WASTEWATER FEASIBILITY STUDY

E & C Winery

Rockville Road and Russell Road Fairfield, CA 94534 APNs: 027-251-280 and 027-251-290

4-19-09

CIVIL STRUCTURAL ELECTRICAL WATER WASTEWATER PLANNING

Project No. 2017071 September 2019

SUMMIT ENGINEERING, INC. Project No. 2017071

UTILITIES/SERVICE SYSTEMS

WATER SUPPLY

Domestic water for the E & C Winery will be served by a new on-site well permitted by Solano County. The well will supply water to a Public Water System for the winery, permitted by the State. Initially, irrigation water will be supplied by a combination of existing entitlements from the Suisun-Solano Water Authority/Solano Irrigation District (SID) and the existing onsite well located on parcel 027-251-280. As production increases, treated process wastewater (PW) will also be used for onsite irrigation.

DOMESTIC WASTEWATER

Domestic wastewater will be generated from employees, tasting visitors, and event guests. Based on the flow summary contained in Enclosure A, peak sanitary sewage flows are anticipated to be 7,415 gallons per day (GPD) for Phase 1, 7,815 GPD for Phase 2, and 8,775 GPD for Phase 3. A new on-site wastewater treatment system (OWTS) will be installed to treat all sanitary sewage flows from the proposed project. Based on the recent soils evaluation conducted on October 10, 2018, suitable soils exist for a pretreatment and subsurface drip type system (refer to the Use Permit drawings for proposed location of primary disposal and reserve areas).

Domestic wastewater will be collected from restrooms and other areas within the facility, conveyed to a central collection point, and then treated on site. The location of the domestic wastewater treatment system will be determined during the design phase. The primary system will include septic tanks with effluent filters, pump tanks, a pretreatment system (e.g. Advantex recirculating filters), a dosing tank, and a subsurface disposal field utilizing drip tubing.

A Site Soil Evaluation was conducted on October 9, 2018 with Registered Environmental Health Specialist Jeffrey Bell of Solano County and confirmed predominantly sandy clay loam with weak to moderate structure in the proposed sewage disposal area. A soil sample was collected, and hydrometer test performed to confirm the field texturing (laboratory results in Enclosure A). Percolation testing was not conducted, as sandy clay loam is approved for onsite wastewater disposal in Solano County with an assigned soil application rate of 0.417 gallons per square foot per day (gal/SF/day). A soil application rate of 0.417 gallons/square foot/day requires primary disposal areas by phase as summarized in Table 1. Additional area will be designated as septic system reserve area for each phase of the project.

Parameter	Phase 1	Phase 2	Phase 3
Primary Disposal Area (SF)	18,000	19,000	22,000
Additional Reserve Area (SF)	36,000	38,000	44,000
Total Area (SF)	54,000	57,000	66,000

Table 1: Summary of total domestic wastewater disposal area, in square feet (SF), required by project phase.

Note: Disposal area totals are cumulative for each phase.

SUMMIT ENGINEERING, INC. Project No. 2017071

PROCESS WASTEWATER

The winery intends to utilize either onsite treatment ponds or an alternate package treatment system to treat PW. The treated effluent will be reclaimed onsite for irrigation of vineyards, orchards and/or landscape planting. The PW treatment system will be developed on the west side of the property.

Estimated peak daily and annual PW flows by phase are summarized in Table 2. Complete PW flow calculations and flow summary are included in Enclosure B.

Parameter	Phase 1	Phase 2	Phase 3
Annual Production, GPY	125,000	500,000	2,000,000
Peak Daily PW Flow, GPD	4,100	16,400	43,750
Annual PW Flow, GPY	750,000	3,000,000	8,000,000

Table 2: Summary of estimated PW flows by phase.

Based on the system PW flows and typical winery wastewater characteristics, the required footprint of the treatment system and the effluent storage tank was approximated. A pond water balance for the ultimate buildout was performed to determine preliminary sizing of a pond treatment system (see attached PW Aeration Requirements Worksheet). The balance shows approximately 3.5 acres of PW treatment ponds and effluent storage, and a minimum of 10 acres of vineyards for are required for PW treatment and irrigation disposal. Utilization of a package treatment system in-lieu of treatment ponds will drastically reduce the required footprint for PW treatment. Alternately, the PW flows from Phase 1 could be disposed of in a sub-surface leachfield following percolation testing and approval by Solano County Environmental Health.

