Thienes Engineering, Inc.

CIVIL ENGINEERING • LAND SURVEYING

PROJECT SPECIFIC PRELIMINARY WATER QUALITY MANAGEMENT PLAN
 (P-WQMP)

FOR:

RUBIDOUX COMMERCE CENTER

26TH STREET
JURUPA VALLEY, CA 92509
APNs: 178-030-001, 178-030-002, 178-030-003, 178-030-006, 178-030-008, 178-030-009, 178-
030-010; 178-070-001, 178-070-002, 178-070-003; 178-080-009
PREPARED FOR:
PROFICIENCY RUBIDOUX, LLC
5020 CAMPUS DRIVE
NEWPORT BEACH, CA 92660
PHONE: (949) 296-7006
CONTACT: JEFF TRENTON

SINGLE-BUILDING SCHEME	MULTI-BUILDING SCHEME
JANUARY 8, 2019	SEPTEMBER 26, 2022
AUGUST 8, 2019	JUNE 28, 2023
OCTOBER 7, 2020	
FEBRUARY 1, 2021	

JOB NO. 3384b
PREPARED BY:
THIENES ENGINEERING
14349 FIRESTONE BLVD.
LA MIRADA, CALIFORNIA 90638
PHONE: (714) 521-4811
FAX: (714) 521-4173
CONTACT: LUIS PRADO (luisp@thieneseng.com)

PROJECT SPECIFIC PRELIMINARY WATER QUALITY MANAGEMENT PLAN (P-WQMP)

FOR

"RUBIDOUX COMMERCE CENTER"

Project Specific Water Quality Management Plan

A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: Rubidoux Commerce Center
Development No: APNs 178-030-001, 178-030-002, 178-030-003, 178-030-006, 178-030-008, 178-030-009, 178-030-010; 178-070-001, 178-070-002, 178-070-003; 178-080-009
Design Review/Case No: GP 23-XXX

Contact Information:

Prepared for:

Proficiency Rubidoux, LLC
5020 Campus Drive
Final

Original Date Prepared: January 8, 2019
Revision Date(s): August 8, 2019 (single-building scheme) October 7, 2020 (single-building scheme) February 1, 2021 (single-building scheme) September 26, 2022 (multi-building scheme) June 28, 2023 (multi-building scheme)

Prepared for Compliance with
Regional Board Order No. R8-2010-0033

Newport Beach, CA 92660
Phone: (949) 296-7006
Contact: Jeff Trenton

Prepared by:

Thienes Engineering, Inc. 14349 Firestone Boulevard La Mirada, CA 90638
(714) 521-4811

Contact: Luis Prado (luisp@thieneseng.com) Job No. 3384b

A Brief Introduction

This Project-Specific WQMP Template for the Santa Ana Region has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your "how-to" manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.

OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Proficiency Rubidoux, LLC by Thienes Engineering, Inc. for the Rubidoux Commerce Center project.

This WQMP is intended to comply with the requirements of the City of Jurupa Valley for Ordinance No. 2012-07 which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under the City of Jurupa Valley Water Quality Ordinance (Municipal Code Section 2012-07).
"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

Owner's Signature

Jeff Trenton

Owner's Printed Name

Date

President
Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. R8-2010-0033 and any subsequent amendments thereto."

Reinhard Stenzel
Preparer's Printed Name

6/28/2023
Date

Director of Engineering
Preparer's Title/Position

Table of Contents
Section A: Project and Site Information 6
A. 1 Maps and Site Plans 7
A. 2 Identify Receiving Waters 8
A. 3 Additional Permits/Approvals required for the Project: 9
Section B: Optimize Site Utilization (LID Principles) 10
Section C: Delineate Drainage Management Areas (DMAs) 12
Section D: Implement LID BMPs 14
D. 1 Infiltration Applicability 14
D. 2 Harvest and Use Assessment 15
D. 3 Bioretention and Biotreatment Assessment 18
D. 4 Feasibility Assessment Summaries. 18
D. 5 LID BMP Sizing 19
Section E: Alternative Compliance (LID Waiver Program) 20
E. 1 Identify Pollutants of Concern 20
E. 2 Stormwater Credits 21
E. 3 Sizing Criteria 22
E. 4 Treatment Control BMP Selection 22
Section F: Hydromodification 23
F. 1 Hydrologic Conditions of Concern (HCOC) Analysis 23
F. 2 HCOC Mitigation 24
Section G: Source Control BMPs 25
Section H: Construction Plan Checklist 27
Section I: Operation, Maintenance and Funding 28
List of Tables
Table A. 1 Identification of Receiving Waters 8
Table A. 2 Other Applicable Permits 9
Table C. 1 DMA Classifications. 12
Table C. 2 Type ' A ', Self-Treating Areas 12
Table C. 3 Type 'B’, Self-Retaining Areas 12
Table C. 4 Type 'C', Areas that Drain to Self-Retaining Areas 13
Table C. 5 Type 'D', Areas Draining to BMPs 13
Table D. 1 Infiltration Feasibility 14
Table D. 2 LID Prioritization Summary Matrix 18
Table D. 3 DCV Calculations for LID BMPs 19
Table E. 1 Potential Pollutants by Land Use Type 21
Table E. 2 Water Quality Credits 21
Table E. 3 Treatment Control BMP Sizing 22
Table E. 4 Treatment Control BMP Selection 22
Table F. 1 Hydrologic Conditions of Concern Summary 23
Table G. 1 Permanent and Operational Source Control Measures 25
Table H. 1 Construction Plan Cross-reference 27
List of Appendices
Appendix 1: Maps and Site Plans 30
Appendix 2: Construction Plans 31
Appendix 3: Soils Information 32
Appendix 4: Historical Site Conditions 33
Appendix 5: LID Infeasibility 34
Appendix 6: BMP Design Details 35
Appendix 7: Hydromodification 36
Appendix 8: Source Control 37
Appendix 9: O\&M 38
Appendix 10: Educational Materials 39

Section A: Project and Site Information

Existing Conditions

The site is currently an undeveloped dirt lot. Runoff from the site generally surface drains south-easterly to a dirt channel and then to the 72 -inch storm drain in 28th Street. The offsite hillside area and horse stables northwest of the project site are also tributary to the site.

Proposed Conditions

The onsite northwesterly landscape areas, offsite northerly hills and existing horse stables will drain southerly to a proposed storm drain. Runoff is then conveyed southerly to the existing 72-inch Storm Drain Line " D " in 28th Street. Generally, runoff from the Building 3 portion of the project site is collected in catch basins located in the truck yard and
parking areas. A proposed private storm drain will convey these flows easterly through the Building 4 site. Runoff from Building 4 is also tributary to the storm drain system. The storm drain continues easterly, discharging into Infiltration Basin-B located on the southeasterly side of the Building 4. Overflows from Infiltration Basin-B are then conveyed southwesterly to the proposed storm drain in 28th Street.

Runoff from Buildings 1 and 2 are generally collected in catch basins located in the truck yards and vehicle parking lots. Proposed storm drain systems convey flows southeasterly into Infiltration Basin-A located on the easterly side of Buildings 1 and 2. Overflows from Infiltration Basin-A are then conveyed southwesterly to the proposed storm drain in 28th Street.

The southerly Building 5 site will maintain its existing drainage pattern. The site generally drains to a grate inlet at the southwesterly corner of the site. From here, overflows will discharge onto Avalon Street via a parkway culvert. Areas adjacent to the street also discharge to Avalon Street. Similar to existing conditions, runoff from the Building 5 site will be conveyed southwesterly in Avalon Street to the catch basin at the 28th Street/Avalon Street intersection, ultimately to the 72 -inch storm drain in 28 th Street. A sump pump will be utilized to pump stormwater out of the proposed truck well and onto the adjacent finish grade.

A total of 3.85 acres of landscape areas (DMA D) located along the street frontages from the buildings will drain offsite. These areas are considered self-treating areas.

Hydrologic conditions of concern (HCOC) will be mitigated via the proposed infiltration basins and the underground chambers. The difference in volumes between the existing and proposed 2 -year, 24 -hour storm event will be retained onsite. Refer to Appendix 7 for existing and proposed hydrographs.

A. 1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a minimum, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A. 2 Identify Receiving Waters

Using Table A. 1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

Table A. 1 Identification of Receiving Waters

Receiving Waters	EPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
Santa Ana River, Reach 3	Copper, Indicator Bacteria and Lead	AGR, GWR, REC1, REC2, WARM, WILD, RARE	4 miles
The Prado Basin Management Zone	pH	REC1, REC2, WARM, WILD, RARE	13 miles
Santa Ana River, Reach 2	None	AGR, GWR, REC1, REC2, WARM, WILD, RARE	18 miles
Santa Ana River, Reach 1	None	REC1, REC2, WARM, WILD	Not classified as a RARE waterbody.
Tidal Prism of Santa Ana River and Newport Slough	Indicator Bacteria and Toxicity	REC1, REC2, COMM, WILD, RARE, MAR	44 miles
Pacific Ocean Near shore Zone	None	IND, NAV, REC1, REC2, COMM, WILD, RARE, SPWN, MAR, SHEL	44 miles
Pacific Ocean Offshore Zone	None	IND, NAV, REC1, REC2, COMM, WILD, RARE, SPWN, MAR	45 miles

A. 3 Additional Permits/Approvals required for the Project:

Table A. 2 Other Applicable Permits

Agency	Permit Required	
State Department of Fish and Game, 1602 Streambed Alteration Agreement	$\square \mathrm{Y}$	$\boxed{\mathrm{N}}$
State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.	$\square \mathrm{Y}$	$\boxed{\mathrm{N}}$
US Army Corps of Engineers, CWA Section 404 Permit	$\square \mathrm{Y}$	$\boxed{\mathrm{N}}$
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	$\square \mathrm{Y}$	$\boxed{\mathrm{N}}$
Statewide Construction General Permit Coverage	$\boxed{\mathrm{Y}}$	$\square \mathrm{N}$
Statewide Industrial General Permit Coverage	$\boxed{\mathrm{Y}}$	$\square \mathrm{N}$
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	$\square \mathrm{Y}$	$\boxed{\mathrm{N}}$
Other (please list in the space below as required) City of Jurupa Valley Grading Permit	$\boxed{\mathrm{Y}}$	$\square \mathrm{N}$
Other (please list in the space below as required) City of Jurupa Valley Building Permit	$\boxed{\mathrm{Y}}$	$\square \mathrm{N}$

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section ' A ' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, constraints might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. Opportunities might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

- There are no creeks, wetlands, or riparian habitats nearby.
- In existing conditions, runoff from the site generally surface drains south-easterly to a dirt channel and then to the 72-inch storm drain in 28th Street. The offsite hillside area and horse stables northwest of the project site are also tributary to the site. Proposed condition drainage patterns mimic pre-development conditions.

Did you identify and protect existing vegetation? If so, how? If not, why?

- Not applicable, there are no existing vegetation.
- Not applicable, there are no sensitive areas.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

- Stormwater BMPs are located in areas of permeable soil to promote infiltration (see Appendix 3 for infiltration report).

Did you identify and minimize impervious area? If so, how? If not, why?

- Impervious area on the site has been minimized to City standards.
- Due to the nature of the project site (large trucks), substitution of pavement for landscaping is not feasible. The project does not propose overflow parking where substitution of pavement for landscaping would be optimal. Landscaping has been provided wherever applicable and to the maximum extent practicable.
- The entire Design Capture Volume (DCV) is handled by the proposed BMPs. Permeable pavement is not needed to meet the DCV.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

- Roof runoff is directed to the proposed BMPs for treatment.
- All stormwater runoff will be piped or sheet flow into their respective BMPs.

Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C. 1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

Table C. 1 DMA Classifications

DMA Name or ID	Surface Type(s)	(Area (Sq. Ft.)	Area (Acres)	DMA Type
A1	Roofs/Conc/Asphalt	$1,513,710$	34.75	Type D
A2	Ornamental Landscaping	202,554	4.65	Type D
A3	Natural (A Soil)	330,185	7.58	Type D
B1	Roofs/Conc/Asphalt	933,055	21.42	Type D
B2	Ornamental Landscaping	107,593	2.47	Type D
C1	Roofs/Conc/Asphalt	85,813	1.97	Type D
C2	Ornamental Landscaping	4,356	0.10	Type D
D	Ornamental Landscaping	167,706	3.85	Type A

${ }^{1}$ Reference Table 2-1 in the WQMP Guidance Document to populate this column.

Table C. 2 Type 'A', Self-Treating Areas

DMA Name or ID	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)
D	167,706	California Native Vegetation	Timed Sprinklers

Table C. 3 Type 'B', Self-Retaining Areas

Table C. 4 Type 'C', Areas that Drain to Self-Retaining Areas

DMA					Receiving Self-Retaining DMA		
				Product$[\mathrm{C}]=[\mathrm{A}] \times[\mathrm{B}]$	DMA name /ID	Area (square feet)	Ratio
\sum_{0}^{\times}	[A]					[D]	[C]/[D]
n/a							

Table C. 5 Type ' D ', Areas Draining to BMPs

DMA Name or ID	BMP Name or ID
A1	Infiltration Basin-A
A2	Infiltration Basin-A
A3	Infiltration Basin-A
B1	Infiltration Basin-B
B2	Infiltration Basin-B
C1	Underground Chambers-C
C2	Underground Chambers-C

Note: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.

Section D: Implement LID BMPs

D. 1 Infiltration Applicability

Is there an approved downstream 'Highest and Best Use' for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? $\quad \square \mathrm{Y} \quad \boxtimes \mathrm{N}$

If yes has been checked, Infiltration BMPs shall not be used for the site. If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream 'Highest and Best Use' feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? $\square Y \quad \boxtimes N$

Infiltration Feasibility

Table D. 1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Table D. 1 Infiltration Feasibility

Does the project site...	YES	NO
...have any DMAs with a seasonal high groundwater mark shallower than 10 feet?		X
If Yes, list affected DMAs:		
...have any DMAs located within 100 feet of a water supply well?		X
If Yes, list affected DMAs:		
...have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact?		X
If Yes, list affected DMAs:		
...have measured in-situ infiltration rates of less than 1.6 inches / hour?		X
If Yes, list affected DMAs:		
...have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface?		X
If Yes, list affected DMAs:		
...geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?		X
Describe here:		

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.

D. 2 Harvest and Use Assessment

Please check what applies:Reclaimed water will be used for the non-potable water demands for the project.Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).

The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If neither of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.
Total Area of Irrigated Landscape: N/A
Type of Landscaping (Conservation Design or Active Turf): Conservation design
Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A
Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: N/A
Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: N/A
Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

Minimum required irrigated area (Step 4)	Available Irrigated Landscape (Step 1)
N/A	N/A

Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: N/A
Project Type: N/A
Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number or toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: N/A
Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: N/A

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Minimum required Toilet Users (Step 4)	Projected number of toilet users (Step 1)
N/A	N/A

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

$$
\mathrm{N} / \mathrm{A}
$$

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: N/A
Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-3 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-3: N/A

Step 4: Multiply the unit value obtained from Step 4 by the total of impervious areas from Step 3 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: N/A
Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

Minimum required non-potable use (Step 4)	Projected average daily use (Step 1)
N/A	N/A

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment, unless a site-specific analysis has been completed that demonstrates technical infeasibility as noted in D. 3 below.

D. 3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:
\square LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D. 4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).

A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.

Not applicable

D. 4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D. 2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

Table D. 2 LID Prioritization Summary Matrix

DMA Name/ID	LID BMP Hierarchy				
	2. Harvest and use	3. Bioretention	4. Biotreatment	\square A2$\quad \square$	\square
\square	\square	\square	\square	\square	
A3	\square	\square	\square	\square	\square
B1	\square	\square	\square	\square	\square
B2	\square	\square	\square	\square	\square
C1	\square	\square	\square	\square	\square
C2	\square	\square	\square	\square	\square

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

D. 5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the $\mathrm{V}_{\text {BMP }}$ worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required $\mathrm{V}_{\text {BMP }}$ using a method approved by the Copermittee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Copermittee to assist you in correctly sizing your LID BMPs. Complete Table D. 3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

Table D. 3 DCV Calculations for LID BMPs

DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Impervious Fraction, I_{f}	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Storm	Design Capture Volume,	Proposed Volume on Plans
	[A]		[B]	[C]	[A] \times [C]		feet)	feet)
A1	1,513,710	Roofs/Conc/Asphalt	1.00	0.89	1,350,229.3	0.66	74262.6	78,408
A2	202,554	Ornamental Landscaping	0.10	0.11	22,373.7	0.66	1230.6	
A3	330,185	Natural (A Soil)	0.03	0.06	20,650.1	0.66	1135.8	
B1	933,055	Roofs/Conc/Asphalt	1.00	0.89	832,285.2	0.66	45775.7	48,308
B2	107,593	Ornamental Landscaping	0.10	0.11	11,884.5	0.66	653.6	
C1	85,813	Roofs/Conc/Asphalt	1.00	0.89	76,545.4	0.66	4210	4,596
C2	4,356	Ornamental Landscaping	0.10	0.11	481.2	0.66	26.5	
3,177,266					2,314,449	0.66	127,294.8	131,312

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document
[E] is obtained from Exhibit A in the WQMP Guidance Document
[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6

Section E: Alternative Compliance (LID Waiver Program)

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Copermittee). Check one of the following Boxes:
\boxtimes LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- Or -
\square The following Drainage Management Areas are unable to be addressed using LID BMPs. A sitespecific analysis demonstrating technical infeasibility of LID BMPs has been approved by the CoPermittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

E. 1 Identify Pollutants of Concern

Utilizing Table A. 1 from Section A above which noted your project's receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E. 1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

Table E. 1 Potential Pollutants by Land Use Type

Priority Development Project Categories and/or Project Features (check those that apply)	General Pollutant Categories							
	Bacterial Indicators	Metals	Nutrients	Pesticides	Toxic Organic Compounds	Sediments	Trash \& Debris	Oil 8 Grease
Detached Residential Development	P	N	P	P	N	P	P	P
Attached Residential Development	P	N	P	P	N	P	P	$\mathrm{P}^{(2)}$
Commercial/Industrial Development	$\mathrm{P}^{(3)}$	P	$\mathrm{P}^{(1)}$	$\mathrm{P}^{(1)}$	$P^{(5)}$	$\mathrm{P}^{(1)}$	P	P
Automotive Repair Shops	N	P	N	N	$\mathrm{P}^{(4,5)}$	N	P	P
Restaurants $\left(>5,000 \mathrm{ft}^{2}\right)$	P	N	N	N	N	N	P	P
Hillside Development (>5,000 ft²)	P	N	P	P	N	P	P	P
$\square \quad \begin{aligned} & \text { Parking Lots } \\ & \left(>5,000 \mathrm{ft}^{2}\right)\end{aligned}$	$\mathrm{P}^{(6)}$	P	$\mathrm{P}^{(1)}$	$\mathrm{P}^{(1)}$	$P^{(4)}$	$\mathrm{P}^{(1)}$	P	P
$\square \quad$ Retail Gasoline Outlets	N	P	N	N	P	N	P	P
Project Priority Pollutant(s) of Concern	\square							

$P=$ Potential
$N=$ Not Potential
${ }^{(1)}$ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected
${ }^{(2)}$ A potential Pollutant if the project includes uncovered parking areas; otherwise not expected
${ }^{(3)}$ A potential Pollutant is land use involving animal waste
${ }^{(4)}$ Specifically petroleum hydrocarbons
${ }^{(5)}$ Specifically solvents
${ }^{(6)}$ Bacterial indicators are routinely detected in pavement runoff

E. 2 Stormwater Credits

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A.

Table E. 2 Water Quality Credits

Qualifying Project Categories	Credit Percentage 2
N/A	
Total Credit Percentage 1	

[^0]${ }^{2}$ Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

E. 3 Sizing Criteria

After you appropriately considered Stormwater Credits for your project, utilize Table E. 3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

[B], [C] is obtained as described in Section 2.3.1 from the WQMP Guidance Document
[E] is obtained from Exhibit A in the WQMP Guidance Document
[G] is for Flow-Based Treatment Control BMPs [G] $=43,560$, for Volume-Based Control Treatment BMPs, [G] $=12$
$[\mathrm{H}]$ is from the Total Credit Percentage as Calculated from Table E. 2 above
[I] as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6

E. 4 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- High: equal to or greater than 80% removal efficiency
- Medium: between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

Table E. 4 Treatment Control BMP Selection
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Selected Treatment Control BMP } \\ \text { Name or ID }\end{array} & \begin{array}{l}\text { Priority Pollutant(s) of } \\ \text { Concern to Mitigate }\end{array}\end{array} \begin{array}{l}\text { Removal Efficiency } \\ \text { Percentage }^{3}\end{array}\right]$
${ }^{1}$ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.
${ }^{2}$ Cross Reference Table E. 1 above to populate this column.
${ }^{3}$ As documented in a Co-Permittee Approved Study and provided in Appendix 6.

Section F: Hydromodification

F. 1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption?

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration ${ }^{1}$ of storm water runoff for the postdevelopment condition is not significantly different from the pre-development condition for a 2 -year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption?

If Yes, report results in Table F. 1 below and provide your substantiated hydrologic analysis in Appendix 7.

Table F. 1 Hydrologic Conditions of Concern Summary

	2 year-24 hour		
	Pre-condition	Post-condition	\% Difference
Time of Concentration (min)	n / a	n / a	n / a
Volume (Acre Feet)	n / a	n / a	n / a

[^1]HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Sensitivity Maps.

Does the project qualify for this HCOC Exemption? \square Y $\quad \mathrm{N}$

If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier: See Appendix 7 for HCOC map (adequate sump is Prado Dam).

F. 2 HCOC Mitigation

If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:
a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.
b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.
c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the predevelopment 2-year peak flow.

Hydrologic conditions of concern (HCOC) will be mitigated via the proposed infiltration basins and the underground chambers. The difference in volumes between the existing and proposed 2-year, 24-hour storm event will be retained onsite. Refer to Appendix 7 for existing and proposed hydrographs and provided volumes in the infiltration basins and underground chambers.

All pertinent documentation used in analysis of the items a, b or c can be found in Appendix 7.

Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans - such as roofs over and berms around trash and recycling areas - and Operational BMPs, such as regular sweeping and "housekeeping", that must be implemented by the site's occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

1. Identify Pollutant Sources: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.
2. Note Locations on Project-Specific WQMP Exhibit: Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.
3. Prepare a Table and Narrative: Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G. 1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. Add additional narrative in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.
4. Identify Operational Source Control BMPs: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

Table G. 1 Permanent and Operational Source Control Measures

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
A. On-site storm drain inlets	- Mark all inlets with the words "Only Rain Down the Storm Drain" or similar.	- Maintain and periodically repaint or replace inlet markings annually. - Provide stormwater pollution prevention information to new site owners, lessees, or operators upon occupancy and annually thereafter. - \quad See CASQA fact sheet SC-44 for "Drainage System Maintenance," included in Appendix of this document. - Include the following lease agreements: "Tenant shall not allow anyone to discharge anything to storm drain or to store or deposit materials so as to create a potential discharge to storm drains."

Potential Sources of Runoff pollutants	Permanent Structural Source Control BMPs	Operational Source Control BMPs
B. Interior floor drains and elevator shaft sump pumps	- Interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.	- Inspect and maintain drains semiannually to prevent blockages and overflow.
D2. Landscape / Outdoor Pesticide Use	- Landscape plans will minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution. - Pest-resistant plans will be used adjacent to hardscape. - The landscape plans will consider plants appropriate to the site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.	- Maintain landscaping only using minimum pesticides, when needed. - \quad See Appendix 10 for "Landscape and Gardening" brochure by RCFlood. - Provide Integrated Pest Management (IPM) information to new owners, lessees and operators upon occupancy and annually thereafter. IPM is an effective and environmentally sensitive approach to pest management.
G. Refuse Areas	- \quad Site refuse will be handled by contractor on a weekly basis. - Signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar.	- A minimum of two receptacles will be provided and located indoors. Receptacles are to be inspected daily and repairs or replacements to leaky receptacles will be completed immediately. Receptacles are to remain covered when not in use. Dumping of liquid or hazardous wastes is prohibited. A "no hazardous materials" sign will be posted. Spills will be cleaned immediately upon discovery. Spill control materials will be available onsite. See Appendix 10 for CASQA fact sheet SC-34 for "Waste Handling and Disposal."
H. Industrial processes	- All process activities to be performed indoors. No processes to drain to exterior or to storm drain system.	- See Appendix 10 for CASQA fact sheet SC-10 for "Non-Stormwater Discharges"
M. Loading Docks	- Spills will be cleaned up immediately and disposed of properly.	- Move loaded and unloaded items indoors as soon as possible. - See Appendix 10 for CASQA fact sheet SC-30 for "Outdoor Loading and Unloading"
P. Plazas, sidewalks, and parking lots		- Sweep plazas, sidewalks, and parking lots monthly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

Section H: Construction Plan Checklist

Populate Table H. 1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

Table H. 1 Construction Plan Cross-reference

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	Latitude	Longitude
A	On-site storm drain inlets	WQMP Site Map	---	---
B	Interior floor drains and elevator shaft sump pumps	N/A	---	---
D2	Landscape / Outdoor Pesticide Use	On-site Landscape Improvement Plans	---	---
G	Refuse Areas	WQMP Site Map	---	---
H	Industrial processes	WQMP Site Map (indoors, if any)	---	---
M	Loading Docks	WQMP Site Map	---	---
P	Plazas, sidewalks, and parking lots	N/A	---	---
IF-A	Infiltration Basin-A	WQMP Site Map	34.01306	-117.39895
IF-B	Infiltration Basin-B	WQMP Site Map	34.01496	-117.39548
STC-C	Underground Chambers-C	WQMP Site Map	34.01337	-117.39658

Note that the updated table - or Construction Plan WQMP Checklist - is only a reference tool to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O\&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

Maintenance Mechanism: City of Jurupa Valley:
Water Quality Management Plan and Stormwater BMP Operation and Maintenance Agreement

The maintenance mechanism mentioned above will be executed by the owner and will be tied to the property. The maintenance mechanism will ensure that all structural BMPs and other control measures specified in this WQMP receive periodic and continuous maintenance as per the Operation and Maintenance Plan (O\&M Plan) included in Appendix 9. Funding required to maintain the BMPs will be provided by the owner stated below.

Proficiency Rubidoux, LLC
5020 Campus Drive
Newport Beach, CA 92660
Phone: (949) 296-7006
Contact: Jeff Trenton

Will the proposed BMPs be maintained by a Home Owners' Association (HOA) or Property Owners Association (POA)?
】 r \square

Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.

Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map

Appendix 2: Construction Plans

Grading and Drainage Plans (PROVIDED WITH F-WQMP)

 5.

CUT/FILL

COMPLETION OF WORK NOTES
Cin

 DRAINAGE, EROSION/DUST CONTROL
 3. 5. and

HOLD HARMLESS INDEMNIFICATION CLAUSE:

 EMISTNG UNDERGROND STIUUCTURES:
EXISTNG UNDERGROUND STRUCTURES:

EGLARARATION OF ENGINEER OF RECORD

CIVIL ENGINEER CERTIFICATON

 $\frac{\text { PRIMAVERA AVENUE }}{\text { TPCOA SECOON }}$

$\frac{\text { VAN DELL ROAD }}{\text { TrpCOL SGCTOON }}$

 $\frac{\text { AVALON STREET }}{\text { TMCOL LCCROON }}$

Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data

NorCal Engineering

Soils and Geotechnical Consultants
10641 Humbolt Street Los Alamitos, CA 90720
(562) 799-9469 Fax (562) 799-9459

January 29, 2019
Project Number 12627-05

Proficiency Rubidoux LLC
11777 San Vicente Boulevard, Suite 780
Los Angeles, California 90049

Attn: Matt Englhard

RE: SUPPLEMENTAL Soil Infiltration Study - Proposed Office/Warehouse Development - Located Northwest of the Intersection of $26^{\text {th }}$ Street and Avalon Street, in the City of Jurupa Valley, California

Dear Mr. Englhard:
Pursuant to your request, this firm has performed a Supplemental Soil Infiltration Study for the above referenced project. The information provided herein supplements that given in our previous report dated August 7, 2015. The purpose of this study is to further evaluate the feasibility of on-site drainage disposal systems on the subject property. The scope of current work included the following: 1) site reconnaissance; 2) subsurface geotechnical exploration; 3) double ring infiltration testing at three locations; 4) engineering analysis of field test data; and 5) preparation of this report.

It is proposed to install detention/infiltration basins/systems to dispose of on-site water runoff in conjunction with a new warehouse building development and associated parking. Locations and depths of supplemental tests were provided by Thienes Engineering on their map dated January 7, 2019.

Site Description

The property is located northwesterly of Avalon Street, as shown on the attached
Figure 1. A railroad easement extends along the easterly property line.

The property is largely vacant with some low vegetation except for a church building and concrete parking lot at the corner of $26^{\text {th }}$ Street and Avalon Street. A former mining operation is located on the northerly parcel. Drainage of the site sheetflows toward Avalon Street.

Field Exploration

The infiltration testing was completed on January 28, 2019 and consisted of using the double ring infiltrometer at four locations to determine the infiltration rate of the proposed retention/infiltration system(s). The locations of the tests are shown on the attached Figure 1. The test locations were excavated by backhoe to depths of 8.1 to 14.1 feet below existing ground surface (bgs). No significant caving occurred to the depths of these test excavations. Detailed descriptions of the subsurface soils are given on the attached test excavations logs in Appendix B. Test excavations ST-3 and ST-4 were performed at different elevations within the same test pit. This was performed because one of the test locations designated by Thienes was situated in the middle of the concrete parking lot of the church facility. Based upon findings in test pits during our previous testing and test pits placed pursuant to the completion of our Geotechnical Engineering Investigation report dated November 30, 2005, it is with reasonable certainty that we can conclude soil conditions are similar in our ST-3 and ST-4 test locations as 100 feet south beneath concrete pavement.

The test areas were found to be underlain by 12 inches of disturbed topsoils/fill soils overlying native soils. The soils at test locations consisted of native silty SAND with some clay and gravel to sandy SILT. These soils were noted to be medium dense/stiff to dense/stiff and damp.

NorCal Engineering

Groundwater

Groundwater was not encountered in any of our recent excavations. Research of the California Department of Water Resources website http://www.water.ca.gov/waterdatalibrary/ showed a depth to groundwater of 80 feet or greater at a nearby monitoring well located one-half mile south of the site.

Infiltration Test Procedure and Results

The infiltration test consisted of the double ring infiltration test per ASTM Method D 3385. The double ring infiltrometer method consists of driving two open cylinders, one inside the other, into the ground, partially filling the ring with water, and then maintaining the liquid at a constant level. The volume of liquid added to the inner ring, to maintain the liquid level constant is the measure of the volume of liquid that infiltrates into the soil.

The volume infiltrated during timed intervals is converted to an incremental infiltration velocity, usually expressed in centimeters per hour or inches per hour and plotted verses elapsed time. The maximum-steady state or average incremental infiltration velocity, depending on the purpose/application of the test is equivalent to the infiltration rate.

Water levels were maintained at a constant level in both the inner ring and annular space between rings throughout the test, to prevent flow of water from one ring to the other.

The volume of liquid used during each measured time interval was converted into an incremental infiltration velocity of both the inner ring in the annular space using the following equations:

For the inner ring calculated as follows:
$\operatorname{Vir}=\Delta \operatorname{Vir} /(\operatorname{Air} \Delta t)$
where:
Vir $=$ inner ring incremental infiltration velocity, $\mathrm{cm} / \mathrm{hr}$
Δ Vir $=$ volume of water used during time interval to maintain constant head in the inner ring, cm^{3}

Air $=$ internal area of the inner ting, cm^{2}
$\Delta t=$ time interval, hr

The last reading obtained was used for design purposes in each of the basin. The testing data sheets are attached in Appendix B and summarized in the Discussion of Results section below.

Discussion of Results

The use of on-site disposal system by means of retention/infiltration basins appears to be geotechnically feasible for future development. The field infiltration rates given below may be utilized in the final basin design with a safety factor of 2.0 or greater.

Test No.	Depth (feet bgs)	Soil Type	$\underline{(\mathrm{cm} / \mathrm{hr})}$	$\underline{\text { (in/hr) }}$	
	8.1		sandy SILT	5.7	2.3
ST-1	9.9		sandy SILT w/clay	3.8	1.5
ST-2	10.7		sandy SILT w/clay	3.8	1.5
ST-3	14.1	slightly silty SAND	209	84	

The use of stormwater infiltration is acceptable, provided the rates given above are used in design, without increasing the potential of settlement of proposed and existing structures or adversely affecting retaining/basement walls located either on or adjacent to the subject site. In addition, the potential for hydroconsolidation and the susceptibility for any ground settlements are considered low. All systems shall meet the California Regional Water Quality Control Board (CRWQCB) requirements.

Closure

The recommendations and conclusions contained in this report are based upon the soil conditions uncovered in our test excavations. No warranty of the soil condition between our excavations is implied. NorCal Engineering should be notified for possible further recommendations if unexpected to unfavorable conditions are encountered during construction phase. This firm should have the opportunity to review the final plans to verify that all our recommendations are incorporated.

This report and all conclusions are subject to the review of the controlling authorities for the project. Our representative should be present during the grading operations and construction phase to certify that such recommendations are complied within the field.

This infiltration study has been conducted in a manner consistent with the level of care and skill exercised by members of our profession currently practicing under similar conditions in the Southern California area. All work was performed under the supervision of the Geotechnical Engineer. No other warranty, expressed or implied is made. No other warranty, expressed or implied is made.

We appreciate this opportunity to be of service to you. If you have any further questions, please do not hesitate to contact the undersigned.

Respectfully submitted, NORCAL ENGINEERING.

Mark A. Burkholder Project Manager

List of Appendices (in order of appearance)

Appendix A
Logs of Test Pits ST-1 to ST-4
Field Test Data and Calculations

Appendix A

MAJOR DIVISION			GRAPHIC SYMRTI	LETTER sYMREI	TYPICAL DESGRIPTIONS
COARSE GRAINED SOLLS	GRAVEL AND GRAVELLY solls	CLEAN GRAVELS (LITTLE OR NO FINES)	0.6	GW	WELL-GRADED GRAVELS, GRAVEL. SAND MIXTURES, LITTLE OR NO FINES
				GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	MORE THAN 50\% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SANDSILT MBXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SANDCLAY MIXTURES
	SAND AND SANDY SOILS MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	CLEAN SAND (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE				SP	POORLY-GRADED SANDS, GRAVEL- LY SANDS, LITTLE OR NO FINES
		SANDS WIT		SM	SILTY SANDS, SAND-SRTT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT IFSS THAN 5 n		ML	INORGANIC SLLTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SHLTY CLAYS, LEAN CLAYS
			--	- OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SLLTY SOILS
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	Highly ORGANI	SOILS	x	PT	PEAT. HUMUS, SWAMP SOLLS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS
UNIFIED SOIL CLASSIFICATION SYSTEM

NorCal Engineering

KEY:

- Indicates 2.5 -inch Inside Diameter. Ring Sample.
$\boxtimes \quad$ Indicates 2-inch OD Split Spoon Sample (SPT).
$\Delta \quad$ Indicates Shelby Tube Sample.
II Indicates No Recovery.
DI Indicates SPT with 140\# Hammer 30 in. Drop.
\square Indicates Bulk Sample.
\square Indicates Small Bag Sample.
- Indicates Non-Standard

Indicates Core Run.

COMPONENT PROPORTIONS

DESCRIPTIVE TERMS	RANGE OF PROPORTION
Trace	$1-5 \%$
Few	$5-10 \%$
Little	$10-20 \%$
Some	$20-35 \%$
And	$35-50 \%$

MOISTURE CONTENT

DRY	Absence of moisture, dusty, dry to the touch. Sone perceptible
maMP	mosture; below optimum No visible water: near optimum moisture content VIsT Visibli free water, usually
WET	Solow water table.

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE

COHESIONLESS SOILS		COHESIVE SOILS		
Density	N (blows/ft)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)
Very Loose	0 to 4	Very Soft	0 to 2	<250
Loose	4 to 10	Soft	2504	$250-500$
Medium Dense	10 to 30	Medium Sliff	4 to 8	$500-1000$
Dense	30 to 50	8 to 15	$1000-2000$	
Very Dense	Sver 50	Very Stiff	15 to 30	$2000-4000$
		Hard	over 30	>4000

SOIIS AND GEOTECI-INICAL CONSLILIANTS

Project: Proficiency Rubidoux, LLC
Project No.: $12627-05$
Date: $1 / 28 / 19$
Test No. ST-1
Depth: 8 '
Tested By: J.S.

$\begin{aligned} & \text { TIME } \\ & (\mathrm{hr} / \mathrm{min}) \end{aligned}$	CHANGE time (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	$\begin{aligned} & \text { INNER } \\ & \text { RING } \\ & \text { CHANGE } \end{aligned}$	INNER RING FLOW (cc)	$\begin{aligned} & \text { OUTER } \\ & \text { RING } \\ & \text { READING } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { OUTER } \\ & \text { RING } \\ & \text { CHANGE } \end{aligned}$	OUTER RING fLow (cc)	INNER RING INF RATE ($\mathrm{cm} / \mathrm{hr}$)	OUTER RING INF RATE (cm/hr)	INNER RING inF RATE (ft/hr)
8:48			68.2			36.9					
8:58	10	10	70.4	2.2		39.5	2.6				
8:58			68.8			35.9					
9:08	10	20	70.2	1.4		37.8	1.9				
9:08			68.7			36.1					
9:18	10	30	70.0	1.3		38.0	1.9				
9:18			68.4			36.8					
9:28	10	40	69.5	1.1		38.6	1.8				
9:28			68.3			37.0					
9:38	10	50	69.5	1.2		38.6	1.6				
9:38			68.4			37.4					
9:48	10	60	69.3	0.9		38.9	1.5		5.4	9.0	
9:48			68.2			37.2					
9:58	10	70	69.3	1.1		38.8	1.6		6.6	9.6	
9:58			69.1			37.6					
10:08	10	80	70.0	0.9		39.0	1.4		5.4	8.4	
10:08			69.0			37.7					
10:18	10	90	69.9	0.9		39.0	1.3		5.4	7.8	
10:18			68.6			37.3					
10:28	10	100	69.6	1.0		38.7	1.4		6.0	8.4	
10:28			68.6			37.1					
10:38	10	110	69.5	0.9		38.5	1.4		5.4	8.4	
10:38			68.4			37.4					
10:48	10	120	69.3	0.9		38.8	1.4		5.4	8.4	

SOIIS AND GEOTECI-INICAL CONSUILTANTS

Project: Proficiency Rubidoux, LLC
Project No.: $12627-05$
Date: $1 / 28 / 19$
Test No. ST-2
Depth: 9^{\prime}
Tested By: J.S.

$\begin{gathered} \text { TIME } \\ (\mathrm{hr} / \mathrm{min}) \end{gathered}$	$\begin{aligned} & \text { CHANGE } \\ & \text { TIME } \\ & (\mathrm{min}) \end{aligned}$	CUMULATIVE TIME (min)		$\begin{aligned} & \hline \text { INNER } \\ & \text { RING } \\ & \text { CHANGE } \end{aligned}$	$\begin{aligned} & \hline \text { INNER } \\ & \text { RING } \\ & \text { FLOW } \\ & \text { (cc) } \end{aligned}$		$\begin{aligned} & \hline \text { OUTER } \\ & \text { RING } \\ & \text { CHANGE } \end{aligned}$	$\begin{aligned} & \hline \text { OUTER } \\ & \text { RING } \\ & \text { FLow } \\ & \text { (cc) } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { INNER } \\ \text { RING } \\ \text { INF } \\ \text { RATE } \\ (\mathrm{cm} / \mathrm{hr}) \\ \hline \end{array}$	$\begin{gathered} \text { OUTER } \\ \text { RING } \\ \text { INF } \\ \text { RATE } \\ (\mathrm{cm} / \mathrm{hr}) \end{gathered}$	INNER RING INF RATE ($\mathrm{ft} / \mathrm{hr}$)
9:02			98.7			39.5					
9:12	10	10	99.5	0.8		40.5	1.0				
9:12			99.5			40.5					
9:22	10	20	100.4	0.9		41.5	1.0				
9:22			100.4			41.5					
9:32	10	30	100.9	0.5		42.3	0.8				
9:32			100.9			42.3					
9:42	10	40	101.5	0.6		43.0	0.7				
9:42			101.5			43.0					
9:52	10	50	102.2	0.7		44.0	1.0				
9:52			102.2			44.0					
10:02	10	60	102.9	0.7		44.9	0.9		4.2	5.4	
10:02			102.9			44.9					
10:12	10	70	103.6	0.7		45.7	0.8		4.2	4.8	
10:12			103.6			45.7					
10:22	10	80	104.3	0.7		46.1	0.4		4.2	2.4	
10:22			104.3			46.1					
10:32	10	90	104.9	0.6		47.5	0.4		3.6	2.4	
10:32			102.1			43.0					
10:42	10	100	102.5	0.4		43.8	0.8		2.4	4.8	
10:42			102.5			43.8					
10:52	10	110	103.2	0.7		44.7	0.9		4.2	5.4	
10:52			103.2			44.7					
11:02	10	120	103.8	0.6		45.5	0.7		3.6	4.2	

Average $=3.8 / 4.2 \mathrm{~cm} / \mathrm{hr}$

SOIIS AND GEOTECI-INICAL CONSLILTANTS

Project: Proficiency Rubidoux, LLC
Project No.: $12627-05$
Date: $1 / 28 / 19$
Test No. ST-3
Depth: 10^{\prime}
Tested By: J.S.

TIME $(\mathrm{hr} / \mathrm{min})$	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING CHANGE	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE	OUTER RING FLOW (cc)	INNER RING INF RATE $(\mathrm{cm} / \mathrm{hr})$	OUTER RING INF RATE $(\mathrm{cm} / \mathrm{hr})$	INNER RING INF RATE (ft/hr)
$11: 15$		71.0			39.9						
$11: 25$	10	10	71.8	0.8		40.3	0.4				
$11: 25$			71.8			40.3					
$11: 35$	10	20	72.6	0.8		41.1	0.8				
$11: 35$			72.6			41.1					
$11: 45$	10	30	73.4	0.8		41.8	0.7				
$11: 45$			73.4			41.8					
$11: 55$	10	40	74.1	0.7		42.3	0.5				
$11: 55$			74.1			42.3					
$12: 05$	10	50	74.8	0.7		42.8	0.5				
$12: 05$			74.8			42.8					
$12: 15$	10	60	75.5	0.7		43.4	0.6		4.2	3.6	
$12: 15$			75.5			43.4					
$12: 25$	10	70	76.2	0.7		44.0	0.6		4.2	3.6	
$12: 25$			76.2			44.0					
$12: 35$	10	80	76.9	0.7		44.5	0.5		4.2	3.0	
$12: 35$			76.9			44.5					
$12: 45$	10	90	77.5	0.6		45.0	0.5		3.6	3.0	
$12: 45$			77.5			45.0					
$12: 55$	10	100	78.0	0.5		45.6	0.6		3.0	3.6	
$12: 55$			78.0			45.6					
$1: 05$	10	110	78.7	0.7		46.1	0.7		4.2	4.2	
$1: 05$			78.7			46.1					
$1: 15$	10	120	79.2	0.5		46.6	0.5		3.0	3.0	

Average $=3.8 / 3.4 \mathrm{~cm} / \mathrm{hr}$

SOIIS AND GEDTECI-NICAL CONSULTANTS

Project: Proficiency Rubidoux, LLC
Project No.: $12627-05$
Date: $1 / 28 / 19$
Test No. ST-4
Depth: 14^{\prime}
Tested By: J.S.

TIME $(\mathrm{hr} / \mathrm{min})$	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING CHANGE	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE	OUTER RING FLOW (cc)	INNER RING INF RATE $(\mathrm{cm} / \mathrm{hr})$	OUTER RING INF RATE $(\mathrm{cm} / \mathrm{hr})$	INNER RING INF RATE (ft/hr)
$11: 37$			98.5			39.2					
$11: 39$	2	2	106.3	7.8		47.2	8.0				
$11: 39$			99.4			38.4					
$11: 41$	2	4	106.5	7.1		46.4	8.0				
$11: 41$			98.6			37.6					
$11: 43$	2	6	106.1	7.5		46.0	8.4				
$11: 43$			97.5			37.7					
$11: 45$	2	8	105.0	7.5		45.3	7.6				
$11: 45$			99.0			37.4					
$11: 47$	2	10	106.2	7.2		45.5	8.1				
$11: 47$			97.9			37.8					
$11: 49$	2	12	104.6	6.7		44.8	7.0		201	210	
$11: 49$			98.2			37.6					
$11: 51$	2	14	105.3	7.1		45.2	7.6		213	228	
$11: 51$			97.8			37.7					
$11: 53$	2	16	104.5	6.7		45.1	7.4		201	222	
$11: 53$			99.0			37.9					
$11: 55$	2	18	105.8	6.8		45.3	7.4		204	222	
$11: 55$			99.0			38.9					
$11: 57$	2	20	106.3	7.2		46.2	7.3		216	219	
$11: 57$			99.1			39.2					
$11: 59$	2	22	106.2	7.1		46.3	7.1		213	213	
$11: 59$			99.6			38.8					
$12: 01$	2	24	106.7	7.1		45.9	7.1		213	213	

Average $=209 / 218 \mathrm{~cm} / \mathrm{hr}$

NorCal Engineering

Soils and Geotechnical Consultants
10641 Humbolt Street Los Alamitos, CA 90720
(562) 799-9469 Fax (562) 799-9459

Proficiency Rubidoux LLC
11777 San Vicente Boulevard, Suite 780
Los Angeles, California 90049
Attn: Matt Englhard
RE: Soil Infiltration Study - Proposed Office/Warehouse Development - Located Northwest of the Intersection of $26^{\text {th }}$ Street and Avalon Street, in the City of Jurupa Valley, California

Dear Mr. Englhard:
Pursuant to your request, this firm has performed a Soil Infiltration Study for the above referenced project. The purpose of this study is to evaluate the feasibility of on-site drainage disposal systems on the subject property. The scope of current work included the following: 1) site reconnaissance; 2) subsurface geotechnical exploration; 3) double ring infiltration testing at three locations; 4) engineering analysis of field test data; and 5) preparation of this report.

