Appendix D

Air Quality and Greenhouse Gas Report

Appendix A

CalEEMod Modeling Results

Belmont Village Senior Living Westwood II

Air Quality and Greenhouse Gas Study

prepared for Belmont Village Senior Living 8554 Katy Freeway, #200 Houston, TX 77024

prepared by
Rincon Consultants, Inc.
250 East 1st Street, Suite 1400
Los Angeles, California 90012

June 2020

Table of Contents

1	Proje	Project Description and Impact Summary		
	1.1	Introdu	ıction	1
	1.2	Project	Summary	2
2	Air Q	uality		8
	2.1	-	nmental and Regulatory Setting	
		2.1.1	Local Climate and Meteorology	
		2.1.2	Air Quality Regulation	
		2.1.3	Current Air Quality	
	2.2	Impact	Analysis	
		2.2.1	Significance Thresholds	
		2.2.2	Methodology	
		2.2.3	Impact Analysis	
3	Gree	nhouse G	ases	27
	3.1		ound	
		3.1.1	Climate Change and Greenhouse Gases	
		3.1.2	Greenhouse Gas Emissions Inventory	
		3.1.3	Potential Effects of Climate Change	
		3.1.4	Regulatory Setting	
	3.2	Impact	Analysis	
		3.2.1	Significance Thresholds	
		3.2.2	Methodology	
		3.2.3	Project Impacts	
4	Refer	rences		60

Belmont Village Senior Living Belmont Village Senior Living Westwood II

1	'n	h	وما
	u	\mathbf{L}	<u> </u>

Table 1	Summary of Impacts1
Table 2	Federal and State Ambient Air Quality Standards9
Table 3	Ambient Air Quality12
Table 4	SCAQMD Regional Significance Thresholds
Table 5	SCAQMD LSTs for Construction (SRA 2)16
Table 6	Project Construction Schedule
Table 7	Project Consistency with Los Angeles General Plan Air Quality Element19
Table 8	Estimated Maximum Construction Emissions
Table 9	Estimated Operational Emissions
Table 10	Los Angeles Department of Water and Power Energy Intensity Factors41
Table 11 Update	Consistency with 2008 Climate Change Scoping Plan and 2014 Scoping Plan43
Table 12	Consistency with 2017 Scoping Plan47
Table 13	Project Consistency with Applicable SCAG 2016-2040 RTP/SCS Strategies 52
Table 14 Measures	Project Consistency with Applicable Sustainable City pLAn/Green New Deal54
Table 15	Estimated Construction Emissions of Greenhouse Gases57
Table 16	Combined Annual Emissions of Greenhouse Gases
Figures	
Figure 1	Project Site Location4
Figure 2	Existing Site Conditions5
Figure 3	Project Site Plan6

Appendices

- Appendix A CalEEMod Modeling Results
- Appendix B Transportation Impact Study
- Appendix C Mobile Source N₂O Emissions Calculations

1 Project Description and Impact Summary

1.1 Introduction

This study analyzes the potential air quality and greenhouse gas (GHG) impacts of the proposed Belmont Village Senior Living Westwood II Project (herein referred to as "proposed Project" or "Project") located at 10822 Wilshire Boulevard and 10812 Ashton Avenue in the City of Los Angeles, California. The Project site includes Assessor's Parcel Numbers (APN) 4325-005-054 and 4325-005-010 along Wilshire Boulevard between Glendon Avenue to the west and Malcom Avenue to the east. This report has been prepared by Rincon Consultants, Inc. under contract to Belmont Village, L.P. in support of the environmental documentation being prepared pursuant to the California Environmental Quality Act (CEQA). The purpose of this study is to analyze the proposed Project's air quality and GHG emissions impacts related to both temporary construction activity and long-term operation of the Project. The conclusions of this study are summarized in Table 1.

Table 1 Summary of Impacts

Impact Statement	Level of Significance	Applicable Requirements
AIR QUALITY		
Would the Project conflict with or obstruct implementation of the applicable air quality plan?	Less than significant impact	None
Would the Project result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment under an applicable federal or state ambient air quality standard?	Less than significant impact	SCAQMD Rule 403, which regulates fugitive dust emissions during demolition, grading, and construction activities to minimize emissions of PM ₁₀ and PM _{2.5} ; SCAQMD Rule 1113, which regulates the VOC content of architectural coatings to minimize emissions of VOCs during construction activities; and SCAQMD Rule 401 and CARB's In-use Off-road Diesel-Fueled Fleets Regulation. Section 2485 of Title 13 of the California Code of Regulations, which states that the idling of all dieselfueled commercial vehicles (weighing over 10,000 pounds) during construction shall be limited to five minutes at any location, and Rule 1121, which specifies NO _X emission limits from residential type, natural-gas fired water heaters.
Would the Project expose sensitive receptors to substantial pollutant concentrations?	Less than significant impact	None
Would the Project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?	No impact	None

GREENHOUSE GAS EMISSIONS		
Would the Project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?	Less than significant impact	GHG-PDF-1: LEED Silver Designation
Would the Project conflict with any applicable plan, policy, or regulation adopted for the purposes of reducing the emissions of greenhouse gases?	Less than significant impact	None

1.2 Project Summary

Project Background

The Project site encompasses approximately 1.62 acres. The site is semi-rectangular and is currently developed with an existing church sanctuary, office/administrative space, and preschool, parking lot, and one single-family residence. The Project site is bound by Wilshire Boulevard to the north, high-rise commercial development and Pierce Brothers Westwood Village Memorial Park to the west, single-family residential development to the south, and single-family residential and high-rise multi-family developments to the east. Figure 1 shows the boundaries of the Project site, and Figure 2 shows the existing site conditions.

Proposed Project

The proposed Project is an infill development that would involve the construction of a 12-story senior Eldercare Facility with a three-story underground parking garage and a two-story church office/preschool to replace the existing facility on-site. The existing church office/administrative building and preschool, which are operated by the Westwood Presbyterian Church, would be demolished and rebuilt in the southern portion of the site in a new two-story building. Demolition would occur in two phases to maintain the services of the existing preschool, sanctuary, and church offices during construction. The existing church sanctuary in the northern portion of the site would remain. A single story residential building at 10812 West Ashton Avenue would be demolished. Figure 3 shows the proposed site plan.

Eldercare Facility

The floor area of the 12-story Eldercare Facility would be 176,580 square feet across 12 stories with a floor-area ratio of 5.45:1 for the Eldercare Facility parcel to be created at the northern portion of the site. The 176 total residential units would be occupied by senior residents aged 75 and older. The building would contain 53 Senior Independent Housing dwelling units, 77 Assisted Living Care Housing guest rooms, and 46 Alzheimer's/Dementia Care Housing guest rooms as well as associated residential amenities and service areas. The 3-story underground parking garage would be constructed under the Eldercare Facility building and contain a minimum of 184 parking stalls and an enclosed elevator.

Childcare Facility

The first floor of the Education Facility would include an outdoor garden, exterior play area, nursery, and classrooms. The second floor would contain additional church facilities including a children's worship room, youth rooms, classrooms, workstations, administration offices and pastor offices.

Demolition/Construction

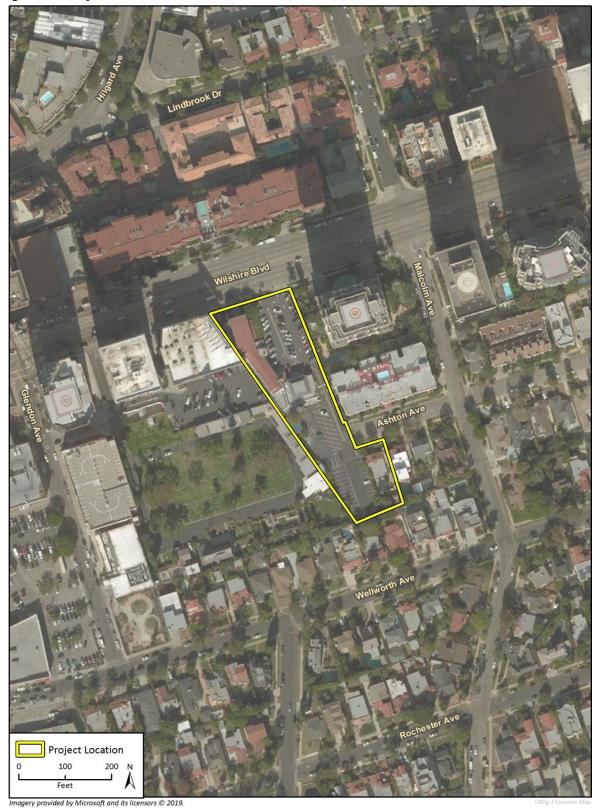
Site activities for the Project are expected to commence in as early as September 2021, with occupancy by the year 2025. Implementation of the Project would be completed in two separate phases, which are described below.

Phase 1

The first phase consists of site mobilization, abatement, demolition, grading, and building construction for the Childcare Facility, located at the southern end of the Project site. Phase 1 activities are expected to occur over an approximately 13-month period. Material and equipment staging would occur in the parking lot near the center of the site.

Phase 2

Phase 2 consists of the site mobilization, abatement, demolition, and building construction for the Eldercare Facility. Phase 2 would begin after completion of Phase 1 and is expected to occur over an approximately 30-month period. Phase 2 would require the use of a tower crane as well as a man material hoist. Staging for Phase 2 would be on the site area once the subterranean parking structure is completed, and material would be moved inside.

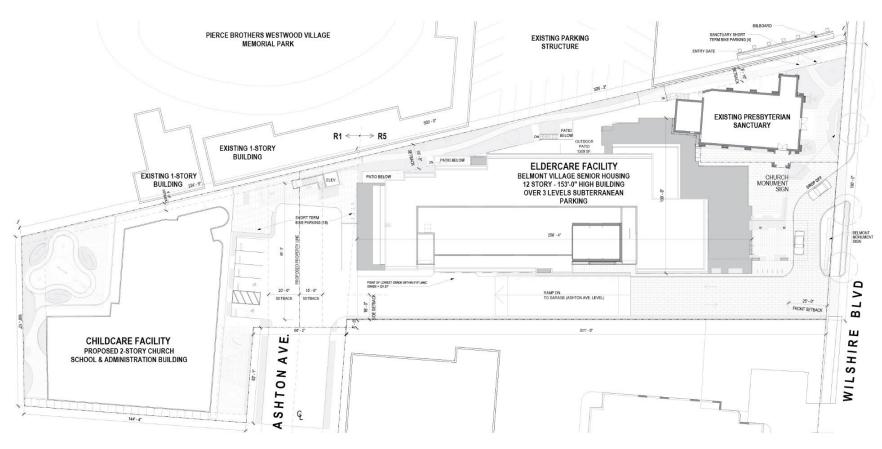

Earthwork/Hauling

The Project would require the use of hauling trucks to remove construction and demolition waste as well as soil from the site. In order to excavate the site for the subterranean parking levels, approximately 65,000 cubic yards (cy) of soil would be exported utilizing 14 cy capacity trucks. All hauling would occur from the hours of 9:00 a.m. to 3:00 p.m., Monday through Saturday. Soils would likely be disposed of at the Chiquita Canyon Landfill.

-

¹ The assumption construction would occur at the earliest foreseeable date is a conservative assumption because construction equipment is anticipated to become more efficient and with lower air emissions over time. Therefore, assuming an earlier construction start date results in reasonable worst-case construction emissions.

Figure 1 Project Site Location



4

Figure 2 Existing Site Conditions

Figure 3 Project Site Plan

Source: GMPA Architects, 2020.

Project Design Feature

The Project applicant would implement the following Project Design Feature (PDF) to support and promote environmental sustainability. This PDF would reduce energy, water, and nonrenewable fuel consumption, thereby reducing GHG emissions.

GHG-PDF-1 LEED Silver Equivalency

The design of the new buildings shall incorporate features of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program to be capable of meeting the standards of LEED® Silver or equivalent green building standards. Specific sustainability features that are integrated into the Project design to enable the Project to achieve LEED® Silver certification shall include, but are not limited to the following:

- Use of Energy Star-labeled products and appliances.
- Use of light-emitting diode (LED) lighting or other energy-efficient lighting technologies, such as occupancy sensors or daylight harvesting and dimming controls, where appropriate, to reduce electricity use.
- Water-efficient plantings with drought-tolerant species;
- Fenestration (the arrangement of windows, doors, and other openings) designed for solar orientation; and
- Pedestrian- and bicycle-friendly design with short-term and long-term bicycle parking.

In addition, the Project applicant would be required to comply with existing City regulatory measures that would support nonrenewable fuel consumption, thereby reducing GHG emissions, and which include but are not limited to:

- In accordance with Los Angeles Municipal Code (LAMC) Section 99.04.106.4.2, 30 percent of
 the total number of parking spaces provided, but in no case less than one space, shall be
 electric vehicle charging spaces (EVCS) capable of supporting future electric vehicle supply
 equipment (EVSE).
- In accordance with LAMC Section 99.04.106.4.4, the number of EVCS shall be 10 percent of the total number of parking spaces provided for all new multifamily dwelling units, other "R" occupancies, hotels and motels.

2 Air Quality

2.1 Environmental and Regulatory Setting

2.1.1 Local Climate and Meteorology

The Project site is in the South Coast Air Basin (SCAB), which is bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east. The SCAB includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties, in addition to the San Gorgonio Pass area in Riverside County. The regional climate in the SCAB is semi-arid and is characterized by warm summers, mild winters, infrequent seasonal rainfall, moderate daytime onshore breezes, and moderate humidity. The air quality in the SCAB is primarily influenced by meteorology and a wide range of emission sources, such as dense population centers, substantial vehicular traffic, and industry.

Air pollutant emissions in the SCAB are generated primarily by stationary and mobile sources. Stationary sources can be divided into two major subcategories: point and area sources. Point sources occur at a specific location and are often identified by an exhaust vent or stack. Examples include boilers or combustion equipment that produce electricity or generate heat. Area sources are widely distributed and include such sources as residential and commercial water heaters, painting operations, lawn mowers, agricultural fields, landfills, and some consumer products. Mobile sources refer to emissions from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. On-road sources may be legally operated on roadways and highways. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. Air pollutants can also be generated by the natural environment, such as when high winds suspend fine dust particles.

2.1.2 Air Quality Regulation

The federal and state governments have established ambient air quality standards for the protection of public health. The United States Environmental Protection Agency (U.S. EPA) is the federal agency designated to administer air quality regulation, while the California Air Resources Board (CARB) is the state equivalent within the California Environmental Protection Agency (CalEPA). County-level Air Quality Management Districts (AQMDs) provide local management of air quality. CARB has established air quality standards and is responsible for the control of mobile emission sources, while the local AQMDs are responsible for enforcing standards and regulating stationary sources. CARB has established 15 air basins statewide, including the SCAB.

The U.S. EPA has set primary national ambient air quality standards (NAAQS) for ozone (O_3), carbon monoxide (CO), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), particulate matter with diameters of up to ten microns (PM_{10}) and up to 2.5 microns ($PM_{2.5}$), and lead (PD). Primary standards are those levels of air quality deemed necessary, with an adequate margin of safety, to protect public health. In addition, California has established health-based ambient air quality standards (known as the California ambient air quality standards [CAAQS]) for these and other pollutants, some of which are more stringent than the federal standards. Table 2 lists the current federal and state standards for regulated pollutants.

Table 2 Federal and State Ambient Air Quality Standards

Pollutant	Averaging Time	NAAQS	CAAQS
Ozone	1-Hour	-	0.09 ppm
	8-Hour	0.070 ppm	0.070 ppm
Carbon Monoxide	8-Hour	9.0 ppm	9.0 ppm
	1-Hour	35.0 ppm	20.0 ppm
litrogen Dioxide	Annual	0.053 ppm	0.030 ppm
	1-Hour	0.100 ppm	0.18 ppm
Sulfur Dioxide	Annual	0.030 ppm	-
	24-Hour	0.14 ppm	0.04 ppm
	1-Hour	0.075 ppm	0.25 ppm
PM ₁₀	Annual	-	20 μg/m³
	24-Hour	$150 \mu g/m^3$	50 μg/m³
² M _{2.5}	Annual	12 μg/m³	12 μg/m³
	24-Hour	$35 \mu g/m^3$	-
_ead	30-Day Average	-	1.5 μg/m³
	3-Month Average	$0.15 \ \mu g/m^3$	-

Source: CARB 2016

The South Coast Air Quality Management District (SCAQMD) is the designated air quality control agency in the SCAB, which is a non-attainment area for the federal standards for ozone and $PM_{2.5}$ and the state standards for ozone, PM_{10} , and $PM_{2.5}$. The Los Angeles County portion of the SCAB is also designated non-attainment for lead (SCAQMD 2016). The SCAB is designated unclassifiable or in attainment for all other federal and state standards.

Primary criteria pollutants are emitted directly from a source (e.g., vehicle tailpipe, an exhaust stack of a factory, etc.) into the atmosphere. Primary criteria pollutants include CO, NO_2 , PM_{10} , $PM_{2.5}$, SO_2 , and Pb. Ozone is considered a secondary criteria pollutant because it is created by atmospheric chemical and photochemical reactions between volatile organic compounds (VOC) and nitrogen oxides (NO_X). The following subsections describe the characteristics, sources, and health and atmospheric effects of critical air contaminants.

Ozone

Ozone is produced by a photochemical reaction (triggered by sunlight) between NO_X and VOC.² Nitrogen oxides are formed during the combustion of fuels, while VOC are formed during

² Organic compound precursors of ozone are routinely described by a number of variations of three terms: hydrocarbons (HC), organic gases (OG), and organic compounds (OC). These terms are often modified by adjectives such as total, reactive, or volatile, and result in a rather confusing array of acronyms: HC, THC (total hydrocarbons), RHC (reactive hydrocarbons), TOG (total organic gases), ROG (reactive organic gases), TOC (total organic compounds), ROC (reactive organic compounds), and VOC (volatile organic compounds). While most of

Belmont Village Senior Living Westwood II

combustion and evaporation of organic solvents. Because O_3 requires sunlight to form, it usually occurs in substantial concentrations between the months of April and October. Ozone is a pungent, colorless, toxic gas with direct health effects on humans including respiratory and eye irritation and possible changes in lung functions. Groups most sensitive to O_3 include children, the elderly, people with respiratory disorders, and people who exercise strenuously outdoors.

Carbon Monoxide

Carbon monoxide is a local pollutant that is found in high concentrations only near fuel combustion equipment and other sources of CO. The primary source of CO, a colorless, odorless, poisonous gas, is automobile traffic. Therefore, elevated concentrations are usually only found near areas of high traffic volumes. Carbon monoxide's health effects are related to its affinity for hemoglobin in the blood. At high concentrations, CO reduces the amount of oxygen in the blood, causing heart difficulty in people with chronic diseases, reduced lung capacity, and impaired mental abilities.

Nitrogen Dioxide

Nitrogen dioxide is a by-product of fuel combustion, with the primary source being motor vehicles and industrial boilers and furnaces. The principal form of nitrogen oxide produced by combustion is nitric oxide (NO), but NO reacts rapidly to form NO_2 , creating the mixture of NO and NO_2 commonly called NO_X . Nitrogen dioxide is an acute irritant. A relationship between NO_2 and chronic pulmonary fibrosis may exist, and an increase in bronchitis in young children at concentrations below 0.3 parts per million (ppm) may occur. Nitrogen dioxide absorbs blue light, gives a reddish-brown cast to the atmosphere, and reduces visibility. It can also contribute to the formation of ozone/smog and acid rain.

Suspended Particulates

Atmospheric particulate matter is comprised of finely divided solids and liquids such as dust, soot, aerosols, fumes, and mists. The particulates that are of particular concern are PM_{10} (small particulate matter which measures no more than 10 microns in diameter) and $PM_{2.5}$ (fine particulate matter which measures no more than 2.5 microns in diameter). The characteristics, sources, and potential health effects associated with PM_{10} and $PM_{2.5}$ can be different. Major man-made sources of PM_{10} are agricultural operations, industrial processes, combustion of fossil fuels, construction, demolition operations, and entrainment of road dust into the atmosphere. Natural sources include windblown dust, wildfire smoke, and sea spray salt. The finer $PM_{2.5}$ particulates are generally associated with combustion processes as well as formation in the atmosphere as a secondary pollutant through chemical reactions. $PM_{2.5}$ is more likely to penetrate deeply into the lungs and poses a serious health threat to all groups, but particularly to the elderly, children, and those with respiratory problems. More than half of the small and fine particulate matter that is inhaled into the lungs remains there, which can cause permanent lung damage. These materials can damage health by interfering with the body's mechanisms for clearing the respiratory tract or by acting as carriers of an absorbed toxic substance.

these differ in some significant way from a chemical perspective, two groups are important from an air quality perspective: non-photochemically reactive in the lower atmosphere, or photochemically reactive in the lower atmosphere (HC, RHC, ROG, ROC, and VOC). SCAQMD uses the term VOC to denote organic precursors.

Lead

Lead (Pb) is a metal found naturally in the environment, as well as in manufacturing products. Lead occurs in the atmosphere as particulate matter. The major sources of Pb emissions historically have been mobile and industrial sources. In the early 1970s, the U.S. EPA set national regulations to gradually reduce the lead content in gasoline. In 1975, unleaded gasoline was introduced for motor vehicles equipped with catalytic converters. The U.S. EPA completed the ban prohibiting the use of leaded gasoline in highway vehicles in December 1995. As a result of the U.S. EPA's regulatory efforts to remove lead from gasoline, atmospheric lead concentrations have declined substantially over the past several decades. The most dramatic reductions in lead emissions occurred prior to 1990 due to the removal of lead from gasoline sold for most highway vehicles. Lead emissions were further reduced substantially between 1990 and 2008, with reductions occurring in the metals industries in part due to national emissions standards for hazardous air pollutants (U.S. EPA 2013). As a result of phasing out leaded gasoline, metal processing is currently the primary source of Pb emissions. The highest level of Pb in the air is generally found near lead smelters. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. Lead may cause a range of health effects, including anemia, kidney disease, and neuromuscular and neurological dysfunction (in severe cases). Demolition of buildings containing lead-based paint is regulated by existing laws and regulations, including California Code of Regulations Title 17, Division 1, Chapter 8 and Senate Bill 460, to reduce or eliminate the risk to nearby receptors. Furthermore, the proposed Project does not include any stationary sources of lead emissions. Therefore, implementation of the Project would not result in substantial emissions of lead, and this pollutant is not discussed further in this analysis.

Toxic Air Contaminants

Toxic air contaminants (TACs) are a diverse group of air pollutants that may cause or contribute to an increase in deaths or serious illness or that may pose a present or potential hazard to human health. TACs include both organic and inorganic chemical substances that may be emitted from a variety of common sources, including gasoline stations, motor vehicles, dry cleaners, industrial operations, painting operations, and research and teaching facilities. One of the main sources of TACs in California is diesel engines that emit exhaust containing solid material known as diesel particulate matter (DPM; CARB 2011a). TACs are different than the criteria pollutants previously discussed because ambient air quality standards have not been established for TACs. TACs occurring at extremely low levels may still cause health effects, and it is typically difficult to identify levels of exposure that do not produce adverse health effects. TAC impacts are described by carcinogenic risk and by chronic (i.e., of long duration) and acute (i.e., severe but of short duration) adverse effects on human health.

2.1.3 Current Air Quality

The SCAQMD operates a network of air quality monitoring stations throughout the SCAB. The purpose of the monitoring stations is to measure ambient concentrations of pollutants and to determine whether ambient air quality meets the California and federal standards. The monitoring station closest to the Project site is the West Los Angeles-VA Hospital monitoring station, located at 304 Dowlen Drive in Los Angeles, approximately 1.0 mile southwest of the Project site. However, particulate matter data is not recorded at this monitoring station. Therefore, PM₁₀ and PM_{2.5} data was sourced from the next closest monitoring station, the Los Angeles-North Main station located at 1630 North Main Street. The Los Angeles-North Main monitoring station is located approximately

Belmont Village Senior Living Westwood II

12.2 miles east of the Project site. Table 3 indicates the number of days that each of the federal and state standards has been exceeded at these stations in each of the last three years. The data indicate that the federal and state eight-hour ozone standards were exceeded each year from 2017 to 2019, and the state worst hour ozone standard was exceeded in 2017. In addition, the state PM₁₀ standard and the federal PM_{2.5} standard were exceeded each year from 2017 to 2019. As shown in Table 3, no other state or federal standards for which pollutant concentrations were measured were exceeded at these monitoring stations. No stations in the vicinity of the Project site have monitored CO in the last four years. In 2012, the West Los Angeles-VA Hospital detected an eight-hour maximum CO concentration of 1.2 ppm, which is substantially below the state and federal standard of 9.0 ppm (CARB 2018a).

Table 3 Ambient Air Quality

Pollutant	2017	2018	2019
Ozone (ppm), Eight-Hour Average ¹	0.077	0.073	0.75
Number of days of state exceedances (>0.070 ppm)	3	2	1
Number of days of federal exceedances (>0.070 ppm)	3	2	1
Ozone (ppm), Worst Hour¹	0.099	0.094	0.086
Number of days of state exceedances (>0.09 ppm)	1	0	0
Nitrogen Dioxide (ppm), Worst Hour¹	0.0557	0.0647	0.0488
Number of days of state exceedances (>0.18 ppm)	0	0	0
Particulate Matter <10 microns (μg/m³), Worst 24 Hours²	96.2	81.2	93.2
Number of days of state exceedances (>50 $\mu g/m^3$)	40	31	15
Number of days of federal exceedances (>150 $\mu g/m^3$)	0	0	0
Particulate Matter <2.5 microns (μg/m³), Worst 24 Hours²	54.9	61.4	43.5
Number of days of federal exceedances (>35 μg/m³)	6	6	1

¹ Data from the West Los Angeles-VA Hospital monitoring station.

Source: CARB 2020

Air Quality Management Plan

Under state law, the SCAQMD is required to prepare a plan for air quality improvement for pollutants for which the District is in non-compliance. The SCAQMD updates the plan every three years. Each iteration of the SCAQMD's Air Quality Management Plan (AQMP) is an update of the previous plan and has a 20-year horizon. The latest AQMP, the 2016 AQMP, was adopted on March 3, 2017. It incorporates new scientific data and notable regulatory actions that have occurred since adoption of the 2012 AQMP, including the approval of the new federal eight-hour ozone standard of 0.070 ppm that was finalized in 2015. The Final 2016 AQMP addresses several state and federal planning requirements and incorporates new scientific information, primarily in the form of updated emissions inventories, ambient measurements, and meteorological air quality models. The Southern

 $^{^{\}rm 2}$ Data from the Los Angeles-North Main monitoring station.

California Association of Governments' (SCAG) Project ions for socio-economic data (e.g., population, housing, employment by industry) and transportation activities from the 2016 Regional Transportation Plan/Sustainable Communities Strategy (2016 RTP/SCS) are integrated into the 2016 AQMP. This Plan builds upon the approaches taken in the 2012 AQMP for the attainment of federal PM and ozone standards and highlights the significant amount of reductions to be achieved. It emphasizes the need for interagency planning to identify additional strategies to achieve reductions within the timeframes allowed under the federal Clean Air Act, especially in the area of mobile sources. The 2016 AQMP also includes a discussion of emerging issues and opportunities, such as fugitive toxic particulate emissions, zero-emission mobile source control strategies, and the interacting dynamics among climate, energy, and air pollution. The AQMP also demonstrates strategies for attainment of the new federal eight-hour ozone standard and vehicle miles travelled (VMT) emissions offsets, pursuant to recent U.S. EPA requirements (SCAQMD 2017).

Sensitive Receptors

Ambient air quality standards have been established to represent the levels of air quality considered sufficient, with a margin of safety, to protect public health and welfare. They are designed to protect that segment of the public most susceptible to respiratory distress, such as children under 14; the elderly over 65; people engaged in strenuous work or exercise; and people with cardiovascular and chronic respiratory diseases. Therefore, the majority of sensitive receptor locations are schools, hospitals, and residences.

A majority of the Project Site is surrounded by sensitive receptors that could potentially be affected by air pollutant emissions associated with the proposed Project. These sensitive receptors include the multi-family residences at the Californian on Wilshire Apartments and the Wilshire Villa Apartments located immediately east of the Project site, respectively; the multi-family residences at the Legacy at Westwood Apartments north of the Project site across Wilshire Boulevard; and single-family residences immediately east, south, and southwest of the Project site.

2.2 Impact Analysis

2.2.1 Significance Thresholds

To determine whether a Project would result in a significant impact to air quality, Appendix G of the CEQA Guidelines requires consideration of whether a Project would:

- 1. Conflict with or obstruct implementation of the applicable air quality plan;
- 2. Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment under an applicable federal or state ambient air quality standard;
- 3. Expose sensitive receptors to substantial pollutant concentrations; or
- 4. Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

City of Los Angeles L.A. CEQA Thresholds Guide

To assist in answering the Appendix G threshold questions and thresholds provided by SCAQMD, this analysis utilizes factors and considerations identified below from the 2006 *L.A. CEQA Thresholds Guide* as appropriate. While these factors are important inputs in determining the amounts and

Belmont Village Senior Living Westwood II

nature of air pollution emissions generated by a Project during construction, construction air quality emissions are also evaluated in accordance with the most recent criteria adopted by the SCAQMD in connection with its *CEQA Air Quality Handbook* (1993) and subsequent SCAQMD guidance as discussed below. The L.A. CEQA Thresholds Guide identifies the following criteria to evaluate air quality impacts:

Construction

- 1. Combustion Emissions from Construction Equipment
 - Type, number of pieces and usage for each type of construction equipment;
 - Estimated fuel usage and type of fuel (diesel, natural gas) for each type of equipment; and
 - Emission factors for each type of equipment.
- 2. Fugitive Dust: Grading, Excavation and Hauling
 - Amount of soil to be disturbed on-site or moved off-site;
 - Emission factors for disturbed soil;
 - Duration of grading, excavation and hauling activities;
 - Type and number of pieces of equipment to be used; and
 - Project ed haul route.
- 3. Fugitive Dust: Heavy-Duty Equipment Travel on Unpaved Roads
 - Length and type of road;
 - Type, number of pieces, weight and usage of equipment; and
 - Type of soil.
- 4. Other Mobile Source Emissions
 - Number and average length of construction worker trips to Project site, per day; and
 - Duration of construction activities.

Operation

 Operational emissions exceed 10 tons per year of volatile organic gases or any of the daily thresholds presented below (as reprinted from the SCAQMD CEQA Air Quality Handbook [1993]):

Operational Thresholds	
55 pounds per day of VOC	
55 pounds per day of NO_X	
550 pounds per day of CO	
150 pounds per day of PM_{10}	
150 pounds per day of SO _x	

- 2. Either of the following conditions would occur at an intersection or roadway within one-quarter mile of a sensitive receptor:
 - The proposed Project causes or contributes to an exceedance of the California 1-hour or 8-hour CO standards of 20 or 9.0 parts per million (ppm), respectively; or

- The incremental increase due to the Project is equal to or greater than 1.0 ppm for the California 1-hour CO standard or -.45 ppm for the 8-hour CO standard.
- 3. The Project creates an objectionable odor at the nearest sensitive receptor.

Toxic Air Contaminants

The determination of significance shall be made on a case-by-case basis, considering the following factors:

- The regulatory framework for the toxic material(s) and process(es) involved;
- The proximity of the toxic air contaminants to sensitive receptors;
- The quantity, volume and toxicity of the contaminants expected to be emitted;
- The likelihood and potential level of exposure; and
- The degree to which Project design will reduce the risk of exposure.

Regional Significance Thresholds

The SCAQMD recommends quantitative regional significance thresholds for temporary construction activities and long-term Project operation in the SCAB, shown in Table 4.

Table 4 SCAQMD Regional Significance Thresholds

Construction Thresholds	Operational Thresholds
75 pounds per day of VOC	55 pounds per day of VOC
100 pounds per day of NO _x	55 pounds per day of NO_X
550 pounds per day of CO	550 pounds per day of CO
150 pounds per day of SO _x	150 pounds per day of SO_X
150 pounds per day of PM ₁₀	150 pounds per day of PM_{10}
55 pounds per day of PM _{2.5}	55 pounds per day of PM _{2.5}

Localized Significance Thresholds

In addition to the above regional thresholds, the SCAQMD has developed Localized Significance Thresholds (LSTs) in response to the Governing Board's Environmental Justice Enhancement Initiative (1-4), which was prepared to update the *CEQA Air Quality Handbook* (1993). LSTs were devised in response to concern regarding exposure of individuals to criteria pollutants in local communities and have been developed for NO_x, CO, PM₁₀, and PM_{2.5}. LSTs represent the maximum emissions from a Project that will not cause or contribute to an air quality exceedance of the most stringent applicable federal or state ambient air quality standard at the nearest sensitive receptor, taking into consideration ambient concentrations in each source receptor area (SRA), distance to the sensitive receptor, and Project size. LSTs have been developed for emissions generated in construction areas up to five acres in size. However, LSTs only apply to emissions in a fixed stationary location and are not applicable to mobile sources, such as cars on a roadway (SCAQMD 2008). As such, LSTs are typically applied only to construction emissions because the majority of operational emissions are associated with Project-generated vehicle trips.

The Project site is located in Source Receptor Area 2 (SRA 2), Northwest Costal LA County and is approximately 1.6 acres in size (SCAQMD 2008). The SCAQMD provides LSTs for one-, two-, and five-

acre Project sites for receptors at a distance of 82 to 1,640 feet (25 to 500 meters) from the Project site boundary. As discussed under Section 2.1.3, *Current Air Quality*, the nearest sensitive receptors are single-family and multi-family residences immediately adjacent to most boundaries of the Project site. According to the SCAQMD's Final Localized Significance (LST) Thresholds Methodology (2008), Projects with boundaries located closer than 82 feet (25 meters) to the nearest receptor should use the LSTs for receptors located at 82 feet. Based on SCAQMD's Final LST Methodology, LSTs for sensitive receptors located at 82 feet from the Project boundary on a 1.6-acre site were estimated using linear regression based on one- and two-acre LSTs and are shown in Table 5.

Table 5 SCAQMD LSTs for Construction (SRA 2)

Pollutant	Allowable Emissions from a 1.6-acre site in SRA 2 for a receptor 82 feet away		
Gradual conversion of NO _X to NO ₂	129		
СО	721		
PM_{10}	5		
PM _{2.5}	4		
Source: SCAQMD 2009			

2.2.2 Methodology

The Project's construction and operational emissions were estimated using the California Emissions Estimator Model (CalEEMod), version 2016.3.2. CalEEMod uses Project-specific information, including the Project's land uses, square footages for different uses (e.g., assisted living, day care center), and location, to estimate a Project's construction and operational emissions.

The Project site is currently occupied by a church sanctuary, church administrative offices, church preschool, and a single-family residence. The church sanctuary would remain, while the remainder of the existing uses would be removed to accommodate development of the proposed Project, which would include a new 12-story Eldercare Facility totaling approximately 176,580 square feet over a three-level subterranean garage, and a new two-story building totaling approximately 19,703 square feet with a new slightly-expanded preschool and replacement church offices. Operational emissions associated with the existing single-family residence and church preschool were modeled in CalEEMod and subtracted from the proposed Project's operational emissions to calculate net new emissions. However, because the existing church sanctuary would remain and the existing church administrative space would be replaced, this analysis assumes that air pollutant and GHG emissions generated by energy use, water and wastewater treatment and conveyance, solid waste disposal, and vehicle trips from these uses would be the same under both existing and future conditions.

Construction emissions modeled include emissions generated by construction equipment used onsite and emissions generated by vehicle trips associated with construction, such as worker and vendor trips. Construction of all development for the proposed Project was analyzed based on the proposed Project's uses and floor area and the applicant-provided construction schedule. The estimated construction schedule used in the emissions modeling is summarized in Table 6.

Table 6 Project Construction Schedule

Construction Phase	Start Date	End Date		
South Campus				
Demolition	9/1/2021	9/22/2021		
Grading	9/1/2021	9/22/2021		
Building Construction	9/23/2021	6/1/2022		
Paving (Site Improvements)	3/9/2022	5/3/2022		
Architectural Coatings (Finishes)	2/23/2022	6/1/20221		
North Campus				
Demolition	10/4/2022	10/24/2022		
Grading	10/25/2022	3/17/2023		
Building Construction	3/20/2023	12/17/2024		
Paving (Site Improvements)	8/2/2024	10/4/2024		
Architectural Coatings (Finishes)	10/5/2023	12/17/2024 ¹		

¹ Post-constructions/pre-operation activities associated with system testing, system commissioning/punchlist, final inspections, and certificate of occupancy for both phases would primarily be completed using small hand tools, and not large emission-generating construction equipment. Therefore, emissions modeling does not include these activities.

Approximately 20,392 square feet of existing building floor area would be demolished (City of Los Angeles 2019). An estimated 65,000 cubic yards of soil would be exported, likely to Chiquita Canyon Landfill located approximately 34.5 miles (driving distance) north of the project site. In addition, as detailed in Section 1, *Project Description and Impact Summary*, it was assumed that Project construction would comply with all applicable regulatory standards, including SCAQMD Rule 403 (Fugitive Dust) and Rule 1113 (Architectural Coatings).

Operational emissions modeled include mobile source emissions (i.e., vehicle emissions), energy emissions, and area source emissions. Mobile source emissions consist of emissions generated by vehicle trips to and from the Project site. The trip generation rates for assisted living and day care center land uses were provided in the Transportation Impact Study prepared for the Project by Linscott, Law & Greenspan, Engineers in February 2019 (Appendix B). Emissions attributed to energy use include emissions from electricity and natural gas consumption for lighting as well as space and water heating. The lighting energy intensity factor for the Eldercare Facility was reduced by 75 percent to account for the requirements of 2019 Title 24. New development would be subject to CalGreen, which requires a 20 percent increase in indoor water use efficiency; therefore, a 20 percent reduction in indoor water use was included in the water consumption calculations. Area source emissions are generated by landscape maintenance equipment, consumer products, and architectural coatings.

2.2.3 Impact Analysis

Threshold 1 Would the Project conflict with or obstruct implementation of the applicable air quality plan?

The applicable air quality plans are the South Coast Air Quality Management District's ("SCAQMD") 2016 Air Quality Management Plan ("AQMP") and the Los Angeles General Plan Air Quality Element. A Project may be inconsistent with the AQMP if it would generate a considerable increase in regional air quality violations and affect the region's attainment of air quality standards, or if it would generate population, housing, or employment growth exceeding forecasts used in the development of the AQMP. The 2016 AQMP incorporates local city general plans and socioeconomic forecast Project ions of regional population, housing and employment growth from the Southern California Association of Governments (SCAG) and incorporated into SCAG's 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy ("2016 RTP/SCS").

The proposed Project involves the construction of a new Eldercare Facility that will provide new housing for elderly residents. Although the facility is primarily expected to draw residents from the current population, it could cause a direct increase in the City's population by introducing new residents to the Site. According to data provided by the California Department of Finance (DOF), the estimated current (2020) population of the City is 4,010,684 (DOF 2020). The Project would include 123 single-occupancy assisted living and dementia care guest rooms, 40 two-bedroom independent living apartments, and 13 one-bedroom independent living apartments. Given the presumed single-occupancy limits of the assisted living/dementia care units and an average household size of 2.42 persons per household for the City of Los Angeles (applied to the independent living units), the Project would potentially house an estimated 252 residents (123 + [53 x 2.42]). The estimate of potential future residents is conservative because the apartments would likely be occupied by fewer than 2.42 persons per unit given their nature as senior living units.

The Project may also cause an indirect increase in the City's population by providing new employment opportunities, which may result in the relocation of employees to the City. A total of 55 employees are anticipated to be on-site at the assisted living and residential care facility during the largest shift. Assuming conservatively that there are three eight-hour shifts and that 55 employees work each shift, the assisted living and residential care facility would employ approximately 165 people. In addition, the relocated and expanded Church preschool would require an additional seven staff members over the preschool's current staffing levels. Therefore, the Project is estimated to employ approximately 172 additional people. This analysis assumes that the construction of the replacement Church offices would not result in a net increase in employment because it would be a relocation and replacement of the existing Church offices to be demolished. Assuming conservatively that all residents and employees relocate from outside the City of Los Angeles, the Project would result in 252 new residents and 172 new employees.

SCAG forecasts that the population of the City will increase to approximately 4,200,168 persons by year 2025 (year of Project buildout), which is an increase of 189,484 persons from the current population (SCAG 2016).⁴ The addition of 252 residents in the Project area would constitute approximately 0.13 percent of the City's total projected population growth through year 2025. SCAG

³ Based on a 2.42 persons per household rate for multi-family units based on the 2017 American Community Survey 5-Year Average Estimate (2013–2017) per correspondence with Jack Tsao, Los Angeles Department of City Planning Demographics Unit, July 31, 2019.

⁴ Based on a linear interpolation of 2012-2040 data.

forecasts that the population of the City will increase to approximately 4,609,400 persons by year 2040, which is an increase of 598,716 persons from the current population (SCAG 2016). The addition of 252 residents in the Project area would constitute 0.04 percent of the City's total projected population growth through year 2040. Therefore, the level of population growth associated with the proposed Project would be negligible and would not exceed official regional population projections. Moreover, the above analysis conservatively assumes that all Project residents are new to Los Angeles, whereas the more likely scenario is that many future Project residents already live in the City.

The increase of 172 employees in the City of Los Angeles would also be well within SCAG employment growth forecasts. SCAG forecasts that the number of jobs in the City in year 2025 would be approximately 1,915,868 an increase of 12.9 percent from year 2012. The addition of 172 employees in the Project area would constitute approximately 0.08 percent of the projected employment increase from year 2012 to 2025. SCAG forecasts that the number of jobs in the City will increase to approximately 2,169,100 by year 2040, which is an increase of 472,700 jobs from 2012. The addition of 172 jobs in the Project area would constitute 0.03 percent of the projected jobs increase through 2040. Furthermore, as discussed below under Threshold 2, air pollutant emissions generated by Project construction and operation would not exceed SCAQMD significance thresholds and would therefore not generate a considerable increase in air quality violations or affect the region's attainment of air quality standards. Because population and employment growth associated with the proposed Project would be within SCAG regional growth projections and, as discussed below, Project construction and operation would not generate significant air pollutant emissions, the proposed Project would not conflict with the AQMP.

The Los Angeles General Plan Air Quality Element (1992) includes a suite of goals, objectives, and policies to address clean air concerns. Table 7 summarizes the project's consistency with the applicable goals and objectives of the Air Quality Element.

Table 7 Project Consistency with Los Angeles General Plan Air Quality Element

Goals and Objectives

Goal 1. Good air quality and mobility in an environment of continued population growth and healthy economic

Objective 1.1. It is the objective of the City of Los Angeles to reduce air pollutants consistent with the Regional AQMP, increase traffic mobility, and sustain economic growth citywide.

Objective 1.3. It is the objective of the City of Los Angeles to reduce particulate air pollutants emanating from unpaved areas, parking lots, and construction sites.

Project Consistency

No Conflict. As discussed under Threshold 1, the project would be consistent with the SCAQMD's AQMP. In addition, as discussed under Threshold 2, particulate matter emissions (PM_{10} and $PM_{2.5}$) associated with project construction and operation would not exceed the regional thresholds or LSTs established by SCAQMD. Furthermore, the project would be required to comply with SCAQMD Rule 403 to reduce particulate matter emissions during construction activities.

Goals and Objectives

Goal 2. Less reliance on single-occupant vehicles with fewer commute and non-work trips.

Objective 2.1. It is the objective of the City of Los Angeles to reduce work trips as a step towards attaining trip reduction objectives necessary to achieve regional air quality goals.

Project Consistency

No Conflict. The Project is an infill development that is located in a high quality transit area as identified by SCAG. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Project is located in an urbanized area and in close proximity to existing residential and commercial development. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Route 20, Commuter Express 534, and Commuter Express 573. The Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet from the Project site. In addition, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension, which is expected to be operational in 2027. In addition, the Project site is directly adjacent to existing residential, commercial, and recreational development, including banks, theaters, a church, and other retail uses. Implementation of the proposed Project would place future residents in proximity to these businesses as well as facilitate use of active transportation to these uses. The Project would also include 27 short-term and 43 long-term bicycle parking spaces. Therefore, the Project would support the use of transit and active transportation by future residents, staff, and visitors as opposed to single-occupant vehicles.

Goal 3. Efficient management of transportation facilities and system infrastructure using cost-effective system management and innovative demand-management techniques.

Objective 3.1. It is the objective of the City of Los Angeles to increase the portion of work trips made by transit to levels that are consistent with the goals of the AQMP and the Congestion Management Plan.

Objective 3.2. It is the objective of the City of Los Angeles to reduce vehicular traffic during peak periods.

No Conflict. The Project is an infill development that is located in a high quality transit area as identified by SCAG. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Project is located in an urbanized area and in close proximity to existing residential and commercial development. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Route 20, Commuter Express 534, and Commuter Express 573. The Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet from the Project site. In addition, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension, expected to be operational in 2027. Therefore, the Project would facilitate the use of transit by future staff commuting to work.

Furthermore, as discussed in the Transportation Impact Study prepared for the project (Appendix B), the Project would not result in significant impacts to volume-to-capacity ratios or level of service of the studied intersections during the AM or PM peak hours, and would not result in any VMT impacts. As a result, the Project would not interfere with the City's objective to reduce peak hour vehicle traffic.

Goals and Objectives

Goal 4. Minimal impact of existing land use patterns and future land use development on air quality by addressing the relationship between land use, transportation, and air quality.

Objective 4.1. It is the objective of the City of Los Angeles to include the regional attainment of ambient air quality standards as a primary consideration in land use planning.

Objective 4.2. It is the objective of the City of Los Angeles to reduce vehicle trips and vehicle miles traveled associated with land use patterns.

Project Consistency

No Conflict. As discussed under Thresholds 2 and 3, emissions generated by project construction and operation would not exceed the regional thresholds or LSTs established by SCAQMD. Therefore, the Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment and would not interfere with regional attainment of ambient air quality standards.

Furthermore, the Project is an infill development that is located in a high quality transit area as identified by SCAG. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Project is located in an urbanized area and in close proximity to existing residential and commercial development. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Route 20, Commuter Express 534, and Commuter Express 573. The Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet from the Project site. In addition, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension e, which is expected to be operational in 2027. In addition, the Project site is directly adjacent to existing residential, commercial, and recreational development, including banks, theaters, a church, and other retail uses. Implementation of the proposed Project would place future residents in proximity to these businesses as well as facilitate use of active transportation to these uses. The Project would also include 27 short-term and 43 long-term bicycle parking spaces. Therefore, the project would support the reduction of vehicle trips and vehicle miles traveled by facilitating the use of transit and active transportation to reach multiple destinations.

Goal 5. Energy efficiency through land use and transportation planning, the use of renewable resources and less polluting fuels, and the implementation of conservation measures including passive methods such as site orientation and tree planting.

Objective 5.1. It is the objective of the City of Los Angeles to increase energy efficiency of City facilities and private developments.

No Conflict. The Project would support this goal and policy because it would implement PDF-GHG-1, which entails achieving LEED Silver designation through energy efficiency measures and the use of water-efficient plantings.

Source: City of Los Angeles 1992

Threshold 2

Would the Project result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment under an applicable federal or state ambient air quality standard?

As discussed under Section 2.1.2, Air Quality Regulation, criteria pollutants include O_3 , CO, NO_2 , PM_{10} , $PM_{2.5}$, SO_2 , and Pb. The SCAB is a non-attainment area for the federal standards for ozone and $PM_{2.5}$ and the state standards for ozone, PM_{10} , and $PM_{2.5}$. The Los Angeles County portion of the SCAB is also designated non-attainment for lead (SCAQMD 2016). The SCAB is designated

Belmont Village Senior Living Westwood II

unclassifiable or in attainment for all other federal and state standards. As discussed above, demolition of buildings containing lead-based paint is regulated by existing laws and regulations, including California Code of Regulations Title 17, Division 1, Chapter 8 and Senate Bill 460, to reduce or eliminate the risk to nearby receptors. Furthermore, the proposed Project does not include any stationary sources of lead emissions. Therefore, implementation of the Project would not result in substantial emissions of lead and this pollutant is not discussed further in this analysis.

The following analysis evaluates air pollutant emissions generated by Project construction and operation in light of the regional significance thresholds established by SCAQMD in the *CEQA Air Quality Handbook*, as well as the SCAQMD LSTs, which the City of Los Angeles has elected to utilize as their quantitative thresholds of significance.

Construction Impacts

Table 8 summarizes the estimated maximum daily emissions (lbs) of pollutants associated with construction of the proposed Project. Emissions modelling accounts for compliance with SCAQMD Rule 403, which regulates fugitive dust emissions during demolition, grading, and construction activities to minimize emissions of PM₁₀ and PM_{2.5}; SCAQMD Rule 1113, which regulates the VOC content of architectural coatings to minimize emissions of VOCs during construction activities; and SCAQMD Rule 401 and CARB's In-use Off-road Diesel-Fueled Fleets Regulation. As shown below, VOC, NO_X, CO, SO₂, PM₁₀, and PM_{2.5} emissions would not exceed SCAQMD regional thresholds or LSTs. Therefore, site preparation and construction activities for the Project would be adequately controlled on-site by existing regulations, and the Project would not result in substantial air pollutant emissions. Because air pollutant emissions generated by Project construction would not exceed SCAQMD's regional significance thresholds or LSTs, Project construction would not contribute substantially to an existing or projected air quality violation.

Table 8 Estimated Maximum Construction Emissions

	Maximum Emissions (lbs/day)						
Construction Year	VOC	NO _x	со	SO ₂	PM ₁₀	PM _{2.5}	
2021	4.8	51.2	47.4	0.1	4.9	2.4	
2022	6.7	61.2	58.3	0.2	7.9	2.7	
2023	8.1	44.5	47.8	0.2	7.2	2.4	
2024	8.6	40.4	56.5	0.1	5.7	2.5	
Maximum Emissions (lbs/day)	8.6	61.2	58.3	0.2	7.9	2.7	
SCAQMD Regional Threshold	75	100	550	150	150	55	
Threshold Exceeded?	No	No	No	No	No	No	
Maximum On-site Emissions (lbs/day)	7.3	41.3	46.1	0.1	1.7	1.6	
SCAQMD Localized Significance Thresholds (LSTs) ¹	N/A	129	721	N/A	5	4	
Threshold Exceeded?	N/A	No	No	N/A	No	No	

Notes: All emissions modeling was completed using CalEEMod. See Appendix A for modeling results. Some numbers may not add up due to rounding. Emission data is pulled from CalEEMod's "mitigated" results, which is a term of art for the modeling output and is not equivalent to mitigation measures that may apply to the CEQA impact analysis. The CalEEMod "mitigated" results account for compliance with regulations and Project Design Features. Emissions presented are the highest of the winter and summer modeled emissions.

Operational Impacts

Table 9 summarizes the Project's net operational emissions associated with the proposed eldercare facility and expanded church preschool by emission source, taking into account removal of existing emissions from the church preschool and single-family residence. The majority of Project-related operational emissions would result from vehicle trips to and from the site. As shown below, the net increase in emissions as a result of the proposed Project would not exceed SCAQMD regional thresholds for criteria pollutants; therefore, the Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation. In addition, because criteria pollutant emissions and regional thresholds are cumulative in nature, the Project would not result in a cumulatively considerable net increase of any criteria pollutant.

¹ LSTs are for a 1.6-acre Project in SRA 2 within a distance of 82 feet from the site boundary. LSTs were estimated using linear regression based on one- and two-acre LSTs.

Table 9 Estimated Operational Emissions

		Maximum Daily Emissions (lbs/day)						
Emission Source	voc	NO _x	со	SO ₂	PM ₁₀	PM _{2.5}		
Area	5.0	3.1	15.8	< 0.1	0.3	0.3		
Energy	< 0.1	0.4	0.2	< 0.1	< 0.1	< 0.1		
Mobile	1.2	5.5	15.6	0.1	5.8	1.6		
Project Emissions	6.2	9.0	31.6	0.1	6.2	1.9		
Existing Emissions	1.0	3.0	6.7	< 0.1	1.4	0.4		
Net Change in Emissions (Project – Existing)	5.2	6.0	24.9	0.1	4.8	1.5		
SCAQMD Regional Thresholds	55	55	550	150	150	55		
Threshold Exceeded?	No	No	No	No	No	No		

Notes: All emissions modeling was completed using CalEEMod. See Appendix A for modeling results. Some numbers may not add up due to rounding. Emission data is pulled from CalEEMod's "mitigated" results which is a term of art for the modeling output and is not equivalent to mitigation measures that may apply to the CEQA impact analysis. The CalEEMod "mitigated" results include compliance with regulations and Project design features that will be included in the Project. Emissions presented are the highest of the winter and summer modeled emissions.

Threshold 4	Would the Project expose sensitive receptors to substantial pollutant concentrations?
Threshold 5	Would the Project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Criteria Air Pollutants

As discussed in Section 2.2.2, *Methodology*, the SCAQMD has developed LSTs, which represent the maximum emissions from a Project that will not cause or contribute to an air quality exceedance of the most stringent applicable federal or state ambient air quality standard at the nearest sensitive receptor, taking into consideration ambient concentrations in each SRA, distance to the sensitive receptor, and Project size. LSTs only apply to emissions in a fixed stationary location and are not applicable to mobile sources, such as cars on a roadway (SCAQMD 2008). As such, LSTs are typically applied only to construction emissions because the majority of operational emissions are associated with Project-generated vehicle trips.

As discussed under Threshold 3 and shown in Table 8, Project construction emissions would not exceed the SCAQMD LSTs for any criteria pollutant. Therefore, the Project would not expose sensitive receptors to substantial criteria pollutant concentrations.

Toxic Air Contaminants (TACs)

The greatest potential for TAC emissions during construction would be from diesel particulate emissions associated with heavy equipment operations. According to SCAQMD methodology, health effects from carcinogenic air toxics are usually described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person continuously exposed to concentrations of

TACs over a 70-year lifetime will contract cancer based on the use of standard risk assessment methodology. Given the short-term construction schedule, the proposed Project would not result in a long-term (i.e., 70-year) source of TAC emissions. Additionally, SCAQMD CEQA guidance does not require preparation of a health risk assessment for short-term construction emissions. Therefore, it is not necessary to evaluate long-term cancer impacts from construction activities that occur over a relatively short duration. In addition, there would be no residual emissions or corresponding individual cancer risk after Project construction is complete. Therefore, the Project's off-site construction activities, including generation of TACs, would not expose sensitive receptors to substantial pollutant concentrations.