SOLIDS MANAGEMENT

Solid waste (pomace) from the wine fermentation and pressing operations will be stockpiled and disked into the vineyard areas as a soil amendment or hauled offsite for disposal.

ODOR MANAGEMENT

The elements of the PW treatment system will be designed and operated to avoid odor problems. Pump and equalization tanks will contain vents, as necessary, and if odor problems occur due to venting, carbon filters can be added. Within the selected PW treatment system, controls will be included to maintain dissolved oxygen concentrations at a level to prevent odor generation. A tank will be used to store the treated effluent prior to irrigation disposal and can likewise be fitted with a carbon filter on the vent to control odors, or aeration equipment, if necessary. If ponds are used instead of a package treatment system, the facultative nature of the ponds will minimize the potential for nuisance odors. Aeration of the ponds can be increased if necessary to elevate the oxygen content and reduce odors. In either case, the treated effluent should have low biochemical oxygen demand (BOD) concentration in the effluent, and due to the lack of organic substrate, is expected to have limited or no odor generating potential.

SUMMIT ENGINEERING, INC. Project No. 2017071

. . .

ENCLOSURE A - DOMESTIC WASTEWATER CALCULATIONS & SITE EVALUTATION DATA

and the second second

SUMMI	Т	РНА	E & C V SE 1 SANITARY SEV			PROJECT NO. BY: CHK:	201707: SW GC
PHASE 1 DOMESTIC WAST	EWATER FLOW Number of People	S - Peak V	<mark>/isitation Day with</mark> Wastewater Generation (GPD)	out Spe	<mark>cial Event/Wedding</mark> Total Wastewater Flow (GPD)		
Employees (Production)	20	@	20	=	400		
Employees (Hospitality)	62	@	20	=	1,240	1	
Visitors ¹	800	@	3	=	2,400		
Visitors (with meal) ²	25	@	15	=	375	1	
Events ^{3,4}	100	@	15	=	1,500		
Total				=	5,915 GPD		
PHASE 1 DOMESTIC WAST	EWATER FLOW Number of People	S - Averag	ge Visitation Day w Wastewater Generation (GPD)	ith Spe	cial Event/Wedding Total Wastewater Flow (GPD)		
Employees (Production)	20	@	20		400	1997 - A.	
Employees (Hospitality)	62	@	20	=	1,240		
Visitors ¹	800	@	. 3	=	2,400		
Visitors (with meal) ²	25	@	15	=	375		
Events ⁶	100	@	15	=	1,500		
Special Events/Weddings⁵	100	@	15	=	1,500]	
Total				=	7,415 GPD	and the second second	And client devices

Notes:

1) Wine tasting visitors, no meals served

2) Food service will be catered with minimal preparation onsite until the commercial kitchen is developed.

3) Events with catered meals prepared offsite

4) Portable Toilets will supplement the disposal system for events over 100 people

5) Weddings with catered meals prepared offsite, wedding with more than 100 guests requires portable toilets

6) Events will not be held concurrently with special events/weddings

ANTICIPATED PHASE 1 SUBSURFACE DRIP SYSTEM SIZING

Parameter	Value	Units
Application Rate =	0.417	GPD/SF
Primary System Size =	18,000	SF
Reserve Area (200%) =	36,000	SF
Reserve Area (200%) = Total Area =	54,000	SF
	1.24	acre

SUMMI		РНА	E & C \ SE 2 SANITARY SE\			PROJECT NO. BY: CHK:
PHASE 2 DOMESTIC WAST	EWATER FLOW	S - Peak V	isitation Day with	out Spe	cial Event/Wedding	_
Category	Number of People		Wastewater Generation (GPD)		Total Wastewater Flow (GPD)	
Employees (Production)	40	@	20	=	800]
Employees (Hospitality)	62	@	20	=	1,240]
Visitors ¹	800	@	3	=	2,400]
Visitors (with meal) ²	25	@	15	=	375	1
Events ^{3,4}	100	@	15	=	1,500	1
Total				=	6,315 GPD	

15

15

15

=

=

=

=

375

1,500

1,500

7,815 GPD

Special Events/Weddings⁵ 100 Total

Notes:

Events⁶

Visitors (with meal)²

1) Wine tasting visitors, no meals served

2) Food service will be catered with minimal preparation onsite until the commercial kitchen is developed.