It is proposed to install detention/infiltration basins/systems to dispose of on-site water runoff in conjunction with a new warehouse building development and associated parking. Locations and depths of tests were provided by Thienes Engineering on their map dated July 13, 2015 (attached as Figure 2).

Site Description

The property is located northwesterly of Avalon Street, as shown on the attached Figure 1. A railroad easement extends along the easterly property line.

The property is currently vacant with some low vegetation. A former mining operation is located on the northerly parcel. Drainage of the site sheetflows toward Avalon Street.

Field Exploration

The infiltration testing was completed on July 31, 2015 and consisted of using the double ring infiltrometer at four locations to determine the infiltration rate of the proposed retention/infiltration system(s). The locations of the tests are shown on the attached Figure 2. The test locations were excavated by backhoe to depths of 12.5 to 16.5 feet below existing ground surface (bgs). No significant caving occurred to the depths of these test excavations. Detailed descriptions of the subsurface soils are given on the attached test excavations logs in Appendix B.

The test areas were found to be underlain by 12 inches of disturbed topsoils/fill soils overlying native soils. The soils at test locations consisted of native silty SAND with some clay and gravel. These soils were noted to be medium dense to dense and damp.

Groundwater

Groundwater was not encountered in any of our recent excavations. Research of the California Department of Water Resources website http://www.water.ca.gov/waterdatalibrary/ showed a depth to groundwater of 80 feet or greater at a nearby monitoring well located one-half mile south of the site.

Infiltration Test Procedure and Results

The infiltration test consisted of the double ring infiltration test per ASTM Method D 3385. The double ring infiltrometer method consists of driving two open cylinders, one inside the other, into the ground, partially filling the ring with water or other liquid, and then maintaining the liquid at a constant level. The volume of liquid added to the inner ring, to maintain the liquid level constant is the measure of the volume of liquid that infiltrates into the soil.

The volume infiltrated during timed intervals is converted to an incremental infiltration velocity, usually expressed in centimeters per hour or inches per hour and plotted verses elapsed time. The maximum-steady state or average incremental infiltration velocity, depending on the purpose/application of the test is equivalent to the infiltration rate.

Along the bottom of the infiltration test pits, dual infiltration rings were inserted 7 cm vertically into the soil by an impact-absorbing hammer. Guelph tubes, also referred to as bubblers were installed to maintain constant water level in each of the rings. Water levels were maintained at a constant level in both the inner ring and annular space between rings throughout the test, to prevent flow of water from one ring to the other.

The volume of liquid used during each measured time interval was converted into an incremental infiltration velocity of both the inner ring in the annular space using the following equations:

For the inner ring calculated as follows:

$$
\operatorname{Vir}=\Delta \operatorname{Vir} /(\operatorname{Air} \Delta t)
$$

where:
Vir $=$ inner ring incremental infiltration velocity, $\mathrm{cm} / \mathrm{hr}$
Δ Vir $=$ volume of water used during time interval to maintain constant head in the inner ring, cm^{3}

Air $=$ internal area of the inner ting, cm^{2}
$\Delta t=$ time interval, hr

The last reading obtained was used for design purposes in each of the basin. The testing data sheets are attached in Appendix B and summarized in the Discussion of Results section below.

Discussion of Results

The following design rates should be used at the given depths for design of the two infiltration areas:

Test No.	Depth (feet bgs)	Soil Type	Infiltration (cm/hr)	Rate (in/hr)
T-1	12.5	silty SAND w/clay	9.9	4.0
T-2	16.5	silty SAND w/clay	2.3	0.9
T-3	14.5	silty SAND w/clay	33.0	13.2
T-4	13.0	silty SAND w/clay	6.0	2.4

The use of stormwater infiltration is acceptable, provided the rates given above are used in design, without increasing the potential of settlement of proposed and existing structures or adversely affecting retaining/basement walls located either on or adjacent to the subject site. In addition, the potential for hydroconsolidation and the susceptibility for any ground settlements are considered low. All systems shall meet the California Regional Water Quality Control Board (CRWQCB) requirements.

Closure

The recommendations and conclusions contained in this report are based upon the soil conditions uncovered in our test excavations. No warranty of the soil condition between our excavations is implied. NorCal Engineering should be notified for possible further recommendations if unexpected to unfavorable conditions are encountered during construction phase. This firm should have the opportunity to review the final plans to verify that all our recommendations are incorporated.

This report and all conclusions are subject to the review of the controlling authorities for the project. Our representative should be present during the grading operations and construction phase to certify that such recommendations are complied within the field.

This infiltration study has been conducted in a manner consistent with the level of care and skill exercised by members of our profession currently practicing under similar conditions in the Southern California area. All work was performed under the supervision of the Geotechnical Engineer. No other warranty, expressed or implied is made. No other warranty, expressed or implied is made.

We appreciate this opportunity to be of service to you. If you have any further questions, please do not hesitate to contact the undersigned.

Respectfully submitted,

Kain

Keith D. Tucker
Project Engineer
R.G.E. 841

Mark A. Burkholder Project Manager

List of Appendices (in order of appearance)

Appendix A
 Vicinity Map - Figure 1
 Locations of Test Excavations - Figure 2

Appendix B

Logs of Test Pits T-1 to T-4
Field Test Data
Calculations

Appendix A

NorCal Engineering

NorCal Engineering

Appendix B

MAJOR DIVISION			GRAPHIC	LETTER	TYPICAL DESCRIPTIONS
COARSE GRAINED SOLLS	GRAVEL AND GRAVELLY SOILS	CLEAN GRAVELS (LITTLE OR NO FINES)	10.0	GW	WELL-GRADED GRAVELS, GRAVEL. SAND MIXTURES, LITTLE OR NO FINES
				GP	POORLY-GRADED GRAVELS. GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	MORE THAN 50\% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SANDSILT MIXTURES
	FRACTINEN ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SANDCLAY MIXTURES
	SANDAND SANDY SOlls	CLEAN SAND (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50\% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE				SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	PASSING ON NO. 4 SIEVE	AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT I FSS THAN 5 O		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SH TS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS. LEAN CLAYS
			-	OL	ORGANIC SLLTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS. MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
				CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS
UNIFIED SOIL CLASSIFICATION SYSTEM

NorCal Engineering

Indicates 2.5-inch Inside Diameter. Ring Sample.
$\boxtimes \quad$ Indicates 2-inch OD Split Spoon Sample (SPT).
$\Delta \quad$ Indicates Shelby Tube Sample.
II Indicates No Recovery.

DI Indicates SPT with 140\# Hammer 30 in. Drop.
\square Indicates Bulk Sample.

- Indicates Small Bag Sample.
\square Indicates Non-Standard
Indicates Core Run.
COMPONENT PROPORTIONS

MOISTURE CONTENT

Cobbles
唯 12
3 in to 12 in
Gravel
3 in to No 4 (4.5 mm)
3 in to $3 / 4$ in
$3 / 4$ in to No 4 (4.5 mm)
No. 4 (4.5 mm) to No. 200 (0.074 mm)
No. 4 (4.5 mm) to No. 10 (2.0 mm)
Sand
Coarse sand
No. $10(2.0 \mathrm{~mm})$ to $\mathrm{No} .40(0.42 \mathrm{~mm})$
No. 40 (0.42 mm) to No. 200 (0.074 mm)
Smaller than No. 200 (0.074 mm)

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE

COHESIONLESS SOILS		COHESIVE SOILS		
Density	N (blows/tt)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)
Very Loose Loose Medium Dense Dense Very Dense	$0 t 04$ 4 to 10 10 to 30 30 to 50 over 50	Very Soft Soft Medium Sliff Stiff Very Stiff Hard	$\begin{gathered} 0 \text { to } 2 \\ 2 \text { to } 4 \\ 4 \text { to } 8 \\ 8 \text { to } 15 \\ 15 \text { to } 30 \\ \text { over } 30 \end{gathered}$	$\begin{gathered} <250 \\ 250-500 \\ 500-1000 \\ 1000-2000 \\ 2000-4000 \\ >4000 \end{gathered}$

SOILS AND GEOTECHNICAL CONSULTANTS

Project:	Proficiency Rubidoux, LLC
Project No:	$12627-05$
Date:	$7 / 31 / 15$
Test No.	1
Depth:	12.5^{\prime}
Tested By:	D.R.

	TIME (hr/min)	CHANGE TIME (min)	CUMULATIVE TIME (min)		INNER RING FLOW (cc)	OUTER RING READING (cm)	```OUTER RING CHANGE (cm)```	OUTER RING FLOW (cc)	INNER RING INF RATE (cm/hr)	OUTER RING INF RATE (cm/hr)	INNER RING INF RATE (ft/hr)
1	3:05			99.3			44.5				
	3:10	5	5	101.0	1.7		46.0	1.5			
2	3:10			101.0			46.0				
	3:15	5	10	102.0	1.0		47.0	1.0			
3	3:15			102.0			47.0				
	3:20	5	15	103.0	1.0		48.0	1.0			
4	3:20			103.0			48.0				
	3:25	5	20	104.0	1.0		49.0	1.0			
5	3:25			104.0			49.0				
	3:30	5	25	105.0	1.0		50.0	1.0			
6	3:30			105.0			50.0				
	$3: 35$	5	30	106.0	1.0		51.0	1.0	12.0	12.0	
7	3:35			106.0			51.0				
	3:40	5	35	106.7	0.7		51.7	0.7	8.4	8.4	
8	3:40			106.7			51.7				
	3:45	5	40	107.6	0.9		52.7	1.0	10.8	12.0	
9	3:45			100.7			46.6				
	3:50	5	45	101.3	0.6		47.6	1.0	7.2	12.0	
10	3:50			101.3			47.6				
	3:55	5	50	102.4	1.1		48.5	0.9	13.2	10.8	
11	3:55			102.4			48.5				
	4:00	5	55	103.1	0.7		49.1	0.6	8.4	7.2	
12	4:00			103.1			49.1				
	4:05	5	60	103.9	0.8		49.9	0.8	9.6	9.6	

SOILS AND GEOTECHNICAL CONSULTANTS

Project: Proficiency Rubidoux, LLC
Project No: 12627-05
Date: 7/31/15
Test No. 2
Depth: 16.5'
Tested By: D.R.

	TIME (hr/min)	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE (cm)	OUTER RING FLOW (cc)	INNER RING INF RATE (cm/hr)	OUTER RING INF RATE (cm/hr)	INNER RING INF RATE (ft/hr)
1	1:20			107.3			51.2				
	1:27	7	7	109.5	1.2		52.5	1.3			
2	1:27			105.0			47.6				
	1:34	7	14	106.0	1.0		48.6	1.0			
3	1:34			106.0			48.6				
	1:41	7	21	106.5	0.5		49.4	0.8			
4	1:41			106.5			49.4				
	1:48	7	28	107.0	0.5		50.0	0.6			
5	1:48			107.0			50.0				
	1:55	7	35	107.4	0.4		50.5	0.5			
6	1:55			102.3			44.7				
	2:02	7	42	102.6	0.3		45.0	0.3	2.6	2.6	
7	2:02			102.6			45.0				
	2:09	7	49	102.9	0.3		45.3	0.3	2.6	2.6	
8	2:09			102.9			45.3				
	2:16	7	56	103.2	0.3		46.1	0.8	2.6	6.9	
9	2:16			103.2			46.1				
	2:23	7	63	103.4	0.2		46.4	0.3	1.7	2.6	
10	2:23			103.4			46.4				
	2:30	7	70	103.6	0.2		46.6	0.2	1.7	1.7	
11	2:30			103.6			46.6				
	2:37	7	77	103.9	0.3		46.9	0.3	2.6	2.6	
12	2:37			103.9			46.9				
	2:44	7	84	104.2	0.3		47.2	0.3	2.6	2.6	

SOILS AND GEOTECHNICAL CONSULTANTS

Project: Proficiency Rubidoux, LLC
Project No: 12627-05
Date: 7/31/15
Test No. 3
Depth: 14.5'
Tested By: D.R.

	TIME (hr/min)	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE (cm)	OUTER RING FLOW (cc)	INNER RING INF RATE (cm/hr)	OUTER RING INF RATE (cm/hr)	INNER RING INF RATE (ft/hr)
1	10:17			42.2			99.6				
	10:27	10	10	50.2	8.0		107.2	7.6			
2	10:27			44.1			100.8				
	10:37	10	20	52.0	7.9		108.0	7.2			
3	10:37			43.1			99.3				
	10:47	10	30	50.0	6.9		106.0	6.7			
4	10:47			42.7			99.0				
	10:57	10	40	49.0	6.3		105.4	6.4			
5	10:57			43.5			100.5				
	11:07	10	50	49.7	6.2		106.1	5.6			
6	11:07			43.9			100.1				
	11:17	10	60	49.6	5.7		105.9	5.8	34.2	34.8	
7	11:17			44.3			100.6				
	11:27	10	70	49.8	5.5		106.0	5.4	33.0	32.4	
8	11:27			44.5			100.7				
	11:37	10	80	50.0	5.5		106.0	5.3	33.0	31.8	
9	11:37			43.5			99.0				
	11:47	10	90	49.5	6.0		105.0	6.0	36.0	36.0	
10	11:47			44.5			100.5				
	11:57	10	100	50.0	5.5		106.2	5.7	33.0	34.2	
11	11:57			45.0			101.5				
	12:07	10	110	50.0	5.0		107.0	5.5	30.0	33.0	
12	12:07			45.0			101.5				
	12:17	10	120	50.5	5.5		106.5	5.0	33.0	30.0	

SOILS AND GEOTECHNICAL CONSULTANTS

Project: Proficiency Rubidoux, LLC
Project No: 12627-05
Date: 7/31/15
Test No. 4
Depth: 13'
Tested By: D.R.

	$\begin{gathered} \text { TIME } \\ (\mathrm{hr} / \mathrm{min}) \end{gathered}$	CHANGE TIME (min)	$\begin{gathered} \text { CUMULATIVE } \\ \text { TIME } \\ (\min) \end{gathered}$	INNER RING READING (cm)	INNER RING FLOW (cc)			OUTER RING FLOW (cc)		OUTER RING NF RATE (cm/hr)	
1	7:48			99.6			44.0				
	7:58	10	10	102.0	2.4		47.5	3.5			
2	7:58			102.0			47.5				
	8:08	10	20	103.5	1.5		49.9	2.4			
3	8:08			99.0			44.0				
	8:18	10	30	100.3	1.3		46.2	2.2			
4	8:18			100.3			46.2				
	8:28	10	40	101.7	1.4		48.7	2.5			
5	8:28			99.5			43.5				
	8:38	10	50	100.4	0.9		45.5	2.0			
6	8:38			100.4			45.5				
	8:48	10	60	101.6	1.2		47.4	1.9	7.2	11.4	
7	8:48			98.1			41.7				
	8:58	10	70	99.1	1.0		43.7	2.0	6.0	12.0	
8	8:58			99.1			43.7				
	9:08	10	80	100.0	0.9		45.5	1.8	5.4	10.8	
9	9:08			100.0			45.5				
	9:18	10	90	101.0	1.0		47.5	2.0	6.0	12.0	
10	9:18			101.0			47.5				
	9:28	10	100	102.0	1.0		49.4	1.9	6.0	11.4	
11	9:28			97.3			40.3				
	9:38	10	110	98.2	0.9		42.2	1.9	5.4	11.4	
12	9:38			98.2			42.2				
	9:48	10	120	99.2	1.0		44.1	1.9	6.0	11.4	

GEOTECHNICAL ENGINEERING INVESTIGATION

Proposed Mixed Use Development
$26^{\text {th }}$ Street and Avalon Street
Rubidoux, County of Riverside, California

Prepared For:
Proficiency Rubidoux, LLC
11777 San Vicente Boulevard, Suite 780
Los Angeles, California 90049

TABLE OF CONTENTS

Section Page
1.0 Structural Considerations 1
1.1 Proposed Development 1
2.0 Site Description 2
2.1 Location 2
2.2 Existing Improvements 2
2.3 Vegetation 2
2.4 Drainage/Topography 3
3.0 Field Investigation 3
3.1 Site Exploration 3
3.2 Groundwater 4
4.0 Laboratory Tests 4
4.1 Field Moisture Content 5
4.2 Maximum Density Tests 5
4.3 Expansion Index Tests 5
4.4 Direct Shear Tests 5
4.5 Consolidation Tests 5
4.6 Soluble sulfate, pH , Resistivity and Chloride Tests 5
4.7 Resistance ' R ' Value Test 6
5.0 Seismicity Evaluation 6
6.0 Seismic Refraction Study 7
7.0 Slope Stability 7
8.0 Liquefaction Evaluation 7
9.0 Conclusions and Recommendations 8
9.1 Site Grading Recommendations 8
9.1.1 Removal and Recompaction Recommendations 9
9.1.2 Fill Blanket Recommendations 10
9.2 Shrinkage and Subsidence 10
9.3 Temporary Excavations and Shoring Design 11
9.4 Foundation Design 11
9.5 Settlement Analysis 12
9.6 Lateral Resistance 13
9.7 Retaining Wall Design Parameters 13
9.8 Slab Design 14
9.9 Pavement Section Design 15
9.10 Utility Trench and Excavation Backfill 16
9.11 Corrosion Design Criteria 16
9.12 Expansive Soil 17
10.0 Closure 17

SOILS AND GEOTECHNICAL CONSULTANTS 10641 HUMBOLT STREET LOS ALAMITOS, CA 90720
(562)799-9469 FAX (562)799-9459

November 30, 2005
Project Number 12627-05
Proficiency Rubidoux, LLC
11777 San Vicente Boulevard, Suite 780
Los Angeles, California 90049
Attn: Jeffrey Trenton
RE: GEOTECHNICAL ENGINEERING INVESTIGATION - Proposed Mixed Use Development - Located Northerly and Southerly of the Intersection of $26^{\text {th }}$ Street and Avalon Street, Rubidoux, in the County of Riverside, California

Dear Mr. Trenton:
Pursuant to your request, this firm has performed a Geotechnical Engineering Investigation for the above referenced project. The purpose of this investigation is to evaluate the geotechnical conditions of the subject site and to provide recommendations for the proposed development. This geotechnical engineering report presents the findings of our study along with conclusions and recommendations for development.

1.0 STRUCTURAL CONSIDERATIONS

1.1 Proposed Development

The purpose of the investigation was to explore the subsurface conditions and to provide preliminary geotechnical engineering design parameters for evaluation of the site with respect to future development. Although no specific development plans have been provided to this firm at this date, it is anticipated that the site will be developed with small industrial buildings or residential or retail/commercial structures. It is assumed that the proposed grading for the development will generally include minor cut and fill procedures, although some terracing of the east facing hillside on the site may occur as will the excavation of the granite knob in the northerly portion of the property.

Final building plans shall be reviewed by this firm prior to submittal for city approval to determine the need for any additional study and revised recommendations pertinent to the proposed development, if necessary.

2.0 SITE DESCRIPTION

2.1 Location: The property consists of approximately 87 acres of land situated westerly of the Union Pacific Railroad and easterly of Jurupa Mountains in the Rubidoux area of the County of Riverside. The site extends from just north of $26^{\text {th }}$ Street southerly to $28^{\text {th }}$ Street as shown on the attached Vicinity Map, Figure 1 and Aerial Photograph, Figure 2.
2.2 Existing Improvements: The site is vacant of permanent structures. Some modular units, vehicles, storage bins and other equipment are located on the northerly portion of the site in the area of an on-going mining operation which is reducing and crushing materials from an existing granite knob on site.

The majority of the site south of the knob appears to have been excavated to its current grades during past soil export operations. According to available maps, it appears that up to approximately 20 to 30 feet of soil has been removed from along the westerly portion of the site with decreasing removals further to the east.

2.3 Vegetation:

The site is covered in most areas by moderate to heavy growth of weeds and grasses.
2.4 Drainage/Topography: Drainage of the relatively level site appears to generally sheetflow in an easterly direction. Site topography is generally flat in the southern portion of the site but slopes upward along the west property line into the Jurupa Mountains. The northern area of the mining operations slopes generally east with some terraces around the granite knob.

3.0 FIELD INVESTIGATION

3.1 Site Exploration

The purpose of the geotechnical investigation was to explore the subsurface conditions and to provide preliminary geotechnical engineering design parameters for evaluation of the site with respect to future development.

The investigation consisted of the placement of twenty-five subsurface exploratory excavations by backhoe and hand auger to a maximum depth of 15 feet below current ground elevations. The excavations were placed at accessible locations throughout the site. Access was somewhat limited around the current mining operations on the northerly portion of the site.

The explorations were visually classified and logged by a field engineer with locations of the subsurface explorations shown on the attached Figures 3 and 4. The excavations revealed the existing earth materials to consist of fill/disturbed topsoil and natural soil/bedrock zones. A detailed description of the subsurface conditions are listed on the excavation logs in Appendix A. It should be noted that the transition from one soil type to another as shown on the boring logs is approximate and may in fact be a gradual transition. The soils encountered are described as follows:

NorCal Engineering

Fill/Disturbed Top Soils: Fill and disturbed top soils generally classifying as silty SANDS with some gravel, organics and minor debris were encountered across the site to depths ranging from 6 to 18 inches. These soils were noted to be dry to damp and loose in most cases.

Natural: Native, undisturbed soils classifying as silty SAND with some clay and gravel were encountered beneath the upper low-density soils in the southerly portion of the site. The native soils as encountered were generally observed to be medium dense and damp. Silt, sand and clay content varied slightly with depth of excavations.

Bedrock materials classifying as a massive GRANITE were encountered in excavations in the northerly portion of the site. These materials were noted to be slightly weathered and dense to hard. It should be noted that although difficult to excavate with a backhoe, the mining operations continue without any blasting of the rock using large excavators and other equipment to excavate and crush the rock. Some large boulders were noted in the mining area and more builders can be anticipated to be encountered during the site grading.

3.2 Groundwater

Groundwater was not encountered in any of the test excavations.

4.0 LABORATORY TESTS

Relatively undisturbed samples of the subsurface soils were obtained to perform laboratory testing and analysis for direct shear, consolidation tests, and to determine in-place moisture/densities. These relatively undisturbed ring samples were obtained by driving a thin-walled steel sampler lined with one-inch long brass rings with an inside diameter of 2.42 inches into the undisturbed soils a total of 6 inches.

Bulk bag samples were obtained in the upper soils for expansion index tests and maximum density tests. Preliminary wall loadings on the order of 4,000 lbs./lin.ft. and maximum compression loads on the order of 100 kips were utilized for testing and design purposes. All test results are included in Appendix B, unless otherwise noted.

Page 5
4.1 Field moisture content (ASTM:D 2216) and the dry density of the ring samples were determined in the laboratory. This data is listed on the logs of explorations.
4.2 Maximum density tests (ASTM: D-1557-91) were performed on typical samples of the upper soils. Results of these tests are shown on Table I.
4.3 Expansion index tests in accordance with the Uniform Building Code Standard No. 29-2 were performed on remolded samples of the upper soils to determine the expansive characteristics and to provide any necessary recommendations for reinforcement of the slabs-on-grade and the foundations. Results of these tests are provided on Table II and are discussed later in this report.
4.4 Direct shear tests (ASTM: D-3080) were performed on undisturbed and disturbed samples of the subsurface soils. These tests were performed to determine parameters for the calculation of the safe bearing capacity. The test is performed under saturated conditions at loads of $1,000 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$., $2,000 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$., and $3,000 \mathrm{lbs} . / \mathrm{sq}$.ft. with results shown on Plates $\mathrm{A}-\mathrm{G}$.
4.5 Consolidation tests (ASTM: D-2435) were performed on undisturbed samples to determine the differential and total settlement which may be anticipated based upon the proposed loads. Water was added to the samples at a surcharge of one KSF and the settlement curves are plotted on Plates H - M .
4.6 Soluble sulfate, pH, Resistivity and Chloride tests to determine potential corrosive effects of soils on concrete and metal structures were performed in the laboratory. Test results are given in Tables III-VI.

NorCal Engineering

4.7 Resistance 'R' Value testing per test method CA 301 was conducted on a representative soil sample to determine preliminary pavement section design for the proposed on-site pavement areas. Test results are provided in Appendix B and recommended pavement sections are provided later within the text of this report.

5.0 SEISMICITY EVALUATION

The proposed development lies outside of any Alquist Priolo Special Studies Zone and the potential for damage due to direct fault rupture is considered unlikely.

The following site seismic information may be used for design considerations.

Seismic Design Criteria

Seismic Zone (UBC Figure 16-2)
Seismic Zone Factor Z (UBC Table 16-I)
San Jacinto Fault
Zone 4
Seismic Source Type (UBC Table 16-U
.40
Soil Profile Type (UBC Table 16-J)
B
Seismic Coefficient Ca (UBC Table 16-Q)
S_{D}
Seismic Coefficient Cv (UBC Table 16-R)
0.44 Na

Near-Source Factor Na (UBC Table 16-S)
0.64 Nv

Near-Source Factor Nv (UBC Table 16-T)
1.00

Distance from Fault 1.04

Maximum Magnitude 9 km

Maximum Horiz. Ground Acceleration 6.9
.42 g

Ground shaking originating from earthquakes along other active faults in the region is expected to induce lower horizontal accelerations due to smaller anticipated earthquakes and/or greater distances to other faults.

6.0 SEISMIC REFRACTION STUDY

A seismic refraction study was performed on the site to determine the ripability of the underlying dense soils and/or bedrock materials. This study was performed by Goffman, McCormick and Urban (GMU) under contract with NorCal Engineering. Five seismic lines were performed on the site in order to determine the expected excavation effort for the layers of soil/bedrock. All five lines revealed that the upper 3 to 10 feet of grading could be accomplished with easy processing. The next layer extended from 3 to at least 85 feet and these materials may be classified as requiring moderate and some difficult ripping. No blasting is anticipated on the site. A report is being compiled by GMU at this date and will be forwarded to client upon completion.

It is likely that some large boulders will be encountered during excavation in the granitic rock. Special rock breaking equipment may be required in order to reduce the boulders.

7.0 SLOPE STABILITY

Stability of any slopes on site will be evaluated upon receipt of grading plans for the project. No adverse bedrock or other conditions were encountered in the field which would adversely impact stability of current slopes at the site.

8.0 LIQUEFACTION EVALUATION

Due to the depth of groundwater in the area (>50 feet), the liquefaction potential at the subject site is deemed low. In addition, U.S. Geological Survey Professional Paper 1360 details the area as having a very low to low potential for liquefaction. No special design recommendations for the proposed structures due to liquefaction potential will be necessary for the development.

NorCal Engineering

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon our evaluations, development of the site is acceptable from a geotechnical engineering standpoint. By following the recommendations and guidelines set forth in our report, the structures will be safe from excessive settlements under the anticipated design loadings and conditions. The proposed development shall meet all requirements of the City Building Ordinance and will not impose any adverse effect on existing adjacent structures.

The following recommendations are based upon soil conditions encountered in our field investigation; these near-surface soil conditions could vary across the site. Variations in the soil conditions may not become evident until the commencement of grading operations for the proposed development and revised recommendations from the soils engineer may be necessary based upon the conditions encountered.

9.1 Site Grading Recommendations

It is recommended that site inspections be performed by a representative of this firm during all grading and construction of the development to verify the findings and recommendations documented in this report. Any unusual conditions which may be encountered in the course of the project development may require the need for additional study and revised recommendations.

Any vegetation shall be removed and hauled from proposed grading areas prior to the start of grading operations. Existing vegetation shall not be mixed or disced into the soils. Any removed soils may be reutilized as compacted fill once any deleterious material or oversized materials (in excess of eight inches) is removed. Grading operations shall be performed in accordance with the attached Specifications for Placement of Compacted Fill.

9.1.1 Removal and Recompaction Recommendations

All upper disturbed and fill soils (6 to 18 inches) shall be removed to competent native material, the exposed surface scarified to a depth of 12 inches, brought to within 2% of optimum moisture content and compacted to a minimum of 90% of the laboratory standard (ASTM: D-1557) prior to placement of any additional compacted fill soils and pavement. Soils in the upper 12 inches beneath slabs-on-grade shall be compacted to a minimum of 95% relative compaction. Grading shall extend a minimum of 5 horizontal feet outside the edges of foundations or equidistant to the depth of fill placed, whichever is greater.

Care should be taken to provide or maintain adequate lateral support for all adjacent improvements and structures at all times during the grading operations and construction phase. Adequate drainage away from the structures, pavement and slopes should be provided at all times.

It is likely that isolated areas of undiscovered fill not described in this report are present on site. If found, these areas should be treated as discussed earlier. A diligent search shall also be conducted during grading operations in an effort to uncover any underground structures, irrigation or utility lines. If encountered, these structures and lines shall be either removed or properly abandoned prior to the proposed construction.

NorCal Engineering

If placement of slabs-on-grade and pavement is not completed immediately upon completion of grading operations, additional testing and grading of the areas may be necessary prior to continuation of construction operations. Likewise, if adverse weather conditions occur which may damage the subgrade soils, additional assessment by the soils engineer as to the suitability of the supporting soils may be needed.

9.1.2 Fill Blanket Recommendations

Due to the medium density of the native soils and the potential for differential settlement of structures supported on both native/bedrock and compacted fill materials, it is recommended that all foundations be underlain by a uniform compacted fill blanket at least 3 feet in thickness. This fill blanket shall extend a minimum of 5 horizontal feet outside the edges of foundations or equidistant to the depth of fill placed, whichever is greater.

9.2 Shrinkage and Subsidence

Results of our in-place density tests reveal that the soil shrinkage of the upper topsoils will be on the order of 12 to 18% due to excavation and recompaction, based upon the assumption that the fill is compacted to 93% of the maximum dry density per ASTM standards. Subsidence of these materials should be 0.2 feet due to earthwork operations. Some bulking of the decomposed granite may occur and should be between 3 and 7%. The volume changes do not include any allowance for vegetation or organic stripping, removal of subsurface improvements or topographic approximations. Although these values are only approximate, they represent our best estimate of lost yardage which will likely occur during grading. If more accurate shrinkage and subsidence factors are needed, it is recommended that field testing using the actual equipment and grading techniques should be conducted.

9.3 Temporary Excavations

Temporary unsurcharged excavations less than 4 feet in height may be made at vertical inclinations. Excavations between 4 and 10 feet in height in the existing site materials should be trimmed at a 1 to 1 (horizontal to vertical) gradient. In areas where soils with little or no binder are encountered, where adverse geological conditions are exposed, or where excavations are adjacent to existing structures, shoring, slot-cutting, or flatter excavations may be required.

The temporary cut slope gradients given above do not preclude local raveling and sloughing. All excavations shall be made in accordance with the requirements of the soils engineer, CAL-OSHA and other public agencies having jurisdiction.

9.4 Foundation Design

All foundation excavations may be designed utilizing the following allowable soil bearing capacities for an embedded depth of 18 into dense compacted fill materials with the corresponding widths:

Allowable Soil Bearing Capacity (psf)

Width (ft)
1.5
2.0
3.0
4.0

Continuous Foundation

2000
2075
2375
2675

Isolated Foundation

2500
2575
2875
3175

A substantial decrease in the above bearing capacities will be necessary if the required compacted fill blanket is not provided beneath and outside of foundations. Any property line wall foundations where footings are embedded into native materials may utilize an allowable soil bearing capacity of 1,500 psf provided the entire length of the wall is embedded into the medium dense native soils. Footings embedded into granitic bedrock may utilize an allowable soil bearing capacity of $3,000 \mathrm{psf}$ however all foundations for any structure or wall cannot transition from bedrock to fill soils.

A one-third increase may be used when considering short term loading from wind and seismic forces. Additional reinforcement of foundations may be necessary based upon soil expansion or building loads and the design should be reviewed further by the project structural engineer. A representative of this firm shall observe all foundation excavations prior to pouring concrete.

9.5 Settlement Analysis

Resultant pressure curves for the consolidation tests are shown on Plates H-M. Computations utilizing these curves and the recommended allowable soil bearing capacities reveal that the foundations will experience settlements on the order of $3 / 4$ inch and differential settlements of less than 1/4 inch.

9.6 Lateral Resistance

The following values may be utilized in resisting lateral loads imposed on the structure. Requirements of the Uniform Building Code should be adhered to when the coefficient of friction and passive pressures are combined.

Coefficient of Friction - 0.40
Equivalent Passive Fluid Pressure $=250 \mathrm{lbs} . / \mathrm{cu} . \mathrm{ft}$. Maximum Passive Pressure $=2,500 \mathrm{lbs} . / \mathrm{cu}$.ft.

The passive pressure recommendations are valid only for approved compacted fill soils.

9.7 Retaining Wall Design Parameters

Active earth pressures against retaining walls will be equal to the pressures developed by the following fluid densities. These values are for granular backfill material placed behind the walls at various ground slopes above the walls.

Surface Slope of Retained Materials (Horizontal to Vertical)	Equivalent Fluid Density (lb./cu.ft.)
Level	30
5 to 1	35
4 to 1	38
3 to 1	40
2 to 1	45

Any applicable short-term construction surcharges and seismic forces should be added to the above lateral pressure values. A backfill zone of free draining material shall consist of a wedge beginning a minimum of one horizontal foot from the base of the wall extending upward at an inclination of no less than $3 / 4$ to 1 (horizontal to vertical). All walls shall be waterproofed as needed and protected from hydrostatic pressure by a reliable permanent subdrain system.

9.8 Slab Design

Concrete floor slabs-on-grade may be placed upon fill soils compacted to a minimum of 95% relative compaction in the upper 12 inches. Additional reinforcement requirements and recommendations regarding thickness of the slabs-on-grade may be necessary based upon soils expansion potential and proposed loading conditions in the structures and should be evaluated further by the project engineers and/or architect.

A vapor retarder should be utilized in areas which would be sensitive to the infiltration of moisture. This retarder shall meet requirements of ASTM E 96, Water Vapor Transmission of Materials and ASTM E 1745, Standard Specification for Water Vapor Retarders used in Contact with Soil or Granular Fill Under Concrete Slabs. The vapor retarder shall be installed in accordance with procedures stated in ASTM E 1643, Standard practice for Installation of Water Vapor Retarders used in Contact with Earth or Granular Fill Under Concrete Slabs.

The moisture retarder may be placed directly upon compacted subgrade, although 1 to 2 inches of sand beneath the membrane is desirable. The subgrade upon which the retarder is placed shall be smooth and free of rocks, gravel or other protrusions which may damage the retarder. Use of sand above the retarder is under the purview of the structural engineer; if sand is used over the retarder, it should be placed in a dry condition.

Subgrade soils shall be maintained at or near optimum moisture levels prior to pouring of concrete. All concrete slab areas to receive floor coverings should be moisture tested to meet all manufacturer requirements prior to placement.

9.9 Pavement Section Design

The tables below provide a preliminary pavement design based upon an R Value of 47 for the proposed pavement areas. Final pavement design should be based on R-Value testing of the subgrade soils near the conclusion of rough grading to assure that these soils are consistent with those used in this preliminary design.

On-Site Flexible (Asphaltic) Pavement Section Design

Type of	Traffic	Inches	Inches
Traffic	Index	Asphalt	Base
Auto	Parking/Circulation	$4.0 / 5.0$	3.0
Truck	7.0	3.5	3.0

Subgrade soils to receive base material shall be compacted to a minimum of 90% relative compaction; base material shall be compacted to at least 95%. Any concrete slab-on-grade in delivery truck areas shall be a minimum of 6 inches in thickness and may be placed on subgrade soils compacted to at least 95% in the upper 12 inches.

The above recommendations are based upon estimated traffic loadings. Client should submit anticipated traffic loadings for the pavement areas to the soils engineer, when available, so that pavement sections may be reviewed to determine adequacy to support the proposed loadings. Significant repetitions of heavy trucks at the property could significantly increase the above pavement sections.

9.10 Utility Trench and Excavation Backfill

Trenches from installation of utility lines and other excavations may be backfilled with on-site soils or approved imported soils compacted to a minimum of 90% relative compaction. All utility lines shall be properly bedded with clean sand having a sand equivalency rating of 30 or more. This bedding material shall be thoroughly water jetted around the pipe structure prior to placement of compacted backfill soils.

9.11 Corrosion Design Criteria

Representative samples of the surficial soils revealed negligible sulfate concentrations; therefore all concrete in contact with on-site soils may be designed in accordance with Table 19A-A-4 of the 1997 Uniform Building Code. It is recommended that additional sulfate tests be performed at the completion of rough grading to assure that the as graded conditions are consistent with the recommendations stated in this design. Sulfate test results may be found on the attached Table III.

Tests were also conducted on a random representative sample of soils to determine the potential corrosive effects on buried metallic structures. Tests for pH , resistivity and chloride are included on Tables III - VI. Soil pH indicates a slightly alkaline condition. Resistivity is indicative of a condition which may be considered mildly corrosive to metallic structures. Chloride content revealed low concentrations.

9.12 Expansive Soil

The upper soils at the site are very low in expansion potential. Sites with expansive on site soils require special attention during project design and maintenance. The attached Expansive Soil Guidelines should be reviewed by the engineers, architects, owner, maintenance personnel and other interested parties and considered during the design of the project and future property maintenance.

10.0 CLOSURE

The recommendations and conclusions contained in this report are based upon the soil conditions uncovered in our test excavations. No warranty of the soil condition between our excavations is implied. NorCal Engineering should be notified for possible further recommendations if unexpected to unfavorable conditions are encountered during construction phase. It is the responsibility of the owner to ensure that all information within this report is submitted to the Architect and appropriate Engineers for the project.

This firm should have the opportunity to review the final plans (72 hours required) to verify that all our recommendations are incorporated. This report and all conclusions are subject to the review of the controlling authorities for the project.

A preconstruction conference should be held between the developer, general contractor, grading contractor, city inspector, architect, and soil engineer to clarify any questions relating to the grading operations and subsequent construction. Our representative should be present during the grading operations and construction phase to certify that such recommendations are complied within the field.

NorCal Engineering

This geotechnical investigation has been conducted in a manner consistent with the level of care and skill exercised by members of our profession currently practicing under similar conditions in the Southern California area. No other warranty, expressed or implied is made.

We appreciate this opportunity to be of service to you. If you have any further questions, please do not hesitate to contact the undersigned.

Wh Ueell
Mark A. Burkholder Project Manager

SPECIFICATIONS FOR PLACEMENT OF COMPACTED FILL

Excavation

Any existing low density soils and/or saturated soils shall be removed to competent natural soil under the inspection of the Soils Engineering Firm. After the exposed surface has been cleansed of debris and/or vegetation, it shall be scarified until it is uniform in consistency, brought to the proper moisture content and compacted to a minimum of 90% relative compaction (in accordance with ASTM: D-1557).

In any area where a transition between fill and native soil or between bedrock and soil are encountered, additional excavation beneath foundations and slabs will be necessary in order to provide uniform support and avoid differential settlement of the structure.

Material For Fill

The on-site soils or approved import soils may be utilized for the compacted fill provided they are free of any deleterious materials and shall not contain any rocks, brick, asphaltic concrete, concrete or other hard materials greater than eight inches in maximum dimensions. Any import soil must be approved by the Soils Engineering firm a minimum of 72 hours prior to importation of site.

Placement of Compacted Fill Soils

The approved fill soils shall be placed in layers not excess of six inches in thickness. Each lift shall be uniform in thickness and thoroughly blended. The fill soils shall be brought to within 2% of the optimum moisture content, unless otherwise specified by the Soils Engineering firm. Each lift shall be compacted to a minimum of 90% relative compaction (in accordance with ASTM: D-1557) or as recommended and approved prior to the placement of the next layer of soil. Compaction tests shall be obtained at the discretion of the Soils Engineering firm but to a minimum of one test for every 500 cubic yards placed and/or for every 2 feet of compacted fill placed.

The minimum relative compaction shall be obtained in accordance with accepted methods in the construction industry. The final grade of the structural areas shall be in a dense and smooth condition prior to placement of slabs-on-grade or pavement areas. No fill soils shall be placed, spread or compacted during unfavorable weather conditions. When the grading is interrupted by heavy rains, compaction operations shall not be resumed until approved by the Soils Engineering firm.

NorCal Engineering

Grading Observations

The controlling governmental agencies should be notified prior to commencement of any grading operations. This firm recommends that the grading operations be conducted under the observation of a Soils Engineering firm as deemed necessary. A 24-hour notice must be provided to this firm prior to the time of our initial inspection.

Observation shall include the clearing and grubbing operations to assure that all unsuitable materials have been properly removed; approve the exposed subgrade in areas to receive fill and in areas where excavation has resulted in the desired finished grade and designate areas of overexcavation; and perform field compaction tests to determine relative compaction achieved during fill placement. In addition, all foundation excavations shall be observed by the Soils Engineering firm to confirm that appropriate bearing materials are present at the design grades and recommend any modifications to construct footings.

EXPANSIVE SOIL GUIDELINES

The following expansive soil guidelines are provided for your project. The intent of these guidelines is to inform you, the client, of the importance of proper design and maintenance of projects supported on expansive soils. You, as the owner or other interested party, should be warned that you have a duty to provide the information contained in the soil report including these guidelines to your design engineers, architects, landscapers and other design parties in order to enable them to provide a design that takes into consideration expansive soils.

In addition, you should provide the soil report with these guidelines to any property manager, lessee, property purchaser or other interested party that will have or assume the responsibility of maintaining the development in the future.

Expansive soils are fine-grained silts and clays which are subject to swelling and contracting. The amount of this swelling and contracting is subject to the amount of fine-grained clay materials present in the soils and the amount of moisture either introduced or extracted from the soils. Expansive soils are divided into five categories ranging from "very low" to "very high". Expansion indices are assigned to each classification and are included in the laboratory testing section of this report. If the expansion index of the soils on your site, as stated in this report, is 21 or higher, you have expansive soils. The classifications of expansive soils are as follows:

Classification of Expansive Soil*

Expansion Index	Potential Expansion
$0-20$	Very Low
$21-50$	Low
$51-90$	Medium
$91-130$	High
Above 130	Very High

*From Table 18A-I-B of California Building Code (1988)
When expansive soils are compacted during site grading operations, care is taken to place the materials at or slightly above optimum moisture levels and perform proper compaction operations. Any subsequent excessive wetting and/or drying of expansive soils will cause the soil materials to expand and/or contract. These actions are likely to cause distress of foundations, structures, slabs-on-grade, sidewalks and pavement over the life of the structure. It is therefore imperative that even after construction of improvements, the moisture contents are maintained at relatively constant levels, allowing neither excessive wetting or drying of soils.

Evidence of excessive wetting of expansive soils may be seen in concrete slabs, both interior and exterior. Slabs may lift at construction joints producing a trip hazard or may crack from the pressure of soil expansion. Wet clays in foundation areas may result in lifting of the structure causing difficulty in the opening and closing of doors and windows, as well as cracking in exterior and interior wall surfaces. In extreme wetting of soils to depth, settlement of the structure may eventually result. Excessive wetting of soils in landscape areas adjacent to concrete or asphaltic pavement areas may also result in expansion of soils beneath pavement and resultant distress to the pavement surface.

Excessive drying of expansive soils is initially evidenced by cracking in the surface of the soils due to contraction. Settlement of structures and on-grade slabs may also eventually result along with problems in the operation of doors and windows.

Projects located in areas of expansive clay soils will be subject to more movement and "hairline" cracking of walls and slabs than similar projects situated on non-expansive sandy soils. There are, however, measures that developers and property owners may take to reduce the amount of movement over the life the development. The following guidelines are provided to assist you in both design and maintenance of projects on expansive soils:

- Drainage away from structures and pavement is essential to prevent excessive wetting of expansive soils. Grades of at least 3\% should be designed and maintained to allow flow of irrigation and rain water to approved drainage devices or to the street. Any "ponding" of water adjacent to buildings, slabs and pavement after rains is evidence of poor drainage; the installation of drainage devices or regrading of the area may be required to assure proper drainage. Installation of rain gutters is also recommended to control the introduction of moisture next to buildings. Gutters should discharge into a drainage device or onto pavement which drains to roadways.
- Irrigation should be strictly controlled around building foundations, slabs and pavement and may need to be adjusted depending upon season. This control is essential to maintain a relatively uniform moisture content in the expansive soils and to prevent swelling and contracting. Over-watering adjacent to improvements may result in damage to those improvements. NorCal Engineering makes no specific recommendations regarding landscape irrigation schedules.
- Planting schemes for landscaping around structures and pavement should be analyzed carefully. Plants (including sod) requiring high amounts of water may result in excessive wetting of soils. Trees and large shrubs may actually extract moisture from the expansive soils, thus causing contraction of the fine-grained soils.
- Thickened edges on exterior slabs will assist in keeping excessive moisture from entering directly beneath the concrete. A six-inch thick or greater deepened edge on slabs may be considered. Underlying interior and exterior slabs with 6 to 12 inches or more of non-expansive soils and providing presaturation of the underlying clayey soils as recommended in the soil report will improve the overall performance of on-grade slabs.
- Increase the amount of steel reinforcing in concrete slabs, foundations and other structures to resist the forces of expansive soils. The precise amount of reinforcing should be determined by the appropriate design engineers and/or architects.
- Recommendations of the soil report should always be followed in the development of the project. Any recommendations regarding presaturation of the upper subgrade soils in slab areas should be performed in the field and verified by the Soil Engineer.