CARB's Air Quality and Land Use Handbook: A Community Health Perspective (2005) provides recommendations regarding the siting of new sensitive land uses near potential sources of air toxic emissions (e.g., freeways, distribution centers, rail yards, ports, refineries, chrome plating facilities, dry cleaners, and gasoline dispensing facilities). SCAQMD adopted similar recommendations in its Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning (2005). Together, the CARB and SCAQMD guidelines recommend siting distances both for the development of sensitive land uses in proximity to TAC sources and for the addition of new TAC sources in proximity to existing sensitive land uses. The primary sources of potential air toxics associated with Project operations include DPM from delivery trucks (e.g., truck traffic on local streets and idling on adjacent streets) and to a lesser extent facility operations (e.g., natural gas fired boilers and emergency generators). However, these activities, and the land uses associated with the Project, are not considered land uses that generate substantial TAC emissions based on review of the air toxic sources listed in SCAQMD's and CARB's guidelines. Typical sources of acutely and chronically hazardous TACs include industrial manufacturing processes (e.g., chrome plating, electrical manufacturing, petroleum refinery). The Project would not include these types of potential industrial manufacturing process sources. It is expected that quantities of hazardous TACs generated on-site (e.g., cleaning solvents, paints, landscape pesticides, etc.) for the types of proposed land uses would be below thresholds warranting further study under the California Accidental Release Program.

Because the Project would not contain substantial TAC sources and is consistent with the CARB and SCAQMD guidelines, the Project would not result in the exposure of off-site sensitive receptors to significant amounts of carcinogenic or toxic air contaminants.

Based on the above, the proposed Project would not expose sensitive receptors to substantial pollutant concentrations.

Objectionable Odor Impact

The Project would generate oil or diesel fuel odors during construction from equipment as well as odors related to asphalt paving. The odors would be limited to the construction period and would be temporary. With respect to operation, the SCAQMD's CEQA Air Quality Handbook (1993) identifies land uses associated with odor complaints to be agricultural uses, wastewater treatment plants, chemical and food processing plants, composting, refineries, landfills, dairies, and fiberglass molding. Residential and institutional uses are not identified on this list. Furthermore, no odor-producing uses are located in the Project vicinity. In addition, the Project would be required to comply with SCAQMD Rule 402, which prohibits the discharge of air contaminants that would cause injury, detriment, nuisance, or annoyance to the public. Therefore, the proposed Project would not generate objectionable odors affecting a substantial number of people.

Local Carbon Monoxide Hotspot Impact

A carbon monoxide (CO) hotspot is a localized concentration of CO that is above a CO ambient air quality standard. Localized CO hotspots can occur at intersections with heavy peak hour traffic. Specifically, hotspots can be created at intersections where traffic levels are sufficiently high such that the local CO concentration exceeds the federal one-hour standard of 35.0 parts per million (ppm) or the federal and state eight-hour standard of 9.0 ppm (CARB 2016).

The entire SCAB is in conformance with state and federal CO standards, and most air quality monitoring stations no longer report CO levels. No stations in the vicinity of the Project site have monitored CO in the last four years. In 2012, the West Los Angeles-VA Hospital detected an eighthour maximum CO concentration of 1.2 ppm, which is substantially below the state and federal standard of 9.0 ppm (CARB 2018a). As shown in Table 8, maximum daily CO emissions would be 58.3 pounds, and maximum on-site emissions would be 46.1 pounds, which would not exceed SCAQMD's regional threshold (550 lbs/day) or LST (721 lbs/day) for CO. Likewise, as shown in Table 9, operational emissions from area, energy, and mobile sources combined would generate maximum daily CO emissions of approximately 24.9 pounds, which is well below the SCAQMD regional threshold of 550 pounds. Both the SCAQMD's regional thresholds and LSTs are designed to be protective of public health. Based on the low background level of CO in the Project area, everimproving vehicle emissions standards for new cars in accordance with state and federal regulations, and the Project's low level of operational CO emissions, the Project would not create new hotspots or contribute substantially to existing hotspots. Localized air quality impacts related to CO hot spots would be less than significant.

3 Greenhouse Gases

3.1 Background

This section analyzes greenhouse gas (GHG) emissions associated with the Project and potential impacts related to climate change.

3.1.1 Climate Change and Greenhouse Gases

Climate change is the observed increase in the average temperature of Earth's atmosphere and oceans along with other substantial changes in climate (such as wind patterns, precipitation, and storms) over an extended period of time. The term "climate change" is often used interchangeably with the term "global warming," but "climate change" is preferred to "global warming" because it helps convey that there are other changes in addition to rising temperatures. The baseline against which these changes are measured originates in historical records identifying temperature changes that have occurred in the past, such as during previous ice ages. The global climate is continuously changing, as evidenced by repeated episodes of substantial warming and cooling documented in the geologic record. The rate of change has typically been incremental, with warming or cooling trends occurring over the course of thousands of years. The past 10,000 years have been marked by a period of incremental warming, as glaciers have steadily retreated across the globe. However, scientists have observed acceleration in the rate of warming during the past 150 years. Per the United Nations Intergovernmental Panel on Climate Change (IPCC), the understanding of anthropogenic warming and cooling influences on climate has led to a high confidence (95 percent or greater chance) that the global average net effect of human activities has been the dominant cause of warming since the mid-20th century (IPCC 2014).

Gases that absorb and re-emit infrared radiation in the atmosphere are called greenhouse gases (GHGs). The gases that are widely seen as the principal contributors to human-induced climate change include carbon dioxide (CO_2), methane (CH_4), nitrous oxides (N_2O), fluorinated gases such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6). Water vapor is excluded from the list of GHGs because it is short-lived in the atmosphere, and its atmospheric concentrations are largely determined by natural processes, such as oceanic evaporation.

GHGs are emitted by both natural processes and human activities. Of these gases, CO_2 and CH_4 are emitted in the greatest quantities from human activities. Emissions of CO_2 are largely by-products of fossil fuel combustion, whereas CH_4 results from off-gassing associated with agricultural practices and landfills. Man-made GHGs, many of which have greater heat-absorption potential than CO_2 , include fluorinated gases and SF_6 (United States Environmental Protection Agency [U.S. EPA] 2018). Different types of GHGs have varying global warming potentials (GWPs). The GWP of a GHG is the potential of a gas or aerosol to trap heat in the atmosphere over a specified timescale (generally, 100 years). Because GHGs absorb different amounts of heat, a common reference gas (CO_2) is used to relate the amount of heat absorbed to the amount of the gas emissions, referred to as "carbon dioxide equivalent" (CO_2e), and is the amount of a GHG emitted multiplied by its GWP. Carbon dioxide has a 100-year GWP of one. By contrast, methane CH_4 has a GWP of 25, meaning its global warming effect is 25 times greater than carbon dioxide on a molecule per molecule basis (IPCC 2007).

Belmont Village Senior Living Westwood II

The accumulation of GHGs in the atmosphere regulates the earth's temperature. Without the natural heat trapping effect of GHGs, Earth's surface would be about 34° C cooler (CalEPA 2006). However, it is believed that emissions from human activities, particularly the consumption of fossil fuels for electricity production and transportation, have elevated the concentration of these gases in the atmosphere beyond the level of naturally occurring concentrations.

3.1.2 Greenhouse Gas Emissions Inventory

Worldwide anthropogenic emissions of GHGs were approximately 46,000 million metric tons (MMT, or gigatonne) CO_2e in 2010 (IPCC 2014). CO_2 emissions from fossil fuel combustion and industrial processes contributed about 65 percent of total emissions in 2010. Of anthropogenic GHGs, carbon dioxide was the most abundant accounting for 76 percent of total 2010 emissions. Methane emissions accounted for 16 percent of the 2010 total, while nitrous oxide and fluorinated gases accounted for 6 percent and 2 percent respectively (IPCC 2014).

Total United States (U.S.) GHG emissions were 6,456.7 MMT of CO_2e in 2017. Since 1990, total U.S. emissions have increased by an average annual rate of 0.04 percent for a total increase of 1.3 percent since 1990. However, emissions decreased by 0.5 percent from 2016 to 2017. The decrease from 2016 to 2017 was a result of multiple factors, including (1) a continued shift from coal to natural gas and other non-fossil fuel energy sources in the electric power sector and (2) milder weather in 2017 resulting in overall decreased electricity usage. In 2017, the industrial and transportation end-use sectors accounted for 30 percent and 29 percent, respectively, of GHG emissions while, the residential and commercial end-use sectors accounted for 15 percent and 16 percent of GHG emissions, respectively, with electricity emissions distributed among the various sectors (U.S. EPA 2019).

Based on CARB's California Greenhouse Gas Inventory for 2000-2017, California produced 424.1 MMT of CO_2e in 2017. The major source of GHG emissions in California is transportation, contributing 41 percent of the state's total GHG emissions. The industrial sector is the second largest source, contributing 24 percent of the state's GHG emissions, and electric power accounts for approximately 15 percent (CARB 2019a). California emissions are due in part to its large size and large population compared to other states. However, a factor that reduces California's per capita fuel use and GHG emissions, as compared to other states, is its relatively mild climate. In 2016, the State of California achieved its 2020 GHG emission reduction targets as emissions fell below 431 MMT of CO_2e (CARB 2019a). The annual 2030 statewide target emissions level is 260 MMT of CO_2e (CARB 2017).

3.1.3 Potential Effects of Climate Change

Globally, climate change has the potential to affect numerous environmental resources though potential impacts related to future air temperatures and precipitation patterns. Scientific modeling predicts that continued GHG emissions at or above current rates would induce more extreme climate changes during the 21st century than were observed during the 20th century. Long-term trends have found that each of the past three decades has been warmer than all the previous decades in the instrumental record, and the decade from 2000 through 2010 has been the warmest. The observed global mean surface temperature (GMST) for the decade from 2006 to 2015 was approximately 0.87°C (0.75°C to 0.99°C) higher than the average GMST over the period from 1850 to 1900. Furthermore, several independently analyzed data records of global and regional Land-Surface Air Temperature (LSAT) obtained from station observations are in agreement that LSAT as well as sea surface temperatures have increased. Due to past and current activities, anthropogenic

GHG emissions are increasing global mean surface temperature at a rate of 0.2°C per decade. In addition to these findings, there are identifiable signs that global warming is currently taking place, including substantial ice loss in the Arctic over the past two decades (IPCC 2014 and 2018).

According to *California's Fourth Climate Change Assessment*, statewide temperatures from 1986 to 2016 were approximately 1°F to 2°F higher than those recorded from 1901 to 1960. Potential impacts of climate change in California may include loss in water supply from snow pack, sea level rise, more extreme heat days per year, more large forest fires, and more drought years (State of California 2018). While there is growing scientific consensus about the possible effects of climate change at a global and statewide level, current scientific modeling tools are unable to predict what local impacts may occur with a similar degree of accuracy. In addition to statewide projections, *California's Fourth Climate Change Assessment* includes regional reports that summarize climate impacts and adaptation solutions for nine regions of the state as well as regionally-specific climate change case studies (State of California 2018). Below is a summary of some of the potential effects that could be experienced in California as a result of climate change.

Air Quality

Higher temperatures, which are conducive to air pollution formation, could worsen air quality in California. Climate change may increase the concentration of ground-level ozone, but the magnitude of the effect, and therefore its indirect effects, are uncertain. As temperatures have increased in recent years, the area burned by wildfires throughout the state has increased, and wildfires have been occurring at higher elevations in the Sierra Nevada Mountains (State of California 2018). If higher temperatures continue to be accompanied by an increase in the incidence and extent of large wildfires, air quality would worsen. However, if higher temperatures are accompanied by wetter, rather than drier conditions, the rains would tend to temporarily clear the air of particulate pollution and reduce the incidence of large wildfires, thereby ameliorating the pollution associated with wildfires. Additionally, severe heat accompanied by drier conditions and poor air quality could increase the number of heat-related deaths, illnesses, and asthma attacks throughout the state (California Natural Resources Agency 2009).

Water Supply

Analysis of paleoclimatic data (such as tree-ring reconstructions of stream flow and precipitation) indicates a history of naturally and widely varying hydrologic conditions in California and the west, including a pattern of recurring and extended droughts. Uncertainty remains with respect to the overall impact of climate change on future precipitation trends and water supplies in California. For example, many southern California cities have experienced their lowest recorded annual precipitation twice in the past decade; however, in a span of only two years, Los Angeles experienced both its driest and wettest years on record (California Department of Water Resources [DWR] 2008). This uncertainty regarding future precipitation trends complicates the analysis of future water demand, especially where the relationship between climate change and its potential effect on water demand is not well understood. However, the average early spring snowpack in the western United States, including the Sierra Nevada Mountains, decreased by about 10 percent during the last century. During the same period, sea level rose over 5.9 inches along the central and southern California coast (State of California 2018). The Sierra snowpack provides the majority of California's water supply by accumulating snow during the state's wet winters and releasing it slowly during the state's dry springs and summers. A warmer climate is predicted to reduce the fraction of precipitation falling as snow and result in less snowfall at lower elevations, thereby reducing the

total snowpack (DWR 2008; State of California 2018). The State of California projects that average spring snowpack in the Sierra Nevada and other mountain catchments in central and northern California will decline by approximately 66 percent from its historical average by 2050 (State of California 2018).

Hydrology and Sea Level Rise

As discussed above, climate change could potentially affect the amount of snowfall, rainfall, and snow pack; the intensity and frequency of storms; flood hydrographs (flash floods, rain or snow events, coincidental high tide and high runoff events); sea level rise and coastal flooding; coastal erosion; and the potential for salt water intrusion. Climate change has the potential to induce substantial sea level rise in the coming century (State of California 2018). The rising sea level increases the likelihood and risk of flooding. The rate of increase of global mean sea levels over the 2001-2010 decade, as observed by satellites, ocean buoys and land gauges, was approximately 3.2 mm per year, which is double the observed 20th century trend of 1.6 mm per year (World Meteorological Organization [WMO] 2013). As a result, global mean sea levels averaged over the last decade were about 8 inches higher than those of 1880 (WMO 2013). Sea levels are rising faster now than in the previous two millennia, and the rise is expected to accelerate, even with robust GHG emission control measures. The most recent IPCC report predicts a mean sea-level rise of 10 to 37 inches by 2100 (IPCC 2018). A rise in sea levels could completely erode 31 to 67 percent of southern California beaches, result in flooding of approximately 370 miles of coastal highways during 100-year storm events, jeopardize California's water supply due to salt water intrusion, and induce groundwater flooding and/or exposure of buried infrastructure (State of California 2018). In addition, increased CO₂ emissions can cause oceans to acidify due to the carbonic acid it forms. Increased storm intensity and frequency could affect the ability of flood-control facilities, including levees, to handle storm events.

Agriculture

California has a \$50 billion annual agricultural industry that produces over a third of the country's vegetables and two-thirds of the country's fruits and nuts (California Department of Food and Agriculture 2018). Higher CO₂ levels can stimulate plant production and increase plant water-use efficiency. However, if temperatures rise and drier conditions prevail, certain regions of agricultural production could experience water shortages of up to 16 percent; water demand could increase as hotter conditions lead to the loss of soil moisture; crop-yield could be threatened by water-induced stress and extreme heat waves; and plants may be susceptible to new and changing pest and disease outbreaks (State of California 2018). In addition, temperature increases could change the time of year certain crops, such as wine grapes, bloom or ripen, and thereby affect their quality (California Climate Change Center 2006).

Ecosystems and Wildlife

Climate change and the potential resulting changes in weather patterns could have ecological effects on a global and local scale. Increasing concentrations of GHGs are likely to accelerate the rate of climate change. Scientists project that the annual average maximum daily temperatures in California could rise by 4.4 to 5.8°F in the next 50 years and by 5.6 to 8.8°F in the next century (State of California 2018). Soil moisture is likely to decline in many regions, and intense rainstorms are likely to become more frequent. Rising temperatures could have four major impacts on plants and animals related to (1) timing of ecological events; (2) geographic distribution and range; (3) species'

composition and the incidence of nonnative species within communities; and (4) ecosystem processes, such as carbon cycling and storage (Parmesan 2006; State of California 2018).

3.1.4 Regulatory Setting

The following regulations address both climate change and GHG emissions.

Federal Regulations

The U.S. Supreme Court in *Massachusetts et al. v. Environmental Protection Agency et al.* ([2007] 549 U.S. 497) held that the U.S. EPA has the authority to regulate motor-vehicle GHG emissions under the federal Clean Air Act. The U.S. EPA issued a Final Rule for mandatory reporting of GHG emissions in October 2009. This Final Rule applies to fossil fuel suppliers, industrial gas suppliers, direct GHG emitters, and manufacturers of heavy-duty and off-road vehicles and vehicle engines, and requires annual reporting of emissions. In 2012, the U.S. EPA issued a Final Rule that establishes the GHG permitting thresholds that determine when Clean Air Act permits under the New Source Review Prevention of Significant Deterioration (PSD) and Title V Operating Permit programs are required for new and existing industrial facilities.

Energy Independence and Security Act of 2007

The Energy Independence and Security Act of 2007 sets energy efficiency standards for lighting (specifically light bulbs) and appliances. Development would also be required to install photosensors and energy-efficient lighting fixtures consistent with the requirements of 42 USC Section 17001 et seq.

Corporate Average Fuel Economy Standards

The Corporate Average Fuel Economy (CAFE) standards are federal rules established by the National Highway Traffic Safety Administration (NHTSA) that set fuel economy and GHG emissions standards for all new passenger cars and light trucks sold in the United States. The CAFE standards become more stringent each year, reaching an estimated 38.3 miles per gallon for the combined industrywide fleet for model year 2020 (77 Federal Register 62624 et seg. [October 15, 2012 Table I-1). It is, however, legally infeasible for individual municipalities to adopt more stringent fuel efficiency standards. The CAA (42 United States Code [USC] Section 7543[a]) states that "no state or any political subdivision therefore shall adopt or attempt to enforce any standard relating to the control of emissions from new motor vehicles or new motor vehicle engines subject to this part." In August 2016, the U.S. EPA and NHTSA announced the adoption of the phase two programs related to the fuel economy and GHG standards for medium- and heavy-duty trucks. The phase two program will apply to vehicles with model year 2018 through 2027 for certain trailers, and model years 2021 through 2027 for semi-trucks, large pickup trucks, vans, and all types and sizes of buses and work trucks. The final standards are expected to lower CO₂ emissions by approximately 1.1 billion MT of CO₂ and reduce oil consumption by up to two billion barrels over the lifetime of the vehicles sold under the program (NHTSA 2019).

On September 27, 2019, the U.S. EPA and the NHTSA published the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program. The Part One Rule revokes California's authority to set its own GHG emissions standards and zero-emission vehicle mandates in California. To account for the effects of the Part One Rule, CARB released off-model adjustment factors on November 20, 2019 to adjust criteria air pollutant emissions outputs from the EMFAC model.

The U.S. EPA and the NHTSA have finalized rulemaking for Part Two of the SAFE Vehicles Rule, which would revise corporate average fuel economy and CO₂ emissions standards for model years 2021-2026 passenger cars and trucks such that the standards increase by approximately 1.5 percent each year through model year 2026 as compared to the 2012 standards which required an approximately five percent annual increase (NHTSA 2020). On April 30, 2020, Part Two of the SAFE Vehicles Rule was published in the Federal Register (85 Federal Register 24174) and will therefore be effective on June 29, 2020. CARB had not released off-model adjustment factors for GHG emissions.

California Regulations

CARB is responsible for the coordination and oversight of State and local air pollution control programs in California. California has numerous regulations aimed at reducing the state's GHG emissions. These initiatives are summarized below.

California Advanced Clean Cars Program

Assembly Bill (AB) 1493 (2002), California's Advanced Clean Cars program (referred to as "Pavley"), requires CARB to develop and adopt regulations to achieve "the maximum feasible and costeffective reduction of GHG emissions from motor vehicles." On June 30, 2009, U.S. EPA granted the waiver of Clean Air Act preemption to California for its GHG emission standards for motor vehicles beginning with the 2009 model year. Pavley I regulates model years from 2009 to 2016 and Pavley II, which is now referred to as "LEV (Low Emission Vehicle) III GHG" regulates model years from 2017 to 2025. The Advanced Clean Cars program coordinates the goals of the Low Emissions Vehicles (LEV), Zero Emissions Vehicles (ZEV), and Clean Fuels Outlet programs, and would provide major reductions in GHG emissions. By 2025, when the rules will be fully implemented, new automobiles will emit 34 percent fewer GHGs and 75 percent fewer smog-forming emissions from their model year 2016 levels (CARB 2011b).

Assembly Bill 32

California's major initiative for reducing GHG emissions is outlined in Assembly Bill 32 (AB 32), the "California Global Warming Solutions Act of 2006," which was signed into law in 2006. AB 32 codifies the statewide goal of reducing GHG emissions to 1990 levels by 2020 and requires CARB to prepare a Scoping Plan that outlines the main State strategies for reducing GHGs to meet the 2020 deadline. In addition, AB 32 requires CARB to adopt regulations to require reporting and verification of statewide GHG emissions. Based on this guidance, CARB approved a 1990 statewide GHG level and 2020 limit of 427 MMT CO₂e. The Scoping Plan was approved by CARB on December 11, 2008 and included measures to address GHG emission reduction strategies related to energy efficiency, water use, and recycling and solid waste, among other measures. Many of the GHG reduction measures included in the Scoping Plan (e.g., Low Carbon Fuel Standard, Advanced Clean Car standards, and Cap-and-Trade) have been adopted since approval of the Scoping Plan.

In May 2014, CARB approved the first update to the AB 32 Scoping Plan ("2014 Scoping Plan update"). The 2013 Scoping Plan update defined CARB's climate change priorities for the next five years and set the groundwork to reach post-2020 statewide goals. The update highlighted California's progress toward meeting the "near-term" 2020 GHG emission reduction goals defined in the original Scoping Plan. It also evaluated how to align the State's longer-term GHG reduction strategies with other State policy priorities, including those for water, waste, natural resources, clean energy, transportation, and land use (CARB 2014).

Senate Bill 97

Senate Bill (SB) 97, signed in August 2007, acknowledges that climate change is an environmental issue that requires analysis in California Environmental Quality Act (CEQA) documents. In March 2010, the California Natural Resources Agency (Resources Agency) adopted amendments to the State CEQA Guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions. The adopted guidelines give lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHG and climate change impacts.

Senate Bill 375

SB 375, signed in August 2008, enhances the state's ability to reach AB 32 goals by directing CARB to develop regional GHG emission reduction targets to be achieved from passenger vehicles by 2020 and 2035. In addition, SB 375 directs each of the state's 18 major Metropolitan Planning Organizations (MPOs) to prepare a "sustainable communities strategy" (SCS) that contains a growth strategy to meet these emission targets for inclusion in the Regional Transportation Plan (RTP). On March 22, 2018, CARB adopted updated regional targets for reducing GHG emissions from 2005 levels by 2020 and 2035. SCAG was assigned targets of an 8 percent reduction in GHGs from transportation sources by 2020 and a 19 percent reduction in GHGs from transportation sources by 2035. In the SCAG region, SB 375 also provides the option for the coordinated development of subregional plans by the subregional councils of governments and the county transportation commissions to meet SB 375 requirements.

Cap-and-Trade Program

California Cap-and-Trade Program, launched in 2013, is a market-based regulation designed to reduce GHG emissions from multiple sources. The Cap-and-Trade Program sets a firm limit or cap on GHGs and minimize the compliance costs of achieving AB 32 goals. The objective of the program is that trading creates incentives to reduce GHGs below allowable levels through investments in clean technologies. Also with a carbon market, a price on carbon is established for GHGs. The Cap-and-Trade Program is designed to reduce GHG emissions from major sources, such as refineries and power plants (deemed "covered entities"). "Covered entities" subject to the Cap-and-Trade Program are sources that emit more than 25,000 MT of CO₂e per year. Triggering of the 25,000 MT of CO₂e per year "inclusion threshold" is measured against a subset of emissions reported and verified under the California Regulation for the Mandatory Reporting of Greenhouse Gas Emissions.

The Cap-and-Trade Program provides a firm cap, ensuring that the 2020 and 2030 statewide emission limits will not be exceeded. An inherent feature of the Cap-and-Trade Program is that it does not guarantee GHG emissions reductions in any discrete location or by any particular source. Rather, GHG emissions reductions are only guaranteed on a cumulative basis. Such a focus on aggregate GHG emissions is considered appropriate because climate change is a global phenomenon, and the effects of GHG emissions are considered cumulative.

The Cap-and-Trade Program covers approximately 85 percent of California's GHG emissions (Center for Climate and Energy Solutions 2019). The Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emission associated with CEQA projects' electricity usage are covered by the Cap-and-Trade Program. The Cap-and-Trade Program also covers fuel suppliers (natural gas and propane fuel provides and transportation fuel providers) to address emissions from such fuels and from combustion of other fossil fuels not directly covered as large sources in the Program's first

compliance period.⁵ Furthermore, the Cap-and-Trade Program also covers the GHG emissions associated with the combustion of transportation fuels in California, whether refined in-state or imported. The point of regulation for transportation fuels is when they are "supplied" (i.e., delivered into commerce). Accordingly, as with stationary source GHG emissions and GHG emissions attributable to electricity use, virtually all, if not all, of GHG emissions from CEQA projects associated with vehicle miles travelled are covered by the Cap-and-Trade Program.

The current Cap-and-Trade Program will end on December 31, 2020. AB 398 was enacted in 2017 to extend and clarify the role of the Cap-and-Trade Program from January 1, 2021 through December 21, 2030.

Senate Bill 32

On September 8, 2016, the governor signed Senate Bill 32 (SB 32) into law, extending AB 32 by requiring the State to further reduce GHGs to 40 percent below 1990 levels by 2030 (the other provisions of AB 32 remain unchanged). On December 14, 2017, CARB adopted the 2017 Scoping Plan, which provides a framework for achieving the 2030 target. The 2017 Scoping Plan relies on the continuation and expansion of existing policies and regulations, such as the Cap-and-Trade Program, as well as implementation of recently adopted policies and policies, such as SB 350 and SB 1383 (see below). The 2017 Scoping Plan also puts an increased emphasis on innovation, adoption of existing technology, and strategic investment to support its strategies. As with the 2014 Scoping Plan Update, the 2017 Scoping Plan does not provide project-level thresholds for land use development. Instead, it recommends that local governments adopt policies and locally-appropriate quantitative thresholds consistent with statewide per capita goals of six metric tons (MT) CO₂e by 2030 and two MT CO₂e by 2050 (CARB 2017). As stated in the 2017 Scoping Plan, these goals may be appropriate for plan-level analyses (city, county, subregional, or regional level), but not for specific individual projects because they include all emissions sectors in the state (CARB 2017).

Senate Bill 100

Adopted on September 10, 2018, SB 100 supports the reduction of GHG emissions from the electricity sector by accelerating the state's Renewables Portfolio Standard Program, which was last updated by SB 350 in 2015. SB 100 requires electricity providers to increase procurement from eligible renewable energy resources to 33 percent of total retail sales by 2020, 44 percent by 2024, 60 percent by 2030, and 100 percent by 2045.

Executive Order B-55-18

On September 10, 2018, the governor issued Executive Order B-55-18, which established a new statewide goal of achieving carbon neutrality by 2045 and maintaining net negative emissions thereafter. This goal is in addition to the existing statewide GHG reduction targets established by SB 375, SB 32, SB 1383, and SB 100.

California Environmental Quality Act

Pursuant to the requirements of SB 97, the Resources Agency has adopted amendments to the State CEQA Guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions. The adopted CEQA Guidelines provide general regulatory guidance on the analysis and mitigation of

⁵ While the Cap-and-Trade Program technically covered fuel suppliers as early as 2012, they did not have a compliance obligation (i.e., they were not fully regulated) until 2015.

GHG emissions in CEQA documents, while giving lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHGs and climate change impacts. To date, a variety of air districts have adopted quantitative significance thresholds for GHGs.

Regional/Local Regulations

Southern California Association of Governments 2016 RTP/SCS

SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial Counties and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG is the federally designated Metropolitan Planning Organization (MPO) for the majority of the southern California region and is the largest MPO in the nation, where by law, SCAG is required to ensure that transportation activities are supportive of and comply with the goals of regional and state air quality plans in order to attain the NAAQS. In addition, SCAG co-produces the transportation strategy and transportation control measure sections of the AQMP with the SCAQMD for the South Coast Air Basin. With regard to air quality planning, SCAG adopted the 2016 RTP/SCS in April 2016, which addresses regional development and growth forecasts and forms the basis for the land use and transportation control portions of the AQMP. The growth forecasts are utilized in the preparation of the air quality forecasts and consistency analysis included in the AQMP. The RTP/SCS and AQMP are based on projections originating within local jurisdictions.

SCAG's Sustainable Communities Strategy provides specific implementation strategies. These strategies include supporting Projects that encourage a diverse job opportunities for a variety of skills and education, recreation and culture and a full-range of shopping, entertainment and services all within a relatively short distance; encouraging employment development around current and planned transit stations and neighborhood commercial centers; encouraging the implementation of a "Complete Streets" policy that meets the needs of all users of the streets, roads and highways including bicyclists, children, persons with disabilities, motorists, electric vehicles, movers of commercial goods, pedestrians, users of public transportation, and seniors; and supporting alternative fueled vehicles (SCAG 2016).

City of Los Angeles Sustainable City pLAn and Green New Deal

On April 8, 2015, Los Angeles released the Sustainable City pLAn, which covers a multitude of environmental, social, and economic sustainability issues related to greenhouse gas reduction either specifically or by association. Actionable goals include increasing the green building standard for new construction, creating a benchmarking policy for building energy use, developing "blue, green, and black" waste bin infrastructure, reducing water use by 20 percent, and possibly requiring LEED Silver or better certification for new construction. In 2019, the City of Los Angeles prepared the 2019 Green New Deal, which provided an expanded vision of the pLAn, focusing on securing clean air and water and a stable climate, improving community resilience, expanding access to healthy food and open space, and promoting environmental justice for all. Through the Green New Deal, the City would reduce an additional 30 percent in GHG emissions above and beyond the 2015 pLAn and ensures that the City stays within its carbon budget between 2020 and 2050 (City of Los Angeles 2020).

City of Los Angeles Green Building Code

On December 15, 2011, the Los Angeles City Council approved Ordinance No. 181,481, which amended Chapter IX of the LAMC, by adding a new Article 9 to incorporate various provisions of the 2010 CALGreen Code. On December 20, 2016, the City Council approved Ordinance No. 184,692, which further amended Chapter IX of the LAMC, by amending certain provisions of Article 9 to reflect local administrative changes and incorporating by reference portions of the 2016 CALGreen Code. Specific mandatory requirements and elective measures are provided for three categories: (1) low-rise residential buildings; (2) non-residential and high-rise residential buildings; and (3) additions and alterations to non-residential and high-rise residential buildings. California's building codes are published in their entirety every three years.

City of Los Angeles General Plan

The City of Los Angeles General Plan does not have a specific element aimed at reducing GHG emissions, nor does it include any goals, objectives, or policies specific to reducing GHG emissions. However, five goals and their respective objectives from the Air Quality Element of the General Plan would also serve to reduce GHG emissions:

- Goal 2: Less reliance on single-occupancy vehicle from fewer commute and non-work trips;
 - **Objective 2.1:** Reduce work trips as a step towards attaining trip reduction objectives necessary to achieve regional air quality goals
- **Goal 3:** Efficient management of transportation facilities and system infrastructure using cost-effective system management and innovative demand-management techniques;
 - Objective 3.2: Reduce vehicular traffic during peak periods
- **Goal 4:** Minimal impacts of existing land use pattern and future land use development on air quality by addressing the relationship between land use, transportation, and air quality;
 - **Objective 4.2:** Reduce vehicle trips and vehicle miles traveled associated with land use patterns.
- **Goal 5:** Energy efficiency through land use and transportation planning, the use of renewable resources and less-polluting fuels, and the implementation of conservation measures, including passive measures, such as site orientation and tree planting;
 - Objective 5.1: Increase energy efficiency of City facilities and private developments
 - **Objective 5.2:** Have a portion of the City's service fleet be comprised of alternative fuel powered vehicles, subject to availability of funding and practical feasibility.
 - Objective 5.3: Reduce the use of polluting fuels in stationary sources
- **Goal 6:** Citizen awareness of the linkages between personal behavior and air pollution and participation in efforts to reduce air pollution.
 - **Objective 6.1**: Make air quality education and citizen participation a priority in the City's effort to achieve clean air standards.

3.2 Impact Analysis

3.2.1 Significance Thresholds

State CEQA Guidelines Appendix G

Based on Appendix G of the State CEQA Guidelines, impacts related to GHG emissions from the Project would be significant if the Project would:

- 1. Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; and/or
- 2. Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases.

The majority of individual projects do not generate sufficient GHG emissions to create significant project-specific environment effects. However, the environmental effects of a project's GHG emissions can contribute incrementally to cumulative environmental effects that are significant, contributing to climate change, even if an individual project's environmental effects are limited (CEQA Guidelines Section 15064[h][1]). The issue of a project's environmental effects and contribution towards climate change typically involves an analysis of whether or not a project's contribution towards climate change is cumulatively considerable. Cumulatively considerable means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, other current projects, and probable future projects (CEQA Guidelines, §15064[h][1]).

Section 15064.4 of the CEQA Guidelines recommends that lead agencies quantify GHG emissions of projects and consider several other factors that may be used in the determination of significance of GHG emissions from a project, including: the extent to which the project may increase or reduce GHG emissions; whether a project exceeds an applicable significance threshold; and the extent to which the project complies with regulations or requirements adopted to implement a plan for the reduction or mitigation of GHG emissions.

CEQA Guidelines Section 15064.4 does not establish a threshold of significance. Lead agencies have the discretion to establish significance thresholds for their respective jurisdictions, and in establishing those thresholds, a lead agency may appropriately look to thresholds developed by other public agencies, or suggested by other experts, as long as any threshold chosen is supported by substantial evidence (see CEQA Guidelines Section 15064.7[c]). The CEQA Guidelines also clarify that the effects of GHG emissions are cumulative and should be analyzed in the context of CEQA's requirements for cumulative impact analysis (see CEQA Guidelines Section 15130[f]). As a note, the CEQA Guidelines were amended in response to SB 97. In particular, the CEQA Guidelines were amended to specify that compliance with a GHG emissions reduction plan renders a cumulative impact insignificant.

Per CEQA Guidelines Section 15064(h)(3), a project's incremental contribution to a cumulative impact can be found not cumulatively considerable if the project would comply with an approved plan or mitigation program that provides specific requirements that would avoid or substantially lessen the cumulative problem in the geographic area of the project. To qualify, such plans or programs must be specified in law or adopted by the public agency with jurisdiction over the affected resources through a public review process to implement, interpret, or make specific the law enforced or administered by the public agency. Examples of such programs include a "water

quality control plan, air quality attainment or maintenance plan, integrated waste management plan, habitat conservation plan, natural community conservation plans [and] plans or regulations for the reduction of greenhouse gas emissions." Put another way, CEQA Guidelines Section 15064(h)(3) allows a lead agency to make a finding of less than significant for GHG emissions if a project complies with adopted programs, plans, policies and/or other regulatory strategies to reduce GHG emissions.

In the absence of any adopted numeric threshold, the significance of the Project's GHG emissions is evaluated consistent with CEQA Guidelines Section 15064.4(b) by considering whether the Project complies with applicable plans, policies, regulations and requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions. For this Project, the most directly applicable adopted regulatory plan to reduce GHG emissions is the 2016–2040 RTP/SCS, which is designed to achieve regional GHG reductions from the land use and transportation sectors as required by SB 375 and the state's long-term climate goals. This analysis also considers consistency with regulations or requirements adopted by the AB 32 Climate Change Scoping Plan, the 2017 Scoping Plan, and the Sustainable City pLAn/Green New Deal.

SCAQMD

On December 5, 2008, the SCAQMD Governing Board adopted the staff proposal for an interim GHG significance threshold of 10,000 MTCO₂e per year for stationary source/industrial Projects where the SCAQMD is the lead agency. However, this interim GHG significance threshold does not apply to the Project because the Project is a residential/institutional Project, and the City is the Lead Agency. The SCAQMD has yet to adopt a GHG significance threshold for non-industrial land use development projects.

2006 L.A. CEQA Thresholds Guide

The L.A. CEQA Thresholds Guide does not identify any criteria to evaluate GHG emissions impacts. Thus, the potential for the Project to result in impacts from GHG emissions is based on Appendix G. For the reasons set forth above, to answer both of the Appendix G questions, the City will consider whether the Project is consistent with AB 32, SB 32, and SB 375 (through demonstration of conformance with the 2016–2040 RTP/SCS), and the Sustainable City pLAn/Green New Deal. As discussed above, the Governor's Office of Planning and Research (OPR) has noted that lead agencies "should make a good-faith effort to calculate or estimate GHG emissions from a Project. The Project's GHG emissions are quantified below, consistent with OPR guidelines.

3.2.2 Methodology

Consistency with Applicable Plans and Policies

The City has not adopted a numerical significance threshold for assessing impacts related to GHG emissions and has not formally adopted a local plan for reducing GHG emissions. Neither SCAQMD, OPR, CARB, the California Air Pollution Control Officers Association (CAPCOA), nor any other state or regional agency has adopted a numerical significance threshold for assessing GHG emissions that is applicable to the Project. Since there is no applicable adopted or accepted numerical threshold of significance for GHG emissions, the methodology for evaluating the Project's impacts related to GHG emissions focuses on its consistency with statewide, regional, and local plans adopted for the purpose of reducing and/or mitigating GHG emissions. This evaluation of consistency with such plans is the sole basis for determining the significance of the Project's GHG-related impacts on the

environment. Accordingly, a consistency analysis has been provided that describes the Project's consistency with applicable plans and policies adopted for the purpose of reducing GHG emissions. These plans include the applicable portions of the AB 32 Climate Change Scoping Plan, the 2017 Scoping Plan, the 2016–2040 RTP/SCS, and the Sustainable City pLAn/ Green New Deal.

GHG Emission Quantification

Calculations of CO₂, CH₄, and N₂O emissions are provided to estimate the proposed Project's potential GHG emissions. The analysis focuses on CO₂, CH₄, and N₂O because these make up 98.9 percent of all GHG emissions by volume and are the GHG emissions that the Project would emit in the largest quantities (IPCC 2007). Fluorinated gases, such as HFCs, PFCs, and SF₆, were also considered for the analysis. However, since fluorinated gases are primarily associated with industrial processes, and the proposed Project involves an Eldercare Facility, church preschool, and church offices, the quantity of fluorinated gases would not be significant. Emissions of all GHGs are converted into their equivalent GWP in MT of CO₂e. Small amounts of other GHGs (such as chlorofluorocarbons [CFCs]) would also be emitted; however, these other GHG emissions would not substantially add to the total GHG emissions. Calculations are based on the methodologies discussed in the California Air Pollution Control Officers Association (CAPCOA) CEQA and Climate Change white paper and included the use of the California Climate Action Registry (CCAR) General Reporting Protocol (CAPCOA 2008; CCAR 2009). GHG emissions associated with the proposed Project were calculated using the California Emissions Estimator Model (CalEEMod) version 2016.3.2 (see Appendix A for CalEEMod worksheets). This analysis assumed compliance with SCAQMD Rule 445, Wood-Burning Devices, which prohibits wood-burning fireplaces.

The Project site is currently occupied by a church sanctuary, church administrative offices, church preschool, and a single-family residence. The church sanctuary would remain, while the remainder of the existing uses would be removed to accommodate development of the proposed Project, which would include a new 12-story Eldercare Facility totaling approximately 176,580 square feet over a three-level subterranean garage, and a new two-story building totaling approximately 19,703 square feet with a new slightly-expanded preschool and replacement church offices. Operational emissions associated with the existing single-family residence and church preschool were modeled in CalEEMod and subtracted from the proposed Project's operational emissions to calculate net new emissions. However, because the existing church sanctuary would remain and the existing church administrative space would be replaced, this analysis assumes that air pollutant and GHG emissions generated by energy use, water and wastewater treatment and conveyance, solid waste disposal, and vehicle trips from these uses would be the same under both existing and future conditions.

Construction Emissions

Construction activities emit GHGs primarily though combustion of fuels (mostly diesel) in the engines of off-road construction equipment and through combustion of diesel and gasoline in onroad construction vehicles and in the commute vehicles of the construction workers. Smaller amounts of GHGs are also emitted indirectly through the energy use embodied in any water use for fugitive dust control and lighting for the construction activity. Every phase of the construction process, including demolition, grading, paving, and building, emits GHG emissions in volumes proportional to the quantity and type of construction equipment used. Heavier equipment typically emits more GHGs per hour of use than the lighter equipment because of their greater fuel consumption and engine design.

CalEEMod estimates construction emissions by multiplying the amount of time equipment is in operation by emission factors. Construction emissions were modelled in accordance with the methodology outlined in Section 2.2.1, *Methodology*, under Section 2, *Air Quality*. Complete results from CalEEMod and assumptions can be viewed in Appendix A. In accordance with SCAQMD's recommendation, GHG emissions from construction of the proposed Project were amortized over a 30-year period and added to annual operational emissions to determine the Project's total annual GHG emissions.

Operational Emissions

CalEEMod calculates operational emissions of CO₂ and CH₄ associated with energy use, area sources, waste generation, water use and conveyance, and Project-generated vehicle trips (i.e., mobile sources). Combined annual operational emissions for both existing uses (i.e., one single-family residence and the church preschool) and the proposed Project were independently modeled in CalEEMod. The difference in emissions between existing uses and the proposed Project was then compared to evaluate the net change in GHG emissions generated by on-site development as a result of the proposed Project.

ENERGY USE EMISSIONS

As a result of the consumption of electricity and natural gas during Project operation, GHGs are emitted on-site during the combustion of natural gas for space and water heating and off-site during the generation of electricity from fossil fuels in power plants. CalEEMod estimates GHG emissions from energy use by multiplying average rates of residential and non-residential energy consumption by the quantities of residential units and non-residential square footage entered in the land use module to obtain total projected energy use. This value is then multiplied by electricity and natural gas GHG emission factors applicable to the Project location and utility provider.

Building energy use is typically divided into energy consumed by the built environment and energy consumed by uses that are independent of the building, such as plug-in appliances. Non-building energy use, or "plug-in energy use," can be further subdivided by specific end-use (refrigeration, cooking, office equipment, etc.). In California, Title 24 governs energy consumed by the built environment, mechanical systems, and some types of fixed lighting. For energy use, 2019 Title 24 standards were applied.

The Project would be served by the Los Angeles Department of Water and Power (LADWP). Therefore, LADWP's specific energy intensity factors (i.e., the amount of CO₂, CH₄, and N₂O per kilowatt-hour) are used in the calculations of GHG emissions. LADWP had renewable energy procurement of 30 percent as of 2017. Per SB 100, the statewide Renewable Portfolio Standard (RPS) Program requires electricity providers to increase procurement from eligible renewable energy sources to 33 percent by 2020 and 44 percent by 2024. However, the energy intensity factors included in CalEEMod are based on 2009 data by default at which time LADWP had only achieved a 14 percent procurement of renewable energy. To account for the continuing effects of the RPS, the energy intensity factors included in CalEEMod for the proposed Project were reduced based on the percentage of renewables reported by LADWP. For the proposed Project, energy intensity factors that account for RPS targets established by SB 100 were utilized; therefore, it was assumed that LADWP would achieve a 44 percent procurement of renewable energy by 2024. LADWP energy intensity factors that include this reduction are shown in Table 10.

Table 10 Los Angeles Department of Water and Power Energy Intensity Factors

	2009 (lbs/MWh)¹	2020 (lbs/MWh)²	2024 (lbs/MWh) ²
Percent Procurement	14%	33%	44%
Carbon dioxide (CO ₂)	1,227.89	951.85	799.56
Methane (CH ₄)	0.029	0.022	0.019
Nitrous oxide (N₂O)	0.006	0.005	0.004
¹ Source: CEC 2010			

AREA SOURCE EMISSIONS

Area sources include GHG emissions that would occur from the use of landscaping equipment. The use of landscape equipment emits GHGs associated with the equipment's fuel combustion. The landscaping equipment emission values were derived from the 2011 Off-Road Equipment Inventory Model.

SOLID WASTE EMISSIONS

The disposal of solid waste produces GHG emissions from the transportation of waste, anaerobic decomposition in landfills, and incineration. To calculate the GHG emissions generated by solid waste disposal, the total volume of solid waste was calculated using waste disposal rates identified by the California Department of Resources Recycling and Recovery (CalRecycle). The methods for quantifying GHG emissions from solid waste are based on the Intergovernmental Panel of Climate Change (IPCC) method, using the degradable organic content of waste. GHG emissions associated with the Project's waste disposal were calculated using these parameters. According to a CalRecyle report to the Legislature, as of 2013 California had achieved a statewide 50 percent diversion of solid waste from landfills through "reduce/recycle/compost" programs⁶. However, AB 341 mandates that 75 percent of the solid waste generated be reduced, recycled, or composted by 2020. Therefore, to account for the continuing actions of recycling requirements under state law (i.e., AB 341), a 25 percent solid waste diversion rate was included in the model.

WATER AND WASTEWATER EMISSIONS

The amount of water used and the amount of wastewater generated by a Project generate indirect GHG emissions. These emissions are a result of the energy used to supply, convey, and treat water and wastewater. In addition to the indirect GHG emissions associated with energy use, the wastewater treatment process itself can directly emit both CH₄ and N₂O.

The indoor and outdoor water use consumption data for each land use subtype comes from the Pacific Institute's Waste Not, Want Not: The Potential for Urban Water Conservation in California (2003). Based on that report, a percentage of total water consumption was dedicated to landscape irrigation, which is used to determine outdoor water use. Wastewater generation was similarly based on a reported percentage of total indoor water use.

² RPS goals established by SB 100

⁶ CalRecycle. AB 341 Report to the Legislature, August 2015. Available at: https://www2.calrecycle.ca.gov/Publications/Download/1168

⁷ California Emissions Estimator Model, User Guide, Appendix D. Available at: http://www.caleemod.com/

New development would be subject to CalGreen, which requires a 20 percent increase in indoor water use efficiency. Thus, in order to account for compliance with CalGreen, a 20 percent reduction in indoor water use was included in the water consumption calculations.

In addition to water reductions associated with building code compliance and Project design features, the GHG emissions from the energy used to transport the water account for compliance with the RPS as discussed under *Energy Use Emissions*.

MOBILE SOURCE EMISSIONS

GHG emissions from vehicles are generated by the combustion of fossil fuels in vehicle engines. Vehicle emissions are calculated based on the vehicle type and the trip rate for each land use. The vehicle emission factors and fleet mix used in CalEEMod are derived from CARB's Emission Factors 2011 model, which includes GHG reductions achieved by implementation of Pavley I (Clean Car Standards) and the Low Carbon Fuel Standard and are thus considered in the calculation of standards for Project emissions.

The trip generation rates applied for Project were sourced from the Transportation Impact Study prepared for the Project by Linscott, Law and Greenspan, Engineers (Appendix B). Because CalEEMod does not calculate N₂O emissions from mobile sources, N₂O emissions were quantified using guidance from CARB (CARB 2013; see Appendix B for calculations).

CalEEMod does not list the percentage breakdown of gasoline and diesel vehicles used in the model's fleet mixes. To determine this percentage, EMFAC2017 Emissions Inventory were obtained in a spreadsheet output for the Los Angeles County region, for the Project's operational year (2025), using EMFAC2011 categories (CARB 2019b).

3.2.3 Project Impacts

Threshold 1	Would the Project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?
Threshold 2	Would the Project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Consistency with Applicable Plans and Policies

2008 Climate Change Scoping Plan and 2017 Climate Change Scoping Plan

Table 11 and Table 12 summarize the Project's consistency with applicable strategies contained in the 2008 Climate Change Scoping Plan and 2013 Scoping Plan Update as well as the 2017 Climate Change Scoping Plan. As discussed below, the Project's estimated net new annual GHG emissions would be 1,591 MT of CO₂e, and the breakdown of emissions by source category shows 3 percent from area sources; 30 percent from energy consumption; 50 percent from mobile sources; 4 percent from solid waste generation; 5 percent from water supply, treatment, and distribution; and 9 percent from construction activities.⁸

⁸ The sum of these numbers does not total 100 percent due to rounding.

Table 11 Consistency with 2008 Climate Change Scoping Plan and 2014 Scoping Plan Update

opadie		
Measure	Responsible Party(ies)	Project Consistency Analysis
Area (3 percent of Project inventory)		
SCAQMD Rule 445 (Wood Burning Devices): Requires use of natural gas to power all cooking stoves and fireplaces.	SCAQMD	No Conflict. The Project would not include wood-burning devices. All cooking stoves in the Eldercare Facility would either be electric or natural gas, not wood-burning. No fireplaces are included in the proposed Project.
Energy (30 percent of Project inventory)	
California Renewables Portfolio Standard (RPS) Program: Senate Bill 2X modified California's RPS program to require that both public and investor-owned utilities in California receive at least 33 percent of their electricity from renewable sources by the year 2020. California Senate Bill 2X also requires regulated sellers of electricity to meet an interim milestone of procuring 25 percent of their energy supply from certified renewable resources by 2016.	LADWP	No Conflict. Since publication of the 2008 Climate Change Scoping Plan and First Update, the RPS Program has been amended by SB 100 and now requires electricity providers to increase procurement from eligible renewable energy resources to 44 percent by 2024 and 60 percent by 2030. See Table 12 for a discussion of the Project's consistency with the RPS Program.
Senate Bill 350 (SB 350): The Clean Energy and Pollution Reduction Act of 2015 increases the standards of the California RPS program by requiring that the amount of electricity generated and sold to retail customers per year from eligible renewable energy resources be increased to 50 percent by 2030 and also requires the State Energy Resources Conservation and Development Commission to double the energy efficiency savings in electricity and natural gas final end uses of retail customers through energy efficiency and conservation.	State Energy Resources Conservation and Development Commission and LADWP	No Conflict. The RPS requirements of SB 350 have been superseded by SB 100, which requires electricity providers to increase procurement from eligible renewable energy resources to 44 percent by 2024 and 60 percent by 2030. See Table 12 for a discussion of the Project's consistency with the RPS Program. As required under SB 350, doubling the energy efficiency savings from final end uses of retail customers by 2030 would primarily rely on the existing suite of building energy efficiency standards under the California Code of Regulations (CCR), Title 24, Part 6 (see discussion below) and utility-sponsored programs, such as rebates for high-efficiency appliances, HVAC systems and insulation. The Project would support this action/strategy because it would implement PDF-GHG-1, which entails achieving LEED Silver designation through energy efficiency among other measures. The Project would also comply with the Los Angeles Green Code (see discussion below).
Senate Bill 1368 (SB 1368): GHG Emissions Standard for Baseload Generation prohibits any retail seller of electricity in California from entering into a long-term financial commitment for baseload generation if the GHG emissions are higher than those from a combined-cycle natural gas power plant.	State, CEC, and LADWP	No Conflict. LADWP meets the requirements of SB 1368. Because LADWP would provide electricity service to the Project Site, the Project would use electricity that meets the requirements under SB 1368.
California Code of Regulations (CCR), Title 20: The 2012 Appliance Efficiency Regulations, adopted by the California Energy Commission (CEC), include standards for new appliances (e.g., refrigerators) and lighting, if they are sold or offered for sale in California.	State and CEC	No Conflict. The Appliance Efficiency Regulations apply to new appliances and lighting that are sold or offered for sale in California. The Project would include new Energy Star appliances in residential units and lighting that comply with this energy efficiency standard.

Belmont Village Senior Living Belmont Village Senior Living Westwood II

Measure	Responsible Party(ies)	Project Consistency Analysis
CCR, Title 24, Building Standards Code: The 2013 Building Energy Efficiency Standards contained in Title 24, Part 6 (also known as the California Energy Code), requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. The California Green Building Standards Code (Part 11, Title 24) established mandatory and voluntary standards on planning and design for sustainable site development, energy efficiency (extensive update of the California Energy Code), water conservation, material conservation, and internal air contaminants.	State and CEC	No Conflict. Consistent with regulatory requirements, the Project must comply with applicable provisions of the 2020 Los Angeles Green Code, which in turn requires compliance with mandatory standards included in the California Green Building Standards. The 2019 Title 24 standards are 7 percent more efficient (for electricity) than residential construction built to the 2016 Title 24 standards and 30 percent more efficient (for electricity) for non-residential construction built to 2016 Title 24 standards. The 2019 Title 24 standards are more efficient than the 2020 projected Emissions under Business-as-Usual in CARB's Climate Action Scoping Plan. The standards promote the use of more efficiency windows, insulation, lighting, ventilation systems and other features that reduce energy consumption in homes and businesses. Thus, the Project would incorporate energy efficiency standards that are substantially more effective than the measures identified in the Climate Action Scoping Plan to reduce GHG emissions.
Energy Independence and Security Act of 2007 (EISA): EISA requires manufacturing for sale within the United States to phase out incandescent light bulbs between 2012 and 2014, resulting in approximately 25 percent greater efficiency for light bulbs and requires approximately 200 percent greater efficiency for light bulbs, or similar energy savings, by 2020.	Federal/ Manufacturers	No Conflict. EISA would serve to reduce the use of incandescent light bulbs for the Project and, thus, reduce energy usage associated with lighting.
Assembly Bill 1109 (AB 1109): The Lighting Efficiency and Toxic Reduction Act prohibits a person from manufacturing for sale in the state specified general purpose lights that contain levels of hazardous substances, as it requires the establishment of minimum energy efficiency standards for all general purpose lights. The standards are structured to reduce average statewide electrical energy consumption by not less than 50 percent from the 2007 levels for indoor residential lighting and not less than 25 percent from the 2007 levels for indoor commercial and outdoor lighting by 2018.	State/ Manufacturers	No Conflict. The Project would meet the requirements under AB 1109 because it would incorporate energy-efficient lighting and electricity consumption that complies with local and state green building programs.
Cap-and-Trade Program: The program establishes an overall limit on GHG emissions from capped sectors (e.g., electricity generation, petroleum refining, and cement production). Facilities subject to the cap are able to trade permits to emit	State/ Manufacturers	No Conflict. As required by AB 32 and the Climate Change Scoping Plan, the Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emissions associated with CEQA Project s' electricity usage are covered by the Cap-and-Trade Program. Therefore, annual GHG emissions associated with the Project's electricity usage presented in Table 16 would be covered by the Cap-and-Trade Program (as LADWP

Measure	Responsible Party(ies)	Project Consistency Analysis
GHG emissions within the overall limit.		would be a covered entity) and would be consistent with AB 32 and the Climate Change Scoping Plan.
Mobile (50 percent of Project inventory		
Assembly Bill 1493 (AB 1493) "Pavley Standards": AB 1493 requires the development and adoption of regulations to achieve "the maximum feasible reduction of greenhouse gases" emitted by noncommercial passenger vehicles, light-duty trucks, and other vehicles used primarily for personal transportation in the State. In compliance with AB 1493, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles and light duty trucks of model year 2009 through 2016. Model years 2017 through 2025 are addressed by California's Advanced Clean Cars program (discussed below).	State, CARB	No Conflict. The Pavley regulations reduced GHG emissions from California passenger vehicles by about 22 percent in 2012 and are expected to reduce GHG emissions by about 30 percent in 2016, al while improving fuel efficiency. Mobile source emissions generated by the Project would be reduced with implementation of AB 1493, consistent with reduction of GHG emissions under AB 32. Mobile source GHG emissions provided in Table 9 were calculated using CalEEMod, which uses EMFAC2014 emission factors that account for implementation of AB 1493 into mobile source emission factors.
Executive Order S-01-07: The Low Carbon Fuel Standard requires a 10-percent or greater reduction by 2020 in the average fuel carbon intensity for transportation fuels in California regulated by CARB. CARB identified the LCFS as a Discrete Early Action item under AB 32, and the final resolution (09-31) was issued on April 23, 2009 (CARB 2009).	State, CARB	No Conflict. GHG emissions from Project-related vehicle trips would be reduced by this regulation because fuel used by vehicles would be compliant with LCFS.
Advanced Clean Cars Program: In 2012, CARB approved the Advanced Clean Cars Program, a new emissions-control program for model year 2017 through 2025. The program combines the control of smog, soot, and GHG emissions with requirements for greater numbers of zero-emission vehicles. By 2025, when the rules will be fully implemented, the new automobiles will emit 34 percent fewer global warming gases and 75 percent fewer smog-forming emissions.	State, CARB	No Conflict. Standards under the Advanced Clean Cars Program will apply to all passenger and light duty trucks used by residents, employees, and deliveries to the Project. Mobile source emissions generated by the Project would be reduced with implementation of standards under the Advanced Clean Cars Program consistent with reduction of GHG emissions under AB 32. Mobile source GHG emissions, provided in Table 9 conservatively do not include this additional 34 percent reduction in mobile source emissions because the CalEEMod model does not yet account for this regulation. The Project would further support this regulation because the Project would designate five percent of all parking spaces as preferred parking for green vehicles.
Senate Bill (SB) 375: SB 375 requires integration of planning processes for transportation, land-use and housing. Under SB 375, each Metropolitan Planning Organization would be required to adopt a Sustainable Community Strategy (SCS) to encourage compact development that reduces passenger vehicle miles traveled and trips so that the region will meet a target, created by CARB, for reducing GHG emissions.	State, CARB, SCAG	No Conflict. SB 375 requires SCAG to direct the development of the SCS for the region, which is discussed further below. The Project represents an infill development in an existing urbanized area that would increase residential development in a high quality transit area (HQTA). Therefore, the Project would be consistent with SCAG's 2016–2040 RTP/SCS.

