	1501.02	1501.02
8	4.1509	7115.68	14.0563	Fill Static	275	28	653.797	1099.57	1550.79	0	1550.79	1714.48	1714.48
9	4.1509	7981.88	14.5321	Fill Static	275	28	713.094	1199.3	1738.35	0	1738.35	1923.19	1923.19
10	4.1509	8828.22	15.0088	Fill Static	275	28	770.677	1296.14	1920.48	0	1920.48	2127.11	2127.11
11	4.1509	9612.05	15.4866	Fill Static	275	28	823.572	1385.1	2087.79	0	2087.79	2315.98	2315.98
12	4.1509	8982.93	15.9656	Fill Static	275	28	777.473	1307.57	1941.98	0	1941.98	2164.41	2164.41
13	4.1509	7659.96	16.4457	Fill Static	275	28	683.257	1149.12	1643.97	0	1643.97	1845.66	1845.66
14	4.1509	6316.56	16.9269	Fill Static	275	28	588.106	989.088	1343	0	1343	1521.99	1521.99
15	4.1509	5283.23	17.4094	Fill Static	275	28	514.934	866.026	1111.56	0	1111.56	1273.02	1273.02
16	4.1509	5653.64	17.8932	Fill Static	275	28	539.164	906.777	1188.2	0	1188.2	1362.27	1362.27
17	4.1509	6166.7	18.3783	Fill Static	275	28	573.087	963.829	1295.5	0	1295.5	1485.9	1485.9
18	4.1509	6658.67	18.8648	Fill Static	275	28	605.365	1018.12	1397.6	0	1397.6	1604.45	1604.45
19	4.1509	7129.37	19.3527	Fill Static	275	28	635.997	1069.63	1494.49	0	1494.49	1717.87	1717.87
20	4.1509	7578.61	19.8421	Fill Static	275	28	664.979	1118.38	1586.16	0	1586.16	1826.12	1826.12
21	4.1509	8006.2	20.3329	Fill Static	275	28	692.31	1164.34	1672.61	0	1672.61	1929.15	1929.15
22	4.1509	8411.93	20.8254	Fill Static	275	28	717.985	1207.52	1753.82	0	1753.82	2026.92	2026.92
23	4.1509	8795.58	21.3194	Fill Static	275	28	742.002	1247.91	1829.78	0	1829.78	2119.37	2119.37
24	4.1509	9156.93	21.8151	Fill Static	275	28	764.356	1285.51	1900.49	0	1900.49	2206.45	2206.45
25	4.1509	9495.77	22.3126	Fill Static	275	28	785.042	1320.3	1965.93	0	1965.93	2288.1	2288.1
26	4.1509	9811.84	22.8118	Fill Static	275	28	804.058	1352.28	2026.08	0	2026.08	2364.26	2364.26
27	4.1509	10104.9	23.3128	Fill Static	275	28	821.396	1381.44	2080.92	0	2080.92	2434.89	2434.89
28	4.1509	10234.9	23.8158	Fill Static	275	28	827.71	1392.06	2100.88	0	2100.88	2466.21	2466.21
29	4.1509	10070.8	24.3207	Fill Static	275	28	814.356	1369.6	2058.65	0	2058.65	2426.7	2426.7
30	4.1509	9876.09	24.8276	Fill Static	275	28	799.015	1343.8	2010.12	0	2010.12	2379.79	2379.79
31	4.1509	9657.27	25.3366	Fill Static	275	28	782.141	1315.42	1956.74	0	1956.74	2327.07	2327.07

32 4.1509 9414.03 25.8475 Fill Static Static 275 28 763.72 1284.44 1898.49 0 1898.49 2268.47 2268.47 2268.47 33 4.1509 946.66 26.6121 Fill Static 275 28 743.75 125.087 1835.34 0 1835.34 203.91 2203.91 34 4.1509 867.36 26.8768 Fill 275 28 71.63 170.25 0 1743.22 211.357 211.357 36 4.1509 871.01 27.9149 Fill 275 28 701.483 170.25 0 1743.22 210.61 210.61 37 4.1509 8637.25 28.4383 Fill 275 28 701.43 1672.54 0 1761.48 2081.35 2081.35 2081.35 38 4.1509 8397.44 20.9292 Fill 275 28 681.45 1106.71 157.64 0 1583.68 1984.88 1984.88		Construction Inspe	ction									1 //		5
33 3.1509 9146.06 62.6612 Static 27.5 28 743.758 1250.87 1835.34 0 1835.34 200.911 2203.91 34 4.1509 8867.36 26.8768 FIII 275 28 723.18 1216.26 1770.25 0 1770.25 2136.77 2136.77 35 4.1509 8717.10 27.9154 FIII 275 28 708.883 1192.21 1725.03 0 1770.25 210.61 2100.61 37 4.1509 8717.19 27.9154 FIII 275 28 701.438 1179.69 1701.48 0 1725.03 2100.61 2100.61 38 4.1509 8530.8 28.9639 FIII 275 28 692.289 1164.31 1672.54 0 1672.54 2055.71 2055.71 39 4.1509 8236.74 30.0232 FIII 275 28 681.425 1146.03 1638.18 0 1538.66 1984.88 1984.88 41 4.1509 7831.59 31.094 FIII 275	32	4.1509	9414.03	25.8478		275	28	763.72	1284.44	1898.49	0	1898.49	2268.47	2268.47
34 4.1509 8867.36 26.8768 Static 275 28 723.18 1216.26 1770.25 0 1770.25 2136.77 2136.77 35 4.1509 8771.01 27.3949 Static 275 28 714.633 1201.88 1743.22 0 1743.22 2113.57 2113.57 36 4.1509 8717.19 27.9154 Fill 275 28 708.883 1192.21 1725.03 0 1770.48 2081.35 2081.35 38 4.1509 8637.25 28.4383 Static 275 28 692.289 1164.31 1672.54 0 1672.54 2055.71 2055.71 39 4.1509 8236.74 30.0232 Fill 275 28 668.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 8048.28 30.5571 Static 275 28 668.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 7831.59 31.094 Fill 2	33	4.1509	9146.06	26.3612		275	28	743.758	1250.87	1835.34	0	1835.34	2203.91	2203.91
35 4.1509 871.01 27.3949 Static 275 28 714.633 1201.88 1/43.22 0 1.43.22 2113.57 2100.61	34	4.1509	8867.36	26.8768		275	28	723.18	1216.26	1770.25	0	1770.25	2136.77	2136.77
36 4.1509 8717.19 27.9154 Static 275 28 708.883 1192.21 1725.03 0 1725.03 2100.61 2100.61 37 4.1509 8637.25 28.4383 Static 275 28 701.438 1179.69 1701.48 0 1701.48 2081.35 2081.35 38 4.1509 8530.8 28.9639 Fill 275 28 692.289 1164.31 1672.54 0 1672.54 2055.71 2055.71 39 4.1509 8397.44 29.4922 Fill 275 28 688.837 1124.86 1598.36 0 1638.18 2023.59 2023.59 40 4.1509 8048.28 30.05571 Fill 275 28 668.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 788.19 31.094 Fill 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 731.59 31.094 Fill 275 <td>35</td> <td>4.1509</td> <td>8771.01</td> <td>27.3949</td> <td></td> <td>275</td> <td>28</td> <td>714.633</td> <td>1201.88</td> <td>1743.22</td> <td>0</td> <td>1743.22</td> <td>2113.57</td> <td>2113.57</td>	35	4.1509	8771.01	27.3949		275	28	714.633	1201.88	1743.22	0	1743.22	2113.57	2113.57
37 4.1509 8637.25 28.4383 Static 275 28 701.438 1179.69 1701.48 0 1701.48 2081.35 2081.35 38 4.1509 8530.8 28.9639 Fill 275 28 692.289 1164.31 1672.54 0 1672.54 2055.71 2055.71 39 4.1509 8397.44 29.4922 Fill 275 28 681.425 1146.03 1638.18 0 1638.18 2023.59 40 4.1509 8236.74 30.0232 Fill 275 28 688.437 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 8048.28 30.5571 Fill 275 28 654.514 1100.77 1553.06 0 1553.06 1939.47 1939.47 42 4.1509 788.19 31.6339 Fill 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 731.59 32.177 Fill 275 28	36	4.1509	8717.19	27.9154		275	28	708.883	1192.21	1725.03	0	1725.03	2100.61	2100.61
38 4.1509 8530.8 28.9639 Static 275 28 692.289 1164.31 1672.54 0 1672.54 2055.71 2055.71 39 4.1509 8397.44 29.4922 Fill Static 275 28 681.425 1146.03 1638.18 0 1638.18 2023.59 2023.59 40 4.1509 8236.74 30.0232 Fill Static 275 28 688.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 8048.28 30.5571 Fill Static 275 28 654.514 1100.77 1553.06 0 1598.36 1939.47 1939.47 42 4.1509 7831.59 31.094 Fill Static 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 7311.59 32.177 Fill Static 275 28 601.016 101.08 1383.84 0 1383.84 1761.98 1761.98 44 4.1509 7007.26 <	37	4.1509	8637.25	28.4383		275	28	701.438	1179.69	1701.48	0	1701.48	2081.35	2081.35
39 4.1509 8397.44 29.4922 Static 275 28 681.425 1146.03 1638.18 0 1638.18 2023.59 2023.59 40 4.1509 8236.74 30.0232 Fill 275 28 668.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 8048.28 30.5571 Fill 275 28 654.514 1100.77 1553.06 0 1598.36 1984.88 1984.88 42 4.1509 7831.59 31.094 Fill 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 7586.19 31.6339 Fill 275 28 630.615 1043.76 1445.83 0 1383.84 1761.98 1761.98 44 4.1509 7007.26 32.723 Fill 275 28 679.634 974.84 1316.21 0 1316.21 1688.66 1688.66 46 4.1509 6632.26 33.273 Fill 275	38	4.1509	8530.8	28.9639		275	28	692.289	1164.31	1672.54	0	1672.54	2055.71	2055.71
40 4.1509 8236.74 30.0232 Static 275 28 668.837 1124.86 1598.36 0 1598.36 1984.88 1984.88 41 4.1509 8048.28 30.5571 Fill 275 28 654.514 1100.77 1553.06 0 1598.36 1939.47 1939.47 42 4.1509 7831.59 31.094 Fill 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 7586.19 31.639 Fill 275 28 620.615 1043.76 1445.83 0 1383.84 1761.98 1761.98 44 4.1509 7311.59 32.177 Fill 275 28 601.016 1010.8 1383.84 0 1383.84 1761.98 1761.98 45 4.1509 7007.26 32.723 Fill 275 28 573.906 931.571 1234.83 0 1234.83 1598.31 1598.31 46 4.1509 646.44 33.8261 Fill 275	39	4.1509	8397.44	29.4922		275	28	681.425	1146.03	1638.18	0	1638.18	2023.59	2023.59
41 4.1509 8048.28 30.5571 Static 275 28 654.514 1100.77 1553.06 0 1553.06 1939.47 1939.47 42 4.1509 7831.59 31.094 Fill 275 28 638.443 1073.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 7586.19 31.6339 Fill 275 28 620.615 1043.76 1445.83 0 1445.83 1828.14 1828.14 44 4.1509 7311.59 32.177 Fill 275 28 601.016 1010.8 1383.84 0 1383.84 1761.98 1761.98 45 4.1509 7007.26 32.7233 Fill 275 28 579.634 974.84 1316.21 0 1316.21 1688.66 1688.66 46 4.1509 6632.26 33.273 Fill 275 28 573.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill 275	40	4.1509	8236.74	30.0232	Static	275	28	668.837	1124.86	1598.36	0	1598.36	1984.88	1984.88
42 4.1509 7831.59 31.094 Static 275 28 638.443 10/3.75 1502.22 0 1502.22 1887.27 1887.27 43 4.1509 7586.19 31.6339 Fill 275 28 620.615 1043.76 1445.83 0 1445.83 1828.14 1828.14 44 4.1509 7311.59 32.177 Fill 275 28 601.016 1010.8 1383.84 0 1383.84 1761.98 1761.98 45 4.1509 7007.26 32.7233 Fill 275 28 579.634 974.84 1316.21 0 1316.21 1688.66 1688.66 46 4.1509 6632.26 33.273 Fill 275 28 553.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill 275 28 375.54 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill 275	41	4.1509	8048.28	30.5571	Static	275	28	654.514	1100.77	1553.06	0	1553.06	1939.47	1939.47
43 4.1509 7586.19 31.6339 Static 275 28 620.615 1043.76 1445.83 0 1445.83 1828.14 1828.14 44 4.1509 7311.59 32.177 Fill Static 275 28 601.016 1010.8 1383.84 0 1383.84 1761.98 1761.98 45 4.1509 7007.26 32.7233 Fill Static 275 28 579.634 974.84 1316.21 0 1316.21 1688.66 1688.66 46 4.1509 6632.26 33.273 Fill Static 275 28 553.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill Static 275 28 477.354 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill Static 275 28 380.592 640.087 686.629 0 686.629 947.059 947.059 49 4.1509 2380.71 <td< td=""><td>42</td><td>4.1509</td><td>7831.59</td><td>31.094</td><td>Static</td><td>275</td><td>28</td><td>638.443</td><td>1073.75</td><td>1502.22</td><td>0</td><td>1502.22</td><td>1887.27</td><td>1887.27</td></td<>	42	4.1509	7831.59	31.094	Static	275	28	638.443	1073.75	1502.22	0	1502.22	1887.27	1887.27
44 4.1509 7311.59 32.177 Static 275 28 601.016 1010.8 1383.84 0 1383.84 1761.98 1761.98 45 4.1509 7007.26 32.7233 Fill 275 28 579.634 974.84 1316.21 0 1316.21 1688.66 1688.66 46 4.1509 6632.26 33.273 Fill 275 28 553.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill 275 28 477.354 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill 275 28 380.592 640.087 686.629 0 686.629 947.059 947.059 49 4.1509 2380.71 34.9434 Fill 275 28 282.518 475.144 376.416 0 376.416 573.821 573.821 50 4.1509 799.08 35.5077 Fill 275	43	4.1509	7586.19	31.6339	Static	275	28	620.615	1043.76	1445.83	0	1445.83	1828.14	1828.14
45 4.1509 7007.26 32.7233 Static 275 28 579.634 974.84 1316.21 0 1316.21 1688.66 1688.66 1688.66 46 4.1509 6632.26 33.273 Static 275 28 553.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill Static 275 28 477.354 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill Static 275 28 380.592 640.087 686.629 0 686.629 947.059 947.059 49 4.1509 2380.71 34.9434 Fill Static 275 28 282.518 475.144 376.416 0 376.416 573.821 573.821 50 4.1509 799.08 35.5077 Fill 275 28 183.125 307.984 62.0338 0 62.0338 192.693 192.693	44	4.1509	7311.59	32.177	Static	275	28	601.016	1010.8	1383.84	0	1383.84	1761.98	1761.98
46 4.1509 6632.26 33.273 Static 275 28 553.906 931.571 1234.83 0 1234.83 1598.31 1598.31 47 4.1509 5446.44 33.8261 Fill 275 28 477.354 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill 275 28 380.592 640.087 686.629 0 686.629 947.059 947.059 49 4.1509 2380.71 34.9434 Fill 275 28 282.518 475.144 376.416 0 376.416 573.821 573.821 50 4.1509 799.08 35.5077 Fill 275 28 183.125 307.984 62.0338 0 62.0338 192.693 192.693	45	4.1509	7007.26	32.7233	Static	275	28	579.634	974.84	1316.21	0	1316.21	1688.66	1688.66
47 4.1509 5446.44 33.8261 275 28 477.354 802.823 992.69 0 992.69 1312.57 1312.57 48 4.1509 3929.61 34.3829 Fill Static 275 28 380.592 640.087 686.629 0 686.629 947.059 947.059 49 4.1509 2380.71 34.9434 Fill Static 275 28 282.518 475.144 376.416 0 376.416 573.821 573.821 50 4.1509 799.08 35.5077 Fill 275 28 183.125 307.984 62.0338 0 62.0338 192.693 192.693	46	4.1509	6632.26	33.273	Static	275	28	553.906	931.571	1234.83	0	1234.83	1598.31	1598.31
48 4.1509 3929.61 34.3829 Static 275 28 380.592 640.087 686.629 0 686.629 947.059	47	4.1509	5446.44	33.8261	Static	275	28	477.354	802.823	992.69	0	992.69	1312.57	1312.57
49 4.1509 2380./1 34.9434 Static 2/5 28 282.518 4/5.144 3/6.416 0 3/6.416 5/3.821 5/3.	48	4.1509	3929.61	34.3829	Static	275	28	380.592	640.087	686.629	0	686.629	947.059	947.059
	49	4.1509	2380.71	34.9434	Static	275	28	282.518	475.144	376.416	0	376.416	573.821	573.821
	50	4.1509	799.08	35.5077		275	28	183.125	307.984	62.0338	0	62.0338	192.693	192.693

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.70143

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	299.023	865.821	0	0	0
2	303.395	866.838	725.694	0	0
3	307.768	867.888	1505.88	0	0
4	312.14	868.971	2331.64	0	0
5	316.513	870.088	3193.74	0	0
6	320.885	871.238	4077.41	0	0
7	325.258	872.422	4968.26	0	0
8	329.631	873.64	5852.28	0	0
9	334.003	874.892	6715.82	0	0
10	338.376	876.179	7545.64	0	0
11	342.748	877.5	8328.84	0	0
12	347.121	878.856	9052.95	0	0
13	351.493	880.247	9705.84	0	0
14	356.243	881.798	11295.1	0	0
15	360.993	883.39	12862.1	0	0
16	365.742	885.026	14291.3	0	0
17	370.492	886.703	15500.6	0	0
18	375.242	888.424	16519.2	0	0
19	379.991	890.188	17419	0	0
20	384.404	891.867	17696.8	0	0
21	388.816	893.583	17891.4	0	0
22	393.229	895.338	17997.5	0	0
23	397.641	897.132	18010.7	0	0
24	402.054	898.964	17926.7	0	0
25	406.466	900.837	17742.1	0	0
26	410.878	902.749	17453.7	0	0
27	415.291	904.702	17058.8	0	0
28	419.703	906.695	16555.4	0	0
29	424.116	908.729	15941.8	0	0
30	428.528	910.806	15217	0	0
31	432.941	912.924	14407.9	0	0
32	437.353	915.085	13560.9	0	0
33	441.766	917.288	12684.5	0	0
34	446.178	919.536	11787.7	0	0
35	450.591	921.827	10880	0	0
36	455.003	924.163	9971.77	0	0
37	459.416	926.544	9054.92	0	0
38	463.828	928.971	8094.68	0	0
39	468.241	931.445	7096.53	0	0
40	472.653	933.965	6068.3	0	0
41	477.066	936.533	5018.64	0	0
42	481.478	939.15	3956.98	0	0
43	485.891	941.815	2893.61	0	0
44	490.303	944.53	1839.67	0	0
45	494.716	947.296	807.227	0	0
46	499.128	950.113	-190.717	0	0
47	503.54	952.983	-1140.18	0	0
48	507.953	955.905	-1990.18	0	0
49	512.365	958.882	-2439.56	0	0
50	516.778	961.913	-2390.6	0	0
51	521.19	965	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.68182

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	316.173	876.243	0	0	0
2	320.324	877.032	722.525	0	0
3	324.475	877.855	1551.91	0	0
4	328.626	878.714	2469.65	0	0
5	332.777	879.609	3457.72	0	0
6	336.928	880.539	4498.56	0	0
7	341.079	881.506	5575.06	0	0
8	345.23	882.508	6670.55	0	0
9	349.381	883.548	7768.86	0	0
10	353.532	884.624	8854.22	0	0
11	357.682	885.737	9911.34	0	0
12	361.833	886.887	10923.9	0	0
13	365.984	888.074	11840.3	0	0
14	370.135	889.3	12658.1	0	0
15	374.286	890.563	13399.2	0	0
16	378.437	891.864	14086.8	0	0
17	382.588	893.205	14729.3	0	0
18	386.739	894.584	15318.2	0	0
19	390.89	896.002	15845.2	0	0
20	395.041	897.46	16302.5	0	0
21	399.191	898.958	16683	0	0
22	403.342	900.496	16979.9	0	0
23	407.493	902.075	17186.9	0	0
24	411.644	903.695	17298.2	0	0
25	415.795	905.356	17308.8	0	0
26	419.946	907.06	17213.9	0	0
27	424.097	908.806	17009.5	0	0
28	428.248	910.594	16691.9	0	0
29	432.399	912.427	16273.7	0	0
30	436.55	914.303	15787.1	0	0
31	440.7	916.223	15238.8	0	0
32	444.851	918.188	14635	0	0
33	449.002	920.199	13983	0	0
34	453.153	922.256	13290.6	0	0
35	457.304	924.36	12564	0	0
36	461.455	926.511	11776.2	0	0
37	465.606	928.71	10920.8	0	0
38	469.757	930.958	10003.4	0	0
39	473.908	933.256	9030.33	0	0
40	478.059	935.604	8008.85	0	0
41	482.209	938.002	6947.09	0	0
42	486.36	940.453	5854.06	0	0
43	490.511	942.956	4739.76	0	0
44	494.662	945.513	3615.16	0	0
45	498.813	948.125	2492.3	0	0
46	502.964	950.792	1384.28	0	0
47	507.115	953.516	316.76	0	0
48	511.266	956.298	-465.802	0	0
49	515.417	959.138	-838.52	0	0
50	519.568	962.038	-759.233	0	0
51	523.718	965	0	0	0
					-

List Of Coordinates

External Boundary

Cross-section B-B' Static.slim

х	Y	1
0	700	
283	700	
1255	700	
1255	995	
1092	1000	
967	1000	
888	996	
869	1005	
865	1005	
849	1000	
814	988	
750	986	
706	965	
633	965	
506	965	
456	940	
429	930	
376	900.5	
361	905	
308	871	
295	863.5	
282	863.5	
271	865	
253	856	
227	843.1	
170	816	
75	813.9	
44	810	
0	800	

Material Boundary

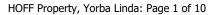
х	Y
75	813.9
81	811
195	811
204	820
242	840
283	858.5
320	858.5
324.266	863.03
333	871
353	881
400	897
463	917
536	937
625	960
698	960
706	965

Material Boundary

х	Y
283	700
283	858.5

◀ 0.36

Phi deg)	Water Surface	Ru	Generalized Anisotropic
30	None	0	
18	None	0	
47	None	0	
	None	0	Seismic Bedding 55-65
	None	0	Seismic Bedding 13-26


1400

1600

1800

TGR Geotechnical, Inc.

Cross-section B-B' Seismic.slim

Slide Analysis Information HOFF Property, Yorba Linda

Project Summary

File Name:	Cross-section B-B' Seismic
Slide Modeler Version:	7.038
Project Title:	HOFF Property, Yorba Linda
Analysis:	Cross-section B-B', Seismic
Company:	TGR Geotechnical, Inc.
Date Created:	4/15/20

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.36

Material Properties

Property	Fill Seismic	Tpl- Toe Seismic	Tpl Seismic
Color			
Strength Type	Mohr-Coulomb	Generalized Anisotropic	Generalized Anisotropic
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]	460		
Friction Angle [deg]	30		
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name: Seismic Bedding 55-65

Angle From		Material
55	-90	Tpl Cross-Bedding Seismic
65	55	Tpl Along Bedding
90	65	Tpl Cross-Bedding Seismic

Name: Seismic Bedding 13-26

Angle From		Material
-26	-90	Tpl Cross-Bedding Seismic
-13	-26	Tpl Along Bedding
90	-13	Tpl Cross-Bedding Seismic

Global Minimums

Method: bishop simplified

1.009140
64.221, 1825.277
986.114
304.203, 868.810
546.242, 965.000
3.36486e+008 lb-ft
3.3344e+008 lb-ft
3693.71 ft2
242.039 ft
15.2608 ft

Method: janbu simplified

FS	0.995778
Center:	253.565, 1383.472
Radius:	507.219
Left Slip Surface Endpoint:	323.806, 881.140
Right Slip Surface Endpoint:	540.188, 965.000
Resisting Horizontal Force:	294087 lb
Driving Horizontal Force:	295334 lb
Total Slice Area:	3477.65 ft2
Surface Horizontal Width:	216.382 ft
Surface Average Height:	16.0718 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4697 Number of Invalid Surfaces: 154

Error Codes:

Error Code -102 reported for 11 surfaces Error Code -103 reported for 84 surfaces Error Code -106 reported for 37 surfaces Error Code -1000 reported for 22 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4690 Number of Invalid Surfaces: 161

Error Codes:

Error Code -102 reported for 11 surfaces Error Code -103 reported for 84 surfaces Error Code -106 reported for 37 surfaces Error Code -108 reported for 7 surfaces Error Code -1000 reported for 22 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00914

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.84078	497.05	14.2301	Fill Seismic	460	30	449.297	453.404	-11.4254	0	-11.4254	102.516	102.516
2	4.84078	1610.01	14.5205	Fill Seismic	460	30	562.628	567.77	186.663	0	186.663	332.383	332.383
3	4.84078	2766.99	14.8112	Fill Seismic	460	30	679.86	686.074	391.572	0	391.572	571.341	571.341
4	4.84078	3907.43	15.1024	Fill Seismic	460	30	794.76	802.024	592.403	0	592.403	806.881	806.881
5	4.84078	5031.24	15.3939	Fill Seismic	460	30	907.334	915.627	789.17	0	789.17	1038.99	1038.99
6	4.84078	6138.38	15.6858	Fill Seismic	460	30	1017.59	1026.89	981.884	0	981.884	1267.64	1267.64
7	4.84078	7228.75	15.9782	Fill Seismic	460	30	1125.54	1135.82	1170.56	0	1170.56	1492.84	1492.84
8	4.84078	8302.29	16.271	Fill Seismic	460	30	1231.18	1242.43	1355.21	0	1355.21	1714.56	1714.56
9	4.84078	9358.93	16.5642	Fill Seismic	460	30	1334.53	1346.72	1535.85	0	1535.85	1932.78	1932.78
10	4.84078	10398.6	16.8578	Fill Seismic	460	30	1435.58	1448.7	1712.49	0	1712.49	2147.5	2147.5
11	4.84078	11421.2	17.152	Fill Seismic	460	30	1534.36	1548.38	1885.13	0	1885.13	2358.69	2358.69
12	4.84078	12324.4	17.4466	Fill Seismic	460	30	1620.62	1635.43	2035.9	0	2035.9	2545.22	2545.22
13	4.84078	11214.9	17.7416	Fill Seismic	460	30	1505.35	1519.11	1834.43	0	1834.43	2316.06	2316.06
14	4.84078	9317.67	18.0372	Fill Seismic	460	30	1312.24	1324.24	1496.9	0	1496.9	1924.21	1924.21
15	4.84078	7440.05	18.3332	Fill Seismic	460	30	1122.12	1132.38	1164.59	0	1164.59	1536.42	1536.42
16	4.84078	7215.08	18.6298	Fill Seismic	460	30	1096.73	1106.76	1120.22	0	1120.22	1489.95	1489.95
17	4.84078	7874.89	18.9269	Fill Seismic	460	30	1158.87	1169.47	1228.83	0	1228.83	1626.21	1626.21
18	4.84078	8517.04	19.2245	Fill Seismic	460	30	1218.91	1230.05	1333.77	0	1333.77	1758.82	1758.82
19	4.84078	9141.43	19.5226	Fill Seismic	460	30	1276.85	1288.52	1435.05	0	1435.05	1887.77	1887.77
20	4.84078	9747.95	19.8213	Fill Seismic	460	30	1332.7	1344.88	1532.66	0	1532.66	2013.02	2013.02
21	4.84078	10336.5	20.1206	Fill Seismic	460	30	1386.46	1399.14	1626.63	0	1626.63	2134.57	2134.57
22	4.84078	10907	20.4204	Fill Seismic	460	30	1438.14	1451.29	1716.96	0	1716.96	2252.38	2252.38
23	4.84078	11459.3	20.7208	Fill Seismic	460	30	1487.74	1501.34	1803.65	0	1803.65	2366.44	2366.44
24	4.84078	11993.4	21.0218	Fill Seismic	460	30	1535.27	1549.3	1886.72	0	1886.72	2476.73	2476.73
25	4.84078	12509.1	21.3235	Fill Seismic	460	30	1580.72	1595.17	1966.16	0	1966.16	2583.21	2583.21
26	4.84078	12992.5	21.6257	Fill Seismic	460	30	1622.79	1637.62	2039.71	0	2039.71	2683.06	2683.06
27	4.84078	13076.5	21.9286	Fill Seismic	460	30	1626.22	1641.08	2045.69	0	2045.69	2700.37	2700.37

	Construction Inspection	20											5
28	4.84078	12969	22.2321	Fill Seismic	460	30	1611.26	1625.99	2019.56	0	2019.56	2678.16	2678.16
29	4.84078	12842.6	22.5363	Fill Seismic	460	30	1594.57	1609.14	1990.37	0	1990.37	2652.04	2652.04
30	4.84078	12697.2	22.8411	Fill Seismic	460	30	1576.13	1590.54	1958.15	0	1958.15	2622.03	2622.03
31	4.84078	12532.8	23.1467	Fill Seismic	460	30	1555.95	1570.17	1922.87	0	1922.87	2588.04	2588.04
32	4.84078	12430.5	23.4529	Fill Seismic	460	30	1541.75	1555.84	1898.04	0	1898.04	2566.91	2566.91
33	4.84078	12597.1	23.7599	Fill Seismic	460	30	1552.97	1567.16	1917.65	0	1917.65	2601.29	2601.29
34	4.84078	12769.4	24.0675	Fill Seismic	460	30	1564.63	1578.93	1938.05	0	1938.05	2636.88	2636.88
35	4.84078	12922.1	24.376	Fill Seismic	460	30	1574.35	1588.74	1955.04	0	1955.04	2668.4	2668.4
36	4.84078	13055	24.6851	Fill Seismic	460	30	1582.13	1596.59	1968.64	0	1968.64	2695.84	2695.84
37	4.84078	13168	24.9951	Fill Seismic Fill	460	30	1587.97	1602.48	1978.83	0	1978.83	2719.14	2719.14
38	4.84078	13260.8	25.3058	Seismic Fill	460	30	1591.86	1606.41	1985.65	0	1985.65	2738.32	2738.32
39	4.84078		25.6173	Seismic Fill	460	30	1593.83	1608.4	1989.09	0	1989.09	2753.32	2753.32
40	4.84078		25.9296	Seismic Fill	460		1593.85	1608.42	1989.14	0	1989.14	2764.09	2764.09
41			26.2428	Seismic Fill	460		1591.95	1606.5	1985.8	0	1985.8	2770.62	2770.62
	4.84078		26.5568	Seismic Fill	460		1581.25	1595.7	1967.08	0	1967.08	2757.42	2757.42
	4.84078		26.8717	Seismic Fill	460		1468.89	1482.32	1770.71	0	1770.71	2515.01	2515.01
44	4.84078		27.1874	Seismic Fill	460		1322.46	1334.55	1514.76	0	1514.76	2194.04	2194.04
			27.5041	Seismic Fill	460		1174.96	1185.7	1256.94	0	1256.94	1868.69	1868.69
46	4.84078		27.8217	Seismic Fill	460	30	1026.39	1035.77	997.269	0	997.269	1538.92	1538.92
47	4.84078	4194.6	28.1401	Seismic Fill	460 460	30 30	876.768	884.782	735.744	0	735.744	1204.68	1204.68 865.948
48 49	4.84078 4.84078		28.4596 28.78	Seismic Fill	460		726.09 574.361	732.726 579.611	472.376 207.171	0	472.376 207.171	865.948 522.668	522.668
	4.84078		28.78	Seismic Fill	460		421.586	425.439	-59.8606	0	-59.8606	174.805	174.805
50	4.040/0	047.020	23.1014	Seismic	400	50	+21.500	723.435	-33.0000	U	-55.0000	1/4.005	1/4.003

Global Minimum Query (janbu simplified) - Safety Factor: 0.995778

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.32764	605.367	8.20698	Fill Seismic	460	30	501.311	499.195	67.8869	0	67.8869	140.189	140.189
2	4.32764	1805.37	8.7012	Fill Seismic	460	30	646.685	643.955	318.618	0	318.618	417.589	417.589
3	4.32764	2983.86	9.19609	Fill Seismic	460	30	788.056	784.729	562.447	0	562.447	690.029	690.029
4	4.32764	4140.76	9.69166	Fill Seismic	460	30	925.459	921.552	799.431	0	799.431	957.484	957.484
5	4.32764	5275.97	10.188	Fill Seismic	460	30	1058.93	1054.46	1029.63	0	1029.63	1219.94	1219.94
6	4.32764	6389.39	10.6851	Fill Seismic	460	30	1188.5	1183.48	1253.11	0	1253.11	1477.36	1477.36
7	4.32764	7480.91	11.183	Fill	460	30	1314.21	1308.66	1469.92	0	1469.92	1729.73	1729.73

GN	Material Testing Construction Inspectio										roperty, ro	orba Linua: i	Page 6 of 10
				Seismic									
8	4.32764	8550.43	11.6817	Fill Seismic	460	30	1436.07	1430.01	1680.11	0	1680.11	1977.03	1977.03
9	4.32764	9409.36	12.1814	Fill Seismic	460	30	1531.68	1525.21	1845.01	0	1845.01	2175.64	2175.64
10	4.32764	8547.29	12.682	Fill Seismic	460	30	1422.29	1416.29	1656.34	0	1656.34	1976.4	1976.4
11	4.32764	7257.78	13.1835	Fill Seismic	460	30	1263.45	1258.11	1382.37	0	1382.37	1678.33	1678.33
12	4.32764	5945.77	13.6862	Fill Seismic	460	30	1103.4	1098.75	1106.34	0	1106.34	1375.04	1375.04
13	4.32764	5531.37	14.1898	Fill Seismic	460	30	1049.77	1045.34	1013.84	0	1013.84	1279.27	1279.27
14	4.32764	6255.66	14.6947	Fill Seismic	460	30	1129.1	1124.34	1150.66	0	1150.66	1446.76	1446.76
15	4.32764	6960.82	15.2006	Fill Seismic	460	30	1205.43	1200.35	1282.32	0	1282.32	1609.84	1609.84
16	4.32764	7642.86	15.7078	Fill Seismic	460	30	1278.34	1272.94	1408.06	0	1408.06	1767.57	1767.57
17	4.32764	8301.61	16.2163	Fill Seismic	460	30	1347.84	1342.15	1527.93	0	1527.93	1919.93	1919.93
18	4.32764	8936.9	16.7261	Fill Seismic	460	30	1413.96	1407.99	1641.96	0	1641.96	2066.87	2066.87
19	4.32764	9548.53	17.2372	Fill Seismic	460	30	1476.69	1470.46	1750.18	0	1750.18	2208.34	2208.34
20	4.32764	10136.3	17.7498	Fill Seismic	460	30	1536.09	1529.6	1852.61	0	1852.61	2344.31	2344.31
21	4.32764	10700.1	18.2638	Fill Seismic	460	30	1592.14	1585.42	1949.28	0	1949.28	2474.72	2474.72
22	4.32764	11239.6	18.7794	Fill Seismic	460	30	1644.86	1637.92	2040.22	0	2040.22	2599.52	2599.52
23	4.32764	11754.6	19.2965	Fill Seismic	460	30	1694.28	1687.13	2125.45	0	2125.45	2718.66	2718.66
24	4.32764	12244.9	19.8153	Fill Seismic	460	30	1740.4	1733.05	2205	0	2205	2832.11	2832.11
25	4.32764	12601.5	20.3358	Fill Seismic	460	30	1771.23	1763.75	2258.16	0	2258.16	2914.62	2914.62
26	4.32764	12609.6	20.8581	Fill Seismic	460	30	1763.41	1755.96	2244.67	0	2244.67	2916.58	2916.58
27	4.32764	12570.9	21.3821	Fill Seismic	460	30	1750.45	1743.06	2222.32	0	2222.32	2907.68	2907.68
28	4.32764	12506.4	21.9081	Fill Seismic	460	30	1734.72	1727.4	2195.2	0	2195.2	2892.84	2892.84
29	4.32764	12415.9	22.436	Fill Seismic	460	30	1716.25	1709	2163.33	0	2163.33	2871.98	2871.98
30	4.32764	12299.1	22.9659	Fill Seismic	460	30	1695.03	1687.87	2126.73	0	2126.73	2845.03	2845.03
31	4.32764	12188.2	23.4979	Fill Seismic	460	30	1674.54	1667.47	2091.4	0	2091.4	2819.44	2819.44
32	4.32764	12286.4	24.032	Fill Seismic	460	30	1676.44	1669.36	2094.68	0	2094.68	2842.2	2842.2
33	4.32764	12404.4	24.5684	Fill Seismic	460	30	1680.31	1673.22	2101.37	0	2101.37	2869.55	2869.55
34	4.32764	12494.7	25.1071	Fill Seismic	460	30	1681.13	1674.03	2102.76	0	2102.76	2890.51	2890.51
35	4.32764	12557.1	25.6482	Fill Seismic	460	30	1678.89	1671.8	2098.9	0	2098.9	2905.03	2905.03
36	4.32764	12591.2	26.1917	Fill Seismic	460	30	1673.59	1666.52	2089.75	0	2089.75	2912.95	2912.95
37	4.32764	12596.5	26.7378	Fill Seismic	460	30	1665.23	1658.2	2075.35	0	2075.35	2914.26	2914.26
38	4.32764	12572.6	27.2865	Fill Seismic	460	30	1653.83	1646.85	2055.68	0	2055.68	2908.79	2908.79
39	4.32764	12519.1	27.838	Fill Seismic	460	30	1639.37	1632.45	2030.75	0	2030.75	2896.48	2896.48

HOFF Property,	Yorba	Linda.	Page 7	7 of	10
non noperty,	TOIDa	Linua.	raye /	01	10

40	4.32764	12435.6	28.3922	Fill Seismic	460	30	1621.88	1615.03	2000.57	0	2000.57	2877.23	2877.23
41	4.32764	12321.6	28.9494	Fill Seismic	460	30	1601.33	1594.57	1965.13	0	1965.13	2850.92	2850.92
42	4.32764	12176.5	29.5096	Fill Seismic	460	30	1577.74	1571.08	1924.44	0	1924.44	2817.43	2817.43
43	4.32764	11507	30.0729	Fill Seismic	460	30	1501.6	1495.26	1793.12	0	1793.12	2662.62	2662.62
44	4.32764	10087.1	30.6395	Fill Seismic	460	30	1351.27	1345.56	1533.84	0	1533.84	2334.24	2334.24
45	4.32764	8628.51	31.2093	Fill Seismic	460	30	1198.68	1193.62	1270.67	0	1270.67	1996.88	1996.88
46	4.32764	7136.7	31.7827	Fill Seismic	460	30	1044.46	1040.05	1004.68	0	1004.68	1651.83	1651.83
47	4.32764	5611.07	32.3596	Fill Seismic	460	30	888.618	884.866	735.89	0	735.89	1298.95	1298.95
48	4.32764	4050.97	32.9402	Fill Seismic	460	30	731.168	728.081	464.329	0	464.329	938.071	938.071
49	4.32764	2455.72	33.5246	Fill Seismic	460	30	572.123	569.707	190.018	0	190.018	569.052	569.052
50	4.32764	824.613	34.1131	Fill Seismic	460	30	411.497	409.76	-87.0188	0	-87.0188	191.723	191.723

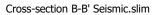
Interslice Data

SLIDEINTERPRET 7.038 Environmental Hydrogenicay Material Tiestina

Global Minimum Query (bishop simplified) - Safety Factor: 1.00914

.