APPENDICES
 (In order of appearance)

Appendix A - Logs of Test Explorations
 *Logs of Test Excavations T-1 to T-25

Appendix B - Laboratory Analysis
*Table I - Maximum Dry Density Tests
*Table II - Expansion Index Tests
*Table III - Sulfate Tests
*Table IV - pH Tests
*Table V - Resistivity Tests
*Table VI - Chloride Tests

*Plates A-G- Direct Shear Tests
*Plates H-M - Consolidation Tests

APPENDIX A

MAJOR DIVISION			GRAPHIC SYMRNI	LETTER sYMREI	TYPICAL DESCRIPTIONS
COARSE GRAINED SOILS	GRAVEL AND GRAVELLY SOILS	CLEAN GRAVELS (LITTLE OR NO FINES)	006	GW	WELL-GRADED GRAVELS, GRAVEL. SAND MIXTURES, LITTLE OR NO FINES
				GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	MORE THAN 50\% OF COARSE	GRAVELS WITH FINES	11	GM	SILTY GRAVELS, GRAVEL-SANDSILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINESI		GC	CLAYEY GRAVELS, GRAVEL-SANDCLAY MIXTURES
	SAND AND SANDY SOILS	CLEAN SAND (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE				SP	POORLY-GRADED SANDS, GRAVEL- LY SANDS, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINE		SM	SILTY SANDS, SAND-SILT MIXTURES
	$\begin{aligned} & \text { PASSING ON } \\ & \text { NO. } 4 \text { SIEVE } \end{aligned}$	AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE GRAINED SOLLS	SILTS AND CLAYS	LIQUID LIMIT IFSS THAN SN		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	inorganic clays of Low to MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS. LEAN CLAYS
			-	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50\% OF MATERIAL S SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
				CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Indicates 2.5-inch Inside Diameter. Ring Sample.

区 Indicates 2-inch OD Split Spoon Sample (SPT).
$\Delta \quad$ Indicates Shelby Tube Sample.
T] Indicates No Recovery.

- Indicates SPT with 140\# Hammer 30 in. Drop.
\square Indicates Bulk Sample.
Indicates Small Bag Sample.
Indicates Non-Standard
(ג) Indicates Core Run.

COMPONENT DEFINITIONS

COMPONENT	SIZE RANGE
Boulders	Larger than 12 in
Cobbles	3 in to 12 in
Gravel	3 in to No $4(4.5 \mathrm{~mm})$
Coarse gravel	3 in to $3 / 4$ in
Fine gravel	$3 / 4$ in to No $4(4.5 \mathrm{~mm})$
Sand	No. 4 (4.5 mm$)$ to No. $200(0.074 \mathrm{~mm})$
Coarse sand	No. $4(4.5 \mathrm{~mm})$ to No. $10(2.0 \mathrm{~mm})$
Medium sand	No. $10(2.0 \mathrm{~mm})$ to No. $40(0.42 \mathrm{~mm})$
Fine sand	No. $40(0.42 \mathrm{~mm})$ to No. $200(0.074 \mathrm{~mm})$
Silt and Clav	Smaller than No. $200(0.074 \mathrm{~mm})$

COMPONENT PROPORTIONS

DESCRIPTIVE TERMS	RANGE OF PROPORTION
Trace	$1-5 \%$
Few	$5-10 \%$
Little	$10-20 \%$
Some	$20-35 \%$
And	$35-50 \%$

MOISTURE CONTENT

DRY	Absence of moisture, dusty, dry to the touch. Some perceptible moisture; below optimum No visibie water; near optimum moisture content Visible free water, usually soil is below water table.
MOIST	
WET	

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE

COHESIONLESS SOILS		COHESIVE SOILS		
Density	N (blows/ft)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)
Very Loose Loose Medium Dense Dense Very Dense	0 to 4 4 to 10 10 to 30 30 to 50 over 50	Very Soft Soft Medium Stiff Stiff Very Stiff Hard	0 to 2 2 to 4 4 to 8 8 to 15 15 to 30 over 30	$\begin{gathered} <250 \\ 250-500 \\ 500-1000 \\ 1000-2000 \\ 2000-4000 \\ \gg 4000 \end{gathered}$

Log of Trench T-1

Log of Trench T-2

Log of Trench T-4

Log of Trench T-5

Log of Trench T-6

Log of Trench T-7

Log of Trench T-8

Log of Trench T-9

Log of Trench T-10

Log of Trench T-11

Log of Trench T-12

Log of Trench T-13

Log of Trench T-14

Log of Trench T-15

Log of Trench T-16

Log of Trench T-17

Log of Trench T-18

Log of Trench T-19

Log of Trench T-20

Log of Trench T-21

Log of Trench T-22

Log of Trench T-23

Log of Trench T-24

Log of Trench T-25

APPENDIX B

TABLEI
MAXIMUM DENSITY TESTS
(ASTM: D-1557)

Sample	Classification	Optimum Moisture	Maximum Dry Density (lbs./cu.ft.)
T-1 @ 1-2'	silty SAND	9.5	126.0
T-4 @ 0.5-1'	decomposed GRANITE	8.5	133.0

TABLE II EXPANSION INDEX TESTS (UBC 18-2)

Sample
T-1 @ 1-2'

TABLE III
SOLUBLE SULFATE TESTS (CT 417)

Sample
T-1 @ 1-2'
T-4@ 0.5-1'

Expansion Index
04

Sulfate
Concentration (\%)
.0061
. 0062

TABLEIV

 pH TESTSSample pH
T-1@ 1-2' 7.9
T-4 @ 0.5-1' 7.5
TABLE V RESISTIVITY TESTS (CT 643)

Sample
T-1 @ 1-2'
T-4 @ 0.5-1'

TABLE VI

CHLORIDE TESTS

(CT 422))

Sample
T-1 @ 1-2'
32
T-4 @ 0.5-1' 21

TABLE VII
RESISTANCE 'R' VALUE TESTS (CA 301))

Sample	R-Value
B2 @ 1-3'	47

NorCal Engineering

Appendix 4: Historical Site Conditions

Phase I Environmental Site Assessment or Other Information on Past Site Use (NOT APPLICABLE)

Appendix 5: LID Infeasibility
 LID Technical Infeasibility Analysis (NOT APPLICABLE)

Appendix 6: BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation

Notes:

Tributary area $=46.98$ acres
Onsite impervious area $=34.75$ acres
Onsite landscape $=4.65$ acres
Slopes (Natural Soil A) $=7.58$ acres
Additional volume is provided above the DCV to mitigate HCOCs.

Forebay

a) Forebay volume (minimum $0.5 \% V_{B M P}$)

Volume $=$	383	ft^{3}
Depth $=$	1	ft
Area $=$	383	ft^{2}
Width (W) =	1.5	in

d) Full height notch-type weir

Notes: Average infiltration rate $=(4+2.3+1.5+0.9) / 4=2.175 \mathrm{in} / \mathrm{hr}$
Volume Provided $=1.80 \mathrm{FT} \times 43,065 \mathrm{SF}=78,408 \mathrm{CF}$

Santa Ana Watershed - BMP Design Volume, $\mathbf{V}_{\text {BMP }}$ (Rev. 10-2011)						Legend:		Required Entries Calculated Cells
(Note this worksheet shall only be used in conjunction with BMP designs from the LID BMP Design Handbook)								
Company Name Thienes Engineering Inc. Designed by Luis Prado						Date 6/28/2023		
Company Project Number/Name				3384				
BMP Identification								
BMP NAME / ID Infiltration Basin \#B (IB-B)								
Must match Name/ID used on BMP Design Calculation Sheet								
Design Rainfall Depth								
85th Percentile, 24-hour Rainfall Depth, from the Isohyetal Map in Handbook Appendix E						$\mathrm{D}_{85}=$	0.66	inches
Drainage Management Area Tabulation								
Insert additional rows if needed to accommodate all DMAs draining to the BMP								
$\begin{gathered} \text { DMA } \\ \text { Type/ID } \end{gathered}$	DMA Area (square feet)	Post-Project Surface Type	Effective Imperivous Fraction, I_{f}	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Storm Depth (in)	Design Capture Volume, $\mathbf{V}_{\text {BMP }}$ (cubic feet)	Proposed Volume on Plans (cubic feet)
B1	933055.2	Roofs	1	0.89	832285.2			
B2	107593.2	Ornamental Landscaping	0.1	0.11	11884.5			
	1040648.4		Total		844169.7	0.66	46429.3	48308

Notes:

Tributary area $=23.89$ acres
Onsite impervious area $=21.42$ acres
Onsite landscape $=2.47$ acres
Additional volume is provided above the DCV to mitigate HCOCs .

Santa Ana Watershed - BMP Design Volume, $\mathbf{V}_{\text {BMP }}$ (Rev. 10-2011)						Legend:		Required Entries Calculated Cells
(Note this worksheet shall only be used in conjunction with BMP designs from the LID BMP Design Handbook)								
Company Name Designed by Company Project	Thienes Engineering Inc.					Date 6/28/2023		
	Luis Prado					Case No		
	Number/Name		3384					
	BMP Identification							
BMP NAME / ID Underground Chambers (STC-C)								
Must match Name/ID used on BMP Design Calculation Sheet								
Design Rainfall Depth								
85th Percentile, 24-hour Rainfall Depth, from the Isohyetal Map in Handbook Appendix E						$\mathrm{D}_{85}=$	0.66	inches
Drainage Management Area Tabulation								
Insert additional rows if needed to accommodate all DMAs draining to the BMP								
DMA Type/ID	DMA Area (square feet)	Post-Project Surface Type	Effective Imperivous Fraction, I_{f}	DMA Runoff Factor	DMA Areas x Runoff Factor	Design Storm Depth (in)	Design Capture Volume, $\mathbf{V}_{\text {BMP }}$ (cubic feet)	Proposed Volume on Plans (cubic feet)
C1	85813.2	Roofs	1	0.89	76545.4			
C2	4356	Ornamental Landscaping	0.1	0.11	481.2			
	90169.2		tal		77026.6	0.66	4236.5	4596

Notes:

Tributary area $=2.07$ acres
Onsite impervious area $=1.97$ acres
Onsite landscape $=0.10$ acres
Additional volume is provided above the DCV to mitigate HCOCs.

Project:

Number of chambers -
Voids in the stone (porosity) -
Base of Stone Elevation -
Amount of Stone Above Chambers -
Amount of Stone Below Chambers -

Chamber Model -
Units -

88
40
0.00
6

[^2]| Height of System (inches) | Incremental Single Chamber (cubic feet) | Incremental Total Chamber (cubic feet) | Incremental Stone (cubic feet) | $\begin{array}{\|c\|} \hline \text { Incremental Ch } \\ \& \text { St } \\ \text { (cubic feet) } \end{array}$ | Cumulative Chamber (cubic feet) | Elevation (feet) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 | 0.00 | 0.00 | 99.16 | 99.16 | 6590.88 | 3.50 |
| 41 | 0.00 | 0.00 | 99.16 | 99.16 | 6491.72 | 3.42 |
| 40 | 0.00 | 0.00 | 99.16 | 99.16 | 6392.56 | 3.33 |
| 39 | 0.00 | 0.00 | 99.16 | 99.16 | 6293.40 | 3.25 |
| 38 | 0.00 | 0.00 | 99.16 | 99.16 | 6194.24 | 3.17 |
| 37 | 0.00 | 0.00 | 99.16 | 99.16 | 6095.08 | 3.08 |
| 36 | 0.05 | 4.84 | 97.22 | 102.06 | 5995.92 | 3.00 |
| 35 | 0.16 | 14.34 | 93.42 | 107.76 | 5893.86 | 2.92 |
| 34 | 0.28 | 24.81 | 89.23 | 114.05 | 5786.10 | 2.83 |
| 33 | 0.60 | 53.15 | 77.90 | 131.05 | 5672.06 | 2.75 |
| 32 | 0.80 | 70.55 | 70.94 | 141.49 | 5541.01 | 2.67 |
| 31 | 0.95 | 83.66 | 65.70 | 149.35 | 5399.52 | 2.58 |
| 30 | 1.07 | 94.56 | 61.34 | 155.89 | 5250.16 | 2.50 |
| 29 | 1.18 | 103.88 | 57.61 | 161.49 | 5094.27 | 2.42 |
| 28 | 1.27 | 111.38 | 54.61 | 165.99 | 4932.78 | 2.33 |
| 27 | 1.36 | 119.24 | 51.46 | 170.70 | 4766.80 | 2.25 |
| 26 | 1.45 | 127.96 | 47.97 | 175.94 | 4596.09 | 2.17 |
| 25 | 1.52 | 134.18 | 45.49 | 179.66 | 4420.16 | 2.08 |
| 24 | 1.58 | 139.24 | 43.46 | 182.71 | 4240.49 | 2.00 |
| 23 | 1.64 | 144.52 | 41.35 | 185.87 | 4057.79 | 1.92 |
| 22 | 1.70 | 149.56 | 39.34 | 188.89 | 3871.92 | 1.83 |
| 21 | 1.75 | 154.26 | 37.46 | 191.71 | 3683.02 | 1.75 |
| 20 | 1.80 | 158.65 | 35.70 | 194.35 | 3491.31 | 1.67 |
| 19 | 1.85 | 163.24 | 33.86 | 197.10 | 3296.96 | 1.58 |
| 18 | 1.89 | 166.59 | 32.52 | 199.11 | 3099.86 | 1.50 |
| 17 | 1.93 | 170.19 | 31.08 | 201.27 | 2900.74 | 1.42 |
| 16 | 1.97 | 173.80 | 29.64 | 203.44 | 2699.47 | 1.33 |
| 15 | 2.01 | 176.87 | 28.41 | 205.28 | 2496.03 | 1.25 |
| 14 | 2.04 | 179.96 | 27.18 | 207.13 | 2290.75 | 1.17 |
| 13 | 2.07 | 182.60 | 26.12 | 208.72 | 2083.61 | 1.08 |
| 12 | 2.10 | 185.23 | 25.07 | 210.30 | 1874.90 | 1.00 |
| 11 | 2.13 | 187.60 | 24.12 | 211.72 | 1664.60 | 0.92 |
| 10 | 2.15 | 189.54 | 23.34 | 212.88 | 1452.88 | 0.83 |
| 9 | 2.18 | 191.58 | 22.53 | 214.11 | 1240.00 | 0.75 |
| 8 | 2.20 | 193.46 | 21.78 | 215.23 | 1025.89 | 0.67 |
| 7 | 2.21 | 194.24 | 21.46 | 215.71 | 810.66 | 0.58 |
| 6 | 0.00 | 0.00 | 99.16 | 99.16 | 594.95 | 0.50 |
| 5 | 0.00 | 0.00 | 99.16 | 99.16 | 495.79 | 0.42 |
| 4 | 0.00 | 0.00 | 99.16 | 99.16 | 396.64 | 0.33 |
| 3 | 0.00 | 0.00 | 99.16 | 99.16 | 297.48 | 0.25 |
| 2 | 0.00 | 0.00 | 99.16 | 99.16 | 198.32 | 0.17 |
| 1 | 0.00 | 0.00 | 99.16 | 99.16 | 99.16 | 0.08 |

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

Existing Condition

+++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

```
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
```

English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
BUILDINGS 1 & 2 - EXISTING CONDITION
HYDROLOGIC ANALYSIS - 2-YEAR
---------------------
Drainage Area = 38.90(Ac.) = 0.061 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 38.90(Ac.) = 0.061 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.000 Hr.
Lag time = 0.00 Min.
25% of lag time = 0.00 Min.
40% of lag time = 0.00 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
```

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
38.90	2.00	77.80

100 YEAR Area rainfall data:

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
38.90		
213.95		

RI	RI	Infil. Rate	Impervious	Adj. Infil.	Rate Area\%	F
AMC2	AMC-1	($\mathrm{In} / \mathrm{Hr}$)	(Dec.\%)	(In/Hr)	(Dec.)	($\mathrm{In} / \mathrm{Hr}$)
62.0	42.0	0.650	0.000	0.650	0.545	0.354
84.0	68.6	0.377	0.000	0.377	0.455	0.172
					Sum (F) =	0.526
Area averaged mean soil loss (F) ($\mathrm{In} / \mathrm{Hr}$) $=0.526$						
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.263$ (for 24 hour storm duration)						
Soil low loss rate (decimal) $=0.900$						

Unithydrograph VALLEY S-Curve

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Unit	Time	Pattern	Storm Rain	Loss rate	In./Hr)	ec
	(Hr.$)$	Percent	($\mathrm{In} / \mathrm{Hr}$)	Max	Low	($\mathrm{In} / \mathrm{Hr}$)
1	0.08	0.07	0.016	0.933)	0.014	0.002
2	0.17	0.07	0.016	(0.929)	0.014	0.002
3	0.25	0.07	0.016	(0.925)	0.014	0.002
4	0.33	0.10	0.024	(0.922)	0.022	0.002
5	0.42	0.10	0.024	(0.918)	0.022	0.002
6	0.50	0.10	0.024	(0.915)	0.022	0.002
7	0.58	0.10	0.024	(0.911)	0.022	0.002
8	0.67	0.10	0.024	(0.907)	0.022	0.002
9	0.75	0.10	0.024	(0.904)	0.022	0.002
10	0.83	0.13	0.032	(0.900)	0.029	0.003
11	0.92	0.13	0.032	(0.897)	0.029	0.003
12	1.00	0.13	0.032	(0.893)	0.029	0.003
13	1.08	0.10	0.024	(0.890)	0.022	0.002
14	1.17	0.10	0.024	(0.886)	0.022	0.002
15	1.25	0.10	0.024	(0.883)	0.022	0.002
16	1.33	0.10	0.024	(0.879)	0.022	0.002
17	1.42	0.10	0.024	(0.876)	0.022	0.002
18	1.50	0.10	0.024	(0.872)	0.022	0.002
19	1.58	0.10	0.024	(0.869)	0.022	0.002
20	1.67	0.10	0.024	(0.865)	0.022	0.002
21	1.75	0.10	0.024	(0.862)	0.022	0.002
22	1.83	0.13	0.032	(0.858)	0.029	0.003
23	1.92	0.13	0.032	(0.855)	0.029	0.003
24	2.00	0.13	0.032	(0.851)	0.029	0.003
25	2.08	0.13	0.032	(0.848)	0.029	0.003
26	2.17	0.13	0.032	(0.844)	0.029	0.003
27	2.25	0.13	0.032	(0.841)	0.029	0.003
28	2.33	0.13	0.032	(0.838)	0.029	0.003
29	2.42	0.13	0.032	(0.834)	0.029	0.003
30	2.50	0.13	0.032	(0.831)	0.029	0.003
31	2.58	0.17	0.040	(0.827)	0.036	0.004
32	2.67	0.17	0.040	(0.824)	0.036	0.004
33	2.75	0.17	0.040	(0.821)	0.036	0.004
34	2.83	0.17	0.040	(0.817)	0.036	0.004
35	2.92	0.17	0.040	(0.814)	0.036	0.004
36	3.00	0.17	0.040	(0.811)	0.036	0.004
37	3.08	0.17	0.040	(0.807)	0.036	0.004
38	3.17	0.17	0.040	(0.804)	0.036	0.004
39	3.25	0.17	0.040	(0.800)	0.036	0.004
40	3.33	0.17	0.040	(0.797)	0.036	0.004
41	3.42	0.17	0.040	(0.794)	0.036	0.004
42	3.50	0.17	0.040	(0.790)	0.036	0.004
43	3.58	0.17	0.040	(0.787)	0.036	0.004
44	3.67	0.17	0.040	(0.784)	0.036	0.004
45	3.75	0.17	0.040	(0.781)	0.036	0.004
46	3.83	0.20	0.048	(0.777)	0.043	0.005
47	3.92	0.20	0.048	(0.774)	0.043	0.005
48	4.00	0.20	0.048	(0.771)	0.043	0.005
49	4.08	0.20	0.048	(0.767)	0.043	0.005
50	4.17	0.20	0.048	(0.764)	0.043	0.005
51	4.25	0.20	0.048	(0.761)	0.043	0.005
52	4.33	0.23	0.056	(0.758)	0.050	0.006
53	4.42	0.23	0.056	(0.754)	0.050	0.006
54	4.50	0.23	0.056	(0.751)	0.050	0.006
55	4.58	0.23	0.056	(0.748)	0.050	0.006
56	4.67	0.23	0.056	(0.745)	0.050	0.006
57	4.75	0.23	0.056	(0.742)	0.050	0.006
58	4.83	0.27	0.064	(0.738)	0.058	0.006
59	4.92	0.27	0.064	(0.735)	0.058	0.006
60	5.00	0.27	0.064	(0.732)	0.058	0.006
61	5.08	0.20	0.048	(0.729)	0.043	0.005
62	5.17	0.20	0.048	(0.726)	0.043	0.005
63	5.25	0.20	0.048	(0.722)	0.043	0.005
64	5.33	0.23	0.056	(0.719)	0.050	0.006
65	5.42	0.23	0.056	(0.716)	0.050	0.006
66	5.50	0.23	0.056	(0.713)	0.050	0.006
67	5.58	0.27	0.064	(0.710)	0.058	0.006
68	5.67	0.27	0.064	(0.707)	0.058	0.006
69	5.75	0.27	0.064	(0.704)	0.058	0.006
70	5.83	0.27	0.064	(0.701)	0.058	0.006
71	5.92	0.27	0.064	(0.697)	0.058	0.006
72	6.00	0.27	0.064	(0.694)	0.058	0.006
73	6.08	0.30	0.072	(0.691)	0.065	0.007
74	6.17	0.30	0.072	(0.688)	0.065	0.007
75	6.25	0.30	0.072	(0.685)	0.065	0.007
76	6.33	0.30	0.072	(0.682)	0.065	0.007
77	6.42	0.30	0.072	(0.679)	0.065	0.007
78	6.50	0.30	0.072	(0.676)	0.065	0.007
79	6.58	0.33	0.080	(0.673)	0.072	0.008
80	6.67	0.33	0.080	(0.670)	0.072	0.008
81	6.75	0.33	0.080	(0.667)	0.072	0.008
82	6.83	0.33	0.080	(0.664)	0.072	0.008
83	6.92	0.33	0.080	(0.661)	0.072	0.008
84	7.00	0.33	0.080	(0.658)	0.072	0.008
85	7.08	0.33	0.080	(0.655)	0.072	0.008
86	7.17	0.33	0.080	(0.652)	0.072	0.008
87	7.25	0.33	0.080	0.649)	0.072	0.008

88	7.33	0.37	0.088	(0.646)	0.079	0.009
89	7.42	0.37	0.088	(0.643)	0.079	0.009
90	7.50	0.37	0.088	(0.640)	0.079	0.009
91	7.58	0.40	0.096	(0.637)	0.086	0.010
92	7.67	0.40	0.096	(0.634)	0.086	0.010
93	7.75	0.40	0.096	(0.631)	0.086	0.010
94	7.83	0.43	0.104	(0.628)	0.094	0.010
95	7.92	0.43	0.104	(0.625)	0.094	0.010
96	8.00	0.43	0.104	(0.623)	0.094	0.010
97	8.08	0.50	0.120	(0.620)	0.108	0.012
98	8.17	0.50	0.120	(0.617)	0.108	0.012
99	8.25	0.50	0.120	(0.614)	0.108	0.012
100	8.33	0.50	0.120	(0.611)	0.108	0.012
101	8.42	0.50	0.120	(0.608)	0.108	0.012
102	8.50	0.50	0.120	(0.605)	0.108	0.012
103	8.58	0.53	0.128	(0.603)	0.115	0.013
104	8.67	0.53	0.128	(0.600)	0.115	0.013
105	8.75	0.53	0.128	(0.597)	0.115	0.013
106	8.83	0.57	0.136	(0.594)	0.122	0.014
107	8.92	0.57	0.136	(0.591)	0.122	0.014
108	9.00	0.57	0.136	(0.588)	0.122	0.014
109	9.08	0.63	0.152	(0.586)	0.137	0.015
110	9.17	0.63	0.152	(0.583)	0.137	0.015
111	9.25	0.63	0.152	(0.580)	0.137	0.015
112	9.33	0.67	0.160	(0.577)	0.144	0.016
113	9.42	0.67	0.160	(0.575)	0.144	0.016
114	9.50	0.67	0.160	(0.572)	0.144	0.016
115	9.58	0.70	0.168	(0.569)	0.151	0.017
116	9.67	0.70	0.168	(0.566)	0.151	0.017
117	9.75	0.70	0.168	(0.564)	0.151	0.017
118	9.83	0.73	0.176	(0.561)	0.158	0.018
119	9.92	0.73	0.176	(0.558)	0.158	0.018
120	10.00	0.73	0.176	(0.556)	0.158	0.018
121	10.08	0.50	0.120	(0.553)	0.108	0.012
122	10.17	0.50	0.120	(0.550)	0.108	0.012
123	10.25	0.50	0.120	(0.547)	0.108	0.012
124	10.33	0.50	0.120	(0.545)	0.108	0.012
125	10.42	0.50	0.120	(0.542)	0.108	0.012
126	10.50	0.50	0.120	(0.540)	0.108	0.012
127	10.58	0.67	0.160	(0.537)	0.144	0.016
128	10.67	0.67	0.160	(0.534)	0.144	0.016
129	10.75	0.67	0.160	(0.532)	0.144	0.016
130	10.83	0.67	0.160	(0.529)	0.144	0.016
131	10.92	0.67	0.160	(0.526)	0.144	0.016
132	11.00	0.67	0.160	(0.524)	0.144	0.016
133	11.08	0.63	0.152	(0.521)	0.137	0.015
134	11.17	0.63	0.152	(0.519)	0.137	0.015
135	11.25	0.63	0.152	(0.516)	0.137	0.015
136	11.33	0.63	0.152	(0.514)	0.137	0.015
137	11.42	0.63	0.152	(0.511)	0.137	0.015
138	11.50	0.63	0.152	(0.509)	0.137	0.015
139	11.58	0.57	0.136	(0.506)	0.122	0.014
140	11.67	0.57	0.136	(0.503)	0.122	0.014
141	11.75	0.57	0.136	(0.501)	0.122	0.014
142	11.83	0.60	0.144	(0.498)	0.130	0.014
143	11.92	0.60	0.144	(0.496)	0.130	0.014
144	12.00	0.60	0.144	(0.494)	0.130	0.014
145	12.08	0.83	0.200	(0.491)	0.180	0.020
146	12.17	0.83	0.200	(0.489)	0.180	0.020
147	12.25	0.83	0.200	(0.486)	0.180	0.020
148	12.33	0.87	0.208	(0.484)	0.187	0.021
149	12.42	0.87	0.208	(0.481)	0.187	0.021
150	12.50	0.87	0.208	(0.479)	0.187	0.021
151	12.58	0.93	0.224	(0.476)	0.202	0.022
152	12.67	0.93	0.224	(0.474)	0.202	0.022
153	12.75	0.93	0.224	(0.472)	0.202	0.022
154	12.83	0.97	0.232	(0.469)	0.209	0.023
155	12.92	0.97	0.232	(0.467)	0.209	0.023
156	13.00	0.97	0.232	(0.465)	0.209	0.023
157	13.08	1.13	0.272	(0.462)	0.245	0.027
158	13.17	1.13	0.272	(0.460)	0.245	0.027
159	13.25	1.13	0.272	(0.458)	0.245	0.027
160	13.33	1.13	0.272	(0.455)	0.245	0.027
161	13.42	1.13	0.272	(0.453)	0.245	0.027
162	13.50	1.13	0.272	(0.451)	0.245	0.027
163	13.58	0.77	0.184	(0.448)	0.166	0.018
164	13.67	0.77	0.184	(0.446)	0.166	0.018
165	13.75	0.77	0.184	(0.444)	0.166	0.018
166	13.83	0.77	0.184	(0.441)	0.166	0.018
167	13.92	0.77	0.184	(0.439)	0.166	0.018
168	14.00	0.77	0.184	(0.437)	0.166	0.018
169	14.08	0.90	0.216	(0.435)	0.194	0.022
170	14.17	0.90	0.216	(0.433)	0.194	0.022
171	14.25	0.90	0.216	(0.430)	0.194	0.022
172	14.33	0.87	0.208	(0.428)	0.187	0.021
173	14.42	0.87	0.208	(0.426)	0.187	0.021
174	14.50	0.87	0.208	(0.424)	0.187	0.021
175	14.58	0.87	0.208	(0.422)	0.187	0.021
176	14.67	0.87	0.208	(0.419)	0.187	0.021
177	14.75	0.87	0.208	(0.417)	0.187	0.021
178	14.83	0.83	0.200	(0.415)	0.180	0.020
179	14.92	0.83	0.200	(0.413)	0.180	0.020

180	15.00	0.83	0.200	(0.411)	0.180	0.020
181	15.08	0.80	0.192	(0.409)	0.173	0.019
182	15.17	0.80	0.192	(0.407)	0.173	0.019
183	15.25	0.80	0.192	(0.405)	0.173	0.019
184	15.33	0.77	0.184	(0.403)	0.166	0.018
185	15.42	0.77	0.184	(0.400)	0.166	0.018
186	15.50	0.77	0.184	(0.398)	0.166	0.018
187	15.58	0.63	0.152	(0.396)	0.137	0.015
188	15.67	0.63	0.152	(0.394)	0.137	0.015
189	15.75	0.63	0.152	(0.392)	0.137	0.015
190	15.83	0.63	0.152	(0.390)	0.137	0.015
191	15.92	0.63	0.152	(0.388)	0.137	0.015
192	16.00	0.63	0.152	(0.386)	0.137	0.015
193	16.08	0.13	0.032	(0.384)	0.029	0.003
194	16.17	0.13	0.032	(0.382)	0.029	0.003
195	16.25	0.13	0.032	(0.380)	0.029	0.003
196	16.33	0.13	0.032	(0.378)	0.029	0.003
197	16.42	0.13	0.032	(0.377)	0.029	0.003
198	16.50	0.13	0.032	(0.375)	0.029	0.003
199	16.58	0.10	0.024	(0.373)	0.022	0.002
200	16.67	0.10	0.024	(0.371)	0.022	0.002
201	16.75	0.10	0.024	(0.369)	0.022	0.002
202	16.83	0.10	0.024	(0.367)	0.022	0.002
203	16.92	0.10	0.024	(0.365)	0.022	0.002
204	17.00	0.10	0.024	(0.363)	0.022	0.002
205	17.08	0.17	0.040	(0.362)	0.036	0.004
206	17.17	0.17	0.040	(0.360)	0.036	0.004
207	17.25	0.17	0.040	(0.358)	0.036	0.004
208	17.33	0.17	0.040	(0.356)	0.036	0.004
209	17.42	0.17	0.040	(0.354)	0.036	0.004
210	17.50	0.17	0.040	(0.353)	0.036	0.004
211	17.58	0.17	0.040	(0.351)	0.036	0.004
212	17.67	0.17	0.040	(0.349)	0.036	0.004
213	17.75	0.17	0.040	(0.347)	0.036	0.004
214	17.83	0.13	0.032	(0.346)	0.029	0.003
215	17.92	0.13	0.032	(0.344)	0.029	0.003
216	18.00	0.13	0.032	(0.342)	0.029	0.003
217	18.08	0.13	0.032	(0.340)	0.029	0.003
218	18.17	0.13	0.032	(0.339)	0.029	0.003
219	18.25	0.13	0.032	(0.337)	0.029	0.003
220	18.33	0.13	0.032	(0.336)	0.029	0.003
221	18.42	0.13	0.032	(0.334)	0.029	0.003
222	18.50	0.13	0.032	(0.332)	0.029	0.003
223	18.58	0.10	0.024	(0.331)	0.022	0.002
224	18.67	0.10	0.024	(0.329)	0.022	0.002
225	18.75	0.10	0.024	(0.327)	0.022	0.002
226	18.83	0.07	0.016	(0.326)	0.014	0.002
227	18.92	0.07	0.016	(0.324)	0.014	0.002
228	19.00	0.07	0.016	(0.323)	0.014	0.002
229	19.08	0.10	0.024	(0.321)	0.022	0.002
230	19.17	0.10	0.024	(0.320)	0.022	0.002
231	19.25	0.10	0.024	(0.318)	0.022	0.002
232	19.33	0.13	0.032	(0.317)	0.029	0.003
233	19.42	0.13	0.032	(0.315)	0.029	0.003
234	19.50	0.13	0.032	(0.314)	0.029	0.003
235	19.58	0.10	0.024	(0.312)	0.022	0.002
236	19.67	0.10	0.024	(0.311)	0.022	0.002
237	19.75	0.10	0.024	(0.310)	0.022	0.002
238	19.83	0.07	0.016	(0.308)	0.014	0.002
239	19.92	0.07	0.016	(0.307)	0.014	0.002
240	20.00	0.07	0.016	(0.305)	0.014	0.002
241	20.08	0.10	0.024	(0.304)	0.022	0.002
242	20.17	0.10	0.024	(0.303)	0.022	0.002
243	20.25	0.10	0.024	(0.301)	0.022	0.002
244	20.33	0.10	0.024	(0.300)	0.022	0.002
245	20.42	0.10	0.024	(0.299)	0.022	0.002
246	20.50	0.10	0.024	(0.298)	0.022	0.002
247	20.58	0.10	0.024	(0.296)	0.022	0.002
248	20.67	0.10	0.024	(0.295)	0.022	0.002
249	20.75	0.10	0.024	(0.294)	0.022	0.002
250	20.83	0.07	0.016	(0.293)	0.014	0.002
251	20.92	0.07	0.016	(0.292)	0.014	0.002
252	21.00	0.07	0.016	(0.290)	0.014	0.002
253	21.08	0.10	0.024	(0.289)	0.022	0.002
254	21.17	0.10	0.024	(0.288)	0.022	0.002
255	21.25	0.10	0.024	(0.287)	0.022	0.002
256	21.33	0.07	0.016	(0.286)	0.014	0.002
257	21.42	0.07	0.016	(0.285)	0.014	0.002
258	21.50	0.07	0.016	(0.284)	0.014	0.002
259	21.58	0.10	0.024	(0.283)	0.022	0.002
260	21.67	0.10	0.024	(0.282)	0.022	0.002
261	21.75	0.10	0.024	(0.281)	0.022	0.002
262	21.83	0.07	0.016	(0.280)	0.014	0.002
263	21.92	0.07	0.016	(0.279)	0.014	0.002
264	22.00	0.07	0.016	(0.278)	0.014	0.002
265	22.08	0.10	0.024	(0.277)	0.022	0.002
266	22.17	0.10	0.024	(0.276)	0.022	0.002
267	22.25	0.10	0.024	(0.275)	0.022	0.002
268	22.33	0.07	0.016	(0.274)	0.014	0.002
269	22.42	0.07	0.016	(0.273)	0.014	0.002
270	22.50	0.07	0.016	(0.273)	0.014	0.002
271	22.58	0.07	0.016	(0.272)	0.014	0.002

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 09/23/22 File: 3384E034242.out
++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
BUILDINGS 3 & 4 - EXISTING CONDITION
HYDROLOGIC ANALYSIS - 2-YEAR
Drainage Area = 24.00(Ac.) = 0.037 Sq. Mi
Drainage Area for Depth-Area Areal Adjustment = 24.00(Ac.) = 0.037 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.000 Hr.
Lag time = 0.00 Min.
25% of lag time = 0.00 Min.
40% of lag time = 0.00 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
```

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
24.00	2.00	48.00

100 YEAR Area rainfall data:

$\begin{array}{r} \text { Area(Ac.) }[1] \\ 24.00 \end{array}$	Rainfall(In)[2]	Weighting[1*2]
	5.50	132.00
STORM EVENT (YEAR) $=2.00$		
Area Averaged 2-Year Rainfall $=$ 2.000(In)		
Area Averaged 100-Year Rainfall $=5.500$ (In)		
Point rain (area averaged) = 2.000(In)		
Areal adjustment factor $=100.00$ \%		
Adjusted average point rain $=2.000(\mathrm{In})$		
Sub-Area Data:		
Area(Ac.)	Runoff Index	Impervious \%
16.400	62.00	0.000
2.300	84.00	0.000
5.300	88.00	0.000
Total Area Entere	ed $=24.00(A$	c.)

RI	RI	Infil. Rate	Impervious	Adj. Infil. Rate Area\%	F	
AMC2	AMC-1	$($ In/Hr $)$	$($ Dec. \%)	$($ In/Hr)	(Dec.)	$($ In/Hr)
62.0	42.0	0.650	0.000	0.650	0.683	0.444
84.0	68.6	0.377	0.000	0.377	0.096	0.036
88.0	74.8	0.305	0.000	0.305	0.221	0.067
					Sum (F) $=$	0.548

Area averaged mean soil loss (F) (In/Hr) $=0.548$
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.274$
(for 24 hour storm duration)
Soil low loss rate (decimal) $=0.900$
Unit Hydrograph
VALLEY S-Curve

Unit Hydrograph Data						
Unit	me period s)	Time \% of lag	Distribu Graph \%			Hydrograph (CFS)
1	0.083	1.\#IO Sum	$\begin{aligned} & 100.000 \\ &= 100.000 \end{aligned}$	Sum=		24.188
						24.188

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Unit	Time (Hr.)	Pattern Percent	Storm Rain $(\mathrm{In} / \mathrm{Hr})$	Loss rate Max	$\begin{aligned} & \text { In./Hr) } \\ & \text { Low } \end{aligned}$	Effective $(\mathrm{In} / \mathrm{Hr})$
1	0.08	0.07	0.016	(0.971)	0.014	0.002
2	0.17	0.07	0.016	(0.968)	0.014	0.002
3	0.25	0.07	0.016	(0.964)	0.014	0.002
4	0.33	0.10	0.024	(0.960)	0.022	0.002
5	0.42	0.10	0.024	(0.956)	0.022	0.002
6	0.50	0.10	0.024	(0.953)	0.022	0.002
7	0.58	0.10	0.024	(0.949)	0.022	0.002
8	0.67	0.10	0.024	(0.945)	0.022	0.002
9	0.75	0.10	0.024	(0.942)	0.022	0.002
10	0.83	0.13	0.032	(0.938)	0.029	0.003
11	0.92	0.13	0.032	(0.934)	0.029	0.003
12	1.00	0.13	0.032	(0.931)	0.029	0.003
13	1.08	0.10	0.024	(0.927)	0.022	0.002
14	1.17	0.10	0.024	(0.923)	0.022	0.002
15	1.25	0.10	0.024	(0.920)	0.022	0.002
16	1.33	0.10	0.024	(0.916)	0.022	0.002
17	1.42	0.10	0.024	(0.912)	0.022	0.002
18	1.50	0.10	0.024	(0.909)	0.022	0.002
19	1.58	0.10	0.024	(0.905)	0.022	0.002
20	1.67	0.10	0.024	(0.901)	0.022	0.002
21	1.75	0.10	0.024	(0.898)	0.022	0.002
22	1.83	0.13	0.032	(0.894)	0.029	0.003
23	1.92	0.13	0.032	(0.891)	0.029	0.003
24	2.00	0.13	0.032	(0.887)	0.029	0.003
25	2.08	0.13	0.032	(0.883)	0.029	0.003
26	2.17	0.13	0.032	(0.880)	0.029	0.003
27	2.25	0.13	0.032	(0.876)	0.029	0.003
28	2.33	0.13	0.032	(0.873)	0.029	0.003
29	2.42	0.13	0.032	(0.869)	0.029	0.003
30	2.50	0.13	0.032	(0.866)	0.029	0.003
31	2.58	0.17	0.040	(0.862)	0.036	0.004
32	2.67	0.17	0.040	(0.858)	0.036	0.004
33	2.75	0.17	0.040	(0.855)	0.036	0.004
34	2.83	0.17	0.040	(0.851)	0.036	0.004
35	2.92	0.17	0.040	(0.848)	0.036	0.004
36	3.00	0.17	0.040	(0.844)	0.036	0.004
37	3.08	0.17	0.040	(0.841)	0.036	0.004
38	3.17	0.17	0.040	(0.837)	0.036	0.004
39	3.25	0.17	0.040	(0.834)	0.036	0.004
40	3.33	0.17	0.040	(0.830)	0.036	0.004
41	3.42	0.17	0.040	(0.827)	0.036	0.004
42	3.50	0.17	0.040	(0.823)	0.036	0.004
43	3.58	0.17	0.040	(0.820)	0.036	0.004
44	3.67	0.17	0.040	(0.817)	0.036	0.004
45	3.75	0.17	0.040	(0.813)	0.036	0.004
46	3.83	0.20	0.048	(0.810)	0.043	0.005
47	3.92	0.20	0.048	(0.806)	0.043	0.005
48	4.00	0.20	0.048	(0.803)	0.043	0.005
49	4.08	0.20	0.048	(0.799)	0.043	0.005
50	4.17	0.20	0.048	(0.796)	0.043	0.005
51	4.25	0.20	0.048	(0.793)	0.043	0.005
52	4.33	0.23	0.056	(0.789)	0.050	0.006
53	4.42	0.23	0.056	(0.786)	0.050	0.006
54	4.50	0.23	0.056	(0.783)	0.050	0.006
55	4.58	0.23	0.056	(0.779)	0.050	0.006
56	4.67	0.23	0.056	(0.776)	0.050	0.006
57	4.75	0.23	0.056	(0.773)	0.050	0.006
58	4.83	0.27	0.064	(0.769)	0.058	0.006
59	4.92	0.27	0.064	(0.766)	0.058	0.006
60	5.00	0.27	0.064	(0.763)	0.058	0.006
61	5.08	0.20	0.048	(0.759)	0.043	0.005
62	5.17	0.20	0.048	(0.756)	0.043	0.005
63	5.25	0.20	0.048	(0.753)	0.043	0.005
64	5.33	0.23	0.056	(0.749)	0.050	0.006
65	5.42	0.23	0.056	(0.746)	0.050	0.006
66	5.50	0.23	0.056	(0.743)	0.050	0.006
67	5.58	0.27	0.064	(0.740)	0.058	0.006
68	5.67	0.27	0.064	(0.736)	0.058	0.006
69	5.75	0.27	0.064	(0.733)	0.058	0.006
70	5.83	0.27	0.064	(0.730)	0.058	0.006
71	5.92	0.27	0.064	(0.727)	0.058	0.006
72	6.00	0.27	0.064	(0.723)	0.058	0.006
73	6.08	0.30	0.072	(0.720)	0.065	0.007
74	6.17	0.30	0.072	(0.717)	0.065	0.007
75	6.25	0.30	0.072	(0.714)	0.065	0.007
76	6.33	0.30	0.072	(0.711)	0.065	0.007
77	6.42	0.30	0.072	(0.707)	0.065	0.007
78	6.50	0.30	0.072	(0.704)	0.065	0.007
79	6.58	0.33	0.080	(0.701)	0.072	0.008
80	6.67	0.33	0.080	(0.698)	0.072	0.008
81	6.75	0.33	0.080	(0.695)	0.072	0.008
82	6.83	0.33	0.080	(0.692)	0.072	0.008
83	6.92	0.33	0.080	(0.688)	0.072	0.008
84	7.00	0.33	0.080	(0.685)	0.072	0.008
85	7.08	0.33	0.080	(0.682)	0.072	0.008

86	7.17	0.33	0.080	(0.679)	0.072	0.008
87	7.25	0.33	0.080	(0.676)	0.072	0.008
88	7.33	0.37	0.088	(0.673)	0.079	0.009
89	7.42	0.37	0.088	(0.670)	0.079	0.009
90	7.50	0.37	0.088	(0.667)	0.079	0.009
91	7.58	0.40	0.096	(0.664)	0.086	0.010
92	7.67	0.40	0.096	(0.661)	0.086	0.010
93	7.75	0.40	0.096	(0.658)	0.086	0.010
94	7.83	0.43	0.104	(0.655)	0.094	0.010
95	7.92	0.43	0.104	(0.652)	0.094	0.010
96	8.00	0.43	0.104	(0.649)	0.094	0.010
97	8.08	0.50	0.120	(0.646)	0.108	0.012
98	8.17	0.50	0.120	(0.643)	0.108	0.012
99	8.25	0.50	0.120	(0.640)	0.108	0.012
100	8.33	0.50	0.120	(0.637)	0.108	0.012
101	8.42	0.50	0.120	(0.634)	0.108	0.012
102	8.50	0.50	0.120	(0.631)	0.108	0.012
103	8.58	0.53	0.128	(0.628)	0.115	0.013
104	8.67	0.53	0.128	(0.625)	0.115	0.013
105	8.75	0.53	0.128	(0.622)	0.115	0.013
106	8.83	0.57	0.136	(0.619)	0.122	0.014
107	8.92	0.57	0.136	(0.616)	0.122	0.014
108	9.00	0.57	0.136	(0.613)	0.122	0.014
109	9.08	0.63	0.152	(0.610)	0.137	0.015
110	9.17	0.63	0.152	(0.607)	0.137	0.015
111	9.25	0.63	0.152	(0.604)	0.137	0.015
112	9.33	0.67	0.160	(0.601)	0.144	0.016
113	9.42	0.67	0.160	(0.599)	0.144	0.016
114	9.50	0.67	0.160	(0.596)	0.144	0.016
115	9.58	0.70	0.168	(0.593)	0.151	0.017
116	9.67	0.70	0.168	(0.590)	0.151	0.017
117	9.75	0.70	0.168	(0.587)	0.151	0.017
118	9.83	0.73	0.176	(0.584)	0.158	0.018
119	9.92	0.73	0.176	(0.582)	0.158	0.018
120	10.00	0.73	0.176	(0.579)	0.158	0.018
121	10.08	0.50	0.120	(0.576)	0.108	0.012
122	10.17	0.50	0.120	(0.573)	0.108	0.012
123	10.25	0.50	0.120	(0.570)	0.108	0.012
124	10.33	0.50	0.120	(0.568)	0.108	0.012
125	10.42	0.50	0.120	(0.565)	0.108	0.012
126	10.50	0.50	0.120	(0.562)	0.108	0.012
127	10.58	0.67	0.160	(0.559)	0.144	0.016
128	10.67	0.67	0.160	(0.557)	0.144	0.016
129	10.75	0.67	0.160	(0.554)	0.144	0.016
130	10.83	0.67	0.160	(0.551)	0.144	0.016
131	10.92	0.67	0.160	(0.548)	0.144	0.016
132	11.00	0.67	0.160	(0.546)	0.144	0.016
133	11.08	0.63	0.152	(0.543)	0.137	0.015
134	11.17	0.63	0.152	(0.540)	0.137	0.015
135	11.25	0.63	0.152	(0.538)	0.137	0.015
136	11.33	0.63	0.152	(0.535)	0.137	0.015
137	11.42	0.63	0.152	(0.532)	0.137	0.015
138	11.50	0.63	0.152	(0.530)	0.137	0.015
139	11.58	0.57	0.136	(0.527)	0.122	0.014
140	11.67	0.57	0.136	(0.525)	0.122	0.014
141	11.75	0.57	0.136	(0.522)	0.122	0.014
142	11.83	0.60	0.144	(0.519)	0.130	0.014
143	11.92	0.60	0.144	(0.517)	0.130	0.014
144	12.00	0.60	0.144	(0.514)	0.130	0.014
145	12.08	0.83	0.200	(0.512)	0.180	0.020
146	12.17	0.83	0.200	(0.509)	0.180	0.020
147	12.25	0.83	0.200	(0.506)	0.180	0.020
148	12.33	0.87	0.208	(0.504)	0.187	0.021
149	12.42	0.87	0.208	(0.501)	0.187	0.021
150	12.50	0.87	0.208	(0.499)	0.187	0.021
151	12.58	0.93	0.224	(0.496)	0.202	0.022
152	12.67	0.93	0.224	(0.494)	0.202	0.022
153	12.75	0.93	0.224	(0.491)	0.202	0.022
154	12.83	0.97	0.232	(0.489)	0.209	0.023
155	12.92	0.97	0.232	(0.486)	0.209	0.023
156	13.00	0.97	0.232	(0.484)	0.209	0.023
157	13.08	1.13	0.272	(0.481)	0.245	0.027
158	13.17	1.13	0.272	(0.479)	0.245	0.027
159	13.25	1.13	0.272	(0.477)	0.245	0.027
160	13.33	1.13	0.272	(0.474)	0.245	0.027
161	13.42	1.13	0.272	(0.472)	0.245	0.027
162	13.50	1.13	0.272	(0.469)	0.245	0.027
163	13.58	0.77	0.184	(0.467)	0.166	0.018
164	13.67	0.77	0.184	(0.465)	0.166	0.018
165	13.75	0.77	0.184	(0.462)	0.166	0.018
166	13.83	0.77	0.184	(0.460)	0.166	0.018
167	13.92	0.77	0.184	(0.458)	0.166	0.018
168	14.00	0.77	0.184	(0.455)	0.166	0.018
169	14.08	0.90	0.216	(0.453)	0.194	0.022
170	14.17	0.90	0.216	(0.451)	0.194	0.022
171	14.25	0.90	0.216	(0.448)	0.194	0.022
172	14.33	0.87	0.208	(0.446)	0.187	0.021
173	14.42	0.87	0.208	(0.444)	0.187	0.021
174	14.50	0.87	0.208	(0.441)	0.187	0.021
175	14.58	0.87	0.208	(0.439)	0.187	0.021
176	14.67	0.87	0.208	(0.437)	0.187	0.021
177	14.75	0.87	0.208	(0.435)	0.187	0.021

