4.0 Environmental Impact Analysis

4.1 Air Quality

4.1.1 Introduction

This section of the Draft EIR addresses the air emissions generated by construction and operation of the Project. The analysis also addresses the consistency of the Project with the air quality policies in the South Coast Air Quality Management District's (SCAQMD) Air Quality Management Plan (AQMP) and the City of Beverly Hills General Plan (General Plan). The analysis of Project-generated air emissions focuses on whether the Project would cause an exceedance of an ambient air quality standard or SCAQMD significance threshold. Calculation worksheets, assumptions, and model outputs used in the analysis are included in Appendix B of this Draft EIR.

4.1.2 Environmental Setting

4.1.2.1 Air Quality Background

The Project Site is located within the South Coast Air Basin (Air Basin), an approximately 6,745-square-mile area bounded by the Pacific Ocean to the west; the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east; and San Diego County to the south. The Air Basin includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties, in addition to the Coachella Valley area in Riverside County. The regional climate within the Air Basin is considered semi-arid and is characterized by warm summers, mild winters, infrequent seasonal rainfall, moderate daytime onshore breezes, and moderate humidity. The air quality within the Air Basin is primarily influenced by meteorology and a wide range of emissions sources, such as dense population centers, heavy vehicular traffic, and industry.

Air pollutant emissions within the Air Basin are generated primarily by stationary and mobile sources. Stationary sources can be divided into two major subcategories: point and area sources. Point sources occur at a specific location and are often identified by an exhaust vent or stack. Examples include boilers or combustion equipment that produce electricity or generate heat. Area sources are widely distributed and include such sources as commercial water heaters, painting operations, lawn mowers, agricultural fields, landfills, and some consumer products. Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road

sources include aircraft, ships, trains, and self-propelled construction equipment. Air pollutants can also be generated by the natural environment, such as when high winds suspend fine dust particles.

Both the federal and state governments have established ambient air quality standards for outdoor concentrations of various pollutants in order to protect the public health and welfare. These pollutants are referred to as "criteria air pollutants" as a result of the specific standards, or criteria, which have been adopted for them. The national and state standards have been set at levels considered safe to protect public health, with a margin of safety, including the health of sensitive populations such as asthmatics, children, and the elderly; and to protect public welfare, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. The national and state criteria pollutants and the applicable ambient air quality standards are listed in Table 4.1-1 on page 4.1-3.

4.1.2.2 Air Pollution and Potential Health Effects

Certain air pollutants have been recognized to cause notable health problems and consequential damage to the environment either directly or in reaction with other pollutants due to their presence in elevated concentrations in the atmosphere. The criteria air pollutants for which national and state standards have been promulgated and which are most relevant to current air quality planning and regulation in the Air Basin include ozone (O₃), respirable particulate matter (PM₁₀), fine particulate matter (PM_{2.5}), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), lead (Pb), sulfates, and hydrogen sulfide (H₂S). In addition, volatile organic compounds (VOCs) and toxic air contaminants (TACs) are of concern in the Air Basin. The health implications of each of these pollutants is briefly described below.

4.1.2.2.1 Criteria Pollutants

4.1.2.2.1.1 Ozone (O₃)

Ozone (O_3) is a gas that is formed when VOCs and nitrogen oxides (NO_X) —both byproducts of internal combustion engine exhaust—undergo slow photochemical reactions in the presence of sunlight. O_3 concentrations are generally highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable. An elevated level of O_3 irritates the lungs and breathing passages, causing coughing and pain in the chest and throat, thereby increasing susceptibility to respiratory infections and reducing the ability to exercise. The people most at risk from breathing air containing ozone include people with asthma, children, older adults, and people who are active

Table 4.1-1 **Ambient Air Quality Standards**

				SCAQMD Attai	inment Status ^c	
Pollutant	Averaging Period	California Standard ^{a,b}	Federal Standard ^{a,b}	California Standard ^d	Federal Standard ^d	
0(0)	1 hour	0.09 ppm (180 μg/m³)	_	Non-Attainment	_	
Ozone (O ₃)	8 hour	0.07 ppm (137 μg/m³)	0.070 ppm (137 μg/m³)	Non-Attainment	Non-Attainment (Extreme)	
Respirable Particulate	24 hour	50 μg/m³	150 μg/m ³	Non-Attainment	Attainment	
Matter (PM ₁₀)	Annual	20 μg/m ³	_	Non-Attainment	Attainment	
Fine	24 hour	_	35 µg/m³		Non-Attainment	
Particulate Matter (PM _{2.5})	Annual	12 μg/m³	12 μg/m³	Non-Attainment	(Serious)	
Carbon Monoxide	1 hour	20 ppm (23 mg/m³)	35 ppm (40 mg/m³)	Attainment	Attainment	
(CO)	8 hour	9.0 ppm (10 mg/m³)	9 ppm (10 mg/m³)	Attairinent		
Nitrogen Dioxide (NO ₂)	1 hour	0.18 ppm (339 μg/m³)	0.10 ppm (188 µg/m³)	Attainment	Unclassified/ Attainment	
	Annual	0.030 ppm (57 μg/m³)	0.053 ppm (100 μg/m³)	Attairinent		
	1 hour	0.25 ppm (655 μg/m³)	0.075 ppm (196 μg/m³)			
Sulfur Dioxide	3 hour	_	0.5 ppm (1,300 μg/m³)	Attainment	Unclassified/	
(SO ₂)	24 hour	0.04 ppm (105 μg/m³)	0.14 ppm (365 μg/m³)	Attairinent	Attainment	
	Annual	_	0.03 ppm (80 µg/m³)			
	30-day average	1.5 μg/m³	_		Partial Non- Attainment ^e	
Lead (Pb)	Rolling 3-month average	_	0.15 μg/m³	Attainment		
Sulfates	24 hour	25 μg/m³	_	Attainment	_	
Hydrogen Sulfide (H ₂ S)	1 hour	0.03 ppm (42 μg/m³)	_	Unclassified	_	

ppm = parts per million by volume

 $\mu g/m^3 = micrograms per cubic meter$

^a An ambient air quality standard is a concentration level expressed in either parts per million or micrograms per cubic meter and averaged over a specific time period (e.g., 1 hour). The different averaging times and concentrations are meant to protect against different exposure effects. Some ambient air quality standards are expressed as a concentration that is not to be exceeded. Others are

Table 4.1-1 (Continued) Ambient Air Quality Standards

Ī					SCAQMD Attainment Status ^c	
	Pollutant	Averaging Period	California Standard ^{a,b}	Federal Standard ^{a,b}	California Standard ^d	Federal Standard ^d

expressed as a concentration that is not to be equaled or exceeded.

- b Ambient Air Quality Standards based on the SCAQMD's 2016 AQMP.
- ^c "Attainment" means that the regulatory agency has determined, based on established criteria, that the Air Basin meets the identified standard. "Non-attainment" means that the regulatory agency has determined that the Air Basin does not meet the standard. "Unclassified" means there is insufficient data to designate an area, or designations have yet to be made.
- d California and Federal standard attainment status based on SCAQMD's 2016 AQMP.
- A small portion of Los Angeles County exceeded the Lead NAAQS during the 2007–2009 data period. However, in 2015, the SCAQMD lead monitoring network of eight regular monitoring sites and five source-specific sites did not exceed lead NAAQS. An attainment re-designation request is pending.

Source: Eyestone Environmental, 2021.

outdoors, especially outdoor workers.¹ Effects are more severe in people with asthma and other respiratory ailments. Long-term exposure to O₃ may lead to scarring of lung tissue and may lower lung efficiency.

4.1.2.2.1.2 Particulate Matter (PM₁₀ and PM_{2.5})

The human body naturally prevents the entry of larger particles into the body. However, small particles, with an aerodynamic diameter equal to or less than 10 microns (PM₁₀) and even smaller particles with an aerodynamic diameter equal to or less than 2.5 microns (PM_{2.5}), can enter the body and are trapped in the nose, throat, and upper respiratory tract. These small particulates could potentially aggravate existing heart and lung diseases, change the body's defenses against inhaled materials, and damage lung tissue. The elderly, children, and those with chronic lung or heart disease are most sensitive to PM₁₀ and PM_{2.5}. Lung impairment can persist for two to three weeks after exposure to high levels of particulate matter. Some types of particulates could become toxic after inhalation due to the presence of certain chemicals and their reaction with internal body fluids.

Cheval Blanc Beverly Hills
Draft Environmental Impact Report

¹ United States Environmental Protection Agency, Health Effects of Ozone Pollution, www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution, last updated June 30, 2019, accessed September 21, 2020.

4.1.2.2.1.3 Carbon Monoxide (CO)

Carbon Monoxide (CO) is primarily emitted from combustion processes and motor vehicles due to incomplete combustion of fuel. Elevated concentrations of CO weaken the heart's contractions and lower the amount of oxygen carried by the blood. It is especially dangerous for people with chronic heart disease. Inhalation of CO can cause nausea, dizziness, and headaches at moderate concentrations and can be fatal at high concentrations.

4.1.2.2.1.4 Nitrogen Dioxide (NO₂)

Nitrogen Dioxide (NO_2) is a byproduct of fuel combustion and major sources include power plants, large industrial facilities, and motor vehicles. The principal form of nitrogen oxide produced by combustion is nitric oxide (NO), which reacts quickly to form NO_2 , creating the mixture of NO and NO_2 commonly called NO_X . NO_2 absorbs blue light and results in a brownish-red cast to the atmosphere and reduced visibility. NO_2 also contributes to the formation of PM_{10} . Nitrogen Oxides irritate the nose and throat, and increase one's susceptibility to respiratory infections, especially in people with asthma. The principal concern of NO_X is as a precursor to the formation of O_3 .

The adverse effects of ambient nitrogen dioxide air pollution exposure on health were reviewed in the 2008 USEPA Integrated Science Assessment for Oxides of Nitrogen—Health Criteria,² and more recently in the 2016 USEPA Integrated Science Assessment for Oxides of Nitrogen—Health Criteria.³ The 2016 USEPA review noted the respiratory effects of NO₂, and evidence suggestive of impacts on cardiovascular health, mortality and cancer.

4.1.2.2.1.5 Sulfur Dioxide (SO₂)

Sulfur oxides (SO_x) are compounds of sulfur and oxygen molecules. Sulfur Dioxide (SO₂) is the predominant form found in the lower atmosphere and is a product of burning sulfur or burning materials that contain sulfur. Major sources of SO₂ include power plants, large industrial facilities, diesel vehicles, and oil-burning residential heaters. Emissions of SO₂ aggravate lung diseases, especially bronchitis. It also constricts the breathing passages, especially in asthmatics and people involved in moderate to heavy exercise.

U.S. EPA, Integrated Science Assessment for Oxides of Nitrogen—Health Criteria (Final Report), 2008, Washington, DC, EPA/600/R-08/071, http://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=194645, accessed September 15, 2021.

³ U.S. EPA, Integrated Science Assessment for Oxides of Nitrogen—Health Criteria (Final Report), 2016, Washington, DC, EPA/600/R-15/068, https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879, accessed September 15, 2021.

SO₂ potentially causes wheezing, shortness of breath, and coughing. High levels of particulates appear to worsen the effect of SO₂, and long-term exposures to both pollutants leads to higher rates of respiratory illness.

4.1.2.2.1.6 Lead (Pb)

Lead is emitted from industrial facilities and from the sanding or removal of old lead-based paint. Smelting or processing the metal is the primary source of lead emissions, which is primarily a regional pollutant. Lead can adversely affect the nervous system, kidney function, immune system, reproductive and developmental systems and the cardiovascular system, and affects the oxygen-carrying capacity of blood.⁴ Exposure to lead in very young children impairs the development of the nervous system, kidneys, and blood forming processes in the body.

4.1.2.2.1.7 Sulfates (SO₄²)

Sulfates (SO_4^2) are the fully oxidized ionic form of sulfur. SO_4^2 occur in combination with metal and/or hydrogen ions. In California, emissions of sulfur compounds occur primarily from the combustion of petroleum-derived fuels (e.g., gasoline and diesel fuel) that contain sulfur. This sulfur is oxidized during the combustion process and subsequently converted to sulfate compounds in the atmosphere. Effects of SO_4^2 exposure at levels above the standard include a decrease in ventilatory function, aggravation of asthmatic symptoms, and an increased risk of cardio-pulmonary disease. SO_4^2 are particularly effective in degrading visibility, and, due to fact that they are usually acidic, can harm ecosystems and damage materials and property.

4.1.2.2.1.8 Hydrogen Sulfide (H₂S)

Hydrogen Sulfide (H_2S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas and can be emitted as the result of geothermal energy exploitation. Breathing H_2S at levels above the state standard could result in exposure to a very disagreeable odor.

4.1.2.2.2 Volatile Organic Compounds (VOCs)

Volatile Organic Compounds (VOCs) are typically formed from combustion of fuels and/or released through evaporation of organic liquids. Some VOCs are also classified by

⁴ U.S. Environmental Projection Agency, Lead Air Pollution, www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution, accessed September 21, 2020.

the state as Toxic Air Contaminants (TACs). While there are no specific VOC ambient air quality standards, VOC is a prime component (along with NOx) of the photochemical processes by which such criteria pollutants as O_3 , NO_2 , and certain fine particles are formed. They are, thus, regulated as "precursors" to formation of those criteria pollutants.

4.1.2.2.3 Toxic Air Contaminants (TACs)

TACs refer to a diverse group of "non-criteria" air pollutants that can affect human health but have not had ambient air quality standards established for them. This is not because they are fundamentally different from the pollutants discussed above but because their effects tend to be local rather than regional. TACs are classified as carcinogenic and noncarcinogenic, where carcinogenic TACs can cause cancer and noncarcinogenic TAC can cause acute and chronic impacts to different target organ systems (e.g., eyes, respiratory, reproductive, developmental, nervous, and cardiovascular).

The California Air Resources Board (CARB)⁵ and the Office of Environmental Health Hazard Assessment (OEHHA) determine if a substance should be formally identified, or "listed," as a TAC in California. CARB prepares identification reports on candidate substances under consideration for listing as TACs which may be accessed on their website.⁶

Diesel particulate matter (DPM), which is emitted in the exhaust from diesel engines, was listed by the state as a TAC in 1998. DPM has historically been used as a surrogate measure of exposure for all diesel exhaust emissions. DPM consists of fine particles (fine particles have a diameter less than 2.5 micrometer (µm)), including a subgroup of ultrafine particles (ultrafine particles have a diameter less than 0.1 µm). Collectively, these particles have a large surface area which makes them an excellent medium for absorbing organics. The visible emissions in diesel exhaust include carbon particles or "soot." Diesel exhaust also contains a variety of harmful gases and cancer-causing substances.

Exposure to DPM may be a health hazard, particularly to children whose lungs are still developing and the elderly who may have other serious health problems. DPM levels and resultant potential health effects may be higher in close proximity to heavily traveled roadways with substantial truck traffic or near industrial facilities. According to CARB, DPM exposure may lead to the following adverse health effects: (1) aggravated asthma;

⁵ CARB, a part of the California Environmental Protection Agency, is responsible for the coordination and administration of both state and federal air pollution control programs within California.

⁶ CARB, Toxic Air Contaminant Identification Reports, https://ww2.arb.ca.gov/resources/documents/toxic-air-contaminant-identification-reports, accessed July 6, 2021.

(2) chronic bronchitis; (3) increased respiratory and cardiovascular hospitalizations; (4) decreased lung function in children; (5) lung cancer; and (6) premature deaths for

people with heart or lung disease.^{7,8}

4.1.2.3 Regulatory Framework

The Project Site and vicinity are subject to federal, state, and local air quality laws and regulations. A number of plans and policies have been adopted by various agencies that address air quality concerns. Those laws, regulations, plans, and policies that are relevant to the Project are discussed below.

4.1.2.3.1 Criteria Pollutants

4.1.2.3.1.1 Federal

The federal Clean Air Act (CAA) of 1963 was the first federal legislation regarding air pollution control and has been amended numerous times in subsequent years, with the most recent amendments in 1990. At the federal level, the United States Environmental Protection (USEPA) is responsible for implementation of some portions of the CAA (e.g., certain mobile source and other requirements). Other portions of the CAA (e.g., stationary source requirements) are implemented by state and local agencies.

The 1990 amendments to the CAA identify specific emission reduction goals for areas not meeting the National Ambient Air Quality Standard (NAAQS). amendments require both a demonstration of reasonable further progress toward attainment and incorporation of additional sanctions for failure to attain or to meet interim milestones.