@

@

@

3) Events with catered meals prepared offsite

4) Portable Toilets will supplement the disposal system for events over 100 people

5) Weddings with catered meals prepared offsite, wedding with more than 250 guests requires portable toilets

6) Events will not be held concurrently with special events/weddings

25

100

ANTICIPATED PHASE 2 SUBSURFACE DRIP SYSTEM SIZING

Parameter	Value	Units
Application Rate =	0.417	GPD/SF
Primary System Size =	19,000	SF
Reserve Area (200%) =	38,000	SF
	57,000	SF
	1.31	acre

SUMMI	Т	РНА	E & C \ SE 3 SANITARY SE\	PROJECT NO. BY: CHK:	2017071 SW GG		
PHASE 3 DOMESTIC WAST	EWATER FLOW Number of People	S - Peak V	/isitation Day with Wastewater Generation (GPD)	out Spe	cial Event/Wedding Total Wastewater Flow (GPD)		
Employees (Production)	88	@	20	=	1,760		
Employees (Hospitality)	62	@	20	=	1,240		
Visitors ¹	800	@	3	=	2,400		
Visitors (with meal) ²	25	@	15	=	375		
Events ^{3,4}	100	@	15	=	1,500	1	
Total				=	7,275 GPD	1	
PHASE 3 DOMESTIC WAST Category	EWATER FLOW Number of People	S - Averag	ge Visitation Day w Wastewater Generation (GPD)	ith Spe	cial Event/Wedding Total Wastewater Flow (GPD)		
Employees (Production)	88	@	20	=	1,760		
Employees (Hospitality)	62	@	20	=	1,240]	
Visitors ¹	800	@	3	= '	2,400		
Visitors (with meal) ²	25	@	15	=	375]	
Events ⁶	100	@	15	=	1,500		
						-	

8,775 GPD

=

Notes:

Total

1) Wine tasting visitors, no meals served

2) Food service will be catered with minimal preparation onsite until the commercial kitchen is developed.

3) Events with catered meals prepared offsite

4) Portable Toilets will supplement the disposal system for events over 100 people

5) Weddings with catered meals prepared offsite, wedding with more than 250 guests requires portable toilets

6) Events will not be held concurrently with special events/weddings

ANTICIPATED PHASE 3 SUBSURFACE DRIP SYSTEM SIZING

Parameter	Value	Units
Application Rate =	0.417	GPD/SF
Primary System Size =	22,000	SF
Reserve Area (200%) =	44,000	SF
1.1	66,000	SF
-	1.52	acre

Profile	Horizon (in)	Bndy (in)	% Rock	Structure	Texture	Moisture/ Consistency	Roots	Porosity	Mottling	Sample	
SP-1	0-18	G	0-5	1M	SiCL	M-FRB	ЗF	2F	No		1
%	18-40	G	0	1W	SCL	M-F	2F	2F	No	25"	1
	40-60	С	0	1W	SL	M-F	1F	1VF	No		1
	Limiting Layer	->Stand	ing water at 6	0"							1
]
SP-2	0-20	G	0-5	1M	SiCL	M-FRB	ЗF	2F	No]
%	20-42	G	0	1W	SCL	M-F	2F	2F	No		1
	42-64	С	0	1W	SL	M-F	1F	1VF	No		1
	Limiting Layer	->Standi	ing water at 6	4"]
SP-3	0-21	G	0-5	1M	SICL	M-FRB	ЗF	2F	No		
%	21-45	G	0	1W	SCL	M-F	2F	2F	No		
	45-66	С	0	1W	SL	M-F	1F	1VF	No]
	Limiting Layer	->Standi	ng water at 6	6"							1
					1						1
SP-4	0-17	G	0-5	1 M	SiCL	M-FRB	3F	2F	No		1
%	17-26	G	0	1W	SCL	M-F	2F	2F	No		1
	26-56	С	0	1W	SL	M-F	1F	1VF	No		1
	Limiting Layer	->Standi	ng water at 5	6"]
SP-5	0-20	G	0-5	1M	SiCL	M-FRB	3F	2F	No		
%	20-29	G	0	1W	SCL	M-F	2F	2F	No		1
	29-52	С	0	1W	SL	M-F	1F	1VF	No]
	Limiting Layer	->Standi	ng water at 5	2"]
											1
											1
											1
											1
			2. S				(2)				1
						· · · · · · · · · · · · · · · · · · ·					
	nular, PI=Platy, Pr= .S=Loamy Sand, S	►W=We Prismatic, C M=M: L=Sandy Lo	assive, C=Ceme <u>Texture</u> am SCL=Sandy	S=Strong Angular Blocky, SB=S	Clay SiL=Silt Loam,	Moisture/Cons ►M=Moist. D ►L=Loose, VFRB=Very Fin F=Firm, VI=Very Firm, XI <u>Roots</u> ►0=None, 1=Few, 2=Cc ►F=Fine, M=Medium, C=Coa	D=Dry iable, FRB=Friable. F=Extremely Firm ommon, 3=Many	▶0=None, 1=F 3=≬ ▶VF=Very f M=Medium ▶0=None, P	osity ew, 2=Common, Many Fine, F=Fine, 1, C=Coarse =Poor, F=Fair, E=Excellent	Mottl ► 0=None, 1=Fer 3=Mi ► F=Faint, C P=Prom ► O=Oxidation R=Reduction (Gra	w, 2=Cor any D=Distinc ninent n (Reddis

