Appendix I Preliminary Hydrology Report

PRELIMINARY HYDROLOGY & HYDRAULICS REPORT

Pilot Palmdale

APN 0236-031-08, -09, and -01

February 2021

Prepared for:

Mr. Ross Shaver Construction Development 5508 Lonas Drive Knoxville, TN 37909

Prepared by: Kimley-Horn and Associates, Inc. 3880 Lemon Street, Suite 420 Riverside, CA 92501 (951) 543-9868

KHA Project # 095426006 © 2021 Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABI	LE OF CONTENTS	2
APP	ENDICES	2
1 I	Project Description	1
1.1	1 Methodology	1
2 I	Hydrology Analysis	2
2.1	1 Floodplain Information	2
2.2	2 offsite Watershed	2
2	2.2.1 Culvert Analysis	3
2.3	3 Existing On-site drainage conditions	3
2.4	4 Proposed On-Site Drainage Conditions	4
3 I	Hydraulic Analysis	5
3.1	1 Diversion Channel	5
3.2	2 Detention Analysis - DA4	5
4 I	Low Impact Development	3
5 (Conclusions and Limitations	7

APPENDICES

- Appendix A Existing Calculations
- Appendix B Proposed Calculations
- Appendix C Low Impact Development Calculations
- Appendix D Preliminary Grading Plan
- Appendix E References

1 Project Description

Pilot Palmdale (Project) comprises approximately 8.5 acres and is located at the corner of Pearblossom Highway and Fort Tejon Road in the City of Palmdale, California. The Project is in the County of Los Angeles and is located approximately 9 miles north of the Little Rock Reservoir. The Project is a mixed-use development including the construction of a new 11,500 sf travel center, diesel and auto fueling station, car wash, storage building and other uses. The project also proposed auto tractor trailer parking areas, right-of-way improvements, and stormwater Best Management Practices (BMP).

This report will show that the proposed development will decrease 50-year peak flows (Q_{50}) discharge from the site. Additionally, this report will analyze the total off-site Q_{50} peak flows produced from an offsite watershed that is proposed to be diverted around the Project.

1.1 METHODOLOGY

Hydrology and hydraulic calculations were performed using PCSWMM. PCSWMM is a software that integrates various hydrology methods and allows for simultaneous hydrology and hydraulic modeling. The onsite portion of the analysis was completed using the County's Modified Rational Method (MODRAT) while the offsite portion was completed using the SCS Unity Hydrograph Method.

The hydrologic parameters for the analysis was determined using the County's Hydrology GIS application. A copy of the hydrologic map is included in Attachment C. The LA County hydrologic map shows the project area's corresponding 50-year, 24-hour rainfall depths is 2.8-inch, while NOAA 14 shows a rainfall depth of 3.9 in. The dominant soil type for each drainage area was also determined using the hydrologic map in Attachment C.

2 Hydrology Analysis

2.1 FLOODPLAIN INFORMATION

Research into the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Los Angeles County, California and Incorporated Area Panel 700 of 2350 Map Number 06037C0700F Effective Date September 26, 2008 shows that the project lies within Zone X determined to be areas of 0.2% annual chance flood; areas of 1% chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile. See FIRMette attached Appendix E.

2.2 OFFSITE WATERSHED

The project site receives offsite flows from approximately 1378 acres (DA-1) south of Pearblossom Highway. The predominantly pervious, with no major elevation changes and generally flows in the northerly direction. Runoff from this area is collected via a 6'x2' double reinforced concrete box (RCB) on the southwest corner of Pearblossom Highway and 53rd Street East and discharges onto the proposed project area. Once on the project area, this runoff continues to flow in the northwesterly direction until it reaches the northwest corner of the property boundary.

The offsite drainage area consists of primarily undeveloped land with some small low-density residential areas. Longest flow paths and slopes were determined using USGS topography data in AutoCAD. Soil types from the NCRS Web Soil Survey and land covers from aerial imagery were used to the determine the average curve number for the drainage area. An intensity curve was developed for the area using NOAA's Atlas 14 rainfall depths for the area using the SCS method. This information was used in the PCSWMM model. Table 1 below summarizes the peak flow rates for this offsite drainage area.

Drainage Area ID	Area (ac)	Imperviousness (%)	NOAA 14 Depth (in)	SCS Curve Number	Clear Peak Flow Rate (cfs)
DA 1	1378	1	3.9	76	291
Total	1378	-	-	-	291

Table 1: 50-year Offsite Storm Peak Flows

2.2.1 Culvert Analysis

The 6'x2' double RCP culvert was also analyzed in the PCSWMM Model and DA-1 was routed through it. The geometry, material, slopes, and headwall information were entered using the data found on the Pearblossom Highway Widening Street Improvement Plans, refer to Attachment C. A free outfall downstream boundary condition was assumed for the culvert; no hydraulic gradeline profiles were located or received from the City. The calculations show that the culvert does not have enough capacity to convey the calculated peak flow rate from DA 1. Therefore, only the capacity of the culvert will discharge onto the site and will be used as the basis of design for the proposed diversion channel. Table 2 below summarizes the culvert calculations. Full calculations are included in Attachment B.

Drainage Area ID	Size	Drainage Area Q50 (cfs)	Culvert Discharge (cfs)
DA 1	6' x 2' DBL RCB	291	261
Total	-	291	261

Table 2: Culvert Calculations

2.3 EXISTING ON-SITE DRAINAGE CONDITIONS

The existing Project area is part of a larger property which consists of one drainage area. This drainage area (DA 2) is bound by Pearblossom Highway to the south, Fort Tejon Road to the east, a railroad track to the north and a housing development to the west. DA-2 is approximately 28.78 acres and the proposed Project area is located on its southwest corner. The existing site is predominantly pervious, with no major elevation changes. DA 2 generally sheet flows in the northwest direction until it reaches the northwest corner of the area. Runoff from this location ultimately overtops the perimeter and enters a retention pond for the housing development to the west. This drainage area was analyzed using the County's MODRAT methodology in PCSWMM. Table 3 below summarizes the existing on-site peak flows rates. The proposed hydrology map showing proposed major drainage areas and full calculations are included in Appendix A.

Table 3: 50-year On-Site Existing Storm Peak Flows

Drainage Area ID	Area (ac)	Imperviousness (%)	Time of Concentration	Clear Peak Flow Rate (cfs)
DA 2	28.78	5	30	4.65
Total	28.78	-	-	4.65

2.4 PROPOSED ON-SITE DRAINAGE CONDITIONS

Under the proposed conditions, the site consists of three major drainage areas, DA 2, DA 3, and DA 4. Drainage area 4 consists of the 8.22 acres that are being improved as part of the project. This drainage area is collected via multiple inlets and curb and gutter and discharges to an onsite bioretention pond located on the north side of the proposed development. Runoff not feasibly retained in the bioretention area will discharge via a control outlet structure and continue to flow to the northwest corner of the property similarly to existing conditions. A landscaped strip along the western perimeter of DA 4 is proposed to bypass the bioretention system due to grading constraints. This portion will continue to sheet flow in the northwesterly direction similar to that of existing conditions.

Drainage area 2 consists of the proposed diversion channel as well as a portion of Pearblossom Highway that sheet flows north and discharges onto the diversion channel. Drainage area 3 consists of the remaining 19 acres located on the eastern portion of the property which will not be redeveloped at this time as well as a portion of the railroad track that flows onto this area along its northern perimeter. This area will continue to generally flow in the northwest direction. Table 4 below includes a summary of the proposed on-site peak flow rates. The proposed hydrology map showing proposed major drainage areas and full calculations are included in Appendix B.

Drainage Area ID	Area (ac)	Imperviousness (%)	Time of Concentration	Clear Peak Flow Rate (cfs)
DA 2	1.44	99	13	1.09
DA 3	19.14	5	30	3.09
DA 4	8.22	78	12	7.49
Total	28.79	-	-	12.13

Table 4: 50-year On-Site Proposed Storm Peak Flows

3 Hydraulic Analysis

3.1 DIVERSION CHANNEL

The offsite watershed discharging from the 6'x12' double RCP culvert and from Pearblossom Highway is proposed to be diverted around the proposed redevelopment via a lined trapezoidal channel. The channel will be lined with rock to reduce velocities and reduce erosion effects in the channel. The channel will have maximum side slopes of 1 to 1, minimum longitudinal slope of 1.1% and minimum 2-ft of freeboard. PCSWMM was used to route the discharge. Table 5 below summarizes the proposed channel design. Refer to Appendix B for full calculations.

Structure	Bottom	Channel	Maximum Water
	width	depth	Surface
	(ft)	(ft)	Elevation (ft)
Diversion Channel	4.25	5.5	3.47

3.2 DETENTION ANALYSIS- DA4

The proposed Project will ultimately flow to the bioretention area located on the north perimeter of DA-4. This bioretention area has been designed to meet Low Impact Development (LID) requirements as shown in Section 4. Runoff exceeding the design volume and flow rates will overflow via a control outlet structure which will discharge to the north to mimic existing conditions flow patterns. Routing calculations for the bioretention area were completed using the 50-year storm event.

A state storage table was developed for the bioretention area and was entered in the PCSWMM model. The bioretention section consists of approximately 36-inches of soil media, and 1.8 feet of ponding water. Runoff exceeding the ponding depth will discharge via an outlet structure with a weir control (Refer to Appendix C for drawdown calculations). Analyses show that the bioretention area will reduce the proposed peak flow rates to that of existing conditions within the proposed Project. Table 6 below summarizes the bioretention routing analysis. Full calculations are included in Appendix B.

Table 6: Detention Analysis

Drainage Area	Structure	50-year Inflows (cfs)	Bioretentio n Invert (ft)	Maximum HGL (ft)	Drawdown Time (hr)	Overflow Design Flow Rate (cfs)
4 (excluding 4-l)	Bioretenti on Area	7.08	2732.97	2737.94	66	0.92
4-I	-	0.41	-	-	-	0.41
Total	-	7.49	-	-	-	1.33

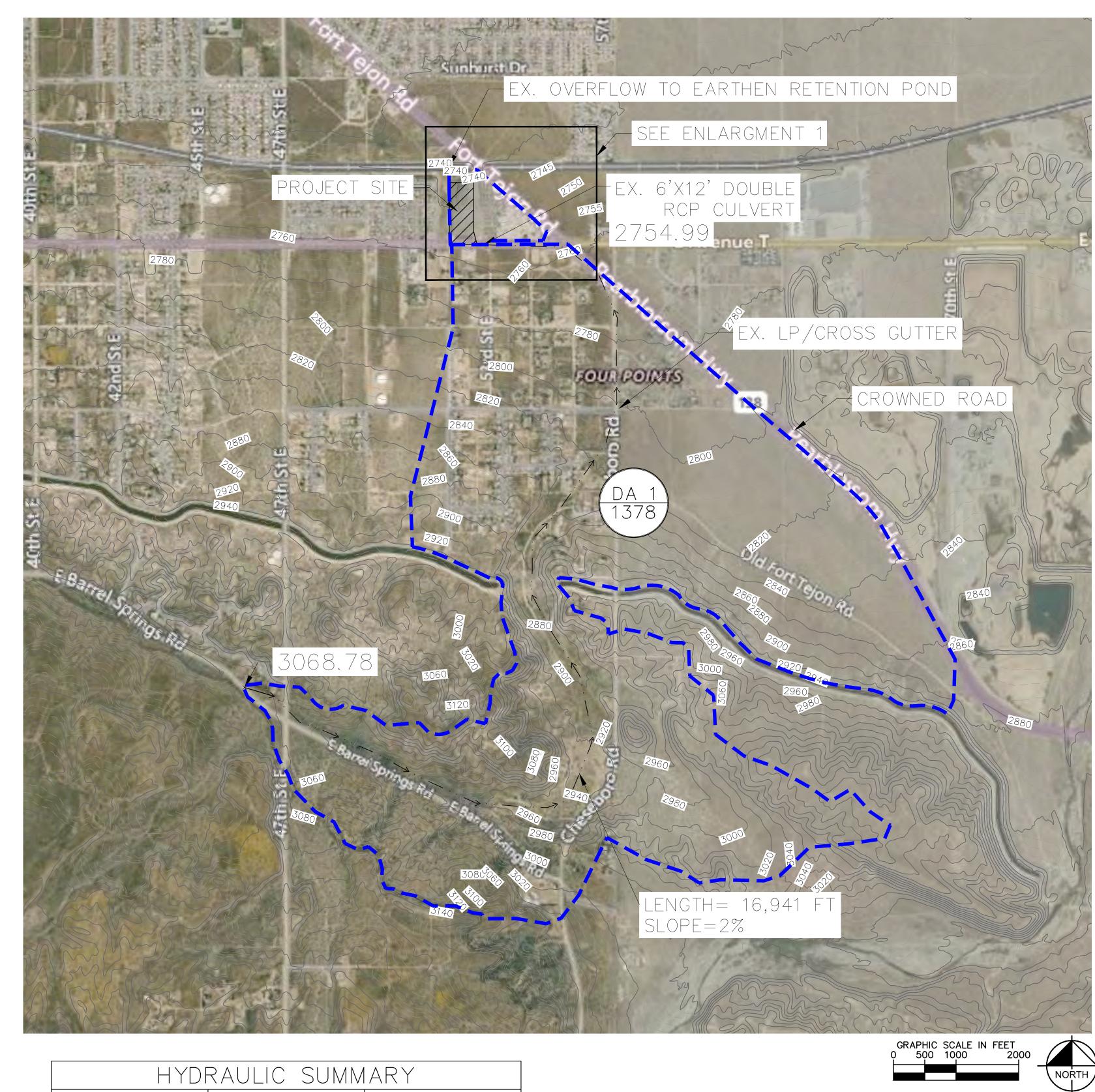
4 Low Impact Development

The proposed Project is considered a Designated Project and must meet the requirements of the LA County LID Standards Manual. All Designated projects must retain 100 percent of the Stormwater Quality Design Volume (SWQDV). The Project proposes to retain the SWQDV via a bioretention area. The SWQDV was calculated using the 0.75-inch, 24-hour event because it is greater than the 85th percentile depth for the site which is 0.47-inch. Preliminary LID calculations were completed using the HydroCalc software and methodology per the LID Standard Manual. Table 7 below summarizes HydroCalc results for the SWQDV. Refer to Appendix C for HydroCalc and drawdown calculations.

