CITY OF SANTEE

PRIORITY DEVELOPMENT PROJECT (PDP) STORM WATER QUALITY MANAGEMENT PLAN (SWQMP)

FOR ALL RIGHT STORAGE INC. CUP 2019-5

8708 Cottonwood Ave SANTEE CA 92071

ASSESSOR'S PARCEL NUMBER(S): APN 384-370-25 ENGINEER OF WORK:

ROBERT D. DENTINO, P.E NUMBER 45629

PREPARED FOR:

MICHAEL DEUTSCH 111 C ST. SUITE 200 ENCINITAS, CA92024

PDP SWQMP & PLAN PREPARED BY:

DATE OF SWQMP: 03/04/2020

REVISION	SUBMITTAL DATE	DESCRIPTION	ISSUED BY
0	03.04.2020	Third Submittal	Excel Engineering

Page intentionally blank

TABLE OF CONTENTS

Acronym Sheet PDP SWQMP Preparer's Certification Page PDP SWQMP Project Owner's Certification Page Submittal Record **Project Vicinity Map** FORM I-1 Applicability of Permanent, Post-Construction Storm Water BMP Requirements FORM I-2 Project Type Determination Checklist (Standard Project or PDP) FORM I-3B Site Information Checklist for PDPs FORM I-4 Source Control BMP Checklist for All Development Projects FORM I-5 Site Design BMP Checklist for All Development Projects FORM I-6 Summary of PDP Structural BMPs Attachment 1: Backup for PDP Pollutant Control BMPs Attachment 1a: DMA Exhibit Attachment 1b: Tabular Summary of DMAs and Design Capture Volume Calculations Attachment 1c: Harvest and Use Feasibility Screening (when applicable) Attachment 1d: Categorization of Infiltration Feasibility Condition (when applicable) Attachment 1e: Pollutant Control BMP Design Worksheets / Calculations Attachment 2: Backup for PDP Hydromodification Control Measures Attachment 2a: Hydromodification Management Exhibit Attachment 2b: Management of Critical Coarse Sediment Yield Areas Attachment 2c: Geomorphic Assessment of Receiving Channels Attachment 2d: Flow Control Facility Design Attachment 3: Structural BMP Maintenance Plan Attachment 3a: B Structural BMP Maintenance Thresholds and Actions Attachment 3b: Draft Maintenance Agreement (when applicable) Attachment 4: Copy of Plan Sheets Showing Permanent Storm Water BMPs

ACRONYMS

APN	Assessor's Parcel Number
BMP	Best Management Practice
HMP	Hydromodification Management Plan
HSG	Hydrologic Soil Group
MS4	Municipal Separate Storm Sewer System
N/A	Not Applicable
NRCS	Natural Resources Conservation Service
PDP	Priority Development Project
PE	Professional Engineer
SC	Source Control
SD	Site Design
SDRWQCB	San Diego Regional Water Quality Control Board
SIC	Standard Industrial Classification
SWQMP	Storm Water Quality Management Plan

SWQMP PREPARER'S CERTIFICATION PAGE

Project Name: ALL RIGHT SELF STORAGE Permit Application Number: [Insert Permit Application Number]

PREPARER'S CERTIFICATION

I hereby declare that I am the Engineer in Responsible Charge of design of storm water best management practices (BMPs) for this project, and that I have exercised responsible charge over the design of the BMPs as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the PDP requirements of the City of Santee BMP Design Manual, which is a design manual for compliance with local [INSERT AGENCY NAME] and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2015-0100) requirements for storm water management.

I have read and understand that the [City Engineer] has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the BMP Design Manual. I certify that this PDP SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this PDP SWQMP by the [City Engineer] is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design.

______ REC 45629 / EXP. 12-31-2020 Engineer of Work's Signature, PE Number & Expiration Date

ROBERT D. DENTINO Print Name

EXCEL ENGINEERING Company

04/03/2020

Date

Engineer's Seal:

Page intentionally blank

SWQMP PROJECT OWNER'S CERTIFICATION PAGE

Project Name: ALL RIGHT STORAGE INC Permit Application Number: [Insert Permit Application Number]

PROJECT OWNER'S CERTIFICATION

This PDP SWQMP has been prepared for <u>ALL RIGHT STORAGE INC</u> by <u>EXCEL ENGINEERING</u>. The PDP SWQMP is intended to comply with the PDP requirements of the CITY OF SANTEE BMP Design Manual, which is a design manual for compliance with local [INSERT AGENCY NAME] and regional MS4 Permit (California Regional Water Quality Control Board San Diego Region Order No. R9-2015-0100)

requirements for storm water management.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan. Once the undersigned transfers its interests in the property, its successor-ininterest shall bear the aforementioned responsibility to implement the best management practices (BMPs) described within this plan, including ensuring on-going operation and maintenance of structural BMPs. A signed copy of this document shall be available on the subject property into perpetuity.

Project Owner's Signature

MICHAEL DEUTSCH

Print Name

ALL RIGHT STORAGE INC.

Company

Date

PDP SWQMP Template Date: February 2016 PDP SWQMP Preparation Date: 04/15/19 Page intentionally blank

SUBMITTAL RECORD

Use this Table to keep a record of submittals of this PDP SWQMP. Each time the PDP SWQMP is resubmitted, provide the date and status of the project. In column 4 summarize the changes that have been made or indicate if response to plancheck comments is included. When applicable, insert response to plancheck comments behind this page.

Submittal	Date	Project Status	Summary of Changes
Number			
1	09/07/18	Preliminary Design /	Initial Submittal
		Planning/ CEQA	
		Final Design	
2	04/15/19	Preliminary Design /	Second Submittal
		Planning/ CEQA	
		Final Design	
3	03/04/2020	✓Preliminary Design /	Third Submittal
		Planning/ CEQA	
		Final Design	
4		Preliminary Design /	
		Planning/ CEQA	
		Final Design	

March 4, 2020

Response to Comments All Right Self Storage

(MP 2019-05) date November 4, 2019

5. DRAINAGE STUDY

- a. Drainage study -no offsite flows run on to project site.
- b. updated
- c. updated
- d. updated See Pre-Development Map
- e. updated see Post Development Map
- f. updated Run-off Coefficient used General Commercial

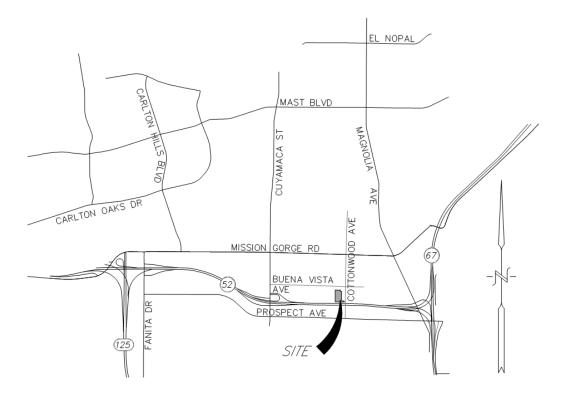
6. SWQMP

- a. Ok & Updated.
- b. Project owner's information provided
- c. Updated.
- d. Updated.
- e. Updated.

f. Pollutants expected are one sheet 7 already. "Benthic Community Effects, Cadmium, Nitrogen, Phosphorus, Total Dissolved Solids, Toxicity."

g. Additional support has been provided in form I-6 and attachment 1-e now includes Bio Clean attachment for "GULD approval for basic, phosphorus and enhanced treatment under the TAPE approval."

h. DMA updated to show updated DMA areas, hatch added for buildings (phase 1 & 2), pervious area hatch added, existing and proposed contours added, and existing and proposed utilities shown.


i. Tabs added.

j. Form I-8 filled in.

k. "Updated Geotechnical Investigation and Infiltration Testing" report dated March 28, 2018 was included in attachment 1c.

PROJECT VICINITY MAP

Project Name: All Right Self-Storage Permit Application Number: [Insert Permit Application Number]

Applicability of Permanent, Post-Construction Storm Water BMP Requirements (Storm Water Intake Form for all Development Permit Applications)

Form I-1 Model BMP Design Manual [August 31, 2015]

Date:

Project Identification

Project Name: All Right Self-Storage

Permit Application Number:

Project Address: 8708 Cottonwood Ave Santee CA 92071

Determination of Requirements

The purpose of this form is to identify permanent, post-construction requirements that apply to the project. This form serves as a short <u>summary</u> of applicable requirements, in some cases referencing separate forms that will serve as the backup for the determination of requirements.

Answer each step below, starting with Step 1 and progressing through each step until reaching "Stop". Upon reaching a Stop, do not complete further Steps beyond the Stop.

Refer to BMP Design Manual sections and/or separate forms referenced in each step below.

Step	Answer	Progression
Step 1: Is the project a "development		Go to Step 2.
project"?	🛛 Yes	
See Section 1.3 of the BMP Design	No	Stop.
Manual for guidance.		Permanent BMP requirements do not apply.
		No SWQMP will be required. Provide
		discussion below.

Discussion / justification if the project is <u>not</u> a "development project" (e.g., the project includes *only* interior remodels within an existing building):

Step 2: Is the project a Standard	Standard	Stop.
Project, Priority Development Project	Project	Only Standard Project requirements apply,
(PDP), or exception to PDP definitions?		including Standard Project SWQMP.
To answer this item, see Section 1.4 of		Standard and PDP requirements apply,
the BMP Design Manual in its entirety	Ø PDP	including <u>PDP SWQMP</u> .
for guidance, AND complete Form I-2,		Go to Step 3.
Project Type Determination.	Exception	Stop.
	to PDP	Standard Project requirements apply, and any
	definitions	additional requirements specific to the type of
		project. Provide discussion and list any
		additional requirements below. Prepare
		Standard Project SWQMP.

Form I-1 Page 2, Form Template Date: August 31, 2015					
[Step 2 Continued from Page 1] Discussion / justification, and additional requirements for exceptions to PDP definitions, if applicable:					
Stop 2 (DDBs only) is the project	Vec	Consult the [City Engineer] to determine			
Step 3 (PDPs only). Is the project subject to earlier PDP requirements	Yes	Consult the [City Engineer] to determine requirements. Provide discussion and identify			
due to a prior lawful approval? See Section 1.10 of the BMP Design		requirements below. Go to Step 4.			
Manual for guidance.		BMP Design Manual PDP requirements apply.			
	Ø No	Go to Step 4.			
	approval, and ide	entify requirements (not required if prior lawful			
approval does not apply):					
Step 4 (PDPs only). Do	D (x z	PDP structural BMPs required for pollutant			
hydromodification control requirements apply?	Ø Yes	control (Chapter 5) and hydromodification control (Chapter 6).			
See Section 1.6 of the BMP Design		Go to Step 5.			
Manual for guidance.	No	Stop.			
		PDP structural BMPs required for pollutant control (Chapter 5) only.			
		Provide brief discussion of exemption to			
Discussion / justification if hydromodific	ation control rec	hydromodification control below. guirements do <u>not</u> apply:			
Step 5 (PDPs subject to	Yes	Management measures required for			
hydromodification control	163	protection of critical coarse sediment yield			
requirements only). Does protection		areas (Chapter 6.2).			
of critical coarse sediment yield areas apply based on review of WMAA		Stop. Management measures not required for			
Potential Critical Coarse Sediment	Ø No	protection of critical coarse sediment yield			
Yield Area Map? See Section 6.2 of the BMP Design		areas. Provide brief discussion below.			
Manual for guidance.		Stop.			

			Priority Determination Form	Form I-2 Model BMP Design Manual [August 31, 2015]	
			Project Information		
Proje	ct Nam	e: All	Right Self-Storage		
			n Number:	Date:	
-	ct Addr 3 Cottor		d Ave, Santee CA 92071		
	Proj	ect Ty	pe Determination: Standard Project or Priority	Development Project (PDP)	
	,		ect one): 🛛 New Development 🗹 Redevelopm		
	-		d newly created or replaced impervious area is: 1	22520 ft ² (2.81) acres	
	r		ny of the following categories, (a) through (f)?		
Yes	No ☑	(a)	New development projects that create 10,000 square feet or more of impervious surfaces (collectively over the entire project site). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.		
Yes ☑	No	(b)	Redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site on an existing site of 10,000 square feet or more of impervious surfaces). This includes commercial, industrial, residential, mixed-use, and public development projects on public or private land.		
Yes	 Industrial, residential, mixed-use, and public development projects on public or private land. No (c) New and redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface (collectively over the entire project site), and support one or more of the following uses: (i) Restaurants. This category is defined as a facility that sells prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (Standard Industrial Classification (SIC) code 5812). (ii) Hillside development projects. This category includes development on any natural slope that is twenty-five percent or greater. (iii) Parking lots. This category is defined as a land area or facility for the temporary parking or storage of motor vehicles used personally, for business, or for commerce. (iv) Streets, roads, highways, freeways, and driveways. This category is defined as any paved impervious surface used for the transportation of automobiles, trucks, motorcycles, and other vehicles. 				

			Form I-2 Page 2, Form Template Date: August 31, 2015	
Yes	No 1 1 1 1 1 1 1 1 1 1 1 1 1	(d)	New or redevelopment projects that create and/or replace 2,500 square feet or more of impervious surface (collectively over the entire project site), and discharging directly to an Environmentally Sensitive Area (ESA). "Discharging directly to" includes flow that is conveyed overland a distance of 200 feet or less from the project to the ESA, or conveyed in a pipe or open channel any distance as an isolated flow from the project to the ESA (i.e. not commingled with flows from adjacent lands). <i>Note: ESAs are areas that include but are not limited to all Clean Water Act Section 303(d) impaired water bodies; areas designated as Areas of Special Biological Significance by the State Water Board and San Diego Water Board; State Water Quality Protected Areas; water bodies designated with the RARE beneficial use by the State Water Board and San Diego Water Board; and any other equivalent environmentally sensitive areas which have been identified by the Copermittees. See BMP Design Manual Section 1.4.2 for additional guidance.</i>	
Yes	NO I	(e)	 New development projects, or redevelopment projects that create and/or replace 5,000 square feet or more of impervious surface, that support one or more of the following uses: (i) Automotive repair shops. This category is defined as a facility that is categorized in any one of the following SIC codes: 5013, 5014, 5541, 7532-7534, or 7536-7539. (ii) Retail gasoline outlets (RGOs). This category includes RGOs that meet the following criteria: (a) 5,000 square feet or more or (b) a projected Average Daily Traffic (ADT) of 100 or more vehicles per day. 	
Yes ☑	No	(f)	New or redevelopment projects that result in the disturbance of one or more acres of land and are expected to generate pollutants post construction. <i>Note: See BMP Design Manual Section 1.4.2 for additional guidance.</i>	
 Does the project meet the definition of one or more of the Priority Development Project categories (a) through (f) listed above? No – the project is <u>not</u> a Priority Development Project (Standard Project). ☑ Yes – the project is a Priority Development Project (PDP). 				
The ar The to Percer The pe	ea of e tal pro nt imp ercent	existir opose erviou impe	or redevelopment PDPs only: ng (pre-project) impervious area at the project site is: <u>85505</u> ft ² (A) d newly created or replaced impervious area is <u>122520</u> ft ² (B) us surface created or replaced (B/A)*100: <u>143.2%</u> rvious surface created or replaced is (select one based on the above calculation): or equal to fifty percent (50%) – only new impervious areas are considered PDP	
		atort	han fifty percent (50%) – the entire project site is a PDP	

mary Information All Right Self-Storage 8708 Cottonwood Av			
8708 Cottonwood Av			
	8708 Cottonwood Ave, Santee CA 92071		
384-370-25			
Santa Margarita 902 San Luis Rey 903 Carlsbad 904 San Dieguito 905 Penasquitos 906 ☑ San Diego 907 Pueblo San Diego 908 Sweetwater 909 Otay 910			
HU 7, HANAME: Low	er San Diego, HSANAME: Santee		
3 Acres (130,922 Square Feet)			
3 Acres (130,922 Sq	uare Feet)		
2.81 Acres (122,520 Square Feet)			
Project Proposed Pervious Area0.19 Acres(8,402 Square Feet)(subset of Project Area)0.19 AcresAcresthe Project AreaNote: Proposed Impervious Area + Proposed Pervious Area = Area to be Disturbed by the Project.the Project Area			
	Select One: Santa Margarita 90 San Luis Rey 903 Carlsbad 904 San Dieguito 905 Penasquitos 906 ☑ San Diego 907 Pueblo San Diego 907 Pueblo San Diego 907 Pueblo San Diego 907 Otay 910 Tijuana 911 HU 7, HANAME: Lower 3 Acres (130,922 Sq 3 Acres (130,922 Sq 2.81 Acres (122,520) 0.19 Acres (8,402 Sc		

Form I-3B Page 2 of 10, Form Template Date: August 31, 2015
Description of Existing Site Condition
Current Status of the Site (select all that apply): Existing development
Previously graded but not built out
☑ Demolition completed without new construction
Agricultural or other non-impervious use
Vacant, undeveloped/natural
Description / Additional Information: The site was previously a mobile home park. The mobile home units were removed and left with concrete slabs, pavement, driveway and old drainage structure.
Existing Land Cover Includes (select all that apply): ☑ Vegetative Cover
Non-Vegetated Pervious Areas
☑ Impervious Areas
Description / Additional Information:
Underlying Soil belongs to Hydrologic Soil Group (select all that apply): NRCS Type A
NRCS Type B
NRCS Type C
☑ NRCS Type D
Approximate Depth to Groundwater (GW): GW Depth < 5 feet
5 feet < GW Depth < 10 feet
10 feet < GW Depth < 20 feet
☑ GW Depth > 20 feet

Existing Natural Hydrologic Features (select all that apply): Watercourses

Seeps

Springs

Wetlands

🗹 None

Description / Additional Information:

Form I-3B Page 3 of 10, Form Template Date: August 31, 2015 Description of Existing Site Drainage Patterns

How is storm water runoff conveyed from the site? At a minimum, this description should answer:

(1) whether existing drainage conveyance is natural or urban;

(2) Is runoff from offsite conveyed through the site? if yes, quantify all offsite drainage areas, design flows, and locations where offsite flows enter the project site, and summarize how such flows are conveyed through the site;

(3)Provide details regarding existing project site drainage conveyance network, including any existing storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels; and

(4) Identify all discharge locations from the existing project site along with a summary of conveyance system size and capacity for each of the discharge locations. Provide summary of the pre-project drainage areas and design flows to each of the existing runoff discharge locations.

Describe existing site drainage patterns:

The project site resides in the location of a previous mobile home park. The mobile homes have been removed while the roads and drainage infrastructure remain. The existing infrastructure includes a single ribbon gutter at the center of the driveway and two inlets reside on the easterly and westerly portions of the property. The site run off is discharged through a 4" pipe at the north westerly corner of the site and then conveyed to the curb and gutter along Buena Vista Avenue. When the 4" pipe becomes overwhelmed, the flow is conveyed through an open joint on the boundary wall and then along the curb and gutter within the neighboring property where it outfalls to the same POC at Buena Vista Avenue.

Form I-3B Page 4 of 10, Form Template Date: August 31, 2015 Description of Proposed Site Development

Project Description / Proposed Land Use and/or Activities: Proposed

The project is proposing to build five buildings, in two construction phases, to be used for self-storage. Phase 1 consists of a 3-story building (25,923 SF), a 1-story building (4,413 SF) and a 1-story building which includes a unit for the caretaker (5,920 SF). In addition to the three buildings, 50 open spaces are proposed for recreational vehicles, vehicle and boat storage. Associated improvements will include walkways, a single trash enclosure, 26 parking spaces, landscaping, and all necessary utilities (storm, sewer, water, dry, etc.). Phase 2 will replace the 50 open spaces from Phase 1 with a 3-story building (16,802 SF) and 1-story building (8,316 SF). In addition to the 26 parking spaces added in Phase 1, 3 more spaces will be adding totaling to 29 parking spaces.

List/describe proposed impervious features of the project (e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features):

Buildings, parking lots

List/describe proposed pervious features of the project (e.g., landscape areas):

Landscape strip surrounding the site and at parking lots

Does the project include grading and changes to site topography? ☑ Yes

No

Description / Additional Information:

Form I-3B Page 5 of 10, Form Template Date: August 31, 2015 Description of Proposed Site Drainage Patterns

Does the project include changes to site drainage (e.g., installation of new storm water conveyance systems)?

☑ Yes

No

If yes, provide details regarding the proposed project site drainage conveyance network, including storm drains, concrete channels, swales, detention facilities, storm water treatment facilities, natural or constructed channels, and the method for conveying offsite flows through or around the proposed project site. Identify all discharge locations from the proposed project site along with a summary of the conveyance system size and capacity for each of the discharge locations. Provide a summary of pre- and post-project drainage areas and design flows to each of the runoff discharge locations. Reference the drainage study for detailed calculations.

Describe proposed site drainage patterns:

The project proposes to convey overland flow produced by storm runoff in inlets throughout the site. The runoff will be captured within an underground storage tank and then be pumped back to the surface at the same location the site currently outlets along the westerly boundary.

Form I-3B Page 6 of 10, Form Template Date: August 31, 2015

Identify whether any of the following features, activities, and/or pollutant source areas will be present (select all that apply):

- ☑ On-site storm drain inlets
- ☑ Interior floor drains and elevator shaft sump pumps
- □ Interior parking garages
- □ Need for future indoor & structural pest control
- ☑ Landscape/Outdoor Pesticide Use
- \Box Pools, spas, ponds, decorative fountains, and other water features
- \Box Food service
- □ Refuse areas
- □ Industrial processes
- □ Outdoor storage of equipment or materials
- □ Vehicle and Equipment Cleaning
- □ Vehicle/Equipment Repair and Maintenance
- □ Fuel Dispensing Areas
- □ Loading Docks
- ☑ Fire Sprinkler Test Water
- □ Miscellaneous Drain or Wash Water
- ☑ Plazas, sidewalks, and parking lots

Description / Additional Information:

Form I-3B Page 7 of 10, Form Template Date: August 31, 2015

Identification and Narrative of Receiving Water and Pollutants of Concern

Describe flow path of storm water from the project site discharge location(s), through urban storm conveyance systems as applicable, to receiving creeks, rivers, and lagoons as applicable, and ultimate discharge to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable):

The project outlets storm flow via overland flow along the westerly property line. The runoff is then conveyed within the neighboring properties gutter into a public storm drain inlet. The public system conveys flows to the San Diego River, which ultimately outlets to the Pacific Ocean.

List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs and/or Highest Priority Pollutants from the WQIP for the impaired water bodies:

303(d) Impaired Water Body	Pollutant(s)/Stressor(s)	TMDLs / WQIP Highest Priority Pollutant
San Diego River (Lower)	Benthic Community Effects, Cadmium, Nitrogen, Phosphorus, Total Dissolved Solids, Toxicity,	Required

Identification of Project Site Pollutants*

*Identification of project site pollutants is only required if flow-thru treatment BMPs are implemented onsite in lieu of retention or biofiltration BMPs (note the project must also participate in an alternative compliance program unless prior lawful approval to meet earlier PDP requirements is demonstrated)

Identify pollutants expected from the project site based on all proposed use(s) of the site (see BMP Design Manual Appendix B.6):

	Not Applicable to the	Expected from the	Also a Receiving Water
Pollutant	Project Site	Project Site	Pollutant of Concern
Sediment			
Nutrients			
Heavy Metals			
Organic Compounds			
Trash & Debris			
Oxygen Demanding			
Substances			
Oil & Grease			
Bacteria & Viruses			
Pesticides			

Form I-3B Page 8 of 10, Form Template Date: August 31, 2015 Hydromodification Management Requirements

Do hydromodification management requirements apply (see Section 1.6 of the BMP Design Manual)?

☑ Yes, hydromodification management flow control structural BMPs required.

No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.

No, the project will discharge runoff directly to conveyance channels whose bed and bank are

concrete-lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.

No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA for the watershed in which the project resides.

Description / Additional Information (to be provided if a 'No' answer has been selected above):

Critical Coarse Sediment Yield Areas* *This Section only required if hydromodification management requirements apply Based on the maps provided within the WMAA, do potential critical coarse sediment yield areas exist within the project drainage boundaries?

Yes

 \blacksquare No, No critical coarse sediment yield areas to be protected based on WMAA maps

If yes, have any of the optional analyses presented in Section 6.2 of the BMP Design Manual been performed?

6.2.1 Verification of Geomorphic Landscape Units (GLUs) Onsite

6.2.2 Downstream Systems Sensitivity to Coarse Sediment

6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite

No optional analyses performed, the project will avoid critical coarse sediment yield areas identified

based on WMAA maps

If optional analyses were performed, what is the final result?

No critical coarse sediment yield areas to be protected based on verification of GLUs onsite Critical coarse sediment yield areas exist but additional analysis has determined that protection is not required. Documentation attached in Attachment 2.b of the SWQMP.

Critical coarse sediment yield areas exist and require protection. The project will implement management measures described in Sections 6.2.4 and 6.2.5 as applicable, and the areas are identified on the SWQMP Exhibit.

Discussion / Additional Information:

Form I-3B Page 9 of 10, Form Template Date: August 31, 2015

Flow Control for Post-Project Runoff*

*This Section only required if hydromodification management requirements apply

List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit.

The project contains a single POC along the westerly boundary and is named POC-1.

Has a geomorphic assessment been performed for the receiving channel(s)? ☑ No, the low flow threshold is 0.1Q2 (default low flow threshold)

Yes, the result is the low flow threshold is 0.1Q2

Yes, the result is the low flow threshold is 0.3Q2

Yes, the result is the low flow threshold is 0.5Q2

If a geomorphic assessment has been performed, provide title, date, and preparer:

Discussion / Additional Information: (optional)

Form I-3B Page 10 of 10, Form Template Date: August 31, 2015

Other Site Requirements and Constraints

When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or local codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements.

N/A

Optional Additional Information or Continuation of Previous Sections As Needed

This space provided for additional information or continuation of information from previous sections as needed.

Source Control BMP Checklist for All Development Projects (Standard Projects and Priority Development Projects)

Project Identification

Project Name All Right Self-Storage

Permit Application Number

Source Control BMPs

All development projects must implement source control BMPs SC-1 through SC-6 where applicable and feasible. See Chapter 4 and Appendix E of the Model BMP Design Manual for information to implement source control BMPs shown in this checklist.

Answer each category below pursuant to the following.

- "Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E of the Model BMP Design Manual. Discussion / justification is not required.
- "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided.
- "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion / justification may be provided.

Source Control Requirement Applie		Applied	d?	
SC-1 Prevention of Illicit Discharges into the MS4	🗹 Yes	No	N/A	
Discussion / justification if SC-1 not implemented:				
CC 2 Channe Durin Chan ailing an Cianaga				
SC-2 Storm Drain Stenciling or Signage	🗹 Yes	No	N/A	
Discussion / justification if SC-2 not implemented:				
SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On,	Yes	No	⊠N/A	
Runoff, and Wind Dispersal				
Discussion / justification if SC-3 not implemented:				
Ultimate site build out contains no outdoor material storage areas				
SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall,	Yes	No	⊠N/A	
Run-On, Runoff, and Wind Dispersal				
Discussion / justification if SC-4 not implemented:				
Ultimate site build out contains no outdoor work areas				

Form I-4 Page 2 of 2, Form Template Date: August 31, 2015			
Source Control Requirement		Applied	1
SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and	🗹 Yes	🗆 No	□ N/A
Wind Dispersal Discussion / justification if SC-5 not implemented:			
Discussion, justification in Sel 5 not implemented.			
SC-6 Additional BMPs Based on Potential Sources of Runoff Pollutants			
(must answer for each source listed below)			
□ On-site storm drain inlets	🗹 Yes	🗆 No	□ N/A
Interior floor drains and elevator shaft sump pumps	🗆 Yes	🗆 No	⊠N/A
Interior parking garages	🗆 Yes	🗆 No	⊠ N/A
Need for future indoor & structural pest control	🗆 Yes	🗆 No	⊠ N/A
Landscape/Outdoor Pesticide Use	🗹 Yes	🗆 No	□ N/A
\square Pools, spas, ponds, decorative fountains, and other water features	🗆 Yes	🗆 No	⊠ N/A
Food service	🗆 Yes	🗆 No	⊠ N/A
Refuse areas	🗆 Yes	🗆 No	⊠ N/A
Industrial processes	🗆 Yes	🗆 No	⊠ N/A
Outdoor storage of equipment or materials	🗆 Yes	🗆 No	⊠ N/A
Vehicle and Equipment Cleaning	🗆 Yes	🗆 No	⊠ N/A
Vehicle/Equipment Repair and Maintenance	🗆 Yes	🗆 No	⊠ N/A
Fuel Dispensing Areas	🗆 Yes	🗆 No	⊠ N/A
Loading Docks	🗆 Yes	🗆 No	□ N/A
Fire Sprinkler Test Water	🗆 Yes	🗆 No	⊠ N/A
Miscellaneous Drain or Wash Water	🗆 Yes	🗆 No	⊠ N/A
Plazas, sidewalks, and parking lots	☑ Yes	□ No	□ N/A

Discussion / justification if SC-6 not implemented. Clearly identify which sources of runoff pollutants are discussed. Justification must be provided for <u>all</u> "No" answers shown above.

Site Design BMP Checklist for All Development Projects (Standard Projects and Priority Development Projects)

Project Identification

Project Name: All Right Self-Storage

Permit Application Number:

Site Design BMPs

All development projects must implement site design BMPs SD-1 through SD-8 where applicable and feasible. See Chapter 4 and Appendix E of the Model BMP Design Manual for information to implement site design BMPs shown in this checklist.

Answer each category below pursuant to the following.

- "Yes" means the project will implement the site design BMP as described in Chapter 4 and/or Appendix E of the Model BMP Design Manual. Discussion / justification is not required.
- "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion / justification must be provided.
- "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project site has no existing natural areas to conserve). Discussion / justification may be provided.

Site Design Requirement		Applied	?
SD-1 Maintain Natural Drainage Pathways and Hydrologic Features	Yes	No	⊠ N/A
Discussion / justification if SD-1 not implemented:			
SD-2 Conserve Natural Areas, Soils, and Vegetation	Yes	No	⊠ N/A
Discussion / justification if SD-2 not implemented:	163	NO	
SD-3 Minimize Impervious Area	🗹 Yes	No	N/A
Discussion / justification if SD-3 not implemented:			
SD-4 Minimize Soil Compaction	Yes	No	⊠ N/A
Discussion / justification if SD-4 not implemented:			
		1	
SD-5 Impervious Area Dispersion	Yes	No	⊠ N/A
Discussion / justification if SD-5 not implemented:			

Yes	NLa	
	No	⊠ N/A
☑ Yes	No	N/A
I	1	
Yes	No	⊠ N/A

Summary of PDP Structural BMPs

Form I-6 (PDPs) Model BMP Design Manual [August 31, 2015]

Project Identification

Project Name: All Right Self-Storage

Permit Application Number

PDP Structural BMPs

All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s).

PDP structural BMPs must be verified by the local jurisdiction at the completion of construction. This may include requiring the project owner or project owner's representative and engineer of record to certify construction of the structural BMPs (see Section 1.12 of the BMP Design Manual). PDP structural BMPs must be maintained into perpetuity, and the local jurisdiction must confirm the maintenance (see Section 7 of the BMP Design Manual).

Use this form to provide narrative description of the general strategy for structural BMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet (page 3 of this form) for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP).

Describe the general strategy for structural BMP implementation at the site. This information must describe how the steps for selecting and designing storm water pollutant control BMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated or separate.

The project was evaluated at the DMA scale and determined to require BMPs to assist with pollutant removal. Harvest and use was analyzed investigated using form I-7 in attachment 1 and determined to be infeasible. A soils analysis was performed and form I-8 in attachment 1 was used to determine if infiltration is feasible. It has been determined that infiltration is not feasible. Due to the size of the site, it is infeasible to drain to a common biofiltration basin and a proprietary BMP is selected. Hydromodification will be analyzed within the same system as the BMP.

(Continue on page 2 as necessary.)

Form I-6 Page 2 of X, Form Template Date: August 31, 2015

(Page reserved for continuation of description of general strategy for structural BMP implementation at the site)

(Continued from page 1)

The project was evaluated at the DMA scale and determined to require BMPs to assist with pollutant removal. Harvest and use was analyzed investigated using form I-7 in attachment 1 and determined to be infeasible. A soils analysis was performed and form I-8 in attachment 1 was used to determine if infiltration is feasible. It has been determined that infiltration is not feasible.

The required footprint size of a standard biofiltration basin would not be accommodable to the project site with the proximity of the buildings and the proximity of where the basin would have to be next to an existing wall on the property line. For this reason, a proprietary BMP is selected and will detain 1.5 times the DCV prior to the Modular Wetlands Unit. The drawdown time of the Modular wetlands unit will still satisfy the standard 36 hour drawdown.

Since a proprietary bmp is being used a smaller than 3% footprint is also allowed as long as the proprietary device also meets requirements under Appendix F (See Attachment 1e for manufacture documents). As stated in section B.5.2.2 "Acceptable alternative designs (such as proprietary systems meeting Appendix F criteria) typically include design features intended to allow acceptable performance with a smaller footprint and have undergone field scale testing to evaluate performance and required O&M frequency."

The infiltration onsite is so small that retention in any appreciable amounts will be very little. The site does include a swale that will retain water but due to the infiltration limitation it can only hold approximately 2 inches within the drawdown allowable time. Since the site has limited infiltration capabilities it is infeasible to have large areas of water ponding since the area will not drain down in the allowed drawdown timeframe. Hydromodification will be analyzed within the same system as the BMP.

Form I-6 Page 3 of X (Copy as many as needed) , Form Template Date: August 31, 2015				
Structural BMP Summary Information				
	on for each individual proposed structural BMP)			
Structural BMP ID No.				
Construction Plan Sheet No.				
Type of structural BMP:				
Retention by harvest and use (HU-1)				
Retention by infiltration basin (INF-1)				
Retention by bioretention (INF-2)				
Retention by permeable pavement (INF-3)				
Partial retention by biofiltration with partial retention (PR-1)				
Biofiltration (BF-1) Biofiltration with Nutriant Sansitive Media Design	(RF 2)			
Biofiltration with Nutrient Sensitive Media Design ☑ Proprietary Biofiltration (BF-3) meeting all require				
Flow-thru treatment control with prior lawful app				
BMP type/description in discussion section below)				
Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves				
in discussion section below)				
Flow-thru treatment control with alternative compliance (provide BMP type/description in discussion				
section below)				
Detention pond or vault for hydromodification management				
Other (describe in discussion section below)				
Purpose:				
Pollutant control only Hydromodification control only				
Addromodification control only Combined pollutant control and hydromodification control				
Pre-treatment/forebay for another structural BMP				
Other (describe in discussion section below)				
Who will certify construction of this BMP?				
Provide name and contact information for the				
party responsible to sign BMP verification forms if				
required by the [City Engineer] (See Section 1.12 of				
the BMP Design Manual)				
Who will be the final owner of this BMP?	All Right Storage Inc.			
Who will maintain this BMP into perpetuity?	All Right Storage Inc.			
What is the funding mechanism for maintenance?	Private			

Form I-6 Page 4 of X (Copy as many as needed) , Form Template Date: August 31, 2015

Structural BMP ID No.

Construction Plan Sheet No.

Discussion (as needed):

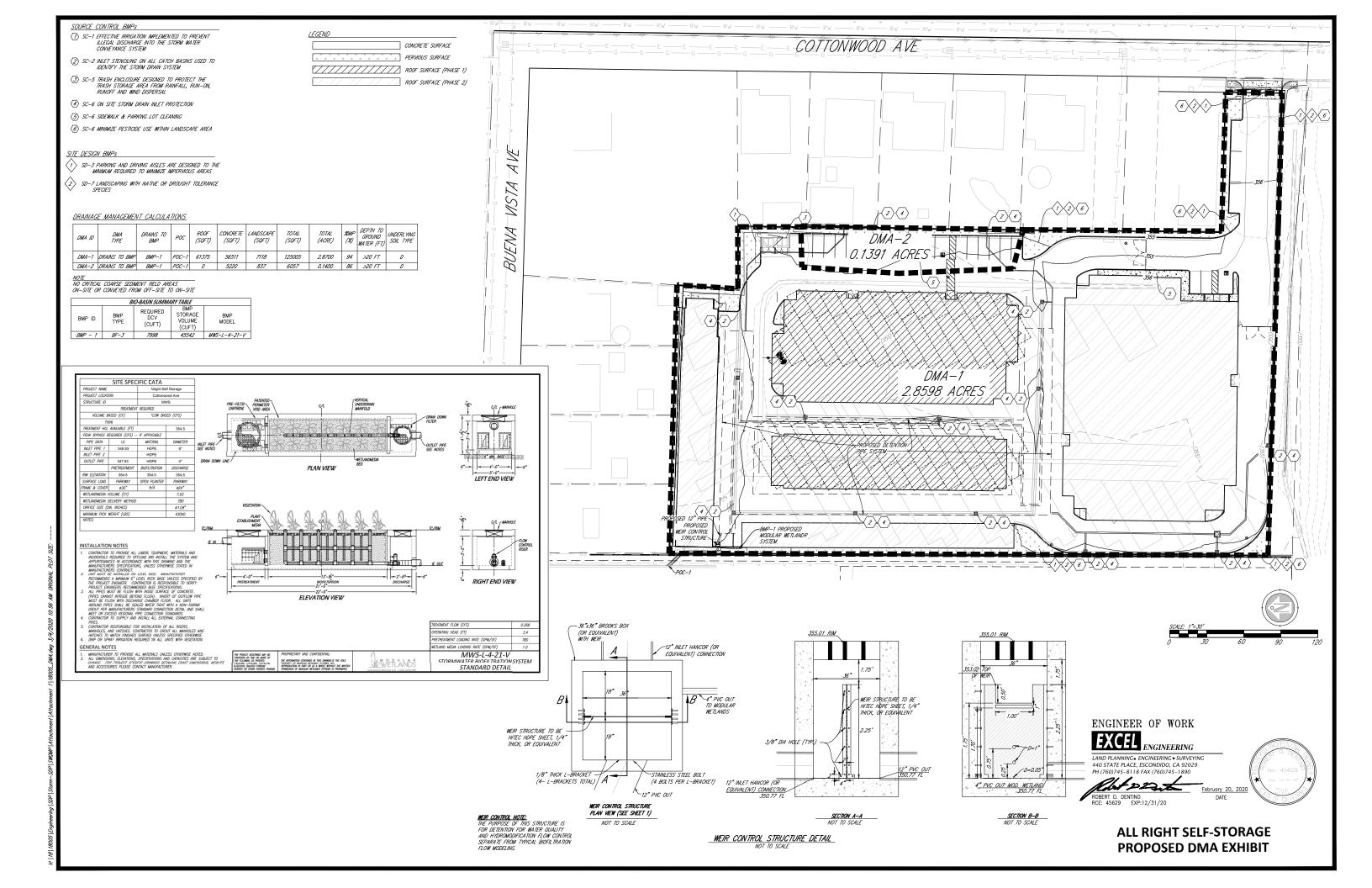
ATTACHMENT 1 BACKUP FOR PDP POLLUTANT CONTROL BMPS

This is the cover sheet for Attachment 1.

Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist
Attachment 1a	DMA Exhibit (Required) See DMA Exhibit Checklist on the back of this Attachment cover sheet.	☑ Included
Attachment 1b	Tabular Summary of DMAs Showing DMA ID matching DMA Exhibit, DMA Area, and DMA Type (Required)* *Provide table in this Attachment OR on DMA Exhibit in Attachment 1a	 Included on DMA Exhibit in Attachment 1a Included as Attachment 1b, separate from DMA Exhibit
Attachment 1c	Form I-7, Harvest and Use Feasibility Screening Checklist (Required unless the entire project will use infiltration BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form I-7.	 ✓ Included □ Not included because the entire project will use infiltration BMPs
Attachment 1d	Form I-8, Categorization of Infiltration Feasibility Condition (Required unless the project will use harvest and use BMPs) Refer to Appendices C and D of the BMP Design Manual to complete Form I-8.	 Included Not included because the entire project will use harvest and use BMPs
Attachment 1e	Pollutant Control BMP Design Worksheets / Calculations (Required) Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines	☑ Included

Use this checklist to ensure the required information has been included on the DMA Exhibit:


The DMA Exhibit must identify:

- ☑ Underlying hydrologic soil group
- ☑ Approximate depth to groundwater
- ☑ Existing natural hydrologic features (watercourses, seeps, springs, wetlands)
- ☑ Critical coarse sediment yield areas to be protected
- ☑ Existing topography and impervious areas
- ☑ Existing and proposed site drainage network and connections to drainage offsite
- \blacksquare Proposed demolition
- ☑ Proposed grading
- ☑ Proposed impervious features
- ☑ Proposed design features and surface treatments used to minimize imperviousness
- ☑ Drainage management area (DMA) boundaries, DMA ID numbers, and DMA areas (square footage or

acreage), and DMA type (i.e., drains to BMP, self-retaining, or self-mitigating)

- ☑ Potential pollutant source areas and corresponding required source controls (see Chapter 4,
- Appendix E.1, and Form I-3B)
- ☑ Structural BMPs (identify location, type of BMP, and size/detail)

ATTACHMENT 1a

ATTACHMENT 1b

	Design Capture Volume	Worksheet B-2.1							
1	85th percentile 24-hr storm depth from Figure B.1-1	d=	0.58	0.58	inches				
2	Area tributary to BMP (s)	A=	2.86	0.14	Acres				
3	Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)	C=	0.85	0.73	unitless				
4					cubic-feet				
5	Rain barrels volume reduction				cubic-feet				
6	Calculate DCV= (3630 x C x d x A) - TCV -RCV	DCV=	5,118.00	214.00	cubic-feet				
	1.5*DCV=Volume needed	(1.5*51	18) = 7677	(1.5*214) = 321	cubic-feet				

ATTACHMENT 1c

Appendix I: Forms and Checklists

Harvest and Use Feasibilit	t y Checklist :	Form I-7
1. Is there a demand for harvested wat the wet season?	ater (check all that apply) at the project	t site that is reliably present during
✓ Toilet and urinal flushing		
✓ Landscape irrigation Other:		
	nticipated average wet season demand ns for toilet/urinal flushing and landsc	*
Flushing: (371 employees)x(9.3 gal/e	emp) = 3,450 gallons (3,450 gal)(1	1.5 days)/(7.48 gal/cu. ft.)=692 cu. ft.
Irrigation: 36-hr Mod. Water per Tab	ble B.3-3 = (1,470 gal days/acre)(0.60a	cres)/(7.48 gal/cu feet) = 1651 cu ft.
Total Demand = $2,343$ cu. ft.		
3. Calculate the DCV using workshee	et B.2-1.	
DCV = <u>13,138</u> (cubic feet)		
3a. Is the 36 hour demand greater than or equal to the DCV? Yes / No	3b. Is the 36 hour demand greater th 0.25DCV but less than the full DCV Yes / No	
⇒	\Rightarrow	Û
Harvest and use appears to be feasible. Conduct more detailed evaluation and sizing calculations to confirm that DCV can be used at an adequate rate to meet drawdown criteria.	Harvest and use may be feasible. Conduct more detailed evaluation an sizing calculations to determine feasibility. Harvest and use may only able to be used for a portion of the storage may need upsized to meet long term capture ta while draining in longer than 36 hour	be ite, to be rgets
Is harvest and use feasible based on t	further evaluation?	
Yes, refer to Appendix E to select	and size harvest and use BMPs.	
✓ No, select alternate BMPs.		

ATTACHMENT 1d

	gorization of Infiltration Feasibility Condition	Form 1-8					
Would	Full Infiltration Feasibility Screening Criteria infiltration of the full design volume be feasible from a physical pers uences that cannot be reasonably mitigated?	pective withou	t any undesirable				
Criteria	Screening Question	Yes	No				
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		x				
ite in acc vas cond Please re comprehe	a a minimum factor of safety of 2 applied at both locations. Simple open pit testing w cordance with Appendix D of the City of Santee BMP design manual. In addition, a fucted in accordance with Appendix C.2. fer to our report "Update Geotechnical Investigation and Infiltration Testing", dated ansive evaluation and investigation conducted, simple open pit test rates and simple ns and maps representative of the study.	comprehensive ev March 28, 2018 fo	valuation of the site				
	rize findings of studies; provide reference to studies, calculations, maps, o on of study/data source applicability.	data sources, etc	. Provide narrativ				
		data sources, etc	. Provide narrativ X				
2 Provide Our infill factor of applicab Please r compret	 on of study/data source applicability. Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. basis: tration test results on the site revealed inifiltration rates ranging from 0.000 to 0.031 safety of 2 applied. Infiltration rates greater than 0.5 inches per hour were not encoded. 	inches per hour w buntered, therefore	X /ith a minimum a, the question is no for details of the				

"X" filled in by Excel Engineering

	Form I-8 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		x
actor of s applicable Please rel comprehe calculation	ttion test results on the site revealed inifiltration rates ranging from 0.000 to 0.031 afety of 2 applied. Infiltration rates greater than 0.5 inches per hour were not enco	untered, therefore March 28, 2018 t e open pit rate to	e, the question is not for details of the infiltration rate
	n of study/data source applicability.	lata sources, cu	
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		x
Provide			
Questic	n to be answered by the design engineer.		
	ze findings of studies; provide reference to studies, calculations, maps, o n of study/data source applicability.	data sources, etc	c. Provide narrativ
Part 1 Result *	If all answers to rows 1 - 4 are " Yes " a full infiltration design is potentiall feasibility screening category is Full Infiltration If any answer from row 1-4 is " No ", infiltration may be possible to some would not generally be feasible or desirable to achieve a "full infiltration" Proceed to Part 2	extent but	NO

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

"X" filled in by Excel Engineering

Part 2 – P	Partial Infiltration vs. No Infiltration Feasibility Screening Criteria		
	nfiltration of water in any appreciable amount be physically ences that cannot be reasonably mitigated?	feasible without	any negative
Criteria	Screening Question	Yes	No
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		x
at the soil ease refer imprehens loulations	ety of 2 applied. Based on our infiltration test rates and limited geotechnical invest and geologic conditions do not allow for appreciable infiltration rates. to our report "Update Geotechnical Investigation and Infiltration Testing", dated I sive evaluation and investigation conducted, simple open pit test rates and simple and maps representative of the study.	March 28, 2018 for de open pit rate to infiltr lata sources, etc. P	etails of the ration rate
	of study/data source applicability and why it was not reasible to intigate	low infiltration rate	s.
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	low infiltration rate	×.
6 Provide ba Our infiltra factor of sa not applicas Please ref comprehe	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	inches per hour with st location, therefore, d March 28, 2018 for	a minimum the question is details of the

"X" filled in by Excel Engineering

	rom 1-8 rage 4 01 4		
Criteria	Screening Question	Yes	No
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		Х
Provide b	asis:		
factor of sa not applica Please refe compreher	nfety of 2 applied. Appreciable infiltration rates were not encountered at either test location ble. er to our report "Update Geotechnical Investigation and Infiltration Testing", dated March 2 nsive evaluation and investigation conducted, simple open pit test rates and simple open p	n, therefore, the 28, 2018 for de	e question is tails of the
	Can infiltration be allowed without violating downstream water		
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		X
8 Provide b	rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		X
8 Provide b	rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		X
8 Provide b	rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		X
8 Provide b Question Summariz	rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. asis: to be answered by the design engineer.		wide narrati
8 Provide b Question Summariz	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. wide basis:	wide narrati	

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings "X" filled in by Excel Engineering

i Geotechnical Exploration, Inc.

SOIL AND FOUNDATION ENGINEERING . GROUNDWATER . ENGINEERING GEOLOGY

28 March 2018

All Right Storage, Inc. 11300 Sorrento Valley Road, Suite 250 San Diego, CA 92121 Attn: Mr. Olivier Andreu Job No. 14-10558.1

Subject: Update Geotechnical Investigation and Infiltration Testing Cottonwood Self Storage Project Northwest of State Route 52 and Cottonwood Ave Santee, California APN Nos. 383-112-05-00 and 28-00

Dear Mr. Andreu:

In accordance with your request, *Geotechnical Exploration, Inc.* has performed an update geotechnical investigation and infiltration testing for the subject project (see Vicinity Map, Figure No. I). We previously performed a preliminary geotechnical investigation for a previously planned project at the site, the results of which were presented in our report dated July 10, 2014. It is our understanding, based on preliminary plans provided to us, that the presently proposed development of the currently vacant 6-acre site will include 3 single-story and 2 three-story self storage buildings with pavements and other associated improvements (see Figure Nos. II and III). The objectives of this update investigation were to evaluate the depth of existing undocumented fill soils along the western and northern property boundaries and to provide supplemental grading and foundation recommendations as needed. The objective of the infiltration testing was to evaluate the subsurface soil infiltration rates in an area that may be used for an infiltration basin.

7420 TRADE STREET SAN DIEGO, CA. 92121 (858) 549-7222 FAX: (858) 549-1604 EMAIL: geotech@gei-sd.com

SCOPE OF SERVICES

Based on the above information, the update geotechnical investigation and infiltration testing consisted of the following:

- 1. A field subsurface exploration program which consisted of the excavation of six exploratory test pits along the western and northern property boundaries and near the northeast corner of the property to evaluate the depth of existing undocumented fills that require removal and recompaction. The work was performed under the direction of our geologist who supervised, logged and sampled the excavations. In addition, two exploratory excavations were made to perform infiltration testing in a potential area for a storm water infiltration basin. The proposed infiltration testing was conducted in accordance with the City of Santee BMP Design Manual, Appendix C (Geotechnical and Groundwater Investigation Requirements) and Appendix D (Approved Infiltration Rate Assessment Methods).
- Laboratory testing of samples obtained from the excavations to assist in classification of the materials and to help evaluate the index, strength, compressibility, and expansion properties of the soils encountered.
- 3. Geotechnical engineering analysis and evaluation of the resulting field and laboratory test data.
- Preparation of this update geotechnical investigation report presenting the results of our study along with updated design and construction recommendations for the site grading, building foundations, and slab on-

grade construction as warranted. In addition, our infiltration rate findings are provided.

FIELD INVESTIGATION

The field investigation consisted of a surface reconnaissance and a subsurface exploration program using a rubber tired backhoe to investigate and sample the subsurface soils. On March 7, 2018, five exploratory test pits were excavated along the western and northern property boundaries where single-story buildings are planned close to those boundaries, and one exploratory test pit was excavated near the northeast corner of the property where a boring for the previous investigation (Boring B-2) had encountered debris-laden fill to a depth of about 8 feet. The test pits were excavated to a maximum depth of 5 feet. The soils encountered in the exploratory excavations were continuously logged in the field by our geologist and described in accordance with the Unified Soil Classification System (refer to Appendix A). The approximate locations of the exploratory excavations are shown on the Plot Plan, Figure No. IV.

In addition, two exploratory excavations were also made on March 7, 2018, to a maximum depth of $6\frac{1}{2}$ feet in order to perform infiltration testing.

Representative samples were obtained from the exploratory excavations at selected depths appropriate to the investigation. All samples were returned to our laboratory for evaluation and testing.

Exploratory excavation logs have been prepared on the basis of our observations and laboratory test results. Logs of the exploratory test pits and infiltration testing excavations are attached as Figure Nos. Va-h.

SOIL DESCRIPTION

Existing fill soils consisting of loose to medium dense clayey sands were encountered in exploratory Test Pits 1 through 5 to depths of 1 to 3 feet. In Test Pit 6, the fill soils extended to a depth of 4 feet. Existing fill soils, consisting of loose to medium dense clayey sands were also encountered in the infiltration excavations to a depth of 2 feet. The fill soils encountered in Test Pits 1 through 3 appear to be retaining wall backfill along the western property boundary and it appears that the retaining wall is founded on older alluvial soils. The materials encountered beneath the fill soils in all of the exploratory excavations consisted of older alluvial materials, comprised of dense silty and clayey sands, to the maximum depth explored of 6½ feet.

The exploratory test pit and infiltration excavation logs and related information depict subsurface conditions only at the specific locations shown on the site plan and on the particular date designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at these locations. Also, the passage of time may result in changes in the subsurface conditions due to environmental changes.

CONCLUSIONS AND RECOMMENDATIONS

Based on review of our previous investigation at the site, as well as the presently proposed development plans, it is our opinion that the conclusions and recommendations presented in our previous preliminary geotechnical investigation report dated July 10, 2014, remain applicable for the proposed site development with the following exceptions.

- <u>Building Pad Grading</u>: We recommend that the grading for the building pads consist of removal and recompaction of the existing fill soils or to a depth of 3 feet below the pad subgrade levels, whichever is deeper.
- <u>Building Foundations</u>: It is our understanding that the proposed buildings will be supported on mat foundations rather than shallow footing foundations. We recommend that a subgrade modulus (K_{v1}) of 160 tons per cubic foot be used for the mat designs.
- 3. <u>Seismic Design</u>: The seismic design parameters presented in our 2014 report cited the 2013 CBC and the presently proposed project will be constructed in accordance with the 2016 CBC. In that the 2013 and 2016 CBC both utilize ASCE 7-10 for the determination of seismic design parameters, the previously presented parameters remain applicable.

INFILTRATION TESTING

We performed simple open pit falling head testing at two locations on the property at depths of 78 inches at INF-1, and 54 inches at INF-2. Falling head measurements were collected at regular time intervals for a period of 3 hours. The tests were performed per the requirements of the City of Santee Storm Water Standards, BMP Design Manual, in accordance with Appendix D. Both tests were performed in the older alluvial materials underlying the site at shallow depths. Laboratory test results at infiltration test locations INF-1 and INF-2, indicate 42 percent and 56 percent of the soils passed the #200 sieve, respectively.

Testing at location INF-1 revealed a falling head rate of 480 minutes/inch. The testing at INF-2 showed no measurable head drop in the last hour. The simple

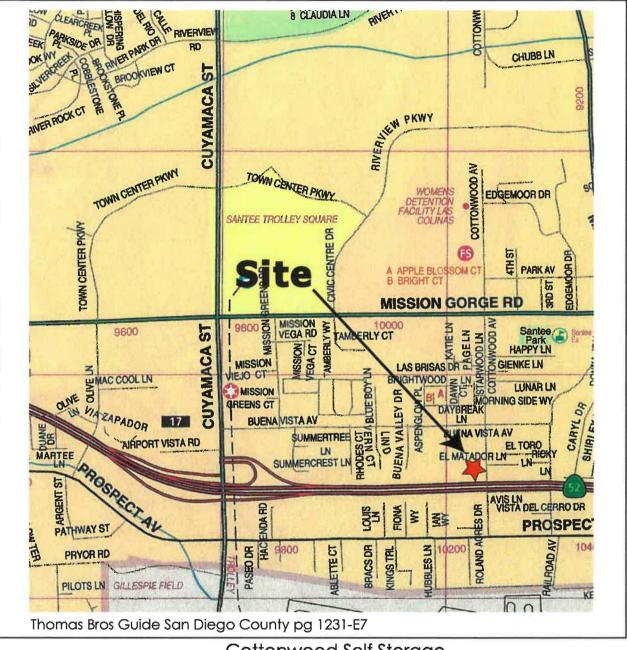
open pit falling head test rate results for INF-1 and INF-2 have been converted to infiltration rates using the Porchet Method and indicate infiltration rates of 0.062and 0.000-inch/hour, respectively, without a factor of safety applied. Refer to Appendix A for the simple open pit test rate results and simple open pit to infiltration rate calculations. Review of the USDA Web Soil Survey Map indicates the site has been assigned to hydrologic soil group (HSG) D. Refer to Appendix B for USDA Web Soil Survey Map.

Based on the results of our simple open pit falling head testing and evaluation of the infiltration rates, it is our professional opinion that the site is not suitable for infiltration BMPs. We also recommend that any bio remediation features be lined with an impermeable liner and drained to the storm drain system.

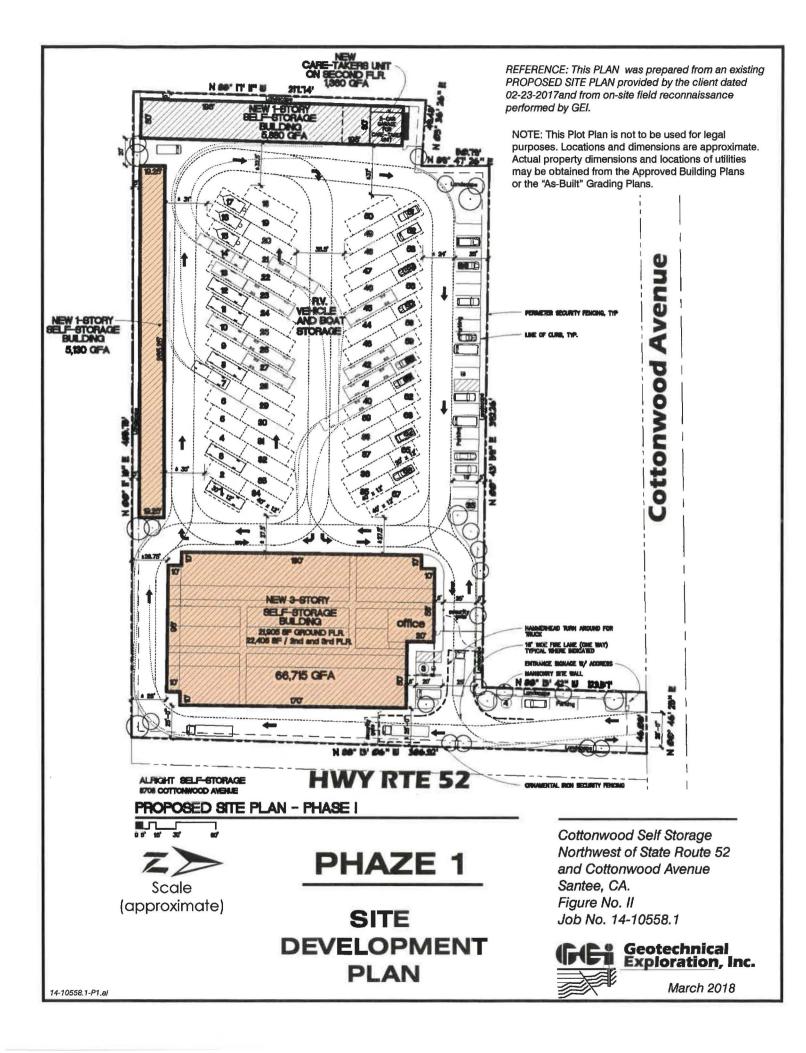
Our services consist of professional opinions and recommendations made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied.

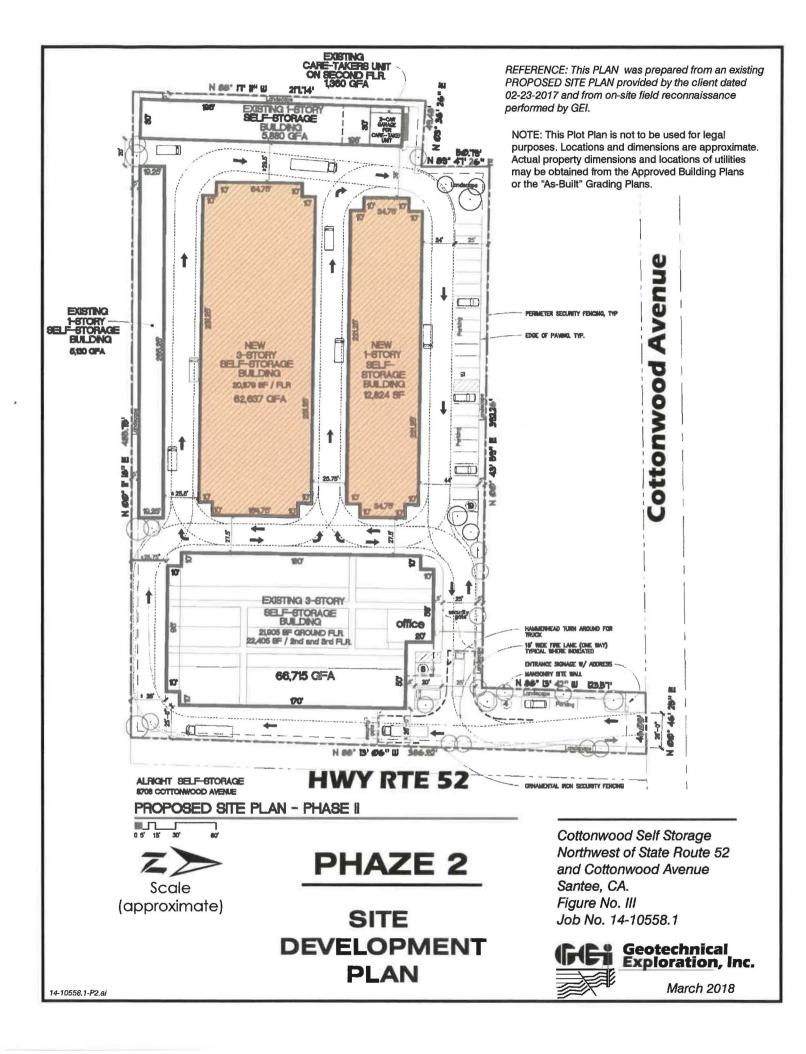
This opportunity to be of service is sincerely appreciated. If you have any questions concerning this matter, please contact our office. Reference to our **Job No. 14-10558.1** will help to expedite a response to your inquiries.

Respectfully submitted,


GEOTECHNICAL EXPLORATION, INC.

Wm. D. Hespeler, G.E. 396 Senior Geotechnical Engineer


VICINITY MAP



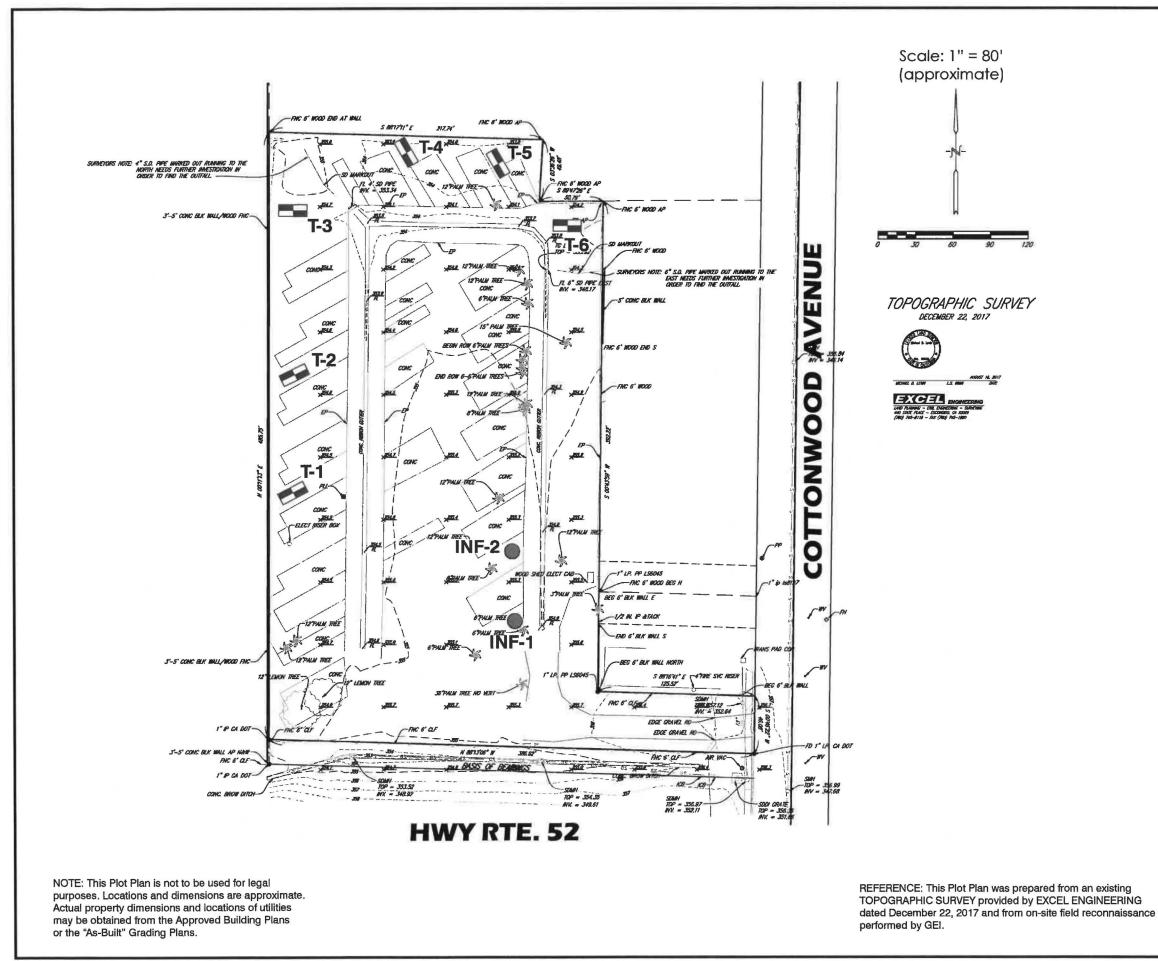

Cottonwood Self Storage Northwest of State Route 52 and Cottonwood Avenue Santee, CA.

Figure No. I Job No. 14-10558.1

14-10558.1-P-III.ai

LEGEND

Approximate Location of Exploratory Test Pit

Approximate Location of Infiltration Test Excavation

SITE PLAN

Cottonwood Self Storage Northwest of State Route 22 and Cottonwood Avenue Santee, CA. Figure No. IV Job No. 14-10558.1

EQUIP		r-tir	e Backhoe	DIMENSION & TYPE OF EXC 12' X 2' X 4' Tren		1			LOGGED					
SURFA	IRFACE ELEVATION GI ± 354.5' Mean Sea Level			GROUNDWATER/ SEEPAGE	ROUNDWATER/ SEEPAGE DEPTH Not Encountered				LOGGED BY JAB					
			FIELD DESCF AND	PTION			>		~		(%)			
feet)			CLASSIFIC/			ШЩ ШШ	E DR' (pcf)	UM URE (%	M DR	(; ; D	+ '	Ę.	O.D	
DEPTH (feet)	SYMBOL	SAMPLE	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL.	BLOW COUNTS/FT.	SAMPLE O.D.	
1-			CLAYEY SAND , fine- to media glass and concrete debris. Lo dense. Moist. Dark red-brown. FILL (Qaf)	ose to medium	SC									
2-			SILTY SAND , fine- to medium dense. Slightly moist. Light bro	own.	SM									
3			CLAYEY SAND , fine- to media Dense. Moist. Dark red-brown OLDER ALLUVIU		SC									
4			Bottom @ 4'											
				JOB NAME										
	_		RCHED WATER TABLE ILK BAG SAMPLE	Cottonwood Se SITE LOCATION						The second s			-	
	1	IN-	PLACE SAMPLE	NW of SR 52 an	d Cott			-	tee, CA					
		MC	DIFIED CALIFORNIA SAMPLE			REVI	EWED BY	JAE	3/WDH	LOG	No.			
	s	NU	ICLEAR FIELD DENSITY TEST	14-10558.1		G	Fi g	eotech	nical Ion, Inc.		Τ.	-1		
			ANDARD PENETRATION TES	FIGURE NUMBER		$ \Rightarrow $								

EQUIPMENT		DIMENSION & TYPE OF EXCAVATIO	DATE	LOGGED								
Rubber-tir	e Backhoe	12' X 2' X 4' Trench			3	-7-18						
SURFACE ELEVAT	ION	GROUNDWATER/ SEEPAGE DEPTH			LOGGED BY							
± 354.5' M	ean Sea Level	Not Encountered				JAB						
DEPTH (feet) SYMBOL SAMPLE	FIELD DESCR AND CLASSIFICA DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL (%)	BLOW COUNTS/FT.	SAMPLE O.D. (INCHES)		
	CLAYEY SAND , fine- to mediu glass, brick, tile and concrete of medium dense. Moist. Dark re FILL (Qaf) @2'- electric, water and sew trench. CLAYEY SAND , fine- to mediu Dense. Slightly moist to moist. OLDER ALLUVIU	rer throughout Im-grained. Dark red-brown.										
T PE	RCHED WATER TABLE	JOB NAME Cottonwood Self Sto	rage P	roject								
BU	ILK BAG SAMPLE	SITE LOCATION NW of SR 52 and Cot	tonwo	od Ave	San	tee, CA						
1 IN-	PLACE SAMPLE	JOB NUMBER	-	IEWED BY			LOG	No				
📕 МС	DDIFIED CALIFORNIA SAMPLE		REV		JA	B/WDH			~			
S NU	CLEAR FIELD DENSITY TEST	FIGURE NUMBER	<u>(F</u>	Fi g	eotech xplorat	nicai ion, inc.		Т-	2			
							-		And a local division of the local division o			

EQUIPMENT		DIMENSION & TYPE OF EXC	AVATION	1		DATE	LOGGED				_
Rubber-t	ire Backhoe	12' X 2' X 4' Tren	ch			3	-7-18				_
SURFACE ELEV		GROUNDWATER/ SEEPAGE	GROUNDWATER/ SEEPAGE DEPTH			LOGGED BY					
± 354.5' I	lean Sea Level	Not Encountered				J	AB				
(eet)	FIELD DESC AND CLASSIFIC			E RE (%)	E DRY (pcf)	И RE (%)	M DRY (pcf)	(.C.)	(%) -	/FT.	O.D.
DEPTH (feet) SYMBOL SAMPLE	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL.	BLOW COUNTS/FT.	SAMPLE O.D.
2 3 3	CLAYEY SAND , fine- to medi roots. Loose to medium dens red-brown. FILL (Qaf electrical conduit on west en CLAYEY SAND , fine- to medi caliche. Dense. Slightly moist red-brown. OLDER ALLUVIU	se. Moist. Dark nd of trench. um-grained, some t to moist. Dark	SC								
4	Bottom @ 4'										
B I M	ERCHED WATER TABLE ULK BAG SAMPLE I-PLACE SAMPLE ODIFIED CALIFORNIA SAMPLI UCLEAR FIELD DENSITY TES	14-10558.1		onwo	od Ave	JAE	tee, CA 3/WDH	LOG		.3	

	PMENT			DIMENSION & TYPE OF EXCA		l			LOGGED								
			e Backhoe	10' X 2' X 4' Trenc					-7-18								
	ACE EL			GROUNDWATER/ SEEPAGE D	DEPTH				ED BY								
±	354'	Mea	n Sea Level	Not Encountered	Not Encountered					JAB							
eet)			FIELD DESCF AND CLASSIFIC/			E (%)	E DRY (pcf)	A RE (%)	A DRY (pcf)	('G'	(%)	FT.	O.D.				
DEPTH (feet)	SYMBOL	SAMPLE	DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL.	BLOW COUNTS/FT.	SAMPLE O.D.				
1 2 3 4 5			CLAYEY SAND , fine- to mediu red-brown. FILL (Qaf) CLAYEY SAND , fine- to mediu caliche. Dense. Moist. Dark re OLDER ALLUVIU gas/water line @ 3.5' on nor Bottom @ 4'	um-grained, some d-brown.	SC												
-																	
	T	PE	RCHED WATER TABLE	JOB NAME Cottonwood Self	f Stor	age P	roject										
	\boxtimes	вU	LK BAG SAMPLE	SITE LOCATION				_									
	1	IN-	PLACE SAMPLE	NW of SR 52 and	I Cott	1			tee, CA								
		MC	DIFIED CALIFORNIA SAMPLE			REVI	EWED BY	JAE	B/WDH	LOG	No.	9121					
	s		ICLEAR FIELD DENSITY TEST	14-10558.1		GA	Fi g	eotech	nicai Ion, Inc.		Τ.	4					
			ANDARD PENETRATION TES					φιστάτ	ion, inc.			T					
		51		Vd	_		2						_				

EQUIP	MENT			DIMENSION & TYPE OF EXCA	VATION	4		DATE	LOGGED							
R	ubbe	-tir	e Backhoe	11' X 2' X 3' Trenc	h			3	-7-18							
SURF/	ACE ELI	EVAT	NON	GROUNDWATER/ SEEPAGE	DEPTH			LOGO	ED BY							
±	354' I	/lea	an Sea Level	Not Encountered					JAB							
	IOBMAS	SAMPLE	An Sea Level FIELD DESCF AND CLASSIFIC/ DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color) CLAYEY SAND , fine- to medit Loose to medium dense. Mois FILL (Qaf) CLAYEY SAND , fine- to medit pinhole voids, some caliche. I to moist. Dark red-brown. OLDER ALLUVIU electric line @ 2.5' on south Bottom @ 3'	RIPTION ATION um-grained. t. Dark red-brown. um-grained, some Dense. Slightly moist M (Qoa)	SC SC	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	AAXIMUM DRY DENSITY (pct)	DENSITY (% of M.D.D.)	EXPAN. + (%) CONSOL (%)	BLOW COUNTS/FT.	SAMPLE O.D.			
5	$\overline{\boxtimes}$	BU IN- MC	RCHED WATER TABLE ILK BAG SAMPLE PLACE SAMPLE DDIFIED CALIFORNIA SAMPLE JCLEAR FIELD DENSITY TEST	14-10558.1		onwo	od Ave	JAE	tee, CA 3/WDH nical ion, Inc	LOG	_	-5				
			ANDARD PENETRATION TES	FIGURE NUMBER				cplorat	ton, Inc.			-5				

EQUIP	MENT			DIMENSION & TYPE OF EXCA	VATION	DIMENSION & TYPE OF EXCAVATION						DATE LOGGED					
Ru	lppe	r-tir	e Backhoe	17' X 2' X 5' Trenc	h			3-7-18									
SURFA	CE ELI	EVAT	TION	GROUNDWATER/ SEEPAGE	DEPTH			LOGGED BY									
±;	354' I	Mea	an Sea Level	Not Encountered	Not Encountered					JAB							
DEPTH (feet)	SYMBOL	SAMPLE	FIELD DESCF AND CLASSIFIC/ DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color)		U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + (%) CONSOL (%)	BLOW COUNTS/FT.	SAMPLE O.D.				
			ASPHALT CONCRETE PAVEN				02	20				0,7 0					
- - - 1- - -			CLAYEY SAND , fine- to media gravel, some brick and metal j dense. Moist. Dark red-brown. FILL (Qaf)	pipe debris. Medium	SC												
2		X															
3	200 00 00 00 00 00 00 00 00 00 00 00 00				SC												
5			CLAYEY SAND , fine- to media Dense. Slightly moist to moist. OLDER ALLUVIU	Red-brown.	d-brown.												
6			Bottom @ 5'														
		PE	RCHED WATER TABLE	JOB NAME Cottonwood Sel	f Stor	age P	roject										
	\boxtimes	BU	ILK BAG SAMPLE	SITE LOCATION NW of SR 52 and			_	Car	too CA								
			PLACE SAMPLE	JOB NUMBER			EWED BY	-		LOG	No.						
		MC	DDIFIED CALIFORNIA SAMPLE	E 14-10558.1					3/WDH	-		0					
			ICLEAR FIELD DENSITY TEST	FIGURE NUMBER				eotech kplorat	nical Ion, Inc.		T-	0					
		ST	ANDARD PENETRATION TES	T Vf		*											

QUIPM	IENT			DIMENSION & TYPE OF EXC	AVATION	1		DATE	LOGGED				
Ru	bbe	r-tir	re Backhoe	12' X 4' X 6.5' Tre	2' X 4' X 6.5' Trench 3-7-18								
SURFAC	CE ELI	EVAT	TION	GROUNDWATER/ SEEPAGE DEPTH LOGGED BY									
± 3	55' I	Nea	an Sea Level	Not Encountered	1			JAB					
feet)			FIELD DESCF AND CLASSIFIC/			E RE (%)	E DRY r (pcf)	M RE (%)	M DRY r' (pcf)	() () ()	(%) +	%FT.	O.D.
Image: Classification Image: Classification					U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + CONSOL.	BLOW COUNTS/FT.	SAMPLE O.D.
ملالله	CLAYEY SAND , fine- to medium-grained, trace asphalt and concrete debris. Medium dense. Slightly moist to moist. Dark red-brown.												
1			FILL (Qaf))									
electric lines exposed in northwest corner of trench.													
2 sewer line exposed in southwest corner of trench. CLAYEY SAND , fine- to medium-grained. Dense. Slightly moist to moist. Red-brown.					SC								
3			OLDER ALLUVIU	M (Qoa)									

4										
5										
6	 Infiltration test conducted from 6 1 42% passing #200 sieve. 									
7	Bottom @ 6.5'	vm @ 6.5'								
-										
V	PERCHED WATER TABLE	JOB NAME Cottonwood Self	Stora	age Project						
	BULK BAG SAMPLE	SITE LOCATION								
	IN-PLACE SAMPLE	NW of SR 52 and	Cotto	onwood Ave						
		JOB NUMBER		REVIEWED BY						
	NUCLEAR FIELD DENSITY TEST	14-10558.1		(FIEi g						
		FIGURE NUMBER								
	STANDARD PENETRATION TEST	Vg								

EXPLORATION LOG 10558.1 COTTONWOOD.GPJ GEO EXPL.GDT 3/27/18

EQUIPMENT		DIMENSION & TYPE OF EXC	AVATION	1		DATE LOGGED							
Rubber-ti	re Backhoe	12' X 4' X 4' Trend	ch			3-7-18							
SURFACE ELEVA	TION	GROUNDWATER/ SEEPAGE	DEPTH			LOGG	ED BY						
± 355' Me	an Sea Level	Not Encountered				J	AB						
DEPTH (feet) SYMBOL SAMPLE	FIELD DESC ANE CLASSIFIC DESCRIPTION AND REMARKS (Grain size, Density, Moisture, Color))	U.S.C.S.	IN-PLACE MOISTURE (%)	IN-PLACE DRY DENSITY (pcf)	OPTIMUM MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	DENSITY (% of M.D.D.)	EXPAN. + (%) CONSOL (%)	BLOW COUNTS/FT.	SAMPLE O.D. (INCHES)		
	SILTY SAND , fine- to medium Slightly moist. Gray. FILL (Qar CLAYEY SAND , fine- to med asphalt and concrete debris. Slightly moist to moist. Red-b FILL (Qar CLAYEY SAND/ SANDY CLA medium-grained, some mang some pinhole voids, some ca stiff. Slightly moist to moist. D OLDER ALLUVIL Infiltration test conducted from 56% passing #200 sieve. Bottom @ 4'	f) ium-grained, trace Medium dense. rown. f) Y , fine- to ganese staining, liche. Dense/ very Park red-brown. JM (Qoa)	SM SC SC				N O			Ξ.Ο	3		

MNOTTO	PERCHED WATER TABLE	JOB NAME Cottonwood Self Stora	age Project					
ğ	BULK BAG SAMPLE	SITE LOCATION						
10558.	1 IN-PLACE SAMPLE	NW of SR 52 and Cottonwood Ave., Santee, CA						
ğ		JOB NUMBER	REVIEWED BY JAB/WDH	LOG No.				
RATION	S NUCLEAR FIELD DENSITY TEST	14-10558.1 FIGURE NUMBER	Geotechnical Exploration, Inc.	INF-2				
EXPLO	STANDARD PENETRATION TEST	Vh						

APPENDIX A

Simple Open Pit Falling Head Test Sheet

Project Name: Cottonwood Self Storage Project No. 14-10558.1 Date Excavated: 3/7/18 Test Hole No: INF-1 Tested By: JAB Soil Classification: SC/CL Depth of Test Hole: 78" Test Hole Dia: 24"

Initial Time (Minutes)	Final Time (Minutes)	Time interval (minutes)	Initial Water Level (inches)	Final Water Level (inches)	Change in water (inches)	Falling Head Rate (min/inches)
925	1025	60	71.500	71.750	0.250	240.000
1025	1125	60	71.750	71.875	0.125	480.000
1125	1225	60	71.875	72.000	0.125	480.000

Simple Open Pit Falling Head Test Sheet

Project Name: Cottonwood Self Storage Project No. 14-10558.1 Date Excavated: 3/7/18 Test Hole No: INF-2 Tested By: JAB Soil Classification: SC/CL Depth of Test Hole: 54" Test Hole Dia: 24"

Initial Time (Minutes)	Final Time (Minutes)	Time interval (minutes)	Initial Water Level (inches)	Final Water Level (inches)	Change in water (inches)	Falling Head Rate (min/inches)
942	1042	60	47.125	47.375	0.250	240.000
1042	1142	60	47.375	47.500	0.125	480.000
1142	1242	60	47.500	47.500	0.000	#DIV/0!