Profile	Horizon (in)	Bndy (in)	% Rock	Structure	Texture	Moisture/ Consistency	Roots	Porosity	Mottling	Sample
SP-6	0-19	G	0-5	1M	SiCL	M-FRB	3F	2F	No	
%	19-52	G	0	1W	SCL	M-F	2F	2F	No	
	52+	С	0	1W	SL	M-F	1F	1VF	No	
	Limiting Laye	r ->Standi	ng water at 5	2"						
SP-7	0-19	G	0-5	1M	SiCL	M-FRB	ЗF	2F	No	
%	19-48	G	0-0	1W	SCL	M-F	2F	21 2F	No	
70	48-61	c	0	1W	SL	M-F	1F	1VF	No	
	Limiting Layer				31	WI-F			NO	
SP-8	0-18	G	0-5	1M	SiCL	M-FRB	ЗF	2F	No	
%	18-34	G	0	1W	SCL	M-F	2F	2F	No	2D @ 3
	34-56	с	0	1W	SL	M-F	1F	1VF	No	
	Limiting Laye	r ->Stand	ng water at 5	6"; mottling not sev	vere and presence	of roots below mottling i	ndicates drainage			
SP-9	0-18	G	0-5	1M	SICL	M-FRB	3F	2F	No	
%	18-31	G	0	1W	SCL	M-F	2F	2F	No	F2 @ 24
	31-60	с	0	1W	CL	M-F	1F	1VF	No	
	Limiting Laye	r ->Stand	ng water at 6	i0"; mottling not sev	vere and presence	of roots below mottling i	ndicates drainage			
SP-10	0-19	G	0-5	1M	SiCL	M-FRB	3F	2F	No	्र २ वित्रे स्टल्स्स्स् इ
%	19-40	G	0	1W	SCL	M-F	2F	2F	No	F1@3
	40-60	с	0	1W	CL	M-F	1F	1VF	No	
	Limiting Laye	r ->Stand	ng water at 6	0"; mottling not sev	vere and presence	of roots below mottling i	ndicates drainage			
*										
			Structure			Moisture/Cons	sistency		rosity	
	LS=Loamy Sand,	►W=W =Prismatic, M=N SL=Sandy L	Ped, 2=Med Ped eak, M=Moderate C=Columnar, AE lassive, C=Cem <u>Texture</u> oam SCL=Sand	e, S=Strong 3=Angular Blocky, SB=S	y Clay SiL=Silt Loam,	►M=Moist, D ►L=Loose, VFRB=Very Fr F=Firm, Vf=Very Firm, X <u>Roots</u> ►0=None, 1=Few, 2=C ►F=Fine, M=Medium, C=Cos	iable, FRB=Friable, F=Extremely Firm ommon, 3=Many	3= ►VF=Very M=Mediur ►0=None, F	Few, 2=Common, Many Fine, F=Fine, n, C=Coarse P=Poor, F=Fair, E=Excellent	► 0=None, ► F=Fa P= ► 0=Oxia R=Reduction

1 . . .

6.1.m. ---

SUMMIT ENGINEERING, INC.