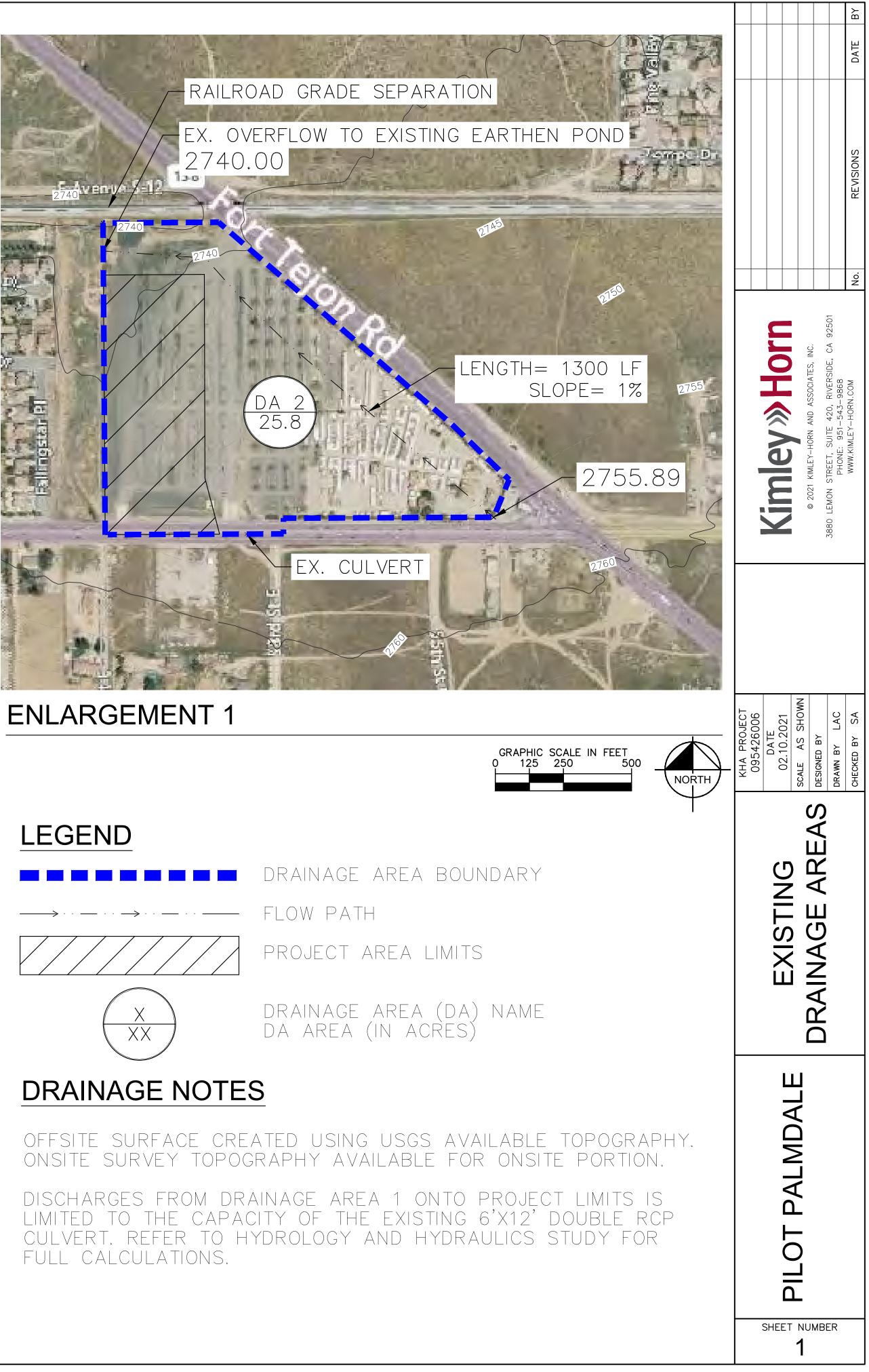
Drainage	Area (ac)	Storm	SWQDV
Area		Depth (in)	(cf)
DA 4	8.5	0.75	15,915

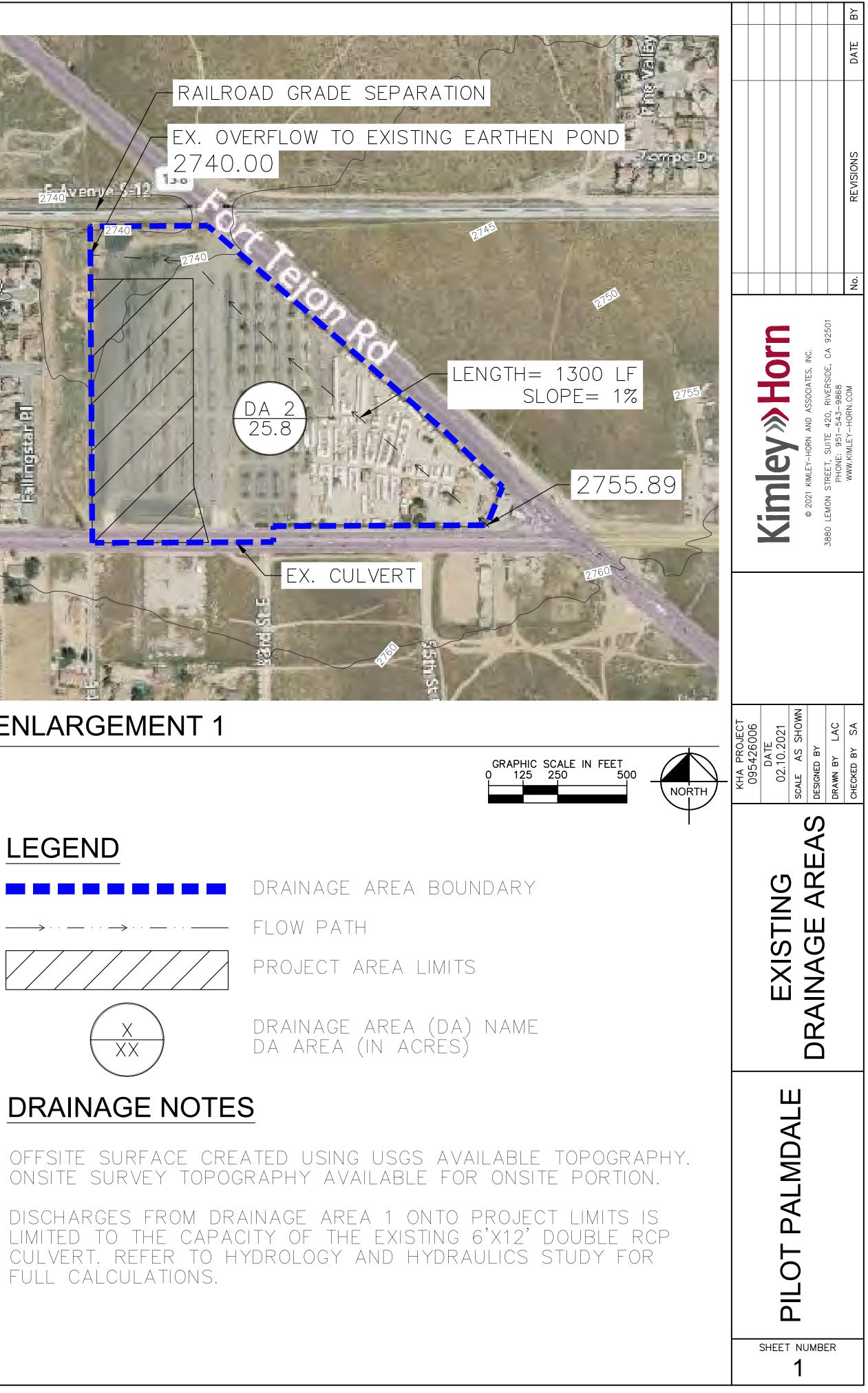
Table 7: LID	Summary
--------------	---------

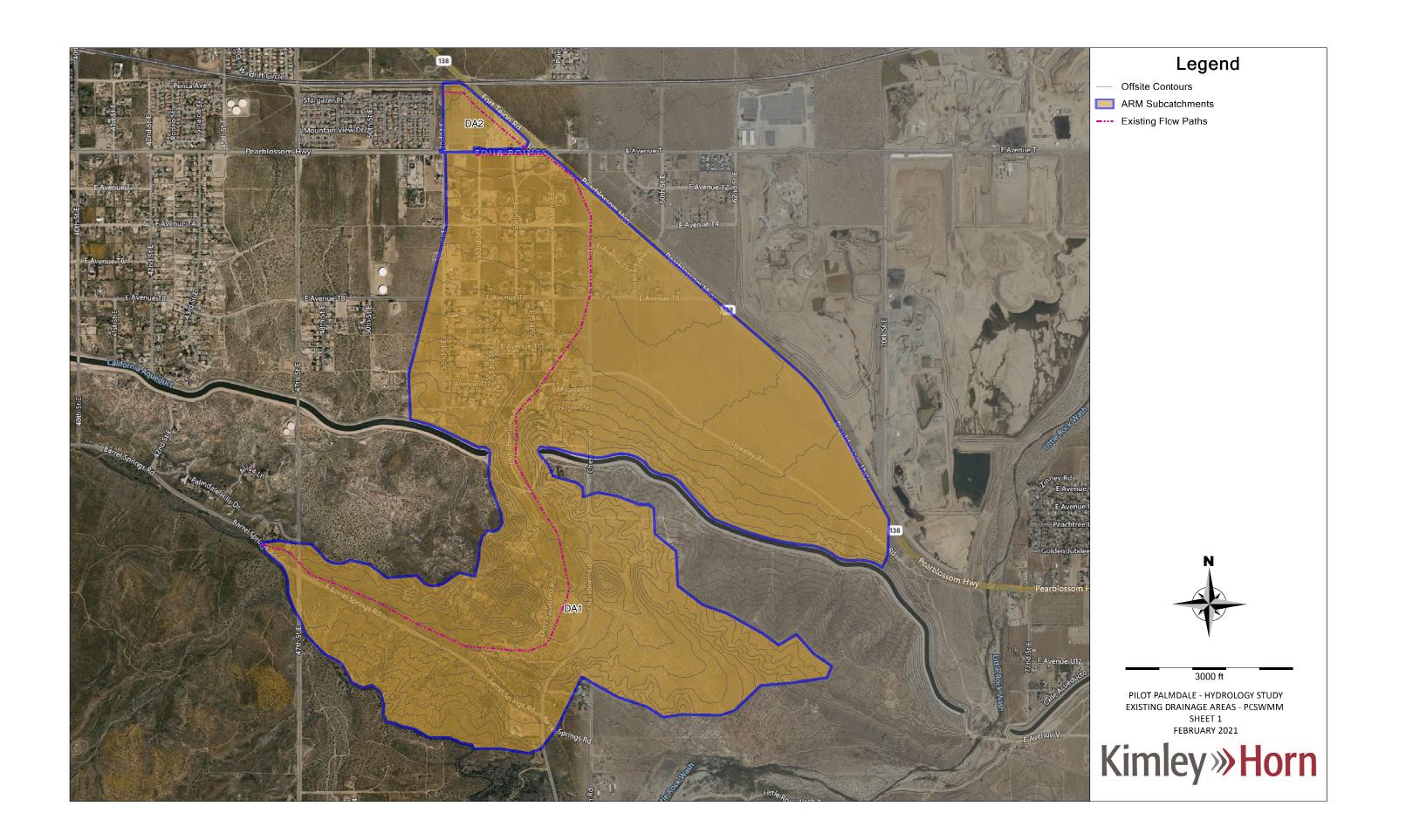
Page 6


5 Conclusions and Limitations

The Pilot Palmdale project is proposing to redevelop approximately 8.22 acres. The Project proposes to retain and treat runoff generated from the 0.75-inch storm event via a bioretention area. Runoff exceeding this design will discharge via a control outlet structure and discharge to the northwest of the project. Routing analysis of the bioretention area using the 50-year storm event showed that the bioretention area has enough capacity to reduce peak flow rate from the proposed project to that of existing conditions.


Additionally, the Project proposes to divert approximately offsite drainage around the proposed redevelopment via a lined trapezoidal channel. The offsite drainage peak flow rate has been determined using the peak flows from Pearblossom Highway and the capacity of the 6'x12' double RCP culvert that conveys flows from drainage area 1 under Pearblossom Highway.


APPENDIX A


Existing Conditions

HYDRAULIC SUMMARY				
DRAINAGE AREA	AREA (AC)	50-PEAK FLOW RATE (CFS)		
1	1378	290.82		
2	28.8	4.65		
TOTAL	1406.8	295.47		

PCSWMM Report

Existing Hydrology Calculations- 50-yr Model Pilot_Palmdale_Existing.inp

> Kimley-Horn and Associates Inc. February 11, 2021

Table of Contents

Tables

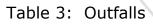

Table 1: Conduits Conduits	. 3
Table 2: Junctions Junctions	. 3
Table 3: Outfalls Outfalls	-
Table 4A: ARM Subcatchments	. 3
Table 4B: ARM Subcatchments	. 3
Table 4C: ARM Subcatchments	. 4

Table 1: Conduits

Name	l nlet Node	Outlet Node	Length (ft)	Roughness	Geom1 (ft)	Geom2 (ft)	Slope (ft/ft)	Max. Flow (cfs)	Max. Velocity (ft/s)	Max/Full Depth
CULV	HWL1	HWL2	93.21	0.013	2	6	0.00772	260.87	11.21	1
SHEET_FLOW	HWL2	POI	1251.902	0.014	1	200	0.00987	262.08	5.82	0.68

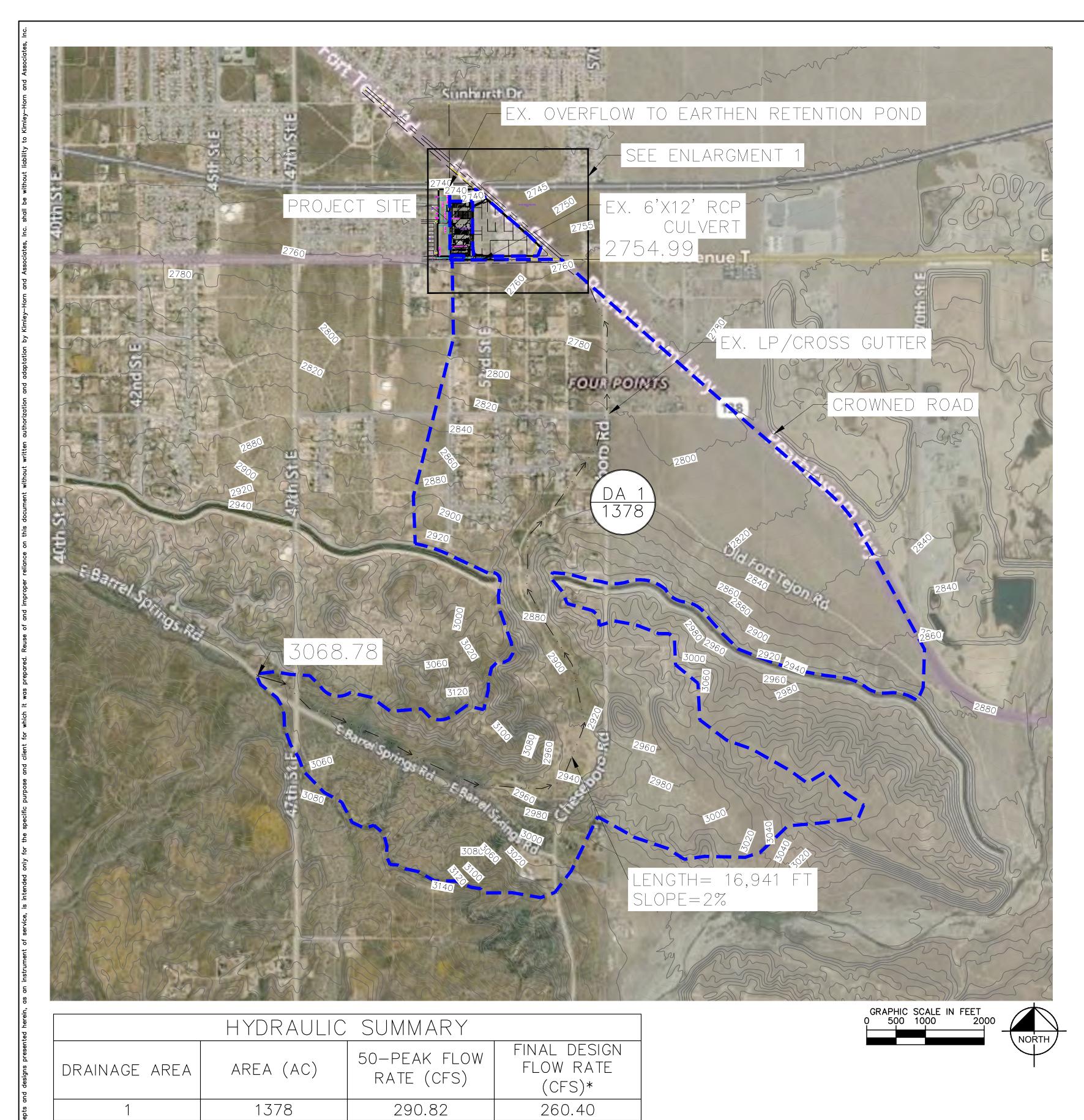
Table 2: Junctions

Name	Invert Elev. (ft)	Rim Elev. (ft)	Max. Depth (ft)	Max. HGL (ft)	Max. Total Inflow (cfs)
HWL1	2748.82	2751.84	3.02	2751.84	290.84
HWL2	2748.1	2753.87	2	2750.1	260.87

Name	Max. Total Inflow (cfs)	
POI	262.48	

Table 4A: ARM Subcatchments

Name	Runoff Method	Rain Gage	Area (ac)	Flow Length (ft)	Slope (%)	Imperv. (%)	Time of Concentration (min)	Loss Method
DA1	SCS Dimensionless UH	SCS_Type_I_3.90in	1378.601	16941	1.9	2	250.168	SCS CN
DA2	LA County Rational		28.78	1300	1	9	30	SCS CN


Table 4B: ARM Subcatchments

Name	I A Method	IA Value (in)	SCS Curve Number	Peak Rate Factor	Return Period (y)		Total rainfall (in)	Fire Factor	Precipitation (in)	Infiltration (in)	Runoff Depth (in)
DA1	0.2 S	0.632	76	Standard (483.4)	50		0	0	3.9	2.193	1.547
DA2	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0.34	2.78	0	0.426