Simple Open Pit Rate to Infiltration Rate Conversion (Porchet Method)

Project Name: Cottonwood Self Storage Project No. 14-10558.1 Test Hole No: INF-1 Calculated By: JAB Checked By: Test Hole Dia: 24"

Date: 3/19/2018 Date: Depth of Test Hole: 78"

Porchet Corrections

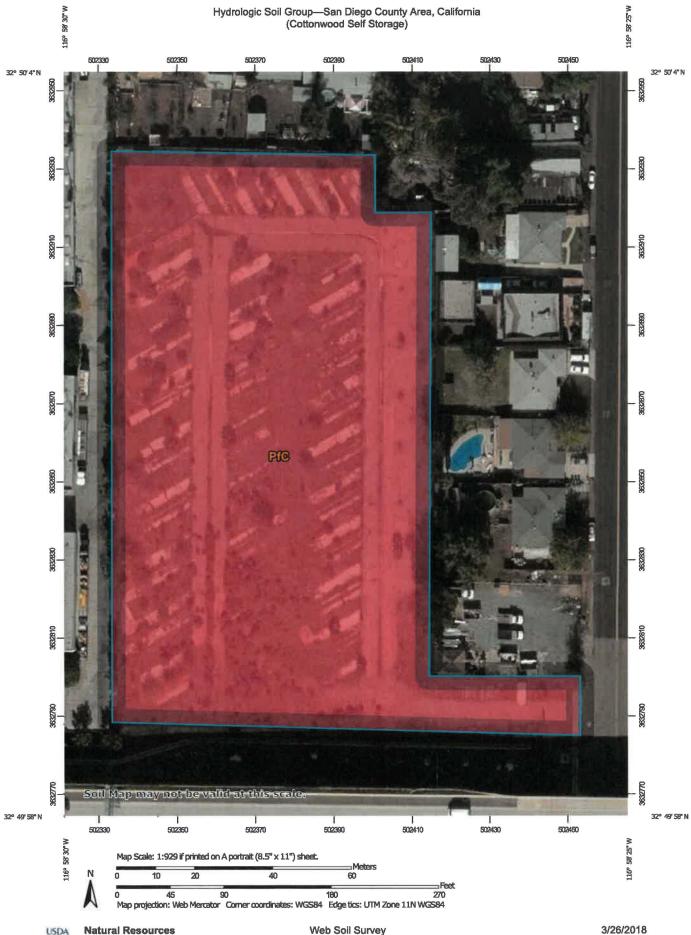
Infiltration rate=((delta h*60r)/(delta t*(r+2 h avg))

Test	EB Depth	Delta T	Water Depth	Water Depth	h 1	h 2	delta h	h avg	r (radius)	<u>delta</u>	delta t*(r+2 h	Infiltration
No.	(inches)	(min)	1 (inches)	2 (inches)	(inches)	(inches)	(inches)	(inches)	(inches)	<u>h*60r</u>	avg)	rate (in/hr)
1	78	60	71.500	71.750	6.500	6.250	0.250	6.375	12	180	1485	0.121
2	78	60	71.750	71.875	6.250	6.125	0.125	6.188	12	90	1462.5	0.062
3	78	60	71.875	72.000	6.125	6.000	0.125	6.063	12	90	1447.5	0.062
4												
5												
6												
7												
8												
9												

Simple Open Pit Rate to Infiltration Rate Conversion (Porchet Method)

Project Name: Cottonwood Self Storage Project No. 14-10558.1 Test Hole No: INF-2 Calculated By: JAB Checked By: Test Hole Dia: 24"

Date: 3/19/2018 Date: Depth of Test Hole: 54"


Porchet Corrections

Infiltration rate=((delta h*60r)/(delta t*(r+2 h avg))

Test	EB Depth	Delta T	Water Depth	Water Depth	h1	h 2	delta h	h avg	r (radius)	<u>delta</u>	delta t*(r+2	Infiltration rate
No.	(inches)	(min)	1 (inches)	2 (inches)	(inches)	(inches)	(inches)	(inches)	(inches)	<u>h*60r</u>	<u>h avg)</u>	(in/hr)
1	54	60	47.125	47.375	6.875	6.625	0.250	6.750	12	180	1530	0.118
2	54	60	47.375	47.500	6.625	6.500	0.125	6.563	12	90	1507.5	0.060
3	54	60	47.500	47.500	6.500	6.500	0.000	6.500	12	0	1500	0.000
4												
5												
6												
7												
8												
9												

APPENDIX B

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Area of interest (AOI) C The soil surveys that comprise your AOI were main to the sole of
Aerial Photography Albers equal-area conic projection, should be us accurate calculations of distance or area are red accurate calculations of distance or area are red or the version date(s) listed below. B B/D C Soil Survey Area: San Diego County Area, Ca Survey Area Data: Version 12, Sep 13, 2017 C/D Soil map units are labeled (as space allows) for 1:50,000 or larger. D Date(s) aerial images were photographed: Der 2015 Soil Rating Points Date(s) aerial images were photographed: Der 2015 A/D The orthophoto or other base map on which the imagery displayed on these maps. As a result, s shifting of map unit boundaries may be evident.

3/26/2018 Page 2 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
PfC	Placentia sandy loam, thick surface, 2 to 9 percent slo pes	D	3.0	100.0%
Totals for Area of Inter	rest	3.0	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher

ATTACHMENT 1e

	Design Capture Volume	Worksheet B-2.1				
1	85th percentile 24-hr storm depth from Figure B.1-1	d=	0.58	0.58	inches	
2	Area tributary to BMP (s)	A=	2.86	0.14	Acres	
3	Area weighted runoff factor (estimate using Appendix B.1.1 and B.2.1)	C=	0.85	0.73	unitless	
4	Street trees volume reduction	TCV=			cubic-feet	
5	Rain barrels volume reduction	RCV=			cubic-feet	
6	Calculate DCV= (3630 x C x d x A) - TCV -RCV	DCV=	5,118.00	214.00	cubic-feet	
	1.5*DCV=Volume needed	(1.5*51	18) = 7677	(1.5*214) = 321	cubic-feet	

	#	Description	ii	Units
	1	Drainage Basin ID or Name	DMA-2	unitless
	2	85th Percentile Rainfall Depth	0.58	inches
	3	Predominant NRCS Soil Type Within BMP Location	D	unitless
Basic Analysis	4	Is proposed BMP location Restricted or Unrestricted for Infiltration Activities?	Unrestricted	unitless
	5	Nature of Restriction	n/a	unitless
	6	Do Minimum Retention Requirements Apply to this Project?	Yes	yes/no
	7	Are Habitable Structures Greater than 9 Stories Proposed?	No	yes/no
Advanced	8	Has Geotechnical Engineer Performed an Infiltration Analysis?	Yes	yes/no
Analysis	9	Design Infiltration Rate Recommended by Geotechnical Engineer	0.062	in/hr
	10	Design Infiltration Rate Used To Determine Retention Requirements	0.062	in/hr
Result	11	Percent of Average Annual Runoff that Must be Retained within DMA	16.6%	percentage
Kesuit	12	Fraction of DCV Requiring Retention	0.11	ratio
	13	Required Retention Volume	24	cubic-feet
No Warning Mes	ssage	3		

Automated Worksheet B.2: Retention Requirements (V2.0)

April 20th, 2016

Project: All Related

Subject: MWS Linear BMP Classification Per San Diego Manual

To Whom It May Concern:

It is the intention of this document to use the MWS Linear as a biofiltration BMP. Based upon definitions of Biofiltration as found in Section 2.2.1 and Appendix F of the manual the MWS Linear meets the criteria to be classified as biofiltration and therefore is not flow through treatment and thus does not trigger the need for alternative compliance. The MWS Linear has GULD approval for basic, phosphorus and enhanced treatment under the TAPE approval. The system is certified under the TAPE approval at a loading rate of 1 gpm/sq ft for all three pollutant categories. This is consistent with the performance criteria related to the performance of Appendix F.

Let us first address the comment regarding the MWS (referring to the Modular Wetland System Linear) being flow through treatment. To do so let us look at the definition of biofiltration as provided by the Design Manual which states:

"For situations where onsite retention of the 85th percentile storm volume is not feasible, biofiltration must be provided to satisfy specific "biofiltration standards" i.e. a set of selection, sizing, design and operation and maintenance (O&M) criteria that must be met for a BMP to be considered a "biofiltration BMP" – see Section 2.2.1 and Appendix F."

If we look at section 2.2.2 Storm Water Pollutant Control Performance Standard it states:

"(i) If it is not technically feasible to implement retention BMPs for the full DCV onsite for a PDP, then the PDP shall utilize biofiltration BMPs for the remaining volume not reliably retained. Biofiltration BMPs must be designed as described in Appendix F to have an appropriate hydraulic loading rate to maximize storm water retention and pollutant removal, as well as to prevent erosion, scour, and channeling within the BMP, and must be sized to:

[a]. Treat 1.5 times the DCV not reliably retained onsite, OR

[b]. Treat the DCV not reliably retained onsite with a flow-thru design that has a total volume, including pore spaces and pre-filter detention volume, sized to hold at least 0.75 times the portion of the DCV not reliably retained onsite."

As the manual states Biofiltration BMPs must be designed as described in Appendix F which states:

"A project applicant must be able to affirmatively demonstrate that a given BMP is designed and sized in a manner consistent with this definition to be considered as a "biofiltration BMP" as part of a compliant storm water management plan."

"This appendix contains a checklist of the key underlying criteria that must be met for a BMP to be considered a biofiltration BMP. The purpose of this checklist is to facilitate consistent review and approval of biofiltration BMPs that meet the "biofiltration standard" defined by the MS4 Permit."

"This checklist includes specific design criteria that are essential to defining a system as a biofiltration BMP; however it does not present a complete design basis. This checklist was used to develop BMP Fact Sheets for PR-1 biofiltration with partial retention and BF-1 biofiltration, which do present a complete design basis. Therefore, biofiltration BMPs that substantially meet all aspects of the Fact sheets PR-1 or BF-1 should be able to complete this checklist without additional documentation beyond what would already be required for a project submittal."

"Other biofiltration BMP designs (including both non-proprietary and proprietary designs) may also meet the underlying MS4 Permit requirements to be considered biofiltration BMPs. These BMPs may be classified as biofiltration BMPs if they (1) meet the minimum design criteria listed in this appendix, including the pollutant treatment performance standard in Appendix F.1, (2) are designed and maintained in a manner consistent with their performance certifications (See explanation in Appendix F.2), if applicable, and (3) are acceptable at the discretion of the [City Engineer]. The applicant may be required to provide additional studies and/or required to meet additional design criteria beyond the scope of this document in order to demonstrate that these criteria are met."

As stated the Biofiltration BMP must meet three objectives. The following outlines how the Modular Wetland System Linear meets these criteria.

Minimum Design Criteria

- 1. Biofiltration BMPs shall be allowed only as described in the BMP selection process in this manual (i.e., retention feasibility hierarchy).
 - a. The Modular Wetland System Linear (MWS Linear) is only being proposed on plans when retention via infiltration or reuse is proven infeasible. Conditions such as soils with little to no infiltration rate or sites in which insufficient landscaping warrant to successful implementation of reuse systems.

- 2. Biofiltration BMPs must be sized using acceptable sizing methods described in this manual.
 - a. Section B.5.2 Basis for Minimum Sizing Factor for Biofiltration BMPs states:

"The MS4 Permit describes conceptual performance goals for biofiltration BMPs and specifies numeric criteria for sizing biofiltration BMPs (See Section 2.2.1 of this Manual). However, the MS4 Permit does not define a specific footprint sizing factor or design profile that must be provided for the BMP to be considered "biofiltration."

"Additionally, it does not apply to alternative biofiltration designs that utilize the checklist in Appendix F (Biofiltration Standard and Checklist). Acceptable alternative designs (such as proprietary systems meeting Appendix F criteria) typically include design features intended to allow acceptable performance with a smaller footprint and have undergone field scale testing to evaluate performance and required O&M frequency."

As stated in the Manual alternative biofiltration designs are allowed. The MWS Linear therefore qualifies as a biofiltration BMP under this definition as it has both undergone field scale testing (TAPE tested and approved with a GULD) and provides requirements on O&M frequency. In addition, the MWS Linear can be sized to treat either 1.5 times the DCV not reliably retained onsite OR 1.0 times the portion of the DCV not reliably retained onsite; and additionally check that the system has a total static (i.e. non-routed) storage volume, including pore spaces and pre-filter detention volume to at least 0.75 times the portion of the DCV not reliably retained onsite.

- 3. Biofiltration BMPs must be sited and designed to achieve maximum feasible infiltration and evapotranspiration.
 - a. The MWS Linear is utilized and placed in the same manner as other types of biofiltration systems. As with other biofiltration systems the MWS Linear includes and underdrain for the remaining portion of the DCV that is not retained via incidental infiltration (as biofiltration if infiltration is not feasible due to poor soils) and evapotranspiration. The MWS Linear can be designed with an open bottom to maximize this incidental infiltration. The only exception to this, as with other biofiltration BMPs, is when the geotechnical consultant recommends an impervious liner be used due to specific soil conditions such as expansive clays. Additionally, the MWS Linear utilizes an amended media that is much more porous than the standard prescribed biofiltration media which is a mix of sand and compost. 100% of the media used in the MWS Linear has interparticle voids of 48% plus and 24% internal void space for each media particle. This is much greater than the sand which has interparticle voids of 35% and internal voids of 0%. As such, the MWS Linear retains greater moisture which allows for greater volume retention and ultimately evapotranspiration via respiration of the contained vegetation.

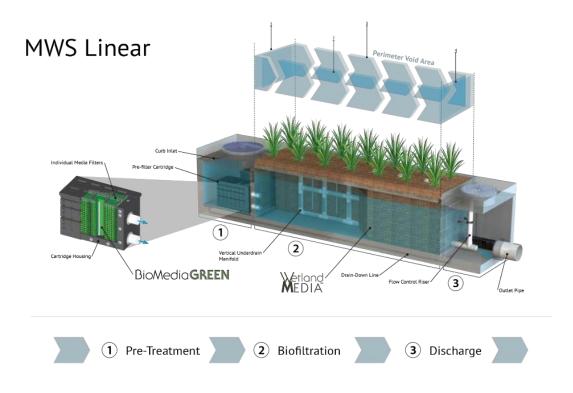
- 4. Biofiltration BMPs must be designed with a hydraulic loading rate to maximize pollutant retention, preserve pollutant control/sequestration processes, and minimize potential for pollutant washout.
 - a. The manual states:

"Alternatively, for proprietary designs and custom media mixes not meeting the media specifications contained in the City or County LID Manual, field scale testing data are provided to demonstrate that proposed media meets the pollutant treatment performance criteria in Section F.1 below."

The MWS Linear has been tested under the Washington State TAPE protocol which is full scale field testing and has received General Use Level Designation under that protocol. Table F.1-1, as shown below, requires a biofiltration BMP to have Basic Treatment, Phosphorus Treatment, and Enhanced Treatment under this protocol. The MWS Linear has GULD approval for all three and therefore meets this minimum requirement 4. A copy of the TAPE approval has been attached to this document.

Project Pollutant of Concern	Required Technology Acceptance Protocol- Ecology Certification for Biofiltration Performance Standard
Trash	Basic Treatment, Phosphorus Treatment, Enhanced Treatment
Sediments	Basic Treatment, Phosphorus Treatment, Enhanced Treatment
Oil and Grease	Basic Treatment, Phosphorus Treatment, Enhanced Treatment
Nutrients	Phosphorus Treatment ¹
Metals	Enhanced Treatment
Pesticides	Basic Treatment (including filtration) ² Phosphorus Treatment, Enhanced Treatment
Organics	Basic Treatment (including filtration) ² Phosphorus Treatment, Enhanced Treatment
Bacteria and Viruses	Basic Treatment (including bacteria removal processes) ³ , Phosphorus Treatment, Enhanced Treatment
Basic Treatment (including filtration) ² Phosphorus Treatment, Enhanced Treatment	Basic Treatment (including filtration) ² Phosphorus Treatment, Enhanced Treatment

 Table F.1-1: Required Technology Acceptance Protocol-Ecology Certifications for Polltuants of Concern for Biofiltration Performance Standard



- 5. Biofiltration BMPs must be designed to promote appropriate biological activity to support and maintain treatment processes.
 - a. The MWS Linear an advanced vegetated biofiltration promotes biological processes found in both upland bioretention systems and wetlands. The system utilizes an advanced horizontal flow design to ensure maximum contact with the vegetation root mass. Bacterial growth, supported by the root system in the wetland chamber, performs a number of treatment processes. These vary as a function of moisture, temperature, pH, salinity, and pollutant concentrations. Biologically available forms of nitrogen, phosphorus, and carbon are actively taken into the cells of vegetation and bacteria, and used for metabolic processes (i.e., energy production and growth). Nitrogen and phosphorus are actively taken up as nutrients that are vital for a number of cell functions, growth, and energy production. These processes remove metabolites from the media during and between storm events, making the media available to capture more nutrients from subsequent storms.
 - b. Soil organisms in the wetland chamber can break down a wide array of organic compounds into less toxic forms or completely break them down into carbon dioxide and water (Means and Hinchee 1994). Bacteria can also cause metals to precipitate out as salts, bind them within organic material, and accumulate metals in nodules within the cells. Finally, plant growth may metabolize many pollutants, sequester them or rendering them less toxic (Reeves and Baker 2000).
 - c. Following are pictures from the plants pulled from a MWS Linear after only 14 months of growth. The media used in the system is designed to maximize biological activity:

- 6. Biofiltration BMPs must be designed to prevent erosion, scour, and channeling within the BMP.
 - a. The MWS Linear is a self-contained system with a pre-treatment chamber. Unlike other biofiltration BMPs erosion, scour, and channeling with in the BMP is not an issue. Following is a diagram of the BMP. The system pre-treatment chamber prevent any erosion or scour. The system downstream orifice control prevents channeling of the media:

- 7. Biofiltration BMP must include operations and maintenance design features and planning considerations to provide for continued effectiveness of pollutant and flow control functions.
 - a. The MWS Linear provides activation along with the first year of maintenance and inspection free on all installation in the county of San Diego. Unlike other biofiltration BMPs the City and Co-permitees can be assured the system is being properly installed and maintained. The first year of inspections is used to gauge the amount of loading in the system and this information is used to set appropriate maintenance interval for subsequent years. Attached is a copy of the maintenance manual for the MWS Linear.

Designed & Maintained Consistent with their Performance Certifications

We are in agreement that all BMPs should be designed in a manner consistent with the TAPE certification. The MWS Linear is sized in accordance with the TAPE GULD approval which provides certification at a loading rate of 1 gpm/sq ft (100 in/hr) for Basic, Phosphorus and Enhanced treatment. In addition, as stated previously, Modular Wetland System, Inc. provide activation of all system installed in San Diego County along with the first year of inspections and maintenance to ensure appropriate function. As previously stated, a copy of the TAPE GULD approval is attached to support this claim.

Additionally, it should be noted that the manual allows for biofiltration BMPs to be sized in either volume based (DCV) or flow based design. The manual states in section F.2.2 Sizing of Flow-Based Biofiltration *BMPs:*

"This sizing method is only available when the BMP meets the pollutant treatment performance standard in Appendix F.1."

"Proprietary biofiltration BMPs are typically designed as a flow-based BMPs (i.e., a constant treatment capacity with negligible storage volume). Additionally, proprietary biofiltration is only acceptable if no infiltration is feasible and where site-specific documentation demonstrates that the use of larger footprint biofiltration BMPs would be infeasible. The applicable sizing method for biofiltration is therefore reduced to: Treat 1.5 times the DCV."

"The following steps should be followed to demonstrate that the system is sized to treat 1.5 times the DCV."

1. Calculate the flow rate required to meet the pollutant treatment performance standard without scaling for the 1.5 factor. Options include either:

- Calculate the runoff flow rate from a 0.2 inch per hour uniform intensity precipitation event (See methodology Appendix B.6.3), or
- Conduct a continuous simulation analysis to compute the size required to capture and treat 80 percent of average annual runoff; for small catchments, 5-minute precipitation data should be used to account for short time of concentration. Nearest rain gage with 5-minute precipitation data is allowed for this analysis.

2. Multiply the flow rate from Step 1 by 1.5 to compute the design flow rate for the biofiltration system.

3. Based on the conditions of certification/verification (discussed above), establish the design capacity, as a flow rate, of a given sized unit.

4. Demonstrates that an appropriate unit size and number of units is provided to provide a flow rate that meets the required flow rate from Step 2.

In conclusion, we have closely followed the process and protocol for showing the MWS Linear meets all the criteria to be accepted as Biofiltration as found in Appendix F.

If you have any questions please feel free to contact us directly.

Sincerely,

Zachariha J. Kent

Director of Engineering

Bio Clean Environmental Services, Inc.

April 2014

GENERAL USE LEVEL DESIGNATION FOR BASIC, ENHANCED, AND PHOSPHORUS TREATMENT

For the

MWS-Linear Modular Wetland

Ecology's Decision:

Based on Modular Wetland Systems, Inc. application submissions, including the Technical Evaluation Report, dated April 1, 2014, Ecology hereby issues the following use level designation:

- 1. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Basic treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 2. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Phosphorus treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 3. General use level designation (GULD) for the MWS-Linear Modular Wetland Stormwater Treatment System for Enhanced treatment
 - Sized at a hydraulic loading rate of 1 gallon per minute (gpm) per square foot (sq ft) of wetland cell surface area. For moderate pollutant loading rates (low to medium density residential basins), size the Prefilters at 3.0 gpm/sq ft of cartridge surface area. For high loading rates (commercial and industrial basins), size the Prefilters at 2.1 gpm/sq ft of cartridge surface area.
- 4. Ecology approves monitoring for the MWS Linear Modular Wetland Stormwater Treatment System units for Basic, Phosphorus, and Enhanced treatment at the hydraulic

loading rate listed above. Designers shall calculate the water quality design flow rates using the following procedures:

- Western Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using the latest version of the Western Washington Hydrology Model or other Ecology-approved continuous runoff model.
- Eastern Washington: For treatment installed upstream of detention or retention, the water quality design flow rate is the peak 15-minute flow rate as calculated using one of the three methods described in Chapter 2.2.5 of the Stormwater Management Manual for Eastern Washington (SWMMEW) or local manual.
- Entire State: For treatment installed downstream of detention, the water quality design flow rate is the full 2-year release rate of the detention facility.
- 5. These use level designations have no expiration date but may be revoked or amended by Ecology, and are subject to the conditions specified below.

Ecology's Conditions of Use:

Applicants shall comply with the following conditions:

- 1. Design, assemble, install, operate, and maintain the MWS Linear Modular Wetland Stormwater Treatment System units, in accordance with Modular Wetland Systems, Inc. applicable manuals and documents and the Ecology Decision.
- Each site plan must undergo Modular Wetland Systems, Inc. review and approval before site installation. This ensures that site grading and slope are appropriate for use of a MWS – Linear Modular Wetland Stormwater Treatment System unit.
- 3. MWS Linear Modular Wetland Stormwater Treatment System media shall conform to the specifications submitted to, and approved by, Ecology.
- 4. Maintenance: The required maintenance interval for stormwater treatment devices is often dependent upon the degree of pollutant loading from a particular drainage basin. Therefore, Ecology does not endorse or recommend a "one size fits all" maintenance cycle for a particular model/size of manufactured filter treatment device.
 - Typically, Modular Wetland Systems, Inc. designs MWS Linear Modular Wetland systems for a target prefilter media life of 6 to 12 months.
 - Indications of the need for maintenance include effluent flow decreasing to below the design flow rate or decrease in treatment below required levels.
 - Owners/operators must inspect MWS Linear Modular Wetland systems for a minimum of twelve months from the start of post-construction operation to determine site-specific maintenance schedules and requirements. You must conduct inspections monthly during the wet season, and every other month during the dry season. (According to the SWMMWW, the wet season in western Washington is October 1 to April 30. According to SWMMEW, the wet season in eastern Washington is October 1 to June 30). After the first year of operation, owners/operators must conduct inspections based on the findings during the first year of inspections.

- Conduct inspections by qualified personnel, follow manufacturer's guidelines, and use methods capable of determining either a decrease in treated effluent flowrate and/or a decrease in pollutant removal ability.
- When inspections are performed, the following findings typically serve as maintenance triggers:
 - Standing water remains in the vault between rain events, or
 - Bypass occurs during storms smaller than the design storm.
 - If excessive floatables (trash and debris) are present (but no standing water or excessive sedimentation), perform a minor maintenance consisting of gross solids removal, not prefilter media replacement.
 - Additional data collection will be used to create a correlation between pretreatment chamber sediment depth and pre-filter clogging (see *Issues to be Addressed by the Company* section below)
- 6. Discharges from the MWS Linear Modular Wetland Stormwater Treatment System units shall not cause or contribute to water quality standards violations in receiving waters.

Applicant:	Modular Wetland Systems, Inc.
Applicant's Address:	PO. Box 869
	Oceanside, CA 92054

Application Documents:

- Original Application for Conditional Use Level Designation, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., January 2011
- *Quality Assurance Project Plan*: Modular Wetland system Linear Treatment System performance Monitoring Project, draft, January 2011.
- *Revised Application for Conditional Use Level Designation*, Modular Wetland System, Linear Stormwater Filtration System Modular Wetland Systems, Inc., May 2011
- Memorandum: Modular Wetland System-Linear GULD Application Supplementary Data, April 2014
- Technical Evaluation Report: Modular Wetland System Stormwater Treatment System Performance Monitoring, April 2014.

Applicant's Use Level Request:

General use level designation as a Basic, Enhanced, and Phosphorus treatment device in accordance with Ecology's Guidance for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) January 2011 Revision.

Applicant's Performance Claims:

• The MWS – Linear Modular wetland is capable of removing a minimum of 80-percent of TSS from stormwater with influent concentrations between 100 and 200 mg/l.

- The MWS Linear Modular wetland is capable of removing a minimum of 50-percent of Total Phosphorus from stormwater with influent concentrations between 0.1 and 0.5 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 30-percent of dissolved Copper from stormwater with influent concentrations between 0.005 and 0.020 mg/l.
- The MWS Linear Modular wetland is capable of removing a minimum of 60-percent of dissolved Zinc from stormwater with influent concentrations between 0.02 and 0.30 mg/l.

Ecology Recommendations:

• Modular Wetland Systems, Inc. has shown Ecology, through laboratory and fieldtesting, that the MWS - Linear Modular Wetland Stormwater Treatment System filter system is capable of attaining Ecology's Basic, Total phosphorus, and Enhanced treatment goals.

Findings of Fact:

Laboratory Testing

The MWS-Linear Modular wetland has the:

- Capability to remove 99 percent of total suspended solids (using Sil-Co-Sil 106) in a quarter-scale model with influent concentrations of 270 mg/L.
- Capability to remove 91 percent of total suspended solids (using Sil-Co-Sil 106) in laboratory conditions with influent concentrations of 84.6 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 93 percent of dissolved Copper in a quarter-scale model with influent concentrations of 0.757 mg/L.
- Capability to remove 79 percent of dissolved Copper in laboratory conditions with influent concentrations of 0.567 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 80.5-percent of dissolved Zinc in a quarter-scale model with influent concentrations of 0.95 mg/L at a flow rate of 3.0 gpm per square foot of media.
- Capability to remove 78-percent of dissolved Zinc in laboratory conditions with influent concentrations of 0.75 mg/L at a flow rate of 3.0 gpm per square foot of media.

Field Testing

• Modular Wetland Systems, Inc. conducted monitoring of an MWS-Linear (Model # MWS-L-4-13) from April 2012 through May 2013, at a transportation maintenance facility in Portland, Oregon. The manufacturer collected flow-weighted composite samples of the system's influent and effluent during 28 separate storm events. The system treated approximately 75 percent of the runoff from 53.5 inches of rainfall during the monitoring period. The applicant sized the system at 1 gpm/sq ft. (wetland media) and 3gpm/sq ft. (prefilter).

- Influent TSS concentrations for qualifying sampled storm events ranged from 20 to 339 mg/L. Average TSS removal for influent concentrations greater than 100 mg/L (n=7) averaged 85 percent. For influent concentrations in the range of 20-100 mg/L (n=18), the upper 95 percent confidence interval about the mean effluent concentration was 12.8 mg/L.
- Total phosphorus removal for 17 events with influent TP concentrations in the range of 0.1 to 0.5 mg/L averaged 65 percent. A bootstrap estimate of the lower 95 percent confidence limit (LCL95) of the mean total phosphorus reduction was 58 percent.
- The lower 95 percent confidence limit of the mean percent removal was 60.5 percent for dissolved zinc for influent concentrations in the range of 0.02 to 0.3 mg/L (n=11). The lower 95 percent confidence limit of the mean percent removal was 32.5 percent for dissolved copper for influent concentrations in the range of 0.005 to 0.02 mg/L (n=14) at flow rates up to 28 gpm (design flow rate 41 gpm). Laboratory test data augmented the data set, showing dissolved copper removal at the design flow rate of 41 gpm (93 percent reduction in influent dissolved copper of 0.757 mg/L).

Issues to be addressed by the Company:

- 1. Modular Wetland Systems, Inc. should collect maintenance and inspection data for the first year on all installations in the Northwest in order to assess standard maintenance requirements for various land uses in the region. Modular Wetland Systems, Inc. should use these data to establish required maintenance cycles.
- 2. Modular Wetland Systems, Inc. should collect pre-treatment chamber sediment depth data for the first year of operation for all installations in the Northwest. Modular Wetland Systems, Inc. will use these data to create a correlation between sediment depth and pre-filter clogging.

Technology Description:

Download at http://www.modularwetlands.com/

Contact Information:

Applicant:

Greg Kent Modular Wetland Systems, Inc. P.O. Box 869 Oceanside, CA 92054 <u>gkent@biocleanenvironmental.net</u>

Applicant website: http://www.modularwetlands.com/

Ecology web link: <u>http://www.ecy.wa.gov/programs/wg/stormwater/newtech/index.html</u>

Ecology:

Douglas C. Howie, P.E. Department of Ecology Water Quality Program (360) 407-6444 douglas.howie@ecy.wa.gov

Revision History

Date	Revision
June 2011	Original use-level-designation document
September 2012	Revised dates for TER and expiration
January 2013	Modified Design Storm Description, added Revision Table, added maintenance discussion, modified format in accordance with Ecology standard
December 2013	Updated name of Applicant
April 2014	Approved GULD designation for Basic, Phosphorus, and Enhanced treatment

TAPE PERFORMANCE SUMMARY MWS-LINEAR 2.0

Application: Stand Alone Stormwater Treatment Best Management Practice **Type of Treatment:** High Flow Rate Media Filtration and Biofiltration (dual-stage)

DESCRIPTION

Modular Wetland System Linear 2.0 (MWS-L 2.0) is an advanced dual-stage high flow rate media and biofiltration system for the treatment of urban stormwater runoff. Superior pollutant removal efficiencies are achieved by treating runoff through a pre-treatment chamber containing a screening device for trash and larger debris, a separation chamber for larger TSS and a series of media filter cartridges for removal of fine TSS and other particulate pollutants. Pre-treated runoff is transferred to the biofiltration chamber which contains an engineered ion exchange media designed to support an abundant plant and microbe community that captures, absorbs, transforms and uptakes pollutants through an array of physical, chemical, and biological mechanisms.

MWS-L 2.0 is a self-contained treatment train that is supplied to the job site completely assembled and ready for use. Once installed, stormwater runoff drains directly from impervious surfaces through an built-in curb inlet, drop in, or via pipe from upstream inlets or downspouts. Treated runoff is discharged from the system through an orifice control riser to assure the proper amount of flow is treated. The treated water leaving the system is connected to the storm drain system, infiltration basins, or to be re-used on site for irrigation or other uses.

TAPE PERFORMANCE

Modular Wetland System Linear 2.0 (MWS-L 2.0) completed its TAPE field testing in the spring of 2013. The Washington DOE has approved the system under the TAPE protocol. The MWS-Linear has met the performance benchmarks for the three major pollutant categories as defined by TAPE: Basic Treatment (TSS), Phosphorus and Enhanced (dissolved zinc and copper). It is the first system tested under the protocol to meet the benchmarks for all three categories.

Pollutant	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Total Suspended Solids	75.0	15.7	85%	Summary of all data meeting TAPE parameters pertaining to this pollutant. Mean of 8 microns.
Total Phosphorus	0.227	0.074	64%	Summary of all data meeting TAPE parameters pertaining to this pollutant.
Ortho Phosphorus	0.093	0.031	67%	Summary of all data meeting TAPE parameters for total phosphorus.
Nitrogen	1.40	0.77	45%	Utilizing the Kjeldahl method (Total Kjeldahl nitrogen). Summary of all data during testing.
Dissolved Zinc	0.062	0.024	66%	Summary of all data meeting TAPE parameters pertaining to this pollutant.
Dissolved Copper	0.0086	0.0059	38%	Summary of all data meeting TAPE parameters pertaining to this pollutant.
Total Zinc	0.120	0.038	69%	Summary of all data during testing.
Total Copper	0.017	0.009	50%	Summary of all data during testing.
Motor Oil	24.157	1.133	95%	Summary of all data during testing.

NOTES:

1. The MWS-Linear was proven effective at infiltration rates of up to 121 in/hr.

2. A minimum of 10 aliquots were collected for each event.

3. Sampling was targeted to capture at least 75 percent of the hydrograph.

www.modularwetlands.com P 760-433-7640 F 760-433-3179

PERFORMANCE SUMMARY **MWS-LINEAR 2.0**

Application: Stand Alone Stormwater Treatment Best Management Practice **Type of Treatment:** High Flow Rate Media Filtration and Biofiltration (dual-stage)

DESCRIPTION

Modular Wetland System Linear 2.0 (MWS-L 2.0) is an advanced dual-stage high flow rate media and biofiltration system for the treatment of urban stormwater runoff. Superior pollutant removal efficiencies are achieved by treating runoff through a pre-treatment chamber containing a screening device for trash and larger debris, a separation chamber for larger TSS and a series of media filter cartridges for removal of fine TSS and other particulate pollutants. Pre-treated runoff is transferred to the biofiltration chamber which contains an engineered ion exchange media designed to support an abundant plant and microbe community that captures, absorbs, transforms and uptakes pollutants through an array of physical, chemical, and biological mechanisms.

MWS-L 2.0 is a self-contained treatment train that is supplied to the job site completely assembled and ready for use. Once installed, stormwater runoff drains directly from impervious surfaces through an built-in curb inlet, drop in, or via pipe from upstream inlets or downspouts. Treated runoff is discharged from the system through an orifice control riser to assure the proper amount of flow is treated. The treated water leaving the system is connected to the storm drain system, infiltration basins, or to be re-used on site for irrigation or other uses.

HEAVY METALS: Copper / Zinc

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	.76 / .95	.06 / .19	92% / 80%	Majority Dissolved Fraction
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	.04 / .24	< .02 / < .05	>50% / >79%	Effluent Concentra- tions Below Detectable Limits
Recycling Facility, Kileen, TX / CERL - 2011-2012	Field	.058 / .425	.032 / .061	44% / 86%	Test Unit 2
TAPE Field Test- ing / Portland, OR 2011/2012	Field	.017/ .120	.009 / .038	50% / 69%	Total Metals

TOTAL SUSPENDED SOLIDS:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	270	3	99%	Sil-co-sil 106 - 20 micron mean par- ticle size
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	45.67	8.24	82%	Mean Particle Size by Count < 8 Microns
Recycling Facility, Kileen, TX / CERL - 2011-2012	Field	676	39	94%	Test Unit 2
TAPE Field Test- ing / Portland, OR 2011/2012	Field	75.0	15.7	85%	Means par- ticle size of 8 microns

PERFORMANCE SUMMARY **MWS-LINEAR 2.0**

PHOSPHORUS:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
TAPE Field Test- ing / Portland, OR 2011/2012	Field	.227	.074	64%	TOTAL P
TAPE Field Test- ing / Portland, OR 2011/2012	Field	.093	.031	67%	ORTHO P

BACTERIA:

Description	Туре	Avg. Influent (MPN)	Avg. Effluent (MPN)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	1600 / 1600	535 / 637	67% / 60%	Fecal / E. Coli
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	31666 / 6280	8667 / 1058	73% / 83%	Fecal / E. Coli

NITROGEN:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	.85	.21	75%	NITRATE
TAPE Field Test- ing / Portland, OR 2011/2012	Field	1.40	0.77	45%	TKN

HYDROCARBONS:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	10	1.625	84%	Oils & Grease
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	.83	0	100%	TPH Motor Oil
TAPE Field Test- ing / Portland, OR 2011/2012	Field	24.157	1.133	95%	Motor Oil

TURBIDITY:

Description	Туре	Avg. Influent (NTU)	Avg. Effluent (NTU)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	21	1.575	93%	Field Measure- ment
City of Oceanside Boat Wash / Waves Environmental - 2008	Field	21	6	71%	Field Measure- ment

COD:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Recycling Facility, Kileen, TX / CERL - 2011-2012	Field	516 / 1450	90 / 356	83% / 75%	Both Test Units

LEAD:

Description	Туре	Avg. Influent (mg/L)	Avg. Effluent (mg/L)	Removal Efficiency	Notes
Waves Environmen- tal - 1/4 Scale Lab Testing - 2007	Lab	.54	.10	82%	Total
Recycling Facility, Kileen, TX / CERL - 2011-2012	Field	.01 / .043	.004 / .014	60% / 68%	Both Test Units
TAPE Field Test- ing / Portland, OR 2011/2012	Field	.011	.003	70%	Total

All removal efficiencies and concentrations rounded up for easy viewing. Please call us for more information, including full copies of the reports reference above.