178	14.83	0.83	0.200	0.432)	0.180	0.020
179	14.92	0.83	0.200	0.430)	0.180	0.020
180	15.00	0.83	0.200	0.428)	0.180	0.020
181	15.08	0.80	0.192	(0.426)	0.173	0.019
182	15.17	0.80	0.192	(0.424)	0.173	0.019
183	15.25	0.80	0.192	(0.421)	0.173	0.019
184	15.33	0.77	0.184	(0.419)	0.166	0.018
185	15.42	0.77	0.184	(0.417)	0.166	0.018
186	15.50	0.77	0.184	(0.415)	0.166	0.018
187	15.58	0.63	0.152	(0.413)	0.137	0.015
188	15.67	0.63	0.152	(0.411)	0.137	0.015
189	15.75	0.63	0.152	(0.409)	0.137	0.015
190	15.83	0.63	0.152	(0.407)	0.137	0.015
191	15.92	0.63	0.152	(0.405)	0.137	0.015
192	16.00	0.63	0.152	(0.402)	0.137	0.015
193	16.08	0.13	0.032	(0.400)	0.029	0.003
194	16.17	0.13	0.032	(0.398)	0.029	0.003
195	16.25	0.13	0.032	(0.396)	0.029	0.003
196	16.33	0.13	0.032	(0.394)	0.029	0.003
197	16.42	0.13	0.032	(0.392)	0.029	0.003
198	16.50	0.13	0.032	(0.390)	0.029	0.003
199	16.58	0.10	0.024	(0.388)	0.022	0.002
200	16.67	0.10	0.024	(0.386)	0.022	0.002
201	16.75	0.10	0.024	(0.384)	0.022	0.002
202	16.83	0.10	0.024	(0.382)	0.022	0.002
203	16.92	0.10	0.024	(0.380)	0.022	0.002
204	17.00	0.10	0.024	(0.379)	0.022	0.002
205	17.08	0.17	0.040	(0.377)	0.036	0.004
206	17.17	0.17	0.040	(0.375)	0.036	0.004
207	17.25	0.17	0.040	(0.373)	0.036	0.004
208	17.33	0.17	0.040	(0.371)	0.036	0.004
209	17.42	0.17	0.040	(0.369)	0.036	0.004
210	17.50	0.17	0.040	(0.367)	0.036	0.004
211	17.58	0.17	0.040	(0.365)	0.036	0.004
212	17.67	0.17	0.040	(0.364)	0.036	0.004
213	17.75	0.17	0.040	(0.362)	0.036	0.004
214	17.83	0.13	0.032	(0.360)	0.029	0.003
215	17.92	0.13	0.032	(0.358)	0.029	0.003
216	18.00	0.13	0.032	(0.356)	0.029	0.003
217	18.08	0.13	0.032	(0.355)	0.029	0.003
218	18.17	0.13	0.032	(0.353)	0.029	0.003
219	18.25	0.13	0.032	(0.351)	0.029	0.003
220	18.33	0.13	0.032	(0.350)	0.029	0.003
221	18.42	0.13	0.032	(0.348)	0.029	0.003
222	18.50	0.13	0.032	(0.346)	0.029	0.003
223	18.58	0.10	0.024	(0.344)	0.022	0.002
224	18.67	0.10	0.024	(0.343)	0.022	0.002
225	18.75	0.10	0.024	(0.341)	0.022	0.002
226	18.83	0.07	0.016	(0.340)	0.014	0.002
227	18.92	0.07	0.016	(0.338)	0.014	0.002
228	19.00	0.07	0.016	(0.336)	0.014	0.002
229	19.08	0.10	0.024	(0.335)	0.022	0.002
230	19.17	0.10	0.024	(0.333)	0.022	0.002
231	19.25	0.10	0.024	(0.332)	0.022	0.002
232	19.33	0.13	0.032	0.330)	0.029	0.003
233	19.42	0.13	0.032	(0.328)	0.029	0.003
234	19.50	0.13	0.032	(0.327)	0.029	0.003
235	19.58	0.10	0.024	(0.325)	0.022	0.002
236	19.67	0.10	0.024	(0.324)	0.022	0.002
237	19.75	0.10	0.024	(0.323)	0.022	0.002
238	19.83	0.07	0.016	(0.321)	0.014	0.002
239	19.92	0.07	0.016	(0.320)	0.014	0.002
240	20.00	0.07	0.016	(0.318)	0.014	0.002
241	20.08	0.10	0.024	(0.317)	0.022	0.002
242	20.17	0.10	0.024	(0.315)	0.022	0.002
243	20.25	0.10	0.024	(0.314)	0.022	0.002
244	20.33	0.10	0.024	(0.313)	0.022	0.002
245	20.42	0.10	0.024	(0.311)	0.022	0.002
246	20.50	0.10	0.024	(0.310)	0.022	0.002
247	20.58	0.10	0.024	(0.309)	0.022	0.002
248	20.67	0.10	0.024	(0.307)	0.022	0.002
249	20.75	0.10	0.024	(0.306)	0.022	0.002
250	20.83	0.07	0.016	(0.305)	0.014	0.002
251	20.92	0.07	0.016	(0.304)	0.014	0.002
252	21.00	0.07	0.016	(0.302)	0.014	0.002
253	21.08	0.10	0.024	(0.301)	0.022	0.002
254	21.17	0.10	0.024	(0.300)	0.022	0.002
255	21.25	0.10	0.024	(0.299)	0.022	0.002
256	21.33	0.07	0.016	(0.298)	0.014	0.002
257	21.42	0.07	0.016	(0.297)	0.014	0.002
258	21.50	0.07	0.016	(0.296)	0.014	0.002
259	21.58	0.10	0.024	(0.294)	0.022	0.002
260	21.67	0.10	0.024	(0.293)	0.022	0.002
261	21.75	0.10	0.024	(0.292)	0.022	0.002
262	21.83	0.07	0.016	0.291)	0.014	0.002
263	21.92	0.07	0.016	(0.290)	0.014	0.002
264	22.00	0.07	0.016	(0.289)	0.014	0.002
265	22.08	0.10	0.024	0.288)	0.022	0.002
266	22.17	0.10	0.024	(0.287)	0.022	0.002
267	22.25	0.10	0.024	(0.287)	0.022	0.002
268	22.33	0.07	0.016	(0.286)	0.014	0.002
269	22.42	0.07	0.016	(0.285)	0.014	0.002

+++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

```
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
```

English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
BUILDING 5 - EXISTING CONDITION
HYDROLOGIC ANALYSIS - 2-YEAR
Drainage Area = 2.50(Ac.) = 0.004 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 2.50(Ac.) = 0.004 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.000 Hr.
Lag time = 0.00 Min.
25% of lag time = 0.00 Min.
40% of lag time = 0.00 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
\begin{tabular}{rcc} 
Area(Ac.)[1] & Rainfall(In)[2] & Weighting[1*2] \\
2.50 & 2.00 & 5.00
\end{tabular}
```

100 YEAR Area rainfall data:

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
2.50		
13.75		

RI	RI	Infil. Rate	Impervious	Adj. Infil.	Rate Area\%	F
AMC2	AMC-1	(In/Hr)	(Dec.\%)	(In/Hr)	(Dec.)	($\mathrm{In} / \mathrm{Hr}$)
84.0	68.6	0.377	0.000	0.377	0.400	0.151
69.0	49.8	0.574	0.900	0.109	0.600	0.065
					Sum (F) =	0.216
Area averaged mean soil loss (F) ($\mathrm{In} / \mathrm{Hr}$) $=0.216$						
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.108$ (for 24 hour storm duration)						
Soil	low lo	ss rate (dec	imal) $=0$	470		

Unit Hydrograph VALLEY S-Curve

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Unit	Tim	ern	orm Rain	Loss rat	./Hr)	ctive
	(Hr.$)$	Percent	(In/Hr)	Max	Low	(In/Hr)
1	0.08	0.07	0.016	(0.383)	0.008	0.008
2	0.17	0.07	0.016	(0.382)	0.008	0.008
3	0.25	0.07	0.016	(0.380)	0.008	0.008
4	0.33	0.10	0.024	(0.379)	0.011	0.013
5	0.42	0.10	0.024	0.377)	0.011	0.013
6	0.50	0.10	0.024	0.376)	0.011	0.013
7	0.58	0.10	0.024	(0.375)	0.011	0.013
8	0.67	0.10	0.024	(0.373)	0.011	0.013
9	0.75	0.10	0.024	(0.372)	0.011	0.013
10	0.83	0.13	0.032	0.370)	0.015	0.017
11	0.92	0.13	0.032	(0.369)	0.015	0.017
12	1.00	0.13	0.032	(0.367)	0.015	0.017
13	1.08	0.10	0.024	(0.366)	0.011	0.013
14	1.17	0.10	0.024	(0.364)	0.011	0.013
15	1.25	0.10	0.024	(0.363)	0.011	0.013
16	1.33	0.10	0.024	(0.361)	0.011	0.013
17	1.42	0.10	0.024	(0.360)	0.011	0.013
18	1.50	0.10	0.024	(0.359)	0.011	0.013
19	1.58	0.10	0.024	(0.357)	0.011	0.013
20	1.67	0.10	0.024	(0.356)	0.011	0.013
21	1.75	0.10	0.024	(0.354)	0.011	0.013
22	1.83	0.13	0.032	(0.353)	0.015	0.017
23	1.92	0.13	0.032	(0.351)	0.015	0.017
24	2.00	0.13	0.032	(0.350)	0.015	0.017
25	2.08	0.13	0.032	(0.349)	0.015	0.017
26	2.17	0.13	0.032	(0.347)	0.015	0.017
27	2.25	0.13	0.032	(0.346)	0.015	0.017
28	2.33	0.13	0.032	(0.344)	0.015	0.017
29	2.42	0.13	0.032	(0.343)	0.015	0.017
30	2.50	0.13	0.032	(0.342)	0.015	0.017
31	2.58	0.17	0.040	(0.340)	0.019	0.021
32	2.67	0.17	0.040	(0.339)	0.019	0.021
33	2.75	0.17	0.040	(0.337)	0.019	0.021
34	2.83	0.17	0.040	(0.336)	0.019	0.021
35	2.92	0.17	0.040	(0.335)	0.019	0.021
36	3.00	0.17	0.040	(0.333)	0.019	0.021
37	3.08	0.17	0.040	(0.332)	0.019	0.021
38	3.17	0.17	0.040	(0.330)	0.019	0.021
39	3.25	0.17	0.040	(0.329)	0.019	0.021
40	3.33	0.17	0.040	(0.328)	0.019	0.021
41	3.42	0.17	0.040	(0.326)	0.019	0.021
42	3.50	0.17	0.040	(0.325)	0.019	0.021
43	3.58	0.17	0.040	(0.324)	0.019	0.021
44	3.67	0.17	0.040	(0.322)	0.019	0.021
45	3.75	0.17	0.040	0.321)	0.019	0.021
46	3.83	0.20	0.048	(0.320)	0.023	0.025
47	3.92	0.20	0.048	(0.318)	0.023	0.025
48	4.00	0.20	0.048	(0.317)	0.023	0.025
49	4.08	0.20	0.048	(0.316)	0.023	0.025
50	4.17	0.20	0.048	(0.314)	0.023	0.025
51	4.25	0.20	0.048	(0.313)	0.023	0.025
52	4.33	0.23	0.056	(0.312)	0.026	0.030
53	4.42	0.23	0.056	(0.310)	0.026	0.030
54	4.50	0.23	0.056	(0.309)	0.026	0.030
55	4.58	0.23	0.056	(0.308)	0.026	0.030
56	4.67	0.23	0.056	(0.306)	0.026	0.030
57	4.75	0.23	0.056	(0.305)	0.026	0.030
58	4.83	0.27	0.064	(0.304)	0.030	0.034
59	4.92	0.27	0.064	(0.302)	0.030	0.034
60	5.00	0.27	0.064	(0.301)	0.030	0.034
61	5.08	0.20	0.048	(0.300)	0.023	0.025
62	5.17	0.20	0.048	(0.298)	0.023	0.025
63	5.25	0.20	0.048	(0.297)	0.023	0.025
64	5.33	0.23	0.056	(0.296)	0.026	0.030
65	5.42	0.23	0.056	(0.294)	0.026	0.030
66	5.50	0.23	0.056	(0.293)	0.026	0.030
67	5.58	0.27	0.064	(0.292)	0.030	0.034
68	5.67	0.27	0.064	(0.291)	0.030	0.034
69	5.75	0.27	0.064	(0.289)	0.030	0.034
70	5.83	0.27	0.064	(0.288)	0.030	0.034
71	5.92	0.27	0.064	(0.287)	0.030	0.034
72	6.00	0.27	0.064	(0.285)	0.030	0.034
73	6.08	0.30	0.072	(0.284)	0.034	0.038
74	6.17	0.30	0.072	(0.283)	0.034	0.038
75	6.25	0.30	0.072	(0.282)	0.034	0.038
76	6.33	0.30	0.072	(0.280)	0.034	0.038
77	6.42	0.30	0.072	(0.279)	0.034	0.038
78	6.50	0.30	0.072	(0.278)	0.034	0.038
79	6.58	0.33	0.080	(0.277)	0.038	0.042
80	6.67	0.33	0.080	(0.275)	0.038	0.042
81	6.75	0.33	0.080	(0.274)	0.038	0.042
82	6.83	0.33	0.080	(0.273)	0.038	0.042
83	6.92	0.33	0.080	(0.272)	0.038	0.042
84	7.00	0.33	0.080	(0.270)	0.038	0.042
85	7.08	0.33	0.080	(0.269)	0.038	0.042
86	7.17	0.33	0.080	(0.268)	0.038	0.042
87	7.25	0.33	0.080	(0.267)	0.038	0.042

88	7.33	0.37	0.088	(0.266)	0.041	0.047
89	7.42	0.37	0.088	(0.264)	0.041	0.047
90	7.50	0.37	0.088	(0.263)	0.041	0.047
91	7.58	0.40	0.096	(0.262)	0.045	0.051
92	7.67	0.40	0.096	(0.261)	0.045	0.051
93	7.75	0.40	0.096	(0.260)	0.045	0.051
94	7.83	0.43	0.104	(0.258)	0.049	0.055
95	7.92	0.43	0.104	(0.257)	0.049	0.055
96	8.00	0.43	0.104	(0.256)	0.049	0.055
97	8.08	0.50	0.120	(0.255)	0.056	0.064
98	8.17	0.50	0.120	(0.254)	0.056	0.064
99	8.25	0.50	0.120	(0.252)	0.056	0.064
100	8.33	0.50	0.120	(0.251)	0.056	0.064
101	8.42	0.50	0.120	(0.250)	0.056	0.064
102	8.50	0.50	0.120	(0.249)	0.056	0.064
103	8.58	0.53	0.128	(0.248)	0.060	0.068
104	8.67	0.53	0.128	(0.247)	0.060	0.068
105	8.75	0.53	0.128	(0.245)	0.060	0.068
106	8.83	0.57	0.136	(0.244)	0.064	0.072
107	8.92	0.57	0.136	(0.243)	0.064	0.072
108	9.00	0.57	0.136	(0.242)	0.064	0.072
109	9.08	0.63	0.152	(0.241)	0.071	0.081
110	9.17	0.63	0.152	(0.240)	0.071	0.081
111	9.25	0.63	0.152	(0.238)	0.071	0.081
112	9.33	0.67	0.160	(0.237)	0.075	0.085
113	9.42	0.67	0.160	(0.236)	0.075	0.085
114	9.50	0.67	0.160	(0.235)	0.075	0.085
115	9.58	0.70	0.168	(0.234)	0.079	0.089
116	9.67	0.70	0.168	(0.233)	0.079	0.089
117	9.75	0.70	0.168	(0.232)	0.079	0.089
118	9.83	0.73	0.176	(0.231)	0.083	0.093
119	9.92	0.73	0.176	(0.229)	0.083	0.093
120	10.00	0.73	0.176	(0.228)	0.083	0.093
121	10.08	0.50	0.120	(0.227)	0.056	0.064
122	10.17	0.50	0.120	(0.226)	0.056	0.064
123	10.25	0.50	0.120	(0.225)	0.056	0.064
124	10.33	0.50	0.120	(0.224)	0.056	0.064
125	10.42	0.50	0.120	(0.223)	0.056	0.064
126	10.50	0.50	0.120	(0.222)	0.056	0.064
127	10.58	0.67	0.160	(0.221)	0.075	0.085
128	10.67	0.67	0.160	(0.220)	0.075	0.085
129	10.75	0.67	0.160	(0.219)	0.075	0.085
130	10.83	0.67	0.160	(0.218)	0.075	0.085
131	10.92	0.67	0.160	(0.216)	0.075	0.085
132	11.00	0.67	0.160	(0.215)	0.075	0.085
133	11.08	0.63	0.152	(0.214)	0.071	0.081
134	11.17	0.63	0.152	(0.213)	0.071	0.081
135	11.25	0.63	0.152	(0.212)	0.071	0.081
136	11.33	0.63	0.152	(0.211)	0.071	0.081
137	11.42	0.63	0.152	(0.210)	0.071	0.081
138	11.50	0.63	0.152	(0.209)	0.071	0.081
139	11.58	0.57	0.136	(0.208)	0.064	0.072
140	11.67	0.57	0.136	(0.207)	0.064	0.072
141	11.75	0.57	0.136	(0.206)	0.064	0.072
142	11.83	0.60	0.144	(0.205)	0.068	0.076
143	11.92	0.60	0.144	(0.204)	0.068	0.076
144	12.00	0.60	0.144	(0.203)	0.068	0.076
145	12.08	0.83	0.200	(0.202)	0.094	0.106
146	12.17	0.83	0.200	(0.201)	0.094	0.106
147	12.25	0.83	0.200	(0.200)	0.094	0.106
148	12.33	0.87	0.208	(0.199)	0.098	0.110
149	12.42	0.87	0.208	(0.198)	0.098	0.110
150	12.50	0.87	0.208	(0.197)	0.098	0.110
151	12.58	0.93	0.224	(0.196)	0.105	0.119
152	12.67	0.93	0.224	(0.195)	0.105	0.119
153	12.75	0.93	0.224	(0.194)	0.105	0.119
154	12.83	0.97	0.232	(0.193)	0.109	0.123
155	12.92	0.97	0.232	(0.192)	0.109	0.123
156	13.00	0.97	0.232	(0.191)	0.109	0.123
157	13.08	1.13	0.272	(0.190)	0.128	0.144
158	13.17	1.13	0.272	(0.189)	0.128	0.144
159	13.25	1.13	0.272	(0.188)	0.128	0.144
160	13.33	1.13	0.272	(0.187)	0.128	0.144
161	13.42	1.13	0.272	(0.186)	0.128	0.144
162	13.50	1.13	0.272	(0.185)	0.128	0.144
163	13.58	0.77	0.184	(0.184)	0.086	0.098
164	13.67	0.77	0.184	(0.183)	0.086	0.098
165	13.75	0.77	0.184	(0.182)	0.086	0.098
166	13.83	0.77	0.184	(0.182)	0.086	0.098
167	13.92	0.77	0.184	(0.181)	0.086	0.098
168	14.00	0.77	0.184	(0.180)	0.086	0.098
169	14.08	0.90	0.216	(0.179)	0.102	0.114
170	14.17	0.90	0.216	(0.178)	0.102	0.114
171	14.25	0.90	0.216	(0.177)	0.102	0.114
172	14.33	0.87	0.208	(0.176)	0.098	0.110
173	14.42	0.87	0.208	(0.175)	0.098	0.110
174	14.50	0.87	0.208	(0.174)	0.098	0.110
175	14.58	0.87	0.208	(0.173)	0.098	0.110
176	14.67	0.87	0.208	(0.172)	0.098	0.110
177	14.75	0.87	0.208	(0.172)	0.098	0.110
178	14.83	0.83	0.200	(0.171)	0.094	0.106
179	14.92	0.83	0.200	(0.170)	0.094	0.106

180	15.00	0.83	0.200	(0.169)	0.094	0.106
181	15.08	0.80	0.192	(0.168)	0.090	0.102
182	15.17	0.80	0.192	(0.167)	0.090	0.102
183	15.25	0.80	0.192	(0.166)	0.090	0.102
184	15.33	0.77	0.184	(0.165)	0.086	0.098
185	15.42	0.77	0.184	(0.165)	0.086	0.098
186	15.50	0.77	0.184	(0.164)	0.086	0.098
187	15.58	0.63	0.152	(0.163)	0.071	0.081
188	15.67	0.63	0.152	(0.162)	0.071	0.081
189	15.75	0.63	0.152	(0.161)	0.071	0.081
190	15.83	0.63	0.152	(0.160)	0.071	0.081
191	15.92	0.63	0.152	(0.160)	0.071	0.081
192	16.00	0.63	0.152	(0.159)	0.071	0.081
193	16.08	0.13	0.032	(0.158)	0.015	0.017
194	16.17	0.13	0.032	(0.157)	0.015	0.017
195	16.25	0.13	0.032	(0.156)	0.015	0.017
196	16.33	0.13	0.032	(0.156)	0.015	0.017
197	16.42	0.13	0.032	(0.155)	0.015	0.017
198	16.50	0.13	0.032	(0.154)	0.015	0.017
199	16.58	0.10	0.024	(0.153)	0.011	0.013
200	16.67	0.10	0.024	(0.152)	0.011	0.013
201	16.75	0.10	0.024	(0.152)	0.011	0.013
202	16.83	0.10	0.024	(0.151)	0.011	0.013
203	16.92	0.10	0.024	(0.150)	0.011	0.013
204	17.00	0.10	0.024	(0.149)	0.011	0.013
205	17.08	0.17	0.040	(0.149)	0.019	0.021
206	17.17	0.17	0.040	(0.148)	0.019	0.021
207	17.25	0.17	0.040	(0.147)	0.019	0.021
208	17.33	0.17	0.040	(0.146)	0.019	0.021
209	17.42	0.17	0.040	(0.146)	0.019	0.021
210	17.50	0.17	0.040	(0.145)	0.019	0.021
211	17.58	0.17	0.040	(0.144)	0.019	0.021
212	17.67	0.17	0.040	(0.144)	0.019	0.021
213	17.75	0.17	0.040	(0.143)	0.019	0.021
214	17.83	0.13	0.032	(0.142)	0.015	0.017
215	17.92	0.13	0.032	(0.141)	0.015	0.017
216	18.00	0.13	0.032	(0.141)	0.015	0.017
217	18.08	0.13	0.032	(0.140)	0.015	0.017
218	18.17	0.13	0.032	(0.139)	0.015	0.017
219	18.25	0.13	0.032	(0.139)	0.015	0.017
220	18.33	0.13	0.032	(0.138)	0.015	0.017
221	18.42	0.13	0.032	(0.137)	0.015	0.017
222	18.50	0.13	0.032	(0.137)	0.015	0.017
223	18.58	0.10	0.024	(0.136)	0.011	0.013
224	18.67	0.10	0.024	(0.135)	0.011	0.013
225	18.75	0.10	0.024	(0.135)	0.011	0.013
226	18.83	0.07	0.016	(0.134)	0.008	0.008
227	18.92	0.07	0.016	(0.133)	0.008	0.008
228	19.00	0.07	0.016	(0.133)	0.008	0.008
229	19.08	0.10	0.024	(0.132)	0.011	0.013
230	19.17	0.10	0.024	(0.131)	0.011	0.013
231	19.25	0.10	0.024	(0.131)	0.011	0.013
232	19.33	0.13	0.032	(0.130)	0.015	0.017
233	19.42	0.13	0.032	(0.130)	0.015	0.017
234	19.50	0.13	0.032	(0.129)	0.015	0.017
235	19.58	0.10	0.024	(0.128)	0.011	0.013
236	19.67	0.10	0.024	(0.128)	0.011	0.013
237	19.75	0.10	0.024	(0.127)	0.011	0.013
238	19.83	0.07	0.016	(0.127)	0.008	0.008
239	19.92	0.07	0.016	(0.126)	0.008	0.008
240	20.00	0.07	0.016	(0.126)	0.008	0.008
241	20.08	0.10	0.024	(0.125)	0.011	0.013
242	20.17	0.10	0.024	(0.124)	0.011	0.013
243	20.25	0.10	0.024	(0.124)	0.011	0.013
244	20.33	0.10	0.024	(0.123)	0.011	0.013
245	20.42	0.10	0.024	(0.123)	0.011	0.013
246	20.50	0.10	0.024	(0.122)	0.011	0.013
247	20.58	0.10	0.024	(0.122)	0.011	0.013
248	20.67	0.10	0.024	(0.121)	0.011	0.013
249	20.75	0.10	0.024	(0.121)	0.011	0.013
250	20.83	0.07	0.016	(0.120)	0.008	0.008
251	20.92	0.07	0.016	(0.120)	0.008	0.008
252	21.00	0.07	0.016	(0.119)	0.008	0.008
253	21.08	0.10	0.024	(0.119)	0.011	0.013
254	21.17	0.10	0.024	(0.118)	0.011	0.013
255	21.25	0.10	0.024	(0.118)	0.011	0.013
256	21.33	0.07	0.016	(0.118)	0.008	0.008
257	21.42	0.07	0.016	(0.117)	0.008	0.008
258	21.50	0.07	0.016	(0.117)	0.008	0.008
259	21.58	0.10	0.024	(0.116)	0.011	0.013
260	21.67	0.10	0.024	(0.116)	0.011	0.013
261	21.75	0.10	0.024	(0.115)	0.011	0.013
262	21.83	0.07	0.016	(0.115)	0.008	0.008
263	21.92	0.07	0.016	(0.115)	0.008	0.008
264	22.00	0.07	0.016	(0.114)	0.008	0.008
265	22.08	0.10	0.024	(0.114)	0.011	0.013
266	22.17	0.10	0.024	(0.113)	0.011	0.013
267	22.25	0.10	0.024	(0.113)	0.011	0.013
268	22.33	0.07	0.016	(0.113)	0.008	0.008
269	22.42	0.07	0.016	(0.112)	0.008	0.008
270	22.50	0.07	0.016	(0.112)	0.008	0.008
271	22.58	0.07	0.016	(0.112)	0.008	0.008

Proposed Condition

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 06/28/23 File: 3384PBA2242.out
+++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
PROPOSED CONDITION - BASIN A - NODES 300-353
HYDROLOGIC ANALYSIS - 2-YEAR
Drainage Area = 39.40(Ac.) = 0.062 Sq. Mi
Drainage Area for Depth-Area Areal Adjustment = 39.40(Ac.) = 0.062 Sq. Mi.
Length along longest watercourse = 1708.00(Ft.)
Length along longest watercourse measured to centroid = 854.00(Ft.)
Length along longest watercourse = 0.323 Mi.
Length along longest watercourse measured to centroid = 0.162 Mi.
Difference in elevation = 41.50(Ft.)
Slope along watercourse = 128.2904 Ft./Mi.
Average Manning's 'N' = 0.015
Lag time = 0.047 Hr.
Lag time = 2.80 Min.
25% of lag time = 0.70 Min.
40% of lag time = 1.12 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
```

2 YEAR Area rainfall data:

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
39.40	2.00	78.80

100 YEAR Area rainfall data:

RI	RI	Infil. Rate	Impervious	Adj. Infil.	Rate Area\%	F
AMC2	AMC-1	($\mathrm{In} / \mathrm{Hr}$)	(Dec.\%)	(In/Hr)	(Dec.)	($\mathrm{In} / \mathrm{Hr}$)
77.0	59.4	0.476	0.000	0.476	0.067	0.032
32.0	16.2	0.870	0.900	0.165	0.552	0.091
69.0	49.8	0.574	0.900	0.109	0.379	0.041
75.0	57.0	0.501	0.900	0.095	0.003	0.000
					Sum (F) =	0.165
Area averaged mean soil loss (F) ($\mathrm{In} / \mathrm{Hr}$) $=0.165$						
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.082$ (for 24 hour storm duration)						
Soil low loss rate (decimal) $=0.230$						

Unit Hydrograph
VALLEY S-Curve

Unit Hydrograph Data

Unit time period (hrs)	Time \% of lag	Distribution Graph \%	Unit Hydrograph (CFS)
1	0.083	178.639	39.453

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Unit	Time	Pattern	Storm Rain	Loss rate(In./Hr)		Effective
	(Hr.)	Percent	(In/Hr)	Max	Low	(In/Hr)
1	0.08	0.07	0.016	(0.292)	0.004	0.012
2	0.17	0.07	0.016	(0.291)	0.004	0.012
3	0.25	0.07	0.016	(0.290)	0.004	0.012
4	0.33	0.10	0.024	(0.289)	0.006	0.018
5	0.42	0.10	0.024	(0.287)	0.006	0.018
6	0.50	0.10	0.024	(0.286)	0.006	0.018
7	0.58	0.10	0.024	(0.285)	0.006	0.018
8	0.67	0.10	0.024	(0.284)	0.006	0.018
9	0.75	0.10	0.024	(0.283)	0.006	0.018
10	0.83	0.13	0.032	(0.282)	0.007	0.025
11	0.92	0.13	0.032	(0.281)	0.007	0.025
12	1.00	0.13	0.032	(0.280)	0.007	0.025
13	1.08	0.10	0.024	(0.279)	0.006	0.018
14	1.17	0.10	0.024	(0.277)	0.006	0.018
15	1.25	0.10	0.024	(0.276)	0.006	0.018
16	1.33	0.10	0.024	(0.275)	0.006	0.018
17	1.42	0.10	0.024	(0.274)	0.006	0.018
18	1.50	0.10	0.024	(0.273)	0.006	0.018
19	1.58	0.10	0.024	(0.272)	0.006	0.018
20	1.67	0.10	0.024	(0.271)	0.006	0.018
21	1.75	0.10	0.024	(0.270)	0.006	0.018
22	1.83	0.13	0.032	(0.269)	0.007	0.025
23	1.92	0.13	0.032	(0.268)	0.007	0.025
24	2.00	0.13	0.032	(0.267)	0.007	0.025
25	2.08	0.13	0.032	(0.265)	0.007	0.025
26	2.17	0.13	0.032	(0.264)	0.007	0.025
27	2.25	0.13	0.032	(0.263)	0.007	0.025
28	2.33	0.13	0.032	(0.262)	0.007	0.025
29	2.42	0.13	0.032	(0.261)	0.007	0.025
30	2.50	0.13	0.032	(0.260)	0.007	0.025
31	2.58	0.17	0.040	(0.259)	0.009	0.031
32	2.67	0.17	0.040	(0.258)	0.009	0.031
33	2.75	0.17	0.040	(0.257)	0.009	0.031
34	2.83	0.17	0.040	(0.256)	0.009	0.031
35	2.92	0.17	0.040	(0.255)	0.009	0.031
36	3.00	0.17	0.040	(0.254)	0.009	0.031
37	3.08	0.17	0.040	(0.253)	0.009	0.031
38	3.17	0.17	0.040	(0.252)	0.009	0.031
39	3.25	0.17	0.040	(0.251)	0.009	0.031
40	3.33	0.17	0.040	(0.250)	0.009	0.031
41	3.42	0.17	0.040	(0.249)	0.009	0.031
42	3.50	0.17	0.040	(0.247)	0.009	0.031
43	3.58	0.17	0.040	(0.246)	0.009	0.031
44	3.67	0.17	0.040	(0.245)	0.009	0.031
45	3.75	0.17	0.040	(0.244)	0.009	0.031
46	3.83	0.20	0.048	(0.243)	0.011	0.037
47	3.92	0.20	0.048	(0.242)	0.011	0.037
48	4.00	0.20	0.048	(0.241)	0.011	0.037
49	4.08	0.20	0.048	(0.240)	0.011	0.037
50	4.17	0.20	0.048	(0.239)	0.011	0.037
51	4.25	0.20	0.048	(0.238)	0.011	0.037
52	4.33	0.23	0.056	(0.237)	0.013	0.043
53	4.42	0.23	0.056	(0.236)	0.013	0.043
54	4.50	0.23	0.056	(0.235)	0.013	0.043
55	4.58	0.23	0.056	(0.234)	0.013	0.043
56	4.67	0.23	0.056	(0.233)	0.013	0.043
57	4.75	0.23	0.056	(0.232)	0.013	0.043
58	4.83	0.27	0.064	(0.231)	0.015	0.049
59	4.92	0.27	0.064	(0.230)	0.015	0.049
60	5.00	0.27	0.064	(0.229)	0.015	0.049
61	5.08	0.20	0.048	(0.228)	0.011	0.037
62	5.17	0.20	0.048	(0.227)	0.011	0.037
63	5.25	0.20	0.048	(0.226)	0.011	0.037
64	5.33	0.23	0.056	(0.225)	0.013	0.043
65	5.42	0.23	0.056	(0.224)	0.013	0.043
66	5.50	0.23	0.056	(0.223)	0.013	0.043
67	5.58	0.27	0.064	(0.222)	0.015	0.049
68	5.67	0.27	0.064	(0.221)	0.015	0.049
69	5.75	0.27	0.064	(0.220)	0.015	0.049
70	5.83	0.27	0.064	(0.219)	0.015	0.049
71	5.92	0.27	0.064	(0.218)	0.015	0.049
72	6.00	0.27	0.064	(0.217)	0.015	0.049
73	6.08	0.30	0.072	(0.216)	0.017	0.055

74	6.17	0.30	0.072	(0.215)	0.017	0.055
75	6.25	0.30	0.072	(0.214)	0.017	0.055
76	6.33	0.30	0.072	(0.214)	0.017	0.055
77	6.42	0.30	0.072	(0.213)	0.017	0.055
78	6.50	0.30	0.072	(0.212)	0.017	0.055
79	6.58	0.33	0.080	(0.211)	0.018	0.062
80	6.67	0.33	0.080	(0.210)	0.018	0.062
81	6.75	0.33	0.080	(0.209)	0.018	0.062
82	6.83	0.33	0.080	(0.208)	0.018	0.062
83	6.92	0.33	0.080	(0.207)	0.018	0.062
84	7.00	0.33	0.080	(0.206)	0.018	0.062
85	7.08	0.33	0.080	(0.205)	0.018	0.062
86	7.17	0.33	0.080	(0.204)	0.018	0.062
87	7.25	0.33	0.080	(0.203)	0.018	0.062
88	7.33	0.37	0.088	(0.202)	0.020	0.068
89	7.42	0.37	0.088	(0.201)	0.020	0.068
90	7.50	0.37	0.088	(0.200)	0.020	0.068
91	7.58	0.40	0.096	(0.199)	0.022	0.074
92	7.67	0.40	0.096	(0.199)	0.022	0.074
93	7.75	0.40	0.096	(0.198)	0.022	0.074
94	7.83	0.43	0.104	(0.197)	0.024	0.080
95	7.92	0.43	0.104	(0.196)	0.024	0.080
96	8.00	0.43	0.104	(0.195)	0.024	0.080
97	8.08	0.50	0.120	(0.194)	0.028	0.092
98	8.17	0.50	0.120	(0.193)	0.028	0.092
99	8.25	0.50	0.120	(0.192)	0.028	0.092
100	8.33	0.50	0.120	(0.191)	0.028	0.092
101	8.42	0.50	0.120	(0.190)	0.028	0.092
102	8.50	0.50	0.120	(0.190)	0.028	0.092
103	8.58	0.53	0.128	(0.189)	0.029	0.099
104	8.67	0.53	0.128	(0.188)	0.029	0.099
105	8.75	0.53	0.128	(0.187)	0.029	0.099
106	8.83	0.57	0.136	(0.186)	0.031	0.105
107	8.92	0.57	0.136	(0.185)	0.031	0.105
108	9.00	0.57	0.136	(0.184)	0.031	0.105
109	9.08	0.63	0.152	(0.183)	0.035	0.117
110	9.17	0.63	0.152	(0.182)	0.035	0.117
111	9.25	0.63	0.152	(0.182)	0.035	0.117
112	9.33	0.67	0.160	(0.181)	0.037	0.123
113	9.42	0.67	0.160	(0.180)	0.037	0.123
114	9.50	0.67	0.160	(0.179)	0.037	0.123
115	9.58	0.70	0.168	(0.178)	0.039	0.129
116	9.67	0.70	0.168	(0.177)	0.039	0.129
117	9.75	0.70	0.168	(0.176)	0.039	0.129
118	9.83	0.73	0.176	(0.176)	0.040	0.136
119	9.92	0.73	0.176	(0.175)	0.040	0.136
120	10.00	0.73	0.176	(0.174)	0.040	0.136
121	10.08	0.50	0.120	(0.173)	0.028	0.092
122	10.17	0.50	0.120	(0.172)	0.028	0.092
123	10.25	0.50	0.120	(0.171)	0.028	0.092
124	10.33	0.50	0.120	(0.171)	0.028	0.092
125	10.42	0.50	0.120	(0.170)	0.028	0.092
126	10.50	0.50	0.120	(0.169)	0.028	0.092
127	10.58	0.67	0.160	(0.168)	0.037	0.123
128	10.67	0.67	0.160	(0.167)	0.037	0.123
129	10.75	0.67	0.160	(0.166)	0.037	0.123
130	10.83	0.67	0.160	(0.166)	0.037	0.123
131	10.92	0.67	0.160	(0.165)	0.037	0.123
132	11.00	0.67	0.160	(0.164)	0.037	0.123
133	11.08	0.63	0.152	(0.163)	0.035	0.117
134	11.17	0.63	0.152	(0.162)	0.035	0.117
135	11.25	0.63	0.152	(0.162)	0.035	0.117
136	11.33	0.63	0.152	(0.161)	0.035	0.117
137	11.42	0.63	0.152	(0.160)	0.035	0.117
138	11.50	0.63	0.152	(0.159)	0.035	0.117
139	11.58	0.57	0.136	(0.158)	0.031	0.105
140	11.67	0.57	0.136	(0.158)	0.031	0.105
141	11.75	0.57	0.136	(0.157)	0.031	0.105
142	11.83	0.60	0.144	(0.156)	0.033	0.111
143	11.92	0.60	0.144	(0.155)	0.033	0.111
144	12.00	0.60	0.144	(0.155)	0.033	0.111
145	12.08	0.83	0.200	(0.154)	0.046	0.154
146	12.17	0.83	0.200	(0.153)	0.046	0.154
147	12.25	0.83	0.200	(0.152)	0.046	0.154
148	12.33	0.87	0.208	(0.151)	0.048	0.160
149	12.42	0.87	0.208	(0.151)	0.048	0.160
150	12.50	0.87	0.208	(0.150)	0.048	0.160
151	12.58	0.93	0.224	(0.149)	0.052	0.172
152	12.67	0.93	0.224	(0.148)	0.052	0.172
153	12.75	0.93	0.224	(0.148)	0.052	0.172
154	12.83	0.97	0.232	(0.147)	0.053	0.179
155	12.92	0.97	0.232	(0.146)	0.053	0.179
156	13.00	0.97	0.232	(0.145)	0.053	0.179
157	13.08	1.13	0.272	(0.145)	0.063	0.209
158	13.17	1.13	0.272	(0.144)	0.063	0.209
159	13.25	1.13	0.272	(0.143)	0.063	0.209
160	13.33	1.13	0.272	(0.143)	0.063	0.209
161	13.42	1.13	0.272	(0.142)	0.063	0.209
162	13.50	1.13	0.272	(0.141)	0.063	0.209
163	13.58	0.77	0.184	(0.140)	0.042	0.142
164	13.67	0.77	0.184	(0.140)	0.042	0.142
165	13.75	0.77	0.184	(0.139)	0.042	0.142

166	13.83	0.77	0.184	(0.138)	0.042	0.142
167	13.92	0.77	0.184	(0.138)	0.042	0.142
168	14.00	0.77	0.184	(0.137)	0.042	0.142
169	14.08	0.90	0.216	(0.136)	0.050	0.166
170	14.17	0.90	0.216	(0.135)	0.050	0.166
171	14.25	0.90	0.216	(0.135)	0.050	0.166
172	14.33	0.87	0.208	(0.134)	0.048	0.160
173	14.42	0.87	0.208	(0.133)	0.048	0.160
174	14.50	0.87	0.208	(0.133)	0.048	0.160
175	14.58	0.87	0.208	(0.132)	0.048	0.160
176	14.67	0.87	0.208	(0.131)	0.048	0.160
177	14.75	0.87	0.208	(0.131)	0.048	0.160
178	14.83	0.83	0.200	(0.130)	0.046	0.154
179	14.92	0.83	0.200	(0.129)	0.046	0.154
180	15.00	0.83	0.200	(0.129)	0.046	0.154
181	15.08	0.80	0.192	(0.128)	0.044	0.148
182	15.17	0.80	0.192	(0.127)	0.044	0.148
183	15.25	0.80	0.192	(0.127)	0.044	0.148
184	15.33	0.77	0.184	(0.126)	0.042	0.142
185	15.42	0.77	0.184	(0.125)	0.042	0.142
186	15.50	0.77	0.184	(0.125)	0.042	0.142
187	15.58	0.63	0.152	(0.124)	0.035	0.117
188	15.67	0.63	0.152	(0.123)	0.035	0.117
189	15.75	0.63	0.152	(0.123)	0.035	0.117
190	15.83	0.63	0.152	(0.122)	0.035	0.117
191	15.92	0.63	0.152	(0.122)	0.035	0.117
192	16.00	0.63	0.152	(0.121)	0.035	0.117
193	16.08	0.13	0.032	(0.120)	0.007	0.025
194	16.17	0.13	0.032	(0.120)	0.007	0.025
195	16.25	0.13	0.032	(0.119)	0.007	0.025
196	16.33	0.13	0.032	(0.118)	0.007	0.025
197	16.42	0.13	0.032	(0.118)	0.007	0.025
198	16.50	0.13	0.032	(0.117)	0.007	0.025
199	16.58	0.10	0.024	(0.117)	0.006	0.018
200	16.67	0.10	0.024	(0.116)	0.006	0.018
201	16.75	0.10	0.024	(0.116)	0.006	0.018
202	16.83	0.10	0.024	(0.115)	0.006	0.018
203	16.92	0.10	0.024	(0.114)	0.006	0.018
204	17.00	0.10	0.024	(0.114)	0.006	0.018
205	17.08	0.17	0.040	(0.113)	0.009	0.031
206	17.17	0.17	0.040	(0.113)	0.009	0.031
207	17.25	0.17	0.040	(0.112)	0.009	0.031
208	17.33	0.17	0.040	(0.111)	0.009	0.031
209	17.42	0.17	0.040	(0.111)	0.009	0.031
210	17.50	0.17	0.040	(0.110)	0.009	0.031
211	17.58	0.17	0.040	(0.110)	0.009	0.031
212	17.67	0.17	0.040	(0.109)	0.009	0.031
213	17.75	0.17	0.040	(0.109)	0.009	0.031
214	17.83	0.13	0.032	(0.108)	0.007	0.025
215	17.92	0.13	0.032	(0.108)	0.007	0.025
216	18.00	0.13	0.032	(0.107)	0.007	0.025
217	18.08	0.13	0.032	(0.107)	0.007	0.025
218	18.17	0.13	0.032	(0.106)	0.007	0.025
219	18.25	0.13	0.032	(0.106)	0.007	0.025
220	18.33	0.13	0.032	(0.105)	0.007	0.025
221	18.42	0.13	0.032	(0.105)	0.007	0.025
222	18.50	0.13	0.032	(0.104)	0.007	0.025
223	18.58	0.10	0.024	(0.104)	0.006	0.018
224	18.67	0.10	0.024	(0.103)	0.006	0.018
225	18.75	0.10	0.024	(0.103)	0.006	0.018
226	18.83	0.07	0.016	(0.102)	0.004	0.012
227	18.92	0.07	0.016	(0.102)	0.004	0.012
228	19.00	0.07	0.016	(0.101)	0.004	0.012
229	19.08	0.10	0.024	(0.101)	0.006	0.018
230	19.17	0.10	0.024	(0.100)	0.006	0.018
231	19.25	0.10	0.024	(0.100)	0.006	0.018
232	19.33	0.13	0.032	(0.099)	0.007	0.025
233	19.42	0.13	0.032	(0.099)	0.007	0.025
234	19.50	0.13	0.032	(0.098)	0.007	0.025
235	19.58	0.10	0.024	(0.098)	0.006	0.018
236	19.67	0.10	0.024	(0.097)	0.006	0.018
237	19.75	0.10	0.024	(0.097)	0.006	0.018
238	19.83	0.07	0.016	(0.096)	0.004	0.012
239	19.92	0.07	0.016	(0.096)	0.004	0.012
240	20.00	0.07	0.016	(0.096)	0.004	0.012
241	20.08	0.10	0.024	(0.095)	0.006	0.018
242	20.17	0.10	0.024	(0.095)	0.006	0.018
243	20.25	0.10	0.024	(0.094)	0.006	0.018
244	20.33	0.10	0.024	(0.094)	0.006	0.018
245	20.42	0.10	0.024	(0.094)	0.006	0.018
246	20.50	0.10	0.024	(0.093)	0.006	0.018
247	20.58	0.10	0.024	(0.093)	0.006	0.018
248	20.67	0.10	0.024	(0.092)	0.006	0.018
249	20.75	0.10	0.024	(0.092)	0.006	0.018
250	20.83	0.07	0.016	(0.092)	0.004	0.012
251	20.92	0.07	0.016	(0.091)	0.004	0.012
252	21.00	0.07	0.016	(0.091)	0.004	0.012
253	21.08	0.10	0.024	(0.091)	0.006	0.018
254	21.17	0.10	0.024	(0.090)	0.006	0.018
255	21.25	0.10	0.024	(0.090)	0.006	0.018
256	21.33	0.07	0.016	(0.089)	0.004	0.012
257	21.42	0.07	0.016	(0.089)	0.004	0.012