Belmont Village Senior Living Belmont Village Senior Living Westwood II

Measure	Responsible Party(ies)	Project Consistency Analysis
Solid Waste (4 percent of Project invento	ory)	
California Integrated Waste Management Act of 1989 and Assembly Bill 341: The California Integrated Waste Management Act of 1989 requires each jurisdiction's source reduction and recycling element to include an implementation schedule that shows: (1) diversion of 25 percent of all solid waste by January 1, 1995, through source reduction, recycling, and composting activities; and (2) diversion of 50 percent of all solid waste on and after January 1, 2000, through source reduction, recycling, and composting facilities. AB 341 (2011) amended the	State	No Conflict. GHG emissions related to solid waste generation from the Project would be reduced by this regulation because it would decrease the overall amount of solid waste disposed of at landfills. The decrease in solid waste would then in return decrease the amount of methane released from the decomposing solid waste. The Project applicant would only contract for waste disposal services with a company that recycles solid waste in compliance with AB 341, which sets a policy goal of diverting at least 75 percent of solid waste by 2020. In addition, the Project would provide recycling bins at appropriate locations to promote recycling of paper, metal, glass and, other recyclables.
California Integrated Waste Management Act of 1989 to include a provision declaring that it is the policy goal of the state that not less than 75 percent of solid waste generated be source reduced, recycled, or composted by the year 2020, and annually thereafter.		
Water (5 percent of Project inventory)		
CCR, Title 24, Building Standards Code: The California Green Building Standards Code (Part 11, Title 24) includes water efficiency requirements for new residential and non-residential uses, in which buildings shall demonstrate a 20- percent overall water use reduction.	State	No Conflict. Water usage rates were calculated consistent with the requirements under City Ordinance No. 184,248, 2019 California Plumbing Code, 2019 CALGreen, 2020 Los Angeles Plumbing Code, and 2020 Los Angeles Green Building Code. The Project would include low-flow toilets, urinals, bathroom faucets, and shower heads as well as Energy Star appliances, native and/or drought-tolerant plants, and water-efficient irrigation systems. The Project would be required to demonstrate an overall water use reduction of 20 percent to meet the requirements of the CALGreen.
Senate Bill X7-7: The Water Conservation Act of 2009 sets an overall goal of reducing per-capita urban water use by 20 percent by December 31, 2020. The state is required to make incremental progress toward this goal by reducing per-capita water use by at least 10 percent by December 31, 2015. This in an implementing measure of the Water Sector of the AB 32 Scoping Plan. Reduction in water consumption directly reduces the energy necessary and the associated emissions to convene, treat, and distribute the water; it also reduces emissions from wastewater treatment.	State	No Conflict. As discussed above under Title 24, the Project would meet this performance-based standard. The Project would include low-flow toilets, urinals, bathroom faucets, and shower heads as well as Energy Star appliances, native and/or drought-tolerant plants, and water-efficient irrigation systems. Therefore, the Project would include measures consistent with the GHG reductions sought by SB X7-7 related to water conservation and related GHG emissions.

Measure	Responsible Party(ies)	Project Consistency Analysis
CARB In-Use Off-Road Regulation: CARB's in-use off- road diesel vehicle regulation ("Off- Road Diesel Fleet Regulation") requires the owners of off-road diesel equipment fleets to meet fleet average emissions standards pursuant to an established compliance schedule.	CARB	No Conflict . The Project would use construction contractors that would comply with this regulation.
CARB In-Use On-Road Regulation: CARB's in-use on- road heavy-duty vehicle regulation ("Truck and Bus Regulation") applies to nearly all privately and federally owned diesel fueled trucks and buses and to privately and publicly owned school buses with a gross vehicle weight rating greater than 14,000 pounds.	CARB	No Conflict . The Project would use construction contractors that would comply with this regulation.

 $Note: The sum of the percentage \ estimates \ for \ emissions \ sectors \ does \ not \ total \ 100 \ percent \ due \ to \ rounding.$

Source: CARB 2008

Table 12 Consistency with 2017 Scoping Plan

Measure	Responsible Party(ies)	Project Consistency	
Senate Bill 100 Senate Bill 100 increases the standards of the California RPS program by requiring that the amount of electricity generated and sold to retail customers per year from eligible renewable energy resources be increased to 44 percent by 2024, 60 percent by 2030, and 100 percent by 2045.	CPUC, CEC, CARB	No Conflict. LADWP is required to generate electricity that would increase renewable energy resources to 33 percent by 2020, 44 percent by 2024, 60 percent by 2030, and 100 percent by 2045. Because LADWP would provide electricity service to the Project site, the Project would use electricity consistent with the requirements of SB 100. It is assumed that LADWP will receive at least 33 percent of electricity from renewable sources by year 2020 and 44 percent by year 2024. As required under SB 350, doubling of the energy efficiency savings from final end uses of retail customers by 2030 would primarily rely on the existing suite of building energy efficiency standards under CCR Title 24, Part 6 (consistency with this regulation is discussed below) and utility-sponsored programs such as rebates for high-efficiency appliances, HVAC systems, and insulation.	
		The Project would comply with this this action/strategy being located in the LADWP service area and would comply with CalGreen and Title 24 energy efficiency standards.	
SB 350 (Clean Energy and Pollution Reduction Act of 2015)	CPUC, CEC, CARB	No Conflict. As required under SB 350, doubling of the energy efficiency savings from final end uses of retail customers by	
Required measures include:		2030 would primarily rely on the existing suite of building	
 Increase RPS to 50 percent of retail sales by 2030. 			energy efficiency standards under CCR Title 24, Part 6 (consistency with this regulation is discussed below) and utility-
 Establish annual targets for statewide energy efficiency savings and demand reduction that will achieve a cumulative doubling of statewide energy efficiency savings in electricity 		sponsored programs such as rebates for high-efficiency appliances, HVAC systems, and insulation. The Project would comply with this this action/strategy being located in the LADWP service area and would comply with CalGreen and Title 24 energy efficiency standards.	

beimoni village senior Living we		
Measure	Responsible Party(ies)	Project Consistency
and natural gas end uses by 2030.		
Reduce GHG emissions in the electricity sector through the implementation of the above measures and other actions as modeled in IRPs to meet GHG emissions reductions planning targets in the IRP process. Loadserving entities and publicly owned utilities meet GHG emissions reductions planning targets through a combination of measures as described in IRPs.		
Implement Mobile Source Strategy (Cleaner Technology and Fuels)	CARB, CalSTA, SGC, CalTrans	No Conflict. CARB approved the Advanced Clean Cars Program in 2012, which establishes an emissions control program for
 At least 1.5 million zero emission and plug-in hybrid light-duty electric vehicles by 2025. 	CEC, OPR, local agencies	model year 2017 through 2025. Standards under the Advanced Clean Cars Program will apply to all passenger and light duty trucks used by residents, employees, and patrons of the Project site. The Program also requires automobile manufacturers to
 At least 4.2 million zero emission and plug-in hybrid light-duty electric vehicles by 2030. 		site. The Program also requires automobile manufacturers to produce an increasing number of zero emission vehicles in the 2018 through 2025 model years. Extension of the Advanced Clean Cars program has not yet been adopted, but it is
 Further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean Cars regulations. 		expected that measures will be introduced to increase GHG stringency on light duty automobiles and continues adding zero emission and plug in vehicles through 2030. In addition, the Project would support this policy because the Project would
Medium-and heavy-duty GHG Phase 2.Innovative Clean Transit:		designate five percent of all parking spaces as preferred parking for green vehicles and 20 percent of all spaces would be supported with future electric vehicle equipment
Transition to a suite of to-bedetermined innovative clean transit options. Assumed 20 percent of new urban buses purchased beginning in 2018 will be zero emission buses with the penetration of zero-emission technology ramped up to 100		capabilities. CARB is also developing the Innovative Clean Transit measure to encourage purchase of advanced technology buses such as alternative fueled or battery powered buses. This would allow fleets to phase in cleaner technology in the near future. CARB is also in the process of developing proposals for new approaches and strategies to achieve zero emission trucks under the Advanced Clean Local Trucks (Last Mile Delivery) Program.
percent of new sales in 2030. Also, new natural gas buses, starting in 2018, and diesel buses, starting in 2020, meet the optional heavy-duty low-NO _X standard.		GHG emissions from Project-related vehicle trips would be reduced by implementation of standards under the Advanced Clean Cars Program, which would reduce CO ₂ emissions from passenger vehicles by approximately 34 percent below model year 2016 levels by model year 2025. Project-related mobile
■ Last Mile Delivery: New regulation that would result in the use of low NO _X or cleaner engines and the deployment of increasing numbers of zeroemission trucks primarily for class 3-7 last mile delivery trucks in California. This measure assumes ZEVs comprise 2.5 percent of new Class 3-7 truck		source emissions shown in Table 16 do not include this additional 34 percent reduction because the CalEEMod model does not yet account for this regulation. Although the Innovative Clean Transit and Advanced Clean Local Truck Programs have not yet been established, Project-related GHG emissions would be further reduced once these measures have been adopted.

	Responsible	
sales in local fleets starting in 2020, increasing to 10 percent in 2025 and remaining flat through 2030. Further reduce VMT through continued implementation of SB 375 and regional Sustainable Communities Strategies; forthcoming statewide implementation of SB 743; and potential additional VMT reduction strategies not specified in the Mobile Source Strategy but included in the document "Potential VMT Reduction Strategies for Discussion."	Party(ies)	No Conflict Lindox SD 275. CADD sets regional towarts for CLIC
Increase Stringency of SB 375 Sustainable Communities Strategy (2035 Targets)	CARB	No Conflict. Under SB 375, CARB sets regional targets for GHG emission reductions from passenger vehicle use. In 2010, CARB established targets for 2020 and 2035 for each region. As required under SB 375, the CARB is required to update regional GHG emissions targets every 8 years, which is due to be updated in 2018. On March 22, 2018, CARB adopted updated regional targets for reducing GHG emissions from 2005 levels by 2020 and 2035. SCAG was assigned a target of a 19 percent reduction in GHGs from transportation sources by 2035, which is more stringent than the former reduction target of 13 percent for 2035. The Project would be consistent with SB 375 for developing an infill Project in an existing urbanized area. This would concentrate new residential uses in an HQTA, which is consistent with the goals of the SCAG's 2016 RTP-SCS, as discussed further in Table 13.
By 2019, adjust performance measures used to select and design transportation facilities. Harmonize Project performance with emissions reductions, and increase competitiveness of transit and active transportation modes (e.g. via guideline documents, funding programs, Project selection, etc.).	CalSTA and SGC, OPR, CARB, GoBiz, IBank, DOF, CTC, Caltrans	No Conflict. The Project would not involve construction of transportation facilities. However, the Project would be located in a High Quality Transit Area (HQTA), which would encourage use of mass transit.
By 2019, develop pricing policies to support low-GHG transportation (e.g. low- emission vehicle zones for heavy duty, road user, parking pricing, transit discounts).	CalSTA, Caltrans, CTC, OPR/SGC, CARB	No Conflict. In accordance with LAMC Sections 99.04.106.4.2 and 99.04.106.4.4, the Project would equip 10 percent of onsite parking spaces with electric vehicle charging stations and 30 percent of parking spaces with EVSE.
Implement California Sustainable Freight Action Plan: Improve freight system efficiency. Deploy over 100,000 freight vehicles and equipment capable	CARB	No Conflict. The Project land uses would not include freight transportation or warehousing. Therefore, the Project would not interfere or impede the implementation of the Sustainable Freight Action Plan.

Measure	Responsible Party(ies)	Project Consistency
of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030.	- Fully (ICS)	
Adopt a Low Carbon Fuel Standard with a Carbon Intensity (CI) reduction of 18 percent.	CARB	No Conflict. This regulatory program applies to fuel suppliers, not directly to land use development. GHG emissions from fuels combusted during Project-related vehicle trips would be required to comply with LCFS. The current LCFS, adopted in 2007, requires a reduction of at least 10 percent in the carbon intensity (CI) of California's transportation fuels by 2020. In January 2019, CARB amended the LCFS regulation to strengthen the LCFS targets through 2030.
Implement the Short-Lived Climate Pollutant Strategy by 2030:	CARB, CalRecycle,	No Conflict. Senate Bill 605 (SB 605), adopted in 2014, directs CARB to develop a comprehensive Short-Lived Climate
 40 percent reduction in methane and hydrofluorocarbon emissions below 2013 levels. 	CDFA, SWRCB, local air districts	Pollutant (SLCP) strategy. Senate Bill 1383, adopted in 2016, requires CARB to set statewide 2030 emission reduction targets of 40 percent for methane and hydrofluorocarbons and 50 percent black carbon emissions below 2013 levels.
 50 percent reduction in black carbon emissions below 2013 levels. 		The Project would comply with the CARB SLCP Reduction Strategy, which limits the use of hydrofluorocarbons for refrigeration uses.
By 2019, develop regulations and programs to support organic waste landfill reduction goals in the SLCP and SB 1383.	CARB, CalRecycle, CDFA, SWRCB, local air districts	No Conflict. This strategy calls on regulators to reduce GHG emissions from landfills and is not applicable to a development. Under SB 1383, the California Department of Resources Recycling and Recovery (CalRecycle) is responsible for achieving a 50 percent reduction in the level of statewide disposal of organic waste from the 2014 level by 2020 and a 75-percent reduction by 2025. In January 2019, CalRecycle began the formal rulemaking process for the Proposed Organic Waste Reduction Regulations to implement the organic waste landfill reduction requirements of SB 1383.
Implement the post-2020 Cap-and- Trade Program with declining annual caps.	CARB	No Conflict. This applies to State regulators and is not applicable to a development Project. The current Cap-and-Trade Program would end on December 31, 2020. Assembly Bill 398 (AB 398) was enacted in 2017 to extend and clarify the role of the state's Cap-and-Trade Program from January 1, 2021, through December 31, 2030. As part of AB 398, refinements were made to the Cap-and-Trade Program to establish updated protocols and allocation of proceeds to reduce GHG emissions.
By 2018, develop Integrated Natural and Working Lands Implementation Plan to secure California's land base as a net carbon sink: Protect land from conversion through conservation easements	CNRA and departments within, CDFA, CalEPA, CARB	No Conflict. This applies to State regulators and is not applicable to a development Project. This regulatory program applies to Natural and Working Lands, not directly related to development of the Project. However, the Project would not interfere or impede implementation of the Integrated Natural and Working Lands Implementation Plan.
 and other incentives. Increase the long-term resilience of carbon storage in the land base and enhance sequestration capacity. 		

Measure	Responsible Party(ies)	Project Consistency
 Utilize wood and agricultural products to increase the amount of carbon stored in the natural and built environments. 		
 Establish scenario projections to serve as the foundation for the Implementation Plan. 		
Establish a carbon accounting framework for natural and working lands as described in SB 859 by 2018.	CARB	No Conflict. This applies to State regulators and is not applicable to a development Project. This regulatory program applies to Natural and Working Lands, not directly related to development of the Project. However, the Project would not interfere or impede implementation of the Integrated Natural and Working Lands Implementation Plan.
Implement Forest Carbon Plan.	CNRA, CAL FIRE, CalEPA and departments within	No Conflict. This applies to State regulators and is not applicable to a development Project. This regulatory program applies to state and federal forest land, not directly related to development of the Project. However, the Project would not interfere or impede implementation of the Forest Carbon Plan.
Identify and expand funding and financing mechanisms to support GHG reductions across all sectors.	State Agencies & Local Agencies	No Conflict. This applies to State regulators and is not applicable to a development Project. Funding and financing mechanisms are the responsibility of the state and local agencies. The Project would not conflict with funding and financing mechanisms to support GHG reductions.

2016-2040 RTP/SCS

The SCAG 2016–2040 RTP/SCS is expected to help California reach its GHG reduction goals by reducing transportation-related GHG emissions by 8 percent by 2020, 18 percent by 2035, and 21 percent by 2040. In March 2018, CARB adopted updated targets requiring a 19-percent decrease in VMT for the SCAG region by 2035. The CARB targets were adopted after publication of the 2016 RTP/SCS; as a result, the updated targets have been incorporated into the proposed 2020-2045 RTP/SCS. The 2016 RTP/SCS and the 2020-2045 RTP/SCS are expected to fulfill and exceed SB 375 compliance with respect to meeting the State's GHG emission reduction goals.

In addition to demonstrating the region's ability to attain and exceed the GHG emission-reduction targets set forth by CARB, the 2016-2040 RTP/SCS outlines a series of actions and strategies for integrating the transportation network with an overall land use pattern that responds to projected growth, housing needs, changing demographics, and transportation demands. Thus, successful implementation of the 2016-2040 RTP/SCS would result in more complete communities with a variety of transportation and housing choices, while reducing automobile use. The Project's consistency with the 2016-2040 RTP/SCS is summarized in Table 13.

Table 13 Project Consistency with Applicable SCAG 2016-2040 RTP/SCS Strategies

Reduction Strategy

Project Consistency

Land Use Actions and Strategies

Reflect the Changing Population and Demands

The SCAG region, home to about 18.3 million people in 2012, currently features 5.9 million households and 7.4 million jobs. By 2040, the Plan Project s that these figures will increase by 3.8 million people, with nearly 1.5 million more homes and 2.4 million more jobs. High Quality Transit Areas (HQTA) will account for three percent of regional total land, but will accommodate 46 percent and 55 percent of future household and employment growth respectively between 2012 and 2040. The 2016 RTP/SCS land use pattern contains sufficient residential capacity to accommodate the region's future growth, including the eight-year regional housing need. The land use pattern accommodates about 530,000 additional households in the SCAG region by 2020 and 1.5 million more households by 2040. The land use pattern also encourages improvement in the jobs-housing balance by accommodating 1.1 million more jobs by 2020 and about 2.4 million more jobs by 2040.

No Conflict. The proposed Project would establish an Eldercare Facility and a Childcare Facility in an HQTA within walking distance of the adjacent surrounding single-family residences. The Project would also be directly adjacent to existing commercial and recreational development, including banks, theaters, a church, and other retail uses. Implementation of the proposed Project would therefore place future residents in proximity to these businesses as well as facilitate use of active transportation to these uses.

Focus New Growth Around Transit

The 2016 RTP/SCS land use pattern reinforces the trend of focusing growth in the region's HQTAs. Concentrating housing and transit in conjunction concentrates roadway repair investments, leverages transit and active transportation investments, reduces regional life cycle infrastructure costs, improves accessibility, avoids greenfield development, and has the potential to improve public health and housing affordability. HQTAs provide households with alternative modes of transport that can reduce VMT and GHG emissions.

No Conflict. The Project is an infill development that is located in an HQTA. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Project is located in an urbanized area and in close proximity to existing residential and commercial development. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Metro Local 20, Commuter Express 534, and Commuter Express 573. The Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet from the Project site. In addition, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension, which is expected to be operational in 2027. Therefore, pedestrian access to existing and future transit would be available.

Provide More Options for Short Trips

38 percent of all trips in the SCAG region are less than three miles. The 2016 RTP/SCS provides two strategies to promote the use of active transport for short trips. Neighborhood Mobility Areas are meant to reduce short trips in a suburban setting, while "complete communities" support the creation of mixed-use districts in strategic growth areas and are applicable to an urban setting.

No Conflict. The Project involves an Eldercare Facility and Childcare Facility immediately adjacent to single-family residences and would be directly adjacent to existing commercial development including banks, theaters, and other retail uses. The proposed Project would be located in an area where church attendees could walk students to the preschool facility from their home or office, and future senior residents would be able to walk to the on-site church or to adjacent commercial development. Therefore, this Project would support efforts to reduce short trips.

Reduction Strategy

Support Local Sustainability Planning

To implement the SCS, SCAG supports local planning practices that help lead to a reduction of GHG emissions. Sustainable Planning & Design, Zoning Codes, and Climate Action Plans are three methods that local agencies have been adopting and implementing to help meet the regional targets for GHG emission reductions outlined in the SCS.

Project Consistency

No Conflict. The Project would support this action/strategy because it would implement PDF-GHG-1, which entails achieving LEED Silver designation through energy efficiency measures such as exceeding Title 24, Part 6 standards by 18 percent, use of water-efficient plantings, and pedestrianand bicycle-friendly design.

Transportation Strategies

Transit

Since 1991, the SCAG region has spent more than \$50 billion dollars on public transportation. This includes high profile investments in rail transit and lower profile, vital investments in operations and maintenance. Looking toward to 2040, the 2016 RTP/SCS maintains a significant investment in public transportation across all transit modes and also calls for new household and employment growth to be targeted in areas that are well-served by public transportation to maximize the improvements called for in the Plan.

No Conflict. The Project is an infill development that is located in an HQTA. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Project is located in an urbanized area and in close proximity to existing residential and commercial development. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Route 20, Commuter Express 534, and Commuter Express 573. The Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet from the Project site. In addition, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension, which is expected to be operational in 2027. Therefore, pedestrian access to existing and future transit is available.

Active Transportation

The 2016 RTP/SCS includes \$12.9 billion for active transportation improvements, including \$8.1 billion in capital Project s and \$4.8 billion as part of the operations and maintenance expenditures on regionally significant local streets and roads. The Active Transportation portion of the 2016 Plan updates the Active Transportation portion of the 2012 Plan, which has goals for improving safety, increasing active transportation usage and friendliness, and encouraging local active transportation plans. It proposes strategies to further develop the regional bikeway network, assumes that all local active transportation plans will be implemented, and dedicates resources to maintain and repair thousands of miles of dilapidated sidewalks. To accommodate the growth in walking, biking, and other forms of active transportation regionally, the 2016 Active Transportation Plan also considers new strategies and approaches beyond those proposed in 2012.

No Conflict. The proposed Project would establish an Eldercare Facility and a Childcare Facility within walking and biking distance of the adjacent single-family neighborhood. The Project would also be directly adjacent to existing commercial and recreational development, including banks, theaters, a church, and other retail uses. Implementation of the proposed Project would place future residents in proximity to these businesses as well as facilitate use of active transportation to these uses. The Project would also include 27 short-term and 43 long-term bicycle parking spaces. Therefore, walking or bicycling would be viable modes of transportation to reach numerous destinations or public transit.

Reduction Strategy

Zero-Emissions Vehicles

While SCAG's policies are technology neutral with regard to supporting zero and/or near zero-emissions vehicles, this section will focus on zero-emissions vehicles. Since SCAG adopted the 2012 RTP/SCS, the Governor's Office released the Zero Emissions Vehicle (ZEV) Action Plan for 2013 and 2015. These plans identified state level funding to support the implementation of Plug-in Electric Vehicle (PEV) and Hydrogen Fuel Cell refueling networks. As part of the 2016 RTP/SCS, SCAG modeled PEV growth specific to Plug-in Hybrid Electric Vehicles (PHEV) in the SCAG region. These are electric vehicles that are powered by a gasoline engine when their battery is depleted. The 2016 RTP/SCS proposes a regional charging network that will increase the number of PHEV miles driven on electric power. In many instances, these chargers may double the electric range of PHEVs. A fully funded regional charging network program would result in a reduction of one percent per capita GHG emissions.

Project Consistency

No Conflict. In accordance with LAMC Sections 99.04.106.4.2 and 99.04.106.4.4, the Project would equip 10 percent of on-site parking spaces with electric vehicle charging stations and 30 percent of parking spaces with EVSE.

Source: SCAG 2016b.

Sustainable City pLAn/Green New Deal

Table 14 summarize the Project's consistency with the Sustainable City pLAn/Green New Deal. As discussed therein, the Project would be consistent with the actions and measures contained in these local GHG reduction plans.

Table 14 Project Consistency with Applicable Sustainable City pLAn/Green New Deal Measures

Action Project Consistency

Renewable Energy

- LADWP will supply 55% renewable energy by 2025;
 80% by 2036; and 100% by 2045.
- Increase cumulative megawatts by 2025; 2035; and 2050 of:
 - Local solar to 900-1,500 MW; 1,500-1,800 MW; and 1,950 MW.
 - Energy storage capacity to 1,654-1,750 MW;3,000 MW; and 4,000 MW.
 - Demand response (DR) programs to 234 MW (2025) and 600 MW (2035).

No Conflict. While this action primarily applies to the City and LADWP, LADWP is required to generate electricity that would increase renewable energy resources to 33 percent by 2020, 44 percent by 2024, 60 percent by 2030, and 100 percent by 2045 under Senate Bill 100. Because LADWP would provide electricity service to the Project site, the Project would use electricity consistent with the requirements of SB 100 and City goals. It is assumed that LADWP will receive at least 33 percent of electricity from renewable sources by year 2020 and 44 percent by year 2024.

Action Project Consistency

Local Water

- Source 70% of L.A.'s water locally and capture 150,000 acre-feet per year of stormwater by 2035.
- Recycle 100% of all wastewater for beneficial reuse by 2035.
- Build at least 10 new multi-benefit stormwater capture projects by 2025; 100 by 2035; and 200 by 2050.
- Reduce potable water use per capita by 22.5% by 2025; and 25% by 2035; and maintain or reduce 2035 per capita water use through 2050
- Install or refurbish hydration stations at 200 sites, prioritizing municipally-owned buildings and public properties such as parks, by 2035.

No Conflict. While this action primarily applies to the City and LADWP, the Project would incorporate water conservation features to reduce water use. The Project would be required to comply with the City's water use restrictions on timing, area, frequency, and duration of specified allowable water usage. The Project would also be required to comply with the Title 24 standards for Water Efficiency and Conservation that are in effect at the time of development. These standards include actions such as separate water submeters for subsystems, prescriptive reduced flow rates for water and fixtures, wall-mounted urinals, and plumbing fixtures and fittings.

Clean and Healthy Buildings

- All new buildings will be net zero carbon by 2030; and 100% of buildings will be net zero carbon by 2050.
- Reduce building energy use per sf for all building types 22% by 2025; 34% by 2035; and 44% by 2050.

No Conflict. The Project would be designed and operated to meet the applicable requirements of CALGreen and the City's Green Building Code.

Mobility & Public Transit

- Increase the percentage of all trips made by walking, biking, micro-mobility/matched rides or transit to at least 35% by 2025; 50% by 2035; and maintain at least 50% by 2050.
- Reduce VMT per capita by at least 13% by 2025; 39% by 2035; and 45% by 2050.
- Ensure Los Angeles is prepared for Autonomous Vehicles (AV) by the 2028 Olympic and Paralympic Games.

No Conflict. The Project is an infill development that is located in an HQTA. Specifically, the proposed Project would involve construction of an Eldercare Facility and Childcare Facility in an urbanized area that is well-served by public transit. The Eldercare Facility would include highdensity senior residential uses and is located in close proximity to existing residential and commercial development as well as major transportation arteries. Existing public transit facilities are located within 500 feet of the Project site, including the Wilshire/Glendon stop for Metro Local 20, Commuter Express 534, and Commuter Express 573. In addition, the Wilshire/Westwood stop for Metro Rapid 720 is approximately 800 feet away. Furthermore, the Wilshire/Westwood intersection will soon be served by the Westwood/UCLA station of Metro's D Purple Line Extension, which is expected to be operational in 2027. The Project would also be directly adjacent to existing commercial and recreational development, including banks, theaters, a church, and other retail uses. Implementation of the proposed Project would place future residents in proximity to these businesses as well as facilitate use of active transportation to these uses. The Project would also include 27 short-term and 43 long-term bicycle parking spaces. Therefore, the Project would facilitate use of walking, biking, and transit as transportation modes.

Zero Emissions Vehicles

Action

- Increase the percentage of electric and zero emission vehicles in the city to 25% by 2025; 80% by 2035; and 100% by 2050.
- Electrify 100% of LA Metro and LADOT buses by 2030
- Reduce port-related GHG emissions by 80% by 2050.

Project Consistency

No Conflict. In accordance with LAMC Sections 99.04.106.4.2 and 99.04.106.4.4, the Project would equip 10 percent of on-site parking spaces with electric vehicle charging stations and 30 percent of parking spaces with EVSE.

Waste and Resource Recovery

- Increase landfill diversion rate to 90% by 2025; 95% by 2035; and 100% by 2050
- Reduce municipal solid waste generation per capita by at least 15% by 2030, including phasing out single-use plastics by 2028
- Eliminate organic waste going to landfill by 2028 Increase proportion of waste products and recyclables productively reused and/or repurposed within Los Angeles County to at least 25% by 2025; and 50% by 2035.

No Conflict. The City of Los Angeles has achieved a landfill diversion rate of 76.4 percent. The Project would be subject to the requirements of the statewide commercial recycling program, which establishes a statewide goal of diverting at least 75 percent of solid waste from landfills by 2020. Compliance with existing City and state programs would achieve consistency with this measure.

Urban Ecosystems and Resilience

- Increase tree canopy in areas of greatest need by at least 50% by 2028.
- Complete or initiate restoration identified in the 'ARBOR' Plan by 2035.
- Create a fully connected LARiverWay public access system that includes 32 miles of bike paths and trails by 2028.
- Reduce urban/rural temperature differential by at least 1.7 degrees by 2025; and 3 degrees by 2035.
- Ensure proportion of Angelenos living within 1/2 mile of a park or open space is at least 65% by 2025; 75% by 2035; and 100% by 2050.
- Achieve and maintain 'no-net loss' of native biodiversity by 2035.

No Conflict. The Project would be an infill development in an urbanized area and thus would not adversely impact native biodiversity. In addition, the Project would provide new trees would be provided in conformance with the LAMC and City policies.

Source: City of Los Angeles 2020

In summary, the analysis provided above demonstrates that the Project is consistent with the plans, policies, regulations and GHG reduction actions/strategies outlined in the 2008 Climate Change Scoping Plan and 2014 Scoping Plan Update, the 2017 Climate Change Scoping Plan, the 2016—2040 RTP/SCS, and the Sustainable City pLAn/Green New Deal. Consistency with the above plans, policies, regulations and GHG reduction actions/strategies would reduce the Project's incremental contribution of GHG emissions. Therefore, the Project would not conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing emissions of GHG emissions. Furthermore, because the Project would not conflict with these plans, policies, and regulations, the Project's incremental increase in GHG emissions as described above would not result in a significant impact on the environment. Therefore, Project-specific impacts with regard to climate change would be less than significant.

Project Emissions

As described above, compliance with plans, policies, and regulations adopted for the purpose of reducing GHG emissions indicates that Project-related GHG emissions are less than significant. In accordance with the recommendations of CEQA Guidelines Section 15064.4, quantitative calculations are provided below in support of the consistency analysis that describes the Project's compliance with performance-based standards included in the regulations and policies outlined in the applicable portions of the 2008 Climate Change Scoping Plan and 2014 Scoping Plan Update, the 2017 Climate Change Scoping Plan, the 2016–2040 RTP/SCS, and the Sustainable City pLAn/Green New Deal. The Project would result in direct and indirect GHG emissions generated by temporary construction activities, area sources, energy usage, mobile sources, solid waste disposal, and water/wastewater treatment and conveyance. A specific discussion regarding potential GHG emissions associated with the construction and operational phases of the Project is provided below.

Construction Emissions

For the purpose of this analysis, it is assumed that construction activity would occur over a period of approximately 35 months. Construction assumptions used in the analysis of GHG emissions conservatively assume that the Project would be constructed in the shortest duration possible with the most intensive activities occurring on a daily basis. GHG emissions associated with Project construction were calculated for each year of construction activity. As shown in Table 15, Project construction would generate an estimated 4,381 MT of CO₂e. Following the SCAQMD's recommended methodology for amortizing construction emissions over a 30-year period (the assumed life of the Project), construction of the proposed Project would generate an estimated 146 MT of CO₂e per year.

Table 15 Estimated Construction Emissions of Greenhouse Gases

Construction Year	Annual Emissions (MT of CO₂e)
2021	454.7
2022	1,049.5
2023	1,502.0
2024	1,375.0
Total	4,381
Amortized over 30 years	146.0

See Appendix A for CalEEMod results. Some numbers may not add up due to rounding.

Operational Emissions

Table 16 combines the construction, operational, and mobile GHG emissions associated with existing uses and development of the proposed Project. The net increase in annual emissions associated with the proposed eldercare facility and expanded church preschool would total approximately 1,591 MT of CO₂e, after accounting for removal/replacement of the existing uses at the Project site.

Table 16 Combined Annual Emissions of Greenhouse Gases

Emission Source	Existing Use Emissions (MT of CO ₂ e)	Proposed Project Emissions (MT of CO₂e)	Net Change in Emissions (Proposed Project – Existing Uses) (MT of CO₂e)
Construction	N/A	146.0	146.0
Operational			
Area	0.3	45.6	45.3
Energy ¹	33.9	510.0	476.1
Solid Waste	6.3	65.3	59.0
Water ¹	7.0	80.6	73.6
Mobile			
CO₂ and CH₄	220.5	1,005.0	784.5
N_2O	4.2	10.4	6.2
Total	272.2	1,862.9	1,590.7

See Appendix A for CalEEMod output and Appendix C for mobile source N₂O calculations. Some numbers may not add up due to rounding.

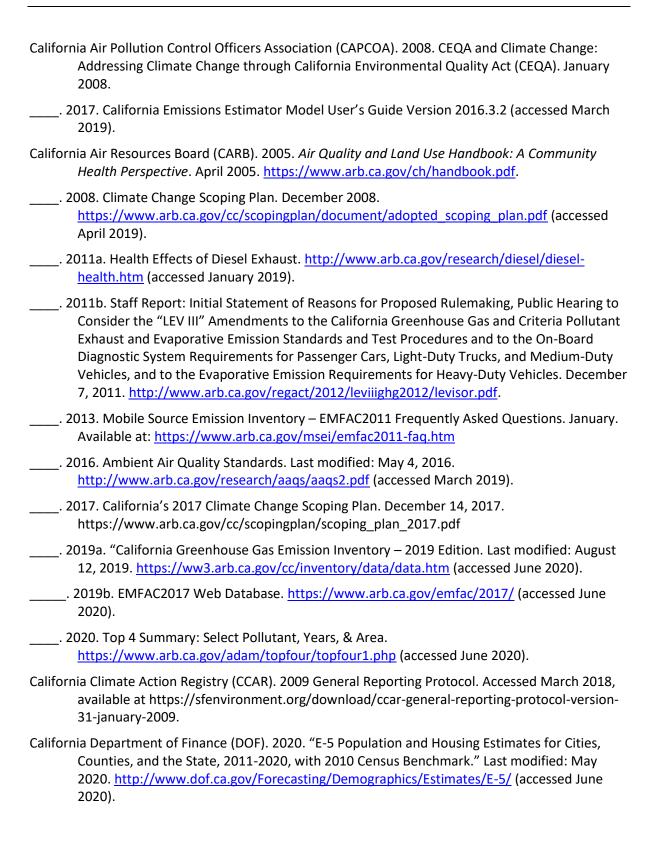
N/A = not applicable

Post-2030 Analysis

Recent studies show that the State's existing and proposed regulatory framework will put the State on a pathway to reduce its GHG emissions level to 40 percent below 1990 levels by 2030 and to 80 percent below 1990 levels by 2050 as additional appropriate reduction measures are adopted. Even though these studies did not provide an exact regulatory and technological roadmap to achieve the 2030 and 2050 goals, they demonstrated that various combinations of policies could allow the statewide emissions level to remain very low through 2050 (CARB 2017, Appendix D).⁹

Subsequent to the findings of these studies, SB 32 was passed on September 8, 2016, which requires the State to reduce statewide GHG emissions to 40 percent below 1990 levels by 2030. As shown in Table 12, the 2017 Scoping Plan adopted in response to SB 32 involves increasing renewable energy use, imposing tighter limits on the carbon content of gasoline and diesel fuel, putting more electric cards on the road, improving energy efficiency, and curbing emissions from key industries. The Project's design features advance these goals by reducing VMT, facilitating the use of electric vehicles, improving energy efficiency, and reducing water usage.

¹ Electricity emissions were adjusted to account for reductions in the carbon intensity of electricity generation due to implementation of the State RPS Program, which requires 33 percent renewable energy by 2020 and 44 percent by 2024 (see Table 10 for calculations). Emissions from electricity generation only take into account carbon intensity at build out year, but do not take into account decreasing carbon intensity required by SB 100 (RPS) beyond the project buildout year. However, it is recognized that the RPS would require utilities to supply 60 percent renewable energy by 2030. Therefore, Project emissions presented are conservative and would be lower in future years


⁹ CARB developed scenarios to evaluate the feasibility and cost of a range of potential 2030 targets along the way to the State's goal of reducing GHG emissions to 80 percent below 1990 levels by 2050. With input from the agencies, Energy and Environmental Economics (E3) modeled these scenarios that explore the potential pace at which emission reductions can be achieved as well as the mix of technologies and practices deployed. E3 conducted the analysis using its California PATHWAYS model. Enhanced specifically for this study, the model encompasses the entire California economy with detailed representations of the buildings, industry, transportation, and electricity sectors (CARB 2017, Appendix D).

Furthermore, the Project's consistency with SCAG's RTP/SCS (summarized in Table 13) demonstrates that the Project would be consistent with post-2020 GHG reduction goals. The 2016-2040 RTP/SCS would result in an estimated eight percent decrease in per capita GHG emissions from passenger vehicles by 2020, an 18 percent decrease in per capita GHG emissions from passenger vehicles by 2035, and a 21 percent decrease in per capita GHG emissions from passenger vehicles by 2040 (SCAG 2016). In March 2018, CARB adopted updated targets requiring a 19 percent decrease in VMT of the SCAG region by 2035. Given that the CARB targets were adopted after the 2016-2040 RTP/SCS, it is expected that the updated targets will be incorporated into the forthcoming 2020-2045 RTP/SCS. The 2016-2040 RTP/SCS and the forthcoming 2020-2045 RTP/SCS are expected to fulfill and exceed SB 375 compliance with respect to meeting the State's GHG emission reduction goals.

The Project is the type of land use development sited in an HQTA that is encouraged by the 2016-2040 RTP/SCS to reduce VMT and expand use of multi-modal transportation options. By furthering implementation of SB 375, the Project supports regional land use and transportation GHG reductions consistent with State climate targets beyond 2020.

The emissions modeling in the 2017 Scoping Plan projected 2030 statewide emissions, which take into account known commitments at the time such as SB 375, SB 350, and other measures shown in Table 12. The emissions inventory identified an emissions gap, meaning that emissions reductions due to known commitments at the time do not decline fast enough to achieve the 2030 target. In order to fill this gap, the 2017 Scoping Plan assumed a scenario in which the Cap-and-Trade Program would deliver the reductions necessary to achieve the 2030 emissions target. Although the Project is consistent with the 2017 Scoping Plan, additional measures to achieve the 2030 target and beyond are outside of the City or the Project's control. Therefore, any evaluation of post-2030 Project emissions would be speculative.

4 References

- California Department of Transportation (Caltrans). 2017. 2016 Traffic Volumes on California State Highways. http://www.dot.ca.gov/trafficops/census/docs/2016_aadt_volumes.pdf (accessed March 2019).
- California Department of Food and Agriculture. 2018. "California Agricultural Production Statistics." Last modified: August 30, 2018. https://www.cdfa.ca.gov/statistics/ (accessed January 2019).
- California Department of Water Resources. 2008. Managing an Uncertain Future: Climate Change Adaption Strategies for California's Water. October 2008. http://www.water.ca.gov/climatechange/docs/ClimateChangeWhitePaper.pdf
- California Energy Commission (CEC). 2010. Los Angeles Department of Water and Power 2009
 Power Content Label.

 https://www.energy.ca.gov/pcl/labels/2009_labels/LADWP%202009%20PCL.pdf (accessed April 2019).

 https://www.energy.ca.gov/pcl/labels/2017_labels/LADWP_2017_PCL.pdf (accessed April 2019).
- California Environmental Protection Agency (CalEPA). 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature. March 2006.
- California Natural Resources Agency. 2009. 2009 California Climate Adaptation Strategy. March 2009. Available at:

 http://resources.ca.gov/docs/climate/Statewide_Adaptation_Strategy.pdf (accessed April 2019).
- Center for Climate and Energy Solutions. 2019. "California Cap and Trade." http://www.c2es.org/content/california-cap-and-trade/ (accessed April 2019).
- Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- _____. 2014. Climate Change 2014: Mitigation of Climate Change. Summary for Policymakers -Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- _____. 2018. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/ (accessed January 2019).
- Los Angeles, City of. 1992. Los Angeles General Plan Air Quality Element. Adopted November 24, 1992. https://planning.lacity.org/odocument/0ff9a9b0-0adf-49b4-8e07-0c16feea70bc/Air Quality Element.pdf (accessed June 2020).

2006. LA CEQA Thresholds Guide.	
2007. GreenLA. An Action to Lead the Nation in Fighting Global Warming. May 20)07.

Belmont Village Senior Living Belmont Village Senior Living Westwood II

2015. Sustainable City pLAn. April 8, 2015. https://www.lamayor.org/sites/g/files/wph446/f/landing_pages/files/The%20pLAn.pdf
. 2019. Zone Information and Map Access System. http://zimas.lacity.org/ (accessed March 2019).
. Green New Deal. 2020. http://plan.lamayor.org/background (accessed May 2020).
National Highway Traffic Safety Administration (NHTSA). 2019. Corporate Average Fuel Economy. https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy (accessed June 2020).
. 2020. "Fact Sheet: SAFE Vehicles Rule." https://www.nhtsa.gov/corporate-average-fuel-economy/safe-fact-sheet (accessed June 2020).
Parmesan, C. August 2006. Ecological and Evolutionary Responses to Recent Climate Change.
South Coast Air Quality Management District (SCAQMD). 1993. CEQA Air Quality Handbook. November 1993.
. 2005. Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. May 6, 2005. http://www.aqmd.gov/docs/default-source/planning/air-quality-guidance/complete-guidance-document.pdf (accessed April 2019).
. 2008. Final Localized Significance Threshold Methodology. July 2008. http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/final-lst-methodology-document.pdf (accessed March 2019).
. 2009. Appendix C – Mass Rate LST Look-up Tables. Last modified: October 21, 2009. http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/appendix-c-mass-rate-lst-look-up-tables.pdf?sfvrsn=2 (accessed March 2019).
. 2015. SCAQMD Air Quality Significance Thresholds. Last modified: March 2015. http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf (accessed March 2019).
. 2016. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) Attainment Status for South Coast Air Basin. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/naaqs-caaqs-feb2016.pdf?sfvrsn=2 (accessed March 2019).
2017. Final 2016 Air Quality Management Plan (AQMP). March 3, 2017.
Southern California Association of Governments (SCAG). 2016. 2016 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS). April 7, 2016.
State of California. 2018. California's Fourth Climate Change Assessment Statewide Summary Report. August 27, 2018. http://www.climateassessment.ca.gov/state/ (accessed March 2019).
United States Environmental Protection Agency (U.S. EPA). 2013. Policy Assessment for the Review of the Lead National Ambient Air Quality Standards, External Review Draft. https://www3.epa.gov/ttn/naaqs/standards/pb/data/010913_pb-draft-pa.pdf (accessed April 2019).

2018	b. "The Safety Affordable Fuel Efficient (SAFE) Vehicles Proposed Rule for Model Years
202	21-2026." Last modified: September 27, 2018. https://www.epa.gov/regulations-
<u>em</u>	issions-vehicles-and-engines/safer-affordable-fuel-efficient-safe-vehicles-proposed
(acc	cessed March 2019).
2019.	Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017. U. S. EPA #430-R-19
001	April 2019. https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-
inve	entory-2019-main-text.pdf (accessed June 2020).

World Meteorological Organization (WMO). 2013. A summary of current and climate change findings and figures: a WMO information note. March 2013. https://library.wmo.int/opac/index.php?lvl=notice_display&id=15892#.Wt9-Z8gvzlU (accessed March 2019).

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Belmont Village Westwood Presbyterian South Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	9.60	1000sqft	0.22	17,858.00	0
Enclosed Parking with Elevator	184.00	Space	0.00	73,600.00	0
Other Asphalt Surfaces	0.57	Acre	0.57	24,829.20	0
City Park	0.12	Acre	0.12	5,227.20	0
Congregate Care (Assisted Living)	176.00	Dwelling Unit	0.71	176,580.00	503

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2025
Utility Company	Los Angeles Department of Water & Power				
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on site plans. 284 beds. Remaining acreage allocated to other asphalt. Does not include church office because replacing existing use.

Construction Phase - Based on applicant info.

Off-road Equipment -

Off-road Equipment -

Off-road Equipment - Applicant info.

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Off-road Equipment - Applicant info.

Off-road Equipment - Default

Off-road Equipment - Client details

Trips and VMT - Export 65,000 CY with 14 CY per truck (based on applicant statement that 4400 trips required). Applicant info and traffic analysis. Distance to Chiquita Landfill.

Demolition - Estimated per square footage of buildings to be demolished based on ZIMAS and GE

Grading - Based on applicant info of up to 65,000 CY export.

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L). South Campus is nonres only, North Campus is res and parking only.

Vehicle Trips - Playground and landscaping would not generate trips. Trip rates based on TIS.

Woodstoves - Per SCAQMD Rule 445

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use - Reduced lighting intensity for eldercare facility by 75% in accordance with Title 24

Water And Wastewater - Reduced by 20% to reflect 2016 CALGreen requirements.

Solid Waste -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 for dust mitigation

Mobile Land Use Mitigation -

Area Mitigation - Compliance with SCAQMD Rule 1113.