ATTACHMENT 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES

This is the cover sheet for Attachment 2.

□ Mark this box if this attachment is empty because the project is exempt from PDP hydromodification management requirements.

Attachment	Contents	Checklist
Sequence		
Attachment 2a	Hydromodification Management Exhibit (Required)	☑ Included
		See Hydromodification Management
		Exhibit Checklist on the back of this
		Attachment cover sheet.
Attachment 2b	Management of Critical Coarse Sediment Yield Areas (WMAA Exhibit is required, additional analyses are optional)	 Exhibit showing project drainage boundaries marked on WMAA Critical Coarse Sediment Yield Area Map (Required)
	See Section 6.2 of the BMP Design	(nequired)
	Manual.	 Optional analyses for Critical Coarse Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite
Attachment 2c	Geomorphic Assessment of Receiving	☑ Not performed
	Channels (Optional)	Included
	See Section 6.3.4 of the BMP Design Manual.	 Submitted as separate stand-alone document
Attachment 2d	Flow Control Facility Design, including	☑ Included
	Structural BMP Drawdown Calculations and Overflow Design Summary (Required) See Chapter 6 and Appendix G of the BMP Design Manual	 Submitted as separate stand-alone document
Attachment 2e	Vector Control Plan (Required when	Included
	structural BMPs will not drain in 96	☑ Not required because BMPs will
	hours)	drain in less than 96 hours

Indicate which Items are Included behind this cover sheet:

Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit:

The Hydromodification Management Exhibit must identify:

☑ Underlying hydrologic soil group

☑ Approximate depth to groundwater

☑ Existing natural hydrologic features (watercourses, seeps, springs, wetlands)

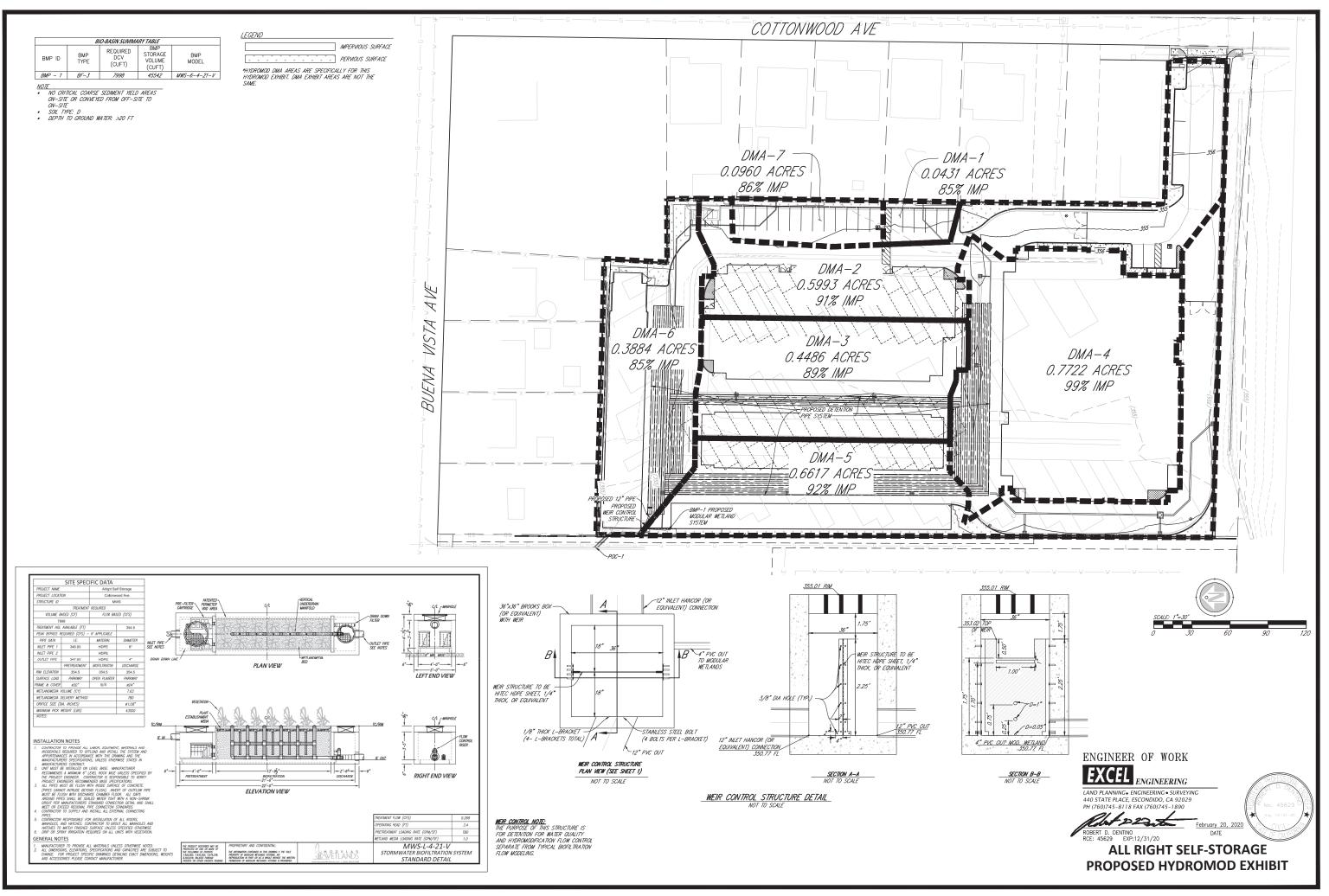
 $\ensuremath{\boxtimes}$ Critical coarse sediment yield areas to be protected

☑ Existing topography

☑ Existing and proposed site drainage network and connections to drainage offsite

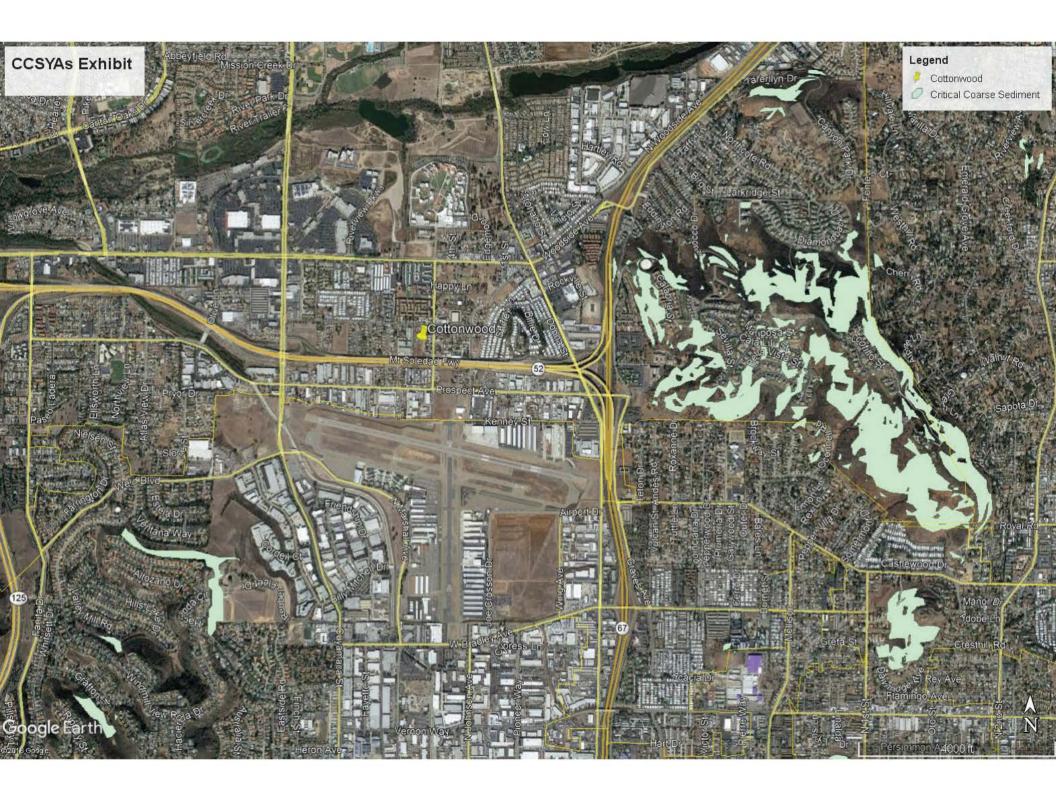
☑ Proposed grading

☑ Proposed impervious features


 \blacksquare Proposed design features and surface treatments used to minimize imperviousness

☑ Point(s) of Compliance (POC) for Hydromodification Management

☑ Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions)


Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail)

ATTACHMENT 2a

18/18005[Engineering|SDP|Storm-SDP|SMMM|HYDROMOD_EXHIBIT|18005_HYDROMOD.dwg_3/4/2020_10:53_AM_ORIGMAL_P2.

ATTACHMENT 2b

ATTACHMENT 2c

No, the low flow threshold is 0.1Q2 (default low flow threshold)

ATTACHMENT 2d

SWMM MODELING TO DETERMINE LID SIZES FOR HYDROMODIFICATION COMPLIANCE

ALL RIGHT STORAGE INC. 8708 COTTONWOOD AVE, SANTEE CA 92071

DATE: February 28, 2020

Prepared For:

All Right Storage Inc. 11300 Sorrento Valley Road, Ste. 250 San Diego, CA 92121

Table of Contents

INTRODUCTION

Section I	Pre- and Post-Development Model Setup	
Section II	System Representation	
Section III	Continuous Simulation Options	
Section IV	Running the Simulation	
Section V	Result Analysis	
Section VI	Summary and Conclusion	

ATTACHEMENTS

Attachment A	SWMM Statistics Analysis, Flow Duration Curve and Pass/Fail Table
Attachment B	SWMM Input Data Summary and Detail

Attachment C USDA NRCS Custom Soil Resource Report

INTRODUCTION

This report provides Hydromodification and Water Quality design based on LID (Low Impact Development) principles for a proposed self-storage facility located at 8708 Cottonwood Ave in the City of Santee, San Diego County, California.

The Hydromodification and Water Quality calculations were performed utilizing continuous simulation analysis to size the storm water treatment and control facilities. Storm Water Management Model (SWMM) version 5.1 distributed by USEPA is the basis of all calculations within this report. SWMM output file was used to generate peak flow recurrence frequencies and flow duration series statistics based on an assigned rain gauge for pre-development, unmitigated post-development flows and post-development mitigated flows to determine compliance with the State Water Resources Control Board Order 2009-0009-DWQ and the County wide Model BMP design Manual dated February 2016 and Hydromodification Management Plan (HMP) requirements.

The proposed tributary area is approximately 3 acres and this project is planned for storage facility serviced by private driveways and parking lots. There is one point of compliance (POC) in the analysis located at the North-West corner of the site.

The Hydromodification and Water Quality system proposed for this project is 1 proprietary bio filtration unit (modular Wetland unit) with one point of compliance; located near the North-West corner of the site. This system detains storm water in the detention tanks under the driveway before entering a proprietary bio filtration device for water quality treatment. The proprietary bio-filtration, filters storm water through plant roots and a biologically active soil mix (see attachment 1-f of SWQMP), and then releases it into the existing storm drain system which currently collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all continuously simulated storms based on the historical data collected from the Santee rain gage.


Low Flow Threshold

A downstream channel assessment has not been completed for this project and therefore the low flow threshold utilized for the system analysis is 10% of 2-year storm event (0.1Q2). This will be used as the low flow threshold to meet peak flow frequency and flow duration controls.

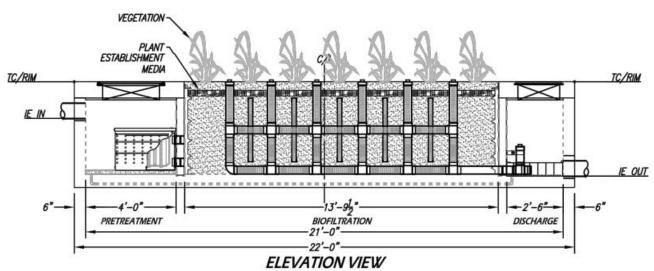
Soil type

Based on Figure C.1 taken from Model BMP Design Manual San Diego Region Appendices dated June 2015, the soil type of this project is soil type D. See Figure 1 below.

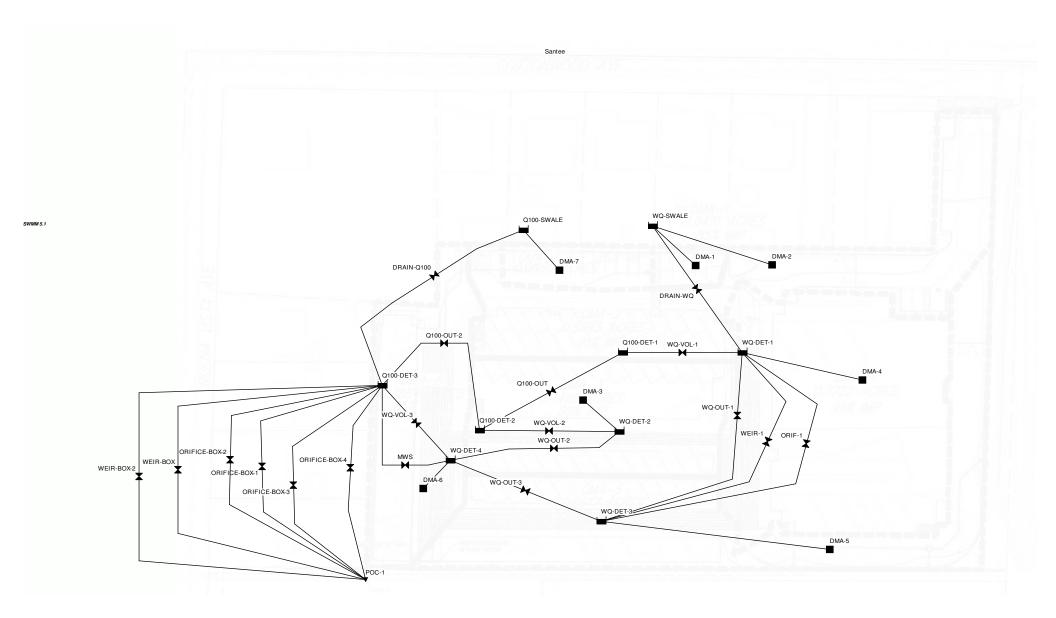
Therefore, the SWMM sub-catchments were based on infiltration rate of soil type D. The original grading for the site and the overexcavation areas for the pad the deep over excavation areas that were created will minimize the native's soil infiltration rate for the pervious area.

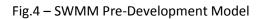
SECTION I. MODEL SETUP

Pre-development Model Setup


The SWMM model for this projects pre-development site is analyzed using historical rain gauge data. The Santee gauge is utilized for this project. That data provides continuous precipitation input to a sub-catchment with its outfall based on the contributing basins imperviousness.

The imperviousness parameter in SWMM is the amount of effective or directly connected impervious area. The effective impervious area is the impervious area that drains directly to the Stormwater conveyance system. The pre-development condition is a vacant pad with poor cover of some grasses with no trees. No other impervious surface exists on site of the on-site area has been disturbed (the site is padded and has been compacted).


Post-Development Model Setup


Figure 3 illustrates each contributing basin discharging its overland flow directly into the detention pipe system before it is conveyed to a proprietary biofiltration system (Modular Wetland System/ Bioclean product). The proprietary bio-filtration is not model in the SWMM model since the loading rate of the proprietary biofilter's is higher than the weir control of the detention pipe. There is no actual elevation entered in the program. The bottom elevation of the surface storage is assumed at 0 ft.

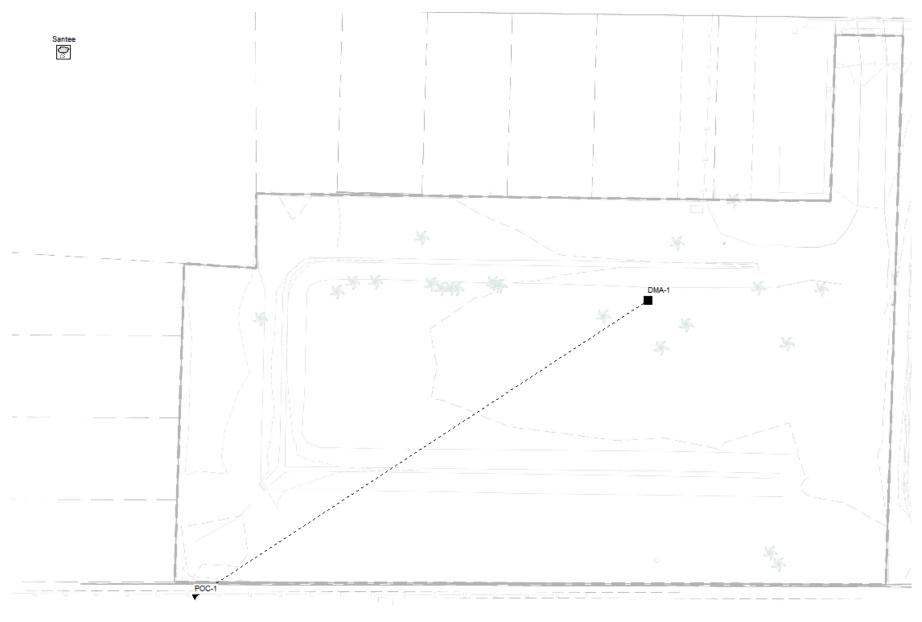

Figure-2. Typical Proprietary Biofiltration Section

Fig.3 – SWMM Post-Development with Mitigation Model

SECTION II. SYSTEM REPRESENTATION

SWMM is a distributed model, which means that a study area can be subdivided into any number of irregular sub-catchments to best capture the effect that spatial variability in topography, drainage pathways, land cover, and soil characteristics have on runoff generation. For modeling of Hydromodification calculations, there are four main system representations: Rain gage, Sub-catchment (contributing basin or LID area), Nodes and Links.

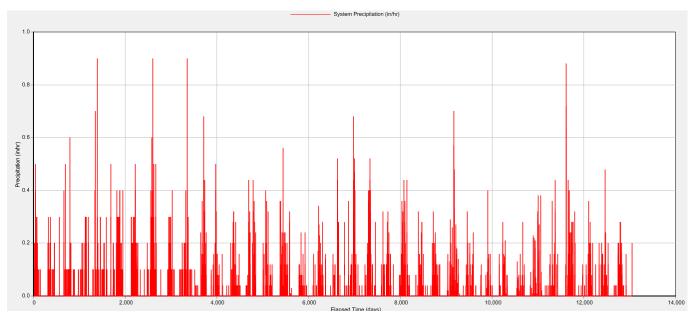


Fig. 5 – Time series rain data, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 35-year simulation period. (Inches/hour vs. elapsed time)

Rain Gauge

The properties of a rain gauge describe the source and format of the precipitation data that are applied to the study area. In this project, the rainfall data consist of a long-term rainfall record stored in a userdefined Time Series labeled as "Santee" rain gauge station. The Santee rain station was chosen due to its data quality and its location to the project site.

The rain gauge supplies precipitation data for one or more sub-catchment areas in a study region taken from the Project Clean Water website (www.projectcleanwater.org). This data file contains rainfall intensity, hourly-recorded time interval, and the dates of recorded precipitation each hour. The Santee rain data has approximately 35 years of hourly precipitation data from 01/03/1973 to 09/26/2008 and generates 35 years of hourly runoff estimates, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 35 year simulation period.

Sub-catchment (contributing basin or LID area) A basin is modeled using a sub-catchment object, which contains some of the following properties: The rate of stormwater runoff and volume depends directly on the precipitation magnitude and its spatial and temporal distribution over the catchment. Each sub-catchment in SWMM is linked to a rain gauge object that describes the format and source of the rainfall input for the sub-catchment.

Area

This area is bounded by the sub-catchment boundary. Its value is determined directly from maps or field surveys of the site or by using SWMM's Auto-length tool when the sub-catchment is drawn to scale on SWMM's study area map. This Project is divided into several sub-catchments based on its outfall.

Width

Width can be defined as the sub-catchment's area divided by the length of the longest overland flow path that water can travel. When there are several such paths, one would use an average of their lengths to compute a width. If overland flow is visualized as running down –slope off an idealized, rectangular catchment, then the width of the sub-catchment is the physical width of overland flow.

In natural areas, true overland flow can only occur for distances of about 500 feet before it begins to consolidate into a small stream flow. In post-development, the true overland flow can be very short before it is collected into open channels. A maximum overland flow of 500 ft is appropriate for a non-urban catchment, while the typical overland flow length is appropriate for non-urban catchments; the typical overland flow length from the back of a representative lot to the center of the street for urban catchments. If the overland flow length varies greatly within a sub-catchment, then an area-weighted average should be used.

Slope

This is the slope of the land surface over which runoff flows and is the same for both the pervious and impervious surfaces. It is the slope of what one considers being the overland flow path or its area-weighted average if there are several paths in the sub-catchment.

Imperviousness

This is the percentage of sub-catchment area covered by impervious surfaces such as sidewalks and roadways or whatever surfaces that rainfall cannot infiltrate.

Roughness Coefficient

The roughness coefficient N-Pervious default number =0.1 for Pre- and Post-development was used for this calculation. This value results in a more conservative approach than the actual N-value.

Fig.6- Typical surface on the existing condition moderate bare packed soil N-pervious = 0.1

Infiltration Model

The pre-development condition is primarily empty land with moderate vegetation cover. In the model, clay soil was used for the post-development condition and the pre-development condition for a conservative approach (yield to a higher runoff). Infiltration of rainfall from the pervious area of a sub-catchment into the unsaturated upper soil zone can be described using three different infiltration models: Horton, Green-Ampt, and Curve Number. The Green-Ampt method was chosen to calculate the infiltration of the pervious areas based on the availability of data for this project. It is invoked when editing the infiltration property of a sub-catchment.

The conductivity in the Post-Project is reduced by 25% due to compaction.

Table 1 – Soil Infiltration Parameter

SWMM Parameter Name	Unit	Range	Use in San Diego
Infiltration	Method	HORTON GREEN_AMPT CURVE_NUMBER	GREEN_AMPT
Suction Head (Green-Ampt)	Inches	1.93 – 12.60 presented in Table A.2 of SWMM Manual	Hydrologic Soil Group A: 1.5 Hydrologic Soil Group B: 3.0 Hydrologic Soil Group C: 6.0 Hydrologic Soil Group D: 9.0
Conductivity (Green-Ampt)	Inches per hour	0.01 – 4.74 presented in Table A.2 of SWMM Manual by soil texture class 0.00 – Ç0.45 presented in Table A.3 of SWMM Manual by hydrologic soil group	Hydrologic Soil Group A: 0.3 Hydrologic Soil Group B: 0.2 Hydrologic Soil Group C: 0.1 Hydrologic Soil Group D: 0.025 Note: reduce conductivity by 25% in the post-project condition when native soils will be compacted. For fill soils in post-project condition, see Section G.1.4.3.
Initial Deficit (Green-Ampt)		The difference between soil porosity and initial moisture content. Based on the values provided in Table A.2 of SWMM Manual, the range for completely dry soil would be 0.097 to 0.375	Hydrologic Soil Group A: 0.30 Hydrologic Soil Group B: 0.31 Hydrologic Soil Group C: 0.32 Hydrologic Soil Group D: 0.33 Note: in long-term continuous simulation, this value is not important as the soil will reach equilibrium after a few storm events regardless of the initial moisture content specified.
Groundwater	yes/no	yes/no	NO
LID Controls Snow Pack			Project Specific Not applicable to hydromodification
Land Uses Initial Buildup Curb Length			management studies

Source: Model BMP Design Manual San Diego Region Appendices, February 26, 2016

LID controls

Utilizing LID controls within a SWMM project is a two-step process that:

- Creates a set of scale-independent LID controls that can be deployed throughout the study area,
- Assign any desired mix and sizing of these controls to designated sub-catchments.

The LID for this project is a Modular Wetlands system unit. That unit is handled by the SWQMP and will not be modeled in this SWMM model.

SECTION III. CONTINUOUS SIMULATION OPTIONS

Simulation Dates

These dates determine the starting and ending dates/times of a simulation and are chosen based on the rain data availability.

Start analysis on 01/03/1973 Start Reporting on 01/03/1973 End Analysis on 09/26/2008

Time Steps

The Time Steps establish the length of the time steps used for runoff computation, routing computation and results reporting. Time steps are specified in days and hours: minutes: seconds except for flow routing which is entered as decimal seconds.

Climatology

-Evaporation Data

The available monthly evaporation data for project area was obtained from the California Irrigation Management Information System "Reference Evapotranspiration Zones" brochure and map (CIMIS ETo Zone Map), prepared by California Department of Water Resources, dated January 2012. Project site falls in "Zone 4" South Coast Inland Plains based on CIMIS ETo Zone map.

January	February	March	April	May	June
0.05	0.09	0.13	0.19	0.25	0.29
July	August	September	October	November	December
0.30	0.270	0.210	0.140	0.080	0.050

Table 2 – Zone 4 Monthly Evaporation data (in/day)

SECTION IV. RUNNING THE SIMULATION

In general, the Run time will depend on the complexity of the watershed being modeled, the routing method used, and the size of the routing time step used. The larger the time steps, the faster the simulation, but the less detailed the results.

Model Results

SWMM's Status Report summarizes overall results for the 35-yr simulation. The runoff continuity error is -4.28 % and the flow routing continuity error is 0.01%. When a run completes successfully, the mass continuity errors for runoff, flow routing, and pollutant routing will be displayed in the Run Status window. These errors represent the percent difference between initial storage + total inflow and final storage + total outflow for the entire drainage system. If they exceed some reasonable level, such as 10 percent, then the validity of the analysis results must be questioned. The most common reasons for an excessive continuity error are computational time steps that are too long or conduits that are too short.

In addition to the system continuity error, the Status Report produced by a run will list those nodes of the drainage network that have the largest flow continuity errors. If the error for a node is excessive, then one should first consider if the node in question is of importance to the purpose of the simulation. If it is, then further study is warranted to determine how the error might be reduced.

The SWMM program ranks the partial duration series, the exceedance frequency and the return period. They are computed using the Weibull formula for plotting position. See the flow duration curve and peak flow frequency on the following pages.

SECTION V. RESULT ANALYSIS

Development of the Flow Duration Statistics

The flow duration statistics are also developed directly from the SWMM binary output file. It should be noted right from the start that the "durations" that we are talking about in this section have nothing to do with the "storm durations" presented in the peak flow statistics section. Other than using the same sequence of letters for the word, the two concepts have nothing to do with each other and the reader is cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow rates that fall within the hydromorphologically significant range, the length of time that each of those flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing the velocity and length of time for each flow rate is very useful.

Methodology

The methodology for determining the flow duration curves comes from a document developed by the U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the USGS water site (<u>http://www.usgs.gov/water/</u>). This link is found in Appendix E (SDHMP Continuous

Simulation Modeling Primer), found in the County Hydromodification Management Plan¹. On this web site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by James K. Searcy 1959 (<u>http://pubs.er.usgs.gov/publication/wsp1542A</u>). In this publication the development of the flow duration curves is discussed in detail.

In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data used to create the flow duration plots. A completed form 9-217-c form shows the monthly tabulation of flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is tabulated and then the total number of each flow rate is totaled for the year. It should be noted that while this example is for a stream with a minimum flow rate of 100cfs, for the purposes of run-off studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once each of the year's data has been compiled the summary numbers from each year are transferred to form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of time exceeded calculated (as will be explained later under the discussion of our calculations). Once the data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be explained in the next section, the use of these curves leads to the amount of time each particular flow can be expected to occur (based on historical data).

How to Read the Graphs²

Figure 1 shows a flow duration curve for a hypothetical development. The three curves show what percentage of the time a range of flow rates are exceeded for three different conditions: pre-project, post-project and post-project with storm water mitigation. Under pre-project conditions the minimum geomorphically significant flow rate is 0.10cfs (assumed) and as read from the graph, flows would equal or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24 hour/day). For post-project conditions, this flow rate would occur more often – about 0.38% of the time (or about 33 hours per year) (0.0038 x 365days x 24 hour/day). This increase in the duration of the geomorphically significant flow after development illustrates why duration control is closely linked to

(<u>http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311_SD_HMP_wAppendices.pdf</u>)² The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan

¹ FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by Brown and Caldwell Engineering of San Diego.

protecting creeks from accelerated erosion.

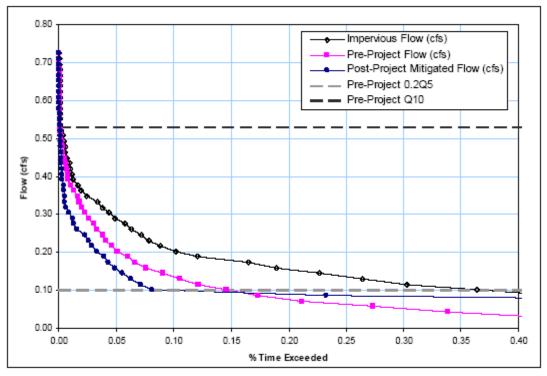


Figure 1. Flow Duration Series Statistics for a Hypothetical Development Scenario

Development of Flow Duration Curves

The first step in developing the flow duration curves is to count the number of occurrences of each flow rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal places (say two places). This in effect groups each flow into closely related values or "bins" as they are referred to in publication 9-217d. Then the entire runoff record is queried for each value and the number of each value counted. The next step is to enter the results of the query into a grid patterned after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is composed of four columns. They are (from left to right) Discharge Rate, Number of **Periods (count)**, Total Periods Exceeding (the total number of periods equal to or exceeding this value), and Percent Time Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the corresponding number of times that value was found. The next column is the total number of values greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are greater than or equal to this value, therefore the total number of runoff records of the rainfall record is entered here. The final column which is the percent of time exceeded is calculated by dividing the total periods exceeded by the total number of periods in the study. For the first row this number should be 100%

For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the case for line 1, the final column is calculated by dividing the total periods exceeded by the total number of periods in the study. For the second row this number should be something less than 100% and

continually decrease as we move down the chart. If all the calculations are correct, then everything should zero out on the last line of the calculations.

The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow rate is not plotted allowing the graph to be focused on the actual flow rate values.

The Flow Duration Analysis

The Peak Flow Statistics analysis is composed of the following series of files:

- 1. The Flow Duration Plot
- 2. Comparison of the Un-Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
- 3. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
- 4. The calculations for the Pre-Development flow duration curve development (USGS9217d)
- 5. The calculations for the Post-Development flow duration curve development (USGS9217d)
- 6. The calculations for the Mitigated flow duration curve development (USGS9217d)

The Flow Duration Plot

The Flow Duration Curves Plot is the plotting of all three (pre, un-mitigated and mitigated) sets of Discharge Rate vs. the Percent Time Exceeded data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q_{10} and Q_{if} (low flow threshold) values. Within the geomorphically significant range ($Q_{10} - Q_{if}$) one can see a visual representation of the relative positions of the flow duration curves. The flow duration curves are compared in an East/West (horizontal) direction to compare post development Discharge Rates to pre-development Discharge Rates. The predevelopment curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies to the left of the pre-development curve (mostly³), the project meets the peak flow hydromodification requirements.

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post- development curve has a corresponding "Y" value (Flow Rate), and "X" value (% Time Exceeded). For each point on the post development curve, the "Y" value is used to interpolate the corresponding Percent Time Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the relative values of each point, pass/fail criteria are determined point by point.

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file (*.out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been

³ See hydromodification limits for exceedance of pre-development values

tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Q_{post} being outside of the geomorphically significant range Q_{lf} to Q_{10}
- 2. Q_{post} being less than Q_{pre}
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_{lf} and Q_{10}

There are two ways that a point can fail. They are:

- 1. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 2. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_{lf} and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

Plan Check Suggestions

As was described under the peak flow section, is the responsibility of the reviewing agency to confirm that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

Compare the Data Stamps for Each of the Statistics Files Used In This Analysis.

As was described in the Peak Flows section, all report files should have time stamps that are nearly identical. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

Verify the Flow Rate Counts

For each of the pre, un-mitigate and mitigated flow duration tables, a few randomly selected flow value counts should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the SWMM table which will select the entire table. Now from the main menu select Edit>Copy To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell

A1 and paste the results from the clipboard into the spread sheet. Now sort the values based on the Total Inflow column. This will group all the flow values together enabling the number of occurrences of each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt files can be verified.

Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated

The discharge rates and counts are confirmed as was described above. The top row should be the smallest runoff value (0.00cfs usually). Total Periods Exceeding of the first line should be the total number of rainfall records in the study. The percentage of Time Exceeding should be the total periods Exceeding divided by the total number of rainfall records in the study (100% for the first line). For each successive discharge rate, the total periods exceeding for the current line should be the total periods exceeding from the line above minus the number of periods from the line above. The number of periods and the number of periods exceeding should zero out at the last line.

Compare Plotted Curves to Table Data

Randomly check a few of the plotted points against the values verified above. Verify by Observation that the plotted values of Q_{10a} nd Q_{if} are reasonable. Verify that the correct values for each of these return periods are plotted correctly on the graph.

Development of the Peak Flow Statistics

The peak flow statistics are developed directly from the binary output file produced by the SWMM program. The site is modeled three ways, Pre-Development, Post-Development-Unmitigated, and Post-Development-Mitigated. For each of these files a specific time period differentiating distinct storms is chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is read the time and flow value of that record are recorded as the beginning of an event. The first record is automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the successive flow value is compared to the peak value and the greater value is retained as the peak value of the storm. As soon as a successive number of zero values equal to the predetermined storm separation value, then the time value of the last non-zero value is recorded as the end of the storm, the duration of the storm is the difference between the end time and the start time, and the peak value is recorded as the highest flow value between the start and end times.

Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted then the relative rank of each storm is assigned with the highest ranking storm being the storm with the highest peak flow. There are several methods that can be used to determine which storm should be ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is used so that each storm has a unique rank number. Where two or more storms have equal flow values, the earlier storm is assigned the higher rank. This is done consistently throughout the storm record. Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but equal) storms is irrelevant to the calculations.

The exceedance frequency and return period are both computed using the Weibull formula for plotting position. Therefore, for a specific event the exceedance frequency F and the return period in years T are calculated using the following equations⁴:

$F=m/(n_R+1)$ and T=n+1/m

where m is the event's rank, n_R is the total number of events and n is the number of years under analysis.

Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All three conditions (pre, post and mitigated) are plotted on the same plot.

The Peak Flow Statistics Analysis

The Peak Flow Statistics analysis is composed of the following series of files:

- 1. The Peak Flow Frequency Plot
- 2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail)
- 3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail)
- 4. The Peak Flow Statistics Calculation for the Pre-Development Curve.
- 5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve.
- 6. The Peak Flow Statistics Calculation for the Mitigated Curve.

The Peak Flow Frequency Plot

The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q_{10} , Q_5 , Q_2 and Q_{if} (low flow threshold) values. Within the geomorphically significant range ($Q_{10} - Q_{if}$) one can see a visual representation of the relative positions of the peak flow curves. The peak flow curves are compared in a North/South (vertical) direction to compare post development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies below the pre-development curve (mostly⁵), the project meets the peak flow hydromodification requirements.

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on the post development curve, the "X" value is used to interpolate the corresponding peak flow value from the pre-development curve. Then the Post-development peak flow value is compared to the pre-development peak flow value. Based on the relative values of each point, pass/fail criteria are determined point by point.

⁴ Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009

⁵ See hydromodification limits for exceedance of pre-development values

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. It should be noted that the SWMM.out files will not have related time stamps since each file is developed independently.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Point is outside of the geomorphically significant range $Q_{10} Q_{lf}$
- 2. Q_{post} being less than Q pre
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_5 and Q_{10}^6

There are four ways that a point can fail. They are:

- 1. Q_{post} being greater than Q_{pre} if the point is between Q_{lf} and Q_5
- 2. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 3. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_5 and Q_{10}
- 4. If the frequency interval for points > 100% of Q_{pre} is greater than 1 year for the points between Q_5 and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

The Peak Flow Statistics Calculations

There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated, and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the file name. The first row of the data is the SWMM file name. The second row is the SWMM file time stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for Q₁₀, Q₅, and Q₂. These values are derived by linear interpolation between the nearest bounding points in the listing. While the relationship between the points in the peak flow analysis is not technically a linear relationship, the error introduced in using linear interpolation between such relatively close data points is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of pages of the data set.

⁶ See section on how a point can fail point number 3 hereon

As was previously discussed, each storm listed was determined by reading the flow values directly from the binary output file from the SWMM program. The storms were then sorted in descending order of peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in each of these lists. It should be noted that the derivation of these peak flow statistics values use full precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data values and/or the order of storms can be expected.

Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values to develop the peak flow frequency curves.

Plan Check Suggestions

As is the responsibility of the reviewing agency, any and all methods should be considered to verify that the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

Compare the Data Stamps for Each of the Statistics Files Used In This Analysis. For each set of calculations and report files, the first step of the process is to list out all the files in the report folder and delete those files. The very first step leaves the reports folder completely empty. Then as each successive step is performed, the results file is placed in the reports folder. Once all of the results files are complete, then the report file is compiled using the data directly from the files placed in the results folder. This means that the time stamps on each of the report files in the report should be within a minute or two depending on the speed of the computer. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

Verify A Few Random Storm Statistics

For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the randomly selected storm. Verify that the start date, end date, and the highest flow value between the start and end date correspond to the values shown in the statistics table. Do this for a few storm to verify that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and return period values.

Compare Plotted Curves to Table Data

Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables.