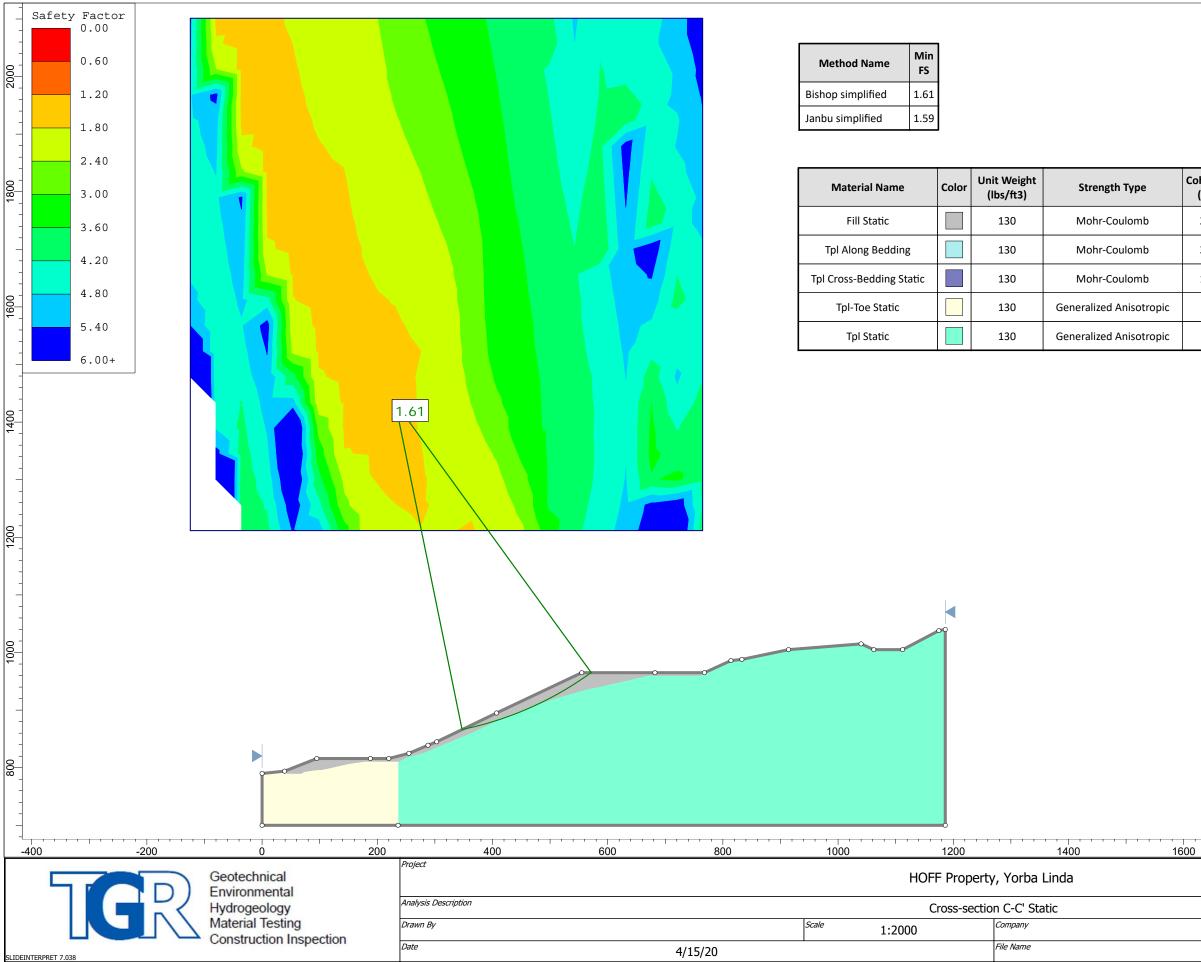
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	304.203	868.81	0	0	0
2	309.044	870.037	2013.17	0	0
3	313.885	871.291	3927.01	0	0
4	318.726	872.571	5725.47	0	0
5	323.566	873.877	7397.7	0	0
6	328.407	875.21	8933.15	0	0
7	333.248	876.57	10321.6	0	0
8	338.089	877.956	11553.1	0	0
9	342.93	879.369	12617.9	0	0
10	347.77	880.808	13506.8	0	0
11	352.611	882.275	14210.7	0	0
12	357.452	883.769	14720.8	0	0
13	362.293	885.291	15043.1	0	0
14	367.133	886.839	15462.2	0	0
15	371.974	888.416	16109.7	0	0
16	376.815	890.02	17002.9	0	0
17	381.656	891.652	17894.1	0	0
18	386.497	893.311	18637.3	0	0
19	391.337	895	19228.7	0	0
20	396.178	896.716	19664.6	0	0
21	401.019	898.461	19941.7	0	0
22	405.86	900.234	20057	0	0
23	410.7	902.036	20007.9	0	0
24	415.541	903.868	19791.9	0	0
25	420.382	905.728	19407	0	0
26	425.223	907.618	18851.3	0	0
27	430.064	909.537	18126.4	0	0
28	434.904	911.485	17315.8	0	0
29	439.745	913.464	16462	0	0
30	444.586	915.473	15570.6	0	0
31	449.427	917.512	14647.7	0	0
32	454.268	919.581	13699.5	0	0
33	459.108	921.681	12712.4	0	0
34	463.949	923.812	11619.3	0	0
35	468.79	925.974	10417	0	0
36	473.631	928.168	9108.9	0	0
37	478.471	930.393	7698.68	0	0
38	483.312	932.65	6190.47	0	0
39	488.153	934.938	4588.73	0	0
40	492.994	937.26	2898.28	0	0
41	497.835	939.613	1124.32	0	0
42	502.675	942	-727.581	0	0
43	507.516	944.419	-2628.82	0	0
44	512.357	946.872	-4236.02	0	0
45	517.198	949.358	-5416.71	0	0
46	522.038	951.879	-6146.87	0	0
47	526.879	954.433	-6402	0	0
48	531.72	957.023	-6157.12	0	0
49	536.561	959.646	-5386.76	0	0
50	541.402	962.306	-4064.91	0	0
50	546.242	965	0	0	0
51	5 /012 /2	565	0	0	Ű


Global Minimum Query (janbu simplified) - Safety Factor: 0.995778

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	323.806	881.14	0	0	0
2	328.134	881.764	1900.03	0	0
3	332.461	882.426	3825.87	0	0
4	336.789	883.127	5753.64	0	0
5	341.117	883.866	7660.26	0	0
6	345.444	884.644	9523.46	0	0
7	349.772	885.46	11321.7	0	0
8	354.1	886.316	13034.4	0	0
9	358.427	887.211	14641.5	0	0
10	362.755	888.145	16131.1	0	0
11	367.083	889.119	17570.3	0	0
12	371.41	890.132	19000.8	0	0
12	375.738	891.186	20449.4	0	0
13	380.065	892.28	21872.5	0	0
14	384.393	893.415	23180.3	0	0
15	384.393	893.413	23180.3	0	0
10	393.048	895.808	24301.5	0	0
			26301.6		
18	397.376	897.067		0	0
19	401.704	898.367	27042.2	0	0
20	406.031	899.71	27618.4	0	0
21	410.359	901.095	28022.6	0	0
22	414.687	902.524	28247.7	0	0
23	419.014	903.995	28287.6	0	0
24	423.342	905.51	28136.7	0	0
25	427.669	907.07	27790.2	0	0
26	431.997	908.674	27264.6	0	0
27	436.325	910.323	26623	0	0
28	440.652	912.017	25875.3	0	0
29	444.98	913.757	25028	0	0
30	449.308	915.544	24088.5	0	0
31	453.635	917.378	23065	0	0
32	457.963	919.26	21958.5	0	0
33	462.291	921.189	20717.7	0	0
34	466.618	923.168	19335.8	0	0
35	470.946	925.196	17818.2	0	0
36	475.274	927.274	16171.1	0	0
37	479.601	929.402	14402	0	0
38	483.929	931.583	12518.8	0	0
39	488.256	933.815	10530.6	0	0
40	492.584	936.1	8447.32	0	0
41	496.912	938.439	6280.06	0	0
42	501.239	940.833	4040.77	0	0
43	505.567	943.283	1742.52	0	0
44	509.895	945.789	-422.46	0	0
45	514.222	948.352	-2162.53	0	0
46	518.55	950.974	-3434.76	0	0
47	522.878	953.655	-4196.99	0	0
48	527.205	956.397	-4405.5	0	0
49	531.533	959.201	-4014.95	0	0
50	535.86	962.069	-2978.32	0	0
51	540.188	965	0	0	0
51	0.00100	505	0	0	v

List Of Coordinates

External Boundary


Х	Y	l
0	700	
283	700	
1255	700	
1255	995	
1092	1000	
967	1000	
888	996	
869	1005	
865	1005	
849	1000	
814	988	
750	986	
706	965	
633	965	
506	965	
456	940	
429	930	
376	900.5	
361	905	
308	871	
295	863.5	
282	863.5	
271	865	
253	856	
227	843.1	
170	816	
75	813.9	
44	810	
0	800	

Material Boundary

75 813.4 81 813.4 195 813.4 195 813.4 204 824 242 844 283 858.4 320 858.4 324.266 863.0 333 877 353 887 400 897 463 911	
195 81: 204 824 242 844 283 858. 320 858. 324.266 863.0 333 87: 353 88: 400 89	9
204 820 242 840 283 858. 320 858. 324.266 863.0 333 87 353 88 400 89	1
242 844 283 858. 320 858. 324.266 863.0 333 87 353 88 400 89	1
283 858. 320 858. 324.266 863.0 333 87 353 88 400 89	0
320 858. 324.266 863.0 333 87 353 88 400 89	0
324.266 863.0 333 87 353 88 400 89	5
333 87 353 88 400 89	5
353 88 400 89	3
400 89	1
	1
463 91	7
	7
536 93	7
625 96	0
698 96	0
706 96	5

Material Boundary

х	Y
283	700
283	858.5

Cohesion (psf)	Phi (deg)	Water Surface	Ru	Generalized Anisotropic
275	28	None	0	
336	18	None	0	
198	36	None	0	
		None	0	Static Bedding 33-54
		None	0	Static Bedding 10-30

1800

2000

. . . 2200

TGR Geotechnical, Inc.

Cross-section C-C' Static.slim

Slide Analysis Information HOFF Property, Yorba Linda

Project Summary

File Name:	Cross-section C-C' Static
Slide Modeler Version:	7.038
Project Title:	HOFF Property, Yorba Linda
Analysis:	Cross-section C-C' Static
Company:	TGR Geotechnical, Inc.
Date Created:	4/15/20

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Fill Static	Tpl-Toe Static	Tpl Static
Color			
Strength Type	Mohr-Coulomb	Generalized Anisotropic	Generalized Anisotropic
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]	275		
Friction Angle [deg]	28		
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name: Static Bedding 33-54

Angle From	Angle To	Material
33	-90	Tpl Cross-Bedding Static
54	33	Tpl Along Bedding Tpl Cross-Bedding Static
90	54	Tpl Cross-Bedding Static

Name: Static Bedding 10-30

Angle From		Material
-30	-90	Tpl Cross-Bedding Static
-10	-30	Tpl Along Bedding Tpl Cross-Bedding Static
90	-10	Tpl Cross-Bedding Static

Global Minimums

Method: bishop simplified

FS	1.612850
Center:	231.114, 1433.951
Radius:	579.453
Left Slip Surface Endpoint:	347.182, 866.242
Right Slip Surface Endpoint:	571.483, 965.000
Resisting Moment:	1.49473e+008 lb-ft
Driving Moment:	9.26766e+007 lb-ft
Total Slice Area:	2993.65 ft2
Surface Horizontal Width:	224.3 ft
Surface Average Height:	13.3466 ft

Method: janbu simplified

FS	1.593630
Center:	231.114, 1433.951
Radius:	579.453
Left Slip Surface Endpoint:	347.182, 866.242
Right Slip Surface Endpoint:	571.483, 965.000
Resisting Horizontal Force:	233586 lb
Driving Horizontal Force:	146575 lb
Total Slice Area:	2993.65 ft2
Surface Horizontal Width:	224.3 ft
Surface Average Height:	13.3466 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4640 Number of Invalid Surfaces: 211

Error Codes:

Error Code -103 reported for 89 surfaces Error Code -106 reported for 43 surfaces Error Code -108 reported for 2 surfaces Error Code -1000 reported for 77 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4640 Number of Invalid Surfaces: 211

Error Codes:

Error Code -103 reported for 89 surfaces Error Code -106 reported for 43 surfaces Error Code -108 reported for 2 surfaces Error Code -1000 reported for 77 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.
 -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.61285

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Factor: 1.61 Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.48601	356.054	11.7814	Fill Static	275	28	184.027	296.807	41.0137	0	41.0137	79.3966	79.3966
2	4.48601	1057.34	12.2349	Fill Static	275	28	231.659	373.631	185.498	0	185.498	235.732	235.732
3	4.48601	1736.92	12.6892	Fill Static	275	28	277.561	447.664	324.734	0	324.734	387.23	387.23
4	4.48601	2394.7	13.1443	Fill Static	275	28	321.737	518.913	458.734	0	458.734	533.867	533.867
5	4.48601	3030.53	13.6003	Fill Static	275	28	364.189	587.382	587.506	0	587.506	675.615	675.615
6	4.48601	3644.31	14.0571	Fill Static	275	28	404.92	653.076	711.058	0	711.058	812.444	812.444
7	4.48601	4235.9	14.5148	Fill Static Fill	275	28	443.933	715.998	829.395	0	829.395	944.326	944.326
8	4.48601	4805.16	14.9735	Static Fill	275	28	481.23	776.151	942.528	0	942.528	1071.23	1071.23
	4.48601		15.4332	Static Fill	275		516.811	833.539	1050.46	0	1050.46	1193.13	1193.13
	4.48601		15.8938	Static Fill	275		550.679	888.163	1153.19	0	1153.19	1309.99	1309.99
	4.48601		16.3556	Static Fill	275		582.835	940.025	1250.73	0	1250.73	1421.78	1421.78
	4.48601		16.8184	Static Fill	275		613.278	989.125	1343.07	0	1343.07	1528.45	1528.45
	4.48601		17.2824	Static Fill	275 275		642.009	1035.47	1430.23	0	1430.23 1511.27	1629.97 1725.3	1629.97 1725.3
	4.48601 4.48601		17.7475 18.2139	Static Fill	275	28	668.729 692.76	1078.56 1117.32	1511.27 1584.17	0	1511.27	1725.5	1725.5
	4.48601		18.6815	Static Fill	275		715.009	1117.32	1651.66	0	1651.66	1893.42	1893.42
	4.48601		19.1504	Static Fill	275		735.553	1186.34	1713.97	0	1713.97	1969.41	1969.41
	4.48601		19.6206	Static Fill	275		754.387	1216.71	1771.1	0	1771.1	2040.04	2040.04
19	4.48601	9443.34	20.0923	Static Fill Static	275	28	771.511	1244.33	1823.05	0	1823.05	2105.26	2105.26
20	4.48601	9711.45	20.5653	Fill	275	28	786.923	1269.19	1869.8	0	1869.8	2165.04	2165.04
21	4.48601	9954.89	21.0398	Fill Static	275	28	800.62	1291.28	1911.34	0	1911.34	2219.31	2219.31
22	4.48601	10173.4	21.5158	Fill Static	275	28	812.599	1310.6	1947.68	0	1947.68	2268.03	2268.03
23	4.48601	10366.8	21.9934	Fill Static	275	28	822.86	1327.15	1978.8	0	1978.8	2311.14	2311.14
24	4.48601	10534.7	22.4726	Fill Static	275	28	831.392	1340.91	2004.68	0	2004.68	2348.59	2348.59
25	4.48601	10677	22.9535	Fill Static	275	28	838.199	1351.89	2025.33	0	2025.33	2380.32	2380.32
26	4.48601	10793.4	23.4361	Fill Static	275	28	843.271	1360.07	2040.71	0	2040.71	2406.26	2406.26
27	4.48601	10883.5	23.9204	Fill Static	275	28	846.607	1365.45	2050.83	0	2050.83	2426.36	2426.36
28	4.48601	10947.1	24.4066	Fill Static	275	28	848.194	1368.01	2055.67	0	2055.67	2440.54	2440.54

	Construction Inspection	on											J
29	4.48601	10983.8	24.8947	Fill Static	275	28	848.039	1367.76	2055.19	0	2055.19	2448.74	2448.74
30	4.48601	10993.5	25.3847	Fill Static	275	28	846.136	1364.69	2049.39	0	2049.39	2450.89	2450.89
31	4.48601	10975.7	25.8767	Fill Static	275	28	842.465	1358.77	2038.28	0	2038.28	2446.94	2446.94
32	4.48601	10930	26.3707	Fill Static	275	28	837.028	1350	2021.79	0	2021.79	2436.76	2436.76
33	4.48601	10856.2	26.8669	Fill Static	275	28	829.823	1338.38	1999.91	0	1999.91	2420.3	2420.3
34	4.48601	10753.9	27.3652	Fill Static	275	28	820.833	1323.88	1972.65	0	1972.65	2397.5	2397.5
35	4.48601	10622.6	27.8659	Fill Static	275	28	810.051	1306.49	1939.96	0	1939.96	2368.24	2368.24
36	4.48601	10462	28.3688	Fill Static	275	28	797.477	1286.21	1901.81	0	1901.81	2332.45	2332.45
37	4.48601	10271.7	28.8741	Fill Static	275	28	783.097	1263.02	1858.19	0	1858.19	2290.02	2290.02
38	4.48601	10051.2	29.3819	Fill Static	275	28	766.902	1236.9	1809.07	0	1809.07	2240.88	2240.88
39	4.48601	9800.14	29.8923	Fill Static	275	28	748.884	1207.84	1754.41	0	1754.41	2184.9	2184.9
40	4.48601	9517.97	30.4052	Fill Static	275	28	729.031	1175.82	1694.19	0	1694.19	2122	2122
41	4.48601	9204.21	30.9209	Fill Static	275	28	707.334	1140.82	1628.38	0	1628.38	2052.06	2052.06
42	4.48601	8858.38	31.4394	Fill Static	275	28	683.781	1102.84	1556.93	0	1556.93	1974.96	1974.96
43	4.48601	8479.93	31.9608	Fill Static	275	28	658.362	1061.84	1479.83	0	1479.83	1890.59	1890.59
44	4.48601	8068.31	32.4851	Fill Static	275	28	631.065	1017.81	1397.03	0	1397.03	1798.83	1798.83
45	4.48601	7622.94	33.0125	Fill Static	275	28	601.877	970.737	1308.49	0	1308.49	1699.54	1699.54
46	4.48601	7143.21	33.5431	Fill Static	275	28	570.786	920.592	1214.18	0	1214.18	1592.59	1592.59
47	4.48601	6347.22	34.077	Fill Static	275	28	520.875	840.093	1062.79	0	1062.79	1415.14	1415.14
48	4.48601	4625.13	34.6142	Fill Static	275	28	415.843	670.693	744.189	0	744.189	1031.21	1031.21
49	4.48601	2801.06	35.155	Fill Static	275	28	305.479	492.691	409.418	0	409.418	624.55	624.55
50	4.48601	939.927	35.6994	Fill Static	275	28	193.721	312.444	70.4213	0	70.4213	209.621	209.621

Global Minimum Query (janbu simplified) - Safety Factor: 1.59363

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.48601	356.054	11.7814	Fill Static	275	28	186.107	296.586	40.5975	0	40.5975	79.4144	79.4144
2	4.48601	1057.34	12.2349	Fill Static	275	28	234.272	373.342	184.955	0	184.955	235.756	235.756
3	4.48601	1736.92	12.6892	Fill Static	275	28	280.684	447.306	324.06	0	324.06	387.259	387.259
4	4.48601	2394.7	13.1443	Fill Static	275	28	325.347	518.483	457.926	0	457.926	533.902	533.902
5	4.48601	3030.53	13.6003	Fill Static	275	28	368.266	586.879	586.559	0	586.559	675.654	675.654
6	4.48601	3644.31	14.0571	Fill Static	275	28	409.442	652.499	709.972	0	709.972	812.491	812.491
7	4.48601	4235.9	14.5148	Fill Static	275	28	448.878	715.345	828.169	0	828.169	944.381	944.381
8	4.48601	4805.16	14.9735	Fill	275	28	486.576	775.422	941.159	0	941.159	1071.29	1071.29

	Anternal Testing Construction Inspection	20									ioperty, io		-age 0 01 10
				Static									
9	4.48601	5351.96	15.4332	Fill Static	275	28	522.538	832.733	1048.94	0	1048.94	1193.2	1193.2
10	4.48601	5876.15	15.8938	Fill Static	275	28	556.767	887.28	1151.53	0	1151.53	1310.07	1310.07
11	4.48601	6377.56	16.3556	Fill Static	275	28	589.261	939.064	1248.92	0	1248.92	1421.85	1421.85
12	4.48601	6856.05	16.8184	Fill Static	275	28	620.023	988.087	1341.12	0	1341.12	1528.53	1528.53
13	4.48601	7311.45	17.2824	Fill Static	275	28	649.052	1034.35	1428.13	0	1428.13	1630.07	1630.07
14	4.48601	7739.06	17.7475	Fill Static	275	28	676.045	1077.37	1509.03	0	1509.03	1725.4	1725.4
15	4.48601	8128.48	18.2139	Fill Static	275	28	700.32	1116.05	1581.79	0	1581.79	1812.23	1812.23
16	4.48601	8493.14	18.6815	Fill Static	275	28	722.793	1151.86	1649.14	0	1649.14	1893.53	1893.53
17	4.48601	8833.97	19.1504	Fill Static	275	28	743.538	1184.92	1711.32	0	1711.32	1969.52	1969.52
18	4.48601	9150.77	19.6206	Fill Static	275	28	762.555	1215.23	1768.32	0	1768.32	2040.16	2040.16
19	4.48601	9443.34	20.0923	Fill Static	275	28	779.843	1242.78	1820.13	0	1820.13	2105.39	2105.39
20	4.48601	9711.45	20.5653	Fill Static	275	28	795.398	1267.57	1866.75	0	1866.75	2165.17	2165.17
21	4.48601	9954.89	21.0398	Fill Static	275	28	809.222	1289.6	1908.18	0	1908.18	2219.46	2219.46
22	4.48601	10173.4	21.5158	Fill Static	275	28	821.301	1308.85	1944.4	0	1944.4	2268.18	2268.18
23	4.48601	10366.8	21.9934	Fill Static	275	28	831.649	1325.34	1975.4	0	1975.4	2311.3	2311.3
24	4.48601	10534.7	22.4726	Fill Static	275	28	840.252	1339.05	2001.18	0	2001.18	2348.75	2348.75
25	4.48601	10677	22.9535	Fill Static	275	28	847.104	1349.97	2021.72	0	2021.72	2380.48	2380.48
26	4.48601	10793.4	23.4361	Fill Static	275	28	852.205	1358.1	2037.01	0	2037.01	2406.43	2406.43
27	4.48601	10883.5	23.9204	Fill Static	275	28	855.55	1363.43	2047.04	0	2047.04	2426.54	2426.54
28	4.48601	10947.1	24.4066	Fill Static	275	28	857.131	1365.95	2051.79	0	2051.79	2440.72	2440.72
29	4.48601	10983.8	24.8947	Fill Static	275	28	856.949	1365.66	2051.25	0	2051.25	2448.93	2448.93
30	4.48601	10993.5	25.3847	Fill Static	275	28	854.998	1362.55	2045.39	0	2045.39	2451.09	2451.09
31	4.48601	10975.7	25.8767	Fill Static	275	28	851.264	1356.6	2034.19	0	2034.19	2447.11	2447.11
32	4.48601	10930	26.3707	Fill Static	275	28	845.748	1347.81	2017.66	0	2017.66	2436.95	2436.95
33	4.48601	10856.2	26.8669	Fill Static	275	28	838.438	1336.16	1995.75	0	1995.75	2420.51	2420.51
34	4.48601	10753.9	27.3652	Fill Static	275	28	829.327	1321.64	1968.45	0	1968.45	2397.69	2397.69
35	4.48601	10622.6	27.8659	Fill Static	275	28	818.415	1304.25	1935.73	0	1935.73	2368.44	2368.44
36	4.48601	10462	28.3688	Fill Static	275	28	805.683	1283.96	1897.58	0	1897.58	2332.64	2332.64
37	4.48601	10271.7	28.8741	Fill Static	275	28	791.13	1260.77	1853.96	0	1853.96	2290.22	2290.22
38	4.48601	10051.2	29.3819	Fill Static	275	28	774.745	1234.66	1804.85	0	1804.85	2241.08	2241.08
39	4.48601	9800.14	29.8923	Fill Static	275	28	756.518	1205.61	1750.22	0	1750.22	2185.1	2185.1
40	4.48601	9517.97	30.4052	Fill Static	275	28	736.438	1173.61	1690.04	0	1690.04	2122.2	2122.2

HOFF Property,	Yorba Lind	a : Page 7 of 10

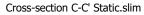
	Construction Inspects	20												_
41	4.48601	9204.21	30.9209	Fill Static	275	28	714.498	1138.65	1624.28	0	1624.28	2052.25	2052.25	
42	4.48601	8858.38	31.4394	Fill Static	275	28	690.684	1100.7	1552.91	0	1552.91	1975.15	1975.15	
43	4.48601	8479.93	31.9608	Fill Static	275	28	664.986	1059.74	1475.89	0	1475.89	1890.78	1890.78	
44	4.48601	8068.31	32.4851	Fill Static	275	28	637.393	1015.77	1393.18	0	1393.18	1799.02	1799.02	
45	4.48601	7622.94	33.0125	Fill Static	275	28	607.892	968.755	1304.76	0	1304.76	1699.72	1699.72	
46	4.48601	7143.21	33.5431	Fill Static	275	28	576.471	918.681	1210.59	0	1210.59	1592.77	1592.77	
47	4.48601	6347.22	34.077	Fill Static	275	28	526.044	838.32	1059.45	0	1059.45	1415.3	1415.3	
48	4.48601	4625.13	34.6142	Fill Static	275	28	419.956	669.254	741.483	0	741.483	1031.35	1031.35	
49	4.48601	2801.06	35.155	Fill Static	275	28	308.489	491.617	407.397	0	407.397	624.649	624.649	
50	4.48601	939.927	35.6994	Fill Static	275	28	195.623	311.751	69.119	0	69.119	209.685	209.685	

Interslice Data

SLIDEINTERPRET 7.038 Environmental Material Treative

Global Minimum Query (bishop simplified) - Safety Factor: 1.61285

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	347.182	866.242	0	[]	0
2	351.668	867.177	786.595	0	0
3	356.154	868.15	1644.65	0	0
4	360.64	869.16	2560.91	0	0
5	365.126	870.208	3522.66	0	0
6	369.612	871.293	4517.65	0	0
7	374.099	872.416	5534.18	0	0
8	378.585	873.578	6561.02	0	0
9	383.071	874.777	7587.47	0	0
10	387.557	876.016	8603.34	0	0
10	392.043	877.293	9598.94	0	0
12	396.529	878.61	10565.1	0	0
12	401.015	879.966	11493.2	0	0
13	405.501	881.361	12375	0	0
14	409.987	881.301	13203	0	0
15	409.987	884.273	13203	0	0
10	414.473	885.79	14670.2	0	0
17	418.959	887.348	14070.2	0	0
18	423.445	888.947	15297.5	0	0
20	427.951	890.588	15840.9	0	0
			16694.6		_
21 22	436.903	892.271 893.997	16985.5	0	0
	441.389			0	0
23 24	445.875	895.765	17183.8	0	0
	450.361	897.577	17287.2	0	-
25	454.847	899.433 901.333	17294.3	0	0
26	459.333		17203.9	0	0
27	463.819	903.277	17015.7	0	0
28 29	468.305 472.791	905.267 907.303	16730.1 16348.1	0 0	0 0
30	472.791	909.385	15871.2	0	0
30	477.277	909.385	15301.8	0	0
31		913.689	14643.2	0	_
32	486.249 490.735		14643.2	0	0
34	490.733	915.913 918.186	13073.9	0	0
34	495.221	920.508	12173.4	0	0
36	499.707 504.193	922.88	12173.4	0	0
30	504.195	922.88	10171.5	0	0
37	508.679	925.302	9085.35	0	0
39	513.105	930.302	7953.81	0	0
40	522.137	932.88	6786.75	0	0
40	526.623	935.513	5594.99	0	0
41	520.025	938.2	4390.37	0	0
42	535.595	940.942	43 <i>9</i> 0.37 3185.77	0	0
43	540.081	943.741	1995.24	0	0
45	544.567	946.598	833.949	0	0
45	549.053	949.512	-281.693	0	0
40	553.539	952.486	-1334	0	0
48	558.025	955.521	-2224.14	0	0
48	562.511	958.617	-2664.23	0	0
50	566.997	961.777	-2588.26	0	0
51	571.483	965	-2588.20	0	0
51	571.403	305	0	0	U


Global Minimum Query (janbu simplified) - Safety Factor: 1.59363

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	347.182	866.242	0	0	0
2	351.668	867.177	795.936	0	0
3	356.154	868.15	1665.76	0	0
4	360.64	869.16	2596.13	0	0
5	365.126	870.208	3574.26	0	0
6	369.612	871.293	4587.81	0	0
7	374.099	872.416	5625	0	0
8	378.585	873.578	6674.53	0	0
9	383.071	874.777	7725.61	0	0
10	387.557	876.016	8767.97	0	0
11	392.043	877.293	9791.86	0	0
12	396.529	878.61	10788	0	0
13	401.015	879.966	11747.7	0	0
14	405.501	881.361	12662.8	0	0
15	409.987	882.797	13525.4	0	0
16	414.473	884.273	14328.5	0	0
17	418.959	885.79	15065.8	0	0
18	423.445	887.348	15731.6	0	0
19	427.931	888.947	16320.5	0	0
20	432.417	890.588	16828.1	0	0
21	436.903	892.271	17250.3	0	0
22	441.389	893.997	17583.6	0	0
23	445.875	895.765	17825	0	0
24	450.361	897.577	17972.4	0	0
25	454.847	899.433	18023.9	0	0
26	459.333	901.333	17978.6	0	0
27	463.819	903.277	17836	0	0
28	468.305	905.267	17596.3	0	0
29	472.791	907.303	17260.5	0	0
30	477.277	909.385	16830	0	0
31	481.763	911.513	16307.3	0	0
32	486.249	913.689	15695.2	0	0
33	490.735	915.913	14997.6	0	0
34	495.221	918.186	14218.9	0	0
35	499.707	920.508	13364.5	0	0
36	504.193	922.88	12440.5	0	0
37	508.679	925.302	11454	0	0
38	513.165	927.776	10412.7	0	0
39	517.651	930.302	9325.35	0	0
40	522.137	932.88	8201.8	0	0
41	526.623	935.513	7052.69	0	0
42	531.109	938.2	5889.74	0	0
43	535.595	940.942	4725.75	0	0
44	540.081	943.741	3574.61	0	0
45	544.567	946.598	2451.38	0	0
46	549.053	949.512	1372.34	0	0
47	553.539	952.486	355.044	0	0
48	558.025	955.521	-502.862	0	0
49	562.511	958.617	-916.979	0	0
50	566.997	961.777	-821.754	0	0
51	571.483	965	0	0	0

List Of Coordinates

External Boundary

Х	Y
0	700
236	700
1186	700
1186	1040
1175	1038
1112	1005
1062	1005
1040	1015
914	1005
833	988
814	986
768	965
682	965
555	965
407	895
303	845
288	839
255	825
220	816
188	816
95	816
39	794
0	790

Material Boundary

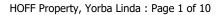
х	Y	
39	794	
44	789	
67	789	
73	793	
93	796	
111	797	
150	806	
178	810	
236	810	
256	819	
280	825	
313	839	
364	860	
404	879	
449	897	
500	917	
570	937	
657	957	
669	960	
763	960	
768	965	

Material Boundary

Х	Y
236	700
236	810

< 0.35

Phi (deg)	Water Surface	Ru	Generalized Anisotropic
30	None	0	
18	None	0	
47	None	0	
	None	0	Seismic Bedding 33-54
	None	0	Seismic Bedding 10-30


1800

2000

2200

TGR Geotechnical, Inc.