The sections of the CAA which are most applicable to the Project include Title I (Nonattainment Provisions) and Title II (Mobile Source Provisions). Title I provisions are implemented for the purpose of attaining NAAQS. Table 4.1-1 on page 4.1-3 shows the NAAQS currently in effect for each criteria pollutant and their relative attainment status. The Air Basin fails to meet national standards for O₃ and PM_{2.5} and, therefore, is considered a federal "non-attainment" area for these pollutants. In addition, Los Angeles

CARB, Overview: Diesel Exhaust and Health, www.arb.ca.gov/research/diesel/diesel-health.htm, last reviewed by CARB April 12, 2016, accessed September 15, 2021.

CARB, Fact Sheet: Diesel Particulate Matter Health Risk Assessment Study for the West Oakland Community: Preliminary Summary of Results, March 2008.

County fails to meet the national standard for lead and, therefore, is considered a federal "non-attainment" area for lead.⁹

CAA Title II pertains to mobile sources, such as cars, trucks, buses, and planes. Reformulated gasoline and automobile pollution control devices are examples of the mechanisms the USEPA uses to regulate mobile air emission sources. The provisions of Title II have resulted in tailpipe emission standards for vehicles, which have been strengthened in recent years to improve air quality. For example, the standards for NOx emissions have been lowered substantially and the specification requirements for cleaner burning gasoline are more stringent.

4.1.2.3.1.2 State

4.1.2.3.1.2.1 California Clean Air Act

The California Clean Air Act (CCAA), signed into law in 1988, requires all areas of the state to achieve and maintain the California Ambient Air Quality Standards (CAAQS) by the earliest practicable date. CARB is responsible for the coordination and administration of both state and federal air pollution control programs within California. In this capacity, CARB conducts research, sets state ambient air quality standards, compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products, and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. Table 4.1-1 on page 4.1-3 includes the CAAQS currently in effect for each of the criteria pollutants, as well as other pollutants recognized by the state. As shown in Table 4.1-1, the CAAQS include more stringent standards than the NAAQS. The Air Basin fails to meet state standards for O₃, PM₁₀ and PM_{2.5} and, therefore, is considered a state "non-attainment" area for these pollutants.

4.1.2.3.1.2.2 California Code of Regulations

The California Code of Regulations (CCR) is the official compilation and publication of regulations adopted, amended or repealed by the state agencies pursuant to the Administrative Procedure Act (APA). The CCR includes regulations that pertain to air quality emissions. Specifically, Section 2485 in Title 13 of the CCR states that the idling of all diesel-fueled commercial vehicles (weighing over 10,000 pounds) during construction shall be limited to 5 minutes at any location. In addition, Section 93115 in Title 17 of the

A small portion of Los Angeles County exceeded the Lead NAAQS during the 2007–2009 data period. However, in 2015, the SCAQMD lead monitoring network of eight regular monitoring sites and five source-specific sites did not exceed lead NAAQS. An attainment re-designation request is pending.

CCR states that operation of any stationary, diesel-fueled, compression-ignition engines shall meet specified fuel and fuel additive requirements and emission standards.

4.1.2.3.1.3 Regional

4.1.2.3.1.3.1 South Coast Air Quality Management District (SCAQMD)

The SCAQMD shares responsibility with CARB for ensuring that all state and federal ambient air quality standards are achieved and maintained throughout the Air Basin.

To meet the CAAQS and NAAQS, the SCAQMD has adopted a series of Air Quality Management Plans (AQMPs). The 2016 AQMP incorporates the Southern California Association of Governments' (SCAG) 2016–2040 Regional Transportation Plan/ Sustainable Communities Strategy (2016 RTP/SCS) and updated emission inventory methodologies for various source categories. The 2016 AQMP also includes new federal requirements, implementation of new technology measures, and the continued development of economically sound, flexible compliance approaches.

The AQMP provides emissions inventories, ambient measurements, meteorological episodes, and air quality modeling tools. The AQMP provides policies and measures to guide responsible agencies in achieving federal and State standards for healthful air quality in the Air Basin. It also incorporates a comprehensive strategy aimed at controlling pollution from all sources, including stationary sources, on-road and off-road mobile sources, and area sources.

The SCAQMD adopts rules and regulations to implement portions of the AQMP. Several of these rules may apply to project construction or operation.

The following SCAQMD rules and regulations would be applicable to the Project:

- SCAQMD Rule 403 requires projects to incorporate fugitive dust control measures at least as effectively as the following measures:
 - Use watering to control dust generation during the demolition of structures;

_

The 2020–2045 RTP/SCS was approved in September 2020. Consistency with the 2020–2045 RTP/SCS is therefore analyzed in Section 4.7, Land Use and Planning, of this Draft EIR. However, the 2016 AQMP relies on the 2016–2040 RTP/SCS and is therefore addressed for consistency with the 2016 AQMP.

- Clean-up mud and dirt carried onto paved streets from the site;
- Install wheel washers for all exiting trucks, or wash off the tires or tracks of all trucks and equipment leaving the site;
- All haul trucks would be covered or would maintain at least 6 inches of freeboard;
- All materials transported off-site shall be either sufficiently watered or securely covered to prevent excessive amounts of spillage or dust;
- Suspend earthmoving operations or implement additional watering to meet
 Rule 403 criteria if wind gusts exceed 25 mph; and
- The owner or contractor shall keep the construction area sufficiently dampened to control dust caused by construction and hauling, and at all times provide reasonable control of dust caused by wind. All unpaved demolition and construction areas shall be wetted at least twice daily during excavation and construction, and temporary dust covers shall be used to reduce dust emissions.
- SCAQMD Rule 1113 limits the VOC content of architectural coatings.
- SCAQMD Rule 1403 requires owners and operators of any demolition or renovation activity and the associated disturbance of asbestos-containing materials, any asbestos storage facility, or any active waste disposal site to implement work practice requirements to limit asbestos emissions from building demolition and renovation activities, including the removal and associated disturbance of asbestos-containing materials.
- SCAQMD Regulation XIII, New Source Review, requires new on-site facility nitrogen oxide emissions to be minimized through the use of emission control measures (e.g., use of best available control technology for new combustion sources such as boilers, emergency generators, and water heaters).

4.1.2.3.1.3.2 Southern California Association of Governments (SCAG)

SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino, and Imperial Counties, and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG coordinates with various air quality and transportation stakeholders in Southern California to ensure compliance with the federal and state air quality requirements, including applicable federal, state, and air district laws and regulations. As the federally designated Metropolitan Planning Organization (MPO) for the six-county Southern California region, SCAG is required by law to ensure that transportation activities "conform" to, and are supportive of, the goals of regional and state air quality plans to attain the NAAQS. In

addition, SCAG is a co-producer, with the SCAQMD, of the transportation strategy and transportation control measure sections of the 2016 AQMP. The development of the 2016 AQMP relies on population and transportation growth projections contained in SCAG's 2016–2040 RTP/SCS.

SCAG's 2016–2040 RTP/SCS, adopted on April 7, 2016, presents a long-term transportation vision through the year 2040 for the six-county region of Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura Counties. The 2016–2040 RTP/SCS places an emphasis on sustainability and integrated planning. These strategies include supporting projects that encourage diverse job opportunities for a variety of skills and education, recreation and culture and a full-range of shopping, entertainment and services all within a relatively short distance, while encouraging employment development around current and planned transit stations and neighborhood commercial centers. The 2016–2040 RTP/SCS also includes strategies focused on compact infill development, creating public spaces that are appealing, and expanding housing and transportation choices. The 2016–2040 RTP/SCS is expected to encourage more compact development in certain areas of the region and access to public transit, which is expected to reduce individual vehicle miles traveled and related emissions from vehicles.

On September 3, 2020, SCAG's Regional Council adopted its 2020–2045 RTP/SCS, Connect SoCal. Connect SoCal's core vision is to build upon and expand land use and transportation strategies established over several planning cycles to increase mobility options and achieve a more sustainable growth pattern. On October 30, 2020, the California Air Resources Board (CARB) accepted SCAG's determination that the SCS met the applicable state greenhouse gas emission targets. Connect SoCal builds upon the prior RTP/SCS with new initiatives involving land use, transportation, and technology to achieve the region's pollutant reduction goals from the transportation and land use sections in accordance with SB 375 and the state's climate targets. As was the case under the prior RTP/SCS, the Project Site is located within a High-Quality Transit Area (HQTA) as designated by the 2020–2045 RTP/SCS.

4.1.2.3.1.4 Local

Local jurisdictions, such as the City of Beverly Hills, have the authority and responsibility to reduce air pollution through their police power and decision-making authority. Specifically, the City is responsible for the assessment and mitigation of air emissions resulting from its land use decisions.

4.1.2.3.1.4.1 City of Beverly Hills General Plan

The City's General Plan was prepared in response to California law, requiring that each city and county adopt a long-term comprehensive general plan. This plan must be

integrated and internally consistent, and must present goals, objectives, policies, and implementation guidelines for decision makers to use. The General Plan Land Use, Open Space, Circulation, Conservation, and Housing elements contain the following policies specific to air quality (City of Beverly Hills 2010 and 2014):

- Policy LU 14.1 City Form. Accommodate a balanced mix of land uses and encourage development to be located and designed to enable residents access by walking, bicycling, or taking public transit to jobs, shopping, entertainment, services, and recreation, thereby reducing automobile use, energy consumption, air pollution, and greenhouse gases.
- Policy OS 7.5 Coordination with SCAQMD. Coordinate with SCAQMD to ensure that projects incorporate feasible mitigation measures if those measures are not already provided for through project design.
- **Policy OS 7.6 Employer Education Programs.** Encourage employers to participate in SCAQMD public education programs.
- Policy OS 7.8 Emissions Reduction. Require new development projects that exceed the SCAQMD's ROG and NOX operational thresholds to incorporate design or operational features that reduce emissions equal to 15 percent from the level that would be produced by an unmitigated project.
- Policy OS 7.11 Air Quality Education. Educate the public about air quality standards, health effects, and efforts that residents can make to improve air quality and reduce greenhouse gas emissions in the Los Angeles Basin.
- Policy CIR 1.4 Level of Service. Develop standards to address regional traffic growth through the City to promote transit ridership, biking, and walking, thereby reducing auto travel, air pollution, and energy consumption.
- Policy CON 8.3 National Pollutant Discharge Elimination System (NPDES) and SCAQMD Regulations. Continue to implement, as appropriate, the requirements of the NPDES and SCAQMD regulations, including requiring the use of Best Management Practices by businesses in the City.
- Policy H 2.9 Jobs/Housing Balance. Promote programs seeking to provide housing opportunities for people who work in the City as a means of reducing long commutes, easing local traffic, improving air quality and helping to achieve a balanced regional jobs/housing distribution for the western portion of Los Angeles County.

4.1.2.3.1.4.2 City of Beverly Hills Sustainable City Plan

The Beverly Hills Sustainable City Plan (City of Beverly Hills 2009) establishes guiding principles and goals that the City uses to develop and implement programs that focus on sustainability. The following goal, objective, and policies related to air quality are applicable to the proposed project:

- Climate Change and Air Quality Goal: Combat climate change and improve air quality.
 - Objective: Reduce and encourage the reduction of air emissions in City operations and Citywide.
 - Policy 2: Minimize mobile source emissions from on- and off-road (construction) vehicles.
 - Policy 3: Minimize stationary source air emissions.
 - Policy 4: Minimize particulate matter, both airborne photochemical precipitates and windborne dust

In accordance with CEQA requirements, the City assesses the air quality impacts of new development projects, requires mitigation of potentially significant air quality impacts by conditioning discretionary permits, and monitors and enforces implementation of such mitigation. The City uses the SCAQMD's *CEQA Air Quality Handbook* and SCAQMD's supplemental online guidance/information for the environmental review of plans and development proposals within its jurisdiction.

4.1.2.3.1.4.3 Beverly Hills Complete Streets Plan

In April 2021, the City adopted the Beverly Hills Complete Streets Plan, a long-range planning document that outlines the City's overall transportation policy guidance with the aim of transforming Beverly Hills from an auto-dominated community to one that embraces all modes of travel, reduces vehicle trips on local streets, and is a word class bicycling city. The plan includes recommendations for bikeway network enhancements, priority corridors for pedestrian improvements, first/last mile transit improvements, transportation network efficiency improvements, and neighborhood traffic management, among others. Refer to Section 4.9, Transportation, of this Draft EIR for more information on this plan and its relationship to the Project Site.

4.1.2.3.2 Toxic Air Contaminants (TAC)

4.1.2.3.2.1 State

4.1.2.3.2.1.1 Assembly Bill 1807

The California Air Toxics Program¹¹ was established in 1983, when the California Legislature adopted Assembly Bill (AB) 1807 to establish a two-step process of risk identification and risk management to address potential health effects from exposure to toxic substances in the air. In the risk identification step, CARB and OEHHA determine if a substance should be formally identified, or "listed," as a TAC in California. Since inception of the program, a number of such substances have been listed and include benzene, chloroform, formaldehyde, and particulate emissions from diesel-fueled engines, among others.¹² In 1993, the California Legislature amended the program to identify the 189 federal hazardous air pollutants (HAPs) as TACs.

In the risk management step, CARB reviews emission sources of an identified TAC to determine whether regulatory action is needed to reduce risk. Based on results of that review, CARB has promulgated a number of airborne toxic control measures (ATCMs), both for mobile and stationary sources. In 2004, CARB adopted an ATCM to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel PM and other TACs. The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure does not allow diesel-fueled commercial vehicles to idle for more than 5 minutes at any given time.

In addition to limiting exhaust from idling trucks, CARB adopted regulations on July 26, 2007, for off-road diesel construction equipment such as bulldozers, loaders, backhoes, and forklifts, as well as many other self-propelled, off-road diesel vehicles, to reduce emissions by installation of diesel particulate filters and encouraging the replacement of older, dirtier engines with newer emission controlled models. Implementation is staggered based on fleet size, with the largest operators beginning compliance in 2014.¹³

The AB 1807 program is supplemented by the AB 2588 Air Toxics "Hot Spots" program, which was established by the California Legislature in 1987. Under this program,

_

¹¹ CARB, California Air Toxics Program, www.arb.ca.gov/toxics/toxics.htm, last reviewed by CARB September 24, 2015, accessed September 15, 2021.

¹² CARB, Substances Identified as Toxic Air Contaminants,, https://ww3.arb.ca.gov/toxics/s93000-93001.pd, accessed September 15, 2021.

¹³ CARB, In-Use Off-Road Diesel-Fueled Fleets Regulation Overview, Revised October 2016.

facilities are required to report their air toxics emissions, assess health risks, and notify nearby residents and workers of significant risks if present. In 1992, the AB 2588 program was amended by Senate Bill (SB) 1731 to require facilities that pose a significant health risk to the community to reduce their risk through implementation of a risk management plan.

4.1.2.3.2.1.2 Air Quality and Land Use Handbook

CARB published the Air Quality and Land Use Handbook on April 28, 2005 (the "CARB Handbook"), to serve as a general guide for considering health effects associated with siting sensitive receptors proximate to sources of TAC emissions.¹⁴ The recommendations provided therein are voluntary and do not constitute a requirement or mandate for either land use agencies or local air districts. The goal of the guidance document is to protect sensitive receptors, such as children, the elderly, acutely ill, and chronically ill persons, from exposure to TAC emissions. Some examples of CARB's siting recommendations include the following: (1) avoid siting sensitive receptors within 500 feet of a freeway, an urban road with 100,000 vehicles per day, or rural roads with 50,000 vehicles per day; (2) avoid siting sensitive receptors within 1,000 feet of a distribution center that accommodates more than 100 trucks per day, more than 40 trucks with operating transport refrigeration units per day, or where transport refrigeration unit operations exceed 300 hours per week; and (3) avoid siting sensitive receptors within 300 feet of any dry cleaning operation using perchloroethylene and within 500 feet of operations with two or more machines using perchloroethylene. If sensitive receptors are proposed to be sited within these distances, the CARB Handbook recommends performing additional site-specific assessments to evaluate the actual estimated health risks.

Strategies to Reduce Air Pollution Exposure Near High-Volume Roadways: Technical Advisory was released in April of 2017 as a supplement to CARB's Handbook. It is intended to provide planners and other stakeholders involved in land use planning and decision-making with information on scientifically based strategies (e.g., solid barriers, vegetation buffers for pollutant dispersion, and indoor high efficiency filtration) to reduce exposure to traffic emissions near high-volume roadways in order to protect public health and promote equity and environmental justice.