Energy Mitigation -

Water Mitigation - Applicant info

Waste Mitigation - Reduced by 25% in accordance with AB 341

Page 3 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	8,929.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	26,787.00	0.00
tblArchitecturalCoating	ConstArea_Parking	5,906.00	0.00
tblArchitecturalCoating	ConstArea_Residential_Exterior	119,192.00	0.00
tblArchitecturalCoating	ConstArea_Residential_Interior	357,575.00	0.00
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblConstructionPhase	NumDays	10.00	71.00
tblConstructionPhase	NumDays	10.00	314.00
tblConstructionPhase	NumDays	200.00	180.00
tblConstructionPhase	NumDays	200.00	457.00
tblConstructionPhase	NumDays	20.00	16.00
tblConstructionPhase	NumDays	20.00	15.00
tblConstructionPhase	NumDays	4.00	16.00
tblConstructionPhase	NumDays	4.00	104.00
tblConstructionPhase	NumDays	10.00	46.00
tblConstructionPhase	NumDays	10.00	40.00
tblEnergyUse	LightingElect	741.44	185.36
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberGas	149.60	176.00
tblFireplaces	NumberNoFireplace	17.60	0.00

Page 4 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

tblFireplaces	NumberWood	8.80	0.00
tblGrading	MaterialExported	0.00	65,000.00
tblLandUse	LandUseSquareFeet	9,600.00	17,858.00
tblLandUse	LandUseSquareFeet	176,000.00	176,580.00
tblLandUse	LotAcreage	1.66	0.00
tblLandUse	LotAcreage	11.00	0.71
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripNumber	11.00	280.00
tblTripsAndVMT	HaulingTripNumber	82.00	300.00
tblTripsAndVMT	HaulingTripNumber	8,125.00	9,286.00
tblTripsAndVMT	VendorTripNumber	39.00	60.00
tblTripsAndVMT	VendorTripNumber	0.00	40.00
tblTripsAndVMT	VendorTripNumber	39.00	60.00
tblTripsAndVMT	WorkerTripNumber	20.00	50.00
tblTripsAndVMT	WorkerTripNumber	23.00	70.00
tblTripsAndVMT	WorkerTripNumber	178.00	264.00

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Page 5 of 47

tblTripsAndVMT	WorkerTripNumber	36.00	35.00
tblTripsAndVMT	WorkerTripNumber	20.00	50.00
tblTripsAndVMT	WorkerTripNumber	23.00	70.00
tblTripsAndVMT	WorkerTripNumber	178.00	264.00
tblTripsAndVMT	WorkerTripNumber	36.00	35.00
tblVehicleTrips	HO_TTP	40.60	41.00
tblVehicleTrips	HS_TTP	19.20	19.00
tblVehicleTrips	HW_TTP	40.20	40.00
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	ST_TR	2.20	4.01
tblVehicleTrips	ST_TR	6.21	0.00
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	SU_TR	2.44	4.01
tblVehicleTrips	SU_TR	5.83	0.00
tblVehicleTrips	WD_TR	1.89	0.00
tblVehicleTrips	WD_TR	2.74	4.01
tblVehicleTrips	WD_TR	74.06	23.01
tblWater	IndoorWaterUseRate	11,467,108.51	9,173,686.80
tblWoodstoves	NumberCatalytic	8.80	0.00
tblWoodstoves	NumberNoncatalytic	8.80	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
•			

2.0 Emissions Summary

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2021	4.8287	51.2388	46.6642	0.1149	3.4737	2.0005	5.4742	0.8931	1.8414	2.5212	0.0000	11,354.301 3	11,354.301 3	2.5478	0.0000	11,415.696 1
2022	6.7103	61.2301	57.3539	0.1718	7.5417	1.7335	8.7029	1.7470	1.6026	2.8195	0.0000	18,057.55 34	18,057.55 34	2.8868	0.0000	18,116.053 1
2023	8.0608	44.5423	46.9228	0.1666	7.0702	1.2363	8.0334	1.6313	1.1432	2.5191	0.0000	17,520.14 85	17,520.14 85	2.4510	0.0000	17,577.25 18
2024	8.6363	40.4052	55.6560	0.1337	4.2693	1.4245	5.6938	1.1360	1.3164	2.4524	0.0000	13,156.39 27	13,156.39 27	2.8599	0.0000	13,227.89 06
Maximum	8.6363	61.2301	57.3539	0.1718	7.5417	2.0005	8.7029	1.7470	1.8414	2.8195	0.0000	18,057.55 34	18,057.55 34	2.8868	0.0000	18,116.05 31

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

2.1 Overall Construction (Maximum Daily Emission)

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	/day							lb/	day		
2021	4.8287	51.2388	46.6642	0.1149	3.3348	2.0005	4.8569	0.8931	1.8414	2.4223	0.0000	11,354.301 3	11,354.301 3	2.5478	0.0000	11,415.696 1
2022	6.7103	61.2301	57.3539	0.1718	6.7009	1.7335	7.8621	1.6545	1.6026	2.7270	0.0000	18,057.55 34	18,057.55 34	2.8868	0.0000	18,116.053 1
2023	8.0608	44.5423	46.9228	0.1666	6.2294	1.2363	7.1925	1.5388	1.1432	2.4266	0.0000	17,520.14 85	17,520.14 85	2.4510	0.0000	17,577.25 17
2024	8.6363	40.4052	55.6560	0.1337	4.2693	1.4245	5.6938	1.1360	1.3164	2.4524	0.0000	13,156.39 27	13,156.39 27	2.8599	0.0000	13,227.89 06
Maximum	8.6363	61.2301	57.3539	0.1718	6.7009	2.0005	7.8621	1.6545	1.8414	2.7270	0.0000	18,057.55 34	18,057.55 34	2.8868	0.0000	18,116.05 31
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	8.14	0.00	8.24	3.42	0.00	2.75	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 8 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Energy	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
Mobile	1.1793	5.5201	14.6504	0.0609	5.8042	0.0454	5.8496	1.5525	0.0422	1.5947		6,221.708 7	6,221.708 7	0.2793		6,228.690 6
Total	6.2297	9.0664	30.6352	0.0832	5.8042	0.3989	6.2031	1.5525	0.3957	1.9482	0.0000	10,557.68 04	10,557.68 04	0.3870	0.0790	10,590.90 18

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Energy	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
Mobile	1.1793	5.5201	14.6504	0.0609	5.8042	0.0454	5.8496	1.5525	0.0422	1.5947		6,221.708 7	6,221.708 7	0.2793		6,228.690 6
Total	6.2297	9.0664	30.6352	0.0832	5.8042	0.3989	6.2031	1.5525	0.3957	1.9482	0.0000	10,557.68 04	10,557.68 04	0.3870	0.0790	10,590.90 18

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Date: 6/4/2020 11:45 AM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition South	Demolition	9/1/2021	9/22/2021	5	16	
2	Grading South	Grading	9/1/2021	9/22/2021	5	16	
3	Building Construction South	Building Construction	9/23/2021	6/1/2022	5	180	
4	Architectural Coating South	Architectural Coating	2/23/2022	6/1/2022	5	71	
5	Paving South	Paving	3/9/2022	5/3/2022	5	40	
6	Demolition North	Demolition	10/4/2022	10/24/2022	5	15	
7	Grading North	Grading	10/25/2022	3/17/2023	5	104	
8	Building Construction North	Building Construction	3/20/2023	12/17/2024	5	457	
9	Architectural Coating North	Architectural Coating	10/5/2023	12/17/2024	5	314	
10	Paving North	Paving	8/2/2024	10/4/2024	5	46	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.57

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 26,787; Non-Residential Outdoor: 8,929; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 10 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition South	Excavators	3	8.00	158	0.38
Demolition South	Skid Steer Loaders	2	8.00	65	0.37
Demolition South	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading South	Bore/Drill Rigs	1	6.00	221	0.50
Grading South	Crawler Tractors	2	8.00	212	0.43
Grading South	Excavators	2	8.00	158	0.38
Grading South	Graders	1	6.00	187	0.41
Grading South	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction South	Aerial Lifts	15	8.00	63	0.31
Building Construction South	Cranes	3	6.00	231	0.29
Building Construction South	Forklifts	2	6.00	89	0.20
Building Construction South	Off-Highway Trucks	2	6.00	402	0.38
Building Construction South	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating South	Air Compressors	1	6.00	78	0.48
Paving South	Cement and Mortar Mixers	1	6.00	9	0.56
Paving South	Pavers	1	6.00	130	0.42
Paving South	Paving Equipment	1	8.00	132	0.36
Paving South	Rollers	1	7.00	80	0.38
Paving South	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Demolition North	Excavators	3	8.00	158	0.38
Demolition North	Skid Steer Loaders	2	8.00	65	0.37
Demolition North	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading North	Bore/Drill Rigs	1	6.00	221	0.50
Grading North	Crawler Tractors	2	8.00	212	0.43
Grading North	Excavators	2	8.00	158	0.38
Grading North	Graders	1	6.00	187	0.41

Page 11 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

Grading North	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction North	Aerial Lifts	15	8.00	63	0.31
Building Construction North	Cranes	3	6.00	231	0.29
Building Construction North	Forklifts	2	6.00	89	0.20
Building Construction North	Off-Highway Trucks	2	6.00	402	0.38
Building Construction North	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating North	Air Compressors	1	6.00	78	0.48
Paving North	Cement and Mortar Mixers	1	6.00	9	0.56
Paving North	Pavers	1	6.00	130	0.42
Paving North	Paving Equipment	1	8.00	132	0.36
Paving North	Rollers	1	7.00	80	0.38
Paving North	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition South	8	50.00	0.00	280.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading South	9	70.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving South	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demolition North	8	50.00	0.00	300.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading North	9	70.00	40.00	9,286.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Demolition South - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Fugitive Dust					0.1472	0.0000	0.1472	0.0223	0.0000	0.0223			0.0000			0.0000
Off-Road	1.4004	14.1547	19.3760	0.0290	1 1 1	0.7303	0.7303		0.6719	0.6719		2,803.672 9	2,803.672 9	0.9068		2,826.342 0
Total	1.4004	14.1547	19.3760	0.0290	0.1472	0.7303	0.8775	0.0223	0.6719	0.6942		2,803.672 9	2,803.672 9	0.9068		2,826.342 0

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.2 Demolition South - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.2133	6.7945	1.6542	0.0216	0.5270	0.0242	0.5512	0.1444	0.0231	0.1675		2,348.836 3	2,348.836 3	0.1598		2,352.831 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2306	0.1499	1.6993	5.2100e- 003	0.5589	4.1400e- 003	0.5630	0.1482	3.8100e- 003	0.1520		519.0756	519.0756	0.0140		519.4246
Total	0.4439	6.9444	3.3535	0.0268	1.0859	0.0283	1.1142	0.2926	0.0269	0.3195		2,867.911 8	2,867.911 8	0.1738		2,872.255 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	 				0.0662	0.0000	0.0662	0.0100	0.0000	0.0100		i i	0.0000			0.0000
Off-Road	1.4004	14.1547	19.3760	0.0290		0.7303	0.7303	 	0.6719	0.6719	0.0000	2,803.672 9	2,803.672 9	0.9068	 	2,826.342 0
Total	1.4004	14.1547	19.3760	0.0290	0.0662	0.7303	0.7965	0.0100	0.6719	0.6819	0.0000	2,803.672 9	2,803.672 9	0.9068		2,826.342 0

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.2 Demolition South - 2021 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.2133	6.7945	1.6542	0.0216	0.5270	0.0242	0.5512	0.1444	0.0231	0.1675		2,348.836 3	2,348.836 3	0.1598		2,352.831 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.2306	0.1499	1.6993	5.2100e- 003	0.5589	4.1400e- 003	0.5630	0.1482	3.8100e- 003	0.1520		519.0756	519.0756	0.0140	 	519.4246
Total	0.4439	6.9444	3.3535	0.0268	1.0859	0.0283	1.1142	0.2926	0.0269	0.3195		2,867.911 8	2,867.911 8	0.1738		2,872.255 9

3.3 Grading South - 2021

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.4582	0.0000	1.4582	0.1575	0.0000	0.1575			0.0000			0.0000
Off-Road	2.5852	29.9299	20.2278	0.0462	 	1.2361	1.2361		1.1372	1.1372		4,476.280 6	4,476.280 6	1.4477		4,512.473 6
Total	2.5852	29.9299	20.2278	0.0462	1.4582	1.2361	2.6943	0.1575	1.1372	1.2947		4,476.280 6	4,476.280 6	1.4477		4,512.473 6

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.3 Grading South - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.3228	0.2098	2.3791	7.2900e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		726.7058	726.7058	0.0196		727.1944
Total	0.3228	0.2098	2.3791	7.2900e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		726.7058	726.7058	0.0196		727.1944

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					0.6562	0.0000	0.6562	0.0709	0.0000	0.0709			0.0000			0.0000
Off-Road	2.5852	29.9299	20.2278	0.0462		1.2361	1.2361		1.1372	1.1372	0.0000	4,476.280 6	4,476.280 6	1.4477		4,512.473 6
Total	2.5852	29.9299	20.2278	0.0462	0.6562	1.2361	1.8923	0.0709	1.1372	1.2081	0.0000	4,476.280 6	4,476.280 6	1.4477		4,512.473 6

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.3 Grading South - 2021 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.3228	0.2098	2.3791	7.2900e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		726.7058	726.7058	0.0196	 	727.1944
Total	0.3228	0.2098	2.3791	7.2900e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		726.7058	726.7058	0.0196		727.1944

3.4 Building Construction South - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691		7,033.339 6	7,033.339 6	2.2747		7,090.207 7
Total	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691		7,033.339 6	7,033.339 6	2.2747		7,090.207 7

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.4 Building Construction South - 2021 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1774	5.7325	1.5509	0.0148	0.3839	0.0121	0.3960	0.1105	0.0116	0.1221		1,580.242 7	1,580.242 7	0.1074	 	1,582.926 6
Worker	1.2175	0.7914	8.9725	0.0275	2.9509	0.0218	2.9727	0.7826	0.0201	0.8027		2,740.719 1	2,740.719 1	0.0737	 	2,742.561 9
Total	1.3948	6.5239	10.5234	0.0423	3.3348	0.0339	3.3688	0.8931	0.0317	0.9248		4,320.961 7	4,320.961 7	0.1811		4,325.488 4

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691	0.0000	7,033.339 6	7,033.339 6	2.2747		7,090.207 7
Total	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691	0.0000	7,033.339 6	7,033.339 6	2.2747		7,090.207 7

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.4 Building Construction South - 2021 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1774	5.7325	1.5509	0.0148	0.3839	0.0121	0.3960	0.1105	0.0116	0.1221		1,580.242 7	1,580.242 7	0.1074		1,582.926 6
Worker	1.2175	0.7914	8.9725	0.0275	2.9509	0.0218	2.9727	0.7826	0.0201	0.8027		2,740.719 1	2,740.719 1	0.0737		2,742.561 9
Total	1.3948	6.5239	10.5234	0.0423	3.3348	0.0339	3.3688	0.8931	0.0317	0.9248		4,320.961 7	4,320.961 7	0.1811		4,325.488 4

3.4 Building Construction South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
On Road	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672		7,033.852 7	7,033.852 7	2.2749		7,090.725 0
Total	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672		7,033.852 7	7,033.852 7	2.2749		7,090.725 0

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.4 Building Construction South - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1665	5.4410	1.4689	0.0146	0.3839	0.0105	0.3945	0.1105	0.0101	0.1206		1,566.132 7	1,566.132 7	0.1036	 	1,568.722 3
Worker	1.1451	0.7148	8.2827	0.0265	2.9509	0.0212	2.9721	0.7826	0.0195	0.8021		2,642.584 1	2,642.584 1	0.0666	 	2,644.248 6
Total	1.3116	6.1558	9.7516	0.0411	3.3348	0.0318	3.3666	0.8931	0.0296	0.9227		4,208.716 8	4,208.716 8	0.1702		4,212.970 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672	0.0000	7,033.852 7	7,033.852 7	2.2749		7,090.725 0
Total	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672	0.0000	7,033.852 7	7,033.852 7	2.2749		7,090.725 0

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.4 Building Construction South - 2022 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1665	5.4410	1.4689	0.0146	0.3839	0.0105	0.3945	0.1105	0.0101	0.1206		1,566.132 7	1,566.132 7	0.1036		1,568.722 3
Worker	1.1451	0.7148	8.2827	0.0265	2.9509	0.0212	2.9721	0.7826	0.0195	0.8021		2,642.584 1	2,642.584 1	0.0666		2,644.248 6
Total	1.3116	6.1558	9.7516	0.0411	3.3348	0.0318	3.3666	0.8931	0.0296	0.9227		4,208.716 8	4,208.716 8	0.1702		4,212.970 9

3.5 Architectural Coating South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	1.1658					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062
Total	1.3703	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.5 Architectural Coating South - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1518	0.0948	1.0981	3.5100e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		350.3426	350.3426	8.8300e- 003	 	350.5633
Total	0.1518	0.0948	1.0981	3.5100e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		350.3426	350.3426	8.8300e- 003		350.5633

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	1.1658					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817	,	0.0817	0.0817	0.0000	281.4481	281.4481	0.0183	; ; ;	281.9062
Total	1.3703	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.5 Architectural Coating South - 2022 <u>Mitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1518	0.0948	1.0981	3.5100e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		350.3426	350.3426	8.8300e- 003		350.5633
Total	0.1518	0.0948	1.0981	3.5100e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		350.3426	350.3426	8.8300e- 003		350.5633

3.6 Paving South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.0373		 		 	0.0000	0.0000	 	0.0000	0.0000		 	0.0000		 	0.0000
Total	0.7250	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.6 Paving South - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.0564	0.0352	0.4079	1.3100e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		130.1273	130.1273	3.2800e- 003	 	130.2092
Total	0.0564	0.0352	0.4079	1.3100e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		130.1273	130.1273	3.2800e- 003		130.2092

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.0373		1 1 1 1			0.0000	0.0000	1 1 1 1	0.0000	0.0000			0.0000		, , ,	0.0000
Total	0.7250	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.6 Paving South - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0564	0.0352	0.4079	1.3100e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		130.1273	130.1273	3.2800e- 003		130.2092
Total	0.0564	0.0352	0.4079	1.3100e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		130.1273	130.1273	3.2800e- 003		130.2092

3.7 Demolition North - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.1812	0.0000	1.1812	0.1789	0.0000	0.1789			0.0000			0.0000
Off-Road	1.2406	12.2150	19.2536	0.0290		0.5971	0.5971	 	0.5494	0.5494		2,804.545 2	2,804.545 2	0.9071		2,827.221 3
Total	1.2406	12.2150	19.2536	0.0290	1.1812	0.5971	1.7783	0.1789	0.5494	0.7282		2,804.545 2	2,804.545 2	0.9071		2,827.221 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.7 Demolition North - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.2320	7.1234	1.8711	0.0244	0.6023	0.0239	0.6262	0.1650	0.0229	0.1879		2,651.586 2	2,651.586 2	0.1805		2,656.099 5
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2169	0.1354	1.5687	5.0200e- 003	0.5589	4.0200e- 003	0.5629	0.1482	3.7000e- 003	0.1519		500.4894	500.4894	0.0126		500.8047
Total	0.4488	7.2588	3.4398	0.0294	1.1612	0.0279	1.1891	0.3132	0.0266	0.3398		3,152.075 6	3,152.075 6	0.1931		3,156.904 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	 				0.5316	0.0000	0.5316	0.0805	0.0000	0.0805			0.0000			0.0000
Off-Road	1.2406	12.2150	19.2536	0.0290		0.5971	0.5971		0.5494	0.5494	0.0000	2,804.545 2	2,804.545 2	0.9071		2,827.221 3
Total	1.2406	12.2150	19.2536	0.0290	0.5316	0.5971	1.1287	0.0805	0.5494	0.6298	0.0000	2,804.545 2	2,804.545 2	0.9071		2,827.221 3

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.7 Demolition North - 2022 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.2320	7.1234	1.8711	0.0244	0.6023	0.0239	0.6262	0.1650	0.0229	0.1879		2,651.586 2	2,651.586 2	0.1805		2,656.099 5
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2169	0.1354	1.5687	5.0200e- 003	0.5589	4.0200e- 003	0.5629	0.1482	3.7000e- 003	0.1519		500.4894	500.4894	0.0126		500.8047
Total	0.4488	7.2588	3.4398	0.0294	1.1612	0.0279	1.1891	0.3132	0.0266	0.3398		3,152.075 6	3,152.075 6	0.1931		3,156.904 2

3.8 Grading North - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.5289	0.0000	1.5289	0.1682	0.0000	0.1682			0.0000			0.0000
Off-Road	2.3004	25.6112	19.8367	0.0462		1.0418	1.0418		0.9584	0.9584		4,474.977 3	4,474.977 3	1.4473		4,511.1598
Total	2.3004	25.6112	19.8367	0.0462	1.5289	1.0418	2.5707	0.1682	0.9584	1.1266		4,474.977 3	4,474.977 3	1.4473		4,511.159 8

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.8 Grading North - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	1.0355	31.8020	8.3535	0.1088	4.9745	0.1068	5.0812	1.2977	0.1021	1.3998		11,837.802 5	11,837.802 5	0.8060		11,857.952 0
Vendor	0.1110	3.6274	0.9793	9.7500e- 003	0.2560	7.0300e- 003	0.2630	0.0737	6.7200e- 003	0.0804		1,044.088 4	1,044.088 4	0.0691		1,045.814 9
Worker	0.3036	0.1895	2.1962	7.0300e- 003	0.7824	5.6300e- 003	0.7881	0.2075	5.1800e- 003	0.2127		700.6852	700.6852	0.0177		701.1265
Total	1.4501	35.6189	11.5289	0.1256	6.0129	0.1194	6.1323	1.5789	0.1140	1.6929		13,582.57 61	13,582.57 61	0.8927		13,604.89 34

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust		i i			0.6880	0.0000	0.6880	0.0757	0.0000	0.0757		i i	0.0000			0.0000
Off-Road	2.3004	25.6112	19.8367	0.0462		1.0418	1.0418		0.9584	0.9584	0.0000	4,474.977 3	4,474.977 3	1.4473		4,511.1598
Total	2.3004	25.6112	19.8367	0.0462	0.6880	1.0418	1.7298	0.0757	0.9584	1.0341	0.0000	4,474.977 3	4,474.977 3	1.4473		4,511.159 8

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.8 Grading North - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Hauling	1.0355	31.8020	8.3535	0.1088	4.9745	0.1068	5.0812	1.2977	0.1021	1.3998		11,837.802 5	11,837.802 5	0.8060		11,857.952 0
Vendor	0.1110	3.6274	0.9793	9.7500e- 003	0.2560	7.0300e- 003	0.2630	0.0737	6.7200e- 003	0.0804		1,044.088 4	1,044.088 4	0.0691		1,045.814 9
Worker	0.3036	0.1895	2.1962	7.0300e- 003	0.7824	5.6300e- 003	0.7881	0.2075	5.1800e- 003	0.2127		700.6852	700.6852	0.0177		701.1265
Total	1.4501	35.6189	11.5289	0.1256	6.0129	0.1194	6.1323	1.5789	0.1140	1.6929		13,582.57 61	13,582.57 61	0.8927		13,604.89 34

3.8 Grading North - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					1.5289	0.0000	1.5289	0.1682	0.0000	0.1682			0.0000			0.0000
Off-Road	2.1119	22.3970	19.6542	0.0462		0.9107	0.9107		0.8378	0.8378		4,475.586 9	4,475.586 9	1.4475	 	4,511.7742
Total	2.1119	22.3970	19.6542	0.0462	1.5289	0.9107	2.4396	0.1682	0.8378	1.0060		4,475.586 9	4,475.586 9	1.4475		4,511.774 2

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.8 Grading North - 2023

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.6763	19.2456	7.5672	0.1042	4.5030	0.0437	4.5467	1.1819	0.0418	1.2237		11,357.856 3	11,357.856 3	0.7601		11,376.858 6
Vendor	0.0824	2.7282	0.8685	9.4400e- 003	0.2560	3.3000e- 003	0.2593	0.0737	3.1600e- 003	0.0768		1,012.120 5	1,012.120 5	0.0606	 	1,013.636 4
Worker	0.2864	0.1714	2.0242	6.7700e- 003	0.7824	5.4800e- 003	0.7879	0.2075	5.0400e- 003	0.2126		674.5848	674.5848	0.0159	 	674.9825
Total	1.0450	22.1453	10.4598	0.1204	5.5414	0.0525	5.5938	1.4631	0.0500	1.5131		13,044.56 16	13,044.56 16	0.8366		13,065.47 75

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.6880	0.0000	0.6880	0.0757	0.0000	0.0757		1 1 1	0.0000			0.0000
Off-Road	2.1119	22.3970	19.6542	0.0462		0.9107	0.9107	 	0.8378	0.8378	0.0000	4,475.586 9	4,475.586 9	1.4475	 - -	4,511.7742
Total	2.1119	22.3970	19.6542	0.0462	0.6880	0.9107	1.5987	0.0757	0.8378	0.9135	0.0000	4,475.586 9	4,475.586 9	1.4475		4,511.774 2

CalEEMod Version: CalEEMod.2016.3.2 Page 30 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.8 Grading North - 2023

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.6763	19.2456	7.5672	0.1042	4.5030	0.0437	4.5467	1.1819	0.0418	1.2237		11,357.856 3	11,357.856 3	0.7601		11,376.858 6
Vendor	0.0824	2.7282	0.8685	9.4400e- 003	0.2560	3.3000e- 003	0.2593	0.0737	3.1600e- 003	0.0768		1,012.120 5	1,012.120 5	0.0606	, ! ! !	1,013.636 4
Worker	0.2864	0.1714	2.0242	6.7700e- 003	0.7824	5.4800e- 003	0.7879	0.2075	5.0400e- 003	0.2126		674.5848	674.5848	0.0159	, ! ! !	674.9825
Total	1.0450	22.1453	10.4598	0.1204	5.5414	0.0525	5.5938	1.4631	0.0500	1.5131		13,044.56 16	13,044.56 16	0.8366		13,065.47 75

3.9 Building Construction North - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461		7,035.043 4	7,035.043 4	2.2753		7,091.925 2
Total	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461		7,035.043 4	7,035.043 4	2.2753		7,091.925 2

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.9 Building Construction North - 2023 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1236	4.0923	1.3027	0.0142	0.3839	4.9500e- 003	0.3889	0.1105	4.7300e- 003	0.1153		1,518.180 7	1,518.180 7	0.0910		1,520.454 6
Worker	1.0800	0.6466	7.6342	0.0255	2.9509	0.0207	2.9716	0.7826	0.0190	0.8016		2,544.148 4	2,544.148 4	0.0600		2,545.648 2
Total	1.2036	4.7389	8.9369	0.0397	3.3348	0.0256	3.3604	0.8931	0.0238	0.9169		4,062.329 1	4,062.329 1	0.1510		4,066.102 8

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461	0.0000	7,035.043 3	7,035.043 3	2.2753		7,091.925 2
Total	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461	0.0000	7,035.043 3	7,035.043 3	2.2753		7,091.925 2

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.9 Building Construction North - 2023 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1236	4.0923	1.3027	0.0142	0.3839	4.9500e- 003	0.3889	0.1105	4.7300e- 003	0.1153		1,518.180 7	1,518.180 7	0.0910	 	1,520.454 6
Worker	1.0800	0.6466	7.6342	0.0255	2.9509	0.0207	2.9716	0.7826	0.0190	0.8016		2,544.148 4	2,544.148 4	0.0600	 	2,545.648 2
Total	1.2036	4.7389	8.9369	0.0397	3.3348	0.0256	3.3604	0.8931	0.0238	0.9169		4,062.329 1	4,062.329 1	0.1510		4,066.102 8

3.9 Building Construction North - 2024

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683		7,035.675 3	7,035.675 3	2.2755		7,092.562 3
Total	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683		7,035.675 3	7,035.675 3	2.2755		7,092.562 3

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.9 Building Construction North - 2024 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1208	4.0827	1.2656	0.0141	0.3839	4.8700e- 003	0.3888	0.1105	4.6600e- 003	0.1152		1,512.912 4	1,512.912 4	0.0896		1,515.1511
Worker	1.0252	0.5890	7.1160	0.0247	2.9509	0.0204	2.9713	0.7826	0.0188	0.8014		2,460.064 2	2,460.064 2	0.0549		2,461.437 1
Total	1.1460	4.6718	8.3816	0.0388	3.3348	0.0253	3.3601	0.8931	0.0234	0.9165		3,972.976 7	3,972.976 7	0.1445		3,976.588 2

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526	 	0.9683	0.9683	0.0000	7,035.675 3	7,035.675 3	2.2755		7,092.562 3
Total	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683	0.0000	7,035.675 3	7,035.675 3	2.2755		7,092.562 3

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.9 Building Construction North - 2024 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1208	4.0827	1.2656	0.0141	0.3839	4.8700e- 003	0.3888	0.1105	4.6600e- 003	0.1152		1,512.912 4	1,512.912 4	0.0896		1,515.1511
Worker	1.0252	0.5890	7.1160	0.0247	2.9509	0.0204	2.9713	0.7826	0.0188	0.8014		2,460.064 2	2,460.064 2	0.0549		2,461.437 1
Total	1.1460	4.6718	8.3816	0.0388	3.3348	0.0253	3.3601	0.8931	0.0234	0.9165		3,972.976 7	3,972.976 7	0.1445		3,976.588 2

3.10 Architectural Coating North - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1917	1.3030	1.8111	2.9700e- 003		0.0708	0.0708		0.0708	0.0708		281.4481	281.4481	0.0168		281.8690
Total	3.7977	1.3030	1.8111	2.9700e- 003		0.0708	0.0708		0.0708	0.0708		281.4481	281.4481	0.0168		281.8690

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.10 Architectural Coating North - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1432	0.0857	1.0121	3.3800e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		337.2924	337.2924	7.9500e- 003	 	337.4912
Total	0.1432	0.0857	1.0121	3.3800e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		337.2924	337.2924	7.9500e- 003		337.4912

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1917	1.3030	1.8111	2.9700e- 003		0.0708	0.0708	 	0.0708	0.0708	0.0000	281.4481	281.4481	0.0168	 	281.8690
Total	3.7977	1.3030	1.8111	2.9700e- 003		0.0708	0.0708		0.0708	0.0708	0.0000	281.4481	281.4481	0.0168		281.8690

CalEEMod Version: CalEEMod.2016.3.2 Page 36 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.10 Architectural Coating North - 2023 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Worker	0.1432	0.0857	1.0121	3.3800e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		337.2924	337.2924	7.9500e- 003		337.4912		
Total	0.1432	0.0857	1.0121	3.3800e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		337.2924	337.2924	7.9500e- 003		337.4912		

3.10 Architectural Coating North - 2024

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000		1	0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443
Total	3.7868	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.10 Architectural Coating North - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day										lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000		
Worker	0.1359	0.0781	0.9434	3.2700e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		326.1449	326.1449	7.2800e- 003	 	326.3269		
Total	0.1359	0.0781	0.9434	3.2700e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		326.1449	326.1449	7.2800e- 003		326.3269		

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609	1	0.0609	0.0609	0.0000	281.4481	281.4481	0.0159	 	281.8443
Total	3.7868	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.10 Architectural Coating North - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category		lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000			
Worker	0.1359	0.0781	0.9434	3.2700e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		326.1449	326.1449	7.2800e- 003		326.3269			
Total	0.1359	0.0781	0.9434	3.2700e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		326.1449	326.1449	7.2800e- 003		326.3269			

3.11 Paving North - 2024

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	0.6180	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594		1,297.868 8	1,297.868 8	0.4114		1,308.154 7
Paving	0.0325				 	0.0000	0.0000		0.0000	0.0000			0.0000		 	0.0000
Total	0.6504	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594		1,297.868 8	1,297.868 8	0.4114		1,308.154 7

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.11 Paving North - 2024

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1010	0.0580	0.7008	2.4300e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		242.2791	242.2791	5.4100e- 003		242.4143
Total	0.1010	0.0580	0.7008	2.4300e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		242.2791	242.2791	5.4100e- 003		242.4143

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.6180	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594	0.0000	1,297.868 8	1,297.868 8	0.4114		1,308.154 7
Paving	0.0325		1 1 1 1		 	0.0000	0.0000	1	0.0000	0.0000			0.0000		1 1 1	0.0000
Total	0.6504	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594	0.0000	1,297.868 8	1,297.868 8	0.4114		1,308.154 7

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

3.11 Paving North - 2024 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.1010	0.0580	0.7008	2.4300e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		242.2791	242.2791	5.4100e- 003	 	242.4143
Total	0.1010	0.0580	0.7008	2.4300e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		242.2791	242.2791	5.4100e- 003		242.4143

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	1.1793	5.5201	14.6504	0.0609	5.8042	0.0454	5.8496	1.5525	0.0422	1.5947		6,221.708 7	6,221.708 7	0.2793		6,228.690 6
Unmitigated	1.1793	5.5201	14.6504	0.0609	5.8042	0.0454	5.8496	1.5525	0.0422	1.5947		6,221.708 7	6,221.708 7	0.2793		6,228.690 6

4.2 Trip Summary Information

	Ave	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Congregate Care (Assisted Living)	705.76	705.76	705.76	2,410,230	2,410,230
Day-Care Center	220.90	0.00	0.00	229,429	229,429
Enclosed Parking with Elevator	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	926.66	705.76	705.76	2,639,659	2,639,659

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Congregate Care (Assisted	14.70	5.90	8.70	40.00	19.00	41.00	86	11	3
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Congregate Care (Assisted Living)	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Day-Care Center	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Enclosed Parking with Elevator	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Other Asphalt Surfaces	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
NaturalGas Unmitigated	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369	,	582.7251	582.7251	0.0112	0.0107	586.1880

CalEEMod Version: CalEEMod.2016.3.2 Page 43 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)		0.0479	0.4096	0.1743	2.6100e- 003		0.0331	0.0331	i i i	0.0331	0.0331		522.8627	522.8627	0.0100	9.5900e- 003	525.9698
Day-Care Center	508.831	5.4900e- 003	0.0499	0.0419	3.0000e- 004		3.7900e- 003	3.7900e- 003	 	3.7900e- 003	3.7900e- 003		59.8624	59.8624	1.1500e- 003	1.1000e- 003	60.2182
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	1 1 1 1	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)		0.0479	0.4096	0.1743	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.8627	522.8627	0.0100	9.5900e- 003	525.9698
Day-Care Center	0.508831	5.4900e- 003	0.0499	0.0419	3.0000e- 004		3.7900e- 003	3.7900e- 003		3.7900e- 003	3.7900e- 003		59.8624	59.8624	1.1500e- 003	1.1000e- 003	60.2182
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

CalEEMod Version: CalEEMod.2016.3.2 Page 45 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Unmitigated	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3

6.2 Area by SubCategory Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.3329					0.0000	0.0000		0.0000	0.0000			0.0000	 	 	0.0000
Consumer Products	3.8850					0.0000	0.0000	 	0.0000	0.0000			0.0000		i i	0.0000
Hearth	0.3417	2.9195	1.2424	0.0186		0.2361	0.2361	 	0.2361	0.2361	0.0000	3,727.058 8	3,727.058 8	0.0714	0.0683	3,749.206 9
Landscaping	0.4374	0.1673	14.5263	7.7000e- 004		0.0806	0.0806	 	0.0806	0.0806		26.1877	26.1877	0.0252	i i	26.8164
Total	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3

CalEEMod Version: CalEEMod.2016.3.2 Page 46 of 47 Date: 6/4/2020 11:45 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
SubCategory		lb/day										lb/day						
Architectural Coating	0.3329					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000		
Consumer Products	3.8850	 				0.0000	0.0000	1 	0.0000	0.0000			0.0000		 	0.0000		
Hearth	0.3417	2.9195	1.2424	0.0186		0.2361	0.2361	1 	0.2361	0.2361	0.0000	3,727.058 8	3,727.058 8	0.0714	0.0683	3,749.206 9		
Landscaping	0.4374	0.1673	14.5263	7.7000e- 004		0.0806	0.0806	1 	0.0806	0.0806		26.1877	26.1877	0.0252		26.8164		
Total	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3		

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Belmont Village Westwood Presbyterian - South Coast Air Basin, Winter

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
						4

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type N	Number Hours/Day	/ Hours/Year	Horse Power	Load Factor	Fuel Type
------------------	------------------	--------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Belmont Village Westwood Presbyterian South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	9.60	1000sqft	0.22	17,858.00	0
Enclosed Parking with Elevator	184.00	Space	0.00	73,600.00	0
Other Asphalt Surfaces	0.57	Acre	0.57	24,829.20	0
City Park	0.12	Acre	0.12	5,227.20	0
Congregate Care (Assisted Living)	176.00	Dwelling Unit	0.71	176,580.00	503

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2025
Utility Company	Los Angeles Department	of Water & Power			
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on site plans. 284 beds. Remaining acreage allocated to other asphalt. Does not include church office because replacing existing use.

Construction Phase - Based on applicant info.

Off-road Equipment -

Off-road Equipment -

Off-road Equipment - Applicant info.

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Off-road Equipment - Applicant info.

Off-road Equipment - Default

Off-road Equipment - Client details

Trips and VMT - Export 65,000 CY with 14 CY per truck (based on applicant statement that 4400 trips required). Applicant info and traffic analysis. Distance to Chiquita Landfill.

Demolition - Estimated per square footage of buildings to be demolished based on ZIMAS and GE

Grading - Based on applicant info of up to 65,000 CY export.

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L). South Campus is nonres only, North Campus is res and parking only.

Vehicle Trips - Playground and landscaping would not generate trips. Trip rates based on TIS.

Woodstoves - Per SCAQMD Rule 445

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use - Reduced lighting intensity for eldercare facility by 75% in accordance with Title 24

Water And Wastewater - Reduced by 20% to reflect 2016 CALGreen requirements.

Solid Waste -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 for dust mitigation

Mobile Land Use Mitigation -

Area Mitigation - Compliance with SCAQMD Rule 1113.

Energy Mitigation -

Water Mitigation - Applicant info

Waste Mitigation - Reduced by 25% in accordance with AB 341

Page 3 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	8,929.00	0.00
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	26,787.00	0.00
tblArchitecturalCoating	ConstArea_Parking	5,906.00	0.00
tblArchitecturalCoating	ConstArea_Residential_Exterior	119,192.00	0.00
tblArchitecturalCoating	ConstArea_Residential_Interior	357,575.00	0.00
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblConstructionPhase	NumDays	10.00	71.00
tblConstructionPhase	NumDays	10.00	314.00
tblConstructionPhase	NumDays	200.00	180.00
tblConstructionPhase	NumDays	200.00	457.00
tblConstructionPhase	NumDays	20.00	16.00
tblConstructionPhase	NumDays	20.00	15.00
tblConstructionPhase	NumDays	4.00	16.00
tblConstructionPhase	NumDays	4.00	104.00
tblConstructionPhase	NumDays	10.00	46.00
tblConstructionPhase	NumDays	10.00	40.00
tblEnergyUse	LightingElect	741.44	185.36
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberGas	149.60	176.00
tblFireplaces	NumberNoFireplace	17.60	0.00

Page 4 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

tblFireplaces	NumberWood	8.80	0.00
tblGrading	MaterialExported	0.00	65,000.00
tblLandUse	LandUseSquareFeet	9,600.00	17,858.00
tblLandUse	LandUseSquareFeet	176,000.00	176,580.00
tblLandUse	LotAcreage	1.66	0.00
tblLandUse	LotAcreage	11.00	0.71
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripLength	20.00	34.50
tblTripsAndVMT	HaulingTripNumber	11.00	280.00
tblTripsAndVMT	HaulingTripNumber	82.00	300.00
tblTripsAndVMT	HaulingTripNumber	8,125.00	9,286.00
tblTripsAndVMT	VendorTripNumber	39.00	60.00
tblTripsAndVMT	VendorTripNumber	0.00	40.00
tblTripsAndVMT	VendorTripNumber	39.00	60.00
tblTripsAndVMT	WorkerTripNumber	20.00	50.00
tblTripsAndVMT	WorkerTripNumber	23.00	70.00
tblTripsAndVMT	WorkerTripNumber	178.00	264.00

Page 5 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

tblTripsAndVMT	WorkerTripNumber	36.00	35.00
tblTripsAndVMT	WorkerTripNumber	20.00	50.00
tblTripsAndVMT	WorkerTripNumber	23.00	70.00
tblTripsAndVMT	WorkerTripNumber	178.00	264.00
tblTripsAndVMT	WorkerTripNumber	36.00	35.00
tblVehicleTrips	HO_TTP	40.60	41.00
tblVehicleTrips	HS_TTP	19.20	19.00
tblVehicleTrips	HW_TTP	40.20	40.00
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	ST_TR	2.20	4.01
tblVehicleTrips	ST_TR	6.21	0.00
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	SU_TR	2.44	4.01
tblVehicleTrips	SU_TR	5.83	0.00
tblVehicleTrips	WD_TR	1.89	0.00
tblVehicleTrips	WD_TR	2.74	4.01
tblVehicleTrips	WD_TR	74.06	23.01
tblWater	IndoorWaterUseRate	11,467,108.51	9,173,686.80
tblWoodstoves	NumberCatalytic	8.80	0.00
tblWoodstoves	NumberNoncatalytic	8.80	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00
			•

2.0 Emissions Summary

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2021	4.7076	51.0658	47.4484	0.1172	3.4737	2.0003	5.4740	0.8931	1.8412	2.5210	0.0000	11,580.013 5	11,580.013 5	2.5463	0.0000	11,641.362 0
2022	6.5739	60.5896	58.2505	0.1737	7.5417	1.7332	8.7018	1.7470	1.6023	2.8184	0.0000	18,260.64 76	18,260.64 76	2.8856	0.0000	18,318.60 29
2023	7.9354	44.2513	47.7534	0.1684	7.0702	1.2360	8.0325	1.6313	1.1430	2.5183	0.0000	17,714.118 6	17,714.118 6	2.4506	0.0000	17,770.79 98
2024	8.5040	40.3619	56.5188	0.1361	4.2693	1.4243	5.6936	1.1360	1.3162	2.4522	0.0000	13,398.86 96	13,398.86 96	2.8597	0.0000	13,470.36 29
Maximum	8.5040	60.5896	58.2505	0.1737	7.5417	2.0003	8.7018	1.7470	1.8412	2.8184	0.0000	18,260.64 76	18,260.64 76	2.8856	0.0000	18,318.60 29

CalEEMod Version: CalEEMod.2016.3.2 Page 7 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

2.1 Overall Construction (Maximum Daily Emission)

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year		lb/day									lb/day						
2021	4.7076	51.0658	47.4484	0.1172	3.3348	2.0003	4.8565	0.8931	1.8412	2.4221	0.0000	11,580.013 5	11,580.013 5	2.5463	0.0000	11,641.362 0	
2022	6.5739	60.5896	58.2505	0.1737	6.7009	1.7332	7.8609	1.6545	1.6023	2.7259	0.0000	18,260.64 76	18,260.64 76	2.8856	0.0000	18,318.60 29	
2023	7.9354	44.2513	47.7534	0.1684	6.2294	1.2360	7.1916	1.5388	1.1430	2.4258	0.0000	17,714.118 6	17,714.118 6	2.4506	0.0000	17,770.79 98	
2024	8.5040	40.3619	56.5188	0.1361	4.2693	1.4243	5.6936	1.1360	1.3162	2.4522	0.0000	13,398.86 96	13,398.86 96	2.8597	0.0000	13,470.36 29	
Maximum	8.5040	60.5896	58.2505	0.1737	6.7009	2.0003	7.8609	1.6545	1.8412	2.7259	0.0000	18,260.64 76	18,260.64 76	2.8856	0.0000	18,318.60 29	
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e	

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	8.14	0.00	8.24	3.42	0.00	2.75	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 8 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Area	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Energy	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369	 	0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
Mobile	1.2339	5.4294	15.5589	0.0642	5.8042	0.0452	5.8494	1.5525	0.0420	1.5945		6,551.433 4	6,551.433 4	0.2788	 	6,558.404 2
Total	6.2842	8.9756	31.5437	0.0865	5.8042	0.3987	6.2029	1.5525	0.3955	1.9480	0.0000	10,887.40 51	10,887.40 51	0.3866	0.0790	10,920.61 54

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Energy	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
Mobile	1.2339	5.4294	15.5589	0.0642	5.8042	0.0452	5.8494	1.5525	0.0420	1.5945		6,551.433 4	6,551.433 4	0.2788		6,558.404 2
Total	6.2842	8.9756	31.5437	0.0865	5.8042	0.3987	6.2029	1.5525	0.3955	1.9480	0.0000	10,887.40 51	10,887.40 51	0.3866	0.0790	10,920.61 54

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Date: 6/4/2020 11:46 AM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition South	Demolition	9/1/2021	9/22/2021	5	16	
2	Grading South	Grading	9/1/2021	9/22/2021	5	16	
3	Building Construction South	Building Construction	9/23/2021	6/1/2022	5	180	
4	Architectural Coating South	Architectural Coating	2/23/2022	6/1/2022	5	71	
5	Paving South	Paving	3/9/2022	5/3/2022	5	40	
6	Demolition North	Demolition	10/4/2022	10/24/2022	5	15	
7	Grading North	Grading	10/25/2022	3/17/2023	5	104	
8	Building Construction North	Building Construction	3/20/2023	12/17/2024	5	457	
9	Architectural Coating North	Architectural Coating	10/5/2023	12/17/2024	5	314	
10	Paving North	Paving	8/2/2024	10/4/2024	5	46	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.57

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 26,787; Non-Residential Outdoor: 8,929; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Page 10 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition South	Excavators	3	8.00	158	0.38
Demolition South	Skid Steer Loaders	2	8.00	65	0.37
Demolition South	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading South	Bore/Drill Rigs	1	6.00	221	0.50
Grading South	Crawler Tractors	2	8.00	212	0.43
Grading South	Excavators	2	8.00	158	0.38
Grading South	Graders	1	6.00	187	0.41
Grading South	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction South	Aerial Lifts	15	8.00	63	0.31
Building Construction South	Cranes	3	6.00	231	0.29
Building Construction South	Forklifts	2	6.00	89	0.20
Building Construction South	Off-Highway Trucks	2	6.00	402	0.38
Building Construction South	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating South	Air Compressors	1	6.00	78	0.48
Paving South	Cement and Mortar Mixers	1	6.00	9	0.56
Paving South	Pavers	1	6.00	130	0.42
Paving South	Paving Equipment	1	8.00	132	0.36
Paving South	Rollers	1	7.00	80	0.38
Paving South	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Demolition North	Excavators	3	8.00	158	0.38
Demolition North	Skid Steer Loaders	2	8.00	65	0.37
Demolition North	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading North	Bore/Drill Rigs	1	6.00	221	0.50
Grading North	Crawler Tractors	2	8.00	212	0.43
Grading North	Excavators	2	8.00	158	0.38
Grading North	Graders	1	6.00	187	0.41

Page 11 of 47

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

Grading North	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction North	Aerial Lifts	15	8.00	63	0.31
Building Construction North	Cranes	3	6.00	231	0.29
Building Construction North	Forklifts	2	6.00	89	0.20
Building Construction North	Off-Highway Trucks	2	6.00	402	0.38
Building Construction North	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating North	Air Compressors	1	6.00	78	0.48
Paving North	Cement and Mortar Mixers	1	6.00	9	0.56
Paving North	Pavers	1	6.00	130	0.42
Paving North	Paving Equipment	1	8.00	132	0.36
Paving North	Rollers	1	7.00	80	0.38
Paving North	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition South	8	50.00	0.00	280.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading South	9	70.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving South	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demolition North	8	50.00	0.00	300.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading North	9	70.00	40.00	9,286.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Demolition South - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.1472	0.0000	0.1472	0.0223	0.0000	0.0223		i i	0.0000			0.0000
Off-Road	1.4004	14.1547	19.3760	0.0290		0.7303	0.7303		0.6719	0.6719		2,803.672 9	2,803.672 9	0.9068		2,826.342 0
Total	1.4004	14.1547	19.3760	0.0290	0.1472	0.7303	0.8775	0.0223	0.6719	0.6942		2,803.672 9	2,803.672 9	0.9068		2,826.342 0

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.2 Demolition South - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.2099	6.6536	1.5923	0.0219	0.5270	0.0240	0.5510	0.1444	0.0229	0.1673		2,373.873 6	2,373.873 6	0.1560		2,377.773 0
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.2093	0.1365	1.8773	5.5500e- 003	0.5589	4.1400e- 003	0.5630	0.1482	3.8100e- 003	0.1520		553.4491	553.4491	0.0149	 	553.8221
Total	0.4192	6.7901	3.4697	0.0274	1.0859	0.0281	1.1140	0.2926	0.0267	0.3193		2,927.322 8	2,927.322 8	0.1709		2,931.595 1

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	 				0.0662	0.0000	0.0662	0.0100	0.0000	0.0100			0.0000			0.0000
Off-Road	1.4004	14.1547	19.3760	0.0290		0.7303	0.7303		0.6719	0.6719	0.0000	2,803.672 9	2,803.672 9	0.9068		2,826.342 0
Total	1.4004	14.1547	19.3760	0.0290	0.0662	0.7303	0.7965	0.0100	0.6719	0.6819	0.0000	2,803.672 9	2,803.672 9	0.9068		2,826.342 0

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.2 Demolition South - 2021 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.2099	6.6536	1.5923	0.0219	0.5270	0.0240	0.5510	0.1444	0.0229	0.1673		2,373.873 6	2,373.873 6	0.1560		2,377.773 0
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.2093	0.1365	1.8773	5.5500e- 003	0.5589	4.1400e- 003	0.5630	0.1482	3.8100e- 003	0.1520		553.4491	553.4491	0.0149	 	553.8221
Total	0.4192	6.7901	3.4697	0.0274	1.0859	0.0281	1.1140	0.2926	0.0267	0.3193		2,927.322 8	2,927.322 8	0.1709		2,931.595 1

3.3 Grading South - 2021

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.4582	0.0000	1.4582	0.1575	0.0000	0.1575			0.0000			0.0000
Off-Road	2.5852	29.9299	20.2278	0.0462	 	1.2361	1.2361		1.1372	1.1372		4,476.280 6	4,476.280 6	1.4477		4,512.473 6
Total	2.5852	29.9299	20.2278	0.0462	1.4582	1.2361	2.6943	0.1575	1.1372	1.2947		4,476.280 6	4,476.280 6	1.4477		4,512.473 6

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.3 Grading South - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2930	0.1911	2.6283	7.7800e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		774.8288	774.8288	0.0209		775.3509
Total	0.2930	0.1911	2.6283	7.7800e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		774.8288	774.8288	0.0209		775.3509

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.6562	0.0000	0.6562	0.0709	0.0000	0.0709			0.0000			0.0000
Off-Road	2.5852	29.9299	20.2278	0.0462		1.2361	1.2361	 	1.1372	1.1372	0.0000	4,476.280 6	4,476.280 6	1.4477		4,512.473 6
Total	2.5852	29.9299	20.2278	0.0462	0.6562	1.2361	1.8923	0.0709	1.1372	1.2081	0.0000	4,476.280 6	4,476.280 6	1.4477		4,512.473 6

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.3 Grading South - 2021 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2930	0.1911	2.6283	7.7800e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		774.8288	774.8288	0.0209		775.3509
Total	0.2930	0.1911	2.6283	7.7800e- 003	0.7824	5.7900e- 003	0.7882	0.2075	5.3300e- 003	0.2128		774.8288	774.8288	0.0209		775.3509

3.4 Building Construction South - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691		7,033.339 6	7,033.339 6	2.2747		7,090.207 7
Total	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691		7,033.339 6	7,033.339 6	2.2747		7,090.207 7

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.4 Building Construction South - 2021 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1688	5.7460	1.3952	0.0152	0.3839	0.0117	0.3957	0.1105	0.0112	0.1217		1,624.462 5	1,624.462 5	0.1005	 	1,626.973 8
Worker	1.1049	0.7207	9.9124	0.0293	2.9509	0.0218	2.9727	0.7826	0.0201	0.8027		2,922.2115	2,922.2115	0.0788	 	2,924.180 5
Total	1.2737	6.4667	11.3076	0.0445	3.3348	0.0336	3.3684	0.8931	0.0313	0.9245		4,546.674 0	4,546.674 0	0.1792		4,551.154 3

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691	0.0000	7,033.339 6	7,033.339 6	2.2747		7,090.207 7
Total	3.4339	38.3458	36.1408	0.0727		1.4881	1.4881		1.3691	1.3691	0.0000	7,033.339 6	7,033.339 6	2.2747		7,090.207 7

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.4 Building Construction South - 2021 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1688	5.7460	1.3952	0.0152	0.3839	0.0117	0.3957	0.1105	0.0112	0.1217		1,624.462 5	1,624.462 5	0.1005		1,626.973 8
Worker	1.1049	0.7207	9.9124	0.0293	2.9509	0.0218	2.9727	0.7826	0.0201	0.8027		2,922.2115	2,922.2115	0.0788		2,924.180 5
Total	1.2737	6.4667	11.3076	0.0445	3.3348	0.0336	3.3684	0.8931	0.0313	0.9245		4,546.674 0	4,546.674 0	0.1792		4,551.154 3

3.4 Building Construction South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672		7,033.852 7	7,033.852 7	2.2749		7,090.725 0
Total	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672		7,033.852 7	7,033.852 7	2.2749		7,090.725 0

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.4 Building Construction South - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1584	5.4578	1.3210	0.0150	0.3839	0.0102	0.3941	0.1105	9.7600e- 003	0.1203		1,610.221 4	1,610.221 4	0.0970	 	1,612.646 4
Worker	1.0365	0.6510	9.1665	0.0283	2.9509	0.0212	2.9721	0.7826	0.0195	0.8021		2,817.574 7	2,817.574 7	0.0712	 	2,819.354 8
Total	1.1949	6.1089	10.4876	0.0433	3.3348	0.0314	3.3662	0.8931	0.0293	0.9224		4,427.796 1	4,427.796 1	0.1682		4,432.001 2

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672	0.0000	7,033.852 7	7,033.852 7	2.2749		7,090.725 0
Total	3.0952	33.0519	35.4767	0.0727		1.2687	1.2687		1.1672	1.1672	0.0000	7,033.852 7	7,033.852 7	2.2749		7,090.725 0

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.4 Building Construction South - 2022 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1584	5.4578	1.3210	0.0150	0.3839	0.0102	0.3941	0.1105	9.7600e- 003	0.1203		1,610.221 4	1,610.221 4	0.0970	 	1,612.646 4
Worker	1.0365	0.6510	9.1665	0.0283	2.9509	0.0212	2.9721	0.7826	0.0195	0.8021		2,817.574 7	2,817.574 7	0.0712	 	2,819.354 8
Total	1.1949	6.1089	10.4876	0.0433	3.3348	0.0314	3.3662	0.8931	0.0293	0.9224		4,427.796 1	4,427.796 1	0.1682		4,432.001 2

3.5 Architectural Coating South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	1.1658					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817	,	0.0817	0.0817		281.4481	281.4481	0.0183	 	281.9062
Total	1.3703	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.5 Architectural Coating South - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1374	0.0863	1.2153	3.7500e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		373.5421	373.5421	9.4400e- 003		373.7781
Total	0.1374	0.0863	1.2153	3.7500e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		373.5421	373.5421	9.4400e- 003		373.7781

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	1.1658					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817	1 1 1 1	0.0817	0.0817	0.0000	281.4481	281.4481	0.0183	; ; ;	281.9062
Total	1.3703	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.5 Architectural Coating South - 2022 <u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1374	0.0863	1.2153	3.7500e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		373.5421	373.5421	9.4400e- 003		373.7781
Total	0.1374	0.0863	1.2153	3.7500e- 003	0.3912	2.8100e- 003	0.3940	0.1038	2.5900e- 003	0.1063		373.5421	373.5421	9.4400e- 003		373.7781

3.6 Paving South - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.0373		1	 	, 	0.0000	0.0000	1	0.0000	0.0000			0.0000			0.0000
Total	0.7250	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.6 Paving South - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0510	0.0321	0.4514	1.3900e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		138.7442	138.7442	3.5100e- 003		138.8319
Total	0.0510	0.0321	0.4514	1.3900e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		138.7442	138.7442	3.5100e- 003		138.8319

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.0373		 		 	0.0000	0.0000		0.0000	0.0000		! ! !	0.0000			0.0000
Total	0.7250	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.6 Paving South - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0510	0.0321	0.4514	1.3900e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		138.7442	138.7442	3.5100e- 003		138.8319
Total	0.0510	0.0321	0.4514	1.3900e- 003	0.1453	1.0400e- 003	0.1464	0.0385	9.6000e- 004	0.0395		138.7442	138.7442	3.5100e- 003		138.8319

3.7 Demolition North - 2022

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.1812	0.0000	1.1812	0.1789	0.0000	0.1789			0.0000			0.0000
Off-Road	1.2406	12.2150	19.2536	0.0290	 	0.5971	0.5971		0.5494	0.5494		2,804.545 2	2,804.545 2	0.9071	 	2,827.221 3
Total	1.2406	12.2150	19.2536	0.0290	1.1812	0.5971	1.7783	0.1789	0.5494	0.7282		2,804.545 2	2,804.545 2	0.9071		2,827.221 3

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.7 Demolition North - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.2282	6.9812	1.8038	0.0246	0.6023	0.0237	0.6260	0.1650	0.0227	0.1877		2,680.1011	2,680.1011	0.1764		2,684.510 2
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1963	0.1233	1.7361	5.3500e- 003	0.5589	4.0200e- 003	0.5629	0.1482	3.7000e- 003	0.1519		533.6316	533.6316	0.0135		533.9687
Total	0.4246	7.1045	3.5399	0.0300	1.1612	0.0277	1.1889	0.3132	0.0264	0.3396		3,213.732 7	3,213.732 7	0.1899		3,218.478 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	 				0.5316	0.0000	0.5316	0.0805	0.0000	0.0805			0.0000			0.0000
Off-Road	1.2406	12.2150	19.2536	0.0290		0.5971	0.5971	 	0.5494	0.5494	0.0000	2,804.545 2	2,804.545 2	0.9071		2,827.221 3
Total	1.2406	12.2150	19.2536	0.0290	0.5316	0.5971	1.1287	0.0805	0.5494	0.6298	0.0000	2,804.545 2	2,804.545 2	0.9071		2,827.221 3

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.7 Demolition North - 2022 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.2282	6.9812	1.8038	0.0246	0.6023	0.0237	0.6260	0.1650	0.0227	0.1877		2,680.1011	2,680.1011	0.1764		2,684.510 2
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1963	0.1233	1.7361	5.3500e- 003	0.5589	4.0200e- 003	0.5629	0.1482	3.7000e- 003	0.1519		533.6316	533.6316	0.0135		533.9687
Total	0.4246	7.1045	3.5399	0.0300	1.1612	0.0277	1.1889	0.3132	0.0264	0.3396		3,213.732 7	3,213.732 7	0.1899		3,218.478 9

3.8 Grading North - 2022

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Fugitive Dust					1.5289	0.0000	1.5289	0.1682	0.0000	0.1682			0.0000			0.0000	
Off-Road	2.3004	25.6112	19.8367	0.0462		1.0418	1.0418		0.9584	0.9584		4,474.977 3	4,474.977 3	1.4473		4,511.1598	
Total	2.3004	25.6112	19.8367	0.0462	1.5289	1.0418	2.5707	0.1682	0.9584	1.1266		4,474.977 3	4,474.977 3	1.4473		4,511.159 8	

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.8 Grading North - 2022

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Hauling	1.0190	31.1672	8.0531	0.1100	4.9745	0.1058	5.0803	1.2977	0.1012	1.3989		11,965.105 2	11,965.105 2	0.7874		11,984.789 4	
Vendor	0.1056	3.6385	0.8807	0.0100	0.2560	6.8100e- 003	0.2628	0.0737	6.5100e- 003	0.0802		1,073.480 9	1,073.480 9	0.0647		1,075.097 6	
Worker	0.2748	0.1726	2.4305	7.5000e- 003	0.7824	5.6300e- 003	0.7881	0.2075	5.1800e- 003	0.2127		747.0842	747.0842	0.0189		747.5562	
Total	1.3994	34.9784	11.3643	0.1275	6.0129	0.1182	6.1311	1.5789	0.1129	1.6918		13,785.67 03	13,785.67 03	0.8709		13,807.44 32	

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Fugitive Dust	11 11 11				0.6880	0.0000	0.6880	0.0757	0.0000	0.0757			0.0000			0.0000	
Off-Road	2.3004	25.6112	19.8367	0.0462		1.0418	1.0418	 	0.9584	0.9584	0.0000	4,474.977 3	4,474.977 3	1.4473		4,511.1598	
Total	2.3004	25.6112	19.8367	0.0462	0.6880	1.0418	1.7298	0.0757	0.9584	1.0341	0.0000	4,474.977 3	4,474.977 3	1.4473		4,511.159 8	

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.8 Grading North - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Hauling	1.0190	31.1672	8.0531	0.1100	4.9745	0.1058	5.0803	1.2977	0.1012	1.3989		11,965.10 52	11,965.105 2	0.7874		11,984.789 4
Vendor	0.1056	3.6385	0.8807	0.0100	0.2560	6.8100e- 003	0.2628	0.0737	6.5100e- 003	0.0802		1,073.480 9	1,073.480 9	0.0647		1,075.097 6
Worker	0.2748	0.1726	2.4305	7.5000e- 003	0.7824	5.6300e- 003	0.7881	0.2075	5.1800e- 003	0.2127		747.0842	747.0842	0.0189		747.5562
Total	1.3994	34.9784	11.3643	0.1275	6.0129	0.1182	6.1311	1.5789	0.1129	1.6918		13,785.67 03	13,785.67 03	0.8709		13,807.44 32

3.8 Grading North - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.5289	0.0000	1.5289	0.1682	0.0000	0.1682			0.0000			0.0000
Off-Road	2.1119	22.3970	19.6542	0.0462		0.9107	0.9107		0.8378	0.8378		4,475.586 9	4,475.586 9	1.4475		4,511.7742
Total	2.1119	22.3970	19.6542	0.0462	1.5289	0.9107	2.4396	0.1682	0.8378	1.0060		4,475.586 9	4,475.586 9	1.4475		4,511.774 2