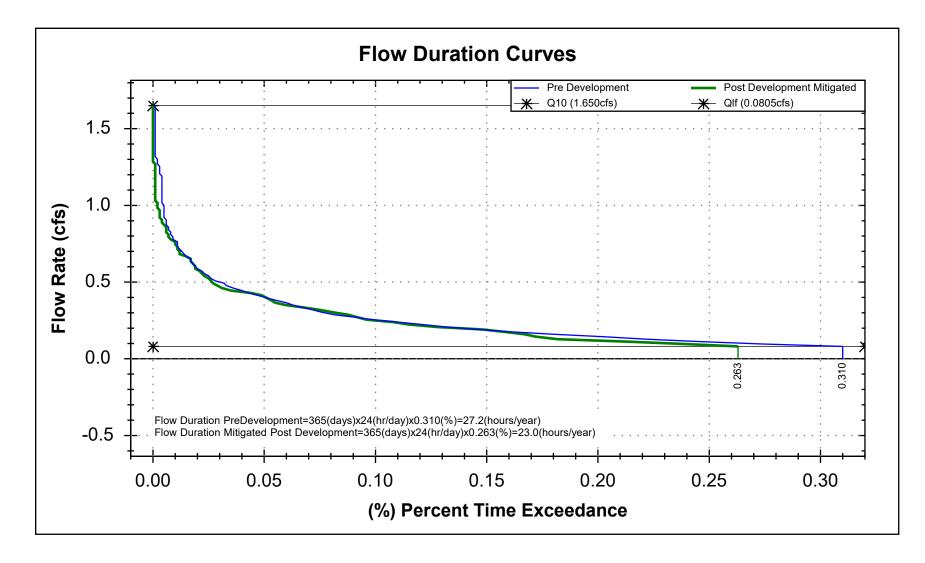
Verify by Observation that the values of Q10, Q5, Q2 and QF are reasonable.

For each value shown on the reports, verify that the value shown for say Q10 is in between the next higher return period and the next lower period. Also verify that the correct values for each of these return periods are plotted correctly on the peak flow frequency graph.

Manually Verify That the Pass-Fail Table Is Correctly Calculated

Select at random several points on each of the pass-fail tables to verify that the values for post X/Y and interpolated Y look reasonable. Also check that the various test results are shown accurately in the chart and also the final pass-fail result looks accurate.

VI. SUMMARY AND CONCLUSIO`N


Hydromodification calculations were performed utilizing continuous simulation to size storm water control facilities. SWMM (Storm Water Management Model) version 5.1 distributed by USEPA was used to generate computed peak flow recurrence and flow duration series statistics.

There are tributary areas with each stored by a detention pipe storage and then treated by 1 modular wetland systems (MWS). The detention pipes with hydromodification storage were labeled as with a total tributary area of approximately 3.0 acres. The areas were grouped based on its outfall and were analyzed for pre-development and mitigated post-development conditions.

The analyzed SWMM runs attached show that the proposed proprietary bio–filtration (MWS) facilities provide variety of orifice flow control sizes at the base of the gravel storage configured as shown in Figure 1 is in compliance with the latest BMP Manual City of Oceanside.

On the Two Point of Compliance (POC)

For POC 1–With the proposed square footage of LID areas and orifices acting as the low flow restrictor configured as shown in Figure 7, the duration of the flow is 14.5 hours (0.166%×365days×24 hour/day =14.5 hours/year), with an existing flow duration of 25.7 hours (0.293%x365daysx24 hour/day =25.7(hours/year).

SWMM STATISTICS ANALYSIS, FLOW DURATION CURVE AND PASS/FAIL TABLE

Attachment A

STATISTICS ANALYSIS OF THE SWMM FILES FOR:

DISCHARGE NODE: POC-1

ANALYSIS DETAILS

Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2) Assumed time between storms (hours): 24

PRE-DEVELOPMENT SWMM FILE

SWMM file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\18005ex.out SWMM file time stamp: 2/27/2020 10:08:27 AM Selected Node to Analyze: POC-1

POST-DEVELOPMENT MITIGATED SWMM FILE

SWMM file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\Stormchamber-alt.out SWMM file time stamp: 2/28/2020 3:41:05 PM Selected Node to Analyze: POC-1

MITIGATED CONDITIONS RESULTS

For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS

The Mitigated Conditions peak flow frequency curve is composed of 390 points. Of the points, 0 point(s) are above the flow control upper limit (Q10), 287 point(s) are below the low flow threshold value (Qlf). Of the points within the flow control range (Qlf to Q10), 103 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met.

The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the post-development flow duration curve to the pre-development curve, 92 point(s) have a lower duration than pre-development conditions, and 8 point(s) have a duration that exceeds the pre-development by less than 10%, and for less than 10% of the curve length. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met.

Development of the Peak Flow Statistics

The peak flow statistics are developed directly from the binary output file produced by the SWMM program. The site is modeled for the Pre-Development, and Post-Development-Mitigated conditions. For each of these files a specific time period differentiating distinct storms is chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is read the time and flow value of that record are recorded as the beginning of an event. The first record is automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the successive flow value is compared to the peak value and the greater value is retained as the peak value of the storm. As soon as a successive number of zero values equal to the chosen storm separation value (generally assumed to be 24 hours), then the time value of the last non-zero value is recorded as the end of the storm, the duration of the storm is the difference between the end time and the start time, and the peak value is recorded as the highest flow value between the start and end times.

Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted then the relative rank of each storm is assigned with the highest ranking storm being the storm with the highest peak flow. There are several methods that can be used to determine which storm should be ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is used so that each storm has a unique rank number. Where two or more storms have equal flow values, the earlier storm is assigned the higher rank. This is done consistently throughout the storm record. Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but equal) storms is irrelevant to the calculations.

The exceedance frequency and return period are both computed using the Weibull formula for plotting position. Therefore, for a specific event the exceedance frequency F and the return period in years T are calculated using the following equations¹:

 $F=m/(n_R+1)$ and T=n+1/m

where m is the event's rank, n_R is the total number of events and n is the number of years under analysis.

Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All three conditions (pre, post and mitigated) are plotted on the same plot.

¹ Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009

The Peak Flow Statistics Analysis

The Peak Flow Statistics analysis is composed of the following series of files:

- 1. The Peak Flow Frequency Plot
- 2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail)
- 3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail)
- 4. The Peak Flow Statistics Calculation for the Pre-Development Curve.
- 5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve.
- 6. The Peak Flow Statistics Calculation for the Mitigated Curve.

The Peak Flow Frequency Plot

The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q_{10} , Q_5 , Q_2 and Q_{lf} (low flow threshold) values. Within the geomorphically significant range ($Q_{10} - Q_{lf}$) one can see a visual representation of the relative positions of the peak flow curves. The peak flow curves are compared in a North/South (vertical) direction to compare post development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies below the pre-development curve (mostly²), the project meets the peak flow hydromodification requirements.

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post- development curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on the post development curve, the "X" value is used to interpolate the corresponding peak flow value from the pre-development curve. Then the Post-development peak flow value is compared to the pre-development peak flow value. Based on the relative values of each point, pass/fail criteria are determined point by point.

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. It

² See hydromodification limits for exceedance of pre-development values

should be noted that the SWMM.out files will not have related time stamps since each file is developed independently.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Point is outside of the geomorphically significant range $Q_{10} Q_{lf}$
- 2. Qpost being less than Q pre
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_5 and Q_{10}^3

There are four ways that a point can fail. They are:

- 1. Q_{post} being greater than Q_{pre} if the point is between Q_{lf} and Q_5
- 2. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 3. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_5 and Q_{10}
- 4. If the frequency interval for points > 100% of Q_{pre} is greater than 1 year for the points between Q_5 and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

The Peak Flow Statistics Calculations

There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated, and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the file name. The first row of the data is the SWMM file name. The second row is the SWMM file time stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for Q₁₀, Q₅, and Q₂. These values are derived by linear interpolation between the nearest bounding points in the listing. While the relationship between the points in the peak flow analysis is not technically a linear relationship, the error introduced in using linear interpolation between such relatively close data points is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of pages of the data set.

³ See section on how a point can fail point number 3 hereon

As was previously discussed, each storm listed was determined by reading the flow values directly from the binary output file from the SWMM program. The storms were then sorted in descending order of peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in each of these lists. It should be noted that the derivation of these peak flow statistics values use full precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data values and/or the order of storms can be expected.

Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values to develop the peak flow frequency curves.

Plan Check Suggestions

As is the responsibility of the reviewing agency, any and all methods should be considered to verify that the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

Compare the Data Stamps for Each of the Statistics Files Used In This Analysis.

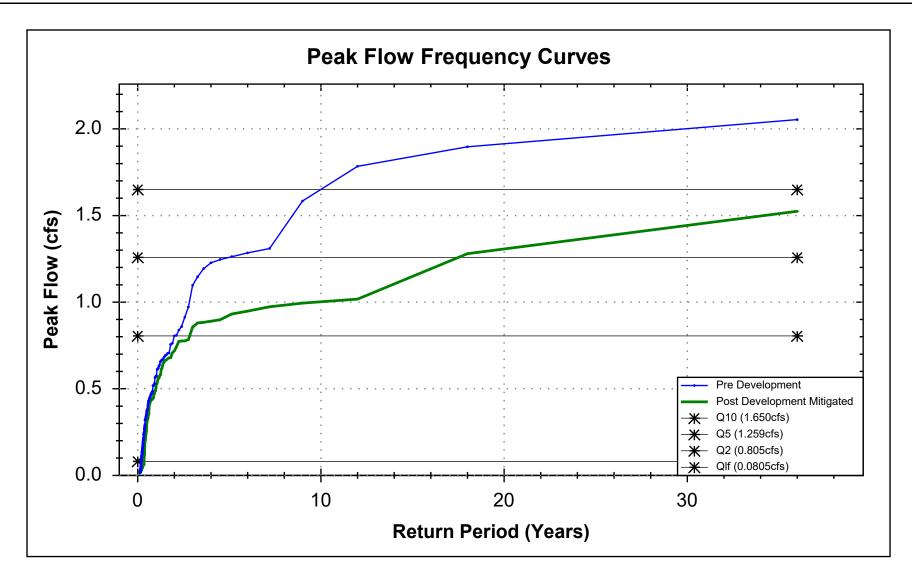
For each set of calculations and report files, the first step of the process is to list out all the files in the report folder and delete those files. The very first step leaves the reports folder completely empty. Then as each successive step is performed, the results file is placed in the reports folder. Once all of the results files are complete, then the report file is compiled using the data directly from the files placed in the results folder. This means that the time stamps on each of the report files in the report should be within a minute or two depending on the speed of the computer. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

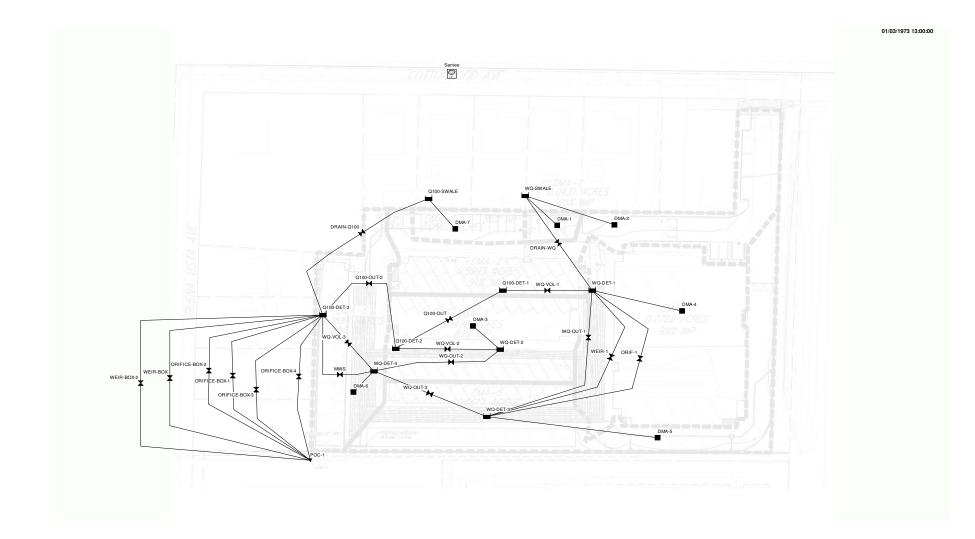
Verify A Few Random Storm Statistics

For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the randomly selected storm. Verify that the start date, end date, and the highest flow value between the start and end date correspond to the values shown in the statistics table. Do this for a few storm to verify

that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and return period values.

Compare Plotted Curves to Table Data


Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables.


Verify by Observation that the values of Q₁₀, Q₅, Q₂ and Q_{lf} are reasonable.

For each value shown on the reports, verify that the value shown for say Q10 is in between the next higher return period and the next lower period. Also verify that the correct values for each of these return periods are plotted correctly on the peak flow frequency graph.

Manually Verify That the Pass Fail Table Is Correctly Calculated

Select at random several points on each of the pass/fail tables to verify that the values for post X/Y and interpolated Y look reasonable. Also check that the various test results are shown accurately in the chart and also the final pass/fail result looks accurate.

Compare Post-D	Compare Post-Development Curve to Pre-Development Curve										
naat davalanma	post-development SWMM file: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\Stormchamber-alt.out										
	post-development time stamp: 2/28/2020 3:41:05 PM										
	Compared to:										
	compared to: pre-development SWMM file: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\18005ex.out										
	pre-development SwiMin file: V:\18\18005\Engineering\SDP\Storm-SDP\SWIMINJEN\SWIMIN FILES\11ERATIONS\60\18005ex.out										
pre-developmen											
Post Pri*	Hin Prd Uns)	PostDevO	Pre Dev O	Opost_Opte	OROSE ORIE	OPOST 1000 OPIS	Passifall				
Ň	Q.	X ²	×	0%	O _X	CP05t	``				
0	36.00	1.52	2.05	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
1	18.00	1.28	1.90	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
2	12.00	1.02	1.78	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
3	9.00	0.99	1.58	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
4	7.20	0.97	1.31	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
5	6.00	0.95	1.28	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
6	5.14	0.93	1.26	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
7	4.50	0.90	1.25	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
8	4.00	0.89	1.23	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
9	3.60	0.88	1.19	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
10	3.27	0.88	1.15	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
11	3.00	0.86	1.10	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
12	2.77	0.78	0.97	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
13	2.57	0.78	0.91	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
14	2.40	0.78	0.86	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
15	2.25	0.77	0.84	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
16	2.12	0.74	0.81	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
17	2.00	0.72	0.81	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
18	1.90	0.71	0.76	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
19	1.80	0.68	0.76	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
20	1.71	0.68	0.71	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
21	1.64	0.67	0.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
22	1.57	0.67	0.70	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
23	1.50	0.66	0.69	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
24	1.44	0.65	0.68	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
25	1.39	0.64	0.67	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
26	1.33	0.62	0.67	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
27	1.29	0.61	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
28	1.24	0.58	0.66	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
29	1.20	0.57	0.64	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
30	1.16	0.56	0.63	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
31	1.13	0.56	0.62	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
32	1.09	0.55	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				
33	1.06	0.53	0.61	TRUE	FALSE	FALSE	Pass- Qpost < Qpre				

						Opost ⁷	
*	15	.O	¢	oote	and the	Ox	*
POST PT*	100	PostDevO	Pre Der O			10%	Pastral
20 ⁵¹	~?`	and the second s	ale V	OST	o st	.7	0055
X	Rin Prod Wish	<i>२</i> ~	X.	Crost Crie	Opte Opte	JOS ¹	X .
						O _X	
34	1.03	0.53	0.57	TRUE	FALSE	FALSE	rass- uposi < upie
35	1.00	0.51	0.57	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
36	0.97	0.49	0.57	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
37	0.95	0.49	0.56	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
38	0.92	0.47	0.53	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
39	0.90	0.47	0.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
40	0.88	0.46	0.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
41	0.86	0.45	0.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
42	0.84	0.45	0.52	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
43	0.82	0.44	0.49	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
44	0.80	0.44	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
45	0.78	0.44	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
46	0.77	0.44	0.48	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
47	0.75	0.44	0.47	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
48	0.74	0.43	0.47	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
49	0.72	0.43	0.47	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
50	0.71	0.43	0.46	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
51	0.69	0.43	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
52	0.68	0.42	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
53	0.67	0.42	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
54	0.66	0.41	0.45	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
55	0.64	0.41	0.44	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
56	0.63	0.40	0.44	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
57	0.62	0.38	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
58	0.61	0.36	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
59	0.60	0.35	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
60	0.59	0.35	0.43	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
61	0.58	0.34	0.42	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
62	0.57	0.34	0.41	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
63	0.56	0.33	0.41	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
64	0.55	0.33	0.40	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
65	0.55	0.33	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
66	0.54	0.33	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
67	0.53	0.32	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
68	0.52	0.32	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
69	0.51	0.31	0.38	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
70	0.51	0.31	0.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
71	0.50	0.30	0.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
72	0.49	0.30	0.37	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
73	0.49	0.28	0.36	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
74	0.48	0.26	0.35	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
75	0.47	0.26	0.35	TRUE	FALSE	FALSE	Pass- Qpost < Qpre

				2	<u>^</u>	OROST THOM OR CONTRACT	
PostPT*	Run Prod Wash	POSIDENO	Pre Devo	Opost Opte	Opoet? Opte	~~/°	Passkall
۲`	ord C	, 0 ⁶¹	0°	2 ^L	27	10	ESILE
20 ⁵	atri	\$05°	8 ⁴⁰	apos.	apos.	\$ ⁷	2 ²⁵
	X.	`		Gr.	Û,	apor	
76	0.47	0.25	0.35	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
77	0.46	0.24	0.34	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
78	0.46	0.24	0.34	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
79	0.45	0.24	0.34	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
80	0.44	0.23	0.33	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
81	0.44	0.23	0.33	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
82	0.43	0.22	0.33	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
83	0.43	0.22	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
84	0.42	0.21	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
85	0.42	0.21	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
86	0.41	0.21	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
87	0.41	0.20	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
88	0.40	0.20	0.32	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
89	0.40	0.20	0.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
90	0.40	0.19	0.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
91	0.39	0.18	0.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
92	0.39	0.17	0.29	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
93	0.38	0.17	0.28	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
94	0.38	0.16	0.28	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
95	0.38	0.13	0.27	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
96	0.37	0.12	0.27	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
97	0.37	0.12	0.26	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
98	0.36	0.11	0.25	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
99	0.36	0.11	0.25	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
100	0.36	0.11	0.25	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
101	0.35	0.10	0.24	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
102	0.35	0.08	0.24	TRUE	FALSE	FALSE	Pass- Qpost < Qpre
103	0.35	0.07	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
104	0.34	0.07	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
105	0.34	0.07	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
106	0.34	0.06	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
107	0.33	0.06	0.24	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
108	0.33	0.06	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
109	0.33	0.06	0.23	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
110	0.32	0.06	0.22	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
111	0.32	0.06	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
112	0.32	0.06	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
113	0.32	0.06	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
114	0.31	0.06	0.21	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
115	0.31	0.06	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
116	0.31	0.06	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
117	0.31	0.06	0.20	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				•	•	oore	
POSt PT*	Pin Prd Wish	POSIDENO	Pre Dev O	Opte	Que	0/0	Passkall
× (* `	100	. 0 ⁶⁷	Oer	, L	.1	×10'	-stro
00 ⁵¹	an Y.	AOST.	01 ⁰	JOST I	20 St	×7`	20 ⁵¹
``	4 *	×	× ·	OROSI OR	Opoet? Opte	000st	
118	0.30	0.06	0.20	FALSE	FALSE	OR ^{OST} FALSE	Pass- Qpost Below Flow Control Threshold
119	0.30	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
119	0.30	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
120	0.30	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
121	0.29	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
122	0.29	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
123	0.29	0.06	0.19	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
124	0.29	0.06	0.18	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
125	0.29	0.06	0.18	FALSE	FALSE	FALSE	
120	0.28	0.06		FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
			0.17				Pass- Qpost Below Flow Control Threshold
128	0.28	0.06	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
129	0.28	0.06	0.17	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
130	0.28	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
131	0.27	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
132	0.27	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
133	0.27	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
134	0.27	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
135	0.27	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
136	0.26	0.05	0.16	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
137	0.26	0.05	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
138	0.26	0.05	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
139	0.26	0.05	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
140	0.26	0.05	0.15	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
141	0.25	0.05	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
142	0.25	0.05	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
143	0.25	0.05	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
144	0.25	0.05	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
145	0.25	0.04	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
146	0.25	0.04	0.14	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
147	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
148	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
149	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
150	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
151	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
152	0.24	0.04	0.13	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
153	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
154	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
155	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
156	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
157	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
158	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
159	0.23	0.04	0.12	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	opre	
×*	WE	ζΦ	, O	arte	agiv	000	
PostPT*	Run Prod Wesh	POSIDENO	Pre Dev O	Grost Gre	Opte Opte	10	Pasekall
20 ⁵	atri	00 ⁵¹	8 ⁴⁰	005	00051	ä ⁷	2 ²²
	X.	`	•	Û,	Û,	OPOST 1000 OPIC	
160	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
161	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
162	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
163	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
164	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
165	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
166	0.22	0.04	0.11	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
167	0.21	0.04	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
168	0.21	0.04	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
169	0.21	0.04	0.10	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
170	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
171	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
172	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
173	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
174	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
175	0.21	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
176	0.20	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
177	0.20	0.04	0.09	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
178	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
179	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
180	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
181	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
182	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
183	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
184	0.20	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
185	0.19	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
186	0.19	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
187	0.19	0.03	0.08	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
188	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
189	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
190	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
191	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
192	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
193	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
194	0.19	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
195	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
196	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
197	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
198	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
199	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
200	0.18	0.03	0.07	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
201	0.18	0.03	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				.0	.0	OROST ⁷ ORICE	
POS PT*	AIR Prod West	POSIDENO	Pre Dev O	OROSI ORIE	Opoet? Opte	0%	Passifall
er v	Pro C	10°	001	a ^L	27 ×	~~~~~	-ss/t
20°	ATU	80°	8 ⁴⁶	apor	apos	ST 7	2 ¹⁰
	``			U	Ŭ	OPO	
202	0.18	0.03	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
203	0.18	0.03	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
204	0.18	0.03	0.06	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
205	0.18	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
206	0.17	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
207	0.17	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
208	0.17	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
209	0.17	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
210	0.17	0.03	0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
211	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
212	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
213	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
214	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
215	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
216	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
217	0.17	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
218	0.16	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
219	0.16	0.03	0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
220	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
221	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
222	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
223	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
224	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
225	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
226	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
227	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
228	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
229	0.16	0.03	0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
230	0.16	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
231	0.16	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
232	0.16	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
233	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
234	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
235	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
236	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
237	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
238	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
239	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
240	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
241	0.15	0.03	0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
242	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
243	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

						1	
				0	٥	OPOST ⁷ 100 ¹⁰ OPI ⁶	
PostPT*	Pin Prd Wish	POSIDENO	Pre Dev O	OPOST_OPIE	Opest? Opte	~~\°	Passkall
<u>کې</u> کې	pro C	x 0 ⁶¹	0°N	x ^L	×7	10	ssilt
20 ⁵	atri	\$05°	۲ ^{رو}	apos.	Mos.	\$ ⁷	2 ²⁵
	X.	`		Û.	Û,	CR05	
244	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
245	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
246	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
247	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
248	0.15	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
249	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
250	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
251	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
252	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
253	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
254	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
255	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
256	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
257	0.14	0.02	0.01	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
258	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
259	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
260	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
261	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
262	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
263	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
264	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
265	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
266	0.14	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
267	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
268	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
269	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
270	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
271	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
272	0.13	0.02	0.00	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
273	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
274	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
275	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
276	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
277	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
278	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
279	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
280	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
281	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
282	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
283	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
284	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
285	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				<u> </u>	0	OPOST 1100 OPIS	
Postpri*	AIR Prod West	POSIDENO	Pre Dev O	CROST_CRIE	Opost ⁷ Opte	~~/°	Passkall
<u>رم`</u>	ord C	*Oe,	O_{62}	X ^L	27	10	ESILE
20 ⁵	atri	0 ⁰⁵¹	Pre	00051	00051	ä ⁷	2 ²²
	X.	``		Û,	Û,	apos	
286	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
287	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
288	0.13	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
289	0.12	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
290	0.12	0.02	-0.01	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
291	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
292	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
293	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
294	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
295	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
296	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
297	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
298	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
299	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
300	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
301	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
302	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
303	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
304	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
305	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
306	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
307	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
308	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
309	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
310	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
311	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
312	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
313	0.12	0.02	-0.02	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
314	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
315	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
316	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
317	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
318	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
319	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
320	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
321	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
322	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
323	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
324	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
325	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
326	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
327	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

				0	0	Opost / 10°/ Opie	
Postpri*	AIR Prod West	Post Dev O	Pre Dev O	OROSI ORIE	Opost? Opte	000	Passkall
2	ord C	, 0 ⁶¹	0 ^{ex}	XL	27	~~~	est to
20 ⁵	atri	20 ⁵¹	Pre	0005	00051	ä ⁷	2 ²²
	X.	`		Û,	Û,	apo	
328	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
329	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
330	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
331	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
332	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
333	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
334	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
335	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
336	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
337	0.11	0.02	-0.03	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
338	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Opost Below Flow Control Threshold
339	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
340	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
341	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
342	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
343	0.11	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
344	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
345	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
346	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
347	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
348	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
349	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
350	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
351	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
352	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
353	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
354	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
355	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
356	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
357	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
358	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
359	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
360	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
361	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
362	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
363	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
364	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
365	0.10	0.02	-0.04	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
366	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
367	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
368	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
369	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
	0.10	0.02	-0.05	TALOE	IALOE	I ALOE	1 ass- apost below 1 low control Threshold

						0	
Post PT*	Run Prod Wesh	POS ¹ DENO	Pre Den O	Opost Opte	Opte Opte	OPOST TOOLOOPIC	7355 ^(Fa)
370	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
371	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
372	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
373	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
374	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
375	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
376	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
377	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
378	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
379	0.10	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
380	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
381	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
382	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
383	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
384	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
385	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
386	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
387	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
388	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold
389	0.09	0.02	-0.05	FALSE	FALSE	FALSE	Pass- Qpost Below Flow Control Threshold

SWMM.out file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\18005ex.out SWMM.out time stamp: 2/27/2020 10:08:27 AM

Q10: 1.650 Q5: 1.259 Q2: 0.805

Peak Flow Statistics Table Values

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1976/10/22 16:00:00	1976/10/22 19:00:00	4	2.053	0.41%	36
2	1980/02/16 19:00:00	1980/02/21 07:00:00	109	1.897	0.83%	18
3	2004/10/27 05:00:00	2004/10/28 17:00:00	37	1.784	1.24%	12
4	1998/02/07 05:00:00	1998/02/08 03:00:00	23	1.584	1.65%	9
5	1976/09/10 09:00:00	1976/09/10 17:00:00	9	1.31	2.07%	7.2
6	1983/03/01 15:00:00	1983/03/04 23:00:00	81	1.284	2.48%	6
7	1979/01/31 06:00:00	1979/02/01 05:00:00	24	1.263	2.89%	5.14
8	1982/03/12 16:00:00	1982/03/12 18:00:00	3	1.246	3.31%	4.5
9	1992/02/06 17:00:00	1992/02/07 00:00:00	8	1.227	3.72%	4
10	1980/01/28 22:00:00	1980/01/30 05:00:00	32	1.193	4.13%	3.6
11	1998/02/02 12:00:00	1998/02/03 02:00:00	15	1.146	4.55%	3.27
12	1991/02/27 19:00:00	1991/03/01 11:00:00	41	1.097	4.96%	3
13	1998/02/13 08:00:00	1998/02/14 02:00:00	19	0.972	5.37%	2.77
14	1974/12/04 10:00:00	1974/12/04 15:00:00	6	0.913	5.79%	2.57
15	1995/01/04 17:00:00	1995/01/05 05:00:00	13	0.859	6.20%	2.4
16	1983/11/20 12:00:00	1983/11/20 23:00:00	12	0.838	6.61%	2.25
17	1973/02/11 08:00:00	1973/02/11 22:00:00	15	0.808	7.02%	2.12
18	1977/08/17 01:00:00	1977/08/17 07:00:00	7	0.805	7.44%	2
19	2007/02/19 11:00:00	2007/02/19 20:00:00	10	0.762	7.85%	1.9
20	1986/02/15 03:00:00	1986/02/15 13:00:00	11	0.755	8.26%	1.8
21	1978/02/10 04:00:00	1978/02/11 16:00:00	37	0.706	8.68%	1.71
22	1976/02/08 17:00:00	1976/02/09 05:00:00	13	0.704	9.09%	1.64
23	1982/02/10 15:00:00	1982/02/11 04:00:00	14	0.696	9.50%	1.57
24	1974/10/28 11:00:00	1974/10/29 12:00:00	26	0.691	9.92%	1.5
25	1978/01/14 19:00:00	1978/01/15 09:00:00	15	0.682	10.33%	1.44
26	1993/01/31 01:00:00	1993/01/31 04:00:00	4	0.672	10.74%	1.39
27	1993/02/18 17:00:00	1993/02/19 23:00:00	31	0.667	11.16%	1.33
28	1992/02/15 14:00:00	1992/02/15 21:00:00	8	0.663	11.57%	1.29
29	1975/03/06 11:00:00	1975/03/06 14:00:00	4	0.656	11.98%	1.24
30	1980/01/09 13:00:00	1980/01/11 17:00:00	53	0.639	12.40%	1.2
31	2005/03/04 18:00:00	2005/03/05 06:00:00	13	0.63	12.81%	1.16
32	2004/10/19 16:00:00	2004/10/20 18:00:00	27	0.619	13.22%	1.13
33	1995/02/14 10:00:00	1995/02/14 13:00:00	4	0.614	13.64%	1.09
34	1983/03/24 04:00:00	1983/03/24 09:00:00	6	0.611	14.05%	1.06
35	1998/02/16 12:00:00	1998/02/17 01:00:00	14	0.574	14.46%	1.03
36	1993/01/12 15:00:00	1993/01/14 06:00:00	40	0.573	14.88%	1
37	2005/02/20 12:00:00	2005/02/23 07:00:00	68	0.569	15.29%	0.97
38	2004/12/28 10:00:00	2004/12/29 08:00:00	23	0.564	15.70%	0.95
39	1993/01/06 05:00:00	1993/01/08 13:00:00	57	0.531	16.12%	0.92

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1995/03/05 10:00:00	1995/03/06 03:00:00	18	0.524	16.53%	0.9
41	1982/03/14 16:00:00	1982/03/14 20:00:00	5	0.519	16.94%	0.88
42	1978/03/04 18:00:00	1978/03/05 18:00:00	25	0.519	17.36%	0.86
43	1981/03/01 05:00:00	1981/03/02 03:00:00	23	0.518	17.77%	0.84
44	1979/01/05 09:00:00	1979/01/06 13:00:00	29	0.486	18.18%	0.82
45	1993/01/15 13:00:00	1993/01/18 23:00:00	83	0.484	18.60%	0.8
46	2000/02/21 17:00:00	2000/02/21 23:00:00	7	0.477	19.01%	0.78
47	1973/02/13 04:00:00	1973/02/13 08:00:00	5	0.477	19.42%	0.77
48	1974/01/04 20:00:00	1974/01/05 13:00:00	18	0.471	19.83%	0.75
49	1984/12/18 14:00:00	1984/12/20 05:00:00	40	0.468	20.25%	0.74
50	1992/03/06 22:00:00	1992/03/07 00:00:00	3	0.468	20.66%	0.72
51	2003/02/11 17:00:00	2003/02/13 01:00:00	33	0.461	21.07%	0.71
52	1978/03/11 23:00:00	1978/03/12 13:00:00	15	0.455	21.49%	0.69
53	1983/02/27 17:00:00	1983/02/28 03:00:00	11	0.451	21.90%	0.68
54	1991/03/26 02:00:00	1991/03/27 11:00:00	34	0.45	22.31%	0.67
55	2004/02/22 13:00:00	2004/02/23 05:00:00	17	0.446	22.73%	0.66
56	1978/02/27 22:00:00	1978/03/02 19:00:00	70	0.442	23.14%	0.64
57	1980/03/06 05:00:00	1980/03/06 14:00:00	10	0.441	23.55%	0.63
58	1985/11/11 11:00:00	1985/11/11 21:00:00	11	0.432	23.97%	0.62
59	2004/12/09 14:00:00	2004/12/09 16:00:00	3	0.432	24.38%	0.61
60	1982/04/01 11:00:00	1982/04/01 19:00:00	9	0.431	24.79%	0.6
61	2005/01/09 09:00:00	2005/01/10 03:00:00	19	0.431	25.21%	0.59
62	1978/05/01 05:00:00	1978/05/01 07:00:00	3	0.421	25.62%	0.58
63	1987/01/04 18:00:00	1987/01/04 23:00:00	6	0.413	26.03%	0.57
64	1980/04/23 04:00:00	1980/04/23 06:00:00	3	0.407	26.45%	0.56
65	1996/03/13 07:00:00	1996/03/13 12:00:00	6	0.397	26.86%	0.55
66	1977/12/28 08:00:00	1977/12/28 23:00:00	16	0.385	27.27%	0.55
67	1981/02/09 00:00:00	1981/02/09 13:00:00	14	0.382	27.69%	0.54
68	1991/03/19 00:00:00	1991/03/21 07:00:00	56	0.38	28.10%	0.53
69	1978/01/16 23:00:00	1978/01/17 07:00:00	9	0.379	28.51%	0.52
70	1995/03/11 04:00:00	1995/03/11 10:00:00	9	0.379	28.93%	0.52
70	1997/01/01 10:00:00	1997/01/02 16:00:00	31	0.374	20.93%	0.51
72	1993/02/08 01:00:00	1993/02/08 19:00:00	19	0.373	29.34%	0.5
72	2003/04/13 17:00:00	2003/04/13 22:00:00	6	0.373	30.17%	0.49
73			9	0.367		0.49
74	1974/04/02 02:00:00	1974/04/02 10:00:00	20	0.362	30.58%	0.49
75	1982/03/17 10:00:00	1982/03/18 05:00:00	20		30.99%	0.48
76	1985/11/25 01:00:00	1985/11/25 21:00:00	14	0.351	31.40%	0.47
	1984/12/11 05:00:00	1984/12/11 18:00:00		0.349	31.82%	-
78	1998/02/22 16:00:00	1998/02/24 00:00:00	33	0.339	32.23%	0.46
79	1978/11/24 03:00:00	1978/11/24 17:00:00	15	0.338	32.64%	0.46
80	1992/03/02 15:00:00	1992/03/02 21:00:00	7	0.338	33.06%	0.45
81	2003/02/24 17:00:00	2003/02/24 22:00:00	6	0.33	33.47%	0.44
82	1987/12/16 15:00:00	1987/12/16 23:00:00	9	0.326	33.88%	0.44
83	1988/04/20 08:00:00	1988/04/20 14:00:00	7	0.326	34.30%	0.43
84	2001/01/11 06:00:00	2001/01/12 16:00:00	35	0.325	34.71%	0.43
85	1978/02/12 23:00:00	1978/02/14 02:00:00	28	0.323	35.12%	0.42
86	1983/01/29 01:00:00	1983/01/29 05:00:00	5	0.32	35.54%	0.42

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1986/12/07 15:00:00	1986/12/07 17:00:00	3	0.32	35.95%	0.41
88	1976/02/05 02:00:00	1976/02/07 09:00:00	56	0.32	36.36%	0.41
89	1995/04/18 12:00:00	1995/04/18 13:00:00	2	0.318	36.78%	0.4
90	1977/05/08 23:00:00	1977/05/09 03:00:00	5	0.294	37.19%	0.4
91	1995/01/25 10:00:00	1995/01/26 03:00:00	18	0.292	37.60%	0.4
92	1992/02/12 21:00:00	1992/02/13 08:00:00	12	0.288	38.02%	0.39
93	2005/01/11 03:00:00	2005/01/11 11:00:00	9	0.286	38.43%	0.39
94	1987/12/04 22:00:00	1987/12/04 23:00:00	2	0.281	38.84%	0.38
95	1987/11/04 20:00:00	1987/11/05 17:00:00	22	0.275	39.26%	0.38
96	1994/02/17 12:00:00	1994/02/17 15:00:00	4	0.272	39.67%	0.38
97	1996/11/22 03:00:00	1996/11/22 07:00:00	5	0.27	40.08%	0.37
98	1974/01/07 14:00:00	1974/01/08 09:00:00	20	0.264	40.50%	0.37
99	2008/01/27 02:00:00	2008/01/27 10:00:00	9	0.252	40.91%	0.36
100	1990/01/14 04:00:00	1990/01/14 07:00:00	4	0.251	41.32%	0.36
101	2005/01/03 08:00:00	2005/01/04 09:00:00	26	0.249	41.74%	0.36
102	1983/03/21 05:00:00	1983/03/21 06:00:00	2	0.245	42.15%	0.35
103	1983/03/18 15:00:00	1983/03/18 23:00:00	9	0.244	42.56%	0.35
100	1978/02/05 15:00:00	1978/02/05 21:00:00	7	0.242	42.98%	0.35
105	1978/02/07 18:00:00	1978/02/07 23:00:00	6	0.238	43.39%	0.34
106	1992/01/05 15:00:00	1992/01/06 08:00:00	18	0.237	43.80%	0.34
107	2004/10/18 13:00:00	2004/10/18 14:00:00	2	0.236	44.21%	0.34
108	1979/10/20 14:00:00	1979/10/20 17:00:00	4	0.236	44.63%	0.33
109	2008/01/07 01:00:00	2008/01/07 05:00:00	5	0.235	45.04%	0.33
110	2004/02/26 09:00:00	2004/02/26 11:00:00	3	0.233	45.45%	0.33
111	1975/03/10 13:00:00	1975/03/11 16:00:00	28	0.235	45.87%	0.32
112	1981/12/30 13:00:00	1981/12/30 18:00:00	6	0.213	46.28%	0.32
112	1978/12/17 15:00:00	1978/12/19 11:00:00	45	0.213	46.69%	0.32
114	1979/03/28 10:00:00	1979/03/28 22:00:00	13	0.213	47.11%	0.32
115	1973/03/08 14:00:00	1973/03/08 19:00:00	6	0.211	47.52%	0.31
116	1999/01/26 14:00:00	1999/01/27 01:00:00	12	0.205	47.93%	0.31
117	1983/11/25 00:00:00	1983/11/25 03:00:00	4	0.203	48.35%	0.31
118	1976/12/29 14:00:00	1976/12/30 03:00:00	14	0.203	48.76%	0.31
110	1988/04/21 19:00:00	1988/04/22 02:00:00	8	0.201	49.17%	0.3
120	1988/12/25 00:00:00	1988/12/25 03:00:00	4	0.2	49.17%	0.3
120			2			
121	1979/01/16 02:00:00	1979/01/16 03:00:00	5	0.192	50.00%	0.3
122	1973/01/19 00:00:00	1973/01/19 04:00:00	5 9		50.41% 50.83%	0.29
123	1997/01/26 00:00:00	1997/01/26 08:00:00	9	0.186		0.29
	1973/11/23 00:00:00	1973/11/23 06:00:00		0.186	51.24%	
125	1978/01/09 19:00:00	1978/01/10 20:00:00	26	0.18	51.65%	0.29
126	1993/11/14 09:00:00	1993/11/14 10:00:00	2	0.176	52.07%	0.29
127	1990/01/17 03:00:00	1990/01/17 05:00:00	3	0.172	52.48%	0.28
128	1983/02/08 06:00:00	1983/02/08 09:00:00	4	0.17	52.89%	0.28
129	1992/12/07 13:00:00	1992/12/07 16:00:00	4	0.169	53.31%	0.28
130	1995/01/10 20:00:00	1995/01/11 01:00:00	6	0.168	53.72%	0.28
131	1973/03/11 14:00:00	1973/03/11 19:00:00	6	0.163	54.13%	0.28
132	1983/01/27 08:00:00	1983/01/27 18:00:00	11	0.163	54.55%	0.27
133	1979/01/18 08:00:00	1979/01/18 21:00:00	14	0.158	54.96%	0.27