4.1.2.3.2.2 Regional

Pursuant to California AB 1807, which directs the CARB to identify substances as TACs and adopt ATCMs to control such substances, the SCAQMD has adopted numerous

¹⁴ CARB, Air Quality and Land Use Handbook, a Community Health Perspective, April 2005.

rules (primarily in Regulation XIV) that specifically address TAC emissions. SCAQMD has adopted two rules to limit cancer and non-cancer health risks from facilities located within its jurisdiction. Rule 1401 (New Source Review of Toxic Air Contaminants) regulates new or modified facilities, and Rule 1402 (Control of Toxic Air Contaminants from Existing Sources) regulates facilities that are already operating. Rule 1402 incorporates requirements of the AB 2588 program, including implementation of risk reduction plans for significant risk facilities. Significant risk facilities are those facilities which have an increased cancer risk exceeding 10 in 1 million or a total hazard index exceeding 1.0. Examples include landfills, refineries, and oil production facilities.

4.1.2.4 Existing Conditions

4.1.2.4.1 Regional Air Quality

The Southern California region lies in the semi-permanent high-pressure zone of the eastern Pacific. As a result, the climate is mild, tempered by cool sea breezes. The usually mild climatological pattern is interrupted infrequently by periods of extremely hot weather, winter storms, or Santa Ana winds. The extent and severity of the air pollution problem in the Air Basin is a function of the area's natural physical characteristics (weather and topography), as well as man-made influences (development patterns and lifestyle). Factors, such as wind, sunlight, temperature, humidity, rainfall, and topography, affect the accumulation and dispersion of pollutants throughout the Air Basin, making it an area of high pollution potential.

The greatest air pollution throughout the Air Basin occurs from June through September. This condition is generally attributed to the large amount of pollutant emissions, light winds, and shallow vertical atmospheric mixing. This frequently reduces pollutant dispersion, thus causing elevated air pollution levels. Pollutant concentrations in the Air Basin vary with location, season, and time of day. O₃ concentrations, for example, tend to be lower along the coast, higher in the near inland valleys, and lower in the far inland areas of the Air Basin and adjacent desert. Over the past 30 years, substantial progress has been made in reducing air pollution levels in Southern California. However, the Air Basin still fails to meet the national standards for O₃ and PM_{2.5}. In addition, Los Angeles County still fails to meet the national standard for lead.

SCAQMD has the responsibility for ensuring that all national and state ambient air quality standards are achieved and maintained throughout the Air Basin. To meet the standards, SCAQMD has adopted a series of AQMPs. The 2016 AQMP includes strategies to ensure that rapidly approaching attainment deadlines are met and that public

health is protected to the maximum extent feasible. The most significant air quality challenge in the Air Basin is to reduce NO_X emissions¹⁵ sufficiently to meet the upcoming ozone standard deadlines. The 2016 AQMP provides a baseline year 2012 inventory of 512 tons per day (tpd) of NO_X and modeling results show that NO_X emissions are projected to be 214 tpd in the 8-hour ozone attainment year of 2031, due to continued implementation of already adopted regulatory actions ("baseline emissions"). The 2016 AQMP suggests that total Air Basin emissions of NO_X must be reduced to 96 tpd in 2031 to attain the 8-hour ozone standard. Although the existing air regulations and programs will continue to lower NO_X emissions in the region, an additional 55 percent reduction by the year 2031 is necessary to attain the 8- hour ozone standard.^{16,17}

The overall control strategy is an integral approach relying on fair-share emission reductions from federal, state and local levels. The 2016 AQMP is composed of stationary and mobile source emission reductions from traditional regulatory control measures, incentive-based programs, co-benefits from climate programs, mobile source strategies and reductions from federal sources, which include aircraft, locomotives and ocean-going vessels. These strategies are to be implemented in partnership with CARB and U.S. EPA. In addition, the SCAG 2016–2040 RTP/SCS¹⁸ includes transportation programs, measures, and strategies generally designed to reduce VMT, which are contained in the AQMP.

Pursuant to California Health and Safety Code Section 40460, SCAG has the responsibility of preparing and approving the portions of the AQMP relating to the integration of regional land use programs, measures, and strategies. SCAQMD combines its portion of the Plan with those prepared by SCAG. The Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) and Transportation Control Measures (TCMs), included as Appendix IV-C of the 2016 AQMP/SIP for the Basin, are based on SCAG's 2016–2040 RTP/SCS.

4.1.2.4.1.1 AQMP—Long-Term Trends

The 2016 AQMP forecasts the 2031 emissions inventories "with growth" based on SCAG's 2016–2040 RTP/SCS. The region is projected to see a 12-percent growth in

Cheval Blanc Beverly Hills Draft Environmental Impact Report

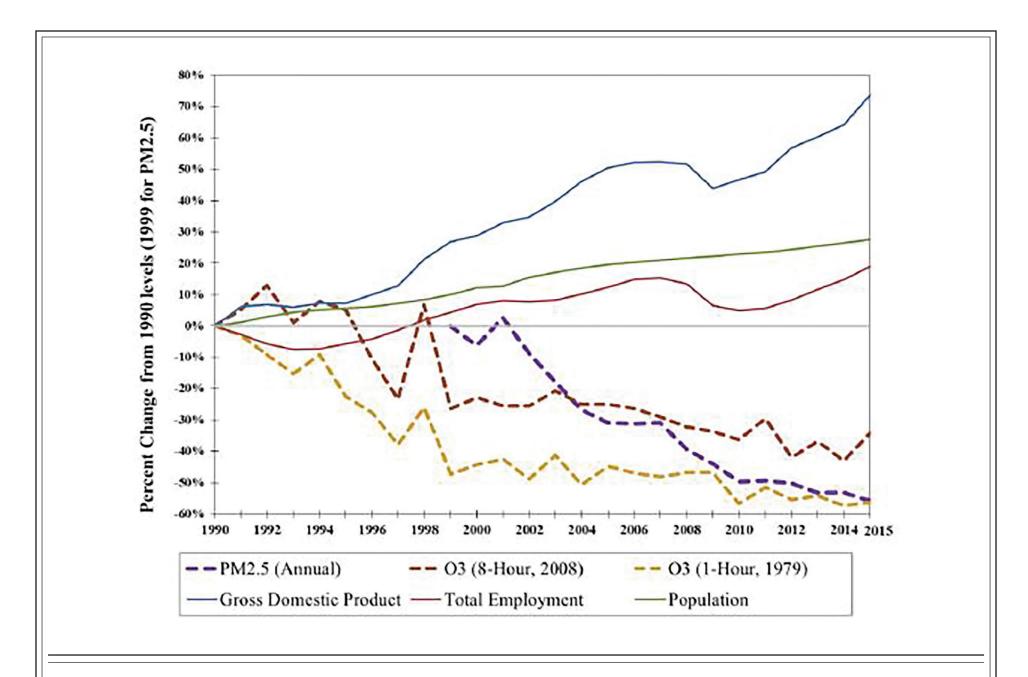
NOx emissions are a precursor to the formation of both ozone and secondary $PM_{2.5}$.

¹⁶ Estimates are based on the inventory and modeling results and are relative to the baseline emission levels for each attainment year (see Final 2016 AQMP for detailed discussion).

¹⁷ SCAQMD, Final 2016 AQMP, 2017, p. ES-2.

SCAG, Connect SoCal, What is Connect SoCal?, http://scagrtpscs.net/Pages/FINAL2016RTPSCS.aspx, accessed September 15,2021.

population, 16-percent growth in housing units, 23-percent growth in employment, and 8-percent growth in vehicle miles traveled between 2012 and 2031.


Despite this regional growth, air quality has improved substantially over the years, primarily due to the impacts of air quality control programs at the local, state, and federal levels. The graphic included in Figure 4.1-1 on page 4.1-20 shows the percent change in air quality along with demographic data for the 4-county region from the 2016 AQMP. In particular, Figure 4.1-1 illustrates the trends since 1990 of the 8-hour ozone levels, the 1-hour ozone levels, and annual average PM_{2.5} concentrations (since 1999), compared to the regional gross domestic product, total employment, and population. Human activity in the region has an impact on achieving reductions in emissions. However, the ozone and particulate matter levels continue to trend downward as the economy and population increase, demonstrating that it is possible to maintain a healthy economy while improving public health through air quality improvements.¹⁹

Under the Exceptional Events Rule, U.S. EPA allows certain air quality data to not be considered for NAAQS attainment status when that data is influenced by exceptional events that meet strict evidence requirements, such as high winds, wildfires, volcanoes, or some cultural events (such as Independence Day or New Year's fireworks).²⁰ For a few PM measurements in the Basin and the Coachella Valley in 2012 through 2015, the AQMD applied the U.S. EPA Exceptional Events Rule to flag some PM₁₀ and PM_{2.5} data due to high-wind natural events, wildfires, and fireworks on Independence Day and New Year's Eve. As part of the historical ambient air quality data, the AQMD has excluded air quality data from exceptional event flags as these events are uncontrollable in spite of stringent control measures on anthropogenic emissions. Therefore, ambient air quality data used in the Project's localized air quality analysis presented later in the section does not take into account Exceptional Events (e.g., wildfires, high wind and fireworks).

The AQMD has also acknowledged a reduction in emissions within the South Coast Air Basin as a result of the COVID-19 Pandemic Response. Changes in vehicle and airline traffic patterns and cargo shipments has resulted in a 11-percent reduction in cargo at the Ports of Los Angeles and Long Beach; a 61-percent reduction in airline flights at major airports in Southern California; a 25-percent reduction in light duty auto traffic and a

SCAQMD, Final 2016 AQMP, 2017, p. 1-6, www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/final-2016-aqmp, accessed September 15, 2021.

The U.S. EPA Exceptional Events Rule, Treatment of Data Influenced by Exceptional Events, became effective May 21, 2007. The previous U.S. EPA Natural Events Policy for Particulate Matter was issued May 30, 1996. On September 16, 2016, U.S. EPA promulgated revisions to the Exceptional Event Rule.

Figure 4.1-1 Ozone Trends

Source: SCAQMD, 2016.

Page 4.1-20

12-percent reduction in truck traffic from April 2019 through April 2020.²¹ The Project's localized analysis presented later in the document conservatively does not take into account the reduction in ambient pollutant concentrations due to the COVID-19 Pandemic Response.

4.1.2.4.1.2 Multiple Air Toxics Exposure Study (MATES)

The SCAQMD has released the Multiple Air Toxics Exposure Study (MATES-IV).²² The MATES-IV study was aimed at estimating the cancer risk from toxic air emissions throughout the Air Basin by conducting a comprehensive monitoring program, an updated emissions inventory of TACs, and a modeling effort to fully characterize health risks for those living in the Air Basin. The MATES-IV study concluded that the average carcinogenic risk from air pollution in the Air Basin is approximately 420 in one million over a 70-year duration. Mobile sources (e.g., cars, trucks, trains, ships, aircraft, etc.) represent the greatest contributors. Approximately 68 percent of the risk is attributed to diesel particulate emissions, approximately 21 percent to other toxics associated with mobile sources (including benzene, butadiene, and carbonyls), and approximately 11 percent of all carcinogenic risk is attributed to stationary sources (which include large industrial operations, such as refineries and metal processing facilities, as well as smaller businesses, such as gas stations and chrome plating).²³

As part of the MATES-IV study, the SCAQMD prepared a series of maps that show regional trends in estimated outdoor inhalation cancer risk from toxic emissions, as part of an ongoing effort to provide insight into relative risks. The maps' estimates represent the number of potential cancers per million people associated with a lifetime of breathing air toxics (24 hours per day outdoors for 70 years) in parts of the area. The MATES-IV map is the most recently available map to represent existing conditions near the Project area. The estimated cancer risk for the vast majority of the urbanized area within the Air Basin ranges from 200 to over 1,200 cancers per million over a 70-year duration.²⁴ Generally, the risk from air toxics is lower near the coastline and higher risks are concentrated near large diesel sources (e.g., freeways, airports, and ports).

²¹ SCAQMD, Emissions Reductions and Air Quality Impacts from the COVID-19 Pandemic Response. Governing Board Meeting Presentation. June 5, 2020.

²² SCAQMD, Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES IV) Final Report, May 2015.

²³ SCAQMD, Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES IV) Final Report, May 2015.

²⁴ SCAQMD, Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-IV), MATES IV Interactive Carcinogenicity Map, 2015.

4.1.2.4.2 Local Air Quality

Air pollutant emissions are generated in the local vicinity by stationary and area-wide sources, such as commercial and industrial activity, space and water heating, landscape maintenance, consumer products, and mobile sources primarily consisting of automobile traffic. Motor vehicles are the primary source of pollutants in the local vicinity.

4.1.2.4.2.1 Existing Pollutant Levels at Nearby Monitoring Stations

The SCAQMD maintains a network of air quality monitoring stations located throughout the Air Basin and has divided the Air Basin into 38 source receptor areas (SRAs) in which 31 monitoring stations operate. Figure 4.1-2 on page 4.1-23 shows the locations of the SRAs located in Los Angeles County. The Project Site is located within SRA 2, which covers the West Los Angeles area. The monitoring station most representative of the Project Site is the West Los Angeles-VA Hospital Station, located at Wilshire Boulevard and Sawtelle Boulevard in the City of Los Angeles, approximately 3.1 miles west of the Project Site. Criteria pollutants monitored at this station include O₃, CO, and NO₂. For pollutants not monitored at the West Los Angeles station, ambient monitoring data was obtained from SCAQMD's Central Los Angeles station within SRA 1. This station is located at 1630 North Main Street in Los Angeles and is located approximately 10 miles east of the Project Site. This station currently monitors ambient concentrations of O₃, CO, NO₂, SO₂, Pb, PM₁₀ and PM_{2.5}.²⁵ Hydrogen sulfide (H₂S) is not monitored at either station. Table 4.1-2 on page 4.1-24 identifies the national and state ambient air quality standards for relevant air pollutants along with the ambient pollutant concentrations that have been measured at these stations through the period of 2017–2019.

4.1.2.4.2.2 Existing Health Risk in the Surrounding Area

As shown in Figure 4.1-3 on page 4.1-26, based on the MATES-IV model, the calculated cancer risk in the Project area is approximately 975 in one million.²⁶ The cancer risk in this area is predominately related to nearby sources of diesel particulate (e.g., the I-405 and I-10 freeways). In general, the risk at the Project Site is comparable with other urbanized areas in Beverly Hills.

_

²⁵ Ambient air quality concentrations for 2018 have not been released as of July 2019.