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.8 Grading North - 2023

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.6651	18.9551	7.3721	0.1053	4.5030	0.0430	4.5460	1.1819	0.0411	1.2231		11,479.129 0	11,479.129 0	0.7456		11,497.767 9
Vendor	0.0783	2.7430	0.7950	9.7000e- 003	0.2560	3.1400e- 003	0.2591	0.0737	3.0000e- 003	0.0767		1,040.145 9	1,040.145 9	0.0572		1,041.575 0
Worker	0.2584	0.1562	2.2445	7.2200e- 003	0.7824	5.4800e- 003	0.7879	0.2075	5.0400e- 003	0.2126		719.2570	719.2570	0.0170		719.6827
Total	1.0018	21.8543	10.4116	0.1222	5.5414	0.0516	5.5930	1.4631	0.0492	1.5123		13,238.53 18	13,238.53 18	0.8198		13,259.02 56

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust	 				0.6880	0.0000	0.6880	0.0757	0.0000	0.0757			0.0000			0.0000
Off-Road	2.1119	22.3970	19.6542	0.0462		0.9107	0.9107	 	0.8378	0.8378	0.0000	4,475.586 9	4,475.586 9	1.4475		4,511.7742
Total	2.1119	22.3970	19.6542	0.0462	0.6880	0.9107	1.5987	0.0757	0.8378	0.9135	0.0000	4,475.586 9	4,475.586 9	1.4475		4,511.774 2

CalEEMod Version: CalEEMod.2016.3.2 Page 30 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.8 Grading North - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.6651	18.9551	7.3721	0.1053	4.5030	0.0430	4.5460	1.1819	0.0411	1.2231		11,479.129 0	11,479.129 0	0.7456		11,497.767 9
Vendor	0.0783	2.7430	0.7950	9.7000e- 003	0.2560	3.1400e- 003	0.2591	0.0737	3.0000e- 003	0.0767		1,040.145 9	1,040.145 9	0.0572		1,041.575 0
Worker	0.2584	0.1562	2.2445	7.2200e- 003	0.7824	5.4800e- 003	0.7879	0.2075	5.0400e- 003	0.2126		719.2570	719.2570	0.0170		719.6827
Total	1.0018	21.8543	10.4116	0.1222	5.5414	0.0516	5.5930	1.4631	0.0492	1.5123		13,238.53 18	13,238.53 18	0.8198		13,259.02 56

3.9 Building Construction North - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461		7,035.043 4	7,035.043 4	2.2753		7,091.925 2
Total	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461		7,035.043 4	7,035.043 4	2.2753		7,091.925 2

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.9 Building Construction North - 2023 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1175	4.1145	1.1925	0.0145	0.3839	4.7100e- 003	0.3886	0.1105	4.5000e- 003	0.1150		1,560.218 8	1,560.218 8	0.0858		1,562.362 5
Worker	0.9746	0.5891	8.4649	0.0272	2.9509	0.0207	2.9716	0.7826	0.0190	0.8016		2,712.626 2	2,712.626 2	0.0642		2,714.231 9
Total	1.0921	4.7036	9.6574	0.0418	3.3348	0.0254	3.3602	0.8931	0.0235	0.9167		4,272.845 0	4,272.845 0	0.1500		4,276.594 4

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461	0.0000	7,035.043 3	7,035.043 3	2.2753		7,091.925 2
Total	2.9164	30.2505	35.1627	0.0727		1.1371	1.1371		1.0461	1.0461	0.0000	7,035.043 3	7,035.043 3	2.2753		7,091.925 2

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.9 Building Construction North - 2023 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1175	4.1145	1.1925	0.0145	0.3839	4.7100e- 003	0.3886	0.1105	4.5000e- 003	0.1150		1,560.218 8	1,560.218 8	0.0858		1,562.362 5
Worker	0.9746	0.5891	8.4649	0.0272	2.9509	0.0207	2.9716	0.7826	0.0190	0.8016		2,712.626 2	2,712.626 2	0.0642		2,714.231 9
Total	1.0921	4.7036	9.6574	0.0418	3.3348	0.0254	3.3602	0.8931	0.0235	0.9167		4,272.845 0	4,272.845 0	0.1500		4,276.594 4

3.9 Building Construction North - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683		7,035.675 3	7,035.675 3	2.2755		7,092.562 3
Total	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683		7,035.675 3	7,035.675 3	2.2755		7,092.562 3

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.9 Building Construction North - 2024 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1150	4.1036	1.1586	0.0145	0.3839	4.6600e- 003	0.3886	0.1105	4.4500e- 003	0.1150		1,554.498 3	1,554.498 3	0.0845		1,556.610 9
Worker	0.9224	0.5369	7.9038	0.0263	2.9509	0.0204	2.9713	0.7826	0.0188	0.8014		2,623.249 5	2,623.249 5	0.0589		2,624.7211
Total	1.0374	4.6405	9.0624	0.0408	3.3348	0.0250	3.3599	0.8931	0.0232	0.9163		4,177.747 8	4,177.747 8	0.1434		4,181.332 0

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526	 	0.9683	0.9683	0.0000	7,035.675 3	7,035.675 3	2.2755		7,092.562 3
Total	2.8163	28.5179	34.9948	0.0727		1.0526	1.0526		0.9683	0.9683	0.0000	7,035.675 3	7,035.675 3	2.2755		7,092.562 3

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.9 Building Construction North - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1150	4.1036	1.1586	0.0145	0.3839	4.6600e- 003	0.3886	0.1105	4.4500e- 003	0.1150		1,554.498 3	1,554.498 3	0.0845	 	1,556.610 9
Worker	0.9224	0.5369	7.9038	0.0263	2.9509	0.0204	2.9713	0.7826	0.0188	0.8014		2,623.249 5	2,623.249 5	0.0589	 	2,624.7211
Total	1.0374	4.6405	9.0624	0.0408	3.3348	0.0250	3.3599	0.8931	0.0232	0.9163		4,177.747 8	4,177.747 8	0.1434		4,181.332 0

3.10 Architectural Coating North - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1917	1.3030	1.8111	2.9700e- 003		0.0708	0.0708	1 1 1 1	0.0708	0.0708		281.4481	281.4481	0.0168	 	281.8690
Total	3.7977	1.3030	1.8111	2.9700e- 003		0.0708	0.0708		0.0708	0.0708		281.4481	281.4481	0.0168		281.8690

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.10 Architectural Coating North - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1292	0.0781	1.1222	3.6100e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		359.6285	359.6285	8.5200e- 003		359.8414
Total	0.1292	0.0781	1.1222	3.6100e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		359.6285	359.6285	8.5200e- 003		359.8414

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1917	1.3030	1.8111	2.9700e- 003		0.0708	0.0708	1 1 1 1 1	0.0708	0.0708	0.0000	281.4481	281.4481	0.0168	 	281.8690
Total	3.7977	1.3030	1.8111	2.9700e- 003		0.0708	0.0708		0.0708	0.0708	0.0000	281.4481	281.4481	0.0168		281.8690

CalEEMod Version: CalEEMod.2016.3.2 Page 36 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.10 Architectural Coating North - 2023 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.1292	0.0781	1.1222	3.6100e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		359.6285	359.6285	8.5200e- 003	 	359.8414
Total	0.1292	0.0781	1.1222	3.6100e- 003	0.3912	2.7400e- 003	0.3940	0.1038	2.5200e- 003	0.1063		359.6285	359.6285	8.5200e- 003		359.8414

3.10 Architectural Coating North - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003	 	0.0609	0.0609	1 1 1 1	0.0609	0.0609		281.4481	281.4481	0.0159	;	281.8443
Total	3.7868	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609		281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.10 Architectural Coating North - 2024 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1223	0.0712	1.0479	3.4900e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		347.7793	347.7793	7.8000e- 003		347.9744
Total	0.1223	0.0712	1.0479	3.4900e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		347.7793	347.7793	7.8000e- 003		347.9744

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	3.6060					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.1808	1.2188	1.8101	2.9700e- 003		0.0609	0.0609	1	0.0609	0.0609	0.0000	281.4481	281.4481	0.0159	 	281.8443
Total	3.7868	1.2188	1.8101	2.9700e- 003		0.0609	0.0609		0.0609	0.0609	0.0000	281.4481	281.4481	0.0159		281.8443

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.10 Architectural Coating North - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1223	0.0712	1.0479	3.4900e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		347.7793	347.7793	7.8000e- 003		347.9744
Total	0.1223	0.0712	1.0479	3.4900e- 003	0.3912	2.7000e- 003	0.3939	0.1038	2.4900e- 003	0.1062		347.7793	347.7793	7.8000e- 003		347.9744

3.11 Paving North - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.6180	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594		1,297.868 8	1,297.868 8	0.4114		1,308.154 7
Paving	0.0325	 	 			0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Total	0.6504	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594		1,297.868 8	1,297.868 8	0.4114		1,308.154 7

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.11 Paving North - 2024

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0909	0.0529	0.7784	2.5900e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		258.3503	258.3503	5.8000e- 003		258.4953
Total	0.0909	0.0529	0.7784	2.5900e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		258.3503	258.3503	5.8000e- 003		258.4953

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.6180	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594	0.0000	1,297.868 8	1,297.868 8	0.4114		1,308.154 7
Paving	0.0325	 	 		 	0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000		 	0.0000
Total	0.6504	5.8607	8.8253	0.0136		0.2810	0.2810		0.2594	0.2594	0.0000	1,297.868 8	1,297.868 8	0.4114		1,308.154 7

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

3.11 Paving North - 2024 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0909	0.0529	0.7784	2.5900e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		258.3503	258.3503	5.8000e- 003		258.4953
Total	0.0909	0.0529	0.7784	2.5900e- 003	0.5433	2.0100e- 003	0.5453	0.1391	1.8500e- 003	0.1409		258.3503	258.3503	5.8000e- 003		258.4953

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	1.2339	5.4294	15.5589	0.0642	5.8042	0.0452	5.8494	1.5525	0.0420	1.5945		6,551.433 4	6,551.433 4	0.2788		6,558.404 2
Unmitigated	1.2339	5.4294	15.5589	0.0642	5.8042	0.0452	5.8494	1.5525	0.0420	1.5945		6,551.433 4	6,551.433 4	0.2788		6,558.404 2

4.2 Trip Summary Information

	Ave	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Congregate Care (Assisted Living)	705.76	705.76	705.76	2,410,230	2,410,230
Day-Care Center	220.90	0.00	0.00	229,429	229,429
Enclosed Parking with Elevator	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	926.66	705.76	705.76	2,639,659	2,639,659

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Congregate Care (Assisted	14.70	5.90	8.70	40.00	19.00	41.00	86	11	3
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Congregate Care (Assisted Living)	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Day-Care Center	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Enclosed Parking with Elevator	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Other Asphalt Surfaces	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880
NaturalGas Unmitigated	0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369	,	582.7251	582.7251	0.0112	0.0107	586.1880

CalEEMod Version: CalEEMod.2016.3.2 Page 43 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	1 1 1 1	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)		0.0479	0.4096	0.1743	2.6100e- 003		0.0331	0.0331	 	0.0331	0.0331		522.8627	522.8627	0.0100	9.5900e- 003	525.9698
Day-Care Center	508.831	5.4900e- 003	0.0499	0.0419	3.0000e- 004		3.7900e- 003	3.7900e- 003		3.7900e- 003	3.7900e- 003		59.8624	59.8624	1.1500e- 003	1.1000e- 003	60.2182
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)		0.0479	0.4096	0.1743	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.8627	522.8627	0.0100	9.5900e- 003	525.9698
Day-Care Center	0.508831	5.4900e- 003	0.0499	0.0419	3.0000e- 004	 	3.7900e- 003	3.7900e- 003		3.7900e- 003	3.7900e- 003		59.8624	59.8624	1.1500e- 003	1.1000e- 003	60.2182
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0534	0.4595	0.2162	2.9100e- 003		0.0369	0.0369		0.0369	0.0369		582.7251	582.7251	0.0112	0.0107	586.1880

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

CalEEMod Version: CalEEMod.2016.3.2 Page 45 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3
Unmitigated	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	0.3329					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	3.8850		,			0.0000	0.0000	1 	0.0000	0.0000		,	0.0000		,	0.0000
Hearth	0.3417	2.9195	1.2424	0.0186		0.2361	0.2361	1 	0.2361	0.2361	0.0000	3,727.058 8	3,727.058 8	0.0714	0.0683	3,749.206 9
Landscaping	0.4374	0.1673	14.5263	7.7000e- 004]	0.0806	0.0806	y : : :	0.0806	0.0806		26.1877	26.1877	0.0252	,	26.8164
Total	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3

CalEEMod Version: CalEEMod.2016.3.2 Page 46 of 47 Date: 6/4/2020 11:46 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	0.3329		 	 		0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Consumer Products	3.8850	 	 	 		0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Hearth	0.3417	2.9195	1.2424	0.0186		0.2361	0.2361	 	0.2361	0.2361	0.0000	3,727.058 8	3,727.058 8	0.0714	0.0683	3,749.206 9
Landscaping	0.4374	0.1673	14.5263	7.7000e- 004		0.0806	0.0806	 	0.0806	0.0806		26.1877	26.1877	0.0252	 	26.8164
Total	4.9969	3.0868	15.7686	0.0194		0.3166	0.3166		0.3166	0.3166	0.0000	3,753.246 6	3,753.246 6	0.0966	0.0683	3,776.023 3

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Belmont Village Westwood Presbyterian - South Coast Air Basin, Summer

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Belmont Village Westwood Presbyterian South Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	9.60	1000sqft	0.22	17,858.00	0
Enclosed Parking with Elevator	184.00	Space	0.00	73,600.00	0
Other Asphalt Surfaces	0.57	Acre	0.57	24,829.20	0
City Park	0.12	Acre	0.12	5,227.20	0
Congregate Care (Assisted Living)	176.00	Dwelling Unit	0.71	176,580.00	503

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2025
Utility Company	Los Angeles Departme	nt of Water & Power			
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on site plans. 284 beds. Remaining acreage allocated to other asphalt. Does not include church office because replacing existing use.

Construction Phase - Based on applicant info.

Off-road Equipment -

Off-road Equipment -

Off-road Equipment - Applicant info.

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Off-road Equipment - Applicant info.

Off-road Equipment - Default

Off-road Equipment - Client details

Trips and VMT - Export 65,000 CY with 14 CY per truck (based on applicant statement that 4400 trips required). Applicant info and traffic analysis. Distance to Chiquita Landfill.

Demolition - Estimated per square footage of buildings to be demolished based on ZIMAS and GE

Grading - Based on applicant info of up to 65,000 CY export.

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L). South Campus is nonres only, North Campus is res and parking only.

Vehicle Trips - Playground and landscaping would not generate trips. Trip rates based on TIS.

Woodstoves - Per SCAQMD Rule 445

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use - Reduced lighting intensity for eldercare facility by 75% in accordance with Title 24

Water And Wastewater - Reduced by 20% to reflect 2016 CALGreen requirements.

Solid Waste -

Construction Off-road Equipment Mitigation - Per SCAQMD Rule 403 for dust mitigation

Mobile Land Use Mitigation -

Area Mitigation - Compliance with SCAQMD Rule 1113.

Energy Mitigation -

Water Mitigation - Applicant info

Waste Mitigation - Reduced by 25% in accordance with AB 341

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Page 3 of 54

Date: 6/4/2020 11:44 AM

Table Name	Column Name	Default Value	New Value	
tblArchitecturalCoating	ConstArea_Nonresidential_Exterior	8,929.00	0.00	
tblArchitecturalCoating	ConstArea_Nonresidential_Interior	26,787.00	0.00	
tblArchitecturalCoating	ConstArea_Parking	5,906.00	0.00	
tblArchitecturalCoating	ConstArea_Residential_Exterior	119,192.00	0.00	
tblArchitecturalCoating	ConstArea_Residential_Interior	357,575.00	0.00	
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00	
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00	
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00	
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00	
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50	
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50	
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True	
tblConstructionPhase	NumDays	10.00	71.00	
tblConstructionPhase	NumDays	10.00	314.00	
tblConstructionPhase	NumDays	200.00	180.00	
tblConstructionPhase	NumDays	200.00	457.00	
tblConstructionPhase	NumDays	20.00	16.00	
tblConstructionPhase	NumDays	20.00	15.00	
tblConstructionPhase	NumDays	4.00	16.00	
tblConstructionPhase	NumDays	4.00	104.00	
tblConstructionPhase	NumDays	10.00	46.00	
tblConstructionPhase	NumDays	10.00	40.00	
tblEnergyUse	LightingElect	741.44	185.36	
tblFireplaces	FireplaceWoodMass	1,019.20	0.00	
tblFireplaces	NumberGas	149.60	176.00	
tblFireplaces	NumberNoFireplace	17.60	0.00	

Page 4 of 54

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Date: 6/4/2020 11:44 AM

tblFireplaces	NumberWood	8.80	0.00	
tblGrading	MaterialExported	0.00	65,000.00	
tblLandUse	LandUseSquareFeet	9,600.00	17,858.00	
tblLandUse	LandUseSquareFeet	176,000.00	176,580.00	
tblLandUse	LotAcreage	1.66	0.00	
tblLandUse	LotAcreage	11.00	0.71	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00	
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00	
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019	
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56	
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004	
tblTripsAndVMT	HaulingTripLength	20.00	34.50	
tblTripsAndVMT	HaulingTripLength	20.00	34.50	
tblTripsAndVMT	HaulingTripLength	20.00	34.50	
tblTripsAndVMT	HaulingTripNumber	11.00	280.00	
tblTripsAndVMT	HaulingTripNumber	82.00	300.00	
tblTripsAndVMT	HaulingTripNumber	8,125.00	9,286.00	
tblTripsAndVMT	VendorTripNumber	39.00	60.00	
tblTripsAndVMT	VendorTripNumber	0.00	40.00	
tblTripsAndVMT	VendorTripNumber	39.00	60.00	
tblTripsAndVMT	WorkerTripNumber	20.00	50.00	
tblTripsAndVMT	WorkerTripNumber	23.00	70.00	
tblTripsAndVMT	WorkerTripNumber	178.00	264.00	

Page 5 of 54

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Date: 6/4/2020 11:44 AM

tblTripsAndVMT	WorkerTripNumber	36.00	35.00	
tblTripsAndVMT	WorkerTripNumber	20.00	50.00	
tblTripsAndVMT	WorkerTripNumber	23.00	70.00	
tblTripsAndVMT	WorkerTripNumber	178.00	264.00	
tblTripsAndVMT	WorkerTripNumber	36.00	35.00	
tblVehicleTrips	HO_TTP	40.60	41.00	
tblVehicleTrips	HS_TTP	19.20	19.00	
tblVehicleTrips	HW_TTP	40.20	40.00	
tblVehicleTrips	ST_TR	22.75	0.00	
tblVehicleTrips	ST_TR	2.20	4.01	
tblVehicleTrips	ST_TR	6.21	0.00	
tblVehicleTrips	SU_TR	16.74	0.00	
tblVehicleTrips	SU_TR	2.44	4.01	
tblVehicleTrips	SU_TR	5.83	0.00	
tblVehicleTrips	WD_TR	1.89	0.00	
tblVehicleTrips	WD_TR	2.74	4.01	
tblVehicleTrips	WD_TR	74.06	23.01	
tblWater	IndoorWaterUseRate	11,467,108.51	9,173,686.80	
tblWoodstoves	NumberCatalytic	8.80	0.00	
tblWoodstoves	NumberNoncatalytic	8.80	0.00	
tblWoodstoves	WoodstoveDayYear	25.00	0.00	
tblWoodstoves	WoodstoveWoodMass	999.60	0.00	

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 6 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

2.1 Overall Construction <u>Unmitigated Construction</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									МТ	-/yr					
2021	0.2069	2.0309	2.0491	5.0400e- 003	0.1454	0.0708	0.2162	0.0370	0.0652	0.1021	0.0000	452.2358	452.2358	0.0986	0.0000	454.7007
2022	0.4039	3.9763	3.6742	0.0114	0.4349	0.1133	0.5482	0.1022	0.1046	0.2069	0.0000	1,044.813 7	1,044.813 7	0.1873	0.0000	1,049.495 0
2023	0.6182	4.8734	5.4505	0.0164	0.5767	0.1479	0.7246	0.1415	0.1363	0.2778	0.0000	1,494.959 4	1,494.959 4	0.2829	0.0000	1,502.0311
2024	0.9950	4.4917	6.0539	0.0153	0.4732	0.1503	0.6235	0.1267	0.1390	0.2656	0.0000	1,367.792 9	1,367.792 9	0.2878	0.0000	1,374.986 7
Maximum	0.9950	4.8734	6.0539	0.0164	0.5767	0.1503	0.7246	0.1415	0.1390	0.2778	0.0000	1,494.959 4	1,494.959 4	0.2878	0.0000	1,502.031 1

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

2.1 Overall Construction

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT	/yr				
2021	0.2069	2.0309	2.0491	5.0400e- 003	0.1383	0.0708	0.2091	0.0362	0.0652	0.1014	0.0000	452.2355	452.2355	0.0986	0.0000	454.7004
	0.4039	3.9763	3.6742	0.0114	0.3863	0.1133	0.4996	0.0967	0.1046	0.2013	0.0000	1,044.813 1	1,044.813 1	0.1873	0.0000	1,049.494 4
2023	0.6182	4.8734	5.4505	0.0164	0.5330	0.1479	0.6809	0.1367	0.1363	0.2730	0.0000	1,494.958 5	1,494.958 5	0.2829	0.0000	1,502.030 2
_0	0.9950	4.4917	6.0539	0.0153	0.4732	0.1503	0.6235	0.1267	0.1390	0.2656	0.0000	1,367.791 8	1,367.791 8	0.2878	0.0000	1,374.985 7
Maximum	0.9950	4.8734	6.0539	0.0164	0.5330	0.1503	0.6809	0.1367	0.1390	0.2730	0.0000	1,494.958 5	1,494.958 5	0.2878	0.0000	1,502.030 2
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	6.10	0.00	4.71	2.73	0.00	1.31	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	7-1-2021	9-30-2021	0.5796	0.5796
2	10-1-2021	12-31-2021	1.6329	1.6329
3	1-1-2022	3-31-2022	1.5042	1.5042
4	4-1-2022	6-30-2022	1.1180	1.1180
6	10-1-2022	12-31-2022	1.7368	1.7368
7	1-1-2023	3-31-2023	1.4623	1.4623
8	4-1-2023	6-30-2023	1.2663	1.2663
9	7-1-2023	9-30-2023	1.2802	1.2802

Page 8 of 54

Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

10	10-1-2023	12-31-2023	1.4525	1.4525
11	1-1-2024	3-31-2024	1.3771	1.3771
12	4-1-2024	6-30-2024	1.3719	1.3719
13	7-1-2024	9-30-2024	1.5295	1.5295
		Highest	1.7368	1.7368

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	Γ/yr		
Area	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562
Energy	9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7400e- 003	6.7400e- 003	1 	6.7400e- 003	6.7400e- 003	0.0000	508.5180	508.5180	0.0116	3.8300e- 003	509.9504
Mobile	0.1977	0.9685	2.5966	0.0108	1.0024	7.9300e- 003	1.0103	0.2685	7.3600e- 003	0.2759	0.0000	1,003.887 1	1,003.887 1	0.0440	0.0000	1,004.986 3
Waste						0.0000	0.0000		0.0000	0.0000	35.1357	0.0000	35.1357	2.0765	0.0000	87.0472
Water						0.0000	0.0000	 	0.0000	0.0000	3.0410	79.2372	82.2782	0.3142	7.7700e- 003	92.4497
Total	1.0362	1.1097	4.4674	0.0117	1.0024	0.0277	1.0300	0.2685	0.0271	0.2956	38.1767	1,636.876 0	1,675.052 8	2.4500	0.0124	1,739.989 7

CalEEMod Version: CalEEMod.2016.3.2 Page 9 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Area	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562
Energy	9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7400e- 003	6.7400e- 003		6.7400e- 003	6.7400e- 003	0.0000	508.5180	508.5180	0.0116	3.8300e- 003	509.9504
Mobile	0.1977	0.9685	2.5966	0.0108	1.0024	7.9300e- 003	1.0103	0.2685	7.3600e- 003	0.2759	0.0000	1,003.887 1	1,003.887 1	0.0440	0.0000	1,004.986 3
Waste						0.0000	0.0000		0.0000	0.0000	26.3518	0.0000	26.3518	1.5574	0.0000	65.2854
Water						0.0000	0.0000		0.0000	0.0000	2.5313	69.5784	72.1097	0.2617	6.4900e- 003	80.5840
Total	1.0362	1.1097	4.4674	0.0117	1.0024	0.0277	1.0300	0.2685	0.0271	0.2956	28.8831	1,627.217 2	1,656.100 3	1.8783	0.0111	1,706.362 3

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.34	0.59	1.13	23.33	10.35	1.93

3.0 Construction Detail

Construction Phase

-

Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Page 10 of 54

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition South	Demolition	9/1/2021	9/22/2021	5	16	
2	Grading South	Grading	9/1/2021	9/22/2021	5	16	
3	Building Construction South	Building Construction	9/23/2021	6/1/2022	5	180	
4	Architectural Coating South	Architectural Coating	2/23/2022	6/1/2022	5	71	
5	Paving South	Paving	3/9/2022	5/3/2022	5	40	
6	Demolition North	Demolition	10/4/2022	10/24/2022	5	15	
7	Grading North	Grading	10/25/2022	3/17/2023	5	104	
8	Building Construction North	Building Construction	3/20/2023	12/17/2024	5	457	
9	Architectural Coating North	Architectural Coating	10/5/2023	12/17/2024	5	314	
10	Paving North	Paving	8/2/2024	10/4/2024	5	46	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0.57

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 26,787; Non-Residential Outdoor: 8,929; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition South	Excavators	3	8.00	158	0.38
Demolition South	Skid Steer Loaders	2	8.00	65	0.37
Demolition South	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading South	Bore/Drill Rigs	1	6.00	221	0.50
Grading South	Crawler Tractors	2	8.00	212	0.43
Grading South	Excavators	2	8.00	158	0.38

Page 11 of 54

Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Grading South	Graders	1	6.00	187	0.41
Grading South	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction South	Aerial Lifts	15	8.00	63	0.31
Building Construction South	Cranes	3	6.00	231	0.29
Building Construction South	Forklifts	2	6.00	89	0.20
Building Construction South	Off-Highway Trucks	2	6.00	402	0.38
Building Construction South	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating South	Air Compressors	1	6.00	78	0.48
Paving South	Cement and Mortar Mixers	1	6.00	9	0.56
Paving South	Pavers	1	6.00	130	0.42
Paving South	Paving Equipment	1	8.00	132	0.36
Paving South	Rollers	1	7.00	80	0.38
Paving South	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Demolition North	Excavators	3	8.00	158	0.38
Demolition North	Skid Steer Loaders	2	8.00	65	0.37
Demolition North	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Grading North	Bore/Drill Rigs	1	6.00	221	0.50
Grading North	Crawler Tractors	2	8.00	212	0.43
Grading North	Excavators	2	8.00	158	0.38
Grading North	Graders	1	6.00	187	0.41
Grading North	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction North	Aerial Lifts	15	8.00	63	0.31
Building Construction North	Cranes	3	6.00	231	0.29
Building Construction North	Forklifts	2	6.00	89	0.20
Building Construction North	Off-Highway Trucks	2	6.00	402	0.38
Building Construction North	Other Construction Equipment	2	8.00	172	0.42
Architectural Coating North	Air Compressors	1	6.00	78	0.48

Page 12 of 54

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Date: 6/4/2020 11:44 AM

Paving North	Cement and Mortar Mixers	1	6.00	9	0.56
Paving North	Pavers	1	6.00	130	0.42
Paving North	Paving Equipment	1	8.00	132	0.36
Paving North	Rollers	1	7.00	80	0.38
Paving North	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition South	8	50.00	0.00	280.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading South	9	70.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving South	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demolition North	8	50.00	0.00	300.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Grading North	9	70.00	40.00	9,286.00	14.70	6.90	34.50	LD_Mix	HDT_Mix	HHDT
Building Construction	24	264.00	60.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	35.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving North	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.2 Demolition South - 2021

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					1.1800e- 003	0.0000	1.1800e- 003	1.8000e- 004	0.0000	1.8000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0112	0.1132	0.1550	2.3000e- 004		5.8400e- 003	5.8400e- 003		5.3800e- 003	5.3800e- 003	0.0000	20.3476	20.3476	6.5800e- 003	0.0000	20.5121
Total	0.0112	0.1132	0.1550	2.3000e- 004	1.1800e- 003	5.8400e- 003	7.0200e- 003	1.8000e- 004	5.3800e- 003	5.5600e- 003	0.0000	20.3476	20.3476	6.5800e- 003	0.0000	20.5121

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Hauling	1.6900e- 003	0.0554	0.0129	1.7000e- 004	4.1500e- 003	1.9000e- 004	4.3400e- 003	1.1400e- 003	1.8000e- 004	1.3200e- 003	0.0000	17.1520	17.1520	1.1400e- 003	0.0000	17.1806
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.6600e- 003	1.2300e- 003	0.0140	4.0000e- 005	4.3900e- 003	3.0000e- 005	4.4200e- 003	1.1700e- 003	3.0000e- 005	1.2000e- 003	0.0000	3.8266	3.8266	1.0000e- 004	0.0000	3.8292
Total	3.3500e- 003	0.0566	0.0269	2.1000e- 004	8.5400e- 003	2.2000e- 004	8.7600e- 003	2.3100e- 003	2.1000e- 004	2.5200e- 003	0.0000	20.9786	20.9786	1.2400e- 003	0.0000	21.0098

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.2 Demolition South - 2021 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	 				5.3000e- 004	0.0000	5.3000e- 004	8.0000e- 005	0.0000	8.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0112	0.1132	0.1550	2.3000e- 004		5.8400e- 003	5.8400e- 003		5.3800e- 003	5.3800e- 003	0.0000	20.3476	20.3476	6.5800e- 003	0.0000	20.5121
Total	0.0112	0.1132	0.1550	2.3000e- 004	5.3000e- 004	5.8400e- 003	6.3700e- 003	8.0000e- 005	5.3800e- 003	5.4600e- 003	0.0000	20.3476	20.3476	6.5800e- 003	0.0000	20.5121

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Hauling	1.6900e- 003	0.0554	0.0129	1.7000e- 004	4.1500e- 003	1.9000e- 004	4.3400e- 003	1.1400e- 003	1.8000e- 004	1.3200e- 003	0.0000	17.1520	17.1520	1.1400e- 003	0.0000	17.1806
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.6600e- 003	1.2300e- 003	0.0140	4.0000e- 005	4.3900e- 003	3.0000e- 005	4.4200e- 003	1.1700e- 003	3.0000e- 005	1.2000e- 003	0.0000	3.8266	3.8266	1.0000e- 004	0.0000	3.8292
Total	3.3500e- 003	0.0566	0.0269	2.1000e- 004	8.5400e- 003	2.2000e- 004	8.7600e- 003	2.3100e- 003	2.1000e- 004	2.5200e- 003	0.0000	20.9786	20.9786	1.2400e- 003	0.0000	21.0098

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.3 Grading South - 2021

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	tons/yr											MT/yr							
Fugitive Dust					0.0117	0.0000	0.0117	1.2600e- 003	0.0000	1.2600e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Off-Road	0.0207	0.2394	0.1618	3.7000e- 004		9.8900e- 003	9.8900e- 003	1 1 1	9.1000e- 003	9.1000e- 003	0.0000	32.4865	32.4865	0.0105	0.0000	32.7492			
Total	0.0207	0.2394	0.1618	3.7000e- 004	0.0117	9.8900e- 003	0.0216	1.2600e- 003	9.1000e- 003	0.0104	0.0000	32.4865	32.4865	0.0105	0.0000	32.7492			

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Worker	2.3300e- 003	1.7300e- 003	0.0195	6.0000e- 005	6.1400e- 003	5.0000e- 005	6.1900e- 003	1.6300e- 003	4.0000e- 005	1.6700e- 003	0.0000	5.3573	5.3573	1.4000e- 004	0.0000	5.3609		
Total	2.3300e- 003	1.7300e- 003	0.0195	6.0000e- 005	6.1400e- 003	5.0000e- 005	6.1900e- 003	1.6300e- 003	4.0000e- 005	1.6700e- 003	0.0000	5.3573	5.3573	1.4000e- 004	0.0000	5.3609		

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.3 Grading South - 2021 Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	tons/yr											MT/yr							
Fugitive Dust					5.2500e- 003	0.0000	5.2500e- 003	5.7000e- 004	0.0000	5.7000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Off-Road	0.0207	0.2394	0.1618	3.7000e- 004		9.8900e- 003	9.8900e- 003	 	9.1000e- 003	9.1000e- 003	0.0000	32.4865	32.4865	0.0105	0.0000	32.7491			
Total	0.0207	0.2394	0.1618	3.7000e- 004	5.2500e- 003	9.8900e- 003	0.0151	5.7000e- 004	9.1000e- 003	9.6700e- 003	0.0000	32.4865	32.4865	0.0105	0.0000	32.7491			

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Worker	2.3300e- 003	1.7300e- 003	0.0195	6.0000e- 005	6.1400e- 003	5.0000e- 005	6.1900e- 003	1.6300e- 003	4.0000e- 005	1.6700e- 003	0.0000	5.3573	5.3573	1.4000e- 004	0.0000	5.3609		
Total	2.3300e- 003	1.7300e- 003	0.0195	6.0000e- 005	6.1400e- 003	5.0000e- 005	6.1900e- 003	1.6300e- 003	4.0000e- 005	1.6700e- 003	0.0000	5.3573	5.3573	1.4000e- 004	0.0000	5.3609		

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.4 Building Construction South - 2021 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.1236	1.3805	1.3011	2.6200e- 003		0.0536	0.0536		0.0493	0.0493	0.0000	229.6994	229.6994	0.0743	0.0000	231.5566
Total	0.1236	1.3805	1.3011	2.6200e- 003		0.0536	0.0536		0.0493	0.0493	0.0000	229.6994	229.6994	0.0743	0.0000	231.5566

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	6.2100e- 003	0.2101	0.0531	5.4000e- 004	0.0136	4.3000e- 004	0.0140	3.9300e- 003	4.1000e- 004	4.3400e- 003	0.0000	52.4462	52.4462	3.3800e- 003	0.0000	52.5307
Worker	0.0395	0.0293	0.3317	1.0100e- 003	0.1043	7.9000e- 004	0.1051	0.0277	7.2000e- 004	0.0284	0.0000	90.9202	90.9202	2.4500e- 003	0.0000	90.9814
Total	0.0457	0.2394	0.3848	1.5500e- 003	0.1179	1.2200e- 003	0.1191	0.0316	1.1300e- 003	0.0328	0.0000	143.3664	143.3664	5.8300e- 003	0.0000	143.5121

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.4 Building Construction South - 2021 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
	0.1236	1.3805	1.3011	2.6200e- 003		0.0536	0.0536		0.0493	0.0493	0.0000	229.6991	229.6991	0.0743	0.0000	231.5563
Total	0.1236	1.3805	1.3011	2.6200e- 003		0.0536	0.0536		0.0493	0.0493	0.0000	229.6991	229.6991	0.0743	0.0000	231.5563

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	6.2100e- 003	0.2101	0.0531	5.4000e- 004	0.0136	4.3000e- 004	0.0140	3.9300e- 003	4.1000e- 004	4.3400e- 003	0.0000	52.4462	52.4462	3.3800e- 003	0.0000	52.5307
Worker	0.0395	0.0293	0.3317	1.0100e- 003	0.1043	7.9000e- 004	0.1051	0.0277	7.2000e- 004	0.0284	0.0000	90.9202	90.9202	2.4500e- 003	0.0000	90.9814
Total	0.0457	0.2394	0.3848	1.5500e- 003	0.1179	1.2200e- 003	0.1191	0.0316	1.1300e- 003	0.0328	0.0000	143.3664	143.3664	5.8300e- 003	0.0000	143.5121

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.4 Building Construction South - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.1671	1.7848	1.9157	3.9200e- 003		0.0685	0.0685	 	0.0630	0.0630	0.0000	344.5742	344.5742	0.1114	0.0000	347.3603
Total	0.1671	1.7848	1.9157	3.9200e- 003		0.0685	0.0685		0.0630	0.0630	0.0000	344.5742	344.5742	0.1114	0.0000	347.3603

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	8.7400e- 003	0.2990	0.0754	8.0000e- 004	0.0204	5.6000e- 004	0.0210	5.8900e- 003	5.3000e- 004	6.4300e- 003	0.0000	77.9744	77.9744	4.8900e- 003	0.0000	78.0968
Worker	0.0556	0.0397	0.4594	1.4500e- 003	0.1564	1.1500e- 003	0.1576	0.0415	1.0600e- 003	0.0426	0.0000	131.4955	131.4955	3.3200e- 003	0.0000	131.5783
Total	0.0644	0.3388	0.5348	2.2500e- 003	0.1768	1.7100e- 003	0.1785	0.0474	1.5900e- 003	0.0490	0.0000	209.4698	209.4698	8.2100e- 003	0.0000	209.6751

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.4 Building Construction South - 2022 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.1671	1.7848	1.9157	3.9200e- 003		0.0685	0.0685		0.0630	0.0630	0.0000	344.5738	344.5738	0.1114	0.0000	347.3599
Total	0.1671	1.7848	1.9157	3.9200e- 003		0.0685	0.0685		0.0630	0.0630	0.0000	344.5738	344.5738	0.1114	0.0000	347.3599

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	8.7400e- 003	0.2990	0.0754	8.0000e- 004	0.0204	5.6000e- 004	0.0210	5.8900e- 003	5.3000e- 004	6.4300e- 003	0.0000	77.9744	77.9744	4.8900e- 003	0.0000	78.0968
Worker	0.0556	0.0397	0.4594	1.4500e- 003	0.1564	1.1500e- 003	0.1576	0.0415	1.0600e- 003	0.0426	0.0000	131.4955	131.4955	3.3200e- 003	0.0000	131.5783
Total	0.0644	0.3388	0.5348	2.2500e- 003	0.1768	1.7100e- 003	0.1785	0.0474	1.5900e- 003	0.0490	0.0000	209.4698	209.4698	8.2100e- 003	0.0000	209.6751

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.5 Architectural Coating South - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0414					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7.2600e- 003	0.0500	0.0644	1.1000e- 004		2.9000e- 003	2.9000e- 003		2.9000e- 003	2.9000e- 003	0.0000	9.0641	9.0641	5.9000e- 004	0.0000	9.0788
Total	0.0487	0.0500	0.0644	1.1000e- 004		2.9000e- 003	2.9000e- 003		2.9000e- 003	2.9000e- 003	0.0000	9.0641	9.0641	5.9000e- 004	0.0000	9.0788

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.8500e- 003	3.4600e- 003	0.0400	1.3000e- 004	0.0136	1.0000e- 004	0.0137	3.6200e- 003	9.0000e- 005	3.7100e- 003	0.0000	11.4607	11.4607	2.9000e- 004	0.0000	11.4679
Total	4.8500e- 003	3.4600e- 003	0.0400	1.3000e- 004	0.0136	1.0000e- 004	0.0137	3.6200e- 003	9.0000e- 005	3.7100e- 003	0.0000	11.4607	11.4607	2.9000e- 004	0.0000	11.4679

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.5 Architectural Coating South - 2022 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0414					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	7.2600e- 003	0.0500	0.0644	1.1000e- 004		2.9000e- 003	2.9000e- 003		2.9000e- 003	2.9000e- 003	0.0000	9.0640	9.0640	5.9000e- 004	0.0000	9.0788
Total	0.0487	0.0500	0.0644	1.1000e- 004		2.9000e- 003	2.9000e- 003		2.9000e- 003	2.9000e- 003	0.0000	9.0640	9.0640	5.9000e- 004	0.0000	9.0788

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.8500e- 003	3.4600e- 003	0.0400	1.3000e- 004	0.0136	1.0000e- 004	0.0137	3.6200e- 003	9.0000e- 005	3.7100e- 003	0.0000	11.4607	11.4607	2.9000e- 004	0.0000	11.4679
Total	4.8500e- 003	3.4600e- 003	0.0400	1.3000e- 004	0.0136	1.0000e- 004	0.0137	3.6200e- 003	9.0000e- 005	3.7100e- 003	0.0000	11.4607	11.4607	2.9000e- 004	0.0000	11.4679

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.6 Paving South - 2022

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0138	0.1355	0.1761	2.7000e- 004		6.9500e- 003	6.9500e- 003		6.4100e- 003	6.4100e- 003	0.0000	23.5393	23.5393	7.4600e- 003	0.0000	23.7258
1	7.5000e- 004					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0145	0.1355	0.1761	2.7000e- 004		6.9500e- 003	6.9500e- 003		6.4100e- 003	6.4100e- 003	0.0000	23.5393	23.5393	7.4600e- 003	0.0000	23.7258

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0100e- 003	7.2000e- 004	8.3800e- 003	3.0000e- 005	2.8500e- 003	2.0000e- 005	2.8700e- 003	7.6000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.3982	2.3982	6.0000e- 005	0.0000	2.3997
Total	1.0100e- 003	7.2000e- 004	8.3800e- 003	3.0000e- 005	2.8500e- 003	2.0000e- 005	2.8700e- 003	7.6000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.3982	2.3982	6.0000e- 005	0.0000	2.3997

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.6 Paving South - 2022

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
	0.0138	0.1355	0.1761	2.7000e- 004		6.9500e- 003	6.9500e- 003		6.4100e- 003	6.4100e- 003	0.0000	23.5392	23.5392	7.4600e- 003	0.0000	23.7258
1	7.5000e- 004		1 1 1 1			0.0000	0.0000	1 1 1 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0145	0.1355	0.1761	2.7000e- 004		6.9500e- 003	6.9500e- 003		6.4100e- 003	6.4100e- 003	0.0000	23.5392	23.5392	7.4600e- 003	0.0000	23.7258

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1.0100e- 003	7.2000e- 004	8.3800e- 003	3.0000e- 005	2.8500e- 003	2.0000e- 005	2.8700e- 003	7.6000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.3982	2.3982	6.0000e- 005	0.0000	2.3997
Total	1.0100e- 003	7.2000e- 004	8.3800e- 003	3.0000e- 005	2.8500e- 003	2.0000e- 005	2.8700e- 003	7.6000e- 004	2.0000e- 005	7.8000e- 004	0.0000	2.3982	2.3982	6.0000e- 005	0.0000	2.3997

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.7 Demolition North - 2022 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					8.8600e- 003	0.0000	8.8600e- 003	1.3400e- 003	0.0000	1.3400e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	9.3000e- 003	0.0916	0.1444	2.2000e- 004		4.4800e- 003	4.4800e- 003	1 1 1	4.1200e- 003	4.1200e- 003	0.0000	19.0818	19.0818	6.1700e- 003	0.0000	19.2361
Total	9.3000e- 003	0.0916	0.1444	2.2000e- 004	8.8600e- 003	4.4800e- 003	0.0133	1.3400e- 003	4.1200e- 003	5.4600e- 003	0.0000	19.0818	19.0818	6.1700e- 003	0.0000	19.2361

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	1.7200e- 003	0.0544	0.0137	1.8000e- 004	4.4400e- 003	1.8000e- 004	4.6200e- 003	1.2200e- 003	1.7000e- 004	1.3900e- 003	0.0000	18.1536	18.1536	1.2100e- 003	0.0000	18.1839
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.4600e- 003	1.0400e- 003	0.0121	4.0000e- 005	4.1100e- 003	3.0000e- 005	4.1400e- 003	1.0900e- 003	3.0000e- 005	1.1200e- 003	0.0000	3.4590	3.4590	9.0000e- 005	0.0000	3.4611
Total	3.1800e- 003	0.0554	0.0258	2.2000e- 004	8.5500e- 003	2.1000e- 004	8.7600e- 003	2.3100e- 003	2.0000e- 004	2.5100e- 003	0.0000	21.6126	21.6126	1.3000e- 003	0.0000	21.6451

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.7 Demolition North - 2022 Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					3.9900e- 003	0.0000	3.9900e- 003	6.0000e- 004	0.0000	6.0000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	9.3000e- 003	0.0916	0.1444	2.2000e- 004		4.4800e- 003	4.4800e- 003		4.1200e- 003	4.1200e- 003	0.0000	19.0818	19.0818	6.1700e- 003	0.0000	19.2361
Total	9.3000e- 003	0.0916	0.1444	2.2000e- 004	3.9900e- 003	4.4800e- 003	8.4700e- 003	6.0000e- 004	4.1200e- 003	4.7200e- 003	0.0000	19.0818	19.0818	6.1700e- 003	0.0000	19.2361

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	1.7200e- 003	0.0544	0.0137	1.8000e- 004	4.4400e- 003	1.8000e- 004	4.6200e- 003	1.2200e- 003	1.7000e- 004	1.3900e- 003	0.0000	18.1536	18.1536	1.2100e- 003	0.0000	18.1839
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.4600e- 003	1.0400e- 003	0.0121	4.0000e- 005	4.1100e- 003	3.0000e- 005	4.1400e- 003	1.0900e- 003	3.0000e- 005	1.1200e- 003	0.0000	3.4590	3.4590	9.0000e- 005	0.0000	3.4611
Total	3.1800e- 003	0.0554	0.0258	2.2000e- 004	8.5500e- 003	2.1000e- 004	8.7600e- 003	2.3100e- 003	2.0000e- 004	2.5100e- 003	0.0000	21.6126	21.6126	1.3000e- 003	0.0000	21.6451

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.8 Grading North - 2022

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0795	0.0000	0.0795	8.7400e- 003	0.0000	8.7400e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0564	0.6275	0.4860	1.1300e- 003		0.0255	0.0255		0.0235	0.0235	0.0000	99.4610	99.4610	0.0322	0.0000	100.2652
Total	0.0564	0.6275	0.4860	1.1300e- 003	0.0795	0.0255	0.1050	8.7400e- 003	0.0235	0.0322	0.0000	99.4610	99.4610	0.0322	0.0000	100.2652

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0251	0.7933	0.2004	2.6800e- 003	0.1196	2.6000e- 003	0.1222	0.0312	2.4900e- 003	0.0337	0.0000	264.7484	264.7484	0.0177	0.0000	265.1904
Vendor	2.6400e- 003	0.0905	0.0228	2.4000e- 004	6.1800e- 003	1.7000e- 004	6.3400e- 003	1.7800e- 003	1.6000e- 004	1.9400e- 003	0.0000	23.5848	23.5848	1.4800e- 003	0.0000	23.6219
Worker	6.6900e- 003	4.7800e- 003	0.0553	1.7000e- 004	0.0188	1.4000e- 004	0.0190	5.0000e- 003	1.3000e- 004	5.1200e- 003	0.0000	15.8189	15.8189	4.0000e- 004	0.0000	15.8289
Total	0.0345	0.8886	0.2784	3.0900e- 003	0.1446	2.9100e- 003	0.1475	0.0380	2.7800e- 003	0.0408	0.0000	304.1522	304.1522	0.0196	0.0000	304.6411

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.8 Grading North - 2022

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0358	0.0000	0.0358	3.9300e- 003	0.0000	3.9300e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0564	0.6275	0.4860	1.1300e- 003		0.0255	0.0255		0.0235	0.0235	0.0000	99.4608	99.4608	0.0322	0.0000	100.2650
Total	0.0564	0.6275	0.4860	1.1300e- 003	0.0358	0.0255	0.0613	3.9300e- 003	0.0235	0.0274	0.0000	99.4608	99.4608	0.0322	0.0000	100.2650

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0251	0.7933	0.2004	2.6800e- 003	0.1196	2.6000e- 003	0.1222	0.0312	2.4900e- 003	0.0337	0.0000	264.7484	264.7484	0.0177	0.0000	265.1904
Vendor	2.6400e- 003	0.0905	0.0228	2.4000e- 004	6.1800e- 003	1.7000e- 004	6.3400e- 003	1.7800e- 003	1.6000e- 004	1.9400e- 003	0.0000	23.5848	23.5848	1.4800e- 003	0.0000	23.6219
	6.6900e- 003	4.7800e- 003	0.0553	1.7000e- 004	0.0188	1.4000e- 004	0.0190	5.0000e- 003	1.3000e- 004	5.1200e- 003	0.0000	15.8189	15.8189	4.0000e- 004	0.0000	15.8289
Total	0.0345	0.8886	0.2784	3.0900e- 003	0.1446	2.9100e- 003	0.1475	0.0380	2.7800e- 003	0.0408	0.0000	304.1522	304.1522	0.0196	0.0000	304.6411

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.8 Grading North - 2023

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0795	0.0000	0.0795	8.7400e- 003	0.0000	8.7400e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0581	0.6159	0.5405	1.2700e- 003		0.0250	0.0250	 	0.0230	0.0230	0.0000	111.6551	111.6551	0.0361	0.0000	112.5579
Total	0.0581	0.6159	0.5405	1.2700e- 003	0.0795	0.0250	0.1045	8.7400e- 003	0.0230	0.0318	0.0000	111.6551	111.6551	0.0361	0.0000	112.5579

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0184	0.5386	0.2050	2.8800e- 003	0.1216	1.1900e- 003	0.1228	0.0320	1.1400e- 003	0.0331	0.0000	285.1058	285.1058	0.0188	0.0000	285.5747
Vendor	2.2000e- 003	0.0762	0.0229	2.6000e- 004	6.9300e- 003	9.0000e- 005	7.0200e- 003	2.0000e- 003	8.0000e- 005	2.0800e- 003	0.0000	25.6555	25.6555	1.4600e- 003	0.0000	25.6921
Worker	7.0700e- 003	4.8500e- 003	0.0572	1.9000e- 004	0.0211	1.5000e- 004	0.0213	5.6100e- 003	1.4000e- 004	5.7500e- 003	0.0000	17.0943	17.0943	4.0000e- 004	0.0000	17.1044
Total	0.0277	0.6196	0.2851	3.3300e- 003	0.1496	1.4300e- 003	0.1511	0.0396	1.3600e- 003	0.0409	0.0000	327.8556	327.8556	0.0206	0.0000	328.3713

CalEEMod Version: CalEEMod.2016.3.2 Page 30 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.8 Grading North - 2023

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0358	0.0000	0.0358	3.9300e- 003	0.0000	3.9300e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0581	0.6159	0.5405	1.2700e- 003		0.0250	0.0250		0.0230	0.0230	0.0000	111.6549	111.6549	0.0361	0.0000	112.5577
Total	0.0581	0.6159	0.5405	1.2700e- 003	0.0358	0.0250	0.0608	3.9300e- 003	0.0230	0.0270	0.0000	111.6549	111.6549	0.0361	0.0000	112.5577

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0184	0.5386	0.2050	2.8800e- 003	0.1216	1.1900e- 003	0.1228	0.0320	1.1400e- 003	0.0331	0.0000	285.1058	285.1058	0.0188	0.0000	285.5747
Vendor	2.2000e- 003	0.0762	0.0229	2.6000e- 004	6.9300e- 003	9.0000e- 005	7.0200e- 003	2.0000e- 003	8.0000e- 005	2.0800e- 003	0.0000	25.6555	25.6555	1.4600e- 003	0.0000	25.6921
	7.0700e- 003	4.8500e- 003	0.0572	1.9000e- 004	0.0211	1.5000e- 004	0.0213	5.6100e- 003	1.4000e- 004	5.7500e- 003	0.0000	17.0943	17.0943	4.0000e- 004	0.0000	17.1044
Total	0.0277	0.6196	0.2851	3.3300e- 003	0.1496	1.4300e- 003	0.1511	0.0396	1.3600e- 003	0.0409	0.0000	327.8556	327.8556	0.0206	0.0000	328.3713

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.9 Building Construction North - 2023 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2989	3.1007	3.6042	7.4500e- 003		0.1166	0.1166		0.1072	0.1072	0.0000	654.1636	654.1636	0.2116	0.0000	659.4529
Total	0.2989	3.1007	3.6042	7.4500e- 003		0.1166	0.1166		0.1072	0.1072	0.0000	654.1636	654.1636	0.2116	0.0000	659.4529

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0123	0.4259	0.1283	1.4700e- 003	0.0388	4.9000e- 004	0.0393	0.0112	4.7000e- 004	0.0117	0.0000	143.4375	143.4375	8.1900e- 003	0.0000	143.6422
Worker	0.0994	0.0682	0.8041	2.6600e- 003	0.2969	2.1200e- 003	0.2990	0.0789	1.9500e- 003	0.0808	0.0000	240.2976	240.2976	5.6700e- 003	0.0000	240.4394
Total	0.1118	0.4941	0.9323	4.1300e- 003	0.3356	2.6100e- 003	0.3383	0.0900	2.4200e- 003	0.0925	0.0000	383.7350	383.7350	0.0139	0.0000	384.0816

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.9 Building Construction North - 2023 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.2989	3.1007	3.6042	7.4500e- 003		0.1166	0.1166		0.1072	0.1072	0.0000	654.1628	654.1628	0.2116	0.0000	659.4521
Total	0.2989	3.1007	3.6042	7.4500e- 003		0.1166	0.1166		0.1072	0.1072	0.0000	654.1628	654.1628	0.2116	0.0000	659.4521

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0123	0.4259	0.1283	1.4700e- 003	0.0388	4.9000e- 004	0.0393	0.0112	4.7000e- 004	0.0117	0.0000	143.4375	143.4375	8.1900e- 003	0.0000	143.6422
Worker	0.0994	0.0682	0.8041	2.6600e- 003	0.2969	2.1200e- 003	0.2990	0.0789	1.9500e- 003	0.0808	0.0000	240.2976	240.2976	5.6700e- 003	0.0000	240.4394
Total	0.1118	0.4941	0.9323	4.1300e- 003	0.3356	2.6100e- 003	0.3383	0.0900	2.4200e- 003	0.0925	0.0000	383.7350	383.7350	0.0139	0.0000	384.0816

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.9 Building Construction North - 2024 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.3549	3.5933	4.4093	9.1600e- 003		0.1326	0.1326		0.1220	0.1220	0.0000	804.2148	804.2148	0.2601	0.0000	810.7173
Total	0.3549	3.5933	4.4093	9.1600e- 003		0.1326	0.1326		0.1220	0.1220	0.0000	804.2148	804.2148	0.2601	0.0000	810.7173

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0148	0.5222	0.1532	1.8000e- 003	0.0476	6.0000e- 004	0.0482	0.0138	5.7000e- 004	0.0143	0.0000	175.6909	175.6909	9.9200e- 003	0.0000	175.9389
Worker	0.1158	0.0764	0.9216	3.1600e- 003	0.3650	2.5700e- 003	0.3675	0.0969	2.3600e- 003	0.0993	0.0000	285.6328	285.6328	6.3800e- 003	0.0000	285.7924
Total	0.1306	0.5986	1.0748	4.9600e- 003	0.4126	3.1700e- 003	0.4158	0.1107	2.9300e- 003	0.1136	0.0000	461.3238	461.3238	0.0163	0.0000	461.7312

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.9 Building Construction North - 2024 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.3549	3.5933	4.4093	9.1600e- 003		0.1326	0.1326		0.1220	0.1220	0.0000	804.2139	804.2139	0.2601	0.0000	810.7163
Total	0.3549	3.5933	4.4093	9.1600e- 003		0.1326	0.1326		0.1220	0.1220	0.0000	804.2139	804.2139	0.2601	0.0000	810.7163