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 06/28/23 File: 3384PBB2242.out
+++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
PROPOSED CONDITION - BASIN B - NODES 200-235
HYDROLOGIC ANALYSIS - 2-YEAR
Drainage Area = 23.89(Ac.) = 0.037 Sq. Mi
Drainage Area for Depth-Area Areal Adjustment = 23.89(Ac.) = 0.037 Sq. Mi.
Length along longest watercourse = 2546.00(Ft.)
Length along longest watercourse measured to centroid = 1273.00(Ft.)
Length along longest watercourse = 0.482 Mi.
Length along longest watercourse measured to centroid = 0.241 Mi.
Difference in elevation = 47.25(Ft.)
Slope along watercourse = 97.9890 Ft./Mi.
Average Manning's 'N' = 0.015
Lag time = 0.067 Hr.
Lag time = 3.99 Min.
25% of lag time = 1.00 Min.
40% of lag time = 1.60 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
```

2 YEAR Area rainfall data:

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
23.89	2.00	47.78

100 YEAR Area rainfall data:

Area(Ac.) [1]	Rainfall(In)[2]	Weighting[1*2]
23.89	5.50	131.40
STORM EVENT (YEAR) = 2.00		
Area Averaged 2-Year Rainfall = 2.000(In)		
Area Averaged 100-	-Year Rainfall =	5.500(In)
Point rain (area averaged) $=2.000($ In $)$		
Adjusted average	point rain $=$	2.000(In)
Sub-Area Data:		
Area(Ac.)	Runoff Index	Impervious \%
1.300	46.00	0.000
0.900	77.00	0.000
0.330	83.00	0.000
14.720	32.00	0.900
1.480	69.00	0.900
5.160	75.00	0.900
Total Area Entered $=$ 23.89(Ac.)		

RI	RI	Infil. Rate	Impervious	Adj. Infil	Rate Area\%	F
AMC2	AMC-1	(In/Hr)	(Dec.\%)	(In/Hr)	(Dec.)	($\mathrm{In} / \mathrm{Hr}$)
46.0	27.0	0.784	0.000	0.784	0.054	0.043
77.0	59.4	0.476	0.000	0.476	0.038	0.018
83.0	67.2	0.392	0.000	0.392	0.014	0.005
32.0	16.2	0.870	0.900	0.165	0.616	0.102
69.0	49.8	0.574	0.900	0.109	0.062	0.007
75.0	57.0	0.501	0.900	0.095	0.216	0.021
					Sum (F) =	0.195
Area averaged mean soil loss (F) ($\mathrm{In} / \mathrm{Hr}$) $=0.195$						
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.098$ (for 24 hour storm duration)						
Soil low loss rate (decimal) $=0.260$						

Unit Hydrograph

Unit Hydrograph Data

t time period (hrs)		Time \% of lag	Distribution Graph \%	Unit Hydrograph (CFS)
1	0.083	125.309	26.717	6.433
2	0.167	250.617	48.518	11.682
3	0.250	375.926	12.863	3.097
4	0.333	501.234	5.787	1.393
5	0.417	626.543	3.215	0.774
6	0.500	751.851	1.782	0.429
7	0.583	877.160	1.117	0.269
		Sum	$=100.000$ Sum=	$=24.077$

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Uni	Time	Pattern	Storm Rain	Loss rate	./Hr)	ec
	(Hr.$)$	Percent	(In/Hr)	Max	Low	($\mathrm{In} / \mathrm{Hr}$)
1	0.08	0.07	0.016	(0.346)	0.004	0.012
2	0.17	0.07	0.016	(0.345)	0.004	0.012
3	0.25	0.07	0.016	(0.343)	0.004	0.012
4	0.33	0.10	0.024	(0.342)	0.006	0.018
5	0.42	0.10	0.024	(0.341)	0.006	0.018
6	0.50	0.10	0.024	(0.339)	0.006	0.018
7	0.58	0.10	0.024	(0.338)	0.006	0.018
8	0.67	0.10	0.024	(0.337)	0.006	0.018
9	0.75	0.10	0.024	(0.335)	0.006	0.018
10	0.83	0.13	0.032	(0.334)	0.008	0.024
11	0.92	0.13	0.032	(0.333)	0.008	0.024
12	1.00	0.13	0.032	(0.331)	0.008	0.024
13	1.08	0.10	0.024	(0.330)	0.006	0.018
14	1.17	0.10	0.024	(0.329)	0.006	0.018
15	1.25	0.10	0.024	(0.328)	0.006	0.018
16	1.33	0.10	0.024	(0.326)	0.006	0.018
17	1.42	0.10	0.024	(0.325)	0.006	0.018
18	1.50	0.10	0.024	(0.324)	0.006	0.018
19	1.58	0.10	0.024	(0.322)	0.006	0.018
20	1.67	0.10	0.024	(0.321)	0.006	0.018
21	1.75	0.10	0.024	(0.320)	0.006	0.018
22	1.83	0.13	0.032	(0.319)	0.008	0.024
23	1.92	0.13	0.032	(0.317)	0.008	0.024
24	2.00	0.13	0.032	(0.316)	0.008	0.024
25	2.08	0.13	0.032	(0.315)	0.008	0.024
26	2.17	0.13	0.032	(0.313)	0.008	0.024
27	2.25	0.13	0.032	(0.312)	0.008	0.024
28	2.33	0.13	0.032	(0.311)	0.008	0.024
29	2.42	0.13	0.032	(0.310)	0.008	0.024
30	2.50	0.13	0.032	(0.308)	0.008	0.024
31	2.58	0.17	0.040	(0.307)	0.010	0.030
32	2.67	0.17	0.040	(0.306)	0.010	0.030
33	2.75	0.17	0.040	(0.305)	0.010	0.030
34	2.83	0.17	0.040	(0.303)	0.010	0.030
35	2.92	0.17	0.040	(0.302)	0.010	0.030
36	3.00	0.17	0.040	(0.301)	0.010	0.030
37	3.08	0.17	0.040	(0.300)	0.010	0.030
38	3.17	0.17	0.040	(0.298)	0.010	0.030
39	3.25	0.17	0.040	(0.297)	0.010	0.030
40	3.33	0.17	0.040	(0.296)	0.010	0.030
41	3.42	0.17	0.040	(0.295)	0.010	0.030
42	3.50	0.17	0.040	(0.293)	0.010	0.030
43	3.58	0.17	0.040	(0.292)	0.010	0.030
44	3.67	0.17	0.040	(0.291)	0.010	0.030
45	3.75	0.17	0.040	(0.290)	0.010	0.030
46	3.83	0.20	0.048	(0.288)	0.012	0.036
47	3.92	0.20	0.048	(0.287)	0.012	0.036
48	4.00	0.20	0.048	(0.286)	0.012	0.036
49	4.08	0.20	0.048	(0.285)	0.012	0.036
50	4.17	0.20	0.048	(0.284)	0.012	0.036
51	4.25	0.20	0.048	(0.282)	0.012	0.036
52	4.33	0.23	0.056	(0.281)	0.015	0.041
53	4.42	0.23	0.056	(0.280)	0.015	0.041
54	4.50	0.23	0.056	(0.279)	0.015	0.041
55	4.58	0.23	0.056	(0.278)	0.015	0.041
56	4.67	0.23	0.056	(0.276)	0.015	0.041
57	4.75	0.23	0.056	(0.275)	0.015	0.041
58	4.83	0.27	0.064	(0.274)	0.017	0.047
59	4.92	0.27	0.064	(0.273)	0.017	0.047
60	5.00	0.27	0.064	(0.272)	0.017	0.047
61	5.08	0.20	0.048	(0.270)	0.012	0.036
62	5.17	0.20	0.048	(0.269)	0.012	0.036
63	5.25	0.20	0.048	(0.268)	0.012	0.036
64	5.33	0.23	0.056	(0.267)	0.015	0.041
65	5.42	0.23	0.056	(0.266)	0.015	0.041
66	5.50	0.23	0.056	(0.265)	0.015	0.041
67	5.58	0.27	0.064	(0.263)	0.017	0.047

68	5.67	0.27	0.064	0.262)	0.017	0.047
69	5.75	0.27	0.064	(0.261)	0.017	0.047
70	5.83	0.27	0.064	(0.260)	0.017	0.047
71	5.92	0.27	0.064	(0.259)	0.017	0.047
72	6.00	0.27	0.064	(0.258)	0.017	0.047
73	6.08	0.30	0.072	(0.257)	0.019	0.053
74	6.17	0.30	0.072	(0.255)	0.019	0.053
75	6.25	0.30	0.072	(0.254)	0.019	0.053
76	6.33	0.30	0.072	(0.253)	0.019	0.053
77	6.42	0.30	0.072	0.252)	0.019	0.053
78	6.50	0.30	0.072	(0.251)	0.019	0.053
79	6.58	0.33	0.080	(0.250)	0.021	0.059
80	6.67	0.33	0.080	(0.249)	0.021	0.059
81	6.75	0.33	0.080	0.247)	0.021	0.059
82	6.83	0.33	0.080	0.246)	0.021	0.059
83	6.92	0.33	0.080	(0.245)	0.021	0.059
84	7.00	0.33	0.080	(0.244)	0.021	0.059
85	7.08	0.33	0.080	0.243)	0.021	0.059
86	7.17	0.33	0.080	0.242)	0.021	0.059
87	7.25	0.33	0.080	(0.241)	0.021	0.059
88	7.33	0.37	0.088	(0.240)	0.023	0.065
89	7.42	0.37	0.088	(0.239)	0.023	0.065
90	7.50	0.37	0.088	0.238)	0.023	0.065
91	7.58	0.40	0.096	0.236)	0.025	0.071
92	7.67	0.40	0.096	(0.235)	0.025	0.071
93	7.75	0.40	0.096	(0.234)	0.025	0.071
94	7.83	0.43	0.104	0.233)	0.027	0.077
95	7.92	0.43	0.104	0.232)	0.027	0.077
96	8.00	0.43	0.104	(0.231)	0.027	0.077
97	8.08	0.50	0.120	(0.230)	0.031	0.089
98	8.17	0.50	0.120	(0.229)	0.031	0.089
99	8.25	0.50	0.120	0.228)	0.031	0.089
100	8.33	0.50	0.120	0.227)	0.031	0.089
101	8.42	0.50	0.120	(0.226)	0.031	0.089
102	8.50	0.50	0.120	(0.225)	0.031	0.089
103	8.58	0.53	0.128	0.224)	0.033	0.095
104	8.67	0.53	0.128	0.223)	0.033	0.095
105	8.75	0.53	0.128	(0.221)	0.033	0.095
106	8.83	0.57	0.136	(0.220)	0.035	0.101
107	8.92	0.57	0.136	(0.219)	0.035	0.101
108	9.00	0.57	0.136	0.218)	0.035	0.101
109	9.08	0.63	0.152	0.217)	0.040	0.112
110	9.17	0.63	0.152	(0.216)	0.040	0.112
111	9.25	0.63	0.152	(0.215)	0.040	0.112
112	9.33	0.67	0.160	0.214)	0.042	0.118
113	9.42	0.67	0.160	0.213)	0.042	0.118
114	9.50	0.67	0.160	(0.212)	0.042	0.118
115	9.58	0.70	0.168	(0.211)	0.044	0.124
116	9.67	0.70	0.168	(0.210)	0.044	0.124
117	9.75	0.70	0.168	0.209)	0.044	0.124
118	9.83	0.73	0.176	0.208)	0.046	0.130
119	9.92	0.73	0.176	0.207)	0.046	0.130
120	10.00	0.73	0.176	(0.206)	0.046	0.130
121	10.08	0.50	0.120	0.205)	0.031	0.089
122	10.17	0.50	0.120	0.204)	0.031	0.089
123	10.25	0.50	0.120	0.203)	0.031	0.089
124	10.33	0.50	0.120	(0.202)	0.031	0.089
125	10.42	0.50	0.120	(0.201)	0.031	0.089
126	10.50	0.50	0.120	0.200)	0.031	0.089
127	10.58	0.67	0.160	0.199)	0.042	0.118
128	10.67	0.67	0.160	0.198)	0.042	0.118
129	10.75	0.67	0.160	(0.197)	0.042	0.118
130	10.83	0.67	0.160	(0.196)	0.042	0.118
131	10.92	0.67	0.160	(0.195)	0.042	0.118
132	11.00	0.67	0.160	(0.194)	0.042	0.118
133	11.08	0.63	0.152	(0.193)	0.040	0.112
134	11.17	0.63	0.152	(0.192)	0.040	0.112
135	11.25	0.63	0.152	0.192)	0.040	0.112
136	11.33	0.63	0.152	0.191)	0.040	0.112
137	11.42	0.63	0.152	0.190)	0.040	0.112
138	11.50	0.63	0.152	(0.189)	0.040	0.112
139	11.58	0.57	0.136	(0.188)	0.035	0.101
140	11.67	0.57	0.136	(0.187)	0.035	0.101
141	11.75	0.57	0.136	(0.186)	0.035	0.101
142	11.83	0.60	0.144	(0.185)	0.037	0.107
143	11.92	0.60	0.144	(0.184)	0.037	0.107
144	12.00	0.60	0.144	(0.183)	0.037	0.107
145	12.08	0.83	0.200	(0.182)	0.052	0.148
146	12.17	0.83	0.200	(0.181)	0.052	0.148
147	12.25	0.83	0.200	(0.180)	0.052	0.148
148	12.33	0.87	0.208	(0.180)	0.054	0.154
149	12.42	0.87	0.208	(0.179)	0.054	0.154
150	12.50	0.87	0.208	(0.178)	0.054	0.154
151	12.58	0.93	0.224	(0.177)	0.058	0.166
152	12.67	0.93	0.224	(0.176)	0.058	0.166
153	12.75	0.93	0.224	0.175)	0.058	0.166
154	12.83	0.97	0.232	(0.174)	0.060	0.172
155	12.92	0.97	0.232	(0.173)	0.060	0.172
156	13.00	0.97	0.232	(0.172)	0.060	0.172
157	13.08	1.13	0.272	(0.172)	0.071	0.201
158	13.17	1.13	0.272	(0.171)	0.071	0.201
159	13.25	1.13	0.272	(0.170)	0.071	0.201

160	13.33	1.13	0.272	(0.169)	0.071	0.201
161	13.42	1.13	0.272	(0.168)	0.071	0.201
162	13.50	1.13	0.272	(0.167)	0.071	0.201
163	13.58	0.77	0.184	(0.166)	0.048	0.136
164	13.67	0.77	0.184	(0.166)	0.048	0.136
165	13.75	0.77	0.184	(0.165)	0.048	0.136
166	13.83	0.77	0.184	(0.164)	0.048	0.136
167	13.92	0.77	0.184	(0.163)	0.048	0.136
168	14.00	0.77	0.184	(0.162)	0.048	0.136
169	14.08	0.90	0.216	(0.161)	0.056	0.160
170	14.17	0.90	0.216	(0.161)	0.056	0.160
171	14.25	0.90	0.216	(0.160)	0.056	0.160
172	14.33	0.87	0.208	(0.159)	0.054	0.154
173	14.42	0.87	0.208	(0.158)	0.054	0.154
174	14.50	0.87	0.208	(0.157)	0.054	0.154
175	14.58	0.87	0.208	(0.156)	0.054	0.154
176	14.67	0.87	0.208	(0.156)	0.054	0.154
177	14.75	0.87	0.208	(0.155)	0.054	0.154
178	14.83	0.83	0.200	(0.154)	0.052	0.148
179	14.92	0.83	0.200	(0.153)	0.052	0.148
180	15.00	0.83	0.200	(0.152)	0.052	0.148
181	15.08	0.80	0.192	(0.152)	0.050	0.142
182	15.17	0.80	0.192	(0.151)	0.050	0.142
183	15.25	0.80	0.192	(0.150)	0.050	0.142
184	15.33	0.77	0.184	(0.149)	0.048	0.136
185	15.42	0.77	0.184	(0.149)	0.048	0.136
186	15.50	0.77	0.184	(0.148)	0.048	0.136
187	15.58	0.63	0.152	(0.147)	0.040	0.112
188	15.67	0.63	0.152	(0.146)	0.040	0.112
189	15.75	0.63	0.152	(0.146)	0.040	0.112
190	15.83	0.63	0.152	(0.145)	0.040	0.112
191	15.92	0.63	0.152	(0.144)	0.040	0.112
192	16.00	0.63	0.152	(0.143)	0.040	0.112
193	16.08	0.13	0.032	(0.143)	0.008	0.024
194	16.17	0.13	0.032	(0.142)	0.008	0.024
195	16.25	0.13	0.032	(0.141)	0.008	0.024
196	16.33	0.13	0.032	(0.140)	0.008	0.024
197	16.42	0.13	0.032	(0.140)	0.008	0.024
198	16.50	0.13	0.032	(0.139)	0.008	0.024
199	16.58	0.10	0.024	(0.138)	0.006	0.018
200	16.67	0.10	0.024	(0.138)	0.006	0.018
201	16.75	0.10	0.024	(0.137)	0.006	0.018
202	16.83	0.10	0.024	(0.136)	0.006	0.018
203	16.92	0.10	0.024	(0.136)	0.006	0.018
204	17.00	0.10	0.024	(0.135)	0.006	0.018
205	17.08	0.17	0.040	(0.134)	0.010	0.030
206	17.17	0.17	0.040	(0.133)	0.010	0.030
207	17.25	0.17	0.040	(0.133)	0.010	0.030
208	17.33	0.17	0.040	(0.132)	0.010	0.030
209	17.42	0.17	0.040	(0.131)	0.010	0.030
210	17.50	0.17	0.040	(0.131)	0.010	0.030
211	17.58	0.17	0.040	(0.130)	0.010	0.030
212	17.67	0.17	0.040	(0.130)	0.010	0.030
213	17.75	0.17	0.040	(0.129)	0.010	0.030
214	17.83	0.13	0.032	(0.128)	0.008	0.024
215	17.92	0.13	0.032	(0.128)	0.008	0.024
216	18.00	0.13	0.032	(0.127)	0.008	0.024
217	18.08	0.13	0.032	(0.126)	0.008	0.024
218	18.17	0.13	0.032	(0.126)	0.008	0.024
219	18.25	0.13	0.032	(0.125)	0.008	0.024
220	18.33	0.13	0.032	(0.125)	0.008	0.024
221	18.42	0.13	0.032	(0.124)	0.008	0.024
222	18.50	0.13	0.032	(0.123)	0.008	0.024
223	18.58	0.10	0.024	(0.123)	0.006	0.018
224	18.67	0.10	0.024	(0.122)	0.006	0.018
225	18.75	0.10	0.024	(0.122)	0.006	0.018
226	18.83	0.07	0.016	(0.121)	0.004	0.012
227	18.92	0.07	0.016	(0.120)	0.004	0.012
228	19.00	0.07	0.016	(0.120)	0.004	0.012
229	19.08	0.10	0.024	(0.119)	0.006	0.018
230	19.17	0.10	0.024	(0.119)	0.006	0.018
231	19.25	0.10	0.024	(0.118)	0.006	0.018
232	19.33	0.13	0.032	(0.118)	0.008	0.024
233	19.42	0.13	0.032	(0.117)	0.008	0.024
234	19.50	0.13	0.032	(0.116)	0.008	0.024
235	19.58	0.10	0.024	(0.116)	0.006	0.018
236	19.67	0.10	0.024	(0.115)	0.006	0.018
237	19.75	0.10	0.024	(0.115)	0.006	0.018
238	19.83	0.07	0.016	(0.114)	0.004	0.012
239	19.92	0.07	0.016	(0.114)	0.004	0.012
240	20.00	0.07	0.016	(0.113)	0.004	0.012
241	20.08	0.10	0.024	(0.113)	0.006	0.018
242	20.17	0.10	0.024	(0.112)	0.006	0.018
243	20.25	0.10	0.024	(0.112)	0.006	0.018
244	20.33	0.10	0.024	(0.111)	0.006	0.018
245	20.42	0.10	0.024	(0.111)	0.006	0.018
246	20.50	0.10	0.024	(0.110)	0.006	0.018
247	20.58	0.10	0.024	(0.110)	0.006	0.018
248	20.67	0.10	0.024	(0.110)	0.006	0.018
249	20.75	0.10	0.024	(0.109)	0.006	0.018
250	20.83	0.07	0.016	(0.109)	0.004	0.012
251	20.92	0.07	0.016	(0.108)	0.004	0.012

++
24-HOUR STORM Runoff \quad Hydrograph

Hydrograph in 5 Minute intervals ((CFS))

Time ($\mathrm{h}+\mathrm{m}$)	Volume Ac.Ft	Q(CFS)	0	2.5	5.0	7.5	10.0
$0+5$	0.0005	0.08	Q				\|
$0+10$	0.0020	0.21	Q				
$0+15$	0.0037	0.25	VQ				\|
$0+20$	0.0058	0.31	VQ				\|
$0+25$	0.0085	0.38	VQ				\|
$0+30$	0.0113	0.41	VQ				\|
$0+35$	0.0142	0.42	VQ				\|
$0+40$	0.0171	0.42	VQ				
$0+45$	0.0200	0.43	VQ				\|
0+50	0.0232	0.47	VQ				\|
0+55	0.0269	0.54	\checkmark Q				\|
$1+0$	0.0307	0.55	\checkmark Q				\|
$1+5$	0.0343	0.52	\checkmark Q				\|
1+10	0.0375	0.46	VQ				
1+15	0.0406	0.44	VQ				\|
1+20	0.0436	0.44	VQ				\|
$1+25$	0.0465	0.43	VQ				\|
1+30	0.0495	0.43	VQ				\|
1+35	0.0524	0.43	VQ				\|
1+40	0.0554	0.43	VQ				\|
1+45	0.0583	0.43	VQ				\|
1+50	0.0615	0.47	VQ				\|
1+55	0.0652	0.54	\checkmark Q				\|
$2+0$	0.0690	0.55	$\vee \mathrm{Q}$				\|
$2+5$	0.0729	0.56	V Q				\|
2+10	0.0768	0.57	IVQ				\|
$2+15$	0.0807	0.57	\|VQ				\|
$2+20$	0.0847	0.57	\|VQ				\|
$2+25$	0.0886	0.57	\|VQ				\|
$2+30$	0.0925	0.57	\|VQ				\|
$2+35$	0.0967	0.61	\|VQ				\|
$2+40$	0.1014	0.68	\|VQ				\|
2+45	0.1062	0.70	\|VQ				
2+50	0.1110	0.70	\|VQ				\|

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 09/23/22 File: 3384P005242.out
+++

Riverside County Synthetic Unit Hydrology Method RCFC \& WCD Manual date - April 1978

Program License Serial Number 6400

English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
JURUPA VALLEY COMMERCE PARK
BUILDING 5 - PROPOSED CONDITION
HYDROLOGIC ANALYSIS - 2-YEAR
Mrainage Area = 2.50(Ac.) = 0.004 Sq. Mi. 
USER Entry of lag time in hours
Lag time = 0.000 Hr.
Lag time = 0.00 Min.
25% of lag time = 0.00 Min.
40% of lag time = 0.00 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
```

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
2.50	2.00	5.00

100 YEAR Area rainfall data:

Area(Ac.)[1]	Rainfall(In)[2]	Weighting[1*2]
2.50	5.50	
13.75		

| RI | RI | Infil. Rate | Impervious | Adj. Infil. Rate Area\% | F | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AMC2 | AMC-1 | (In/Hr) | (Dec.\%) | (In/Hr) | (Dec.) | (In/Hr) |
| 69.0 | 49.8 | 0.574 | 0.900 | 0.109 | 1.000 | 0.109 |
| | | | | | Sum (F) $=$ | 0.109 |

Area averaged mean soil loss (F) (In/Hr) $=0.109$
Minimum soil loss rate $((\mathrm{In} / \mathrm{Hr}))=0.055$
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.180

Unithydrograph
VALLEY S-Curve
Unit Hydrograph Data

Unit	e period	Time \% of lag	Distribution Graph \%		Unit Hydrograph (CFS)
1	0.083	1.\#IO	100.000		2.520
		Sum	$=100.000$	Sum=	2.520

Unit	Time	Pattern	Storm Rain	Loss rate(In./Hr)		fective
	(Hr.$)$	Percent	($\mathrm{In} / \mathrm{Hr}$)	Max	Low	($\mathrm{In} / \mathrm{Hr}$)
1	0.08	0.07	0.016	$0.193)$	0.003	0.013
2	0.17	0.07	0.016	(0.193)	0.003	0.013
3	0.25	0.07	0.016	(0.192)	0.003	0.013
4	0.33	0.10	0.024	(0.191)	0.004	0.020
5	0.42	0.10	0.024	(0.190)	0.004	0.020
6	0.50	0.10	0.024	(0.190)	0.004	0.020
7	0.58	0.10	0.024	(0.189)	0.004	0.020
8	0.67	0.10	0.024	(0.188)	0.004	0.020
9	0.75	0.10	0.024	(0.187)	0.004	0.020
10	0.83	0.13	0.032	(0.187)	0.006	0.026
11	0.92	0.13	0.032	(0.186)	0.006	0.026
12	1.00	0.13	0.032	(0.185)	0.006	0.026
13	1.08	0.10	0.024	(0.184)	0.004	0.020
14	1.17	0.10	0.024	(0.184)	0.004	0.020
15	1.25	0.10	0.024	0.183)	0.004	0.020
16	1.33	0.10	0.024	(0.182)	0.004	0.020
17	1.42	0.10	0.024	(0.182)	0.004	0.020
18	1.50	0.10	0.024	(0.181)	0.004	0.020
19	1.58	0.10	0.024	(0.180)	0.004	0.020
20	1.67	0.10	0.024	(0.179)	0.004	0.020
21	1.75	0.10	0.024	(0.179)	0.004	0.020
22	1.83	0.13	0.032	(0.178)	0.006	0.026
23	1.92	0.13	0.032	(0.177)	0.006	0.026
24	2.00	0.13	0.032	(0.176)	0.006	0.026
25	2.08	0.13	0.032	(0.176)	0.006	0.026
26	2.17	0.13	0.032	(0.175)	0.006	0.026
27	2.25	0.13	0.032	(0.174)	0.006	0.026
28	2.33	0.13	0.032	(0.174)	0.006	0.026
29	2.42	0.13	0.032	(0.173)	0.006	0.026
30	2.50	0.13	0.032	(0.172)	0.006	0.026
31	2.58	0.17	0.040	(0.172)	0.007	0.033
32	2.67	0.17	0.040	(0.171)	0.007	0.033
33	2.75	0.17	0.040	(0.170)	0.007	0.033
34	2.83	0.17	0.040	(0.169)	0.007	0.033
35	2.92	0.17	0.040	(0.169)	0.007	0.033
36	3.00	0.17	0.040	(0.168)	0.007	0.033
37	3.08	0.17	0.040	(0.167)	0.007	0.033
38	3.17	0.17	0.040	(0.167)	0.007	0.033
39	3.25	0.17	0.040	(0.166)	0.007	0.033
40	3.33	0.17	0.040	(0.165)	0.007	0.033
41	3.42	0.17	0.040	(0.165)	0.007	0.033
42	3.50	0.17	0.040	(0.164)	0.007	0.033
43	3.58	0.17	0.040	(0.163)	0.007	0.033
44	3.67	0.17	0.040	(0.162)	0.007	0.033
45	3.75	0.17	0.040	(0.162)	0.007	0.033
46	3.83	0.20	0.048	(0.161)	0.009	0.039
47	3.92	0.20	0.048	(0.160)	0.009	0.039
48	4.00	0.20	0.048	(0.160)	0.009	0.039
49	4.08	0.20	0.048	(0.159)	0.009	0.039
50	4.17	0.20	0.048	(0.158)	0.009	0.039
51	4.25	0.20	0.048	(0.158)	0.009	0.039
52	4.33	0.23	0.056	(0.157)	0.010	0.046
53	4.42	0.23	0.056	(0.156)	0.010	0.046
54	4.50	0.23	0.056	(0.156)	0.010	0.046
55	4.58	0.23	0.056	(0.155)	0.010	0.046
56	4.67	0.23	0.056	(0.154)	0.010	0.046
57	4.75	0.23	0.056	(0.154)	0.010	0.046
58	4.83	0.27	0.064	(0.153)	0.012	0.052
59	4.92	0.27	0.064	(0.152)	0.012	0.052
60	5.00	0.27	0.064	(0.152)	0.012	0.052
61	5.08	0.20	0.048	(0.151)	0.009	0.039
62	5.17	0.20	0.048	(0.150)	0.009	0.039
63	5.25	0.20	0.048	(0.150)	0.009	0.039
64	5.33	0.23	0.056	(0.149)	0.010	0.046
65	5.42	0.23	0.056	(0.148)	0.010	0.046
66	5.50	0.23	0.056	(0.148)	0.010	0.046
67	5.58	0.27	0.064	(0.147)	0.012	0.052
68	5.67	0.27	0.064	(0.147)	0.012	0.052
69	5.75	0.27	0.064	(0.146)	0.012	0.052
70	5.83	0.27	0.064	(0.145)	0.012	0.052
71	5.92	0.27	0.064	(0.145)	0.012	0.052
72	6.00	0.27	0.064	(0.144)	0.012	0.052
73	6.08	0.30	0.072	(0.143)	0.013	0.059
74	6.17	0.30	0.072	(0.143)	0.013	0.059
75	6.25	0.30	0.072	(0.142)	0.013	0.059
76	6.33	0.30	0.072	(0.141)	0.013	0.059
77	6.42	0.30	0.072	(0.141)	0.013	0.059
78	6.50	0.30	0.072	(0.140)	0.013	0.059
79	6.58	0.33	0.080	(0.140)	0.014	0.066
80	6.67	0.33	0.080	(0.139)	0.014	0.066
81	6.75	0.33	0.080	(0.138)	0.014	0.066
82	6.83	0.33	0.080	(0.138)	0.014	0.066
83	6.92	0.33	0.080	(0.137)	0.014	0.066
84	7.00	0.33	0.080	(0.136)	0.014	0.066
85	7.08	0.33	0.080	(0.136)	0.014	0.066
86	7.17	0.33	0.080	(0.135)	0.014	0.066
87	7.25	0.33	0.080	(0.135)	0.014	0.066
88	7.33	0.37	0.088	(0.134)	0.016	0.072
89	7.42	0.37	0.088	(0.133)	0.016	0.072

90	7.50	0.37	0.088	$0.133)$	0.016	0.072
91	7.58	0.40	0.096	0.132)	0.017	0.079
92	7.67	0.40	0.096	0.131)	0.017	0.079
93	7.75	0.40	0.096	0.131)	0.017	0.079
94	7.83	0.43	0.104	0.130)	0.019	0.085
95	7.92	0.43	0.104	0.130)	0.019	0.085
96	8.00	0.43	0.104	0.129)	0.019	0.085
97	8.08	0.50	0.120	0.128)	0.022	0.098
98	8.17	0.50	0.120	0.128)	0.022	0.098
99	8.25	0.50	0.120	0.127)	0.022	0.098
100	8.33	0.50	0.120	0.127)	0.022	0.098
101	8.42	0.50	0.120	0.126)	0.022	0.098
102	8.50	0.50	0.120	0.125)	0.022	0.098
103	8.58	0.53	0.128	0.125)	0.023	0.105
104	8.67	0.53	0.128	0.124)	0.023	0.105
105	8.75	0.53	0.128	0.124)	0.023	0.105
106	8.83	0.57	0.136	0.123)	0.024	0.112
107	8.92	0.57	0.136	0.123)	0.024	0.112
108	9.00	0.57	0.136	0.122)	0.024	0.112
109	9.08	0.63	0.152	0.121)	0.027	0.125
110	9.17	0.63	0.152	0.121)	0.027	0.125
111	9.25	0.63	0.152	0.120)	0.027	0.125
112	9.33	0.67	0.160	0.120)	0.029	0.131
113	9.42	0.67	0.160	0.119)	0.029	0.131
114	9.50	0.67	0.160	0.119)	0.029	0.131
115	9.58	0.70	0.168	0.118)	0.030	0.138
116	9.67	0.70	0.168	0.117)	0.030	0.138
117	9.75	0.70	0.168	0.117)	0.030	0.138
118	9.83	0.73	0.176	0.116)	0.032	0.144
119	9.92	0.73	0.176	0.116)	0.032	0.144
120	10.00	0.73	0.176	0.115)	0.032	0.144
121	10.08	0.50	0.120	0.115)	0.022	0.098
122	10.17	0.50	0.120	0.114)	0.022	0.098
123	10.25	0.50	0.120	0.113)	0.022	0.098
124	10.33	0.50	0.120	0.113)	0.022	0.098
125	10.42	0.50	0.120	0.112)	0.022	0.098
126	10.50	0.50	0.120	0.112)	0.022	0.098
127	10.58	0.67	0.160	0.111)	0.029	0.131
128	10.67	0.67	0.160	0.111)	0.029	0.131
129	10.75	0.67	0.160	0.110)	0.029	0.131
130	10.83	0.67	0.160	0.110)	0.029	0.131
131	10.92	0.67	0.160	0.109)	0.029	0.131
132	11.00	0.67	0.160	0.109)	0.029	0.131
133	11.08	0.63	0.152	0.108)	0.027	0.125
134	11.17	0.63	0.152	0.108)	0.027	0.125
135	11.25	0.63	0.152	0.107)	0.027	0.125
136	11.33	0.63	0.152	0.106)	0.027	0.125
137	11.42	0.63	0.152	0.106)	0.027	0.125
138	11.50	0.63	0.152	0.105)	0.027	0.125
139	11.58	0.57	0.136	0.105)	0.024	0.112
140	11.67	0.57	0.136	0.104)	0.024	0.112
141	11.75	0.57	0.136	0.104)	0.024	0.112
142	11.83	0.60	0.144	$0.103)$	0.026	0.118
143	11.92	0.60	0.144	0.103)	0.026	0.118
144	12.00	0.60	0.144	0.102)	0.026	0.118
145	12.08	0.83	0.200	0.102)	0.036	0.164
146	12.17	0.83	0.200	0.101)	0.036	0.164
147	12.25	0.83	0.200	0.101)	0.036	0.164
148	12.33	0.87	0.208	0.100)	0.037	0.171
149	12.42	0.87	0.208	0.100)	0.037	0.171
150	12.50	0.87	0.208	0.099)	0.037	0.171
151	12.58	0.93	0.224	0.099)	0.040	0.184
152	12.67	0.93	0.224	0.098)	0.040	0.184
153	12.75	0.93	0.224	0.098)	0.040	0.184
154	12.83	0.97	0.232	0.097)	0.042	0.190
155	12.92	0.97	0.232	0.097)	0.042	0.190
156	13.00	0.97	0.232	0.096)	0.042	0.190
157	13.08	1.13	0.272	0.096)	0.049	0.223
158	13.17	1.13	0.272	0.095)	0.049	0.223
159	13.25	1.13	0.272	0.095)	0.049	0.223
160	13.33	1.13	0.272	(0.094)	0.049	0.223
161	13.42	1.13	0.272	(0.094)	0.049	0.223
162	13.50	1.13	0.272	0.093)	0.049	0.223
163	13.58	0.77	0.184	0.093)	0.033	0.151
164	13.67	0.77	0.184	0.092)	0.033	0.151
165	13.75	0.77	0.184	0.092)	0.033	0.151
166	13.83	0.77	0.184	0.092)	0.033	0.151
167	13.92	0.77	0.184	0.091)	0.033	0.151
168	14.00	0.77	0.184	0.091)	0.033	0.151
169	14.08	0.90	0.216	0.090)	0.039	0.177
170	14.17	0.90	0.216	0.090)	0.039	0.177
171	14.25	0.90	0.216	0.089)	0.039	0.177
172	14.33	0.87	0.208	0.089)	0.037	0.171
173	14.42	0.87	0.208	0.088)	0.037	0.171
174	14.50	0.87	0.208	(0.088)	0.037	0.171
175	14.58	0.87	0.208	0.087)	0.037	0.171
176	14.67	0.87	0.208	0.087)	0.037	0.171
177	14.75	0.87	0.208	(0.086)	0.037	0.171
178	14.83	0.83	0.200	(0.086)	0.036	0.164
179	14.92	0.83	0.200	0.086)	0.036	0.164
180	15.00	0.83	0.200	(0.085)	0.036	0.164
181	15.08	0.80	0.192	(0.085)	0.035	0.157

182	15.17	0.80	0.192	0.084)	0.035	0.157
183	15.25	0.80	0.192	(0.084)	0.035	0.157
184	15.33	0.77	0.184	(0.083)	0.033	0.151
185	15.42	0.77	0.184	(0.083)	0.033	0.151
186	15.50	0.77	0.184	(0.083)	0.033	0.151
187	15.58	0.63	0.152	(0.082)	0.027	0.125
188	15.67	0.63	0.152	(0.082)	0.027	0.125
189	15.75	0.63	0.152	(0.081)	0.027	0.125
190	15.83	0.63	0.152	(0.081)	0.027	0.125
191	15.92	0.63	0.152	(0.080)	0.027	0.125
192	16.00	0.63	0.152	(0.080)	0.027	0.125
193	16.08	0.13	0.032	(0.080)	0.006	0.026
194	16.17	0.13	0.032	(0.079)	0.006	0.026
195	16.25	0.13	0.032	(0.079)	0.006	0.026
196	16.33	0.13	0.032	(0.078)	0.006	0.026
197	16.42	0.13	0.032	(0.078)	0.006	0.026
198	16.50	0.13	0.032	(0.078)	0.006	0.026
199	16.58	0.10	0.024	(0.077)	0.004	0.020
200	16.67	0.10	0.024	(0.077)	0.004	0.020
201	16.75	0.10	0.024	(0.076)	0.004	0.020
202	16.83	0.10	0.024	(0.076)	0.004	0.020
203	16.92	0.10	0.024	(0.076)	0.004	0.020
204	17.00	0.10	0.024	(0.075)	0.004	0.020
205	17.08	0.17	0.040	(0.075)	0.007	0.033
206	17.17	0.17	0.040	(0.075)	0.007	0.033
207	17.25	0.17	0.040	(0.074)	0.007	0.033
208	17.33	0.17	0.040	(0.074)	0.007	0.033
209	17.42	0.17	0.040	(0.073)	0.007	0.033
210	17.50	0.17	0.040	(0.073)	0.007	0.033
211	17.58	0.17	0.040	(0.073)	0.007	0.033
212	17.67	0.17	0.040	(0.072)	0.007	0.033
213	17.75	0.17	0.040	(0.072)	0.007	0.033
214	17.83	0.13	0.032	(0.072)	0.006	0.026
215	17.92	0.13	0.032	(0.071)	0.006	0.026
216	18.00	0.13	0.032	(0.071)	0.006	0.026
217	18.08	0.13	0.032	(0.071)	0.006	0.026
218	18.17	0.13	0.032	(0.070)	0.006	0.026
219	18.25	0.13	0.032	(0.070)	0.006	0.026
220	18.33	0.13	0.032	(0.070)	0.006	0.026
221	18.42	0.13	0.032	(0.069)	0.006	0.026
222	18.50	0.13	0.032	(0.069)	0.006	0.026
223	18.58	0.10	0.024	(0.069)	0.004	0.020
224	18.67	0.10	0.024	(0.068)	0.004	0.020
225	18.75	0.10	0.024	(0.068)	0.004	0.020
226	18.83	0.07	0.016	(0.068)	0.003	0.013
227	18.92	0.07	0.016	(0.067)	0.003	0.013
228	19.00	0.07	0.016	(0.067)	0.003	0.013
229	19.08	0.10	0.024	(0.067)	0.004	0.020
230	19.17	0.10	0.024	(0.066)	0.004	0.020
231	19.25	0.10	0.024	(0.066)	0.004	0.020
232	19.33	0.13	0.032	(0.066)	0.006	0.026
233	19.42	0.13	0.032	(0.065)	0.006	0.026
234	19.50	0.13	0.032	(0.065)	0.006	0.026
235	19.58	0.10	0.024	(0.065)	0.004	0.020
236	19.67	0.10	0.024	(0.064)	0.004	0.020
237	19.75	0.10	0.024	(0.064)	0.004	0.020
238	19.83	0.07	0.016	(0.064)	0.003	0.013
239	19.92	0.07	0.016	(0.064)	0.003	0.013
240	20.00	0.07	0.016	(0.063)	0.003	0.013
241	20.08	0.10	0.024	(0.063)	0.004	0.020
242	20.17	0.10	0.024	(0.063)	0.004	0.020
243	20.25	0.10	0.024	(0.062)	0.004	0.020
244	20.33	0.10	0.024	(0.062)	0.004	0.020
245	20.42	0.10	0.024	(0.062)	0.004	0.020
246	20.50	0.10	0.024	(0.062)	0.004	0.020
247	20.58	0.10	0.024	(0.061)	0.004	0.020
248	20.67	0.10	0.024	(0.061)	0.004	0.020
249	20.75	0.10	0.024	(0.061)	0.004	0.020
250	20.83	0.07	0.016	(0.061)	0.003	0.013
251	20.92	0.07	0.016	(0.060)	0.003	0.013
252	21.00	0.07	0.016	(0.060)	0.003	0.013
253	21.08	0.10	0.024	(0.060)	0.004	0.020
254	21.17	0.10	0.024	(0.060)	0.004	0.020
255	21.25	0.10	0.024	(0.059)	0.004	0.020
256	21.33	0.07	0.016	(0.059)	0.003	0.013
257	21.42	0.07	0.016	(0.059)	0.003	0.013
258	21.50	0.07	0.016	(0.059)	0.003	0.013
259	21.58	0.10	0.024	(0.059)	0.004	0.020
260	21.67	0.10	0.024	(0.058)	0.004	0.020
261	21.75	0.10	0.024	(0.058)	0.004	0.020
262	21.83	0.07	0.016	(0.058)	0.003	0.013
263	21.92	0.07	0.016	(0.058)	0.003	0.013
264	22.00	0.07	0.016	(0.058)	0.003	0.013
265	22.08	0.10	0.024	(0.057)	0.004	0.020
266	22.17	0.10	0.024	(0.057)	0.004	0.020
267	22.25	0.10	0.024	(0.057)	0.004	0.020
268	22.33	0.07	0.016	(0.057)	0.003	0.013
269	22.42	0.07	0.016	(0.057)	0.003	0.013
270	22.50	0.07	0.016	(0.057)	0.003	0.013
271	22.58	0.07	0.016	(0.056)	0.003	0.013
272	22.67	0.07	0.016	(0.056)	0.003	0.013
273	22.75	0.07	0.016	(0.056)	0.003	0.013

Storage Calculations

Buildings 1\&2 - Infiltration Basin A

Buildings 1 and 2 - Infiltration Basin A

Hydrograph Volumes		
	Volume (cu. ft.)	Volume (ac. ft.)
Existing Condition	28,240	0.6483
Proposed Condition	220,235	5.0559
Difference in Volume	191,995	4.4076

Peak Flowrate	
	Flowrate (cfs)
Proposed Condition	8.32

Time of Concentration	
	Tc (min)
Existing Condition	30
Proposed Condition	441.2

Stage Storage Volumes			
Elevation (ft.)	Depth (ft.)	Total Volume (cu. ft.)	Total Volume (ac. ft.)
880.00	0.00	0	0.0000
880.50	0.50	22,591	0.5186
881.00	1.00	47,303	1.0859
881.50	1.50	74,145	1.7021
882.00	2.00	103,124	2.3674
882.50	2.50	134,248	3.0819
883.00	3.00	167,524	3.8458
883.50	3.50	202,959	4.6593
884.00	4.00	240,563	5.5226
884.50	4.50	280,343	6.4358
885.00	5.00	322,309	7.3992

proposed condition Tc > existing condition Tc

Buildings 3\&4 - Infiltration Basin B

Buildings 3 and 4 - Infiltration Basin B

Hydrograph Volumes		
	Volume (cu. ft.)	Volume (ac. ft.)
Existing Condition	17,424	0.4000
Proposed Condition	128,341	2.9463
Difference in Volume	110,917	2.5463