²⁶ SCAQMD, Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-IV), MATES IV Interactive Carcinogenicity Map, 2015.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765-4182 AQMD Information: 1-800-CUT-SMOG (1-800-288-7664) Internet: http://www.aqmd.gov Forecast Areas & Air Monitoring numbered Monitoring Area and quality information using the General Air Quality Reporting Coastal Hemet/Elsinore Area General Forecast Area depicted here. Forecast Areas, shown in color below, Northwest Los Angeles County Coasta This air quality information is Since 1977 the South Coast which are larger groupings of the more Southwest Los Angeles County Coastal Lake Elsinore South Los Angeles County Coastal North Orange County Coastal Air Quality Management District has transmitted to the public through specific Air Monitoring Areas. The 1-800-CUT-SMOG (1served as the local government newspapers, television, radio and Central Orange County Coastal Temecula/Anza Area agency responsible for measuring, pager services, through faxes to 800-288-7664) line also provides Metropolitan reporting and taking steps to improve schools, through recorded messages smog forecast and current smog level Central Los Angeles County on the AQMD's toll-free Smog information by ZIP code. air quality. Southeast Los Angeles County South Central Los Angeles County San Gabriel Mountains To inform the AQMD's 15 Update telephone line, 1-800-CUT-The AQMD's Internet North Orange County San Bernardino Mountains million residents about air quality SMOG, and on the AQMD's Internet Website provides both forecasts as West San Bernardino Mountains Central San Bernardino Mountains San Fernando Valley conditions, the AQMD issues an air Website http://www.aqmd.gov. well as smog levels for that day and West San Fernando Valley East San Fernando Valley quality forecast each day and reports Newspapers, television and the previous day. Forecasts for the Big Bear Lake current air quality conditions for each radio stations typically will report air next day normally are posted by noon. Santa Clarita Valley Banning Pass Area San Gabriel Valley West San Gabriel Valley Coachella/Low Desert Coachella Valley East Riverside County Pomona/Walnut Valley South San Gabriel Valley Legend Air Monitoring Station Inland Orange County ANTELOPE VALLEY APCD* 14 Water Bodies Central Orange County ANTELOPE VALLEY AIR POLITITION √ Fwys/Hwys MOJAVE DESERT AOMD* Capistrano Valle County Boundaries Victor Valley Riverside Valley Northern Mojave Deser Central Mojave Desert VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT MOJAVE DESERT AIR QUALITY MANAGEMENT DISTRICT Air Monitoring Areas Corona/Norco Area Metropolitan Riverside *These agencies contract with the South Coast AOMD for forecasting services. Also, the Antelope Valley APCD contracts with the Mojave San Bernardino Valley Desert AQMD for other services. For more air quality information Northwest San Bernardino Valley in these areas, please call the Mojave Desert AOMD at (760) 245-1661. Southwest San Bernardino Valley Central San Bernardino Valley East San Bernardino Valley MOJAVE DESERT AIR QUALITY MANAGEMENT DISTRICT (San Bernardino County) Twentynine Palms RIVERSIDE COUNTY **Project Site** RIVERSIDE COUNTY IMPERIAL COUNTY AIR POLLUTION CONTROL DISTRICT

Figure 4.1-2 SCAQMD Source Receptor Area Map

Source: Sierra Wade Associates, 1999

SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT

Table 4.1-2
Summary of Ambient Air Quality in the Project Vicinity

	Year			
Pollutant ^a	2017	2018	2019	
Ozone (O ₃)	•			
Maximum 1-hour Concentration (ppm)	0.099	0.094	0.086	
Days exceeding CAAQS (0.09 ppm)	1	0	0	
Maximum 8-hour Concentration (ppm)	0.077	0.073	0.080	
Days exceeding NAAQS (0.070 ppm)	1	2	1	
Days exceeding CAAQS (0.07 ppm)	3	2	1	
Respirable Particulate Matter (PM ₁₀)				
Maximum 24-hour Concentration (µg/m³)	96	81	62	
Days exceeding NAAQS (150 μg/m³)	0	0	0	
Days exceeding CAAQS (50 µg/m³)	41	31	22	
Annual Arithmetic Mean (μg/m3)	34	34	26	
Does measured AAM exceed CAAQS (20 µg/m³)?	Yes	Yes	Yes	
Fine Particulate Matter (PM _{2.5})		•	•	
Maximum 24-hour Concentration (μg/m³)	49	44	44	
Days exceeding NAAQS (35 μg/m³)	5	3	1	
Annual Arithmetic Mean (μg/m³)	12	13	11	
Does measured AAM exceed NAAQS (12 µg/m³)?	No	Yes	No	
Does measured AAM exceed CAAQS (12 µg/m³)?	No	Yes	No	
Carbon Monoxide (CO)	•	•	•	
Maximum 1-hour Concentration (ppm)	2.0	1.6	1.9	
Days exceeding NAAQS (35.0 ppm)	0	0	0	
Days exceeding CAAQS (20.0 ppm)	0	0	0	
Maximum 8-hour Concentration (ppm)	1.2	1.3	1.2	
Days exceeding NAAQS and CAAQS (9 ppm)	0	0	0	
Nitrogen Dioxide (NO ₂)	•		•	
Maximum 1-hour Concentration (ppm)	0.06	0.07	0.07	
Days exceeding CAAQS (0.18 ppm)	0	0	0	
Annual Arithmetic Mean (ppm)	0.01	0.02	0.02	
Does measured AAM exceed NAAQS (0.0534 ppm)?	No	No	No	
Does measured AAM exceed CAAQS (0.03 ppm)?	No	No	No	
Sulfur Dioxide (SO ₂)				
Maximum 1-hour Concentration (ppm)	N/A	N/A	N/A	
Days exceeding CAAQS (0.25 ppm)	0	0	0	
Maximum 24-hour concentration (ppm)	N/A	N/A	N/A	
Days exceeding CAAQS (0.04 ppm)	0	0	0	
Days exceeding NAAQS (0.14 ppm)	0	0	0	
Annual Arithmetic Mean (ppm)	N/A	N/A	N/A	
Does measured AAM exceed NAAQS (0.030 ppm)?	No	No	No	

Table 4.1-2 (Continued) Summary of Ambient Air Quality in the Project Vicinity

	Year			
Pollutant ^a	2017	2018	2019	
Leadb				
Maximum 30-day Average Concentration (μg/m³)	N/A	N/A	N/A	
Does measured concentration exceed NAAQS (1.5 μg/m³)?	No	No	No	
Maximum Calendar Quarter Concentration (μg/m³)	N/A	N/A	N/A	
Does measured concentration exceed CAAQS (1.5 µg/m³)?	No	No	No	
Sulfate				
Maximum 24-hour Concentration (μg/m³)	N/A	N/A	N/A	
Does measured concentration exceed CAAQS (25 µg/m³)?	No	No	No	

 $\mu g/m^3 = micrograms per cubic meter$

AAM = annual arithmetic mean

ppm = parts per million by volume

- ^a Not all pollutants are monitored at SRA2 (Northwest Coastal LA County). Pollutants monitored at SRA2 include O₃, CO, and NO₂. For pollutant concentrations that are not available for SRA2 (PM10, PM2.5, SO2, Lead and Sulfate), values from SRA1 (Central LA) is presented.
- b USEPA regulation requires the SCAQMD operate lead monitoring stations near sources of lead. As there are no major sources of lead emissions within the Project Source Receptor Area, lead monitoring was not performed within SRA2. Further, as of 2018, no monitoring stations within the South Coast Basin demonstrated an exceedance of the lead NAAQS. Attainment redesignation for lead is currently pending with the USEPA

Source: South Coast Air Quality Management District Ambient Monitoring Data (2017–2019), www.aqmd.gov/home/air-quality/air-quality-data-studies/historical-data-by-year, accessed February 23, 2021.

The OEHHA, on behalf of the CalEPA, provides a screening tool (CalEnviroScreen) that can be used to help identify California communities that are disproportionately burdened by multiple sources of pollution. According to CalEnviroScreen, the Project Site is located in the 40th to 45th percentile, which means that the Project Site is slightly better than average in terms of pollution in comparison to other communities within California.²⁷

²⁷ OEHHA, CalEnviroScreen 3.0 MAP, https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30, accessed February 23, 2021.

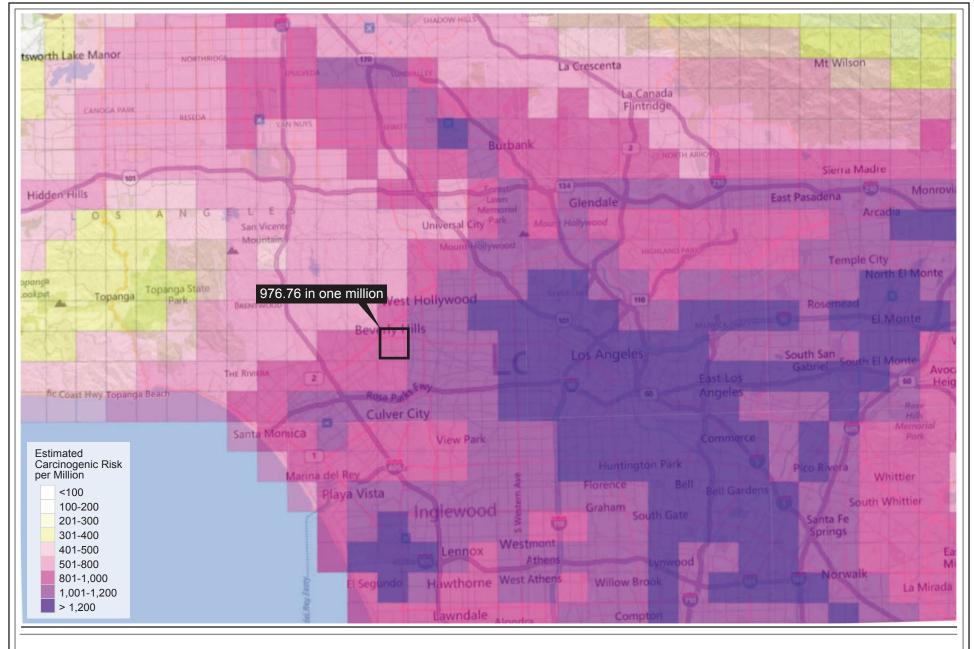


Figure 4.1-3
MATES IV Total Cancer Risk for the Project Area

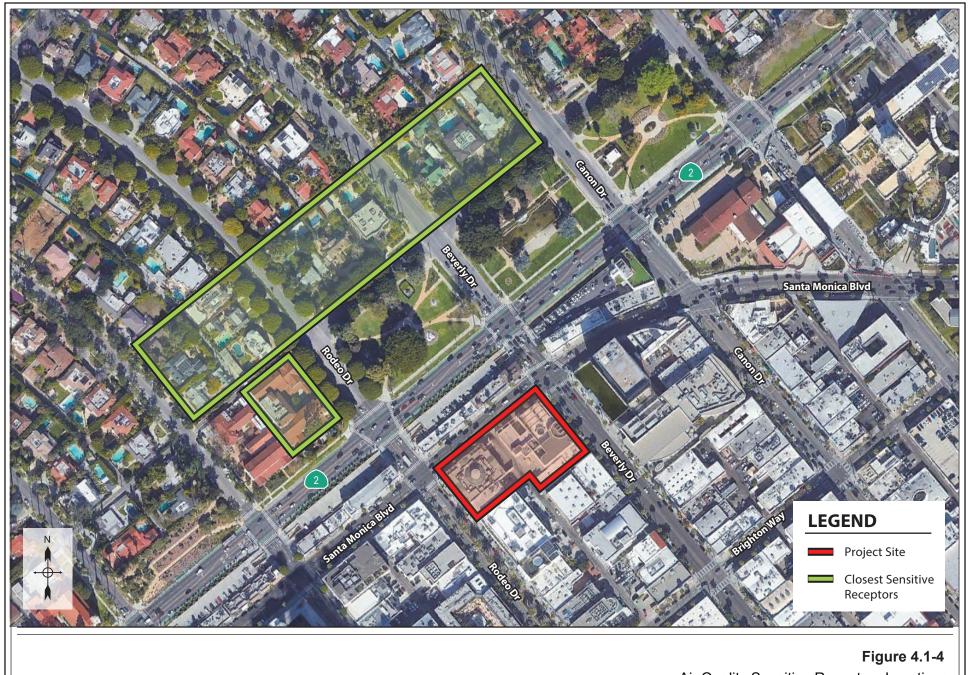
Source: South Coast AQMD, 2021.

The SCAQMD developed a web tool which allows one to search for public information about SCAQMD-regulated facilities that are required to have a permit to operate equipment that release pollutants into the air.²⁸ Potential sources of TACs within the Project Site vicinity were identified using SCAQMD's Facility Information Database (FIND) search and site reconnaissance to identify potential non-permitted air toxic emitting sources (e.g., vehicles travelling on freeways, diesel trucks idling at warehouse distribution facilities in excess of 100 trucks per day). Based on this screening analysis, no major sources of TACs were identified within one quarter mile of the Project Site.

4.1.2.4.2.3 Surrounding Uses

As shown in Figure 4.1-4 on page 4.1-28, the Project Site is located in an urbanized area. Land uses surrounding the Project Site include a mix of retail uses, offices, and restaurants. Specifically, north of the Project Site, across South Santa Monica Boulevard are a collection of small retail stores and restaurants as well as an art gallery. Further to the north are parking structures, North Santa Monica Boulevard, Beverly Gardens Park, and single-family residential neighborhoods. East of the Project Site, across North Beverly Drive, is the 9-story Bank of America Financial Center building, which primarily contains office space with a Bank of America Branch office and commercial space on the ground floor fronting North Beverly Drive and South Santa Monica Boulevard. West of the Project Site, across North Rodeo Drive, are a variety of retail commercial buildings.

4.1.2.4.2.4 Sensitive Uses


Some population groups, including children, elderly, and acutely and chronically ill persons (especially those with cardio-respiratory diseases), are considered more sensitive to air pollution than others. For purposes of a CEQA analysis, the SCAQMD considers a sensitive receptor to be a receptor such as a residence, hospital, convalescent facility, school or places where it is possible an individual could remain for 24 hours.²⁹

As shown in Figure 4.1-4, the closest sensitive land uses to the Project Site are preschool uses (Beverly Hills Presbyterian Preschool located within Beverly Hills Presbyterian Church) located approximately 280 feet northwest of the Project Site, across Santa Monica Boulevard. The closest residential uses are located approximately 525 feet northwest of the Project Site, across Santa Monica Boulevard. As such, the pre-school would experience the highest levels of Project emissions. While there are other sensitive

_

²⁸ SCAQMD, Facility Information Detail (F.I.N.D.), www.aqmd.gov/nav/FIND, accessed February 23, 2021.

²⁹ SCAQMD Final Localized Significance Threshold Methodology. Revised July 2008.

Air Quality Sensitive Receptors Locations

Source: Google Earth Pro, 2021; Eyestone Environmental, 2021.

Page 4.1-28

receptors in the Project vicinity, they are farther away than the pre-school, and emission levels and impacts would be less at those locations.

4.1.2.4.2.5 Existing Project Site Emissions

The Project Site is currently occupied by commercial and institutional uses comprising approximately 56,787 square feet. Specifically, 456 North Rodeo Drive is developed with a two-story, 6,895-square-foot commercial structure and nine surface parking spaces, 468 North Rodeo Drive is currently developed with a two-story, 20,265-square-foot commercial structure and six surface parking spaces, 461–465 North Beverly Drive is currently developed with a two-story, 23,351-square-foot institutional use and five surface and 45 underground parking spaces, and 449, 451, and 453 North Beverly Drive is developed with a one-story, 6,276-square-foot commercial structure. The existing structure at 449, 451, and 453 North Beverly Drive is currently vacant. Table 4.1-3 below presents an estimate of the existing emissions within the Project Site. It is assumed that the existing vacant buildings do not generate any vehicle trips or result in energy usage. Therefore, the vacant buildings are not included in the existing operational emissions inventory presented in Table 4.1-3.

Area source emissions are generated by, among other things, landscape equipment, fireplaces, and the use of consumer products. Energy source emissions are generated as a result of activities in buildings for which natural gas is used (e.g., natural gas for heat or cooking). Mobile source emissions are generated by motor vehicle trips to and from the Project Site.

Table 4.1-3
Estimated Existing Operational Emissions—Baseline^a

	Pollutant Emissions (pounds per day)					
Emission Source	voc	NOx	СО	SOx	PM ₁₀	PM _{2.5}
Area	<1	<1	<1	<1	<1	<1
Energy	<1	<1	<1	<1	<1	<1
Mobile	1	6	10	<1	2	<1
Total Existing Emissions ^a	2	6	10	<1	2	<1

Numbers may not add up exactly due to rounding.

Source: Eyestone Environmental, 2021.

^a The CalEEMod model printout sheets and/or calculation worksheets are presented in Appendix B (CalEEMod Output) of this Draft EIR.

4.1.3 Project Impacts

4.1.3.1 Thresholds of Significance

The Project would have a significant impact related to air quality if it would:

- Threshold (a): Conflict with or obstruct implementation of the applicable air quality plan.
- Threshold (b): Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard.
- Threshold (c): Expose sensitive receptors to substantial pollutant concentrations.
- Threshold (d): Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

As discussed in the Initial Study (Appendix A), the Project would not generate other emissions (such as those leading to odors) that would affect a substantial number of people because neither construction nor operation of the Project would generate such odors. Therefore, no impact would occur under the Project, and impacts under Threshold (d) are not discussed further in this EIR.

4.1.3.1.1 SCAQMD's CEQA Air Quality Handbook

To assist in answering the Appendix G Threshold questions for purposes of this analysis, the City of Beverly Hills utilizes the thresholds of significance recommended by SCAQMD to assess the significance of the Project's estimated air quality impacts. SCAQMD is in the process of developing an *Air Quality Analysis Guidance Handbook* to replace the *CEQA Air Quality Handbook* approved by the South Coast AQMD Governing Board in 1993. The following supplemental information is provided by SCAQMD while the new Handbook is being prepared. Specifically, Table 4.1-4 on page 4.1-31 shows SCAQMD's currently recommended significance thresholds, which provide numerical thresholds for evaluating the significance of a project's estimated air quality emissions.³⁰

³⁰ SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2, accessed September 15, 2021.