Project No. 2017071

1 40 1 1 N (2 - 1) (1 - 1)

ENCLOSURE B – PROCESS WASTEWATER CALCULATIONS

SUMMIT	PROCESS WAS	E & C WINERY PROCESS WASTEWATER (PW) DESIGN CRITERIA			2017071 SW GG
PROCESS WASTEWATER FLOWS BY PHASE					
Parameter	Phase 1	Phase 2	Phase 3	Units	
Annual Production	125,000	500,000	2,000,000	gal wine/year	
PW Generation Rate ¹	6.0	6.0	4.0	gal PW/gal wine	
Annual PW Flow	750,000	3,000,000	8,000,000	gal PW/year	
Months of Harvest	Jul-Oct	Jul-Oct	Jul-Oct		
Average 92 Day Harvest Flow	3,745	14,980	39,947	gal PW/day	
Average Day Peak Harvest Month Flow	4,100	16,400	43,750	gal PW/day	
in en age baj i san mar rest in en in in in in					

	SUMMIT	E & C WINERY PROCESS WASTEWATER (PW) POND WATER BALANCE	PROJECT NO. BY: CHK:	2017071 SW GG	
	DESIGN CRITERIA				
	FULL PRODUCTION				
	Annual Harvest	12,121 ton/year			
	Wine Generation Rate	165 gal wine/ton			
	Annual Production	841,202 cases wine/year			
	Wine Generation Rate	2.4 gal/case			
	Annual Production	2,000,000 gal wine/year			
	PW Generation Rate Annual PW Flow	4.0 gal PW/gal wine			
	Months of Harvest	8,000,000 gal PW/year Aug-Oct			
	Average Day Harvest Flow	28,800 gal PW/day			
	Average Day Peak Harvest Month Flow	43,750 gal PW/day			
	Pond No. 1 Volume	2.807 Mgal			
	Pond No. 2 Volume	2.223 Mgal			× .
	Total Pond Volume	5.030 Mgal			
	Pond No. 1 HRT	64.2 days			
	Pond No. 2 HRT	50.8 days			
· · · · · · · · · · · · · · · · · · ·	Total HRT	115.0 days	a 📲 a na	والمراجعة المرتبعين فعقت	
	DESIGN PROCESS WASTEWATER FL	ows			
		Monthly			
	Month	Percentage of Appual Flow ^a Monthly Flow			

Т

	Percentage of	
Month	Annual Flow ^a (%)	Monthly Flow (Mgal)
August	6.2%	0.496
September	10.5%	0.836
October	16.4%	1.312
November	12.9%	1.031
December	7.4%	0.593
January	6.4%	0.513
February	6.6%	0.525
March	7.2%	0.578
April	7.6%	0.610
May	6.8%	0.542
June	6.4%	0.516
July	5.6%	0.448
Total	100%	8.000

Т

Г

^a Monthly percentage of annual flow based on data from similar wineries.

Page 1 of 6

9/20/2019 PW Flows/17071 PWB 2019-09-20.alsx

.

SUMMIT	E & C WINERY	PROJECT NO.	2017071
	PROCESS WASTEWATER (PW)	BY:	SW
	Aeration Requirements	CHK:	GG

DESIGN CRITERIA

Sizing Parameters BOD Concentration

Average Day, Peak Harvest Month Flow Oxygen Requirement Oxygen Transfer Rate Floating Brush Aerator) Power/ Volume Ratio, Pond No. 1 Power/ Volume Ratio, Pond No. 2 Pond No. 1 Volume Pond No. 2 Volume 7,700 mg/L 43,750 gal PW/day 1.5 lbs O₂/lb BOD 2.5 lbs O₂/lb BOD 0.10 - 0.20 Hp/ 1,000 cu ft 0.05 - 0.10 Hp/ 1,000 cu ft 2.81 Mgal 2.22 Mgal

Aeration Pond No. 1

BOD Mass Loading Aerator Run Time Oxygen Requirement Aerator Horsepower Required Aerator Horsepower Recommended Check Power-to-Volume Ratio 2,811 lbs BOD/day 24 Hrs/day 176 lbs O₂ 70 Hp 75 Hp 0.20 Hp/ 1,000 CF

P\V range desired is 0.10 to 0.20, this will enable oxygen transfer and mixing to occur within the upper 3-4 feet of the pond as required in a facultative aerated lagoon system.