Peak Flowrate	
	Flowrate (cfs)
Proposed Condition	4.84

Time of Concentration	
	Tc (min)
Existing Condition	30
Proposed Condition	441.9

Stage Storage			
Elevation (ft.)	Depth (ft.)	Total Volume (cu. ft.)	Total Volume (ac. ft.)
879.73	0.00	0	0.0000
880.23	0.50	16,533	0.3795
880.73	1.00	33,908	0.7784
881.23	1.50	52,136	1.1969
881.73	2.00	71,226	1.6351
882.23	2.50	91,188	2.0934
882.73	3.00	112,033	2.5719
883.23	3.50	133,770	3.0709
883.73	4.00	156,420	3.5909
884.23	4.50	180,009	4.1324
884.73	5.00	204,553	4.6959
884.90	5.17	213,056	4.8911

proposed condition Tc > existing condition Tc

Building 5 - Underground Chambers

Building 5 - Underground Chambers

Hydrograph Volumes		
	Volume (cu. ft.)	Volume (ac. ft.)
Existing Condition	9,618	0.2208
Proposed Condition	14,884	0.3417
Difference in Volume	5,266	0.1209

Peak Flowrate	
	Flowrate (cfs)
Proposed Condition	0.562

Time of Concentration	
	Tc (min)
Existing Condition	30
Proposed Condition	441.4

proposed condition Tc > existing condition Tc

Refer to next page for stage storage calculator

Project:

Chamber Model -
Units -

Stormiech

Number of chambers -
Voids in the stone (porosity) -
Base of Stone Elevation -
Amount of Stone Above Chambers -
Amount of Stone Below Chambers -

88
40
0.00
6
6
6
in

$$
\square \text { Include Perimeter Stone in Calculations }
$$

Height of System (inches)	Incremental Single Chamber (cubic feet)	Incremental Total Chamber (cubic feet)	Incremental Stone (cubic feet)	$\begin{array}{c\|} \hline \text { Incremental Ch } \\ \& \text { St } \\ \text { (cubic feet) } \end{array}$	Cumulative Chamber (cubic feet)	Elevation (feet)	
42	0.00	0.00	99.16	99.16	6590.88	3.50	
41	0.00	0.00	99.16	99.16	6491.72	3.42	
40	0.00	0.00	99.16	99.16	6392.56	3.33	
39	0.00	0.00	99.16	99.16	6293.40	3.25	
38	0.00	0.00	99.16	99.16	6194.24	3.17	
37	0.00	0.00	99.16	99.16	6095.08	3.08	
36	0.05	4.84	97.22	102.06	5995.92	3.00	
35	0.16	14.34	93.42	107.76	5893.86	2.92	
34	0.28	24.81	89.23	114.05	5786.10	2.83	
33	0.60	53.15	77.90	131.05	5672.06	2.75	
32	0.80	70.55	70.94	141.49	5541.01	2.67	
31	0.95	83.66	65.70	149.35	5399.52	2.58	HCOC vol. met here
30	1.07	94.56	61.34	155.89	5250.16	2.50	
29	1.18	103.88	57.61	161.49	5094.27	2.42	
28	1.27	111.38	54.61	165.99	4932.78	2.33	
27	1.36	119.24	51.46	170.70	4766.80	2.25	
26	1.45	127.96	47.97	175.94	4596.09	2.17	
25	1.52	134.18	45.49	179.66	4420.16	2.08	
24	1.58	139.24	43.46	182.71	4240.49	2.00	
23	1.64	144.52	41.35	185.87	4057.79	1.92	
22	1.70	149.56	39.34	188.89	3871.92	1.83	
21	1.75	154.26	37.46	191.71	3683.02	1.75	
20	1.80	158.65	35.70	194.35	3491.31	1.67	
19	1.85	163.24	33.86	197.10	3296.96	1.58	
18	1.89	166.59	32.52	199.11	3099.86	1.50	
17	1.93	170.19	31.08	201.27	2900.74	1.42	
16	1.97	173.80	29.64	203.44	2699.47	1.33	
15	2.01	176.87	28.41	205.28	2496.03	1.25	
14	2.04	179.96	27.18	207.13	2290.75	1.17	
13	2.07	182.60	26.12	208.72	2083.61	1.08	
12	2.10	185.23	25.07	210.30	1874.90	1.00	
11	2.13	187.60	24.12	211.72	1664.60	0.92	
10	2.15	189.54	23.34	212.88	1452.88	0.83	
9	2.18	191.58	22.53	214.11	1240.00	0.75	
8	2.20	193.46	21.78	215.23	1025.89	0.67	
7	2.21	194.24	21.46	215.71	810.66	0.58	
6	0.00	0.00	99.16	99.16	594.95	0.50	
5	0.00	0.00	99.16	99.16	495.79	0.42	
4	0.00	0.00	99.16	99.16	396.64	0.33	
3	0.00	0.00	99.16	99.16	297.48	0.25	
2	0.00	0.00	99.16	99.16	198.32	0.17	
1	0.00	0.00	99.16	99.16	99.16	0.08	

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

How to use this worksheet（also see instructions in Section G of the WQMP Template）：

1．Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site．Check each box that applies．
2．Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit．
3．Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP．Use the format shown in Table G．1on page 23 of this WQMP Template．Describe your specific BMPs in an accompanying narrative，and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here．

IF THESE SOURCES WILL BE ON THE PROJECT SITE ．．．	．．．THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs，AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls－Show on WQMP Drawings	3 Permanent Controls－List in WQMP Table and Narrative	Operational BMPs－Include in WQMP Table and Narrative
A．On－site storm drain inlets	凶 Locations of inlets．	区 Mark all inlets with the words ＂Only Rain Down the Storm Drain＂or similar．Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District， call 951.955 .1200 to verify．	凶 Maintain and periodically repaint or replace inlet markings． 凶 Provide stormwater pollution prevention information to new site owners，lessees，or operators． 凶 See applicable operational BMPs in Fact Sheet SC－44，＂Drainage System Maintenance，＂in the CASQA Stormwater Quality Handbooks at www．cabmphandbooks．com 凶 Include the following in lease agreements：＂Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains．＂
B．Interior floor drains and elevator shaft sump pumps		State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer．	® Inspect and maintain drains to prevent blockages and overflow．
C．Interior parking garages		－State that parking garage floor drains will be plumbed to the sanitary sewer．	\square Inspect and maintain drains to prevent blockages and overflow．

IF THESE SOURCES WILL BE ON THE PROJECT SITE ．．．	．．．THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs，AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls－Show on WQMP Drawings	3 Permanent Controls－List in WQMP Table and Narrative	4 Operational BMPs－Include in WQMP Table and Narrative
D1．Need for future indoor \＆structural pest control		Note building design features that discourage entry of pests．	－Provide Integrated Pest Management information to owners，lessees，and operators．
D2．Landscape／ Outdoor Pesticide Use	Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained． 凹 Show self－retaining landscape areas，if any． Show stormwater treatment and hydrograph modification management BMPs．（See instructions in Chapter 3，Step 5 and guidance in Chapter 5．）	State that final landscape plans will accomplish all of the following． －Preserve existing native trees， shrubs，and ground cover to the maximum extent possible． 区 Design landscaping to minimize irrigation and runoff，to promote surface infiltration where appropriate，and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution． Where landscaped areas are used to retain or detain stormwater，specify plants that are tolerant of saturated凹 soil conditions． Consider using pest－resistant © plants，especially adjacent to hardscape． To insure successful establishment， select plants appropriate to site soils，slopes，climate，sun，wind， rain，land use，air movement， ecological consistency，and plant interactions．	【 Maintain landscaping using minimum or no pesticides． 凹 See applicable operational BMPs in ＂What you should know for．．．．．Landscape and Gardening＂at http：／／rcflood．org／stormwater／Error！ Hyperlink reference not valid． Provide IPM information to new owners，lessees and operators．

IF THESE SOURCES WILL BE ON THE PROJECT SITE ．．．	．．．THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs，AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls－Show on WQMP Drawings	Permanent Controls－List in WQMP Table and Narrative	4 Operational BMPs－Include in WQMP Table and Narrative
E．Pools，spas，ponds， decorative fountains， and other water features．	Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet． （Exception：Public pools must be plumbed according to County Department of Environmental Health Guidelines．）	If the Co－Permittee requires pools to be plumbed to the sanitary sewer，place a note on the plans and state in the narrative that this connection will be made according to local requirements．	See applicable operational BMPs in ＂Guidelines for Maintaining Your Swimming Pool，Jacuzzi and Garden Fountain＂at http：／／rcflood．org／stormwater／
－F．Food service	For restaurants，grocery stores，and other food service operations，show location（indoors or in a covered area outdoors）of a floor sink or other area for cleaning floor mats， containers，and equipment． On the drawing，show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer．	－Describe the location and features of the designated cleaning area． －Describe the items to be cleaned in this facility and how it has been sized to insure that the largest items can be accommodated．	See the brochure，＂The Food Service Industry Best Management Practices for： Restaurants，Grocery Stores， Delicatessens and Bakeries＂at http：／／rcflood．org／stormwater／ Provide this brochure to new site owners，lessees，and operators．
区 G．Refuse areas	【 Show where site refuse and recycled materials will be handled and stored for pickup．See local municipal requirements for sizes and other details of refuse areas． ® If dumpsters or other receptacles are outdoors，show how the designated area will be covered， graded，and paved to prevent run－ on and show locations of berms to prevent runoff from the area． －Any drains from dumpsters， compactors，and tallow bin areas shall be connected to a grease removal device before discharge to sanitary sewer．	【 State how site refuse will be handled and provide supporting detail to what is shown on plans． © State that signs will be posted on or near dumpsters with the words＂Do not dump hazardous materials here＂or similar．	【 State how the following will be implemented： Provide adequate number of receptacles．Inspect receptacles regularly；repair or replace leaky receptacles．Keep receptacles covered． Prohibit／prevent dumping of liquid or hazardous wastes．Post＂no hazardous materials＂signs．Inspect and pick up litter daily and clean up spills immediately．Keep spill control materials available on－site．See Fact Sheet SC－34，＂Waste Handling and Disposal＂in the CASQA Stormwater Quality Handbooks at www．cabmphandbooks．com

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls-Show on WQMP Drawings	Permanent Controls-List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
凹 H. Industrial processes.	- Show process area.	® If industrial processes are to be located on site, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system."	See Fact Sheet SC-10, "NonStormwater Discharges" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com See the brochure "Industrial \& Commercial Facilities Best Management Practices for: Industrial, Commercial Facilities" at http://rcflood.org/stormwater/

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
$\overline{1}$ Potential Sources of Runoff Pollutants	2 Permanent Controls-Show on WQMP Drawings	3 Permanent Controls-List in WQMP Table and Narrative	4 Operational BMPs-Include in WQMP Table and Narrative
I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent runon or run-off from area. Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site.	Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for: - Hazardous Waste Generation - Hazardous Materials Release Response and Inventory - California Accidental Release (CalARP) - Aboveground Storage Tank - Uniform Fire Code Article 80 Section 103(b) \& (c) 1991 - Underground Storage Tank	See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls-Show on WQMP Drawings	3 Permanent Controls-List in WQMP Table and Narrative	Operational BMPs-Include in WQMP Table and Narrative
J. Vehicle and Equipment Cleaning	Show on drawings as appropriate: (1) Commercial/industrial facilities having vehicle/equipment cleaning needs shall either provide a covered, bermed area for washing activities or discourage vehicle/equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes shall have a paved, bermed, and covered car wash area (unless car washing is prohibited on-site and hoses are provided with an automatic shutoff to discourage such use). (3) Washing areas for cars, vehicles, and equipment shall be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities shall be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility shall discharge to the sanitary sewer, or a wastewater reclamation system shall be installed.	If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.	Describe operational measures to implement the following (if applicable): Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to "Outdoor Cleaning Activities and Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/ Car dealerships and similar may rinse cars with water only.

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls-Show on WQMP Drawings	3 Permanent Controls-List in WQMP Table and Narrative	Operational BMPs-Include in WQMP Table and Narrative
K. Vehicle/Equipment Repair and Maintenance	Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent run-on and runoff of stormwater. Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained.	State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements.	In the Stormwater Control Plan, note that all of the following restrictions apply to use the site: No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. No person shall leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. Refer to "Automotive Maintenance \& Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations". Brochure can be found at http://rcflood.org/stormwater/ Refer to Outdoor Cleaning Activities and Professional Mobile Service Providers for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at http://rcflood.org/stormwater/

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
$\overline{1}$ Potential Sources of Runoff Pollutants	Permanent Controls-Show on WQMP Drawings	3 Permanent Controls-List in WQMP Table and Narrative	4 Operational BMPs—Include in WQMP Table and Narrative
L. Fuel Dispensing Areas	Fueling areas ${ }^{6}$ shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable. Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area ${ }^{1}$.] The canopy [or cover] shall not drain onto the fueling area.		The property owner shall dry sweep the fueling area routinely. See the Fact Sheet SD-30, "Fueling Areas" in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

[^3]| IF THESE SOURCES WILL BE ON THE PROJECT SITE ... | ... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE | | |
| :---: | :---: | :---: | :---: |
| Potential Sources of Runoff Pollutants | Permanent Controls-Show on WQMP Drawings | 3
 Permanent Controls-List in WQMP Table and Narrative | 4
 Operational BMPs-Include in WQMP Table and Narrative |
| 凶 M. Loading Docks | ® Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize run-on to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer.
 Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation.
 Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. | | Move loaded and unloaded items indoors as soon as possible.
 区 See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com |

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
Potential Sources of Runoff Pollutants	Permanent Controls-Show on WQMP Drawings	Permanent Controls-List in WQMP Table and Narrative	Operational BMPs-Include in WQMP Table and Narrative
N. Fire Sprinkler Test Water		- Provide a means to drain fire sprinkler test water to the sanitary sewer.	See the note in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com
o. Miscellaneous Drain or Wash Water or Other Sources Boiler drain lines Condensate drain lines Rooftop equipment Drainage sumps Roofing, gutters, and trim. Other sources		Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment. Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water. Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. Include controls for other sources as specified by local reviewer.	

IF THESE SOURCES WILL BE ON THE PROJECT SITE THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE		
1 Potential Sources of Runoff Pollutants	2 Permanent Controls-Show on WQMP Drawings	3 Permanent Controls-List in WQMP Table and Narrative	4 Operational BMPs-Include in WQMP Table and Narrative
P. Plazas, sidewalks, and parking lots.			凶 Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.

Appendix 9: O\&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Operation and Maintenance Plan

Project Title: Rubidoux Commerce Park

Contact Information:

Prepared for:
Proficiency Rubidoux, LLC
5020 Campus Drive
Newport Beach, CA 92660
Phone: (949) 296-7006
Contact: Jeff Trenton

Prepared by:
Thienes Engineering, Inc. 14349 Firestone Boulevard La Mirada, CA 90638
(714) 521-4811

Contact: Luis Prado (luisp@thieneseng.com)
Job No. 3384b

Table of Contents

I. Inspection and Maintenance Log.2
II. Updates, Revisions, and Errata 3
III. Introduction 4
IV. Responsibility for Maintenance 6
IV.A General 6
IV.B Staff Training Program 6
IV.C Records 6
IV.D Safety 6
V. Summary of Drainage Management Areas and Stormwater BMPs 7
V.A Drainage Areas 7
V.B Structural Post-Construction BMPs 8
V.C Self-Retaining Areas or Other 8
VI. Stormwater BMP Design Documentation 9
VI.A "As-Built" Drawings of each Stormwater BMP 9
VI.B Manufacturer's Data, Manuals, and Maintenance Requirements 9
VI.C Specific Operation and Maintenance Concerns and Troubleshooting 9
VII. Maintenance Schedule or Matrix 10
VII.A Maintenance Schedule 10
VII.B Service Agreement Information 11
List of Appendices
Appendix 9-1: Inspection and Maintenance Logs
Appendix 9-2: Updates, Revisions, and Errata
Appendix 9-3: Maintenance Mechanism
Appendix 9-4: Training Records
Appendix 9-5: Site Plan and Details
Appendix 9-6: "As-Built" Drawings
Appendix 9-7: Manufacturer Information
Appendix 9-8: Service Agreement Information

I. Inspection and Maintenance Log

Date	Observations/Actions	Inspector	

Additional inspection and maintenance logs to be included in Appendix 1 of this O\&M Plan.

II. Updates, Revisions, and Errata

Revision Number	Date	Brief Description of Update/Revision/Errata, include section and page number	Prepared and Approved By

Additional updates, revisions, and errata to be include in Appendix 2 of this O\&M Plan.

III. Introduction

The project site consists of 5 buildings over three distinct areas. Buildings 1-3 are located between 25th Street and 28th Street on the northwesterly side of the prolongation of 26th Street and the proposed extension of Van Dell Road. Building 4 is located on the southeasterly side of the extension of Van Dell Road and 26th Street. The West Riverside Canal is located on the southerly sides of Buildings 1, 2, and 4. Finally, Building 5 is located at the southwesterly corner of 26 th Street and Avalon Street.

The project site comprised of Buildings $1-4$ consists of 74.30 acres while the Building 5 site consists of 2.49 acres. Each building has truck yards and vehicle parking lots. There will be two infiltration basins; one located east of Buildings 1, 2 and the other one located southeast of Building 4. Underground chambers will be located west of Building 5. A storm drain system will be built near the westerly property line to intercept runoff from the westerly adjacent hills and horse stables. The said storm drain system will convey flows southwest (onsite) and then southeast in 28 th Street before connecting to the existing 72 -inch storm drain in 28 th Street (near the West Riverside Canal intersection).

Existing Conditions

The site is currently an undeveloped dirt lot. Runoff from the site generally surface drains south-easterly to a dirt channel and then to the 72 -inch storm drain in 28 th Street. The offsite hillside area and horse stables northwest of the project site are also tributary to the site.

Proposed Conditions

The onsite northwesterly landscape areas, offsite northerly hills and existing horse stables will drain southerly to a proposed storm drain. Runoff is then conveyed southerly to the existing 72-inch Storm Drain Line "D" in 28th Street.

Generally, runoff from the Building 3 portion of the project site is collected in catch basins located in the truck yard and parking areas. A proposed private storm drain will convey these flows easterly through the Building 4 site. Runoff from Building 4 is also tributary to the storm drain system. The storm drain continues easterly, discharging into Infiltration Basin-B located on the southeasterly side of the Building 4. Overflows from Infiltration Basin-B are then conveyed southwesterly to the proposed storm drain in 28th Street.

Runoff from Buildings 1 and 2 are generally collected in catch basins located in the truck yards and vehicle parking lots. Proposed storm drain systems convey flows southeasterly into Infiltration Basin-A located on the easterly side of Buildings 1 and 2. Overflows from Infiltration Basin-A are then conveyed southwesterly to the proposed storm drain in 28th Street.

The southerly Building 5 site will maintain its existing drainage pattern. The site generally drains to a grate inlet at the southwesterly corner of the site. From here, overflows will discharge onto Avalon Street via a parkway culvert. Areas adjacent to the street also discharge to Avalon Street. Similar to existing conditions, runoff from the Building 5 site will be conveyed southwesterly in Avalon Street to the catch basin at the 28th Street/Avalon Street intersection, ultimately to the 72-inch storm drain in 28th Street. A sump pump will be utilized to pump stormwater out of the proposed truck well and onto the adjacent finish grade.

A total of 3.85 acres of landscape areas (DMA D) located along the street frontages from the buildings will drain offsite. These areas are considered self-treating areas.

Hydrologic conditions of concern (HCOC) will be mitigated via the proposed infiltration basins and the underground chambers. The difference in volumes between the existing and proposed 2-year, 24-hour storm event will be retained onsite. Refer to Appendix 7 for existing and proposed hydrographs.

IV. Responsibility for Maintenance

IV.A General

Funding will be provided by the owner:
Proficiency Rubidoux, LLC
5020 Campus Drive
Newport Beach, CA 92660
Phone: (949) 296-7006
Contact: Jeff Trenton

A copy of the Covenant Agreement will be attached in Appendix 3 of this O\&M Plan.

IV.B Staff Training Program

Staff training records and descriptions will be inserted in Appendix 4 of this O\&M Plan.

IV.C Records

Maintenance records are to be inserted chronologically in Appendix 1 of this O\&M Plan.

IV.D Safety

All maintenance procedures shall comply with the latest OSHA standards.

V. Summary of Drainage Management Areas and Stormwater BMPs

V.A Drainage Areas

See Appendix 5 of this O\&M Plan for WQMP site map.

DMA Name or ID	Surface Type(s)	Area (sq. Ft.)	Area (Acres)	DMA Type
A1	Roofs/Conc/Asphalt	$1,513,710$	34.75	Type D
A2	Ornamental Landscaping	202,554	4.65	Type D
A3	Natural (A Soil)	330,185	7.58	Type D
B1	Roofs/Conc/Asphalt	933,055	21.42	Type D
B2	Ornamental Landscaping	107,593	2.47	Type D
C1	Roofs/Conc/Asphalt	85,813	1.97	Type D
C2	Ornamental Landscaping	4,356	0.10	Type D
D	Ornamental Landscaping	167,706	3.85	Type A

Geo-location of the BMPs using latitude and longitude coordinates

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)	Latitude	Longitude
A	On-site storm drain inlets	WQMP Site Map	---	---
B	Interior floor drains and elevator shaft sump pumps	N/A	---	---
D2	Landscape / Outdoor Pesticide Use	On-site Landscape Improvement Plans	---	---
G	Refuse Areas	WQMP Site Map	---	---
H	Industrial processes	WQMP Site Map (indoors, if any)	---	---
M	Loading Docks	WQMP Site Map	---	---
P	Plazas, sidewalks, and parking lots	N/A	---	---
IF-A	Infiltration Basin-A	WQMP Site Map	34.01306	-117.39895
IF-B	Infiltration Basin-B	WQMP Site Map	34.01496	-117.39548
STC-C	Underground Chambers-C	WQMP Site Map	34.01337	-117.39658

V.B Structural Post-Construction BMPs

See Appendix 5 of this O\&M Plan for WQMP site map.
Additional BMP details are available in Appendix 10 of the WQMP.

V.C Self-Retaining Areas or Other

Landscaped areas in DMA D are considered self-treating areas.

VI. Stormwater BMP Design Documentation

VI.A "As-Built" Drawings of each Stormwater BMP

See Appendix 6 of this O\&M Plan for "as-built" drawings.
VI.B Manufacturer's Data, Manuals, and Maintenance Requirements

Not applicable, there are no manufactured stormwater BMPs.

VI.C Specific Operation and Maintenance Concerns and Troubleshooting

Not applicable.

VII. Maintenance Schedule or Matrix

VII.A Maintenance Schedule

Schedule (Infiltration Basin)	Inspection and Maintenance Activity (Infiltration Basin)
Ongoing including just before the annual storm season and following rainfall events.	- Maintain vegetation as needed. Use of fertilizers, pesticides and herbicides should be strenuously avoided to ensure they don't contribute to water pollution. If appropriate native plant selections and other IPM methods are used, such products shouldn't be needed. If such projects are used, - Products shall be applied in accordance with their labeling, especially in relation to application to water, and in areas subjected to flooding. - Fertilizers should not be applied within 15 days before, after, or during the rainy season. - Remove debris and litter from the entire basin to minimize filter clogging and to improve aesthetics. - Check for obvious problems and repair as needed. Address odor, insects, and overgrowth issues associated with stagnant or standing water in the basin bottom. There should be no longterm ponding water. - Check for erosion and sediment laden areas in the basins. Repair as needed. Clean forebay of debris, litter, sediment, etc upon discovery. - Revegetate side slopes where needed.
Annually. Schedule these inspections within 72 hours after a significant rainfall and prior to the rainy season (October 1st). "Significant rainfall" is defined as 0.5 inches or greater of rainfall: http://www.wrh.noaa.gov/ forecast/wxtables/	- Inspection of hydraulic and structural facilities. Examine the inlet for blockage, the embankment and spillway integrity, as well as damage to any structural element. - Check side slopes and embankments for erosion, slumping and overgrowth. - Check the basin depth for sediment build up and reduced total capacity. Scrape bottom as needed and remove sediment. Restore to original cross-section and infiltration rate. Replant basin vegetation. - Verify the basin bottom is allowing acceptable infiltration. Use a disc or other method to aerate basin bottom only if there is actual significant loss of infiltrative capacity, rather than on a routine basis. - No water should be preset 72 hours after an event. No long term standing water should be present at all. No algae formation should be visible. Correct problem as needed.

Schedule (Underground Retention Chambers)	Inspection and Maintenance Activity (Underground Retention Chambers)
The isolator row shall be inspected semi-annually (by October 1st and February 1st) and cleaned by water-flush and vacuum when solids accumulate to 3" depth. Maintenance to be conducted through service contract with the vendor or equally qualified contractor.	The isolator row shall be inspected for debris and sediment accumulations and maintained by a qualified technician and he/she will properly dispose of all wastes and inspect for standing water. A manhole is installed in order to inspect and maintain the inlet row. All entry into the chamber system must be done per OSHA codes to ensure operator and inspector safety. Inspection ports should be checked 48 hours after storm events to see that the water is draining down, at least once each rainy season, following a major storm event. Records shall be maintained by owner to document inspections.

VII.B Service Agreement Information

See Appendix 8 of this O\&M Plan for service agreement information with any contractors regarding the O\&M of BMPs at the site, if any.

Appendix 9-1: Inspection and Maintenance Logs

Insert Additional Inspection or Maintenance Logs Here

Date	Observations/Actions	Inspector

Appendix 9-2: Updates, Revisions, and Errata

Revision Number	Date	Brief Description of Update/Revision/Errata, include section and page number	Prepared and Approved By

Appendix 9-3: Maintenance Mechanism

Copy of Covenant Agreement
Establishing Notification Process And Responsibility
For Water Quality Management Plan Implementation And Maintenance

Notification Process and Responsibility

1. Name:

Title:
Phone No.:
WQMP Responsibilities, Duties, and Activities:
(1) Routine inspections to evaluate BMP effectiveness.
(2) Identifying when BMPs require maintenance.
(3) Working with qualified contractors to maintain the BMP.
(4) Recordkeeping of inspections and maintenance activities.
2. Name:

Title:
Phone No.:
WQMP Responsibilities, Duties, and Activities:
(1) Cleaning, repairing, servicing, and maintenance of BMP.
3. Name:

Title:
Phone No.:
WQMP Responsibilities, Duties, and Activities:
(1) In event of failure, and with City Engineer's authorization, modify or replace with an upgraded BMP to prevent future failure.
(2) Notify successors of BMPs and maintenance requirements.

RECORDING REQUESTED BY:
Proficiency Rubidoux, LLC
(Property Owner's Name)
AND WHENRECORDED MAILTO:
Jeff Trenton
(Property Owner's Mailing Address)
5020 Campus Drive

Newport Beach, CA 92660

CITY OF JURUPA VALLEY WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP OPERATION AND MAINTENANCE AGREEMENT
 WITH Proficiency Rubidoux, LLC

1. PartiesandDate.

THIS WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP OPERATION AND MAINTENANCE AGREEMENT ("Agreement") is made and entered into in the City of Jurupa Valley, California this \qquad day of \qquad by and between the City of Jurupa Valley, a California municipal corporation ("City"), and Proficiency Rubidoux, LLC
with its principal place of business at 5020 Campus Drive, Newport Beach, CA 92660
("Owner"). This Agreement applies to property located at XXXX 26th Street, Jurupa
Valley, CA 92509 APN No. see APNs below in the County of Riverside,

State of California.
178-030-001, 178-030-002, 178-030-003, 178-030-006, 178-030-008, 178-030-009, 178-030-010; 178-070-001, 178-070-002, 178-070-003; 178-080-009

2. Recitals.

2.1 The Owner owns real property ("Property") in the City of Jurupa Valley, County of Riverside, State of California, more specifically described in Exhibit "A" and depicted in Exhibit "B", each of which exhibits is attached hereto and incorporated herein by this reference.
2.2 At the time of initial approval of Owner's development project known as Rubidoux Commerce Center within the Property, the City required the project to employ Best Management Practices, hereinafter referred to as "BMPs," to minimize pollutants in urban runoff.
2.3 The Owner has chosen to install and/or implement BMPs as described in the Water Quality Management Plan, on file with the City, hereinafter referred to as "WQMP", to minimize pollutants in urban runoff and to minimize other adverse impacts of urban runoff.
2.4 The WQMP has been certified by the Owner and reviewed and approved by the City.
2.5 The BMPs, with installation and/or implementation on private property and draining only private property, are part of a private facility with all maintenance or replacement, therefore, the sole responsibility of the Owner in accordance with the terms of this Agreement.
2.6 The Owner is aware that periodic and continuous maintenance, including, but not necessarily limited to, filter material replacement and sediment removal, is required to assure peak performance of all BMPs in the WQMP and that, furthermore,
such maintenance activity will require compliance with all Local, State, or Federal laws and regulations, including those pertaining to confined space and waste disposal methods, in effect at the time such maintenance occurs

3. TERMS.

3.1 Responsibility for Operation and Maintenance of BMPs. Owner shall diligently maintain all BMPs in a manner assuring peak performance at all times. All reasonable precautions shall be exercised by Owner and Owner's representative or contractor in the removal and extraction of any material(s) from the BMPs and the ultimate disposal of the material(s) in a manner consistent with all relevant laws and regulations in effect at the time. As may be requested from time to time by the City, the Owner shall provide the City with documentation identifying the material(s) removed, the quantity, and disposal destination.
3.2 Right of Access. Owner hereby provides the City or City's designee complete access, of any duration, to the BMPs and their immediate vicinity at any time, upon reasonable notice, or in the event of emergency, as determined by City's Director of Public Works ("Director"), no advance notice, for the purpose of inspection, sampling, testing of the BMPs, and in case of emergency, to undertake, in the City's sole discretion, necessary repairs or other preventative measures at Owner's expense as provided in paragraph 3 below. City shall make every effort at all times to minimize or avoid interference with Owner's use of the Property.
3.3 City Maintenance at Owner's Expense. In the event Owner, or its successors or assigns, fails to accomplish the necessary maintenance contemplated by this Agreement, within five (5) days of being given written notice by the City, the City is hereby authorized to cause any maintenance necessary to be done and charge the entire cost and expense to the Owner or Owner's successors or assigns, including administrative costs, attorney's fees and interest thereon at the maximum rate authorized by the Civil Code from the date of the notice of expense until paid in full. The City, at its sole election, may make these costs to be a lien upon the property that may be collected at the same time and in the same manner as ordinary municipal taxes as provided in Government Code section 38773.5. Nothing in this section or this Agreement creates an obligation by the City to maintain or repair any BMP, nor does this section prohibit the City from pursuing other legal recourse against Owner.
3.4 Recording. This Agreement shall be recorded in the Office of the Recorder of Riverside County, California, at the expense of the Owner and shall constitute notice to all successors and assigns of the title to said Property of the obligation herein set forth, and also a lien in such amount as will fully reimburse the City, including interest as herein above set forth, subject to foreclosure in event of default in payment.
3.5 Attorney's Fees. In event of legal action occasioned by any default or action of the Owner, or its successors or assigns, the Owner and its successors or assigns agree(s) to pay all costs incurred by the City in enforcing the terms of this Agreement,
including reasonable attorney's fees and costs, and that the same shall become a part of the lien against said Property.
3.6 Covenant. It is the intent of the parties hereto that burdens and benefits herein undertaken shall constitute covenants that run with said Property and constitute a lien there against.
3.7 Binding on Successors. The obligations herein undertaken shall be binding upon the heirs, successors, executors, administrators and assigns of the parties hereto. The term "Owner" shall include not only the present Owner, but also its heirs, successors, executors, administrators, and assigns. Owner shall notify any successor to title of all or part of the Property about the existence of this Agreement. Owner shall provide such notice prior to such successor obtaining an interest in all or part of the Property. Owner shall provide a copy of such notice to the City at the same time such notice is provided to the successor.
3.8 Indemnity and Insurance. The Owner, its heirs, successors, executors, administrators and assigns agree to defend, indemnify and holds harmless the City, its officials, employees and its authorized agents from any and all damages, accidents, casualties, occurrences or claims (collectively, "Claims") which might arise or be asserted against the City and which are in any way connected with the construction, operation, presence, existence or maintenance of the BMP by the Owner, or from any personal injury or property damage that may result from the City or other public entities entering the Property under Sections 2 or 3 of this Agreement; provided, however, that in no event shall Owner, its heirs, successors, executors, administrators and assigns be obligated to defend, indemnify or hold harmless the City, its officials, employees, and its authorized agents from any Claims arising from the City's or its officials, employees, and its authorized agents active negligence or willful misconduct while the City enters the Property under Section 2 or 3 of this Agreement.. The Owner shall maintain liability insurance in commercially reasonable amounts, but not less than $\$ 1,000,000.00$, covering the BMP and City. The City shall require proof of insurance to be provided to City on a regular basis as determined by the City.
3.9 Time of the Essence. Time is of the essence in the performance of this Agreement.
3.10 Notice. Any notice to a party required or called for in this Agreement shall be served in person, or by deposit in the U.S. Mail, first class postage prepaid, to the address set forth below. Notice(s) shall be deemed effective upon receipt, or seventy-two (72) hours after deposit in the U.S. Mail, whichever is earlier. A party may change a notice address only by providing written notice thereof to the other party.

IF TO CITY:

City of Jurupa Valley
8930 Limonite Avenue
Jurupa Valley, CA 92509
Attn: Robert Makowski

IF TO OWNER:
Proficiency Rubidoux, LLC
5020 Campus Drive
Newnort Beach. CA 92660
Attn: Jeff Trenton

SIGNATURE PAGE TO

CITY OF JURUPA VALLEY
WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP
OPERATION AND MAINTENANCE AGREEMENT
WITH Proficiency Rubidoux, LLC

IN WITNESS THEREOF, the parties hereto have executed this Agreement as of the date first written above.

CITY OF JURUPA VALLEY a California Municipal Corporation		Proficiency Rubidoux, LLC	
		a	
By:		By:	
	Paul Toor City Engineer		Signature
			Jeff Trenton
			Name (Print)
			President
			Title (Print)
		By:	
			Signature
			Name (Print)
			Title (Print)

ATTEST:

City Clerk

Appendix 9-4: Training Records

Insert Training Records with Brief Discussion Here

Appendix 9-5: Site Plan and Details

Appendix 9-6: "As-Built" Drawings

Insert "As-Builts" Here When Available

Appendix 9-7: Manufacturer Information

Appendix 9-8: Service Agreement Information

 Insert Contractor Information (if any)
Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information

3.1 Infiltration BASIN

Type of BMP	LID - Infiltration
Treatment Mechanisms	Infiltration, Evapotranspiration (when vegetated), Evaporation, and Sedimentation
Maximum Treatment Area	50 acres
Other Names	Bioinfiltration Basin

Description

An Infiltration Basin is a flat earthen basin designed to capture the design capture volume, $V_{\text {BMP }}$. The stormwater infiltrates through the bottom of the basin into the underlying soil over a 72 hour drawdown period. Flows exceeding $V_{\text {BMP }}$ must discharge to a downstream conveyance system. Trash and sediment accumulate within the forebay as stormwater passes into the basin. Infiltration basins are highly effective in removing all targeted

Figure 1 - Infiltration Basin pollutants from stormwater runoff.

See Appendix A, and Appendix C, Section 1 of Basin Guidelines, for additional requirements.

Siting Considerations

The use of infiltration basins may be restricted by concerns over ground water contamination, soil permeability, and clogging at the site. See the applicable WQMP for any specific feasibility considerations for using infiltration BMPs. Where this BMP is being used, the soil beneath the basin must be thoroughly evaluated in a geotechnical report since the underlying soils are critical to the basin's long term performance. To protect the basin from erosion, the sides and bottom of the basin must be vegetated, preferably with native or low water use plant species.

In addition, these basins may not be appropriate for the following site conditions:

- Industrial sites or locations where spills of toxic materials may occur
- Sites with very low soil infiltration rates
- Sites with high groundwater tables or excessively high soil infiltration rates, where pollutants can affect ground water quality
- Sites with unstabilized soil or construction activity upstream
- On steeply sloping terrain
- Infiltration basins located in a fill condition should refer to Appendix A of this Handbook for details on special requirements/restrictions

Infiltration Basin BMP Fact Sheet

Setbacks

Always consult your geotechnical engineer for site specific recommendations regarding setbacks for infiltration trenches. Recommended setbacks are needed to protect buildings, existing trees, walls, onsite or nearby wells, streams, and tanks. Setbacks should be considered early in the design process since they can affect where infiltration facilities may be placed and how deep they are allowed to be. For instance, depth setbacks can dictate fairly shallow facilities that will have a larger footprint and, in some cases, may make an infiltration basin infeasible. In that instance, another BMP must be selected.

Infiltration basins typically must be set back:

- 10 feet from the historic high groundwater (measured vertically from the bottom of the basin, as shown in Figure 2)
- 5 feet from bedrock or impermeable surface layer (measured vertically from the bottom of the basin, as shown in Figure 2)
- From all existing mature tree drip lines as indicated in Figure 2 (to protect their root structure)
- 100 feet horizontally from wells, tanks or springs

Setbacks to walls and foundations must be included as part of the Geotechnical Report. All other setbacks shall be in accordance with applicable standards of the District's Basin Guidelines (Appendix C).

Infiltration Basin BMP Fact Sheet

Forebay

A concrete forebay shall be provided to reduce sediment clogging and to reduce erosion. The forebay shall have a design volume of at least $0.5 \% \bigvee_{B M P}$ and a minimum 1 foot high concrete splashwall / berm. Full height notch-type weir(s), offset from the line of flow from the basin inlet to prevent short circuiting, shall be used to outlet the forebay. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

Overflow

Flows exceeding $\mathrm{V}_{\text {BMP }}$ must discharge to an acceptable downstream conveyance system. Where an adequate outlet is present, an overflow structure may be used. Where an embankment is present, an emergency spillway may be used instead. Overflows must be placed just above the design water surface for $V_{B M P}$ and be near the outlet of the system. The overflow structure shall be similar to the District's Standard Drawing CB 110. Additional details may be found in the District's Basin Guidelines (Appendix C).

PROFILE

Figure 3 - Infiltration Basin

Infiltration Basin BMP Fact Sheet

Landscaping Requirements

Basin vegetation provides erosion protection, improves sediment removal and assists in allowing infiltration to occur. The basin surface and side slopes shall be planted with native grasses. Proper landscape management is also required to ensure that the vegetation does not contribute to water pollution through pesticides, herbicides, or fertilizers. Landscaping shall be in accordance with County of Riverside Ordinance 859 and the District's Basin Guidelines (Appendix C), or other guidelines issued by the Engineering Authority.

Maintenance

Normal maintenance of an infiltration basin includes the maintenance of landscaping, debris and trash removal from the surface of the basin, and tending to problems associated with standing water (vectors, odors, etc.). Significant ponding, especially more than 72 hours after an event, may indicate that the basin surface is no longer providing sufficient infiltration and requires aeration. See the District's Basin Guidelines (Appendix C) for additional requirements (i.e., fencing, maintenance access, etc.).

Table 1 - Inspection and Maintenance

Schedule	Inspection and Maintenance Activity
Ongoing including just before annual storm seasons and following rainfall events.	- Maintain vegetation as needed. Use of fertilizers, pesticides and herbicides should be strenuously avoided to ensure they don't contribute to water pollution. If appropriate native plant selections and other IPM methods are used, such products shouldn't be needed. If such projects are used, o Products shall be applied in accordance with their labeling, especially in relation to application to water, and in areas subjected to flooding. o Fertilizers should not be applied within 15 days before, after, or during the rain season. - Remove debris and litter from the entire basin to minimize clogging and improve aesthetics. - Check for obvious problems and repair as needed. Address odor, insects, and overgrowth issues associated with stagnant or standing water in the basin bottom. There should be no long-term ponding water. - Check for erosion and sediment laden areas in the basin. Repair as needed. Clean forebay if needed. - Revegetate side slopes where needed.
Annually. If possible, schedule these inspections within 72 hours after a significant rainfall.	- Inspection of hydraulic and structural facilities. Examine the inlet for blockage, the embankment and spillway integrity, as well as damage to any structural element. - Check for erosion, slumping and overgrowth. Repair as needed. - Check basin depth for sediment build up and reduced total capacity. Scrape bottom as needed and remove sediment. Restore to original cross-section and infiltration rate. Replant basin vegetation. - Verify the basin bottom is allowing acceptable infiltration. Use a disc or other method to aerate basin bottom only if there is actual significant loss of infiltrative capacity, rather than on a routine basis ${ }^{1}$. - No water should be present 72 hours after an event. No long term standing water should be present at all. No algae formation should be visible. Correct problem as needed.

Table 2 - Design and Sizing Criteria for Infiltration Basins

Design Parameter	Infiltration Basin
Design Volume	$0.5 \% V_{\text {BMP }}$
Forebay Volume	72 hours

Note: The information contained in this BMP Factsheet is intended to be a summary of design considerations and requirements. Additional information which applies to all detention basins may be found in the District's Basin Guidelines (Appendix C). In addition, information herein may be superseded by other guidelines issued by the co-permittee.

INFILTRATION BASIN SIZING PROCEDURE

1. Find the Design Volume, $\mathrm{V}_{\text {вмр }}$.
a) Enter the Tributary Area, A_{T}.
b) Enter the Design Volume, $\mathrm{V}_{\text {BMP }}$, determined from Section 2.1 of this Handbook.
2. Determine the Maximum Depth.
a) Enter the infiltration rate. The infiltration rate shall be established as described in Appendix A: "Infiltration Testing".
b) Enter the design Factor of Safety from Table 1 in Appendix A: "Infiltration Testing".
c) The spreadsheet will determine D_{1}, the maximum allowable depth of the basin based on the infiltration rate along with the maximum drawdown time (72 hours) and the Factor of Safety.
```
Where I= site infiltration rate (in/hr)
    s = safety factor
    t = drawdown time (maximum 72 hours)
```


Infiltration Basin BMP Fact Sheet

d) Enter the depth of freeboard.
e) Enter the depth to the historic high groundwater level measured from the top of the basin.
f) Enter the depth to the top of bedrock or other impermeable layer measured from the finished grade.
g) The spreadsheet will determine D_{2}, the total basin depth (including freeboard, if used) of the basin, based on restrictions to the depth by groundwater and an impermeable layer.

$$
\mathrm{D}_{2}=\text { Depth to groundwater - }(10+\text { freeboard })(\mathrm{ft}) ;
$$

or

$$
\mathrm{D}_{2}=\text { Depth to impermeable layer }-(5+\text { freeboard })(\mathrm{ft})
$$

Whichever is least.
h) The spreadsheet will determine the maximum allowable effective depth of basin, $\mathrm{D}_{\text {MAX }}$, based on the smallest value between D_{1} and D_{2}. $D_{\text {MAX }}$ is the maximum depth of water only and does not include freeboard. $D_{\text {max }}$ shall not exceed 5 feet.
3. Basin Geometry
a) Enter the basin side slopes, z (no steeper than 4:1).
b) Enter the proposed basin depth, d_{B} excluding freeboard.
c) The spreadsheet will determine the minimum required surface area of the basin:

$$
\mathrm{A}_{\mathrm{S}}=\mathrm{V}_{\mathrm{BMP}} / \mathrm{d}_{\mathrm{B}}
$$

Where $A_{s}=$ minimum area required $\left(\mathrm{ft}^{2}\right)$
$\mathrm{V}_{\text {BMP }}=$ volume of the infiltration basin $\left(\mathrm{ft}^{3}\right)$
$\mathrm{d}_{\mathrm{B}}=$ proposed depth not to exceed maximum allowable depth, $\mathrm{D}_{\text {MAX }}(\mathrm{ft})$
d) Enter the proposed bottom surface area. This area shall not be less than the minimum required surface area.
4. Forebay

A concrete forebay with a design volume of at least $0.5 \% \mathrm{~V}_{\text {BMP }}$ and a minimum 1 foot high concrete splashwall shall be provided. Full-height rectangular weir(s) shall be used to outlet the forebay. The weir(s) must be offset from the line of flow from the basin inlet. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).
a) The spreadsheet will determine the minimum required forebay volume based on 0.5% $V_{\text {вмр. }}$
b) Enter the proposed depth of the forebay berm/splashwall (1foot minimum).
c) The spreadsheet will determine the minimum required forebay surface area.
d) Enter the width of rectangular weir to be used (minimum 1.5 inches). Weir width should be established based on a 5 minute drawdown time.

Isolator ${ }^{\oplus}$ Row 0\&M Manual

THE ISOLATOR ${ }^{\circledR}$ ROW

INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

THE ISOLATOR ROW

The Isolator Row is a row of StormTech chambers, either SC-160LP, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC- 310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.
Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160LP, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.
The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.
The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.
Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

StormTech Isolator Row with Overflow Spillway (not to scale)

ISOLATOR ROW INSPECTION/MAINTENANCE

INSPECTION

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.
At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.
The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.
If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.
Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45 " are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.

ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1

Inspect Isolator Row for sediment.
A) Inspection ports (if present)
i. Remove lid from floor box frame
ii. Remove cap from inspection riser
iii. Using a flashlight and stadia rod,measure depth of sediment and record results on maintenance log.
iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
B) All Isolator Rows
i. Remove cover from manhole at upstream end of Isolator Row
ii. Using a flashlight, inspect down Isolator Row through outlet pipe

1. Mirrors on poles or cameras may be used to avoid a confined space entry
2. Follow OSHA regulations for confined space entry if entering manhole
iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2. If not, proceed to Step 3.

STEP 2
Clean out Isolator Row using the JetVac process.
A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
B) Apply multiple passes of JetVac until backflush water is clean
C) Vacuum manhole sump as required

STEP 3

Replace all caps, lids and covers, record observations and actions.