Cross-section C-C' Seismic.slim

Slide Analysis Information HOFF Property, Yorba Linda

Project Summary

File Name:	Cross-section C-C' Seismic
Slide Modeler Version:	7.038
Project Title:	HOFF Property, Yorba Linda
Analysis:	Cross-section C-C' Seismic
Company:	TGR Geotechnical, Inc.
Date Created:	4/15/20

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:	10116
Random Number Generation Method:	Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.35

Material Properties

Property	Fill Seismic	Tpl- Toe Seismic	Tpl Seismic
Color			
Strength Type	Mohr-Coulomb	Generalized Anisotropic	Generalized Anisotropic
Unit Weight [lbs/ft3]	130	130	130
Cohesion [psf]	460		
Friction Angle [deg]	30		
Water Surface	None	None	None
Ru Value	0	0	0

Generalized Anisotropic Functions

Name: Seismic Bedding 33-54

Angle From	•	Material
33	-90	Tpl Cross-Bedding Seismic
54	33	Tpl Along Bedding
90	54	Tpl Cross-Bedding Seismic

Name: Seismic Bedding 10-30

Angle From	Angle To	Material
-30	-90	Tpl Cross-Bedding Seismic
-10	-30	Tpl Along Bedding
90	-10	Tpl Cross-Bedding Seismic

Global Minimums

Method: bishop simplified

FS	1.022610
Center:	142.164, 1700.801
Radius:	860.104
Left Slip Surface Endpoint:	344.011, 864.717
Right Slip Surface Endpoint:	587.558, 965.000
Resisting Moment:	2.80396e+008 lb-ft
Driving Moment:	2.74198e+008 lb-ft
Total Slice Area:	3451.05 ft2
Surface Horizontal Width:	243.548 ft
Surface Average Height:	14.1699 ft

Method: janbu simplified

FS	1.008500
Center:	231.114, 1433.951
Radius:	579.453
Left Slip Surface Endpoint:	347.182, 866.242
Right Slip Surface Endpoint:	571.483, 965.000
Resisting Horizontal Force:	261244 lb
Driving Horizontal Force:	259042 lb
Total Slice Area:	2993.65 ft2
Surface Horizontal Width:	224.3 ft
Surface Average Height:	13.3466 ft

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4642 Number of Invalid Surfaces: 209

Error Codes:

Error Code -103 reported for 89 surfaces Error Code -106 reported for 43 surfaces Error Code -1000 reported for 77 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4640 Number of Invalid Surfaces: 211

Error Codes:

Error Code -103 reported for 89 surfaces Error Code -106 reported for 43 surfaces Error Code -108 reported for 2 surfaces Error Code -1000 reported for 77 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.
 -106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.02261

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.87095	364.365	13.7396	Fill Seismic	460	30	432.184	441.956	-31.253	0	-31.253	74.4187	74.4187
2	4.87095	1083.55	14.0739	Fill Seismic	460	30	503.847	515.239	95.6772	0	95.6772	221.991	221.991
3	4.87095	1783.59	14.4086	Fill Seismic	460	30	573.127	586.085	218.385	0	218.385	365.631	365.631
4	4.87095	2464.4	14.7439	Fill Seismic	460	30	640.033	654.504	336.891	0	336.891	505.325	505.325
5	4.87095	3125.9	15.0797	Fill Seismic	460	30	704.577	720.507	451.211	0	451.211	641.053	641.053
6	4.87095	3768	15.416	Fill Seismic	460	30	766.766	784.103	561.362	0	561.362	772.796	772.796
7	4.87095	4390.6	15.7529	Fill Seismic	460	30	826.611	845.301	667.361	0	667.361	900.535	900.535
8	4.87095	4993.6	16.0903	Fill Seismic	460	30	884.122	904.112	769.225	0	769.225	1024.25	1024.25
9	4.87095	5576.92	16.4283	Fill Seismic	460	30	939.306	960.544	866.968	0	866.968	1143.92	1143.92
10	4.87095	6140.43	16.7669	Fill Seismic	460	30	992.173	1014.61	960.606	0	960.606	1259.54	1259.54
11	4.87095	6684.05	17.1061	Fill Seismic	460	30	1042.73	1066.3	1050.15	0	1050.15	1371.06	1371.06
12	4.87095	7207.66	17.4459	Fill Seismic	460	30	1090.98	1115.65	1135.62	0	1135.62	1478.47	1478.47
13	4.87095	7711.1	17.7863	Fill Seismic	460	30	1136.94	1162.65	1217.02	0	1217.02	1581.75	1581.75
14	4.87095	8180.74	18.1274	Fill Seismic	460	30	1179.28	1205.95	1292.02	0	1292.02	1678.09	1678.09
15	4.87095	8619.6	18.4692	Fill Seismic	460	30	1218.34	1245.88	1361.19	0	1361.19	1768.11	1768.11
16	4.87095	9037.99	18.8116	Fill Seismic	460	30	1255.13	1283.51	1426.36	0	1426.36	1853.93	1853.93
17	4.87095	9435.78	19.1548	Fill Seismic	460	30	1289.68	1318.84	1487.55	0	1487.55	1935.52	1935.52
18	4.87095	9812.86	19.4986	Fill Seismic	460	30	1321.98	1351.87	1544.76	0	1544.76	2012.86	2012.86
19	4.87095	10169.1	19.8432	Fill Seismic	460	30	1352.04	1382.61	1598	0	1598	2085.92	2085.92
20	4.87095	10504.3	20.1886	Fill Seismic	460	30	1379.87	1411.06	1647.29	0	1647.29	2154.67	2154.67
21	4.87095	10818.4	20.5347	Fill Seismic	460	30	1405.47	1437.24	1692.63	0	1692.63	2219.09	2219.09
22	4.87095	11111.2	20.8816	Fill Seismic	460	30	1428.84	1461.15	1734.04	0	1734.04	2279.14	2279.14
23	4.87095	11382.6	21.2293	Fill Seismic	460	30	1450.01	1482.79	1771.52	0	1771.52	2334.79	2334.79
24	4.87095	11632.5	21.5778	Fill Seismic	460	30	1468.95	1502.16	1805.08	0	1805.08	2386.02	2386.02
25	4.87095	11860.6	21.9271	Fill Seismic	460	30	1485.69	1519.28	1834.73	0	1834.73	2432.79	2432.79
26	4.87095	12066.8	22.2774	Fill Seismic	460	30	1500.22	1534.14	1860.47	0	1860.47	2475.06	2475.06
27	4.87095	12251	22.6285	Fill Seismic	460	30	1512.56	1546.76	1882.32	0	1882.32	2512.82	2512.82
28	4.87095	12413	22.9804	Fill Seismic	460	30	1522.7	1557.13	1900.28	0	1900.28	2546.02	2546.02
29	4.87095	12552.6	23.3334	Fill	460	30	1530.65	1565.26	1914.36	0	1914.36	2574.62	2574.62

Seismic Fill Seismic460301536.411571.151924.5701924.57259431 4.87095 12763.9 24.042 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1539.99 1574.81 1930.9101930.91261432 4.87095 12835.3 24.3978 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1541.39 1576.24 1933.3901933.39263333 4.87095 12883.5 24.7546 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1540.61 1575.44 1931.9901931.99264434 4.87095 12908.4 25.1125 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1537.64 1572.41 1926.7501926.75264435 4.87095 12909.7 25.4714 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1532.51 1567.16 1917.6601917.66264436 4.87095 12887.4 25.8313 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1532.51 1567.16 1917.6601917.66264436 4.87095 12887.4 25.8313 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1525.21 1559.69 1904.7301904.73264437 4.87095 12841 26.1924 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1525.21 1559.69 1904.7301904.73264438 4.87095 12841 26.1924 $\begin{array}{c} Fill\\ Seismic \end{array}$ 46030 1515.7	1
30 4.87095 12669.6 23.687.2 Seismic 460 30 1536.41 1571.13 1924.57 0 1924.57 259.4 31 4.87095 12763.9 24.042 Fill Seismic 460 30 1539.99 1574.81 1930.91 0 1930.91 261 32 4.87095 12835.3 24.3978 Fill Seismic 460 30 1541.39 1576.24 1933.39 0 1933.39 263.3 33 4.87095 12883.5 24.7546 Fill Seismic 460 30 1540.61 1575.44 1931.99 0 1931.99 264.3 34 4.87095 12908.4 25.1125 Fill Seismic 460 30 1537.64 1572.41 1926.75 0 1926.75 264 35 4.87095 12909.7 25.4714 Fill Seismic 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill Seismic 460 30 1525.21 1559.69 <t< td=""><td></td></t<>	
31 4.87095 12763.9 24.042 Seismic 460 30 1539.99 1574.81 1930.91 0 1930.91 261 32 4.87095 12835.3 24.3978 Fill 460 30 1541.39 1576.24 1933.39 0 1933.39 263. 33 4.87095 12883.5 24.7546 Fill 460 30 1540.61 1575.44 1931.99 0 1931.99 264. 34 4.87095 12908.4 25.1125 Fill 460 30 1537.64 1572.41 1926.75 0 1926.75 264 35 4.87095 12909.7 25.4714 Fill 5eismic 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill 460 30 1532.51 1567.16 1917.66 0 1904.73 264. 36 4.87095 12887.4 25.8313 Fill 460 30 1525.21 1559.69 1904.73 0 1904.73 <td>.59 2598.59</td>	.59 2598.59
32 4.87095 12835.3 24.3978 460 30 1541.39 1576.24 1933.39 0 1933.39 263 33 4.87095 12883.5 24.7546 Fill Seismic 460 30 1540.61 1575.44 1931.99 0 1931.99 264 34 4.87095 12908.4 25.1125 Fill Seismic 460 30 1537.64 1572.41 1926.75 0 1926.75 264 35 4.87095 12909.7 25.4714 Fill Seismic 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill Seismic 460 30 1525.21 1559.69 1904.73 0 1904.73 264 36 4.87095 12841 26.1924 Fill Seismic 460 30 1525.21 1559.69 1904.73 0 1904.73 264 37 4.87095 12841 26.1924 Fill Seismic 460 30 1515.74 1550.01 1887.94 0	.91 2617.91
33 4.87095 12883.5 24.7546 Seismic 460 30 1540.61 1575.44 1931.99 0 1931.99 264. 34 4.87095 12908.4 25.1125 Fill 460 30 1537.64 1572.41 1926.75 0 1926.75 264 35 4.87095 12909.7 25.4714 Fill 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill 460 30 1532.51 1567.16 1917.66 0 1904.73 264 36 4.87095 12887.4 25.8313 Fill 460 30 1525.21 1559.69 1904.73 0 1904.73 264 37 4.87095 12841 26.1924 Fill 460 30 1515.74 1550.01 1887.94 0 1887.94 263	.53 2632.53
34 4.87095 12908.4 25.1125 Seismic 460 30 1537.64 1572.41 1926.75 0 1926.75 264 35 4.87095 12909.7 25.4714 Fill 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill 460 30 1525.21 1559.69 1904.73 0 1904.73 264 37 4.87095 12841 26.1924 Fill 460 30 1515.74 1550.01 1887.94 0 1887.94 263	.37 2642.37
35 4.87095 12909.7 25.4714 Seismic 460 30 1532.51 1567.16 1917.66 0 1917.66 264 36 4.87095 12887.4 25.8313 Fill 460 30 1525.21 1559.69 1904.73 0 1904.73 264 37 4.87095 12841 26 1924 Fill 460 30 1515 74 1550.01 1887 94 0 1887 94 263	.44 2647.44
36 4.87095 12887.4 25.8313 460 30 1525.21 1559.69 1904.73 0 1904.73 264. Seismic Fill 460 30 1515.74 1550.01 1887.94 0 1887.94 263	.69 2647.69
3/ 4 8/195 17841 761974 460 30 151574 155001 188794 0 188794 763	.07 2643.07
	.53 2633.53
38 4.87095 12770.5 26.5545 Fill 460 30 1504.09 1538.1 1867.32 0 1867.32 2619 Seismic	.02 2619.02
39 4.87095 12675.6 26.9179 Fill 460 30 1490.29 1523.99 1842.88 0 1842.88 259 Seismic	.53 2599.53
40 4.87095 12556 27.2824 Fill 460 30 1474.32 1507.65 1814.59 0 1814.59 257 Seismic	.97 2574.97
41 4.87095 12411.6 27.6481 Fill 460 30 1456.19 1489.11 1782.47 0 1782.47 254. Seismic	.31 2545.31
Fill 42 4.87095 12242 28.015 Fill 460 30 1435.89 1468.36 1746.53 0 1746.53 2514 Seismic	.49 2510.49
43 4.87095 12047.1 28.3832 Fill 460 30 1413.44 1445.4 1706.76 0 1706.76 2470 Seismic	.47 2470.47
44 4.87095 11485 28.7526 Fill 460 30 1358.64 1389.36 1609.69 0 1609.69 235. Seismic	.14 2355.14
45 4.87095 9852.41 29.1234 Fill 460 30 1209.86 1237.22 1346.18 0 1346.18 2020 Seismic	.23 2020.23
46 4.87095 8120.83 29.4955 Fill 460 30 1053.44 1077.26 1069.13 0 1069.13 166. Seismic	.02 1665.02
47 4.87095 6362.76 29.869 Fill 460 30 895.809 916.063 789.923 0 789.923 130. Seismic	.39 1304.39
48 4.87095 4577.9 30.2439 Fill 460 30 736.97 753.633 508.588 0 508.588 938. Seismic	938.271
49 4.87095 2765.94 30.6202 Fill 460 30 576.934 589.978 225.128 0 225.128 566. Seismic	501 566.601
50 4.87095 926.575 30.998 Fill 460 30 415.703 425.102 -60.4451 0 -60.4451 189. Seismic	15 189.315

Global Minimum Query (janbu simplified) - Safety Factor: 1.0085

Slice Number	Width [ft]	Weight [Ibs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]	Base Vertical Stress [psf]	Effective Vertical Stress [psf]
1	4.48601	356.054	11.7814	Fill Seismic	460	30	448.047	451.856	-14.1066	0	-14.1066	79.3439	79.3439
2	4.48601	1057.34	12.2349	Fill Seismic	460	30	525.768	530.237	121.655	0	121.655	235.665	235.665
3	4.48601	1736.92	12.6892	Fill Seismic	460	30	600.371	605.474	251.968	0	251.968	387.149	387.149
4	4.48601	2394.7	13.1443	Fill Seismic	460	30	671.876	677.587	376.873	0	376.873	533.771	533.771
5	4.48601	3030.53	13.6003	Fill Seismic	460	30	740.304	746.597	496.401	0	496.401	675.503	675.503
6	4.48601	3644.31	14.0571	Fill Seismic	460	30	805.675	812.523	610.586	0	610.586	812.316	812.316
7	4.48601	4235.9	14.5148	Fill Seismic	460	30	868.005	875.383	719.464	0	719.464	944.185	944.185
8	4.48601	4805.16	14.9735	Fill Seismic	460	30	927.314	935.196	823.063	0	823.063	1071.08	1071.08

	Material Testing Construction Inspectio	n								TIOLLE	Toperty, To		
9	4.48601	5351.96	15.4332	Fill Seismic	460	30	983.617	991.978	921.414	0	921.414	1192.96	1192.96
10	4.48601	5876.15	15.8938	Fill Seismic	460	30	1036.93	1045.75	1014.54	0	1014.54	1309.8	1309.8
11	4.48601	6377.56	16.3556	Fill Seismic	460	30	1087.28	1096.52	1102.48	0	1102.48	1421.57	1421.57
12	4.48601	6856.05	16.8184	Fill Seismic	460	30	1134.66	1144.3	1185.25	0	1185.25	1528.22	1528.22
13	4.48601	7311.45	17.2824	Fill Seismic	460	30	1179.1	1189.12	1262.88	0	1262.88	1629.73	1629.73
14	4.48601	7739.06	17.7475	Fill Seismic	460	30	1220.13	1230.5	1334.54	0	1334.54	1725.05	1725.05
15	4.48601	8128.48	18.2139	Fill Seismic	460	30	1256.65	1267.34	1398.34	0	1398.34	1811.85	1811.85
16	4.48601	8493.14	18.6815	Fill Seismic	460	30	1290.17	1301.14	1456.9	0	1456.9	1893.13	1893.13
17	4.48601	8833.97	19.1504	Fill Seismic	460	30	1320.82	1332.04	1510.43	0	1510.43	1969.1	1969.1
18	4.48601	9150.77	19.6206	Fill Seismic	460	30	1348.6	1360.06	1558.95	0	1558.95	2039.71	2039.71
19	4.48601	9443.34	20.0923	Fill Seismic	460	30	1373.53	1385.2	1602.5	0	1602.5	2104.93	2104.93
20	4.48601	9711.45	20.5653	Fill Seismic	460	30	1395.61	1407.47	1641.07	0	1641.07	2164.69	2164.69
21	4.48601	9954.89	21.0398	Fill Seismic	460	30	1414.86	1426.89	1674.7	0	1674.7	2218.95	2218.95
22	4.48601	10173.4	21.5158	Fill Seismic	460	30	1431.29	1443.46	1703.39	0	1703.39	2267.65	2267.65
23	4.48601	10366.8	21.9934	Fill Seismic	460	30	1444.9	1457.18	1727.17	0	1727.17	2310.75	2310.75
24	4.48601	10534.7	22.4726	Fill Seismic	460	30	1455.7	1468.07	1746.03	0	1746.03	2348.18	2348.18
25	4.48601	10677	22.9535	Fill Seismic	460	30	1463.7	1476.14	1760	0	1760	2379.9	2379.9
26	4.48601	10793.4	23.4361	Fill Seismic	460	30	1468.89	1481.38	1769.08	0	1769.08	2405.83	2405.83
27	4.48601	10883.5	23.9204	Fill Seismic	460	30	1471.3	1483.81	1773.29	0	1773.29	2425.91	2425.91
28	4.48601	10947.1	24.4066	Fill Seismic	460	30	1470.93	1483.43	1772.64	0	1772.64	2440.08	2440.08
29	4.48601	10983.8	24.8947	Fill Seismic	460	30	1467.77	1480.25	1767.13	0	1767.13	2448.28	2448.28
30	4.48601	10993.5	25.3847	Fill Seismic	460	30	1461.84	1474.27	1756.77	0	1756.77	2450.42	2450.42
31	4.48601	10975.7	25.8767	Fill Seismic	460	30	1453.15	1465.5	1741.57	0	1741.57	2446.45	2446.45
32	4.48601	10930	26.3707	Fill Seismic	460	30	1441.67	1453.93	1721.53	0	1721.53	2436.27	2436.27
33	4.48601	10856.2	26.8669	Fill Seismic	460	30	1427.44	1439.57	1696.67	0	1696.67	2419.81	2419.81
34	4.48601	10753.9	27.3652	Fill Seismic	460	30	1410.44	1422.43	1666.98	0	1666.98	2397	2397
35	4.48601	10622.6	27.8659	Fill Seismic	460	30	1390.69	1402.51	1632.47	0	1632.47	2367.74	2367.74
36	4.48601	10462	28.3688	Fill Seismic	460	30	1368.17	1379.8	1593.14	0	1593.14	2331.94	2331.94
37	4.48601	10271.7	28.8741	Fill Seismic	460	30	1342.9	1354.31	1548.99	0	1548.99	2289.52	2289.52
38	4.48601	10051.2	29.3819	Fill Seismic	460	30	1314.87	1326.04	1500.03	0	1500.03	2240.37	2240.37
39	4.48601	9800.14	29.8923	Fill Seismic	460	30	1284.08	1294.99	1446.25	0	1446.25	2184.4	2184.4
40	4.48601	9517.97	30.4052	Fill Seismic	460	30	1250.54	1261.17	1387.66	0	1387.66	2121.5	2121.5
41	4.48601	9204.21	30.9209	Fill	460	30	1214.24	1224.56	1324.25	0	1324.25	2051.56	2051.56

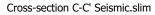
IG R	INTERPRET 7.038 Environmental Hydrogeology Material Testing
N	Hydrogeology Material Testing Construction Inspection

				Seismic									
42	4.48601	8858.38	31.4394	Fill Seismic	460	30	1175.18	1185.17	1256.03	0	1256.03	1974.47	1974.47
43	4.48601	8479.93	31.9608	Fill Seismic	460	30	1133.36	1143	1182.98	0	1182.98	1890.11	1890.11
44	4.48601	8068.31	32.4851	Fill Seismic	460	30	1088.79	1098.04	1105.12	0	1105.12	1798.36	1798.36
45	4.48601	7622.94	33.0125	Fill Seismic	460	30	1041.45	1050.3	1022.43	0	1022.43	1699.08	1699.08
46	4.48601	7143.21	33.5431	Fill Seismic	460	30	991.348	999.774	934.918	0	934.918	1592.15	1592.15
47	4.48601	6347.22	34.077	Fill Seismic	460	30	912.607	920.364	797.374	0	797.374	1414.72	1414.72
48	4.48601	4625.13	34.6142	Fill Seismic	460	30	749.945	756.32	513.241	0	513.241	1030.87	1030.87
49	4.48601	2801.06	35.155	Fill Seismic	460	30	579.771	584.699	215.985	0	215.985	624.287	624.287
50	4.48601	939.927	35.6994	Fill Seismic	460	30	408.135	411.604	-83.8249	0	-83.8249	209.443	209.443

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.02261

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	344.011	864.717	0	0	0
2	348.882	865.908	2022.51	0	0
3	353.753	867.129	3989.59	0	0
4	358.624	868.38	5893.88	0	0
5	363.495	869.662	7728.42	0	0
6	368.365	870.975	9486.63	0	0
7	373.236	872.318	11162.3	0	0
8	378.107	873.692	12749.7	0	0
9	382.978	875.097	14243.4	0	0
10	387.849	876.533	15638.3	0	0
11	392.72	878.001	16929.8	0	0
12	397.591	879.5	18113.7	0	0
13	402.462	881.03	19186.2	0	0
13	407.333	882.593	20143.7	0	0
15	412.204	884.188	20985.3	0	0
16	417.075	885.814	21710	0	0
10	421.946	887.474	22315.9	0	0
18	426.817	889.166	22801.4	0	0
10	431.688	890.89	23165.3	0	0
20	436.559	892.648	23406.8	0	0
20	441.43	894.439	23525.6	0	0
21	446.301	896.264	23523.0	0	0
22	451.172	898.122	23395.8	0	0
23	456.043	900.014	23148.5	0	0
24	460.914	901.941	22781.1	0	0
25	465.784	903.901	22295.5	0	0
20	470.655	905.897	21693.7	0	0
27	475.526	907.927	20978.4	0	0
20	480.397	909.993	20152.5	0	0
30	485.268	912.094	19219.7	0	0
31	490.139	914.231	18183.8	0	0
32	495.01	916.404	17049.1	0	0
33	499.881	918.613	15820.7	0	0
33	504.752	920.859	14503.7	0	0
35	509.623	923.142	13104.1	0	0
35	514.494	925.463	11628	0	0
30	519.365	927.821	10082.4	0	0
38	524.236	930.217	8474.48	0	0
39	529.107	932.651	6812.12	0	0
40	533.978	935.124	5103.64	0	0
41	538.849	937.636	3357.93	0	0
42	543.72	940.188	1584.43	0	0
43	548.591	942.78	-206.882	0	0
44	553.462	945.411	-2005.44	0	0
45	558.333	948.084	-3685.27	0	0
46	563.204	950.798	-4872.16	0	0
47	568.074	953.553	-5510.31	0	0
48	572.945	956.351	-5567.68	0	0
49	577.816	959.19	-5011.49	0	0
50	582.687	962.073	-3808.16	0	0
51	587.558	965	0	0	0


Global Minimum Query (janbu simplified) - Safety Factor: 1.0085

	coordinate [ft]	coordinate - Bottom [ft]	Normal Force [lbs]	Shear Force [lbs]	Force Angle [degrees]
1	347.182	866.242	0	0	0
2	351.668	867.177	1899.08	0	0
3	356.154	868.15	3769.92	0	0
4	360.64	869.16	5601.51	0	0
5	365.126	870.208	7383.44	0	0
6	369.612	871.293	9105.94	0	0
7	374.099	872.416	10759.9	0	0
8	378.585	873.578	12336.7	0	0
9	383.071	874.777	13828.4	0	0
10	387.557	876.016	15227.9	0	0
11	392.043	877.293	16528.3	0	0
12	396.529	878.61	17723.6	0	0
13	401.015	879.966	18808.3	0	0
14	405.501	881.361	19777.6	0	0
15	409.987	882.797	20627.8	0	0
16	414.473	884.273	21357.6	0	0
17	418.959	885.79	21964.5	0	0
18	423.445	887.348	22446.5	0	0
19	427.931	888.947	22802.1	0	0
20	432.417	890.588	23030.7	0	0
21	436.903	892.271	23132.1	0	0
22	441.389	893.997	23106.9	0	0
23	445.875	895.765	22956.2	0	0
24	450.361	897.577	22682.1	0	0
25	454.847	899.433	22287	0	0
26	459.333	901.333	21774.2	0	0
27	463.819	903.277	21147.6	0	0
28	468.305	905.267	20411.9	0	0
29	472.791	907.303	19572.6	0	0
30	477.277	909.385	18635.6	0	0
31	481.763	911.513	17608.1	0	0
32	486.249	913.689	16497.5	0	0
33	490.735	915.913	15312.4	0	0
34	495.221	918.186	14062.1	0	0
35	499.707	920.508	12756.8	0	0
36	504.193	922.88	11407.3	0	0
37	508.679	925.302	10025.7	0	0
38	513.165	927.776	8624.68	0	0
39	517.651	930.302	7218.01	0	0
40	522.137	932.88	5820.4	0	0
41	526.623	935.513	4447.6	0	0
42	531.109	938.2	3116.39	0	0
43	535.595	940.942	1844.61	0	0
44	540.081	943.741	651.268	0	0
45	544.567	946.598	-443.493	0	0
46	549.053	949.512	-1418.3	0	0
47	553.539	952.486	-2250.51	0	0
48	558.025	955.521	-2796.68	0	0
49	562.511	958.617	-2639.44	0	0
50	566.997	961.777	-1700.59	0	0
50	571.483	965	0	0	0

List Of Coordinates

External Boundary

Х	Y
0	700
236	700
1186	700
1186	1040
1175	1038
1112	1005
1062	1005
1040	1015
914	1005
833	988
814	986
768	965
682	965
555	965
407	895
303	845
288	839
255	825
220	816
188	816
95	816
39	794
0	790

Material Boundary

х	Y	
39	794	
44	789	
67	789	
73	793	
93	796	
111	797	
150	806	
178	810	
236	810	
256	819	
280	825	
313	839	
364	860	
404	879	
449	897	
500	917	
570	937	
657	957	
669	960	
763	960	
768	965	

Material Boundary

Х	Y		
236	700		
236	810		

20-7009

APPENDIX E EARTHWORK AND GRADING GUIDELINES

TGR GEOTECHNICAL DBE & 8(a) firm 3037 S. HARBOR BLVD SANTA ANA, CA 92704 P 714.641.7189 F 714.641.7190 www.tgrgeotech.com

STANDARD GRADING SPECIFICATIONS

These specifications present the usual and minimum requirements for grading operations performed under the observation and testing of TGR Geotechnical, Inc.

No deviation from these specifications will be allowed, except where specifically superseded in the Preliminary Geotechnical Investigation report, or in other written communication signed by the Soils Engineer or Engineering Geologist.

1.0 <u>GENERAL</u>

- The Soils Engineer and Engineering Geologist are the Owner's or Builder's representatives on the project. For the purpose of these specifications, observation and testing by the Soils Engineer includes that observation and testing performed by any person or persons employed by, and responsible to, the licensed Geotechnical Engineer or Geologist signing the grading report.
- All clearing, site preparation or earthwork performed on the project shall be conducted by the Contractor under the observation of the Geotechnical Engineer.
- It is the Contractor's responsibility to prepare the ground surface to receive the fills to the satisfaction of the Geotechnical Engineer and to place, spread, mix, water and compact the fill in accordance with the specifications of the Geotechnical Engineer. The Contractor shall also remove all material considered unsatisfactory by the Geotechnical Engineer.
- It is also the Contractor's responsibility to have suitable and sufficient compaction equipment on the job site to handle the amount of fill being placed. If necessary, excavation equipment will be shut down to permit completion of Compaction. Sufficient watering apparatus will also be provided by the Contractor, with due consideration for the fill material, rate of placement and time of year.
- A final report will be issued by the Geotechnical Engineer and Engineering Geologist attesting to the Contractor's conformance with these specifications.

2.0 SITE PREPARATION

- All vegetation and deleterious material such as rubbish shall be disposed of offsite. The removal must be concluded prior to placing fill.
- The Civil Engineer shall locate all houses, sheds, sewage disposal systems, large trees or structures on the site, or on the grading plan to the best of his knowledge prior to preparing the ground surface.
- Soil, alluvium or rock materials determined by the Geotechnical Engineer as being unsuitable for placement in compacted fills shall be removed and wasted from the site. Any material incorporated as part of a compacted fill must be approved by the Geotechnical Engineer.
- After the ground surface to receive fill has been cleared, it shall be scarified, disced or bladed by the Contractor until it is uniform and free from ruts, hollows, hummocks or other uneven features which may prevent uniform compaction.

The scarified ground surface shall then be brought to optimum moisture content, mixed as required, and compacted as specified. If the scarified zone is greater than twelve inches in depth, the excess shall be removed and placed in lifts restricted to six inches. Prior to placing fill, the ground surface to receive fill shall be inspected, tested and approved by the Geotechnical Engineer.

• Any underground structures such as cesspools, cisterns, mining shafts, tunnels, septic tanks, wells, pipe lines or others not located prior to grading are to be removed or treated in a manner prescribed by the Geotechnical Engineer.

3.0 COMPACTED FILLS

- Any material imported or excavated on the property may be utilized in the fill, provided each material has been determined to be suitable by the Geotechnical Engineer. Roots, tree branches and other matter missed during clearing shall be removed from the fill as directed by the Geotechnical Engineer.
- Rock fragments less than six inches in diameter may be utilized in the fill, provided:

- They are not placed in concentrated pockets.
- There is a sufficient percentage of fine-grained material to surround the rocks.
- The distribution of the rocks is observed by the Geotechnical Engineer.
- Rocks greater than six inches in diameter shall be taken off-site, or placed in accordance with the recommendations of the Geotechnical Engineer in areas designated as suitable for rock disposal. Details for rock disposal such as location, moisture control, percentage of the rock placed, etc., will be referred to in the "Conclusions and Recommendations" section of the Geotechnical Report, if applicable.

If rocks greater than six inches in diameter were not anticipated in the Preliminary Geotechnical report, rock disposal recommendations may not have been made in the "Conclusions and Recommendations" section. In this case, the Contractor shall notify the Geotechnical Engineer if rocks greater than six inches in diameter are encountered. The Geotechnical Engineer will then prepare a rock disposal recommendation or request that such rocks be taken off-site.

- Material that is spongy, subject to decay, or otherwise considered unsuitable shall not be used in the compacted fill.
- Representative samples of materials to be utilized as compacted fill shall be analyzed in the laboratory by the Geotechnical Engineer to determine their physical properties. If any material other than that previously tested is encountered during grading, the appropriate analysis of this material shall be conducted by the Geotechnical Engineer as soon as possible.
- Material used in the compacting process shall be evenly spread, watered or dried, processed and compacted in thin lifts not to exceed six inches in thickness to obtain a uniformly dense layer. The fill shall be placed and compacted on a horizontal plane, unless otherwise approved by the Geotechnical Engineer.

- If the moisture content or relative compaction varies from that required by the Geotechnical Engineer, the Contractor shall rework the fill until it is approved by the Geotechnical Engineer.
- Each layer shall be compacted to 90 percent of the maximum dry density in compliance with the testing method specified by the controlling governmental agency; (in general, ASTM D1557 will be used.)

If compaction to a lesser percentage is authorized by the controlling governmental agency because of a specific land use of expansive soil conditions, the area to receive fill compacted to less than 90 percent shall either be delineated on the grading plan or appropriate reference made to the area in the grading report.

- All fill shall be keyed and benched through all topsoil, colluvium, alluvium or creep material, into sound bedrock or firm material where the slope receiving fill exceeds a ratio of five horizontal to one vertical, in accordance with the recommendations of the Geotechnical Engineer.
- The key for side hill fills shall be a minimum of 15 feet within bedrock or firm materials, unless otherwise specified in the Preliminary report. (See details)
- Drainage terraces and subdrainage devices shall be constructed in compliance with the ordinances of the controlling governmental agency, or with the recommendation of the Geotechnical Engineer and Engineer Geologist.
- The Contractor will be required to obtain a minimum relative compaction of 90 percent out to the finish slope face of fill slopes, buttresses and stabilization fills. This may be achieved by either overbuilding the slope and cutting back to the compacted core, or by direct compaction of the slope face with suitable equipment, or by any other procedure which produces the required compaction.

The Contractor shall prepare a written detailed description of the method or methods he will employ to obtain the required slope compaction. Such documents shall be submitted to the Geotechnical Engineer for review and comments prior to the start of grading.

If a method other than overbuilding and cutting back to the compacted core is to be employed, slope tests will be made by the Geotechnical Engineer during construction of the slopes to determine if the required compaction is being achieved. Where failing tests occur or other field problems arise, the contractor will be notified by the Geotechnical Engineer.

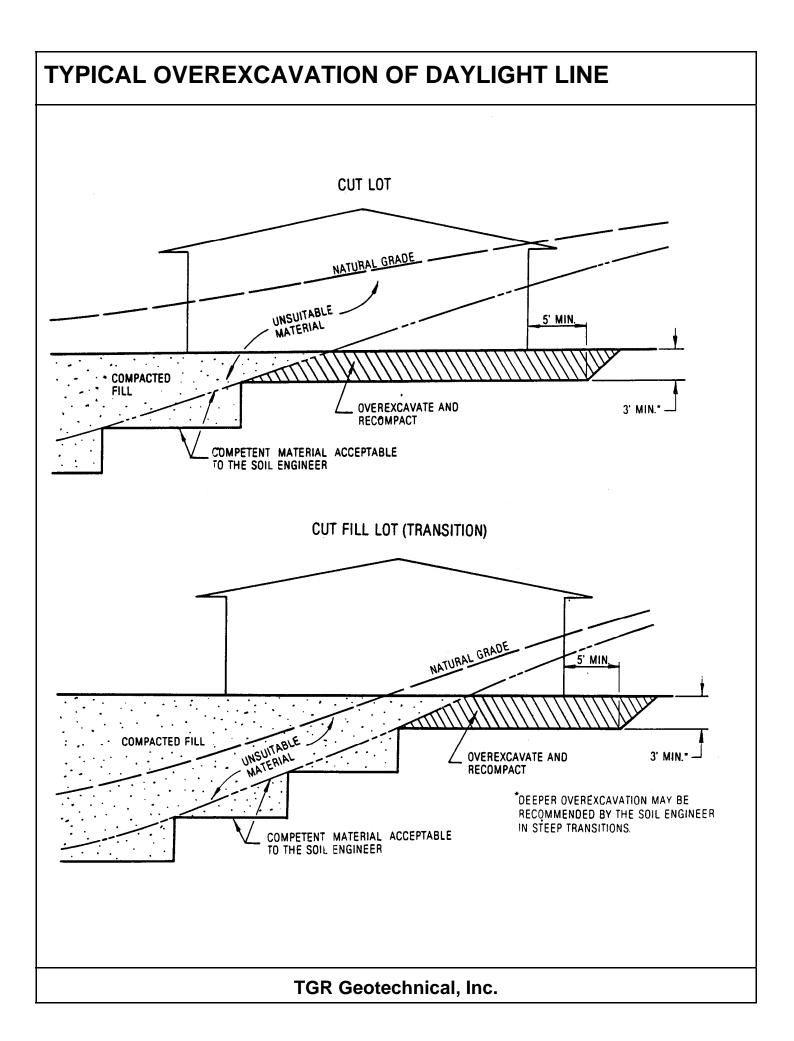
If the method of achieving the required slope compaction selected by the Contractor fails to produce the necessary results, the Contractor shall rework or rebuild such slopes until the required degree of compaction is obtained, at no additional cost to the Owner or Geotechnical Engineer.