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	1974/03/08 08:00:00	1974/03/08 12:00:00	5	0.158	55.37%	0.27
135	1980/02/14 04:00:00	1980/02/14 18:00:00	15	0.157	55.79%	0.27
136	1998/01/08 17:00:00	1998/01/08 21:00:00	5	0.156	56.20%	0.27
137	1978/04/07 05:00:00	1978/04/07 06:00:00	2	0.156	56.61%	0.26
138	1991/10/26 23:00:00	1991/10/27 03:00:00	5	0.155	57.02%	0.26
139	1980/03/10 18:00:00	1980/03/10 19:00:00	2	0.15	57.44%	0.26
140	1980/01/19 03:00:00	1980/01/19 05:00:00	3	0.148	57.85%	0.26
141	1983/12/03 17:00:00	1983/12/03 19:00:00	3	0.148	58.26%	0.26
142	2005/01/28 17:00:00	2005/01/28 19:00:00	3	0.143	58.68%	0.25
143	1994/02/08 08:00:00	1994/02/08 10:00:00	3	0.143	59.09%	0.25
144	1976/03/01 19:00:00	1976/03/01 21:00:00	3	0.142	59.50%	0.25
145	1981/03/19 23:00:00	1981/03/20 06:00:00	8	0.141	59.92%	0.25
146	1994/02/18 17:00:00	1994/02/18 19:00:00	3	0.141	60.33%	0.25
147	1981/03/05 18:00:00	1981/03/05 20:00:00	3	0.137	60.74%	0.25
148	1994/03/24 23:00:00	1994/03/25 03:00:00	5	0.133	61.16%	0.24
149	2006/02/28 00:00:00	2006/02/28 03:00:00	4	0.131	61.57%	0.24
150	1976/04/15 21:00:00	1976/04/15 22:00:00	2	0.13	61.98%	0.24
151	1973/03/22 02:00:00	1973/03/22 06:00:00	5	0.128	62.40%	0.24
152	2006/04/04 23:00:00	2006/04/05 03:00:00	5	0.126	62.81%	0.24
153	1986/03/15 23:00:00	1986/03/17 02:00:00	28	0.126	63.22%	0.24
154	1987/10/11 18:00:00	1987/10/11 19:00:00	2	0.120	63.64%	0.23
155	1984/12/27 02:00:00	1984/12/27 09:00:00	8	0.121	64.05%	0.23
156	1978/11/11 22:00:00	1978/11/12 00:00:00	3	0.12	64.46%	0.23
157	1973/03/06 14:00:00	1973/03/07 05:00:00	16	0.118	64.88%	0.23
158	2008/02/14 17:00:00	2008/02/14 18:00:00	2	0.117	65.29%	0.23
159	1983/02/02 14:00:00	1983/02/02 17:00:00	4	0.116	65.70%	0.23
160	1984/11/24 19:00:00	1984/11/24 23:00:00	5	0.116	66.12%	0.23
161	1973/03/28 21:00:00	1973/03/28 22:00:00	2	0.113	66.53%	0.22
162	1996/10/30 16:00:00	1996/10/30 18:00:00	3	0.112	66.94%	0.22
163	2003/12/25 19:00:00	2003/12/25 20:00:00	2	0.112	67.36%	0.22
164	1982/01/01 12:00:00	1982/01/02 12:00:00	25	0.107	67.77%	0.22
165	1982/01/01 12:00:00	1982/01/02 12:00:00	25	0.107	68.18%	0.22
165	2007/02/28 04:00:00	2007/02/28 06:00:00	3	0.107	68.60%	0.22
167	1992/03/20 16:00:00	1992/03/20 17:00:00	2	0.106	69.01%	0.22
167						
168	1977/01/01 14:00:00 2007/12/09 00:00:00	1977/01/01 16:00:00 2007/12/09 01:00:00	3	0.103	69.42% 69.83%	0.21
170			3		69.83% 70.25%	0.21
170	1984/12/08 00:00:00	1984/12/08 02:00:00	13	0.095		0.21
	1977/12/26 08:00:00	1977/12/26 20:00:00	-		70.66%	
172	2003/03/14 17:00:00	2003/03/15 17:00:00	25	0.089	71.07%	0.21
173	2005/03/22 22:00:00	2005/03/23 00:00:00	3	0.088	71.49%	0.21
174	1998/03/24 17:00:00	1998/03/24 18:00:00	2	0.087	71.90%	0.21
175	1975/03/08 13:00:00	1975/03/08 15:00:00	3	0.087	72.31%	0.21
176	2002/12/19 17:00:00	2002/12/19 22:00:00	6	0.086	72.73%	0.21
177	1999/04/12 03:00:00	1999/04/12 05:00:00	3	0.085	73.14%	0.2
178	1979/03/01 14:00:00	1979/03/01 16:00:00	3	0.085	73.55%	0.2
179	1974/11/01 23:00:00	1974/11/02 01:00:00	3	0.085	73.97%	0.2
180	2007/02/22 22:00:00	2007/02/22 23:00:00	2	0.082	74.38%	0.2

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
181	2005/01/07 15:00:00	2005/01/07 18:00:00	4	0.081	74.79%	0.2
182	1982/01/21 08:00:00	1982/01/21 14:00:00	7	0.08	75.21%	0.2
183	1994/03/07 02:00:00	1994/03/07 06:00:00	5	0.079	75.62%	0.2
184	1985/11/29 15:00:00	1985/11/29 18:00:00	4	0.078	76.03%	0.2
185	1984/12/16 05:00:00	1984/12/16 06:00:00	2	0.077	76.45%	0.2
186	1983/03/22 23:00:00	1983/03/23 01:00:00	3	0.077	76.86%	0.19
187	2008/01/23 21:00:00	2008/01/23 22:00:00	2	0.077	77.27%	0.19
188	2008/02/03 12:00:00	2008/02/03 13:00:00	2	0.075	77.69%	0.19
189	1995/01/08 02:00:00	1995/01/08 05:00:00	4	0.075	78.10%	0.19
190	1976/09/03 17:00:00	1976/09/03 17:00:00	1	0.074	78.51%	0.19
191	1985/02/02 10:00:00	1985/02/02 10:00:00	1	0.073	78.93%	0.19
192	2006/03/28 23:00:00	2006/03/29 01:00:00	3	0.073	79.34%	0.19
193	1986/03/12 13:00:00	1986/03/12 14:00:00	2	0.072	79.75%	0.19
194	1995/01/16 10:00:00	1995/01/16 11:00:00	2	0.07	80.17%	0.19
195	2005/02/12 11:00:00	2005/02/12 16:00:00	6	0.07	80.58%	0.19
196	1999/04/07 10:00:00	1999/04/07 10:00:00	1	0.068	80.99%	0.18
197	1980/05/02 00:00:00	1980/05/02 00:00:00	1	0.068	81.40%	0.18
198	1973/03/20 10:00:00	1973/03/20 13:00:00	4	0.068	81.82%	0.18
199	1996/01/31 21:00:00	1996/02/01 05:00:00	9	0.066	82.23%	0.18
200	1998/12/05 07:00:00	1998/12/05 07:00:00	1	0.066	82.64%	0.18
201	1981/04/18 22:00:00	1981/04/18 23:00:00	2	0.065	83.06%	0.18
202	1975/02/03 15:00:00	1975/02/03 16:00:00	2	0.06	83.47%	0.18
203	1991/12/29 18:00:00	1991/12/29 19:00:00	2	0.056	83.88%	0.18
204	1987/10/31 21:00:00	1987/10/31 21:00:00	1	0.056	84.30%	0.18
205	1998/03/27 17:00:00	1998/03/27 19:00:00	3	0.054	84.71%	0.18
206	1973/03/13 23:00:00	1973/03/13 23:00:00	1	0.049	85.12%	0.18
207	1994/12/25 05:00:00	1994/12/25 06:00:00	2	0.049	85.54%	0.17
208	1980/02/22 17:00:00	1980/02/22 17:00:00	1	0.049	85.95%	0.17
200	1989/03/25 17:00:00	1989/03/25 17:00:00	1	0.049	86.36%	0.17
203	1998/12/06 07:00:00	1998/12/06 07:00:00	1	0.045	86.78%	0.17
210	2006/03/12 22:00:00	2006/03/12 23:00:00	2	0.043	87.19%	0.17
211	1992/01/07 20:00:00	1992/01/07 22:00:00	3	0.043	87.60%	0.17
212	2001/01/26 19:00:00	2001/01/26 21:00:00	3	0.043	88.02%	0.17
213	1980/04/28 16:00:00	1980/04/29 01:00:00	10	0.043	88.43%	0.17
214	2008/02/22 07:00:00	2008/02/22 08:00:00	2	0.042	88.84%	-
215	1976/03/03 01:00:00	1976/03/03 07:00:00	7	0.042	89.26%	0.17 0.17
			-			
217 218	2000/03/05 17:00:00	2000/03/05 19:00:00	3	0.039	89.67% 90.08%	0.17
-	2001/03/06 17:00:00	2001/03/06 17:00:00	•			-
219	1986/09/25 06:00:00	1986/09/25 06:00:00	1	0.038	90.50%	0.16
220	1990/04/04 08:00:00	1990/04/04 09:00:00	2	0.036	90.91%	0.16
221	1993/02/24 00:00:00	1993/02/24 00:00:00	1	0.035	91.32%	0.16
222	1975/03/26 04:00:00	1975/03/26 04:00:00	1	0.034	91.74%	0.16
223	1973/02/06 19:00:00	1973/02/06 19:00:00	1	0.033	92.15%	0.16
224	2007/11/30 22:00:00	2007/12/01 00:00:00	3	0.033	92.56%	0.16
225	2001/02/26 17:00:00	2001/02/27 19:00:00	27	0.032	92.98%	0.16
226	1998/04/10 17:00:00	1998/04/10 18:00:00	2	0.03	93.39%	0.16
227	1997/12/05 17:00:00	1997/12/05 17:00:00	1	0.029	93.80%	0.16

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
228	1975/03/22 12:00:00	1975/03/22 12:00:00	1	0.026	94.21%	0.16
229	1994/04/26 18:00:00	1994/04/26 18:00:00	1	0.026	94.63%	0.16
230	2006/03/21 03:00:00	2006/03/21 03:00:00	1	0.023	95.04%	0.16
231	1988/01/17 20:00:00	1988/01/17 20:00:00	1	0.022	95.45%	0.16
232	1976/11/11 00:00:00	1976/11/11 00:00:00	1	0.022	95.87%	0.16
233	1978/01/05 22:00:00	1978/01/05 22:00:00	1	0.02	96.28%	0.16
234	1986/11/18 01:00:00	1986/11/18 01:00:00	1	0.019	96.69%	0.15
235	1975/03/14 03:00:00	1975/03/14 03:00:00	1	0.019	97.11%	0.15
236	1998/03/30 17:00:00	1998/03/30 17:00:00	1	0.019	97.52%	0.15
237	1998/04/14 17:00:00	1998/04/14 17:00:00	1	0.018	97.93%	0.15
238	1973/01/17 00:00:00	1973/01/17 00:00:00	1	0.018	98.35%	0.15
239	2005/02/18 07:00:00	2005/02/18 07:00:00	1	0.018	98.76%	0.15
240	1998/05/11 17:00:00	1998/05/11 17:00:00	1	0.017	99.17%	0.15
241	2001/02/23 17:00:00	2001/02/23 17:00:00	1	0.016	99.59%	0.15
-End of Data						

SWMM.out file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\Stormchamber-alt.out SWMM.out time stamp: 2/28/2020 3:41:05 PM

Q10: 0.000 Q5: 0.000 Q2: 0.000

Peak Flow Statistics Table Values

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
1	1976/10/22 16:00:00	1976/10/27 01:00:00	106	1.524	0.26%	36
2	1980/02/13 18:00:00	1980/02/29 11:00:00	378	1.28	0.51%	18
3	2004/10/27 06:00:00	2004/11/03 21:00:00	184	1.017	0.77%	12
4	1979/01/31 06:00:00	1979/02/07 09:00:00	172	0.995	1.02%	9
5	1998/02/02 10:00:00	1998/02/27 04:00:00	595	0.973	1.28%	7.2
6	1992/02/06 15:00:00	1992/02/18 01:00:00	275	0.948	1.53%	6
7	1982/03/12 05:00:00	1982/03/23 20:00:00	280	0.931	1.79%	5.14
8	1976/09/10 09:00:00	1976/09/14 02:00:00	90	0.898	2.05%	4.5
9	1974/12/04 10:00:00	1974/12/07 18:00:00	81	0.89	2.30%	4
10	1983/02/24 13:00:00	1983/03/11 11:00:00	359	0.884	2.56%	3.6
11	1975/03/06 10:00:00	1975/03/16 06:00:00	237	0.88	2.81%	3.27
12	2007/02/19 08:00:00	2007/02/24 12:00:00	125	0.855	3.07%	3
13	1974/10/26 16:00:00	1974/11/04 11:00:00	212	0.784	3.32%	2.77
14	1991/02/27 18:00:00	1991/03/07 06:00:00	181	0.777	3.58%	2.57
15	1977/08/16 20:00:00	1977/08/20 15:00:00	92	0.775	3.84%	2.4
16	1995/01/03 17:00:00	1995/01/15 01:00:00	273	0.774	4.09%	2.25
17	1995/02/14 02:00:00	1995/02/17 18:00:00	89	0.743	4.35%	2.12
18	1986/02/15 04:00:00	1986/02/18 22:00:00	91	0.718	4.60%	2
19	1993/01/31 02:00:00	1993/02/02 13:00:00	60	0.708	4.86%	1.9
20	1980/01/28 14:00:00	1980/02/04 15:00:00	170	0.68	5.12%	1.8
21	1976/02/04 04:00:00	1976/02/15 08:00:00	269	0.678	5.37%	1.71
22	1982/02/08 20:00:00	1982/02/14 14:00:00	139	0.673	5.63%	1.64
23	2004/12/28 10:00:00	2005/01/15 00:00:00	423	0.666	5.88%	1.57
24	1973/02/11 09:00:00	1973/02/16 20:00:00	132	0.662	6.14%	1.5
25	1985/11/11 08:00:00	1985/11/16 07:00:00	120	0.654	6.39%	1.44
26	1978/02/05 15:00:00	1978/02/18 10:00:00	308	0.644	6.65%	1.39
27	2004/10/17 15:00:00	2004/10/25 09:00:00	187	0.621	6.91%	1.33
28	1987/01/04 18:00:00	1987/01/09 18:00:00	121	0.611	7.16%	1.29
29	1993/02/18 18:00:00	1993/02/26 09:00:00	184	0.579	7.42%	1.24
30	2005/03/04 22:00:00	2005/03/08 02:00:00	77	0.575	7.67%	1.2
31	1978/01/09 20:00:00	1978/01/21 21:00:00	290	0.562	7.93%	1.16
32	1980/01/07 21:00:00	1980/01/21 12:00:00	328	0.562	8.18%	1.13
33	1983/11/20 13:00:00	1983/11/23 11:00:00	71	0.548	8.44%	1.09
34	1995/03/05 10:00:00	1995/03/10 03:00:00	114	0.53	8.70%	1.06
35	1993/01/06 06:00:00	1993/01/25 03:00:00	454	0.527	8.95%	1.03
36	2000/02/21 12:00:00	2000/02/27 09:00:00	142	0.506	9.21%	1
37	2005/02/18 07:00:00	2005/02/28 01:00:00	235	0.489	9.46%	0.97
38	2004/02/22 13:00:00	2004/02/29 06:00:00	162	0.487	9.72%	0.95
39	2003/02/24 12:00:00	2003/03/01 05:00:00	114	0.474	9.97%	0.92

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
40	1977/05/08 20:00:00	1977/05/13 21:00:00	122	0.469	10.23%	0.9
41	2003/04/13 09:00:00	2003/04/17 04:00:00	92	0.465	10.49%	0.88
42	1991/03/19 02:00:00	1991/03/30 20:00:00	283	0.446	10.74%	0.86
43	1978/02/27 22:00:00	1978/03/15 21:00:00	384	0.445	11.00%	0.84
44	1974/01/04 21:00:00	1974/01/13 01:00:00	197	0.443	11.25%	0.82
45	1997/01/01 09:00:00	1997/01/06 18:00:00	130	0.439	11.51%	0.8
46	1980/03/06 06:00:00	1980/03/13 00:00:00	163	0.439	11.76%	0.78
47	1981/02/09 01:00:00	1981/02/13 01:00:00	97	0.437	12.02%	0.77
48	1976/12/29 12:00:00	1977/01/04 09:00:00	142	0.435	12.28%	0.75
49	1987/12/16 15:00:00	1987/12/21 09:00:00	115	0.434	12.53%	0.74
50	1981/12/30 12:00:00	1982/01/06 17:00:00	174	0.431	12.79%	0.72
51	1979/10/20 07:00:00	1979/10/23 07:00:00	73	0.427	13.04%	0.71
52	2003/02/10 22:00:00	2003/02/17 06:00:00	153	0.427	13.30%	0.69
53	1985/11/25 00:00:00	1985/12/05 07:00:00	248	0.421	13.55%	0.68
54	1981/02/26 01:00:00	1981/03/08 06:00:00	246	0.418	13.81%	0.67
55	1992/03/02 15:00:00	1992/03/09 20:00:00	174	0.412	14.07%	0.66
56	1996/11/21 20:00:00	1996/11/25 06:00:00	83	0.408	14.32%	0.64
57	1979/01/05 15:00:00	1979/01/10 02:00:00	108	0.405	14.58%	0.63
58	2008/01/05 07:00:00	2008/01/10 18:00:00	132	0.385	14.83%	0.62
59	1993/02/08 01:00:00	1993/02/12 01:00:00	97	0.359	15.09%	0.61
60	1994/02/17 13:00:00	1994/02/21 09:00:00	93	0.354	15.35%	0.6
61	1977/12/25 16:00:00	1978/01/01 10:00:00	163	0.348	15.60%	0.59
62	1984/12/08 01:00:00	1984/12/14 16:00:00	160	0.343	15.86%	0.58
63	1978/12/17 05:00:00	1978/12/23 18:00:00	158	0.337	16.11%	0.57
64	1984/12/16 07:00:00	1984/12/23 00:00:00	162	0.331	16.37%	0.56
65	1982/03/26 04:00:00	1982/04/04 11:00:00	224	0.329	16.62%	0.55
66	1996/03/12 23:00:00	1996/03/16 21:00:00	95	0.329	16.88%	0.55
67	1976/03/01 19:00:00	1976/03/06 18:00:00	120	0.326	17.14%	0.54
68	1978/11/11 04:00:00	1978/11/15 22:00:00	115	0.319	17.39%	0.53
69	1974/04/02 05:00:00	1974/04/04 17:00:00	61	0.316	17.65%	0.52
70	1995/03/11 04:00:00	1995/03/14 23:00:00	92	0.314	17.90%	0.51
71	1978/11/21 22:00:00	1978/11/27 10:00:00	133	0.309	18.16%	0.51
72	2007/11/30 12:00:00	2007/12/04 01:00:00	86	0.301	18.41%	0.5
73	2001/01/11 07:00:00	2001/01/15 15:00:00	105	0.301	18.67%	0.49
74	1992/12/07 12:00:00	1992/12/10 10:00:00	71	0.275	18.93%	0.49
75	1986/11/17 22:00:00	1986/11/20 08:00:00	59	0.264	19.18%	0.48
76	1986/12/06 09:00:00	1986/12/10 14:00:00	102	0.255	19.44%	0.47
77	1979/03/27 18:00:00	1979/04/01 21:00:00	124	0.247	19.69%	0.47
78	1995/01/25 09:00:00	1995/01/28 22:00:00	86	0.245	19.95%	0.46
79	2006/04/04 21:00:00	2006/04/08 03:00:00	79	0.242	20.20%	0.46
80	1999/01/25 12:00:00	1999/01/30 06:00:00	115	0.236	20.46%	0.45
81	2008/01/27 01:00:00	2008/01/30 09:00:00	81	0.231	20.72%	0.44
82	1976/11/11 00:00:00	1976/11/13 15:00:00	64	0.228	20.97%	0.44
83	1994/03/06 22:00:00	1994/03/10 04:00:00	79	0.224	21.23%	0.43
84	1988/04/20 09:00:00	1988/04/25 10:00:00	122	0.22	21.48%	0.43
85	1987/11/04 20:00:00	1987/11/08 13:00:00	90	0.211	21.74%	0.42
86	1981/03/20 00:00:00	1981/03/22 12:00:00	61	0.207	21.99%	0.42

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
87	1982/01/20 21:00:00	1982/01/24 13:00:00	89	0.206	22.25%	0.41
88	1974/03/07 23:00:00	1974/03/11 01:00:00	75	0.202	22.51%	0.41
89	1997/01/26 01:00:00	1997/01/28 20:00:00	68	0.201	22.76%	0.4
90	1984/12/27 02:00:00	1984/12/30 14:00:00	85	0.197	23.02%	0.4
91	1992/01/05 16:00:00	1992/01/10 17:00:00	122	0.192	23.27%	0.4
92	2005/02/11 03:00:00	2005/02/16 07:00:00	125	0.184	23.53%	0.39
93	1983/03/17 15:00:00	1983/03/27 03:00:00	229	0.166	23.79%	0.39
94	1989/03/25 17:00:00	1989/03/28 01:00:00	57	0.165	24.04%	0.38
95	1987/12/04 23:00:00	1987/12/07 03:00:00	53	0.155	24.30%	0.38
96	1983/01/27 09:00:00	1983/01/31 13:00:00	101	0.128	24.55%	0.38
97	1988/01/17 13:00:00	1988/01/20 14:00:00	74	0.124	24.81%	0.37
98	1980/04/22 13:00:00	1980/04/25 08:00:00	68	0.122	25.06%	0.37
99	1990/01/14 05:00:00	1990/01/19 02:00:00	118	0.112	25.32%	0.36
100	1973/03/05 10:00:00	1973/03/16 06:00:00	261	0.111	25.58%	0.36
101	1976/04/12 11:00:00	1976/04/17 21:00:00	131	0.108	25.83%	0.36
102	1987/10/11 18:00:00	1987/10/14 18:00:00	73	0.1	26.09%	0.35
103	1991/10/27 00:00:00	1991/10/29 04:00:00	53	0.085	26.34%	0.35
104	2008/02/14 17:00:00	2008/02/16 21:00:00	53	0.065	26.60%	0.35
105	1975/11/27 22:00:00	1975/12/01 08:00:00	83	0.065	26.85%	0.34
106	1980/04/28 17:00:00	1980/05/03 13:00:00	117	0.065	27.11%	0.34
107	1978/05/01 05:00:00	1978/05/03 05:00:00	49	0.065	27.37%	0.34
108	1981/04/18 23:00:00	1981/04/21 05:00:00	55	0.064	27.62%	0.33
109	1992/03/20 17:00:00	1992/03/25 01:00:00	105	0.064	27.88%	0.33
110	1979/01/15 22:00:00	1979/01/21 06:00:00	129	0.064	28.13%	0.33
111	1986/09/25 05:00:00	1986/09/27 15:00:00	59	0.064	28.39%	0.32
112	1973/11/23 02:00:00	1973/11/27 07:00:00	102	0.063	28.64%	0.32
113	2006/02/28 01:00:00	2006/03/02 23:00:00	71	0.063	28.90%	0.32
114	1994/03/25 00:00:00	1994/03/27 17:00:00	66	0.063	29.16%	0.32
115	2004/12/05 02:00:00	2004/12/14 10:00:00	225	0.061	29.41%	0.31
116	1973/11/17 21:00:00	1973/11/21 10:00:00	86	0.061	29.67%	0.31
117	1979/03/01 15:00:00	1979/03/03 17:00:00	51	0.06	29.92%	0.31
118	1977/12/18 11:00:00	1977/12/20 19:00:00	57	0.06	30.18%	0.31
119	1986/03/08 20:00:00	1986/03/19 18:00:00	263	0.06	30.43%	0.3
120	2008/09/25 06:00:00	2008/09/26 15:00:00	34	0.059	30.69%	0.3
121	1995/04/16 10:00:00	1995/04/21 04:00:00	115	0.059	30.95%	0.3
122	2003/03/14 15:00:00	2003/03/18 19:00:00	101	0.058	31.20%	0.3
123	1998/03/24 15:00:00	1998/04/03 00:00:00	226	0.058	31.46%	0.29
124	1998/01/08 14:00:00	1998/01/12 07:00:00	90	0.057	31.71%	0.29
125	2003/12/25 15:00:00	2003/12/28 00:00:00	58	0.057	31.97%	0.29
126	1976/09/03 18:00:00	1976/09/05 15:00:00	46	0.057	32.23%	0.29
127	1986/02/08 01:00:00	1986/02/10 21:00:00	69	0.056	32.48%	0.28
128	1996/10/30 17:00:00	1996/11/01 19:00:00	51	0.056	32.74%	0.28
129	1993/11/14 10:00:00	1993/11/16 10:00:00	49	0.056	32.99%	0.28
130	1992/12/27 23:00:00	1992/12/31 04:00:00	78	0.055	33.25%	0.28
131	1988/12/25 01:00:00	1988/12/27 13:00:00	61	0.053	33.50%	0.28
132	1973/03/20 11:00:00	1973/03/24 08:00:00	94	0.053	33.76%	0.27
133	1988/02/02 09:00:00	1988/02/05 02:00:00	66	0.052	34.02%	0.27

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
134	2007/12/07 11:00:00	2007/12/11 20:00:00	106	0.051	34.27%	0.27
135	1994/12/24 21:00:00	1994/12/27 04:00:00	56	0.051	34.53%	0.27
136	1973/01/17 00:00:00	1973/01/21 03:00:00	100	0.051	34.78%	0.27
137	1983/02/02 15:00:00	1983/02/05 08:00:00	66	0.05	35.04%	0.26
138	2008/02/03 13:00:00	2008/02/05 23:00:00	59	0.049	35.29%	0.26
139	1994/03/19 07:00:00	1994/03/22 09:00:00	75	0.049	35.55%	0.26
140	1983/11/25 01:00:00	1983/11/27 00:00:00	48	0.048	35.81%	0.26
141	2006/03/29 00:00:00	2006/03/31 07:00:00	56	0.047	36.06%	0.26
142	1977/10/06 07:00:00	1977/10/08 15:00:00	57	0.046	36.32%	0.25
143	1995/03/21 15:00:00	1995/03/25 00:00:00	82	0.045	36.57%	0.25
144	1984/11/24 20:00:00	1984/11/26 21:00:00	50	0.045	36.83%	0.25
145	2006/05/22 06:00:00	2006/05/24 03:00:00	46	0.045	37.08%	0.25
146	1983/02/08 03:00:00	1983/02/10 06:00:00	52	0.044	37.34%	0.25
147	2005/04/28 10:00:00	2005/04/30 12:00:00	51	0.044	37.60%	0.25
148	2002/11/07 15:00:00	2002/11/11 02:00:00	84	0.043	37.85%	0.24
149	1977/03/25 07:00:00	1977/03/28 05:00:00	71	0.043	38.11%	0.24
150	1975/02/03 15:00:00	1975/02/07 04:00:00	86	0.043	38.36%	0.24
151	1999/04/12 03:00:00	1999/04/14 02:00:00	48	0.042	38.62%	0.24
152	1981/01/28 10:00:00	1981/02/02 03:00:00	114	0.042	38.87%	0.24
153	1997/09/25 11:00:00	1997/09/27 15:00:00	53	0.041	39.13%	0.24
154	1991/07/31 05:00:00	1991/08/02 04:00:00	48	0.041	39.39%	0.23
155	2007/04/20 19:00:00	2007/04/22 20:00:00	50	0.04	39.64%	0.23
156	1978/04/07 06:00:00	1978/04/09 08:00:00	51	0.04	39.90%	0.23
157	2001/02/23 19:00:00	2001/03/02 07:00:00	157	0.039	40.15%	0.23
158	2002/11/28 15:00:00	2002/12/01 02:00:00	60	0.039	40.41%	0.23
159	1996/01/31 12:00:00	1996/02/03 14:00:00	75	0.039	40.66%	0.23
160	1986/01/30 07:00:00	1986/02/02 16:00:00	82	0.039	40.92%	0.23
161	2001/01/26 19:00:00	2001/01/29 08:00:00	62	0.039	41.18%	0.22
162	1983/12/25 00:00:00	1983/12/28 18:00:00	91	0.038	41.43%	0.22
163	2003/11/12 08:00:00	2003/11/14 07:00:00	48	0.038	41.69%	0.22
164	1988/04/15 01:00:00	1988/04/17 00:00:00	48	0.038	41.94%	0.22
165	2002/12/15 16:00:00	2002/12/22 19:00:00	172	0.038	42.20%	0.22
166	1975/03/22 12:00:00	1975/03/24 07:00:00	44	0.037	42.46%	0.22
167	1983/11/12 06:00:00	1983/11/15 14:00:00	81	0.037	42.71%	0.22
168	2006/01/01 03:00:00	2006/01/04 18:00:00	88	0.037	42.97%	0.21
169	1981/11/27 07:00:00	1981/12/01 10:00:00	100	0.036	43.22%	0.21
170	2001/03/06 16:00:00	2001/03/09 00:00:00	57	0.036	43.48%	0.21
171	1990/11/20 02:00:00	1990/11/22 14:00:00	61	0.036	43.73%	0.21
172	1997/12/05 16:00:00	1997/12/09 04:00:00	85	0.036	43.99%	0.21
173	1979/02/22 08:00:00	1979/02/25 04:00:00	69	0.035	44.25%	0.21
174	1978/03/31 01:00:00	1978/04/03 06:00:00	78	0.035	44.50%	0.21
175	1987/10/31 11:00:00	1987/11/03 03:00:00	65	0.035	44.76%	0.21
176	1975/02/09 17:00:00	1975/02/12 06:00:00	62	0.035	45.01%	0.21
177	1993/06/05 17:00:00	1993/06/07 15:00:00	47	0.035	45.27%	0.2
178	1998/12/05 08:00:00	1998/12/08 00:00:00	65	0.035	45.52%	0.2
179	1994/02/07 15:00:00	1994/02/10 06:00:00	64	0.034	45.78%	0.2
180	1983/12/03 18:00:00	1983/12/05 13:00:00	44	0.034	46.04%	0.2

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
181	2005/03/22 23:00:00	2005/03/25 12:00:00	62	0.033	46.29%	0.2
182	1973/03/26 20:00:00	1973/03/30 16:00:00	93	0.033	46.55%	0.2
183	1998/11/28 09:00:00	1998/12/02 22:00:00	110	0.033	46.80%	0.2
184	1994/01/25 08:00:00	1994/01/29 02:00:00	91	0.033	47.06%	0.2
185	1974/01/01 09:00:00	1974/01/03 05:00:00	45	0.033	47.31%	0.2
186	1983/04/20 14:00:00	1983/04/23 08:00:00	67	0.032	47.57%	0.19
187	1978/01/05 08:00:00	1978/01/08 15:00:00	80	0.031	47.83%	0.19
188	1990/12/20 01:00:00	1990/12/22 12:00:00	60	0.031	48.08%	0.19
189	1993/03/26 07:00:00	1993/03/29 09:00:00	75	0.031	48.34%	0.19
190	1985/12/09 23:00:00	1985/12/13 07:00:00	81	0.031	48.59%	0.19
191	1991/12/28 08:00:00	1992/01/01 01:00:00	90	0.031	48.85%	0.19
192	1991/01/03 21:00:00	1991/01/06 04:00:00	56	0.03	49.10%	0.19
193	2000/04/17 21:00:00	2000/04/19 21:00:00	49	0.03	49.36%	0.19
194	2005/01/28 18:00:00	2005/01/30 19:00:00	50	0.03	49.62%	0.19
195	1990/02/17 23:00:00	1990/02/20 14:00:00	64	0.03	49.87%	0.19
196	1996/01/22 02:00:00	1996/01/24 06:00:00	53	0.03	50.13%	0.18
197	1987/09/22 06:00:00	1987/09/24 11:00:00	54	0.03	50.38%	0.18
198	2007/02/27 23:00:00	2007/03/02 00:00:00	50	0.03	50.64%	0.18
199	1999/04/01 19:00:00	1999/04/03 16:00:00	46	0.029	50.90%	0.18
200	1995/01/16 11:00:00	1995/01/18 16:00:00	54	0.029	51.15%	0.18
201	1982/01/11 00:00:00	1982/01/13 00:00:00	49	0.029	51.41%	0.18
202	1988/11/25 13:00:00	1988/11/27 12:00:00	48	0.029	51.66%	0.18
203	1992/03/26 22:00:00	1992/03/29 05:00:00	56	0.028	51.92%	0.18
204	1998/04/10 18:00:00	1998/04/12 16:00:00	47	0.028	52.17%	0.18
205	1990/03/28 16:00:00	1990/03/30 12:00:00	45	0.028	52.43%	0.18
206	1996/02/25 12:00:00	1996/02/29 09:00:00	94	0.028	52.69%	0.18
207	2006/03/11 05:00:00	2006/03/14 08:00:00	76	0.028	52.94%	0.17
208	1978/01/30 21:00:00	1978/02/01 19:00:00	47	0.028	53.20%	0.17
209	1982/01/29 01:00:00	1982/01/31 02:00:00	50	0.028	53.45%	0.17
210	2008/02/22 09:00:00	2008/02/25 09:00:00	73	0.028	53.71%	0.17
211	1994/02/04 04:00:00	1994/02/06 04:00:00	49	0.028	53.96%	0.17
212	1995/12/23 13:00:00	1995/12/25 04:00:00	40	0.028	54.22%	0.17
213	1975/03/25 21:00:00	1975/03/27 21:00:00	49	0.028	54.48%	0.17
214	2008/01/23 23:00:00	2008/01/25 18:00:00	44	0.028	54.73%	0.17
215	1999/02/04 18:00:00	1999/02/06 19:00:00	50	0.028	54.99%	0.17
216	1985/02/02 11:00:00	1985/02/04 10:00:00	48	0.027	55.24%	0.17
217	1996/04/18 05:00:00	1996/04/19 21:00:00	41	0.027	55.50%	0.17
218	2006/10/14 07:00:00	2006/10/16 00:00:00	42	0.027	55.75%	0.17
219	1988/03/01 05:00:00	1988/03/03 15:00:00	59	0.027	56.01%	0.16
220	1998/01/02 20:00:00	1998/01/05 04:00:00	57	0.027	56.27%	0.16
221	1981/03/26 12:00:00	1981/03/28 10:00:00	47	0.027	56.52%	0.16
222	2005/10/18 04:00:00	2005/10/20 02:00:00	47	0.027	56.78%	0.16
223	1975/12/12 18:00:00	1975/12/15 04:00:00	59	0.027	57.03%	0.16
224	1994/04/24 13:00:00	1994/04/28 19:00:00	103	0.027	57.29%	0.16
225	2000/03/05 19:00:00	2000/03/07 13:00:00	43	0.027	57.54%	0.16
226	1996/03/05 02:00:00	1996/03/06 20:00:00	43	0.027	57.80%	0.16
227	2007/01/30 05:00:00	2007/02/01 03:00:00	47	0.026	58.06%	0.16

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
228	1990/01/02 08:00:00	1990/01/04 00:00:00	41	0.026	58.31%	0.16
229	1983/04/29 11:00:00	1983/05/02 00:00:00	62	0.026	58.57%	0.16
230	1984/10/17 11:00:00	1984/10/19 01:00:00	39	0.026	58.82%	0.16
231	1987/02/24 07:00:00	1987/02/27 13:00:00	79	0.026	59.08%	0.16
232	2006/03/21 05:00:00	2006/03/22 21:00:00	41	0.026	59.34%	0.16
233	1977/02/24 15:00:00	1977/02/26 08:00:00	42	0.026	59.59%	0.16
234	1998/11/08 16:00:00	1998/11/10 07:00:00	40	0.026	59.85%	0.15
235	1997/11/13 15:00:00	1997/11/15 07:00:00	41	0.026	60.10%	0.15
236	1990/04/04 10:00:00	1990/04/05 23:00:00	38	0.026	60.36%	0.15
237	1996/12/06 06:00:00	1996/12/07 22:00:00	41	0.026	60.61%	0.15
238	1997/02/28 05:00:00	1997/03/01 22:00:00	42	0.025	60.87%	0.15
239	2006/02/18 15:00:00	2006/02/20 21:00:00	55	0.025	61.13%	0.15
240	1990/06/09 19:00:00	1990/06/11 19:00:00	49	0.025	61.38%	0.15
241	1980/03/26 05:00:00	1980/03/27 20:00:00	40	0.025	61.64%	0.15
242	2002/01/28 18:00:00	2002/01/30 18:00:00	49	0.025	61.89%	0.15
243	1999/03/15 19:00:00	1999/03/17 12:00:00	42	0.025	62.15%	0.15
244	1977/05/24 11:00:00	1977/05/26 01:00:00	39	0.025	62.40%	0.15
245	1998/04/14 13:00:00	1998/04/16 07:00:00	43	0.025	62.66%	0.15
246	1997/11/26 17:00:00	1997/11/28 09:00:00	41	0.025	62.92%	0.15
247	1977/03/17 00:00:00	1977/03/18 14:00:00	39	0.025	63.17%	0.15
248	1999/04/07 10:00:00	1999/04/09 00:00:00	39	0.025	63.43%	0.15
249	1998/05/11 21:00:00	1998/05/13 22:00:00	50	0.025	63.68%	0.15
250	1989/02/09 15:00:00	1989/02/11 05:00:00	39	0.024	63.94%	0.14
251	1999/03/25 21:00:00	1999/03/27 09:00:00	37	0.024	64.19%	0.14
252	1973/02/06 11:00:00	1973/02/08 16:00:00	54	0.024	64.45%	0.14
253	1997/01/15 08:00:00	1997/01/17 07:00:00	48	0.024	64.71%	0.14
254	1986/04/06 11:00:00	1986/04/07 23:00:00	37	0.024	64.96%	0.14
255	2005/05/06 02:00:00	2005/05/07 15:00:00	38	0.024	65.22%	0.14
256	1979/01/25 11:00:00	1979/01/27 01:00:00	39	0.024	65.47%	0.14
257	1974/03/02 20:00:00	1974/03/05 00:00:00	53	0.024	65.73%	0.14
258	1991/12/18 02:00:00	1991/12/20 05:00:00	52	0.024	65.98%	0.14
259	1974/12/28 18:00:00	1974/12/30 11:00:00	42	0.023	66.24%	0.14
260	1996/12/10 00:00:00	1996/12/13 01:00:00	74	0.023	66.50%	0.14
261	1990/01/31 07:00:00	1990/02/01 16:00:00	34	0.023	66.75%	0.14
262	1997/12/20 20:00:00	1997/12/22 06:00:00	35	0.023	67.01%	0.14
263	1993/12/11 23:00:00	1993/12/13 08:00:00	34	0.023	67.26%	0.14
264	2006/12/17 05:00:00	2006/12/18 13:00:00	33	0.023	67.52%	0.14
265	2000/10/30 05:00:00	2000/10/31 14:00:00	34	0.023	67.77%	0.14
266	2001/11/23 20:00:00	2001/11/25 05:00:00	34	0.023	68.03%	0.14
267	1974/07/23 18:00:00	1974/07/25 02:00:00	33	0.023	68.29%	0.14
268	1993/12/15 02:00:00	1993/12/16 10:00:00	33	0.023	68.54%	0.13
269	2004/02/18 22:00:00	2004/02/20 05:00:00	32	0.022	68.80%	0.13
270	1998/01/28 20:00:00	1998/01/30 04:00:00	33	0.022	69.05%	0.13
271	2002/03/18 05:00:00	2002/03/19 12:00:00	32	0.022	69.31%	0.13
272	1985/03/27 23:00:00	1985/03/29 08:00:00	34	0.022	69.57%	0.13
273	1983/11/18 08:00:00	1983/11/19 13:00:00	30	0.022	69.82%	0.13
274	1986/12/20 17:00:00	1986/12/21 23:00:00	31	0.022	70.08%	0.13