STEP 4

Inspect \& clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG

Date	Stadia Rod Readings		Sediment Depth$(1)-(2)$	Observations/Actions	Inspector
	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)			
3/15/11	6.3 ft	none		New installation. Fixed point is CI frame at grade	$D J M$
9/24/11		6.2	0.1 ft	Some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row, maintenance due	NV
7/7/13	6.3 ft		\bigcirc	System jetted and vacuumed	DJM

Bio Clean ${ }^{\circledR}$ Grate Inlet Filter
Operation \& Maintenance Manual

Operation \& Maintenance

Contech's Bio Clean ${ }^{\circledR}$ Grate Inlet Filter is a stormwater device designed to remove high levels of trash, debris, sediments and hydrocarbons. The filter is available in several configurations including trash full capture, Kraken ${ }^{\circledR}$ membrane filter, and fabric filter variations. This manual covers maintenance procedures of the trash full capture and fabric filter configurations. A supplemental manual is available for the Kraken variation. The trash full capture filter is made of 100% stainless steel, while the fabric filter is made of a woven monofilament geotextile fabric. Both filters are available at various sizes and depths allowing them to fit in any grated catch basin inlet. The filters heavy duty construction allows for cleaning with any vacuum truck. The filter can also easily be cleaned by hand.

As with all stormwater BMPs, inspection and maintenance on the Grate Inlet Filter is necessary. Stormwater regulations require BMPs be inspected and maintained to ensure they are operating as designed to allow for effective pollutant removal and provide protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess site-specific loading conditions. This is recommended because pollutant loading can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding of roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years. Without appropriate maintenance, a BMP can exceed its storage capacity which can negatively affect its continued performance in removing and retaining captured pollutants.

System Diagram

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the Grate Inlet Filter:
Contech Inspection Form (contained within this manual).
Manhole hook or appropriate tools to remove access hatches and covers.
Appropriate traffic control signage and procedures.
Protective clothing and eye protection.
Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections or maintenance of the system.

Inspection Steps

The core to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the Grate Inlet Filter are quick and easy. As mentioned above, the first year should be seen as the maintenance interval establishment phase. During the first year, more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long-term inspection and maintenance interval requirements.

The Grate Inlet Filter can be inspected though visual observation. All necessary pre-inspection steps must be carried out before inspection occurs, such as safety measures to protect the inspector and nearby pedestrians from any dangers associated with an open grated inlet. Once the grate has been safely removed, the inspection process can proceed:

Prepare the inspection form by writing in the necessary information including project name, location, date \& time, unit number and other info (see inspection form).

Observe the filter with the grate removed.
Look for any out of the ordinary obstructions on the grate or in the filter and its bypass. Write down any observations on the inspection form.

Through observation and/or digital photographs estimate the amount of trash, foliage and sediment accumulated inside the filter basket. Record this information on the inspection form.

Observe the condition and color of the hydrocarbon boom. Record this information on the inspection form.
Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

Missing or damaged internal components.
Obstructions in the filter basket and its bypass.
Excessive accumulation of trash, foliage and sediment in the filter basket. Maintenance is required when the basket is greater than half-full.

The following chart shows the 50% and 100% storage capacity of each filter height:

Basket Model	Height (inches)	Top Width (inches)	Top Length (inches)	Bottom Width (inches)	Bottom Length (inches)	50% Storage Capacity (CF)	Storage Capacity (CF)
BIO-GRATE-FULL/ FABRIC-12-12-12	6.00	10.00	10.00	8.31	8.31	0.15	0.30
BIO-GRATE-FULL/ FABRIC-18-18-12	6.00	15.00	15.00	12.50	12.50	0.33	0.66
BIO-GRATE-FULL/ FABRIC-24-24-12	6.00	20.00	20.00	16.69	16.69	0.59	1.18
BIO-GRATE-FULL/ FABRIC-24-24-24	18.00	20.00	20.00	10.00	10.00	1.22	2.44
BIO-GRATE-FULL/ FABRIC-24-40-12	6.00	20.00	30.00	16.69	25.00	0.88	1.76
BIO-GRATE-FULL/ FABRIC-24-40-24	18.00	20.00	30.00	10.00	15.00	1.82	3.64
BIO-GRATE-FULL/ FABRIC-36-36-24	18.00	30.00	30.00	15.00	15.00	2.73	5.46
BIO-GRATE-FULL/ FABRIC-24-40-24	18.00	20.00	30.00	10.00	15.00	1.82	3.64
BIO-GRATE-FULL/ FABRIC-36-36-24	18.00	30.00	30.00	15.00	15.00	2.73	5.46

${ }^{1}$ Refers to basket height, total system height is equal to basket height plus 6 inches for bypass.

Maintenance Equipment

It is recommended that a vacuum truck be utilized to minimize the time required to maintain the Curb Inlet Filter, though it can easily be cleaned by hand:

Contech Maintenance Form (contained in O\&M Manual).
Manhole hook or appropriate tools to remove the grate.
Appropriate safety signage and procedures.
Protective clothing and eye protection.
Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine maintenance of the system. Small or large vacuum truck (with pressure washer attachment preferred).

Maintenance Procedures

It is recommended that maintenance occurs at least two days after the most recent rain event to allow debris and sediments to dry out. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Cleaning of the Grate Inlet Filter can be performed utilizing a vacuum truck. Once all safety measures have been set up, cleaning of the Grate Inlet Filter can proceed as followed:

Remove grate (traffic control and safety measures to be completed prior)
Using an extension on a vacuum truck, position the hose over the opened catch basin. Insert the vacuum hose down into the filter basket and suck out trash, foliage and sediment. A pressure wash is recommended and will assist in spraying off any debris stuck on the side or bottom of the filter basket. Power wash off the filter basket sides and bottom.

Next, remove the hydrocarbon boom that is attached to the inside of the filter basket. The hydrocarbon boom is fastened to rails on two opposite sides of the basket (vertical rails). Assess the color and condition of the boom using the following information in the next bullet point. If replacement is required, install and fasten on a new hydrocarbon boom. Booms can be ordered directly from the manufacturer.

The following is a replacement indication color chart for the hydrocarbon booms:

The last step is to replace the grate and remove all traffic control.
All removed debris and pollutants shall be disposed of following local and state requirements.
Disposal requirements for recovered pollutants may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.

In the case of damaged components, replacement parts can be ordered from the manufacturer. Hydrocarbon booms can also be ordered directly from the manufacturer as previously noted.

Maintenance Sequence

1. Remove grate and set up vacuum truck to clean the filter basket.

2. Remove the hydrocarbon boom that is attached to the inside of the filter basket. The hydrocarbon boom is fastened to rails on two opposite sides of the basket (vertical rails). Assess the color and condition of the boom using the information in the chart above. If replacement is required, install and fasten on a new hydrocarbon boom.

3. Insert the vacuum hose down into the filter basket and suck out debris. Use a pressure washer to assist in vacuum removal. Pressure wash off screens.

4. Close up and replace the grate and remove all traffic control. All removed debris and pollutants shall be disposed of following local and state requirements. Catch Basin Only

Site Map \#	GPS	Catch Basin Size	Evidence of Illicit Discharge?	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Signs of Structural Damage?	Functioning Properly or Maintenance Needed?
1	Lat:							
	Long:							
2	Lat:							
	Long:							
3	Lat:							
	Long:							
4	Lat:							
	Long:							
5	Lat:							
	Long:							
6	Lat:							
	Long:							
7	Lat:							
	Long:							
8	Lat:							
	Long:							
10	Lat:							
	Long:							
11	Lat:							
	Long:							
12	Lat:							
	Long:							
Comments:								

© 2022 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY

800-338-1122

WWW.CONTECHES.COM
ALL RIGHTS RESERVED. PRINTED IN THE USA.
CONTECH ENGINEERED SOLUTIONS LLC PROVIDES SITE SOLUTIONS FOR THE CIVIL ENGINEERING INDUSTRY. CONTECH'S PORTFOLIO INCLUDES BRIDGES, DRAINAGE, SANITARY SEWER, STORMWATER AND EARTH STABILIZATION PRODUCTS. FOR INFORMATION ON OTHER CONTECH DIVIIION OFFERINGS, VIIIT CONTECHES.COM OR CALL 800-338-1122.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY application. Contech makes no warranty whatsoever, express or implied, related TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

SUPPORT

DRAWINGS AND SPECIFICATIONS ARE AVAILABLE AT WWW.CONTECHES.COM

UNITED STORM WATER CPS Connector Pipe Screen

Technical Manual

United Storm Water, Inc. CPS Technical Manual

Manufacturer, Supplier, and Service Information

Manufacturer:

United Storm Water, Inc.
14000 E. Valley Blvd
City of Industry, Ca 91746
Phone: 626-890-7027
Fax: 626-961-3166
Contact: Eugene Hernandez

Supplier:
United Storm Water, Inc.
14000 E. Valley Blvd
City of Industry, Ca 91746
Phone: 626-419-3521
Fax: 626-961-3166
Contact: Terry Flury

For all spare parts and service, Contact:
United Storm Water, Inc.
14000 E. Valley Blvd.
City of Industry, Ca 91746
Contact: Eugene Hernandez

United Storm Water, Inc. CPS Technical Manual
United Storm Water, Inc. Connector Pipe Screen Installation Instructions:

1. Bring the CPS unit into the catch basin and set in front of outlet hole. The unit has 3 components, deflector, (2) " Z " panels, and the front of the screen, depending on the size of the catch basin opening. Establish a definite location for your first "Z" Panel and then mark your holes for drilling. Do the same for your second Panel.
2. Remove the CPS unit from the installation wall. Drill $3 / 8^{\prime \prime}$ holes where you marked. Make sure to drill straight into the catch basin wall to avoid mounting difficulties.
3. Hammer $3 / 8^{\prime \prime} \times 3.75^{\prime \prime}$ stainless steel anchor bolts into the holes.
4. After all of the anchor bolts are hammered into place, attach the " Z " panels.
5. Deflector device. Measure and cut a length of deflector stock same length as CPS unit. Make cuts using a compact grinder. Be sure to "grind smooth any sharp edges. Place directly above the CPS device. Next, mark and drill $3 / 8^{\prime \prime} \times 3.75^{\prime \prime}$ holes.
6. Make cuts using a compact grinder. Be sure to stand off any sharp edges.
7. Once the " Z " Panels have been custom cut to conform to the catch basin surface, attach the panels to the body of the CPS unit using the self drilling screws provided.
8. Scribe and cut the bottom of the front panel to conform to the catch basin bottom surface, then attach the front panel to the 2 " Z " panels using the self drilling screws provided.
9. Attach legs ($1^{\prime \prime} \times 1^{1 "}$ perforated angle) from top corners of deflector to top corners of CPS device. Secure with bolts provided.
10. Tighten all bolts to assure a tight fit.

United Storm Water, Inc. CPS Technical Manual

Preventative Maintenance:

Maintenance crews should regularly check catch basins and establish a maintenance schedule based on the level of debris collected. Some areas will require more frequent cleaning than others. Catch basins should be cleared of debris to allow for water to freely flow through the screen.

Pressure-washing the unit may additionally benefit but is not necessary.

Yearly Maintenance Schedule:

Visual Inspection:

1. Built-up debris and foreign object debris can hinder the unit's operation. Remove any visible debris that may be on, in front of, and nearby the unit.
2. Look for any visible signs of vandalism or damage that may compromise the unit's ability to properly function. Attempted vandalism and slight damage should be inspected closely to ensure no future damage may result.

Replacement Schedule:

All components on United Storm Water Connector Pipe Screen are made from 304 stainless steel parts. United Storm Water, Inc. should be notified if a replacement if required.

Tools Required:

For removal of United Storm Water Connector Pipe Screen, use a 3/8" socket wrench to loosen the nuts on the anchor bolts. A socket extension may be needed for hard to reach areas.

Disassembly and Reassembly:

For removal of United Storm Water Connector Pipe Screen, use a $9 / 16^{\prime \prime}$ socket wrench to loosen the nuts on the anchor bolts. A socket extension may be needed for hard to reach areas. Carefully remove the unit once all bolts have been loosening. Realign the unit on the anchor and tighten the bolts for reassembly.

For removal of the Deflector United Storm Water Connector Pipe Screen, use a 9/16 socket wrench to loosen the nuts anchor bolts. Realign the bypass section and tighten the screws for reassembly.

Art Credit: Margie Winter

Description

Non-stormwater discharges are those flows that do not consist entirely of stormwater. Some non-stormwater discharges do not include pollutants and may be discharged to the storm drain. These include uncontaminated groundwater and natural springs. There are also some non-stormwater discharges that typically do not contain pollutants and may be discharged to the storm drain with conditions. These include car washing, air conditioner condensate, etc. However there are certain non-stormwater discharges that pose environmental concern. These discharges may originate from illegal dumping or from internal floor drains, appliances, industrial processes, sinks, and toilets that are connected to the nearby storm drainage system. These discharges (which may include: process waste waters, cooling waters, wash waters, and sanitary wastewater) can carry substances such as paint, oil, fuel and other automotive fluids, chemicals and other pollutants into storm drains. They can generally be detected through a combination of detection and elimination. The ultimate goal is to effectively eliminate nonstormwater discharges to the stormwater drainage system through implementation of measures to detect, correct, and enforce against illicit connections and illegal discharges of pollutants on streets and into the storm drain system and creeks.

Approach

Initially the industry must make an assessment of nonstormwater discharges to determine which types must be eliminated or addressed through BMPs. The focus of the following approach is in the elimination of non-stormwater discharges.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment

Nutrients
Trash
Metals
Bacteria
Oil and Grease
Organics

Pollution Prevention

- Ensure that used oil, used antifreeze, and hazardous chemical recycling programs are being implemented. Encourage litter control.

Suggested Protocols

Recommended Complaint Investigation Equipment

- Field Screening Analysis
- pH paper or meter
- Commercial stormwater pollutant screening kit that can detect for reactive phosphorus, nitrate nitrogen, ammonium nitrogen, specific conductance, and turbidity
- \quad Sample jars
- Sample collection pole
- A tool to remove access hole covers
- Laboratory Analysis
- Sample cooler
- Ice
- Sample jars and labels
- Chain of custody forms
- Documentation
- Camera
- Notebook
- Pens
- Notice of Violation forms
- Educational materials

General

- Develop clear protocols and lines of communication for effectively prohibiting nonstormwater discharges, especially those that are not classified as hazardous. These are often not responded to as effectively as they need to be.
- Stencil or demarcate storm drains, where applicable, to prevent illegal disposal of pollutants. Storm drain inlets should have messages such as "Dump No Waste Drains to Stream" stenciled or demarcated next to them to warn against ignorant or intentional dumping of pollutants into the storm drainage system.
- See SC44 Stormwater Drainage System Maintenance for additional information.

Illicit Connections

- Locate discharges from the industrial storm drainage system to the municipal storm drain system through review of "as-built" piping schematics.
- Isolate problem areas and plug illicit discharge points.
- Locate and evaluate all discharges to the industrial storm drain system.

Visual Inspection and Inventory

- Inventory and inspect each discharge point during dry weather.
- Keep in mind that drainage from a storm event can continue for a day or two following the end of a storm and groundwater may infiltrate the underground stormwater collection system. Also, non-stormwater discharges are often intermittent and may require periodic inspections.

Review Infield Piping

- A review of the "as-built" piping schematic is a way to determine if there are any connections to the stormwater collection system.
- Inspect the path of floor drains in older buildings.

Smoke Testing

- Smoke testing of wastewater and stormwater collection systems is used to detect connections between the two systems.
- During dry weather the stormwater collection system is filled with smoke and then traced to sources. The appearance of smoke at the base of a toilet indicates that there may be a connection between the sanitary and the stormwater system.

Dye Testing

- A dye test can be performed by simply releasing a dye into either your sanitary or process wastewater system and examining the discharge points from the stormwater collection system for discoloration.

TV Inspection of Drainage System

- TV Cameras can be employed to visually identify illicit connections to the industrial storm drainage system.

Illegal Dumping

- Regularly inspect and clean up hot spots and other storm drainage areas where illegal dumping and disposal occurs.
- On paved surfaces, clean up spills with as little water as possible. Use a rag for small spills, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to a certified laundry (rags) or disposed of as hazardous waste.
- Never hose down or bury dry material spills. Sweep up the material and dispose of properly.
- Use adsorbent materials on small spills rather than hosing down the spill. Remove the adsorbent materials promptly and dispose of properly.
- For larger spills, a private spill cleanup company or Hazmat team may be necessary.

Once a site has been cleaned:

- Post "No Dumping" signs with a phone number for reporting dumping and disposal.
- Landscaping and beautification efforts of hot spots may also discourage future dumping, as well as provide open space and increase property values.
- Lighting or barriers may also be needed to discourage future dumping.
- See fact sheet SC11 Spill Prevention, Control, and Cleanup.

Inspection

- Regularly inspect and clean up hot spots and other storm drainage areas where illegal dumping and disposal occurs.
- Conduct field investigations of the industrial storm drain system for potential sources of non-stormwater discharges.
- Pro-actively conduct investigations of high priority areas. Based on historical data, prioritize specific geographic areas and/or incident type for pro-active investigations.

Reporting

- A database is useful for defining and tracking the magnitude and location of the problem.
- Report prohibited non-stormwater discharges observed during the course of normal daily activities so they can be investigated, contained, and cleaned up or eliminated.
- Document that non-stormwater discharges have been eliminated by recording tests performed, methods used, dates of testing, and any on-site drainage points observed.
- Document and report annually the results of the program.
- Maintain documentation of illicit connection and illegal dumping incidents, including significant conditionally exempt discharges that are not properly managed.

Training

- Training of technical staff in identifying and documenting illegal dumping incidents is required.
- Consider posting the quick reference table near storm drains to reinforce training.
- Train employees to identify non-stormwater discharges and report discharges to the appropriate departments.
- Educate employees about spill prevention and cleanup.
- Well-trained employees can reduce human errors that lead to accidental releases or spills. The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur. Employees should be familiar with the Spill Prevention Control and Countermeasure Plan.
- Determine and implement appropriate outreach efforts to reduce non-permissible nonstormwater discharges.
- Conduct spill response drills annually (if no events occurred to evaluate your plan) in cooperation with other industries.
- When a responsible party is identified, educate the party on the impacts of his or her actions.

Spill Response and Prevention

- See SC11 Spill Prevention Control and Cleanup.

Other Considerations

- Many facilities do not have accurate, up-to-date schematic drawings.

Requirements

Costs (including capital and operation \& maintenance)

- The primary cost is for staff time and depends on how aggressively a program is implemented.
- Cost for containment and disposal is borne by the discharger.
- Illicit connections can be difficult to locate especially if there is groundwater infiltration.
- Indoor floor drains may require re-plumbing if cross-connections to storm drains are detected.

Maintenance (including administrative and staffing)

- Illegal dumping and illicit connection violations requires technical staff to detect and investigate them.

Supplemental Information

Further Detail of the BMP

Illegal Dumping

- Substances illegally dumped on streets and into the storm drain systems and creeks include paints, used oil and other automotive fluids, construction debris, chemicals, fresh concrete, leaves, grass clippings, and pet wastes. All of these wastes cause stormwater and receiving water quality problems as well as clog the storm drain system itself.
- Establish a system for tracking incidents. The system should be designed to identify the following:
- Illegal dumping hot spots
- Types and quantities (in some cases) of wastes
- Patterns in time of occurrence (time of day/night, month, or year)
- Mode of dumping (abandoned containers, "midnight dumping" from moving vehicles, direct dumping of materials, accidents/spills)
- Responsible parties

One of the keys to success of reducing or eliminating illegal dumping is increasing the number of people at the facility who are aware of the problem and who have the tools to at least identify the incident, if not correct it. Therefore, train field staff to recognize and report the incidents.

What constitutes a "non-stormwater" discharge?

- Non-stormwater discharges to the stormwater collection system may include any water used directly in the manufacturing process (process wastewater), air conditioning condensate and coolant, non-contact cooling water, cooling equipment condensate, outdoor secondary containment water, vehicle and equipment wash water, sink and drinking fountain wastewater, sanitary wastes, or other wastewaters.

Permit Requirements

- Facilities subject to stormwater permit requirements must include a certification that the stormwater collection system has been tested or evaluated for the presence of nonstormwater discharges. The State's General Industrial Stormwater Permit requires that nonstormwater discharges be eliminated prior to implementation of the facility's SWPPP.

Performance Evaluation

- Review annually internal investigation results; assess whether goals were met and what changes or improvements are necessary.
- Obtain feedback from personnel assigned to respond to, or inspect for, illicit connections and illegal dumping incidents.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wr/dss/spem.htm
Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Spill Prevention, Control \& Cleanup SC-11

Photo Credit: Geoff Brosseau

Description

Many activities that occur at an industrial or commercial site have the potential to cause accidental or illegal spills. Preparation for accidental or illegal spills, with proper training and reporting systems implemented, can minimize the discharge of pollutants to the environment.

Spills and leaks are one of the largest contributors of stormwater pollutants. Spill prevention and control plans are applicable to any site at which hazardous materials are stored or used. An effective plan should have spill prevention and response procedures that identify potential spill areas, specify material handling procedures, describe spill response procedures, and provide spill clean-up equipment. The plan should take steps to identify and characterize potential spills, eliminate and reduce spill potential, respond to spills when they occur in an effort to prevent pollutants from entering the stormwater drainage system, and train personnel to prevent and control future spills.

Approach

Pollution Prevention

- Develop procedures to prevent/mitigate spills to storm drain systems. Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures.
- Develop a Spill Prevention Control and Countermeasure (SPCC) Plan. The plan should include:

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment
Nutrients
Trash
Metals
Bacteria
Oil and Grease
Organics

SC-11 Spill Prevention, Control \& Cleanup

- Description of the facility, owner and address, activities and chemicals present
- Facility map
- Notification and evacuation procedures
- Cleanup instructions
- Identification of responsible departments
- Identify key spill response personnel
- Recycle, reclaim, or reuse materials whenever possible. This will reduce the amount of process materials that are brought into the facility.

Suggested Protocols (including equipment needs)

Spill Prevention

- Develop procedures to prevent/mitigate spills to storm drain systems. Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures.
- If consistent illegal dumping is observed at the facility:
- Post "No Dumping" signs with a phone number for reporting illegal dumping and disposal. Signs should also indicate fines and penalties applicable for illegal dumping.
- Landscaping and beautification efforts may also discourage illegal dumping.
- Bright lighting and/or entrance barriers may also be needed to discourage illegal dumping.
- Store and contain liquid materials in such a manner that if the tank is ruptured, the contents will not discharge, flow, or be washed into the storm drainage system, surface waters, or groundwater.
- If the liquid is oil, gas, or other material that separates from and floats on water, install a spill control device (such as a tee section) in the catch basins that collects runoff from the storage tank area.
- Routine maintenance:
- Place drip pans or absorbent materials beneath all mounted taps, and at all potential drip and spill locations during filling and unloading of tanks. Any collected liquids or soiled absorbent materials must be reused/recycled or properly disposed.
- Store and maintain appropriate spill cleanup materials in a location known to all near the tank storage area; and ensure that employees are familiar with the site's spill control plan and/or proper spill cleanup procedures.
- Sweep and clean the storage area monthly if it is paved, do not hose down the area to a storm drain.

Spill Prevention, Control \& Cleanup SC-11

- Check tanks (and any containment sumps) daily for leaks and spills. Replace tanks that are leaking, corroded, or otherwise deteriorating with tanks in good condition. Collect all spilled liquids and properly dispose of them.
- Label all containers according to their contents (e.g., solvent, gasoline).
- Label hazardous substances regarding the potential hazard (corrosive, radioactive, flammable, explosive, poisonous).
- Prominently display required labels on transported hazardous and toxic materials (per US DOT regulations).
- Identify key spill response personnel.

Spill Control and Cleanup Activities

- Follow the Spill Prevention Control and Countermeasure Plan.
- Clean up leaks and spills immediately.
- Place a stockpile of spill cleanup materials where it will be readily accessible (e.g., near storage and maintenance areas).
- On paved surfaces, clean up spills with as little water as possible. Use a rag for small spills, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to a certified laundry (rags) or disposed of as hazardous waste. Physical methods for the cleanup of dry chemicals include the use of brooms, shovels, sweepers, or plows.
- Never hose down or bury dry material spills. Sweep up the material and dispose of properly.
- Chemical cleanups of material can be achieved with the use of adsorbents, gels, and foams. Use adsorbent materials on small spills rather than hosing down the spill. Remove the adsorbent materials promptly and dispose of properly.
- For larger spills, a private spill cleanup company or Hazmat team may be necessary.

Reporting

- Report spills that pose an immediate threat to human health or the environment to the Regional Water Quality Control Board.
- Federal regulations require that any oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hour).
- Report spills to local agencies, such as the fire department; they can assist in cleanup.
- Establish a system for tracking incidents. The system should be designed to identify the following:
- Types and quantities (in some cases) of wastes
- Patterns in time of occurrence (time of day/night, month, or year)

SC-11 Spill Prevention, Control \& Cleanup

- Mode of dumping (abandoned containers, "midnight dumping" from moving vehicles, direct dumping of materials, accidents/spills)
- Responsible parties

Training

- Educate employees about spill prevention and cleanup.
- Well-trained employees can reduce human errors that lead to accidental releases or spills:
- The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur.
- Employees should be familiar with the Spill Prevention Control and Countermeasure Plan.
- Employees should be educated about aboveground storage tank requirements. Employees responsible for aboveground storage tanks and liquid transfers should be thoroughly familiar with the Spill Prevention Control and Countermeasure Plan and the plan should be readily available.
- Train employees to recognize and report illegal dumping incidents.

Other Considerations (Limitations and Regulations)

- State regulations exist for facilities with a storage capacity of 10,000 gallons or more of petroleum to prepare a Spill Prevention Control and Countermeasure (SPCC) Plan (Health \& Safety Code Chapter 6.67).
- State regulations also exist for storage of hazardous materials (Health \& Safety Code Chapter 6.95), including the preparation of area and business plans for emergency response to the releases or threatened releases.
- Consider requiring smaller secondary containment areas (less than 200 sq . ft .) to be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.

Requirements

Costs (including capital and operation \& maintenance)

- Will vary depending on the size of the facility and the necessary controls.
- Prevention of leaks and spills is inexpensive. Treatment and/or disposal of contaminated soil or water can be quite expensive.

Maintenance (including administrative and staffing)

- This BMP has no major administrative or staffing requirements. However, extra time is needed to properly handle and dispose of spills, which results in increased labor costs.

Spill Prevention, Control \& Cleanup SC-11

Supplemental Information

Further Detail of the BMP

Reporting

Record keeping and internal reporting represent good operating practices because they can increase the efficiency of the facility and the effectiveness of BMPs. A good record keeping system helps the facility minimize incident recurrence, correctly respond with appropriate cleanup activities, and comply with legal requirements. A record keeping and reporting system should be set up for documenting spills, leaks, and other discharges, including discharges of hazardous substances in reportable quantities. Incident records describe the quality and quantity of non-stormwater discharges to the storm sewer. These records should contain the following information:

- Date and time of the incident
- Weather conditions
- Duration of the spill/leak/discharge
- Cause of the spill/leak/discharge
- Response procedures implemented
- Persons notified
- Environmental problems associated with the spill/leak/discharge

Separate record keeping systems should be established to document housekeeping and preventive maintenance inspections, and training activities. All housekeeping and preventive maintenance inspections should be documented. Inspection documentation should contain the following information:

- The date and time the inspection was performed
- Name of the inspector
- Items inspected
- Problems noted
- Corrective action required
- Date corrective action was taken

Other means to document and record inspection results are field notes, timed and dated photographs, videotapes, and drawings and maps.

Aboveground Tank Leak and Spill Control

Accidental releases of materials from aboveground liquid storage tanks present the potential for contaminating stormwater with many different pollutants. Materials spilled, leaked, or lost from

SC-11 Spill Prevention, Control \& Cleanup

tanks may accumulate in soils or on impervious surfaces and be carried away by stormwater runoff.

The most common causes of unintentional releases are:

- Installation problems
- Failure of piping systems (pipes, pumps, flanges, couplings, hoses, and valves)
- External corrosion and structural failure
- Spills and overfills due to operator error
- Leaks during pumping of liquids or gases from truck or rail car to a storage tank or vice versa

Storage of reactive, ignitable, or flammable liquids should comply with the Uniform Fire Code and the National Electric Code. Practices listed below should be employed to enhance the code requirements:

- Tanks should be placed in a designated area.
- Tanks located in areas where firearms are discharged should be encapsulated in concrete or the equivalent.
- Designated areas should be impervious and paved with Portland cement concrete, free of cracks and gaps, in order to contain leaks and spills.
- Liquid materials should be stored in UL approved double walled tanks or surrounded by a curb or dike to provide the volume to contain 10 percent of the volume of all of the containers or 110 percent of the volume of the largest container, whichever is greater. The area inside the curb should slope to a drain.
- For used oil or dangerous waste, a dead-end sump should be installed in the drain.
- All other liquids should be drained to the sanitary sewer if available. The drain must have a positive control such as a lock, valve, or plug to prevent release of contaminated liquids.
- Accumulated stormwater in petroleum storage areas should be passed through an oil/water separator.

Maintenance is critical to preventing leaks and spills. Conduct routine inspections and:

- Check for external corrosion and structural failure.
- Check for spills and overfills due to operator error.
- Check for failure of piping system (pipes, pumps, flanger, coupling, hoses, and valves).
- Check for leaks or spills during pumping of liquids or gases from truck or rail car to a storage facility or vice versa.

Spill Prevention, Control \& Cleanup SC-11

- Visually inspect new tank or container installation for loose fittings, poor welding, and improper or poorly fitted gaskets.
- Inspect tank foundations, connections, coatings, and tank walls and piping system. Look for corrosion, leaks, cracks, scratches, and other physical damage that may weaken the tank or container system.
- Frequently relocate accumulated stormwater during the wet season.
- Periodically conduct integrity testing by a qualified professional.

Vehicle Leak and Spill Control

Major spills on roadways and other public areas are generally handled by highly trained Hazmat teams from local fire departments or environmental health departments. The measures listed below pertain to leaks and smaller spills at vehicle maintenance shops.

In addition to implementing the spill prevention, control, and clean up practices above, use the following measures related to specific activities:

Vehicle and Equipment Maintenance

- Perform all vehicle fluid removal or changing inside or under cover to prevent the run-on of stormwater and the runoff of spills.
- Regularly inspect vehicles and equipment for leaks, and repair immediately.
- Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
- Immediately drain all fluids from wrecked vehicles.
- Store wrecked vehicles or damaged equipment under cover.
- Place drip pans or absorbent materials under heavy equipment when not in use.
- Use adsorbent materials on small spills rather than hosing down the spill.
- Remove the adsorbent materials promptly and dispose of properly.
- Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around.
- Oil filters disposed of in trashcans or dumpsters can leak oil and contaminate stormwater. Place the oil filter in a funnel over a waste oil recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask your oil supplier or recycler about recycling oil filters.

SC-11 Spill Prevention, Control \& Cleanup

- Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries, even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

Vehicle and Equipment Fueling

- Design the fueling area to prevent the run-on of stormwater and the runoff of spills:
- Cover fueling area if possible.
- Use a perimeter drain or slope pavement inward with drainage to a sump.
- Pave fueling area with concrete rather than asphalt.
- If dead-end sump is not used to collect spills, install an oil/water separator.
- Install vapor recovery nozzles to help control drips as well as air pollution.
- Discourage "topping-off" of fuel tanks.
- Use secondary containment when transferring fuel from the tank truck to the fuel tank.
- Use adsorbent materials on small spills and general cleaning rather than hosing down the area. Remove the adsorbent materials promptly.
- Carry out all Federal and State requirements regarding underground storage tanks, or install above ground tanks.
- Do not use mobile fueling of mobile industrial equipment around the facility; rather, transport the equipment to designated fueling areas.
- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Train employees in proper fueling and cleanup procedures.

Industrial Spill Prevention Response

For the purposes of developing a spill prevention and response program to meet the stormwater regulations, facility managers should use information provided in this fact sheet and the spill prevention/response portions of the fact sheets in this handbook, for specific activities. The program should:

- Integrate with existing emergency response/hazardous materials programs (e.g., Fire Department)
- Develop procedures to prevent/mitigate spills to storm drain systems
- Identify responsible departments
- Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures
- Address spills at municipal facilities, as well as public areas

Spill Prevention, Control \& Cleanup SC-11

- Provide training concerning spill prevention, response and cleanup to all appropriate personnel

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Stormwater Managers Resource Center http://www.stormwatercenter.net/

Outdoor Loading/Unloading

Photo Credit: Geoff Brosseau

Description

The loading/unloading of materials usually takes place outside on docks or terminals; therefore, materials spilled, leaked, or lost during loading/unloading may collect in the soil or on other surfaces and have the potential to be carried away by stormwater runoff or when the area is cleaned. Additionally, rainfall may wash pollutants from machinery used to unload or move materials. Implementation of the following protocols will prevent or reduce the discharge of pollutants to stormwater from outdoor loading/unloading of materials.

Approach

Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

Pollution Prevention

- Keep accurate maintenance logs to evaluate materials removed and improvements made.
- Park tank trucks or delivery vehicles in designated areas so that spills or leaks can be contained.
- Limit exposure of material to rainfall whenever possible.
- Prevent stormwater run-on.
- Check equipment regularly for leaks.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment	\checkmark
Nutrients	\checkmark
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	$\mathbf{\checkmark}$
Organics	$\mathbf{\checkmark}$

Suggested Protocols

Loading and Unloading - General Guidelines

- Develop an operations plan that describes procedures for loading and/or unloading.
- Conduct loading and unloading in dry weather if possible.
- Cover designated loading/unloading areas to reduce exposure of materials to rain.
- Consider placing a seal or door skirt between delivery vehicles and building to prevent exposure to rain.
- Design loading/unloading area to prevent stormwater run-on, which would include grading or berming the area, and position roof downspouts so they direct stormwater away from the loading/unloading areas.
- Have employees load and unload all materials and equipment in covered areas such as building overhangs at loading docks if feasible.
- Load/unload only at designated loading areas.
- Use drip pans underneath hose and pipe connections and other leak-prone spots during liquid transfer operations, and when making and breaking connections. Several drip pans should be stored in a covered location near the liquid transfer area so that they are always available, yet protected from precipitation when not in use. Drip pans can be made specifically for railroad tracks. Drip pans must be cleaned periodically, and drip collected materials must be disposed of properly.
- Pave loading areas with concrete instead of asphalt.
- Avoid placing storm drains in the area.
- Grade and/or berm the loading/unloading area to a drain that is connected to a deadend.

Inspection

- Check loading and unloading equipment regularly for leaks, including valves, pumps, flanges and connections.
- Look for dust or fumes during loading or unloading operations.

Training

- Train employees (e.g., fork lift operators) and contractors on proper spill containment and cleanup.
- Have employees trained in spill containment and cleanup present during loading/unloading.
- Train employees in proper handling techniques during liquid transfers to avoid spills.
- Make sure forklift operators are properly trained on loading and unloading procedures.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Contain leaks during transfer.
- Store and maintain appropriate spill cleanup materials in a location that is readily accessible and known to all and ensure that employees are familiar with the site's spill control plan and proper spill cleanup procedures.
- Have an emergency spill cleanup plan readily available.
- Use drip pans or comparable devices when transferring oils, solvents, and paints.

Other Considerations (Limitations and Regulations)

- Space and time limitations may preclude all transfers from being performed indoors or under cover.
- It may not be possible to conduct transfers only during dry weather.

Requirements

Costs

Costs should be low except when covering a large loading/unloading area.

Maintenance

- Conduct regular inspections and make repairs as necessary. The frequency of repairs will depend on the age of the facility.
- Check loading and unloading equipment regularly for leaks.
- Conduct regular broom dry-sweeping of area.

Supplemental Information

Further Detail of the BMP

Special Circumstances for Indoor Loading/Unloading of Materials
Loading or unloading of liquids should occur in the manufacturing building so that any spills that are not completely retained can be discharged to the sanitary sewer, treatment plant, or treated in a manner consistent with local sewer authorities and permit requirements.

- For loading and unloading tank trucks to above and below ground storage tanks, the following procedures should be used:
- The area where the transfer takes place should be paved. If the liquid is reactive with the asphalt, Portland cement should be used to pave the area.
- The transfer area should be designed to prevent run-on of stormwater from adjacent areas. Sloping the pad and using a curb, like a speed bump, around the uphill side of the transfer area should reduce run-on.
- The transfer area should be designed to prevent runoff of spilled liquids from the area. Sloping the area to a drain should prevent runoff. The drain should be connected to a dead-end sump or to the sanitary sewer. A positive control valve should be installed on the drain.
- For transfer from rail cars to storage tanks that must occur outside, use the following procedures:
- Drip pans should be placed at locations where spillage may occur, such as hose connections, hose reels, and filler nozzles. Use drip pans when making and breaking connections.
- Drip pan systems should be installed between the rails to collect spillage from tank cars.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Description

Outside process equipment operations and maintenance can contaminate stormwater runoff. Activities, such as grinding, painting, coating, sanding, degreasing or parts cleaning, landfills and waste piles, solid waste treatment and disposal, are examples of process operations that can lead to contamination of stormwater runoff. Source controls for outdoor process equipment operations and maintenance include reducing the amount of waste created, enclosing or covering all or some of the equipment, installing secondary containment, and training employees.

Approach

Pollution Prevention

- Perform the activity during dry periods.
- Use non-toxic chemicals for maintenance and minimize or eliminate the use of solvents.

Suggested Protocols

- Consider enclosing the activity in a building and connecting the floor drains to the sanitary sewer.
- Cover the work area with a permanent roof if possible.
- Minimize contact of stormwater with outside process equipment operations through berming and drainage routing (run-on prevention). If possible, connect process equipment area to public sewer or facility wastewater treatment system. Some municipalities require that secondary containment areas be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.
- Dry clean the work area regularly.

Training

- Train employees to perform the activity during dry periods only or substituting benign materials for more toxic ones.
- Train employee and contractors in proper techniques for spill containment and cleanup. Employees should have the tools and knowledge to immediately begin cleaning up a spill should one occur.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents	
Sediment	\checkmark
Nutrients	
Trash	
Metals	\checkmark
Bacteria	
Oil and Grease	\checkmark
Organics	\checkmark

- Have employees trained in emergency spill cleanup procedures present when dangerous waste, liquid chemicals, or other wastes are delivered.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- Prevent operator errors by using engineering safe guards and thus reducing accidental releases of pollutant.
- Inspect storage areas regularly for leaks or spills. Also check for structural failure, spills and overfills due to operator error, and/or failure of piping system.

Other Considerations

- Providing cover may be expensive.
- Space limitations may preclude enclosing some equipment.
- Storage sheds often must meet building and fire code requirements.

Requirements

Costs

Costs vary depending on the complexity of the operation and the amount of control necessary for stormwater pollution control.

Maintenance

- Conduct routine preventive maintenance, including checking process equipment for leaks.
- Clean the storm drain system regularly.

Supplemental Information

Further Detail of the BMP

Hydraulic/Treatment Modifications
If stormwater becomes polluted, it should be captured and treated. If you do not have your own process wastewater treatment system, consider discharging to the public sewer system. Use of the public sewer might be allowed under the following conditions:

- If the activity area is very small (less than a few hundred square feet), the local sewer authority may be willing to allow the area to remain uncovered with the drain connected to the public sewer.
- It may be possible under unusual circumstances to connect a much larger area to the public sewer, as long as the rate of stormwater discharges does not exceed the capacity of the wastewater treatment plant. The stormwater could be stored during the storm and then transferred to the public sewer when the normal flow is low, such as at night.

Industries that generate large volumes of process wastewater typically have their own treatment system and corresponding permit. These industries have the discretion to use their wastewater treatment system to treat stormwater within the constraints of their permit requirements for process treatment. It may also be possible for the industry to discharge the stormwater directly to an effluent outfall without treatment as long as the total loading of the discharged process
water and stormwater does not exceed the loading had a stormwater treatment device been used. This could be achieved by reducing the loading from the process wastewater treatment system. Check with your Regional Water Quality Control Board or local sewering agency, as this option would be subject to permit constraints and potentially regular monitoring.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Stormwater Managers Resource Center http://www.stormwatercenter.net

Photo Credit: Geoff Brosseau

Description

Improper storage and handling of solid wastes can allow toxic compounds, oils and greases, heavy metals, nutrients, suspended solids, and other pollutants to enter stormwater runoff. The discharge of pollutants to stormwater from waste handling and disposal can be prevented and reduced by tracking waste generation, storage, and disposal; reducing waste generation and disposal through source reduction, reuse, and recycling; and preventing run-on and runoff.

Approach

Pollution Prevention

- Accomplish reduction in the amount of waste generated using the following source controls:
- Production planning and sequencing
- Process or equipment modification
- Raw material substitution or elimination
- Loss prevention and housekeeping
- Waste segregation and separation
- Close loop recycling
- Establish a material tracking system to increase awareness about material usage. This may reduce spills and minimize contamination, thus reducing the amount of waste produced.
- Recycle materials whenever possible.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment
Nutrients
Trash
Metals
Bacteria
Oil and Grease
Organics

Suggested Protocols

General

- Cover storage containers with leak proof lids or some other means. If waste is not in containers, cover all waste piles (plastic tarps are acceptable coverage) and prevent stormwater run-on and runoff with a berm. The waste containers or piles must be covered except when in use.
- Use drip pans or absorbent materials whenever grease containers are emptied by vacuum trucks or other means. Grease cannot be left on the ground. Collected grease must be properly disposed of as garbage.
- Check storage containers weekly for leaks and to ensure that lids are on tightly. Replace any that are leaking, corroded, or otherwise deteriorating.
- Sweep and clean the storage area regularly. If it is paved, do not hose down the area to a storm drain.
- Dispose of rinse and wash water from cleaning waste containers into a sanitary sewer if allowed by the local sewer authority. Do not discharge wash water to the street or storm drain.
- Transfer waste from damaged containers into safe containers.
- Take special care when loading or unloading wastes to minimize losses. Loading systems can be used to minimize spills and fugitive emission losses such as dust or mist. Vacuum transfer systems can minimize waste loss.

Controlling Litter

- Post "No Littering" signs and enforce anti-litter laws.
- Provide a sufficient number of litter receptacles for the facility.
- Clean out and cover litter receptacles frequently to prevent spillage.

Waste Collection

- Keep waste collection areas clean.
- Inspect solid waste containers for structural damage regularly. Repair or replace damaged containers as necessary.
- Secure solid waste containers; containers must be closed tightly when not in use.
- Do not fill waste containers with washout water or any other liquid.
- Ensure that only appropriate solid wastes are added to the solid waste container. Certain wastes such as hazardous wastes, appliances, fluorescent lamps, pesticides, etc., may not be disposed of in solid waste containers (see chemical/ hazardous waste collection section below).
- Do not mix wastes; this can cause chemical reactions, make recycling impossible, and complicate disposal.

Good Housekeeping

- Use all of the product before disposing of the container.
- Keep the waste management area clean at all times by sweeping and cleaning up spills immediately.
- Use dry methods when possible (e.g., sweeping, use of absorbents) when cleaning around restaurant/food handling dumpster areas. If water must be used after sweeping/using absorbents, collect water and discharge through grease interceptor to the sewer.

Chemical/Hazardous Wastes

- Select designated hazardous waste collection areas on-site.
- Store hazardous materials and wastes in covered containers and protect them from vandalism.
- Place hazardous waste containers in secondary containment.
- Make sure that hazardous waste is collected, removed, and disposed of only at authorized disposal areas.
- Stencil or demarcate storm drains on the facility's property with prohibitive message regarding waste disposal.

Run-on/Runoff Prevention

- Prevent stormwater run-on from entering the waste management area by enclosing the area or building a berm around the area.
- Prevent waste materials from directly contacting rain.
- Cover waste piles with temporary covering material such as reinforced tarpaulin, polyethylene, polyurethane, polypropyleneor hypalon.
- Cover the area with a permanent roof if feasible.
- Cover dumpsters to prevent rain from washing waste out of holes or cracks in the bottom of the dumpster.
- Move the activity indoor after ensuring all safety concerns such as fire hazard and ventilation are addressed.

Inspection

- Inspect and replace faulty pumps or hoses regularly to minimize the potential of releases and spills.
- Check waste management areas for leaking containers or spills.
- Repair leaking equipment including valves, lines, seals, or pumps promptly.

Training

- Train staff in pollution prevention measures and proper disposal methods.
- Train employees and contractors in proper spill containment and cleanup. The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur.
- Train employees and subcontractors in proper hazardous waste management.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Have an emergency plan, equipment and trained personnel ready at all times to deal immediately with major spills
- Collect all spilled liquids and properly dispose of them.
- Store and maintain appropriate spill cleanup materials in a location known to all near the designated wash area.
- Ensure that vehicles transporting waste have spill prevention equipment that can prevent spills during transport. Spill prevention equipment includes:
- Vehicles equipped with baffles for liquid waste
- Trucks with sealed gates and spill guards for solid waste

Other Considerations (Limitations and Regulations)

Hazardous waste cannot be reused or recycled; it must be disposed of by a licensed hazardous waste hauler.

Requirements

Costs

Capital and O\&M costs for these programs will vary substantially depending on the size of the facility and the types of waste handled. Costs should be low if there is an inventory program in place.

Maintenance

- None except for maintaining equipment for material tracking program.

Supplemental Information

Further Detail of the BMP

Land Treatment System

Minimize runoff of polluted stormwater from land application by:

- Choosing a site where slopes are under 6%, the soil is permeable, there is a low water table, it is located away from wetlands or marshes, and there is a closed drainage system
- Avoiding application of waste to the site when it is raining or when the ground is saturated with water
- Growing vegetation on land disposal areas to stabilize soils and reduce the volume of surface water runoff from the site
- Maintaining adequate barriers between the land application site and the receiving waters (planted strips are particularly good)
- Using erosion control techniques such as mulching and matting, filter fences, straw bales, diversion terracing, and sediment basins
- Performing routine maintenance to ensure the erosion control or site stabilization measures are working

Examples

The port of Long Beach has a state-of-the-art database for identifying potential pollutant sources, documenting facility management practices, and tracking pollutants.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
Solid Waste Container Best Management Practices - Fact Sheet On-Line Resources Environmental Health and Safety. Harvard University. 2002.