Table 4.1-4 SCAQMD Air Quality Significance Thresholds

	Mass Daily Thresholds ^a				
Pollutant	Construction ^b	Operation ^c			
NO _X	100 lbs/day	55 lbs/day			
VOCd	75 lbs/day 55 lbs/day				
PM ₁₀	150 lbs/day 150 lbs/day				
PM _{2.5}	55 lbs/day	55 lbs/day			
SO _X	150 lbs/day	150 lbs/day			
СО	550 lbs/day	550 lbs/day			
Leade	3 lbs/day	3 lbs/day			
Toxic Air Co	ontaminants (TACs), Odor, and GH0	3 Thresholds			
TACs (including carcinogens and non-carcinogens)	Maximum Incremental Cancer Risk ≥ 10 in 1 million Cancer Burden > 0.5 excess cancer cases (in areas ≥ 1 in 1 million) Chronic & Acute Hazard Index ≥ 1.0 (project increment)				
Odor	Project creates an odor nuisance pursuant to SCAQMD Rule 402				
Ambient Air Quality Standards for Criteria Pollutants ^f					
NO ₂ 1-hour average Annual Arithmetic Mean	SCAQMD is in attainment; project is significant if It causes or contributes to an exceedance of the following attainment standards: 0.18 ppm (state) 0.03 ppm (state) and 0.0534 ppm (federal)				
PM₁₀ 24-hour average Annual Average	10.4 μg/m³ (construction) ⁹ & 2.5 μg/m³ (operation) 1.0 μg/m³				
PM _{2.5} 24-hour average	10.4 μg/m³ (construction) ^g & 2.5 μg/m³ (operation)				
SO₂ 1-hour average 24-hour average	0.25 ppm (state) & 0.075 ppm (federal—99th percentile) 0.04 ppm (state)				
Sulfate 24-hour average	25 μg/m³ (state)				
CO 1-hour average 8-hour average	SCAQMD is in attainment; project is significant if it causes or contributes to an exceedance of the following attainment standards: 20 ppm (state) and 35 ppm (federal) 9.0 ppm (state/federal)				
Lead 30-day average Rolling 3-month average	1.5 μg/m³ (state) 0.15 μg/m³ (federal)				

lbs/day = pounds per day

^a SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2, accessed September 15, 2021.

Construction thresholds apply to both the South Coast Air Basin and Coachella Valley (Salton Sea and Mojave Desert Air Basins).

Table 4.1-4 (Continued) Table 4.1-4 SCAQMD Air Quality Significance Thresholds

- ^c For Coachella Valley, the mass daily thresholds for operation are the same as the construction thresholds.
- Please note that the SCAQMD significance threshold is in terms of VOC while CalEEMod calculates reactive organic compounds (ROG) emissions. For purposes of this analysis, VOC and ROG are used interchangeably since ROG represents approximately 99.9 percent of VOC emissions.
- While the South Coast Air Quality Management District CEQA Air Quality Handbook contains significance thresholds for lead, Project construction and operation would not include sources of lead emissions and would not exceed the significance thresholds for lead. Unleaded fuel and unleaded paints have virtually eliminated lead emissions from commercial land use projects such as the Project. As a result, lead emissions are not further evaluated in this Draft EIR.
- f Ambient air quality thresholds for criteria pollutants based on South Coast AQMD Rule 1303, Table A-2 unless otherwise stated.
- g Ambient air quality threshold based on South Coast AQMD Rule 403.

Source: South Coast Air Quality Management District, April 2019.

4.1.3.1.1.1 Construction

Based on the SCAQMD's significance criteria,³¹ the Project would have a significant impact with regard to construction emissions if any of the following would occur:

- Regional emissions from both direct and indirect sources would exceed any
 of the SCAQMD prescribed threshold levels identified in Table 4.1-4 on page
 4.1-31.
- Maximum on-site daily localized emissions exceed the Localized Significance Thresholds (LST), resulting in predicted ambient concentrations in the vicinity of the Project Site greater than the most stringent ambient air quality standards for CO (20 ppm [23,000 μg/m³] over a 1-hour period or 9.0 ppm [10,350 μg/m³] averaged over an 8-hour period) and NO₂ (0.18 ppm [338.4 μg/m³] over a 1-hour period, 0.1 ppm [188 μg/m³] over a three-year average of the 98th percentile of the daily maximum 1-hour average, or 0.03 ppm [56.4 μg/m³] averaged over an annual period).
- Maximum on-site localized PM₁₀ or PM_{2.5} emissions during construction exceed the applicable LSTs, resulting in predicted ambient concentrations in the vicinity of the Project Site to exceed the incremental 24-hr threshold of 10.4 μg/m³ or 1.0 μg/m³ PM₁₀ averaged over an annual period.

SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2, accessed September 15, 2021.

4.1.3.1.1.2 Operation

Based on the SCAQMD's significance criteria,³² the Project would have a significant impact with regard to operational emissions if any of the following would occur:

- Regional emissions from both direct and indirect sources exceed any of the SCAQMD prescribed threshold levels identified in Table 4.1-4 on page 4.1-31.
- Maximum on-site daily localized emissions exceed the LSTs, resulting in predicted ambient concentrations in the vicinity of the Project Site greater than the most stringent ambient air quality standards for CO (20 parts per million (ppm) over a 1-hour period or 9.0 ppm averaged over an 8-hour period) and NO₂ (0.18 ppm over a 1-hour period, 0.1 ppm over a 3-year average of the 98th percentile of the daily maximum 1-hour average, or 0.03 ppm averaged over an annual period).³³
- Maximum on-site localized operational PM₁₀ and PM_{2.5} emissions exceed the incremental 24-hr threshold of 2.5 μg/m³ or 1.0 μg/m³ PM₁₀ averaged over an annual period.³⁴
- The Project causes or contributes to an exceedance of the California 1-hour or 8-hour CO standards of 20 or 9.0 ppm, respectively.

4.1.3.1.1.3 Toxic Air Contaminants

Based on SCAQMD's significance criteria, the Project would have a significant TAC impact, if:³⁵

• The Project emits carcinogenic or TACs that exceed the maximum incremental cancer risk as provided in Table 4.1-4.

2021.

³² SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2, accessed September 15, 2021.

³³ SCAQMD, LST Methodology.

³⁴ SCAQMD, Final-Methodology to Calculate Particulate Matter (PM) 2.5 and PM_{2.5} Significance Thresholds,

October 2006.

SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2, accessed September 15,

4.1.3.1.1.4 Consistency with Applicable Air Quality Plans

Section 15125 of the State CEQA Guidelines requires an analysis of project consistency with applicable governmental plans and policies. SCAQMD has not provided supplemental information regarding consistency with applicable air quality plans while the new *Air Quality Analysis Guidance Handbook* is being prepared. Therefore, in accordance with the SCAQMD's *CEQA Air Quality Handbook*,³⁶ the following criteria were used to evaluate the Project's consistency with the SCAQMD and SCAG regional plans and policies, including the AQMP:

- Criterion 1: Will the Project result in any of the following:
 - An increase in the frequency or severity of existing air quality violations;
 - Cause or contribute to new air quality violations; or
 - Delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP?
- Criterion 2: Will the Project exceed the assumptions utilized in preparing the AQMP?
 - Is the Project consistent with the population and employment growth projections upon which AQMP forecasted emission levels are based;
 - Does the Project include air quality mitigation measures; or
 - To what extent is Project development consistent with the AQMP control measures?

In addition, the Project's consistency with the City of Beverly Hills General Plan is discussed.

4.1.3.1.1.5 Cumulative Impacts

The SCAQMD neither recommends quantified analyses of cumulative construction or operational emissions, nor does it provide separate methodologies or thresholds of significance to be used to assess cumulative construction or operational impacts. Instead, based on SCAQMD guidance, individual development projects that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would also cause a cumulatively

³⁶ SCAQMD, CEQA Air Quality Handbook, 1993, Chapter 12, Assessing Consistency with Applicable Regional Plans.

considerable increase in emissions for those pollutants for which the Air Basin is in non-attainment. ³⁷ As discussed in the SCAQMD's White Paper on Potential Control Strategies to Address Cumulative Impacts From Air Pollution (August 2003):

As Lead Agency, the AQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR.... Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant.³⁸

The cumulative analysis of air quality impacts within this Draft EIR follows SCAQMD's guidance such that construction or operational Project emissions will be considered cumulatively considerable if Project-specific emissions exceed an applicable SCAQMD recommended regional and localized significance threshold for criteria pollutants and air toxics.

4.1.3.2 Methodology

The SCAQMD published the *CEQA Air Quality Handbook* in November 1993 to assist lead agencies, as well as consultants, project proponents, and other interested parties, in evaluating potential air quality impacts of projects proposed in the Air Basin. The *CEQA Air Quality Handbook* provides standards, methodologies, and procedures for conducting air quality analyses in EIRs and was used extensively in the preparation of this analysis. The SCAQMD is currently in the process of replacing the *CEQA Air Quality Handbook* with the *Air Quality Analysis Guidance Handbook*.³⁹ In the interim, SCAQMD recommends following the calculation methodologies included in the *CEQA Air Quality Handbook* and avoiding use of the screening tables and obsolete emission factors included in the *CEQA Air Quality Handbook*.⁴⁰ Instead, supplemental guidance/information to assist lead agencies is provided on the SCAQMD website (http://www.aqmd.gov/home/rules-

Cheval Blanc Beverly Hills

³⁷ Jillian Wong, SCAQMD CEQA Specialist, personal communication, August 8, 2016.

White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. Appendix D, South Coast Air Quality Management District, August 2003.

³⁹ SCAQMD, Air Quality Analysis Handbook, www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook, accessed September 21, 2020.

⁴⁰ SCAQMD, CEQA Air Quality Handbook, www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993), accessed September 15, 2021.

compliance/ceqa/air-quality-analysis-handbook) while the new Handbook is being prepared and includes: (1) EMFAC on-road vehicle emission factors; (2) background CO concentrations; (3) localized significance thresholds; (4) mitigation measures and control efficiencies; (5) mobile source toxics analysis; (6) off-road mobile source emission factors; (7) PM_{2.5} significance thresholds and calculation methodology; and (8) updated SCAQMD Air Quality Significance Thresholds. The SCAQMD also recommends using approved models to calculate emissions from land use projects, such as the California Emissions Estimator Model (CalEEMod). These recommendations were followed in the preparation of this analysis.

The SCAQMD has also adopted land use planning guidelines in the *Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning*, which considers impacts to sensitive receptors from facilities that emit TAC emissions.⁴¹ SCAQMD's siting distance recommendations are the same as those provided by CARB (e.g., a 500-foot siting distance for sensitive land uses proposed in proximity of freeways and high-traffic roads, and the same 500-foot siting criteria for distribution centers and dry cleaning facilities). The SCAQMD's document introduces land use-related policies that rely on design and distance parameters to minimize emissions and lower potential health risk. SCAQMD's guidelines are voluntary initiatives recommended for consideration by local planning agencies.

This analysis focuses on the potential change in the air quality environment due to implementation of the Project. Air pollutant emissions would result from both construction and operation of the Project. Specific methodologies used to evaluate these emissions are discussed below.

4.1.3.2.1 Construction Emissions Methodology

Construction of the Project has the potential to generate temporary pollutant emissions through the use of heavy-duty construction equipment, such as excavators and cranes, and through worker and haul and delivery truck vehicle trips to and from the Project Site. In addition, fugitive dust emissions would result from demolition and various soil-handling activities such as excavation, grading and shoring. Mobile source emissions, primarily NO_X, would result from the use of construction equipment. Construction emissions can vary substantially from day to day, depending on the level of activity, the specific type of construction activity, and prevailing weather conditions. The assessment of construction air quality impacts considers each of these potential sources and factors.

SCAQMD, Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning, May 6, 2005.

4.1.3.2.1.1 Regional Emissions

The Project's "regional" emissions refer to emissions that will be evaluated based on regional significance thresholds established by the SCAQMD, as discussed above. Daily regional emissions during construction are estimated by assuming a conservative estimate of construction activities (i.e., assuming all construction occurs at the earliest feasible date) and applying mobile source and fugitive dust emissions factors. The emissions are estimated using CalEEMod (Version 2016.3.2) software, an emissions inventory software program recommended by SCAQMD. The CalEEMod model was developed for the California Air Pollution Control Officers Association (CAPCOA) in collaboration with SCAQMD and received input from other California air districts and is currently used by numerous lead agencies in the Los Angeles County area and within the state for quantifying the emissions associated with development projects undergoing environmental review, including by the City of Beverly Hills.

CalEEMod is based on outputs from Off-road Emissions Inventory Program model⁴² (OFFROAD) and EMission FACtor model⁴³ (EMFAC), which are emissions estimation models developed by CARB, and used to calculate emissions from construction activities, including off- and on-road vehicles, respectively. CalEEMod also relies upon known emissions data associated with certain activities or equipment (often referred to as "default" data, values or factors) that can be used if site-specific information is not available. CalEEMod contains default values to use in each specific local air district region. Default values within CalEEMod were obtained from a survey of construction sites conducted by the SCAQMD. The construction survey data was used to determine appropriate construction equipment assumptions based on lot size and project type.⁴⁴ Appropriate statewide default values can be used, if regional default values are not defined.

The input values used in this analysis were adjusted to be Project-specific based on equipment types and the construction schedule. These values were then applied to the construction phasing assumptions used in the criteria pollutant analysis to generate criteria pollutant emissions values for each construction activity. Construction tasks were aggregated to reflect overlapping tasks and identify the reasonably expected maximum construction emissions occurring over the course of Project construction. To be

California Air Resources Board, 2017 Off-Road Diesel Emission Factors, ww2.arb.ca.gov/our-work/ programs/mobile-source-emissions-inventory/road-documentation/msei-documentation-road, accessed September 21, 2020.

⁴³ California Air Resources Board, EMFAC 2014, ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac, accessed September 21, 2020

CAPCOA, California Emissions Estimator Model, Appendix E1: Construction Survey and SCAQMD, October 2017.

conservative, this analysis evaluates the Project's air quality impacts during construction based on reasonably expected maximum construction emissions even though such emissions would not occur throughout the entire construction period. Detailed equipment lists, construction scheduling, and emissions calculations are provided in Appendix B of this Draft EIR.

4.1.3.2.1.2 Localized Emissions

The localized effects from the on-site portion of daily construction emissions were evaluated at sensitive receptor locations closest to the Project Site potentially impacted by the Project according to the SCAQMD's LST methodology, which uses on-site mass emissions rate look-up tables and Project-specific modeling, where appropriate, to assess whether the Project's local emissions would exceed the SCAQMD's significance thresholds, as described above. SCAQMD provides LSTs applicable to the following criteria pollutants: NOx; CO; PM10; and PM2.5. SCAQMD does not provide an LST for SO2 since land use development projects typically result in negligible construction and long-term operation emissions of this pollutant as on-site activities during construction and operation do not include activities that emit high levels of SO2. Since VOCs are not a criteria pollutant, there is no ambient standard or SCAQMD LST for VOCs. Due to the role VOCs play in O3 formation, it is classified as a precursor pollutant, and only a regional emissions threshold has been established.

LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard and are developed based on the ambient concentrations of that pollutant for each source receptor area and distance to the nearest sensitive receptor. The SCAQMD developed mass rate look-up tables for each source receptor area and to determine whether or not a project may generate significant adverse localized air quality impacts. SCAQMD provides LST mass rate look-up tables for projects with active construction areas that are less than or equal to 5 acres. If a project exceeds the LST look-up values, then the SCAQMD recommends that project-specific air quality modeling must be performed to determine if the project's local emissions exceed applicable significance thresholds.

_

⁴⁵ SCAQMD, LST Methodology Appendix C-Mass Rate LST Look-Up Table, October 2009.

⁴⁶ SCAQMD, LST Methodology, p. 1-4.

4.1.3.2.2 Operation Emissions Methodology

4.1.3.2.2.1 Regional Emissions

Analysis of the Project's impact on regional air quality during long-term Project operations (i.e., after construction is complete) takes into consideration four types of sources: (1) area; (2) energy; (3) mobile; and (4) stationary. Area source emissions are generated by, among other things, landscape equipment, and the use of consumer products. Energy source emissions are generated as a result of activities in buildings for which natural gas is used (e.g., natural gas for heat or cooking). Mobile source emissions are generated by the increase in motor vehicle trips to and from the Project Site associated with operation of the Project. Stationary source emissions are generated from proposed emergency generators during routine maintenance/testing.

