Appendix F Noise Study

Pilot Travel Palmdale Development Project Noise Impact Study City of Palmdale, CA

Prepared for:

Starla Barker **De Novo Planning Group** 180 East Main Street # 108 Tustin, CA 92780

Prepared by:

MD Acoustics, LLC Mike Dickerson, INCE & Roma Stromberg 1197 Los Angeles Ave, Ste C-256 Simi Valley, CA 93065

Date: 1/7/2021

Noise Study Reports | Vibration Studies | Air Quality | Greenhouse Gas | Health Risk Assessments

P) AZ - 602.774.1950 P) CA - 805.426.4477

www.mdacoustics.com info@mdacoustics.com

TABLE OF CONTENTS

1.0	Intro	duction	
	1.1	Purpose of Analysis and Study Objectives	1
	1.2	Site Location and Study Area	1
	1.3	Proposed Project Description	1
2.0	Funda	amentals of Noise	5
	2.1	Sound, Noise and Acoustics	5
	2.2	Frequency and Hertz	5
	2.3	Sound Pressure Levels and Decibels	5
	2.4	Addition of Decibels	5
	2.5	Sensitive Receptors	6
	2.6	Human Response to Changes in Noise Levels	6
	2.7	Noise Descriptors	6
	2.8	Iraffic Noise Prediction	8
	2.9	Sound Propagation	8
3.0	Grour	nd-Bourne Vibration Fundamentals	9
	3.1	Vibration Descriptors	9
	3.2	Vibration Perception	9
4.0	Regul	latory Setting	
	4.1	Federal Regulations	10
	4.2	State Regulations	10
	4.3	City of Palmdale Noise Regulations	11
5.0	Study	v Method and Procedure	
	5.1	Noise Measurement Procedure and Criteria	16
	5.2	Noise Measurement Locations	16
	5.3	SoundPLAN Noise Model (Operational Noise)	16
	5.4	Traffic Noise Prediction Modeling	17
	5.6	Construction Noise Modeling	18
6.0	Existi	ng Noise Environment	20
7.0	Futur	e Noise Environment Impacts and Mitigation	
	7.1	Off-Site Traffic Noise Impact	23
	7.2	On-Site Traffic Noise Impact	23
8.0	Const	truction Noise and Vibration Impacts	27
	8.1	Construction Noise	27
	8.2	Construction Vibration	29
	8.3	Construction Noise Reduction Measures	30
9.0	Refer	ences	

LIST OF APPENDICES

- Appendix A: Field Measurement Data
- Appendix B: SoundPLAN Noise Modeling Data
- Appendix C: FHWA Roadway Noise Modeling Worksheets
- Appendix D: Construction Noise Modeling Output
- Appendix E: Construction Vibration Modeling Output

LIST OF EXHIBITS

Exhibit A:	Location Map	3
Exhibit B:	Site Plan	4
Exhibit C:	Typical A-Weighted Noise Levels	5
Exhibit D:	Measurement Locations	22
Exhibit E:	Future Traffic + Project Operational Noise Levels (Leq)	25
Exhibit F:	Project Operational Noise Levels - CNEL	26

LIST OF TABLES

Table 1: Decibel Changes and Loudness	6
Table 2: Maximum Acceptable Noise Levels	11
Table 3: State Recommended Noise Level Guidelines	12
Table 4: SoundPLAN Modeling Assumptions	17
Table 5: Roadway Parameters and Vehicle Distribution	18
Table 6: Long-Term Noise Measurement Data for (LT1) (dBA) ¹	20
Table 7: Long-Term Noise Measurement Data for (LT2) (dBA) ¹	21
Table 8: Change in Existing Noise Levels as a Result of Project Generated Traffic	23
Table 9: Typical Construction Equipment Noise Levels ¹	27
Table 10: Construction Noise Level by Phase (dBA, Leq)	28
Table 11: Guideline Vibration Damage Potential Threshold Criteria	29
Table 12: Vibration Source Levels for Construction Equipment	30

1.0 Introduction

1.1 Purpose of Analysis and Study Objectives

This noise assessment was prepared to evaluate the potential noise impacts for the project study area and to recommend noise mitigation measures, if necessary, to minimize the potential noise impacts. The assessment was conducted and compared to the noise standards set-forth by the Federal, State and Local agencies. Consistent with the City's Noise Guidelines, the project must demonstrate compliance to the applicable noise criterion as outlined within the City of Palmdale Noise Element and Municipal Code.

The following is provided in this report:

- A description of the study area and the proposed project;
- Information regarding the fundamentals of noise;
- A description of the local noise guidelines and standards;
- An analysis of traffic noise impacts to the sensitive receptors and the project site; and
- An analysis of construction noise impacts.

1.2 Site Location and Study Area

The Pilot Travel Palmdale Development (Project) site is generally located north of Pear Blossom Highway and approximately 1,200 feet west of Fort Tejon Rd (Hwy 138), in the City of Palmdale, within the County of Los Angeles; refer to Exhibit A. The project site is primarily accessed from Pear Blossom Highway.

Existing land uses surrounding the Project site include:

- <u>North</u>: Union Pacific rail line and vacant land;
- <u>East</u>: Commercial land uses and State Route 138;
- <u>South</u>: Pear Blossom Highway, vacant property and single-family residential land uses; and
- <u>West</u>: Vacant land (zoned residential) and single-family residential land uses.

1.3 Proposed Project Description

The proposed project consists of the construction and operation of a Pilot Travel Center on a site approximately 9.0-acres in size. The proposed travel center would provide fueling facilities, travel amenities, restaurants, and parking facilities for passing motorists and commercial truck operators, as described below; refer to Exhibit B, Site Plan.

Fueling Facilities

The Project proposes eight diesel fueling lanes/positions and seven gas islands with 14 fueling positions. The diesel fueling lanes would be located to the north of the travel center building and include a 20-foottall canopy structure. The gas islands would be located south of the travel center building and north of Pearblossom Highway, and include a 20-foot-tall canopy structure. Two aboveground diesel storage farms, a Bio-blending shed, belowground gasoline storage tanks, and a truck scale would be located within the diesel portion of the site.

Travel Center Building

The proposed travel center building would be up to 12,000 square feet and include a convenience store, three quick service restaurants, driver amenities (e.g., restrooms, showers, laundry), and support/utility areas. A refuse enclosure and storage area and transformers, screened from view by a solid wall, would be located to the west of the travel center building.

Parking Facilities

The Project would provide 123 parking spaces (56 automobile, 3 ADA, 64 truck) with passenger automobile and handicapped parking located south of and adjacent to the travel center facility and south of the gas islands, adjacent to Pearblossom Highway. Truck parking would be located north of the travel center facility and truck diesel fueling lanes.

Sound Barriers

An eight-foot-tall concrete barrier would be provided along the Project site's western property line adjacent to the auto fueling area. North of the auto fueling area the eight-foot-tall fence would transition onto a five-foot-tall berm and extend to the northern property line and storm pond.

Access

Primary access to the project site would be provided from Pearblossom Highway. A shared 36-foot-wide roadway would extend north from Pearblossom Highway along the eastern edge of the Project site, providing access to the proposed Project site and the two parcels North and East of the Project site. A driveway along the western edge of the Project site would provide auto only access from Pear Blossom Highway to the auto fueling area.

Additional access is proposed from Highway 138 via a one-way, 15-foot-wide roadway which would extend southwest from Highway 138 and connect to the shared access roadway at the northeast corner of the Project site.

Exhibit A Location Map

Exhibit B **Site Plan**

2.0 Fundamentals of Noise

This section of the report provides basic information about noise and presents some of the terms used within the report.

2.1 Sound, Noise and Acoustics

Sound is a disturbance created by a moving or vibrating source and is capable of being detected by the hearing organs. Sound may be thought of as mechanical energy of a moving object transmitted by pressure waves through a medium to a human ear. For traffic, or stationary noise, the medium of concern is air. *Noise* is defined as sound that is loud, unpleasant, unexpected, or unwanted.

Exhibit C:

2.2 Frequency and Hertz

A continuous sound is described by its *frequency* (pitch) and its *amplitude* (loudness). Frequency relates to the number of pressure oscillations per second. Low-frequency sounds are low in pitch (bass sounding) and high-frequency sounds are high in pitch (squeak). These oscillations per second (cycles) are commonly referred to as Hertz (Hz). The human ear can hear from the bass pitch starting out at 20 Hz all the way to the high pitch of 20,000 Hz.

2.3 Sound Pressure Levels and Decibels

The *amplitude* of a sound determines it loudness. The loudness of sound increases or decreases as the amplitude increases or decreases. Sound pressure amplitude is measure in units of micro-Newton per square inch meter (N/m2), also called micro-Pascal (μ Pa). One μ Pa is approximately one hundred billionths (0.0000000001) of normal atmospheric pressure. Sound pressure level (SPL or L_p) is used to describe in logarithmic units the ratio of actual sound pressures to a reference pressure squared.

Typical A-Weighted Noise Levels

These units are called decibels abbreviated dB. Exhibit C illustrates references sound levels for different noise sources.

2.4 Addition of Decibels

Because decibels are on a logarithmic scale, sound pressure levels cannot be added or subtracted by simple plus or minus addition. When two sounds or equal SPL are combined, they will produce an SPL 3 dB greater than the original single SPL. In other words, sound energy must be doubled to produce a 3 dB increase. If two sounds differ by approximately 10 dB, the higher sound level is the predominant sound.

2.5 Sensitive Receptors

As defined in the City of Palmdale General Plan Noise Element (1993), "Noise-sensitive land uses" include residential (single and multi-family dwellings, mobile home parks, dormitories, and similar uses); transient lodging (including hotels, motels, and similar uses); hospitals, nursing homes, convalescent hospitals, and other facilities for long-term medical care; public or private educational facilities, libraries, churches, and places of public assembly. The proposed project is considered to be a "less-than sensitive" receptor. Some consideration of noise impact may be appropriate.

2.6 Human Response to Changes in Noise Levels

In general, the healthy human ear is most sensitive to sounds between 1,000 Hz and 5,000 Hz, (Aweighted scale) and it perceives a sound within that range as being more intense than a sound with a higher or lower frequency with the same magnitude. For purposes of this report as well as with most environmental documents, the A-scale weighting is typically reported in terms of A-weighted decibel (dBA). Typically, the human ear can barely perceive the change in noise level of 3 dB. A change in 5 dB is readily perceptible, and a change in 10 dB is perceived as being twice or half as loud. As previously discussed, a doubling of sound energy results in a 3 dB increase in sound, which means that a doubling of sound energy (e.g. doubling the volume of traffic on a highway) would result in a barely perceptible change in sound level.

Changes in Intensity Level, dBA	Changes in Apparent Loudness			
1	Not perceptible			
3	Just perceptible			
5	Clearly noticeable			
10 Twice (or half) as loud				
Source: https://www.fhwa.dot.gov/environMent/noise/regulations_and_guidance/polguide/polguide02.cfm				

Table 1: Decibel Changes and Loudness

2.7 Noise Descriptors

Noise in our daily environment fluctuates over time. Some noise levels occur in regular patterns, others are random. Some noise levels are constant while others are sporadic. Noise descriptors were created to describe the different time-varying noise levels.

<u>A-Weighted Sound Level</u>: The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the response of the human ear. A numerical method of rating human judgment of loudness.

<u>Ambient Noise Level</u>: The composite of noise from all sources, near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental noise at a given location.

Community Noise Equivalent Level (CNEL): The average equivalent A-weighted sound level during a 24hour day, obtained after addition of five (5) decibels to sound levels in the evening from 7:00 to 10:00 PM and after addition of ten (10) decibels to sound levels in the night before 7:00 AM and after 10:00 PM.

Decibel (dB): A unit for measuring the amplitude of a sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micropascals.

<u>dB(A)</u>: A-weighted sound level (see definition above).

Equivalent Sound Level (LEQ): The sound level corresponding to a steady noise level over a given sample period with the same amount of acoustic energy as the actual time varying noise level. The energy average noise level during the sample period.

Habitable Room: Any room meeting the requirements of the Uniform Building Code or other applicable regulations which is intended to be used for sleeping, living, cooking or dining purposes, excluding such enclosed spaces as closets, pantries, bath or toilet rooms, service rooms, connecting corridors, laundries, unfinished attics, foyers, storage spaces, cellars, utility rooms and similar spaces.

<u>L(n)</u>: The A-weighted sound level exceeded during a certain percentage of the sample time. For example, L10 in the sound level exceeded 10 percent of the sample time. Similarly, L50, L90 and L99, etc.

<u>Noise</u>: Any unwanted sound or sound which is undesirable because it interferes with speech and hearing, or is intense enough to damage hearing, or is otherwise annoying. The State Noise Control Act defines noise as "...excessive undesirable sound...".

Outdoor Living Area: Outdoor spaces that are associated with residential land uses typically used for passive recreational activities or other noise-sensitive uses. Such spaces include patio areas, barbecue areas, jacuzzi areas, etc. associated with residential uses; outdoor patient recovery or resting areas associated with hospitals, convalescent hospitals, or rest homes; outdoor areas associated with places of worship which have a significant role in services or other noise-sensitive activities; and outdoor school facilities routinely used for educational purposes which may be adversely impacted by noise. Outdoor areas and storage areas associated with residential land uses; exterior areas at hospitals that are not used for patient activities; outdoor areas associated with places of worship and principally used for short-term social gatherings; and, outdoor areas associated with school facilities that are not typically associated with educational uses prone to adverse noise impacts (for example, school play yard areas).

Percent Noise Levels: See L(n).

Sound Level (Noise Level): The weighted sound pressure level obtained by use of a sound level meter having a standard frequency-filter for attenuating part of the sound spectrum.

<u>Sound Level Meter</u>: An instrument, including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement and determination of noise and sound levels.

<u>Single Event Noise Exposure Level (SENEL)</u>: The dB(A) level which, if it lasted for one second, would produce the same A-weighted sound energy as the actual event.

2.8 Traffic Noise Prediction

Noise levels associated with traffic depends on a variety of factors: (1) volume of traffic, (2) speed of traffic, (3) auto, medium truck (2–3 axle) and heavy truck percentage (4 axle and greater), and sound propagation. The greater the volume of traffic, higher speeds and truck percentages equate to a louder volume in noise. A doubling of the Average Daily Traffic (ADT) along a roadway will increase noise levels by approximately 3 dB; reasons for this are discussed in the sections above.

2.9 Sound Propagation

As sound propagates from a source it spreads geometrically. Sound from a small, localized source (i.e., a point source) radiates uniformly outward as it travels away from the source in a spherical pattern. The sound level attenuates at a rate of 6 dB per doubling of distance. The movement of vehicles down a roadway makes the source of the sound appear to propagate from a line (i.e., line source) rather than a point source. This line source results in the noise propagating from a roadway in a cylindrical spreading versus a spherical spreading that results from a point source. The sound level attenuates for a line source at a rate of 3 dB per doubling of distance.

As noise propagates from the source, it is affected by the ground and atmosphere. Noise models use hard site (reflective surfaces) and soft site (absorptive surfaces) to help calculate predicted noise levels. Hard site conditions assume no excessive ground absorption between the noise source and the receiver. Soft site conditions such as grass, soft dirt or landscaping attenuate noise at a rate of 1.5 dB per doubling of distance. When added to the geometric spreading, the excess ground attenuation results in an overall noise attenuation of 4.5 dB per doubling of distance for a line source and 7.5 dB per doubling of distance for a point source.

Research has demonstrated that atmospheric conditions can have a significant effect on noise levels when noise receivers are located 200 feet from a noise source. Wind, temperature, air humidity and turbulence can further impact have far sound can travel.

3.0 Ground-Bourne Vibration Fundamentals

3.1 Vibration Descriptors

Ground-borne vibrations consist of rapidly fluctuating motions within the ground that have an average motion of zero. The effects of ground-borne vibrations typically only cause a nuisance to people, but at extreme vibration levels, damage to buildings may occur. Although ground-borne vibration can be felt outdoors, it is typically only an annoyance to people indoors where the associated effects of the shaking of a building can be notable. Ground-borne noise is an effect of ground-borne vibration and only exists indoors, since it is produced from noise radiated from the motion of the walls and floors of a room and may also consist of the rattling of windows or dishes on shelves.

Several different methods are used to quantify vibration amplitude.

PPV – Known as the peak particle velocity (PPV) which is the maximum instantaneous peak in vibration velocity, typically given in inches per second.

RMS - Known as root mean squared (RMS) can be used to denote vibration amplitude

VdB – A commonly used abbreviation to describe the vibration level (VdB) for a vibration source.

3.2 Vibration Perception

Typically, developed areas are continuously affected by vibration velocities of 50 VdB or lower. These continuous vibrations are not noticeable to humans whose threshold of perception is around 65 VdB. Outdoor sources that may produce perceptible vibrations are usually caused by construction equipment, steel-wheeled trains, and traffic on rough roads, while smooth roads rarely produce perceptible ground-borne noise or vibration. To counter the effects of ground-borne vibration, the Federal Transit Administration (FTA) has published guidance relative to vibration impacts. According to the FTA, fragile buildings can be exposed to ground-borne vibration levels of 0.3 inches per second without experiencing structural damage.

There are three main types of vibration propagation: surface, compression, and shear waves. Surface waves, or Rayleigh waves, travel along the ground's surface. These waves carry most of their energy along an expanding circular wave front, similar to ripples produced by throwing a rock into a pool of water. P-waves, or compression waves, are body waves that carry their energy along an expanding spherical wave front. The particle motion in these waves is longitudinal (i.e., in a "push-pull" fashion). P-waves are analogous to airborne sound waves. S-waves, or shear waves, are also body waves that carry energy along an expanding spherical wave front. However, unlike P-waves, the particle motion is transverse, or side-to-side and perpendicular to the direction of propagation. As vibration waves propagate from a source, the vibration energy decreases in a logarithmic nature and the vibration levels typically decrease by 6 VdB per doubling of the distance from the vibration source. As stated above, this drop-off rate can vary greatly depending on the soil but has been shown to be effective enough for screening purposes, in order to identify potential vibration impacts that may need to be studied through actual field tests.

4.0 Regulatory Setting

The proposed project is located in the City of Palmdale and noise regulations are addressed through the efforts of various federal, state and local government agencies. The agencies responsible for regulating noise are discussed below.

4.1 Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Publicize noise emission standards for interstate commerce
- Assist state and local abatement efforts
- Promote noise education and research

The Federal Office of Noise Abatement and Control (ONAC) originally was tasked with implementing the Noise Control Act. However, it was eventually eliminated leaving other federal agencies and committees to develop noise policies and programs. Some examples of these agencies are as follows: The Department of Transportation (DOT) assumed a significant role in noise control through its various agencies. The Federal Aviation Agency (FAA) is responsible to regulate noise from aircraft and airports. The Federal Highway Administration (FHWA) is responsible to regulate noise from the interstate highway system. The Occupational Safety and Health Administration (OSHA) is responsible for the prohibition of excessive noise exposure to workers.