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0148	0.5222	0.1532	1.8000e- 003	0.0476	6.0000e- 004	0.0482	0.0138	5.7000e- 004	0.0143	0.0000	175.6909	175.6909	9.9200e- 003	0.0000	175.9389
Worker	0.1158	0.0764	0.9216	3.1600e- 003	0.3650	2.5700e- 003	0.3675	0.0969	2.3600e- 003	0.0993	0.0000	285.6328	285.6328	6.3800e- 003	0.0000	285.7924
Total	0.1306	0.5986	1.0748	4.9600e- 003	0.4126	3.1700e- 003	0.4158	0.1107	2.9300e- 003	0.1136	0.0000	461.3238	461.3238	0.0163	0.0000	461.7312

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.10 Architectural Coating North - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
/	0.1118					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	5.9400e- 003	0.0404	0.0561	9.0000e- 005		2.2000e- 003	2.2000e- 003		2.2000e- 003	2.2000e- 003	0.0000	7.9151	7.9151	4.7000e- 004	0.0000	7.9269
Total	0.1177	0.0404	0.0561	9.0000e- 005		2.2000e- 003	2.2000e- 003		2.2000e- 003	2.2000e- 003	0.0000	7.9151	7.9151	4.7000e- 004	0.0000	7.9269

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
V V O I I C I	3.9900e- 003	2.7400e- 003	0.0322	1.1000e- 004	0.0119	8.0000e- 005	0.0120	3.1600e- 003	8.0000e- 005	3.2400e- 003	0.0000	9.6350	9.6350	2.3000e- 004	0.0000	9.6407
Total	3.9900e- 003	2.7400e- 003	0.0322	1.1000e- 004	0.0119	8.0000e- 005	0.0120	3.1600e- 003	8.0000e- 005	3.2400e- 003	0.0000	9.6350	9.6350	2.3000e- 004	0.0000	9.6407

CalEEMod Version: CalEEMod.2016.3.2 Page 36 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.10 Architectural Coating North - 2023 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.1118					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5.9400e- 003	0.0404	0.0561	9.0000e- 005		2.2000e- 003	2.2000e- 003		2.2000e- 003	2.2000e- 003	0.0000	7.9151	7.9151	4.7000e- 004	0.0000	7.9269
Total	0.1177	0.0404	0.0561	9.0000e- 005		2.2000e- 003	2.2000e- 003		2.2000e- 003	2.2000e- 003	0.0000	7.9151	7.9151	4.7000e- 004	0.0000	7.9269

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.9900e- 003	2.7400e- 003	0.0322	1.1000e- 004	0.0119	8.0000e- 005	0.0120	3.1600e- 003	8.0000e- 005	3.2400e- 003	0.0000	9.6350	9.6350	2.3000e- 004	0.0000	9.6407
Total	3.9900e- 003	2.7400e- 003	0.0322	1.1000e- 004	0.0119	8.0000e- 005	0.0120	3.1600e- 003	8.0000e- 005	3.2400e- 003	0.0000	9.6350	9.6350	2.3000e- 004	0.0000	9.6407

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.10 Architectural Coating North - 2024 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0228	0.1536	0.2281	3.7000e- 004		7.6800e- 003	7.6800e- 003		7.6800e- 003	7.6800e- 003	0.0000	32.1710	32.1710	1.8100e- 003	0.0000	32.2163
Total	0.4771	0.1536	0.2281	3.7000e- 004		7.6800e- 003	7.6800e- 003		7.6800e- 003	7.6800e- 003	0.0000	32.1710	32.1710	1.8100e- 003	0.0000	32.2163

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
1.229	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0154	0.0101	0.1222	4.2000e- 004	0.0484	3.4000e- 004	0.0487	0.0129	3.1000e- 004	0.0132	0.0000	37.8680	37.8680	8.5000e- 004	0.0000	37.8891
Total	0.0154	0.0101	0.1222	4.2000e- 004	0.0484	3.4000e- 004	0.0487	0.0129	3.1000e- 004	0.0132	0.0000	37.8680	37.8680	8.5000e- 004	0.0000	37.8891

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.10 Architectural Coating North - 2024 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	-/yr		
Archit. Coating	0.4544					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0228	0.1536	0.2281	3.7000e- 004		7.6800e- 003	7.6800e- 003		7.6800e- 003	7.6800e- 003	0.0000	32.1710	32.1710	1.8100e- 003	0.0000	32.2163
Total	0.4771	0.1536	0.2281	3.7000e- 004		7.6800e- 003	7.6800e- 003		7.6800e- 003	7.6800e- 003	0.0000	32.1710	32.1710	1.8100e- 003	0.0000	32.2163

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0154	0.0101	0.1222	4.2000e- 004	0.0484	3.4000e- 004	0.0487	0.0129	3.1000e- 004	0.0132	0.0000	37.8680	37.8680	8.5000e- 004	0.0000	37.8891
Total	0.0154	0.0101	0.1222	4.2000e- 004	0.0484	3.4000e- 004	0.0487	0.0129	3.1000e- 004	0.0132	0.0000	37.8680	37.8680	8.5000e- 004	0.0000	37.8891

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.11 Paving North - 2024

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	√yr		
	0.0142	0.1348	0.2030	3.1000e- 004		6.4600e- 003	6.4600e- 003		5.9700e- 003	5.9700e- 003	0.0000	27.0804	27.0804	8.5800e- 003	0.0000	27.2950
1	7.5000e- 004					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0150	0.1348	0.2030	3.1000e- 004		6.4600e- 003	6.4600e- 003		5.9700e- 003	5.9700e- 003	0.0000	27.0804	27.0804	8.5800e- 003	0.0000	27.2950

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0800e- 003	1.3700e- 003	0.0166	6.0000e- 005	0.0123	5.0000e- 005	0.0123	3.1400e- 003	4.0000e- 005	3.1800e- 003	0.0000	5.1349	5.1349	1.1000e- 004	0.0000	5.1378
Total	2.0800e- 003	1.3700e- 003	0.0166	6.0000e- 005	0.0123	5.0000e- 005	0.0123	3.1400e- 003	4.0000e- 005	3.1800e- 003	0.0000	5.1349	5.1349	1.1000e- 004	0.0000	5.1378

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

3.11 Paving North - 2024 Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	Γ/yr		
	0.0142	0.1348	0.2030	3.1000e- 004		6.4600e- 003	6.4600e- 003		5.9700e- 003	5.9700e- 003	0.0000	27.0803	27.0803	8.5800e- 003	0.0000	27.2949
1	7.5000e- 004					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0150	0.1348	0.2030	3.1000e- 004		6.4600e- 003	6.4600e- 003		5.9700e- 003	5.9700e- 003	0.0000	27.0803	27.0803	8.5800e- 003	0.0000	27.2949

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0800e- 003	1.3700e- 003	0.0166	6.0000e- 005	0.0123	5.0000e- 005	0.0123	3.1400e- 003	4.0000e- 005	3.1800e- 003	0.0000	5.1349	5.1349	1.1000e- 004	0.0000	5.1378
Total	2.0800e- 003	1.3700e- 003	0.0166	6.0000e- 005	0.0123	5.0000e- 005	0.0123	3.1400e- 003	4.0000e- 005	3.1800e- 003	0.0000	5.1349	5.1349	1.1000e- 004	0.0000	5.1378

4.0 Operational Detail - Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 41 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.1977	0.9685	2.5966	0.0108	1.0024	7.9300e- 003	1.0103	0.2685	7.3600e- 003	0.2759	0.0000	1,003.887 1	1,003.887 1	0.0440	0.0000	1,004.986 3
Unmitigated	0.1977	0.9685	2.5966	0.0108	1.0024	7.9300e- 003	1.0103	0.2685	7.3600e- 003	0.2759	0.0000	1,003.887 1	1,003.887 1	0.0440	0.0000	1,004.986 3

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Congregate Care (Assisted Living)	705.76	705.76	705.76	2,410,230	2,410,230
Day-Care Center	220.90	0.00	0.00	229,429	229,429
Enclosed Parking with Elevator	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Total	926.66	705.76	705.76	2,639,659	2,639,659

4.3 Trip Type Information

CalEEMod Version: CalEEMod.2016.3.2 Page 42 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Congregate Care (Assisted	14.70	5.90	8.70	40.00	19.00	41.00	86	11	3
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Congregate Care (Assisted Living)	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Day-Care Center	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Enclosed Parking with Elevator	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827
Other Asphalt Surfaces	0.553907	0.042339	0.204535	0.114490	0.014186	0.005810	0.021866	0.032691	0.002129	0.001663	0.004844	0.000713	0.000827

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	412.0413	412.0413	9.7900e- 003	2.0600e- 003	412.9004
Electricity Unmitigated	,					0.0000	0.0000	,	0.0000	0.0000	0.0000	412.0413	412.0413	9.7900e- 003	2.0600e- 003	412.9004
NaturalGas Mitigated	9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7400e- 003	6.7400e- 003	,	6.7400e- 003	6.7400e- 003	0.0000	96.4767	96.4767	1.8500e- 003	1.7700e- 003	97.0500
NaturalGas Unmitigated	9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7400e- 003	6.7400e- 003	yr	6.7400e- 003	6.7400e- 003	0.0000	96.4767	96.4767	1.8500e- 003	1.7700e- 003	97.0500

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	1 1 1 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)	1.62218e +006	8.7500e- 003	0.0748	0.0318	4.8000e- 004		6.0400e- 003	6.0400e- 003	 	6.0400e- 003	6.0400e- 003	0.0000	86.5658	86.5658	1.6600e- 003	1.5900e- 003	87.0802
Day-Care Center	185723	1.0000e- 003	9.1000e- 003	7.6500e- 003	5.0000e- 005		6.9000e- 004	6.9000e- 004		6.9000e- 004	6.9000e- 004	0.0000	9.9109	9.9109	1.9000e- 004	1.8000e- 004	9.9698
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7300e- 003	6.7300e- 003		6.7300e- 003	6.7300e- 003	0.0000	96.4767	96.4767	1.8500e- 003	1.7700e- 003	97.0500

CalEEMod Version: CalEEMod.2016.3.2 Page 45 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)		8.7500e- 003	0.0748	0.0318	4.8000e- 004		6.0400e- 003	6.0400e- 003		6.0400e- 003	6.0400e- 003	0.0000	86.5658	86.5658	1.6600e- 003	1.5900e- 003	87.0802
Day-Care Center	185723	1.0000e- 003	9.1000e- 003	7.6500e- 003	5.0000e- 005		6.9000e- 004	6.9000e- 004		6.9000e- 004	6.9000e- 004	0.0000	9.9109	9.9109	1.9000e- 004	1.8000e- 004	9.9698
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		9.7500e- 003	0.0839	0.0395	5.3000e- 004		6.7300e- 003	6.7300e- 003		6.7300e- 003	6.7300e- 003	0.0000	96.4767	96.4767	1.8500e- 003	1.7700e- 003	97.0500

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity.	Total CO2	CH4	NOO	000-
	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)	599104	217.2796	5.1600e- 003	1.0900e- 003	217.7326
Day-Care Center	105719	38.3417	9.1000e- 004	1.9000e- 004	38.4216
Enclosed Parking with Elevator	431296	156.4200	3.7200e- 003	7.8000e- 004	156.7461
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		412.0413	9.7900e- 003	2.0600e- 003	412.9004

CalEEMod Version: CalEEMod.2016.3.2 Page 47 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Congregate Care (Assisted Living)	599104	217.2796	5.1600e- 003	1.0900e- 003	217.7326
Day-Care Center	105719	38.3417	9.1000e- 004	1.9000e- 004	38.4216
Enclosed Parking with Elevator	431296	156.4200	3.7200e- 003	7.8000e- 004	156.7461
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		412.0413	9.7900e- 003	2.0600e- 003	412.9004

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

CalEEMod Version: CalEEMod.2016.3.2 Page 48 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562
Unmitigated	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562

6.2 Area by SubCategory Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	0.0608					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7090		, 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	4.2700e- 003	0.0365	0.0155	2.3000e- 004		2.9500e- 003	2.9500e- 003		2.9500e- 003	2.9500e- 003	0.0000	42.2641	42.2641	8.1000e- 004	7.7000e- 004	42.5153
Landscaping	0.0547	0.0209	1.8158	1.0000e- 004		0.0101	0.0101		0.0101	0.0101	0.0000	2.9696	2.9696	2.8500e- 003	0.0000	3.0409
Total	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562

CalEEMod Version: CalEEMod.2016.3.2 Page 49 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	√yr		
Architectural Coating	0.0608					0.0000	0.0000	i i	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7090		 			0.0000	0.0000	i i	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	4.2700e- 003	0.0365	0.0155	2.3000e- 004		2.9500e- 003	2.9500e- 003	: : :	2.9500e- 003	2.9500e- 003	0.0000	42.2641	42.2641	8.1000e- 004	7.7000e- 004	42.5153
Landscaping	0.0547	0.0209	1.8158	1.0000e- 004		0.0101	0.0101	i i	0.0101	0.0101	0.0000	2.9696	2.9696	2.8500e- 003	0.0000	3.0409
Total	0.8287	0.0574	1.8313	3.3000e- 004		0.0130	0.0130		0.0130	0.0130	0.0000	45.2338	45.2338	3.6600e- 003	7.7000e- 004	45.5562

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

CalEEMod Version: CalEEMod.2016.3.2 Page 50 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

	Total CO2	CH4	N2O	CO2e
Category	MT/yr			
Imagatou	72.1097	0.2617	6.4900e- 003	80.5840
Ommigatou	82.2782	0.3142	7.7700e- 003	92.4497

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
City Park	0 / 0.142978	0.5761	1.0000e- 005	0.0000	0.5773
Congregate Care (Assisted Living)		75.3610	0.3007	7.4200e- 003	85.0885
Day-Care Center	0.41174 / 1.05876	6.3411	0.0136	3.5000e- 004	6.7839
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		82.2782	0.3142	7.7700e- 003	92.4497

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

7.2 Water by Land Use Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
City Park	0 / 0.134256	0.5410	1.0000e- 005	0.0000	0.5421
Congregate Care (Assisted Living)		65.8356	0.2503	6.1900e- 003	73.9393
Day-Care Center	0.342732 / 0.994175	5.7331	0.0113	2.9000e- 004	6.1026
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		72.1097	0.2616	6.4800e- 003	80.5840

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e	
	MT/yr				
gatea	26.3518	1.5574	0.0000	65.2854	
Jgatea	35.1357	2.0765	0.0000	87.0472	

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
City Park	0.01	2.0300e- 003	1.2000e- 004	0.0000	5.0300e- 003
Congregate Care (Assisted Living)	160.6	32.6004	1.9266	0.0000	80.7660
Day-Care Center	12.48	2.5333	0.1497	0.0000	6.2762
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		35.1357	2.0765	0.0000	87.0472

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

Date: 6/4/2020 11:44 AM

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e						
Land Use	tons		MT/yr								
City Park	0.0075	1.5200e- 003	9.0000e- 005	0.0000	3.7700e- 003						
Congregate Care (Assisted Living)	120.45	24.4503	1.4450	0.0000	60.5745						
Day-Care Center	9.36	1.9000	0.1123	0.0000	4.7072						
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000						
Total		26.3518	1.5574	0.0000	65.2854						

9.0 Operational Offroad

Equipment Type Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
-----------------------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

CalEEMod Version: CalEEMod.2016.3.2 Page 54 of 54 Date: 6/4/2020 11:44 AM

Belmont Village Westwood Presbyterian - South Coast Air Basin, Annual

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Belmont Village - Existing Uses South Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	8.75	1000sqft	0.20	8,750.00	0
Parking Lot	45.80	1000sqft	1.28	45,800.00	0
City Park	0.06	Acre	0.06	2,613.60	0
Single Family Housing	1.00	Dwelling Unit	0.08	3,347.00	3

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2019
Utility Company	Los Angeles Departmo	ent of Water & Power			
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on traffic study, site plan, and Google Earth. Remainder of lot acreage allocated to parking lot.

Construction Phase -

Trips and VMT -

Demolition -

Grading -

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Vehicle Trips - Based on TIS. No trips for landscaping or playground.

Woodstoves - Per SCAQMD Rule 445. Assumed that existing single-family residence does not have a wood burning fireplace.

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use -

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation - Existing development is being modeled. No construction would occur

Area Mitigation -

Page 3 of 28

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Date: 4/5/2019 11:12 AM

Table Name	Column Name	Default Value	New Value		
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50		
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50		
tblFireplaces	FireplaceWoodMass	1,019.20	0.00		
tblFireplaces	NumberGas	0.85	1.00		
tblFireplaces	NumberNoFireplace	0.10	0.00		
tblFireplaces	NumberWood	0.05	0.00		
tblLandUse	LandUseSquareFeet	1,800.00	3,347.00		
tblLandUse	LotAcreage	1.05	1.28		
tblLandUse	LotAcreage	0.32	0.08		
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019		
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56		
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004		
tblVehicleTrips	ST_TR	22.75	0.00		
tblVehicleTrips	ST_TR	6.21	0.00		
tblVehicleTrips	ST_TR	9.91	9.44		
tblVehicleTrips	SU_TR	16.74	0.00		
tblVehicleTrips	SU_TR	5.83	0.00		
tblVehicleTrips	SU_TR	8.62	9.44		
tblVehicleTrips	WD_TR	1.89	0.00		
tblVehicleTrips	WD_TR	74.06	47.62		
tblVehicleTrips	WD_TR	9.52	9.44		
tblWoodstoves	NumberCatalytic	0.05	0.00		
tblWoodstoves	NumberNoncatalytic	0.05	0.00		
tblWoodstoves	WoodstoveDayYear	25.00	0.00		
tblWoodstoves	WoodstoveWoodMass	999.60	0.00		

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2018	11.8072	24.4191	15.7034	0.0271	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,547.896 6	2,547.896 6	0.6109	0.0000	2,558.812 7
Maximum	11.8072	24.4191	15.7034	0.0271	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,547.896 6	2,547.896 6	0.6109	0.0000	2,558.812 7

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2018	11.8072	24.4191	15.7034	0.0271	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,547.896 6	2,547.896 6	0.6109	0.0000	2,558.812 7
Maximum	11.8072	24.4191	15.7034	0.0271	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,547.896 6	2,547.896 6	0.6109	0.0000	2,558.812 7

Belmont Village - Existing Uses - South Coast Air Basin, Winter

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 6 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Area	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673
Energy	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003	·	2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208
Mobile	0.6771	2.9174	6.4962	0.0178	1.3563	0.0216	1.3780	0.3629	0.0204	0.3833		1,803.933 9	1,803.933 9	0.1147		1,806.800 4
Total	0.9619	2.9664	6.6153	0.0181	1.3563	0.0259	1.3822	0.3629	0.0246	0.3875	0.0000	1,863.464 7	1,863.464 7	0.1160	1.0900e- 003	1,866.688 4

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673
Energy	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208
Mobile	0.6771	2.9174	6.4962	0.0178	1.3563	0.0216	1.3780	0.3629	0.0204	0.3833		1,803.933 9	1,803.933 9	0.1147		1,806.800 4
Total	0.9619	2.9664	6.6153	0.0181	1.3563	0.0259	1.3822	0.3629	0.0246	0.3875	0.0000	1,863.464 7	1,863.464 7	0.1160	1.0900e- 003	1,866.688 4

Belmont Village - Existing Uses - South Coast Air Basin, Winter

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2018	1/26/2018	5	20	
2	Site Preparation	Site Preparation	1/27/2018	1/30/2018	5	2	
3	Grading	Grading	1/31/2018	2/5/2018	5	4	
4	Building Construction	Building Construction	2/6/2018	11/12/2018	5	200	
5	Paving	Paving	11/13/2018	11/26/2018	5	10	
6	Architectural Coating	Architectural Coating	11/27/2018	12/10/2018	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.28

Residential Indoor: 6,778; Residential Outdoor: 2,259; Non-Residential Indoor: 13,125; Non-Residential Outdoor: 4,375; Striped Parking Area: 2,748 (Architectural Coating – sqft)

OffRoad Equipment

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Page 8 of 28

Date: 4/5/2019 11:12 AM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	1	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Date: 4/5/2019 11:12 AM

Page 9 of 28

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	24.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 **Demolition - 2018**

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365	 	1.3429	1.3429		2,391.165 9	2,391.165 9	0.6058		2,406.310 5
Total	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429		2,391.165 9	2,391.165 9	0.6058		2,406.310 5

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.2 Demolition - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003	 	148.7501
Total	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429	0.0000	2,391.165 9	2,391.165 9	0.6058		2,406.310 5
Total	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429	0.0000	2,391.165 9	2,391.165 9	0.6058		2,406.310 5

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.2 Demolition - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501
Total	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501

3.3 Site Preparation - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537			0.0000			0.0000
Off-Road	1.8061	20.7472	8.0808	0.0172	 	0.9523	0.9523		0.8761	0.8761		1,735.363 0	1,735.363 0	0.5402		1,748.869 0
Total	1.8061	20.7472	8.0808	0.0172	5.7996	0.9523	6.7518	2.9537	0.8761	3.8298		1,735.363 0	1,735.363 0	0.5402		1,748.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.3 Site Preparation - 2018
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385
Total	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537			0.0000			0.0000
Off-Road	1.8061	20.7472	8.0808	0.0172		0.9523	0.9523	 	0.8761	0.8761	0.0000	1,735.363 0	1,735.363 0	0.5402	 	1,748.869 0
Total	1.8061	20.7472	8.0808	0.0172	5.7996	0.9523	6.7518	2.9537	0.8761	3.8298	0.0000	1,735.363 0	1,735.363 0	0.5402		1,748.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.3 Site Preparation - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385
Total	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385

3.4 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000			0.0000
Off-Road	1.4972	17.0666	6.7630	0.0141		0.7947	0.7947		0.7311	0.7311		1,421.260 5	1,421.260 5	0.4425		1,432.321 9
Total	1.4972	17.0666	6.7630	0.0141	4.9143	0.7947	5.7090	2.5256	0.7311	3.2568		1,421.260 5	1,421.260 5	0.4425		1,432.321 9

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.4 Grading - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385
Total	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	 				4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000		: :	0.0000
Off-Road	1.4972	17.0666	6.7630	0.0141		0.7947	0.7947	 	0.7311	0.7311	0.0000	1,421.260 5	1,421.260 5	0.4425	i ! !	1,432.321 9
Total	1.4972	17.0666	6.7630	0.0141	4.9143	0.7947	5.7090	2.5256	0.7311	3.2568	0.0000	1,421.260 5	1,421.260 5	0.4425		1,432.321 9

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.4 Grading - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385
Total	0.0469	0.0339	0.3647	9.2000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		91.4602	91.4602	3.1300e- 003		91.5385

3.5 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216		2,030.838 9	2,030.838 9	0.4088		2,041.059 6
Total	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216		2,030.838 9	2,030.838 9	0.4088		2,041.059 6

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.5 Building Construction - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0404	1.0958	0.3065	2.2800e- 003	0.0576	8.1200e- 003	0.0657	0.0166	7.7600e- 003	0.0243		242.6772	242.6772	0.0184		243.1376
Worker	0.1406	0.1016	1.0942	2.7600e- 003	0.2683	2.1500e- 003	0.2704	0.0711	1.9800e- 003	0.0731		274.3806	274.3806	9.4000e- 003		274.6155
Total	0.1810	1.1973	1.4007	5.0400e- 003	0.3259	0.0103	0.3361	0.0877	9.7400e- 003	0.0975		517.0578	517.0578	0.0278		517.7531

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216	0.0000	2,030.838 9	2,030.838 9	0.4088		2,041.059 6
Total	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216	0.0000	2,030.838 9	2,030.838 9	0.4088		2,041.059 6

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.5 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0404	1.0958	0.3065	2.2800e- 003	0.0576	8.1200e- 003	0.0657	0.0166	7.7600e- 003	0.0243		242.6772	242.6772	0.0184	 	243.1376
Worker	0.1406	0.1016	1.0942	2.7600e- 003	0.2683	2.1500e- 003	0.2704	0.0711	1.9800e- 003	0.0731		274.3806	274.3806	9.4000e- 003	 	274.6155
Total	0.1810	1.1973	1.4007	5.0400e- 003	0.3259	0.0103	0.3361	0.0877	9.7400e- 003	0.0975		517.0578	517.0578	0.0278		517.7531

3.6 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	1.0182	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618		1,346.436 0	1,346.436 0	0.4113		1,356.718 6
Paving	0.3354					0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Total	1.3536	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618		1,346.436 0	1,346.436 0	0.4113		1,356.718 6

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.6 Paving - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501
Total	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
- Cir Nodu	1.0182	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618	0.0000	1,346.436 0	1,346.436 0	0.4113		1,356.718 6
	0.3354					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.3536	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618	0.0000	1,346.436 0	1,346.436 0	0.4113		1,356.718 6

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.6 Paving - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501
Total	0.0762	0.0550	0.5927	1.4900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		148.6228	148.6228	5.0900e- 003		148.7501

3.7 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	11.4793		 			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171
Total	11.7779	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.7 Architectural Coating - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0293	0.0212	0.2280	5.7000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		57.1626	57.1626	1.9600e- 003		57.2116
Total	0.0293	0.0212	0.2280	5.7000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		57.1626	57.1626	1.9600e- 003		57.2116

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	11.4793					0.0000	0.0000	! !	0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506	1 1 1 1	0.1506	0.1506	0.0000	281.4485	281.4485	0.0267	 	282.1171
Total	11.7779	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

3.7 Architectural Coating - 2018 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0293	0.0212	0.2280	5.7000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		57.1626	57.1626	1.9600e- 003		57.2116
Total	0.0293	0.0212	0.2280	5.7000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		57.1626	57.1626	1.9600e- 003		57.2116

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.6771	2.9174	6.4962	0.0178	1.3563	0.0216	1.3780	0.3629	0.0204	0.3833		1,803.933 9	1,803.933 9	0.1147		1,806.800 4
Unmitigated	0.6771	2.9174	6.4962	0.0178	1.3563	0.0216	1.3780	0.3629	0.0204	0.3833		1,803.933 9	1,803.933 9	0.1147		1,806.800 4

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Day-Care Center	416.68	0.00	0.00	432,770	432,770
Parking Lot	0.00	0.00	0.00		
Single Family Housing	9.44	9.44	9.44	32,258	32,258
Total	426.12	9.44	9.44	465,028	465,028

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by	
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3

4.4 Fleet Mix

Page 23 of 28

Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Day-Care Center	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Parking Lot	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Single Family Housing	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NA:s: a	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208
	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

Belmont Village - Existing Uses - South Coast Air Basin, Winter

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	249.315	2.6900e- 003	0.0244	0.0205	1.5000e- 004		1.8600e- 003	1.8600e- 003		1.8600e- 003	1.8600e- 003		29.3312	29.3312	5.6000e- 004	5.4000e- 004	29.5055
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	75.3322	8.1000e- 004	6.9400e- 003	2.9500e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004		8.8626	8.8626	1.7000e- 004	1.6000e- 004	8.9153
Total		3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	0.249315	2.6900e- 003	0.0244	0.0205	1.5000e- 004		1.8600e- 003	1.8600e- 003		1.8600e- 003	1.8600e- 003		29.3312	29.3312	5.6000e- 004	5.4000e- 004	29.5055
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	0.0753322	8.1000e- 004	6.9400e- 003	2.9500e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004		8.8626	8.8626	1.7000e- 004	1.6000e- 004	8.9153
Total		3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category		lb/day										lb/day						
Mitigated	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673		
Unmitigated	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673		

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.0203					0.0000	0.0000		0.0000	0.0000			0.0000	 		0.0000
Consumer Products	0.2559		i i			0.0000	0.0000	 	0.0000	0.0000			0.0000		i i	0.0000
Hearth	1.9400e- 003	0.0166	7.0600e- 003	1.1000e- 004		1.3400e- 003	1.3400e- 003	 	1.3400e- 003	1.3400e- 003	0.0000	21.1765	21.1765	4.1000e- 004	3.9000e- 004	21.3023
Landscaping	3.0700e- 003	1.0100e- 003	0.0885	0.0000	 	4.7000e- 004	4.7000e- 004		4.7000e- 004	4.7000e- 004		0.1605	0.1605	1.8000e- 004		0.1650
Total	0.2812	0.0176	0.0956	1.1000e- 004		1.8100e- 003	1.8100e- 003		1.8100e- 003	1.8100e- 003	0.0000	21.3370	21.3370	5.9000e- 004	3.9000e- 004	21.4673

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 28 Date: 4/5/2019 11:12 AM

Belmont Village - Existing Uses - South Coast Air Basin, Winter

6.2 Area by SubCategory Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.0203					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.2559					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	1.9400e- 003	0.0166	7.0600e- 003	1.1000e- 004		1.3400e- 003	1.3400e- 003		1.3400e- 003	1.3400e- 003	0.0000	21.1765	21.1765	4.1000e- 004	3.9000e- 004	21.3023
Landscaping	3.0700e- 003	1.0100e- 003	0.0885	0.0000		4.7000e- 004	4.7000e- 004		4.7000e- 004	4.7000e- 004		0.1605	0.1605	1.8000e- 004		0.1650
Total	0.2812	0.0176	0.0956	1.1000e- 004		1.8100e- 003	1.8100e- 003		1.8100e- 003	1.8100e- 003	0.0000	21.3370	21.3370	5.9000e- 004	3.9000e- 004	21.4673

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Dav	Days/Year	Horse Power	Load Factor	Fuel Type
Equipment Type	Number	1 louis/Day	Days/Teal	11015e FOWel	Luau Factor	r der rype

10.0 Stationary Equipment

Belmont Village - Existing Uses - South Coast Air Basin, Winter

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
		4	4	4		

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Belmont Village - Existing Uses South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	8.75	1000sqft	0.20	8,750.00	0
Parking Lot	45.80	1000sqft	1.28	45,800.00	0
City Park	0.06	Acre	0.06	2,613.60	0
Single Family Housing	1.00	Dwelling Unit	0.08	3,347.00	3

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2019
Utility Company	Los Angeles Departme	ent of Water & Power			
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on traffic study, site plan, and Google Earth. Remainder of lot acreage allocated to parking lot.

Construction Phase -

Trips and VMT -

Demolition -

Grading -

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Vehicle Trips - Based on TIS. No trips for landscaping or playground.

Woodstoves - Per SCAQMD Rule 445. Assumed that existing single-family residence does not have a wood burning fireplace.

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use -

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation - Existing development is being modeled. No construction would occur

Area Mitigation -

Page 3 of 28

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Date: 4/5/2019 11:11 AM

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberGas	0.85	1.00
tblFireplaces	NumberNoFireplace	0.10	0.00
tblFireplaces	NumberWood	0.05	0.00
tblLandUse	LandUseSquareFeet	1,800.00	3,347.00
tblLandUse	LotAcreage	1.05	1.28
tblLandUse	LotAcreage	0.32	0.08
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	ST_TR	6.21	0.00
tblVehicleTrips	ST_TR	9.91	9.44
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	SU_TR	5.83	0.00
tblVehicleTrips	SU_TR	8.62	9.44
tblVehicleTrips	WD_TR	1.89	0.00
tblVehicleTrips	WD_TR	74.06	47.62
tblVehicleTrips	WD_TR	9.52	9.44
tblWoodstoves	NumberCatalytic	0.05	0.00
tblWoodstoves	NumberNoncatalytic	0.05	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
2018	11.8046	24.4142	15.7611	0.0273	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,572.640 0	2,572.640 0	0.6112	0.0000	2,583.541 1
Maximum	11.8046	24.4142	15.7611	0.0273	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,572.640 0	2,572.640 0	0.6112	0.0000	2,583.541 1

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2018	11.8046	24.4142	15.7611	0.0273	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,572.640 0	2,572.640 0	0.6112	0.0000	2,583.5411
Maximum	11.8046	24.4142	15.7611	0.0273	5.8890	1.4376	6.8420	2.9774	1.3440	3.8542	0.0000	2,572.640 0	2,572.640 0	0.6112	0.0000	2,583.541 1

Belmont Village - Existing Uses - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 6 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

2.2 Overall Operational Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Area	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673	
Energy	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208	
Mobile	0.7034	2.8845	6.6045	0.0188	1.3563	0.0214	1.3777	0.3629	0.0201	0.3830		1,906.304 8	1,906.304 8	0.1126	1 1	1,909.120 8	
Total	0.9881	2.9335	6.7236	0.0191	1.3563	0.0256	1.3819	0.3629	0.0243	0.3872	0.0000	1,965.835 5	1,965.835 5	0.1140	1.0900e- 003	1,969.008 8	

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	lb/day										lb/day						
Area	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673	
Energy	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208	
Mobile	0.7034	2.8845	6.6045	0.0188	1.3563	0.0214	1.3777	0.3629	0.0201	0.3830		1,906.304 8	1,906.304 8	0.1126		1,909.120 8	
Total	0.9881	2.9335	6.7236	0.0191	1.3563	0.0256	1.3819	0.3629	0.0243	0.3872	0.0000	1,965.835 5	1,965.835 5	0.1140	1.0900e- 003	1,969.008 8	

Belmont Village - Existing Uses - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2018	1/26/2018	5	20	
2	Site Preparation	Site Preparation	1/27/2018	1/30/2018	5	2	
3	Grading	Grading	1/31/2018	2/5/2018	5	4	
4	Building Construction	Building Construction	2/6/2018	11/12/2018	5	200	
5	Paving	Paving	11/13/2018	11/26/2018	5	10	
6	Architectural Coating	Architectural Coating	11/27/2018	12/10/2018	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.28

Residential Indoor: 6,778; Residential Outdoor: 2,259; Non-Residential Indoor: 13,125; Non-Residential Outdoor: 4,375; Striped Parking Area: 2,748 (Architectural Coating – sqft)

OffRoad Equipment

Page 8 of 28

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Date: 4/5/2019 11:11 AM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3 	8.00	97	0.37
Site Preparation	Graders	1	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes		6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment		8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 28

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Date: 4/5/2019 11:11 AM

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	24.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 **Demolition - 2018**

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365	1 1	1.3429	1.3429		2,391.165 9	2,391.165 9	0.6058		2,406.310 5
Total	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429		2,391.165 9	2,391.165 9	0.6058		2,406.310 5

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.2 Demolition - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690
Total	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429	0.0000	2,391.165 9	2,391.165 9	0.6058		2,406.310 5
Total	2.4838	24.3641	15.1107	0.0241		1.4365	1.4365		1.3429	1.3429	0.0000	2,391.165 9	2,391.165 9	0.6058		2,406.310 5

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.2 Demolition - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690
Total	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690

3.3 Site Preparation - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537			0.0000			0.0000
Off-Road	1.8061	20.7472	8.0808	0.0172		0.9523	0.9523		0.8761	0.8761		1,735.363 0	1,735.363 0	0.5402		1,748.869 0
Total	1.8061	20.7472	8.0808	0.0172	5.7996	0.9523	6.7518	2.9537	0.8761	3.8298		1,735.363 0	1,735.363 0	0.5402		1,748.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.3 Site Preparation - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809
Total	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					5.7996	0.0000	5.7996	2.9537	0.0000	2.9537			0.0000			0.0000
Off-Road	1.8061	20.7472	8.0808	0.0172		0.9523	0.9523	 	0.8761	0.8761	0.0000	1,735.363 0	1,735.363 0	0.5402	 	1,748.869 0
Total	1.8061	20.7472	8.0808	0.0172	5.7996	0.9523	6.7518	2.9537	0.8761	3.8298	0.0000	1,735.363 0	1,735.363 0	0.5402		1,748.869 0

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.3 Site Preparation - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809
Total	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809

3.4 Grading - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000			0.0000
Off-Road	1.4972	17.0666	6.7630	0.0141	 	0.7947	0.7947		0.7311	0.7311		1,421.260 5	1,421.260 5	0.4425	 	1,432.321 9
Total	1.4972	17.0666	6.7630	0.0141	4.9143	0.7947	5.7090	2.5256	0.7311	3.2568		1,421.260 5	1,421.260 5	0.4425		1,432.321 9

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.4 Grading - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809
Total	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	ii ii				4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000		: :	0.0000
Off-Road	1.4972	17.0666	6.7630	0.0141		0.7947	0.7947	 	0.7311	0.7311	0.0000	1,421.260 5	1,421.260 5	0.4425	i ! !	1,432.321 9
Total	1.4972	17.0666	6.7630	0.0141	4.9143	0.7947	5.7090	2.5256	0.7311	3.2568	0.0000	1,421.260 5	1,421.260 5	0.4425		1,432.321 9

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.4 Grading - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809
Total	0.0427	0.0308	0.4002	9.8000e- 004	0.0894	7.2000e- 004	0.0901	0.0237	6.6000e- 004	0.0244		97.4976	97.4976	3.3300e- 003		97.5809

3.5 Building Construction - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216		2,030.838 9	2,030.838 9	0.4088		2,041.059 6
Total	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216		2,030.838 9	2,030.838 9	0.4088		2,041.059 6

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.5 Building Construction - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0387	1.0934	0.2775	2.3400e- 003	0.0576	7.9900e- 003	0.0656	0.0166	7.6500e- 003	0.0242		249.3083	249.3083	0.0172		249.7388
Worker	0.1282	0.0924	1.2007	2.9400e- 003	0.2683	2.1500e- 003	0.2704	0.0711	1.9800e- 003	0.0731		292.4928	292.4928	0.0100		292.7427
Total	0.1669	1.1859	1.4783	5.2800e- 003	0.3259	0.0101	0.3360	0.0877	9.6300e- 003	0.0974		541.8011	541.8011	0.0272		542.4815

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216	0.0000	2,030.838 9	2,030.838 9	0.4088		2,041.059 6
Total	2.5919	17.4280	13.8766	0.0220		1.0580	1.0580		1.0216	1.0216	0.0000	2,030.838 9	2,030.838 9	0.4088		2,041.059 6

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.5 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0387	1.0934	0.2775	2.3400e- 003	0.0576	7.9900e- 003	0.0656	0.0166	7.6500e- 003	0.0242		249.3083	249.3083	0.0172	 	249.7388
Worker	0.1282	0.0924	1.2007	2.9400e- 003	0.2683	2.1500e- 003	0.2704	0.0711	1.9800e- 003	0.0731		292.4928	292.4928	0.0100	 	292.7427
Total	0.1669	1.1859	1.4783	5.2800e- 003	0.3259	0.0101	0.3360	0.0877	9.6300e- 003	0.0974		541.8011	541.8011	0.0272		542.4815

3.6 Paving - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	1.0182	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618		1,346.436 0	1,346.436 0	0.4113		1,356.718 6
Paving	0.3354				 	0.0000	0.0000	1	0.0000	0.0000		 	0.0000			0.0000
Total	1.3536	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618		1,346.436 0	1,346.436 0	0.4113		1,356.718 6

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.6 Paving - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690
Total	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Off-Road	1.0182	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618	0.0000	1,346.436 0	1,346.436 0	0.4113		1,356.718 6
Paving	0.3354	 	 		 	0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Total	1.3536	10.4525	8.9926	0.0135		0.6097	0.6097		0.5618	0.5618	0.0000	1,346.436 0	1,346.436 0	0.4113		1,356.718 6

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.6 Paving - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690
Total	0.0695	0.0501	0.6504	1.5900e- 003	0.1453	1.1700e- 003	0.1465	0.0385	1.0700e- 003	0.0396		158.4336	158.4336	5.4100e- 003		158.5690

3.7 Architectural Coating - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	11.4793					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171
Total	11.7779	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506		281.4485	281.4485	0.0267		282.1171

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.7 Architectural Coating - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0267	0.0193	0.2502	6.1000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		60.9360	60.9360	2.0800e- 003		60.9881
Total	0.0267	0.0193	0.2502	6.1000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		60.9360	60.9360	2.0800e- 003		60.9881

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	11.4793					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.2986	2.0058	1.8542	2.9700e- 003		0.1506	0.1506	 	0.1506	0.1506	0.0000	281.4485	281.4485	0.0267	 	282.1171
Total	11.7779	2.0058	1.8542	2.9700e- 003		0.1506	0.1506		0.1506	0.1506	0.0000	281.4485	281.4485	0.0267		282.1171

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

3.7 Architectural Coating - 2018 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0267	0.0193	0.2502	6.1000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		60.9360	60.9360	2.0800e- 003		60.9881
Total	0.0267	0.0193	0.2502	6.1000e- 004	0.0559	4.5000e- 004	0.0563	0.0148	4.1000e- 004	0.0152		60.9360	60.9360	2.0800e- 003		60.9881

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.7034	2.8845	6.6045	0.0188	1.3563	0.0214	1.3777	0.3629	0.0201	0.3830		1,906.304 8	1,906.304 8	0.1126		1,909.120 8
Unmitigated	0.7034	2.8845	6.6045	0.0188	1.3563	0.0214	1.3777	0.3629	0.0201	0.3830		1,906.304 8	1,906.304 8	0.1126	 	1,909.120 8

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Day-Care Center	416.68	0.00	0.00	432,770	432,770
Parking Lot	0.00	0.00	0.00		
Single Family Housing	9.44	9.44	9.44	32,258	32,258
Total	426.12	9.44	9.44	465,028	465,028

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3

4.4 Fleet Mix

Page 23 of 28

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Date: 4/5/2019 11:11 AM

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Day-Care Center	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Parking Lot	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Single Family Housing	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NA:4: 4 d	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208
Unmitigated	3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

Belmont Village - Existing Uses - South Coast Air Basin, Summer

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	249.315	2.6900e- 003	0.0244	0.0205	1.5000e- 004		1.8600e- 003	1.8600e- 003		1.8600e- 003	1.8600e- 003		29.3312	29.3312	5.6000e- 004	5.4000e- 004	29.5055
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	75.3322	8.1000e- 004	6.9400e- 003	2.9500e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004		8.8626	8.8626	1.7000e- 004	1.6000e- 004	8.9153
Total		3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	0.249315	2.6900e- 003	0.0244	0.0205	1.5000e- 004		1.8600e- 003	1.8600e- 003		1.8600e- 003	1.8600e- 003		29.3312	29.3312	5.6000e- 004	5.4000e- 004	29.5055
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	0.0753322	8.1000e- 004	6.9400e- 003	2.9500e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004		8.8626	8.8626	1.7000e- 004	1.6000e- 004	8.9153
Total		3.5000e- 003	0.0314	0.0235	1.9000e- 004		2.4200e- 003	2.4200e- 003		2.4200e- 003	2.4200e- 003		38.1938	38.1938	7.3000e- 004	7.0000e- 004	38.4208

6.0 Area Detail

6.1 Mitigation Measures Area

Belmont Village - Existing Uses - South Coast Air Basin, Summer

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673
Unmitigated	0.2812	0.0176	0.0956	1.1000e- 004		1.8200e- 003	1.8200e- 003		1.8200e- 003	1.8200e- 003	0.0000	21.3370	21.3370	5.8000e- 004	3.9000e- 004	21.4673

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
SubCategory		lb/day										lb/day						
Architectural Coating	0.0203		i I I			0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000		 	0.0000		
Consumer Products	0.2559		 			0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000		
Hearth	1.9400e- 003	0.0166	7.0600e- 003	1.1000e- 004		1.3400e- 003	1.3400e- 003	 	1.3400e- 003	1.3400e- 003	0.0000	21.1765	21.1765	4.1000e- 004	3.9000e- 004	21.3023		
Landscaping	3.0700e- 003	1.0100e- 003	0.0885	0.0000		4.7000e- 004	4.7000e- 004	 	4.7000e- 004	4.7000e- 004		0.1605	0.1605	1.8000e- 004	i i	0.1650		
Total	0.2812	0.0176	0.0956	1.1000e- 004		1.8100e- 003	1.8100e- 003		1.8100e- 003	1.8100e- 003	0.0000	21.3370	21.3370	5.9000e- 004	3.9000e- 004	21.4673		

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 28 Date: 4/5/2019 11:11 AM

Belmont Village - Existing Uses - South Coast Air Basin, Summer

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
SubCategory		lb/day										lb/day							
Architectural Coating	0.0203			 		0.0000	0.0000		0.0000	0.0000			0.0000		i i	0.0000			
Consumer Products	0.2559	 	 	 		0.0000	0.0000	 	0.0000	0.0000			0.0000	 	 	0.0000			
Hearth	1.9400e- 003	0.0166	7.0600e- 003	1.1000e- 004		1.3400e- 003	1.3400e- 003	 	1.3400e- 003	1.3400e- 003	0.0000	21.1765	21.1765	4.1000e- 004	3.9000e- 004	21.3023			
Landscaping	3.0700e- 003	1.0100e- 003	0.0885	0.0000		4.7000e- 004	4.7000e- 004		4.7000e- 004	4.7000e- 004		0.1605	0.1605	1.8000e- 004		0.1650			
Total	0.2812	0.0176	0.0956	1.1000e- 004		1.8100e- 003	1.8100e- 003		1.8100e- 003	1.8100e- 003	0.0000	21.3370	21.3370	5.9000e- 004	3.9000e- 004	21.4673			

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Equipment Type	Number	1 loui 3/Day	Days/Teal	Tiorse i ower	Load I actor	i dei Type

10.0 Stationary Equipment

Belmont Village - Existing Uses - South Coast Air Basin, Summer

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Belmont Village - Existing Uses South Coast Air Basin, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Day-Care Center	8.75	1000sqft	0.20	8,750.00	0
Parking Lot	45.80	1000sqft	1.28	45,800.00	0
City Park	0.06	Acre	0.06	2,613.60	0
Single Family Housing	1.00	Dwelling Unit	0.08	3,347.00	3

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	11			Operational Year	2019
Utility Company	Los Angeles Departm	ent of Water & Power			
CO2 Intensity (lb/MWhr)	799.56	CH4 Intensity (lb/MWhr)	0.019	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Project Characteristics - Adjusted for SB 100 RPS target for 2024.

Land Use - Based on traffic study, site plan, and Google Earth. Remainder of lot acreage allocated to parking lot.

Construction Phase -

Trips and VMT -

Demolition -

Grading -

Architectural Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Vehicle Trips - Based on TIS. No trips for landscaping or playground.

Woodstoves - Per SCAQMD Rule 445. Assumed that existing single-family residence does not have a wood burning fireplace.

Area Coating - Per SCAQMD Rule 1113 for non-flat coatings (50g/L)

Energy Use -

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation - Existing development is being modeled. No construction would occur

Area Mitigation -

Page 3 of 34

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Date: 4/5/2019 11:06 AM

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_EF_Nonresidential_Exterior	100	50
tblAreaCoating	Area_EF_Nonresidential_Interior	100	50
tblFireplaces	FireplaceWoodMass	1,019.20	0.00
tblFireplaces	NumberGas	0.85	1.00
tblFireplaces	NumberNoFireplace	0.10	0.00
tblFireplaces	NumberWood	0.05	0.00
tblLandUse	LandUseSquareFeet	1,800.00	3,347.00
tblLandUse	LotAcreage	1.05	1.28
tblLandUse	LotAcreage	0.32	0.08
tblProjectCharacteristics	CH4IntensityFactor	0.029	0.019
tblProjectCharacteristics	CO2IntensityFactor	1227.89	799.56
tblProjectCharacteristics	N2OIntensityFactor	0.006	0.004
tblVehicleTrips	ST_TR	22.75	0.00
tblVehicleTrips	ST_TR	6.21	0.00
tblVehicleTrips	ST_TR	9.91	9.44
tblVehicleTrips	SU_TR	16.74	0.00
tblVehicleTrips	SU_TR	5.83	0.00
tblVehicleTrips	SU_TR	8.62	9.44
tblVehicleTrips	WD_TR	1.89	0.00
tblVehicleTrips	WD_TR	74.06	47.62
tblVehicleTrips	WD_TR	9.52	9.44
tblWoodstoves	NumberCatalytic	0.05	0.00
tblWoodstoves	NumberNoncatalytic	0.05	0.00
tblWoodstoves	WoodstoveDayYear	25.00	0.00
tblWoodstoves	WoodstoveWoodMass	999.60	0.00

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2018	0.3724	2.2268	1.7675	3.1100e- 003	0.0503	0.1276	0.1779	0.0174	0.1225	0.1398	0.0000	267.6823	267.6823	0.0484	0.0000	268.8930
Maximum	0.3724	2.2268	1.7675	3.1100e- 003	0.0503	0.1276	0.1779	0.0174	0.1225	0.1398	0.0000	267.6823	267.6823	0.0484	0.0000	268.8930

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr												МТ	/yr		
2018	0.3724	2.2268	1.7675	3.1100e- 003	0.0503	0.1276	0.1779	0.0174	0.1225	0.1398	0.0000	267.6821	267.6821	0.0484	0.0000	268.8928
Maximum	0.3724	2.2268	1.7675	3.1100e- 003	0.0503	0.1276	0.1779	0.0174	0.1225	0.1398	0.0000	267.6821	267.6821	0.0484	0.0000	268.8928

Page 5 of 34

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Date: 4/5/2019 11:06 AM

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	1-1-2018	3-31-2018	0.7355	0.7355
2	4-1-2018	6-30-2018	0.6946	0.6946
3	7-1-2018	9-30-2018	0.7022	0.7022
		Highest	0.7355	0.7355

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	0.0508	3.3000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603
Energy	6.4000e- 004	5.7300e- 003	4.2900e- 003	3.0000e- 005		4.4000e- 004	4.4000e- 004	 	4.4000e- 004	4.4000e- 004	0.0000	33.8162	33.8162	7.7000e- 004	2.5000e- 004	33.9111
Mobile	0.0859	0.3916	0.8624	2.3900e- 003	0.1766	2.8400e- 003	0.1795	0.0473	2.6700e- 003	0.0500	0.0000	220.1923	220.1923	0.0136	0.0000	220.5315
Waste						0.0000	0.0000		0.0000	0.0000	2.5618	0.0000	2.5618	0.1514	0.0000	6.3466
Water						0.0000	0.0000		0.0000	0.0000	0.1397	6.4218	6.5616	0.0145	3.7000e- 004	7.0347
Total	0.1373	0.3977	0.8779	2.4200e- 003	0.1766	3.3600e- 003	0.1800	0.0473	3.1900e- 003	0.0505	2.7015	260.6887	263.3902	0.1803	6.2000e- 004	268.0842

CalEEMod Version: CalEEMod.2016.3.2 Page 6 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							МТ	/yr		
Area	0.0508	3.3000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603
Energy	6.4000e- 004	5.7300e- 003	4.2900e- 003	3.0000e- 005		4.4000e- 004	4.4000e- 004		4.4000e- 004	4.4000e- 004	0.0000	33.8162	33.8162	7.7000e- 004	2.5000e- 004	33.9111
Mobile	0.0859	0.3916	0.8624	2.3900e- 003	0.1766	2.8400e- 003	0.1795	0.0473	2.6700e- 003	0.0500	0.0000	220.1923	220.1923	0.0136	0.0000	220.5315
Waste			1			0.0000	0.0000		0.0000	0.0000	2.5618	0.0000	2.5618	0.1514	0.0000	6.3466
Water		i i i	1			0.0000	0.0000		0.0000	0.0000	0.1397	6.4218	6.5616	0.0145	3.7000e- 004	7.0347
Total	0.1373	0.3977	0.8779	2.4200e- 003	0.1766	3.3600e- 003	0.1800	0.0473	3.1900e- 003	0.0505	2.7015	260.6887	263.3902	0.1803	6.2000e- 004	268.0842

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Date: 4/5/2019 11:06 AM

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2018	1/26/2018	5	20	
2	Site Preparation	Site Preparation	1/27/2018	1/30/2018	5	2	
3	Grading	Grading	1/31/2018	2/5/2018	5	4	
4	Building Construction	Building Construction	2/6/2018	11/12/2018	5	200	
5	Paving	Paving	11/13/2018	11/26/2018	5	10	
6	Architectural Coating	Architectural Coating	11/27/2018	12/10/2018	5	10	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.28

Residential Indoor: 6,778; Residential Outdoor: 2,259; Non-Residential Indoor: 13,125; Non-Residential Outdoor: 4,375; Striped Parking Area: 2,748 (Architectural Coating – sqft)

OffRoad Equipment

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Page 8 of 34

Date: 4/5/2019 11:06 AM

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	1	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	1	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	1	6.00	231	0.29
Building Construction	Forklifts	1	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Page 9 of 34

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Date: 4/5/2019 11:06 AM

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	7	24.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 **Demolition - 2018**

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0248	0.2436	0.1511	2.4000e- 004		0.0144	0.0144	1 1 1	0.0134	0.0134	0.0000	21.6923	21.6923	5.5000e- 003	0.0000	21.8297
Total	0.0248	0.2436	0.1511	2.4000e- 004		0.0144	0.0144		0.0134	0.0134	0.0000	21.6923	21.6923	5.5000e- 003	0.0000	21.8297

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.2 Demolition - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.9000e- 004	5.7000e- 004	6.0800e- 003	2.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.3695	1.3695	5.0000e- 005	0.0000	1.3707
Total	6.9000e- 004	5.7000e- 004	6.0800e- 003	2.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.3695	1.3695	5.0000e- 005	0.0000	1.3707

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
- Cil reduc	0.0248	0.2436	0.1511	2.4000e- 004		0.0144	0.0144		0.0134	0.0134	0.0000	21.6923	21.6923	5.5000e- 003	0.0000	21.8297
Total	0.0248	0.2436	0.1511	2.4000e- 004		0.0144	0.0144		0.0134	0.0134	0.0000	21.6923	21.6923	5.5000e- 003	0.0000	21.8297

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.2 Demolition - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	6.9000e- 004	5.7000e- 004	6.0800e- 003	2.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.3695	1.3695	5.0000e- 005	0.0000	1.3707
Total	6.9000e- 004	5.7000e- 004	6.0800e- 003	2.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.3695	1.3695	5.0000e- 005	0.0000	1.3707

3.3 Site Preparation - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	 				5.8000e- 003	0.0000	5.8000e- 003	2.9500e- 003	0.0000	2.9500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.8100e- 003	0.0208	8.0800e- 003	2.0000e- 005	 	9.5000e- 004	9.5000e- 004		8.8000e- 004	8.8000e- 004	0.0000	1.5743	1.5743	4.9000e- 004	0.0000	1.5866
Total	1.8100e- 003	0.0208	8.0800e- 003	2.0000e- 005	5.8000e- 003	9.5000e- 004	6.7500e- 003	2.9500e- 003	8.8000e- 004	3.8300e- 003	0.0000	1.5743	1.5743	4.9000e- 004	0.0000	1.5866

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.3 Site Preparation - 2018
Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	MT/yr										
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.0000e- 005	3.0000e- 005	3.7000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0843	0.0843	0.0000	0.0000	0.0844
Total	4.0000e- 005	3.0000e- 005	3.7000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0843	0.0843	0.0000	0.0000	0.0844

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	ii ii				5.8000e- 003	0.0000	5.8000e- 003	2.9500e- 003	0.0000	2.9500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.8100e- 003	0.0208	8.0800e- 003	2.0000e- 005		9.5000e- 004	9.5000e- 004	 	8.8000e- 004	8.8000e- 004	0.0000	1.5743	1.5743	4.9000e- 004	0.0000	1.5866
Total	1.8100e- 003	0.0208	8.0800e- 003	2.0000e- 005	5.8000e- 003	9.5000e- 004	6.7500e- 003	2.9500e- 003	8.8000e- 004	3.8300e- 003	0.0000	1.5743	1.5743	4.9000e- 004	0.0000	1.5866