Similar to construction, SCAQMD's CalEEMod model was used to estimate Project emissions during operation. Mobile-source emissions were calculated within CalEEMod. In calculating mobile-source emissions, the trip length values were based on the distances provided in CalEEMod. The trip distances were applied to the maximum daily trip estimates, based on the trip rates in the Project traffic study.⁴⁷ CalEEMod then converts EMFAC emission rates into CalEEMod vehicle emission factors.⁴⁸

Energy source emissions are based on natural gas (building heating and water heaters). Natural gas usage factors in CalEEMod are based on the California Energy Commission California Commercial End Use Survey data set, which provides energy demand by building type and climate zone. Area source emissions include landscaping equipment and consumer product usage (including paints) rates provided in CalEEMod. Emissions associated with use of emergency generators were calculated using CalEEMod, in which emission factors are based on Table 3.4-1 (Gaseous Emission Factors for Large Stationary Diesel Engines) from EPA's AP-42: Compilation of Air Pollutant Emission Factors. The emissions are based on the horsepower rating of the diesel generator and the number of hours operated per year for testing purposes.

To determine if a significant air quality impact would occur, the net increase in regional operational emissions generated by the Project was compared against the

⁴⁷ Fehr and Peers, Trip Generation and Traffic Forecasts for Cheval Blanc Beverly Hills Specific Plan, January 29, 2021.

⁴⁸ CAPCOA, California Emissions Estimator Model, Appendix A: Calculation Details for CalEEMod, November 2017.

SCAQMD's significance thresholds.⁴⁹ To be conservative, this analysis evaluates the Project's air quality impacts during operations based on reasonably expected maximum operational emissions even though such emissions would not occur throughout the entire operational phase. Refer to Appendix B of this Draft EIR for additional information regarding methodology.

4.1.3.2.2.2 Localized Emissions

4.1.3.2.2.2.1 On-Site Emissions

Localized impacts from Project operations include calculation of on-site emissions (e.g., combustion from natural gas usage) using SCAQMD's recommended CalEEMod and evaluation of these emissions consistent with the SCAQMD's LST methodology discussed above.

4.1.3.2.2.2.2 Off-Site Emissions

Potential localized CO concentrations from induced traffic at nearby intersections are addressed pursuant to the methodologies and assumptions used in the consistency analysis provided in the 2003 AQMP.

It has long been recognized that CO exceedances are caused by vehicular emissions,⁵⁰ primarily when idling at intersections.^{51,52} Accordingly, vehicle emissions standards have become increasingly more stringent. Before the first vehicle emission regulations, cars in the 1950s were typically emitting about 87 grams of CO per mile.⁵³ Currently, the CO standard in California is a maximum of 3.4 grams/mile for passenger cars (with provisions for certain cars to emit even less).⁵⁴ With the turnover of older

SCAQMD, SCAQMD Air Quality Significance Thresholds, revised March 2015. SCAQMD based these thresholds, in part, on the federal Clean Air Act and, to enable defining "significant" for CEQA purposes, defined the setting as the South Coast Air Basin. SCAQMD, South Coast AQMD Air Quality Significance Thresholds, www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds. pdf?sfvrsn=2, accessed September 15, 2021

⁵⁰ USEPA. 2000. Air Quality Criteria for Carbon Monoxide. EPA 600/P-099/001F.

⁵¹ SCAQMD. 1993. CEQA Air Quality Handbook. Section 4.5.

⁵² SCAQMD. 2003. Air Quality Management Plan.

USEPA, Timeline of Major Accomplishments in Transportation, Air Pollution, and Climate Change, www. epa.gov/air-pollution-transportation/timeline-major-accomplishments-transportation-air-pollution-and-climate, accessed September 21, 2020.

⁵⁴ CARB, California Exhaust Emission Standards and Test Procedures for 2001 and Subsequent Model Passenger Cars, Light-duty Trucks, and Medium-duty Vehicles, amended September 27, 2010.

vehicles, introduction of cleaner fuels and implementation of control technology on industrial facilities, CO concentrations in the Air Basin have steadily declined.

The analysis prepared for CO attainment in the Air Basin by the SCAQMD can be used to assist in evaluating the potential for CO exceedances in the Air Basin. CO attainment was thoroughly analyzed as part of the SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan). As discussed in the 1992 CO Plan, peak carbon monoxide concentrations in the Air Basin are due to unusual meteorological and topographical conditions, and not due to the impact of particular intersections. Considering the region's unique meteorological conditions and the increasingly stringent CO emissions standards, CO modeling was performed as part of the 1992 CO Plan and subsequent plan updates and air quality management plans.

In the 1992 CO Plan, a CO hot spot analysis was conducted for the four worst-case scenario intersections in Los Angeles County at the peak morning and afternoon time The intersections evaluated included: Long Beach Boulevard and Imperial Highway (Lynwood); Wilshire Boulevard and Veteran Avenue (Westwood); Sunset Boulevard and Highland Avenue (Hollywood); and La Cienega Boulevard and Century Boulevard (Inglewood). These analyses did not predict a violation of CO standards. The peak modeled CO concentrations due to vehicle emissions occurred at the intersection of Wilshire Boulevard and Veteran Avenue, which had a daily traffic volume of approximately 100,000 vehicles per day. The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm, which is approximately 25 percent of the most stringent 1-hour CO standard (20.0 ppm). Based on these results, an intersection would likely not exceed the 1-hour CO standard until the daily traffic exceeds more than 400,000 (4 x 100,000) vehicles per day.⁵⁶ The AQMP CO hotspots modeling also took into account worst-case meteorological conditions and background CO concentrations. As an initial screening step, if a project intersection does not exceed 400,000 vehicles per day, then the project does not need to prepare a detailed CO hot spot analysis. If a project would potentially result in a CO hotspot based on the initial screening, detailed modeling may be performed using California LINE Source Dispersion Model, version 4 (CALINE4), which is a model used to assess air quality impacts near transportation facilities (i.e., roadways, intersections, street canyons, and parking facilities).

⁵⁵ SCAQMD, 1992. Federal Attainment Plan for Carbon Monoxide.

⁵⁶ Based on the ratio of the CO standard (20.0 ppm) and the modeled value (4.6 ppm).

4.1.3.2.3 Toxic Air Contaminants Impacts (Construction and Operations)

Potential TAC impacts are evaluated by conducting a qualitative analysis consistent with SCAQMD guidance and the CARB Handbook. The qualitative analysis consists of reviewing the Project to identify any new or modified TAC emissions sources and evaluating the potential for such sources to cause significant TAC impacts. If the qualitative evaluation determines the potential for significant impacts from a new TAC source, or modification of an existing TAC emissions source, a more detailed dispersion analysis is conducted to evaluate estimated Project TAC emissions against the applicable SCAQMD significance thresholds based on downwind sensitive receptor locations.

4.1.3.3 Project Design Features

The Project would incorporate project design features to support and promote environmental sustainability as discussed under Section 4.6, Greenhouse Gas Emissions, of this Draft EIR. While these features are designed primarily to reduce greenhouse gas emissions, they would also serve to reduce criteria air pollutants.

4.1.3.4 Analysis of Project Impacts

Threshold (a): Conflict with or obstruct implementation of the applicable air quality plan.

4.1.3.4.1 Impact Analysis

4.1.3.4.1.1 SCAQMD CEQA Air Quality Handbook Policy Analysis

To assess whether the Project would conflict with or obstruct implementation of an applicable air quality plan, this analysis evaluates the Project's consistency with SCAQMD's AQMP and SCAG's RTP/SCS. In accordance with the SCAQMD's *CEQA Air Quality Handbook*, Chapter 12, the following criteria are considered as part of this evaluation:

- Criterion 1: Would the project result in any of the following:
 - An increase in the frequency or severity of existing air quality violations; or
 - Cause or contribute to new air quality violations; or
 - Delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP.
- Criterion 2: Would the project exceed the assumptions utilized in preparing the AQMP?

- Is the Project consistent with the population and employment growth projections upon which AQMP forecasted emission levels are based;
- Does the Project include air quality mitigation measures; or
- To what extent is Project development consistent with the AQMP control measures?

4.1.3.4.1.1.1 Criterion 1

The Project is an infill development near transit within an existing urbanized area that would add retail and hotel uses within a SCAG-designated HQTA.⁵⁷ Public transit service within the study area is currently provided by Metro. Bus stops that serve the Project Site (within a 0.3-mile walking distance) are currently provided along Santa Monica Boulevard. In addition, the Project Site is located approximately 0.4 mile from the future Metro D Line Rodeo Station This means the Project advances regional goals to reduce VMT through infill development near transit that has the co-benefit of reducing air emissions and GHG emissions compared to the average regional project. As shown below, the Project would not exceed any SCAQMD significance thresholds for air quality emissions.

With respect to the first criterion, as discussed below, localized concentrations of NO₂ as NO_X, CO, PM₁₀, and PM_{2.5} have been analyzed for the Project. Due to California Low Sulfur Diesel Fuel requirements, calculations shown below demonstrate that SO₂ emissions would be negligible during construction and long-term operations, and, therefore, would not have the potential to cause or affect a violation of the SO₂ ambient air quality standard.⁵⁸ Since VOCs are not a criteria pollutant, there is no ambient standard or localized threshold for VOCs. Due to the role VOCs play in O₃ formation, it is classified as a precursor pollutant and only a regional emissions threshold has been established. The Project's VOC emissions resulting from construction and operational activities are analyzed in further detail below.

Particulate matter is the primary pollutant of concern during construction activities, and therefore, the Project's PM_{10} and $PM_{2.5}$ emissions during construction were analyzed in order to: (1) ascertain potential effects on localized concentrations; and (2) determine if there is a potential for such emissions to cause or affect a violation of the ambient air

⁵⁷ SCAG, High Quality Transit Areas (HQTA) 2016—SCAG Region, http://gisdata-scag.opendata.arcgis. com/datasets/1f6204210fa9420b87bb2e6c147e85c3_0?geometry=-118.958%2C33.943%2C-117.817% 2C34.142, accessed March 3, 2021.

⁵⁸ California Air Resources Board, California Low Sulfur Diesel Fuel Fact Sheet, ww2.arb.ca.gov/resources/fact-sheets/california-low-sulfur-diesel-fuel-fact-sheet, accessed March 3, 2021.

quality standards for PM_{10} and $PM_{2.5}$. As shown in Table 4.1-7 on page 4.1-58 in the analysis below, the increases in PM_{10} and $PM_{2.5}$ emissions during construction would not exceed the SCAQMD-recommended significance thresholds at sensitive receptors in proximity to the Project Site.

Additionally, the Project's maximum potential NO $_{\rm X}$ and CO daily emissions during construction were analyzed to ascertain potential effects on localized concentrations and to determine if there is a potential for such emissions to cause or affect a violation of an applicable ambient air quality standard. As shown in Table 4.1-7 in the analysis below, NO $_{\rm X}$ and CO would not exceed the SCAQMD-recommended localized significance thresholds. Therefore, Project construction would not result in a significant impact with regard to localized air quality.

Because the Project would not introduce any substantial stationary sources of emissions, CO is the preferred benchmark pollutant for assessing local area air quality impacts from post-construction motor vehicle operations.⁵⁹ As discussed below on page 4.1-59, no intersections would require a CO hotspot analysis, and impacts would be less than significant. Therefore, Project operation would not increase the frequency or severity of an existing CO violation or cause or contribute to new CO violations.

An analysis of potential localized operational impacts from on-site activities was also conducted. As shown in Table 4.1-8 on page 4.1-59 in the analysis below, localized NO₂ as NO_x, CO, PM₁₀, and PM_{2.5} operational impacts would be less than the applicable SCAQMD significance threshold and therefore less than significant. **Therefore, Project operation would also not delay timely attainment of air quality standards or interim emission reductions specified in the AQMP.**

4.1.3.4.1.1.2 Criterion 2

With respect to the second criterion for determining consistency with AQMP growth assumptions, the projections in the AQMP for achieving air quality goals are based on assumptions in SCAG's 2016 RTP/SCS regarding population, housing, and growth trends. Determining whether or not a project exceeds the assumptions reflected in the AQMP involves the evaluation of three criteria: (1) consistency with applicable population, housing, and employment growth projections; (2) Project mitigation measures; and (3) appropriate incorporation of AQMP land use planning strategies. The following discussion provides an analysis with respect to each of these three criteria.

⁵⁹ SCAQMD, <u>CEQA Air Quality Handbook</u>, 1993, Chapter 12, Assessing Consistency with Applicable Regional Plans.

• Is the project consistent with the population, housing, and employment growth projections upon which AQMP forecasted emission levels are based?

A project is consistent with the AQMP, in part, if it is consistent with the population, housing, and employment assumptions that were used in the development of the AQMP. In the case of the 2016 AQMP, two sources of data form the basis for the projections of air pollutant emissions: the City of Beverly Hills General Plan and SCAG's RTP/SCS.⁶⁰ As noted above, the 2020–2045 RTP/SCS is now available. Therefore, a comparison of population growth projections from SCAG's 2016-2040 and 2020–2045 RTP/SCS is also provided below.

As described in Section 4.7, Land Use and Planning, of this Draft EIR, the City's General Plan serves as a comprehensive, long-term plan for future development of the City. Refer to Subsection 4.1.3.4.1.2, City of Beverly Hills Policies, below, for a discussion of the Project's consistency with applicable goals, objectives, and policies of the City's General Plan. The 2016–2040 and 2020–2045 RTP/SCS provide socioeconomic forecast projections of regional population growth. The population, housing, and employment forecasts, which are adopted by SCAG's Regional Council, are based on the local plans and policies applicable to the specific area; these are used by SCAG in all phases of implementation and review.

According to SCAG's 2016–2040 RTP/SCS, the employment forecast for the City of Beverly Hills Subregion in 2021 was approximately 61,300 employees.⁶¹ In 2026, the City of Beverly Hills Subregion is anticipated to have approximately 63,300 employees with an increase of 2,000 employees between 2021 and 2026.⁶² Based on the current SCAG's 2020–2045 RTP/SCS, the employment forecast for the City of Beverly Hills Subregion in 2021 was approximately 75,755 employees.⁶³ In 2026, the City of Beverly Hills Subregion is anticipated to have approximately 76,910 employees with an increase of 1,155 employees between 2021 and 2026.⁶⁴

The Project proposes 115 hotel rooms, a private club, restaurant and retail uses. Based on the trip generation rates provided in the Traffic Study, the Project would generate

Cheval Blanc Beverly Hills
Draft Environmental Impact Report

As noted above, SCAG recently adopted the 2020–2045 RTP/SCS. However, the 2016 AQMP is based on the 2016–2040 RTP/SCS. Therefore, a comparison of population growth projections from SCAG's 2016–2040 and 2020–2045 RTP/SCS are provided.

⁶¹ Based on a linear interpolation of 2012–2040 data.

⁶² Based on a linear interpolation of 2012–2040 data.

⁶³ Based on a linear interpolation of 2016–2045 data.

⁶⁴ Based on a linear interpolation of 2016–2045 data.

approximately 250 employees.⁶⁵ Based on the 2016-2040 RTP/SCS, the Project would constitute approximately 13 percent of the employment growth forecasted between 2021 and 2026. Per the 2020–2045 RTP/SCS, the estimated 250 employees would constitute approximately 22 percent of the employment growth forecasted between 2021 and 2026. Therefore, the Project's employment growth would not exceed the City's growth projections.

Accordingly, the Project's generation of employees would be consistent with the employment projections contained in the 2016–2040 and 2020–2045 RTP/SCS. **Because the same projections form the basis of the 2016 AQMP, the Project would be consistent with the projections in the AQMP**. While the 2016 AQMP does not include the projections contained in the current 2020-2045 RTP/SCS, refer to Section 4.7, Land Use and Planning, of this Draft EIR, for additional discussion regarding the Project's consistency with the 2016–2040 and 2020–2045 RTP/SCS.

Does the project implement feasible air quality mitigation measures?

As discussed below under Thresholds (b), (c), and (d), the Project would not result in any significant air quality impacts and therefore would not require mitigation. In addition, the Project would comply with all applicable regulatory standards (e.g., SCAQMD Rule 403 and Rule 1133, etc.) as required by SCAQMD, as summarized above. The Project also would incorporate project design features to support and promote environmental sustainability as discussed in Section 4.6, Greenhouse Gas Emissions, of this Draft EIR. Such Project design features include GHG-PDF-1 which would incorporate increased energy efficiency features such as use of LED lighting, Energy Star appliances and fenestration designed for solar orientation. While these features are designed primarily to reduce GHG emissions, they would also serve to reduce the criteria air pollutants discussed herein. Furthermore, with compliance with the regulatory requirements identified above and in Section 4.6, Greenhouse Gas Emissions, of this Draft EIR, no significant air quality impacts would occur. As such, the Project is consistent with this AQMP consistency criterion.