The federal government advocates that local jurisdiction use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being constructed adjacent to a highway or, or alternatively that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Since the federal government has preempted the setting of standards for noise levels that can be emitted by the transportation source, the City is restricted to regulating the noise generated by the transportation system through nuisance abatement Codes and land use planning.

4.2 State Regulations

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix." The matrix allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise. The State of California has also established noise insulation standards as outlined in Title 24 and the Uniform Building Code (UBC) which in some cases requires acoustical analyses to outline exterior noise levels and to ensure interior noise levels do not exceed the interior threshold. The State mandates that the legislative body of each county and city adopt a noise element as part of its comprehensive general plan. The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The guidelines rank noise land use

compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable. The City of Palmdale has adopted their own version of the State's Land Use Compatibility Guidelines. These are presented on Table 3.

The State of California has also adopted OSHA noise standards to protect employee health and safety (CCR 1910.95, Hearing conservation program). The California State Code of Regulations has established a permissible exposure limit for noise that is an 8-hour time-weighted average (sound levels averaged over an 8 hour day) of 85 dB. exposure standard of 85 dBA (8-hour).

4.3 City of Palmdale Noise Regulations

The City of Palmdale outlines their noise regulations and standards within the Noise Element of the City's General Plan and the Noise Code located in the City's Municipal Code.

City of Palmdale General Plan

The City requires that acoustical analysis reports include an evaluation of impacts associated with noise levels at the project site as well as the impact of the project on the existing noise environment. Where appropriate, the City will require acoustical analysis reports to include acoustical design to achieve the appropriate interior and exterior noise levels through sound insulation, or other means, as indicated in Table 2. For commercial land uses, an interior noise level of 55 dBA Leq would apply to the proposed commercial building, and a "noise level which does not interfere with normal business activity" is the standard for on-site exterior noise levels. The proposed project does not propose any outdoor areas where "normal business activity" would occur.

Land Use	Exterior	Interior	Scale
Residential			
SFR	65	45	dBA, CNEL
MFR	65	45	dBA, CNEL
MHP	65	45	dBA, CNEL
Commercial including, but not limited to:			
Retail	A noise level which does not	55	Leq(h)
Services	jeopardize health, safety,	55	Leq(h)
Office	and wenare of visitors.	55	Leq(h)
Institutional including, but not limited to:			
School	A noise level which does not	45	Leq(h)
Hospitals	Jeopardize nearth, safety,	45	Leq(h)
Nursing Homes	and wenare of visitors.	45	Leq(h)
Industrial including but not limited to:	A noise level which does not		
Industrial Park	interfere with normal	65	Leq(h)
Business Park	business activity.	65	Leq(h)
	Maximum 65 Leq(h) at the		
	interface with residentially		
Quarry	designated land.	n/a	n/a
Source: City of Palmdale General Plan Noise Element,	1993		

Table 2: Maximum Acceptable Noise Levels

Land L	Jse		Co	ommunity N	loise	Exposu	re Ldn or	CNEL, d	B	
		55	60	6	5		70	75		80
Residential-Low I Family, Duplexes Homes	Density Single and Mobile									
Residential Multi Dwellings	-Family									
Transient Lodging: Motels, Hotels										
Schools, Libraries, Churches, Hospitals, Nursing Homes										
Auditoriums, Concert Halls, Amphitheaters										
Sports Arenas, Ou Spectator Sports	utdoor									
Playgrounds, Neiį Parks	ghborhood									
Golf Courses, Riding Stables, Water Recreation, Cemeteries										
Office Buildings, I Commercial and	Businesses, Professional									
Industrial, Manuf Utilities, Agricultu	acturing, ure									
S) b n	Normally Acc pecified land uses assed upon the ass any buildings inv normal conv onstruction, witho oise insulation or	ceptable: is satisfactory sumption that olved are of entional nut any special requirements.	Condition New constru- should be un detailed ai reduction req needed nois included in the construction windows and f or air condit suffice. Outd set	ally Accepta ction or develop idertaken only a nalysis of the not uirrements is ma e design. Conve on, but with clo resh air supply cloning will norr oor environme even noisy.	ble: oment ofter a bise de and tures ntional sed systems mally nt will	Norma New develop be c constru does analysis require with ne features Out	ally Unacce v construction ment should if liscouraged. If citico or devel proceed, a de of the noise r ements must b eeded noise in included in th door areas mu shielded.	ptable: and generally new lopment tailed eduction te made sulation te design. st be	Clearly U New co develop gene undertake costs to n environm would be the outdo would n	Inacceptable: opment should rally not be en. Construction make the indoor thent acceptable prohibitive and for environment hot be usable.

Table 3: State Recommended Noise Level Guidelines

General Plan Noise Element Goals, objectives and policies applicable to the proposed project are presented below.

<u>Goal N1:</u> Minimize the exposure of residents to excessive noise to the extent possible, through the land planning and the development review process.

<u>Objective N1.1</u>: Utilize appropriate land use planning as the primary method of achieving noise compatibility among adjacent land uses.

<u>Policy N1.1.1</u>: Locate noise compatible land uses near existing and future air, rail and highway transportation noise sources.

<u>Policy N1.1.3</u>: When proposed stationary noise sources could exceed an exterior noise level of 65 dBA CNEL at present, or could impact future noise sensitive land uses, require preparation of an acoustical analysis and mitigation measures to reduce noise levels to no more than 65 dBA CNEL exterior and 45 dBA CNEL interior; if the noise level cannot be reduced to these thresholds through mitigation, the new noise source should not be permitted.

<u>Policy N1.1.4</u>: Consider the noise environment when making land use decisions with respect to the guidelines contained in Table 32, and require noise standards consistent with the criteria listed on Table 2.

<u>Objective N1.2</u>: Protect and maintain those areas having acceptable noise environments.

Policy N1.2.2: Restrict construction hours during the evening, early morning and Sundays.

<u>Policy N1.2.3</u>: Utilize any or all of the following measures in order to maintain acceptable noise environments throughout the City:

- 1. Control of noise at its source, including noise barriers and other muffling devices built into the noise source;
- 2. The provision of buffer areas and/or wide setbacks between the noise source and other development;
- 3. The reduction of densities, where practical, adjacent to the noise source (freeway, airport, railroad);
- 4. The use of sound insulation, blank walls, double paned windows and other design or architectural techniques to reduce interior noise levels; and
- 5. Designation of appropriate land uses adjacent to known noise sources.

City of Palmdale Municipal Code

Section 9.18.101 Noise

Section 9.18.010 of the City of Palmdale Municipal Code makes it unlawful for any person to willfully make or continue, or cause or permit to be made or continued, any loud, unnecessary, or unusual noise which unreasonably disturbs the peace and quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area. The characteristics and conditions, which may be considered in determining whether such noise violates the provisions of this section, shall include, but not be limited to, the following:

- (1) The volume of the noise;
- (2) The intensity of the noise;
- (3) Whether the nature of the noise is usual or unusual;
- (4) Whether the origin of the noise is natural or unnatural;
- (5) The volume and intensity of the background noise, if any;
- (6) The proximity of the noise to sleeping facilities;
- (7) The nature and zoning of the area within which the noise emanates;
- (8) The density of the inhabitation of the area within which the noise emanates;
- (9) The time of the day or night the noise occurs;
- (10) The duration of the noise;
- (11) Whether the noise is recurrent, intermittent, or constant;
- (12) Whether the noise is produced by a commercial or noncommercial activity.

Section 9.18.020 Acts constituting disturbing, excessive, loud, offensive noise

Section 9.18.020 of the code identifies horns, signaling devices, etc. and radios, television sets, phonograph, amplifiers and similar devices as noise sources that among others, that can be disturbing, excessive, loud, or offensive noise. Causing or allowing such activities in a manner that is disturbing to the peace is unlawful. This section of the ordinance clarifies that these are not the only noise sources that may be found to cause disturbing, excessive, loud, or offensive noises,

Section 9.18.020 also prohibits the use of jake brakes, using compression release engine brakes, and any method of using engine compression to slow a vehicle is prohibited in the City of Palmdale and unlawful.

Section 9.28.030 Construction noise prohibited in residential zones

Except as otherwise provided in this chapter, no person shall perform any construction or repair work on any Sunday, or any other day after 8:00 p.m. or before 6:30 a.m., in any residential zone or within 500 feet of any residence, hotel, motel or recreational vehicle park. For the purposes of this section, construction and repair work includes work of any kind upon any building or structure, earth excavating, filling, or moving, and delivery, preparation or operation of construction equipment, materials or supplies where any of the foregoing entails the use of an air compressor, jack hammer, power-driven drill, riveting machine, excavator, semi-truck, diesel power truck, tractor, cement truck, or earth moving equipment, hand hammer, or other machine, tool, device or equipment which makes loud noise which disturbs the peace and quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness sleeping or residing in the area.

The City of Palmdale has not adopted a numerical threshold that identifies what a substantial increase would be. For purposes of this analysis, the Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment (2006) criteria will be used to establish significance thresholds. The FTA provides reasonable criteria for assessing construction noise impacts based on the potential for adverse community reaction. For residential uses, the daytime noise threshold is 80 dBA L_{eq} averaged over an 8-hour period (L_{eq} (8-hr); and the nighttime noise threshold is 70 dBA L_{eq} (8-hr). For commercial uses, the daytime and nighttime noise threshold is 85 dBA L_{eq} (8-hr). In compliance with the City's Code, it is assumed that construction would not occur during the noise-sensitive nighttime hours.

5.0 Study Method and Procedure

The following section describes the noise modeling procedures and assumptions used for this assessment.

5.1 Noise Measurement Procedure and Criteria

Noise measurements are taken to determine the existing noise levels. A noise receiver or receptor is any location in the noise analysis in which noise might produce an impact. The following criteria are used to select measurement locations and receptors:

- Locations expected to receive the highest noise impacts, such as first row of houses
- Locations that are acoustically representative and equivalent of the area of concern
- Human land usage
- Sites clear of major obstruction and contamination

MD conducted the sound level measurements in accordance to the City of Palmdale and the Caltrans TeNS manual. All measurements equipment meets American National Standards Institute (ANSI) specifications for sound level meters (S1.4-1983 identified in Chapter 19.68.020.AA). MD noise measurement procedures are presented below:

- Microphones for sound level meters were placed 5-feet above the ground for all measurements
- Sound level meters were calibrated (Larson Davis CAL 200) before and after each measurement
- Following the calibration of equipment, a wind screen was placed over the microphone
- Frequency weighting was set on "A" and slow response
- Results of the noise measurements were recorded on field data sheets
- During any short-term noise measurements any noise contaminations such as barking dogs, local traffic, lawn mowers, or aircraft fly-overs were noted
- Temperature and sky conditions were observed and documented

5.2 Noise Measurement Locations

Noise monitoring locations were selected to obtain a baseline of the existing noise environment. Three short-term noise measurements were conducted at nearby noise-sensitive land uses. Appendix A includes photos, field sheet, and measured noise data. Exhibit D illustrates the location of the measurements.

5.3 SoundPLAN Noise Model (Operational Noise)

SoundPLAN acoustical modeling software was utilized to model project operational noise at nearby sensitive receptors. The SoundPLAN software utilizes algorithms (based on the inverse square law) to calculate noise level projections. It allows the user to input specific noise sources, spectral content, sound barriers, building placement, topography, and sensitive receptor locations. It also calculates noise level increases due to the reflection of noise from hard surfaces.

Measured and referenced sound level data was utilized to model the various stationary on-site noise sources associated with project operation, (i.e. idling trucks, fueling areas, parking movements, and heating and air conditioner units [HVAC]).

Noise associated with proposed truck and automobile parking areas was modeled using SoundPLAN methodology which takes into consideration the overall trip generation, number of parking spaces and estimates the number of movements per hour per parking space. The diesel fueling area was modeled by placing a point noise source representative of an idling diesel truck at each fueling station. The gasoline fueling area was modeled as an area source. A roof plan was not available at the time of this analysis so for modeling purposes it was assumed that three HVAC rooftop units would be placed on the proposed building. Modeling assumptions are summarized in Table 4. SoundPLAN noise modeling input and results are provided in Appendix B.

Noise Source	Source Type	Reference Level (dBA)Leq Sound Power Level			
Truck Parking	Area (SP Parking Tool)	64.6			
Truck Parking	Area (SP Parking Tool)	65.2			
Auto Parking	Area (SP Parking Tool)	54.4			
Auto Parking	Area (SP Parking Tool)	55.2			
Auto Parking	Area (SP Parking Tool)	54.1			
Auto Parking	Area (SP Parking Tool)	54.6			
Auto Parking	Area (SP Parking Tool)	57.4			
Auto Parking	Area (SP Parking Tool)	55.9			
Auto Parking	Area (SP Parking Tool)	55.3			
Diesel Fueling Area	Point Source	86.9			
Gasoline Fueling Area	Area Source	54.3			
HVAC Carrier 5-Ton	Point Source	70			
Source: SoundPLAN 8.0 Manual. SoundPLAN International, LLC. May 2016.					

Table 4: SoundPLAN Modeling Assumptions

5.4 Traffic Noise Prediction Modeling

The FHWA Traffic Noise Prediction Model (FHWA-RD-77-108) was utilized to model future traffic noise levels on the project site and existing and existing plus project traffic noise volumes along roadways affected by project generated vehicle traffic. The FHWA model arrives at the predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL).

The SoundPLAN noise model was utilized to model future traffic noise levels on the project site.

Project generated vehicle traffic will result in an incremental increase in ambient noise levels. Vehicles accessing the project site will primarily utilize Pearblossom Highway/State Route 122 and Fort Tejon Road/State Route 138, to a lesser degree. To determine the project's noise impact to the surrounding

land uses, MD generated noise contours for existing ADT, and existing plus project conditions. Table 5 indicates the roadway parameters and vehicle distribution utilized for the modeling. Noise contours are used to provide a characterization of sound levels experienced at a set distance from the centerline of a subject roadway. They are intended to represent a worst-case scenario and do not take into account structures, sound walls, topography, and/or other sound attenuating features which may further reduce the actual noise level. Noise contours are developed for comparative purposes and are used to demonstrate potential increases/decreases along subject roadways as a result of a project. The referenced traffic data and traffic noise calculation worksheets outputs are located in Appendix C.

- Roadway classification (e.g. freeway, major arterial, arterial, secondary, collector, etc.),
- Roadway Active Width (distance between the center of the outer most travel lanes on each side of the roadway)
- Average Daily Traffic Volumes (ADT), Speeds, Percentages of autos, medium and heavy trucks
- Roadway grade and angle of view
- Site Conditions (e.g. soft vs. hard)
- Percentage of total ADT which flows each hour through-out a 24-hour period

Roadway/Type	Existing ADT ¹	Existing + Project ADT ²	Future ADT ³	Speed (MPH)	Site Conditions
Pearblossom Hwy 4-Lane Hwy	30,145	31,441 57,600		50	Hard
SR 138: E. Ave to S-Pearblossom Hwy32,0794-Lane Hwy		33,375	43,200	55	Hard
SR 138: S. of Pearblossom Hwy 4-Lane Hwy	29,072	30,368	43,200	55	Hard
Motor-Vehicle Type ⁴		Daytime %	Evening %	Night %	Total % of
		(7AM to 7 PM)	(7 PM to 10 PM)	(10 PM to 7 AM)	Traffic Flow
Automobiles		77.5	12.9	9.6	94.3
Medium Truck	s	84.8	4.9 10.3		1.1
Heavy Trucks		86.5	2.7	10.8	4.5

Table 5: Roadway Parameters and Vehicle Distribution

Notes:

^{1.} Existing ADT volumes for Pearblossom Highway were calculated using 2006 ADTs provided by the City (City of Palmdale Traffic Volume Map) with a 1.85% growth rate.

² Project trip generation provided in the traffic study prepared for the project (Kimley-Horn and Associates, Inc. 2020).

³ City of Palmdale General Plan Circulation Element. LOS assumed to be 72% of Capacity.

⁴ https://dot.ca.gov/programs/traffic-operations/census

5.6 Construction Noise Modeling

Construction noise associated with the proposed project was calculated utilizing methodology presented in the Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment Manual (2018) together with several key construction parameters including: distance to each sensitive receiver, equipment usage, percent usage factor, and baseline parameters for the project site. Construction activities are anticipated to include four phases site preparation, grading, building construction, and architectural coating.

Construction noise levels were calculated for each phase based on CalEEMod Air Quality Model assumptions provided by the project proponent. All equipment was assumed to be situated at the center of the project site. Construction equipment typically moves back and forth across the site; and it is an industry standard to use the acoustical center of the site to model average construction noise levels. construction worksheets are provided in Appendix D.

6.0 Existing Noise Environment

Two (2) 24-hour noise measurements were conducted near the project site in order to document the existing noise environment. The measurements include the 1-hour Leq, Lmin, Lmax and other statistical data (e.g. L2, L8). The results of the noise measurement are presented in Tables 6 and 7. Noise measurement field sheets are provided in Appendix A.

Date	Time	1-Hour dB(A)							
Date	Time	L _{EQ}	L _{MAX}	L _{MIN}	L ₂	L ₈	L ₂₅	L ₅₀	L ₉₀
4/28/2020	9AM-10AM	64.3	69.3	53.4	68.5	67.7	66.7	63.6	60.0
4/28/2020	10AM-11AM	63.0	70.1	53.9	66.8	66.1	65.5	62.5	57.8
4/28/2020	11AM-12PM	63.9	69.6	46.8	68.9	67.6	66.7	63.2	58.6
4/28/2020	12PM-1PM	63.5	70.2	49.8	69.4	67.1	66.1	62.7	56.3
4/28/2020	1PM-2PM	63.6	69.4	52.3	67.8	67.0	66.6	63.0	58.9
4/28/2020	2PM-3PM	62.4	68.7	51.2	67.6	66.3	65.2	61.3	56.7
4/28/2020	3PM-4PM	61.2	67.2	53.2	65.0	64.7	64.0	60.5	55.7
4/28/2020	4PM-5PM	60.9	65.2	49.3	64.8	64.4	64.1	60.7	54.1
4/28/2020	5PM-6PM	62.5	68.5	51.0	67.5	67.3	66.1	61.0	55.8
4/28/2020	6PM-7PM	61.1	67.0	51.4	66.1	65.2	64.5	59.8	54.2
4/28/2020	7PM-8PM	62.6	69.8	47.5	68.3	67.3	66.0	61.1	55.2
4/28/2020	8PM-9PM	61.0	67.7	50.5	65.7	65.3	64.2	59.7	52.5
4/28/2020	9PM-10PM	60.6	66.6	42.8	64.7	64.5	63.8	59.9	54.4
4/28/2020	10PM-11PM	60.6	70.2	47.1	66.6	64.8	63.9	58.3	49.9
4/28/2020	11PM-12AM	59.7	70.4	39.0	65.5	63.5	62.4	57.6	47.8
4/29/2020	12AM-1AM	57.9	65.0	41.6	64.1	63.9	62.6	54.5	42.5
4/29/2020	1AM-2AM	57.2	65.9	36.5	65.5	63.0	60.8	53.7	41.6
4/29/2020	2AM-3AM	58.1	66.3	40.3	64.5	63.7	62.2	54.5	43.5
4/29/2020	3AM-4AM	60.1	69.0	47.6	65.2	64.4	63.1	58.4	51.7
4/29/2020	4AM-5AM	64.8	73.1	54.6	68.9	68.1	67.4	63.6	59.1
4/29/2020	5AM-6AM	65.6	71.7	55.6	69.1	68.5	68.2	65.0	61.5
4/29/2020	6AM-7AM	65.8	70.6	57.9	69.5	68.3	67.9	65.5	61.1
4/29/2020	7AM-8AM	65.1	70.3	52.8	69.3	68.8	68.0	63.9	58.8
4/29/2020	8AM-9AM	64.6	72.7	48.1	68.3	67.5	66.6	63.8	61.1
CN	EL				69	.7			

Table 6: Long-Term Noise Measurement Data for (LT1) (dBA)¹

Notes:

^{1.} Long-term noise monitoring location (LT1) is illustrated in Exhibit E. The quietest hourly day/evening noise interval is highlighted in orange when project operations could occur.