Aerated	Pond	No. 3)
Acialeu	FUIIU	110. 4	_

Aerator Hp

P\V

20 Hp

0.07 Hp/ 1,000 CF

Page 2 of 6

9/20/2019 Aeration/17071 PWB 2019-09-20.xlsx

SUMMIT	E & C WINERY	PROJECT NO.	2017071
	PROCESS WASTEWATER (PW)	BY:	SW
	Climate Data	CHK:	GG

Month	Days	Average Temp ^a (F)		Pan Evaporation ^c (in)	Lake Evaporation ^d (in)	Average Precipitation ^e (in)	10-Year Precipitation ^r (in)	100-Year Precipitation ^f (in)
August	31	73.8	7.2	9.9	7.6	0.03	0.0	0.1
September	30	71.1	5.0	7.6	5.8	0.21	0.3	0.4
October	31	63.7	3.9	5.3	4.1	1.22	1.7	2.5
November	30	53.4	1.2	2.6	2.0	2.94	4.0	5.9
December	31	46.5	1.2	1.7	1.3	5.06	6.9	10.2
January	31	46.8	0.4	1.5	1.1	4.78	6.5	9.6
February	28	51.5	0.9	2.4	1.8	4.88	6.7	9.8
March	31	55.6	2.9	4.3	3.3	3.41	4.7	6.9
April	30	60.1	4.3	6.7	5.1	1.34	1.8	2.7
May	31	66.2	4.1	9.2	7.1	0.76	1.0	1.5
June	30	71.4	6.6	11.2	8.7	0.18	0.2	0.4
July	31	74.7	7.9	11.5	8.9	0.00	0.0	0.0
Total	365	- 44 L	45,6		56.8	. 24,8	33.9	49.9

^a Average monthly temperature from NOAA from 1981-2010
 ^b Average monthly reference evapotranspiration data for Zone 8, per CIMIS

^c Average monthly pan evaporation rates observed at Lake Solano between 1975 and 2005.
 ^d Pan evaporation rates adjusted by a factor of 0.77 to determine lake evaporation.

^e Average monthly rainfall observed by NOAA in Lodi between 1889 and 2003.

^f Average monthly rainfall adjusted by the ratio of 10-yr and 100-yr wet year return storm identified by Pearsons Log III Distribution.

Page 3 of 6

9/20/2019 Climate/17071 PWB 2019-09-20.xlsx

.

201707 SV G	PROJECT NO. BY: CHK:	WATER (PW)	E & C WIN PROCESS WASTEN Pond Work	SUMMIT		
			Pond No. 1			
Augus	Start Month	15.0	Bottom Radius	115.0'	Bottom Width	
5.0	Min. Depth	35.0	Top Radius	230.0'	Bottom Length	
8.00 Mg	Annual PW	10.0	Depth	3.0	Interior Side Slope (x:1)	
10.0	Initial Depth	2.0'	Freeboard	0.5	Length:Width	
Total Volume	Surface Area	Radius	Width	Length	Depth	
(Mgal)	(ft²)	(ft)	(ft)	(ft)	(ft)	
0.000	26,257	15	115	230	0	
0.204	28,318	17	121	236	1	
0.424	30,445	18	127	242	2	
0.660	32,641	20	133	248	3	
0.913	34,903	22	139	254	4	
1.182	37,233	23	145	260	5	
1.470	39,629	25	151	266	6	
1.775	42,094	27	157	272	6 7	
2.100	44,625	28	163	278	8	
2.443	47,223	30	169	284	9	
2.807	49,889	32	175	290	10	
3.190	52,622	33	181	296	11	
3.594	55,422	35	187	302	12	

		Pond No. 2			
Bottom Width	100.0'	Bottom Radius	15.0'	Start Month	Augus
Bottom Length	200.0	Top Radius	35.0	Min. Depth	3.0
Interior Side Slope (x:1)	3.0	Depth	10.0	Divert Volume	7.40 Mga
Length:Width	0.5	Freeboard	2.0'	Initial Depth	5.0
Depth	Length	Width	Radius	Surface Area	Total Volume
(ft)	(ft)	(ft)	(ft)	(ft²)	(Mgal)
0	200	100	15	19,807	0.000
1	206	106	17	21,598	0.155
2	212	112	18	23,455	0.323
3	218	118	20	25,381	0.506
4	224	124	22	27,373	0.703
5	230	130	23	29,433	0.916
6	236	136	25	31,559	1.144
7	242	142	27	33,754	1.388
8	248	148	28	36,015	1.649
9	254	154	30	38,343	1.927
10	260	160	32	40,739	2.223
11	266	166	33	43,202	2.537
12	272	172	35	45,732	2.870