Name	Runoff Volume (MG)	Peak Runoff (cfs)
DA1	57.899	290.836
DA2	0.333	4.651

APPENDIX B

Proposed Conditions

1.09

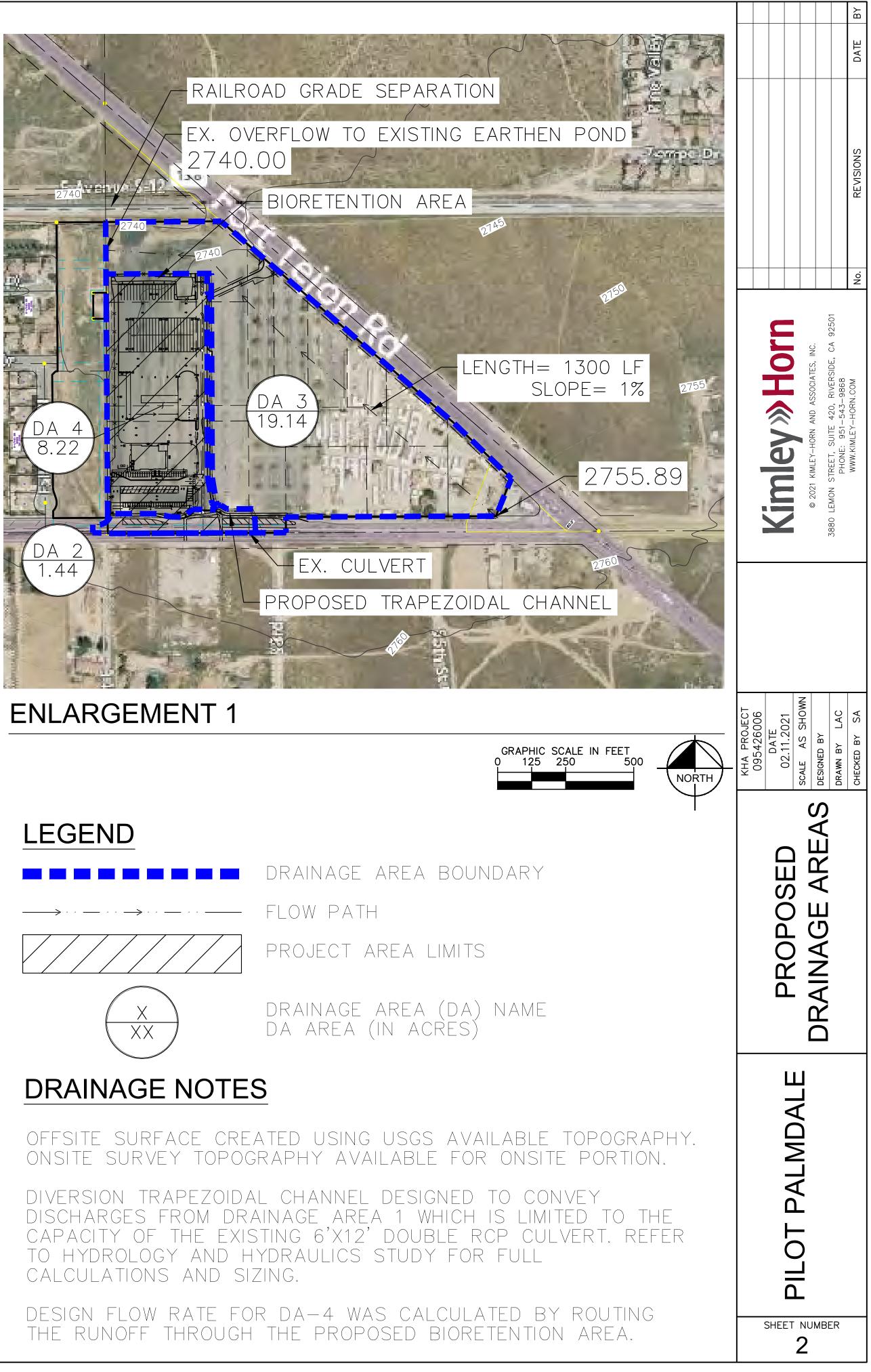
3.09

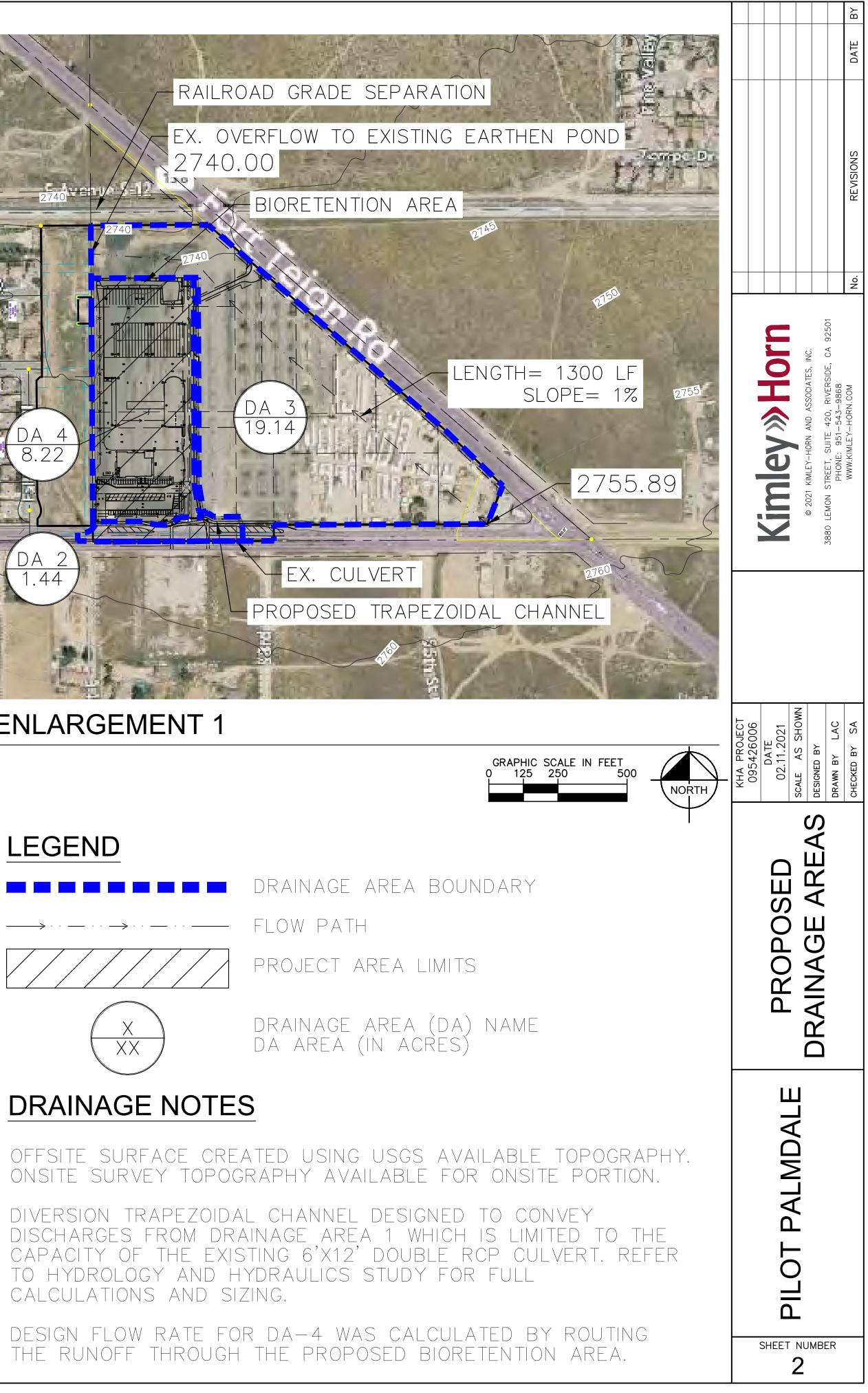
1.33

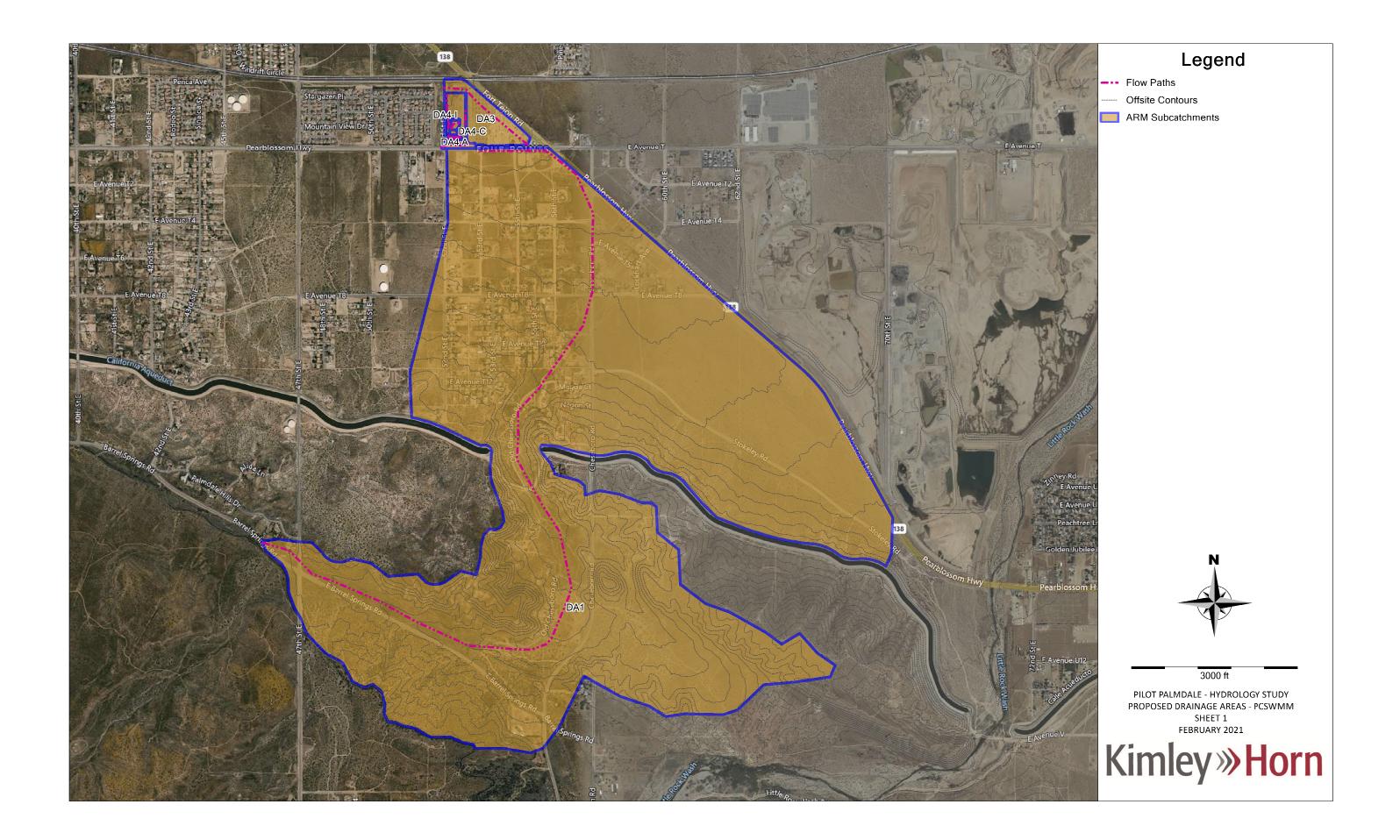
264.58

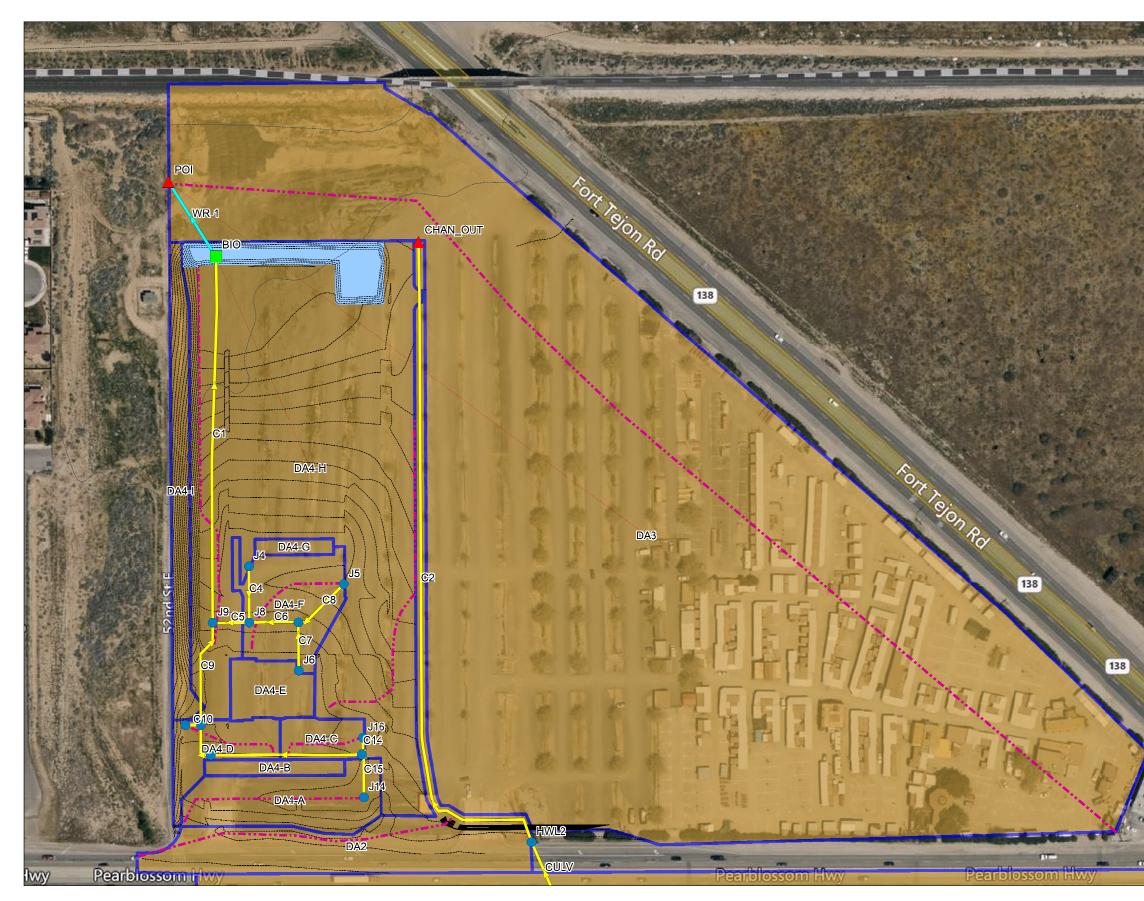
19.1 3 8.2 TOTAL 1398.6 *REFER TO DRAINAGE NOTES.