 To what extent is project development consistent with the control measures set forth in the AQMP?

As an infill development located in a HQTA, the Project advances goals of the AQMP and RTP/SCS to reduce VMT and related vehicle emissions. Pursuant to California

Based on Fehr and Peers, Trip Generation and Traffic Forecasts for Cheval Blanc Beverly Hills Specific Plan, January 29, 2021. It is assumed that each employee would generate 2.1 trips.

Health and Safety Code Section 40460, SCAG also has the responsibility of preparing and approving the portions of the AQMP relating to the integration of regional land use programs, measures, and strategies. SCAQMD combines its portion of the AQMP with those prepared by SCAG. The RTP/SCS and TCMs, included as Appendix IV-C of the 2016 AQMP/SIP for the Basin, are based on SCAG's 2016–2040 RTP/SCS.

The Project represents an infill development within an existing urbanized area that would add hotel, retail, restaurant, and private club uses within an HQTA.66 Therefore, the Project would be consistent with SCAG's 2016-2040 RTP/SCS, as it is located within an HQTA. Public transit service within the study area is currently provided by Metro. Bus stops that serve the Project Site (within a 0.3-mile walking distance) are currently provided along Santa Monica Boulevard. In addition, the Metro's D Line Transit Project is currently under construction in the vicinity of the Project Site with a future station within 0.4 mile of the Project Site. The Project would also provide bicycle parking spaces, including charging facilities for e-bicycles, to encourage the use of alternative modes of transportation, and lockers and showers to encourage employees to bike commute. Free transit passes will be provided to hotel and club employees who use transit to commute. Electric vehicle charging facilities will be provided in the underground garage. The Project design would also provide pedestrian access that minimizes barriers and links to the Project Site with external streets to encourage people to walk instead of drive. Pedestrian access would be maintained on Rodeo Drive and Beverly Drive.

As discussed under Section 4.6, Greenhouse Gas Emissions, of this Draft EIR, the Project design includes characteristics that would reduce trips and VMT as compared to a standard project within the air basin as measured by the air quality model (CalEEMod). While these Project characteristics primarily reduce greenhouse gas emissions, they would also reduce criteria air pollutants discussed herein. These relative reductions in vehicle trips and VMT from a standard project within the air basin help quantify the criteria air pollutant emissions reductions achieved by locating the Project in an infill, HQTA area that promotes alternative modes of transportation. Specifically, the Project characteristics listed below are consistent with the CAPCOA guidance document, *Quantifying Greenhouse Gas Mitigation Measures*,⁶⁷ which identifies the VMT and vehicle trips reductions for the Project Site relative to the standard trip and VMT rates in CalEEMod, which corresponds to a relative reduction in GHG emissions. Measures applicable to the Project include the following:

-

Defined by the 2016 RTP/SCS as generally walkable transit villages or corridors that are within 0.5 mile of a well-serviced transit stop or a transit corridor with 15-minute or less service frequency during peak commute hours.

⁶⁷ CAPCOA, Quantifying Greenhouse Gas Mitigation Measures, 2010.

- CAPCOA Measure LUT-1—Increase Density:⁶⁸ Increased density, measured in terms of persons, jobs, or dwelling units per unit area, reduces emissions associated with transportation as it reduces the distance people travel for work or services and provides a foundation for the implementation of other strategies, such as enhanced transit services. The Project would result in a net increase of approximately 250 jobs for the 1.277-acre Project Site.
- CAPCOA Measure LUT-3—Increase Diversity of Urban and Suburban Developments (Mixed-Uses): The Project would introduce new uses on the Project Site, including new hotel, private club, retail, and restaurant uses. The Project would locate these uses in proximity to other existing off-site retail and restaurant uses which would reduce the distance guests would have to travel to visit these retail and restaurant uses. The increased land use diversity and mix of uses on the Project Site would reduce vehicle trips and VMT by encouraging walking and non-automotive forms of transportation (i.e., walking and biking), which would result in corresponding reductions in transportation-related emissions.
- CAPCOA Measure LUT-5—Increase Transit Accessibility: The Project would be approximately 0.4 miles from the future Metro D Line Rodeo Station and be serviced by Metro local lines. Bus stops that serve the Project Site (within a 0.3-mile walking distance) are currently provided along North Santa Monica Boulevard. The Project would also provide bicycle parking spaces, including charging facilities for e-bicycles, to encourage the use of alternative modes of transportation, and lockers and showers to encourage employees to bike commute. Free transit passes will be provided to hotel and club employees who use transit to commute. Electric vehicle charging facilities will be provided in the underground garage.
- CAPCOA Measure LUT-9—Improve Design of Development: The Project would remove the existing commercial and institutional use and enhance the pedestrian environment by developing a ground floor restaurant use to foster pedestrian activity. The Project also would improve the streetscape on the site's street frontages with amenities and by widening the sidewalk on South Santa Monica Boulevard, thus making the site more attractive to pedestrians and enhancing walkability. The Project would include a high level of street access, which would improve street accessibility and connectivity.
- CAPCOA Measure SDT-1—Provide Pedestrian Network Improvements: The Project's design would improve pedestrian access by minimizing physical barriers and linking the Project Site with external streets, thus encouraging people to walk or take the Metro instead of driving. These types of direct access

⁶⁸ LUT refers to the Land Use/Location category of CAPCOA's Transportation measures.

to the Project Site would reduce VMT and associated transportation-related emissions.

Implementation of these features would contribute to a reduction in air quality emissions via a reduction in vehicle trips and VMT. Accordingly, as the Project would support the City's and SCAQMD's objectives of reducing VMT and the related vehicular air emissions, the Project would be consistent with AQMP land use policies.

In conclusion, the determination of AQMP consistency is primarily concerned with the long-term influence of the Project on air quality in the Air Basin. The Project is an infill development near transit within an existing urbanized area that would concentrate new retail, hotel and club uses within an HQTA, which locates jobs near residential uses and in proximity to transit, thus reducing VMT. The Project would not have a significant long-term adverse impact on the region's ability to meet state and federal air quality standards. As discussed above, the Project would be consistent with the goals and policies of the AQMP and, therefore, would not conflict with or obstruct implementation of the SCAQMD's AQMP.

4.1.3.4.1.2 City of Beverly Hills Policies

To achieve the goals of the City's General Plan and Sustainable City Plan, performance-based standards have been adopted to provide flexibility in implementation of its policies and objectives. The following General Plan and Sustainable City Plan goals, objectives, and policies are relevant to the Project:

- Policy LU 14.1 City Form. Accommodate a balanced mix of land uses and encourage development to be located and designed to enable residents access by walking, bicycling, or taking public transit to jobs, shopping, entertainment, services, and recreation, thereby reducing automobile use, energy consumption, air pollution, and greenhouse gases.
- Policy OS 7.5 Coordination with SCAQMD. Coordinate with SCAQMD to ensure that projects incorporate feasible mitigation measures if those measures are not already provided for through project design.
- **Policy OS 7.8 Emissions Reduction**. Require new development projects that exceed the SCAQMD's ROG and NOX operational thresholds to incorporate design or operational features that reduce emissions equal to 15 percent from the level that would be produced by an unmitigated project.
- Policy CIR 1.4 Level of Service. Develop standards to address regional traffic growth through the City to promote transit ridership, biking, and walking, thereby reducing auto travel, air pollution, and energy consumption.

- Policy CON 8.3 National Pollutant Discharge Elimination System (NPDES) and SCAQMD Regulations. Continue to implement, as appropriate, the requirements of the NPDES and SCAQMD regulations, including requiring the use of Best Management Practices by businesses in the City.
- Policy H 2.9 Jobs/Housing Balance. Promote programs seeking to provide housing opportunities for people who work in the City as a means of reducing long commutes, easing local traffic, improving air quality and helping to achieve a balanced regional jobs/housing distribution for the western portion of Los Angeles County.
- Climate Change and Air Quality Goal: Combat climate change and improve air quality.
 - Objective: Reduce and encourage the reduction of air emissions in City operations and Citywide.
 - Policy 2: Minimize mobile source emissions from on- and off-road (construction) vehicles.
 - o **Policy 3:** Minimize stationary source air emissions.
 - Policy 4: Minimize particulate matter, both airborne photochemical precipitates and windborne dust

As an infill development located in a HQTA, the Project advances regional and City goals to reduce VMT and related vehicle emissions, which has the co-benefit of decreasing GHG emissions and air pollutants from mobile sources. The Project would provide jobs in an urban area near other residential uses which would potentially reduce travel distance for employees. In addition, the Project includes bicycle parking spaces for the proposed uses as required by the City's Municipal Code, as well as charging facilities for e-bicycles, lockers, and showers to encourage employees to bike commute. The Project Site is serviced by local bus lines and Metro lines and free transit passes will be provided to hotel and club employees who use transit to commute. The Project would provide opportunities for the use of alternative modes of transportation, including access to public transit, and opportunities for walking and biking, thereby facilitating a reduction in VMT. The Project is consistent with the existing land use pattern in the vicinity that concentrates urban density along major arterials and near transit options. The Project also includes primary entrances for pedestrians that would be safe, easily accessible, and a short distance from transit stops. Refer to Section 4.7, Land Use and Planning, of this Draft EIR, for an analysis of the Project's consistency with the City's General Plan. Based on the discussion above, the Project is consistent with applicable policies of the City of Beverly Hills General Plan and Sustainable City Plan.

In conclusion, analysis of Threshold (a) was based on the Project's consistency with the AQMP as well as the City of Beverly Hills policies. With regard to AQMP consistency, which is primarily concerned with the long-term influence of the Project on air quality in the Air Basin, the Project would not increase the frequency or severity of an existing violation or cause or contribute to new violations for these pollutants. As the Project would not exceed any of the state and federal standards, the Project would also not delay timely attainment of air quality standards or interim emission reductions specified in the AQMP. In addition, because the Project includes similar growth projections that form the basis of the 2016 AQMP, it can be concluded that the Project would be consistent with the projections in the AQMP. Furthermore, while the Project does not require any air quality mitigation measures, the Project would comply with all applicable regulatory standards and the Project Design Features in Section 4.6, Greenhouse Gas Emissions, of this Draft EIR, that would serve to reduce the criteria air pollutants discussed herein. The Project would support the City's and SCAQMD's objectives of reducing VMT and the related vehicular air emissions as an infill development near transit within an existing urbanized area and HQTA, consistent with AQMP control measures. Thus, the Project would not conflict with or obstruct implementation of the AQMP. With regard to the City policies, as discussed above, the Project would serve to implement applicable policies pertaining to air quality. Based on the above, impacts to Threshold (a) would be less than significant.

4.1.3.4.2 Mitigation Measures

Project-level impacts related to Threshold (a), implementation of the applicable air quality plan, would be less than significant during construction and operation of the Project. Therefore, no mitigation measures are required.

4.1.3.4.3 Level of Significance After Mitigation

Project-level impacts related to Threshold (a) during both construction and operation of the Project were determined to be less than significant without mitigation. Therefore, no mitigation measures were required or included, and the impact level remains less than significant.

Threshold (b): Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard.

4.1.3.4.4 Impact Analysis

4.1.3.4.4.1 Regional Emissions

4.1.3.4.4.1.1 Construction

As described in Section 2.0, Project Description, of this Draft EIR, construction of the Project is anticipated to commence in 2022 and would occur in two phases, which would overlap in their duration. Phase 1 would involve demolition of 449 and 461 North Beverly and construction of the 449 North Beverly subterranean parking structure to grade and opening of the relocated alley with overhead protection. Phase 2 would include the balance of the Project. The overall duration of construction is estimated to be approximately 38 months with Project buildout in 2026. Project construction activities would include demolition, site preparation, grading, building construction, paving, and architectural coating activities. Construction of Phase 1 would take approximately 7.5 months. Construction of Phase 2 would overlap Phase 1 by approximately 1.5 months and is estimated to last approximately 32 months.

Construction of the subterranean parking garage would extend to a maximum depth of approximately 44 feet below ground surface. During construction of the Project, approximately 124,920 cubic yards of earth would be removed from the Project Site, including approximately 34,564 cubic yards during Phase 1 and 90,356 cubic yards during Phase 2. Between the hours of 7:00 P.M. to 10:00 P.M., the designated outbound (leaving the Project Site) haul route is anticipated to be from the Project Site to eastbound South Santa Monica Boulevard to Burton Way to San Vicente Boulevard to southbound La Cienega Boulevard to Interstate 10. The reverse of this route would be used for inbound truck traffic from 7:00 P.M. to 10:00 P.M. Between the hours of 10:00 P.M. and 7:30 A.M., the designated outbound (leaving the Project Site) haul route is anticipated to be from the Project Site to southbound Beverly Drive to eastbound Wilshire Boulevard to southbound La Cienega Boulevard to Interstate 10. Between the hours of 10:00 P.M. to 7:30 A.M., the inbound haul route would be from Interstate 10 to northbound La Cienega Boulevard to westbound Wilshire Boulevard to northbound North Camden Drive to eastbound South Santa Monica Boulevard into the Project Site. It is noted that intermittent lane closures associated with construction of the future Metro D Line Rodeo Station are anticipated to occur on Beverly Drive through 2024. When periodic lane closures associated with the Metro station construction occur on Beverly Drive and/or Wilshire Boulevard, the nighttime haul trucks would utilize the evening (7:00 P.M. to 10:00 P.M.) haul route described above.

Construction of the Project has the potential to create air quality impacts through the use of heavy-duty construction equipment and through vehicle trips generated from hauling, deliveries, and construction workers traveling to and from the Project Site. In

addition, fugitive dust emissions would result from demolition and construction activities. Mobile source emissions, primarily NO_X , would result from the use of construction equipment, such as dozers, loaders, and cranes. During the finishing phase of the Project, paving and the application of architectural coatings (e.g., paints) would potentially release VOCs. The assessment of construction air quality impacts considers each of these potential sources. Construction emissions can vary substantially from day to day, depending on the level of activity, the specific type of operation, and, for dust, the prevailing weather conditions.

The emissions levels in Table 4.1-5 on page 4.1-54 represent the highest daily emissions projected to occur during each year of construction. As presented in Table 4.1-5, construction-related daily maximum regional construction emissions would not exceed any of the SCAQMD daily significance thresholds. Therefore, regional construction emissions resulting from the Project would result in a less-than-significant air quality impact.

4.1.3.4.4.1.2 Operation

As discussed above, SCAQMD's CalEEMod was used to calculate regional area, energy, mobile source, and stationary emissions. The Project would incorporate project design features to support and promote environmental sustainability, as discussed in Section 4.6, Greenhouse Gas Emissions, of this Draft EIR. While these features are designed primarily to reduce greenhouse gas emissions, they would also serve to reduce criteria air pollutants discussed herein. This air quality analysis incorporates project design features associated with the Project Site's accessibility to transit, support for alternative modes of transportation, and increase in diversity of uses and density. These project design features are explained further in Section 4.6, Greenhouse Gas Emissions, of this Draft EIR.

Operational air quality impacts are assessed based on the incremental increase in emissions compared to baseline (existing) conditions. Therefore, the calculation of the Project's operational emissions would subtract the existing emissions of the current uses to determine the incremental increase. Table 4.1-6 on page 4.1-55 provides Project operational emissions with incorporation of project design features. As shown in Table 4.1-6, regional emissions resulting from operation of the Project would not exceed any of the SCAQMD's daily regional operational thresholds. Therefore, air quality impacts from Project operational emissions would be less than significant.

4.1.3.4.4.2 Localized Emissions

As previously discussed, the SCAQMD recommends the evaluation of localized air quality impacts to sensitive receptors in the immediate vicinity of the Project Site as a result

Table 4.1-5
Estimate of Maximum Regional Project Daily Construction Emissions (pounds per day)

Construction Year	VOC _p	NOx	СО	SOx	PM ₁₀ ^c	PM _{2.5} ^c
Regional Construction Emissions			•		•	
2022	5	74	43	<1	7	3
2023	7	79	70	<1	11	4
2024	4	21	38	<1	8	3
2025	22	32	59	<1	13	4
Maximum Unmitigated Construction Emissions ^a	22	79	70	<1	13	4
SCAQMD Daily Significance Thresholds	75	100	550	150	150	55
Over/(Under)	(53)	(21)	(480)	(150)	(137)	(51)
Maximum Unmitigated Construction Emissions Exceed Threshold?	No	No	No	No	No	No

Numbers may not add up exactly due to rounding.