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
275	1987/10/29 02:00:00	1987/10/30 08:00:00	31	0.022	70.33%	0.13
276	1973/02/28 12:00:00	1973/03/01 17:00:00	30	0.022	70.59%	0.13
277	1992/04/01 11:00:00	1992/04/02 17:00:00	31	0.022	70.84%	0.13
278	1978/04/16 04:00:00	1978/04/17 09:00:00	30	0.022	71.10%	0.13
279	2004/02/03 06:00:00	2004/02/04 15:00:00	34	0.022	71.36%	0.13
280	1981/04/02 17:00:00	1981/04/03 21:00:00	29	0.022	71.61%	0.13
281	1975/06/18 11:00:00	1975/06/19 15:00:00	29	0.022	71.87%	0.13
282	1982/05/11 20:00:00	1982/05/12 23:00:00	28	0.021	72.12%	0.13
283	1992/12/04 06:00:00	1992/12/05 12:00:00	31	0.021	72.38%	0.13
284	1992/10/23 10:00:00	1992/10/24 14:00:00	29	0.021	72.63%	0.13
285	1973/01/10 06:00:00	1973/01/11 09:00:00	28	0.021	72.89%	0.13
286	1983/04/18 11:00:00	1983/04/19 13:00:00	27	0.021	73.15%	0.13
287	1985/01/07 19:00:00	1985/01/08 22:00:00	28	0.021	73.40%	0.13
288	2006/12/10 08:00:00	2006/12/11 09:00:00	26	0.021	73.66%	0.13
289	1991/03/14 01:00:00	1991/03/15 02:00:00	26	0.021	73.91%	0.13
290	1983/01/01 16:00:00	1983/01/02 16:00:00	25	0.021	74.17%	0.12
291	1973/01/03 23:00:00	1973/01/05 18:00:00	44	0.021	74.42%	0.12
292	1988/12/16 06:00:00	1988/12/17 12:00:00	31	0.021	74.68%	0.12
293	1988/11/14 16:00:00	1988/11/15 16:00:00	25	0.021	74.94%	0.12
294	1988/01/06 00:00:00	1988/01/07 00:00:00	25	0.02	75.19%	0.12
295	1983/01/19 12:00:00	1983/01/20 12:00:00	25	0.02	75.45%	0.12
296	2000/02/12 20:00:00	2000/02/13 21:00:00	26	0.02	75.70%	0.12
297	1990/03/11 09:00:00	1990/03/12 09:00:00	25	0.02	75.96%	0.12
298	2004/03/02 10:00:00	2004/03/03 10:00:00	25	0.02	76.21%	0.12
299	1990/02/04 18:00:00	1990/02/05 18:00:00	25	0.02	76.47%	0.12
300	1991/12/09 02:00:00	1991/12/10 02:00:00	25	0.02	76.73%	0.12
301	2004/04/17 20:00:00	2004/04/18 19:00:00	24	0.02	76.98%	0.12
302	2008/05/23 23:00:00	2008/05/24 21:00:00	23	0.02	77.24%	0.12
303	2004/04/02 06:00:00	2004/04/03 04:00:00	23	0.02	77.49%	0.12
304	2006/12/27 17:00:00	2006/12/28 16:00:00	24	0.02	77.75%	0.12
305	1991/01/09 21:00:00	1991/01/10 19:00:00	23	0.02	78.01%	0.12
306	2000/10/27 20:00:00	2000/10/28 21:00:00	26	0.02	78.26%	0.12
307	1989/01/06 04:00:00	1989/01/07 01:00:00	22	0.02	78.52%	0.12
308	1981/01/12 12:00:00	1981/01/13 11:00:00	24	0.02	78.77%	0.12
309	1987/04/04 03:00:00	1987/04/05 01:00:00	23	0.019	79.03%	0.12
310	2001/12/20 22:00:00	2001/12/21 20:00:00	23	0.019	79.28%	0.12
311	2000/01/01 22:00:00	2000/01/02 20:00:00	23	0.019	79.54%	0.12
312	2001/04/21 13:00:00	2001/04/22 09:00:00	21	0.019	79.80%	0.12
313	1978/12/06 06:00:00	1978/12/07 01:00:00	20	0.019	80.05%	0.12
314	2004/01/03 06:00:00	2004/01/04 02:00:00	21	0.019	80.31%	0.12
315	1992/12/18 10:00:00	1992/12/19 05:00:00	20	0.019	80.56%	0.11
316	1989/09/19 18:00:00	1989/09/20 13:00:00	20	0.019	80.82%	0.11
317	1997/01/23 16:00:00	1997/01/24 11:00:00	20	0.019	81.07%	0.11
318	2006/11/27 20:00:00	2006/11/28 15:00:00	20	0.019	81.33%	0.11
319	1995/05/06 18:00:00	1995/05/07 15:00:00	22	0.019	81.59%	0.11
320	1994/11/10 21:00:00	1994/11/11 16:00:00	20	0.019	81.84%	0.11
321	2000/11/10 21:00:00	2000/11/11 22:00:00	26	0.019	82.10%	0.11

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
322	1983/10/07 16:00:00	1983/10/08 11:00:00	20	0.019	82.35%	0.11
323	1977/01/29 08:00:00	1977/01/30 02:00:00	19	0.019	82.61%	0.11
324	1975/01/31 01:00:00	1975/01/31 19:00:00	19	0.019	82.86%	0.11
325	1973/12/02 01:00:00	1973/12/02 19:00:00	19	0.019	83.12%	0.11
326	1985/01/29 02:00:00	1985/01/29 21:00:00	20	0.019	83.38%	0.11
327	1973/01/30 22:00:00	1973/01/31 17:00:00	20	0.019	83.63%	0.11
328	1973/02/04 08:00:00	1973/02/05 02:00:00	19	0.019	83.89%	0.11
329	1979/11/08 05:00:00	1979/11/08 23:00:00	19	0.019	84.14%	0.11
330	1984/11/08 21:00:00	1984/11/09 15:00:00	19	0.019	84.40%	0.11
331	1980/03/22 07:00:00	1980/03/23 00:00:00	18	0.018	84.65%	0.11
332	1981/10/29 07:00:00	1981/10/30 00:00:00	18	0.018	84.91%	0.11
333	1974/01/21 07:00:00	1974/01/22 01:00:00	19	0.018	85.17%	0.11
334	1975/05/20 15:00:00	1975/05/21 09:00:00	19	0.018	85.42%	0.11
335	2002/12/28 23:00:00	2002/12/29 18:00:00	20	0.018	85.68%	0.11
336	2006/03/18 12:00:00	2006/03/19 14:00:00	27	0.018	85.93%	0.11
337	1978/12/02 07:00:00	1978/12/03 00:00:00	18	0.018	86.19%	0.11
338	1975/09/07 09:00:00	1975/09/08 02:00:00	18	0.018	86.45%	0.11
339	1977/11/06 07:00:00	1977/11/07 00:00:00	18	0.018	86.70%	0.11
340	1981/10/01 10:00:00	1981/10/02 03:00:00	18	0.018	86.96%	0.11
341	1995/11/01 16:00:00	1995/11/02 10:00:00	19	0.018	87.21%	0.11
342	1993/11/11 14:00:00	1993/11/12 22:00:00	33	0.018	87.47%	0.11
343	1996/01/17 06:00:00	1996/01/18 00:00:00	19	0.018	87.72%	0.11
344	1977/04/02 16:00:00	1977/04/03 09:00:00	18	0.018	87.98%	0.11
345	1992/10/31 03:00:00	1992/10/31 19:00:00	17	0.018	88.24%	0.1
346	1998/01/15 00:00:00	1998/01/16 07:00:00	32	0.018	88.49%	0.1
347	2001/12/03 00:00:00	2001/12/03 16:00:00	17	0.018	88.75%	0.1
348	1980/03/19 02:00:00	1980/03/19 18:00:00	17	0.018	89.00%	0.1
349	2001/11/29 00:00:00	2001/11/29 16:00:00	17	0.018	89.26%	0.1
350	2002/09/07 00:00:00	2002/09/07 15:00:00	16	0.018	89.51%	0.1
351	2006/12/22 17:00:00	2006/12/23 07:00:00	15	0.017	89.77%	0.1
352	1989/02/04 20:00:00	1989/02/05 12:00:00	17	0.017	90.03%	0.1
353	1986/10/10 21:00:00	1986/10/11 10:00:00	14	0.017	90.28%	0.1
354	2007/03/21 17:00:00	2007/03/22 06:00:00	14	0.017	90.54%	0.1
355	1985/04/18 08:00:00	1985/04/18 21:00:00	14	0.017	90.79%	0.1
356	1984/04/06 17:00:00	1984/04/07 06:00:00	14	0.017	91.05%	0.1
357	1993/11/23 10:00:00	1993/11/23 23:00:00	14	0.017	91.30%	0.1
358	1984/01/05 18:00:00	1984/01/06 07:00:00	14	0.017	91.56%	0.1
359	1993/01/02 22:00:00	1993/01/03 10:00:00	13	0.017	91.82%	0.1
360	1980/04/10 08:00:00	1980/04/10 22:00:00	15	0.017	92.07%	0.1
361	1983/08/18 20:00:00	1983/08/19 10:00:00	15	0.017	92.33%	0.1
362	2007/12/19 12:00:00	2007/12/20 00:00:00	13	0.017	92.58%	0.1
363	2002/04/24 22:00:00	2002/04/25 10:00:00	13	0.017	92.84%	0.1
364	1982/09/26 15:00:00	1982/09/27 05:00:00	15	0.017	93.09%	0.1
365	1999/09/24 21:00:00	1999/09/25 08:00:00	12	0.017	93.35%	0.1
366	1981/05/16 18:00:00	1981/05/17 07:00:00	14	0.017	93.61%	0.1
367	1987/02/14 09:00:00	1987/02/14 20:00:00	12	0.016	93.86%	0.1
368	1980/04/02 04:00:00	1980/04/02 15:00:00	12	0.016	94.12%	0.1

Rank	Start Date	End Date	Duration	Peak	Frequency	Return Period
369	1995/01/21 15:00:00	1995/01/22 00:00:00	10	0.016	94.37%	0.1
370	2003/05/03 03:00:00	2003/05/03 12:00:00	10	0.016	94.63%	0.1
371	2005/03/20 10:00:00	2005/03/20 19:00:00	10	0.016	94.88%	0.1
372	2000/03/09 03:00:00	2000/03/09 11:00:00	9	0.016	95.14%	0.1
373	1992/01/04 02:00:00	1992/01/04 10:00:00	9	0.016	95.40%	0.1
374	1995/06/16 09:00:00	1995/06/16 21:00:00	13	0.016	95.65%	0.1
375	1991/10/24 09:00:00	1991/10/24 16:00:00	8	0.016	95.91%	0.1
376	1998/03/06 03:00:00	1998/03/06 11:00:00	9	0.016	96.16%	0.1
377	2001/04/08 04:00:00	2001/04/08 11:00:00	8	0.016	96.42%	0.1
378	1990/04/24 06:00:00	1990/04/24 13:00:00	8	0.016	96.68%	0.1
379	1995/05/13 19:00:00	1995/05/14 01:00:00	7	0.016	96.93%	0.1
380	2001/02/15 03:00:00	2001/02/15 10:00:00	8	0.016	97.19%	0.1
381	1983/10/01 18:00:00	1983/10/02 00:00:00	7	0.016	97.44%	0.09
382	1990/11/26 15:00:00	1990/11/26 21:00:00	7	0.016	97.70%	0.09
383	1978/03/23 13:00:00	1978/03/23 19:00:00	7	0.015	97.95%	0.09
384	1998/12/20 07:00:00	1998/12/20 12:00:00	6	0.015	98.21%	0.09
385	1984/01/17 04:00:00	1984/01/17 09:00:00	6	0.015	98.47%	0.09
386	1997/04/04 05:00:00	1997/04/04 09:00:00	5	0.015	98.72%	0.09
387	1991/03/16 07:00:00	1991/03/16 11:00:00	5	0.015	98.98%	0.09
388	1992/05/23 06:00:00	1992/05/23 10:00:00	5	0.015	99.23%	0.09
389	1988/12/21 20:00:00	1988/12/21 22:00:00	3	0.015	99.49%	0.09
390	1999/03/12 03:00:00	1999/03/12 04:00:00	2	0.015	99.74%	0.09
-End of Data						

Development of the Flow Duration Statistics

Similar to the Peak Flow Statistics, the flow duration statistics are also developed directly from the SWMM binary output file. It should be noted right from the start that the "durations" that we are talking about in this section have nothing to do with the "storm durations" presented in the peak flow statistics section. Other than using the same sequence of letters for the word, the two concepts have nothing to do with each other and the reader is cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow rates that fall within the hydromorphologically significant range, the length of time that each of those flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing the velocity and length of time for each flow rate is very useful.

Methodology

The methodology for determining the flow duration curves comes from a document developed by the U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the USGS water site (<u>http://www.usgs.gov/water/</u>). This link is found in Appendix E (SDHMP Continuous Simulation Modeling Primer), found in the County Hydromodification Management Plan¹. On this web site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by James K. Searcy 1959 (<u>http://pubs.er.usgs.gov/publication/wsp1542A</u>). In this publication the development of the flow duration curves is discussed in detail.

In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data used to create the flow duration plots. On page 8 a completed form 9-217-c form shows the monthly tabulation of flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is tabulated and then the total number of each flow rate is totaled for the year. It should be noted that while this example is for a stream with a minimum flow rate of 100cfs, for the purposes of run-off studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once each of the year's data has been compiled the summary numbers from each year are transferred to form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of time exceeded calculated (as will be explained later under the discussion of our calculations). Once the data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be explained in the next section, the use of these curves leads to the amount of time each particular flow can be expected to occur (based on historical data).

¹ FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by Brown and Caldwell Engineering of San Diego. (http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311_SD_HMP_wAppendices.pdf)

How to Read the Graphs²

Figure 1 shows a flow duration curve for a hypothetical development. The three curves show what percentage of the time a range of flow rates are exceeded for three different conditions: pre-project, post-project and post-project with storm water mitigation. Under pre-project conditions the minimum geomorphically significant flow rate is 0.10cfs (assumed) and as read from the graph, flows would equal or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24 hour/day). For post-project conditions, this flow rate would occur more often – about 0.38% of the time (or about 33 hours per year) (0.0038 x 365days x 24 hour/day). This increase in the duration of the geomorphically significant flow after development illustrates why duration control is closely linked to protecting creeks from accelerated erosion.

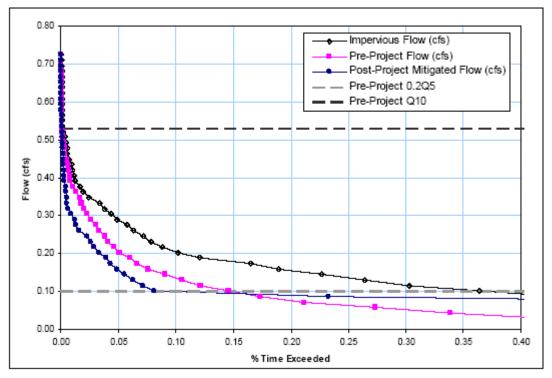


Figure 1. Flow Duration Series Statistics for a Hypothetical Development Scenario

Development of Flow Duration Curves

The first step in developing the flow duration curves is to count the number of occurrences of each flow rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal places (say two places). This in effect groups each flow into closely related values or "bins" as they are referred to in publication 9-217d. Then the entire runoff record is queried for each value and the number of each value counted. The next step is to enter the results of the query into a grid patterned after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is composed of four columns. They are (from left to right) Discharge Rate, Number of Periods (count), Total Periods

² The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan

Exceeding (the total number of periods equal to or exceeding this value), and Percent Time Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the corresponding number of times that value was found. The next column is the total number of values greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are greater than or equal to this value, therefore the total number of runoff records of the rainfall record is entered here. The final column which is the percent of time exceeded is calculated by dividing the total periods exceeded by the total number of periods in the study. For the first row this number should be 100%

For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the case for line 1, the final column is calculated by dividing the total periods exceeded by the total number of periods in the study. For the second row this number should be something less than 100% and continually decrease as we move down the chart. If all the calculations are correct, then everything should zero out on the last line of the calculations.

The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow rate is not plotted allowing the graph to be focused on the actual flow rate values.

The Flow Duration Analysis

The Flow Duration analysis is composed of the following series of files:

- 1. The Flow Duration Plot
- 2. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail)
- 3. The calculations for the Pre-Development flow duration curve development (USGS9217d)
- 4. The calculations for the Mitigated flow duration curve development (USGS9217d)

The Flow Duration Plot

The Flow Duration Curves Plot is the plotting of both the pre-development and mitigated postdevelopment sets of Discharge Rate vs. the Percent Time Exceeded data point pair lists. Only that portion of the flow range within the geomorphically significant range $(Q_{10} - Q_{lf})$ is summarized. With these curves one can see a visual representation of the relative positions of the respective flow duration curves. The flow duration curves are compared in an East/West (horizontal) direction to compare post development Discharge Rates to pre-development Discharge Rates. The pre-development curve is plotted in blue, and the mitigated curve is plotted in green. As long as the post development curve lies to the left of the pre-development curve (mostly³), the project meets the peak flow hydromodification requirements.

³ See hydromodification limits for exceedance of pre-development values

Pass/Fail comparison of the curves

The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "Y" value (Flow Rate), and "X" value (% Time Exceeded). For each point on the post development curve, the "Y" value is used to interpolate the corresponding Percent Time Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the relative values of each point, pass/fail criteria are determined point by point.

For each set of data, the upper right hand header value shows the name of the file being displayed (ex. flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file (*.out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close.

The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are:

- 1. Q_{post} being outside of the geomorphically significant range Q_{lf} to Q_{10}
- 2. Qpost being less than Q pre
- 3. Q_{post} being less than 110% of the value of Q_{pre} if the point is between Q_{lf} and Q_{10}

There are two ways that a point can fail. They are:

- 1. Q_{post} being greater than 110% of Q_{pre} if the point is between Q_{lf} and Q_{10}
- 2. If more than 10% of the points are between 100% and 110% of Q_{pre} for the points between Q_{lf} and Q_{10}

A quick scan down the last column will quickly tell if there are any points that fail.

At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest.

Plan Check Suggestions

As was described under the peak flow section, is the responsibility of the reviewing agency to confirm that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process.

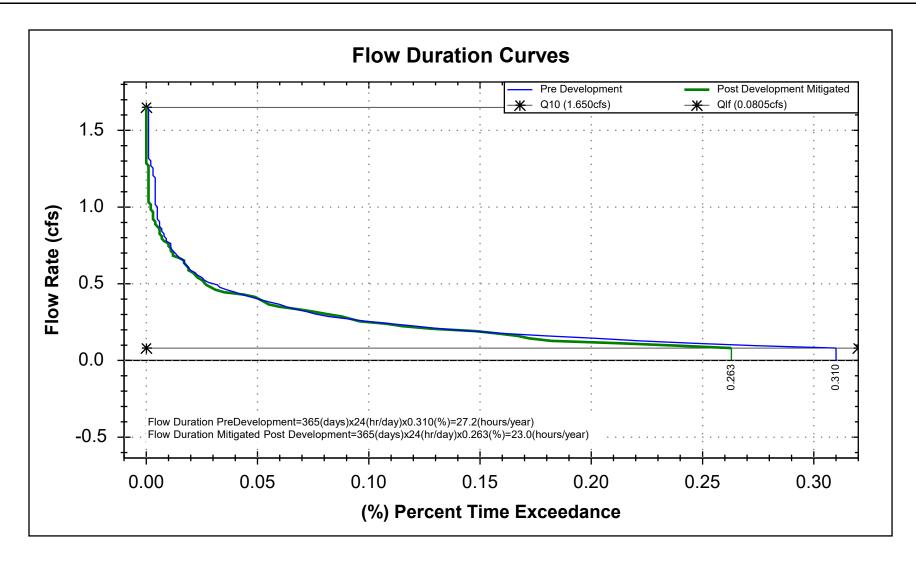
Compare the Data Stamps for Each of the Statistics Files Used In This Analysis.

As was described in the Peak Flows section, all report files should have time stamps that are nearly identical. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated.

Verify the Flow Rate Counts

For each of the pre, and mitigated flow duration tables, a few randomly selected flow value counts should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the SWMM table which will select the entire table. Now from the main menu select Edit>Copy To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell A1 and paste the results from the clipboard into the spread sheet. Now sort the values based on the Total Inflow column. This will group all the flow values together enabling the number of occurrences of each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt files can be verified.

Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated


The discharge rates and counts are confirmed as was described above. The top row should be just above the low flow rate (Qlf) value. Total Periods Exceeding of the first line should be the total number of rainfall records between Q10 and Qlf. The percentage of Time Exceeding should be the total periods exceeding divided by the total number of rainfall records between Q10 and Qlf. (100% for the first line). For each successive discharge rate, the total periods exceeding for the current line should be the total periods exceeding from the line above minus the number of periods from the line above. The number of periods and the number of periods exceeding should zero out at the last line.

Compare Plotted Curves to Table Data

Randomly check a few of the plotted points against the values verified above.

Verify by Observation that the plotted values of Q_{10 a}nd Q_{lf} are reasonable.

Verify that the correct values for each of these return periods are plotted correctly on the graph.

Compare Post-D	are Post-Development Curve to Pre-Development Curve								
and downlowers							and the state		
		28/2020 3:41:05 F		n-SDP\SWMM\JEN\SV		ONS/60/Stormcnamb	er-alt.out		
Compared to:	ni time stamp. 2	/20/2020 3.41.03 F	· IVI						
	t SW/MM file: \/.	18\18005\Enginee	ring\SDP\Storm	-SDP\SWMM\JEN\SW		NS\60\18005ex out			
		27/2020 10:08:27 A				00/1000Jex.001			
pre-developmen	t time stamp. 2/	21/2020 10.00.21 P							
		Post Develo Exceed	、	0/6F+10051_0/6F+1018	0,8240001-7,824018	olast post 7 100 0 ast pre			
		eeu	Pre Devoletheed	t pro	+ Pre	oldet			
PostPT*	FION Rate	(4 ⁺	Etci	0/05-1	0/05-1-	00/0	Passfall		
a V	white	0/0	0/0	a ^L	a7	~~~~	ssit		
20 ⁵	4 ¹⁰	, 0 ⁶	\diamond_{e_z}	, 202	, 202	st7	\$ ⁰		
		20 ⁵¹	8 ⁴⁰	olett	oloET	100			
				- (-1	0/05-1			
0	0.08	0.26	0.31	TRUE	TALOL	TALOL	Pass: Post Duration < Pre Duration		
1	0.10	0.24	0.27	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
2	0.11	0.21	0.25	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
3	0.13	0.18	0.22	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
4	0.14	0.17	0.20	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
5	0.16	0.17	0.18	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
6	0.18	0.16	0.16	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
7	0.19	0.15	0.15	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
8	0.21	0.13	0.13	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
9	0.22	0.12	0.12	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
10	0.24	0.11	0.11	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
11	0.26	0.10	0.10	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
12	0.27	0.09	0.09	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
13	0.29	0.09	0.08	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
14	0.30	0.08	0.08	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
15	0.32	0.08	0.07	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
16	0.33	0.07	0.07	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
17	0.35	0.06	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
18	0.37	0.06	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
19	0.38	0.05	0.06	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
20	0.40	0.05	0.05	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
21	0.41	0.05	0.05	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
22	0.43	0.04	0.04	FALSE	TRUE	FALSE	Pass: Post Duration <10% Over Pre Duration		
23	0.45	0.04	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
24	0.46	0.03	0.04	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
25	0.48	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
26	0.49	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
27	0.51	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
28	0.53	0.03	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
29	0.54	0.02	0.03	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
30	0.56	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		
31	0.57	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration		

						olet post 7 1000 olet po	2
		Post Devolo Excess	Pro Devolo Ercead	0,5th post 0,6th pre	015+10051715+018	(t)	Ň
PostPT*	FION Rate	4 toes	1 tope	15t Y	15tt P	0/01	*
R.	" Agr	0/05	0/0	olo.	0/0 7	~1 ^{00/0}	Passfrail
20 ⁵¹	FION	Oer	Der	nost	Nor I	×7	885°
``	`	20 ⁵¹	ore	Ett	1 Et Y	, p ⁰⁵ *	
		X	`	0/0	8/0	oldet	
32	0.59	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
33	0.60	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
34	0.62	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
35	0.64	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
36	0.65	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
37	0.67	0.02	0.02	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
38	0.68	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
39	0.70	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
40	0.72	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
41	0.73	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
42	0.75	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
43	0.76	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
44	0.78	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
45	0.79	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
46	0.81	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
47	0.83	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
48	0.84	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
49	0.86	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
50	0.87	0.01	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
51	0.89	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
52	0.91	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
53	0.92	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
54	0.94	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
55	0.95	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
56	0.97	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
57	0.98	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
58	1.00	0.00	0.01	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
59	1.02	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
60	1.03	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
61	1.05	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
62	1.06	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
63	1.08	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
64	1.10	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
65	1.11	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
66	1.13	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
67	1.14	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
68	1.16	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
69	1.18	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
70	1.19	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
71	1.21	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

Post Pri *					olst post 7 lst ple	0/6E+ PO	Pasetral
72	1.22	0.00	0.00	TRUE	FALSE	FALSE	Pass. Post Duration < Pre Duration
73	1.24	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
74	1.25	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
75	1.27	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
76	1.29	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
77	1.30	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
78	1.32	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
79	1.33	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
80	1.35	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
81	1.37	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
82	1.38	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
83	1.40	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
84	1.41	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
85	1.43	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
86	1.44	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
87	1.46	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
88	1.48	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
89	1.49	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
90	1.51	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
91	1.52	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
92	1.54	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
93	1.56	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
94	1.57	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
95	1.59	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
96	1.60	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
97	1.62	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
98	1.64	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration
99	1.65	0.00	0.00	TRUE	FALSE	FALSE	Pass: Post Duration < Pre Duration

Duration Table Summary at Project Discharge Point

file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\18005ex.out time stamp: 2/27/2020 10:08:27 AM

DISCHARGE		Number of periods when discharge was equal to or greater than DISCHARG column but less than that shown on the next line					
Binwinder	Discharge Pale	humberd Pelicos	Total Pairods Exceeding	Parcent Time Erceaded			
			10°	2 ⁶⁰			
1	0.08	113					
2 3	0.10	<u> </u>	859 771	0.274 0.246			
4	0.13	64	696	0.246			
5	0.13	69	632	0.202			
6	0.14	59	563	0.180			
7	0.18	47	504	0.161			
8	0.19	45	457	0.146			
9	0.21	34	412	0.132			
10	0.22	33	378	0.121			
11	0.24	36	345	0.110			
12	0.25	24	309	0.099			
13	0.27	27	285	0.091			
14	0.29	19	258	0.082			
15	0.30	15	239	0.076			
16	0.32	15	224	0.072			
17 18	0.33	13 8	209 196	0.067 0.063			
19	0.35	15	188	0.060			
20	0.38	14	173	0.055			
21	0.40	13	159	0.051			
22	0.40	10	146	0.047			
23	0.43	10	136	0.043			
24	0.45	12	126	0.040			
25	0.46	11	114	0.036			
26	0.48	4	103	0.033			
27	0.49	10	99	0.032			
28	0.51	8	89	0.028			
29	0.52	4	81	0.026			
30	0.54	4	77	0.025			
31	0.56	3	73	0.023			
32 33	0.57 0.59	4	70 63	0.022			
33	0.60	4 4	59	0.020			
35	0.62	2	55	0.019			
36	0.64	1	53	0.017			
37	0.65	4	52	0.017			
38	0.67	4	48	0.015			
39	0.68	3	44	0.014			
40	0.70	4	41	0.013			
41	0.71	1	37	0.012			
42	0.73	0	36	0.011			
43	0.75	1	36	0.011			
44	0.76	6	35	0.011			
45	0.78	1	29	0.009			
46	0.79	3	28	0.009			
47 48	0.81	0	25 25	0.008 0.008			
<u>48</u> 49	0.83	2 0	25	0.008			
<u>49</u> 50	0.84	3	23	0.007			
50 51	0.86	0	23	0.007			

\$	Discharge Rate	NUMDER OF PERIODS	Total Pailods Exceeding	Parcent Time ELCORDED
BIRHUNDER	aller	a der	. deft	rine Et
Bit	Disch	NUMBE	*al Police	(ont)
			10 ¹⁴	<i>₹</i> ®`
52 53	0.89 0.91	2	20 18	0.006
53	0.92	1	17	0.005
55	0.92	0	16	0.005
56	0.95	0	16	0.005
57	0.97	1	16	0.005
58	0.98	0	15	0.005
59	1.00	1	15	0.005
60	1.02	1	14	0.004
61	1.03	0	13	0.004
62	1.05	0	13	0.004
63	1.06	0	13	0.004
64	1.08	0	13	0.004
65	1.10	1	13 12	0.004
66 67	<u> </u>	0	12	0.004 0.004
68	1.13	1	12	0.004
69	1.14	0	12	0.004
70	1.17	0	11	0.004
70	1.19	1	11	0.004
72	1.21	0	10	0.003
73	1.22	1	10	0.003
74	1.24	1	9	0.003
75	1.25	1	8	0.003
76	1.27	1	7	0.002
77	1.29	0	6	0.002
78	1.30	2	6	0.002
79	1.32	0	4	0.001
80	1.33	0	4	0.001
81	1.35	0	4	0.001
82	1.36	0	4	0.001
83 84	1.38	0	4 4	0.001
85	<u>1.40</u> 1.41	0	4 4	0.001 0.001
86	1.43	0	4	0.001
87	1.43	0	4	0.001
88	1.46	0	4	0.001
89	1.48	0	4	0.001
90	1.49	0	4	0.001
91	1.51	0	4	0.001
92	1.52	0	4	0.001
93	1.54	0	4	0.001
94	1.56	0	4	0.001
95	1.57	1	4	0.001
96	1.59	0	3	0.001
97	1.60	0	3	0.001
98 99	1.62	0	3	0.001
100	1.63 1.65	0	3 3	0.001 0.001
End of Data		U	<u></u>	0.001
		1		

Duration Table Summary at Project Discharge Point

file name: V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\Stormchamber-alt.o	at
time stamp: 2/28/2020 3:41:05 PM	

· ·									
DISCH	IARGE	Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line							
BirNumber	o Rate	humberd Periods	Tota Periods Exceeding	Percentine Etceeded					
Birthy	Dieonalde Rate	Numbero	Total Period.	Percentin					
1	0.08	74	•= ·	••=••					
2	0.10	82	750	0.239					
3	0.11	98	668	0.213					
<u> </u>	0.13 0.14	<u>32</u> 16	570 538	0.182					
6	0.14	26	522	0.172					
7	0.10	32	496	0.158					
8	0.19	62	464	0.148					
9	0.21	43	402	0.128					
10	0.22	21	359	0.115					
11	0.24	36	338	0.108					
<u>12</u> 13	0.25	14	302	0.096					
13	0.27	11 23	288 277	0.092					
15	0.29	18	254	0.081					
16	0.32	23	236	0.075					
17	0.33	25	213	0.068					
18	0.35	17	188	0.060					
19	0.37	5	171	0.055					
20	0.38	5	166	0.053					
21	0.40	9	161	0.051					
<u>22</u> 23	0.41 0.43	<u> 14</u> 29	152 138	0.049 0.044					
23	0.43	13	109	0.035					
25	0.46	4	96	0.031					
26	0.48	8	92	0.029					
27	0.49	3	84	0.027					
28	0.51	2	81	0.026					
29	0.52	7	79	0.025					
<u> </u>	0.54 0.56	2	72 70	0.023					
32	0.56	5	65	0.022					
33	0.57	1	60	0.021					
34	0.60	3	59	0.019					
35	0.62	3	56	0.018					
36	0.64	1	53	0.017					
37	0.65	4	52	0.017					
38	0.67	9	48	0.015					
39 40	0.68	0	39 39	0.012					
40	0.70	3	39 36	0.012					
41	0.73	2	33	0.011					
43	0.75	1	31	0.010					
44	0.76	5	30	0.010					
45	0.78	2	25	0.008					
46	0.79	1	23	0.007					
47	0.81	2	22	0.007					
48	0.83	0	20	0.006					
49 50	0.84	2 2	20 18	0.006					
50	0.86	2	18	0.006					
JI	0.07	۷.	10	0.005					

		Number of Periods	Total Periods Exceeding	Parcent Time Exceeded
Birnunber	1 ⁰		eec.	eeu
a hoe	, Pio	, Per	Kt ^{ct}	6th
NUIT	and	10	, d ^s	ine
Bill	- Section	nbei	peril	A.V.
Ŷ	Discharge Rate	AUI.	x@ ^x	KCOL.
			102	<i>م</i> ور.
52	0.89	2		
53	0.91	2	12	0.004
54	0.92	1	10	0.003
55	0.94	1	9	0.003
56	0.95	0	8	0.003
57	0.97	2	8	0.003
58	0.98	1	6	0.002
59	1.00	0	5	0.002
60	1.02	1	5	0.002
61	1.03	0	4	0.001
62	1.05	0	4	0.001
63	1.06	0	4	0.001
64	1.08	0	4	0.001
65	1.10	1	4	0.001
66	1.11	1	3	0.001
67	1.13	0	2	0.001
68	1.14	0	2	0.001
69	1.16	0	2	0.001
70	1.17	0	2	0.001
71	1.19	0	2	0.001
72	1.21	Ő	2	0.001
73	1.22	0	2	0.001
74	1.24	0	2	0.001
75	1.25	0	2	0.001
76	1.27	1	2	0.001
70	1.29	0	1	0.000
78	1.30	0	1	0.000
79	1.32	0	1	0.000
80	1.33	0	1	0.000
81	1.35	0	1	0.000
82	1.36	0	1	0.000
83	1.38	0	1	0.000
84	1.40	0	1	0.000
85	1.40	0	1	0.000
86	1.41	0	1	0.000
86	1.43	0		0.000
			1	
88	1.46	0	1	0.000
89	1.48	0	1	0.000
90	1.49	0	1	0.000
91	1.51	0	1	0.000
92	1.52	1	1	0.000
93	1.54	0	0	0.000
94	1.56	0	0	0.000
95	1.57	0	0	0.000
96	1.59	0	0	0.000
97	1.60	0	0	0.000
98	1.62	0	0	0.000
99	1.63	0	0	0.000
100	1.65	0	0	0.000
End of Data				

END OF STATISTICS ANALYSIS

SWMM INPUT DATA SUMMARY AND DETAIL

Attachment B

PRE-DEVELOPMENT INP

[TITLE]

[RAINGAGES] ;;Name ;;	Format Inter	val SCF	Sourc	e						
;; MONTHLY DRY_ONLY	0.06 0.08 0 NO		0.18	0.21	0.21	0.20	0.16	0.12	0.008	0.06
	Parameters									
SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	5 5 0.5 1									
LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE	0 12.557 8 0.005									
INERTIAL_DAMPING NORMAL_FLOW_LIMI FORCE_MAIN_EQUAT VARIABLE_STEP	ION H-W 0.75									
REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP RULE_STEP	01:00:00 01:00:00 01:00:00 0:01:00 00:00:00									
END_TIME SWEEP_START SWEEP_END DRY_DAYS	16:00:00 01/01 12/31 0									
START_DATE START_TIME REPORT_START_DAT REPORT_START_TIM END_DATE	E 12:00:00 09/26/2008									
FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STAT	CFS GREEN_AMPT KINWAVE DEPTH 0 NO									
[OPTIONS] ;;Option	Value									

Santee	INTENSITY 1:00 1.0 FILE "R:\Rain gage <u>dat\Santee</u> ALERT Station. <u>dat</u> " <u>Santee</u>									IN		
[SUBCATCHMENTS];;Name	Rain Gage	Out	let	Area	0/0	Imperv	Width	%Slo	ope	CurbLen	SnowPack	
;; DMA-1							256					
[SUBAREAS] ;;Subcatchment	N-Imperv	N- <u>Perv</u>	S- <u>Imperv</u>	S- <u>Perv</u>	<u> </u>	PctZero	Route	еТо	Pct	Routed		
;; DMA-1												
[INFILTRATION] ;;Subcatchment		Ksat	IMD									
;; DMA-1												
			Stage Data									
;; POC-1					NO							
<pre>[REPORT] ;;Reporting Opt: SUBCATCHMENTS AI NODES ALL LINKS ALL [TAGS] [MAP]</pre>	LL											
DIMENSIONS -2500 Units None	0.000 0.000	12500.000	10000.000									
	X-Coord											
;;POC-1	1595.745		32.118									
[VERTICES] ;;Link ;;	X-Coord	Y	-Coord									
<pre>[Polygons] ;;Subcatchment ;;</pre>	X-Coord	Y	-Coord									
DMA-1	7320.162	4	690.983									
[SYMBOLS] ;;Gage	X-Coord	Y	-Coord									

[BACKDROP]

FILE "V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\18005_EX_CivilD-Existing.jpg" DIMENSIONS -2500.000 0.000 12500.000 10000.000

PRE-DEVELOPMENT RPT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Rainfall File Summary

Station	First	Last	Recording		Periods	Periods
ID	Date	Date	Frequency		Missing	<u>Malfunc</u> .
Santee	01/03/1973	09/26/2008	60 min	6203	0	0