Date	Time	1-Hour dB(A)							
Date		L _{EQ}	L _{MAX}	L _{MIN}	L ₂	L ₈	L ₂₅	L ₅₀	L ₉₀
4/28/2020	9AM-10AM	55.3	72.7	35.9	66.2	61.9	58.2	49.0	45.7
4/28/2020	10AM-11AM	47.5	59.2	35.2	50.9	50.3	49.9	46.5	44.6
4/28/2020	11AM-12PM	48.8	64.4	35.8	53.7	52.1	51.5	48.0	45.2
4/28/2020	12PM-1PM	50.7	69.0	45.9	58.0	56.0	52.6	48.7	46.2
4/28/2020	1PM-2PM	52.7	66.7	38.2	62.1	53.6	52.6	49.8	46.6
4/28/2020	2PM-3PM	50.0	67.3	38.2	55.9	53.1	51.3	49.2	45.9
4/28/2020	3PM-4PM	50.9	66.0	36.4	56.2	54.4	53.9	49.8	46.2
4/28/2020	4PM-5PM	49.1	69.7	33.9	54.0	52.4	51.8	47.7	44.1
4/28/2020	5PM-6PM	49.6	66.1	34.0	53.7	53.3	52.5	48.1	44.9
4/28/2020	6PM-7PM	49.4	65.0	38.2	53.7	53.3	51.6	48.6	46.0
4/28/2020	7PM-8PM	51.8	68.9	39.6	57.1	55.4	54.0	50.7	47.3
4/28/2020	8PM-9PM	54.0	73.4	41.5	63.2	57.5	53.7	49.5	46.9
4/28/2020	9PM-10PM	54.7	75.4	38.5	63.1	57.8	53.6	49.2	46.8
4/28/2020	10PM-11PM	48.0	62.9	35.4	53.1	51.7	51.0	46.9	42.5
4/28/2020	11PM-12AM	54.8	76.0	35.1	65.0	52.2	51.2	47.0	42.3
4/29/2020	12AM-1AM	48.1	65.3	31.5	52.7	51.7	51.3	46.9	42.3
4/29/2020	1AM-2AM	49.7	74.2	32.0	55.7	53.7	53.0	46.6	39.4
4/29/2020	2AM-3AM	48.8	62.9	33.2	54.3	52.8	52.2	47.4	42.2
4/29/2020	3AM-4AM	53.0	72.5	39.3	61.8	60.5	54.0	49.8	47.1
4/29/2020	4AM-5AM	54.7	68.4	44.9	59.8	57.0	56.7	53.9	51.4
4/29/2020	5AM-6AM	55.5	67.1	45.3	58.8	58.6	57.2	55.1	52.3
4/29/2020	6AM-7AM	55.6	69.5	47.8	59.3	58.2	57.3	55.2	52.9
4/29/2020	7AM-8AM	55.5	73.8	43.3	63.1	59.1	56.5	51.7	49.0
4/29/2020	8AM-9AM	52.2	66.6	39.7	60.1	55.7	54.1	50.4	48.5
CN	EL	60.2							

Table 7: Long-Term Noise Measurement Data for (LT2) (dBA)¹

Notes:

^{1.} Long-term noise monitoring location (LT1) is illustrated in Exhibit E. The quietest hourly day/evening noise interval is highlighted in orange when project operations could occur.

The data presented in Tables 6 and 7 and the field notes provided in Appendix A, indicate that ambient noise levels in the project vicinity range between 57.2 and 65.8 dBA Leq (LTM1) and between 47.5 and 55.6 dBA Leq (LTM2). The overall CNEL ranged between 60.2 to 69.7 dBA CNEL. The field data indicates that both local roadway and railroad noise are the dominant noise sources.

Exhibit D Measurement Locations

Future Noise Environment Impacts and Mitigation 7.0

This assessment analyzes future noise impacts to sensitive receptors and to the project, and compares the results to the City's Noise Standards. The analysis details the estimated exterior noise levels associated with traffic from adjacent roadway sources. The City has established different significance thresholds for different types of noise impacts.

7.1 **Off-Site Traffic Noise Impact**

The potential off-site noise impacts caused by the increase in vehicular traffic as a result of the project were calculated at a distance of 50 feet from affected road segments. The noise level at 50 feet both with and without project generated vehicle traffic was compared and the increase calculated. The distance to the 55, 60, 65, and 70 dBA CNEL noise contours are also provided for reference (Appendix C). Noise contours were calculated for the following scenarios and conditions:

- Existing Condition: This scenario refers to the existing year traffic noise condition and is demonstrated in Table 8.
- Existing + Project Condition: This scenario refers to the existing year plus project traffic noise • condition and is demonstrated in Table 8.

As shown in Table 8, the addition of project generated vehicle traffic to SR 138 and SR 122 would result in negligible increases in ambient noise levels and would not be significant.

		Modeled Noise Levels (dBA CNEL) at 50 feet from Centerline						
Roadway	Segment	Existing	Existing Plus Project	Change in Noise Level	Increase of 3 dB or more ²			
Pearblossom Hwy	47th Street E to SR 138	75.9	76.1	0.2	No			
State Route 138	E. Ave S-8 to Pearblossom Hwy	76.2	76.3	0.1	No			
State Route 138	South of Pearblossom Hwy	75.5	75.7	0.2	No			
Notes:								

Table 8: Change in Existing Noise Levels as a Result of Project Generated Traffic

¹ FHWA roadway noise modeling worksheets provided in Appendix C.

² Typically, the human ear can barely perceive the change in noise level of 3 dB

On-Site Traffic Noise Impact 7.2

Future noise levels associated with Pearblossom Highway and State Route 38 were modeled using the SoundPLAN noise model in order to evaluate the project in light of the City's exterior standards presented in Table 2 of this report as they apply to future traffic noise impacts to the proposed project. The maximum acceptable exterior noise level for commercial land uses is "a noise level which does not jeopardize health, safety, and welfare of visitors"; and a maximum interior noise level for commercial land uses is 55 dBA Leq(h). The California State Code of Regulations has established a permissible exposure limit for noise that is an 8-hour time-weighted average (sound levels averaged over an 8 hour day) of 85 dBA. As shown on Exhibit E, future noise levels at the proposed outdoor uses, i.e. parking and fueling areas are expected to reach up to 75 dBA Leq(h), and would not exceed the 8-hour time-weighted average of 85 dBA.

The expected interior noise level of the proposed commercial building is the difference between the projected exterior noise level at the structure's facade and the noise reduction provided by the structure itself. Typical commercial building construction will provide a noise level reduction of 20 dBA with a "windows closed" condition. A "windows closed" condition requires mechanical fresh air ventilation (e.g. air conditioning). Interior noise levels may reach up to 52.4 dB Leq and are not expected to exceed the City's interior noise standard for commercial buildings of 55 dBA Leq.

7.1.3 Noise Impacts to Off-Site Receptors Due to Stationary Noise Sources

The existing single family residential land uses located approximately 185 feet west of the project site are sensitive receptors that may be affected by project operational noise. As shown in Table 2, project operational noise impacts to off-site sensitive receptors are evaluated in light of the 65 dBA CNEL exterior and 45 dBA interior noise thresholds. Worst-case operational noise was modeled using SoundPlan acoustical modeling software. One receptor representative of the project's western property line and two (2)receptors representative of existing single family homes located west of the project site were modeled using the SoundPLAN noise model to evaluate the proposed project's operational impact. A receptor is denoted by a yellow dot. All yellow dots represent either an existing building, a property line, or a sensitive receptor such as an outdoor sensitive area (courtyard, patio, backyard, etc.).

Project Operational Noise Levels

Worst-case "project only" exterior operational noise is presented on Exhibit F. Operational noise levels at the western property line are expected to reach 62.9 dBA CNEL and up to 48.3 dBA Leq at the nearest sensitive receptors (single family residences to the west). Project operational noise would not exceed the City's 65 dBA CNEL daytime exterior noise limit or the 45 dBA interior residential limit, as outlined within the City's noise Code (see Table 2). Typical newer residential construction will provide a noise level reduction of 15 dB with a "windows open" condition and a 20 dBA with a "windows closed" condition. A "windows closed" condition requires mechanical fresh air ventilation (e.g. air conditioning).

Project Plus Ambient Operational Noise Levels

As stated above, existing plus project noise level projections are anticipated to reach 48.3 dBA Leq at the nearest sensitive receptors. Measured noise levels at the noise measurement location representative of the sensitive receptors (LT1) ranged between 57.2 to 65.8 dBA Leq. When adding two noise levels that are between 4 and 9 dB in difference from each other, the resulting sum is 1 dB higher than the higher of the two values. Project generated operational noise is expected to result in a 1 dB increase in ambient noise levels. This impact would not be significant. No mitigation is required.

Exhibit E

Future Traffic + Project Operational Noise Levels (Leq)

Exhibit F

Project Operational Noise Levels - CNEL

8.0 Construction Noise and Vibration Impacts

The degree of construction noise may vary for different areas of the project site and also vary depending on the construction activities. Project construction will occur in four phases, site preparation, grading, building construction and architectural coating. This section summarizes discusses noise and groundborne vibration modeling efforts, impact analysis, and mitigation, if necessary.

8.1 Construction Noise

Typical construction equipment noise levels are presented in Table 9.

Table 9: Typical Construction Equipment Noise Levels¹

72 70
/3 - /0
73 - 84
73 - 92
75 - 95
78 - 92
85 - 87
81 - 94
72 - 87
81 - 83
72 - 86
85 - 87
68 - 71
71 - 83
75 – 86

EQUIPMENT POWERED BY INTERNAL COMBUSTION ENGINES

Туре	Noise Levels (dBA) at 50 Feet									
Saws	71 - 82									
Vibrators	68 - 82									
Notes: ¹ Referenced Noise Levels from the Environmental Protection Agency (EPA)									

Construction noise associated with each phase of the project was calculated at nearby sensitive receptors utilizing methodology presented in the Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment Manual (2018) together with several key construction parameters

including: distance to each sensitive receiver, equipment usage, percent usage factor, and baseline parameters for the project site. Construction equipment typically moves back and forth across the site; and it is an industry standard to use the acoustical center of the site to model average construction noise levels.

Construction activities are anticipated to include four phases site preparation, grading, building construction, and architectural coating. Noise levels associated with each phase are shown in Table 10. The construction noise calculation output worksheet is located in Appendix D.

	Noise Levels at Nearest Sensitive Receptor										
Activity	Leq	Lmax									
Site Preparation	79	83									
Grading	79	80									
Building Construction	77	78									
Architectural Coating	73	77									
Note: Construction Modeling Worksheets are provided in Appendix D.											

Table 10: Construction Noise Level by Phase (dBA, Leq)

As shown in Table 10, project construction noise will range between 73 and 79 dBA Leq dBA Lmax at nearby sensitive receptors. Measured noise levels at the noise measurement location representative of the nearest sensitive receptors (LT1) ranged between 57.2 to 65.8 dBA Leq. CEQA

The project will be required to adhere to Section 9.28.030 of the City of Palmdale Municipal Code which prohibits construction or repair work on any Sunday, or any other day after 8:00 p.m. or before 6:30 a.m., in any residential zone or within 500 feet of any residence, hotel, motel or recreational vehicle park. Project construction will be consistent with the applicable ordinance. This impact is less than significant. No mitigation is required.

As discussed previously, the City of Palmdale has not adopted a numerical threshold that identifies what a substantial increase would be. For purposes of this analysis, the Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment (2006) criteria will be used to establish significance thresholds. The FTA provides reasonable criteria for assessing construction noise impacts based on the potential for adverse community reaction. For residential uses, the daytime noise threshold is 80 dBA L_{eq} averaged over an 8-hour period (L_{eq} [8-hr]); and the nighttime noise threshold is 70 dBA L_{eq} (8-hr). For commercial uses, the daytime and nighttime noise threshold is 85 dBA L_{eq} (8-hr). In compliance with the City's Code, it is assumed that construction would not occur during the noise-sensitive nighttime hours.

The $L_{eq (8-hr)}$ associated with project construction would range between 73 and 79 dBA depending upon the construction phase, and will not exceed the FTA criteria for impacts to residential or commercial land uses. This impact would be less than significant. No mitigation is required. Measures to minimize construction noise are provided in Section 8.3 of this report.

8.2 Construction Vibration

Construction activities can produce vibration that may be felt by adjacent land uses. The construction of the proposed project would not require the use of equipment such as pile drivers, which are known to generate substantial construction vibration levels. The primary vibration source during construction may be from a bull dozer. A large bull dozer has a vibration impact of 0.089 inches per second peak particle velocity (PPV) at 25 feet which is perceptible but below any risk to architectural damage.

The fundamental equation used to calculate vibration propagation through average soil conditions and distance is as follows:

 $PPV_{equipment} = PPV_{ref} (100/D_{rec})^n$

Where: PPV_{ref} = reference PPV at 100ft. D_{rec} = distance from equipment to receiver in ft. n = 1.1 (the value related to the attenuation rate through ground)

The thresholds from the Caltrans Transportation and Construction Induced Vibration Guidance Manual in Table 11 (below) provides general thresholds and guidelines as to the vibration damage potential from vibratory impacts.

	Maximur	n PPV (in/sec)				
Structure and Condition	Transiant Sources	Continuous/Frequent				
	Transient Sources	Intermittent Sources				
Extremely fragile historic buildings, ruins, ancient monuments	0.12	0.08				
Fragile buildings	0.2	0.1				
Historic and some old buildings	0.5	0.25				
Older residential structures	0.5	0.3				
New residential structures	1.0	0.5				
Modern industrial/commercial buildings	2.0	0.5				
Source: Table 19, Transportation and Construction Vibration Guidance Manual, Caltrans, Note: Transient sources create a single isolated vibration event, such as blasting or drop h	Sept. 2013. balls. Continuous/frequent in	termittent sources include				

Table 11: Guideline Vibration Damage Potential Threshold Criteria

Table 12 gives approximate vibration levels for particular construction activities. This data provides a reasonable estimate for a wide range of soil conditions.

impact pile drivers, pogo-stick compactors, crack-and-seat equipment, vibratory pile drivers, and vibratory compaction equipment.

	Peak Particle Velocity	Approximate Vibration Level
Equipment	(inches/second) at 25 feet	LV (dVB) at 25 feet
Dila driver (impact)	1.518 (upper range)	112
Plie driver (impact)	0.644 (typical)	104
Dile driver (serie)	0.734 upper range	105
Plie driver (sonic)	0.170 typical	93
Clam shovel drop (slurry wall)	0.202	94
Hydromill	0.008 in soil	66
(slurry wall)	0.017 in rock	75
Vibratory Roller	0.21	94
Hoe Ram	0.089	87
Large bulldozer	0.089	87
Caisson drill	0.089	87
Loaded trucks	0.076	86
Jackhammer	0.035	79
Small bulldozer	0.003	58
Source: Transit Noise and Vibration Impact Assessment, Fo	ederal Transit Administration, May 2018.	

Table 12: Vibration Source Levels for Construction Equipment

The nearest sensitive receptors are approximately 185 feet west of the project site. At this distance, a large bulldozer would yield a worst-case 0. 01 PPV (in/sec) which would not be perceptible or result in architectural damage. The impact is not significant. No mitigation is required. The ground-borne vibration worksheet is provided in Appendix E.

8.3 Construction Noise Reduction Measures

In addition to complying with Section 9.28.030 of the City of Palmdale Municipal Code which prohibits construction or repair work on any Sunday, or any other day after 8:00 p.m. or before 6:30 a.m., in any residential zone or within 500 feet of any residence, hotel, motel or recreational vehicle park, the following measures are recommended to reduce construction noise.

- 1. During construction, the contactor shall ensure all construction equipment is equipped with appropriate noise attenuating devices.
- 2. The contractor should locate equipment staging areas that will create the greatest distance between construction-related noise/vibration sources and sensitive receptors nearest the project site during all project construction.
- 3. Idling equipment should be turned off when not in use.
- 4. Equipment shall be maintained so that vehicles and their loads are secured from rattling and banging.

9.0 References

City of Palmdale

- 1993 General Plan
- 2020 Municipal Code

California Department of Transportation (Caltrans)

- 2013 Transportation and Construction Induced Vibration Guidance Manual.
- 2018 Technical Noise Supplement to the Traffic Noise Analysis Protocol. Sept.

California Department of Noise Control

2017 Guidelines for the Preparation and Content of Noise Elements of the General Plan. February.

Federal Highway Administration (FHWA)

2010 Highway Traffic Noise Analysis and Abatement Policy and Guidance. https://www.fhwa.dot.gov/environMent/noise/regulations_and_guidance/polguide/polguide02.cfm

Federal Transit Administration (FTA)

2018 Transit Noise and Vibration Impact Assessment Manual

Governor's Office of Planning and Research

State of California General Plan Guidelines, 1998

Kimley-Horn and Associates

Traffic Study Memorandum of Understanding, October 7, 2020

SoundPLAN International, LLC

2016 SoundPLAN Essential 4.0 Manual. May.

Appendix A:

Field Measurement Data

ACOUSTICS Sound Solutions for Planning and Design AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

24-Hour Continuous Noise Measurement Datasheet

Project:	Pilot Palmdale	Site Observations:	Clear Sky. Measurement was performed within 5- ft of map pins.
Site Address/Location:	N.W. corner of Pear Blossom Hwy and Fort To	ejon Rd	Promary noise for LT1 was vehicle traffic and construction
Date:	4/28/2020 to 4/29/2020		associated with Pearblossom Hwy.
Field Tech/Engineer:	Jason Schuyler & Claire Pincock		
General Location:			
Sound Meter:	NTi Audio SN: A2A-07095-E0		Site Topo: Flat
Settings:	A-weighted, slow, 1-sec, 10-minute interval		Ground Type: Soft site, w/ street surface hard
Meteorological Con.:	75 degrees F, 2 to 5 mph wind, eastern direct	tion	
Site ID:	LT1		Noise Source(s) w/ Distance:
			LT1 was taken approx. 95' N. of the

Figure 1: LT Monitoring Locations

LT1 was taken approx. 95' N. of the Pearblosson Hwy and appoximately 1,500' S. of the rail line

Figure 3: LT-2 Photo

24-Hour Continuous Noise Measurement Datasheet - Cont.