Page 4 of 6

9/20/2019 Pond WS/17071 PWB 2019-09-20.xbsc

SUMMIT	E & C WINERY	PROJECT NO.	2017071
	PROCESS WASTEWATER (PW)	BY:	SW
	Pond Water Balance	CHK:	GG
	Pond No. 1		

Month	Initial	Pond	PW Inflow	10 Year	Volume	Total	Divert	Final	Final
	Volume	Evaporation		Precipitation	Change	Volume	Volume	Volume	Pond
									Depth
	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(Mgal)	(ft)
August	2.807	-0.236	0.496	0.001	0.261	3.067	0.261	2.807	10.0
September	2.807	-0.182	0.836	0.010	0.665	3.471	0.665	2.807	10.0
October	2.807	-0.126	1.312	0.058	1.244	4.050	1.244	2.807	10.0
November	2.807	-0.062	1.031	0.139	1.108	3.914	1.108	2.807	10.0
December	2.807	-0.040	0.593	0.239	0.792	3.598	0.792	2.807	10.0
January	2.807	-0.035	0.513	0.225	0.703	3.510	0.703	2.807	10.0
February	2.807	-0.057	0.525	0.230	0.698	3.505	0.698	2.807	10.0
March	2.807	-0.102	0.578	0.161	0.636	3.443	0.636	2.807	10.0
April	2.807	-0.159	0.610	0.063	0.514	3.321	0.514	2.807	10.0
May	2.807	-0.221	0.542	0.036	0.356	3.163	0.356	2.807	10.0
June	2.807	-0.269	0.516	0.008	0.255	3.062	0.255	2.807	10.0
July	2.807	-0.276	0.448	0.000	0.171	2.978	0.171	2.807	10.0
Tetal		-1.765	8.000	1.170	7.404	and a second second	7.404		

				Pond No.	2				
Month	Initial Volume (Mgal)	Pond Evaporation (Mgal)	PW Inflow (Mgal)	10 Year Precipitation (Mgal)	Volume Change (Mgal)	Total Volume (Mgal)	Divert Volume (Mgal)	Final Volume (Mgal)	Final Pond Depth (ft)
August	1.144	-0.149	0.261	0.000	0.112	1.256	0.700	0.556	3.2
September	0.556	-0.094	0.665	0.000	0.571	1.126	0.600	0.526	3.1
October	0.526	-0.065	1,244	0.000	1.179	1.706	1.100	0.606	3.5
November	0.606	-0.033	1.108	0.000	1.075	1.681	1.150	0.531	3.1
December	0.531	-0.021	0.792	0.000	0.771	1.302	0.425	0.877	4.8
January	0.877	-0.021	0.703	0.000	0.683	1.559	0.500	1.059	5.6
February	1.059	-0.035	0.698	0.000	0.664	1.723	0.000	1.723	8.2
March	1.723	-0.075	0.636	0.000	0.561	2.284	0.061	2.223	10.0
April	2.223	-0.130	0.514	0.000	0.384	2.607	0.500	2.107	9.6
May	2.107	-0.176	0.356	0.000	0.180	2.287	0.750	1.537	7.5
June	1.537	-0.188	0.255	0.000	0.067	1.604	0.500	1.104	5.8
July	1.104	-0.172	0.171	0.000	-0.001	1.103	0.056	1.047	5.5
Total		-1.159	7.404	0.000	6.245		6.342		