2


1.4

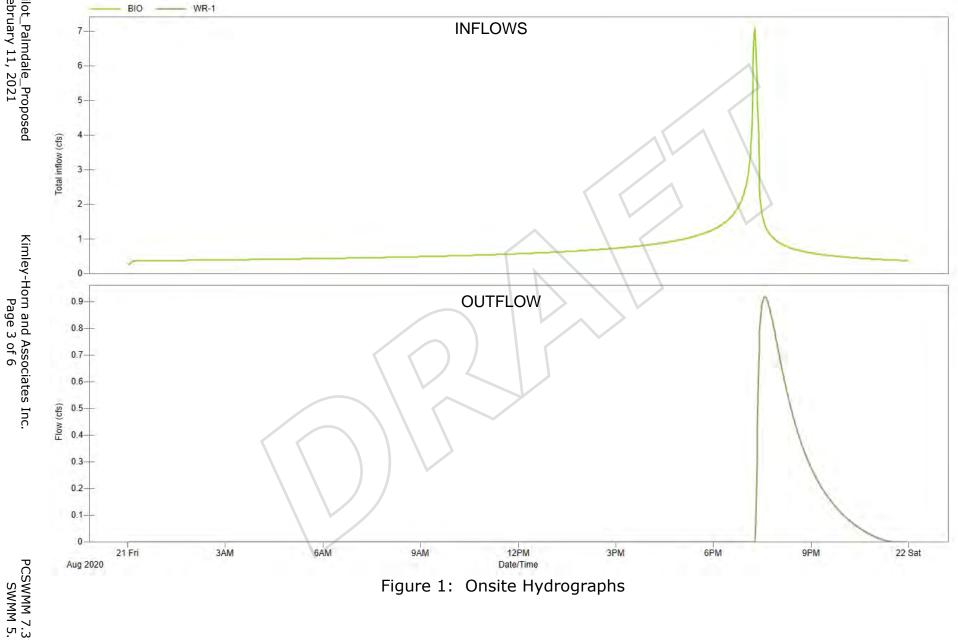

1.09


3.09


7.49

295.00

PCSWMM Report


Proposed Hydrology Calculations- 50-yr Model Pilot_Palmdale_Proposed.inp

> Kimley-Horn and Associates Inc. February 11, 2021

Table of Contents

Graphs		
Figure 1: Onsite Hydrographs		;;
Tables		
Table 1: Conduits		
Table 2: Junctions		
Table 3: Outfalls		
Table 4: Storages)
Table 5: Weirs		
Table 6A: ARM Subcatchments		
Table 6B: ARM Subcatchments		
Table 6C: ARM Subcatchments	6)

PCSWMM 7.3.3095 SWMM 5.1.015

Table 1: Conduits

Name	l nlet Node	Outlet Node	Length (ft)	Roughness	Geom1 (ft)	Geom2 (ft)	Slope (ft/ft)	Max. Flow (cfs)	Max. Velocity (ft/s)	Max/Full Depth
CULV	HWL1	HWL2	93.21	0.013	2	6	0.00772	260.87	11.21	1
C2	HWL2	CHAN_OUT	1078.017	0.025	5.5	4.25	0.01145	261.44	10.77	0.6
C1	J9	BIO	561.041	0.013	1	0	0.01275	2.65	5.87	0.59
C4	J4	J8	88.992	0.013	1	0	0.01	0.11	2.06	0.12
C5	J8	J9	57.63	0.013	1	0	0.01354	1.31	4.68	0.39
C6	J7	J8	78.361	0.013	1	0	0.01353	1.21	4.58	0.37
C7	J6	J7	75.987	0.013	1	0	0.0682	0.4	5.92	0.14
C8	J5	J7	96.477	0.013	1	0	0.01348	0.81	4.1	0.3
C9	J10	J9	169.421	0.013	1	0	0.01003	1.41	4.31	0.44
C10	J11	J10	24.56	0.013	1	0	0.17357	0.44	8.45	0.12
C11	J12	J10	63.039	0.013	1	0	0.00999	1	3.89	0.36
C13	J15	J12	238.908	0.013	1	0	0.01	0.82	3.75	0.33
C14	J16	J15	27.489	0.013	1	0	0.02802	0.3	3.95	0.15
C15	J14	J15	70.459	0.013	1	0	0.00994	0.54	3.26	0.26

Name	I nvert Elev. (ft)	Rim Elev. (ft)	Max. Depth (ft)	Max. HGL (ft)	Max. Total Inflow (cfs)	
HWL1	2748.82	2751.84	3.02	2751.84	290.84	/
HWL2	2748.1	2753.87	3.46	2751.56	260.98	
J4	2745.39	2746.39	0.12	2745.51	0.11	
J5	2746.86	2749.36	0.3	2747.16	0.82	
J6	2750.73	2751.73	0.14	2750.87	0.4	
J7	2745.56	2746.56	0.37	2745.93	1.21	
J8	2744.5	2745.5	0.39	2744.89	1.31	
J9	2743.72	2744.72	0.6	2744.32	2.7	
J10	2745.42	2746.42	0.44	2745.86	1.41	
J11	2749.62	2752.62	0.12	2749.74	0.44	
J12	2746.05	2746.05	0.36	2746.41	1	
J14	2749.14	2752.14	0.26	2749.4	0.54	
J15	2748.44	2749.44	0.33	2748.77	0.83	
J16	2749.21	2752.21	0.15	2749.36	0.3	

Name	Max. Total Inflow (cfs)
POI	3.64
CHAN_OUT	261.44

Name	Rim Elev. (ft)	Max. HGL (ft)
BIO	2738	2737.94

Table 5: Weirs

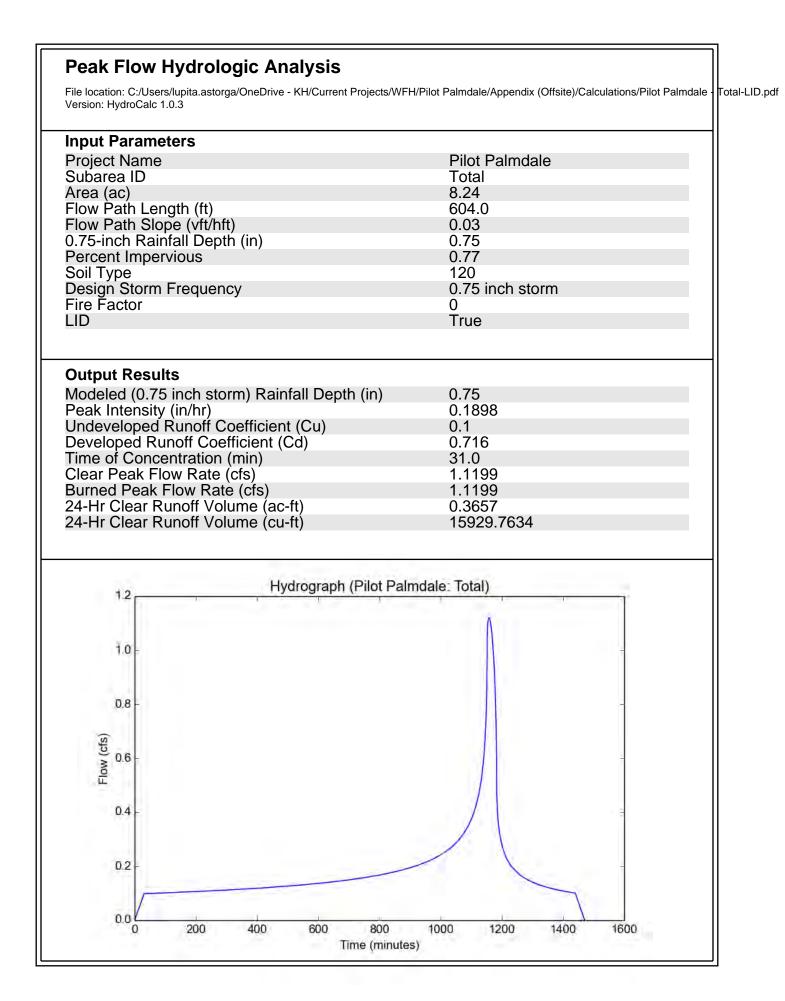
Na	ame	Height (ft)	0	Inlet Offset (ft)	Discharge Coeff. (CFS)	Max. Flow (cfs)
W	/R-1	0.23	4	4.8	3.33	0.92

Table 6A: ARM Subcatchments

Name	Runoff Method	Rain Gage	Area (ac)	Flow Length (ft)	Slope (%)	Imperv. (%)	Time of Concentration (min)	Loss Method
DA1	SCS Dimensionless UH	SCS_Type_I_3.90in	1378.601	16941	1.9	2	250.168	SCS CN
DA2	LA County Rational		1.44	500	0.6	72	14	SCS CN
DA3	LA County Rational		19.136	1300	1	5	30	SCS CN
DA4-A	LA County Rational		0.618	306	1	67	10	SCS CN
DA4-B	LA County Rational		0.127	50	1	100	5	SCS CN
DA4-C	LA County Rational		0.198	140	0.9	100	5	SCS CN
DA4-D	LA County Rational		0.316	150	2.4	84	5	SCS CN
DA4-E	LA County Rational		0.268	100	1	100	5	SCS CN
DA4-F	LA County Rational		0.597	207	1.7	100	6	SCS CN
DA4-G	LA County Rational		0.072	50	1	100	5	SCS CN
DA4-H	LA County Rational		5.511	604	2.9	80	12	SCS CN
DA4-I	LA County Rational		0.512	50	1	0	5	SCS CN

Table 6B: AR	M Subcatchments
--------------	-----------------

Name	I A Method	IA Value (in)	SCS Curve Number	Peak Rate Factor	Return Period (y)	Soil Type	Total rainfall (in)	Fire Factor	Precipitation (in)	Infiltration (in)	Runoff Depth (in)
DA1	0.2 S	0.632	76	Standard (483.4)	50		0	0	3.9	2.193	1.547
DA2	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	1.875
DA3	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0.34	2.78	0	0.426
DA4-A	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	1.769
DA4-B	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.481
DA4-C	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.481
DA4-D	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.137
DA4-E	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.481
DA4-F	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.481
DA4-G	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	2.481
DA4-H	0.2 S	0.5	80	Standard (483.4)	50	124	2.78	0	2.78	0	2.04
DA4-I	0.2 S	0.5	80	Standard (483.4)	50	120	2.78	0	2.78	0	0.329


andard (483.4)	50	120	2.78	0
Table 6C:	ARM	Subo	catchme	nts

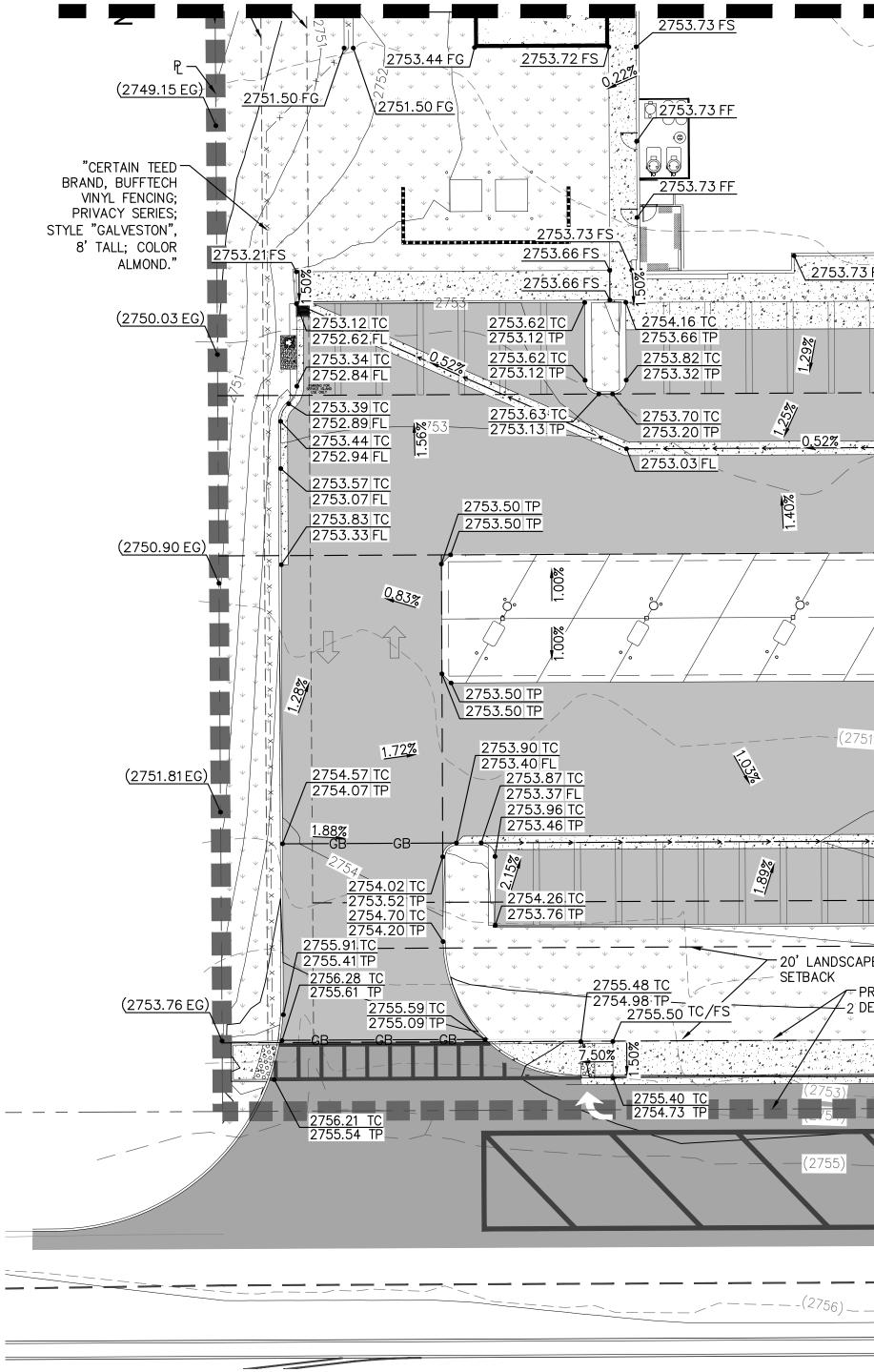
Name	Runoff Volume (MG)	Peak Runoff (cfs)
DA1	57.899	290.836
DA2	0.073	1.09
DA3	0.221	3.092
DA4-A	0.03	0.538
DA4-B	0.009	0.19
DA4-C	0.013	0.296
DA4-D	0.018	0.437
DA4-E	0.018	0.4
DA4-F	0.04	0.817
DA4-G	0.005	0.107
DA4-H	0.305	4.478
DA4-I	0.005	0.413

$\overline{)}$		

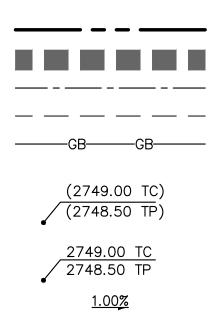
Kimley»Horn APPENDIX C

Low Impact Development Calculations

BMP Sizing Calculations


All calculations based on the LID Standards Manual, May 2014, for the Los Angeles County

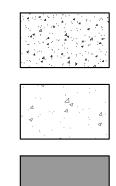
Project Name:Pilot PalmdaleCompleted by:KRSReviewed by:LACDate:6-Jan-21Updated:6-Jan-21County:Los Angeles


	DMA 4						
f _{measured} =	0.727						
S.F. =	2	Safety Factor					
f _{design} =	0.36	infiltration rate, in/hr					
t =	72	max retention time (max 72 hrs), hr					
d _{max} =	2.18	maximum depth of water, ft					
$d_p =$	2.18	ponding depth, ft					
$<\!\!/=d_p =$	1.80	maximum allowable is 0.5 ft					
t(final) =	66	design drawdown time (based on max detention depth of 2 ft), hr					
SWQDv =	15915	cf					
A _s =	8842	required storage area, sf					
A _v =	8849	bioretention area provided, sf					

APPENDIX D

Preliminary Grading Plan

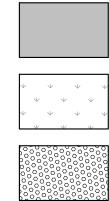
LEGEND



PROPERTY LINE CIVIL LIMITS OF WORK CENTERLINE EASEMENT LINE SETBACKS

GRADE BREAK

EXISTING SPOT ELEVATION


PROPOSED SPOT ELEVATION PROPOSED FLOW (SLOPE AND DIRECTION)