Project:

Pilot Palmdale

Day: 1 of 1

Site Address/Location: N.W. corner of Pear Blossom Hwy and Fort Tejon Rd

Site ID:

LT1

Date	Start	Stop	Leq	Lmax	Lmin	L2	L8	L25	L50	L90
4/28/2020	9:00 AM	10:00 AM	64.3	69.3	53.4	68.5	67.7	66.7	63.6	60.0
4/28/2020	10:00 AM	11:00 AM	63.0	70.1	53.9	66.8	66.1	65.5	62.5	57.8
4/28/2020	11:00 AM	12:00 PM	63.9	69.6	46.8	68.9	67.6	66.7	63.2	58.6
4/28/2020	12:00 PM	1:00 PM	63.5	70.2	49.8	69.4	67.1	66.1	62.7	56.3
4/28/2020	1:00 PM	2:00 PM	63.6	69.4	52.3	67.8	67.0	66.6	63.0	58.9
4/28/2020	2:00 PM	3:00 PM	62.4	68.7	51.2	67.6	66.3	65.2	61.3	56.7
4/28/2020	3:00 PM	4:00 PM	61.2	67.2	53.2	65.0	64.7	64.0	60.5	55.7
4/28/2020	4:00 PM	5:00 PM	60.9	65.2	49.3	64.8	64.4	64.1	60.7	54.1
4/28/2020	5:00 PM	6:00 PM	62.5	68.5	51.0	67.5	67.3	66.1	61.0	55.8
4/28/2020	6:00 PM	7:00 PM	61.1	67.0	51.4	66.1	65.2	64.5	59.8	54.2
4/28/2020	7:00 PM	8:00 PM	62.6	69.8	47.5	68.3	67.3	66.0	61.1	55.2
4/28/2020	8:00 PM	9:00 PM	61.0	67.7	50.5	65.7	65.3	64.2	59.7	52.5
4/28/2020	9:00 PM	10:00 PM	60.6	66.6	42.8	64.7	64.5	63.8	59.9	54.4
4/28/2020	10:00 PM	11:00 PM	60.6	70.2	47.1	66.6	64.8	63.9	58.3	49.9
4/28/2020	11:00 PM	12:00 AM	59.7	70.4	39.0	65.5	63.5	62.4	57.6	47.8
4/29/2020	12:00 AM	1:00 AM	57.9	65.0	41.6	64.1	63.9	62.6	54.5	42.5
4/29/2020	1:00 AM	2:00 AM	57.2	65.9	36.5	65.5	63.0	60.8	53.7	41.6
4/29/2020	2:00 AM	3:00 AM	58.1	66.3	40.3	64.5	63.7	62.2	54.5	43.5
4/29/2020	3:00 AM	4:00 AM	60.1	69.0	47.6	65.2	64.4	63.1	58.4	51.7
4/29/2020	4:00 AM	5:00 AM	64.8	73.1	54.6	68.9	68.1	67.4	63.6	59.1
4/29/2020	5:00 AM	6:00 AM	65.6	71.7	55.6	69.1	68.5	68.2	65.0	61.5
4/29/2020	6:00 AM	7:00 AM	65.8	70.6	57.9	69.5	68.3	67.9	65.5	61.1
4/29/2020	7:00 AM	8:00 AM	65.1	70.3	52.8	69.3	68.8	68.0	63.9	58.8
4/29/2020	8:00 AM	9:00 AM	64.6	72.7	48.1	68.3	67.5	66.6	63.8	61.1

CNEL: 69.7

24-Hour Continuous Noise Measurement Datasheet - Cont.

24-Hour Continuous Noise Measurement Datasheet - Cont.

ACOUSTICS Sound Solutions for Planning and Design www.mdacoustics.com

AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

24-Hour Continuous Noise Measurement Datasheet

Project:	Pilot Palmdale	Site Observations:	Primary noise for LT2: vehicle noise associated with State Route
Site Address/Location:	N.W. corner of Pear Blossom Hwy and Fort	Tejon Rd	138 and train pass-by. A strong wind moved through the area on
Date:	4/28/2020 to 4/29/2020		the final day of testing 10-15MPH.
Field Tech/Engineer:	Jason Schuyler & Claire Pincock		
General Location:			
Sound Meter:	NTi Audio SN: A2A-07095-E0		Site Topo: Flat
Settings:	A-weighted, slow, 1-sec, 10-minute interva	I	Ground Type: Soft site, w/ street surface hard
Meteorological Con.:	75 degrees F, 2 to 5 mph wind, eastern dire	ection	
Site ID:	LT2		Noise Source(s) w/ Distance:
			LT2- was taken approx. 250' W. of SR-138

Figure 1: LT Monitoring Locations

and approximately 485' S. of the rail line

Figure 3: LT-2 Photo

24-Hour Continuous Noise Measurement Datasheet - Cont.

Project:

Pilot Palmdale

Day: 1 of 1

Site Address/Location: N.W. corner of Pear Blossom Hwy and Fort Tejon Rd

Site ID:

LT2

Date	Start	Stop	Leq	Lmax	Lmin	L2	L8	L25	L50	L90
4/28/2020	9:00 AM	10:00 AM	55.3	72.7	35.9	66.2	61.9	58.2	49.0	45.7
4/28/2020	10:00 AM	11:00 AM	47.5	59.2	35.2	50.9	50.3	49.9	46.5	44.6
4/28/2020	11:00 AM	12:00 PM	48.8	64.4	35.8	53.7	52.1	51.5	48.0	45.2
4/28/2020	12:00 PM	1:00 PM	50.7	69.0	45.9	58.0	56.0	52.6	48.7	46.2
4/28/2020	1:00 PM	2:00 PM	52.7	66.7	38.2	62.1	53.6	52.6	49.8	46.6
4/28/2020	2:00 PM	3:00 PM	50.0	67.3	38.2	55.9	53.1	51.3	49.2	45.9
4/28/2020	3:00 PM	4:00 PM	50.9	66.0	36.4	56.2	54.4	53.9	49.8	46.2
4/28/2020	4:00 PM	5:00 PM	49.1	69.7	33.9	54.0	52.4	51.8	47.7	44.1
4/28/2020	5:00 PM	6:00 PM	49.6	66.1	34.0	53.7	53.3	52.5	48.1	44.9
4/28/2020	6:00 PM	7:00 PM	49.4	65.0	38.2	53.7	53.3	51.6	48.6	46.0
4/28/2020	7:00 PM	8:00 PM	51.8	68.9	39.6	57.1	55.4	54.0	50.7	47.3
4/28/2020	8:00 PM	9:00 PM	54.0	73.4	41.5	63.2	57.5	53.7	49.5	46.9
4/28/2020	9:00 PM	10:00 PM	54.7	75.4	38.5	63.1	57.8	53.6	49.2	46.8
4/28/2020	10:00 PM	11:00 PM	48.0	62.9	35.4	53.1	51.7	51.0	46.9	42.5
4/28/2020	11:00 PM	12:00 AM	54.8	76.0	35.1	65.0	52.2	51.2	47.0	42.3
4/29/2020	12:00 AM	1:00 AM	48.1	65.3	31.5	52.7	51.7	51.3	46.9	42.3
4/29/2020	1:00 AM	2:00 AM	49.7	74.2	32.0	55.7	53.7	53.0	46.6	39.4
4/29/2020	2:00 AM	3:00 AM	48.8	62.9	33.2	54.3	52.8	52.2	47.4	42.2
4/29/2020	3:00 AM	4:00 AM	53.0	72.5	39.3	61.8	60.5	54.0	49.8	47.1
4/29/2020	4:00 AM	5:00 AM	54.7	68.4	44.9	59.8	57.0	56.7	53.9	51.4
4/29/2020	5:00 AM	6:00 AM	55.5	67.1	45.3	58.8	58.6	57.2	55.1	52.3
4/29/2020	6:00 AM	7:00 AM	55.6	69.5	47.8	59.3	58.2	57.3	55.2	52.9
4/29/2020	7:00 AM	8:00 AM	55.5	73.8	43.3	63.1	59.1	56.5	51.7	49.0
4/29/2020	8:00 AM	9:00 AM	52.2	66.6	39.7	60.1	55.7	54.1	50.4	48.5

CNEL: 60.2

24-Hour Continuous Noise Measurement Datasheet - Cont.

24-Hour Continuous Noise Measurement Datasheet - Cont.

Noise emissions of road traffic

Traffic va Vehicle name Traffic directio	day Veh/h on: In entry 3117 2954 61 102 - - on: In entry 3117 2954 61 102 - - - on: In entry 2243 2126 44 73 - - - - - - - - - - - - -	evening Veh/h direction 2220 2193 10 17 - - - direction 2220 2193 10 17 - - - - - - - - - - - - - - - - - -	night Veh/h 771 544 85 142 - - - - - - - - - - - - - - - - - - -	Speed km/h	none	Cons Spee km/h	Affec veh. % -	Average (of DGAC a Average (of DGAC a Average (of DGAC a	Gradie Min / N % 1.3 1.2
Vehicle name Traffic directio	day Veh/h vi: In entry 3117 2954 61 102 - - - on: In entry 3117 2954 61 102 - - - on: In entry 2243 2126 44 73 - - - - - - - - - - - - -	evening Veh/h direction 2220 2193 10 17 - - direction 2220 2193 10 17 - - - - - - - - - - - - - - - - - -	night Veh/h 7711 544 85 142 - - - - - - - - - - - - - - - - - - -	Speed km/h	none	-		Road surface Average (of DGAC a Average (of DGAC a Average (of DGAC a	Min / N % 1.3 1.2 -3.4
Traffic directio	Veh/h Veh/h n: In entry 3117 2954 61 102 - - - on: In entry 3117 2954 61 102 - - - on: In entry 2243 2126 44 73 - - - - - - - - - - - - -	Veh/h direction 2220 2193 10 17 - - direction 2220 2193 10 17 - - - direction 1598 1578 7 12 - - - - -	Veh/h 771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 105 105 105 105 105 105 105 105	none	- -	-	Average (of DGAC a	% 1.3 1.2 -3.4
Traffic directio	Ventility 3117 2954 61 102 - - on: In entry 3117 2954 61 102 - - on: In entry 3117 2954 61 102 - - on: In entry 2243 2126 44 73 - - - 2243	direction 2220 2193 10 17 - - direction 2220 2193 10 17 - - direction 1598 1578 7 12 - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 105 - - - 105 105 105 105 105 - - - - 72 72 72 72 72 - - -	none	-	-	Average (of DGAC a	-3.4
Traffic directio	3117 2954 61 102 - - - - - - - - - - - - - - - - - - -	2220 2193 10 17 - - - direction 2220 2193 10 17 - - - - - - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 - - - - - - - - - - - - - - - - - - -	none	-	-	Average (of DGAC a	1.3
	3117 2954 61 102 - - - - - - - - - - - - - - - - - - -	2220 2193 10 17 - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 105 - - - - 105 105 105 105 105 - - - - - - - - - - - - - - - - - - -	none	-	-	Average (of DGAC a	-3.4
	2954 61 102 - - - - - - - - - - - - - - - - - - -	2193 10 17 - - - - - - - - - - - - - - - - - -	544 85 142 - - - - - - - - - - - - - - - - - - -	105 105 105 - - - - - - - - - - - - - - - - - - -	none	-	-	Average (of DGAC a	-3.4
	61 102 - - - - - - - - - - - - - - - - - - -	10 17 - - - - - - - - - - - - -	83 142 - - - - - - - - - - - - - - - - - - -	- 105 105 - - 105 105 105 105 105 - - - - - - - - - - - - - - - - - - -	none	-	-	Average (of DGAC a	-3.4
- Traffic direction	102 - - - - - - - - - - - - -	direction 2220 2193 10 17 - - direction 1598 1578 7 12 - - - - - - - - - - - - -	142 - - - - - - - - - - - - - - - - - - -	- - 105 105 105 105 - - - - - - - - - - - - - - - - - - -	none	-	-	Average (of DGAC a	-3.4
- Traffic directio		- direction 2220 2193 10 17 - - direction 1598 1578 7 12 - - - - - - -	- 771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 105 - - - - 72 72 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
- Traffic directio		- direction 2220 2193 10 17 - - direction 1598 1578 7 12 - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 - - - - - 72 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
Traffic directio	on: In entry 3117 2954 61 102 - - on: In entry 2243 2126 44 73 - - - 2243	direction 2220 2193 10 17 - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 - - - - 72 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
Traffic directio	3117 2954 61 102 - - - - - - - - - - - - - - - - - - -	2220 2193 10 17 - - - - - - direction 1598 1578 7 12 - - - - - - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 - - - - - 72 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
	3117 2954 61 102 - - - - - - - - - - - - - - - - - - -	2220 2193 10 17 - - - - - - - - - - - - - - - - - -	771 544 85 142 - - - - - - - - - - - - - - - - - - -	- 105 105 105 - - - - 72 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
- - - - - - - - - - - - - - - - - - -	22934 61 102 - - - - - - - - - - - - - - - - - - -	2193 10 17 - - - - - - - - - - - - - - - - - -	544 85 142 - - - 555 392 61 102 - - - -	- - - - 72 72 72 - - -	none	-	-	Average (of DGAC a	-3.4
Traffic directio	01 102 - - - - - - - - - - - - - - - - - - -	10 17 - - - - - - - - - - - - - - - - - -	555 392 61 102 - - -	- - - 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
- Traffic directio	2243 2126 44 73 - - 2243	direction 1598 1578 7 12 - - - -	555 392 61 102 - - -	- - - 72 72 72 - - -	none	-	-	Average (of DGAC a	-3.4
- - Traffic directio - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- direction 1598 1578 7 12 - - -	- 555 392 61 102 - - -	- - 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
- Traffic directio	- pn: In entry 2243 2126 44 73 - - - 2243	- direction 1598 1578 7 12 - - - -	- 555 392 61 102 - - -	- 72 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
Traffic directio	2243 2126 44 73 - - 2243	direction 1598 1578 7 12 - - -	555 392 61 102 - -	- 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
	2243 2126 44 73 - - 2243	1598 1578 7 12 - - -	555 392 61 102 - - -	- 72 72 72 - -	none	-	-	Average (of DGAC a	-3.4
-	2243 2126 44 73 - - 2243	1598 1578 7 12 - -	392 61 102 - -	72 72 72 - -	none				5.4
	44 73 - - 2243	15,0 7 12 - -	61 102 - -	72 72 72 - -					
-	73 - - - 2243	12 - - -	102	72					
-	2243			-					
	- - 2243	-	-	-					
-	- 2243	-	-						
-	2243	1500		_					
-		1228	555	-	none	-	-	Average (of DGAC a	-1.9/-(
	2126	1578	392	72					
-	44	7	61	72					
-	73	12	102	72					
-	-	-	-	-					
-	-	-	-	-					
-	-	-	-	-					0.0
-	2243	1598	555	-	none	-	-	Average (of DGAC a	-0.6
-	2126	15/8	392	72					
-	44	12	61 102	72					
-	/5	12	102	- 12					
-	_	-	-	_					
-	-	-	-	-					
	- - - - - - -	- 2243 2126 - 44 - 73 							Average (of DGAC a - 2243 1598 555 - none Average (of DGAC a 2126 1578 392 72 - 444 7 61 72 - 73 12 102 72

Ganddini Group Inc. 550 Parkcenter Drive, Suite 202 Santa Ana, CA 92705 USA

Receiver list

		Building		Limit	Level	Conflict
No.	Receiver name	side	Floor	Lden	Lden	Lden
				dB(A)	dB(A)	dB
1	1	-	GF	-	58.7	-
2	2	-	GF	-	60.7	-
3	3	-	GF	-	62.9	-
4	4	-	GF	-	65.2	-
5	5	-	GF	-	64.9	-
6	6	-	GF	-	62.5	-
7	7	-	GF	-	59.9	-
8	8	-	GF	-	57.4	-
9	9	-	GF	-	60.2	-

Ganddini Group Inc. 550 Parkcenter Drive, Suite 202 Santa Ana, CA 92705 USA

04622010_Pilot Palmdale Emission calculation road - Situation 4: Outdoor SP

16

Road	Section name	KM	ADT	Gradient		
		km	Veh/24h	%		
Pearblossom Hwy		0.000	57600	0.0		
SR 138 E. Ave S to Pearblossom		0.000	43200	0.0		
		1				
					LLC 4060 S. Cilbert Dd. Chandler, AZ 95240, Dhanas 602, 774, 4050	1
		ſ		oustic	S LLG 4900 S. GIIDERT KO GNANDIER, AZ 85249 PNONE: 602 / /4 1950	l '

SoundPLAN 8.2

04622010_Pilot Palmdale Octave spectra of the sources in dB(A) - Situation 4: Outdoor SP

3

Name	Source type	l or A	Li	R'w	L'w	Lw	KI	KT	LwMax	DO-Wall	Time histogram	Emission spectrum	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	16kHz
		m,m²	dB(A)	dB	dB(A)	dB(A)	dB	dB	dB(A)	dB			dB(A)								
Car Gas Pad - Area Source	Area	573.69			54.3	81.9	0.0	0.0		0	100%/24h					81.9					
HVAC 1	Point				70.0	70.0	0.0	0.0		0	100%/24h	RTU - 3'	46.4	55.3	54.4	62.8	64.5	64.3	61.3	56.9	45.2
HVAC 2	Point				70.0	70.0	0.0	0.0		0	100%/24h	RTU - 3'	46.4	55.3	54.5	62.8	64.5	64.3	61.3	57.0	45.2
HVAC 3	Point				70.0	70.0	0.0	0.0		0	100%/24h	RTU - 3'	46.4	55.3	54.5	62.8	64.5	64.3	61.3	57.0	45.2
Trucking Gas Pad- Point Source 1	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 2	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 3	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 4	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 5	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 6	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Trucking Gas Pad- Point Source 7	Point				86.9	86.9	0.0	0.0		0	100%/24h	Idiling Heavy Diesel Truck	56.1	73.8	72.6	79.0	83.5	80.2	75.2	67.2	55.1
Car Parking 1	PLot	128.42			54.4	75.5	0.0	0.0		0	Car Parking	Typical spectrum	58.8	70.4	62.9	67.4	67.5	67.9	65.2	59.0	46.2
Car Parking 2	PLot	152.50			55.2	77.0	0.0	0.0		0	Car Parking	Typical spectrum	60.3	71.9	64.4	68.9	69.0	69.4	66.7	60.5	47.7
Car Parking 3	PLot	97.92			54.1	74.0	0.0	0.0		0	Car Parking	Typical spectrum	57.3	68.9	61.4	65.9	66.0	66.4	63.7	57.5	44.7
Car Parking 4	PLot	104.98			54.6	74.8	0.0	0.0		0	Car Parking	Typical spectrum	58.1	69.7	62.2	66.7	66.8	67.2	64.5	58.3	45.5
Car Parking 5	PLot	213.67			57.4	80.7	0.0	0.0		0	Car Parking	Typical spectrum	64.1	75.7	68.2	72.7	72.8	73.2	70.5	64.3	51.5
Car Parking 6	PLot	166.60			55.9	78.2	0.0	0.0		0	Car Parking	Typical spectrum	61.5	73.1	65.6	70.1	70.2	70.6	67.9	61.7	48.9
Car Parking 7	PLot	73.89			55.3	74.0	0.0	0.0		0	Car Parking	Typical spectrum	57.3	68.9	61.4	65.9	66.0	66.4	63.7	57.5	44.7
Truck Parking 1	PLot	2863.48			65.2	99.7	0.0	0.0		0	Truck Parking	Idiling Heavy Diesel Truck	68.9	86.6	85.4	91.8	96.4	93.1	88.1	80.1	68.0
Truck Parking 2	PLot	1647.48			64.6	96.7	0.0	0.0		0	Truck Parking	Idiling Heavy Diesel Truck	65.9	83.6	82.4	88.8	93.4	90.0	85.1	77.1	64.9