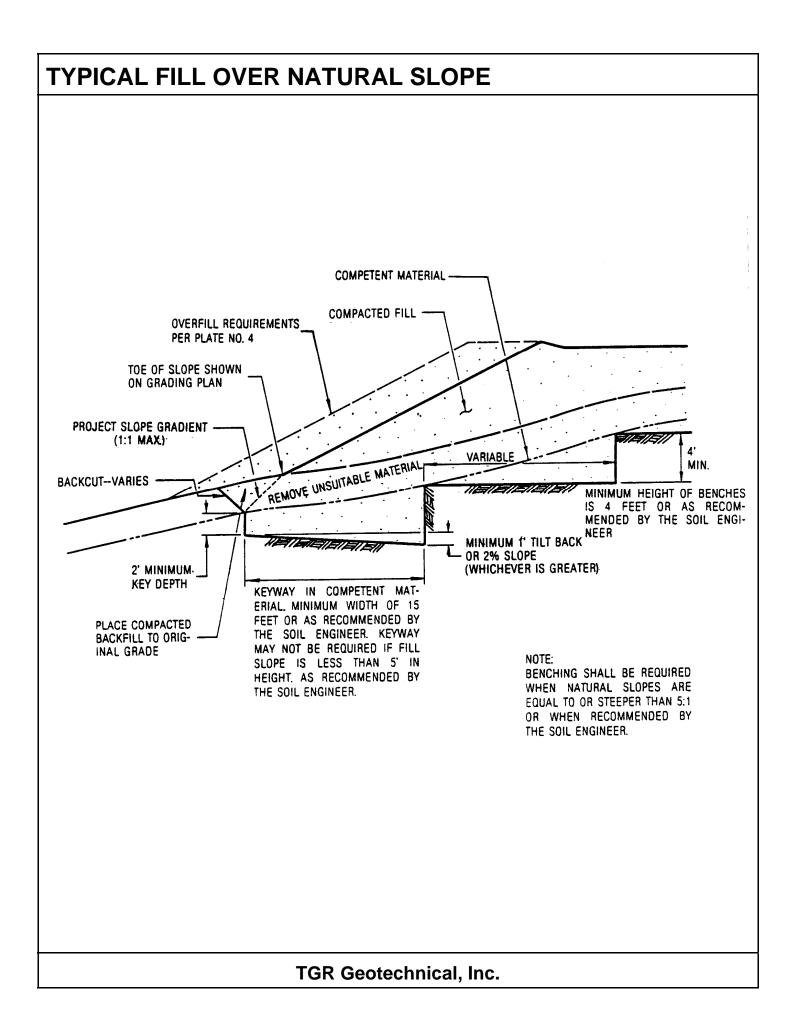
- All fill slopes should be planted or protected from erosion by methods specified in the preliminary report or by means approved by the governing authorities.
- Fill-over-cut slopes shall be properly keyed through topsoil, colluvium or creep material into rock or firm materials; and the transition shall be stripped of all soil prior to placing fill. (See detail)

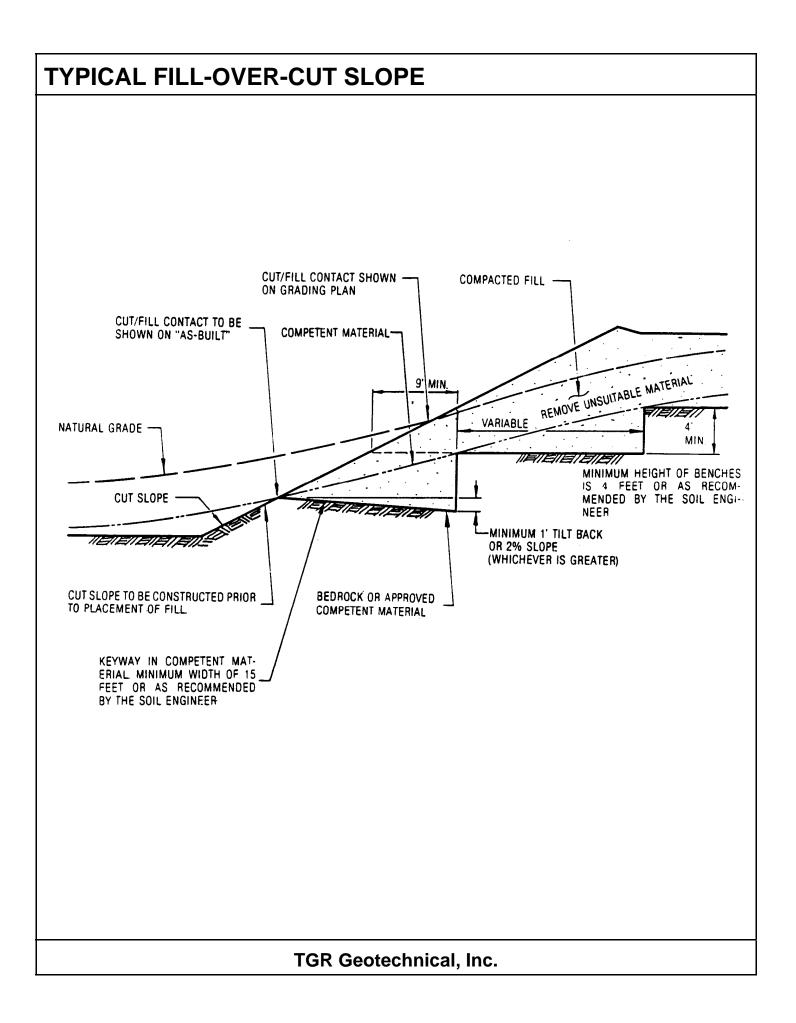
4.0 CUT SLOPES

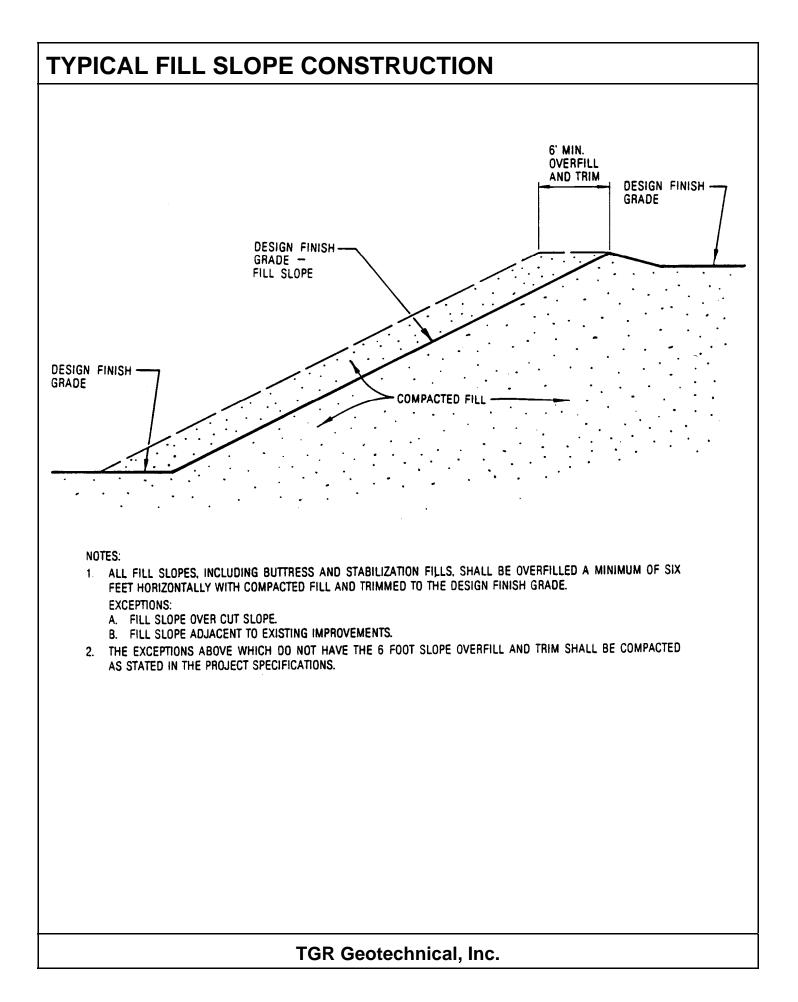
- The Engineering Geologist shall inspect all cut slopes excavated in rock, lithified or formation material at vertical intervals not exceeding ten feet.
- If any conditions not anticipated in the preliminary report such as perched water, seepage, lenticular or confined strata of a potentially adverse nature, unfavorably inclined bedding, joints or fault planes are encountered during grading, these

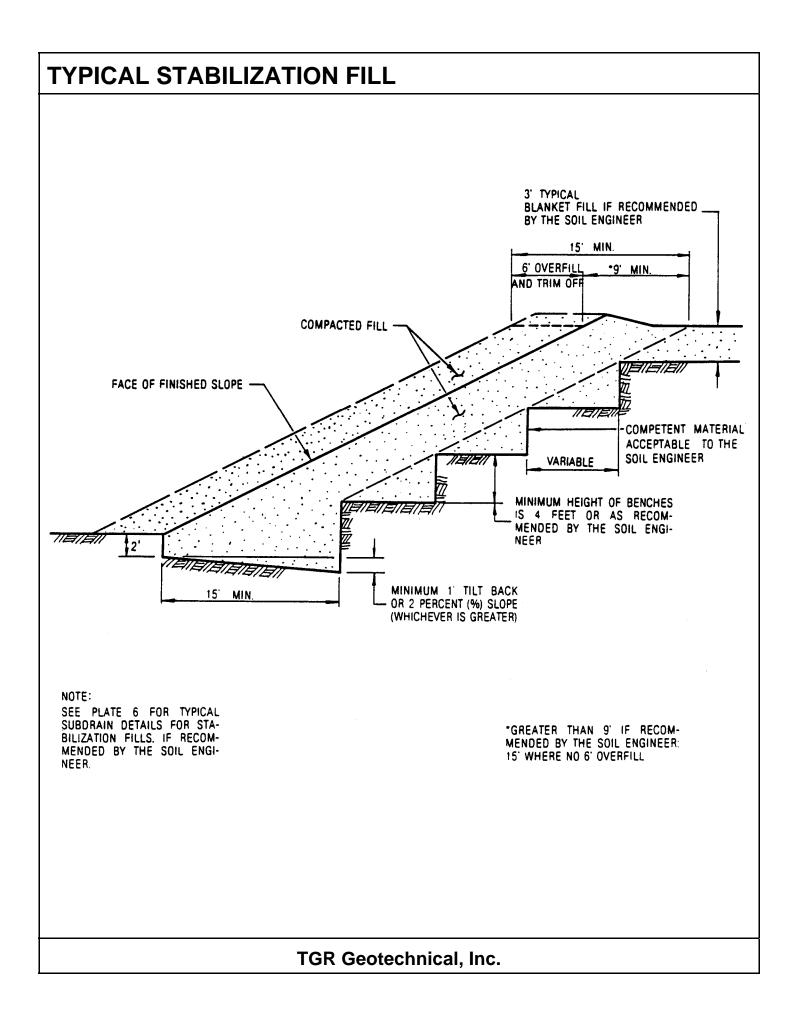
conditions shall be analyzed by the Engineering Geologist and Geotechnical Engineer; and recommendations shall be made to treat these problems.

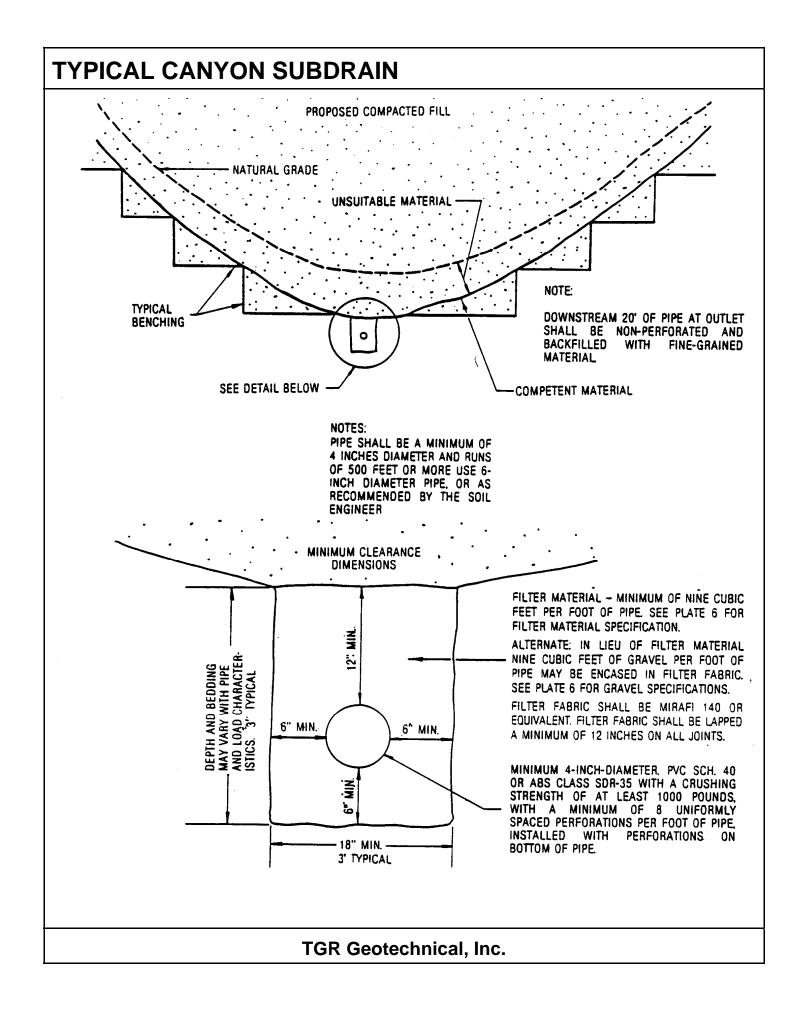

- Cut slopes that face in the same direction as the prevailing drainage shall be protected from slope wash by a non-erosive interceptor swale placed at the top of the slope.
- Unless otherwise specified in the soils and geological report, no cut slopes shall be excavated higher or steeper than that allowed by the ordinances of controlling governmental agencies.
- Drainage terraces shall be constructed in compliance with the ordinances of controlling governmental agencies, or with the recommendations of the Geotechnical Engineer or Engineering Geologist.

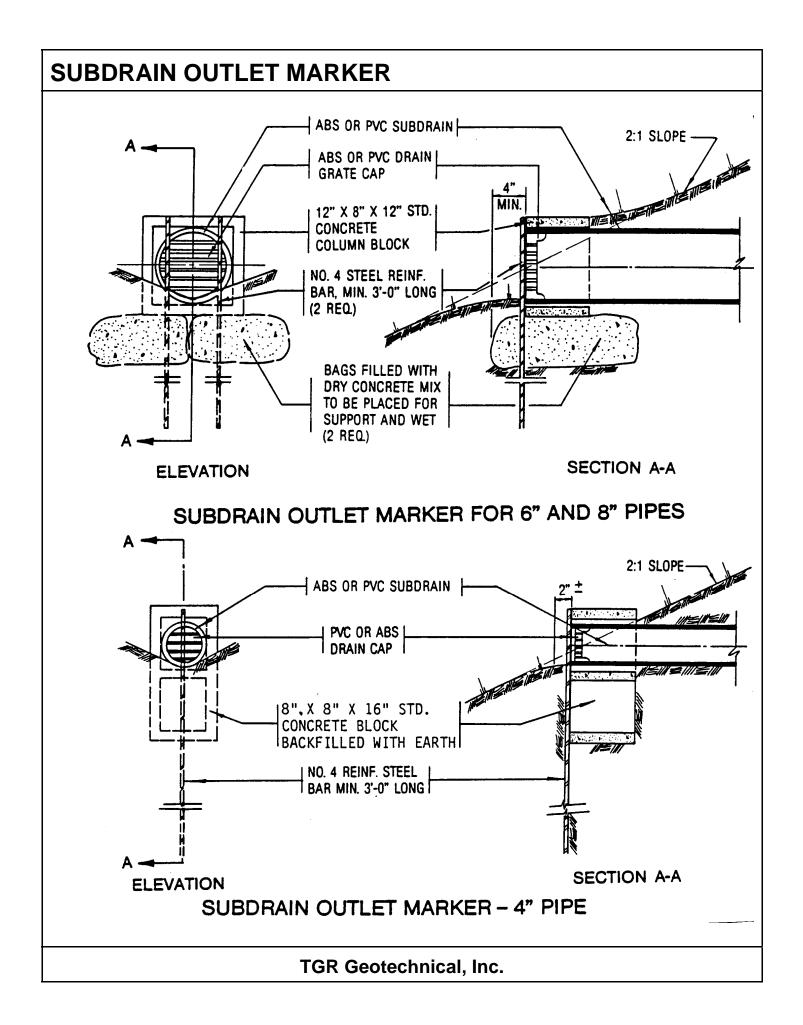

5.0 GRADING CONTROL

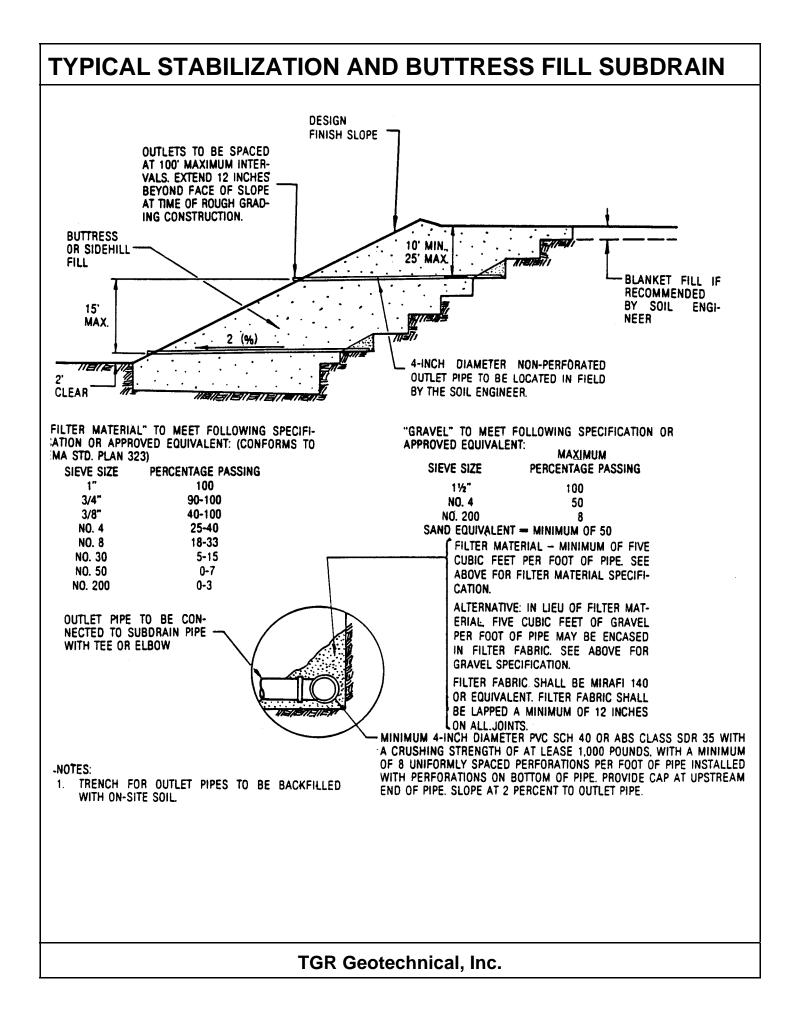

- Inspection of the fill placement shall be provided by the Geotechnical Engineer during the progress of grading.
- In general, density tests should be made at intervals not exceeding two feet of fill height or every 500 cubic yards of fill placed. This criteria will vary depending on soil conditions and the size of the job. In any event, an adequate number of field density tests shall be made to verify that the required compaction of being achieved.
- Density tests should be made on the surface material to receive fill as required by the Geotechnical Engineer.
- All cleanout, processed ground to receive fill, key excavations, subdrains and rock disposal must be inspected and approved by the Geotechnical Engineer (and often by the governing authorities) prior to placing any fill. It shall be the Contractor's responsibility to notify the Geotechnical Engineer and governing authorities when such areas are ready for inspection.

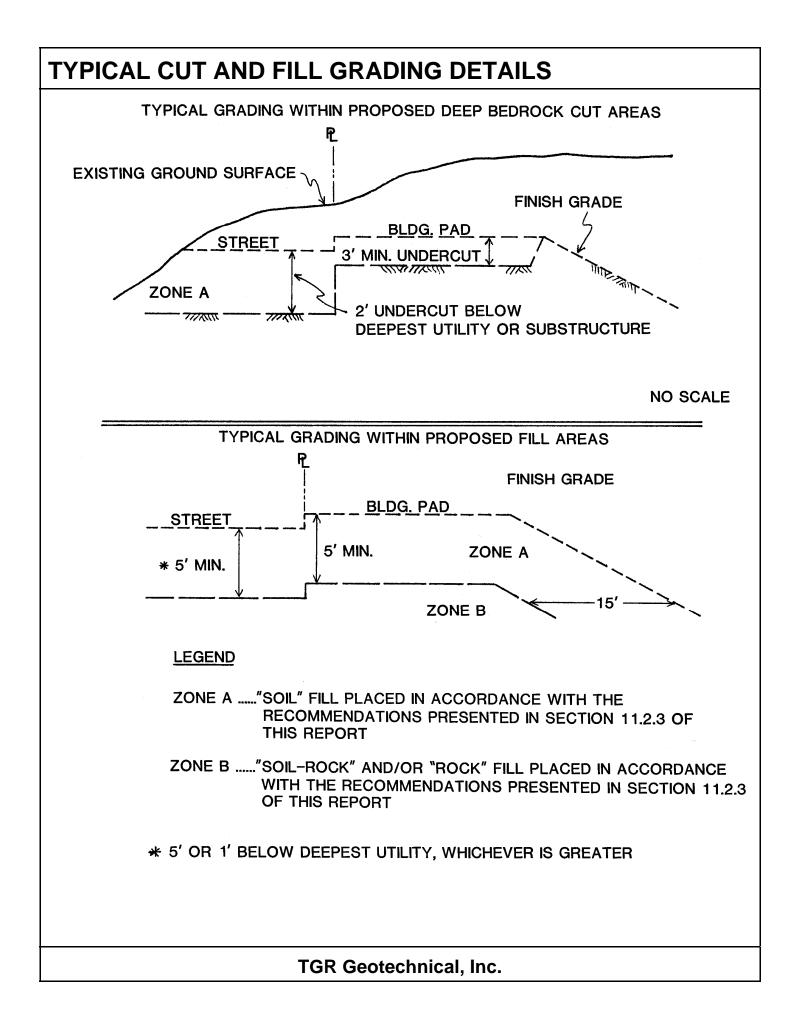

6.0 CONSTRUCTION CONSIDERATIONS

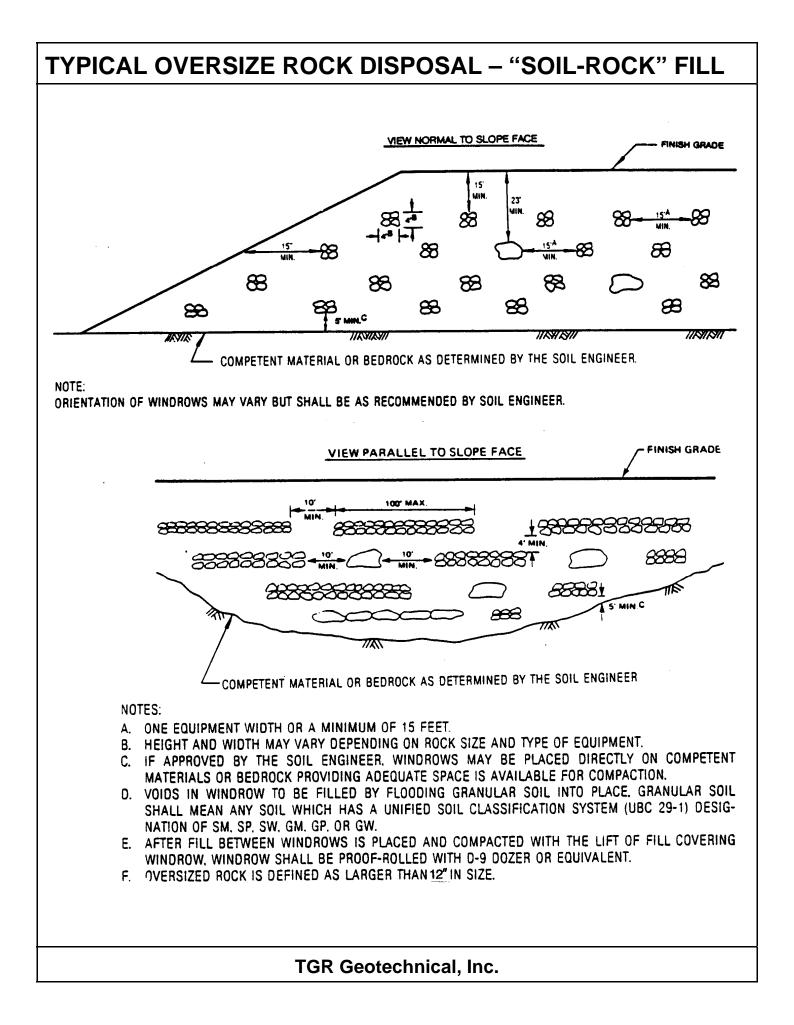

- Erosion control measures, when necessary, shall be provided by the Contractor during grading and prior to the completion and construction of permanent drainage controls.
- Upon completion of grading and termination of observations by the Geotechnical Engineer, no further filling or excavating, including that necessary for footings, foundations, large tree wells, retaining walls, or other features shall be performed without the approval of the Geotechnical Engineer or Engineering Geologist.
- Care shall be taken by the Contractor during final grading to preserve any berms, drainage terraces, interceptor swales, or other devices of a permanent nature on or adjacent to the property.











Appendix D

Advanced Stormwater Biofiltration

Contents

1 Introduction

m

- 2 Applications
- **3** Configurations
- 4 Advantages
- 5 Operation
- 6 Orientations | Bypass
- 7 Performance | Approvals
- 8 Sizing
- 9 Installation | Maintenance | Plants

The Urban Impact

For hundreds of years natural wetlands surrounding our shores have played an integral role as nature's stormwater treatment system. But as our cities grow and develop, these natural wetlands have perished under countless roads, rooftops, and parking lots.

Plant A Wetland

Without natural wetlands our cities are deprived of water purification, flood control, and land stability. Modular Wetlands and the MWS Linear re-establish nature's presence and rejuvenate water ways in urban areas.

MWS Linear

The Modular Wetland System Linear represents a pioneering breakthrough in stormwater technology as the only biofiltration system to utilize patented horizontal flow, allowing for a smaller footprint and higher treatment capacity. While most biofilters use little or no pre-treatment, the MWS Linear incorporates an advanced pre-treatment chamber that includes separation and pre-filter cartridges. In this chamber sediment and hydrocarbons are removed from runoff before it enters the biofiltration chamber, in turn reducing maintenance costs and improving performance.

Applications

The MWS Linear has been successfully used on numerous new construction and retrofit projects. The system's superior versatility makes it beneficial for a wide range of stormwater and waste water applications - treating rooftops, streetscapes, parking lots, and industrial sites.

Industrial

Many states enforce strict regulations for discharges from industrial sites. The MWS Linear has helped various sites meet difficult EPA mandated effluent limits for dissolved metals and other pollutants.

Streets

Street applications can be challenging due to limited space. The MWS Linear is very adaptable, and offers the smallest footprint to work around the constraints of existing utilities on retrofit projects.

Commercial

Compared to bioretention systems, the MWS Linear can treat far more area in less space - meeting treatment and volume control requirements.

Residential

Low to high density developments can benefit from the versatile design of the MWS Linear. The system can be used in both decentralized LID design and cost-effective end-of-the-line configurations.

Parking Lots

Parking lots are designed to maximize space and the MWS Linear's 4 ft. standard planter width allows for easy integration into parking lot islands and other landscape medians.

Mixed Use

The MWS Linear can be installed as a raised planter to treat runoff from rooftops or patios, making it perfect for sustainable "live-work" spaces.

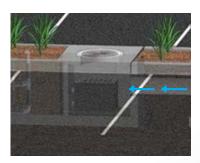
More applications are available on our website: www.ModularWetlands.com/Applications

- Agriculture
- Reuse

- Low Impact Development
- Waste Water

Configurations

The MWS Linear is the preferred biofiltration system of Civil Engineers across the country due to its versatile design. This highly versatile system has available "pipe-in" options on most models, along with built-in curb or grated inlets for simple integration into your stormdrain design.


Curb Type

The *Curb Type* configuration accepts sheet flow through a curb opening and is commonly used along road ways and parking lots. It can be used in sump or flow by conditions. Length of curb opening varies based on model and size.

Grate Type

The *Grate Type* configuration offers the same features and benefits as the *Curb Type* but with a grated/drop inlet above the systems pre-treatment chamber. It has the added benefit of allowing for pedestrian access over the inlet. ADA compliant grates are available to assure easy and safe access. The *Grate Type* can also be used in scenarios where runoff needs to be intercepted on both sides of landscape islands.

Vault Type

The system's patented horizontal flow biofilter is able to accept inflow pipes directly into the pre-treatment chamber, meaning the MWS Linear can be used in end-of-the-line installations. This greatly improves feasibility over typical decentralized designs that are required with other biofiltration/bioretention systems. Another benefit of the "pipe in" design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements.

Downspout Type

The *Downspout Type* is a variation of the *Vault Type* and is designed to accept a vertical downspout pipe from roof top and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.

Advantages & Operation

The MWS Linear is the most efficient and versatile biofiltration system on the market, and the only system with horizontal flow which improves performance, reduces footprint, and minimizes maintenance. Figure-1 and Figure-2 illustrate the invaluable benefits of horizontal flow and the multiple treatment stages.

Featured Advantages

- Horizontal Flow Biofiltration
- Greater Filter Surface Area
- Pre-Treatment Chamber
- Patented Perimeter Void Area
- Flow Control
- No Depressed Planter Area

Separation

Individual Media Filters

- Trash, sediment, and debris are separated before entering the pre-filter cartridges
- Designed for easy maintenance access

Pre-Filter Cartridges

- Over 25 ft² of surface area per cartridge
- Utilizes BioMediaGREEN filter material
- Removes over 80% of TSS & 90% of hydrocarbons
- Prevents pollutants that cause clogging from migrating to the biofiltration chamber

Curb Inlet —

BioMedia**GREEN**

Pre-filter Cartridge ~

Cartridge Housing

Vertical Underdrain Manifold

> Metland MEDIA

Drain-

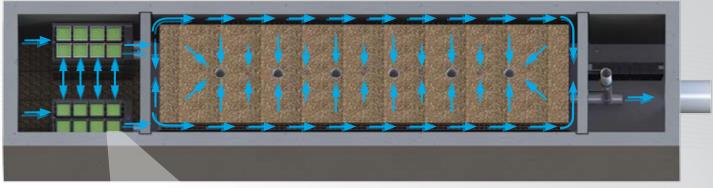


Fig. 2 - Top View

Perimeter Void Area

Down Line-

Flow Control Riser

2x to 3x More Surface Area Than Traditional Downward Flow Bioretention Systems.

Horizontal Flow

- Less clogging than downward flow biofilters
- Water flow is subsurface
- Improves biological filtration

Patented Perimeter Void Area

- Vertically extends void area between the walls and the WetlandMEDIA on all four sides.
- Maximizes surface area of the media for higher treatment capacity

WetlandMEDIA

Fig. 1

Outlet Pipe

- Contains no organics and removes phosphorus
- Greater surface area and 48% void space
- Maximum evapotranspiration
- High ion exchange capacity and light weight

Flow Control

- Orifice plate controls flow of water through WetlandMEDIA to a level lower than the media's capacity.
- Extends the life of the media and improves performance

Drain-Down Filter

- The Drain-Down is an optional feature that completely drains the pre-treatment chamber
- Water that drains from the pre-treatment chamber between storm events will be treated

Orientations

Side-By-Side

The *Side-By-Side* orientation places the pretreatment and discharge chamber adjacent to one another with the biofiltration chamber running parallel on either side. This minimizes the system length, providing a highly compact footprint. It has been proven useful in situations such as streets with directly adjacent sidewalks, as half of the system can be placed under that sidewalk. This orientation also offers internal bypass options as discussed below.

Bypass

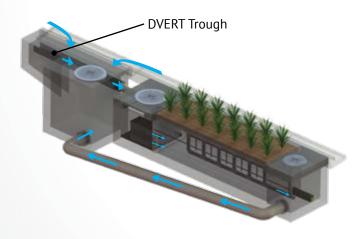
Internal Bypass Weir (Side-by-Side Only)

The *Side-By-Side* orientation places the pretreatment and discharge chambers adjacent to one another allowing for integration of internal bypass. The wall between these chambers can act as a bypass weir when flows exceed the system's treatment capacity, thus allowing bypass from the pre-treatment chamber directly to the discharge chamber.

External Diversion Weir Structure

This traditional offline diversion method can be used with the MWS Linear in scenarios where runoff is being piped to the system. These simple and effective structures are generally configured with two outflow pipes. The first is a smaller pipe on the upstream side of the diversion weir - to divert low flows over to the MWS Linear for treatment. The second is the main pipe that receives water once the system has exceeded treatment capacity and water flows over the weir.

Flow By Design


This method is one in which the system is placed just upstream of a standard curb or grate inlet to intercept the first flush. Higher flows simply pass by the MWS Linear and into the standard inlet downstream.

End-To-End

The *End-To-End* orientation places the pre-treatment and discharge chambers on opposite ends of the biofiltration chamber therefore minimizing the width of the system to 5 ft (outside dimension). This orientation is perfect for linear projects and street retrofits where existing utilities and sidewalks limit the amount of space available for installation. One limitation of this orientation is bypass must be external.

DVERT Low Flow Diversion

This simple yet innovative diversion trough can be installed in existing or new curb and grate inlets to divert the first flush to the MWS Linear via pipe. It works similar to a rain gutter and is installed just below the opening into the inlet. It captures the low flows and channels them over to a connecting pipe exiting out the wall of the inlet and leading to the MWS Linear. The DVERT is perfect for retrofit and green street applications that allows the MWS Linear to be installed anywhere space is available.

Performance

The MWS Linear continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, hydrocarbons and bacteria. Since 2007 the MWS Linear has been field tested on numerous sites across the country. With it's advanced pre-treatment chamber and innovative horizontal flow biofilter, the system is able to effectively remove pollutants through a combination of physical, chemical, and biological filtration processes. With the same biological processes found in natural wetlands, the MWS Linear harnesses natures ability to process, transform, and remove even the most harmful pollutants.

Approvals

The MWS Linear has successfully met years of challenging technical reviews and testing from some of the most prestigious and demanding agencies in the nation, and perhaps the world.

Washington State TAPE Approved

The MWS Linear is approved for General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus treatment at 1 gpm/ft² loading rate. The highest performing BMP on the market for all main pollutant categories.

TSS	Total Phosphorus	Ortho Phosphorus	Nitrogen	Dissolved Zinc	Dissolved Copper	Total Zinc	Total Copper	Motor Oil
85%	64%	67%	45%	66%	38%	69%	50%	95%

DEQ Assignment

The Virginia Department of Environmental Quality assigned the MWS Linear, the highest phosphorus removal rating for manufactured treatment devices to meet the new Virginia Stormwater Management Program (VSMP) Technical Criteria.

Maryland Department Of The Environment Approved

Granted ESD (Environmental Site Design) status for new construction, redevelopment and retrofitting when designed in accordance with the Design Manual.

MASTEP Evaluation

The University of Massachusetts at Amherst – Water Resources Research Center, issued a technical evaluation report noting removal rates up to 84% TSS, 70% Total Phosphorus, 68.5% Total Zinc, and more.

Rhode Island DEM Approved

Approved as an authorized BMP and noted to achieve the following minimum removal efficiencies: 85% TSS, 60% Pathogens, 30% Total Phosphorus, and 30% Total Nitrogen.

Flow Based Sizing

The MWS Linear can be used in stand alone applications to meet treatment flow requirements. Since the MWS Linear is the only biofiltration system that can accept inflow pipes several feet below the surface it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

Treatment Flow Sizing Table

Model #	Dimensions	WetlandMedia Surface Area	Treatment Flow Rate (cfs)
MWS-L-4-4	4' x 4'	23 ft ²	0.052
MWS-L-4-6	4' x 6'	32 ft ²	0.073
MWS-L-4-8	4' x 8'	50 ft ²	0.115
MWS-L-4-13	4' x 13'	63 ft ²	0.144
MWS-L-4-15	4' x 15'	76 ft ²	0.175
MWS-L-4-17	4' x 17'	90 ft ²	0.206
MWS-L-4-19	4' x 19'	103 ft ²	0.237
MWS-L-4-21	4' x 21'	117 ft ²	0.268
MWS-L-8-8	8' x 8'	100 ft ²	0.230
MWS-L-8-12	8' x 12'	151 ft ²	0.346
MWS-L-8-16	8' x 16'	201 ft ²	0.462

Volume Based Sizing

Many states require treatment of a water quality volume and do not offer the option of flow based design. The MWS Linear and its unique horizontal flow makes it the only biofilter that can be used in volume based design installed downstream of ponds, detention basins, and underground storage systems.

Treatment Volume Sizing Table

Model #	Treatment Capacity (cu. ft.) @ 24-Hour Drain Down	Treatment Capacity (cu. ft.) @ 48-Hour Drain Down
MWS-L-4-4	1140	2280
MWS-L-4-6	1600	3200
MWS-L-4-8	2518	5036
MWS-L-4-13	3131	6261
MWS-L-4-15	3811	7623
MWS-L-4-17	4492	8984
MWS-L-4-19	5172	10345
MWS-L-4-21	5853	11706
MWS-L-8-8	5036	10072
MWS-L-8-12	7554	15109
MWS-L-8-16	10073	20145

Installation

The MWS Linear is simple, easy to install, and has a space efficient design that offers lower excavation and installation costs compared to traditional tree-box type systems. The structure of the system resembles precast catch basin or utility vaults and is installed in a similar fashion.

The system is delivered fully assembled for quick installation. Generally, the structure can be unloaded and set in place in 15 minutes. Our experienced team of field technicians are available to supervise installations and provide technical support.

Maintenance

Reduce your maintenance costs, man hours, and materials with the MWS Linear. Unlike other biofiltration systems that provide no pre-treatment, the MWS Linear is a self-contained treatment train which incorporates simple and effective pre-treatment.

Maintenance requirements for the biofilter itself are almost completely eliminated, as the pre-treatment chamber removes and isolates trash, sediments, and hydrocarbons. What's left is the simple maintenance of an easily accessible pre-treatment chamber that can be cleaned by hand or with a standard vac truck. Only periodic replacement of low-cost media in the pre-filter cartridges is required for long term operation and there is absolutely no need to replace expensive biofiltration media.

Plant Selection

Abundant plants, trees, and grasses bring value and an aesthetic benefit to any urban setting, but those in the MWS Linear do even more - they increase pollutant removal. What's not seen, but very important, is that below grade the stormwater runoff/flow is being subjected to nature's secret weapon: a dynamic physical, chemical, and biological process working to break down and remove non-point source pollutants. The flow rate is controlled in the MWS Linear, giving the plants more "contact time" so that pollutants are more successfully

decomposed, volatilized and incorporated into the biomass of The MWS Linear's micro/macro flora and fauna.

A wide range of plants are suitable for use in the MWS Linear, but selections vary by location and climate. View suitable plants by selecting the list relative to your project location's hardy zone.

Please visit **www.ModularWetlands.com/Plants** for more information and various plant lists.

Section [____] Modular Subsurface Flow Wetland System

PART 1 – GENERAL

01.01.00 Purpose

The purpose of this specification is to establish generally acceptable criteria for Modular Subsurface Flow Wetland Systems used for biofiltration of stormwater runoff including dry weather flows and other contaminated water sources. It is intended to serve as a guide to producers, distributors, architects, engineers, contractors, plumbers, installers, inspectors, agencies and users; to promote understanding regarding materials, manufacture and installation; and to provide for identification of devices complying with this specification.

01.02.00 Description

Modular Subsurface Flow Wetland Systems (MSFWS) are used for filtration of stormwater runoff including dry weather flows. The MSFWS is a pre-engineered biofiltration system composed of a pretreatment chamber containing filtration cartridges, a horizontal flow biofiltration chamber with a peripheral void area and a centralized and vertically extending underdrain, the biofiltration chamber containing a sorptive media mix which does not contain any organic material and a layer of plant establishment media, and a discharge chamber containing an orifice control structure . Treated water flows horizontally in series through the pretreatment chamber cartridges, biofiltration chamber and orifice control structure.