STANDARD DUTY CONCRETE PAVEMENT

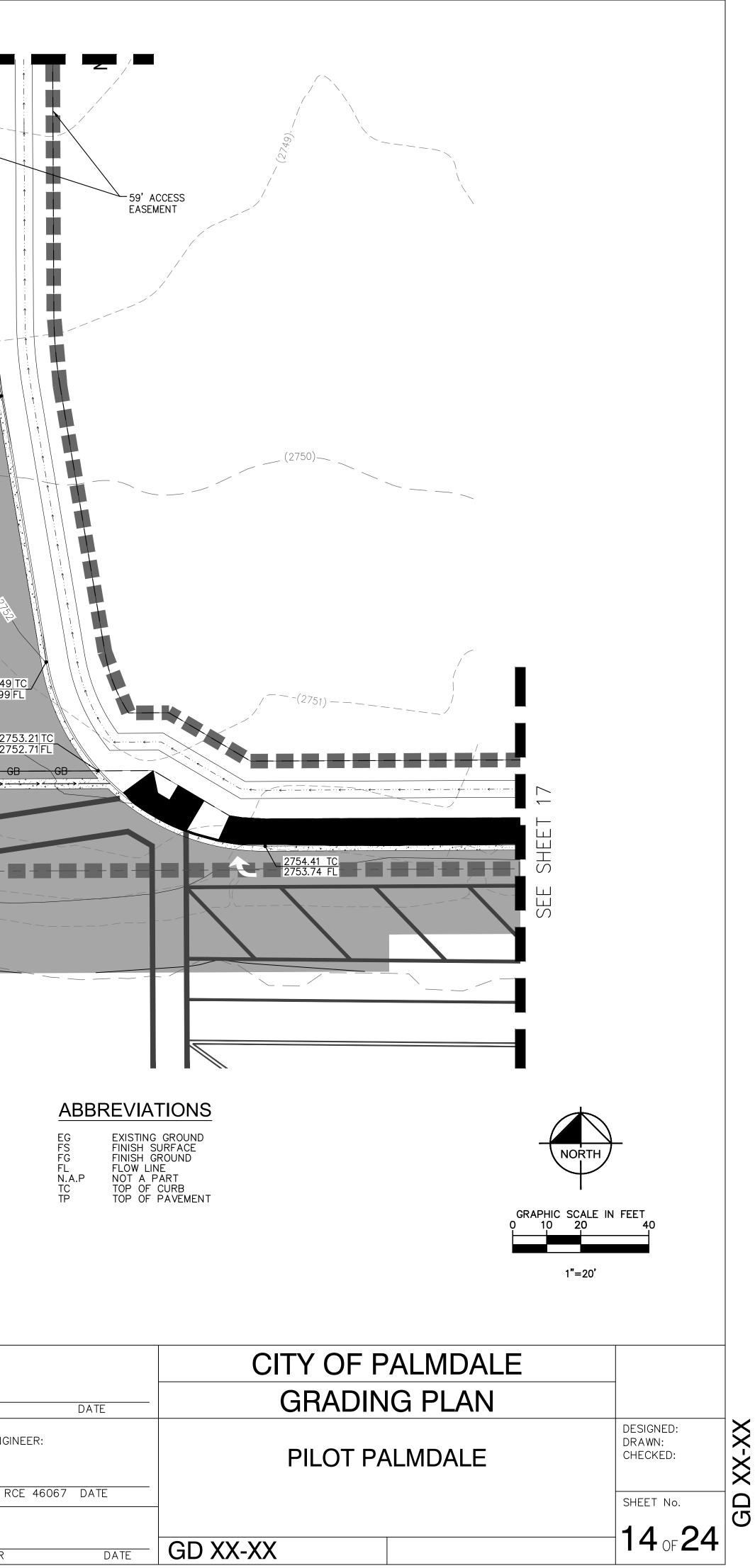
HEAVY DUTY CONCRETE PAVEMENT

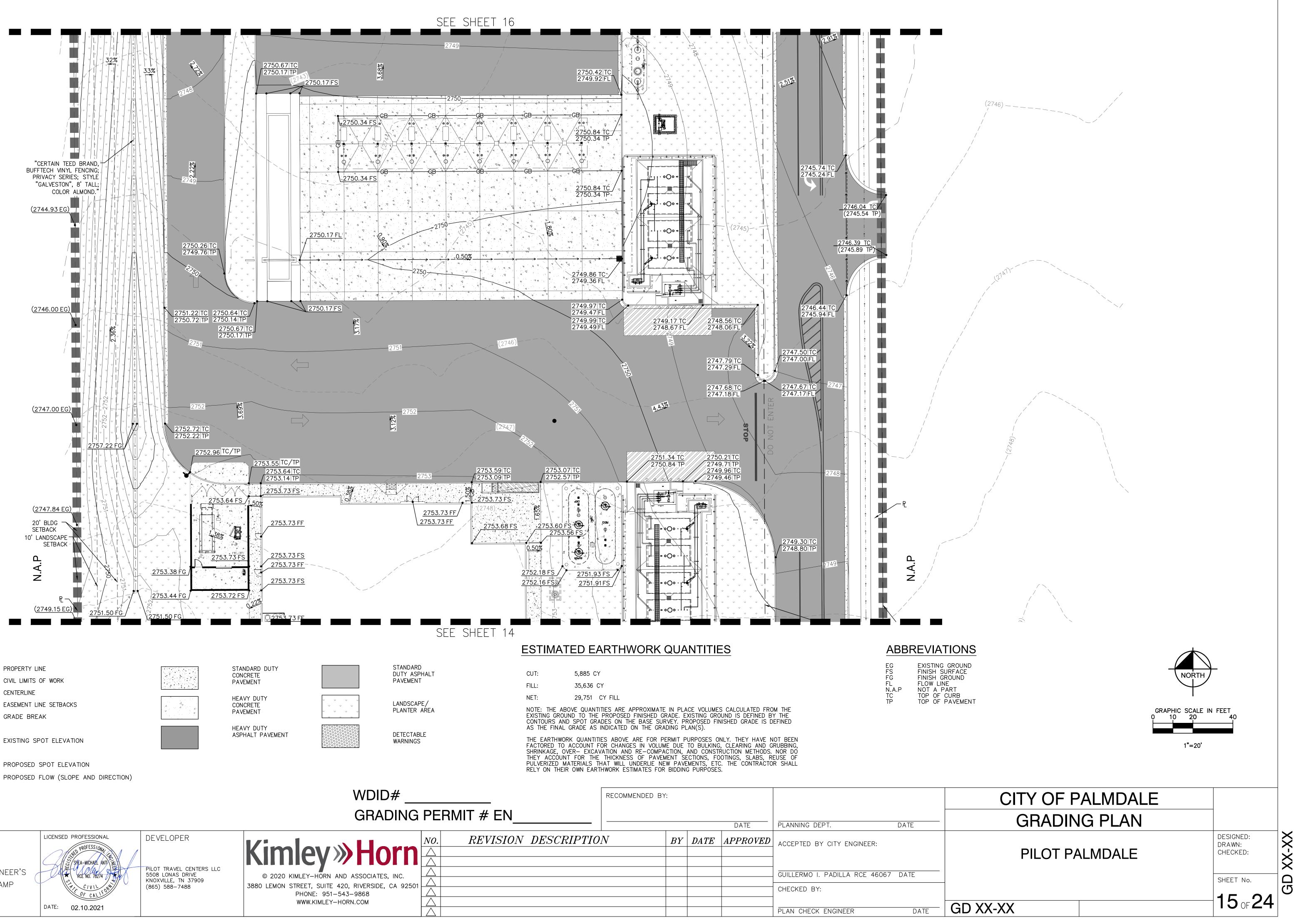
HEAVY DUTY ASPHALT PAVEMENT

SOILS ENGINEER'S SEAL/STAMP

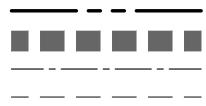
LICENSED PROFESSIONAL

DEVELOPER


PILOT TRAVEL CENTERS LLC 5508 LONAS DRIVE KNOXVILLE, TN 37909 (865) 588–7488

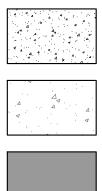


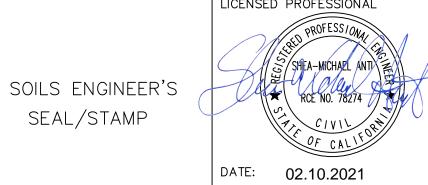
3880 LEMON STREET, SUITE 420, RIV PHONE: 951-543-986 WWW.KIMLEY-HORN.C

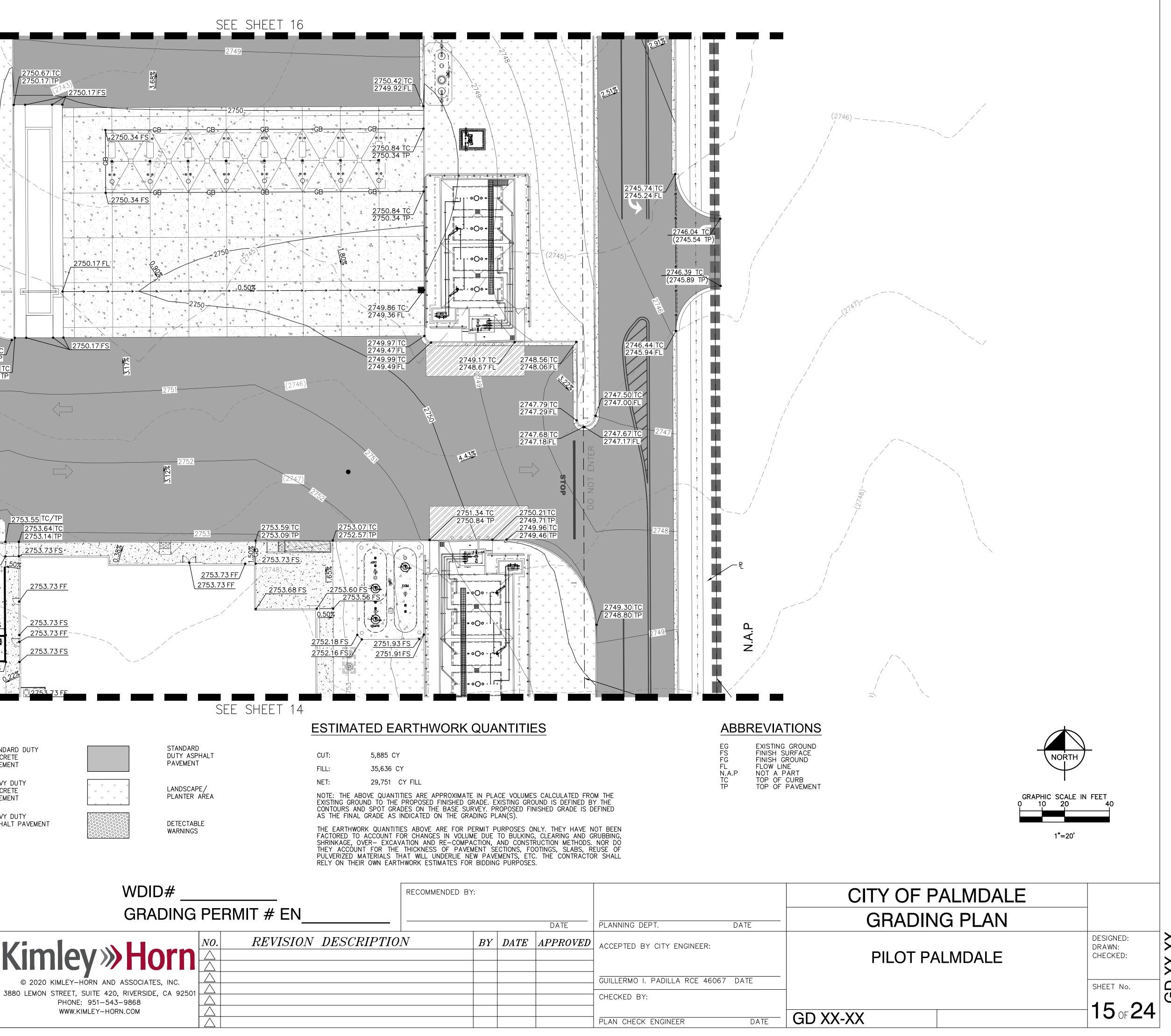

SEE SHEET 15					
2753.73 FF	2752.16 FS 2751.91 FS 2751.91 FS 2753.72 FF 2753.72 FF 2753.66 FS 2752.33 F	• • • • • • • • • • • • • • • • • • •		.23 FS 2751.	77 FS
2753.73FS 2753.61FS 2753.58FS 2753.58FS 2 2 2 2 2 2 2 2 2 2 2 2 2	1.03% 2753.0013 2752.42 F 2753.57 FS. 1.83% 753.97 TC 2753.81.TC 0" C 753.97 TC 2753.81.TC 2752.3 753.47 TP 2753.31 TP 2752.7 753.64 TC 2753.05 TP 2752.7 753.54 TC 2752.71 2752.21 753.04 TP 2752.98 TP 1.09% 3.24 FL 2752.58 F	S CURB 32 TP 73 TC 23 TP TC FL	275: 275:	275 275 275 2751 2.69 TC 2.69 TC 2751 2.19 FL 2752 53.22 TC 2751	52.22 TC 51.72 FS 2751.03 TC 2750.53 TP dols dols dols dols 2.11 TC .61 TP 2750.87 FL 57 CURB .68 TP .22 TC .72 TP 2751.61 TC
51)		2753.17 TC 2752.67 FI 753.22 TC 753 72 TP 753 25 TC 752.87 TP 752.87 TP	C has	2752.95 TC/FS	〒 2751.11FL TC
2753 2753.17 TC 2753.22 TC 2753.22 TC 2753.22 TC 2753.22 TC 2753.21 2752.72 TP 2753.39 2752.91 TP 2753.39 2752.91 TP 2753.39 2752.89 2752.89 2752.91 TP 2753.39 2752.89 2753.41 TC 2753.39 2752.89 2752.91 TP 2753.39 2752.89 2752.91 TP 2753.41 TC 2753.29 2752.91 TP 2752.91 TP 2752.91 TP 2753.39 2752.91 TP 2753.41 TC 2752.91 TP 2752.91 TP 2754	TC 2752 TC 2752 TC 2752 TC 2752 TC 2752 TC 2752	2752.73 T 2752.23 T 2.64 TC 2.14 FL 2.14 FL 2.74 TC 2.24 TP	<u>C</u> P 2755.00	2	2753.94 TC 2753.27 TP 2753.27 TP 2752.44 2751.99 2751.99 2754.32 TP 38 6B
DEDICATION 2755.43 FS 2755. 2755.33 TC 2754.66 TP	[→]	S FS 2 TC		<u>755.14 TC</u> 754.47 TP	(2752) 2754 (2753) (2754)
	PROVEMENTS)		———-(2756) — .	
STANDARD DUTY ASPHALT PAVEMENT LANDSCAPE/ PLANTER AREA DETECTABLE WARNINGS	ESTIMATED EARTHWORKCUT:5,885 CYFILL:35,636 CYNET:29,751 CY FILLNOTE: THE ABOVE QUANTITIES ARE APPROXIME EXISTING GROUND TO THE PROPOSED FINISHED CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE CONTOURS AND SPOT GRADES ON THE BASE AS THE FINAL GRADE AS INDICATED ON THE ON SHRINKAGE, OVER- EXCAVATION AND RE-CON THEY ACCOUNT FOR THE THICKNESS OF PA PULVERIZED MATERIALS THAT WILL UNDERLIE RELY ON THEIR OWN EARTHWORK ESTIMATES F	ATE IN PL GRADE. I SURVEY. P GRADING P PERMIT I LUME DUE IPACTION, VEMENT S	ACE VOLUME EXISTING GRO PROPOSED FI LAN(S). PURPOSES C TO BULKING AND CONST ECTIONS. FO	S CALCULATED FRO OUND IS DEFINED B NISHED GRADE IS D ONLY. THEY HAVE N G, CLEARING AND G RUCTION METHODS. DOTINGS. SLABS. R	Y THE EFINED IOT BEEN RUBBING, NOR DO EUSE OF
VDID# GRADING PERMIT # EN_	RECOMMENDED	BY:		DATE	PLANNING DEPT.
Horn SOCIATES, INC. VERSIDE, CA 92501 368 COM	N DESCRIPTION		DATE	APPROVED	ACCEPTED BY CITY ENG GUILLERMO I. PADILLA F CHECKED BY:
					PLAN CHECK ENGINEER