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

Source	Source group	Source tv	Tr lane	Lea	Δ	
Source					dB	
Dessiver Dessiver 4 FLC					UD	
Receiver Receiver 4 FIG	UB(A) Leq 65.1 UB(A)	A		07.0	0.0	
Car Gas Pad - Area Source	Default industrial noise	Area		27.9	0.0	
	Default parking lot hoise	PLot		23.0	0.0	
Car Parking 2	Default parking lot noise	PLot		25.3	0.0	
Car Parking 3	Default parking lot noise	PLot		22.5	0.0	
Car Parking 4	Default parking lot noise	PLot		23.3	0.0	
Car Parking 5	Default parking lot noise	PLot		25.1	0.0	
Car Parking 6	Default parking lot noise	PLot		22.4	0.0	
Car Parking 7	Default parking lot noise	PLot		18.7	0.0	
HVAC 1	Default industrial noise	Point		29.8	0.0	
HVAC 2	Default industrial noise	Point		27.5	0.0	
HVAC 3	Default industrial noise	Point		25.7	0.0	
Pearblossom Hwy		Road		51.8	0.0	
SR 138 E. Ave S to				<u></u>	0.0	
Pearblossom		Road		63.9	0.0	
Truck Parking 1	Default parking lot noise	PLot		52.7	0.0	
Truck Parking 2	Default parking lot noise	PLot		46.6	0.0	
Trucking Gas Pad- Point						
Source 1	Default industrial noise	Point		46.7	0.0	
Trucking Gas Pad- Point Source 2	Default industrial noise	Point		47.0	0.0	
Trucking Gas Pad- Point Source 3	Default industrial noise	Point		47.3	0.0	
Trucking Gas Pad- Point Source 4	Default industrial noise	Point		47.4	0.0	
Trucking Gas Pad- Point Source 5	Default industrial noise	Point		47.5	0.0	
Trucking Gas Pad- Point Source 6	Default industrial noise	Point		47.6	0.0	
Trucking Gas Pad- Point Source 7	Default industrial noise	Point		47.5	0.0	
Receiver Receiver 5 FIG	dB(A) Leq 69.4 dB(A)					
Car Gas Pad - Area Source	Default industrial noise	Area		42.3	0.0	
Car Parking 1	Default parking lot noise	PLot		21.8	0.0	
Car Parking 2	Default parking lot noise	PLot		28.5	0.0	
Car Parking 3	Default parking lot noise	PLot		38.8	0.0	
Car Parking 4	Default parking lot noise	PLot		44.0	0.0	
Car Parking 5	Default parking lot noise	PLot		30.1	0.0	
Car Parking 6	Default parking lot noise	PLot		38.0	0.0	
Car Parking 7	Default parking lot noise	PLot		35.5	0.0	
	Default industrial poiso	Point		26 /	0.0	
	Default industrial noise			20.4	0.0	
		Point		21 4	0.0	
				21.4	0.0	
rearbiossoni Hwy	I	Road	I	08.3	0.0	1

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

9

	1				
Source	Source group	Source ty Tr. lane	Leq	A	
			dB(A)	dB	
SR 138 E. Ave S to		Road	62.5	0.0	
Pearblossom			40.0	0.0	
Truck Parking 1	Default parking lot noise	PLot	48.9	0.0	
Truck Parking 2	Default parking lot noise	PLot	42.7	0.0	
Source 1	Default industrial noise	Point	45.0	0.0	
Trucking Gas Pad- Point Source 2	Default industrial noise	Point	45.0	0.0	
Trucking Gas Pad- Point Source 3	Default industrial noise	Point	38.7	0.0	
Trucking Gas Pad- Point Source 4	Default industrial noise	Point	36.0	0.0	
Trucking Gas Pad- Point Source 5	Default industrial noise	Point	34.0	0.0	
Trucking Gas Pad- Point Source 6	Default industrial noise	Point	32.5	0.0	
Trucking Gas Pad- Point Source 7	Default industrial noise	Point	31.3	0.0	
Receiver Receiver 6 FI G	dB(A) Leq 72.4 dB(A)				
Car Gas Pad - Area Source	Default industrial noise	Area	50.9	0.0	
Car Parking 1	Default parking lot noise	PLot	40.3	0.0	
Car Parking 2	Default parking lot noise	PLot	52.6	0.0	
Car Parking 3	Default parking lot noise	PLot	48.3	0.0	
Car Parking 4	Default parking lot noise	PLot	40.4	0.0	
Car Parking 5	Default parking lot noise	PLot	43.2	0.0	
Car Parking 6	Default parking lot noise	PLot	39.6	0.0	
Car Parking 7	Default parking lot noise	PLot	34.4	0.0	
HVAC 1	Default industrial noise	Point	29.5	0.0	
HVAC 2	Default industrial noise	Point	27.1	0.0	
HVAC 3	Default industrial noise	Point	25.9	0.0	
Pearblossom Hwy		Road	72.3	0.0	
SR 138 E. Ave S to Pearblossom		Road	52.0	0.0	
Truck Parking 1	Default parking lot noise	PLot	33.6	0.0	
Truck Parking 2	Default parking lot noise	PLot	28.2	0.0	
Trucking Gas Pad- Point Source 1	Default industrial noise	Point	25.8	0.0	
Trucking Gas Pad- Point Source 2	Default industrial noise	Point	25.8	0.0	
Trucking Gas Pad- Point Source 3	Default industrial noise	Point	25.8	0.0	
Trucking Gas Pad- Point Source 4	Default industrial noise	Point	25.8	0.0	
Trucking Gas Pad- Point Source 5	Default industrial noise	Point	25.9	0.0	
	-		· ·		

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

Source	Source group	Source ty Tr. Jone	Log	٨	
Source	Source group		Leq	A	
			dB(A)	dB	
Trucking Gas Pad- Point Source 6	Default industrial noise	Point	25.9	0.0	
Trucking Gas Pad- Point Source 7	Default industrial noise	Point	25.9	0.0	
Receiver Receiver 7 FIG	dB(A) Leq 69.1 dB(A)				
Car Gas Pad - Area Source	Default industrial noise	Area	39.7	0.0	
Car Parking 1	Default parking lot noise	PLot	42.1	0.0	
Car Parking 2	Default parking lot noise	PLot	36.2	0.0	
Car Parking 3	Default parking lot noise	PLot	21.8	0.0	
Car Parking 4	Default parking lot noise	PLot	19.8	0.0	
Car Parking 5	Default parking lot noise	PLot	35.9	0.0	
Car Parking 6	Default parking lot noise	PLot	23.0	0.0	
Car Parking 7	Default parking lot noise	PLot	17.2	0.0	
HVAC 1	Default industrial noise	Point	25.3	0.0	
HVAC 2	Default industrial noise	Point	21.1	0.0	
HVAC 3	Default industrial noise	Point	33.8	0.0	
Pearblossom Hwy		Road	68.6	0.0	
SR 138 E. Ave S to			50 F	0.0	
Pearblossom		Road	58.5	0.0	
Truck Parking 1	Default parking lot noise	PLot	42.9	0.0	
Truck Parking 2	Default parking lot noise	PLot	40.8	0.0	
Trucking Gas Pad- Point Source 1	Default industrial noise	Point	30.9	0.0	
Trucking Gas Pad- Point Source 2	Default industrial noise	Point	31.4	0.0	
Trucking Gas Pad- Point Source 3	Default industrial noise	Point	32.1	0.0	
Trucking Gas Pad- Point Source 4	Default industrial noise	Point	32.7	0.0	
Trucking Gas Pad- Point Source 5	Default industrial noise	Point	33.5	0.0	
Trucking Gas Pad- Point Source 6	Default industrial noise	Point	34.4	0.0	
Trucking Gas Pad- Point Source 7	Default industrial noise	Point	35.7	0.0	

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

3

·																													
Source	Time	Sum I	25Hz	31.5Hz	40Hz	50Hz	63Hz I	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice	1 1	1 '	1 1	1 1	1 '	'	1 1	1 '	1 1	1 '	1 '	1 2	i '		.	.	1 1	'	1 1	1 !	1 '	1	'	'	1 /	1		1 1
	('	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Receiver Receiver 4 FI G dB(A	 Leq 6 	5.1 dB(A	A)																										
Car Gas Pad - Area Source	Leq	27.9	·]		<u> </u>	<u> </u>	<u> </u>		· · · · ·	, <u> </u>	<u> </u>	· · · ·	· · · ·	· · · ·		27.9			,,	· · · ·	, <u> </u>	(·			
HVAC 1	Leq	29.8	-12.0	-6.4	-2.8	9.8	14.4	7.9	15.7	17.2	15.5	-12.7	-13.5	17.8	18.4	18.5	21.7	21.8	16.9	17.9	18.0	15.0	15.0	10.9	11.5	9.2	8.8	3.2	-2.6
HVAC 2	Leq	27.5	-13.9	-8.3	-4.8	7.8	12.3	5.8	13.5	14.8	13.2	-15.0	-15.7	15.5	16.2	16.3	19.5	19.6	14.6	15.7	15.7	12.7	12.7	8.6	9.2	6.8	6.2	0.5	-5.6
HVAC 3	Leq	25.7	-16.0	-10.3	-6.7	5.9	10.4	3.9	11.5	12.9	11.3	-16.8	-17.6	13.7	14.4	14.6	17.7	17.8	12.9	13.9	14.0	10.9	10.9	6.8	7.4	5.1	4.5	-1.3	-7.5
Trucking Gas Pad- Point Source	Leq	46.7	-3.0	1.7	5.9	7.5	12.5	17.8	18.3	33.3	23.5	23.1	23.8	26.8	30.2	31.6	32.3	37.2	41.3	36.6	37.1	36.7	34.4	32.0	29.9	27.2	22.2	15.7	8.6
Trucking Gas Pad- Point Source 2	Leq	47.0	-2.8	2.0	6.2	7.8	12.7	18.0	18.6	33.5	23.8	23.4	24.1	27.1	30.5	31.9	32.6	37.4	41.6	36.9	37.4	37.0	34.6	32.3	30.2	27.6	22.6	16.2	9.1
Trucking Gas Pad- Point Source 3	Leq	47.3	-2.5	2.2	6.4	8.0	13.0	18.3	18.9	33.8	24.0	23.7	24.5	27.4	30.8	32.2	32.9	37.7	41.8	37.2	37.6	37.2	34.9	32.6	30.6	27.9	23.0	16.6	9.7
Trucking Gas Pad- Point Source 4	Leq	47.4	-2.3	2.4	6.6	8.2	13.1	18.4	19.0	34.0	24.2	23.9	24.7	27.6	31.0	32.5	33.1	37.9	42.0	37.3	37.8	37.4	35.1	32.8	30.8	28.1	23.2	16.9	10.0
Trucking Gas Pad- Point Source 5	Leq	47.5	-2.3	2.5	6.6	8.2	13.2	18.5	19.1	34.1	24.3	24.0	24.8	27.7	31.1	32.5	33.2	37.9	42.1	37.4	37.9	37.5	35.2	32.8	30.9	28.3	23.4	17.0	10.1
Trucking Gas Pad- Point Source 6	Leq	47.6	-2.2	2.5	6.7	8.3	13.3	18.6	19.2	34.1	24.3	24.1	24.8	27.8	31.2	32.6	33.2	38.0	42.1	37.5	37.9	37.5	35.2	32.9	31.0	28.4	23.5	17.2	10.3
Trucking Gas Pad- Point Source 7	Leq	47.5	-2.3	2.5	6.7	8.3	13.2	18.5	19.1	34.1	24.3	24.0	24.8	27.7	31.1	32.5	33.2	38.0	42.1	37.4	37.9	37.5	35.2	33.5	31.0	28.4	23.5	17.1	10.2
Pearblossom Hwy	Leq	51.8	1 '	1 1	1 1	24.4	32.3	36.7	38.9	40.1	41.3	42.1	41.5	41.8	40.9	42.3	41.8	40.1	38.6	36.3	32.6	29.0	25.8	21.4	15.8	10.0	11.6	8.5	4.0
SR 138 E. Ave S to Pearblossom	Leq	63.9	1 '		1 !	28.4	36.5	41.0	43.4	45.0	46.8	49.0	52.4	52.9	53.0	55.2	56.1	54.8	54.5	52.3	49.7	47.5	45.1	42.6	35.0	27.5	30.9	27.8	23.5
Car Parking 1	Leq	23.0	1 '	1 1	1 1	1 '	15.6	1 1	1 '	21.0	1 '	1 '	9.7	1 '		11.1	.	1 1	9.5	1 '	1 1	7.3			2.2	1 '	1	-8.3	1 1
Car Parking 2	Leq	25.3	1 '	1 1	1 1	1 '	18.1	1 1	1 '	23.3	1 '	1 '	11.9	1 2		13.3	.	1 1	11.3	1 1	1 1	9.7			6.1	1 /	1	-3.2	1 1
Car Parking 3	Leq	22.5	1 '	1 1	1 1	1 '	15.3	1 1	1 '	20.4	1 '	1 '	9.0	1 2		10.4	.	1 1	8.4	1 1	1 1	6.8			3.2	1 /	1	-6.1	1 1
Car Parking 4	Leq	23.3	1 '	1 1	1 1	1 '	16.0	1 1	1 '	21.3	1 '	1 '	9.8	i '		11.2	.	1 1	9.1	1 1	1 !	6.6	1		1.7	1 /	1	-8.5	1 1
Car Parking 5	Leq	25.1	1 '	1 1	1 1	1 '	17.6	1 1	1 '	23.1	1 '	1 '	12.1	i '	1	13.6	.	1 1	11.5	1 1	1 1	8.8	1		2.8	1 /	1	-9.4	1 1
Car Parking 6	Leq	22.4	1 '	1 1	1 1	1 '	15.0	1 1	1 '	20.4	1 '	1 '	9.3	1 2	1	10.7	.	1 1	8.6	1 1	1 1	6.0	1		-0.1	1 /	1	-12.6	1 !
Car Parking 7	Leq	18.7	1 '	1 1	1 '	1 '	11.4	1 7	1 '	16.8	1 '	1 '	5.4	i '	1 1	6.9	.]	1 1	4.8	1	1 1	2.2			-4.0	1 '	1	-16.5	1 1
Truck Parking 1	Leq	52.7	3.1	7.8	12.0	13.6	18.6	23.9	23.7	38.6	28.9	28.2	28.9	31.9	37.1	38.5	39.1	43.6	47.6	42.9	42.7	42.1	39.5	36.6	33.5	30.5	23.7	14.4	3.2
Truck Parking 2	Leq	46.6	-2.4	2.3	6.5	8.1	13.0	18.3	17.7	32.6	22.9	22.1	22.9	25.8	31.1	32.5	33.1	37.7	41.7	36.9	36.7	35.9	33.0	29.8	26.0	21.6	14.5	3.0	-11.4
Receiver Receiver 5 FI G dB(A	A) Leq 6	9.4 dB(A	A)																										
Car Gas Pad - Area Source	Leq	42.3	<u> </u>	, <u> </u>	<u> </u>	′		<u> </u>	í	· · ·		· · · · ·	· · · ·	·′		42.3		(,	· · · ·	,	· · · · ·				· · · · ·		· · ·	
HVAC 1	Leq	26.4	-15.3	-9.6	-6.0	6.5	11.1	4.6	12.2	13.6	11.9	-16.2	-16.9	14.3	15.0	15.2	18.3	18.4	13.5	14.5	14.6	11.6	11.5	7.4	8.0	5.6	5.1	-0.7	-6.9
HVAC 2	Leq	35.5	-6.7	-1.1	2.6	15.2	19.8	13.3	21.6	23.0	21.4	-7.0	-7.7	23.6	24.0	24.2	27.3	27.5	22.6	23.6	23.7	20.7	20.7	16.7	17.0	14.9	14.6	9.3	3.8
HVAC 3	Leq	21.4	-20.0	-14.4	-10.8	1.8	6.3	-0.2	7.2	8.6	6.9	-21.3	-22.1	9.1	10.1	10.3	13.4	13.5	8.6	9.6	9.6	6.5	6.4	2.2	2.8	0.2	-0.7	-7.1	-14.1