Source: Eyestone Environmental, 2021.

of Project construction and operations. The thresholds are based on applicable short-term state and federal ambient air quality standards that are designed to be protective of public health, including for sensitive receptors.

4.1.3.4.4.2.1 Construction

Project-related localized construction impacts are evaluated based on SCAQMD LST methodology which takes into account ambient pollutant concentrations. Based on SCAQMD methodology, localized emissions which exceed LSTs would also cause an exceedance of ambient air quality standards. As analyzed in Threshold (c) below, Project-related construction emissions would not exceed localized thresholds. Therefore, localized construction emissions resulting from the Project would result in a less-than-significant air quality impact.

^a The CalEEMod model printout sheets and/or calculation worksheets are presented in Appendix B (CalEEMod Output) of this Draft EIR.

Please note that the SCAQMD significance threshold is in terms of VOC while CalEEMod calculates reactive organic compounds (ROG) emissions. For purposes of this analysis, VOC and ROG are used interchangeably since ROG represents approximately 99.9 percent of VOC emissions.

^c Unmitigated scenario assumes compliance with SCAQMD Rule 403 requirements for fugitive dust. Dust control measures include watering three times daily and properly securing soil exporting loads prior to transport.

Table 4.1-6
Estimate of Maximum Regional Project Daily Operational Emissions—At Project Buildout (2026)^a

Emission Source	Pollutant Emissions (pounds per day)						
	VOC	NOx	СО	SO _X	PM ₁₀	PM _{2.5}	
Project	•		•	•	•		
Area	4	<1	<1	<1	<1	<1	
Energy (Natural Gas) ^b	<1	2	2	<1	<1	<1	
Mobile	3	12	17	<1	4	1	
Stationary	<1	<1	<1	<1	<1	<1	
Total Proposed Uses Emissions	8	15	20	<1	4	1	
SCAQMD Significance Threshold	55	55	550	150	150	55	
Over/(Under)	(47)	(40)	(530)	(150)	(146)	(54)	
Exceed Threshold?	No	No	No	No	No	No	

Numbers may not add up exactly due to rounding.

Source: Eyestone Environmental, 2020.

4.1.3.4.4.2.2 Operations

Project-related operational emissions were also evaluated based on SCAQMD LST methodology. The SCAQMD LST methodology evaluates emissions from on-site sources (e.g., water heaters, cooking appliances, HVAC). As analyzed in Threshold (c) below, Project-related operational emissions from on-site and off-site sources would not exceed localized thresholds. Therefore, localized operational emissions resulting from the Project would result in a less-than-significant air quality impact.

According to the SCAQMD, individual projects that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would cause a cumulatively considerable increase in emissions for those pollutants for which the Air Basin is in non-attainment. As shown in Table 4.1-5 on page 4.1-54 and in Table 4.1-6, Project construction and operational daily emissions at the Project Site would not exceed any of the SCAQMD's regional thresholds, respectively. As analyzed below in Threshold (c), construction and operation of the Project also would have a less-than-significant impact with regard to localized emissions. As such, the Project would not result in a

^a The CalEEMod model printout sheets and/or calculation worksheets are presented in Appendix B (CalEEMod Output) of this Draft EIR. The table reflects net emissions (i.e., Project emissions less existing emissions).

b Subsequent to release of the most current version of CalEEMod (Version 2016.3.2), the 2019 Title 24 standards went into effect January 1, 2020. CalEEMod is currently based on 2016 Title 24 standards. The analysis conservatively includes a 10-percent reduction in the CalEEMod calculated energy use to account for compliance with 2019 Title 24 standards.

cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or state ambient air quality standard, and impacts would be less than significant.

4.1.3.4.5 Mitigation Measures

Project-level impacts related to Threshold (b) would be less than significant during construction and operation of the Project. Therefore, no mitigation measures are required.

4.1.3.4.6 Level of Significance After Mitigation

Project-level impacts related to Threshold (b) during both construction and operation of the Project were determined to be less than significant without mitigation. Therefore, no mitigation measures were required or included, and the impact level remains less than significant.

Threshold (c): Expose sensitive receptors to substantial pollutant concentrations.

4.1.3.4.7 Impact Analysis

4.1.3.4.7.1 Construction

4.1.3.4.7.1.1 On-Site Construction Activities (Criteria Pollutants)

As discussed above in the Methodology subsection, the localized construction air quality analysis was conducted using the methodology promulgated by the SCAQMD. Look-up tables provided by the SCAQMD were used to determine localized construction emissions thresholds for the Project.⁶⁹ LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard and are based on the most recent background ambient air quality monitoring data (2017–2019) for the Project area as presented in Table 4.1-2 on page 4.1-24. Although the trend shown in Table 4.1-2 demonstrates that ambient air quality is improving in the area (decreasing for PM and CO, and remaining stable for NO₂), the localized construction emissions analysis conservatively did not apply a reduction in background pollutant concentrations for subsequent years of construction (i.e., 2021–2025). By doing so, the allowable pollutant increment to not exceed an ambient air quality standard is more stringent. The analysis is conservatively based on existing background ambient air quality monitoring data (2017–2019).

⁶⁹ SCAQMD, LST Methodology Appendix C-Mass Rate LST Look-up Table, revised October 2009.

Maximum on-site daily construction emissions for NO_X, CO, PM₁₀, and PM_{2.5} were calculated using CalEEMod and compared to the applicable SCAQMD LSTs for SRA 2 based on a 1.2-acre site. Potential impacts were evaluated at the closest off-site sensitive receptor, which is the school use approximately 280 feet north of the Project Site.

The maximum daily localized emissions from Project construction and LSTs are presented in Table 4.1-7 on page 4.1-58 and maximum construction emissions would not exceed the SCAQMD-recommended localized screening thresholds for NO $_{\rm X}$, CO, PM $_{\rm 10}$ and PM $_{\rm 2.5}$. As a result, Project-related on-site construction activities would result in a less than significant impact with regard to localized emissions, and no mitigation measures are required.

4.1.3.4.7.1.2 On-Site Construction Activities (Toxic Air Contaminants)

The greatest potential for TAC emissions during construction would be from diesel particulate emissions associated with heavy equipment operations. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person continuously exposed to concentrations of TACs over a 70-year lifetime will contract cancer based on the use of standard risk assessment methodology. Given the short-term construction schedule of approximately 38 months, the Project would not result in a long-term (i.e., 70-year) source of TAC emissions. Additionally, the SCAQMD CEQA guidance does not require a health risk assessment (HRA) for short-term construction emissions. It is, therefore, not necessary to evaluate long-term cancer impacts from construction activities which occur over a relatively short duration. In addition, there would be no residual emissions or corresponding individual cancer risk after construction as all construction equipment and trucks would no longer be operating on-site. As such, Project-related TAC impacts during construction would be less than significant.

4.1.3.4.7.2 Operation

4.1.3.4.7.2.1 On-Site Operational Activities (Criteria Pollutants)

Operation of the Project would not introduce any major new sources of air pollution within the Project Site. Emissions estimates for criteria air pollutants from on-site sources are presented in Table 4.1-8 on page 4.1-59. The SCAQMD LST mass rate look-up tables, which apply to projects that have active areas that are less than or equal to 5 acres in size, were used to evaluate potential localized impacts. As shown in Table 4.1-8, on-site operational emissions would not exceed any of the LSTs. Therefore, localized on-site operational emissions resulting from the Project would result in a less-than-significant air quality impact.

Table 4.1-7
Estimate of Maximum Localized Daily Project Construction Emissions (pounds per day)

Construction Year	NO _X	СО	PM ₁₀	PM _{2.5}
2022	36	29	1	1
2023	56	50	2	2
2024	18	22	<1	<1
2025	28	36	1	1
Maximum Unmitigated Daily Localized Emissions	56	50	2	2
SCAQMD Localized Significance Thresholds ^b	93	1,218	24	7
Over/(Under)	(37)	(1,168)	(22)	(5)
Exceed Threshold?	No	No	No	No

Numbers may not add up exactly due to rounding.

Source: Eyestone Environmental, 2021.

4.1.3.4.7.2.2 Off-Site Operational Activities (CO "Hot Spots" Analysis)

Consistent with the CO methodology above, if a project intersection does not exceed 400,000 vehicles per day, then the project does not need to prepare a detailed CO hot spot analysis.

At buildout of the Project, the highest average daily trips at an intersection under the Future With Project Conditions⁷⁰ would be approximately 74,000 trips at the Rodeo Drive and North Santa Monica Boulevard intersection,⁷¹ which is significantly below the daily traffic volumes that would be expected to generate CO exceedances as evaluated in the 2003 AQMP.⁷² This daily trip estimate is based on the peak hour conditions of the

Potential localized construction impacts were evaluated using SCAQMD's LSTs for Source Receptor Area 2. The SCAQMD Daily Significance Thresholds are based on the 1.2 acre Project Site and were interpolated between the 1 acre and 5 acre thresholds. The closest sensitive receptors are school uses approximately 280 feet north to the Project Site. The localized threshold is based on an 85-meter receptor distance.

As defined in Section 4.9, Transportation, of this Draft EIR, the Future With Project Conditions is a traffic scenario that provides projected traffic volumes and an assessment of operating conditions under future conditions with the addition of Project-generated traffic.

⁷¹ Fehr and Peers, Local Transportation Assessment for the Cheval Blanc Beverly Hills Specific Plan, February 2021.

⁷² The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm, which indicates that the most stringent 1-hour CO standard (20.0 ppm) would likely not be exceeded until the daily traffic at the intersection exceeded more than 400,000 vehicles per day.

Table 4.1-8
Estimate of Maximum Localized Project Daily Operational Emissions—At Project Buildout (2023)^a (pounds per day)

Emission Source	NO _X	СО	PM ₁₀	PM _{2.5}
Area	<1	<1	<1	<1
Energy (Natural Gas)	2	2	<1	<1
Stationary	<1	<1	<1	<1
On-Site Total	3	3	<1	<1
SCAQMD Significance Threshold ^b	93	1,218	6	2
Over/(Under)	(90)	(1,215)	(6)	(2)
Exceed Threshold?	No	No	No	No

Numbers may not add up exactly due to rounding.

Source: Eyestone Environmental, 2021.

intersection. There is no reason unique to the Air Basin meteorology to conclude that the CO concentrations at the Rodeo Drive and North Santa Monica Boulevard intersection would exceed the 1-hour CO standard if modeled in detail, based on the studies undertaken for the 2003 AQMP.⁷³ Therefore, the Project does not trigger the need for a detailed CO hotspots model and would not cause any new or exacerbate any existing CO hotspots. **As a result, impacts related to localized mobile-source CO emissions are considered less than significant.** The supporting data for this analysis is included in Appendix B of this Draft EIR.

4.1.3.4.7.3 Toxic Air Contaminants

When considering potential air quality impacts under CEQA, consideration is given to the location of sensitive receptors within close proximity to land uses that emit TACs. CARB has published and adopted the *Air Quality and Land Use Handbook: A Community*

The CalEEMod model printout sheets and/or calculation worksheets are presented in Appendix B (CalEEMod Output) of this Draft EIR. The table reflects net emissions (i.e., Project emissions less existing emissions).

Potential localized operational impacts were evaluated using SCAQMD's LSTs for Source Receptor Area 2. The SCAQMD Daily Significance Thresholds are based on the 1.2 acre Project Site and were interpolated between the 1 acre and 5 acre thresholds. The closest sensitive receptors are school uses 280 feet north to the Project Site. The localized threshold is based on an 85-meter receptor distance.

⁷³ It should be noted that CO background concentrations within the vicinity of the modeled intersection have substantially decreased since preparation of the 2003 AQMP. In 2003, the 1-hour background CO concentration was 5 ppm and has decreased to 2 ppm in 2014.

Health Perspective, which provides recommendations regarding the siting of new sensitive land uses near potential sources of air toxic emissions (e.g., freeways, distribution centers, rail yards, ports, refineries, chrome plating facilities, dry cleaners, and gasoline dispensing facilities).⁷⁴ The SCAQMD adopted similar recommendations in its *Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning*.⁷⁵ Together, the CARB and SCAQMD guidelines recommend siting distances for both the development of sensitive land uses in proximity to TAC sources and the addition of new TAC sources in proximity to existing sensitive land uses.

4.1.3.4.7.3.1 On-Site Sources

The primary sources of potential air toxics associated with Project operations include diesel particulate matter from delivery trucks (e.g., truck traffic on local streets and idling on adjacent streets) and, to a lesser extent, facility operations (e.g., natural gas fired boilers, charbroilers). However, these activities, and the land uses associated with the Project, are not considered land uses that generate substantial TAC emissions. It should be noted that the SCAQMD recommends that HRAs be conducted for substantial individual sources of diesel particulate matter (e.g., truck stops and warehouse distribution facilities that generate more than 100 trucks per day or more than 40 trucks with operating transport refrigeration units) and has provided guidance for analyzing mobile source diesel emissions.⁷⁶ The Project would not include these types of land uses and is not considered to be a substantial source of diesel particulate matter warranting a refined HRA since daily truck trips to the Project Site would not exceed 100 trucks per day or more than 40 trucks with operating transport refrigeration units. In addition, the CARB-mandated ATCM limits diesel-fueled commercial vehicles (delivery trucks) to idle for no more than five minutes at any given time, which would further limit diesel particulate emissions.

Typical sources of acutely and chronically hazardous TACs include industrial manufacturing processes (e.g., chrome plating, electrical manufacturing, petroleum refinery). The Project would not include these types of potential industrial manufacturing process sources. It is expected that quantities of hazardous TACs generated on-site (e.g., cleaning solvents, paints, landscape pesticides, etc.) for the types of proposed land uses would be below thresholds warranting further study under the California Accidental Release

⁷⁴ CARB, Air Quality and Land Use Handbook, a Community Health Perspective, April 2005.

SCAQMD, Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning, May 6, 2005.

⁷⁶ SCAQMD, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis, 2002.

Program (CalARP). As such, the Project would not release substantial amounts of TACs, and impacts on human health would be less than significant.

As the Project would not contain substantial TAC sources and is consistent with the CARB and SCAQMD guidelines, the Project would not result in the exposure of off-site sensitive receptors to carcinogenic or toxic air contaminants that exceed the maximum incremental cancer risk of 10 in one million or an acute or chronic hazard index of 1.0, and potential TAC impacts would be less than significant.

Based on the above, the Project would not expose sensitive receptors to substantial pollutant concentrations and impacts would be less than significant.

4.1.3.4.8 Mitigation Measures

Project-level impacts related to Threshold (c) would be less than significant during construction and operation of the Project. Therefore, no mitigation measures are required.

4.1.3.4.9 Level of Significance After Mitigation

Project-level impacts related to Threshold (c) during construction and operation of the Project were determined to be less than significant without mitigation. Therefore, no mitigation measures were required or included, and the impact level remains less than significant.

4.1.3.5 Cumulative Impacts

4.1.3.5.1 Impact Analysis

As discussed above, the SCAQMD recommends evaluating cumulative impacts for individual projects based on whether the project exceeds the SCAQMD's recommended daily thresholds for project-specific impacts for those pollutants for which the Air Basin is in non-attainment. Thus, the cumulative analysis of air quality impacts follows SCAQMD's guidance such that construction or operational Project emissions will be considered cumulatively considerable if Project-specific emissions exceed an applicable SCAQMD recommended significance threshold.

As shown in Table 4.1-5 and Table 4.1-6 on pages 4.1-54 and 4.1-55, respectively, Project construction and operational daily emissions at the Project Site would not exceed any of the SCAQMD's regional thresholds, respectively. Further, construction and operation of the Project would have a less-than-significant impact on localized emissions and TACs.

Accordingly, regional, localized, and TAC emissions during construction and operation of the Project would not be cumulatively considerable.

4.1.3.5.2 Mitigation Measures

Cumulative impacts related to air quality would be less than significant during construction and operation of the Project. Therefore, no mitigation measures are required.

4.1.3.5.3 Level of Significance After Mitigation

Cumulative impacts related to air quality during both construction and operation of the Project were determined to be less than significant without mitigation. Therefore, no mitigation measures were required or included, and the impact level remains less than significant.