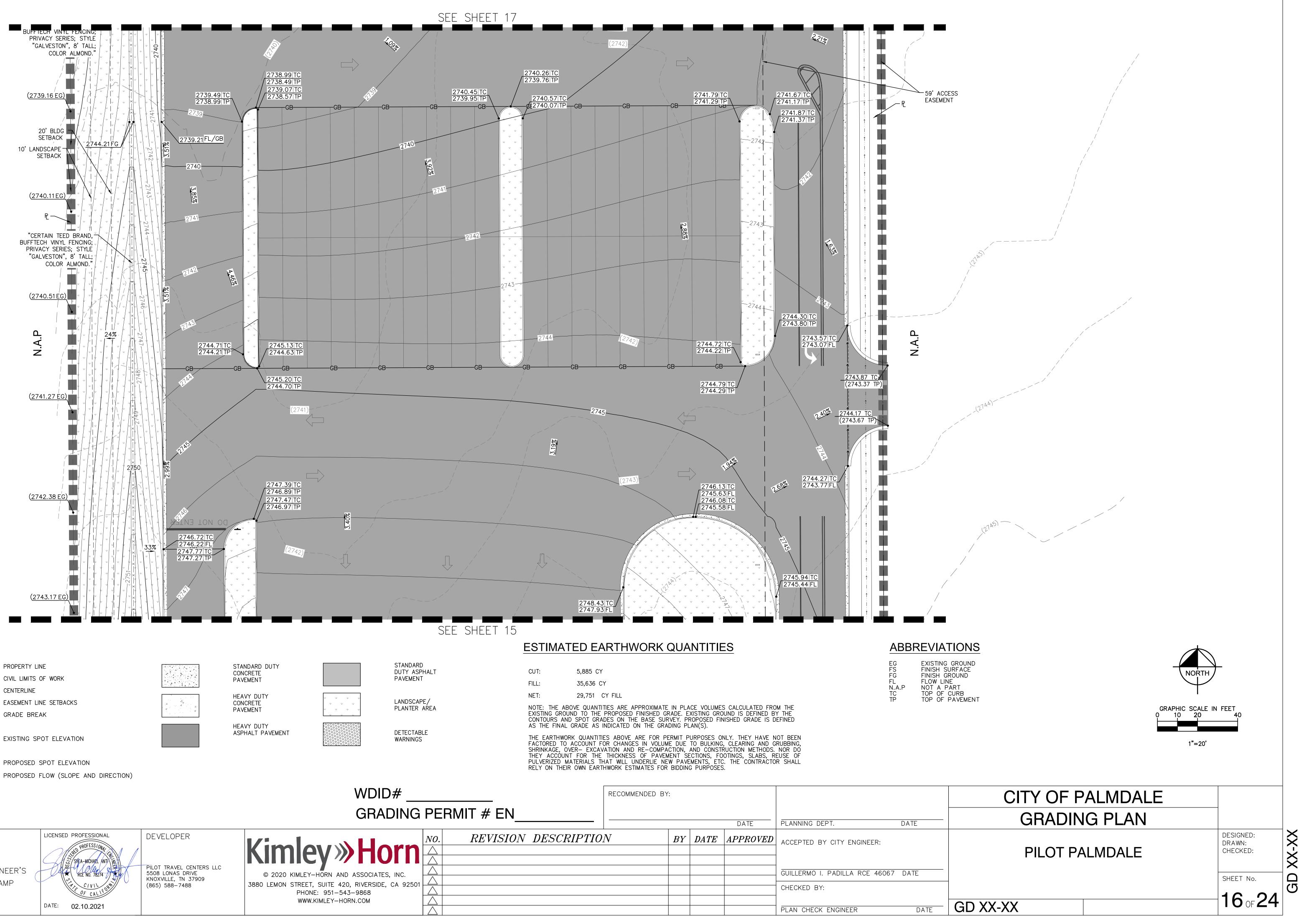
PLAN	CHECK	ENGINEER

LEGEND

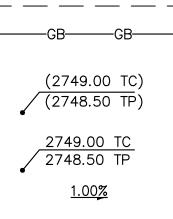



(2749.00 TC) (2748.50 TP) 2749.00 TC 2748.50 TP <u>1.00%</u>

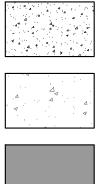

PROPERTY LINE CIVIL LIMITS OF WORK CENTERLINE EASEMENT LINE SETBACKS GRADE BREAK

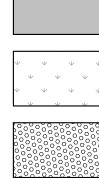

PROPOSED SPOT ELEVATION

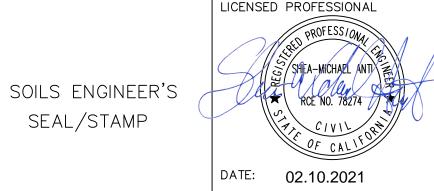
PROPOSED FLOW (SLOPE AND DIRECTION)

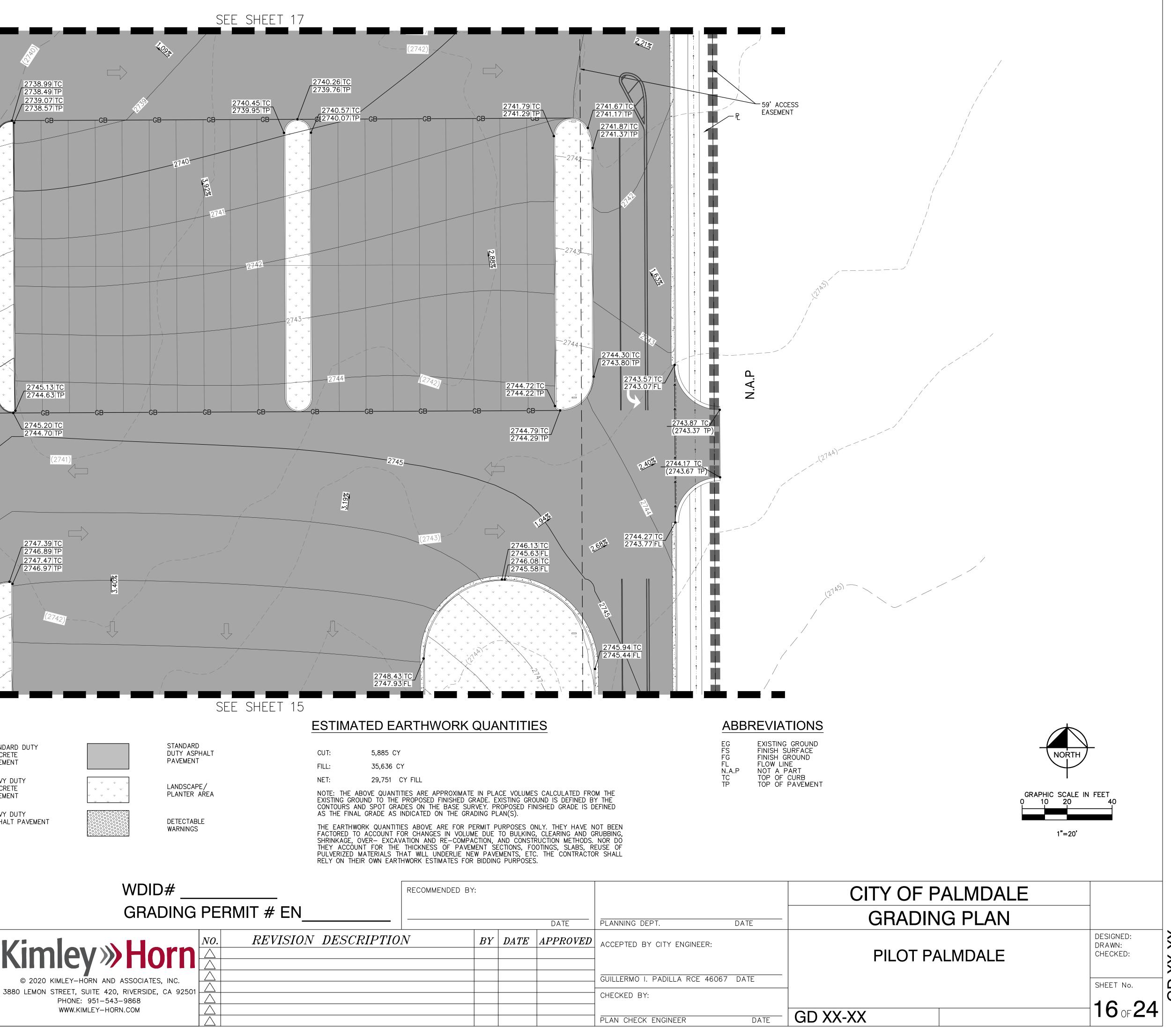


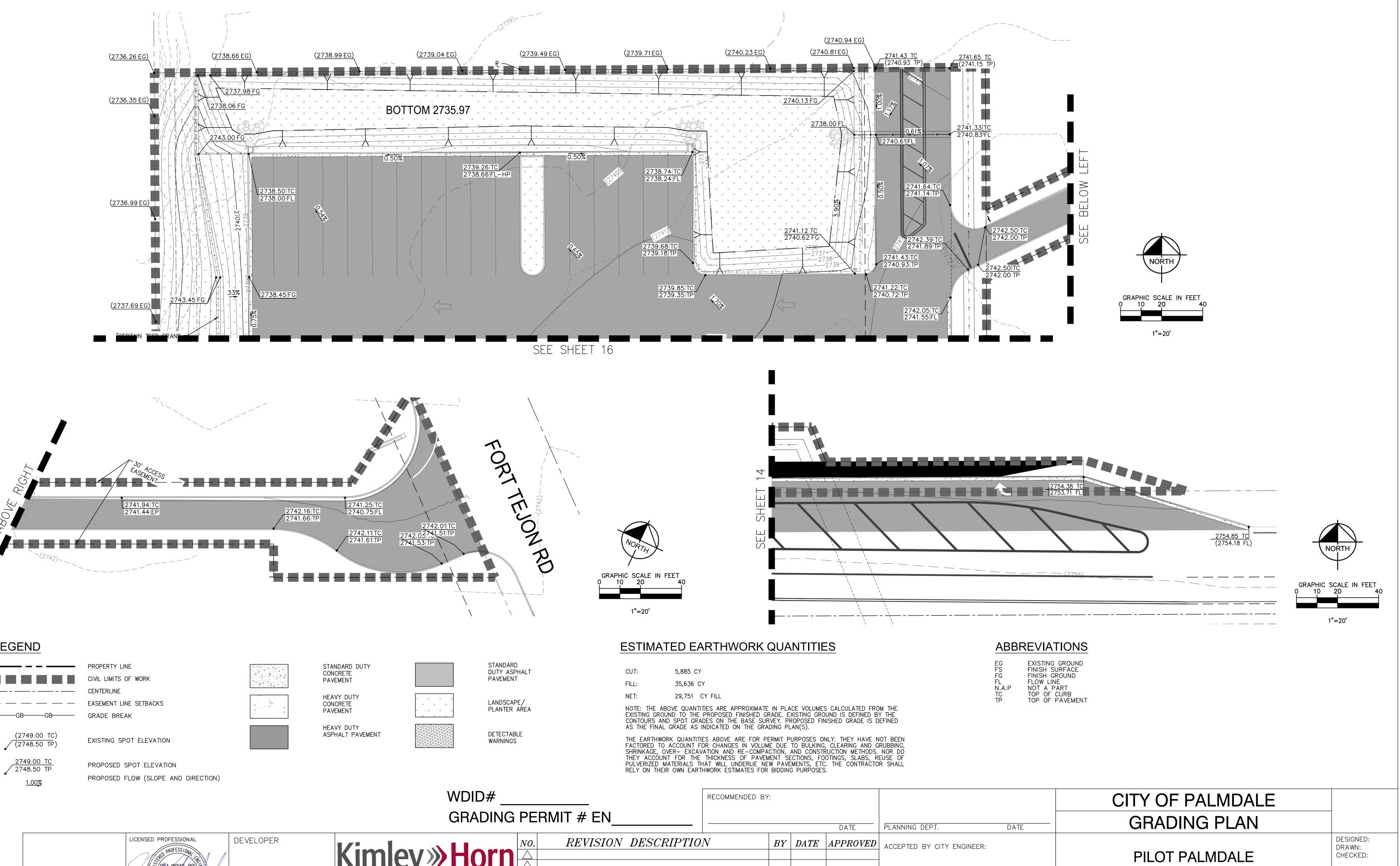
LEGEND

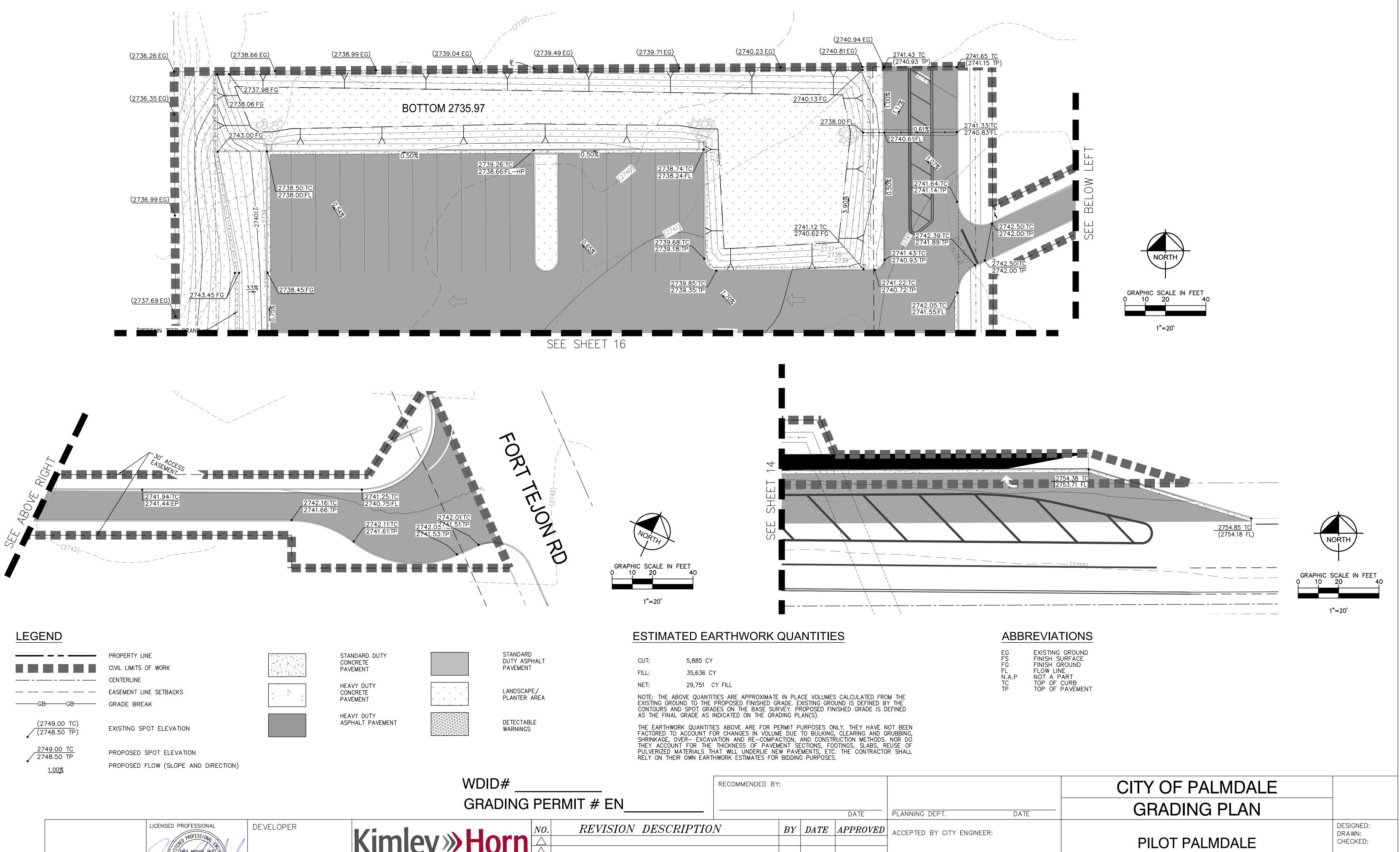


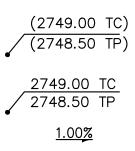


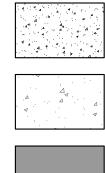

PROPERTY LINE CIVIL LIMITS OF WORK CENTERLINE EASEMENT LINE SETBACKS GRADE BREAK


EXISTING SPOT ELEVATION

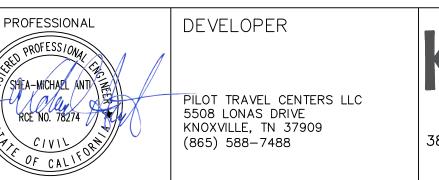

PROPOSED SPOT ELEVATION







DATE: 02.10.2021

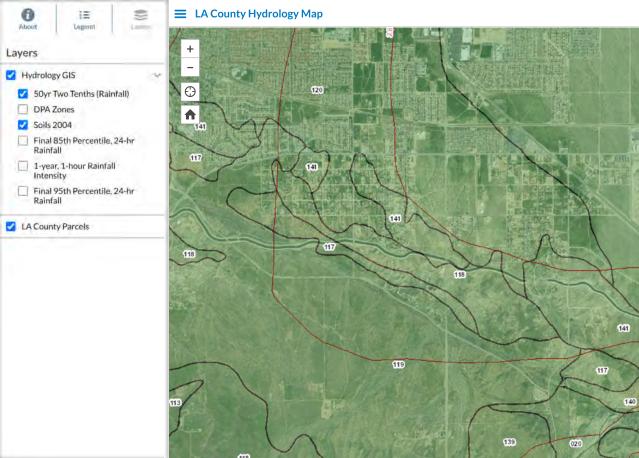


/

 Δ

 \wedge

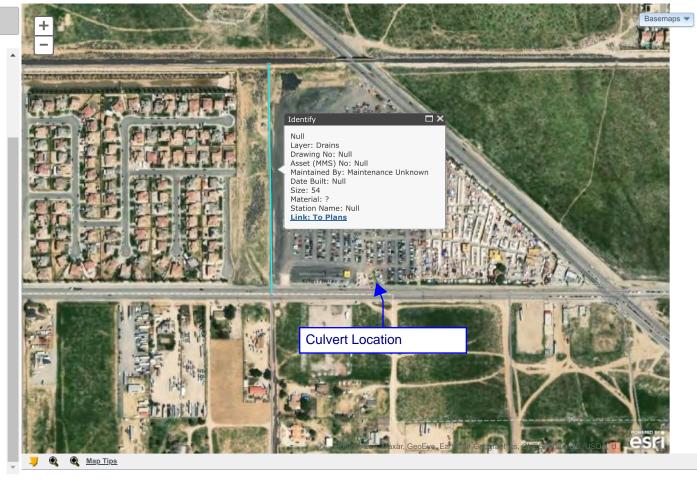
Kimle © 2020 KIMLEY-HORN AND ASSOCIATES, INC. 3880 LEMON STREET, SUITE 420, RIVERSIDE, CA 92501