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
1	slice		1	1 '	1 '	1 1	1 7	1 1	1 1	1 1	1 '	/	1 !		/	i					i	, I	!		1 '	1 !	1 1	1 1	1 7
1		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Trucking Gas Pad- Point Source 1	Leq	45.0	-4.6	0.2	4.4	6.0	10.9	16.2	16.6	31.6	21.8	21.1	21.9	24.8	28.3	29.7	30.3	35.5	39.6	34.9	35.5	35.0	32.6	30.2	27.6	24.8	19.6	12.7	4.9
Trucking Gas Pad- Point Source 2	Leq	45.0	-4.6	0.2	4.4	6.0	10.9	16.2	16.6	31.6	21.8	21.1	21.9	24.8	28.3	29.7	30.3	35.5	39.6	34.9	35.5	35.0	32.6	30.2	27.6	24.8	19.6	12.7	4.9
Trucking Gas Pad- Point Source 3	Leq	38.7	-6.7	-2.1	2.0	3.4	8.2	13.3	13.5	28.2	18.1	18.0	18.3	20.8	23.8	24.8	25.1	29.6	33.4	28.3	28.4	27.5	24.6	21.5	18.3	14.9	8.9	1.3	-7.2
Trucking Gas Pad- Point Source 4	Leq	36.0	-6.8	-2.3	1.7	3.1	7.8	12.8	13.0	27.5	17.3	17.1	17.2	19.5	22.2	22.9	22.9	26.9	30.3	24.9	24.7	23.5	20.2	16.9	13.5	9.9	3.8	-3.9	-12.5
Trucking Gas Pad- Point Source 5	Leq	34.0	-7.2	-2.6	1.4	2.7	7.3	12.3	12.3	26.7	16.3	16.2	16.1	18.2	20.7	21.2	21.0	24.6	27.9	22.3	22.0	20.7	17.3	14.0	10.6	7.0	0.9	-6.8	-15.3
Trucking Gas Pad- Point Source 6	Leq	32.5	-7.5	-3.0	0.9	2.2	6.8	11.6	11.6	25.9	15.4	15.3	15.1	17.1	19.4	19.8	19.5	22.7	25.9	20.3	19.9	18.5	15.2	11.7	8.5	4.9	-1.1	-8.7	-17.2
Trucking Gas Pad- Point Source 7	Leq	31.3	-7.8	-3.4	0.5	1.7	6.2	11.0	10.9	25.1	14.5	14.6	14.3	16.1	18.4	18.7	18.4	21.3	24.5	18.8	18.4	17.0	13.6	10.1	7.1	3.5	-2.4	-10.0	-18.5
Pearblossom Hwy	Leq	68.3	'	1 '	1 '	32.5	40.6	45.0	47.4	48.9	50.7	52.7	55.6	55.9	56.3	58.3	59.2	59.0	59.5	58.3	56.3	55.5	52.9	51.3	47.7	43.6	43.3	40.3	36.1
SR 138 E. Ave S to Pearblossom	Leq	62.5			'	26.9	35.0	39.5	41.9	43.4	45.3	47.4	50.8	51.4	51.5	53.7	54.7	53.3	53.1	50.9	48.3	46.2	44.0	41.3	33.4	26.9	29.3	26.3	22.1
Car Parking 1	Leq	21.8		1 '	1 '	1 '	14.3	1 7		19.7	'	/	8.6		/	10.3			8.8		1	6.6			1.1		1 '	-10.2	1
Car Parking 2	Leq	28.5	'	1 '	1 '	1 '	20.8	1 7		26.7	1 '	/	15.1		/	16.5			14.6		i	12.1			7.7		1 '	-1.6	1
Car Parking 3	Leq	38.8	'	1 '	1 '	1 '	26.5	1 7		34.8	1 '	/	25.4		/	29.9			30.4		i	30.5			27.3		1 '	19.5	1
Car Parking 4	Leq	44.0	'	1 '	1 '	1 '	29.8	1 '		38.9	1 '	/	30.2		/	35.4			36.5			36.9			33.7	í '	1 '	25.8	1
Car Parking 5	Leq	30.1	'	1 '	1 '	1 '	21.8	1 7		28.2	1 '	!	16.8		/	18.8			17.3		i	14.8			8.3		1 '	-4.3	1
Car Parking 6	Leq	38.0		1 '	1 '	1 '	24.7	(⁾		33.1	1 '	!	23.2		!	28.9			30.7		i	31.1			27.1	1 !	1 '	16.4	1
Car Parking 7	Leq	35.5	'	1 '	1 '	1 '	21.8	1 7		30.4	1 '	!	20.6		!	26.5			28.3		i	28.7	!		24.9		1 1	14.6	1
Truck Parking 1	Leq	48.9	1.0	5.7	9.8	11.3	16.2	21.4	21.1	35.9	26.0	25.5	26.0	28.8	33.7	35.0	35.5	39.9	43.9	39.1	38.8	38.1	35.3	32.3	28.8	24.7	17.5	7.8	-4.1
Truck Parking 2	Leq	42.7	-4.2	0.5	4.6	6.1	10.9	16.1	15.3	30.0	20.1	19.7	20.1	22.8	27.7	29.0	29.4	33.9	37.8	32.9	32.6	31.7	28.6	25.2	21.2	16.1	7.5	-4.3	-19.4
Receiver Receiver 6 FI G dB(A	A) Leq 7	2.4 dB(A	A)																										
Car Gas Pad - Area Source	Leq	50.9	\square		·				\square	\square						50.9					i – – – – – – – – – – – – – – – – – – –						·	· · · ·	
HVAC 1	Leq	29.5	-12.6	-7.0	-3.3	9.3	13.9	7.5	15.4	16.8	15.2	-13.0	-13.8	17.5	18.1	18.3	21.4	21.5	16.6	17.7	17.7	14.7	14.7	10.6	11.3	9.0	8.6	3.1	-2.8
HVAC 2	Leq	27.1	-14.8	-9.1	-5.5	7.1	11.7	5.2	12.9	14.3	12.7	-15.4	-16.2	15.1	15.8	15.9	19.1	19.2	14.3	15.3	15.4	12.4	12.3	8.2	8.9	6.5	6.0	0.3	-5.8
HVAC 3	Leq	25.9	-15.9	-10.3	-6.6	6.0	10.5	4.0	11.6	13.0	11.4	-16.7	-17.4	13.8	14.6	14.7	17.9	18.0	13.1	14.1	14.1	11.1	11.1	6.9	7.6	5.2	4.6	-1.3	-7.5
Trucking Gas Pad- Point Source 1	Leq	25.8	-11.1	-6.8	-3.2	-2.2	1.9	6.3	5.9	19.8	8.9	10.0	9.7	11.6	13.8	14.2	13.8	15.1	18.2	12.5	12.1	10.7	7.2	3.9	1.1	-1.6	-7.4	-15.0	-23.7
Trucking Gas Pad- Point Source 2	Leq	25.8	-11.1	-6.8	-3.1	-2.2	2.0	6.4	6.0	19.9	9.0	10.1	9.8	11.7	13.9	14.3	13.9	15.2	18.3	12.6	12.2	10.8	7.3	4.0	1.8	-1.4	-7.2	-14.8	-23.4
Trucking Gas Pad- Point Source 3	Leq	25.8	-11.0	-6.7	-3.1	-2.1	2.0	6.4	6.0	19.8	8.9	10.2	9.8	11.7	13.9	14.3	13.9	15.0	18.1	12.4	12.0	10.6	7.1	3.9	1.9	-1.3	-7.1	-14.6	-23.2

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

2

23

SoundPLAN 8.2

																							-						
Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice	'	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1 '		1	1 '	1											(I	i '	1 '	1 '	1 '
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Trucking Gas Pad- Point Source 4	Leq	25.8	-10.9	-6.7	-3.0	-2.1	2.1	6.5	6.1	19.9	9.0	10.2	9.9	11.8	14.0	14.3	14.0	15.1	18.2	12.5	12.1	10.7	7.2	4.0	2.0	-1.2	-6.9	-14.4	-22.9
Trucking Gas Pad- Point Source 5	Leq	25.9	-10.9	-6.6	-3.0	-2.0	2.1	6.5	6.1	19.9	9.0	10.3	9.9	11.8	14.0	14.4	14.0	15.1	18.2	12.5	12.1	10.7	7.2	4.0	2.1	-1.1	-6.8	-14.3	-22.8
Trucking Gas Pad- Point Source 6	Leq	25.9	-10.9	-6.6	-3.0	-2.0	2.2	6.6	6.1	19.9	9.0	10.3	9.9	11.9	14.0	14.4	14.0	15.1	18.2	12.6	12.2	10.7	7.3	4.0	2.2	-1.0	-6.7	-14.2	-22.7
Trucking Gas Pad- Point Source 7	Leq	25.9	-10.9	-6.6	-3.0	-2.0	2.2	6.5	6.1	19.9	9.0	10.3	9.9	11.8	14.0	14.4	14.0	15.1	18.2	12.5	12.2	10.7	7.3	4.0	2.3	-0.9	-6.6	-14.1	-22.7
Pearblossom Hwy	Leq	72.3	1 '	1 '	1 '	36.3	44.3	48.8	51.2	52.7	54.5	56.6	59.6	59.9	60.2	62.1	63.2	63.2	63.5	62.0	60.6	59.5	57.4	54.8	51.3	47.4	47.3	44.4	40.2
SR 138 E. Ave S to Pearblossom	Leq	52.0		'	'	19.1	27.1	31.6	33.9	35.3	36.9	38.6	41.2	41.9	41.7	43.6	44.1	42.5	41.7	39.1	35.6	32.1	28.4	26.0	19.8	9.5	15.7	12.4	7.6
Car Parking 1	Leq	40.3	'	1 '	1 '	1 '	26.0	1 2	1 1	34.8	1		25.5	1		31.1			32.9			33.9			30.3	i I	1 '	20.9	1 1
Car Parking 2	Leq	52.6	1 '	1 '	1 '	1 '	38.0	1 '	1 1	47.5	1	1 1	39.4	1		44.3	1 1		44.8			45.2			42.3	i I	1 '	35.3	1 1
Car Parking 3	Leq	48.3	1	1 '	1 '	1 '	33.8	1 '	1 '	43.2	1	1 1	35.0	1		39.9	1 1		40.5	1		41.0			38.0	i I	1 '	30.8	1 1
Car Parking 4	Leq	40.4	1	1 '	1 '	1 '	26.4	1 '	1 '	35.2	1	1 1	26.1	1		31.6	1 1		32.9	1		33.4			29.9	i I	1 '	21.2	1 1
Car Parking 5	Leq	43.2	1	1 '	1 '	1 '	29.4	1 '	1 '	38.0	1		28.4	1		34.2			35.8			36.4			32.8	i '	1 '	22.8	1 /
Car Parking 6	Leq	39.6	1	1 '	1 '	1 '	25.9	1 '	1 '	34.5		1 1	24.7	1		30.6	1 1		32.4			32.8			29.0	i I	1 '	18.7	1 '
Car Parking 7	Leq	34.4	1	1 '	1 '	1 '	20.8	1 '	1 1	29.3	1		19.4	1		25.3	1 1		27.2			27.6			23.6	i I	1 '	12.9	1 /
Truck Parking 1	Leq	33.6	-3.5	0.8	4.5	5.5	9.7	14.1	13.6	27.4	16.6	17.8	17.5	19.4	21.6	22.0	21.6	23.3	26.4	20.6	19.4	17.8	14.0	9.9	6.2	2.2	-4.6	-15.0	-27.8
Truck Parking 2	Leq	28.2	-8.3	-4.0	-0.3	0.7	4.9	9.3	8.2	22.1	11.2	12.4	12.1	14.0	16.2	16.5	16.1	18.1	21.1	15.3	14.0	12.2	8.1	3.7	-0.7	-5.8	-14.2	-25.9	-41.9
Receiver Receiver 7 FI G dB(/	A) Leq 6	9.1 dB(A	N)																·				· · · · · · · · · · · · · · · · · · ·	·					
Car Gas Pad - Area Source	Leq	39.7	,									1			T	39.7							1						
HVAC 1	Leq	25.3	-16.3	-10.7	-7.0	5.5	1 10.1	3.6	1 11.1	12.5	10.8	-17.3	-18.0	13.2	14.0	14.2	17.3	17.4	12.5	13.5	13.6	10.5	10.5	6.4	7.0	4.6	4.0	-1.9	-8.2
HVAC 2	Leq	21.1	-20.5	-14.8	-11.2	1.3	5.9	-0.6	6.8	8.2	6.6	-21.7	-22.4	8.8	9.8	10.0	13.1	13.2	8.3	9.3	9.3	6.3	6.1	2.0	2.6	-0.1	-1.0	-7.4	-14.4
HVAC 3	Leq	33.8	-3.9	-2.4	1.2	13.7	1 18.3	1 11.8	1 19.9	21.3	19.7	-8.7	-9.4	21.9	22.3	22.5	25.7	25.8	20.9	21.9	22.0	19.0	19.0	15.0	15.4	13.2	12.9	7.5	1.9
Trucking Gas Pad- Point Source 1	Leq	30.9	-8.8	-4.5	-0.7	0.4	4.8	9.5	9.3	23.4	12.7	13.2	12.8	14.5	16.6	16.8	16.4	18.5	21.6	15.9	15.5	14.0	10.6	23.9	20.8	17.1	10.6	1.9	-8.5
Trucking Gas Pad- Point Source	Leq	31.4	-8.4	-4.0	-0.2	0.9	5.3	10.0	9.8	23.9	13.2	13.7	13.3	15.1	17.2	17.4	16.9	19.2	22.3	16.6	16.1	14.7	11.3	24.3	21.2	17.6	11.3	2.7	-7.5
Trucking Gas Pad- Point Source 3	Leq	32.1	-7.9	-3.5	0.3	1.5	5.9	10.6	10.5	24.6	13.9	14.4	14.0	15.7	17.8	18.1	17.6	20.0	23.1	17.4	17.0	15.6	12.2	24.7	21.7	18.2	12.0	3.6	-6.3
Trucking Gas Pad- Point Source 4	Leq	32.7	-7.3	-2.9	0.9	2.0	6.5	11.2	11.1	25.3	14.6	15.0	14.6	16.4	18.5	18.8	18.4	20.9	24.0	18.4	17.9	16.5	13.1	25.2	22.2	18.8	12.6	4.4	-5.3
Trucking Gas Pad- Point Source 5	Leq	33.5	-6.9	-2.5	1.3	2.5	7.0	11.8	11.7	25.9	15.3	15.6	15.2	17.1	19.3	19.6	19.2	21.9	25.1	19.4	19.0	17.6	14.2	25.6	22.6	19.3	13.2	5.2	-4.3
Trucking Gas Pad- Point Source 6	Leq	34.4	-6.5	-2.0	1.9	3.1	7.7	12.5	12.4	26.7	16.2	16.3	16.1	18.0	20.3	20.6	20.3	23.3	26.5	20.8	20.4	19.0	15.7	26.1	23.2	19.9	13.9	6.0	-3.2

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

3

23

SoundPLAN 8.2

Source	Time	Sum	25Hz	31.5Hz	40Hz	50Hz	63Hz	80Hz	100Hz	125Hz	160Hz	200Hz	250Hz	315Hz	400Hz	500Hz	630Hz	800Hz	1kHz	1.25kHz	1.6kHz	2kHz	2.5kHz	3.15kHz	4kHz	5kHz	6.3kHz	8kHz	10kHz
	slice																												
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Trucking Gas Pad- Point Source 7	Leq	35.7	-6.1	-1.6	2.4	3.7	8.3	13.2	13.2	27.6	17.2	17.3	17.1	19.1	21.5	22.0	21.7	25.1	28.3	22.7	22.3	21.0	17.6	26.6	23.7	20.5	14.7	6.9	-2.1
Pearblossom Hwy	Leq	68.6				33.6	41.6	46.1	48.4	50.0	51.7	53.7	56.8	56.9	56.8	58.8	59.7	58.9	59.3	58.3	56.4	55.3	53.2	51.0	46.6	42.0	42.7	39.7	35.5
SR 138 E. Ave S to Pearblossom	Leq	58.5				24.2	32.3	36.7	39.1	40.6	42.3	44.2	47.2	47.6	47.7	49.9	50.7	49.3	48.9	46.6	43.8	41.3	38.7	36.6	29.4	18.6	25.2	22.1	17.6
Car Parking 1	Leq	42.1					27.7			36.7			27.6			33.0			34.8			35.7			32.2			23.4	
Car Parking 2	Leq	36.2					25.0			32.6			22.5			26.9			27.4			27.3			23.6			14.9	
Car Parking 3	Leq	21.8					14.6			19.8			8.4			9.8			7.8			5.5			1.5			-8.4	
Car Parking 4	Leq	19.8					12.5			17.7			6.7			8.2			6.2			3.6			-1.2			-12.5	
Car Parking 5	Leq	35.9					24.0			31.7			21.2			26.5			28.1			28.2			23.8			12.3	
Car Parking 6	Leq	23.0					15.7			21.1			9.5			10.9			8.9			6.2			-0.3			-13.3	
Car Parking 7	Leq	17.2					9.8			15.2			4.0			5.5			3.5			0.8			-5.7			-19.1	
Truck Parking 1	Leq	42.9	-0.1	4.5	8.4	9.7	14.4	19.3	19.1	33.5	23.2	23.3	23.3	25.4	29.2	30.0	30.0	33.6	37.2	31.9	31.2	30.1	26.9	23.4	28.0	25.4	17.8	7.5	-5.1
Truck Parking 2	Leq	40.8	-4.6	0.0	4.1	5.5	10.3	15.3	14.6	29.3	19.2	19.0	19.2	21.7	26.2	27.3	27.6	31.9	35.7	30.7	30.3	29.3	26.2	22.8	18.8	17.0	10.8	-1.2	-16.3