01.03.00 Manufacturer

The manufacturer of the MSFWS shall be one that is regularly engaged in the engineering design and production of systems developed for the treatment of stormwater runoff for at least (10) years, and which have a history of successful production, acceptable to the engineer of work. In accordance with the drawings, the MSFWS(s) shall be a filter device Manufactured by Bio Clean Environmental Services, Inc., or Modular Wetland Systems, Inc., or assigned distributors or licensees. Bio Clean Environmental Services Inc., and Modular Wetland Systems, Inc., can be reached at:

Corporate Headquarters: Bio Clean Environmental Service, Inc. 2972 San Luis Rey Road Oceanside, CA 92058 Phone: (760) 433-7640 Fax: (760) 433-3176 www.biocleanenvironmental.net

Corporate Headquarters: Modular Wetland Systems, Inc. P.O. Box 869 Oceanside, CA 92049 Phone: (760) 433-7650 www.modularwetlands.net

01.04.00 Submittals

- 01.04.01 Shop drawings are to be submitted with each order to the contractor and consulting engineer.
- 01.04.02 Shop drawings are to detail the MSFWS and all components required and the sequence for installation, including:
 - System configuration with primary dimensions
 - Interior components
 - Any accessory equipment called out on shop drawings
- 01.04.03 Inspection and maintenance documentation submitted upon request.

01.05.00 Work Included

01.05.01	Specification requirements for installation of MSFWS.
01.05.02	Manufacturer to supply components of the MSFWS(s):

- Pretreatment chamber components (pre-assembled)
 - Concrete Structure(s)
- Biofiltration chamber components (pre-assembled)
- Flow control discharge structure (pre-assembled)

01.06.00 Reference Standards

	-
ASTM C 29	Standard Test Method for Unit Weight and Voids in Aggregate
ASTM C 88	C 88 Standard Test Method for Soundness of Aggregates by Use of Sodium
	Sulfate or Magnesium Sulfate
ASTM C131	C 131 Standard Test Method for Resistance to Degradation of Small-Size
A011010101	Coarse Aggregates by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	C 136 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
ASTM C 330	C 330 Standard Specification for Lightweight Aggregate for Structural Concrete
ASTM D 698	Test Method for Laboratory Compaction Characteristics of Soil Using Standard
ASTM D 696	Effort (12,400 ftlbf/ft3 (600 kN-m/m3)
ASTM D 1621	10 Standard Test Method for Compressive Properties Of Rigid Cellular Plastics
ASTM D 1777	ASTM D1777 - 96(2007) Standard Test Method for Thickness of Textile
ASTMDTTT	Materials
ASTM D 4716	Standard Test Method for Determining the (In-plane) Flow Rate per Unit Width
A31M D 4710	and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head
AASHTO T 99-	Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5-kg
01	(5.5-lb) Rammer and a 305-mm (12-in) Drop
AASHTO T 104	Standard Method of Test for Soundness of Aggregate by Use of Sodium Sulfate
	or Magnesium Sulfate
AASHTO T 260	Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete
	and Concrete Raw Materials.
AASHTO T 288	Standard Method of Test for Determining Minimum Laboratory Soil Resistivity
AASHTO T 289	Standard Method of Test for Determining ph of Soil for Use in Corrosion Testing
AASHTO T 291	Standard Method of Test for Determining Water Soluble Chloride Ion Content in
7401101291	Soil
AASHTO T 290	T 290 Standard Method of Test for Determining Water Soluble Sulfate Ion
70,0110 1 230	Content in Soil

The Modular Subsurface Flow Wetland Systems (MSFWS) and all of its components shall be self-contained within a concrete structure constructed of concrete with a minimum 28 day compressive strength of 5,000 psi, with reinforcing per ASTM A 615, Grade 60, and supports and H20 loading as indicated by AASHTO. Each Chamber shall have appropriate access hatches for easy maintenance and sized to allow removal of all internal components without disassembly. All water transfer system components shall conform with the following;

- Filter netting shall be 100% Polyester with a number 16 sieve size, and strength tested per ASTM D 3787.
- Drainage cells shall be manufactured of lightweight injection-molded plastic and have a minimum compressive strength test of 6,000 psi and a void area along the surface making contact with the filter media of 75% or greater. The cells shall be at least 2" in thickness and allow water to freely flow in all four directions.

02.01.00 Pretreatment Chamber Components

- 02.01.01 <u>Filter Cartridges</u> shall operate at a loading rate not to exceed 3 gallons per minute per square foot surface area.
- 02.01.02 <u>Drain Down System</u> shall include a pervious floor that allows water to drain into the underdrain pipe that is connected to the discharge chamber.

02.02.00 Biofiltration Chamber Components

02.02.01	Media shall consist of ceramic material produced by expanding and vitrifying select material in a rotary kiln. Media must be produced to meet the requirements of ASTM C330, ASTM C331, and AASHTO M195. Aggregates must have a minimum 24-hour water absorption of 10.5% mass. Media shall not contain any organic material. Flow through media shall be horizontal from the outer perimeter of the chamber toward the centralized and vertically extending underdrain. The retention time in the media shall be at least 3 minutes. Downward flow filters are not acceptable alternatives. The thickness of the media shall be at least 19" from influent end to effluent end. The loading rate on the media shall not exceed 1.1 gallons per minute per square foot surface area. Media must be contained within structure that spaces the surface of the media at least 2" from all vertically extending walls of the concrete structure.
02.02.02	Planting shall be native, drought tolerant species recommend by manufacturer and/or landscape architect.
02.02.03	<u>Plant Support Media</u> shall be made of a 3" thick moisture retention cell that is inert and contains no chemicals or fertilizers, is not made of organic material and has an internal void percentage of 80%.

02.03.00 Discharge Chamber

The discharge device shall house a flow control orifice plate that restricts flows greater than designed treatment flow rate. All piping components shall be made of a high-density polyethylene. The discharge chamber shall also contain a drain down filter if specified on the drawing.

PART 3 – PERFORMANCE

03.01.00 <u>General</u> 03.01.01

Function - The MSFWS has no moving internal components and functions based on gravity flow, unless otherwise specified. The MSFWS is composed of a pretreatment chamber, a biofiltration chamber and a discharge chamber. The pretreatment device houses cartridge media filters, which consist of filter media housed in a perforated enclosure. The untreated runoff flows into the system via subsurface piping and or surface inlet. Water entering the system is forced through the filter cartridge enclosures by gravity flow. Then the flow contacts the filter media. The flow through the media is horizontal toward the center of each individual media filter. In the center of the media shall be a round slotted PVC pipe of no greater than 1.5" in diameter. The slotted PVC pipe shall extend downward into the water transfer cavity of the cartridge. The slotted PVC pipe shall be threaded on the bottom to connect to the water transfer cavity. After pollutants have been removed by the filter media the water discharges the pretreatment chamber and flows into the water transfer system and is conveyed to the biofiltration chamber. Once runoff has been filtered by the biofiltration chamber it is collected by the vertical underdrain and conveyed to a discharge chamber equipped with a flow control orifice plate. Finally the treated flow exits the system.

- 03.01.02 <u>Pollutants</u> The MSFWS will remove and retain debris, sediments, TSS, dissolved and particulate metals and nutrients including nitrogen and phosphorus species, bacteria, BOD, oxygen demanding substances, organic compounds and hydrocarbons entering the filter during frequent storm events and continuous dry weather flows.
- 03.01.03 <u>Treatment Flow Rate and Bypass</u> The MSFWS operates in-line. The MSFWS will treat 100% of the required water quality treatment flow based on a minimum filtration capacities listed in section 03.02.00. The size of the system must match those provided on the drawing to ensure proper performance and hydraulic residence time.

Minimum Treatment Capabilities

• System must be capable of treating flows to the specified treatment flow rate on the drawings. The flow rate shall be controlled by an orifice plate.

PART 4 - EXECUTION

04.01.00 General

The installation of the MSFWS shall conform to all applicable national, state, state highway, municipal and local specifications.

04.02.00 Installation

The Contractor shall furnish all labor, equipment, materials and incidentals required to install the (MSFWS) device(s) and appurtenances in accordance with the drawings and these specifications.

04.02.01	<u>Grading and Excavation</u> site shall be properly surveyed by a registered professional surveyor, and clearly marked with excavation limits and elevations. After site is marked it is the responsibility of the contractor to contact local utility companies and/or DigAlert to check for underground utilities. All grading permits shall be approved by governing agencies before commencement of grading and excavation. Soil conditions shall be tested in accordance with the governing agencies requirements. All earth removed shall be transported, disposed, stored, and handled per governing agencies standards. It is the responsibility of the contractor to install and maintain proper erosion control measures during grading and excavation operations.
04.02.02	<u>Compaction</u> – All soil shall be compacted per registered professional soils engineer's recommendations prior to installation of MSFWS components.
04.02.03	<u>Backfill</u> shall be placed according to a registered professional soils engineer's recommendations, and with a minimum of 6" of gravel under all concrete structures.
04.02.04	<u>Concrete Structures</u> – After backfill has been inspected by the governing agency and approved the concrete structures shall be lifted and placed in proper position per plans.
04.02.05	Subsurface Flow Wetland Media shall be carefully loaded into area so not to damage the Wetland Liner or Water Transfer Systems. The entire wetland area shall be filled to a level 9 inches below finished surface.
04.02.06	<u>Planting</u> layer shall be installed per manufacturer's drawings and consist of a minimum 3" grow enhancement media that ensures greater than 95% plant survival rate, and 6" of wetland media. Planting shall consist of native plants recommended by manufacturer and/or landscape architect. Planting shall be drip irrigated for at least the first 3 months to insure long term plant growth. No chemical herbicides, pesticides, or fertilizers shall be used in the planting or care and maintenance of the planted area.

04.03.00 Shipping, Storage and Handling

- 04.03.01 <u>Shipping</u> MSFWS shall be shipped to the contractor's address or job site, and is the responsibility of the contractor to offload the unit(s) and place in the exact site of installation.
- 04.03.02 <u>Storage and Handling</u>– The contractor shall exercise care in the storage and handling of the MSFWS and all components prior to and during installation. Any repair or replacement costs associated with events occurring after delivery is accepted and unloading has commenced shall be born by the contractor. The MSFWS(s) and all components shall always be stored indoors and transported inside the original shipping container until the unit(s) are ready to be installed. The MSFWS shall always be handled with care and lifted according to OSHA and NIOSA lifting recommendations and/or contractor's workplace safety professional recommendations.

04.04.00 Maintenance and Inspection

04.04.01 <u>Inspection</u> – After installation, the contractor shall demonstrate that the MSFWS has been properly installed at the correct location(s), elevations, and with appropriate components. All components associated with the MSFWS and its installation shall be subject to inspection by the engineer at the place of installation. In addition, the contractor shall demonstrate that the MSFWS has been installed per the manufacturer's specifications and recommendations. All

	components shall be inspected by a qualified person once a year and results of inspection shall be kept in an inspection log.
04.04.02	<u>Maintenance</u> – The manufacturer recommends cleaning and debris removal maintenance of once a year and replacement of the Cartridge Filters as needed. The maintenance shall be performed by someone qualified. A Maintenance
	Manual is available upon request from the manufacturer. The manual has detailed information regarding the maintenance of the MSFWS. A
	Maintenance/Inspection record shall be kept by the maintenance operator. The record shall include any maintenance activities preformed, amount and
	description of debris collected, and the condition of the filter.
04.04.03	<u>Material Disposal</u> - All debris, trash, organics, and sediments captured by the MSFWS shall be transported and disposed of at an approved facility for disposal in accordance with local and state requirements. Please refer to state and local regulations for the proper disposal of toxic and non-toxic material.

PART 5 – QUALITY ASSURNACE

05.01.00 Warranty

The Manufacturer shall guarantee the MSFWS against all manufacturing defects in materials and workmanship for a period of (5) years from the date of delivery to the ______. The manufacturer shall be notified of repair or replacement issues in writing within the warranty period. The MSFWS is limited to recommended application for which it was designed.

05.02.00 Performance Certification

The MSFWS manufacturer shall submit to the Engineer of Record a "Manufacturer's Performance Certificate" certifying the MSFWS is capable of achieving the specified removal efficiency for suspended solids, phosphorous and dissolved metals.

Installation Guidelines for Modular Wetland System

Delivery & Unloading/Lifting

- 1. Modular Wetland Systems, Inc. shall deliver the unit(s) to the site in coordination with the Contractor.
- 2. The Contractor will require spreader bars and chains/cables to safely and securely lift the main structure, risers a set of suitable lifting hooks, knuckles, shackles and eye bolts.
- 3. The main structure and lid can be lifted together or separately.

Please see Modular Wetland Weights and Lifting Details. Contact Modular Wetlands for additional lifting details.

Inspection

 Inspection of the Modular Wetland unit and all parts contained in or shipped outside of the unit shall be inspected at time of delivery by the site Engineer/Inspector and the Contractor. Any non-conformance to approved drawings or damage to any part of the system shall be documented on the Modular Wetland shipping ticket. Damage to the unit during and after unloading shall be corrected at the expense of the Contractor. Any necessary repairs to the Modular Wetland unit shall be made to the acceptance of the Engineer/Inspector.

Site Preparation

- 1. The Contractor is responsible for providing adequate and complete site/inlet protection when the Modular Wetland unit is installed prior to final site stabilization (full landscaping, grass cover, final paving, and street sweeping completed).
- 2. The Contractor shall adhere to all jurisdictional and/or OSHA safety rules in providing temporary shoring of the excavation.
- 3. The Contractor or Owner is responsible for appropriately barricading the Modular Wetland unit from traffic (in accordance with local codes).

Installation Guidelines for Modular Wetland System

Installation

- 1. Each unit shall be constructed at the locations and elevations according to the sizes shown on the approved drawings. Any modifications to the elevation or location shall be at the direction of and approved by the Engineer.
- 2. The unit shall be placed on the compacted sub-grade with a minimum 6-inch gravel base matching the final grade of the curb line in the area of the unit. The unit is to be placed such that the unit and top slab match the grade of the curb in the area of the unit. Compact undisturbed sub-grade materials to 95% of maximum density at +1% to 2% of the optimum moisture. Unsuitable material below sub-grade shall be replaced to site engineer's approval. Please see Modular Wetlands Weights and Lifting Details. Contact Modular Wetlands for guidance where slope exceeds 5%.
- 3. Once the unit is set, the internal wooden forms and protective silt fabric cover must be left intact (if WetlandMedia pre-installed). The top lid(s) should be sealed onto the box section before backfilling, using a non-shrink grout, butyl rubber or similar waterproof seal. The boards on the top of the lid and boards sealed in the unit's throat must NOT be removed. The Supplier will remove these sections at the time of activation.
- 4. Outlet connections shall be aligned and sealed to meet the approved drawings with modifications necessary to meet site conditions and local regulations. The correct outlet will be marked on the Modular Wetland unit.
- 5. Backfilling should be performed in a careful manner, bringing the appropriate fill material up in 6-inch lifts on all sides. Precast sections shall be set in a manner that will result in a watertight joint. In all instances, installation of the Modular Wetland unit shall conform to ASTM specification C891 "Standard Practice for Installation of Underground Precast Utility Structures" unless specified otherwise in contract documents.
- 6. It is the responsibility of the Contractor to provide curb and gutter and transition to the Modular Wetland unit for proper stormwater flow into the system through the throat, pipe or grate opening. A standard drawing of the throat and gutter detail is available in the following section; however the plans and contract documents supersede all standard drawings. Several variations of the standard design are available. Effective bypass for the Modular Wetland System is essential for correct operation (i.e. bypass to an overflow at lower elevation).

Installation Procedure

The contractor **MUST** provide all rigging And lifting apparatus, such as all cables, chains or straps and a set of lifting hooks, shackles, knuckles and eye bolts.

It is the contractor's responsibility to provide suitable lifting equipment to off-load the Modular Wetland unit.

Modular Wetland units are designed to be off-loaded using the contractor's spreader bar.

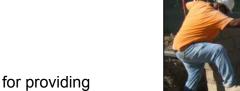
1. Apply Butyl Tape Seal

Apply butyl tape seal along the top of the box section. Butyl tape seal is provided with every unit.

Modular Wetland installed protective throat board and installed silt fabric must be left in place to protect the unit from construction sediment.

2. Unload and Set Box

Unload the Modular Wetland unit the prepared hole with appropriate sub-grade.*


* Compacted sub-grade with a minimum of six inches of gravel base which must match the final grade of curb line the area of the unit.

Set the top slab on the box.

The Contractor is responsible for providing adequate and complete site/inlet protection when the Modular Wetland is installed prior to final site stabilization (full landscaping, grass cover, final paving, and street sweeping completed).

4. Connect Outfall Pipe

The correct outlet will be marked on the Modular Wetland.

Invert of outlet pipe **MUST** be even with the floor of the system.

5. Install Curb & Gutter

It is the responsibility of the Contractor to provide curb and gutter and transition to the Modular Wetland for proper flow into the system through a 5"- 7" throat opening. A standard drawing of the throat and gutter detail in the following section. CONTRACTOR RESPONSIBLE FOR GROUTING IN ANY VISIBLE LIFTING POINTS.

6. Activation

Activation is performed **ONLY** by Modular Wetland personnel.

Activation can occur once the project site is fully stabilized (full landscaping, grass cover, final paving and street sweeping completed) and there is a 5" - 7" throat opening.

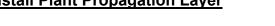
Call 760-433-7640 to schedule your activation.

NOTE: WetlandMedia Installation

For Larger models (MWS-L-4-13 and above) the system will be delivered without WetlandMedia pre-installed to minimize pick weight and prevent contamination of the media during construction. For these models the WetlandMedia will be delivered in bulk or in super sacks. It will be responsibility of the contractor to fill the system with the WetlandMedia during the installation process. Installation of the WetlandMedia can be done after the unit is fully installed to avoid contamination. See following pages for details.

WetlandMedia Install (if applicable)

1. Fill WetlandMedia


Position super sack of WetlandMedia over wetland chamber. Bottom of sack should not be more than 2' above top of system. Open sack and fill evenly*.

* One to several hundred cubic yards of WetlandMedia will be required based upon the model number and size of the system. For large scale jobs WetlandMedia will be delivered in bulk and will require a bobcat of similar to fill the system. All equipment is the responsibility of the contractor.

2. Install Plant Propagation Layer

Fill WetlandMedia up to 9" below the top of the wetland chamber. Level out the WetlandMedia as shown. Ensure that the level does not vary more than one inch or plant growth will be affected.

3. Install Plant Propagation Layer

Utilize plant propagation blocks provided by the manufacturer. Each block is approximately 40" by 6" by 3" thick. Blocks shall be placed side by side and end to end and cover the entire length and width of the wetland chamber unless specified.

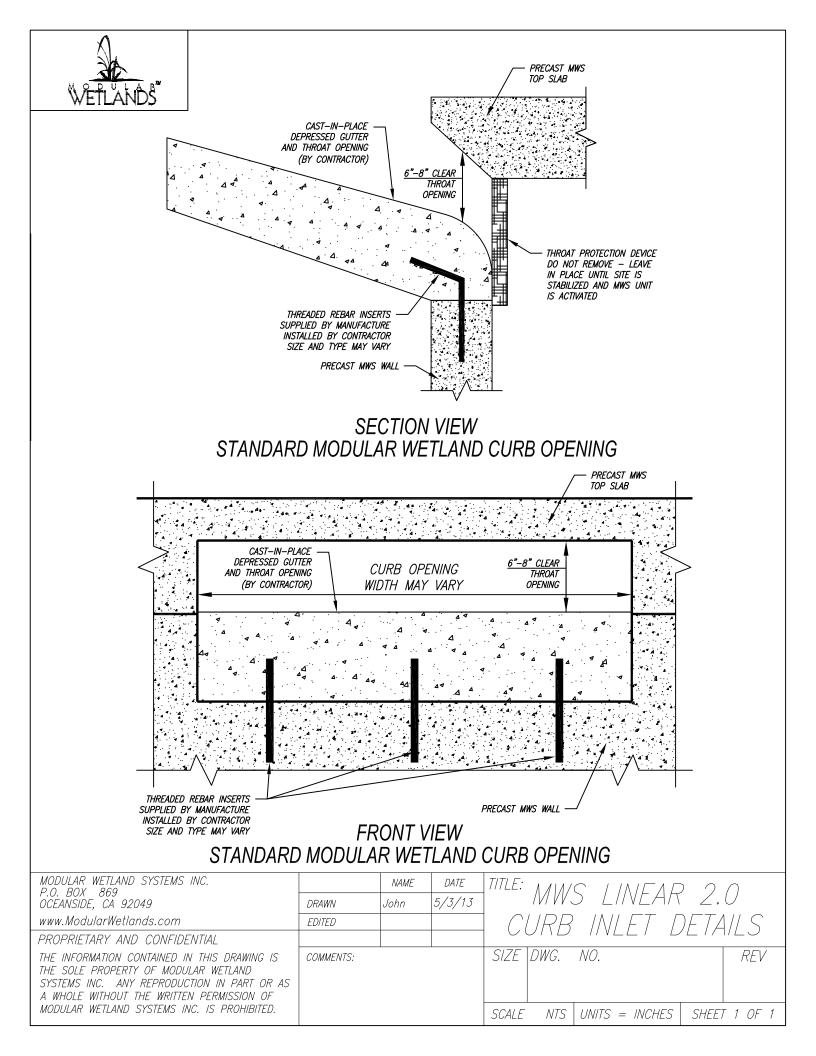
4. Finish Filling WetlandMedia

After plant propagation blocks are installed repeat step 1 and fill the system to the top of the wetland chamber as shown. WetlandMedia must be filled within 2" of the top of the unit.

5. Planting

After system is filled with WetlandMedia planting of vegetation can begin. Utilizing 1 gallon plants dig down until The plant propagation blocks are reached. Remove plant and it's root ball from the container. Set the bottom of the root ball on the tops of the blocks. Fill hole back in with WetlandMedia. After planting a thorough watering of the plants is necessary. The plant propagation blocks must be saturated to provide a water source for the plants during the establishment phase. It is recommended that hand watering is done three times a week for the first two months. Hand water can be supplemented with drip or spray irrigation after the second week. Please call the manufacturer for more details on plants, planting arrangement and irrigation options.

NOTE: planting is required on all units, including units delivered with WetlandMedia pre-installed.



Curb and Gutter Details

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Weights and Lifting Details

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

MWS-L 2.0 Max Pick Weights

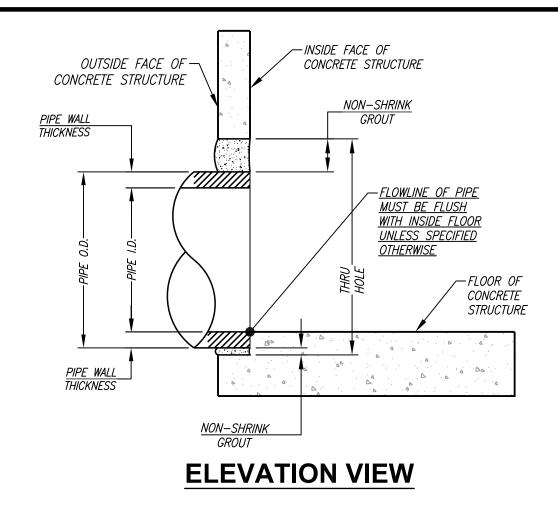
Model #	Size (O.D)	Size (I.D)	Unit Weight (Ibs)	Media Weight (Ibs)	Total Weight (lbs)
MWS-L-4-4	5' x 5'	4' x 4'	7500.0	1607.7	9107.7
MWS-L-4-6 MWS-L-4-6.5	5' x 7' 5 x 7.5'	4' x 6' 4' x 6.5'	11,000 11,500	1798.9	12,619.2 13,119.2
MWS-L-4-8	5' x 9'	8' x 4'	12500	3966	16466
MWS-L-4-13	5' x 14'	13' x 4'	21200	5895	27095
MWS-L-4-15	5' x 16'	15' x 4'	23700	8039	31739
MWS-L-4-17	5' x 18'	17' x 4'	26500	10182	36682
MWS-L-4-19	5' x 20'	19' x 4'	28300	12326	40626
MWS-L-4-21	5' x 22'	21' x 4'	30000	14470	44470
MWS-L-6-8	7' x 9'	6' x 8'	24000	6109	30109
MWS-L-8-8	9' x 9'	8' x 8'	32000	8253	40253
MWS-L-8-12	9' x 13'	8' x 12'	44000	12540	56540
MWS-L-8-16	9' x 17'	8' x 16'	47000	16828	63828

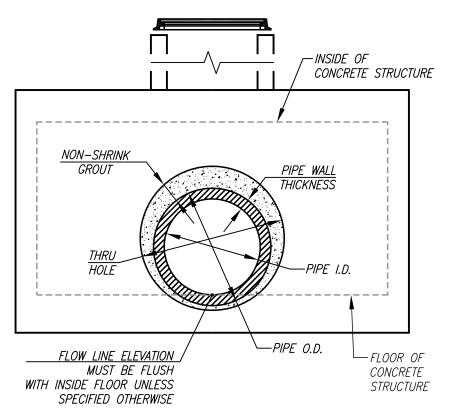
Max Pick Weight if Shipped Without Media Installed Max Pick Weight if Shipped With Media Installed

Note: All weights listed hereon are standard max pick weights, actual pick weights may vary based upon state and local regulations and variation in concerte and rebar standards. For project specific pick weights contact the manufacturer prior to shipping of the unit(s). Is is the contractors responsibility to off-load the unit with an adequate size crane. Units are shipped with WetlandMEDIA in superbags and installed by contractor.

When Available see project contract terms, if lifting points are on the inside of the unit due to custom designs or installations requiring pionts to be on the inside the media will be shipped in bags and the contractor will be reponsibile to install after the unit is installed. For example, units places against a wall.

For Questions or Comments Please Call 888-566-3938 or email: info@modularwetlands.com





Connection Details

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

END VIEW

INSTALLATION NOTES

1. ALL CONNECTION PIPES SUPPLIED AND INSTALLED BY CONTRACTOR. MODULAR WETLAND UNIT WILL BE DELIVERED WITH A THRU HOLE AND ITS THE CONTRACTORS RESPONSIBILITY TO SUPPLY PIPE, AND ALL LABOR AND MATERIAL TO CONNECT PIPE AND SEAL UNIT WATER TIGHT INCLUDING BUT NOT LIMITED TO GROUT, CONCRETE LUG, REBAR, PLUG, ANCHORS, COUPLER, FITTINGS AND/OR ALL SUPPORT AND CONNECTING HARDWARE.

2. ALL CONNECTIONS ARE TO BE FLUSH WITH THE INSIDE SURFACE OF THE CONCRETE STRUCTURE. (CAN NOT INTRUDE BEYOND FLUSH) ALL PIPE FLOWLINES SHALL BE FLUSH WITH INSIDE FLOOR UNLESS SPECIFIED OTHERWISE.

3. ALL GROUT AND/OR CONCRETE SHALL BE NON-SHRINK AND MEET OR EXCEED LOCAL PIPE CONNECTION STANDARDS.

4. REFER TO AGENCY SPECIFICATIONS WHERE APPLICABLE.

 THE PRODUCT DESCRIBED MAY BE
 PROPRIETARY AND CONFIDENTIAL:

 PROTECTED BY ONE OR MORE OF
 THE FOLLOWING US PATENTS:

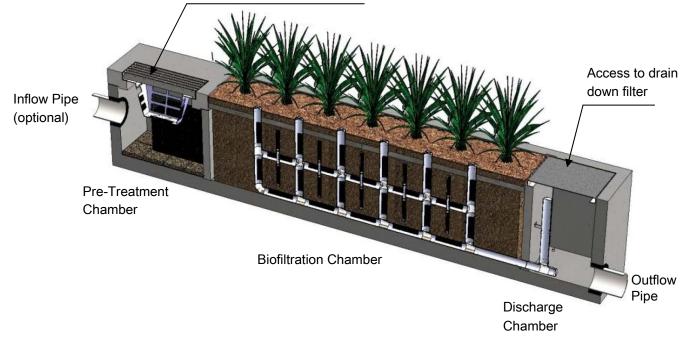
 THE FOLLOWING US PATENTS:
 THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE

 7,425,262; 7,474,378;
 PROPERTY OF MODULAR WETLANDS SYSTEMS. ANY

 8,303,816; RELATED FOREIGN
 PERPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN.

 PATENTS OR OTHER PATENTS PENDING
 PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

PIPE CONNECTION STANDARD DETAIL


Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- o Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
 - (5 minute average service time).
- Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
 - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
 - (10-15 minute per cartridge average service time).
- o Replace Drain Down Filter Media average maintenance interval is 12 to 24 months.
 - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
 - (Service time varies).

System Diagram

Access to screening device, separation chamber and cartridge filter

Maintenance Procedures

Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Project Name							For Office Use On	ly			
Project Address								(Reviewed By)			
Owner / Management Company											
Contact					Phone ()	_			(Date) Office personnel to co the left	
Inspector Name					Date	/	/		Time	e	AM / PM
Type of Inspection Routin	ie 🗌 Fo	ollow Up		aint	Storm		St	orm Event i	n Last 72-ho	ours? 🗌 No 🗌 Y	/es
Weather Condition					Additional N	otes					
			I	nspect	ion Chec	dist					
Modular Wetland System T	ype (Curb,	Grate or L	IG Vault):			Siz	ze (22	2', 14' or e	etc.):		
Structural Integrity:								Yes	No	Comme	nts
Damage to pre-treatment access pressure? Damage to discharge chamber a pressure?							ing				
Does the MWS unit show signs of	of structural of	leterioration	(cracks in the	e wall, dam	nage to frame)	?					
Is the inlet/outlet pipe or drain do	wn pipe dam	aged or othe	erwise not fun	ctioning p	roperly?						
Working Condition:											
Is there evidence of illicit discharg	ge or excessi	ve oil, greas	e, or other au	itomobile f	fluids entering	and clogg	ing the				
Is there standing water in inappro	opriate areas	after a dry p	eriod?								
Is the filter insert (if applicable) at	t capacity and	d/or is there	an accumulat	ion of deb	ris/trash on th	e shelf sys	stem?				
Does the depth of sediment/trash specify which one in the commer							lf yes,				Depth:
Does the cartridge filter media ne	ed replacem	ent in pre-tre	eatment cham	nber and/o	r discharge ch	amber?				Chamber:	
Any signs of improper functioning	g in the disch	arge chambe	er? Note issu	ies in com	ments section						
Other Inspection Items:											
Is there an accumulation of sedin	nent/trash/de	bris in the w	etland media	(if applica	ble)?						
Is it evident that the plants are ali	ive and healt	hy (if applica	ble)? Please	note Plant	t Information b	elow.					
Is there a septic or foul odor coming from inside the system?											
Waste:	Yes	No		R	ecommend	ed Main	tenar	nce		Plant Inform	nation
Sediment / Silt / Clay				No Clean	ing Needed					Damage to Plants	
Trash / Bags / Bottles				Schedule	Maintenance	as Planne	ed			Plant Replacement	
Green Waste / Leaves / Foliage Needs Immediate Maintenance						Plant Trimming					

Additional Notes:

Maintenance Report

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Cleaning and Maintenance Report Modular Wetlands System

Project N	ame						For Of	fice Use Only
Project A	Project Address							
Owner / I	Management Company					(Date)		
Contact				Phone ()	-	Office	bersonnel to complete section to the left.
Inspector	Name			Date	/	/	Time	AM / PM
Type of I	nspection 🗌 Routir	e 🗌 Follow Up	Complaint	Storm		Storm Event in	Last 72-hours?	No 🗌 Yes
Weather	Condition			Additiona	al Notes			
Site Map #	GPS Coordinates of Insert	Manufacturer / Description / Sizing	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Operational Per Manufactures' Specifications (If not, why?)
	Lat: Long:	MWS Catch Basins						
		MWS Sedimentation Basin						
		Media Filter Condition						
		Plant Condition						
		Drain Down Media Condition						
		Discharge Chamber Condition						
		Drain Down Pipe Condition						
		Inlet and Outlet Pipe Condition						
Commen	ts:							

Appendix E

PENDING CITY COVENANT AND AGREEMENT FORM

Appendix F

HYDROLOGY STUDY

TENTATIVE PARCEL MAP 2020-125

for

HILLTOP 3 DEVELOPMENT, LLC.

3875 Crest Drive Yorba Linda, CA 92886 Robert Hoff

Prepared By:

KING CIVIL ENGINEERING CORP. 101 S Kraemer Blvd., Suite 232 Placentia, CA 92870 (714) 996-7010

8/18/2020

Thomas A. King Date R.C.E. 16916 EXP. 06/30/21

TABLE OF CONTENTS

SECTION

Discussion

1) 2) 3) 4) 5) 6) 7)	Site Location Site Description Existing Conditions Proposed Development Design Criteria Summary Conclusion	I			
Vicinity Maj	p	II			
Hydrologic S	Soils Classification Map	III			
2-Year Even	t Hydrology Study – Existing Condition	IV			
100-Year Event Hydrology Study – Existing Condition					
2-Year Event Hydrology Study – Developed Condition					
100-Year Ev	ent Hydrology Study – Developed Condition	VII			
Hydrology Map – Existing Condition POCKE					
Hydrology Map – Developed Condition POC					

Section I Discussion

SECTION I

DISCUSSION

1) Site Location:

Tentative Parcel Map No. 2020-125 is located along the northern Yorba Linda City limits and westerly of Fairmont Boulevard.

2) Site Description:

The site is bordered on the east, south and west by single family homes. The northerly boundary is the City of Yorba Linda limits and State of California property.

3) Existing Conditions:

The site is presently vacant and consisting of rolling hills. The Yorba Linda Water District owns a 1.12 acre parcel within the site which contains an underground reservoir. There is a paved road to the reservoir site which enters the property off Little Canyon Lane. The entire site contains 42.6 acres which includes the Yorba Linda Water District property.

4) Proposed Development:

The proposed project consists of creating a three parcel parcel map and constructing a single family home on a 1.6 acre pad. The proposed home will be adjacent to the existing Yorba Linda Water District reservoir site. An access road is proposed to enter the property off of Fairmont Boulevard near Quail Circle. The home will be located on Parcel Number 1 and the two remaining parcels (A & 2) are proposed to remain vacant.

5) Design Criteria:

Hydrology studies were performed using the Orange County Local Drainage Manual and the O.C.E.M.A. Hydrology criterion. The Rational Method Hydrology Computer Program by Advanced Engineering software (AES) was utilized for these computations. The drainage area consists of S.C.S. Soil Group "C". Hydrology studies for 2 and 100 year event storm frequencies for developed and existing site conditions were performed.

6) Summary:

The project will consist of constructing a single family home which will be located on proposed Parcel 1 of Tentative Parcel Map No. 2020-125. Parcel No. 1 contains 15.2 acres which includes a 1.1 acre Yorba Linda Water District reservoir site. The home will be located on a 1.6 acre pad adjacent to the Yorba Linda Water District reservoir site. An access road to the home will enter off of Fairmont Boulevard near Quail Circle. Parcels "A" and "2" are proposed to remain vacant land.

Parcels "A" and "2" will drain in the their natural drainage patterns and continue offsite as the areas presently do. The home site will drain to Fairmont Boulevard with the runoff mitigated with water quality features.

Hydrology Node Point 13:

Storm runoff flows in the canyon towards the existing 27" RCP storm drain located on Lot 26 of Tract No. 11967. The proposed 100-year frequency runoff equals 81.01 cfs from 21.93 acres at the property line. The existing 100-year flow equals 74.33 cfs from 20.13 acres. This is an increase of 6.68 cfs and 1.80 acres. Sheet flow onto Lots 19 through 25 of Tract No. 11967 is eliminated by the proposed "V" ditch along the property line.

Hydrology Node Point 66

Storm runoff flow in the canyon towards the existing 24" RCP storm drain located on Lot 47 of Tract No. 11452. The proposed 100-year frequency runoff equals 15.77 cfs from 4.16 acres at the property line. The existing 100-year flow equals 35.87 cfs from 9.22 acres. This is a decrease of 20.10 cfs and 5.06 acres. Sheet flow onto Lots 46 through 52 of Tract No. 11452 is eliminated by the proposed "V" ditch along the property line.

Both existing storm drains join in a junction structure located in the Ravenswood Drive cul-de-sac. This results in a decrease runoff of 13.42 cfs.

Hydrology Node Point 111:

The remaining 100-year frequency storm runoff flowing toward Tract No. 11452 is intercepted by the proposed "V" ditch and exits into Fairmont Boulevard via a parkway culvert. The flow equals 6.42 cfs from 1.69 acres.

Hydrology Node Point 74:

A parkway culvert located at the proposed driveway has a 100-year frequency storm flow of 16.98 cfs from 4.22 acres. This parkway culvert also exists onto Fairmont Boulevard.

Hydrology Node Point 91:

A 0.14 acre slope along Fairmont Boulevard is tributary to Hydrology Node Point 91. The flow at Node Point 91 is 0.75 cfs for a 100-year frequency storm.

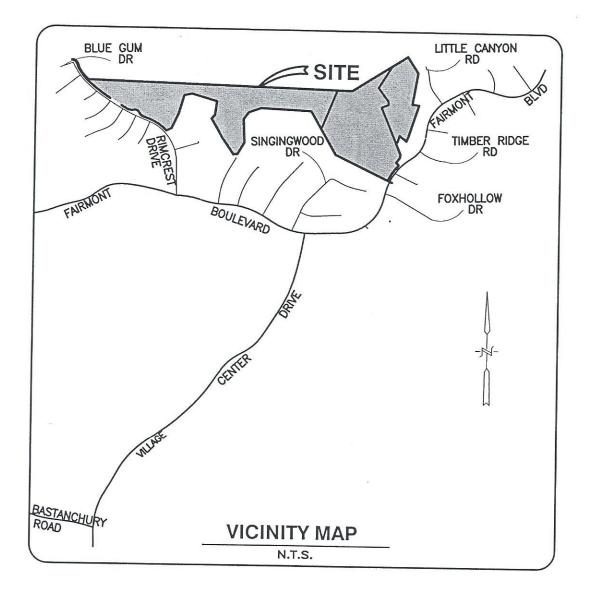
Hydrology Node Points 74, 91 and 111:

The total project storm runoff to Fairmont Boulevard consists of flow from Node Points 74, 91 and 111. The total 100-year frequency flow equals 24.15 cfs from 6.05 acres.