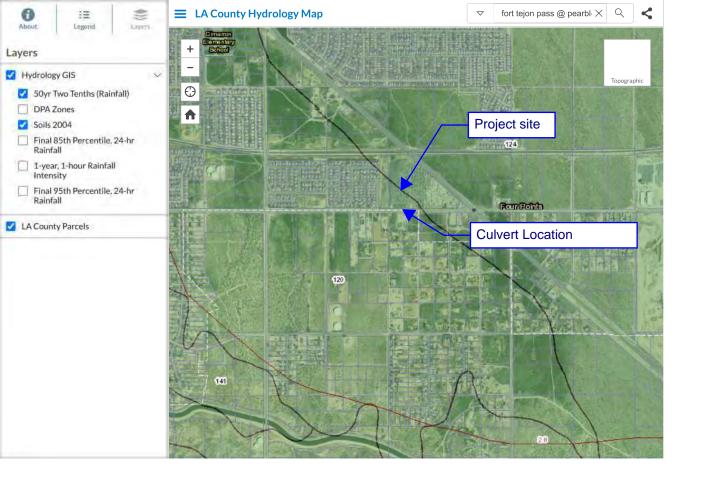

PHONE: 951-543-9868 WWW.KIMLEY-HORN.COM

SOILS ENGINEER'S SEAL/STAMP

LUSE OF R SHALL			
		CITY OF PALMDALE	
PLANNING DEPT.	DATE	GRADING PLAN	
ACCEPTED BY CITY ENGINEER:		PILOT PALMDALE	DESIGNED: DRAWN: CHECKED:
GUILLERMO I. PADILLA RCE 4606	57 DATE	-	SHEET No.
CHECKED BY:		GD XX-XX	17 _{0F} 24
PLAN CHECK ENGINEER	DATE	GD AA-AA	

Kimley»Horn APPENDIX E


References


雅 Public Works

Los Angeles County Storm Drain System File Geodatabase Download

Search	Layers	Info						
- Mainta - Mainta - Mainte	Maintained by LAOF OD Maintained by Caltrans Maintenance Unknown Maintained by Army Corp							
 Maintai Maintai Maintai Maintai 	 Catch Basins Maintained by LACFCD Maintained by City Maintained by Road Maintained by Caltrans Maintenance Unknown 							
Maintai	ce Holes ined by LACFCE ined by City nance Unknown)						
- Mainta - Mainta - Mainta - Mainta - Mainta	ained by LACFC ained by City ained by Road ained by Metro/F ained by Private, ained by Caltran enance Unknown	Parks & Red Permittee/ s						
👄 Maintai 븢 Maintai	tfalls (CUA)							
□ Inlets/Outlets ▶ Inlets ▷ Outlets								
⊠ Maintai □ ● Flood R	ined by LACFCE ined by City tight of Way Map Maintenance Dis	os	dary					
Emband								

search our site..

NOAA Atlas 14, Volume 6, Version 2 Location name: Palmdale, California, USA* Latitude: 34.5427°, Longitude: -118.031° Elevation: 2757.61 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

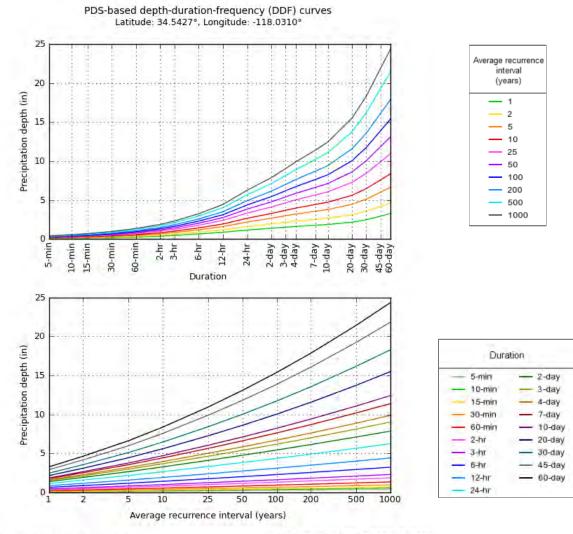
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.069 (0.057-0.084)	0.097 (0.081-0.119)	0.135 (0.111-0.165)	0.166 (0.136-0.204)	0.208 (0.165-0.266)	0.241 (0.187-0.315)	0.275 (0.208-0.368)	0.311 (0.228-0.428)	0.359 (0.253-0.515)	0.397 (0.270-0.590)
10-min	0.099 (0.082-0.121)	0.139 (0.115-0.170)	0.193 (0.159-0.236)	0.237 (0.194-0.293)	0.298 (0.236-0.381)	0.346 (0.268-0.451)	0.395 (0.298-0.528)	0.446 (0.327-0.613)	0.515 (0.362-0.739)	0.569 (0.386-0.845)
15-min	0.120 (0.099-0.146)	0.169 (0.140-0.206)	0.234 (0.193-0.286)	0.287 (0.235-0.354)	0.361 (0.286-0.460)	0.418 (0.324-0.545)	0.477 (0.361-0.638)	0.539 (0.396-0.741)	0.623 (0.438-0.893)	0.688 (0.467-1.02)
30-min	0.168 (0.140-0.205)	0.237 (0.196-0.289)	0.328 (0.271-0.401)	0.403 (0.330-0.497)	0.507 (0.401-0.646)	0.587 (0.455-0.766)	0.670 (0.507-0.896)	0.756 (0.555-1.04)	0.874 (0.615-1.25)	0.965 (0.656-1.44)
60-min	0.236 (0.195-0.287)	0.332 (0.275-0.404)	0.459 (0.379-0.562)	0.564 (0.462-0.696)	0.709 (0.562-0.905)	0.823 (0.637-1.07)	0.939 (0.710-1.25)	1.06 (0.778-1.46)	1.22 (0.862-1.76)	1.35 (0.919-2.01)
2-hr	0.358 (0.297-0.436)	0.490 (0.406-0.598)	0.666 (0.550-0.814)	0.810 (0.663-0.999)	1.01 (0.798-1.29)	1.16 (0.900-1.52)	1.32 (0.997-1.76)	1.48 (1.09-2.04)	1.71 (1.20-2.45)	1.88 (1.28-2.79)
3-hr	0.455 (0.377-0.554)	0.617 (0.511-0.753)	0.832 (0.687-1.02)	1.01 (0.825-1.24)	1.25 (0.989-1.60)	1.44 (1.11-1.87)	1.63 (1.23-2.18)	1.83 (1.34-2.52)	2.10 (1.48-3.01)	2.31 (1.57-3.43)
6-hr	0.654 (0.542-0.796)	0.881 (0.730-1.07)	1.18 (0.975-1.44)	1.43 (1.17-1.76)	1.76 (1.40-2.25)	2.03 (1.57-2.64)	2.29 (1.73-3.06)	2.57 (1.89-3.53)	2.95 (2.07-4.23)	3.24 (2.20-4.81)
12-hr	0.864 (0.716-1.05)	1.18 (0.973-1.43)	1.59 (1.31-1.94)	1.92 (1.58-2.37)	2.39 (1.89-3.05)	2.75 (2.13-3.58)	3.12 (2.35-4.16)	3.50 (2.57-4.81)	4.02 (2.83-5.77)	4.42 (3.01-6.58)
24-hr	1.15 (1.02-1.33)	1.59 (1.41-1.84)	2.18 (1.92-2.52)	2.66 (2.33-3.10)	3.32 (2.81-4.00)	3.84 (3.18-4.72)	4.36 (3.53-5.50)	4.91 (3.87-6.37)	5.67 (4.28-7.66)	6.26 (4.56-8.75)
2-day	1.38 (1.22-1.59)	1.93 (1.71-2.23)	2.67 (2.36-3.08)	3.28 (2.87-3.82)	4.11 (3.48-4.95)	4.77 (3.96-5.86)	5.44 (4.41-6.86)	6.14 (4.84-7.96)	7.11 (5.37-9.61)	7.87 (5.74-11.0)
3-day	1.52 (1.35-1.75)	2.14 (1.90-2.47)	2.99 (2.64-3.45)	3.68 (3.23-4.29)	4.65 (3.94-5.60)	5.40 (4.48-6.65)	6.19 (5.01-7.80)	7.00 (5.51-9.08)	8.14 (6.15-11.0)	9.03 (6.59-12.6)
4-day	1.61 (1.43-1.86)	2.29 (2.02-2.63)	3.20 (2.83-3.70)	3.96 (3.47-4.61)	5.02 (4.25-6.04)	5.85 (4.85-7.19)	6.71 (5.43-8.46)	7.62 (6.00-9.88)	8.88 (6.71-12.0)	9.88 (7.21-13.8)
7-day	1.77 (1.57-2.03)	2.52 (2.23-2.91)	3.56 (3.14-4.11)	4.43 (3.88-5.16)	5.65 (4.79-6.80)	6.62 (5.49-8.14)	7.63 (6.18-9.61)	8.70 (6.85-11.3)	10.2 (7.70-13.8)	11.4 (8.31-15.9)
10-day	1.86 (1.65-2.14)	2.67 (2.36-3.07)	3.78 (3.34-4.36)	4.72 (4.13-5.49)	6.05 (5.12-7.29)	7.11 (5.90-8.75)	8.23 (6.66-10.4)	9.41 (7.41-12.2)	11.1 (8.37-15.0)	12.4 (9.06-17.4)
20-day	2.15 (1.91-2.48)	3.11 (2.75-3.58)	4.45 (3.93-5.14)	5.60 (4.91-6.53)	7.26 (6.15-8.75)	8.61 (7.14-10.6)	10.0 (8.12-12.6)	11.6 (9.11-15.0)	13.7 (10.4-18.6)	15.5 (11.3-21.7)
30-day	2.47 (2.19-2.84)	3.56 (3.16-4.11)	5.12 (4.52-5.91)	6.46 (5.66-7.53)	8.42 (7.13-10.1)	10.0 (8.31-12.3)	11.7 (9.49-14.8)	13.6 (10.7-17.6)	16.2 (12.2-21.9)	18.3 (13.4-25.6)
45-day	2.92 (2.59-3.36)	4.18 (3.70-4.82)	5.99 (5.29-6.92)	7.57 (6.63-8.82)	9.89 (8.38-11.9)	11.8 (9.80-14.5)	13.9 (11.2-17.5)	16.1 (12.7-20.8)	19.2 (14.5-26.0)	21.8 (15.9-30.5)
60-day	3.28 (2.90-3.77)	4.65 (4.12-5.36)	6.63 (5.86-7.66)	8.37 (7.34-9.76)	10.9 (9.27-13.2)	13.1 (10.9-16.1)	15.4 (12.4-19.4)	17.9 (14.1-23.1)	21.4 (16.2-29.0)	24.4 (17.8-34.1)