MD Acoustics LLC 4960 S. Gilbert Rd Chandler, AZ 85249 Phone: 602 774 1950

SoundPLAN 8.2

ROADWAY:PearblossoLOCATION:SR 138 to 4	im Highway - Existing 17th St E							DAT ENG	E: 5-Jan-21 INEER: R. Stromber
			NOISE IN	IPUT DAT	A				
F				1		REC	EIVER INPL	IT DATA	
ADT = SPEED = PK HR % = NEAR LANE/FAR LANE DIS ROAD ELEVATION = GRADE = PK HR VOL =	30,145 50 10 50 0.0 0.0 % 2,360			RECEIVER I DIST C/L TO RECEIVER I WALL DIST PAD ELEVA ROADWAY	DISTANCE = D WALL = HEIGHT = ANCE FROM TION = VIEW:	1 RECEIVER LF ANGLE= RT ANGLE= DF ANGLE=	50 50 5.0 0.0 -90 90 180		
	SITE CONDITIONS					WA	LL INFORM	IATION	
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	10 10 (10 = HAN 10	<pre>{D SITE, 15 =</pre>	SOFT SITE)	HTH WALL AMBIENT= BARRIER =	0.0 0.0 0	(0 = WALL,	1 = BERM)		
	VEHICLE MIX DATA					М	SC. VEHICL	E INFO	
VEHICLE TYPE DAY AUTOMOBILES 0.77 MEDIUM TRUCK 0.84 HEAVY TRUCKS 0.86	Y EVENING NIGHT 5 0.129 0.096 8 0.049 0.103 55 0.027 0.108	DAILY 0.9430 0.0110 0.0450			VEHICLE TY AUTOMOB MEDIUM T HEAVY TRU	YPE ILES RUCKS ICKS	HEIGHT 2.0 4.0 8.0	SLE DISTANCE GRA 43.41 43.31 43.41 43.41	ADE ADJUSTMENT 0.00
	NOIS	N E IMPACTS (IOISE OU without ז	TPUT DA	TA ARRIER SHIE	CLDING)			
		PK HR LEQ	DAY LEQ	EVEN LEQ	NIGHT LEQ	LDN	CNEL	[
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEQ 72.8 61.2	DAY LEQ 72.0 60.8	EVEN LEQ 70.2 54.4	NIGHT LEQ 64.2 52.8	LDN 72.8 61.3	CNEL 73.4 61.5		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEO 72.8 61.2 71.5	DAY LEQ 72.0 60.8 71.2	EVEN LEQ 70.2 54.4 62.1	NIGHT LEQ 64.2 52.8 63.4	LDN 72.8 61.3 71.7	CNEL 73.4 61.5 71.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEQ 72.8 61.2 71.5	DAY LEQ 72.0 60.8 71.2 74.8	EVEN LEQ 70.2 54.4 62.1 71.0	NIGHT LEQ 64.2 52.8 63.4 67.0	LDN 72.8 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEC 72.8 61.2 71.5 75.4	DAY LEQ 72.0 60.8 71.2 74.8	EVEN LEQ 70.2 54.4 62.1 71.0 70 AND BAR	NIGHT LEQ 64.2 52.8 63.4 67.0 RRIER SHIEL	LDN 72.8 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NO	PK HR LEC 72.8 61.2 71.5 75.4	DAY LEQ 72.0 60.8 71.2 74.8	EVEN LEQ 70.2 54.4 62.1 71.0 20 AND BAR	NIGHT LEQ 64.2 52.8 63.4 67.0 RIER SHIEL	LDN 72.8 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NO VEHICLE TYPE AUTOMOBILES	PK HR LEC 72.8 61.2 71.5 75.4	DAY LEQ 72.0 60.8 71.2 74.8 (WITH TOP (WITH TOP DAY LEQ 72.0	EVEN LEQ 70.2 54.4 62.1 71.0 PO AND BAR EVEN LEQ 70.2	NIGHT LEQ 64.2 52.8 63.4 67.0 RIER SHIEL NIGHT LEQ 64.2	LDN 72.8 61.3 71.7 75.5 DING)	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	PK HR LEC 72.8 61.2 71.5 75.4 ISE IMPACTS PK HR LEQ 72.8 61.2 61.2	DAY LEQ 72.0 60.8 71.2 74.8 74.8 74.8 74.8 DAY LEQ 72.0 60.8	EVEN LEQ 70.2 54.4 62.1 71.0 71.0 PO AND BAR EVEN LEQ 70.2 54.4	NIGHT LEQ 64.2 52.8 63.4 67.0 RRIER SHIEL NIGHT LEQ 64.2 52.8	LDN 72.8 61.3 71.7 75.5 DING) LDN 72.8 61.3	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4 61.5		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	PK HR LEC 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5	DAY LEQ 72.0 60.8 71.2 74.8 74.8 74.8 WITH TOP 72.0 60.8 71.2	EVEN LEQ 70.2 54.4 62.1 71.0 PO AND BAR EVEN LEQ 70.2 54.4 62.1	NIGHT LEQ 64.2 52.8 63.4 67.0 RRIER SHIEL NIGHT LEQ 64.2 52.8 63.4	LDN 72.8 61.3 71.7 75.5 DING) LDN 72.8 61.3 71.7	CNEL 73.4 61.5 71.9 75.9 75.9 75.9 CNEL 73.4 61.5 71.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEC 72.8 61.2 71.5 75.4 ISE IMPACTS PK HR LEQ 72.8 61.2 71.5	 DAY LEQ 72.0 60.8 71.2 74.8 (WITH TOP DAY LEQ 72.0 60.8 71.2 74.8 	EVEN LEQ 70.2 54.4 62.1 71.0 PO AND BAR EVEN LEQ 70.2 54.4 62.1 71.0	NIGHT LEQ 64.2 52.8 63.4 67.0 RIER SHIEL NIGHT LEQ 64.2 52.8 63.4 67.0	LDN 72.8 61.3 71.7 75.5 DING) LDN 75.5 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEC 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4 75.4	DAY LEQ 72.0 60.8 71.2 74.8 (WITH TOP Q DAY LEQ 72.0 60.8 71.2 74.8 74.8	EVEN LEQ 70.2 54.4 62.1 71.0 71.0 PO AND BAR EVEN LEQ 70.2 54.4 62.1 71.0	NIGHT LEQ 64.2 52.8 63.4 67.0 RRIER SHIEL NIGHT LEQ 64.2 52.8 63.4 67.0	LDN 72.8 61.3 71.7 75.5 DING) LDN 72.8 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEC 72.8 61.2 71.5 75.4 ISE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4 75.4	DAY LEQ 72.0 60.8 71.2 74.8 74.8 74.8 WITH TOP 72.0 60.8 71.2 74.8 74.8 NOISE COI 70.48	EVEN LEQ 70.2 54.4 62.1 71.0 PO AND BAR EVEN LEQ 70.2 54.4 62.1 71.0	NIGHT LEQ 64.2 52.8 63.4 67.0 RRIER SHIELI NIGHT LEQ 64.2 52.8 63.4 67.0	LDN 72.8 61.3 71.7 75.5 DING) LDN 72.8 61.3 71.7 75.5	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4 61.5 71.9 75.9		
	VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	PK HR LEC 72.8 61.2 71.5 75.4 ISE IMPACTS PK HR LEQ 72.8 61.2 71.5	DAY LEQ 72.0 60.8 71.2 74.8 74.8 COMPARIANCE DAY LEQ 72.0 60.8 71.2 74.8 NOISE CON 70 dBA 194	EVEN LEQ 70.2 54.4 62.1 71.0 71.0 70.0 70.2 54.4 62.1 71.0 70.2 54.4 62.1 71.0	NIGHT LEQ 64.2 52.8 63.4 67.0 RIER SHIEL NIGHT LEQ 64.2 52.8 63.4 67.0 64.2 52.8 63.4 67.0	LDN 72.8 61.3 71.7 75.5 DING) LDN 72.8 61.3 71.7 75.5 75.5	CNEL 73.4 61.5 71.9 75.9 75.9 CNEL 73.4 61.5 71.9 75.9		

FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

ROADWAY:State Route 138LOCATION:E. Ave S-8 to Per	- Existing arblossom Hwy								JOB #: DATE: ENGINEER	04622010 5-Jan-21 : R. Stromberg
			NOISE IN	IPUT DAT	A					
DOAD						BEC				
KOAD	WAY CONDITIONS					REC	EIVER INPU	II DATA		
ADT = 32,0 SPEED = PK HR % = NEAR LANE/FAR LANE DIS ROAD ELEVATION = 0 GRADE = 0 PK HR VOL = 2,3	79 50 10 50 0.0 0.0 % 60			RECEIVER I DIST C/L TC RECEIVER I WALL DIST PAD ELEVA ROADWAY	DISTANCE = D WALL = HEIGHT = ANCE FROM TION = VIEW:	I RECEIVER LF ANGLE= RT ANGLE= DF ANGLE=	50 50 5.0 0 0.0 -90 90 180			
SIT	E CONDITIONS					WA	ALL INFORM	IATION		
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	10 10 (10 = HAR 10	D SITE, 15 =	SOFT SITE)	HTH WALL AMBIENT= BARRIER =	• 0.0 0.0 0	(0 = WALL,	1 = BERM)			
VEH	HICLE MIX DATA					MI	ISC. VEHICL	E INFO		
VEHICLE TYPE DAY	EVENING NIGHT	DAILY	I		VEHICLE TY	PE	HEIGHT	SLE DISTANCE	GRADE A	DJUSTMENT
AUTOMOBILES 0.775	0.129 0.096	0.9430	-		AUTOMOBI	LES	2.0	43.41		
HEAVY TRUCKS 0.865	0.027 0.108	0.0110			HEAVY TRU	CKS	8.0	43.31	C	.00
	NOISE	N IMPACTS (IOISE OU WITHOUT 1	TPUT DA	TA ARRIER SHIEI	LDING)				
			DAVIED				CNEL	r		
		72 ×	72 3	ZVEN LEQ	64 5	73 1	73 7			
	MEDIUM TRUCKS	61.2	61.0	54.7	53.1	61.6	61.8			
	HEAVY TRUCKS	71.5	71.4	62.4	63.7	72.0	72.1			
	NOISE LEVELS (dBA)	75.4	75.1	71.2	67.3	75.8	76.2			
	NOISE LEVELS (dBA)	75.4	75.1 (WITH TOP	71.2 PO AND BAR	67.3 RRIER SHIELL	75.8 DING)	76.2			
	NOISE LEVELS (dBA)	75.4	75.1 (WITH TOP	71.2 PO AND BAR	67.3	75.8 DING)	76.2 CNEL			
	NOISE LEVELS (dBA) NOISE VEHICLE TYPE AUTOMOBILES	75.4 SE IMPACTS PK HR LEQ 72.8	75.1 (WITH TOP DAY LEQ 72.3	71.2 PO AND BAR EVEN LEQ 70.5	67.3 RRIER SHIELL NIGHT LEQ 64.5	75.8 DING) LDN 73.1	76.2 CNEL 73.7			
	NOISE LEVELS (dBA) NOISE VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS	75.4 SE IMPACTS PK HR LEQ 72.8 61.2	75.1 (WITH TOP 72.3 61.0	71.2 PO AND BAR EVEN LEQ 70.5 54.7	67.3 RIER SHIELD 64.5 53.1	75.8 DING) LDN 73.1 61.6	76.2 CNEL 73.7 61.8			
	NOISE LEVELS (dBA) NOISE VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS	75.4 FK HR LEQ 72.8 61.2 71.5	75.1 (WITH TOP DAY LEQ 72.3 61.0 71.4	71.2 PO AND BAR 70.5 54.7 62.4	67.3 RRIER SHIELD 64.5 53.1 63.7	75.8 DING) 73.1 61.6 72.0	76.2 CNEL 73.7 61.8 72.1			
	NOISE LEVELS (dBA) NOISE VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	75.4 FE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4	75.1 (WITH TOP 72.3 61.0 71.4 75.1	71.2 PO AND BAR 70.5 54.7 62.4 71.2	67.3 RRIER SHIELL 64.5 53.1 63.7 67.3	75.8 DING) 73.1 61.6 72.0 75.8	76.2 CNEL 73.7 61.8 72.1 76.2			
	NOISE LEVELS (dBA) NOISE VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	75.4 FE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4	75.1 (WITH TOP 72.3 61.0 71.4 75.1	71.2 PO AND BAR 70.5 54.7 62.4 71.2	67.3 RRIER SHIELD 64.5 53.1 63.7 67.3	75.8 DING) 73.1 61.6 72.0 75.8	76.2 CNEL 73.7 61.8 72.1 76.2			
	NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA)	75.4 FE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4 FE IS	75.1 (WITH TOP 72.3 61.0 71.4 75.1 NOISE COI	71.2 PO AND BAR 70.5 54.7 62.4 71.2	67.3 RRIER SHIELD 64.5 53.1 63.7 67.3	75.8 DING) 1000 73.1 61.6 72.0 75.8	76.2 CNEL 73.7 61.8 72.1 76.2			
	NOISE LEVELS (dBA) NOISE LEVELS (dBA) VEHICLE TYPE AUTOMOBILES MEDIUM TRUCKS HEAVY TRUCKS NOISE LEVELS (dBA) NOISE LEVELS (dBA)	75.4 FE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4 FELS	75.1 (WITH TOP 72.3 61.0 71.4 75.1 NOISE COI 70 dBA 206	71.2 PO AND BAR EVEN LEQ 70.5 54.7 62.4 71.2 NTOUR (FT) 65 dBA 652	67.3 RRIER SHIELL 64.5 53.1 63.7 67.3 60 dBA 2062	75.8 DING) 1000 73.1 61.6 72.0 75.8 75.8 55 dBA 6521	76.2 CNEL 73.7 61.8 72.1 76.2			

PROJECT: Pilo ROADWAY: Stat LOCATION: Site	t Palmdale :e Route 138 - E	kisting									JOB #: DATE: ENGINEE	04622010 5-Jan-21 R: R. Stromberg
					NOISE IN	PUT DAT	A					
	ROADWA	Y CONDITIO	NS					REC	EIVER INP	JT DATA		
ADT = SPEED = PK HR % = NEAR LANE/FAR LAN ROAD ELEVATION = GRADE = PK HR VOL =	33,375 50 10 IE DIS 50 0.0 0.0 2,360	%				RECEIVER DIST C/L TO RECEIVER WALL DIST PAD ELEVA ROADWAY	DISTANCE = D WALL = HEIGHT = ANCE FROM TION = VIEW:	1 RECEIVER LF ANGLE= RT ANGLE= DF ANGLE=	50 50 5.0 0 0.0 -90 90 180			
	SITE C	ONDITIONS						WA	ALL INFORM	NATION		
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	10 10 10	(10 = HARI	O SITE, 15 =	SOFT SITE)	HTH WALL AMBIENT= BARRIER =	= 0.0 0.0 0	(0 = WALL,	1 = BERM)			
	VEHICL	E MIX DATA.						M	ISC. VEHICI	.E INFO		
VEHICLE TYPE	DAY	EVENING	NIGHT	DAILY	T		VEHICLE TY	/PE	HEIGHT	SLE DISTANCE	GRADE	ADJUSTMENT
AUTOMOBILES	0.775	0.129	0.096	0.9430	1		AUTOMOB	ILES	2.0	43.41		
MEDIUM TRUCK	0.848	0.049	0.103	0.0110	-		MEDIUM T	RUCKS	4.0	43.31		
				Ν	IOISE OU	TPUT DA	TA					
			NOISE	IMPACTS (WITHOUT 1	OPO OR BA	ARRIER SHIE	LDING)				
		VEHICLE TY	PE	PK HR LEO	DAY LEQ	EVEN LEQ	NIGHT LEQ	LDN	CNEL	I		
		AUTOMOBII	LES	72.8	72.5	70.7	64.6	73.3	73.9	Į		
		MEDIUM TR		61.2	61.2	54.8	53.3	61.7	62.0	-		
		HEAVY INU	283	/1.5	/1.0	02.0	03.8	12.2	72.3	-		
		NOISE LEVEI	LS (dBA)	75.4	75.2	71.4	67.4	75.9	76.3	1		
			NOIS	SE IMPACTS				DING				
		VEHICLE TY	PE	PK HR LEO	DAY LEQ	EVEN LEQ	NIGHT LEQ	LDN	CNEL	T		
		AUTOMOBII	LES	72.8	72.5	70.7	64.6	73.3	73.9	I		
		MEDIUM TR		61.2	61.2	54.8	53.3	61.7	62.0	-		
				75.4	75.2	71 4	67.4	75.9	76.3	-		
				73.4	13.2	71.4	07.4	13.3	70.5	L		
		Г			NOISE COM	ITOUR (FT)						
		r	NOISE LEV	ELS	70 dBA	65 dBA	60 dBA	55 dBA				
		0			215	678	2145	6785				
		Ľ	אוט		190	013	1928	0194				

PROJECT: Pilot Palmdale ROADWAY: State Route 138 LOCATION: S. of Pearblosso	- Existing m Hwy								JOB #: 04622010 DATE: 5-Jan-21 ENGINEER: R. Stromberg
			NOISE IN	PUT DAT	A				
ROAD	WAY CONDITIONS					REC	EIVER INPU	T DATA	
ADT = 27,7 SPEED = PK HR % = NEAR LANE/FAR LANE DIS ROAD ELEVATION = (GRADE = (PK HR VOL = 2,3	76 50 10 50 0.0 0.0 % 60			RECEIVER I DIST C/L TC RECEIVER I WALL DIST PAD ELEVA ROADWAY	DISTANCE = D WALL = HEIGHT = ANCE FROM TION = VIEW:	I RECEIVER LF ANGLE= RT ANGLE= DF ANGLE=	50 50 5.0 0 0.0 -90 90 180		
						W//			
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	10 10 (10 = HAF 10	RD SITE, 15 =	SOFT SITE)	HTH WALL AMBIENT= BARRIER =	= 0.0 = 0.0 0	(0 = WALL,	1 = BERM)		
VEI	HICLE MIX DATA					M	ISC. VEHICL	E INFO	
VEHICLE TYPE DAY	EVENING NIGHT	DAILY	T		VEHICLE TY	'PE	HEIGHT	SLE DISTANCE	GRADE ADJUSTMENT
AUTOMOBILES 0.775	0.129 0.096	0.9430]		AUTOMOBI	ILES	2.0	43.41	
MEDIUM TRUCK 0.848	0.049 0.103	0.0110			MEDIUM TH	RUCKS	4.0	43.31	
	NOIS	N E IMPACTS (IOISE OU	TPUT DA	TA ARRIER SHIEL	LDING)			
							CNEL		
	AUTOMOBILES	72.8	71 7	69 9	63.8	72.5	73 1		
	MEDIUM TRUCKS	61.2	60.4	54.0	52.5	61.0	61.2		
	HEAVY TRUCKS	71.5	70.8	61.8	63.0	71.4	71.5		
	NOISE LEVELS (dBA)	75.4	74.4	70.6	66.6	75.1	75.5		
	NO	ISE IMPACTS	i (WITH TOP	PO AND BAR	RRIER SHIELI	DING)			
		DV 112 1 5 5	DAVIS					,	
		PK HR LEC	71 7		NIGHT LEQ	LDN 72 5	CNEL 73.1	0	
	MEDIUM TRUCKS	61.2	60.4	54.0	52.5	61.0	61.2		
	HEAVY TRUCKS	71.5	70.8	61.8	63.0	71.4	71.5		
	NOISE LEVELS (dBA)	75.4	74.4	70.6	66.6	75.1	75.5		
							-	L	
			NOISE COI	NTOUR (FT)					
	NOISE LE	VELS	70 dBA	65 dBA	60 dBA	55 dBA			
	CNEL		179	565	1786	5646			
	LDN		163	515	1630	5155			