King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/whr/dss/spem.htm
Pollution from Surface Cleaning Folder. 1996. Bay Area Stormwater Management Agencies Association (BASMAA). http://www.basmaa.org

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Description

Promote the use of less harmful products and products that contain little or no TMDL pollutants. Alternatives exist for most product classes including chemical fertilizers, pesticides, cleaning solutions, janitorial chemicals, automotive and paint products, and consumables (batteries, fluorescent lamps).

Approach

Pattern a new program after the many established programs around the state and country. Integrate this best management practice as much as possible with existing programs at your facility.

Develop a comprehensive program based on:

- The "Precautionary Principle," which is an alternative to the "Risk Assessment" model that says it's acceptable to use a potentially harmful product until physical evidence of its harmful effects are established and deemed too costly from an environmental or public health perspective. For instance, a risk assessment approach might say it's acceptable to use a pesticide until there is direct proof of an environmental impact. The Precautionary Principle approach is used to evaluate whether a given product is safe, whether it is really necessary, and whether alternative products would perform just as well.
- Environmentally Preferable Purchasing Program to minimize the purchase of products containing hazardous ingredients used in the facility's custodial services, fleet maintenance, and facility maintenance in favor of using alternate products that pose less risk to employees and to the environment.
- Integrated Pest Management (IPM) or Less-Toxic Pesticide Program, which uses a pest management approach that minimizes the use of toxic chemicals and gets rid of pests by methods that pose a lower risk to employees, the public, and the environment.
- Energy Efficiency Program including no-cost and low-cost energy conservation and efficiency actions that can reduce both energy consumption and electricity bills, along with long-term energy efficiency investments.

Consider the following mechanisms for developing and implementing a comprehensive program:

- Policies

Objectives

- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment
Nutrients
Trash
Metals
Bacteria
Oil and Grease Organics

- Procedures
- Standard operating procedures (SOPs)
- Purchasing guidelines and procedures
- Bid packages (services and supplies)
- Materials
- Preferred or approved product and supplier lists
- Product and supplier evaluation criteria
- Training sessions and manuals
- Fact sheets for employees

Implement this BMP in conjunction with the Vehicle and Equipment Management fact sheets (SC20 - SC22) and SC41, Building and Grounds Maintenance.

Training

- Employees who handle potentially harmful materials in the use of safer alternatives.
- Purchasing departments should be encouraged to procure less hazardous materials and products that contain little or no harmful substances or TMDL pollutants.

Regulations

This BMP has no regulatory requirements. Existing regulations already encourage facilities to reduce the use of hazardous materials through incentives such as reduced:

- Specialized equipment storage and handling requirements,
- Storm water runoff sampling requirements,
- Training and licensing requirements, and
- Record keeping and reporting requirements.

Equipment

- There are no major equipment requirements to this BMP.

Limitations

- Alternative products may not be available, suitable, or effective in every case.

Requirements

Cost Considerations

- The primary cost is for staff time to: 1) develop new policies and procedures and 2) educate purchasing departments and employees who handle potentially harmful materials about the availability, procurement, and use of safer alternatives.
- Some alternative products may be slightly more expensive than conventional products.

Supplemental Information

Employees and contractors / service providers can both be educated about safer alternatives by using information developed by a number of organizations including the references and resources listed below.

The following discussion provides some general information on safer alternatives. More specific information on particular hazardous materials and the available alternatives may be found in the references and resources listed below.

- Automotive products - Less toxic alternatives are not available for many automotive products, especially engine fluids. But there are alternatives to grease lubricants, car polishes, degreasers, and windshield washer solution. Rerefined motor oil is also available.
- Vehicle/Trailer lubrication - Fifth wheel bearings on trucks require routine lubrication. Adhesive lubricants are available to replace typical chassis grease.
- Cleaners - Vegetables-based or citrus-based soaps are available to replace petroleum-based soaps/detergents.
- Paint products - Water-based paints, wood preservatives, stains, and finishes are available.
- Pesticides - Specific alternative products or methods exist to control most insects, fungi, and weeds.
- Chemical Fertilizers - Compost and soil amendments are natural alternatives.
- Consumables - Manufacturers have either reduced or are in the process of reducing the amount of heavy metals in consumables such as batteries and fluorescent lamps. All fluorescent lamps contain mercury, however low-mercury containing lamps are now available from most hardware and lighting stores. Fluorescent lamps are also more energy efficient than the average incandescent lamp.
- Janitorial chemicals - Even biodegradable soap can harm fish and wildlife before it biodegrades. Biodegradable does not mean non-toxic. Safer products and procedures are available for floor stripping and cleaning, as well as carpet, glass, metal, and restroom cleaning and disinfecting.

Examples

There are a number of business and trade associations, and communities with effective programs. Some of the more prominent are listed below in the references and resources section.

References and Resources

Note: Many of these references provide alternative products for materials that typically are used inside and disposed to the sanitary sewer as well as alternatives to products that usually end up in the storm drain.

General Sustainable Practices and Pollution Prevention Including PollutantSpecific Information

California Department of Toxic Substances Control (www.dtsc.ca.gov)
California Integrated Waste Management Board (www.ciwmb.ca.gov)
City of Santa Monica (www.santa-monica.org/environment)
City of Palo Alto (www.city.palo-alto.ca.us/cleanbay)
City and County of San Francisco, Department of the Environment
(www.ci.sf.ca.us/sfenvironment)
Earth 911 (www.earth911.org/master.asp)
Environmental Finance Center Region IX (www.greenstart.org/efc9)
Flex Your Power (www.flexyourpower.ca.gov)
GreenBiz.com (www.greenbiz.com)
Green Business Program (www.abag.org/bayarea/enviro/gbus/gb.html)
Pacific Industrial and Business Association (www.piba.org)
Sacramento Clean Water Business Partners (www.sacstormwater.org)
USEPA BMP fact sheet - Alternative products
(http://cfpub.epa.gov/npdes/stormwater/menuofbmps/poll_2.cfm)
USEPA Region IX Pollution Prevention Program (www.epa.gov/regiono9/p2)
Western Regional Pollution Prevention Network (www.westp2net.org)

Metals (mercury, copper)

National Electrical Manufacturers Association - Environment, Health and Safety (www.nema.org)

Sustainable Conservation (www.suscon.org)
Auto Recycling Project
Brake Pad Partnership

Pesticides and Chemical Fertilizers

Bio-Integral Resource Center (www.birc.org)
California Department of Pesticide Regulation (www.cdpr.ca.gov)
University of California Statewide IPM Program (www.ipm.ucdavis.edu/default.html)

Dioxins

Bay Area Dioxins Project (http://dioxin.abag.ca.gov/)

Description

Stormwater runoff from building and grounds maintenance activities can be contaminated with toxic hydrocarbons in solvents, fertilizers and pesticides, suspended solids, heavy metals, abnormal pH , and oils and greases. Utilizing the protocols in this fact sheet will prevent or reduce the discharge of pollutants to stormwater from building and grounds maintenance activities by washing and cleaning up with as little water as possible, following good landscape management practices, preventing and cleaning up spills immediately, keeping debris from entering the storm drains, and maintaining the stormwater collection system.

Approach

Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

Pollution Prevention

- Switch to non-toxic chemicals for maintenance when possible.
- Choose cleaning agents that can be recycled.
- Encourage proper lawn management and landscaping, including use of native vegetation.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment	$\boldsymbol{\checkmark}$
Nutrients	$\boldsymbol{\checkmark}$
Trash	
Metals	$\boldsymbol{\checkmark}$
Bacteria	$\boldsymbol{\checkmark}$
Oil and Grease	
Organics	

SC-41 Building \& Grounds Maintenance

- Encourage use of Integrated Pest Management techniques for pest control.
- Encourage proper onsite recycling of yard trimmings.
- Recycle residual paints, solvents, lumber, and other material as much as possible.

Suggested Protocols

Pressure Washing of Buildings, Rooftops, and Other Large Objects

- In situations where soaps or detergents are used and the surrounding area is paved, pressure washers must use a water collection device that enables collection of wash water and associated solids. A sump pump, wet vacuum or similarly effective device must be used to collect the runoff and loose materials. The collected runoff and solids must be disposed of properly.
- If soaps or detergents are not used, and the surrounding area is paved, wash runoff does not have to be collected but must be screened. Pressure washers must use filter fabric or some other type of screen on the ground and/or in the catch basin to trap the particles in wash water runoff.
- If you are pressure washing on a grassed area (with or without soap), runoff must be dispersed as sheet flow as much as possible, rather than as a concentrated stream. The wash runoff must remain on the grass and not drain to pavement.

Landscaping Activities

- Dispose of grass clippings, leaves, sticks, or other collected vegetation as garbage, or by composting. Do not dispose of collected vegetation into waterways or storm drainage systems.
- Use mulch or other erosion control measures on exposed soils.

Building Repair, Remodeling, and Construction

- Do not dump any toxic substance or liquid waste on the pavement, the ground, or toward a storm drain.
- Use ground or drop cloths underneath outdoor painting, scraping, and sandblasting work, and properly dispose of collected material daily.
- Use a ground cloth or oversized tub for activities such as paint mixing and tool cleaning.
- Clean paintbrushes and tools covered with water-based paints in sinks connected to sanitary sewers or in portable containers that can be dumped into a sanitary sewer drain. Brushes and tools covered with non-water-based paints, finishes, or other materials must be cleaned in a manner that enables collection of used solvents (e.g., paint thinner, turpentine, etc.) for recycling or proper disposal.
- Use a storm drain cover, filter fabric, or similarly effective runoff control mechanism if dust, grit, wash water, or other pollutants may escape the work area and enter a catch basin. This is particularly necessary on rainy days. The containment device(s) must be in place at the beginning of the work day, and accumulated dirty runoff and solids must be collected and disposed of before removing the containment device(s) at the end of the work day.
- If you need to de-water an excavation site, you may need to filter the water before discharging to a catch basin or off-site. If directed off-site, you should direct the water through hay bales and filter fabric or use other sediment filters or traps.
- Store toxic material under cover during precipitation events and when not in use. A cover would include tarps or other temporary cover material.

Mowing, Trimming, and Planting

- Dispose of leaves, sticks, or other collected vegetation as garbage, by composting or at a permitted landfill. Do not dispose of collected vegetation into waterways or storm drainage systems.
- Use mulch or other erosion control measures when soils are exposed.
- Place temporarily stockpiled material away from watercourses and drain inlets, and berm or cover stockpiles to prevent material releases to the storm drain system.
- Consider an alternative approach when bailing out muddy water: do not put it in the storm drain; pour over landscaped areas.
- Use hand weeding where practical.

Fertilizer and Pesticide Management

- Follow all federal, state, and local laws and regulations governing the use, storage, and disposal of fertilizers and pesticides and training of applicators and pest control advisors.
- Use less toxic pesticides that will do the job when applicable. Avoid use of copper-based pesticides if possible.
- Do not use pesticides if rain is expected.
- Do not mix or prepare pesticides for application near storm drains.
- Use the minimum amount needed for the job.
- Calibrate fertilizer distributors to avoid excessive application.
- Employ techniques to minimize off-target application (e.g., spray drift) of pesticides, including consideration of alternative application techniques.
- Apply pesticides only when wind speeds are low.
- Fertilizers should be worked into the soil rather than dumped or broadcast onto the surface.
- Irrigate slowly to prevent runoff and then only as much as is needed.
- Clean pavement and sidewalk if fertilizer is spilled on these surfaces before applying irrigation water.
- Dispose of empty pesticide containers according to the instructions on the container label.

SC-41 Building \& Grounds Maintenance

- Use up the pesticides. Rinse containers, and use rinse water as product. Dispose of unused pesticide as hazardous waste.
- Implement storage requirements for pesticide products with guidance from the local fire department and County Agricultural Commissioner. Provide secondary containment for pesticides.

Inspection

- Inspect irrigation system periodically to ensure that the right amount of water is being applied and that excessive runoff is not occurring. Minimize excess watering and repair leaks in the irrigation system as soon as they are observed.

Training

- Educate and train employees on pesticide use and in pesticide application techniques to prevent pollution.
- Train employees and contractors in proper techniques for spill containment and cleanup.
- Be sure the frequency of training takes into account the complexity of the operations and the nature of the staff.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Place a stockpile of spill cleanup materials, such as brooms, dustpans, and vacuum sweepers (if desired) near the storage area where it will be readily accessible.
- Have employees trained in spill containment and cleanup present during the loading/unloading of dangerous wastes, liquid chemicals, or other materials.
- Familiarize employees with the Spill Prevention Control and Countermeasure Plan.
- Clean up spills immediately.

Other Considerations

Alternative pest/weed controls may not be available, suitable, or effective in many cases.

Requirements

Costs

- Cost will vary depending on the type and size of facility.
- Overall costs should be low in comparison to other BMPs.

Maintenance

Sweep paved areas regularly to collect loose particles. Wipe up spills with rags and other absorbent material immediately, do not hose down the area to a storm drain.

Supplemental Information

Further Detail of the BMP

Fire Sprinkler Line Flushing
Building fire sprinkler line flushing may be a source of non-stormwater runoff pollution. The water entering the system is usually potable water, though in some areas it may be non-potable reclaimed wastewater. There are subsequent factors that may drastically reduce the quality of the water in such systems. Black iron pipe is usually used since it is cheaper than potable piping, but it is subject to rusting and results in lower quality water. Initially, the black iron pipe has an oil coating to protect it from rusting between manufacture and installation; this will contaminate the water from the first flush but not from subsequent flushes. Nitrates, polyphosphates and other corrosion inhibitors, as well as fire suppressants and antifreeze may be added to the sprinkler water system. Water generally remains in the sprinkler system a long time (typically a year) and between flushes may accumulate iron, manganese, lead, copper, nickel, and zinc. The water generally becomes anoxic and contains living and dead bacteria and breakdown products from chlorination. This may result in a significant BOD problem and the water often smells. Consequently dispose fire sprinkler line flush water into the sanitary sewer. Do not allow discharge to storm drain or infiltration due to potential high levels of pollutants in fire sprinkler line water.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Mobile Cleaners Pilot Program: Final Report. 1997. Bay Area Stormwater Management Agencies Association (BASMAA). http://www.basmaa.org/

Pollution from Surface Cleaning Folder. 1996. Bay Area Stormwater Management Agencies Association (BASMAA). http://www.basmaa.org/

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Description

Modifications are common particularly at large industrial sites. The activity may vary from minor and normal building repair to major remodeling, or the construction of new facilities. These activities can generate pollutants including solvents, paints, paint and varnish removers, finishing residues, spent thinners, soap cleaners, kerosene, asphalt and concrete materials, adhesive residues, and old asbestos installation. Protocols in this fact sheet are intended to prevent or reduce the discharge of pollutants to stormwater from building repair, remodeling, and construction by using soil erosion controls, enclosing or covering building material storage areas, using good housekeeping practices, using safer alternative products, and training employees.

Approach

Pollution Prevention

- Recycle residual paints, solvents, lumber, and other materials to the maximum extent practical.
- Buy recycled products to the maximum extent practical.
- Inform on-site contractors of company policy on these matters and include appropriate provisions in their contract to ensure certain proper housekeeping and disposal practices are implemented.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Recycle

Targeted Constituents

Sediment	\checkmark
Nutrients	
Trash	$\boldsymbol{\checkmark}$
Metals	\checkmark
Bacteria	
Oil and Grease	$\boldsymbol{\checkmark}$
Organics	$\boldsymbol{\checkmark}$

SC-42 Building Repair and Construction

- Make sure that nearby storm drains are well marked to minimize the chance of inadvertent disposal of residual paints and other liquids.

Suggested Protocols

Repair \& Remodeling

- Follow BMPs identified in Construction BMP Handbook.
- Maintain good housekeeping practices while work is underway.
- Keep the work site clean and orderly. Remove debris in a timely fashion. Sweep the area.
- Cover materials of particular concern that must be left outside, particularly during the rainy season.
- Do not dump waste liquids down the storm drain.
- Dispose of wash water, sweepings, and sediments properly.
- Store materials properly that are normally used in repair and remodeling such as paints and solvents.
- Sweep out the gutter or wash the gutter and trap the particles at the outlet of the downspout if when repairing roofs, small particles have accumulated in the gutter. A sock or geofabric placed over the outlet may effectively trap the materials. If the downspout is tight lined, place a temporary plug at the first convenient point in the storm drain and pump out the water with a vactor truck, and clean the catch basin sump where you placed the plug.
- Properly store and dispose waste materials generated from construction activities. See Construction BMP Handbook.
- Clean the storm drain system in the immediate vicinity of the construction activity after it is completed.

Painting

- Enclose painting operations consistent with local air quality regulations and OSHA.
- Local air pollution regulations may, in many areas of the state, specify painting procedures which if properly carried out are usually sufficient to protect water quality.
- Develop paint handling procedures for proper use, storage, and disposal of paints.
- Transport paint and materials to and from job sites in containers with secure lids and tied down to the transport vehicle.
- Test and inspect spray equipment prior to starting to paint. Tighten all hoses and connections and do not overfill paint containers.
- Mix paint indoors before using so that any spill will not be exposed to rain. Do so even during dry weather because cleanup of a spill will never be 100% effective.
- Transfer and load paint and hot thermoplastic away from storm drain inlets.
- Do not transfer or load paint near storm drain inlets.
- Plug nearby storm drain inlets prior to starting painting and remove plugs when job is complete when there is significant risk of a spill reaching storm drains.
- Cover nearby storm drain inlets prior to starting work if sand blasting is used to remove paint.
- Use a ground cloth to collect the chips if painting requires scraping or sand blasting of the existing surface. Dispose the residue properly.
- Cover or enclose painting operations properly to avoid drift.
- Clean the application equipment in a sink that is connected to the sanitary sewer if using water based paints.
- Capture all cleanup-water and dispose of properly.
- Dispose of paints containing lead or tributyl tin and considered a hazardous waste properly.
- Store leftover paints if they are to be kept for the next job properly, or dispose properly.
- Recycle paint when possible. Dispose of paint at an appropriate household hazardous waste facility.

Training

Proper education of off-site contractors is often overlooked. The conscientious efforts of well trained employees can be lost by unknowing off-site contractors, so make sure they are well informed about what they are expected to do.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Place a stockpile of spill cleanup materials where it will be readily accessible.
- Clean up spills immediately.
- Excavate and remove the contaminated (stained) soil if a spill occurs on dirt.

Limitations

- This BMP is for minor construction only. The State's General Construction Activity Stormwater Permit has more requirements for larger projects. The companion "Construction Best Management Practice Handbook" contains specific guidance and best management practices for larger-scale projects.
- Hazardous waste that cannot be reused or recycled must be disposed of by a licensed hazardous waste hauler.
- Be certain that actions to help stormwater quality are consistent with Cal- and Fed-OSHA and air quality regulations.

SC-42 Building Repair and Construction

Requirements

Costs

These BMPs are generally low to modest in cost.

Maintenance

N/A

Supplemental Information

Further Detail of the BMP

Soil/Erosion Control
If the work involves exposing large areas of soil, employ the appropriate soil erosion and control techniques. See the Construction Best Management Practice Handbook. If old buildings are being torn down and not replaced in the near future, stabilize the site using measures described in SC-40 Contaminated or Erodible Areas.

If a building is to be placed over an open area with a storm drainage system, make sure the storm inlets within the building are covered or removed, or the storm line is connected to the sanitary sewer. If because of the remodeling a new drainage system is to be installed or the existing system is to be modified, consider installing catch basins as they serve as effective "inline" treatment devices. See Treatment Control Fact Sheet TC-20 Wet Pond/Basin in Section 5 of the New Development and Redevelopment Handbook regarding design criteria. Include in the catch basin a "turn-down" elbow or similar device to trap floatables.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Parking/Storage Area Maintenance SC-43

Description

Parking lots and storage areas can contribute a number of substances, such as trash, suspended solids, hydrocarbons, oil and grease, and heavy metals that can enter receiving waters through stormwater runoff or non-stormwater discharges. The protocols in this fact sheet are intended to prevent or reduce the discharge of pollutants from parking/storage areas and include using good housekeeping practices, following appropriate cleaning BMPs, and training employees.

Approach

The goal of this program is to ensure stormwater pollution prevention practices are considered when conducting activities on or around parking areas and storage areas to reduce potential for pollutant discharge to receiving waters. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

Pollution Prevention

- Encourage alternative designs and maintenance strategies for impervious parking lots. (See New Development and Redevelopment BMP Handbook)
- Keep accurate maintenance logs to evaluate BMP implementation.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

Sediment	$\mathbf{\checkmark}$
Nutrients	
Trash	$\boldsymbol{\checkmark}$
Metals	$\boldsymbol{\checkmark}$
Bacteria	
Oil and Grease	$\boldsymbol{\checkmark}$
Organics	$\boldsymbol{\checkmark}$

SC-43 Parking/Storage Area Maintenance

Suggested Protocols

General

- Keep the parking and storage areas clean and orderly. Remove debris in a timely fashion.
- Allow sheet runoff to flow into biofilters (vegetated strip and swale) and/or infiltration devices.
- Utilize sand filters or oleophilic collectors for oily waste in low quantities.
- Arrange rooftop drains to prevent drainage directly onto paved surfaces.
- Design lot to include semi-permeable hardscape.
- Discharge soapy water remaining in mop or wash buckets to the sanitary sewer through a sink, toilet, clean-out, or wash area with drain.

Controlling Litter

- Post "No Littering" signs and enforce anti-litter laws.
- Provide an adequate number of litter receptacles.
- Clean out and cover litter receptacles frequently to prevent spillage.
- Provide trash receptacles in parking lots to discourage litter.
- Routinely sweep, shovel, and dispose of litter in the trash.

Surface Cleaning

- Use dry cleaning methods (e.g., sweeping, vacuuming) to prevent the discharge of pollutants into the stormwater conveyance system if possible.
- Establish frequency of public parking lot sweeping based on usage and field observations of waste accumulation.
- Sweep all parking lots at least once before the onset of the wet season.
- Follow the procedures below if water is used to clean surfaces:
- Block the storm drain or contain runoff.
- Collect and pump wash water to the sanitary sewer or discharge to a pervious surface. Do not allow wash water to enter storm drains.
- Dispose of parking lot sweeping debris and dirt at a landfill.
- Follow the procedures below when cleaning heavy oily deposits:
- Clean oily spots with absorbent materials.
- Use a screen or filter fabric over inlet, then wash surfaces.

Parking/Storage Area Maintenance SC-43

- Do not allow discharges to the storm drain.
- Vacuum/pump discharges to a tank or discharge to sanitary sewer.
- Appropriately dispose of spilled materials and absorbents.

Surface Repair

- Preheat, transfer or load hot bituminous material away from storm drain inlets.
- Apply concrete, asphalt, and seal coat during dry weather to prevent contamination from contacting stormwater runoff.
- Cover and seal nearby storm drain inlets where applicable (with waterproof material or mesh) and manholes before applying seal coat, slurry seal, etc. Leave covers in place until job is complete and all water from emulsified oil sealants has drained or evaporated. Clean any debris from these covered manholes and drains for proper disposal.
- Use only as much water as necessary for dust control, to avoid runoff.
- Catch drips from paving equipment that is not in use with pans or absorbent material placed under the machines. Dispose of collected material and absorbents properly.

Inspection

- Have designated personnel conduct inspections of parking facilities and stormwater conveyance systems associated with parking facilities on a regular basis.
- Inspect cleaning equipment/sweepers for leaks on a regular basis.

Training

- Provide regular training to field employees and/or contractors regarding cleaning of paved areas and proper operation of equipment.
- Train employees and contractors in proper techniques for spill containment and cleanup.

Spill Response and Prevention

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Place a stockpile of spill cleanup materials where it will be readily accessible or at a central location.
- Clean up fluid spills immediately with absorbent rags or material.
- Dispose of spilled material and absorbents properly.

Other Considerations

Limitations related to sweeping activities at large parking facilities may include high equipment costs, the need for sweeper operator training, and the inability of current sweeper technology to remove oil and grease.

SC-43 Parking/Storage Area Maintenance

Requirements

Costs

Cleaning/sweeping costs can be quite large. Construction and maintenance of stormwater structural controls can be quite expensive as well.

Maintenance

- Sweep parking lot regularly to minimize cleaning with water.
- Clean out oil/water/sand separators regularly, especially after heavy storms.
- Clean parking facilities regularly to prevent accumulated wastes and pollutants from being discharged into conveyance systems during rainy conditions.

Supplemental Information

Further Detail of the BMP

Surface Repair

Apply concrete, asphalt, and seal coat during dry weather to prevent contamination from contacting stormwater runoff. Where applicable, cover and seal nearby storm drain inlets (with waterproof material or mesh) and manholes before applying seal coat, slurry seal, etc. Leave covers in place until job is complete and all water from emulsified oil sealants has drained or evaporated. Clean any debris from these covered manholes and drains for proper disposal. Only use only as much water as is necessary for dust control to avoid runoff.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Pollution from Surface Cleaning Folder. 1996. Bay Area Stormwater Management Agencies
Association (BASMAA). http://www.basmaa.org/
Oregon Association of Clean Water Agencies. Oregon Municipal Stormwater Toolbox for Maintenance Practices. June 1998.

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org

The Storm Water Managers Resource Center http://www.stormwatercenter.net/

Description

As a consequence of its function, the stormwater conveyance system collects and transports urban runoff and stormwater that may contain certain pollutants. The protocols in this fact sheet are intended to reduce pollutants reaching receiving waters through proper conveyance system operation and maintenance.

Approach

Pollution Prevention

Maintain catch basins, stormwater inlets, and other stormwater conveyance structures on a regular basis to remove pollutants, reduce high pollutant concentrations during the first flush of storms, prevent clogging of the downstream conveyance system, restore catch basins' sediment trapping capacity, and ensure the system functions properly hydraulically to avoid flooding.

Suggested Protocols

Catch Basins/Inlet Structures

- Staff should regularly inspect facilities to ensure compliance with the following:
- Immediate repair of any deterioration threatening structural integrity.
- Cleaning before the sump is 40% full. Catch basins should be cleaned as frequently as needed to meet this standard.
- Stenciling of catch basins and inlets (see SC34 Waste Handling and Disposal).

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents

Sediment	$\boldsymbol{\checkmark}$
Nutrients	
Trash	$\boldsymbol{\checkmark}$
Metals	
Bacteria	$\boldsymbol{\checkmark}$
Oil and Grease	
Organics	

- Clean catch basins, storm drain inlets, and other conveyance structures before the wet season to remove sediments and debris accumulated during the summer.
- Conduct inspections more frequently during the wet season for problem areas where sediment or trash accumulates more often. Clean and repair as needed.
- Keep accurate logs of the number of catch basins cleaned.
- Store wastes collected from cleaning activities of the drainage system in appropriate containers or temporary storage sites in a manner that prevents discharge to the storm drain.
- Dewater the wastes if necessary with outflow into the sanitary sewer if permitted. Water should be treated with an appropriate filtering device prior to discharge to the sanitary sewer. If discharge to the sanitary sewer is not allowed, water should be pumped or vacuumed to a tank and properly disposed. Do not dewater near a storm drain or stream.

Storm Drain Conveyance System

- Locate reaches of storm drain with deposit problems and develop a flushing schedule that keeps the pipe clear of excessive buildup.
- Collect and pump flushed effluent to the sanitary sewer for treatment whenever possible.

Pump Stations

- Clean all storm drain pump stations prior to the wet season to remove silt and trash.
- Do not allow discharge to reach the storm drain system when cleaning a storm drain pump station or other facility.
- Conduct routine maintenance at each pump station.
- Inspect, clean, and repair as necessary all outlet structures prior to the wet season.

Open Channel

- Modify storm channel characteristics to improve channel hydraulics, increase pollutant removals, and enhance channel/creek aesthetic and habitat value.
- Conduct channel modification/improvement in accordance with existing laws. Any person, government agency, or public utility proposing an activity that will change the natural (emphasis added) state of any river, stream, or lake in California, must enter into a Steam or Lake Alteration Agreement with the Department of Fish and Game. The developer-applicant should also contact local governments (city, county, special districts), other state agencies (SWRCB, RWQCB, Department of Forestry, Department of Water Resources), and Federal Corps of Engineers and USFWS.

Illicit Connections and Discharges

- Look for evidence of illegal discharges or illicit connections during routine maintenance of conveyance system and drainage structures:
- Is there evidence of spills such as paints, discoloring, etc?
- Are there any odors associated with the drainage system?
- Record locations of apparent illegal discharges/illicit connections?
- Track flows back to potential dischargers and conduct aboveground inspections. This can be done through visual inspection of upgradient manholes or alternate techniques including zinc chloride smoke testing, fluorometric dye testing, physical inspection testing, or television camera inspection.
- Eliminate the discharge once the origin of flow is established.
- Stencil or demarcate storm drains, where applicable, to prevent illegal disposal of pollutants. Storm drain inlets should have messages such as "Dump No Waste Drains to Stream" stenciled next to them to warn against ignorant or intentional dumping of pollutants into the storm drainage system.
- Refer to fact sheet SC-10 Non-Stormwater Discharges.

Illegal Dumping

- Inspect and clean up hot spots and other storm drainage areas regularly where illegal dumping and disposal occurs.
- Establish a system for tracking incidents. The system should be designed to identify the following:
- Illegal dumping hot spots
- Types and quantities (in some cases) of wastes
- Patterns in time of occurrence (time of day/night, month, or year)
- Mode of dumping (abandoned containers, "midnight dumping" from moving vehicles, direct dumping of materials, accidents/spills)
- Responsible parties
- Post "No Dumping" signs in problem areas with a phone number for reporting dumping and disposal. Signs should also indicate fines and penalties for illegal dumping.
- Refer to fact sheet SC-10 Non-Stormwater Discharges.

Training

- Train crews in proper maintenance activities, including record keeping and disposal.
- Allow only properly trained individuals to handle hazardous materials/wastes.
- Have staff involved in detection and removal of illicit connections trained in the following:
- OSHA-required Health and Safety Training (29 CFR 1910.120) plus annual refresher training (as needed).
- OSHA Confined Space Entry training (Cal-OSHA Confined Space, Title 8 and Federal OSHA 29 CFR 1910.146).
- Procedural training (field screening, sampling, smoke/dye testing, TV inspection).

Spill Response and Prevention

- Investigate all reports of spills, leaks, and/or illegal dumping promptly.
- Clean up all spills and leaks using "dry" methods (with absorbent materials and/or rags) or dig up, remove, and properly dispose of contaminated soil.
- Refer to fact sheet SC-11 Spill Prevention, Control, and Cleanup.

Other Considerations (Limitations and Regulations)

- Clean-up activities may create a slight disturbance for local aquatic species. Access to items and material on private property may be limited. Trade-offs may exist between channel hydraulics and water quality/riparian habitat. If storm channels or basins are recognized as wetlands, many activities, including maintenance, may be subject to regulation and permitting.
- Storm drain flushing is most effective in small diameter pipes (36-inch diameter pipe or less, depending on water supply and sediment collection capacity). Other considerations associated with storm drain flushing may include the availability of a water source, finding a downstream area to collect sediments, liquid/sediment disposal, and prohibition against disposal of flushed effluent to sanitary sewer in some areas.
- Regulations may include adoption of substantial penalties for illegal dumping and disposal.
- Local municipal codes may include sections prohibiting discharge of soil, debris, refuse, hazardous wastes, and other pollutants into the storm drain system.

Requirements

Costs

- An aggressive catch basin cleaning program could require a significant capital and O\&M budget.
- The elimination of illegal dumping is dependent on the availability, convenience, and cost of alternative means of disposal. The primary cost is for staff time. Cost depends on how aggressively a program is implemented. Other cost considerations for an illegal dumping program include:
- Purchase and installation of signs.
- Rental of vehicle(s) to haul illegally-disposed items and material to landfills.
- Rental of heavy equipment to remove larger items (e.g., car bodies) from channels.
- Purchase of landfill space to dispose of illegally-dumped items and material.
- Methods used for illicit connection detection (smoke testing, dye testing, visual inspection, and flow monitoring) can be costly and time-consuming. Site-specific factors, such as the level of impervious area, the density and ages of buildings, and type of land use will determine the level of investigation necessary.

Maintenance

- Two-person teams may be required to clean catch basins with vactor trucks.
- Teams of at least two people plus administrative personnel are required to identify illicit discharges, depending on the complexity of the storm sewer system.
- Arrangements must be made for proper disposal of collected wastes.
- Technical staff are required to detect and investigate illegal dumping violations.

Supplemental Information

Further Detail of the BMP

Storm Drain Flushing

Flushing is a common maintenance activity used to improve pipe hydraulics and to remove pollutants in storm drainage systems. Flushing may be designed to hydraulically convey accumulated material to strategic locations, such as an open channel, another point where flushing will be initiated, or the sanitary sewer and the treatment facilities, thus preventing resuspension and overflow of a portion of the solids during storm events. Flushing prevents "plug flow" discharges of concentrated pollutant loadings and sediments. Deposits can hinder the designed conveyance capacity of the storm drain system and potentially cause backwater conditions in severe cases of clogging.

Storm drain flushing usually takes place along segments of pipe with grades that are too flat to maintain adequate velocity to keep particles in suspension. An upstream manhole is selected to place an inflatable device that temporarily plugs the pipe. Further upstream, water is pumped into the line to create a flushing wave. When the upstream reach of pipe is sufficiently full to cause a flushing wave, the inflated device is rapidly deflated with the assistance of a vacuum pump, thereby releasing the backed up water and resulting in the cleaning of the storm drain segment.

To further reduce impacts of stormwater pollution, a second inflatable device placed well downstream may be used to recollect the water after the force of the flushing wave has dissipated. A pump may then be used to transfer the water and accumulated material to the sanitary sewer for treatment. In some cases, an interceptor structure may be more practical or required to recollect the flushed waters.

It has been found that cleansing efficiency of periodic flush waves is dependent upon flush volume, flush discharge rate, sewer slope, sewer length, sewer flow rate, sewer diameter, and population density. As a rule of thumb, the length of line to be flushed should not exceed 700 feet. At this maximum recommended length, the percent removal efficiency ranges between 65$75 \%$ for organics and $55-65 \%$ for dry weather grit/inorganic material. The percent removal efficiency drops rapidly beyond that. Water is commonly supplied by a water truck, but fire hydrants can also supply water. To make the best use of water, it is recommended that reclaimed water be used or that fire hydrant line flushing coincide with storm sewer flushing.

References and Resources

California's Nonpoint Source Program Plan http://www.swrcb.ca.gov/nps/index.html
Clark County Storm Water Pollution Control Manual
http://www.co.clark.wa.us/pubworks/bmpman.pdf
Ferguson, B.K. 1991. Urban Stream Reclamation, p. 324-322, Journal of Soil and Water Conservation.

King County Storm Water Pollution Control Manual http://dnr.metrokc.gov/wlr/dss/spem.htm
Oregon Association of Clean Water Agencies. Oregon Municipal Stormwater Toolbox for Maintenance Practices. June 1998.

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp.org
The Storm Water Managers Resource Center http://www.stormwatercenter.net
United States Environmental Protection Agency (USEPA). 2002. Pollution Prevention/Good Housekeeping for Municipal Operations Storm Drain System Cleaning. On line:
http://www.epa.gov/npdes/menuofbmps/poll 16.htm

General Description

Drain inserts are manufactured filters or fabric placed in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling into one of three different groups: socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets. Boxes are constructed of plastic or wire mesh. Typically a polypropylene "bag" is placed in the wire mesh box. The bag takes the form of the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some products consist of one or more trays or mesh grates. The trays may hold different types of media. Filtration media vary by manufacturer. Types include polypropylene, porous polymer, treated cellulose, and activated carbon.

Inspection/Maintenance Considerations

Washout problems increase with rain intensity. Susceptibility of accumulated sediments to be re-suspended at low flow rates, can be corrected with an energy dissipater between gate and treatment areas.

Inspection Activities	Suggested Frequency
■ Inspect for sediment buildup and proper functioning.	At the beginning of the wet season and after significant storms
Verify that stormwater enters the unit and does not leak around the perimeter.	After construction.
Maintenance Activities	Suggested Frequency
Remove sediment as needed.	At the beginning of the wet season and as necessary

Maintenance Concerns, Objectives, and Goals

- Sediment Removal

Targeted Constituents

Sediment
\checkmark Nutrients
\checkmark Trash
\checkmark Metals
Bacteria
」 Oil and Grease
\checkmark Organics
Removal Effectiveness
See New Development and
Redevelopment Handbook-Section 5.

Design Objectives

■ Maximize Infiltration
\square Provide Retention
\checkmark Slow Runoff
Minimize Impervious Land Coverage
Prohibit Dumping of Improper Materials

Contain Pollutants
Collect and Convey

Description

Irrigation water provided to landscaped areas may result in excess irrigation water being conveyed into stormwater drainage systems.

Approach

Project plan designs for development and redevelopment should include application methods of irrigation water that minimize runoff of excess irrigation water into the stormwater conveyance system.

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment. (Detached residential single-family homes are typically excluded from this requirement.)

Design Considerations

Designing New Installations

The following methods to reduce excessive irrigation runoff should be considered, and incorporated and implemented where determined applicable and feasible by the Permittee:

- Employ rain-triggered shutoff devices to prevent irrigation after precipitation.
- Design irrigation systems to each landscape area's specific water requirements.
- Include design featuring flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines.
- Implement landscape plans consistent with County or City water conservation resolutions, which may include provision of water sensors, programmable irrigation times (for short cycles), etc.

- Design timing and application methods of irrigation water to minimize the runoff of excess irrigation water into the storm water drainage system.
- Group plants with similar water requirements in order to reduce excess irrigation runoff and promote surface filtration. Choose plants with low irrigation requirements (for example, native or drought tolerant species). Consider design features such as:
- Using mulches (such as wood chips or bar) in planter areas without ground cover to minimize sediment in runoff
- Installing appropriate plant materials for the location, in accordance with amount of sunlight and climate, and use native plant materials where possible and/ or as recommended by the landscape architect
- Leaving a vegetative barrier along the property boundary and interior watercourses, to act as a pollutant filter, where appropriate and feasible
- Choosing plants that minimize or eliminate the use of fertilizer or pesticides to sustain growth
- Employ other comparable, equally effective methods to reduce irrigation water runoff.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/ or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of " redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, J uly 2002.

Design Objectives

Maximize Infiltration
Provide Retention
Slow Runoff
Minimize Impervious Land Coverage
, Prohibit Dumping of Improper Materials

Contain Pollutants
Collect and Convey

Description

Waste materials dumped into storm drain inlets can have severe impacts on receiving and ground waters. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Storm drain signs and stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets.

Approach

The stencil or affixed sign contains a brief statement that prohibits dumping of improper materials into the urban runoff conveyance system. Storm drain messages have become a popular method of alerting the public about the effects of and the prohibitions against waste disposal.

Suitable Applications

Stencils and signs alert the public to the destination of pollutants discharged to the storm drain. Signs are appropriate in residential, commercial, and industrial areas, as well as any other area where contributions or dumping to storm drains is likely.

Design Considerations

Storm drain message markers or placards are recommended at all storm drain inlets within the boundary of a development project. The marker should be placed in clear sight facing toward anyone approaching the inlet from either side. All storm drain inlet locations should be identified on the development site map.

Designing New Installations

The following methods should be considered for inclusion in the project design and show on project plans:

- Provide stenciling or labeling of all storm drain inlets and catch basins, constructed or modified, within the project area with prohibitive language. Examples include "NO DUMPING
- DRAINS TO OCEAN" and/ or other graphical icons to discourage illegal dumping.
- Post signs with prohibitive language and/ or graphical icons, which prohibit illegal dumping at public access points along channels and creeks within the project area.

Note - Some local agencies have approved specific signage and/ or storm drain message placards for use. Consult local agency stormwater staff to determine specific requirements for placard types and methods of application.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/ or exterior construction, and land disturbing activities with structural or impervious surfaces. If the project meets the definition of "redevelopment", then the requirements stated under " designing new installations" above should be included in all project design plans.

Additional Information

Maintenance Considerations

- Legibility of markers and signs should be maintained. If required by the agency with jurisdiction over the project, the owner/ operator or homeowner's association should enter into a maintenance agreement with the agency or record a deed restriction upon the property title to maintain the legibility of placards or signs.

Placement

- Signage on top of curbs tends to weather and fade.
- Signage on face of curbs tends to be worn by contact with vehicle tires and sweeper brooms.

Supplemental Information
 Examples

- Most MS4 programs have storm drain signage programs. Some MS4 programs will provide stencils, or arrange for volunteers to stencil storm drains as part of their outreach program.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Design Objectives

Maximize Infiltration
Provide Retention
Slow Runoff
Minimize Impervious Land Coverage
, Prohibit Dumping of Improper Materials
\square Contain Pollutants
Collect and Convey

Description

Several measures can be taken to prevent operations at maintenance bays and loading docks from contributing a variety of toxic compounds, oil and grease, heavy metals, nutrients, suspended solids, and other pollutants to the stormwater conveyance system.

Approach

In designs for maintenance bays and loading docks, containment is encouraged. Preventative measures include overflow containment structures and dead-end sumps. However, in the case of loading docks from grocery stores and warehouse/ distribution centers, engineered infiltration systems may be considered.

Suitable Applications

Appropriate applications include commercial and industrial areas planned for development or redevelopment.

Design Considerations

Design requirements for vehicle maintenance and repair are governed by Building and Fire Codes, and by current local agency ordinances, and zoning requirements. The design criteria described in this fact sheet are meant to enhance and be consistent with these code requirements.

Designing New Installations

Designs of maintenance bays should consider the following:

- Repair/ maintenance bays and vehicle parts with fluids should be indoors; or designed to preclude urban run-on and runoff.
- Repair/ maintenance floor areas should be paved with Portland cement concrete (or equivalent smooth impervious surface).
- Repair/ maintenance bays should be designed to capture all wash water leaks and spills. Provide impermeable berms, drop inlets, trench catch basins, or overflow containment structures around repair bays to prevent spilled materials and wash-down waters form entering the storm drain system. Connect drains to a sump for collection and disposal. Direct connection of the repair/ maintenance bays to the storm drain system is prohibited. If required by local jurisdiction, obtain an Industrial Waste Discharge Permit.
- Other features may be comparable and equally effective.

The following designs of loading/ unloading dock areas should be considered:

- Loading dock areas should be covered, or drainage should be designed to preclude urban run-on and runoff.
- Direct connections into storm drains from depressed loading docks (truck wells) are prohibited.
- Below-grade loading docks from grocery stores and warehouse/ distribution centers of fresh food items should drain through water quality inlets, or to an engineered infiltration system, or an equally effective alternative. Pre-treatment may also be required.
- Other features may be comparable and equally effective.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/ or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of " redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Additional Information

Stormwater and non-stormwater will accumulate in containment areas and sumps with impervious surfaces. Contaminated accumulated water must be disposed of in accordance with applicable laws and cannot be discharged directly to the storm drain or sanitary sewer system without the appropriate permit.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

Description

Trash storage areas are areas where a trash receptacle (s) are located for use as a repository for solid wastes. Stormwater runoff from areas where trash is stored or disposed of can be polluted. In addition, loose trash and debris can be easily transported by water or wind into nearby storm drain inlets, channels, and/ or creeks. Waste handling operations that may be sources of stormwater pollution include dumpsters, litter control, and waste piles.

Approach

This fact sheet contains details on the specific measures required to prevent or reduce pollutants in stormwater runoff associated with trash storage and handling. Preventative measures including enclosures, containment structures, and impervious pavements to mitigate spills, should be used to reduce the likelihood of contamination.

Design Objectives

Maximize Infiltration
Provide Retention
Slow Runoff
Minimize Impervious Land Coverage
Prohibit Dumping of Improper Materials
(Contain Pollutants
Collect and Convey

Suitable Applications

Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment. (Detached residential single-family homes are typically excluded from this requirement.)

Design Considerations

Design requirements for waste handling areas are governed by Building and Fire Codes, and by current local agency ordinances and zoning requirements. The design criteria described in this fact sheet are meant to enhance and be consistent with these code and ordinance requirements. Hazardous waste should be handled in accordance with legal requirements established in Title 22, California Code of Regulation.

Wastes from commercial and industrial sites are typically hauled by either public or commercial carriers that may have design or access requirements for waste storage areas. The design criteria in this fact sheet are recommendations and are not intended to be in conflict with requirements established by the waste hauler. The waste hauler should be contacted prior to the design of your site trash collection areas. Conflicts or issues should be discussed with the local agency.

Designing New Installations

Trash storage areas should be designed to consider the following structural or treatment control BMPs:

- Design trash container areas so that drainage from adjoining roofs and pavement is diverted around the area(s) to avoid run-on. This might include berming or grading the waste handling area to prevent run-on of stormwater.
- Make sure trash container areas are screened or walled to prevent off-site transport of trash.
- Use lined bins or dumpsters to reduce leaking of liquid waste.
- Provide roofs, awnings, or attached lids on all trash containers to minimize direct precipitation and prevent rainfall from entering containers.
- Pave trash storage areas with an impervious surface to mitigate spills.
- Do not locate storm drains in immediate vicinity of the trash storage area.
- Post signs on all dumpsters informing users that hazardous materials are not to be disposed of therein.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define "redevelopment" in terms of amounts of additional impervious area, increases in gross floor area and/ or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of " redevelopment" must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under "designing new installations" above should be followed.

Additional Information

Maintenance Considerations

The integrity of structural elements that are subject to damage (i.e., screens, covers, and signs) must be maintained by the owner/ operator. Maintenance agreements between the local agency and the owner/ operator may be required. Some agencies will require maintenance deed restrictions to be recorded of the property title. If required by the local agency, maintenance agreements or deed restrictions must be executed by the owner/ operator before improvement plans are approved.

Other Resources

A Manual for the Standard Urban Stormwater Mitigation Plan (SUSMP), Los Angeles County Department of Public Works, May 2002.

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Model Water Quality Management Plan (WQMP) for County of Orange, Orange County Flood Control District, and the Incorporated Cities of Orange County, Draft February 2003.

Ventura Countywide Technical Guidance Manual for Stormwater Quality Control Measures, July 2002.

[^0]: ${ }^{1}$ Cannot Exceed 50\%

[^1]: ${ }^{1}$ Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.

[^2]: \square Include Perimeter Stone in Calculations

[^3]: ${ }^{6}$ The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.