7) Conclusion:

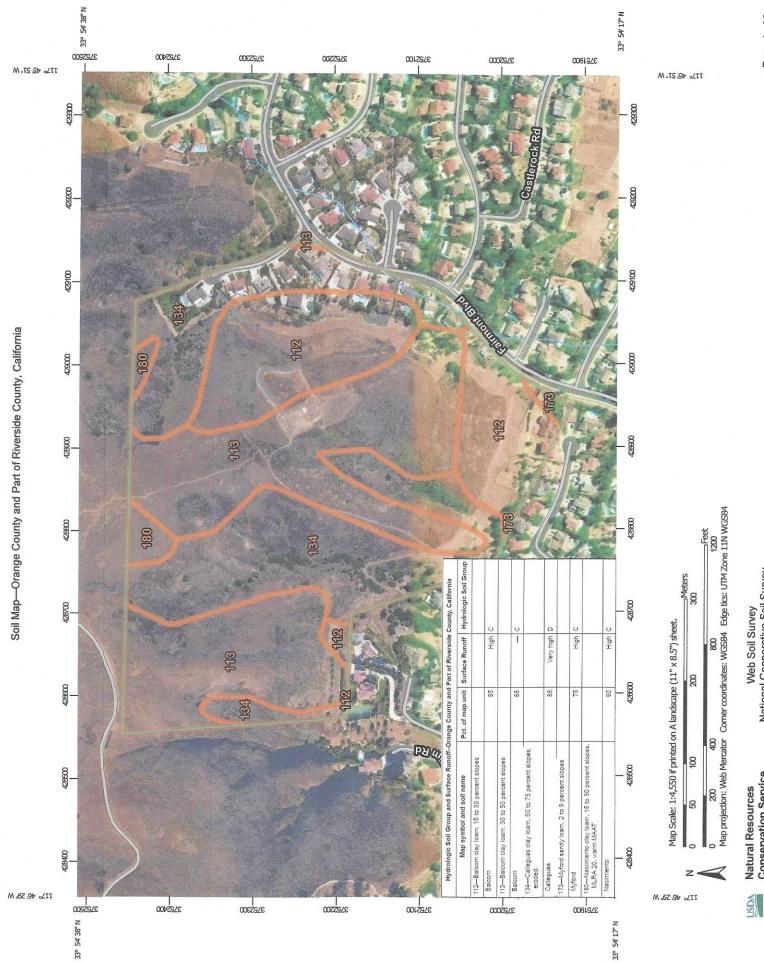
The 100-year frequency storm flow exiting the project in the canyon shown at Hydrology Node Point 13 has an increase of 6.68 cfs and 1.80 acres.

The100-year frequency storm flow exiting the project in the canyon shown at Hydrology Node Point 66 has a decrease of 20.10 cfs and 5.06 acres.


The remaining 100-year frequency storm flow exits the project onto Fairmont Boulevard via parkway culverts. There is an increase of 1.81 cfs and 0.56 acres. This total runoff is from Hydrology Node Points 74, 91 and 111.

The point of the total 100-year runoff from Hydrology Node Points 74, 91 and 111 is calculated to run in the westerly curb at the southwesterly property line and Fairmont Boulevard. The existing curb face is 6" high and has a rate of grade of 9.80%. The depth of flow in the curb is 0.44 feet. The following calculations show this flow to be contained below the existing top of curb.

The proposed project "V" ditch along the property line northerly of Tract No. 11967 and Tract No. 11452 helps to protect all the lots abutting the project from storm runoff.


HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1247 Analysis prepared by: KING CIVIL ENGINEERING CORP. 101 S. KRAEMER BLVD. , SUITE 225 て了し PLACENTIA, CA. 92870 PHONE: 714-996-7010, FAX: 714-996-0322 _____ TIME/DATE OF STUDY: 11:30 08/17/2020 ______ Problem Descriptions: TENTATIVE PARCEL MAP NO. 2020-125 TOTAL 100 YEAR RUNOFF FROM NODE POINTS 74, 91 AND 111 O= 24.15 CFS, STREET SLOPE=0.098, DEPTH OF FLOW=0.44', EX. TC=0.50' >>>>STREETFLOW MODEL INPUT INFORMATION<<<< CONSTANT STREET GRADE(FEET/FEET) = 0.098000 CONSTANT STREET FLOW(CFS) = 24.15AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = 0.015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ______ STREET FLOW MODEL RESULTS: _____ ______ STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.39 PRODUCT OF DEPTH&VELOCITY = 4.13 ______

Section II Vicinity Map

÷

Section III Hydrologic Soils Classification Map

Page 1 of 3

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

Section IV 2-Year Event Hydrology Study Existing Condition

* * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1247 Analysis prepared by: KING CIVIL ENGINEERING CORP. 101 S. KRAEMER BLVD. , SUITE 225 PLACENTIA, CA. 92870 PHONE: 714-996-7010, FAX: 714-996-0322 * TENTATIVE PARCEL MAP 2020-125 * * 2 YEAR HYDROLOGY * * EXISTING CONDITIONS 2579E2.RES * FILE NAME: 2579E.2 TIME/DATE OF STUDY: 08:21 04/15/2020 === USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)___ ____ ______ _____ _______ _____ 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED *** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1150.00 DOWNSTREAM(FEET) = 1095.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.217 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.834 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" С 2.66 0.25 1.00 80 7.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.79TOTAL AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) = 3.79 *** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<

=== ELEVATION DATA: UPSTREAM(FEET) = 1095.00 DOWNSTREAM(FEET) = 867.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 760.00 CHANNEL SLOPE = 0.3000 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 3.79 FLOW VELOCITY(FEET/SEC) = 6.26 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 9.24LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1060.00 FEET. +++ FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 _____ ->>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ ____ MAINLINE Tc(MIN) = 9.24* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.591SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 12.84 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 12.84 SUBAREA RUNOFF(CFS) = 15.50 EFFECTIVE AREA(ACRES) = 15.50 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 15.50 PEAK FLOW RATE(CFS) = 18.71FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< _________ ____ ELEVATION DATA: UPSTREAM(FEET) = 867.00 DOWNSTREAM(FEET) = 804.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 450.00 CHANNEL SLOPE = 0.1400 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 18.71

FLOW VELOCITY(FEET/SEC) = 9.31 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) = 10.05 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 ------>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____________ === MAINLINE Tc(MIN) = 10.05* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.517 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 4.63 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.63 SUBAREA RUNOFF(CFS) = 5.28 EFFECTIVE AREA(ACRES) = 20.13 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.13 PEAK FLOW RATE(CFS) = 22.95 ---+ | CANYON FLOW AT PROPERTY LINE 1 | Q=22.95 CFS, A=20.13 ACRES, Tc=10.0 MIN. 1 1 ---+ *** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00

ELEVATION DATA: UPSTREAM(FEET) = 1190.00 DOWNSTREAM(FEET) = 1140.00 $Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20$ SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.477 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.672SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" С 2.15 0.25 1.00 80 8.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00SUBAREA RUNOFF(CFS) = 2.75TOTAL AREA(ACRES) = 2.15 PEAK FLOW RATE(CFS) = 2.75 *** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 927.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00 CHANNEL SLOPE = 0.3737 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 2.75FLOW VELOCITY(FEET/SEC) = 5.83 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.63 TC(MIN.) = 10.11 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 950.00FEET. *** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE Tc(MIN) = 10.11* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.511 SUBAREA LOSS RATE DATA (AMC I):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 3.63 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) =3.63SUBAREA RUNOFF(CFS) =4.12EFFECTIVE AREA(ACRES) =5.78AREA-AVERAGED Fm(INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 5.78 PEAK FLOW RATE(CFS) = 6.56 +--------+ | FLOW TO PORPERTY LINE 1 | Q=6.56 CFS, A=5.78 ACRES, Tc=10.1 MIN. 1 ---+ *** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSTS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH (FEET) = 280.00 ELEVATION DATA: UPSTREAM(FEET) = 1108.00 DOWNSTREAM(FEET) = 1040.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.637 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.924 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 0.42 0.25 1.00 80 6.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.63TOTAL AREA(ACRES) = 0.42 PEAK FLOW RATE(CFS) = 0.63

6

*** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 1040.00 DOWNSTREAM(FEET) = 867.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 640.00 CHANNEL SLOPE = 0.2703 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.63FLOW VELOCITY(FEET/SEC) = 4.74 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 2.25 Tc (MIN.) = 8.89LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 920.00 FEET. *** FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ ____ MAINLINE TC(MIN) = 8.89* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.627 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 5.29 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 5.29 SUBAREA RUNOFF(CFS) = 6.56 EFFECTIVE AREA(ACRES) = 5.71 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) = 7.08 | FLOW TO PROPERTY LINE Q=7.08 CFS, A=5.71 ACRES, TC=8.9 MIN.

***	*****	* * * * * * * * *	*****	* * * * * * * * * * *	****
FLOW PROCESS FROM NODE	40.00	TO NODE	41.00 I	S CODE = 2	21
>>>>RATIONAL METHOD I >>USE TIME-OF-CONCENTR	ATION NOMO	GRAPH FOR	INITIAL SU		
======================================	ENGTH (FEET)) = 300	.00		
Tc = K*[(LENGTH** 3.00 SUBAREA ANALYSIS USED * 2 YEAR RAINFALL IN SUBAREA TC AND LOSS RA DEVELOPMENT TYPE/ Tc	MINIMUM TC TENSITY(INC TE DATA(AMC	(MIN.) = CH/HR) = C I):	6.526	Ар	SCS
	GROUP	(ACRES)	(INCH/HR)	(DECIMAL)	CN
"BARREN" 6.53 SUBAREA AVERAGE PERVIO SUBAREA AVERAGE PERVIO SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) =	US AREA FRA 1.75	TE, Fp(ING ACTION, AF	p = 1.00	25	

>>>>COMPUTE NATURAL VA	JBAREA<<<<				
ELEVATION DATA: UPSTREA ELEVATION DATA: UPSTREA 26.00 CHANNEL LENGTH THRU SUF NOTE: CHANNEL SLOPE OF CHANNEL FLOW THRU SUBAF	AM(FEET) = BAREA(FEET) .1 WAS ASS	1034.00 = 690. UMED IN V) DOWNSTREA 00 CHANNE ELOCITY EST	M(FEET) = L SLOPE =	

ΕĒ	TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 8.70 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00 = 990.00 EET.
* *	· ************************************
_	FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 81
	>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
==	
***	FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1
==:	>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<===============================
	TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.70 RAINFALL INTENSITY(INCH/HR) = 1.65
	AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 4.64 TOTAL STREAM AREA(ACRES) = 4.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.84
**:	AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACRES) = 4.64 TOTAL STREAM AREA(ACRES) = 4.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.84

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1028.00 DOWNSTREAM(FEET) = 965.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.024 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.863 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 1.32 0.25 1.00 80 7.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.92TOTAL AREA(ACRES) = 1.32 PEAK FLOW RATE(CFS) = 1.92 *** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ______ === ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 826.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.3971 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.92 FLOW VELOCITY(FEET/SEC) = 5.39 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.08 TC(MIN.) = 8.11 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FEET. *** FLOW PROCESS FROM NODE 52.00 TO NODE 52.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN) = 8.11 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.716 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER 1.28 0.25 "BARREN" С 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 1.69 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 3.43 *** FLOW PROCESS FROM NODE 52.00 TO NODE 52.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.11 RAINFALL INTENSITY(INCH/HR) = 1.72 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1 5.84 8.70 1.647 0.25(0.25) 1.00 4.6 40.00 3.43 8.11 1.716 0.25(0.25) 1.00 2.6 2 50.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE

50.00 19.138.111.7160.25(0.25)1.006.929.118.701.6470.25(0.25)1.007.2 40.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.13 Tc(MIN.) = 8.11 EFFECTIVE AREA(ACRES) = 6.92 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 7.24LONGEST FLOWPATH FROM NODE 40.00 TO NODE 52.00 = 990.00 FEET. FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 826.00 DOWNSTREAM(FEET) = 797.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.1115 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 9.13 FLOW VELOCITY(FEET/SEC) = 7.72 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.56 Tc (MIN.) = 8.67LONGEST FLOWPATH FROM NODE 40.00 TO NODE 53.00 = 1250.00 FEET. * * * FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE TC(MIN) = 8.672 YEAR RAINFALL INTENSITY (INCH/HR) = 1.651SUBAREA LOSS RATE DATA (AMC I): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 1.98 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.98 SUBAREA RUNOFF(CFS) = 2.50 EFFECTIVE AREA(ACRES) = 8.90 AREA-AVERAGED Fm(INCH/HR) = 0.25

12

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 9.22 PEAK FLOW RATE(CFS) = 11.23 ---+ | OFFSITE FLOW TO PROPERTY LINE | Q=11.23 CFS, A=9.22 ACRES, TC=8.7 MIN. 1 1 ---+ *** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 290.00 ELEVATION DATA: UPSTREAM(FEET) = 983.00 DOWNSTREAM(FEET) = 907.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.629 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.925 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 0.70 0.25 1.00 80 6.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.06TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) = 1.06*** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<

=== ELEVATION DATA: UPSTREAM(FEET) = 907.00 DOWNSTREAM(FEET) = 810.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.2771 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.06FLOW VELOCITY(FEET/SEC) = 4.79 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 7.85LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 640.00 FEET. *** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE TC(MIN) = 7.85* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.748 SUBAREA LOSS RATE DATA (AMC I): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" С 1.62 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) =1.62SUBAREA RUNOFF(CFS) =2.18EFFECTIVE AREA(ACRES) =2.32AREA-AVERAGED Fm(INCH/HR) =0.25AREA-AVERAGED Fp(INCH/HR) =0.25AREA-AVERAGED Ap =1.00 TOTAL AREA(ACRES) = 2.32 PEAK FLOW RATE(CFS) = 3.13 _____ | OFFSITE FLOW AT PROPERTY LINE | Q=3.13 CFS, A=2.32 ACRES, Tc=7.8 MIN. E. 1 ---+ *** FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21

14

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ === INITIAL SUBAREA FLOW-LENGTH (FEET) = 320.00 ELEVATION DATA: UPSTREAM(FEET) = 986.00 DOWNSTREAM(FEET) = 905.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.943 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.875 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 0.62 0.25 1.00 80 "BARREN" 6.94 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.91TOTAL AREA(ACRES) = 0.62 PEAK FLOW RATE(CFS) = 0.91*** FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 905.00 DOWNSTREAM(FEET) = 789.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 440.00 CHANNEL SLOPE = 0.2636 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.91 FLOW VELOCITY(FEET/SEC) = 4.74 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 8.49 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 760.00 FEET. *** FLOW PROCESS FROM NODE 72.00 TO NODE 72.00 IS CODE = 81 15

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN) = 8.49* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.671 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" 2.24 0.25 С 1.00 80 NATURAL POOR COVER "BARREN" D 0.31 0.20 1.00 83 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) =2.55SUBAREA RUNOFF(CFS) =3.27EFFECTIVE AREA(ACRES) =3.17AREA-AVERAGED Fm(INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.17PEAK FLOW RATE(CFS) = 4.07 ---+ | OFFSITE FLOW AT PROPERTY LINE 1 | Q=4.07 CFS, A=3.17 ACRES, Tc=8.5 MIN. 1 ---+ *** FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21 ____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) = 986.00 DOWNSTREAM(FEET) = 866.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.773 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.902 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

16

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 1.95 0.25 1.00 80 6.77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.90TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = 2.90 +---------+ | OFFSITE FLOW AT PROPERTY LINE | Q=2.90 CFS, A=1.95 ACRES, Tc=6.8 MIN. 1 1 +--------+ *** FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21 ------>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 460.00 ELEVATION DATA: UPSTREAM(FEET) = 1040.00 DOWNSTREAM(FEET) = 877.00 $Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.505 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.793 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.34 0.25 1.00 80 "BARREN" 7.51 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.25TOTAL AREA(ACRES) = 2.34 PEAK FLOW RATE(CFS) = 3.25---+

```
| OFFSITE FLOW AT PROPERTY LINE
1
 | Q=3.25 CFS, A=2.34 ACRES, Tc=7.5 MIN.
1
1
+----
        ---+
***
  FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
  >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
  ELEVATION DATA: UPSTREAM(FEET) = 1090.00 DOWNSTREAM(FEET) =
1015.00
  Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
  SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.783
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.900
  SUBAREA TC AND LOSS RATE DATA (AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Ap SCS
                               Fp
TC
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
(MIN.)
  NATURAL POOR COVER
                   C 2.93 0.25 1.00 80
  "BARREN"
6.78
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
  SUBAREA RUNOFF(CFS) = 4.35
  TOTAL AREA(ACRES) = 2.93 PEAK FLOW RATE(CFS) =
                                        4.35
***
  FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 52
     -----
  >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
  >>>>TRAVELTIME THRU SUBAREA<<<<<
ELEVATION DATA: UPSTREAM(FEET) = 1015.00 DOWNSTREAM(FEET) =
837.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 640.00 CHANNEL SLOPE = 0.2781
```

18

NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 4.35FLOW VELOCITY(FEET/SEC) = 6.46 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.65 Tc (MIN.) = 8.43LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 940.00 FEET. *** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 ____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____ MAINLINE Tc(MIN) = 8.43* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.677 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 8.27 0.25 1.00 80 С "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 8.27 SUBAREA RUNOFF(CFS) = 10.62EFFECTIVE AREA(ACRES) = 11.20 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 11.20PEAK FLOW RATE(CFS) = 14.38 ---+ | OFFSITE FLOW AT PROPERTY LINE 1 | Q=14.38 CFS, A=11.20 ACRES, Tc=8.4 MIN. 1 T +---____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 11.20 TC(MIN.) = 8.43EFFECTIVE AREA(ACRES) = 11.20 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 14.38 ===

Section V 100-Year Event Hydrology Study Existing Condition

*** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1247 Analysis prepared by: KING CIVIL ENGINEERING CORP. 101 S. KRAEMER BLVD. , SUITE 225 PLACENTIA, CA. 92870 PHONE: 714-996-7010, FAX: 714-996-0322 ****** * TENTATIVE PARCEL MAP 2020-125 * 100 YEAR HYDROLOGY * * EXISTING CONDITIONS 2579E100.RES * FILE NAME: 2579E.100 TIME/DATE OF STUDY: 14:44 04/13/2020 _______ === USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)_____ 1 20.0 10.0 0.010/0.010/ --- 0.50 1.50 0.0313 0.020 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PTPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED *** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1150.00 DOWNSTREAM(FEET) = 1095.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.217 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.014 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.66 0.25 1.00 98 "BARREN" 7.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 11.40TOTAL AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) = 11.40 *** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1095.00 DOWNSTREAM(FEET) = 867.00					
CHANNEL LENGTH THRU SUBAREA(FEET) = 760.00 CHANNEL SLOPE = 0.3000 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 11.40					
FLOW VELOCITY(FEET/SEC) = 8.17 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)					
TRAVEL TIME(MIN.) = 1.55 TC(MIN.) = 8.77 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1060.00 FEET.					
**** ***					
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81					
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<					
MAINLINE $T_{C}(MIN) = 8.77$					
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.525					
SUBAREA LOSS RATE DATA(AMC III):					
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS					
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN					
NATURAL POOR COVER					
"BARREN" C 12.84 0.25 1.00 98					
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25					
SUBAREA AVERAGE PERVIOUS AREA FRACTION, $Ap = 1.00$					
SUBAREA AREA(ACRES) =12.84SUBAREA RUNOFF(CFS) =49.40EFFECTIVE AREA(ACRES) =15.50AREA-AVERAGED Fm(INCH/HR) =0.25					
AREA-AVERAGED $F_{\text{R}}(\text{INCH/HR}) = 0.25$ AREA-AVERAGED $F_{\text{R}}(\text{INCH/HR}) = 0.25$ AREA-AVERAGED $F_{\text{R}}(\text{INCH/HR}) = 0.25$ AREA-AVERAGED $A_{\text{R}} = 1.00$					
TOTAL AREA (ACRES) = 15.50 PEAK FLOW RATE (CFS) = 59.64					

FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 52					
>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<					
>>>>TRAVELTIME THRU SUBAREA<<<<					
===					
ELEVATION DATA: UPSTREAM(FEET) = 867.00 DOWNSTREAM(FEET) = 804.00					
CHANNEL LENGTH THRU SUBAREA (FEET) = 450.00 CHANNEL SLOPE = 0.1400					
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 59.64					

FLOW VELOCITY(FEET/SEC) = 12.88 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.58 Tc (MIN.) = 9.35LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _______ === MAINLINE Tc(MIN) = 9.35 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.353 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 4.63 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.63 SUBAREA RUNOFF(CFS) = 17.10 EFFECTIVE AREA(ACRES) = 20.13 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 20.13 PEAK FLOW RATE(CFS) = 74.33 ---+ | CANYON FLOW AT PROPERTY LINE | Q=74.33 CFS, A=20.13 ACRES, Tc=9.4 MIN. Î. ---+ *** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 _____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -----INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00

ELEVATION DATA: UPSTREAM(FEET) = 1190.00 DOWNSTREAM(FEET) = 1140.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.477 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.611 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" С 2.15 0.25 1.00 98 8.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00SUBAREA RUNOFF (CFS) = 8.44TOTAL AREA(ACRES) = 2.15 PEAK FLOW RATE(CFS) = 8.44*** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 52 ____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< === ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 927.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00 CHANNEL SLOPE = 0.3737 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 8.44 FLOW VELOCITY(FEET/SEC) = 7.57 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.25 Tc(MIN.) = 9.73LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 950.00FEET. *** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____ MAINLINE TC(MIN) = 9.73 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.240 SUBAREA LOSS RATE DATA (AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 3.63 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 3.63 SUBAREA RUNOFF(CFS) = 13.03 EFFECTIVE AREA(ACRES) = 5.78 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 5.78 PEAK FLOW RATE(CFS) = 20.75 ---+ | FLOW TO PROPERTY LINE 1 | Q=20.75 CFS, A=5.78 ACRES, Tc=9.7 MIN. ---+ *** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 280.00 ELEVATION DATA: UPSTREAM(FEET) = 1108.00 DOWNSTREAM(FEET) = 1040.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.637 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.345 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER C 0.42 0.25 1.00 98 "BARREN" 6.64 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00SUBAREA RUNOFF(CFS) = 1.93TOTAL AREA(ACRES) = 0.42 PEAK FLOW RATE(CFS) = 1.93

6

*** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ______ ____ ELEVATION DATA: UPSTREAM(FEET) = 1040.00 DOWNSTREAM(FEET) = 867.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 640.00 CHANNEL SLOPE = 0.2703 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.93 FLOW VELOCITY(FEET/SEC) = 5.40 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.98 Tc (MIN.) = 8.61LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 920.00 FEET. * * * FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE TC(MIN) = 8.61 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.571 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER C 5.29 0.25 "BARREN" 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 5.29 SUBAREA RUNOFF(CFS) = 20.57 EFFECTIVE AREA(ACRES) = 5.71 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 5.71 PEAK FLOW RATE(CFS) = 22.20 ---+ | FLOW TO PROPERTY LINE 1 | Q=22.20 CFS, A=5.71 ACRES, Tc=8.6 MIN. Ĩ 1

---+ *** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ___ INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1034.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.526 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.403 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tс LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 1.15 0.25 1.00 98 6.53 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) =5.33TOTAL AREA(ACRES) =1.15PEAK FLOW RATE(CFS) =5.33 *** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< === ELEVATION DATA: UPSTREAM(FEET) = 1034.00 DOWNSTREAM(FEET) = 826.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 690.00 CHANNEL SLOPE = 0.3014 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 5.33 FLOW VELOCITY(FEET/SEC) = 6.77 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.70 Tc (MIN.) = 8.22

LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00 = 990.00FEET. *** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____ MAINLINE TC(MIN) = 8.22* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.686 SUBAREA LOSS RATE DATA (AMC III): SCS SOIL AREA FP DEVELOPMENT TYPE/ Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 3.49 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 13.93 EFFECTIVE AREA(ACRES) = 4.64 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 4.64PEAK FLOW RATE(CFS) = 18.52 *** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< === TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.22 RAINFALL INTENSITY(INCH/HR) = 4.69 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 4.64 TOTAL STREAM AREA(ACRES) = 4.64PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.52 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

_____ === INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1028.00 DOWNSTREAM(FEET) = 965.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.024 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.146 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 1.32 0.25 1.00 98 7.02 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00SUBAREA RUNOFF(CFS) = 5.82TOTAL AREA(ACRES) = 1.32 PEAK FLOW RATE(CFS) = 5.82 *** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 826.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.3971 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 5.82 FLOW VELOCITY (FEET/SEC) = 6.92 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.84 Tc (MIN.) = 7.87LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00FEET. *** FLOW PROCESS FROM NODE 52.00 TO NODE 52.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<

MAINLINE TC(MIN) = 7.87* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.791 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER С "BARREN" 1.28 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.28 SUBAREA RUNOFF(CFS) = 5.23 EFFECTIVE AREA(ACRES) = 2.60 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 10.63 *** FLOW PROCESS FROM NODE 52.00 TO NODE 52.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< === TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.87 RAINFALL INTENSITY(INCH/HR) = 4.79AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.60 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.63 ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 18.528.224.6860.25(0.25)1.004.640.0010.637.874.7910.25(0.25)1.002.650.00 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Ap Ae HEADWATER STREAM Q TC Intensity Fp(Fm) (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER

 1
 28.77
 7.87
 4.791
 0.200
 0.200

 2
 28.90
 8.22
 4.686
 0.250
 0.25)
 1.00

 28.777.874.7910.25(0.25)1.007.050.0028.908.224.6860.25(0.25)1.007.240.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.90 Tc(MIN.) = 8.22 EFFECTIVE AREA(ACRES) = 7.24 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 7.24LONGEST FLOWPATH FROM NODE 40.00 TO NODE 52.00 = 990.00FEET. * * * FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 52____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 826.00 DOWNSTREAM(FEET) = 797.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.1115 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 28.90 FLOW VELOCITY (FEET/SEC) = 10.48 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 8.64LONGEST FLOWPATH FROM NODE 40.00 TO NODE 53.00 = 1250.00 FEET. *** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----MAINLINE TC(MIN) = 8.64* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.564 SUBAREA LOSS RATE DATA (AMC III): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 1.98 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.98 SUBAREA RUNOFF(CFS) = 7.69 EFFECTIVE AREA(ACRES) = 9.22 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 9.22 PEAK FLOW RATE(CFS) = 35.79

** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1 35.87 8.28 4.669 0.25(0.25) 1.00 9.0 50.00 35.79 8.64 4.564 0.25(0.25) 1.00 2 9.2 40.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 35.87 Tc(MIN.) = 8.28 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00 EFFECTIVE AREA(ACRES) = 9.02---+ | OFFSITE FLOW TO PROPERTY LINE | Q=35.87 CFS, A=9.22 ACRES, Tc=8.3 MIN. ---+ *** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 290.00 ELEVATION DATA: UPSTREAM(FEET) = 983.00 DOWNSTREAM(FEET) = 907.00 $Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.629 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.350 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 0.70 0.25 1.00 98 "BARREN" 6.63 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.21TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) = 3.21

13

*** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 907.00 DOWNSTREAM(FEET) = 810.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.2771 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 3.21 FLOW VELOCITY (FEET/SEC) = 6.03 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 7.60LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 640.00FEET. *** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _______ === MAINLINE TC(MIN) = 7.60* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.871 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 1.62 0.25 "BARREN" 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.62 SUBAREA RUNOFF(CFS) = 6.74EFFECTIVE AREA(ACRES) = 2.32 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.32 PEAK FLOW RATE(CFS) = 9.65 _____ +---------+ | OFFSITE FLOW AT PROPERTY LINE 1 | Q=9.65 CFS, A=2.32 ACRES, Tc=7.6 MIN. 1 1 14

+					
+					
****	******	******	* * * * * * * * *	******	******
* * *					
FLOW PROCESS FROM NODE 7					
>>>>RATIONAL METHOD INITIAL >>USE TIME-OF-CONCENTRATION D				AREA<<	
<pre>=== INITIAL SUBAREA FLOW-LENGTH() ELEVATION DATA: UPSTREAM(FEE' 905.00</pre>			DOWNSTREA	M(FEET) =	
Tc = K* [(LENGTH** 3.00)/(ELE SUBAREA ANALYSIS USED MINIMU * 100 YEAR RAINFALL INTENSIT SUBAREA TC AND LOSS RATE DAT DEVELOPMENT TYPE/ SCS	M TC(MIN Y(INCH/H A(AMC II	N.) = HR) = 5. HI):	6.943 187	Ар	SCS
TC LAND USE GRO (MIN.)	JP (AC	CRES) (I	NCH/HR)	(DECIMAL)	CN
		0.62	0.25	1.00	98
6.94 SUBAREA AVERAGE PERVIOUS LOS SUBAREA AVERAGE PERVIOUS ARE SUBAREA RUNOFF(CFS) = 2 TOTAL AREA(ACRES) = 0.6	A FRACTI .76	ION, Ap =	1.00		5
*****	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * *
* * *					
FLOW PROCESS FROM NODE 7	1.00 TO	NODE	72.00 IS	CODE = 5)
>>>>COMPUTE NATURAL VALLEY >>>>>TRAVELTIME THRU SUBAREA		FLOW<<<<	<		
				===========	
ELEVATION DATA: UPSTREAM(FEE 789.00					
CHANNEL LENGTH THRU SUBAREA(NOTE: CHANNEL SLOPE OF .1 WA CHANNEL FLOW THRU SUBAREA(CF FLOW VELOCITY(FEET/SEC) =	S ASSUMI S) =	ED IN VEL 2.76	OCITY EST	IMATION	
MANUAL) TRAVEL TIME(MIN.) = 1.26	Tc(MIN	.) = 8.	20		

LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 760.00 FEET. *** FLOW PROCESS FROM NODE 72.00 TO NODE 72.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE TC(MIN) = 8.20 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.692 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 2.24 0.25 1.00 98 NATURAL POOR COVER "BARREN" D 0.31 0.20 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF(CFS) = 10.21 TOTAL AREA(ACRES) = 3.17 PEAK FLOW RATE(CFS) = 12.69 ---+ | OFFSITE FLOW AT PROPERTY LINE | Q=12.69 CFS, A=3.17 ACRES, Tc=8.2 MIN. 1 ---+ * * * FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH (FEET) = 350.00 ELEVATION DATA: UPSTREAM(FEET) = 986.00 DOWNSTREAM(FEET) = 866.00

16

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.773 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.275 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" 1.95 0.25 1.00 98 С 6.77 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 8.82 TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = 8.82 ---+ | OFFSITE FLOW AT PROPERTY LINE 1 Q=8.82 CFS, A=1.95 ACRES, Tc=6.8 MIN. 1 1 ---+ * * * FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 460.00 ELEVATION DATA: UPSTREAM(FEET) = 1040.00 DOWNSTREAM(FEET) = 877.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.505 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.898 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.34 0.25 1.00 98 "BARREN" 7.51

17

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF (CFS) = 9.79TOTAL AREA(ACRES) = 2.34 PEAK FLOW RATE(CFS) = 9.79---+ | OFFSITE FLOW AT PROPERTY LINE 1 | Q=9.79 CFS, A=2.34 ACRES, Tc=7.5 MIN. 1 1 +-----+ *** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1090.00 DOWNSTREAM(FEET) = 1015.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 6.783 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.270 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.93 0.25 1.00 98 "BARREN" 6.78 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 13.24TOTAL AREA(ACRES) = 2.93 PEAK FLOW RATE(CFS) = 13.24*** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 52

>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA<<<<<

_______ ____ ELEVATION DATA: UPSTREAM(FEET) = 1015.00 DOWNSTREAM(FEET) = 837.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 640.00 CHANNEL SLOPE = 0.2781 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 13.24 FLOW VELOCITY(FEET/SEC) = 8.49 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 8.04LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 940.00 FEET. *** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE Tc(MIN) = 8.04* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.741 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" С 8.27 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 8.27 SUBAREA RUNOFF(CFS) = 33.42 $EFFECTIVE AREA(ACRES) = 11.20 \quad AREA-AVERAGED Fm(INCH/HR) = 0.25$ AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 11.20 PEAK FLOW RATE(CFS) = 45.26 ---+ | OFFSITE FLOW AT PROPERTY LINE 1 | Q=45.26 CFS, A=11.20 ACRES, Tc=8.0 MIN. 1 1 1 +-____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 11.20 TC(MIN.) = 8.04

EFFEC	TIVE	AREA	(ACRES)	=		11.20	AREA-AVERAGED	Fm ((INC	CH/HR) =	0.25	
AREA-	AVERA	AGED	Fp(INCH,	/HR) :	=	0.25	AREA-AVERAGED	Ap	=	1.00		
PEAK	FLOW	RATE	(CFS)	=	4	45.26						

===

END OF RATIONAL METHOD ANALYSIS

Section VI 2-Year Event Hydrology Study Developed Condition

+++ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1247 Analysis prepared by: KING CIVIL ENGINEERING CORP. 101 S. KRAEMER BLVD. , SUITE 225 PLACENTIA, CA. 92870 PHONE: 714-996-7010, FAX: 714-996-0322 ******************* * TENTATIVE PARCEL MAP 2020-125 * * 2 YEAR HYDROLOGY * * NEW HOUSE CONDITION 2579N2.RES FILE NAME: 2579N.2 TIME/DATE OF STUDY: 10:24 07/15/2020 ____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: === --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNTNG WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)======= 1 20.0 10.0 0.010/0.010/ --- 0.50 1.50 0.0313 0.020 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED *** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1150.00 DOWNSTREAM(FEET) = 1095.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.217 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.834SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.70 0.25 1.00 80 "BARREN" 7.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF (CFS) = 3.85TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 3.85*** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<<

ELEVATION DATA: UPSTREAM(FEET) = 1095.00 DOWNSTREAM(FEET) =
870.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 760.00 CHANNEL SLOPE = 0.2961 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 3.85 FLOW VELOCITY(FEET/SEC) = 6.28 (PER LACFCD/RCFC&WCD HYDROLOGY
MANUAL)
TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 9.23 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1060.00 FEET.

FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
===
MAINLINE $Tc(MIN) = 9.23$
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.592
SUBAREA LOSS RATE DATA (AMC I):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL POOR COVER
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
SUBAREA AREA(ACRES) = 12.74 SUBAREA RUNOFF(CFS) = 15.38
EFFECTIVE AREA(ACRES) = 15.44 AREA-AVERAGED Fm(INCH/HR) = 0.25
AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 15.44 PEAK FLOW RATE(CFS) = 18.65

FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 52
>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>TRAVELTIME THRU SUBAREA<<<<
ELEVATION DATA: UPSTREAM(FEET) = 870.00 DOWNSTREAM(FEET) =
804.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 CHANNEL SLOPE = 0.1467 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 18.65

FLOW VELOCITY(FEET/SEC) = 9.30 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAT.) TRAVEL TIME (MIN.) = 0.81 TC (MIN.) = 10.04 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____ MAINLINE TC(MIN) = 10.042 YEAR RAINFALL INTENSITY(INCH/HR) = 1.517 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" С 1.37 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.37 SUBAREA RUNOFF(CFS) = 1.56 EFFECTIVE AREA(ACRES) = 16.81 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 16.81PEAK FLOW RATE(CFS) = 19.17 *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.04RAINFALL INTENSITY (INCH/HR) = 1.52AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 16.81 TOTAL STREAM AREA(ACRES) = 16.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.17 ***

FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 ____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 420.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1013.00 $Tc = K^* [(LENGTH^{**} 3.00) / (ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.661 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.772 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER C 1.37 0.25 1.00 80 "BARREN" 7.66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.881.37 PEAK FLOW RATE(CFS) = 1.88TOTAL AREA(ACRES) = *** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 1013.00 DOWNSTREAM(FEET) = 826.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL SLOPE = 0.4065 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.88 FLOW VELOCITY(FEET/SEC) = 5.37 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.43 Tc (MIN.) = 9.09LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 880.00 FEET. *** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81

_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN) = 9.09 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.606 * SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 2.89 0.25 1.00 80 C "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA (ACRES) =2.89SUBAREA RUNOFF (CFS) =3.53EFFECTIVE AREA (ACRES) =4.26AREA-AVERAGED Fm (INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 5.20 TOTAL AREA(ACRES) = 4.26*** FLOW PROCESS FROM NODE 22.00 TO NODE 13.00 IS CODE = 52 _____ _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ____ ELEVATION DATA: UPSTREAM(FEET) = 826.00 DOWNSTREAM(FEET) = 804.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 120.00 CHANNEL SLOPE = 0.1833 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 5.20 FLOW VELOCITY (FEET/SEC) = 6.73 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.30 Tc (MIN.) = 9.39LONGEST FLOWPATH FROM NODE 20.00 TO NODE 13.00 = 1000.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< < >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< === TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.39 RAINFALL INTENSITY(INCH/HR) = 1.58 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 4.26 TOTAL STREAM AREA(ACRES) = 4.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.20 ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 19.17 10.04 1.517 0.25(0.25) 1.00 16.8 10.00 5.20 9.39 1.577 0.25(0.25) 1.00 4.3 20.00 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 23.97 9.39 1.577 0.25(0.25) 1.00 20.0 20.00 1 24.14 10.04 1.517 0.25(0.25) 1.00 21.1 10.00 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.14 Tc(MIN.) = 10.04 EFFECTIVE AREA(ACRES) = 21.07 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 21.07LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ____ MAINLINE TC(MIN) = 10.04* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.517 SUBAREA LOSS RATE DATA(AMC I): Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA FP GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 0.86 0.25 1.00 80 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 0.86 SUBAREA RUNOFF(CFS) = 0.98 EFFECTIVE AREA(ACRES) = 21.93 AREA-AVERAGED Fm(INCH/HR) = 0.25

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 21.93 PEAK FLOW RATE(CFS) = 25.01 ____ +--------+ | TOTAL FLOW TO CANYON AT PROPERTY LINE ABOVE EX. 27" RCP SD 1 | Q=25.01 CFS, A=21.93 ACRES, TC=10.0 MIN. 1 ---+ *** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ === INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00 ELEVATION DATA: UPSTREAM(FEET) = 1190.00 DOWNSTREAM(FEET) = 1140.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.477 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.672 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER C 2.15 0.25 1.00 80 "BARREN" 8.48 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.75TOTAL AREA(ACRES) = 2.15 PEAK FLOW RATE(CFS) = 2.75 *** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 52 ------>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<

.

______ ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 908.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 420.00 CHANNEL SLOPE = 0.5524 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 2.75FLOW VELOCITY(FEET/SEC) = 5.83 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.20 Tc (MIN.) = 9.68LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 800.00 FEET. FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----MAINLINE TC(MIN) = 9.68* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.549 SUBAREA LOSS RATE DATA (AMC I): Fp Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 1.00 80 4.09 0.25 С "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.09 SUBAREA RUNOFF(CFS) = 4.78 EFFECTIVE AREA(ACRES) = 6.24 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 6.24PEAK FLOW RATE(CFS) = 7.30 +--------+ | OFFSITE FLOW TO NORTHWEST PROPERTY LINE | Q=7.30 CFS, A=6.24 ACRES, Tc=9.7 MIN. T ---+ *** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 390.00 ELEVATION DATA: UPSTREAM(FEET) = 1110.00 DOWNSTREAM(FEET) = 1005.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.423 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.804 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 0.59 0.25 1.00 80 "BARREN" 7.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.83TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) = 0.83 *** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 1005.00 DOWNSTREAM(FEET) = 900.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 410.00 CHANNEL SLOPE = 0.2561 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.83 FLOW VELOCITY (FEET/SEC) = 4.74 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.44 TC (MIN.) = 8.86 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00 = 800.00 FEET. * * * FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN) = 8.86 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.630 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 4.46 0.25 1.00 80 "BARREN" С SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.46 SUBAREA RUNOFF(CFS) = 5.54 EFFECTIVE AREA(ACRES) = 5.05 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 5.05PEAK FLOW RATE(CFS) = 6.27 ---+ | FLOW TO PROPERTY LINE | 0=6.27 CFS, A=5.05 ACRES, Tc=8.9 MIN. 1 1 ---+ * * * FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 _____ ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00 ELEVATION DATA: UPSTREAM(FEET) = 987.00 DOWNSTREAM(FEET) = 866.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.326 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.818 SUBAREA TC AND LOSS RATE DATA(AMC I): Fp Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.)

NATURAL POOR COVER C 2.39 0.25 1.00 80 "BARREN" 7.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.37TOTAL AREA(ACRES) = 2.39 PEAK FLOW RATE(CFS) = 3.37 ---+ | EXISTING SLOPE FLOW TO PROPERTY LINE 1 | Q=3.37 CFS, A=2.39 ACRES, Tc=7.3 MIN. 1 1 _____ +--------+ *** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 _____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS << << >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 ELEVATION DATA: UPSTREAM(FEET) = 1045.00 DOWNSTREAM(FEET) = 1005.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.380 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.810 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER C 0.80 0.25 1.00 80 "BARREN" 7.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.12 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 1.12 *** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 52

NATURAL POOR COVER "BARREN" C 2.39 0.25 1.00 80 7.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.37TOTAL AREA(ACRES) = 2.39 PEAK FLOW RATE(CFS) = 3.37 | EXISTING SLOPE FLOW TO PROPERTY LINE | Q=3.37 CFS, A=2.39 ACRES, Tc=7.3 MIN. 1 1 ---+ *** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 ELEVATION DATA: UPSTREAM(FEET) = 1045.00 DOWNSTREAM(FEET) = 1005.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.380 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.810 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 0.80 0.25 1.00 80 "BARREN" 7.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.12TOTAL AREA (ACRES) = 0.80 PEAK FLOW RATE (CFS) = 1.12*** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 52

>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 1005.00 DOWNSTREAM(FEET) = 965.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 215.00 CHANNEL SLOPE = 0.1860 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.12FLOW VELOCITY(FEET/SEC) = 4.85 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.74 Tc (MIN.) = 8.12LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 495.00 FEET. *** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE TC(MIN) = 8.12 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.714 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 0.83 0.25 1.00 "BARREN" С 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 1.09 EFFECTIVE AREA(ACRES) = 1.63 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00PEAK FLOW RATE(CFS) = 2.15TOTAL AREA(ACRES) = 1.63*** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ === MAINLINE TC(MIN) = 8.12 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.714

SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE C 1.40 0.25 0.10 50 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) =1.40SUBAREA RUNOFF(CFS) =2.13EFFECTIVE AREA(ACRES) =3.03AREA-AVERAGED Fm(INCH/HR) =0.15 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.58 TOTAL AREA(ACRES) = 3.03 PEAK FLOW RATE(CFS) = 4.28 *** FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 51 ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 855.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.1571 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.619 SUBAREA LOSS RATE DATA (AMC I): SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 0.50 0.25 1.00 80 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.58 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 13.77 AVERAGE FLOW DEPTH(FEET) = 0.58 TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 8.97SUBAREA AREA(ACRES) =0.50SUBAREA RUNOFF(CFS) =0.62EFFECTIVE AREA(ACRES) =3.53AREA-AVERAGED Fm(INCH/HR) = 0.16 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.64 TOTAL AREA(ACRES) = 3.53 PEAK FLOW RATE(CFS) = 4.63 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) = 13.64 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 63.00 = 1195.00 FEET. *** FLOW PROCESS FROM NODE 63.00 TO NODE 64.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ____ ELEVATION DATA: UPSTREAM(FEET) = 855.00 DOWNSTREAM(FEET) = 835.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.5000 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.616 SUBAREA LOSS RATE DATA (AMC I): Ap SCS Fp DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 0.25 1.00 80 0.54 C "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 21.75 AVERAGE FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.00SUBAREA AREA(ACRES) =0.54SUBAREA RUNOFF(CFS) =0.66EFFECTIVE AREA(ACRES) =4.07AREA-AVERAGED Fm(INCH/HR) = 0.17 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.69 TOTAL AREA(ACRES) = 4.07 PEAK FLOW RATE(CFS) = 5.29 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 21.92 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 64.00 = 1235.00 FEET. *** FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE Tc(MIN) = 9.00 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.616 * SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 0.29 0.25 1.00 80 C "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00

SUBAREA AREA(ACRES) =0.29SUBAREA RUNOFF(CFS) =0.36EFFECTIVE AREA(ACRES) =4.36AREA-AVERAGED Fm(INCH/HR) =0.18 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.71TOTAL AREA(ACRES) = 4.36 PEAK FLOW RATE(CFS) = 5.64 *** FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 835.00 DOWNSTREAM(FEET) = 816.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 165.00 CHANNEL SLOPE = 0.1152 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.594 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 0.68 "BARREN" 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 13.02 AVERAGE FLOW DEPTH(FEET) = 0.68 TRAVEL TIME(MIN.) = 0.21 TC(MIN.) = 9.21SUBAREA AREA(ACRES) =0.68SUBAREA RUNOFF(CFS) =0.82EFFECTIVE AREA(ACRES) =5.04AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 5.04PEAK FLOW RATE(CFS) = 6.38END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.70 FLOW VELOCITY(FEET/SEC.) = 13.13 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 65.00 = 1400.00FEET. *** FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<

17

ELEVATION DATA: UPSTREAM(FEET) = 816.00 DOWNSTREAM(FEET) = 796.60 CHANNEL LENGTH THRU SUBAREA (FEET) = 75.00 CHANNEL SLOPE = 0.2587 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.588 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 0.52 0.25 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.69 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 18.14 AVERAGE FLOW DEPTH(FEET) = 0.61 TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 9.28SUBAREA AREA(ACRES) =0.52SUBAREA RUNOFF(CFS) =0.63EFFECTIVE AREA(ACRES) =5.56AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.77 TOTAL AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) = 6.98END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.62 FLOW VELOCITY(FEET/SEC.) = 18.44 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 66.00 = 1475.00 FEET. +--------+ | FLOW TO CANYON ABOVE EX. 24' RCP SD AT PROPERTY LINE NODE 66 1 | Q=6.98 CFS, A=5.56 ACRES, TC=9.3 MIN. 1 ______ +--------+ FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA << ______ ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00

ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 891.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.838 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.749 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 0.76 0.25 1.00 80 7.84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.76 PEAK FLOW RATE(CFS) = 1.03 *** FLOW PROCESS FROM NODE 71.00 TO NODE 71.00 IS CODE = 81 ____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<< === MAINLINE TC(MIN) = 7.84* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.749 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" 0.58 0.25 C 1.00 80 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 0.78 EFFECTIVE AREA(ACRES) = 1.34 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 1.34 PEAK FLOW RATE(CFS) = 1.81 *** FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< __________

ELEVATION DATA: UPSTREAM(FEET) = 891.00 DOWNSTREAM(FEET) = 845.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 95.00 CHANNEL SLOPE = 0.4842 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.738 SUBAREA LOSS RATE DATA (AMC I): SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 0.93 0.25 1.00 80 С "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.43 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.84 AVERAGE FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 7.93SUBAREA AREA(ACRES) =0.93SUBAREA RUNOFF(CFS) =1.25EFFECTIVE AREA(ACRES) =2.27AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED $F_{p}(INCH/HR) = 0.25$ AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) = 3.04 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.40 FLOW VELOCITY(FEET/SEC.) = 18.85 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 475.00 FEET. *** FLOW PROCESS FROM NODE 72.00 TO NODE 73.00 IS CODE = 51 ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ === ELEVATION DATA: UPSTREAM(FEET) = 845.00 DOWNSTREAM(FEET) = 817.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.1400 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.704 SUBAREA LOSS RATE DATA (AMC I): SCS Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 0.35 0.25 1.00 80 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 12.01

AVERAGE FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 0.28 TC(MIN.) = 8.20SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 0.46EFFECTIVE AREA(ACRES) = 2.62 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 3.43 TOTAL AREA(ACRES) = 2.62 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.53 FLOW VELOCITY(FEET/SEC.) = 12.15 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 73.00 = 675.00 FEET. *** FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< < ______ ____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.20 RAINFALL INTENSITY(INCH/HR) = 1.70 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.62 TOTAL STREAM AREA(ACRES) = 2.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 *** FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ___________ ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 140.00 ELEVATION DATA: UPSTREAM(FEET) = 900.00 DOWNSTREAM(FEET) = 840.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264 SUBAREA TC AND LOSS RATE DATA(AMC I):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 0.41 0.25 1.00 80 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.74TOTAL AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) = 0.74 *** FLOW PROCESS FROM NODE 81.00 TO NODE 73.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ ____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00 RAINFALL INTENSITY(INCH/HR) = 2.26AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 0.41 TOTAL STREAM AREA(ACRES) = 0.41PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.74 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 3.438.201.7040.25(0.25)1.002.670.000.745.002.2640.25(0.25)1.000.480.00 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE HEADWATER 13.645.002.2640.25(0.25)1.002.080.0023.968.201.7040.25(0.25)1.003.070.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =3.96Tc(MIN.) =8.20EFFECTIVE AREA(ACRES) =3.03AREA-AVERAGED Fm(INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.03

LONGEST FLOWPATH FROM NODE 70.00 TO NODE 73.00 = 675.00 FEET. *** FLOW PROCESS FROM NODE 73.00 TO NODE 74.00 IS CODE = 51 _____ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 817.00 DOWNSTREAM(FEET) = 806.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 120.00 CHANNEL SLOPE = 0.0917 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.682 SUBAREA LOSS RATE DATA(AMC I): SCS Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 1.00 80 C 0.35 0.25 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.19 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 10.87 AVERAGE FLOW DEPTH(FEET) = 0.62 TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 8.39SUBAREA AREA(ACRES) =0.35SUBAREA RUNOFF(CFS) =0.45EFFECTIVE AREA(ACRES) =3.38AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.38 PEAK FLOW RATE(CFS) = 4.36 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.63 FLOW VELOCITY(FEET/SEC.) = 11.03 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 74.00 = 795.00 FEET. +-----___+ | PARTIAL FLOW TO FAIRMONT BLVD. PARKWAY CULVERT AT DRIVEWAY 1 | Q=6.48 CFS, A=4.78 ACRES, Tc=8.3 MIN. 1 1 _____ ---+

*** FLOW PROCESS FROM NODE 74.00 TO NODE 74.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.39 RAINFALL INTENSITY (INCH/HR) = 1.68AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 3.38 TOTAL STREAM AREA(ACRES) = 3.38 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.36 *** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 924.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) C 0.41 0.25 0.10 50 COMMERCIAL 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA RUNOFF(CFS) = 0.83TOTAL AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) = 0.83 ***

FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED) <<<<< ___________ ----UPSTREAM ELEVATION(FEET) = 924.00 DOWNSTREAM ELEVATION(FEET) = 806.00 STREET LENGTH(FEET) = 855.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH (FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.010 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.010 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.15 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.10HALFSTREET FLOOD WIDTH(FEET) = 6.63 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.25 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.44 STREET FLOW TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) = 8.35 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.686 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL 0.43 0.25 0.10 50 С SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.43 SUBAREA RUNOFF(CFS) = 0.64EFFECTIVE AREA(ACRES) = 0.84 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10TOTAL AREA(ACRES) = 0.84 PEAK FLOW RATE(CFS) = 1.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.11 HALFSTREET FLOOD WIDTH(FEET) = 6.92 FLOW VELOCITY(FEET/SEC.) = 4.33 DEPTH*VELOCITY(FT*FT/SEC.) = 0.46 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1155.00 FEET. *** FLOW PROCESS FROM NODE 102.00 TO NODE 74.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<

=== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 8.35 RAINFALL INTENSITY(INCH/HR) = 1.69 AREA-AVERAGED Fm(INCH/HR) = 0.02AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.10 EFFECTIVE STREAM AREA(ACRES) = 0.84 TOTAL STREAM AREA(ACRES) = 0.84PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.26 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 4.17 5.19 2.217 0.25(0.25) 1.00 2.4 80.00 1 4.368.391.6820.25(0.25)1.003.470.001.268.351.6860.25(0.02)0.100.8100.00 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 1 5.20 5.19 2.217 0.25(0.21) 0.84 2.9 80.00 5.618.351.6860.25(0.21)0.824.2100.005.618.391.6820.25(0.21)0.824.270.00 2 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =5.61Tc(MIN.) =8.35EFFECTIVE AREA(ACRES) =4.21AREA-AVERAGED Fm(INCH/HR) =0.21 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.82 TOTAL AREA(ACRES) = 4.22LONGEST FLOWPATH FROM NODE 100.00 TO NODE 74.00 = 1155.00 FEET. +--------+ | TOTAL FLOW DRIVEWAY AND V DITCH AT FAIRMONT BLVD. CULVERT 1 | Q=5.61 CFS, A= 4.22 ACRES, TC= 8.3 MIN. 1 | NODE 74 +--------+ *** FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 22

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<< _______ -----INITIAL SUBAREA FLOW-LENGTH(FEET) = 855.00 USER SPECIFIED Tc(MIN.) = 5.000 2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER 0.14 0.20 1.00 83 "BARREN" D SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.26TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.26 ---+ | SLOPE FLOW TO FAIRMONT BLVD. 1 | Q=0.26 CFS, A=0.14 ACRES, Tc=5.0 MIN. ľ 1 ---+ *** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 430.00 ELEVATION DATA: UPSTREAM(FEET) = 845.00 DOWNSTREAM(FEET) = 790.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 8.957 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.620 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS Fp TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

```
NATURAL POOR COVER
                  C 1.69 0.25 1.00 80
 "BARREN"
8.96
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
 SUBAREA RUNOFF(CFS) = 2.08
                1.69 PEAK FLOW RATE(CFS) = 2.08
 TOTAL AREA(ACRES) =
---+
| FLOW TO SOUTHERLY FAIRMONT BLVD. CULVERT
E.
| Q=2.08 CFS, A=1.69 ACRES, Tc=9.0 MIN.
_____
+--
---+
===
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)=1.69TC(MIN.)=8.96EFFECTIVE AREA(ACRES)=1.69AREA-AVERAGED Fm(INCH/HR)0.25
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00
                  2.08
 PEAK FLOW RATE(CFS) =
===
____________
===
 END OF RATIONAL METHOD ANALYSIS
```

28

Section VII 100-Year Event Hydrology Study Developed Condition

*** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1247 Analysis prepared by: KING CIVIL ENGINEERING CORP. 101 S. KRAEMER BLVD. , SUITE 225 PLACENTIA, CA. 92870 PHONE: 714-996-7010, FAX: 714-996-0322 ***** * TENTATIVE PARCEL MAP 2020-125 * * 100 YEAR HYDROLOGY STUDY * * NEW HOUSE CONDITION 2579N100.RES * FILE NAME: 2579N.100 TIME/DATE OF STUDY: 14:50 07/15/2020 ____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: === --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR

NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) ____ 1 20.0 10.0 0.010/0.010/ --- 0.50 1.50 0.0313 0.020 0.0150 2 20.0 10.0 0.010/0.010/ --- 0.50 1.50 0.0313 0.020 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EOUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED *** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 1150.00 DOWNSTREAM(FEET) = 1095.00 TC = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.217 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.014 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 2.70 0.25 1.00 98 "BARREN" 7.22 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 11.58TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) = 11.58 * * * FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 52 _____ ____

>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 1095.00 DOWNSTREAM(FEET) = 870.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 760.00 CHANNEL SLOPE = 0.2961 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 11.58 FLOW VELOCITY(FEET/SEC) = 8.20 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.54 Tc (MIN.) = 8.76LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1060.00 FEET. *** FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ____ MAINLINE Tc(MIN) = 8.76* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.527 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 12.74 0.25 "BARREN" 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA (ACRES) = 12.74 SUBAREA RUNOFF (CFS) = 49.04EFFECTIVE AREA(ACRES) = 15.44 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 15.44PEAK FLOW RATE(CFS) = 59.43* * * FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 870.00 DOWNSTREAM(FEET) = 804.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 450.00 CHANNEL SLOPE = 0.1467

NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 59.43 FLOW VELOCITY(FEET/SEC) = 12.87 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.58 Tc (MIN.) = 9.34LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<< ____ MAINLINE TC(MIN) = 9.34* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.354 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 1.37 0.25 "BARREN" 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 1.37 SUBAREA RUNOFF(CFS) = 5.06 EFFECTIVE AREA(ACRES) = 16.81 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 16.81 PEAK FLOW RATE(CFS) = 62.09 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.34RAINFALL INTENSITY(INCH/HR) = 4.35 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 16.81 TOTAL STREAM AREA(ACRES) = 16.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 62.09

*** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 420.00 ELEVATION DATA: UPSTREAM(FEET) = 1125.00 DOWNSTREAM(FEET) = 1013.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.661 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.852 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 1.37 0.25 1.00 98 "BARREN" 7.66 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 5.67TOTAL AREA(ACRES) = 1.37 PEAK FLOW RATE(CFS) = 5.67 *** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 52 _____ ____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< === ELEVATION DATA: UPSTREAM(FEET) = 1013.00 DOWNSTREAM(FEET) = 826.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 460.00 CHANNEL SLOPE = 0.4065 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 5.67 FLOW VELOCITY(FEET/SEC) = 6.87 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 1.12 Tc (MIN.) = 8.78LONGEST FLOWPATH FROM NODE 20.00 TO NODE 22.00 = 880.00 FEET.

*** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN) = 8.78* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.522 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 2.89 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 2.89 SUBAREA RUNOFF(CFS) = 11.11 EFFECTIVE AREA(ACRES) = 4.26 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 4.26 PEAK FLOW RATE(CFS) = 16.38 *** FLOW PROCESS FROM NODE 22.00 TO NODE 13.00 IS CODE = 52>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 826.00 DOWNSTREAM(FEET) = 804.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 120.00 CHANNEL SLOPE = 0.1833 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 16.38FLOW VELOCITY (FEET/SEC) = 8.98 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.22 Tc (MIN.) = 9.00LONGEST FLOWPATH FROM NODE 20.00 TO NODE 13.00 = 1000.00 FEET. FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1 _____ _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<

=== TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.00 RAINFALL INTENSITY(INCH/HR) = 4.46AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 4.26TOTAL STREAM AREA(ACRES) = 4.26PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.38 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1 62.09 9.34 4.354 0.25(0.25) 1.00 16.8 10.00 2 16.38 9.00 4.456 0.25(0.25) 1.00 4.3 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1 77.67 9.00 4.456 0.25(0.25) 1.00 20.4 20.00 78.08 9.34 4.354 0.25(0.25) 1.00 21.1 2 10.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 78.08 Tc(MIN.) = 9.34 EFFECTIVE AREA(ACRES) = 21.07 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 21.07LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 1510.00 FEET. *** FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN) = 9.34* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.354 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 0.86 0.25 1.00 98

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
  SUBAREA AREA(ACRES) = 0.86 SUBAREA RUNOFF(CFS) =
                                             3.18
  EFFECTIVE AREA(ACRES) = 21.93 AREA-AVERAGED Fm(INCH/HR) = 0.25
  AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00
  TOTAL AREA(ACRES) = 21.93
                          PEAK FLOW RATE(CFS) =
                                            81.01
 +-----
---+
 | TOTAL FLOW TO CANYON AT PROPERTY LINE ABOVE EX. 27" RCP SD
1
 | Q=81.01 CFS, A=21.93 ACRES, Tc=9.3 MIN.
1
1
1
+-----
---+
FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
  >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
===
  INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00
  ELEVATION DATA: UPSTREAM(FEET) = 1190.00 DOWNSTREAM(FEET) =
1140.00
  Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
  SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.477
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.611
  SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                         Ap SCS
Tc
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
(MIN.)
  NATURAL POOR COVER
                    C 2.15 0.25 1.00 98
  "BARREN"
8.48
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00
  SUBAREA RUNOFF(CFS) = 8.44
 TOTAL AREA(ACRES) = 2.15 PEAK FLOW RATE(CFS) = 8.44
***
 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 52
```

______ ____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< === ELEVATION DATA: UPSTREAM(FEET) = 1140.00 DOWNSTREAM(FEET) = 908.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 420.00 CHANNEL SLOPE = 0.5524 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 8.44 FLOW VELOCITY (FEET/SEC) = 7.57 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 0.92 Tc (MIN.) = 9.40LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00 = 800.00 FEET FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _______ === MAINLINE Tc(MIN) = 9.40 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.337 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER C 4.09 0.25 1.00 "BARREN" 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.09 SUBAREA RUNOFF(CFS) = 15.05 EFFECTIVE AREA(ACRES) = 6.24 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 6.24 PEAK FLOW RATE(CFS) = 22.95 ---+ | OFFSITE FLOW TO NORTHWEST PROPERTY LINE 1 | Q=22.95 CFS, A=6.24 ACRES, TC=9.4 MIN. T ---+

*** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 390.00 ELEVATION DATA: UPSTREAM(FEET) = 1110.00 DOWNSTREAM(FEET) = 1005.00 $Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 7.423 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.940 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Ap Fp SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 0.59 0.25 1.00 98 7.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.490.59 PEAK FLOW RATE(CFS) = 2.49 TOTAL AREA(ACRES) = *** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 1005.00 DOWNSTREAM(FEET) = 900.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 410.00 CHANNEL SLOPE = 0.2561 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 2.49 FLOW VELOCITY(FEET/SEC) = 5.70 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAT.) TRAVEL TIME (MIN.) = 1.20 Tc (MIN.) = 8.62LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00 = 800.00FEET.

10

*** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< === MAINLINE TC(MIN) = 8.62 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.568 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 4.46 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 4.46 SUBAREA RUNOFF(CFS) = 17.33 EFFECTIVE AREA(ACRES) = 5.05 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 5.05 PEAK FLOW RATE(CFS) = 19.63 ---+ | FLOW TO PROPERTY LINE | Q=19.63 CFS, A=5.05 ACRES, TC=8.6 MIN. E +-----_____ ---+ *** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00 ELEVATION DATA: UPSTREAM(FEET) = 987.00 DOWNSTREAM(FEET) = 866.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.326 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.990 SUBAREA TC AND LOSS RATE DATA(AMC III):

//

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 2.39 0.25 1.00 98 7.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 10.20TOTAL AREA (ACRES) = 2.39 PEAK FLOW RATE(CFS) = 10.20 +--------+ | EXISTING SLOPE FLOW TO PROPERTY LINE 1 | Q=10.20 CFS, A=2.39 ACRES, TC=7.3 MIN. 1 1 ---+ * * * FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00 ELEVATION DATA: UPSTREAM(FEET) = 1045.00 DOWNSTREAM(FEET) = 1005.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.380 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.962 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER C 0.80 0.25 1.00 98 "BARREN" 7.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.39TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.39

12

*** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 52 >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< === ELEVATION DATA: UPSTREAM(FEET) = 1005.00 DOWNSTREAM(FEET) = 965.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 215.00 CHANNEL SLOPE = 0.1860 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 3.39FLOW VELOCITY (FEET/SEC) = 6.10 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 7.97LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 495.00FEET. *** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ ____ MAINLINE Tc(MIN) = 7.97* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.762 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 0.83 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) =0.83SUBAREA RUNOFF(CFS) =3.37EFFECTIVE AREA(ACRES) =1.63AREA-AVERAGED Fm(INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.63PEAK FLOW RATE(CFS) = 6.62 *** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<

13

____ MAINLINE TC(MIN) = 7.97* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.762 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C 1.40 0.25 0.10 86 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 5.97 EFFECTIVE AREA(ACRES) = 3.03 AREA-AVERAGED Fm(INCH/HR) = 0.15 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.58 TOTAL AREA(ACRES) = 3.03PEAK FLOW RATE(CFS) = 12.59 *** FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 855.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.1571 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.568 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 0.50 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.56 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.81 AVERAGE FLOW DEPTH(FEET) = 0.87 TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 8.62SUBAREA AREA(ACRES) = 0.50SUBAREA RUNOFF(CFS) = 1.94EFFECTIVE AREA(ACRES) = 3.53 AREA-AVERAGED Fm(INCH/HR) =0.16 AREA-AVERAGED $F_{p}(INCH/HR) = 0.25$ AREA-AVERAGED $A_{p} = 0.64$ TOTAL AREA(ACRES) = 3.53PEAK FLOW RATE(CFS) = 14.00 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.88 FLOW VELOCITY(FEET/SEC.) = 18.07 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 63.00 = 1195.00FEET.

14

*** FLOW PROCESS FROM NODE 63.00 TO NODE 64.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 855.00 DOWNSTREAM(FEET) = 835.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 40.00 CHANNEL SLOPE = 0.5000CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.561 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" 0.54 0.25 C 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 28.42 AVERAGE FLOW DEPTH(FEET) = 0.73 TRAVEL TIME(MIN.) = 0.02Tc(MIN.) = 8.65SUBAREA AREA(ACRES) = 0.54 SUBAREA RUNOFF(CFS) = 2.10 EFFECTIVE AREA(ACRES) = 4.07 AREA-AVERAGED Fm(INCH/HR) = 0.17 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.69 TOTAL AREA(ACRES) = 4.07 PEAK FLOW RATE(CFS) = 16.07 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.74 FLOW VELOCITY(FEET/SEC.) = 28.98 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 64.00 = 1235.00FEET. *** FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 81 _____ ____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ ____ MAINLINE TC(MIN) = 8.65 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.561 SUBAREA LOSS RATE DATA (AMC III): Ар DEVELOPMENT TYPE/ SCS SOIL AREA FP SCS

15

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 0.29 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 1.13 EFFECTIVE AREA(ACRES) = 4.36 AREA-AVERAGED Fm(INCH/HR) = 0.18 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.71 TOTAL AREA(ACRES) = 4.36 PEAK FLOW RATE(CFS) = 17.20 *** FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 835.00 DOWNSTREAM(FEET) = 816 00 CHANNEL LENGTH THRU SUBAREA(FEET) = 165.00 CHANNEL SLOPE = 0.1152 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.514 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" 0.68 0.25 С 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.50 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.28 AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.80SUBAREA AREA(ACRES) =0.68SUBAREA RUNOFF(CFS) =2.61EFFECTIVE AREA(ACRES) =5.04AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 5.04 PEAK FLOW RATE(CFS) = 19.62END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.06 FLOW VELOCITY(FEET/SEC.) = 17.54 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 65.00 = 1400.00 FEET. *** FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 51

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< === ELEVATION DATA: UPSTREAM(FEET) = 816.00 DOWNSTREAM(FEET) = 796.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 75.00 CHANNEL SLOPE = 0.2587 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.498 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" C 0.52 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.62 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 23.95 AVERAGE FLOW DEPTH(FEET) = 0.93 TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 8.86SUBAREA AREA(ACRES) =0.52SUBAREA RUNOFF(CFS) =1.99EFFECTIVE AREA(ACRES) =5.56AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.77TOTAL AREA(ACRES) = 5.56 PEAK FLOW RATE(CFS) = 21.54 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.94 FLOW VELOCITY(FEET/SEC.) = 24.22 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 66.00 = 1475.00 FEET. _____ | FLOW TO CANYON ABOVE EX. 24" RCP SD AT PROPERTY LINE NODE 66 1 | Q=21.54 CFS, A=5.56 ACRES, Tc=8.9 MIN. 1 _____ ---+ *** FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

=== INITIAL SUBAREA FLOW-LENGTH(FEET) = 380.00 ELEVATION DATA: UPSTREAM(FEET) = 965.00 DOWNSTREAM(FEET) = 891.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.838 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.800 SUBAREA TC AND LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 0.76 0.25 1.00 98 7.84 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 3.11 TOTAL AREA(ACRES) = 0.76 PEAK FLOW RATE(CFS) = 3.11 *** FLOW PROCESS FROM NODE 71.00 TO NODE 71.00 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ ____ MAINLINE TC(MIN) = 7.84 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.800 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" С 0.58 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA AREA(ACRES) =0.58SUBAREA RUNOFF(CFS) =2.38EFFECTIVE AREA(ACRES) =1.34AREA-AVERAGED Fm(INCH/HR) =0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 1.34PEAK FLOW RATE(CFS) = 5.49 *** FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 51 _____

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<

18

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<

___________ === ELEVATION DATA: UPSTREAM(FEET) = 891.00 DOWNSTREAM(FEET) = 845.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 95.00 CHANNEL SLOPE = 0.4842 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.780 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" C 0.93 0.25 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.38 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 23.40 AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 7.91SUBAREA AREA(ACRES) = 0.93SUBAREA RUNOFF(CFS) = 3.79EFFECTIVE AREA(ACRES) = 2.27 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.27PEAK FLOW RATE(CFS) = 9.25 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.61 FLOW VELOCITY(FEET/SEC.) = 24.61 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 72.00 = 475.00 TEET FLOW PROCESS FROM NODE 72.00 TO NODE 73.00 IS CODE = 51 ______ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 845.00 DOWNSTREAM(FEET) = 817.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.1400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.718 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN NATURAL POOR COVER "BARREN" 0.35 0.25 1.00 98 С

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9,96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 15.93 AVERAGE FLOW DEPTH(FEET) = 0.79 TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 8.11SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.41 EFFECTIVE AREA(ACRES) = 2.62 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 2.62 PEAK FLOW RATE(CFS) = 10.54 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.81 FLOW VELOCITY(FEET/SEC.) = 16.00 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 73.00 = 675.00 FEET. *** FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE = 1 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ______ === TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.11 RAINFALL INTENSITY(INCH/HR) = 4.72 AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.002.62 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 2.62 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.54 *** FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 140.00 ELEVATION DATA: UPSTREAM(FEET) = 900.00 DOWNSTREAM(FEET) = 840.00 $Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$

```
20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.190 SUBAREA TC AND LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) NATURAL POOR COVER "BARREN" C 0.41 0.25 1.00 98 5.00 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 2.19TOTAL AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) = 2.19*** FLOW PROCESS FROM NODE 81.00 TO NODE 73.00 IS CODE = 1 ____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ______ ____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.00RAINFALL INTENSITY (INCH/HR) = 6.19AREA-AVERAGED Fm(INCH/HR) = 0.25AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 0.41 TOTAL STREAM AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.19 ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 110.548.114.7180.25(0.25)1.002.670.0022.195.006.1900.25(0.25)1.000.480.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 110.825.006.1900.25(0.25)1.002.080.00212.188.114.7180.25(0.25)1.003.070.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.18 Tc(MIN.) = 8.11

EFFECTIVE AREA(ACRES) = 3.03 AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 3.0370.00 TO NODE 73.00 = 675.00LONGEST FLOWPATH FROM NODE FEET. *** FLOW PROCESS FROM NODE 73.00 TO NODE 74.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ____ ELEVATION DATA: UPSTREAM(FEET) = 817.00 DOWNSTREAM(FEET) = 806.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 120.00 CHANNEL SLOPE = 0.0917 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 1.000MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.677 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 0.25 0.35 С 1.00 98 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.88 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 14.48 AVERAGE FLOW DEPTH(FEET) = 0.94 TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 8.25SUBAREA AREA(ACRES) =0.35SUBAREA RUNOFF(CFS) =1.39EFFECTIVE AREA(ACRES) =3.38AREA-AVERAGED Fm(INCH/HR) = 0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 3.38 PEAK FLOW RATE(CFS) = 13.47 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.96 FLOW VELOCITY(FEET/SEC.) = 14.66 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 74.00 = 795.00 FEET. ---+ | PARTIAL FLOW TO FAIRMONT BLVD. PARKWAY CULVERT AT DRIVEWAY 1 | Q=19.39 CFS, A=4.78 ACRES, Tc=8.2 MIN. 1

+					
******	* * * * * * * *	******	* * * * * * * * * * *	* * * * * * * * * *	*****
* * *					
FLOW PROCESS FROM NODE	74.00) TO NODE	74.00 I	S CODE =	1
>>>>DESIGNATE INDEPENDE	NT STREA	AM FOR CON	FLUENCE<<<<	<	
=== TOTAL NUMBER OF STREAMS CONFLUENCE VALUES USED FO TIME OF CONCENTRATION(MI) RAINFALL INTENSITY(INCH/M AREA-AVERAGED Fm(INCH/HR AREA-AVERAGED Fp(INCH/HR AREA-AVERAGED Ap = 1.00 EFFECTIVE STREAM AREA(ACD TOTAL STREAM AREA(ACRES) PEAK FLOW RATE(CFS) AT CO	OR INDEE N.) = HR) =) = 0.2) = 0.2 RES) = = 3 ONFLUENC	8.25 4.68 25 25 3.38 3.38 2E = 1	3.47		****
****	* * * * * * * *	*******	* * * * * * * * * * *	* * * * * * * * * *	*******
FLOW PROCESS FROM NODE	100.00) TO NODE	101.00 I	S CODE =	21
>>>>RATIONAL METHOD INI >>USE TIME-OF-CONCENTRAT				BAREA<<	
		=======================================		=========	
=== INITIAL SUBAREA FLOW-LENG ELEVATION DATA: UPSTREAM 924.00		international and a second second		AM(FEET) =	-
Tc = K*[(LENGTH** 3.00)/ SUBAREA ANALYSIS USED MIN * 100 YEAR RAINFALL INTE SUBAREA TC AND LOSS RATE DEVELOPMENT TYPE/	NIMUM TO NSITY(IN DATA(AM	c(MIN.) = NCH/HR) =	5.000	Ap	SCS
TC LAND USE	GROUP	(ACRES)	(INCH/HR)	(DECIMAL)	CN
(MIN.)	GIOOL				
COMMERCIAL	С	0.41	0.25	0.10	86
5.00 SUBAREA AVERAGE PERVIOUS SUBAREA AVERAGE PERVIOUS SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) =	AREA FF 2.27	RACTION, A	p = 0.10		27
TOTITI TITUTI (AOUDO)	· · · ·			L • 2	