LOCATION: S.	of Pearblossom	xisting Hwy									JOB #: 046220 DATE: 5-Jan-2 ENGINEER: R. Stror	10 1 nberg
					NOISE IN	PUT DAT	A					
	ROADW	AY CONDITIO	DNS					REC	EIVER INPL	JT DATA		
ADT = SPEED = PK HR % = NEAR LANE/FAR LA ROAD ELEVATION = GRADE = PK HR VOL =	29,072 50 10 NNE DIS 50 = 0.0 0.0 2,360	%				RECEIVER I DIST C/L T(RECEIVER I WALL DIST PAD ELEVA ROADWAY	DISTANCE = D WALL = HEIGHT = TANCE FROM NTION = V VIEW:	I RECEIVER LF ANGLE= RT ANGLE= DF ANGLE=	50 50 5.0 0 0.0 -90 90 180			
		ONDITIONS						14/4				
AUTOMOBILES = MEDIUM TRUCKS = HEAVY TRUCKS =	= 10		(10 = HARI	D SITE, 15 =	SOFT SITE)	HTH WALL AMBIENT= BARRIER =	= 0.0 = 0.0 0	(0 = WALL,	1 = BERM)			
	VEHIC	LE MIX DATA	A					М	SC. VEHICL	E INFO		
VEHICLE TYPE	DAY	EVENING	NIGHT	DAILY	Į		VEHICLE TY	'PE	HEIGHT	SLE DISTANCE	GRADE ADJUSTM	ENT
AUTOMOBILES	0.775	0.129	0.096	0.9430			AUTOMOBI MEDIUM TI	RUCKS	2.0	43.41 43.31		
HEAVY TRUCKS	0.865	0.027	0.108	0.0450	1		HEAVY TRU	CKS	8.0	43.41	0.00	
			NOISE	N IMPACTS (IOISE OU אודאסטד ז	TPUT DA	TA ARRIER SHIE	LDING)				
		VEHICLE TY	NOISE	N IMPACTS (PK HR LEQ	OISE OU	TPUT DA	TA ARRIER SHIE	LDING) LDN	CNEL	 		
		VEHICLE TY AUTOMOBI	NOISE PE ILES	N TIMPACTS (PK HR LEQ 72.8	DISE OU WITHOUT 1 DAY LEQ 71.9	TPUT DA	TA ARRIER SHIE NIGHT LEQ 64.0	LDING) LDN 72.7	CNEL 73.3			
		VEHICLE TY AUTOMOBI MEDIUM TE	NOISE PE ILES RUCKS	PK HR LEQ 72.8 61.2 74.5	DAY LEQ 71.9 60.6	EVEN LEQ 70.1 54.2	TA ARRIER SHIE 64.0 52.7	LDING) 1000 100	CNEL 73.3 61.4			
		VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU	NOISE PE ILES RUCKS ICKS	PK HR LEQ 72.8 61.2 71.5	DAY LEQ 71.9 60.6 71.0	EVEN LEQ 70.1 54.2 62.0	TA ARRIER SHIE 64.0 52.7 63.2	LDING) 72.7 61.1 71.6	CNEL 73.3 61.4 71.7			
		VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE	NOISE ILES RUCKS ICKS ILS (dBA)	PK HR LEQ 72.8 61.2 71.5 75.4	DAY LEQ 71.9 60.6 71.0 74.6	TPUT DA OPO OR BA EVEN LEQ 70.1 54.2 62.0 70.8	TA ARRIER SHIE 64.0 52.7 63.2 66.8	LDING) 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE RUCKS ILS (dBA)	PK HR LEQ 72.8 61.2 71.5 75.4	DAY LEQ 71.9 60.6 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8	NIGHT LEQ 64.0 52.7 63.2 66.8	LDING) 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE ILES RUCKS ICKS ILS (dBA)	PK HR LEQ 72.8 61.2 71.5 75.4	OISE OU WITHOUT 1 0 DAY LEQ 71.9 60.6 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8	TA ARRIER SHIE 64.0 52.7 63.2 66.8	LDING) 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TH HEAVY TRU NOISE LEVE	NOISE PE RUCKS ILS ILS (dBA) NOIS PE	PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS	DAY LEQ 71.9 60.6 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8 20 AND BAR EVEN LEQ	TA ARRIER SHIE 064.0 52.7 63.2 66.8 RRIER SHIELL	LDING) 72.7 61.1 71.6 75.3 DING)	CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI	NOISE PE ILES RUCKS ICKS ILS (dBA) NOIS PE ILES RUCKS	PK HR LEQ 72.8 61.2 71.5 75.4 75.4 75.4 PK HR LEQ 72.8 61.2 72.8 61.2 72.8 61.2 72.8 61.2	DAY LEQ 71.9 60.6 71.0 74.6 (with top DAY LEQ 71.9 60.6 71.0	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELL NIGHT LEQ 64.0 52.7	LDING) 72.7 61.1 71.6 75.3 DING) LDN 72.7 61.1	CNEL 73.3 61.4 71.7 75.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE NOISE LEVE	NOISE PE ILES ILES ILS (dBA) NOIS PE ILES RUCKS ICKS	PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5	DAY LEQ 71.9 60.6 71.0 74.6 (WITH TOP 0AY LEQ 71.9 60.6 71.0	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELI NIGHT LEQ 64.0 52.7 63.2	LDING) 72.7 61.1 71.6 75.3 75.3 DING) LDN 72.7 61.1 71.6	CNEL 73.3 61.4 71.7 75.7 75.7 75.7 75.7 75.7 61.4 71.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE ILES RUCKS ILS (dBA) NOIS PE ILES RUCKS ILS (dBA)	PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4	DAY LEQ 71.9 60.6 71.0 74.6 DAY LEQ 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIEL NIGHT LEQ 64.0 52.7 63.2 66.8 8.8 66.8 9.1 66.8 9.2 63.2 66.8	LDING) 72.7 61.1 71.6 75.3 DING) LDN 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7 75.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE RUCKS ILES RUCKS ILS (dBA) PE RUCKS ILS (dBA)	N FIMPACTS (PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4	OISE OU WITHOUT 1 60.6 71.9 60.6 71.0 74.6 (WITH TOP 60.6 71.9 60.6 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0 70.8	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELD NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELD 66.8 66.8	LDING) 72.7 61.1 71.6 75.3 DING) LDN 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7 75.7 CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TR HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE RUCKS ILES ILS (dBA) NOIS PE RUCKS ILS (dBA)	N IMPACTS (PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5 75.4	DAY LEQ 71.9 60.6 71.0 74.6 WITH TOP 60.6 71.9 60.6 71.9 60.6 71.9 60.6 71.9 60.6 71.0 74.6	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0 70.8	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIEL NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELL 66.8 66.8 66.8 66.8	LDING) 72.7 61.1 71.6 75.3 DING) LDN 72.7 61.1 71.6 75.3	CNEL 73.3 61.4 71.7 75.7 75.7 CNEL 73.3 61.4 71.7 75.7			
		VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE VEHICLE TY AUTOMOBI MEDIUM TF HEAVY TRU NOISE LEVE	NOISE PE LLES LLS (dBA) PE LLES RUCKS CKS CKS LLS (dBA) NOISE LEV CNEL	PK HR LEQ 72.8 61.2 71.5 75.4 SE IMPACTS PK HR LEQ 72.8 61.2 71.5 71.5 75.4 75.4	DAY LEQ 71.9 60.6 71.0 74.6 WITH TOP 60.6 71.0 74.6 71.9 60.6 71.0 74.6 NOISE COI 70 dBA 187	EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR EVEN LEQ 70.1 54.2 62.0 70.8 PO AND BAR FO AND BAR 70.1 54.2 62.0 70.1 54.2 62.0 70.8 YTOUR (FT) 65 dBA 591	NIGHT LEQ 64.0 52.7 63.2 66.8 RRIER SHIELI NIGHT LEQ 64.0 52.7 63.2 66.8 8.8 66.8 66.8 66.8 66.8 66.8 66.8	LDING) 72.7 61.1 71.6 75.3 75.3 DING) LDN 72.7 61.1 71.6 75.3 75.3	CNEL 73.3 61.4 71.7 75.7 75.7 CNEL 73.3 61.4 71.7 75.7			

Construction Noise Levels at Senstiive Receptors by Phase

Activity	Leq at SFR to the West	Lmax at SRF to the West
Site Preparation	79	83
Grading	79	80
Building Construction	77	78
Architectural Coating	73	77

#	Equipment Summary	Reference (dBA) 50 ft Lmax
1	Rock Drills	96
2	Jack Hammers	82
3	Pneumatic Tools	85
4	Pavers	80
5	Dozers	85
6	Scrappers	87
7	Haul Trucks	88
8	Cranes	82
9	Portable Generators	80
10	Rollers	80
11	Tractors	80
12	Front-End Loaders	86
13	Hydraulic Excavators	86
14	Graders	86
15	Air Compressors	86
16	Trucks	86

Site Preparation

Noise Leve	el Calculation Prior to Imple	mentation of Noise Attenuation Requirements								
					Distance to					
				Usage	Receptor	Ground	Shielding	Calculate	d (dBA)	
No.	Equipment Description	Reference (dBA) 50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy
5	Dozer	85	2	40	480	0.5	0	63.5	59.5	885955.49
11	Tractor/Backhoe	80	1	40	480	0.5	0	55.4	51.5	140081.86
Source: M	D Acoustics, January, 2020.						Lmax*	64	Leq	60
1- Percent	age of time that a piece of e	quipment is operating at full power.					Lw	95	Lw	92

I - Percentage of time that a give of equipment is operating at full power.
 IdBA – A-weighted Decibels
 Lmax- Maximum Level
 Leq-Equivalent Level

Feet	Meters	Shi Ground Effect Let	No elding 1 dBA	1 dBA Shielding Leg dBA	2 dBA Shielding Leg dBA	3 dBA Shielding Leg dBA	4 dBA Shielding Lea dBA	5 dBA Shielding Leg dBA	6 dBA Shielding Leg dBA	7 dBA Shielding Lea dBA	8 dBA Shielding Leg dBA	9 dBA Shielding Leg dBA	10 dBA Shielding Leg dBA	11 dBA Shielding LeadBA	12 dBA Shielding Leg dBA	13 dBA Shielding Leg dBA	14 dBA Shielding Leg dBA	15 dBA Shielding Leg dBA
50	15.2	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
60	18.3	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
70	21.3	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
80	24.4	0.5	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
90	27.4	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
100	30.5	0.5	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
110	33.5	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
120	36.6	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
130	39.6	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
140	42.7	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
150	45.7	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
160	48.8	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
170	51.8	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
180	54.9	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
190	57.9	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
200	61.0	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
210	64.0	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
220	67.1	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
230	70.1	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
240	73.1	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
250	76.2	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
260	79.2	0.5	42	41	40	39	38	37	36	i 35	34	33	32	31	30	29	28	27
270	82.3	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
280	85.3	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
290	88.4	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
300	91.4	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
310	94.5	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
320	97.5	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
330	100.6	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
340	103.6	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
350	106.7	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
360	109.7	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
370	112.8	0.5	38	37	36	35	34	33	30	31	30	29	28	27	26	25	24	23

Grading

Noise Leve	el Calculation Prior to Implem	entation of Noise Attenuation Requirements								
					Distance to					
				Usage	Receptor	Ground	Shielding	Calculate	d (dBA)	
No.	Equipment Description	Reference (dBA) 50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy
13	Excavator	86	2	40	480	0.5	0	64.5	60.5	1115351.9
14	Grader	86	2	40	480	0.5	0	64.5	60.5	1115351.9
5	Dozer	85	2	40	480	0.5	0	63.5	59.5	885955.49
12	Tractor/Loader/Backhoe	86	3	40	480	0.5	0	66.2	62.2	1673027.8
16	Water Truck	86	3	40	480	0.5	0	66.2	62.2	1673027.8
Source: M	D Acoustics, January, 2020.						Lmax*	72	Leq	68
1- Percent	age of time that a piece of equ	ipment is operating at full power.					Lw	100	Lw	100

Jource, mo Acousto, January, 2020. 1 - Percentage of time that a jecce of equipment is operating at full power. dBA – A-weighted Decibels Imax- Maximum Level Leq- Equivalent Level

Feet	Meters	Grand Effect	No Shielding Lea dBA	1 dBA Shielding Leg dBA	2 dBA Shielding Leg dBA	3 dBA Shielding Leg dBA	4 dBA Shielding Leg dBA	5 dBA Shielding Lea dBA	6 dBA Shielding Lea dBA	7 dBA Shielding Leg dBA	8 dBA Shielding Lea dBA	9 dBA Shielding Lea dBA	10 dBA Shielding Leg dBA	11 dBA Shielding LeadBA	12 dBA Shielding Leg dBA	13 dBA Shielding Leg dBA	14 dBA Shielding Leg dBA	15 dBA Shielding Leg dBA
50	15.2	0.5	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53
60	18.3	0.5	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
70	21.3	0.5	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
80	24.4	0.5	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48
90	27.4	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
100	30.5	0.5	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
110	33.5	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
120	36.6	0.5	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44
130	39.6	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
140	42.7	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
150	45.7	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
160	48.8	0.5	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
170	51.8	0.5	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
180	54.9	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
190	57.9	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
200	61.0	0.5	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
210	64.0	0.5	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
220	67.1	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
230	70.1	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
240	73.1	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
250	76.2	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
260	79.2	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
270	82.3	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
280	85.3	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
290	88.4	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
300	91.4	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
310	94.5	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
320	97.5	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
330	100.6	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
340	103.6	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
350	106.7	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
360	109.7	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
370	112.8	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31

Building Construction

Noise Leve	el Calculation Prior to Implementa	tion of Noise Attenuation Requirements								
					Distance to					
				Usage	Receptor	Ground	Shielding	Calculate	ed (dBA)	
No.	Equipment Description	Reference (dBA) 50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy
8	Cranes	82	1	40	480	0.5	0	57.4	53.5	222014.79
11	Forklift/Tractor	80	1	40	480	0.5	0	55.4	51.5	140081.86
									1	
									I	
Source: M	D Acoustics, January, 2020.						Lmax*	60	Leq	56
1- Percent	age of time that a piece of equipme	nt is operating at full power.					Lw	91	Lw	87
								-	-	-

1 - Percentage of time that a piece of equipment is operating at full power. dBA – Aveighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

			No	1 dBA	2 dBA	3 dBA	4 dBA	5 dBA	6 dBA	7 dBA	8 dBA	9 dBA	10 dBA	11 dBA	12 dBA	13 dBA	14 dBA	15 dBA
Feet	Meters	Ground Effect	Shielding Lea dBA	Shielding Leg dBA	Shielding Lea dBA	Shielding Lea dBA	Shielding Leg dBA	Shielding Lea dBA	Shielding	Shielding Leg dBA	Shielding Leg dBA	Shielding Lea dBA	Shielding Lea dBA					
50	15.2	0.5	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41
60	18.3	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
70	21.3	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
80	24.4	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
90	27.4	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
100	30.5	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
110	33.5	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
120	36.6	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
130	39.6	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
140	42.7	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
150	45.7	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
160	48.8	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
170	51.8	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
180	54.9	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
190	57.9	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
200	61.0	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
210	64.0	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
220	67.1	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
230	70.1	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
240	73.1	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
250	76.2	0.5	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23
260	79.2	0.5	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23
270	82.3	0.5	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22
280	85.3	0.5	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22
290	88.4	0.5	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22
300	91.4	0.5	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21
310	94.5	0.5	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21
320	97.5	0.5	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
330	100.6	0.5	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
340	103.6	0.5	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20
350	106.7	0.5	34	33	32	51	30	29	28	27	26	25	24	23	22	21	20	19
300	109.7	0.5	34	33	32	31	30	29	28	27	20	25	24	23	22	21	20	19

Site Preparation

Noise Leve	Calculation Prior to Imple	mentation of Noise Attenuation Requirements								
					Distance to					
				Usage	Receptor	Ground	Shielding	Calculate	d (dBA)	
No.	Equipment Description	Reference (dBA) 50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy
4	Paver	80	1	40	480	0.5	0	55.4	51.5	140081.86
12	Front End Loader	86	1	40	480	0.5	0	61.4	57.5	557675.94
10	Roller	80	2	40	480	0.5	0	58.5	54.5	280163.73
16	Lot Sweeper	86	1	40	480	0.5	0	61.4	57.5	557675.94
Source: ME	Acoustics, January, 2020.						Lmax*	66	Leq	62
1- Percenta	age of time that a piece of e	quipment is operating at full power.					Lw	87	Lw	94

I - Percentage of time that a give of equipment is operating at full power.
 IdBA – A-weighted Decibels
 Lmax- Maximum Level
 Leq-Equivalent Level

			No	1 dBA	2 dBA	3 dBA	4 dBA	5 dBA	6 dBA	7 dBA	8 dBA	9 dBA	10 dBA	11 dBA	12 dBA	13 dBA	14 dBA	15 dBA
Feet	Meters	Ground Effect	Lea dBA	Leg dBA	Lea dBA	Lea dBA	Lea dBA	LeadBA	Leg dBA	Lea dBA	Lea dBA	Leg dBA						
50	15.2	0.5	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47
60	18.3	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
70	21.3	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
80	24.4	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
90	27.4	0.5	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
100	30.5	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
110	33.5	0.5	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
120	36.6	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
130	39.6	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
140	42.7	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
150	45.7	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
160	48.8	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
170	51.8	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34
180	54.9	0.5	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
190	57.9	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
200	61.0	0.5	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
210	64.0	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
220	67.1	0.5	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31
230	70.1	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
240	73.1	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
250	76.2	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
260	79.2	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
270	82.3	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
280	85.3	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
290	88.4	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
300	91.4	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
310	94.5	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
320	97.5	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
330	100.6	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
340	103.6	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
350	106.7	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
360	109.7	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25

Architectural Coating

Noise Leve	I Calculation Prior to Imple	ementation of Noise Attenuation Requirements							l	
					Distance to					
				Usage	Receptor	Ground	Shielding	Calculate	d (dBA)	
No.	Equipment Description	Reference (dBA) 50 ft Lmax	Quantity	Factor ¹	(ft)	Effect	(dBA)	Lmax	Leq	Energy
15	Air Compressor	0.5	0	64.5	60.5	1115351.9				
Source: ME	O Acoustics, January, 2020.						Lmax*	64	Leq	60
1- Percenta	age of time that a piece of e	quipment is operating at full power.					Lw	96	Lw	92

I - Percentage of time that a give of equipment is operating at full power.
 IdBA – A-weighted Decibels
 Lmax- Maximum Level
 Leq-Equivalent Level

			No	1 dBA Shielding	2 dBA Shielding	3 dBA Shielding	4 dBA Shielding	5 dBA Shielding	6 dBA Shielding	7 dBA Shielding	8 dBA Shielding	9 dBA Shielding	10 dBA Shielding	11 dBA Shielding	12 dBA Shielding	13 dBA Shielding	14 dBA Shielding	15 dBA Shielding
Feet	Meters	Ground Effect	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA	LeqdBA	Leq dBA	Leq dBA	Leq dBA	Leq dBA
50	15.2	0.5	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45
60	18.3	0.5	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
70	21.3	0.5	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42
80	24.4	0.5	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40
90	27.4	0.5	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39
100	30.5	0.5	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
110	33.5	0.5	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
120	36.6	0.5	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36
130	39.6	0.5	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35
140	42.7	0.5	49	48	47	46	45	44	43	42	41	40	39	38	37	30	35	34
150	45.7	0.5	49	48	47	40	45	44	43	42	41	40	39	38	3/	30	35	34
100	40.0	0.5	48	47	40	45	44	43	42	41	40	39	27	37	25	33	22	22
190	54.0	0.5	47	40	4.5	44	43	42	41	40	39	20	27	30	35	24	22	32
100	57.9	0.5	47	40	4.5	44	43	42	41	40	39	30	36	35	3.1	33	33	31
200	61.0	0.5	40	45	43	42	41	40	39	38	37	36	35	34	33	32	31	30
210	64.0	0.5	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
220	67.1	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
230	70.1	0.5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29
240	73.1	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
250	76.2	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
260	79.2	0.5	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28
270	82.3	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
280	85.3	0.5	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27
290	88.4	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
300	91.4	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
310	94.5	0.5	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
320	97.5	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
330	100.6	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
340	103.6	0.5	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25
350	106.7	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
360	109.7	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24
370	112.8	0.5	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24

Appendix E: Construction Vibration Modeling Output

VIBRATION LEVEL IMPACT			
Project:	Pilot		Date: 1/7/21
Source:	Large Bulldozer		
Scenario:	Unmitigated		
Location:	SFR to West		
Address:			
PPV = PPVref(25/D)^n (in/sec)			
DATA INPUT			
Equipment =	2	Largo Bulldozor	INPUT SECTION IN BLUE
Туре	2	Laige Buildozei	
PPVref =	0.089	Reference PPV (in/sec) at 25 ft.	
D =	185.00	Distance from Equipment to Receiver (ft)	
n =	1.10	Vibration attenuation rate through the ground	
Note: Based on reference equations from Vibration Guidance Manual, California Department of Transportation, 2006, pgs 38-43.			
DATA OUT RESULTS			
PPV =	0.010	IN/SEC	OUTPUT IN RED