Appendix D

Noise Modeling Outputs

Appendix D - 1

Traffic Noise Model Calculations

Hamo	Noise Model Calcu	ilations															
Project:	12287 SCWD - Ne	well Creek Pipelin	e														
			Input						Output								
Noise Level Descriptor: Ldn																	
	Site Conditions: Soft																
	Traffic Input: ADT					Distar	ice to										
	Traffic K-Factor: 10				Directional												
						Cente	rline,										
	Segment Description and Location			Speed (feet) ₄			Traffic Distribution Characteristics			Ldn, Distance to Contour, (feet) ₃							
Number	Name	From	То	ADT	(mph)	Near	Far	% Auto	% Med	% Hvy	% Day	% Night	(dBA) _{5,6,7}	70 dBA	65 dBA	60 dBA	55 dBA
Exis	ting Conditions																
1	GRAHAM HILL RD	HWY 9	MT HERMON Rd	27,896	35	100	100	97.0%	2.0%	1.0%	80.0%	20.0%	65.4	49	107	230	495
2	GRAHAM HILL RD	MT HERMON Rd	LOCKWOOD LN	6,749	35	100	100		2.0%	1.0%	80.0%		59.3	19	41	89	192
3	GLEN ARBOR RD	HWY 9	GLEN ARBOR RD	4,337	30	100	100		1.0%	0.0%	80.0%		54.5	9	20	43	93
4	SR 9	GRAHAM HILL	GLEN ARBOR RD	21,727	35	100	100	97.0%		1.0%	80.0%	20.0%	64.3	42	90	194	419

*All modeling assumes average pavement, level roadways (less than 1.5% grade), constant traffic flow and does not account for shielding of any type or finite roadway adjustments. All levels are reported as A-weighted noise levels.

Appendix D

Project-Generated Construction Source Noise Prediction Model Newell Creek Pipeline Project - Conventional Open-Cut Trenching

Pipeline - Road Removal/Pipe Installation

			Reference Emission						
Location	Distance to Nearest Receiver in feet	Combined Predicted Noise Level (L _{eq} dBA)	Equipment Assumptions	Qty.	Noise Levels (Lmax) at 50 feet ¹	Usage Factor ¹			
Threshold*	470	60.0	Excavator	1	85	0.4			
	124	75.0	Tractor	1	84	0.4			
	100	77.4	Tractor	1	84	0.4			
	150	72.8							
	200	69.6							
	250	67.1							
	300	65.1							
	350	63.3	Ground Type		Soft				
	400	61.8	Source Height		5				
	450	60.5	Receiver Height		5				
	500	59.3	Ground Factor		0.58				
	550	58.3	Predicted Noise Leve	el	L _{eq} dBA at 50 feet ²				
			Eton			-			
			Excavator		81.0				
			Tractor		80.0				
			Tractor		80.0				

Predicted Combined Noise Level (L_{eq} dBA at 50 feet)

85.2

Sources:

1 - Obtained from the FHWA Roadway Construction Noise Model, January 2006.

2 - Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006. $L_{eq}(equip) = E.L. + 10^{\circ}log~(U.F.) - 20^{\circ}log~(D/50) - 10^{\circ}G^{\circ}log~(D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects; and

D = Distance from source to receiver.

*Project specific threshold