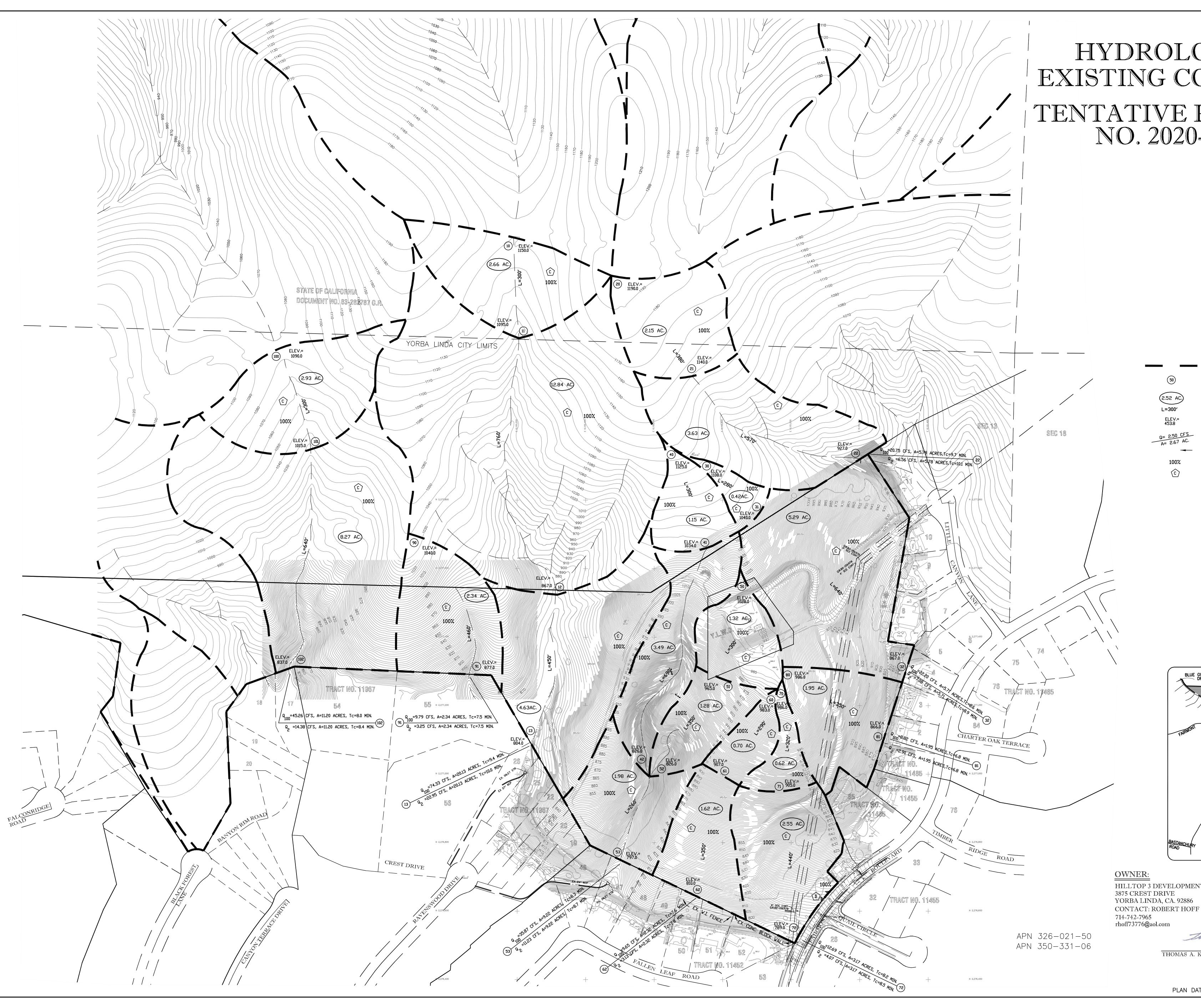
*** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 924.00 DOWNSTREAM ELEVATION(FEET) = 806.00 STREET LENGTH (FEET) = 855.00 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH (FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.010 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.010 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.14HALFSTREET FLOOD WIDTH(FEET) = 10.39 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.44 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.76 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 7.62 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.865 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN С 0.43 0.25 0.10 86 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10 SUBAREA AREA(ACRES) = 0.43 SUBAREA RUNOFF(CFS) = 1.87 EFFECTIVE AREA(ACRES) = 0.84 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 PEAK FLOW RATE(CFS) = 3.66 TOTAL AREA(ACRES) = 0.84END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.15 HALFSTREET FLOOD WIDTH(FEET) = 10.97 FLOW VELOCITY (FEET/SEC.) = 5.61 DEPTH*VELOCITY (FT*FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1155.00 FEET. *** FLOW PROCESS FROM NODE 102.00 TO NODE 74.00 IS CODE = 1

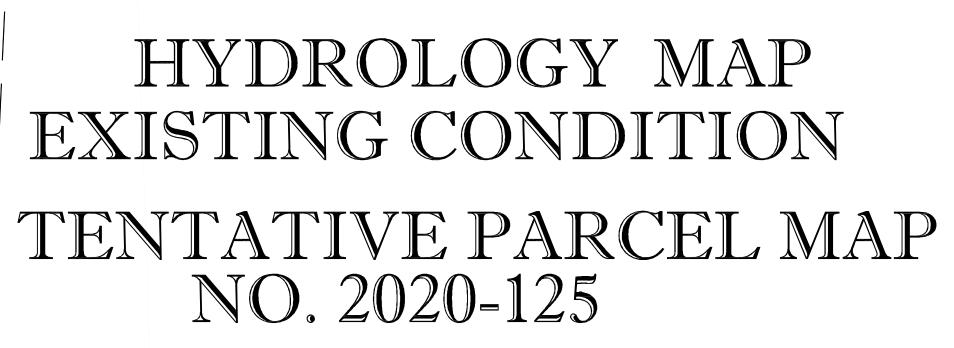
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< === TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.62 RAINFALL INTENSITY (INCH/HR) = 4.86AREA-AVERAGED Fm(INCH/HR) = 0.02AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 0.84 TOTAL STREAM AREA(ACRES) = 0.84PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.66 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE

 1
 12.54
 5.14
 6.117
 0.25(0.25)
 1.00
 2.4
 80.00

 1
 13.47
 8.25
 4.677
 0.25(0.25)
 1.00
 3.4
 70.00

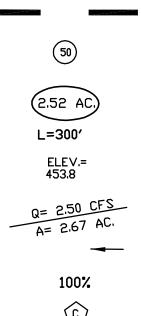
 2
 3.66
 7.62
 4.865
 0.25(0.02)
 0.10
 0.8
 100.00

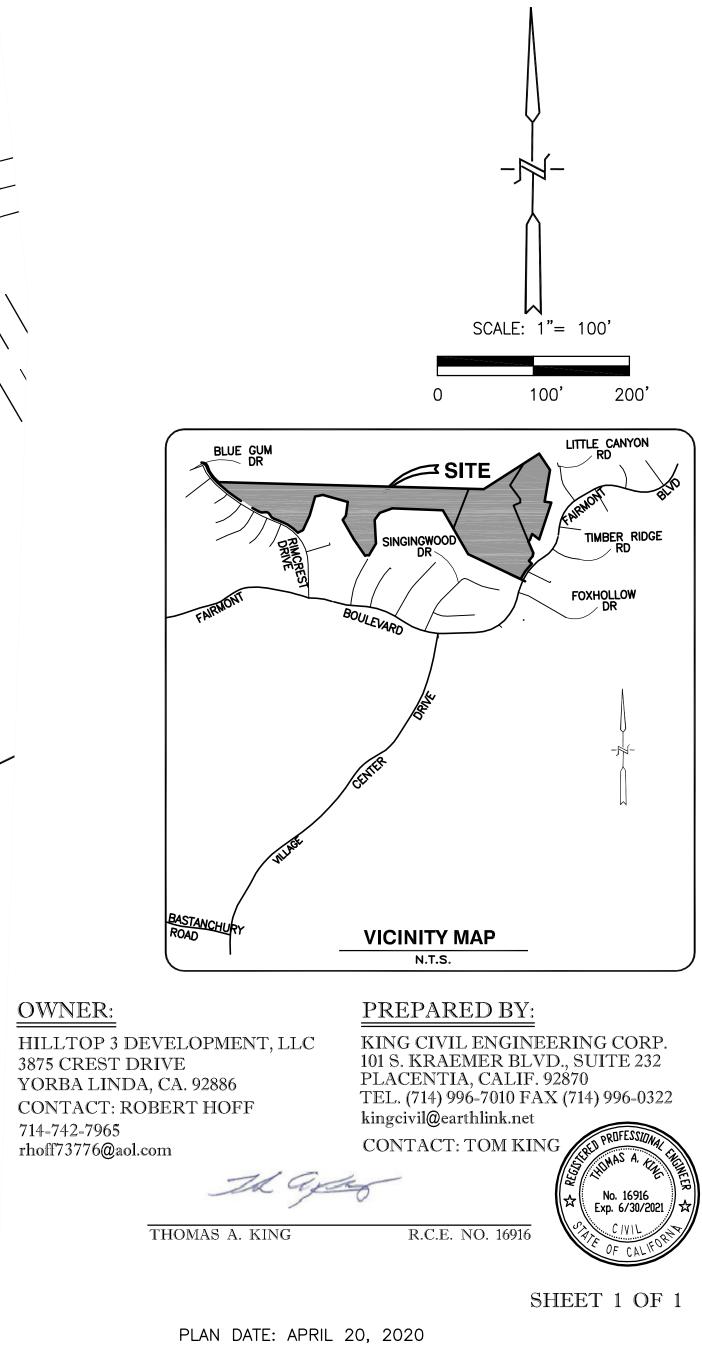

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 115.655.146.1170.25(0.21)0.832.980.00216.947.624.8650.25(0.20)0.814.0100.00 16.947.624.8650.25(0.20)0.814.016.988.254.6770.25(0.21)0.824.2 3 70.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.98 Tc(MIN.) = 8.25 EFFECTIVE AREA(ACRES) = 4.22 AREA-AVERAGED Fm(INCH/HR) = 0.21 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.82 TOTAL AREA(ACRES) = 4.22LONGEST FLOWPATH FROM NODE 100.00 TO NODE 74.00 = 1155.00 FEET. ---+ | TOTAL FLOW DRIVEWAY AND V DITCH AT FAIRMONT BLVD, PARKWAY CULVERT | Q= 16.98 CFS, A= 4.22 ACES, Tc=8.2 MIN. | NODE 74 +-------+

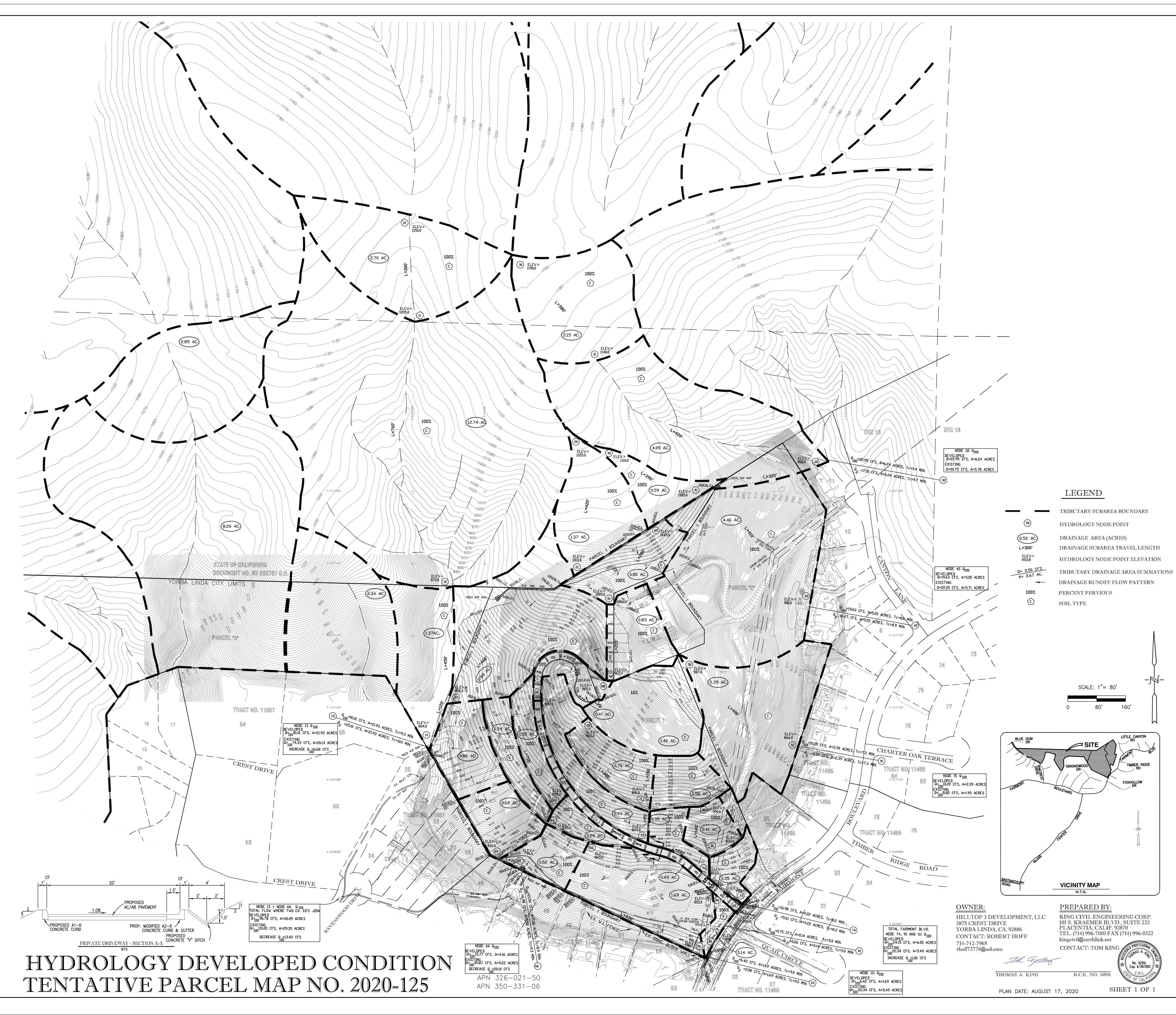

*** FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 22 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 USER SPECIFIED Tc(MIN.) = 5.000 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.190 SUBAREA LOSS RATE DATA (AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER D "BARREN" 0.14 0.20 1.00 98 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 0.75TOTAL AREA(ACRES) = 0.14 PEAK FLOW RATE(CFS) = 0.75 +-----______ ---+ | SLOPE FLOW TO FAIRMONT BLVD. 1 | Q=0.75 CFS, A=0.14 ACRES, TC=5.0 MIN. 1 +-------+ *** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< === INITIAL SUBAREA FLOW-LENGTH(FEET) = 430.00 ELEVATION DATA: UPSTREAM(FEET) = 845.00 DOWNSTREAM(FEET) = 790.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.957 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.469 SUBAREA TC AND LOSS RATE DATA (AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) NATURAL POOR COVER "BARREN" C 1.69 0.25 1.00 98 8.96 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.00 SUBAREA RUNOFF(CFS) = 6.42TOTAL AREA(ACRES) = 1.69 PEAK FLOW RATE(CFS) = 6.42+---------------+ | FLOW TO SOUTHERLY FAIRMONT BLVD. PARKWAY CULVERT 1 | Q=6.42 CFS, A=1.69 ACRES, Tc=9.0 MIN. 1 +------+ ______ === END OF STUDY SUMMARY: TOTAL AREA(ACRES)=1.69TC(MIN.)=8.96EFFECTIVE AREA(ACRES)=1.69AREA-AVERAGED Fm(INCH/HR)0.25 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 1.00 PEAK FLOW RATE(CFS) = 6.42 ===

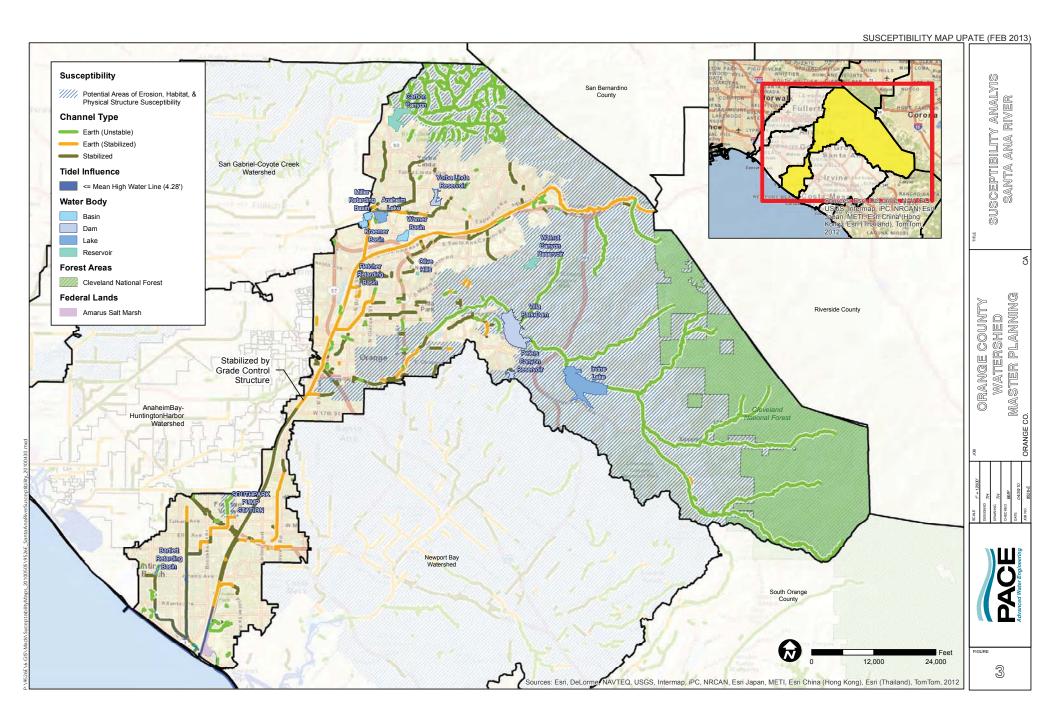
===

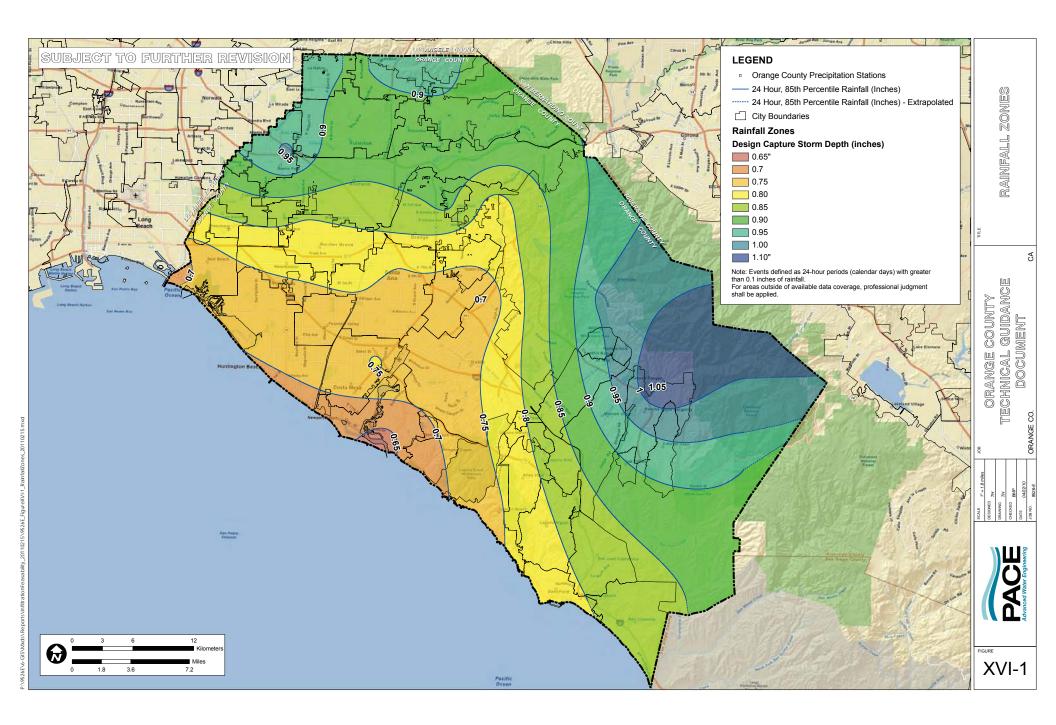

END OF RATIONAL METHOD ANALYSIS

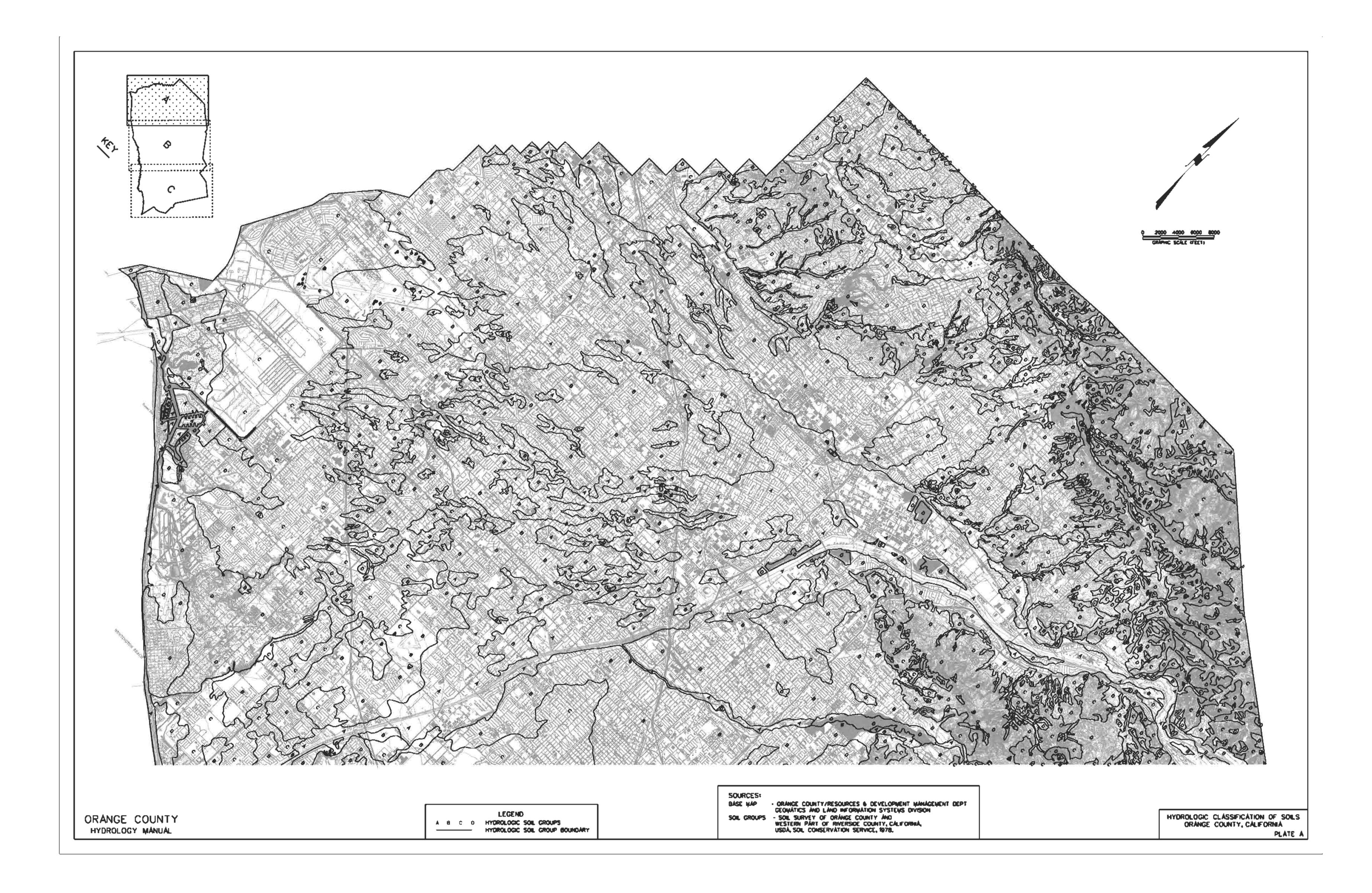


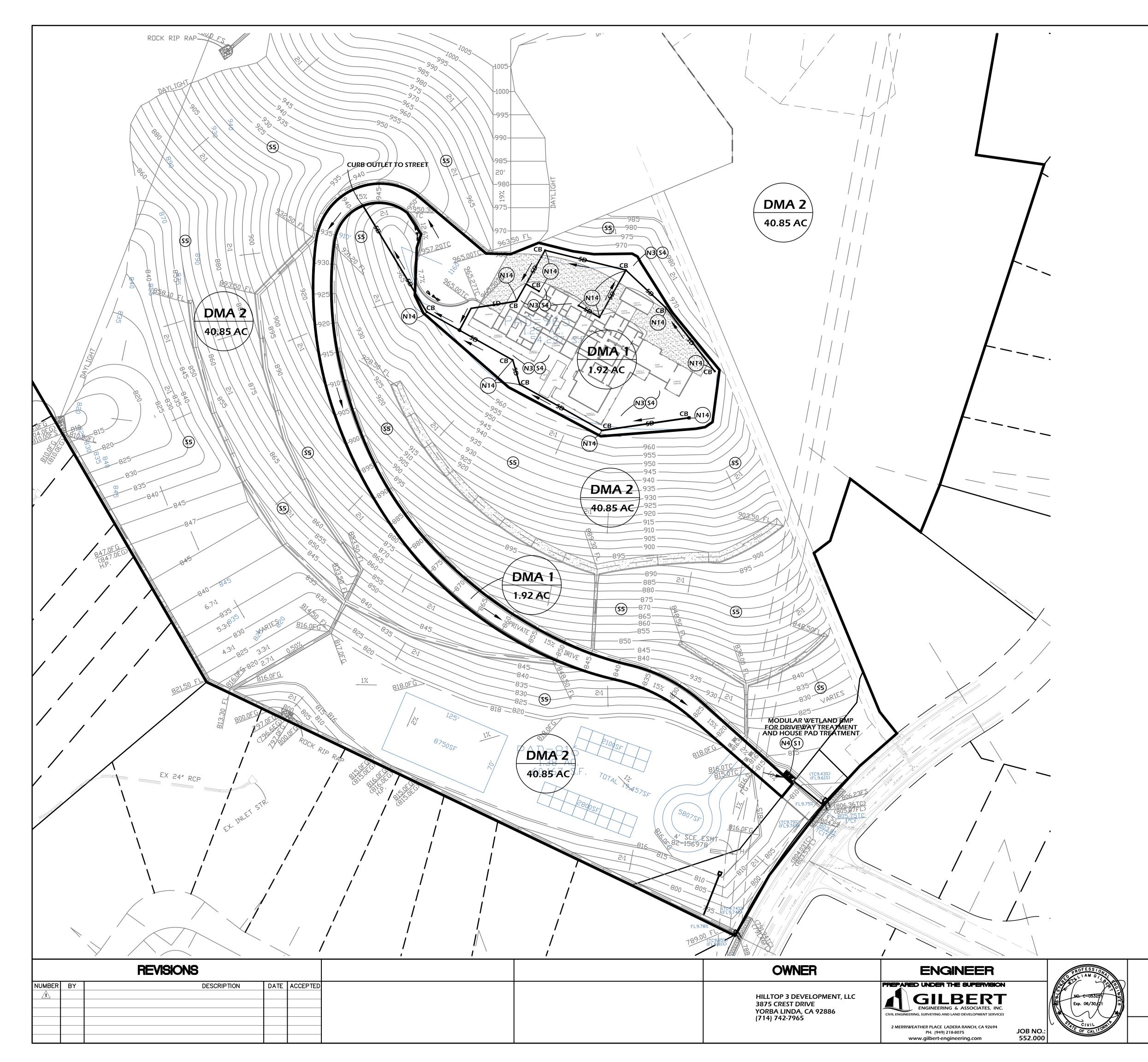


LEGEND


TRIBUTARY SUBAREA BOUNDARY HYDROLOGY NODE POINT DRAINAGE AREA (ACRES) DRAINAGE SUBAREA TRAVEL LENGTH HYDROLOGY NODE POINT ELEVATION TRIBUTARY DRAINAGE AREA SUMMATIONS DRAINAGE RUNOFF FLOW PATTERN PERCENT PERVIOUS SOIL TYPE






Appendix G

Appendix H

11-17-20

NOTES:

DMA 1 - 1.92 ACRES 96% IMPERVIOUS 4% PERVIOUS

DMA 2 - 40.85 ACRES 0% IMPERVIOUS 100% PERVIOUS

PREDEVELOPMENT: TOTAL AREA = 42.64 ACRES IMPERVIOUS AREA = 0 ACRES

POST DEVELOPMENT: TOTAL AREA = 42.64 ACRES **IMPERVIOUS AREA = 1.79 ACRES** PERVIOUS AREA = 42.64 ACRES PERVIOUS AREA = 40.85 ACRES

LEGEND

(DMA #) DRAINAGE MANAGEMENT AREA

(N3) COMMON AREA LANDSCAPE MANAGEMENT

N4 BMP MAINTENANCE

(N14) COMMON AREA CATCH BASIN INSPECTION

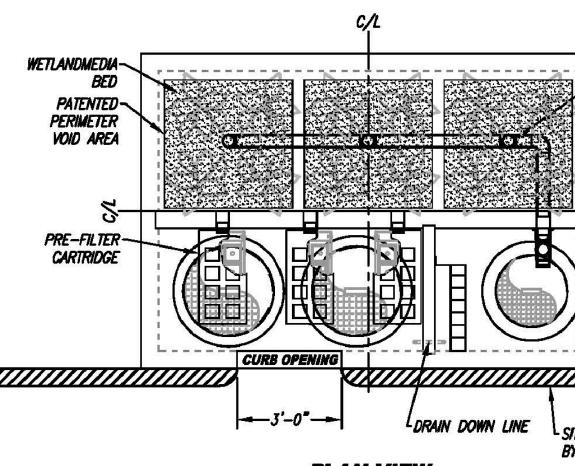
CATCHBASIN STENCIL "NO DUMPING DRAINS TO OCEAN" (S1

S4 EFFICIENT IRRIGATION AND LANDSCAPE DESIGN

PROTECT SLOPES AND CHANNELS PROVIDE ENERGY DISSIPATION **S5**

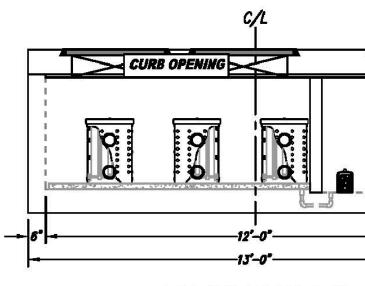
CB CATCH BASIN

W.O.M.P. EXHIBIT FOR HILLTOP 3 DEVELOPMENT, LLC APN 350-331-06, 326-021-50 YORBA LINDA, CA

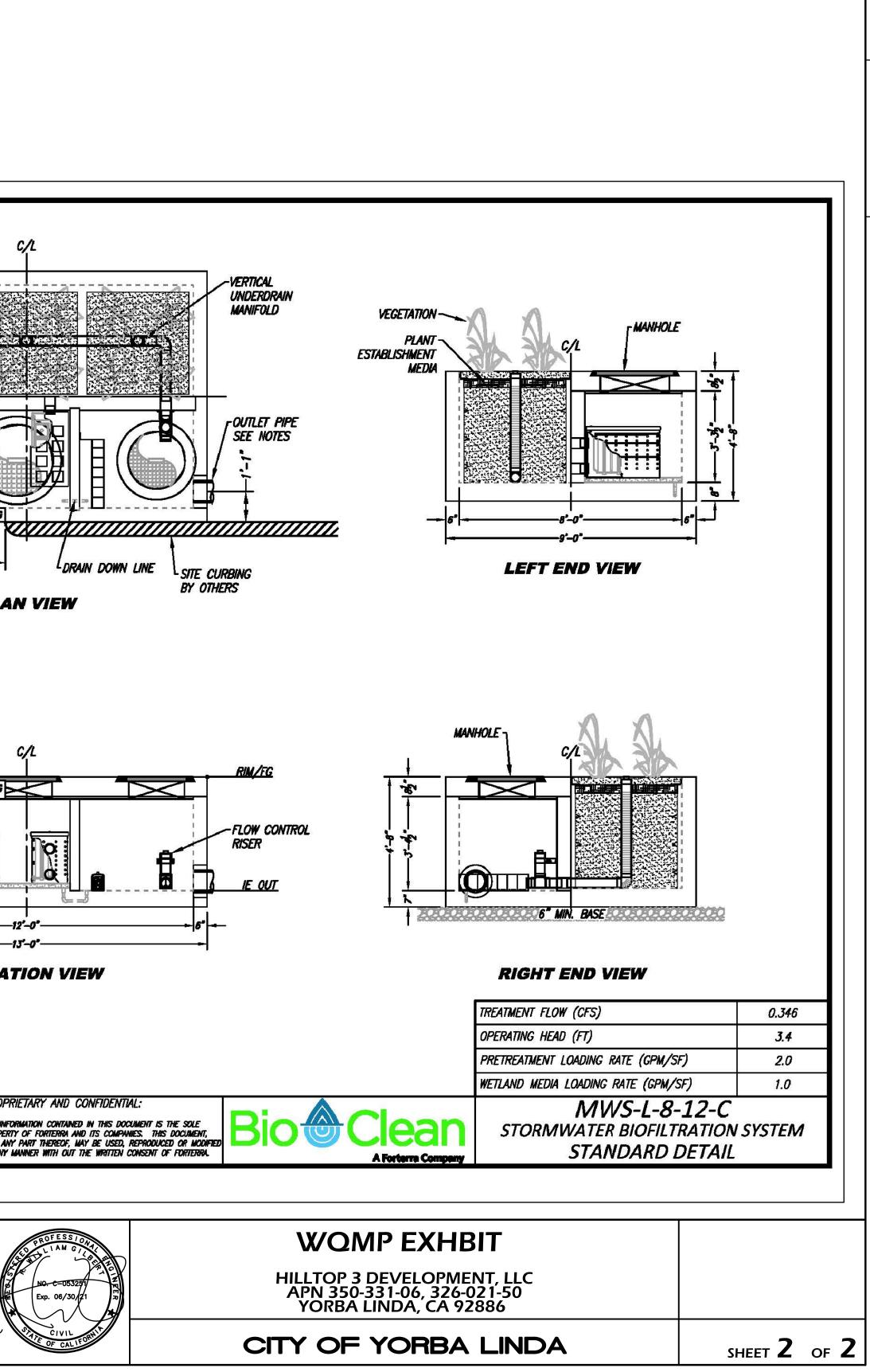

WOMP EXHIBIT HILLTOP 3 DEVELOPMENT, LLC APN 350-331-06, 326-021-50 YORBA LINDA, CA 92886

SHEET **1** OF **2**

		REVISIONS		
NUMBER	BY	DESCRIPTION	DATE	ACCEPTED


PROJECT NUMBE			
ORDER NUMBER	./\		
PROJECT NAME			
T- 2 5-12111 5 1211 501	2011		
PROJECT LOCATI	UN		
STRUCTURE ID			
	2	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	ED (CFS)
REATMENT HGL	AVAILABLE (FT)		
PEAK BYPASS R	EQUIRED (CFS) -	IF APPLICABLE	
PIPE DATA	<i>I.E</i> .	MATERIAL	DIAMETER
NLET PIPE 1			
NLET PIPE 2			
outlet pipe			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
IM ELEVATION			
URFACE LOAD	PEDESTRIAN	OPEN PLANTER	PEDESTRIAN
AME & COVER	2EA ø30"	N/A	ø24 "
IETLANDMEDIA V	IOLUME (CY)		TBD
RIFICE SIZE (D	NA. INCHES)		TBD
STALLATIO	NOT FOR CON		
INCIDENTALS APPURTENAN MANUFACTUR MANUFACTUR UNIT MUST E RECOMMENDS THE PROJECT EN	REQUIRED TO OF CES IN ACCORDAN ERS SPECIFICATION ERS CONTRACT. BE INSTALLED ON 5 A MINIMUM 6" L 5 ENGINEER. COM GINEERS RECOMME	LABOR, EQUIPMEN FLOAD AND INSTALL NCE WITH THIS DRA NS, UNLESS OTHER LEVEL BASE. MAN LEVEL ROCK BASE NTRACTOR IS RESPO ENDED BASE SPECIA INSTALL ALL EXTER	THE SYSTEM AI WING AND THE WISE STATED IN UFACTURER UNLESS SPECIFIE DNSIBLE TO VERI FICATIONS.
PIPES. ALL	승규가 생각감에 한 전화 관람이 가지?	INSTALL ALL EXTER FLUSH WITH INSIDE	SURFACE OF

- MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH
- VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR
- ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE. **GENERAL NOTES**


MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED. 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

ELEVATION VIEW

Ω	PROPRIETARY AND C
MO DULAR METLANDS THE FROM IN BE PROBERD BY ONE ON MORE OF THE FOLLOWING US PREMIS: 7,25,252; 7,27,253; 7,274,276; 4,224,216; REALED FOREIN ANDINS OR OTHER PREMIS PENNING	THE INFORMATION CONTAINED PROPERTY OF FORTERRA AN NOR ANY PART THEREOF, M IN ANY MANNER WITH OUT 1

OWNER	ENGINEER	TO PROFES
HILLTOP 3 DEVELOPMENT, LLC 3875 CREST DRIVE YORBA LINDA, CA 92886 (714) 742-7965	PREPARED UNDER THE SUPERMISION GILBERT ENGINEERING & ASSOCIATES, INC. CIVIL ENGINEERING, SURVEYING AND LAND DEVELOPMENT SERVICES 2 MERRIWEATHER PLACE LADERA RANCH, CA 92694 PH. (949) 218-8075 WWW.gilbert-engineering.com	JOB NO.: 552.000

IILLTOP 3 DEVELOPMENT, LL WOMP EXHBIT

17-20