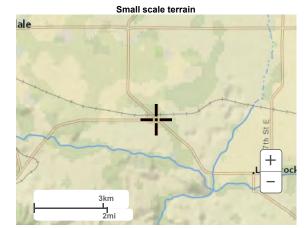

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical



NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Tue Jan 12 02:02:49 2021

Back to Top

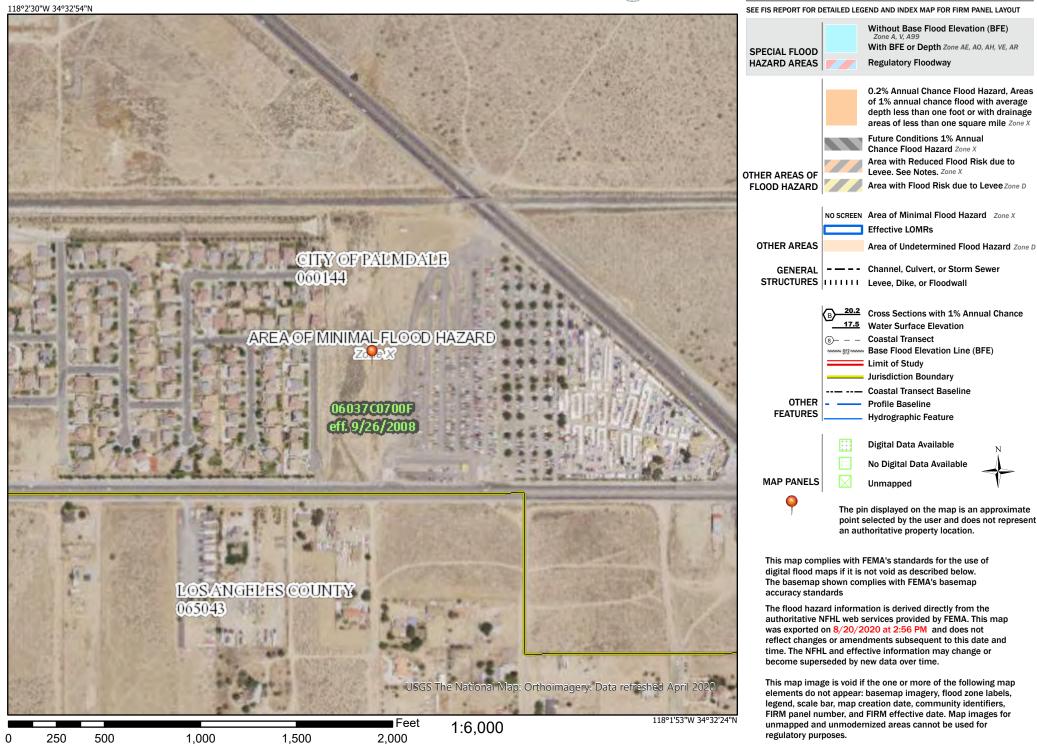
Maps & aerials

Large scale terrain

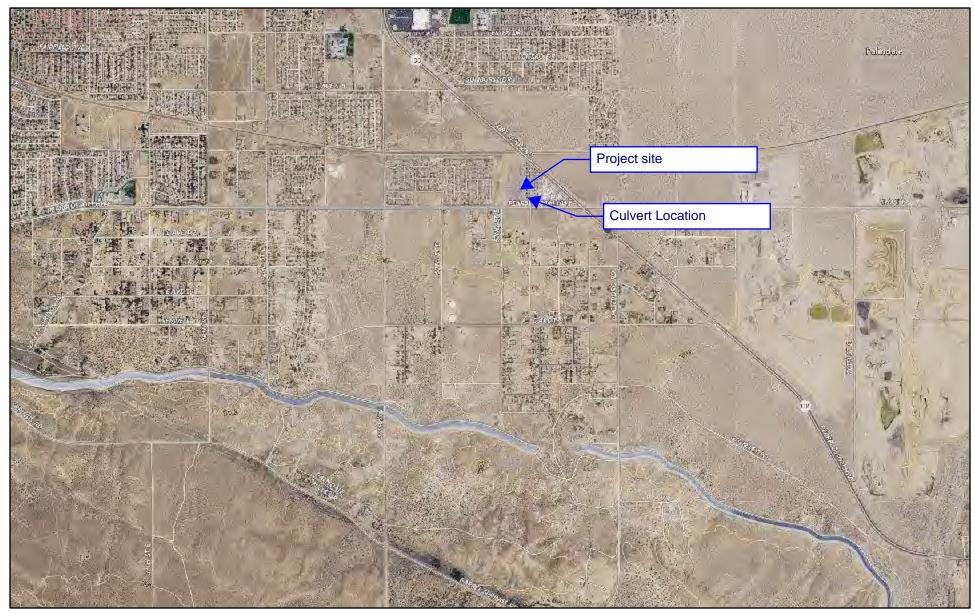
Large scale map

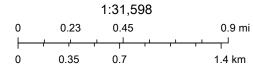
Large scale aerial

Back to Top


US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

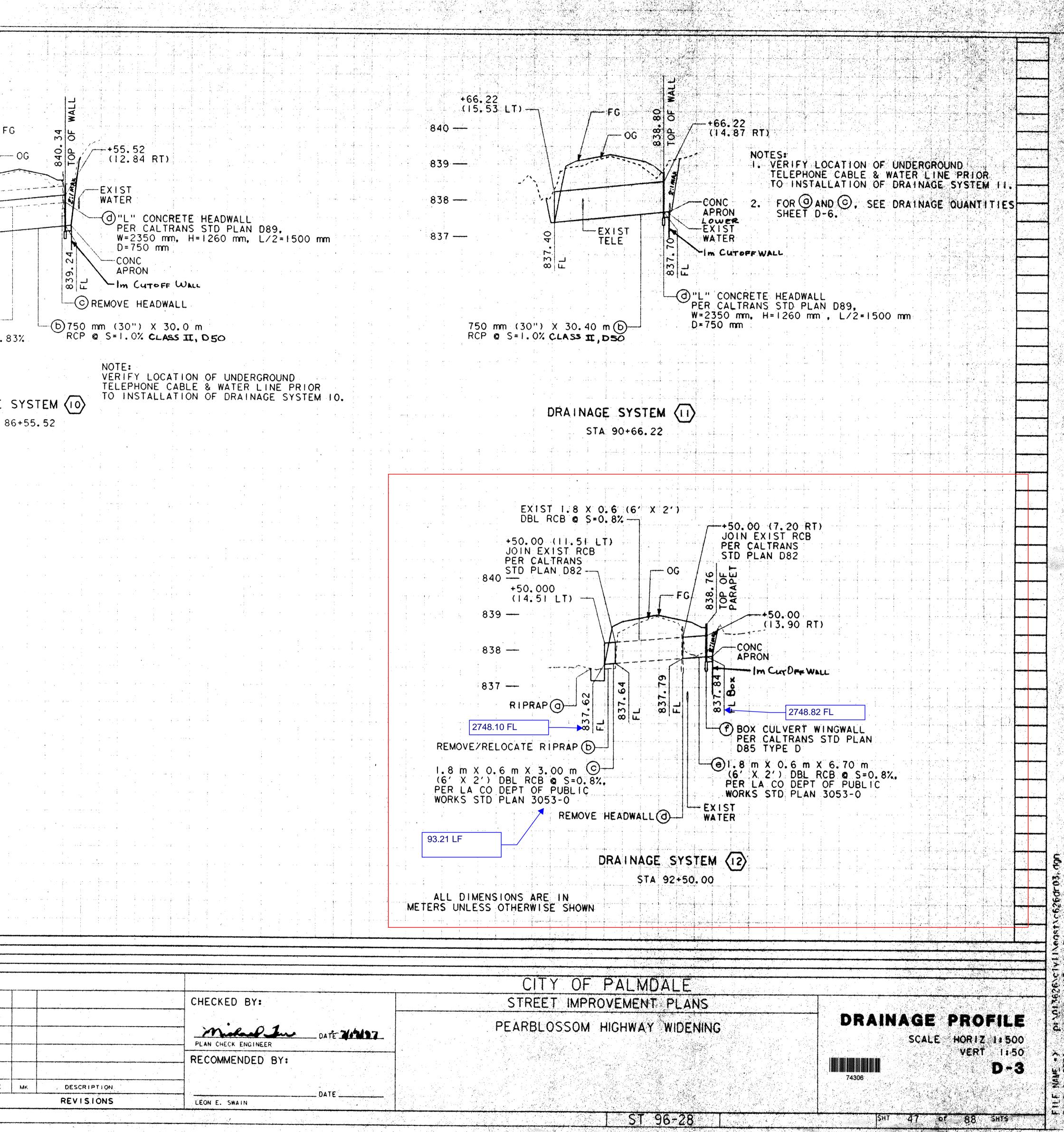
Disclaimer

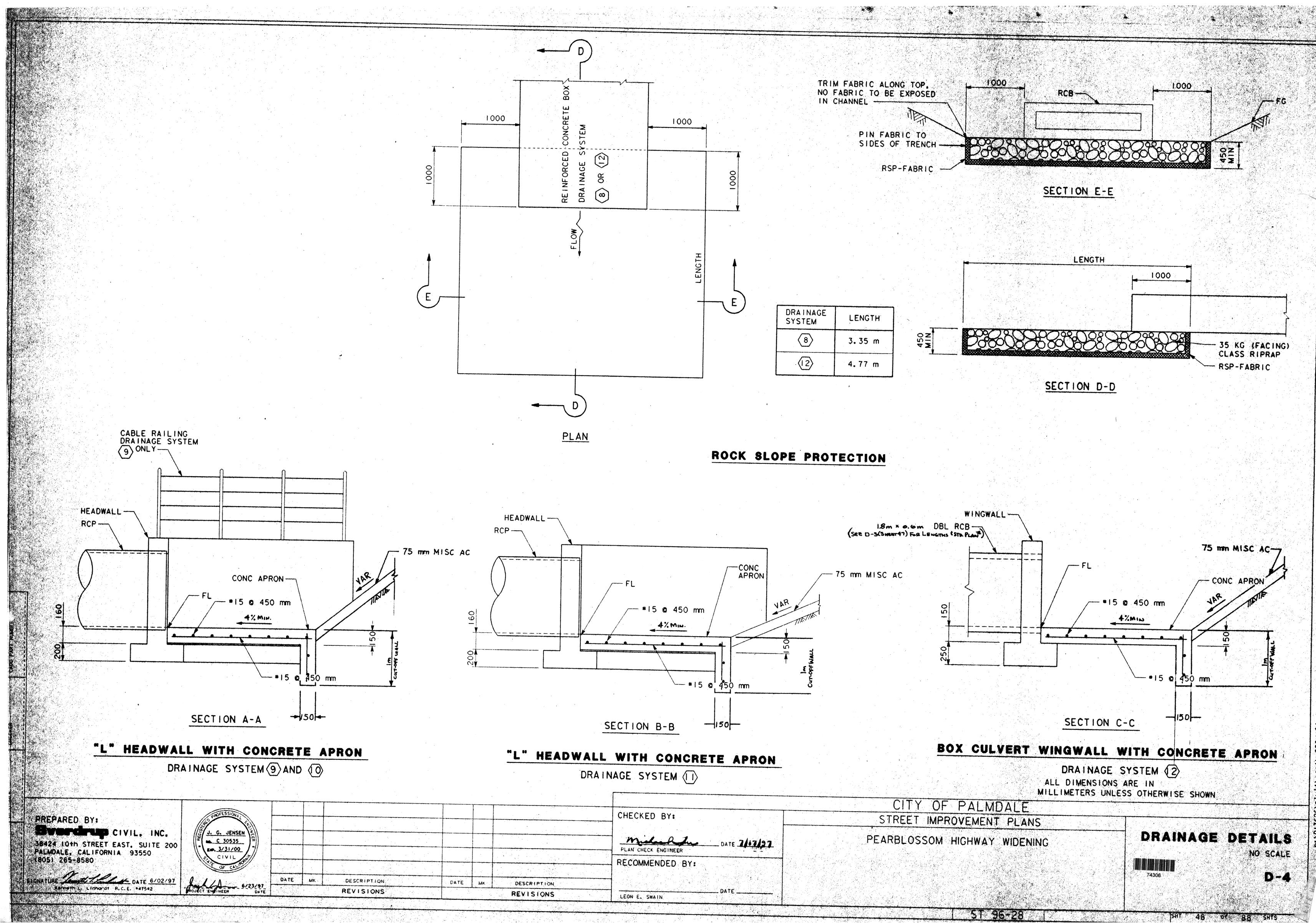

National Flood Hazard Layer FIRMette



Legend

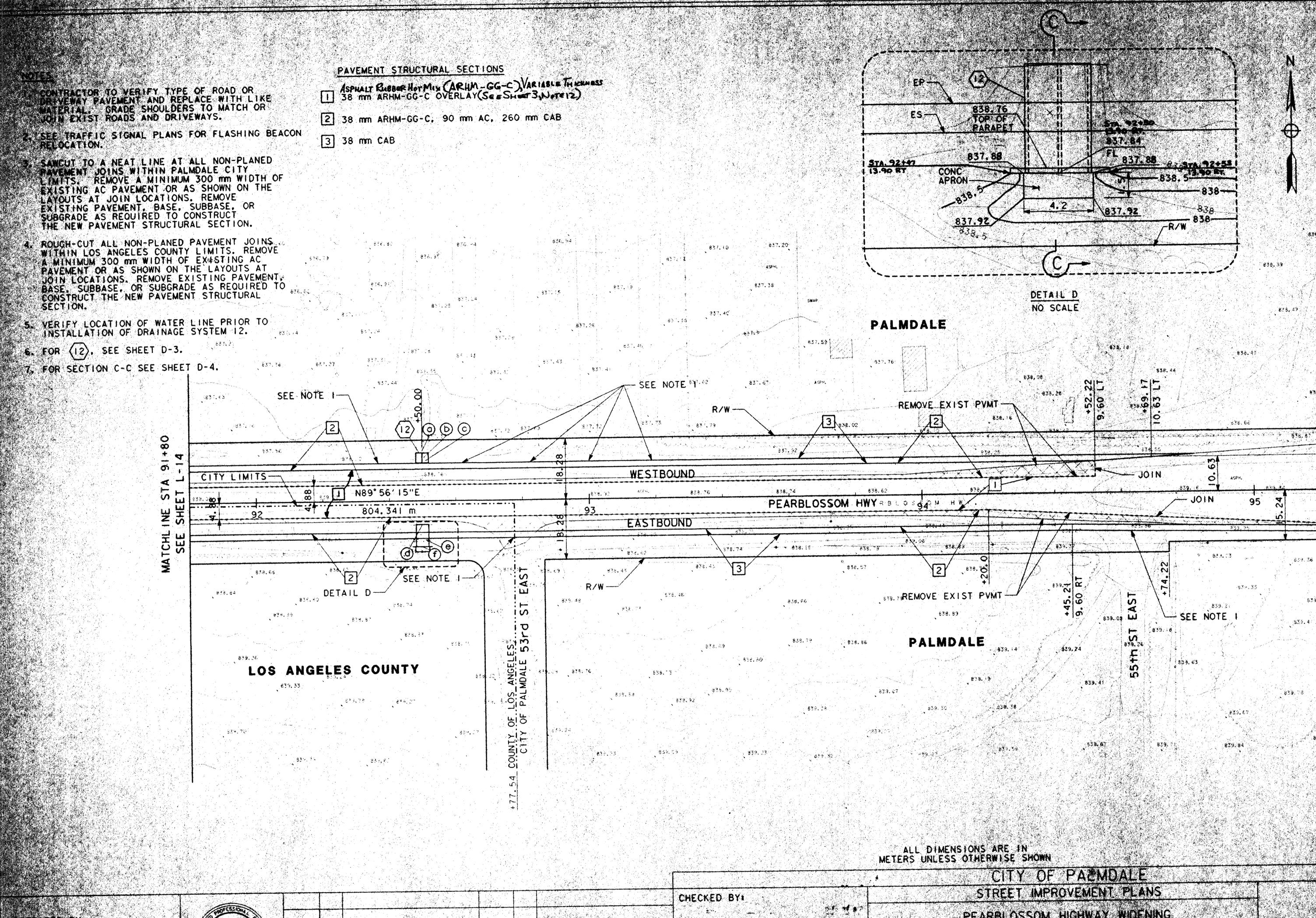
The National Map Advanced Viewer

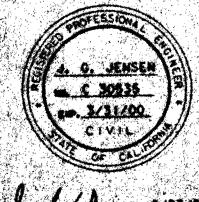



USGS The National Map: Orthoimagery and US Topo. Data refreshed

8/20/2020, 11:03:29 AM

					+66 22
					+66.22 (15.53 LT)
		+55.52	-FG		840
		(17.16 LT) - (17.16 LT)	- OG 0 0 (12.84 RT)		
			∞ F (12.84 RT)		839 —
		840	EXIST		\mathcal{A}
		840	WATER		838 —
		839 —	O"L" CONCRETE HEADW PER CALTRANS STD P	ALL LAN D89,	
			W=2350 mm, H=1260 D=750 mm	mm, L/2=1500 mm	837 — 9
		838. 1 E	o CONC APRON		F 83
		の EXIST	M - Im (UTOEE WALL		
		TELE-	C REMOVE HEADWALL		
		REMOVE EXIST 762 mm (X 457 mm X 27.60 m	$\begin{array}{c} 0 \\ \hline \\ \hline \\ = 0.83\% \end{array} \qquad \begin{array}{c} \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		750 mm (30") X 3
	and a specific sequence of the second se The second sec	(30" X 18") CMPA @ S	=0.83% RCP @ S=1.0% CLASS II, D50		RCP @ S=1.0% CLA
			NOTE:		
			VERIFY LOCATION OF UN TELEPHONE CABLE & WAT	ER LINE PRIOR	
		DRAINA	GE SYSTEM (10) TO INSTALLATION OF DE	RAINAGE SYSTEM IO.	
	n 1987) 1999 - Marine Marine, and a state of the state 1999 - Marine Marine, and a state of the state		A 86+55.52		
					EXIST I. DBL RCB
		· · · · · · · · · ·			+50.00 (11
					JOIN EXIST PER CALTRA
					840 STD PLAN D
					+50.000 (14.51 LT
					839
					838 —
					RIPRAP ()-
					2748.10 FL
	NOTES:				REMOVE/RELOCATE RIPR
	I. UTILITY LOCATIONS SHOWN ARE API				1.8 m X 0.6 m X 3.00 (6' X 2') DBL RCB @ S
					PER LA CO DEPT OF PUB WORKS STD PLAN 3053-0
	2. ELEVATIONS OF CULVERTS MAY BE THE FIELD BY THE ENGINEER.	ADJUSTED TH			R
					93.21 LF
					ALL DIMENSIONS ARE IN
					ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE S
And Plan					
		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			
					CITY
PREPAR			CHECKEI	J DI:	STREET
Stran	J. G. JENSEN			Rad In DATE 7/19/97	PEARBLOSS
PALMOALE	CALIFORNIA 93550			ENGINEER	
(805) 26	5-8580			INVEV DII	
SIGNATURE	The Linhardt R.C.E. +47542 DATE DATE DATE		ATE MK DESCRIPTION	DATE	
	Th.L. Linhordt R.C.E. +47542 FROJECT ENGINEER DATE	REVISIONS	REVISIONS LEON E. SU	AIN CONTRACTOR AND A CONT	


e Pal		. CAL	IFOR		93550	
	EPARI			10	1L. 1 . sui1	
				1999 - 1999 -	, , , , , , , , , , , , , , , , , , ,	
				19		
					· · · · · · · · · · · · · · · · · · ·	· · ·
					2. ELI THI	EV E
					I. UT	IL
				5 • • • •	NOTES	
				: • • • • • • • • •		÷
				· · · · · · · · · · · · · · · · · · ·		•
				- 		


 				CITY
 		CHECKED BY:		STREET
			an a	
		PLAN CHECK ENGINEER DATE 7/17/97		PEARBLOSS
•				
		RECOMMENDED BY:		
МК	DESCRIPTION			
 	REVISIONS	LEON E. SWAIN		
 			▲·马拉山市 - 2011年夏天 - 3回10年夏秋時間報報報報報報	그는 방법에서 동안소에는 물건을 가지가 하는

51 96728 SHT 48 61 88 SHS

CIVIL. INC. ADM STREET EAST. SUITE 200

DATE 6/02/91

DATE	M K	DESCRIPTION	DATE
		REVISIONS	

		CITY
	CHECKED BY	STREET
		PEARBLOSS
	PLAN CHECK ENGINEER	STA 91+
	RECOMMENDED BY	
MK DESCRIPTION REVISIONS	LEON E. SWAIN	

O N Ó S **O** finina. 5 E R E E E E E E S **TCHL** SEE MA

SOM HIGHWAY WIDENING. +80 TO STA 95+20

San Daviele