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * *

Analysis Options		
Flow Units	CFS	
Process Models: Rainfall/Runoff	YES	
RDII		
Snowmelt	NO	
Groundwater	NO	
Flow Routing	NO	
Water Quality	NO	
Infiltration Method	GREEN_AMPT	
Starting Date	01/03/1973	12:00:00
Ending Date	09/26/2008	16:00:00
Antecedent Dry Days	0.0	
Report Time Step		
Wet Time Step		
Dry Time Step		

*****	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches
* * * * * * * * * * * * * * * * * * * *		
Total Precipitation	116.958	466.900
Evaporation Loss	4.477	17.871
Infiltration Loss	91.145	363.851
Surface Runoff	23.570	94.093
Final Storage	0.000	0.000
Continuity Error (%)	-1.909	

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	23.570	7.681
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	23.570	7.681
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment Runoff Summary

_	Total Runoff	Total	Total	Total	Imperv	Perv	Total	Total	Peak	
	Precip Coeff	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	Runoff	
Subcatchment	in	in	in	in	in	in	in	10^6 gal	CFS	
- DMA-1 0.202	466.90	0.00	17.87	363.85	0.00	94.09	94.09	7.68	2.07	

Analysis begun on: Thu Feb 27 10:08:04 2020 Analysis ended on: Thu Feb 27 10:08:27 2020 Total elapsed time: 00:00:23

POST-DEVELOPMENT INP

[TITLE]

;;Project Title/Not	ces
[OPTIONS] ;;Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	KINWAVE DEPTH O
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP ROUTING_STEP RULE_STEP	12:00:00 01/03/1973 12:00:00 09/26/2008 16:00:00 01/01 12/31 0 01:00:00 01:00:00 01:00:00 01:00:00
INERTIAL_DAMPING NORMAL_FLOW_LIMITEI FORCE_MAIN_EQUATION VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	N H-W 0.75
[EVAPORATION] ;;Data Source Pa ;;	arameters
	.06 0.08 0.11 0.16 0.18 0.21 0.21 0.20 0.16 0.12 0.08 0.06 D
[RAINGAGES] ;;Name Fo	ormat Interval SCF Source

\/Exceleng.local\projects3\18\18005\Engineering\SDP\Storm-SDP\SWMM\SWMM FILES\ITERATIONS\60\Stormchamber	-alt inn
Increase and the second s	-antimp

Santee	INTENSITY	1:00	1.0 FI	LE	"R:\Rain	n gage d	at\Sant	tee AL	ERT Station.	dat" Sante	e I	N
[SUBCATCHMENTS]			o	-	0 -		1. 1	0.01				
;;Name ;;	Rain Gage		Outlet 	Area	%⊥m]	perv Wi	dth 	%Slop	e CurbLen 	SnowPack		
,, DMA-1	Santee		WQ-SWALE	0.043	31 86	56		2	0			
DMA-2	<u>Santee</u>	1	WQ-SWALE	0.599	93 91	21	0.67	1	0			
DMA-3	<u>Santee</u>	1	WQ-DET-2	0.448	86 89	20	0	1	0			
DMA-4	Santee	1	wQ-DET-1	0.772	22 99	18	1.23	1	0			
DMA-5	Santee	I	WQ-DET-3	0.663	17 92	75	.5	1	0			
DMA-6	Santee		WQ-DET-4		84 85	75		0.5	0			
DMA-7	<u>Santee</u>	(Q100-SWALE	0.090	6 86	11	8.8	0.5	0			
[SUBAREAS]												
;;Subcatchment	-	N-Perv	S-Imperv	S-Perv	v Pct	tZero	Route	То	PctRouted			
;; DMA-1	.012	0.15	0.05	0.1	 25		OUTLE	 T				
DMA-2	0.012	0.15	0.05	0.10	25		OUTLE	Γ				
DMA-3	0.012	0.15	0.05	0.10	25		OUTLET	Γ				
DMA-4	0.012	0.15	0.05	0.10	25		OUTLET	Γ				
DMA-5	0.012	0.15	0.05	0.10	25		OUTLET	Γ				
DMA-6	0.012	0.15	0.05	0.10	25		OUTLET	Г				
DMA-7	0.012	0.15	0.05	0.10	25		OUTLET	Г				
[INFILTRATION]												
;;Subcatchment	Suction	Ksat	IMD									
;; DMA-1	 9	.01875										
DMA-2	9.0	0.0187										
DMA-3	9.0	0.0187										
DMA-4	9.0	0.0187										
DMA-5	9.0	0.0187										
DMA-6	9.0	0.0187										
DMA-7	9.0	0.0187										
[OUTFALLS]												
;;Name	Elevation		Stage Da	ta	Gated	Route	То					
;; POC-1	0	FREE			NO							
[STORAGE]												
;;Name	Elev.	MaxDepth	InitDepth	Shape	Curve	e Name/P	arams		N/A	Fevap	Psi	Ksat
IMD		-	-	-						-		
; ;											_	
 WQ-SWALE	0	0.33	0	TABULAR	WQ-SI	WALE			0	1	9.0	0.062
0.30					_							
Q100-DET-1		3	0	TABULAR		-DET-1			0	0		
WQ-DET-1		3	0	TABULAR					0	0		
Q100-DET-2	0	3	0	TABULAR	Q100-	-DET-2			0	0		

\\Exceleng.local\projects	celeng.local\projects3\18\18005\Engineering\SDP\Storm-SDP\SWMM\SWMM FILES\ITERATIONS\60\Stormchamber-alt.inp							Mon	nday, March 02, 2020 4:36 PM
WQ-DET-2	0	3	0	TABULAR	WQ-DET-2	0	0		
Q100-DET-3	0	3	0	TABULAR	Q100-DET-3	0	0		
WQ-DET-4	0	3	0	TABULAR	WQ-DET-4	0	0		
WQ-DET-3	0	3	0	TABULAR	WQ-DET-3	0	0		
Q100-SWALE 0.30	0	0.33	0	TABULAR	Q100-SWALE	0	1	9.0	0.062

[ORIFICES]

;;Name		To Node		Offset	~	Gated	CloseTin	ne	
;; MWS		Q100-DET-3		0	0.61	 NO	0		
WQ-VOL-1	WQ-DET-1	Q100-DET-1	SIDE	1.583	0.61	NO	0		
WQ-OUT-1	WQ-DET-1	WQ-DET-3	SIDE	0	0.61	NO	0		
WQ-VOL-2	WQ-DET-2	Q100-DET-2	SIDE	1.25	0.61	NO	0		
WQ-OUT-3	WQ-DET-3	WQ-DET-4	SIDE	0	0.61	NO	0		
Q100-OUT-2		Q100-DET-3		0	0.61	NO	0		
Q100-OUT	Q100-DET-1	Q100-DET-2	SIDE	0	0.65	NO	0		
WQ-VOL-3	WQ-DET-4	Q100-DET-3	SIDE	1.25	0.61	NO	0		
WQ-OUT-2	WQ-DET-2	WQ-DET-4	SIDE	0	0.65	NO	0		
ORIF-1	WQ-DET-1	WQ-DET-3	SIDE	0.25	0.61	NO	0		
ORIFICE-BOX-1	Q100-DET-3	POC-1	SIDE	0	0.61	NO	0		
ORIFICE-BOX-2	Q100-DET-3	POC-1	SIDE	1.7	0.61	NO	0		
ORIFICE-BOX-3	Q100-DET-3	POC-1	SIDE	0.25	0.61	NO	0		
ORIFICE-BOX-4	Q100-DET-3	POC-1	SIDE	0.75	0.61	NO	0		
[WEIRS]									
;;Name	From Node	To Node	Туре	CrestHt	Qcoeff	Gated	EndCon	EndCoeff	Surcharge
RoadWidth Road	Surf Coeff. Cu	urve							-
;;									
		 WQ-DET-1	TRANSVERSE	0.166	3.33	NO	0	0	YES
	Q100-SWALE		TRANSVERSE	0.166	3.33	NO	0	0	YES
		WQ-DET-3	SIDEFLOW	2	3.33	NO	0	0	YES
WEIR-BOX	Q100-DET-3	POC-1	SIDEFLOW	2.25		NO	0	0	YES
WEIR-BOX-2		POC-1		1.75	3.33	NO	0	0	YES

[XSECTIONS]

;;Link	Shape	Geoml	Geom2	Geom3	Geom4	Barrels	Culvert
;;							
MWS	CIRCULAR	0.09	0	0	0		
WQ-VOL-1	CIRCULAR	0.67	0	0	0		
WQ-OUT-1	CIRCULAR	0.04167	0	0	0		
WQ-VOL-2	CIRCULAR	1	0	0	0		
WQ-OUT-3	CIRCULAR	0.083	0	0	0		
Q100-OUT-2	CIRCULAR	0.5	0	0	0		
Q100-OUT	CIRCULAR	0.5	0	0	0		
WQ-VOL-3	CIRCULAR	1	0	0	0		
WQ-OUT-2	CIRCULAR	0.04167	0	0	0		
ORIF-1	CIRCULAR	0.083	0	0	0		
ORIFICE-BOX-1	CIRCULAR	0.04167	0	0	0		

\/Exceleng.local/projects3\18\18005\Engineering\SDP\Storm-SDP\SWMM\SWMM FILES\ITERATIONS\60\Stormchamber-alt.inp

ORIFICE-BOX-2	RECT_CLOSED	0.083	1	0	0
ORIFICE-BOX-3	CIRCULAR	0.083	0	0	0
ORIFICE-BOX-4	CIRCULAR	0.083	0	0	0
DRAIN-WQ	RECT_OPEN	0.166	2.828	0	0
DRAIN-Q100	RECT_OPEN	0.16	2.828	0	0
WEIR-1	RECT_OPEN	1	2.828427	7125 0	0
WEIR-BOX	RECT_OPEN	0.75	3	0	0
WEIR-BOX-2	RECT_OPEN	0.5	1	0	0

[CURVES]

;;Name	Туре	X-Value	Y-Value
;; Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1 Q100-DET-1	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 1046.666667 760 1440 986.6666667 1546.6666667 986.66666667 1440 760 1046.6666667 6.66666667
; Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2 Q100-DET-2	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 564.6666667 415.3333333 778 535.3333333 831.333333 535.3333333 778 408.66666667 571.333333 8.666666667
; Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3 Q100-DET-3	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 1226.666667 900 1686.666667 1160 1813.33333 1160 1686.666667 900 1226.6666667 6.66666667
; WQ-DET-1 WQ-DET-1	Storage	0 0.3	0 713.3333333

WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 WQ-DET-1 ;		0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	526.6666667 986.6666667 680 1060 680 986.66666667 526.6666667 713.333333 3.18323E-12
<pre>WQ-DET-2 WQ-DET-2 ;</pre>	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 686.6666667 493.333333 946.6666667 640 1020 640 946.6666667 493.333333 693.333333 13.3333333
WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3 WQ-DET-3	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 1993.333333 3453.33333 6193.33333 8080 11033.33333 12913.33333 15666.66667 17113.33333 19120 19093.33333
; WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4 WQ-DET-4	Storage	0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3	0 634.6666667 465.333333 874.6666667 598.6666667 941.333333 598.6666667 874.6666667 465.333333 634.6666667 2
; WQ-SWALE WQ-SWALE WQ-SWALE	Storage	0 0.167 0.33	0 419.1377246 133.0095147

;

Q100-SWALE	Storage	0	0
Q100-SWALE		0.167	894.1317365
Q100-SWALE		0.33	283.7823739

[REPORT]

;;Reporting Options SUBCATCHMENTS ALL NODES ALL LINKS ALL

[TAGS]

[MAP]

DIMENSIONS -2500.000 0.000 12500.000 10000.000 Units None

[COORDINATES]

;;Node	X-Coord	Y-Coord
POC-1 WQ-SWALE	1261.398	1236.069
WQ-SWALE	5445.795	6585.613
Q100-DET-1	5010.132	4670.719
WQ-DET-1	6752.786	4670.719
Q100-DET-2	2922.999	3495.441
WQ-DET-2		3475.177
Q100-DET-3		4174.265
WQ-DET-4		3039.514
		2117.528
Q100-SWALE	3561.297	6524.823
[VERTICES]		
;;Link	X-Coord	Y-Coord
;;	0170.050	
MWS MWS	2173.252	2968.592
MWS WQ-OUT-1	1504.559	2968.592
WQ-001-1 Q100-0UT-2	6610.942 2750 760	2755.826 4812.563
Q100-001-2 Q100-0UT-2		4812.563
WQ-OUT-2		3232.016
WQ-OUT-2		3211.753
ORIF-1	7847 011	3890.578
ORIF-1	7847.011 7532.928	2684.904
ORIFICE-BOX-1		3637.285
ORIFICE-BOX-1		2259.372
ORIFICE-BOX-2	-694.022	3718.338
ORIFICE-BOX-2	-724.417	2370.821
ORIFICE-BOX-3		3252.280
ORIFICE-BOX-3		2077.001
ORIFICE-BOX-4		3566.363
ORIFICE-BOX-4	1008.105	2289.767

DRAIN-Q100	2882.472	6241.135
DRAIN-Q100	1646.403	5420.466
DRAIN-Q100	1190.476	5055.724
WEIR-1	7391.084	3931.104
WEIR-1	6854.103	2715.299
WEIR-BOX	-1474.164	3860.182
WEIR-BOX	-1474.164	1935.157
WEIR-BOX-2	-2041.540	4062.817
WEIR-BOX-2	-2041.540	1519.757

[Polygons]

;;Subcatchment	X-Coord	Y-Coord
;;		
DMA-1	6068.769	5987.842
DMA-1	6079.153	5987.842
DMA-2	7188.450	5997.974
DMA-2	7188.450	5997.974
DMA-3	4432.624	3951.368
DMA-4	8505.572	4255.319
DMA-5	8029.382	1691.996
DMA-6	2102.330	2613.982
DMA-7	4088.146	5916.920
[SYMBOLS]		
;;Gage	X-Coord	Y-Coord
;;		
Santee	4027.356	9047.619

[BACKDROP]

FILE "V:\18\18005\Engineering\SDP\Storm-SDP\SWMM\JEN\SWMM FILES\ITERATIONS\60\SWMM IMAGE.jpg" DIMENSIONS -1470.588 0.000 11470.588 10000.000

POST-DEVELOPMENT RPT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Rainfall File Summary

Station	First	Last	2	ecording Periods Pe		Periods
ID	Date	Date		requency w/ <u>Precip</u> Mi		<u>Malfunc</u> .
Santee	01/03/1973	09/26/2008	60 min	6203	0	0

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * *

Analysis Options		
* * * * * * * * * * * * * * * *		
Flow Units	CFS	
Process Models:		
Rainfall/Runoff	YES	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	GREEN_AMPT	
Flow Routing Method	KINWAVE	
Starting Date	01/03/1973	12:00:00
Ending Date	09/26/2008	16:00:00
Antecedent Dry Days	0.0	
Report Time Step	01:00:00	
Wet Time Step	01:00:00	
Dry Time Step		
Routing Time Step		
100001119 11110 Deep	00.00 000	

* * * * * * * * * * * * * * * * * * * *	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches
* * * * * * * * * * * * * * * * * * * *		
Total Precipitation	117.087	466.900
Evaporation Loss	16.612	66.243
Infiltration Loss	6.876	27.421
Surface Runoff	101.843	406.115

Final Storage	0.000	0.000
Continuity Error (%)	-7.042	
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	101.843	33.187
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	98.785	32.191
Flooding Loss	0.000	0.000
Evaporation Loss	0.172	0.056
Exfiltration Loss	2.753	0.897
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.036	0.012
Continuity Error (%)	0.096	
– · · ·		

Highest Flow Instability Indexes

All links are stable.

Routing Time Step Summary		
Minimum Time Step	:	59.00 sec
Average Time Step	:	60.00 sec
Maximum Time Step	:	60.00 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	1.00
Percent Not Converging	:	0.00

-										
	Total	Total	Total	Total	Imperv	Perv	Total	Total	Peak	
	Runoff									
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	Runoff	
	Coeff									
Subcatchment	in	in	in	in	in	in	in	10^6 gal	CFS	

-									
DMA-1	466.90	0.00	59.72	47.15	373.00	21.44	394.44	0.46	0.04
0.845									
DMA-2	466.90	0.00	64.25	30.64	392.24	13.21	405.46	6.60	0.54
0.868									
DMA-3	466.90	0.00	62.74	37.45	384.20	16.14	400.34	4.88	0.40
0.857									
DMA-4	466.90	0.00	69.99	3.37	425.08	1.53	426.61	8.95	0.70
0.914		0 0 0		0 - 00	201 61	11 10	400 50		0
DMA-5	466.90	0.00	68.74	27.32	391.61	11.18	402.79	7.24	0.60
0.863	100 00	0 00		E1 (0	262 20	10 02	202 01	4 0 4	0.25
DMA-6 0.821	466.90	0.00	63.86	51.68	363.28	19.93	383.21	4.04	0.35
0.821 DMA-7	466.90	0.00	60.34	47.62	372.40	20.78	393.18	1.02	0.09
0.842	400.90	0.00	00.34	4/.02	512.40	20.70	393.10	1.02	0.09
0.012									

* * * * * * * * * * * * * * * * * *

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Occu	of Max rrence hr:min	Reported Max Depth Feet
POC-1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
WQ-SWALE	STORAGE	0.01	0.32	0.32	2604	07:01	0.32
Q100-DET-1	STORAGE	0.00	0.84	0.84	1388	05:08	0.83
WQ-DET-1	STORAGE	0.05	2.17	2.17	2604	07:03	2.17
Q100-DET-2	STORAGE	0.00	1.59	1.59	1388	05:18	1.52
WQ-DET-2	STORAGE	0.05	1.52	1.52	1388	05:02	1.52
Q100-DET-3	STORAGE	0.10	2.29	2.29	1388	05:10	2.28
WQ-DET-4	STORAGE	0.08	1.50	1.50	2604	07:08	1.50
WQ-DET-3	STORAGE	0.07	2.35	2.35	2604	18 : 35	2.35
Q100-SWALE	STORAGE	0.01	0.21	0.21	1388	05:02	0.21

* * * * * * * * * * * * * * * * * * *

Node Inflow Summary

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Туре	CFS	CFS	days hr:min	10^6 gal	10^6 gal	Percent

\/Exceleng.local/projects3/18/18005\Engineering\SDP\Storm-SDP\SWMM\SWMM FILES\ITERATIONS\60\Stormchamber-alt.rpt

POC-1	OUTFALL	0.00	1.55 138	8 05:10	0	32.2	0.000	
WQ-SWALE	STORAGE	0.58	0.58 260	4 07:01	7.06	7.06	0.005	
Q100-DET-1	STORAGE	0.00	0.82 260	4 07:03	0	5.16	0.110	
WQ-DET-1	STORAGE	0.70	1.28 260	4 07:01	8.95	15.6	0.078	
Q100-DET-2	STORAGE	0.00	1.17 138	8 05:04	0	6.47	0.054	
WQ-DET-2	STORAGE	0.40	0.40 260	4 07:01	4.88	4.88	0.017	
Q100-DET-3	STORAGE	0.00	1.56 138	8 05:06	0	32.2	0.026	
WQ-DET-4	STORAGE	0.35	0.40 260	4 07:01	4.04	25.3	0.003	
WQ-DET-3	STORAGE	0.60	1.04 138	8 05:01	7.24	17.7	0.000	
Q100-SWALE	STORAGE	0.09	0.09 260	4 07:01	1.02	1.02	-0.000	

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average Volume 1000 ft3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
 WO-SWALE	0.002	 3	 0	5	0.079	 99	2604 07:01	0.58
0100-DET-1	0.002	0	0	0	0.678	23	1388 05:08	0.79
WO-DET-1	0.027	1	0	0	1.607	78	2604 07:03	1.27
Q100-DET-2	0.000	0	0	0	0.887	55	1388 05 : 17	1.11
WQ-DET-2	0.024	1	0	0	1.005	51	1388 05:02	0.39
Q100-DET-3	0.088	2	0	0	2.912	83	1388 05:09	1.55
WQ-DET-4	0.042	2	0	0	0.914	50	2604 07:07	0.38
WQ-DET-3	0.208	1	0	0	19.456	62	2604 18:34	0.04
Q100-SWALE	0.003	2	3	52	0.109	64	1388 05:01	0.08

Outfall Loading Summary ********

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
POC-1	15.28	0.02	1.55	32.188

0.02

1.55

32.188

15.28

Link Flow Summary *********

System

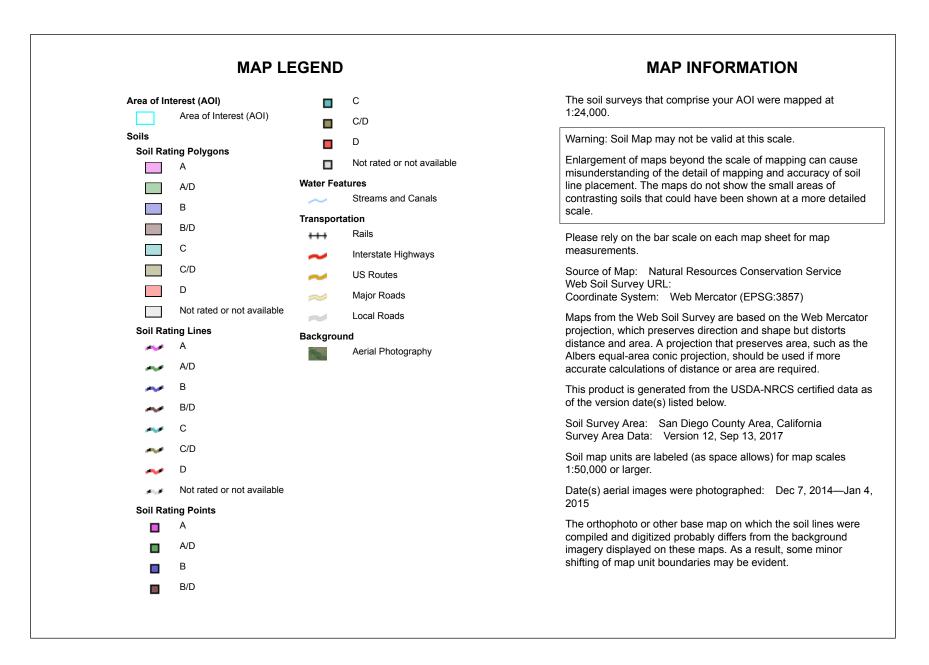
		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occu	irrence	Veloc	Full	Full
Link	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
MWS	ORIFICE	0.04	2604	07:08			0.00
WQ-VOL-1	ORIFICE	0.82	2604	07:03			0.00
WQ-OUT-1	ORIFICE	0.01	2604	07:03			0.00
WQ-VOL-2	ORIFICE	0.39	1388	05:02			0.00
WQ-OUT-3	ORIFICE	0.04	2604	18:35			0.00
Q100-OUT-2	ORIFICE	1.11	1388	05:18			0.00
Q100-OUT	ORIFICE	0.79	1388	05:08			0.00
WQ-VOL-3	ORIFICE	0.34	2604	07:08			0.00
WQ-OUT-2	ORIFICE	0.01	1388	05:02			0.00
ORIF-1	ORIFICE	0.04	2604	07:03			0.00
ORIFICE-BOX-1	ORIFICE	0.01	1388	05:10			0.00
ORIFICE-BOX-2	ORIFICE	0.30	1388	05:10			0.00
ORIFICE-BOX-3	ORIFICE	0.04	1388	05:10			0.00
ORIFICE-BOX-4	ORIFICE	0.03	1388	05:10			0.00
DRAIN-WQ	WEIR	0.58	2604	07:01			0.00
DRAIN-Q100	WEIR	0.08	1388	05:02			0.00
WEIR-1	WEIR	0.40	2604	07:03			0.00
WEIR-BOX	WEIR	0.04	1388	05:10			0.00
WEIR-BOX-2	WEIR	1.13	1388	05:10			0.00

Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Fri Feb 28 15:39:43 2020 Analysis ended on: Fri Feb 28 15:41:05 2020 Total elapsed time: 00:01:22

USDA NRCS CUSTOM SOIL RESOURCE REPORT


Attachment C

National Cooperative Soil Survey

Conservation Service

Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
PfC	Placentia sandy loam, thick surface, 2 to 9 percent slo pes	D	7.0	100.0%
Totals for Area of Intere	est	7.0	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher

ATTACHMENT 3 Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Indicate which Items are Included behind this cover sheet:

Attachment Contents Sequence		Checklist				
Attachment 3a	Structural BMP Maintenance Thresholds and Actions (Required)	☑ Included				
		See Structural BMP Maintenance Information Checklist on the back of this Attachment cover sheet.				
Attachment 3b	Draft Maintenance Agreement (when applicable)	 □ Included ☑ Not Applicable 				

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Preliminary Design / Planning / CEQA level submittal:

Attachment 3a must identify:

☑ Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual

Attachment 3b is not required for preliminary design / planning / CEQA level submittal.

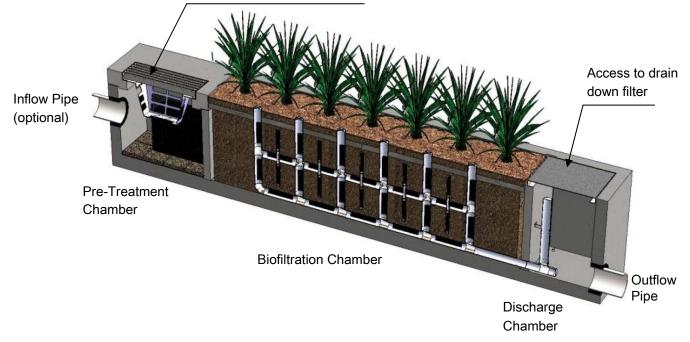
□ Final Design level submittal:

Attachment 3a must identify:

- □ Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s)
- □ How to access the structural BMP(s) to inspect and perform maintenance
- Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
- Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
- Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
- □ Recommended equipment to perform maintenance
- When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

Attachment 3b: For private entity operation and maintenance, Attachment 3b shall include a draft maintenance agreement in the local jurisdiction's standard format (PDP applicant to contact the [City Engineer] to obtain the current maintenance agreement forms).

ATTACHMENT 3a


Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- o Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
 - (5 minute average service time).
- Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
 - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
 - (10-15 minute per cartridge average service time).
- o Replace Drain Down Filter Media average maintenance interval is 12 to 24 months.
 - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
 - (Service time varies).

System Diagram

Access to screening device, separation chamber and cartridge filter

Maintenance Procedures

Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Project Name										For Office Use Only	
Project Address						(-1)	,	7'- 0- (-)		(Reviewed By)	
Owner / Management Company						(city)	(.	Zip Code)		(Reviewed By)	
Contact	Contact Phone () -									(Date) Office personnel to co the lef	
Inspector Name					Date	_/	/		Time	·	AM / PM
Type of Inspection Routine Follow Up Complaint Storm									n Last 72-ho	urs? 🗌 No 🗌 Y	res
Weather Condition	Weather Condition Additional Notes										
Inspection Checklist											
Modular Wetland System Type (Curb, Grate or UG Vault): Size (22', 14' or etc.):											
Structural Integrity:								Yes	No	Comme	nts
Damage to pre-treatment access of pressure?	cover (manh	ole cover/gr	ate) or canno	t be opene	ed using normal	llifting					
Damage to discharge chamber access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?											
Does the MWS unit show signs of structural deterioration (cracks in the wall, damage to frame)?											
Is the inlet/outlet pipe or drain dow	vn pipe dam	aged or othe	erwise not fun	ctioning pr	roperly?						
Working Condition:											
Is there evidence of illicit discharg unit?	e or excessi	ve oil, greas	e, or other au	itomobile f	luids entering a	nd cloggi	ng the				
Is there standing water in inapprop	priate areas	after a dry p	eriod?								
Is the filter insert (if applicable) at	capacity and	d/or is there	an accumulat	ion of deb	ris/trash on the	shelf syst	tem?				
Does the depth of sediment/trash/ specify which one in the comment							lf yes,				Depth:
Does the cartridge filter media nee	ed replacem	ent in pre-tre	eatment cham	ber and/o	r discharge cha	mber?				Chamber:	
Any signs of improper functioning	in the disch	arge chambe	er? Note issu	es in com	ments section.						
Other Inspection Items:											
Is there an accumulation of sedim	ent/trash/de	bris in the w	etland media	(if applical	ble)?						
Is it evident that the plants are aliv	e and healt	ny (if applica	ble)? Please	note Plant	Information be	low.					
Is there a septic or foul odor comir	ng from insid	le the syster	n?								
Waste:	Vaste: Yes No Recommended Maintenan					tenan	ice		Plant Inform	nation	
Sediment / Silt / Clay				No Cleani	ing Needed					Damage to Plants	
Trash / Bags / Bottles				Schedule	Schedule Maintenance as Planned					Plant Replacement	
Green Waste / Leaves / Foliage									Plant Trimming		

Additional Notes:

Maintenance Report

Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Cleaning and Maintenance Report Modular Wetlands System

Project N	ame						For Of	fice Use Only
Project A	ddress				(city)	(Zip Code)	(Review	ed Bv)
Owner / I	Management Company						(Date)	
Contact				Phone ()	-		personnel to complete section to the left.
Inspector	Name			Date	/	/	Time	AM / PM
Type of I	nspection 🗌 Routir	ne 🗌 Follow Up	Storm		Storm Event in	Last 72-hours?] No 🔲 Yes	
Weather	Condition			Additiona	al Notes			
Site Map #	GPS Coordinates of Insert	Manufacturer / Description / Sizing	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Operational Per Manufactures' Specifications (If not, why?)
	Lat: Long:	MWS Catch Basins						
		MWS Sedimentation Basin						
		Media Filter Condition						
		Plant Condition						
		Drain Down Media Condition						
		Discharge Chamber Condition						
		Drain Down Pipe Condition						
		Inlet and Outlet Pipe Condition						
Commen	ts:							

MAINTENANCE

MWS – Linear

Hybrid Stormwater Filtration System

Modular Wetland Systems, Inc. P.O. Box 869 Oceanside, CA 92049

www.modularwetlands.com P 760-433-7640 F 760-433-3179

MAINTENANCE -

Maintenance Summary -

- Clean screening filter device a least twice per year (15 minute service time).
- Clean separation (sediment) chamber once a year (*30 minute service time*).
- Evaluate and replace primary filtration media (BioMediaGREEN blocks) as needed.
 Typically replacement occurs once every 12 to 18 months (*60 minute service time*).
- Evaluate condition of wetland media. Replacement of media occurs once every 5 to 20 years (*4 hours*).
- Replace drain down filter media (*BioMediaGREEN block*) once every year (*5 minute service time*).
- Trim vegetation as needed (15 minute service time).

Maintenance Procedures -

A. Every installed MWS – Linear unit is to be maintained by the Supplier, or a Supplier approved contractor. The cost of this service varies among providers.

B. The MWS – Linear is a multi-stage self-contained treatment train. Each stage protects subsequent stages from clogging. These stages include: screening, separation, primary filtration, and biological remediation. The biological remediation stage contains plants and therefore requires ongoing landscape maintenance, similar to that of other landscaped areas.

1. Screening is provided by Bio Clean Catch Basin Insert Filters. This screening filter has a capacity of 2 or 4 cubic feet (curb type and grate type respectively). This filter targets gross solids, including litter, and sediments greater than 200 microns. It is recommended that this screening filter be cleaned at least two times per year. Cleaning of this device is relatively inexpensive. *This procedure takes approximately 15 minutes.*

2. Separation is provided by a 3' x 3' settling chamber. This chamber has a capacity of approximately 21 cubic feet. This chamber targets smaller sediments, larger TSS, and particulate metals and nutrients. This chamber protects the following filtration stages from premature clogging. It is recommended that this separation chamber be cleaned out once a year. This procedure can be performed with a standard vac truck. *This procedure takes approximately 30 minutes.*

3. Primary filtration is provided by a horizontal flow perimeter filter utilizing BioMediaGREEN. The perimeter filter has a default media surface area of 28 square feet. This surface area can also be doubled to 56 square feet, upon request, by a simple physical modification to the media blocks. The greater the surface area, the longer the media will maintain appropriate flow rates before clogging. This perimeter filter and the revolutionary BioMediaGREEN media targets fine TSS, dissolved metals, nutrients, and bacteria. It is recommended that the filter media be evaluated once per year and recharged if necessary. Media life depends on local loading conditions and can easily be replaced and disposed of without any equipment. *Replacement of media takes approximately 60 minutes.*

4. Biological remediation (natural filtration) is provided by a 4th generation enhanced sub-surface flow vegetated gravel wetland. This natural filter is 14 feet long and contains 248 cubic feet of filter media and plant material. It targets the finest TSS, nutrients, dissolved metals, and bacteria. This filter provides the final polishing step of treatment. If prior treatment stages are properly maintained, the life of this media can be more than 5 years. **It is recommended the wetland and its plants be inspected once a year.** Replacement of the rock media may be needed as soon as five years or as long as 20 years. *Inspection takes approximately 15 minutes. Replacement of rock media takes approximately 4 hours and requires a vac truck.*

5. A drain down filter, similar in function to the perimeter filter is located in the discharge chamber. This filter allows standing water to be drained and filtered out

of the separation chamber. This addresses any vector issues, by eliminating all standing water within this system. **It is recommended the media of the drain down filter be replaced one a year.** *Replacement of media takes approximately 5 minutes and is performed without any equipment.*

The MWS – Linear catch basin filter, separation chamber, and wetland filter are designed to allow for the use of vacuum removal of captured materials in the filter screens and sediment and wetland chambers, serviceable by centrifugal compressor vacuum units without causing damage to the filter or during normal cleaning and maintenance. Filters can be cleaned and vacuumed from the standard manhole access or at grade.

Maintenance Notes:

- Modular Wetland Systems, Inc. recommends the catch basin filter be inspected and cleaned a minimum of once every six months and replacement of hydrocarbon booms once a year. The procedure is easily done with the use of any standard vacuum truck.
 - Remove grate or manhole to gain access to catch basin filter insert.
 Remove the deflector shield (grate type only) with the hydrocarbon boom attached. Where possible the maintenance should be performed from the ground surface. Note: entry into an underground stormwater vault such as an inlet vault requires certification in confined space training.
 - Remove all trash, debris, organics, and sediments collected by the inlet filter insert. Removal of the trash and debris can be done manually or with the use of a vactor truck. The hose of the vactor truck will not damage the screen of the filter.
 - Evaluation of the hydrocarbon boom shall be performed at each cleaning.
 If the boom is filled with hydrocarbons and oils it should be replaced.
 Attach new boom to basket with plastic ties through pre-drilled holes in basket. Place the deflector shield (grate type only) back into the filter.

- Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- The hydrocarbon boom may be classified as hazardous material and will have to be picked up and disposed of as hazardous waste. Hazardous material can only be handled by a certified hazardous waste trained person (minimum 24-hour hazwoper).
- 2. Modular Wetland Systems, Inc. recommends the separation chamber be inspected and cleaned a minimum of once a year. The procedure is easily done with the use of any standard vacuum truck. Remove grate or manhole, remove catch basin filter, spray down pollutants accumulated on fiberglass media panels (do not spray media directly, doing so can damage the media), vacuum out separation chamber, replace catch basin filter, replace grate or manhole cover.
- 3. Modular Wetland Systems, Inc. recommends the perimeter filter's media be inspected and cleaned a minimum of once a year. The procedure will require prior maintenance of separation chamber. Remove grate, remove catch basin filter, enter separation chamber, unlatch top and bottom of each media protection panel, remove media protection panels to expose media, power wash surface, evaluate media condition, replace if necessary. New media blocks can be ordered from Modular Wetland Systems, Inc. Replace media protection panels, replace catch basin filter, replace grate or manhole cover.
- 4. Modular Wetland Systems, Inc. recommends the drain down filter be inspected and maintained a minimum of once a year. Open hatch of discharge chamber, enter chamber, unlatch fiberglass cover, remove media block, replace with new block, replace and latch cover. Exit chamber, close and lock down the hatch.
- Modular Wetland Systems, Inc. recommends the wetland filter and its plants/vegetation be inspected and maintained a minimum of once a year. It is also recommended that the plants receive the same care as other landscaped areas.
 Note: No fertilizer is to be used on this area.

- 6. Following maintenance and/or inspection, the maintenance operator shall prepare a maintenance/inspection record. The record shall include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanism.
- 7. The owner shall retain the maintenance/inspection record for a minimum of five years from the date of maintenance. These records shall be made available to the governing municipality for inspection upon request at any time.
- 8. Any person performing maintenance activities must have completed a minimum of OSHA 24-hour hazardous waste worker (hazwoper) training.
- Remove access manhole lid or grate to gain access to filter screens and sediment chambers. Where possible the maintenance should be performed from the ground surface. Note: entry into an underground stormwater vault such as an inlet vault requires certification in confined space training.
- 10. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 11. The hydrocarbon boom is classified as hazardous material and will have to be picked up and disposed of as hazardous waste. Hazardous material can only be handled by a certified hazardous waste trained person (minimum 24-hour hazwoper).

Maintenance Sequence

Service Crews Arrive On Site And Remove Access Manhole To Perform Maintenance Service.

Assess Condition and Pollutant Loading. A Few Gallons Of Water Are Sprayed Into Sediment Chamber To Allow Sediment To Be Vacuumed.

Catch Basin Filters Are Completely Vacuumed Free Of All Pollutants.

Cleaned Catch Basin Filters Are Removed Through Access Manhole To Allow For Unimpeded Access To Sediment Chamber.

Sediment Chamber Is Vacuumed Clean Of All Accumulated Sediment And Associated Pollutants.

Filter Media Shields Are Removed To Expose BioMediaGREEN Filter Media To Be Cleaned Or Replaced.

Exposed Filter Media Will Be Evaluated For Clogging And Loading Condition.

Media To Be Power Washed To Reveal Extent Of Clogging. If Only Surface Is Clogged, Media Can Be Re-Used Once. If Clogged Replace With New Media Blocks. Remove and Replace.

Washed Or New Media Is Now Ready For Use. If Media Was Replaced, Old Media Will Need To Be Properly Disposed Of Properly.

Replace Catch Basin Filters.

Replace Media Filter Panels And Lock Into Position.

Replace Access Manhole. Check Plants For Growth, Trim If Necessary. Service Is Complete. Total Service Time = 45 Minutes.

ATTACHMENT 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs

This is the cover sheet for Attachment 4.

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

☑ Structural BMP(s) with ID numbers matching Form I-6 Summary of PDP Structural BMPs

 \blacksquare The grading and drainage design shown on the plans must be consistent with the delineation of

DMAs shown on the DMA exhibit

☑ Details and specifications for construction of structural BMP(s)

☑ Signage indicating the location and boundary of structural BMP(s) as required by the [City Engineer]
 ☑ How to access the structural BMP(s) to inspect and perform maintenance

☑ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and

compare to maintenance thresholds)

Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
 Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference
 (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on
 viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the
 BMP)

 $\ensuremath{\boxtimes}$ Recommended equipment to perform maintenance

☑ When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management

☑ Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)

☑ All BMPs must be fully dimensioned on the plans

☑ When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number shall be provided. Photocopies of general brochures are not acceptable.

END OF REPORT