Page 5 of 6

9/20/2019 Pond Summary/17071 PWB 2019-09-20.xbx

SL	IMMI	Т			PROCESS WASTEWATER (PW) B						PROJECT BY: CHK:	r No.		2017071 SW GG		
Applied Irrig	gation Area		Vineyard Pasture	10.0 10.0	acres acres											
Total Area A	wailable for I	rrigation	Vineyard Pasture	17.0 17.0	acres	1										
Month	Reference	Pasture Crop	Vineyard	Pasture	Vineyard	Precipitation®	Irrig	ation	Operating	Perc	olation	Assim	ilative	Efflu	ent	Excess
	ET ^a	Coefficient ^b	Crop	ETd	ETd		Dem	and	Days per	Cap	acityh	Capa	acity	Appl	ied	Capacity
	100		Coefficient						Month ⁹							
	(in)			(in)	(in)	(in)	(in)	(Mgal)	(d)	(in)	(Mgal)	(in)	(Mgal)	(Mgal)	(in)	(Mgal)
August	7.2	0.9	0.45	6.5	3.2	0.0	4.8	2.623	31	4.96	2.695	9.8	5.318	0.700	1.29	4.62
September	5.0	0.9	0.26	4.5	1.3	0.3	2.6	1.423	30	4.80	2.608	7.4	4.032	0.600	1.10	3.43
October	3.9	0.9	0.07	3.5	0.3	1.7	0.2	0.113	16	2.56	1.391	2.8	1.504	1.100	2.03	0.40
November	1.2	0.8	0.00	1.0	0.0	4.0	0.0	0.000	14	2.24	1.217	2.2	1.217	1.150	2.12	0.07
December	1.2	0.8	0.00	0.9	0.0	6.9	0.0	0.000	5	0.80	0.435	0.8	0.435	0.425	0.78	0.01
January	0.4	0.8	0.00	0.3	0.0	6.5	0.0	0.000	6	0.96	0.522	1.0	0.522	0.500	0.92	0.02
February	0.9	0.8	0.00	0.7	0.0	6.7	0.0	0.000	5	0.80	0.435	0.8	0.435	0.000	0.00	0.43
March	2.9	0.8	0.00	2.3	0.0	4.7	0.0	0.000	12	1.92	1.043	1.9	1.043	0.061	0.11	0.98
April	4.3	0.9	0.16	3.9	0.7	1.8	0.5	0.245	13	2.08	1.130	2.5	1.375	0.500	0.92	0.87
May	4.1	0.9	0.58	3.7	2.4	1.0	2.0	1.097	16	2.56	1.391	4.6	2.488	0.750	1.38	1.74
June	6.6	0.9	0.71	6.0	4.7	0.2	5.1	2.767	17	2.72	1.478	7.8	4.245	0.500	0.92	3.75
July	7.9	0.9	0.64	7.1	5.0	0.0	6.1	3.293	30	4.80	2.608	10.9	5.902	0.056	0.10	5.85
Total	45.6			40.3	17.6	33.9	21.3	11.6	195.0	31.2	17.0	52.5	28.5	6.3	11.7	22.17

Т

Г

(a) Average monthly reference evapotranspiration rates, see Climate Data Worksheet.
(b) Kc coefficients for pasture from Table 5-1, "Irrigation with Reclaimed Municipal Wastewater-A Guidance Manual"- California State Water Resources Control Board, July 1984 (San Joaquin Valley).
(c) Kc coefficients for vineyards from Table 5-12, Irrigation with Reclaimed Municipal Wastewater - A Guidance Manual, 84-1 wr, SWRCB.
(d) ET=ETo x Kc. A weighted value is determined on the basis of the available irrigated arcrage of vineyard and pasture.
(e) Precipitation, 10-year rainfall event, see Climate Data Worksheet.
(f) Irrigation Demand = ET-Precipitation, inches. A weighted value is determined on the basis of the available based on 24-hr post storm criteria for a 100-year return period. Summit Engineering, NBRID Capacity Study, April 1996.
(h) Design percolation rate is 0.79 inches per day for the number of operating days per month. Design percolation rate is 0.79 inches per day for the number of operating days per month. Design percolation rate is 0.79 inches per day for the number of operating days per month. Design percolation rate is 0.79 inches per day for the number of operating days per month. Design percolation rate is 0.79 inches per day for the number of operating days per fue Sandy Loam soil, high capacity (1.98 - 5.95 in/hr). Selected 1.98 in/hr as basis for calculation. Adjusted by a 0.04 safety factor to account for typical slow rate land application design methodology.
(i) Assimilative capacity is the sum of irrigation demand and percolation applied.

Page 6 of 6

9/20/2019 Disposal - Soil Perc Method/17071 PWB 2019-09-20.xlsx

Т

ਾਸ਼ਨ ਨੇ ਕਾਂਗਲਜ਼ਾਲ ਹੋਏ ਹੋਏ ਹਨ। ਨਾਜ ਨਾਲਸਾਲਾਲਾਏਸ਼ਾਨ ਨੇ ਨੂੰ ਨੇ

4

· .

.

n in the constant of the second of the secon