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.3 Site Preparation - 2018

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	tons/yr											MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	4.0000e- 005	3.0000e- 005	3.7000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0843	0.0843	0.0000	0.0000	0.0844			
Total	4.0000e- 005	3.0000e- 005	3.7000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0843	0.0843	0.0000	0.0000	0.0844			

3.4 Grading - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	2.9900e- 003	0.0341	0.0135	3.0000e- 005		1.5900e- 003	1.5900e- 003		1.4600e- 003	1.4600e- 003	0.0000	2.5787	2.5787	8.0000e- 004	0.0000	2.5988
Total	2.9900e- 003	0.0341	0.0135	3.0000e- 005	9.8300e- 003	1.5900e- 003	0.0114	5.0500e- 003	1.4600e- 003	6.5100e- 003	0.0000	2.5787	2.5787	8.0000e- 004	0.0000	2.5988

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.4 Grading - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr											MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Worker	8.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1686	0.1686	1.0000e- 005	0.0000	0.1687		
Total	8.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1686	0.1686	1.0000e- 005	0.0000	0.1687		

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.9900e- 003	0.0341	0.0135	3.0000e- 005		1.5900e- 003	1.5900e- 003	1 1 1	1.4600e- 003	1.4600e- 003	0.0000	2.5787	2.5787	8.0000e- 004	0.0000	2.5988
Total	2.9900e- 003	0.0341	0.0135	3.0000e- 005	9.8300e- 003	1.5900e- 003	0.0114	5.0500e- 003	1.4600e- 003	6.5100e- 003	0.0000	2.5787	2.5787	8.0000e- 004	0.0000	2.5988

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.4 Grading - 2018

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	8.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1686	0.1686	1.0000e- 005	0.0000	0.1687
Total	8.0000e- 005	7.0000e- 005	7.5000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1686	0.1686	1.0000e- 005	0.0000	0.1687

3.5 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.2592	1.7428	1.3877	2.2000e- 003		0.1058	0.1058	 	0.1022	0.1022	0.0000	184.2346	184.2346	0.0371	0.0000	185.1618
Total	0.2592	1.7428	1.3877	2.2000e- 003		0.1058	0.1058		0.1022	0.1022	0.0000	184.2346	184.2346	0.0371	0.0000	185.1618

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.5 Building Construction - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.9400e- 003	0.1117	0.0292	2.3000e- 004	5.6700e- 003	8.0000e- 004	6.4800e- 003	1.6400e- 003	7.7000e- 004	2.4100e- 003	0.0000	22.3642	22.3642	1.6100e- 003	0.0000	22.4045
Worker	0.0127	0.0105	0.1122	2.8000e- 004	0.0263	2.2000e- 004	0.0266	6.9900e- 003	2.0000e- 004	7.1900e- 003	0.0000	25.2837	25.2837	8.7000e- 004	0.0000	25.3054
Total	0.0167	0.1221	0.1415	5.1000e- 004	0.0320	1.0200e- 003	0.0330	8.6300e- 003	9.7000e- 004	9.6000e- 003	0.0000	47.6480	47.6480	2.4800e- 003	0.0000	47.7099

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.2592	1.7428	1.3877	2.2000e- 003		0.1058	0.1058	 	0.1022	0.1022	0.0000	184.2344	184.2344	0.0371	0.0000	185.1616
Total	0.2592	1.7428	1.3877	2.2000e- 003		0.1058	0.1058		0.1022	0.1022	0.0000	184.2344	184.2344	0.0371	0.0000	185.1616

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.5 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.9400e- 003	0.1117	0.0292	2.3000e- 004	5.6700e- 003	8.0000e- 004	6.4800e- 003	1.6400e- 003	7.7000e- 004	2.4100e- 003	0.0000	22.3642	22.3642	1.6100e- 003	0.0000	22.4045
Worker	0.0127	0.0105	0.1122	2.8000e- 004	0.0263	2.2000e- 004	0.0266	6.9900e- 003	2.0000e- 004	7.1900e- 003	0.0000	25.2837	25.2837	8.7000e- 004	0.0000	25.3054
Total	0.0167	0.1221	0.1415	5.1000e- 004	0.0320	1.0200e- 003	0.0330	8.6300e- 003	9.7000e- 004	9.6000e- 003	0.0000	47.6480	47.6480	2.4800e- 003	0.0000	47.7099

3.6 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	⁻ /yr		
	5.0900e- 003	0.0523	0.0450	7.0000e- 005		3.0500e- 003	3.0500e- 003		2.8100e- 003	2.8100e- 003	0.0000	6.1073	6.1073	1.8700e- 003	0.0000	6.1540
, aving	1.6800e- 003			i i		0.0000	0.0000	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7700e- 003	0.0523	0.0450	7.0000e- 005		3.0500e- 003	3.0500e- 003		2.8100e- 003	2.8100e- 003	0.0000	6.1073	6.1073	1.8700e- 003	0.0000	6.1540

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.6 Paving - 2018

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.4000e- 004	2.8000e- 004	3.0400e- 003	1.0000e- 005	7.1000e- 004	1.0000e- 005	7.2000e- 004	1.9000e- 004	1.0000e- 005	1.9000e- 004	0.0000	0.6848	0.6848	2.0000e- 005	0.0000	0.6854
Total	3.4000e- 004	2.8000e- 004	3.0400e- 003	1.0000e- 005	7.1000e- 004	1.0000e- 005	7.2000e- 004	1.9000e- 004	1.0000e- 005	1.9000e- 004	0.0000	0.6848	0.6848	2.0000e- 005	0.0000	0.6854

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	5.0900e- 003	0.0523	0.0450	7.0000e- 005		3.0500e- 003	3.0500e- 003		2.8100e- 003	2.8100e- 003	0.0000	6.1073	6.1073	1.8700e- 003	0.0000	6.1540
Paving	1.6800e- 003			i i		0.0000	0.0000	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.7700e- 003	0.0523	0.0450	7.0000e- 005		3.0500e- 003	3.0500e- 003		2.8100e- 003	2.8100e- 003	0.0000	6.1073	6.1073	1.8700e- 003	0.0000	6.1540

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.6 Paving - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.4000e- 004	2.8000e- 004	3.0400e- 003	1.0000e- 005	7.1000e- 004	1.0000e- 005	7.2000e- 004	1.9000e- 004	1.0000e- 005	1.9000e- 004	0.0000	0.6848	0.6848	2.0000e- 005	0.0000	0.6854
Total	3.4000e- 004	2.8000e- 004	3.0400e- 003	1.0000e- 005	7.1000e- 004	1.0000e- 005	7.2000e- 004	1.9000e- 004	1.0000e- 005	1.9000e- 004	0.0000	0.6848	0.6848	2.0000e- 005	0.0000	0.6854

3.7 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0574					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.4900e- 003	0.0100	9.2700e- 003	1.0000e- 005		7.5000e- 004	7.5000e- 004	1 1 1 1 1	7.5000e- 004	7.5000e- 004	0.0000	1.2766	1.2766	1.2000e- 004	0.0000	1.2797
Total	0.0589	0.0100	9.2700e- 003	1.0000e- 005		7.5000e- 004	7.5000e- 004		7.5000e- 004	7.5000e- 004	0.0000	1.2766	1.2766	1.2000e- 004	0.0000	1.2797

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.7 Architectural Coating - 2018 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.3000e- 004	1.1000e- 004	1.1700e- 003	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2634	0.2634	1.0000e- 005	0.0000	0.2636
Total	1.3000e- 004	1.1000e- 004	1.1700e- 003	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2634	0.2634	1.0000e- 005	0.0000	0.2636

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0574					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.4900e- 003	0.0100	9.2700e- 003	1.0000e- 005	 	7.5000e- 004	7.5000e- 004		7.5000e- 004	7.5000e- 004	0.0000	1.2766	1.2766	1.2000e- 004	0.0000	1.2797
Total	0.0589	0.0100	9.2700e- 003	1.0000e- 005		7.5000e- 004	7.5000e- 004		7.5000e- 004	7.5000e- 004	0.0000	1.2766	1.2766	1.2000e- 004	0.0000	1.2797

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

3.7 Architectural Coating - 2018 Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.3000e- 004	1.1000e- 004	1.1700e- 003	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2634	0.2634	1.0000e- 005	0.0000	0.2636
Total	1.3000e- 004	1.1000e- 004	1.1700e- 003	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2634	0.2634	1.0000e- 005	0.0000	0.2636

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.0859	0.3916	0.8624	2.3900e- 003	0.1766	2.8400e- 003	0.1795	0.0473	2.6700e- 003	0.0500	0.0000	220.1923	220.1923	0.0136	0.0000	220.5315
Unmitigated	0.0859	0.3916	0.8624	2.3900e- 003	0.1766	2.8400e- 003	0.1795	0.0473	2.6700e- 003	0.0500	0.0000	220.1923	220.1923	0.0136	0.0000	220.5315

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Day-Care Center	416.68	0.00	0.00	432,770	432,770
Parking Lot	0.00	0.00	0.00		
Single Family Housing	9.44	9.44	9.44	32,258	32,258
Total	426.12	9.44	9.44	465,028	465,028

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	33.00	48.00	19.00	66	28	6
Day-Care Center	16.60	8.40	6.90	12.70	82.30	5.00	28	58	14
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3

4.4 Fleet Mix

Page 23 of 34

Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Day-Care Center	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Parking Lot	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989
Single Family Housing	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	27.4928	27.4928	6.5000e- 004	1.4000e- 004	27.5501
Electricity Unmitigated	,, ,, ,,		i		 	0.0000	0.0000		0.0000	0.0000	0.0000	27.4928	27.4928	6.5000e- 004	1.4000e- 004	27.5501
	6.4000e- 004	5.7300e- 003	4.2900e- 003	3.0000e- 005		4.4000e- 004	4.4000e- 004		4.4000e- 004	4.4000e- 004	0.0000	6.3234	6.3234	1.2000e- 004	1.2000e- 004	6.3610
Unmitigated	6.4000e- 004	5.7300e- 003	4.2900e- 003	3.0000e- 005		4.4000e- 004	4.4000e- 004		4.4000e- 004	4.4000e- 004	0.0000	6.3234	6.3234	1.2000e- 004	1.2000e- 004	6.3610

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	91000	4.9000e- 004	4.4600e- 003	3.7500e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8561	4.8561	9.0000e- 005	9.0000e- 005	4.8850
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	27496.3	1.5000e- 004	1.2700e- 003	5.4000e- 004	1.0000e- 005		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004	0.0000	1.4673	1.4673	3.0000e- 005	3.0000e- 005	1.4760
Total		6.4000e- 004	5.7300e- 003	4.2900e- 003	4.0000e- 005		4.4000e- 004	4.4000e- 004		4.4000e- 004	4.4000e- 004	0.0000	6.3234	6.3234	1.2000e- 004	1.2000e- 004	6.3610

Belmont Village - Existing Uses - South Coast Air Basin, Annual

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Day-Care Center	91000	4.9000e- 004	4.4600e- 003	3.7500e- 003	3.0000e- 005		3.4000e- 004	3.4000e- 004		3.4000e- 004	3.4000e- 004	0.0000	4.8561	4.8561	9.0000e- 005	9.0000e- 005	4.8850
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	27496.3	1.5000e- 004	1.2700e- 003	5.4000e- 004	1.0000e- 005		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004	0.0000	1.4673	1.4673	3.0000e- 005	3.0000e- 005	1.4760
Total		6.4000e- 004	5.7300e- 003	4.2900e- 003	4.0000e- 005		4.4000e- 004	4.4000e- 004		4.4000e- 004	4.4000e- 004	0.0000	6.3234	6.3234	1.2000e- 004	1.2000e- 004	6.3610

Belmont Village - Existing Uses - South Coast Air Basin, Annual

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Day-Care Center	51800	18.7865	4.5000e- 004	9.0000e- 005	18.8257
Parking Lot	16030	5.8137	1.4000e- 004	3.0000e- 005	5.8258
Single Family Housing	7975.71	2.8926	7.0000e- 005	1.0000e- 005	2.8986
Total		27.4928	6.6000e- 004	1.3000e- 004	27.5501

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Day-Care Center	51800	18.7865	4.5000e- 004	9.0000e- 005	18.8257
Parking Lot	16030	5.8137	1.4000e- 004	3.0000e- 005	5.8258
Single Family Housing	7975.71	2.8926	7.0000e- 005	1.0000e- 005	2.8986
Total		27.4928	6.6000e- 004	1.3000e- 004	27.5501

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	-/yr		
Mitigated	0.0508	3.3000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603
Unmitigated	0.0508	3.3000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	3.7100e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0467	,	,			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	2.0000e- 005	2.1000e- 004	9.0000e- 005	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.2401	0.2401	0.0000	0.0000	0.2416
Landscaping	3.8000e- 004	1.3000e- 004	0.0111	0.0000		6.0000e- 005	6.0000e- 005		6.0000e- 005	6.0000e- 005	0.0000	0.0182	0.0182	2.0000e- 005	0.0000	0.0187
Total	0.0508	3.4000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

6.2 Area by SubCategory Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr					MT/yr									
Architectural Coating	3.7100e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0467		 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	2.0000e- 005	2.1000e- 004	9.0000e- 005	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.2401	0.2401	0.0000	0.0000	0.2416
Landscaping	3.8000e- 004	1.3000e- 004	0.0111	0.0000		6.0000e- 005	6.0000e- 005	 	6.0000e- 005	6.0000e- 005	0.0000	0.0182	0.0182	2.0000e- 005	0.0000	0.0187
Total	0.0508	3.4000e- 004	0.0112	0.0000		8.0000e- 005	8.0000e- 005		8.0000e- 005	8.0000e- 005	0.0000	0.2583	0.2583	2.0000e- 005	0.0000	0.2603

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2016.3.2 Page 30 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

	Total CO2	CH4	N2O	CO2e
Category		МТ	/yr	
ga.ca	6.5616	0.0145	3.7000e- 004	7.0347
Unmitigated	6.5616	0.0145	3.7000e- 004	7.0347

7.2 Water by Land Use Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	-/yr	
City Park	0 / 0.0714889	0.2881	1.0000e- 005	0.0000	0.2887
Day-Care Center	0.375284 / 0.965015		0.0124	3.2000e- 004	6.1832
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
	0.065154 / 0.0410754		2.1300e- 003	5.0000e- 005	0.5629
Total		6.5616	0.0145	3.7000e- 004	7.0347

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

7.2 Water by Land Use Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
City Park	0 / 0.0714889	0.2881	1.0000e- 005	0.0000	0.2887
Day-Care Center	0.375284 / 0.965015		0.0124	3.2000e- 004	6.1832
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
	0.065154 / 0.0410754		2.1300e- 003	5.0000e- 005	0.5629
Total		6.5616	0.0145	3.7000e- 004	7.0347

8.0 Waste Detail

8.1 Mitigation Measures Waste

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e			
	MT/yr						
gatea	2.5618	0.1514	0.0000	6.3466			
Unmitigated	2.5618	0.1514	0.0000	6.3466			

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
City Park	0.01	2.0300e- 003	1.2000e- 004	0.0000	5.0300e- 003
Day-Care Center	11.38	2.3100	0.1365	0.0000	5.7230
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Single Family Housing	1.23	0.2497	0.0148	0.0000	0.6186
Total		2.5618	0.1514	0.0000	6.3466

Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	-/yr	
City Park	0.01	2.0300e- 003	1.2000e- 004	0.0000	5.0300e- 003
Day-Care Center	11.38	2.3100	0.1365	0.0000	5.7230
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Single Family Housing	1.23	0.2497	0.0148	0.0000	0.6186
Total		2.5618	0.1514	0.0000	6.3466

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 34 Date: 4/5/2019 11:06 AM

Belmont Village - Existing Uses - South Coast Air Basin, Annual

Equipment Type	Number
----------------	--------

11.0 Vegetation

Appendix B

Transportation Impact Study

TRANSPORTATION IMPACT STUDY

Belmont Village Senior Living – Westwood Presbyterian Church Project

City of Los Angeles, California February 28, 2019

Prepared for:

Belmont Village 7660 Woodway Drive, Suite 400 Houston, Texas 77063

LLG Ref. 1-16-4165-1

Prepared by:

DRAFT

Francesca S. Bravo Senior Transportation Engineer Under the Supervision of:

DRAFT

Clare M. Look-Jaeger, P.E. Principal

Linscott, Law & Greenspan, Engineers

600 S. Lake Avenue Suite 500 Pasadena, CA 91106

626.796.2322 τ 626.792.0941 F www.llgengineers.com

TABLE OF CONTENTS

SECT	ION	PA	AGE
1.0	T .4 .		1
1.0		oduction	
	1.1	Study Area	
	1.2	Overview of Senate Bill 743	3
2.0	Proj	ject Description	
	2.1	Site Location	5
	2.2	Existing Project Site	5
	2.3	Proposed Project Description	5
3.0	Site	Access and Circulation	12
	3.1	Existing Site Access	12
	3.2	Proposed Project Site Access	
	3.3	Pedestrian Access	13
	3.4	Bicycle Access	14
4.0	Exis	sting Street System	17
	4.1	Regional Highway System	
	4.2	Local Street System	17
	4.3	Roadway Classifications	
	4.4	Roadway Descriptions	
	4.5	Transit Services	19
		4.5.1 Public Bus Transit Services	19
5.0	Traf	ffic Counts	25
6.0	Cun	nulative Development Projects	29
	6.1	Related Projects	
	6.2	Ambient Traffic Growth Factor	33
7.0	Traf	ffic Forecasting Methodology	36
	7.1	Project Trip Generation	
	7.2	Project Traffic Distribution and Assignment	
8.0	Trai	ffic Impact Analysis Methodology	44
	8.1	Impact Criteria and Thresholds	
	8.2	Traffic Impact Analysis Scenarios	

TABLE OF CONTENTS (continued)

Section			Page
9.0	Traffic Analysis		46
	9.1	Existing Conditions	
		9.1.1 Existing Conditions	
		9.1.2 Existing With Project Conditions	
	9.2	Future Conditions	
		9.2.1 Future Without Project Conditions	
		9.2.2 Future With Project Conditions	
	9.3	City of Los Angeles High Injury Network Review	
10.0	Con	gestion Management Program Traffic Impact Assessment	57
		Freeways	
	10.2	Intersections	57
		Transit Impact Review	
11.0	Con	clusions	59

APPENDICES

APPENDIX

- A. Traffic Study Memorandum of Understanding
- B. Manual Traffic Count Data
- C. CMA and Levels of Service Explanation

CMA Data Worksheets – Weekday AM and PM Peak Hours

TABLE OF CONTENTS (continued)

LIST OF FIGURES

SECTION—FIGURE # PA		
1–1	Vicinity Map	2
2-1	West Los Angeles Transportation Improvement and Mitigation Specific Plan Area	6
2–2	Wilshire-Westwood Scenic Corridor Specific Plan Area	7
2–3	Aerial Photograph of the Existing Project Site	8
2–4	Site Plan- Street Level Plan	10
2–5	Site Plan- Ground Level Plan.	11
3–1	City of Los Angeles Bicycle Enhanced Network	15
3–2	City of Los Angeles Proposed Bicycle Lane Network	16
4–1	Existing Lane Configurations	18
4–2	Public Transit Routes	24
5–1	Existing Traffic Volumes – Weekday AM Peak Hour	27
5–2	Existing Traffic Volumes – Weekday PM Peak Hour	28
6-1	Location of Related Projects	32
6-2	Related Projects Traffic Volumes – Weekday AM Peak Hour	34
6-3	Related Projects Traffic Volumes – Weekday PM Peak Hour	35
7–1	Project Trip Distribution Residential Component	40
7–1	Project Trip Distribution Pre-School Component	41
7–2	Net New Project Traffic Volumes – Weekday AM Peak Hour	42
7–3	Net New Project Traffic Volumes – Weekday PM Peak Hour	43
9–1	Existing With Project Traffic Volumes – Weekday AM Peak Hour	48
9–2	Existing With Project Traffic Volumes – Weekday PM Peak Hour	49
9–3	Future Without Project Traffic Volumes – Weekday AM Peak Hour	51
9–4	Future Without Project Traffic Volumes – Weekday PM Peak Hour	52
9–5	Future With Project Traffic Volumes – Weekday AM Peak Hour	53
9–6	Future With Project Traffic Volumes – Weekday PM Peak Hour	54
9–7	City of Los Angeles High Injury Network in Project Vicinity	56

TABLE OF CONTENTS (continued)

LIST OF TABLES

Section—Table #		
4–1	Existing Roadway Descriptions	20
4–2	Existing Transit Routes	21
5–1	Existing Traffic Volumes	26
6–1	Related Projects List and Trip Generation	30
7–1	Project Trip Generation	38
8-1	City of Los Angeles Intersection Impact Threshold Criteria	44
9–1	Levels of Service Summary	47

PRELIMINARY WORKING DRAFT WORK-IN-PROGRESS

TRANSPORTATION IMPACT STUDY

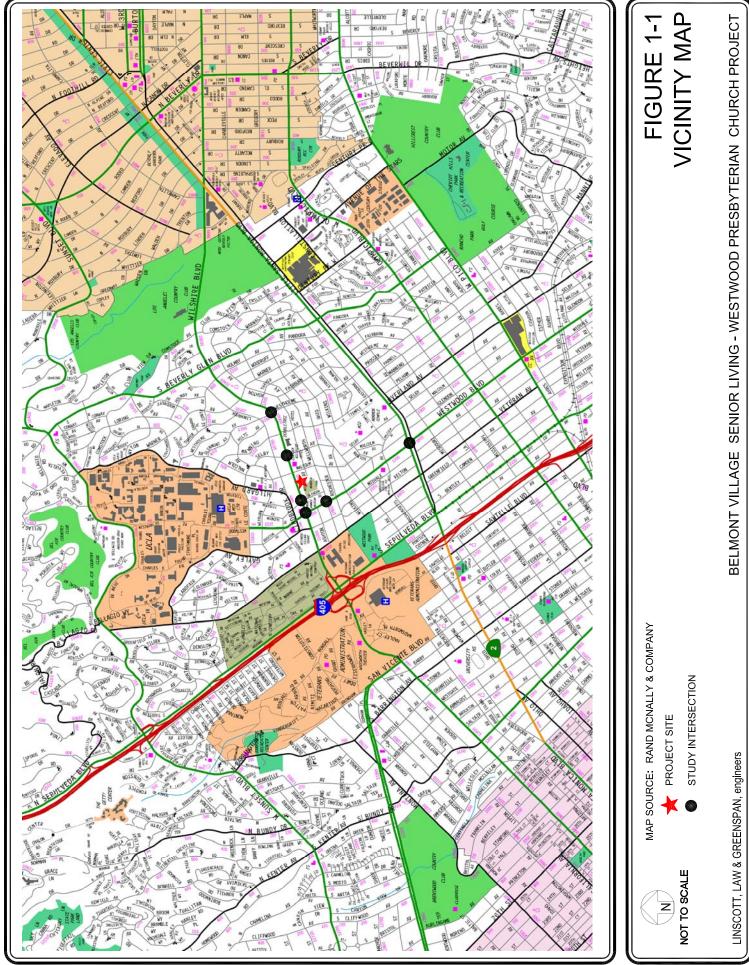
Belmont Village Senior Living – Westwood Presbyterian Church Project

City of Los Angeles, California February 28, 2019

1.0 Introduction

This transportation analysis has been conducted to identify and evaluate the potential transportation impacts of the proposed Belmont Village Senior Living – Westwood Presbyterian Church project ("proposed project" herein) on the surrounding street system. The proposed project site is located in the Westwood area of the City of Los Angeles. The proposed project site and general vicinity are shown in *Figure 1-1*.

This transportation analysis follows current City of Los Angeles traffic study guidelines¹ and is consistent with transportation impact assessment guidelines set forth in the Los Angeles County Congestion Management Program.² This transportation analysis evaluates potential project-related impacts at six key intersections in the vicinity of the project site. The study intersections were determined in consultation with City of Los Angeles Department of Transportation (LADOT) staff. The Critical Movement Analysis method was used to determine Volume-to-Capacity ratios and corresponding Levels of Service for the six study intersections. A review also was conducted of Los Angeles County Metropolitan Transportation Authority (Metro) freeway and intersection monitoring stations to determine if a CMP transportation impact assessment analysis is required for the proposed project.


This study (i) presents existing traffic volumes, (ii) provides existing traffic volumes with the forecast traffic volumes from the proposed project, (iii) determines existing with project-related impacts; (iv) forecasts future cumulative baseline traffic volumes, (v) forecasts future cumulative traffic volumes with the proposed project, (vi) determines future forecast with project-related impacts, and (vii) recommends mitigation measures, where necessary.

1.1 Study Area

Upon coordination with LADOT staff, a total of six study intersections have been identified for evaluation during the weekday morning and afternoon peak hours. The study intersections provide local access to the study area and define the extent of the boundaries for this transportation impact analysis. Further discussion of the existing street system and study area is provided in Section 4.0.

¹ Transportation Impact Study Guidelines, City of Los Angeles Department of Transportation, December 2016.

² 2010 Congestion Management Program, Los Angeles County Metropolitan Transportation Authority, October 2010.

The general location of the project in relation to the study locations and surrounding street system is presented in $Figure \ 1-1$. The transportation analysis study area is generally comprised of those locations which have the greatest potential to experience significant transportation impacts due to the proposed project as defined by the Lead Agency. In the traffic engineering practice, the study area generally includes those intersections that are:

- a. Immediately adjacent or in close proximity to the project site;
- b. In the vicinity of the project site that are documented to have current or projected future adverse operational issues; and
- c. In the vicinity of the project site that are forecast to experience a relatively greater percentage of project-related vehicular turning movements.

The study intersections selected for analysis were based on the above criteria, the forecast project peak hour vehicle trip generation, the anticipated distribution of project vehicular trips and existing intersection/corridor operations. LADOT confirmed the appropriateness of the six study intersections when it entered into a traffic study Memorandum of Understanding (MOU) for the proposed project. The study intersections are identified in *Figure 1-1* and in the traffic study MOU, which is attached to this report as *Appendix A*.

1.2 Overview of Senate Bill 743

On September 27, 2013, Governor Brown signed Senate Bill (SB) 743 (Steinberg, 2013). Among other things, SB 743 creates a process to change the methodology to analyze transportation impacts under California Environmental Quality Act (CEQA - Public Resources Code section 21000 and following), which could include analysis based on project vehicle miles traveled (VMT) rather than impacts to intersection Level of Service. On December 30, 2013, the State of California Governor's Office of Planning and Research (OPR) released a preliminary evaluation of alternative methods of transportation analysis. The intent of the original guidance documentation was geared first towards projects located within areas that are designated as transit priority areas, to be followed by other areas of the State. OPR updated the technical advisory that accompanies the revised CEQA Guidelines in April 2018 and submitted the proposed updates to the CEQA Guidelines to the California Natural Resources Agency (NRA). In December 2018, the California NRA certified and adopted the CEQA Guidelines implementing SB743 with a target implementation date of July 1, 2020.

The Los Angeles Department of City Planning (DCP) and LADOT are updating the City's CEQA Transportation Section of the City's CEQA Thresholds Guide to comply with and implement SB 743. In August 2014, Councilmember Mike Bonin introduced a motion directing the DCP and LADOT to begin preparation for the shift to VMT analysis (CF 14-1169). DCP subsequently contracted with an outside consultant to develop the strategy and methodology in order to establish the tools necessary to bring the City into compliance with the state mandate. City staff will present the CEQA Appendix G environmental checklist update to the City Council, which will likely lead to

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

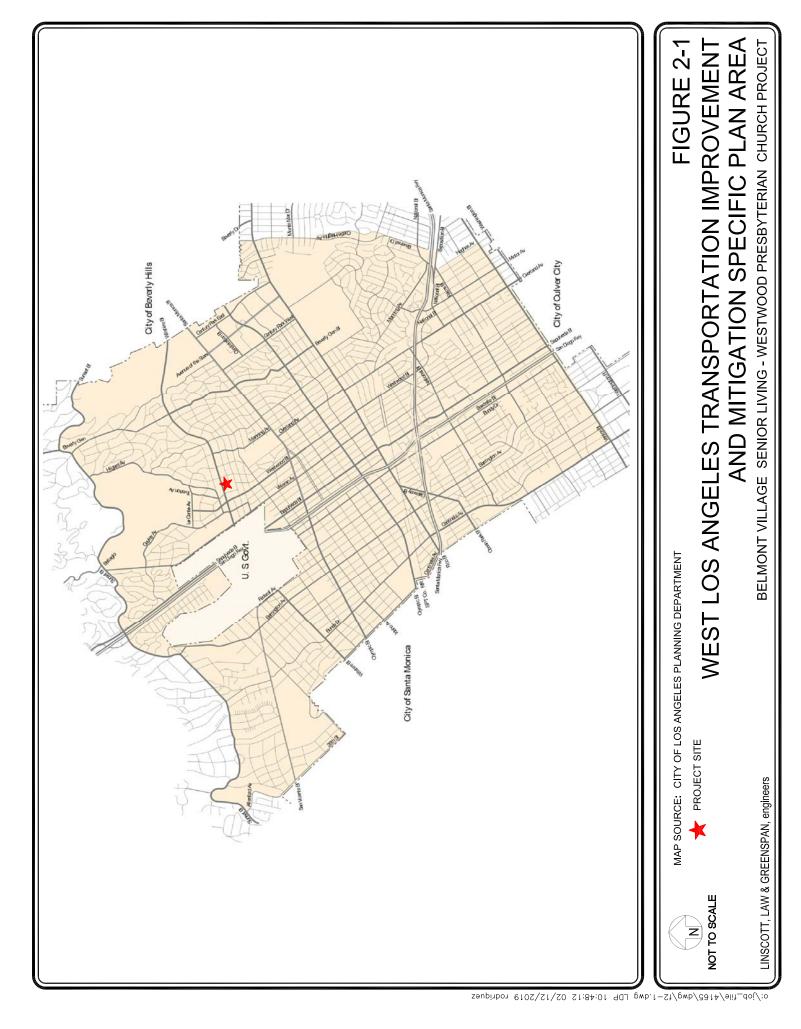
the adoption of new VMT-based significance thresholds and its subsequent incorporation into the City's CEQA Threshold Guide in year 2019. Following adoption, projects must then comply with the updated transportation evaluation framework, thus bringing the City into compliance with the state mandate. The analysis in this study utilizes existing, long-established protocols in accordance with the City's CEQA Thresholds Guide. Should the City finalize those tools and metrics prior to the City decision makers' consideration of the proposed project's environmental document and entitlements, this transportation study may be updated in consultation with LADOT to include a VMT analysis and a determination of whether the proposed project would result in significant impacts based on VMT-based significance thresholds.

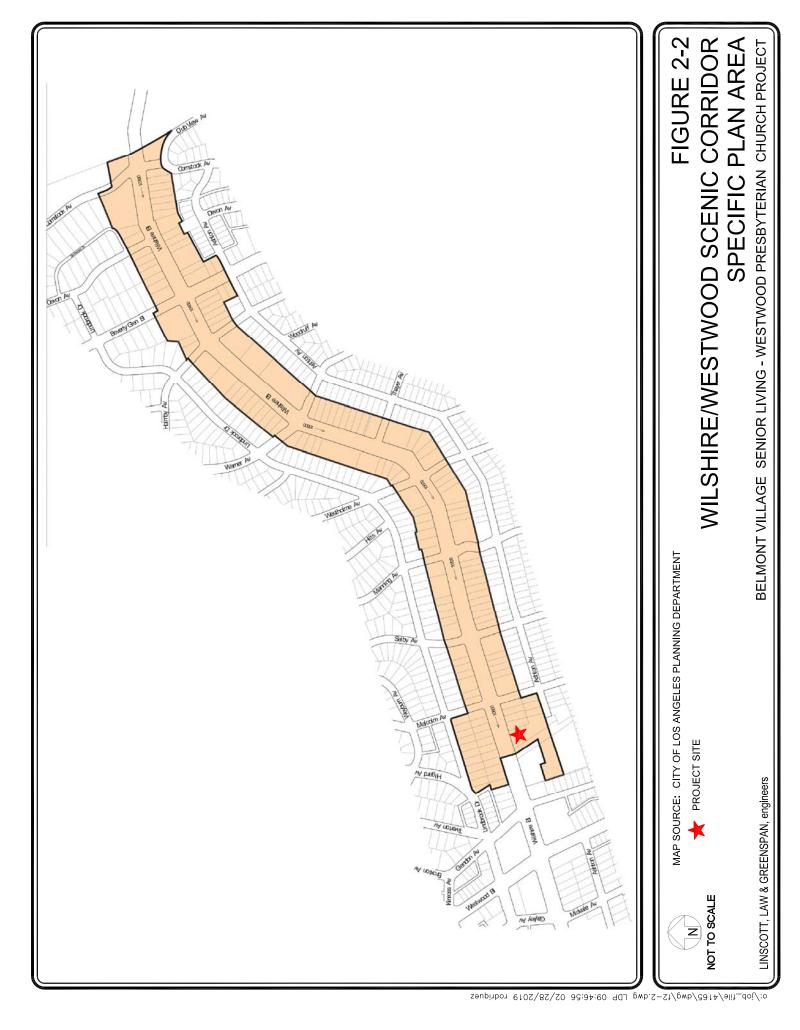
LINSCOTT, LAW & GREENSPAN, engineers

2.0 PROJECT DESCRIPTION

2.1 Site Location

The proposed project site is located at 10822 Wilshire Boulevard and 10812 Ashton Avenue in the Westwood area of the City of Los Angeles. The proposed project site is bordered by Wilshire Boulevard to the north, residential uses to the south and east, and commercial uses to the west. The proposed project site and general vicinity are shown in *Figure 1-1*.

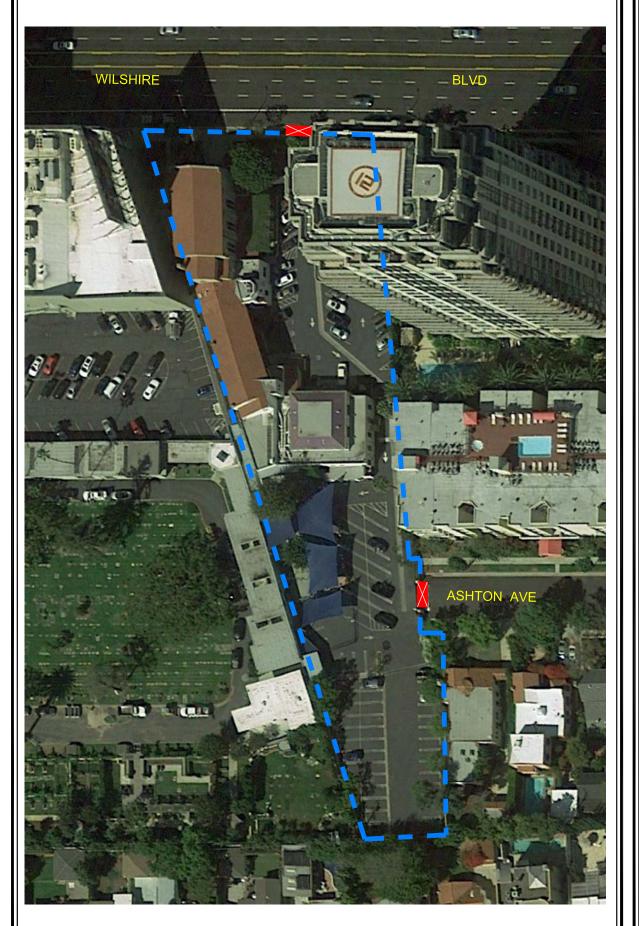

2.2 Existing Project Site


The proposed project site is located within the West Los Angeles Transportation Improvement and Mitigation (WLA TIMP) Specific Plan area of the City of Los Angeles. Refer to *Figure 2-1* which shows the WLA TIMP Specific Plan area. The proposed project site is also located within the Wilshire/Westwood Scenic Corridor Specific Plan area of the City of Los Angeles. Refer to *Figure 2-2* which shows the Wilshire/Westwood Scenic Corridor Specific Plan area.

The existing 1.6-acre project site is currently occupied by the Westwood Presbyterian Church sanctuary with 210 fixed seats, administrative offices, 8,750 square feet of preschool/classroom space, and a single-family residence. Vehicular access to the existing project site is currently provided via one driveway on Wilshire Boulevard and one driveway on Ashton Avenue. The existing driveways currently accommodate full access movements. An aerial photograph of the existing project site is contained in *Figure 2-3*.

2.3 Proposed Project Description

The proposed project consists of the construction of a new Eldercare Facility containing up to 176 units. The Eldercare Facility will contain 54 Senior Independent Housing dwelling units, 76 Assisted Living Care Housing guest rooms, and 46 Alzheimer's/Dementia Care Housing guest rooms as well as associated residential amenities and service areas. The Eldercare Facility will provide a new fellowship hall for use by the Church, as well as shared spaces to be used by both the Church and the residents of the Eldercare Facility. A total of 55 employees are anticipated to be onsite during the largest daily shift. In addition, a new, two-story Education Center building containing the 9,599 square-foot preschool (18 classrooms, 105 students) and 3,260 square feet of administrative offices for the Church will be constructed at the southern portion of the site. The Church's sanctuary will be retained while the existing administrative offices, preschool/classroom space, and single-family residence will be demolished to accommodate the proposed project. A subterranean parking structure providing approximately 198 parking spaces will also be constructed on-site as part of the proposed project for shared use by the Church, the Eldercare Facility's residents and staff, and the Education Center's staff and parents. Construction of the proposed project is expected to commence in year 2019 with occupancy by year 2025.



AERIAL PHOTOGRAPH OF EXISTING PROJECT SITE FIGURE 2-3

LINSCOTT, LAW & GREENSPAN, engineers

Vehicular access to the project site will be provided via two driveways on Wilshire Boulevard and the existing driveway on Ashton Avenue. Further discussion of the project's site access and circulation scheme is provided in Section 3.0 herein. The site plans for the proposed project are illustrated in *Figures 2-4* and *2-5*.

Based on information provided by the Project Applicant and the experience of other assisted living/memory care operators, the majority of the residents do not own/operate personal vehicles. The Project Applicant has noted that up to 20 residents are anticipated to drive/own personal vehicles based on experience from the nearby Belmont Village Senior Living facility located at 10475 Wilshire Boulevard. Residents typically utilize the Belmont Village shuttle service, which will be provided for residents for medical, dental, and other appointments as well as shopping and recreational activities. Concierge service will also be provided on-site to arrange other transportation needs/services.

STREET LEVEL PLAN BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN CHURCH PROJECT

LINSCOTT, LAW & GREENSPAN, engineers

3.0 SITE ACCESS AND CIRCULATION

The site access scheme for the proposed project is displayed in *Figures 2-4* and *2-5*. Descriptions of the existing site access and proposed project site access and circulation schemes are provided in the following subsections.

3.1 Existing Site Access

Vehicular access to the existing project site is currently provided via two driveways: one driveway on Wilshire Boulevard and one driveway on Ashton Avenue. The existing driveway on Wilshire Boulevard currently provides access to the Church sanctuary, administrative offices, preschool, and associated surface parking area. The existing driveway on Ashton Avenue mainly provides access to the preschool and administrative offices. The existing driveways on Wilshire Boulevard and Ashton Avenue currently accommodate full access movements.

3.2 Proposed Project Site Access

Vehicular access to the project site will be provided via three driveways: two driveways on Wilshire Boulevard and one driveway on Ashton Street. Descriptions of the planned project site access driveways are provided in the following paragraphs.

• Wilshire Boulevard Westerly Driveway:

This project driveway is planned to be located on the south side of Wilshire Boulevard along the northerly property frontage, in front of the existing Westwood Presbyterian Church Sanctuary. This project driveway is planned to be an inbound only driveway from Wilshire Boulevard to the proposed drop-off/pick-up zone and will be limited to ingress movements only (i.e., right-turn inbound movements only). This driveway will extend easterly and connect to the main north-south drive aisle which runs parallel to the easterly project frontage. The Wilshire Boulevard Westerly driveway will be constructed to City of Los Angeles design standards.

Wilshire Boulevard Easterly Driveway:

This project driveway will be located on the south side of Wilshire Boulevard at the northeast portion of the project site. This project driveway will provide access to the Belmont Village Eldercare facility, Westwood Presbyterian Church and Education Center as well as to the new parking garage to be constructed as part of the proposed project. One inbound lane and one outbound lane will be provided at this location. This project driveway will accommodate full access (i.e., left-turn and right-turn ingress and egress turning movements). The Wilshire Boulevard Easterly driveway will be constructed to City of Los Angeles design standards.

Ashton Avenue Driveway:

This project driveway is planned to be located at the west terminus of Ashton Avenue along the easterly property frontage. This project driveway will mainly provide access to the proposed Education Center and the new parking garage that will be constructed as part of the proposed project. The Ashton Avenue driveway will be constructed to City of Los Angeles design standards.

It should be noted that access to the Eldercare facility (i.e., residential component) will only be provided via the proposed driveways on Wilshire Boulevard (i.e., inbound and outbound), while access to the Education Center/pre-school component of the proposed project will be provided via both Ashton Avenue (i.e., inbound and outbound) and Wilshire Boulevard (outbound only).

3.3 Pedestrian Access

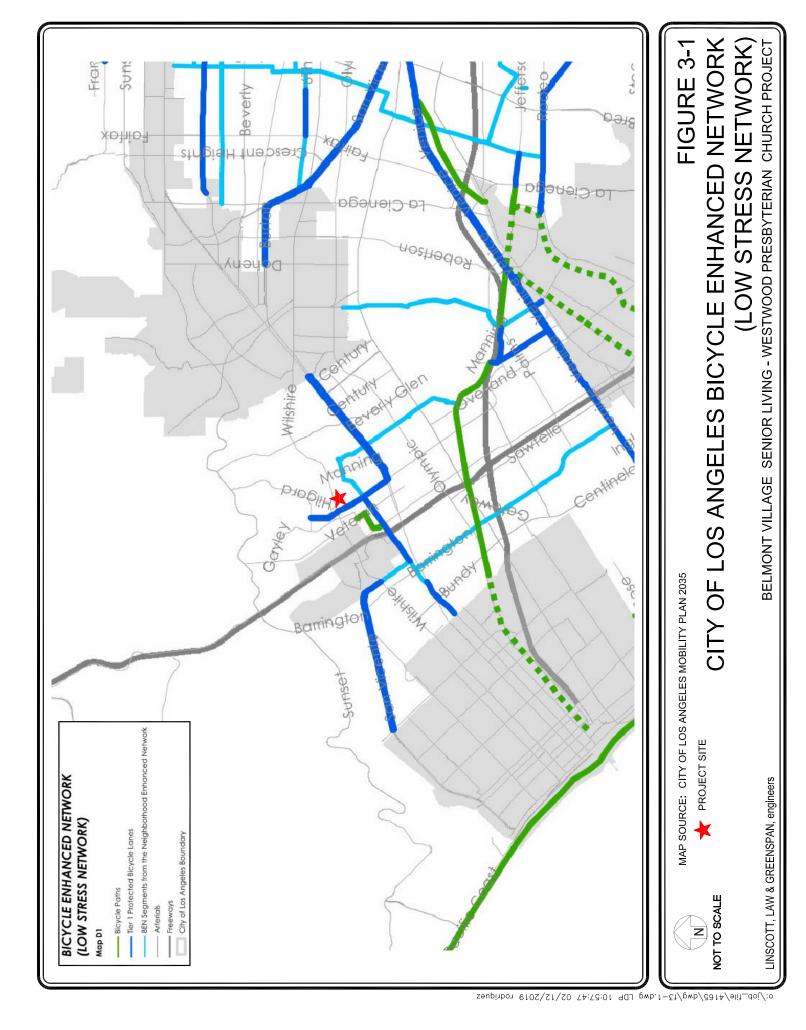
The proposed project is designed to encourage pedestrian activity and walking as a transportation mode with a Walkability score for the project site of approximately 86 (Very Walkable) out of 100.³ As indicated in *Figure 2-4*, the proposed project is designed to provide connections to the adjacent public sidewalks and would include site enhancements to promote walkability. Walkability is a term describing the extent to which walking is readily available as a safe, connected, accessible and pleasant mode of transport. There are several criteria that are widely accepted as key aspects of the walkability of urban areas that should be satisfied. The underlying principle is that pedestrians should not be delayed, diverted, or placed in danger. The widely accepted characteristics of walkability are as follows:

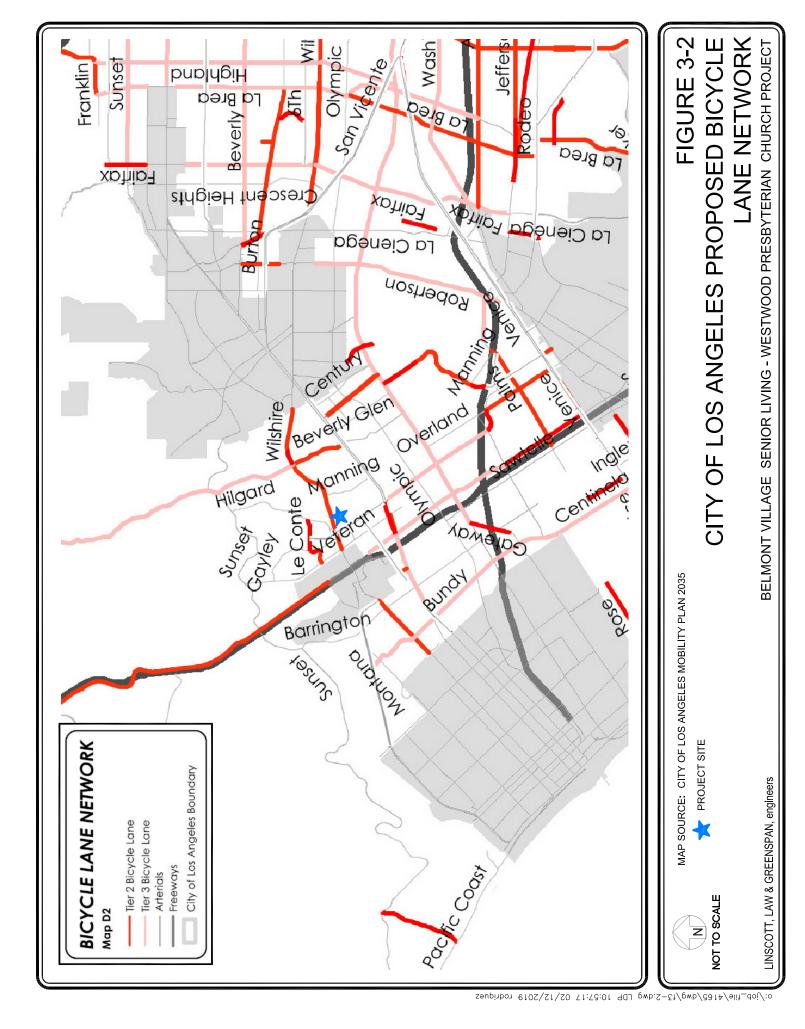
- Connectivity: Can people walk from one place to another without encountering major obstacles, obstructions, or loss of connectivity?
- Convivial: Are pedestrian routes friendly and attractive, and perceived as such by pedestrians?
- Conspicuous: Are suitable levels of lighting, visibility and surveillance over its entire length provided, with high quality delineation and signage?
- Comfortable: Are high quality and well-maintained footpaths of suitable widths, attractive landscaping and architecture, shelter and rest spaces provided with a suitable allocation of roadspace to pedestrians?
- Convenient: Is walking a realistic travel choice, partly because of the impact of the other criteria set forth above, but also because walking routes are of a suitable length as a result of land use planning with minimal delays?

A review of the project site location and pedestrian walkway network indicates that these five primary characteristics are accommodated as part of the proposed project.

³ Refer to http://www.walkscore.com/, which generates the walkability score for the project site. Walk Score calculates the walkability of an address by locating nearby stores, restaurants, schools, parks, etc. Walk Score measures how easy it is to live a car-lite lifestyle—not how pretty the area is for walking.

3.4 Bicycle Access


Bicycle access to the project site is facilitated by the City of Los Angeles bicycle roadway network⁴. Proposed bicycle facilities (e.g., Class II Bicycle Lanes.) in the City's Mobility Plan 2035 (which includes the City's 2010 Bicycle Plan) are located within an approximate one-mile radius from the project site⁵. The location of the City's bicycle enhanced network (i.e., the Low Stress Network) designated bikeways in close proximity to the project site and in the surrounding area is shown in *Figure 3-1*. The proposed bicycle lane network in close proximity to the project site and in the surrounding area is illustrated in *Figure 3-2*.


The Federal and State transportation systems recognize three primary bikeway facilities: Bicycle Paths (Class I), Bicycle Lanes (Class II), and Bicycle Routes (Class III). Bicycle Paths (Class I) are exclusive car free facilities that are typically not located within a roadway area. Bicycle Lanes (Class II) are part of the street design that is dedicated only for bicycles and identified by a striped lane separating vehicle lanes from bicycle lanes. Bicycle Routes (Class III) are preferably located on collector and lower volume arterial streets.

-

⁴ Walk Score also calculates a bike score based on the topography, number and proximity of bike lanes, etc., near the project site. For example, refer to http://www.walkscore.com/, which generates a bike score of approximately 75 (Very Bikeable) out of 100 for the project site. Walk Score calculates the bike score of an address by locating nearby bicycling facilities as well as connections to bus/rail transit routes and stops. Walk Score measures how easy it is to live a car-lite lifestyle—not how pretty the area is for bicycling.

⁵ Source: City of Los Angeles Mobility Plan 2035, adopted January 20, 2016 and City of Los Angeles 2010 Bicycle Plan, adopted March 1, 2011; www.labikeplan.org.

4.0 EXISTING STREET SYSTEM

4.1 Regional Highway System

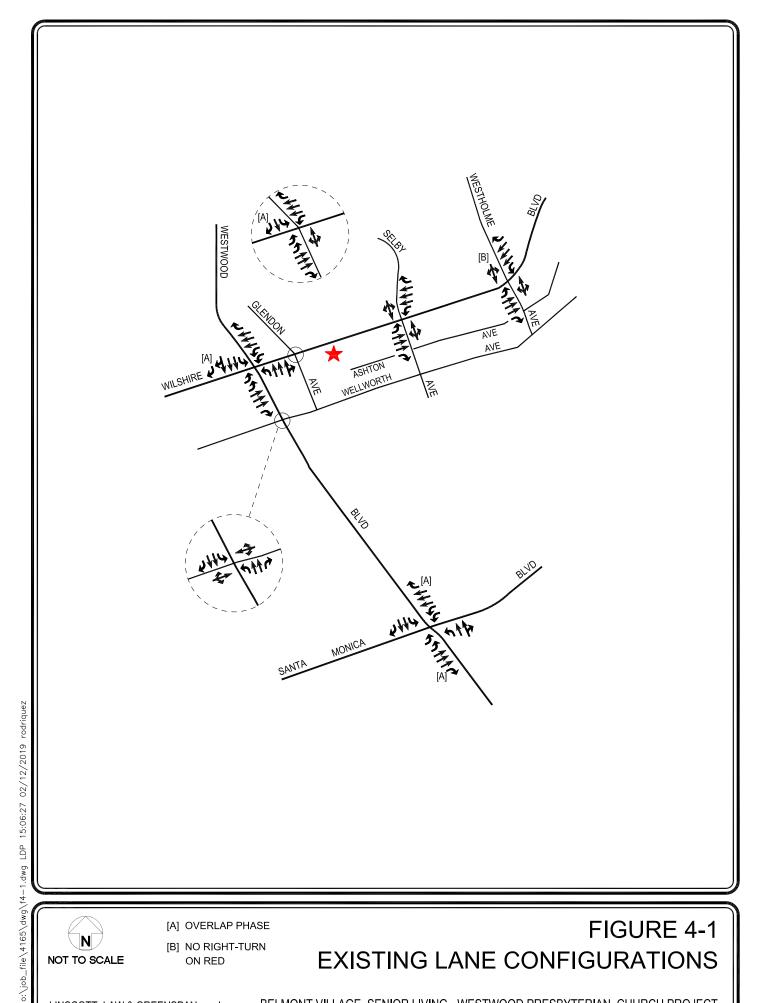
Regional access to the project site is provided by I-405 (San Diego) Freeway, as shown in *Figure 1-1*. I-405 Freeway northbound and southbound ramps are provided at Wilshire Boulevard in the project vicinity. A brief description of I-405 Freeway is provided in the following paragraph.

I-405 (San Diego) Freeway is a major north-south freeway that extends from the San Fernando Valley to Orange County. In the project vicinity, five mainline travel lanes are provided in each direction on I-405 Freeway. I-405 Freeway northbound and southbound ramps are provided at Wilshire Boulevard, which is located approximately one mile west of the project site.

4.2 Local Street System

Immediate access to the proposed project site is provided via Wilshire Boulevard and Ashton Avenue. The following six study intersections were selected in consultation with LADOT staff for analysis of potential impacts related to the proposed project:

- 1. Westwood Boulevard/Wilshire Boulevard
- 2. Westwood Boulevard/Wellworth Avenue
- 3. Westwood Boulevard/Santa Monica Boulevard
- 4. Glendon Avenue/Wilshire Boulevard
- 5. Selby Avenue/Wilshire Boulevard
- 6. Westholme Avenue/Wilshire Boulevard


All six study intersections selected for analysis are presently controlled by traffic signals. The existing lane configurations at the study intersections are displayed in *Figure 4-1*.

4.3 Roadway Classifications

The City of Los Angeles utilizes the roadway categories recognized by regional, state and federal transportation agencies. There are four categories in the roadway hierarchy, ranging from freeways with the highest capacity to two-lane undivided roadways with the lowest capacity. The roadway categories are summarized as follows:

Freeways are limited-access and high speed travel ways included in the state and federal
highway systems. Their purpose is to carry regional through-traffic. Access is provided by
interchanges with typical spacing of one mile or greater. No local access is provided to
adjacent land uses.

LINSCOTT, LAW & GREENSPAN, engineers

[A] OVERLAP PHASE

[B] NO RIGHT-TURN ON RED

FIGURE 4-1 **EXISTING LANE CONFIGURATIONS**

- Arterial roadways are major streets that primarily serve through-traffic and provide access to
 abutting properties as a secondary function. Arterials are generally designed with two to six
 travel lanes and their major intersections are signalized. This roadway type is divided into
 two categories: principal and minor arterials. Principal arterials are typically four-or-more
 lane roadways and serve both local and regional through-traffic. Minor arterials are typically
 two-to-four lane streets that service local and commute traffic.
- Collector roadways are streets that provide access and traffic circulation within residential and non-residential (e.g., commercial and industrial) areas. Collector roadways connect local streets to arterials and are typically designed with two through travel lanes (i.e., one through travel lane in each direction) that may accommodate on-street parking. They may also provide access to abutting properties.
- Local roadways distribute traffic within a neighborhood, or similar adjacent neighborhoods, and are not intended for use as a through-street or a link between higher capacity facilities such as collector or arterial roadways. Local streets are fronted by residential uses and do not typically serve commercial uses.

4.4 Roadway Descriptions

A review of the important roadways in the project site vicinity and study area is summarized in *Table 4-1*. As indicated in *Table 4-1*, the important roadways within the project study area were reviewed in terms of the number of lanes provided, parking restrictions, posted speed limits, etc. Additionally, the roadway classifications of key roads in the project study area are also presented in *Table 4-1*.

4.5 Transit Services⁶

4.5.1 Public Bus Transit Services

Public bus transit service in the project study area is currently provided by the Antelope Valley Transit Authority (AVTA), City of Santa Monica, City of Culver City, City of Los Angeles Department of Transportation (LADOT), Los Angeles County Metropolitan Transportation Authority (Metro), and the City of Santa Clarita. A summary of the existing transit service, including the transit route, destinations and peak hour headways is presented in *Table 4–2*. The existing public transit routes in the project site vicinity are illustrated in *Figure 4–2*.

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

⁶ Walk Score also calculates a transit score based on the number and proximity of bus and rail routes near the project site. For example, refer to http://www.walkscore.com/, which generates a transit score of approximately 72 (Excellent Transit) out of 100 for the project site. Walk Score calculates the transit score of an address by locating nearby bus/rail transit routes and stops. Walk Score measures how easy it is to live a car-lite lifestyle—not how pretty the area is for using transit service.

Table 4-1 EXISTING ROADWAY DESCRIPTIONS

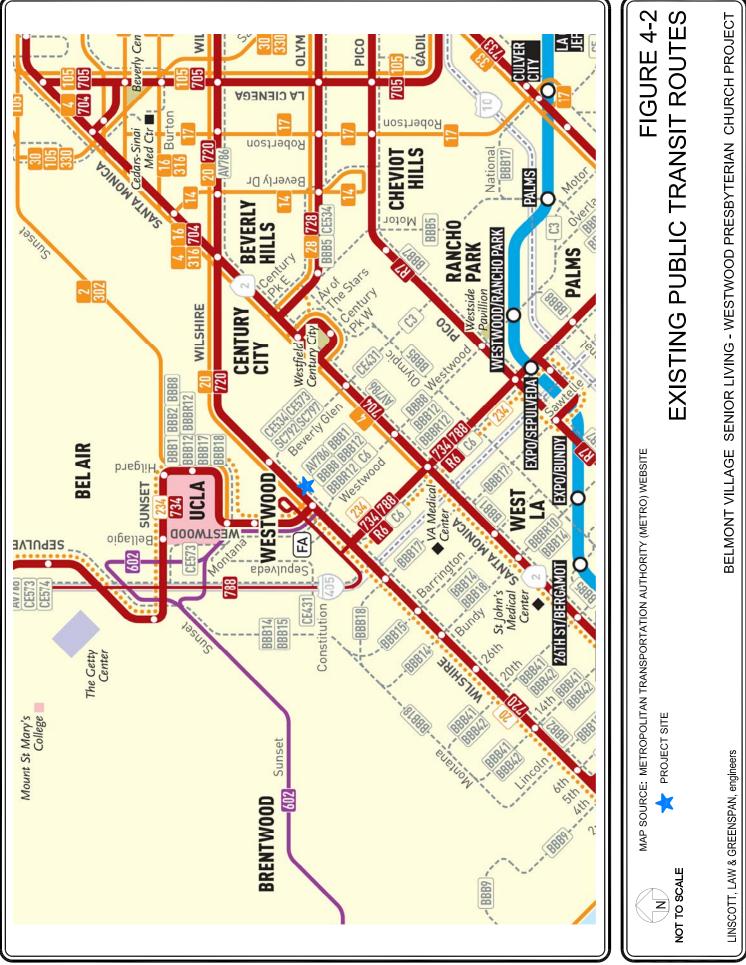
		Travel	Lanes	Median	Speed
Roadway	Classification [1]	Direction [2]	No. Lanes [3]	Types [4]	Limit
Westerned Devlement					
Westwood Boulevard	A I (D:-:: I- I)	N.C	4	DMI	25
(Le Conte Ave to Wilshire Blvd)	Avenue I (Divided)	N-S	4	RMI	25
Westwood Boulevard					
(Wilshire Blvd to Santa Monica Blvd)	Boulevard II	N-S	4 [5]	2WLT	35
Westwood Boulevard					
Santa Monica Blvd to National Blvd)	Avenue II	N-S	4 to 3	2WLT	35
Glendon Avenue					
(Lindbrook Dr to Wilshire Blvd)	Avenue II	N-S	4 [6]	RMI	25
Glendon Avenue	I 10.	MG		27/4	25
(Wilshire Blvd to Wellworth Ave)	Local Street	N-S	2	N/A	25
Selby Avenue	Local Street	N-S	2	N/A	25
Westholme Avenue	Local Street	N-S	2 [6]	N/A	25
					2.5
Wilshire Boulevard	Boulevard II	E-W	6 [5]	2WLT	35
Wellworth Avenue	Local Street	E-W	2 [6]	N/A	25
Santa Monica Boulevard					
(Beverly Hills to Sepulveda Blvd)	Boulevard II (Divided)	E-W	6 [5]	RMI	35

Notes:

- [1] Roadway classifications obtained from the City of Los Angeles Mobility Plan 2035, September 2016.
- [2] Direction of roadways in the project area: N/S North/South; and E/W East/West.
- [3] Number of lanes in both directions of the roadway.
- [4] Median type of the road: RMI Raised Median Island; 2WLT 2-Way Left-Turn Lane; and N/A-Not Applicable.
- [5] Bike Lane (Class II)
- [6] Bike Route (Class III)

		ROADWAY(S)	N DURI	NO. OF BUSES DURING PEAK HOUR	s our
ROUTE	DESTINATIONS	NEAR SITE	DIR	$\mathbf{A}\mathbf{M}$	PM
AVTA 786	Lancaster to West Hollywood via Palmdale, Westwood, Century City and Beverly Hills	Westwood Boulevard, Wilshire Boulevard	NB	0	2 0
Big Blue Bus 1	Venice to Westwood via Santa Monica and West Los Angeles	Westwood Boulevard, Wilshire Boulevard	EB	. v	. v. v.
Big Blue Bus 2	Santa Monica to Westwood via West Los Angeles	Westwood Boulevard, Wilshire Boulevard, Santa Monica Boulevard	EB	4 4	4 4
Big Blue Bus 8	Santa Monica to Westwood via Palms and West Los Angeles	Westwood Boulevard, Wilshire Boulevard, Santa Monica Boulevard	EB	4 4	4 4
Big Blue Bus 12	Palms to Westwood via West Los Angeles	Westwood Boulevard, Wilshire Boulevard, Santa Monica Boulevard	NB SB	7 5	5
Big Blue Bus 17	Culver City to Westwood via Palms, Mar Vista and West Los Angeles	Charles E. Young Drive, Westholme Avenue	NB SB	3	3 3
Big Blue Bus 18	Marina Del Rey to Westwood via Venice, Santa Monica and Brentwood	Hilgard Avenue, Strathmore Drive	NB SB	3	3 3
Commuter Express 431	Westwood to Downtown Los Angeles via Century City, West Los Angeles and Palms	Westwood Boulevard, Glendon Avenue, Selby Avenue, Westholme Avenue, Wilshire Boulevard	EB WB	2 0	0

[1] Sources: Antelope Valley Transit Authority (AVTA), Big Blue Bus, Los Angeles Department of Transportation (Commuter Express), City of Culver City (Culver City Bus), Los Angeles County Metropolitan Authority (Metro) and City of Santa Clarita Transit, websites, 2018.


		ROADWAY(S)	N DURI	NO. OF BUSES DURING PEAK HOUR	S OUR
ROUTE	DESTINATIONS	NEAR SITE	DIR	$\mathbf{A}\mathbf{M}$	PM
Commuter Express 534	Downtown Los Angeles to Westwood via Century City	Westwood Boulevard, Glendon Avenue, Wilshire Boulevard	EB	3	2 0
Commuter Express 573	Mission Hills to Century City via Northridge, Encino, Brentwood and Westwood	Glendon Avenue, Wilshire Boulevard	NB SB	1 4	4 0
Culver City Bus 6	Metro Green Line (El Segundo) to Westwood via LAX, Culver City, Palms and West Los Angeles	Westwood Boulevard, Wilshire Boulevard	NB SB	4 4	3
Metro 2/302	Westwood to Downtown Los Angeles via Beverly Hills, Hollywood, Los Angeles and Echo Park	Westwood Boulevard, Le Conte Avenue	EB	4 13	9
Metro 4	Santa Monica to Downtown Los Angeles via West Los Angeles, West Hollywood, Los Angeles and Echo Park	Westwood Boulevard, Santa Monica Boulevard	EB	5	6
Metro 20	Santa Monica to Downtown Los Angeles via Westwood, Hancock Park and Koreatown	Westwood Boulevard, Glendon Avenue, Selby Avenue, Westholme Avenue, Wilshire Boulevard	EB	9	7 6
Metro 602	Pacific Palisades to Westwood via Brentwood	Westwood Boulevard, Wilshire Boulevard	EB	3	4
Metro 704	Santa Monica to Downtown Los Angeles via West Los Angeles, West Hollywood, Los Angeles and Echo Park	Westwood Boulevard, Santa Monica Boulevard	EB	4 6	6

[1] Sources: Antelope Valley Transit Authority (AVTA), Big Blue Bus, Los Angeles Department of Transportation (Commuter Express), City of Culver City Bus), Los Angeles County Metropolitan Authority (Metro) and City of Santa Clarita Transit, websites, 2018.

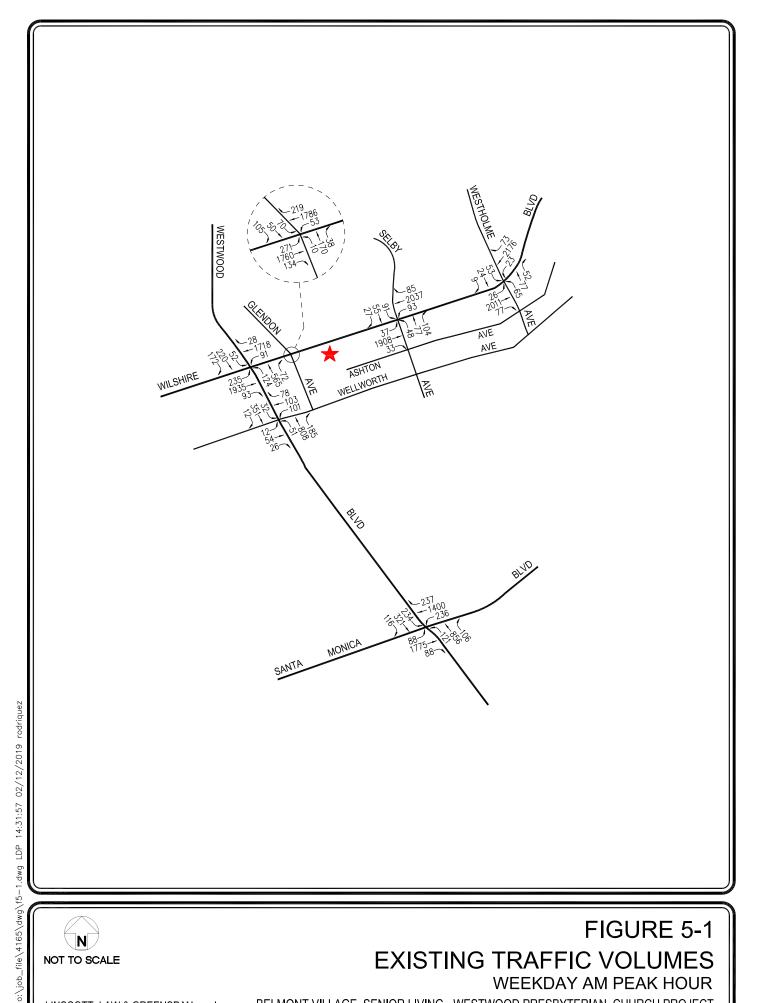
Table 4-2 (Continued)
EXISTING TRANSIT ROUTES [1]

		ROADWAY(S)	N DURI	NO. OF BUSES DURING PEAK HOUR	S OUR
ROUTE	DESTINATIONS	NEAR SITE	DIR	$\mathbf{A}\mathbf{M}$	PM
Меtro 720	Santa Monica to Commerce via Westwood, Los Angeles, Downtown Los Angeles and East Los Angeles	Westwood Boulevard, Glendon Avenue, Wilshire Boulevard	EB	7 22	20
Metro 734	Sylmar to West Los Angeles via Westwood, Sherman Oaks, Van Nuys and Mission Hills	Westwood Boulevard, Wilshire Boulevard	NB SB	3	4 3
Santa Clarita 792	Santa Clarita to Century City via Westwood	Glendon Avenue, Wilshire Boulevard	NB SB	2 0	0 2
Santa Clarita 797	Santa Clarita to Century City via Westwood	Glendon Avenue, Wilshire Boulevard	NB SB	0	2 0
			Total	168	157

[1] Sources: Antelope Valley Transit Authority (AVTA), Big Blue Bus, Los Angeles Department of Transportation (Commuter Express), City of Culver City (Culver City Bus), Los Angeles County Metropolitan Authority (Metro) and City of Santa Clarita Transit, websites, 2018.

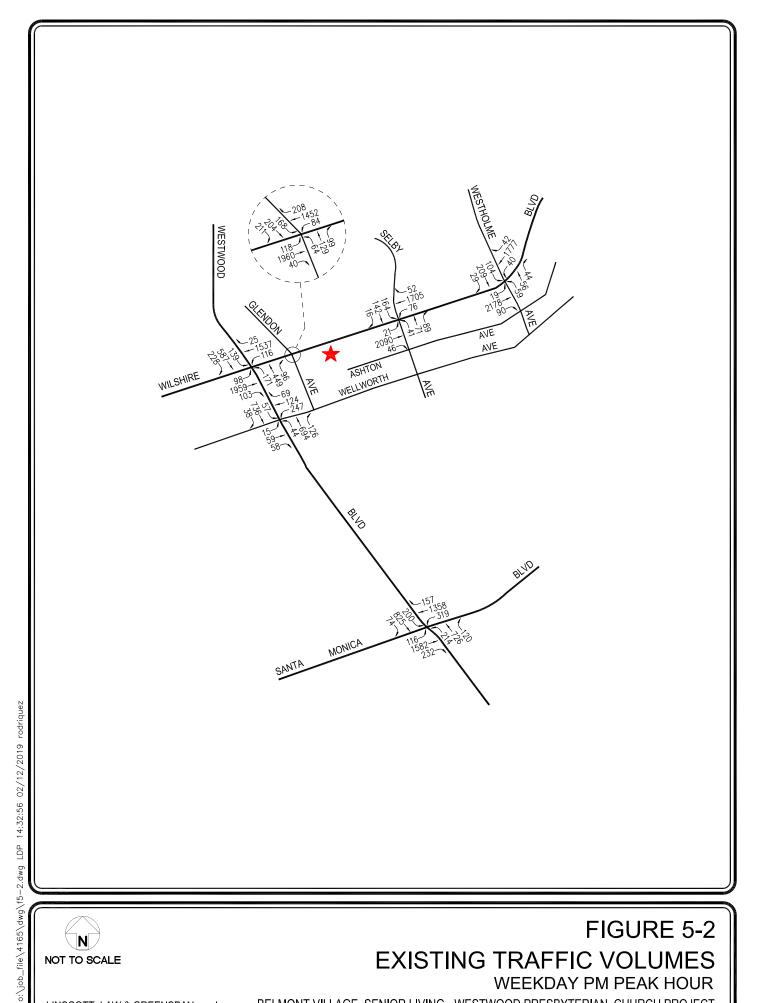
5.0 TRAFFIC COUNTS

Manual counts of vehicular turning movements were conducted at each of the study intersections during the weekday morning (AM) and afternoon (PM) commute periods to determine the peak hour traffic volumes. The manual counts were conducted by an independent traffic count subconsultant (The Traffic Solution) at the study intersections from 7:00 to 10:00 AM to determine the weekday AM peak commute hour, and from 3:00 to 6:00 PM to determine the weekday PM peak commute hour. In conjunction with the manual turning movement vehicle counts, a count of bicycle and pedestrian volumes were also collected during the peak periods. It is noted that all of the traffic counts were conducted when local schools were in session. Traffic volumes at the study intersections show the typical peak periods between 7:00 to 10:00 AM and 3:00 to 6:00 PM generally associated with metropolitan Los Angeles weekday peak commute hours.


The weekday and weekend peak hour manual counts of vehicle movements at the study intersections are summarized in *Table 5-1*. The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are shown in *Figures 5-1* and *5-2*, respectively. Summary data worksheets of the manual traffic counts at the study intersections are contained in *Appendix B*.

LINSCOTT, LAW & GREENSPAN, engineers

Table 5-1
EXISTING TRAFFIC VOLUMES [1]
WEEKDAY AM AND PM PEAK HOURS


				AM PE	AK HOUR	PM PE	AK HOUR
NO.	INTERSECTION	DATE	DIR	BEGAN	VOLUME	BEGAN	VOLUME
1	Westwood Boulevard/	10/16/2018	NB	8:15	761	4:45	716
	Wilshire Boulevard		SB		444		954
			EB		2,263		2,160
			WB		1,837		1,678
2	Westwood Boulevard/	10/16/2018	NB	8:30	1,044	4:45	864
	Wellworth Avenue		SB		395		831
			EB		92		132
			WB		282		440
3	Westwood Boulevard/	10/16/2018	NB	8:00	1,083	4:45	1,060
	Santa Monica Boulevard		SB		671		1,099
			EB		1,951		1,930
			WB		1,873		1,834
4	Glendon Avenue/	10/16/2018	NB	8:15	218	4:45	292
	Wilshire Boulevard		SB		225		583
			EB		2,165		2,118
			WB		2,058		1,744
_	C -11 A/	10/16/2019	NID	0.00	220	4.45	201
5	Selby Avenue/ Wilshire Boulevard	10/16/2018	NB	8:00	229	4:45	201
	wiisnire Boulevard		SB		173		322
			EB		1,978		2,157
			WB		2,215		1,833
6	Westholme Avenue/	10/16/2018	NB	8:15	194	4:45	159
0	Westnorme Avenue/ Wilshire Boulevard	10/10/2018	SB	8:13	194 86	4:43	159 342
	w iishire boulevaru		EB				_
			WB		2,114		2,287
			WB		2,272		1,859

^[1] Counts conducted by The Traffic Solution.

NOT TO SCALE

FIGURE 5-1 **EXISTING TRAFFIC VOLUMES** WEEKDAY AM PEAK HOUR

NOT TO SCALE

FIGURE 5-2 **EXISTING TRAFFIC VOLUMES** WEEKDAY PM PEAK HOUR

6.0 CUMULATIVE DEVELOPMENT PROJECTS

The forecast of future pre-project conditions was prepared in accordance with procedures outlined in Section 15130 of the CEQA Guidelines. Specifically, the CEQA Guidelines provide two options for developing the future traffic volume forecast:

- "(A) A list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the [lead] agency, or
- (B) A summary of projections contained in an adopted local, regional or statewide plan, or related planning document, that describes or evaluates conditions contributing to the cumulative effect. Such plans may include: a general plan, regional transportation plan, or plans for the reduction of greenhouse gas emissions. A summary of projections may also be contained in an adopted or certified prior environmental document for such a plan. Such projections may be supplemented with additional information such as a regional modeling program. Any such document shall be referenced and made available to the public at a location specified by the lead agency."

Accordingly, this traffic analysis provides a highly conservative estimate of future pre-project traffic volumes as it incorporates both the "A" and "B" options outlined in the CEQA Guidelines for purposes of developing the forecast.

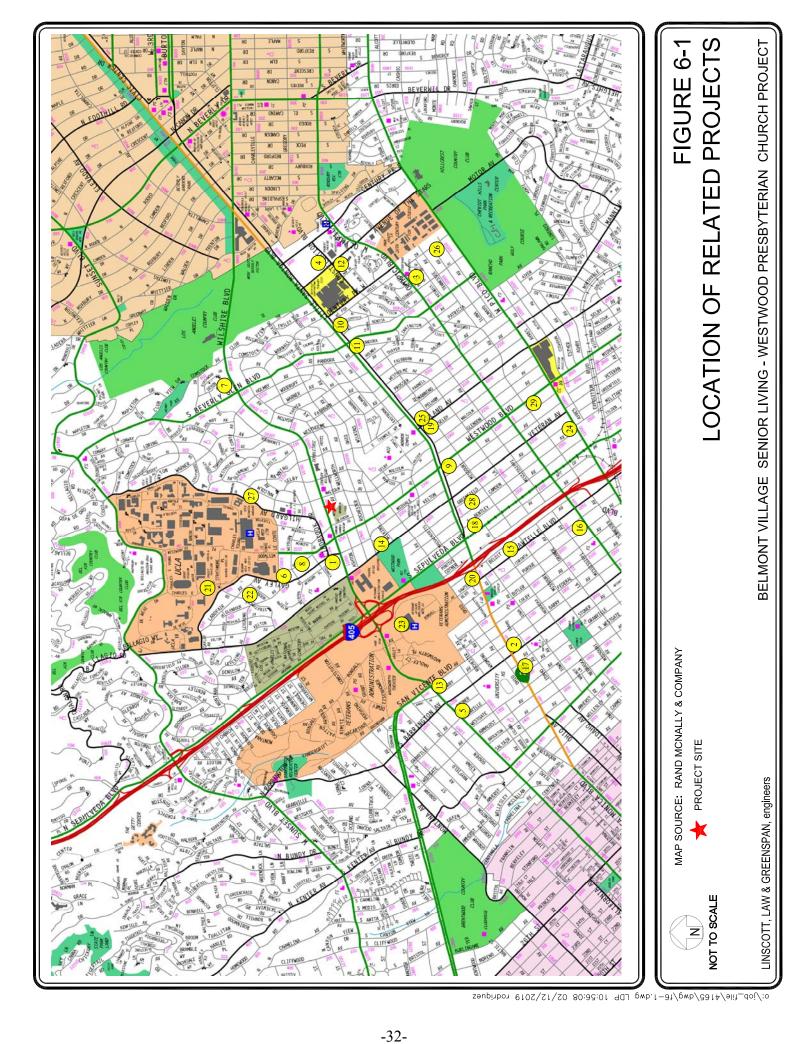
6.1 Related Projects

A forecast of on-street traffic conditions prior to occupancy of the proposed project was prepared by incorporating the potential trips associated with other known development projects (related projects) in the area (i.e., within an approximate 1.5-mile radius from the project site). It is important to note that recent LADOT policy requires inclusion of related projects within a one-half mile radius of the project site. Since a 1.5 mile radius is utilized in this transportation analysis, the analysis can be considered conservative. With this information, the potential impact of the proposed project can be evaluated within the context of the cumulative impacts of all ongoing development. The related projects research was based on information on file with both LADOT and City of Los Angeles Department of City Planning (LADCP). In addition, related projects lists from recently approved transportation study MOUs and transportation studies in the project vicinity also were reviewed. The list of related projects in the project site area is presented in *Table 6-1*. The location of the related projects is shown in *Figure 6-1*.

Traffic volumes expected to be generated by the related projects were calculated using rates provided in the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*⁷, provided by City staff, or obtained from other traffic studies recently approved by the City. The related projects'

LINSCOTT, LAW & GREENSPAN, engineers

Table 6-1 RELATED PROJECTS LIST AND TRIP GENERATION [1]

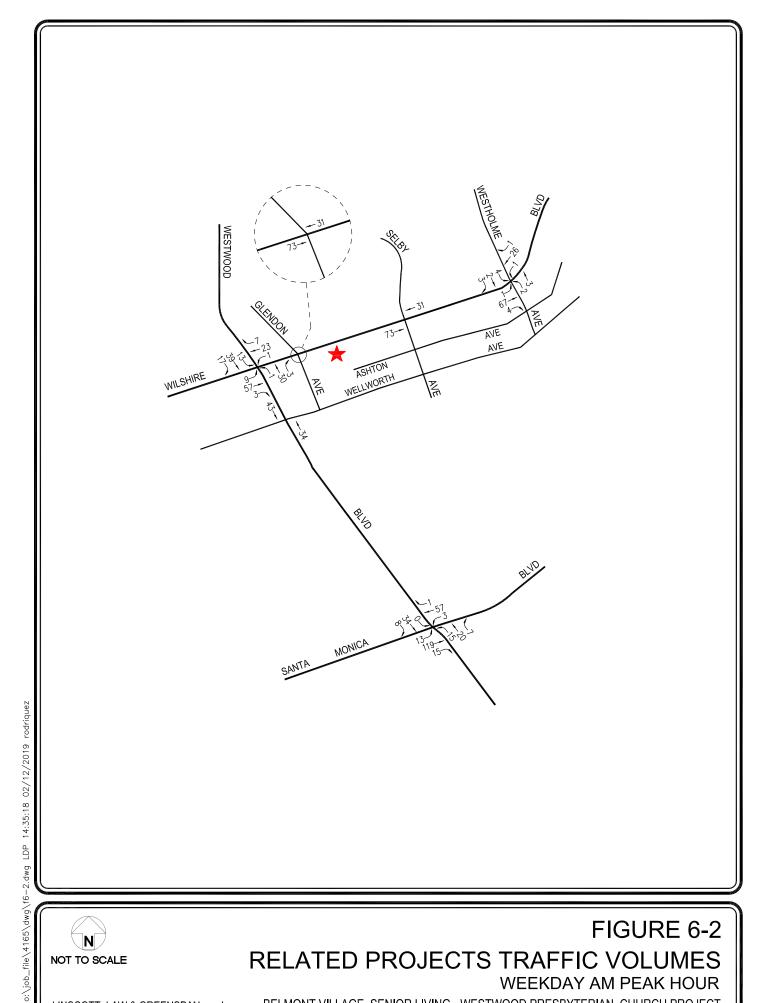

5		demonstrate and the conditions	A GOLF ATAL T	4.6	PROJECT	DAILY	I WA	AM PEAK HOUR	OUR	PM	PM PEAK HOUR	OUR
MAP	_	PROJECT NAME/NUMBER	LAND USE DATA		DATA	TRIP ENDS [2]	04	·	[2]		VOLUMES [2]	[2]
NO.	STATUS	ADDRESS/LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	Z	OUL	TOTAL	Z	OUL	TOTAL
-	Proposed	10955 West Wilshire Boulevard	Apartment Retail	250 DU 6,510 GLSF	[3] [4]	1,663 278	26	102	128	101	54 12	155 24
2	Proposed	ENV-2015-2957-EIR 11674 Santa Monica Boulevard	Grocery Store Apartment	55,430 GSF 166 DU	[5] [3]	5,667 1,104	117	71	188 85	268	257 36	525 103
33	Proposed	Bellwood Avenue Senior Care 10330 West Bellwood Avenue	Medical Office	24,000 GSF	[1]	856	53	S	58	29	84	113
4	Proposed	Century City Center 1950 South Avenue Of The Stars	Office	725,830 GSF	[1]	4,603	604	83	687	103	501	604
5	Proposed	11750 West Wilshire Boulevard	Apartments Restaurant/Retail	376 DU 5,000 GSF	[1]	(400)	(22)	66	77	(22)	(64)	(98)
9	Proposed	10970 West Le Conte Avenue	Medical Office	38,539 GSF	[1]	734	31	(4)	27	13	70	83
7	Proposed	888 South Devon Avenue	Apartments	32 DU	[1]	213	3	13	16	10	9	16
∞	Proposed	Cava Grill Restaurant 1073 South Broxton Avenue	Restaurant	2,328 GSF	[1]	593	(9)	(9)	(12)	15	13	28
6	Proposed	1855 South Westwood Boulevard	Apartments Retail	33 DU 3,000 GLSF	[3] [4]	219 128	5 3	14	17	13	7	20
10	Proposed	10306 West Santa Monica Boulevard	Apartments	DO DO	[9]	869	6	37	46	29	15	4
11	Proposed	10400 West Santa Monica Boulevard	Apartment	DQ 96	[3]	638	10	43	53	32	18	50
12	Proposed	Century Plaza Hyatt Regency Hotel 2025 South Avenue of the Stars	Condominiums Hotel Retail Restaurant	193 DU 240 Rooms 93,814 GLSF 10,309 GSF	[2]	3,690	7	34	41	367	181	548
13	Proposed	11600 West Wilshire Boulevard	Medical Office Office	120,160 GSF 120,874 GSF	[1]	1,280	25	15	40	35	99	100
14	Under	ZA-2018-1717-ZAA 1361 South Kelton Avenue	Apartments	15 DU	[3]	100	2	9	∞	9	ε	6
15	Proposed	11272 West Nebraska Avenue	Apartment	24 DU	[3]	160	2	10	12	10	5	15
16	Proposed	Trident Center 11355 West Olympic Boulevard	Office	120,242 GSF	[1]	1,246	133	33	166	49	122	171

MAP	PROJECT	PROJECT NAME/NUMBER	LAND USE DATA	VTA	PROJECT DATA	DAILY TRIP ENDS [2]	AM I OV	AM PEAK HOUR VOLUMES [2]	OUR [2]	PM V(PM PEAK HOUR VOLUMES [2])UR
NO.		ADDRESS/LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	Z	OUT	TOTAL	Z	OUT	TOTAL
17	Proposed	Buerge East 11750 West Santa Monica Boulevard	Apartments Retail/Restaurant	187 DU	[1]	1,006	(5)	65	09	80	33	113
18	Proposed	1736 South Sepulveda Boulevard	Retail	9,311 GLSF	[1]	84	11	1	12	4	18	22
19	Proposed	ENV-2018-310EAF 1822 South Selby Avenue	Apartment	10 DU	[3]	<i>L</i> 9	1	4	5	4	2	9
20	Proposed	ENV-2018-3039-MND 11261 West Santa Monica Boulevard	Apartment	119 DU	[3]	791	12	49	61	48	26	74
21	Proposed	UCLA Long Range Development Plan and Student Housing Projects	Student Housing	6,900 Beds	[7]	(77)	(10)	(14)	(24)	(5)	17	12
22	Proposed	ENV-2018-2602-EAF 626 South Landfair Avenue	Apartment	10 DU	[3]	<i>L</i> 9	1	4	5	4	2	9
23	Proposed	EMGD VA Bridge Housing 11301 Wilshire Boulevard	Housing	102 Beds	[1]	130	9	7	13	∞	5	13
24	Proposed	ENV-2018-3610 EAF 11001 West Pico Boulevard	Apartment	DO 68	[8]	651	6	32	41	32	18	20
25	Proposed	ENV-2018-511-EAF 1822 South Overland Avenue	Apartment	16 DU	[8]	117	2	5	7	9	3	6
26	Proposed	ENV-2018-511-EAF 2363 South Fox Hills Drive	Apartment	16 DU	[8]	117	2	5	7	9	3	6
27	Proposed	ENV-2018-6817-EAF 900 South Hilgard Avenue	Apartment	64 DU	[8]	468	7	22	29	23	13	36
28	Proposed	ENV-2018-5818-EAF 11835 South Greenfield Avenue	Apartment	16 DU	[8]	117	2	5	7	9	е	6
29	Proposed	ENV-2018-6720-EAF 2301 South Westwood Boulevard	Apartment	62 DU	[8]	454	7	22	29	22	13	35
TOTAL	T					27,464	1,065	833	1,898	1,380	1,547	2,927

and by applying trip rates as provided in the ITE "Trip Generation", 9th Edition, 2012 and "Trip Generation Manual", 10th Edition, 2017 (as referenced in the Project Data Source column). For those related projects that [1] Source: City of Los Angeles Department of Transportation (LADOT) and Department of City Planning (LADCP), except as noted below. The peak hour traffic volumes were forecast on trip data provided by LADOT

LADOT provided trip data, the peak hour directional in the manual were utilized.

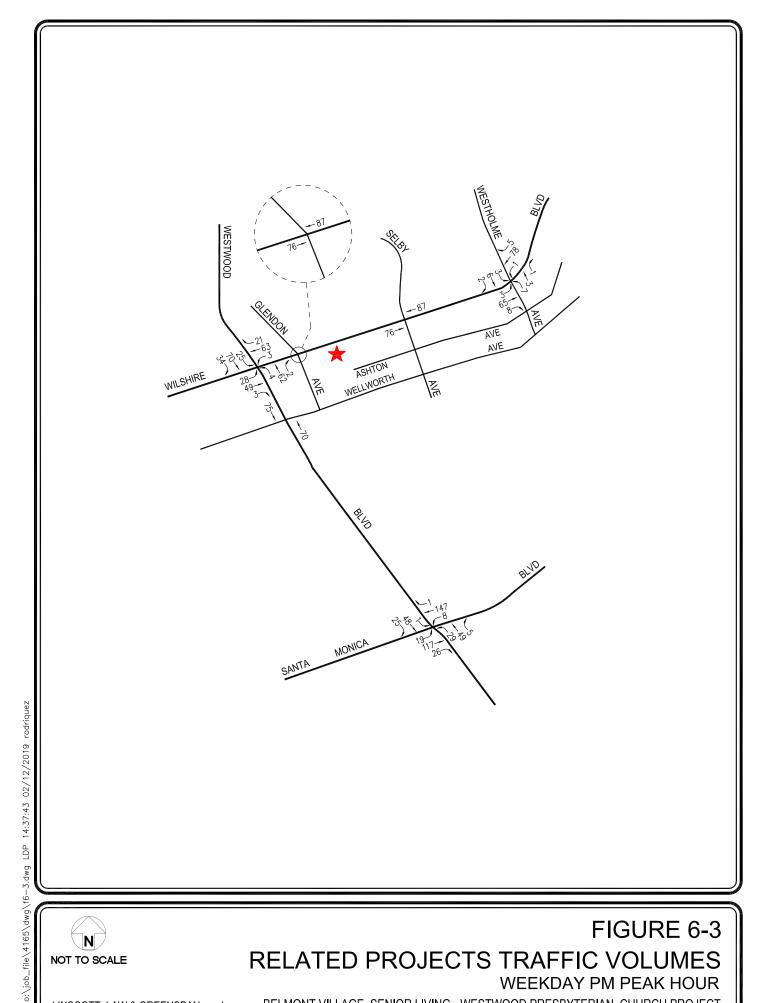
Trips are one-way traffic movements, entering or leaving.
 ITE Land Use Code 220 (Apartment) trip generation average rates.
 ITE Land Use Code 820 (Shopping Center) trip generation average rates.
 ITE Land Use Code 850 (Supermarket) trip generation average rates.
 Ource: "10306-10330 Santa Monica Boulevard Apartment Project" Addendum Traffic Analysis prepared by LLG Engineers dated September 2018.
 Source: "UCLA LRDP Amendment (2017) and Student Housing Projects DSEIR, August 2017.
 ITE Land Use Code 220 (Multifamily Housing) 10th Edition trip generation average rates.


respective traffic generation for the weekday AM and PM peak hours, as well as on a daily basis for a typical weekday, is summarized in *Table 6-1*. The related projects traffic volumes were distributed and assigned to the street system based on each project's location in relation to the study intersections, their proximity to major traffic corridors, proposed land uses, nearby population and employment centers, etc. The distribution of the related projects traffic volumes to the study intersections during the weekday AM and PM peak hours are displayed in *Figures 6-2* and *6-3*, respectively.

6.2 Ambient Traffic Growth Factor

Horizon year background traffic growth estimates have been calculated using an ambient traffic growth factor. The ambient traffic growth factor is intended to include unknown related projects in the study area as well as account for typical growth in traffic volumes due to the development of projects outside the study area. Ambient traffic growth in the West/Central Los Angeles area (i.e., Regional Statistical Area 17 [RSA 17]), which is presented in the 2010 Congestion Management Program, indicates existing traffic volumes are expected to increase at an annual rate of approximately 0.20 percent (0.20%) per year between years 2020 and 2025. An annual growth rate of 0.20 percent (0.20%) until the year 2025 (i.e., the anticipated project build-out year) was selected for this analysis in consultation with LADOT during the scoping process. Therefore, application of the ambient growth factor in addition to the forecast traffic generated by the related projects allows for a conservative forecast of future traffic volumes in the project study area as incorporation of both (i.e., an ambient traffic growth rate and a detailed list of cumulative development projects) is expected to overstate potential future traffic volumes. The cumulative development projects should already be incorporated as part of the growth rate projection per the adopted, local and regional planning documents (i.e., which account for the future population, housing, and employment [socioeconomic data] projections). Further, as described in Section 6.0 herein, CEQA only requires that one of these two approaches be employed in developing the future traffic volume forecasts.

LINSCOTT, LAW & GREENSPAN, engineers


⁷ Institute of Transportation Engineers *Trip Generation Manual*, 10th Edition, Washington, D.C., 2017.

NOT TO SCALE

FIGURE 6-2 RELATED PROJECTS TRAFFIC VOLUMES

WEEKDAY AM PEAK HOUR

NOT TO SCALE

FIGURE 6-3 RELATED PROJECTS TRAFFIC VOLUMES

WEEKDAY PM PEAK HOUR

7.0 Traffic Forecasting Methodology

In order to estimate the traffic impact characteristics of the proposed project, a multi-step process has been utilized. The first step is trip generation, which estimates the total arriving and departing traffic volumes on a peak hour and daily basis. The traffic generation potential is forecast by applying the appropriate vehicle trip generation equations or rates to the project development tabulation.

The second step of the forecasting process is trip distribution, which identifies the origins and destinations of inbound and outbound project traffic volumes. These origins and destinations are typically based on demographics and existing/anticipated travel patterns in the study area.

The third step is traffic assignment, which involves the allocation of project traffic to study area streets and intersections. Traffic assignment is typically based on minimization of travel time, which may or may not involve the shortest route, depending on prevailing operating conditions and travel speeds. Traffic distribution patterns are indicated by general percentage orientation, while traffic assignment allocates specific volume forecasts to individual roadway links and intersection turning movements throughout the study area.

With the forecasting process complete and project traffic assignments developed, the impact of the proposed project is isolated by comparing operational (i.e., Levels of Service) conditions at the selected key intersections using existing and expected future traffic volumes without and with forecast project traffic. The need for site-specific and/or cumulative local area traffic improvements can then be evaluated and the significance of the project's impacts identified.

7.1 Project Trip Generation

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Traffic volumes to be generated by the proposed project were forecast for the weekday AM and PM peak hours, and over a 24-hour period. Trip generation rates provided in the ITE *Trip Generation Manual* and Appendix A of the WLA TIMP⁸ were utilized to forecast project traffic generation for the proposed project. Traffic volumes expected to be generated by the proposed project were based upon rates per number of residential units for the residential component and per 1,000 square feet of floor area for the day care center. Trip generation average rates for the following uses were used to forecast the traffic volumes expected to be generated by the proposed project:

- ITE Land Use Code 252: Senior Adult Housing
- ITE Land Use Code 254: Assisted Living
- ITE Land Use Code 565: Day Care Center

-

⁸ West Los Angeles Transportation Improvement and Mitigation Specific Plan, Appendix A. Adopted March 8, 1997,

A forecast was made of likely pass-by trips that could be anticipated at the site. Pass-by trips are intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The pass-by traffic forecast has been estimated based on existing traffic volumes in the project vicinity and the *LADOT Policy on Pass-by Trips*. Pass-by adjustments have been applied to the weekday AM and PM peak hour traffic volume forecasts, as well as to the daily traffic volume forecasts, for the day care component of the project.

In addition to the proposed project trip generation forecasts, forecasts also were made for the existing project site land uses. ITE Land Uses Codes 210 (Single-Family Housing) and 565 (Day Care Center) trip generation average rates were used to forecast expected traffic generation for the existing residence and day care center land uses, respectively. Pass-by adjustments have been applied to the weekday AM and PM peak hour traffic volume forecasts, as well as to the daily traffic volume forecasts, for the existing day care center use.

The trip generation rates and forecast of the vehicular trips anticipated to be generated by the proposed project are presented in *Table 7-1*. As summarized in *Table 7-1*, the proposed project is expected to generate a net increase of 41 vehicle trips (23 inbound trips and 18 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is expected to generate a net increase of 49 vehicle trips (25 inbound trips and 24 outbound trips). Over a 24-hour period, the proposed project is forecast to generate a net increase of 732 vehicle trips (366 inbound trips and 366 outbound trips) during a typical weekday.

7.2 Project Traffic Distribution and Assignment

Project traffic volumes both entering and exiting the site have been distributed and assigned to the adjacent street system based on the following considerations:

- The site's proximity to major traffic corridors (i.e., Wilshire Boulevard, Westwood Boulevard, Santa Monica Boulevard, etc.);
- Expected localized traffic flow patterns based on adjacent roadway channelization and presence of traffic signals;
- Existing intersection traffic volumes;
- Ingress/egress scheme planned for the proposed project;
- Nearby population and employment centers; and
- Input from LADOT staff.

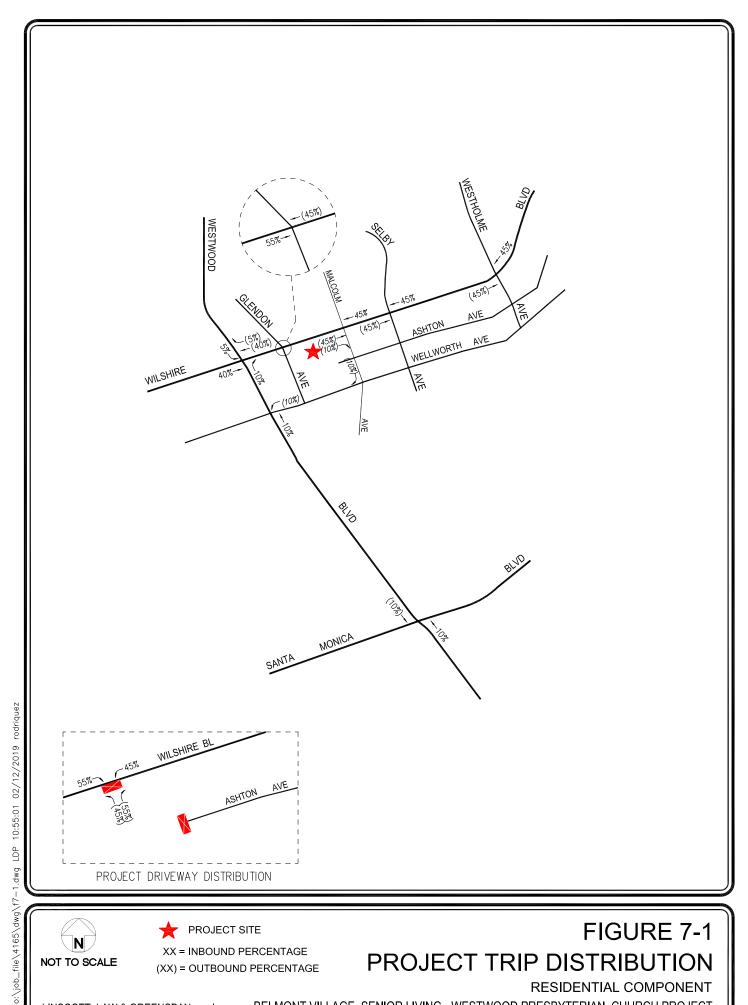
As described in Sections 2.0 and 3.0, access to the Eldercare facility (i.e., residential component) will be provided via the proposed driveways on Wilshire Boulevard, while access to the Education

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

Table 7-1 PROJECT TRIP GENERATION [1]

		DAILY TRIP ENDS [2]		PEAK HO			PEAK HOOLUMES	
LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project Assisted Living [3] Independent Living [4] Day Care Center [5],[6] - Less Pass-by Adjustment (10%) [7]	122 Guest Rooms 54 DU 9,599 GSF [8]	505 200 457 (46)	15 4 56 (6)	7 7 50 (5)	22 11 106 (11)	18 2 62 (6)	17 2 69 (7)	35 4 131 (13)
Subtotal Proposed Project		1,116	69	59	128	76	81	157
Less Existing Uses Day Care Center [5],[6] - Less Pass-by Adjustment (10%) [7]	(8,750) GSF	(417) 42	(51) 5	(45) 5	(96) 10	(56) 6	(63) 6	(119) 12
Single Family Residence [9]	(1) DU	(9)	0	(1)	(1)	(1)	0	(1)
Subtotal Existing Uses		(384)	(46)	(41)	(87)	(51)	(57)	(108)
NET CHANGE		732	23	18	41	25	24	49

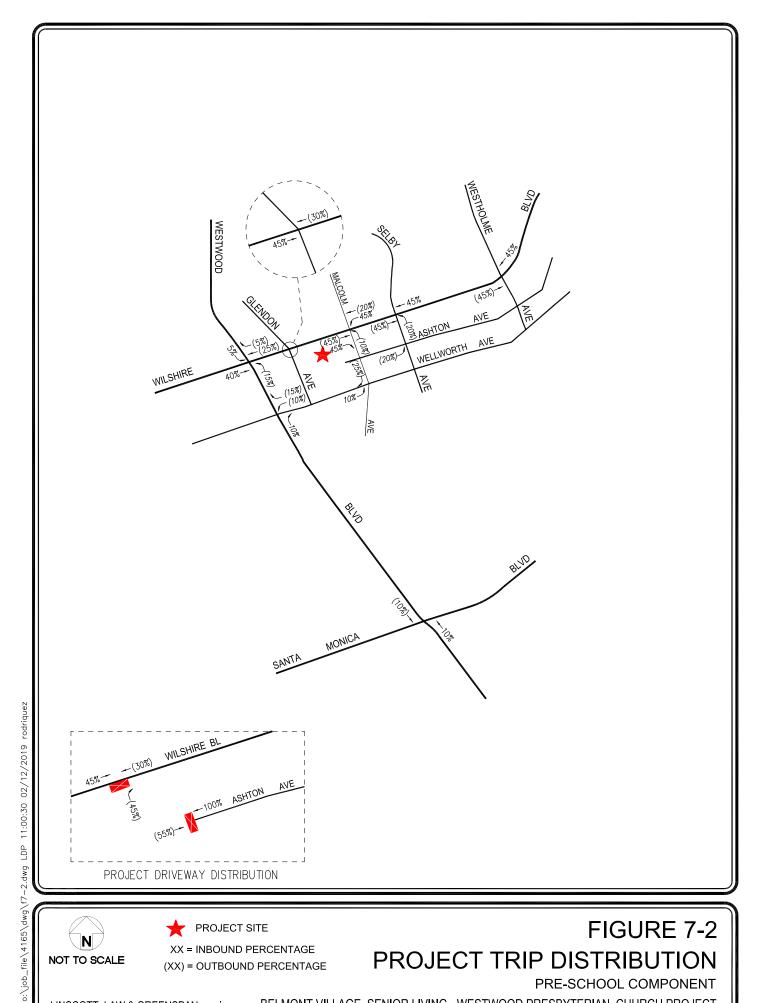

- [1] Sources: ITE "Trip Generation Manual", 10th Edition, 2017 and West Los Angeles Transportation Improvement and Mitigation Program (WLA TIMP) Specific Plan, March 8, 1997.
- [2] Trips are one-way traffic movements, entering or leaving.
- $\cite{Matter 1.00} ITE\ Land\ Use\ Code\ 254\ (Assisted\ Living)\ trip\ generation\ average\ rates.$
 - Daily Trip Rate: 4.14 trips/Occupied Bed; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.18 trips/Occupied Bed; 68% inbound/32% outbound
 - PM Peak Hour Trip Rate: 0.29 trips/Occupied Bed; 50% inbound/50% outbound

The trip generation forecast is based on one occupied bed per guest room.

- [4] ITE Land Use Code 252 (Senior Adult Housing Attached) trip generation average rates.
 - Daily Trip Rate: $3.70\ trips/DU;\,50\%$ inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.20 trips/DU; 35% inbound/65% outbound
 - PM Peak Hour Trip Distribution: 55% inbound/45% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 0.08 trips/DU
- [5] ITE Land Use Code 565 (Day Care Center) trip generation average rates.
 - Daily Trip Rate: $47.62\ trips/1,\!000\ SF$ of floor area; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 11.00 trips/1,000 SF of floor area; 53% inbound/47% outbound
 - PM Peak Hour Trip Distribution: 47% inbound/53% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 13.62 trips/1,000 SF of floor area
- [6] It should be noted that the existing Westwood Presbyterian Church sanctuary will remain and no changes are proposed as part of this project.
- [7] Source: LADOT policy on pass-by trip adjustments, Transportation Impact Study Guidelines, LADOT, December 2016.
 - Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion.
 - Pass-by trips are attracted from the traffic passing the site on an adjacent street or roadway that offers direct access to the site.
- [8] Measured within building walls, and not including 143 square feet of outdoor covered unoccupied areas.
- [9] ITE Land Use Code 210 (Single-Family Detached Housing) trip generation average rates.
 - Daily Trip Rate: 9.44 trips/dwelling unit; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.74 trips/dwelling units; 25% inbound/75% outbound
 - PM Peak Hour Trip Distribution: 63% inbound/37% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 1.01 trips/dwelling units

Center/pre-school component of the proposed project will be provided via Ashton Avenue and Wilshire Boulevard (outbound only). As such, two separate traffic distribution patterns were developed for the proposed project: one for the residential component and one for the pre-school component. The two trip distribution patterns developed for the proposed project were submitted for review and approval by LADOT staff.

The project traffic volume distribution percentages for the residential component during the AM and PM peak hours at the study intersections are illustrated in *Figure 7-1*. The project traffic volume distribution percentages for the pre-school component during AM and PM peak hours at the study intersections are illustrated in *Figure 7-2*. The forecast AM and PM peak hour net new project traffic volumes (i.e., the combined residential and pre-school volumes) at the study intersections for the AM and PM peak hours for the proposed project are displayed in *Figures 7-3* and *7-4*, respectively. The traffic volume assignments presented in *Figures 7-3* and *7-4* reflect the traffic distribution characteristics shown in *Figures 7-1* and *7-2* and the proposed project traffic generation forecast presented in *Table 7-1*.

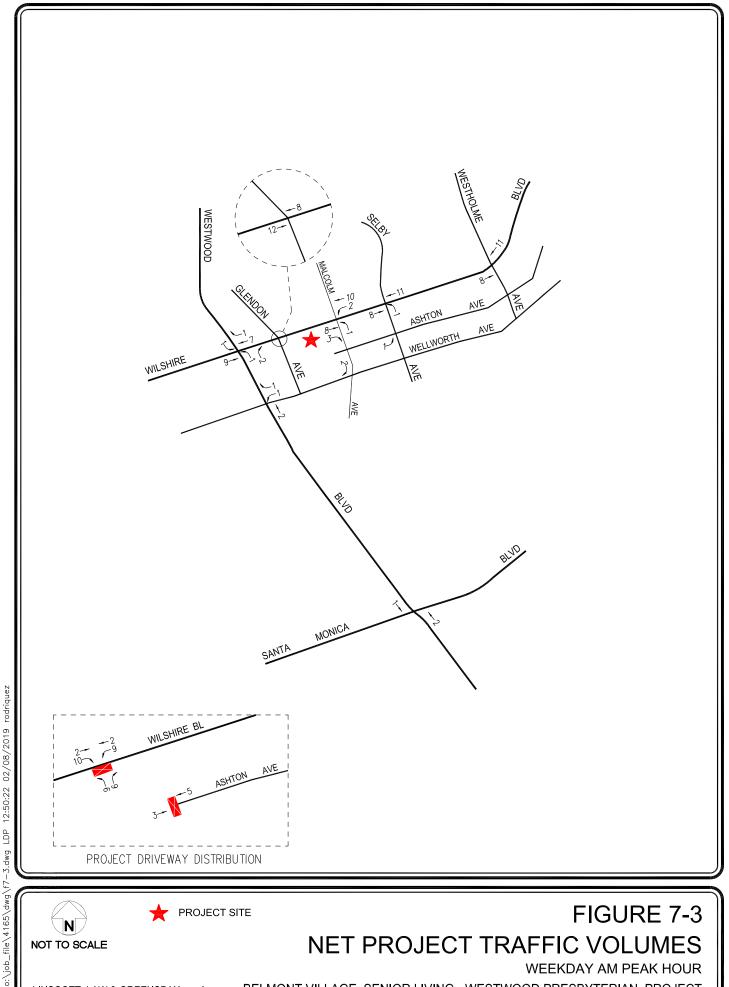


PROJECT SITE

XX = INBOUND PERCENTAGE (XX) = OUTBOUND PERCENTAGE

FIGURE 7-1 PROJECT TRIP DISTRIBUTION

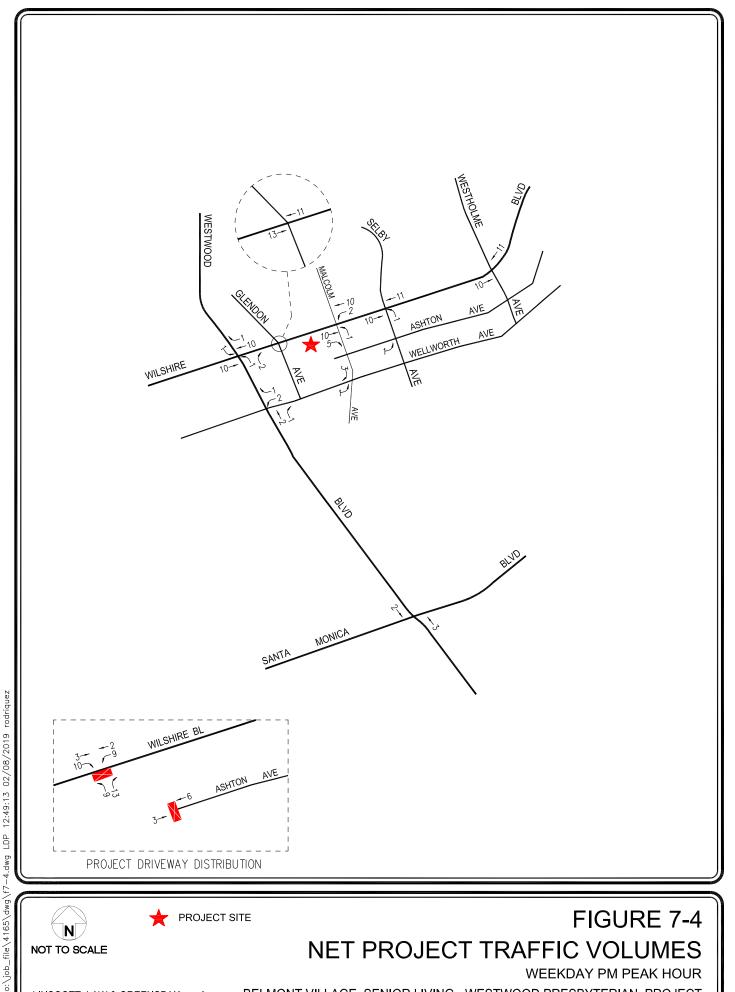
RESIDENTIAL COMPONENT



XX = INBOUND PERCENTAGE (XX) = OUTBOUND PERCENTAGE

FIGURE 7-2 PROJECT TRIP DISTRIBUTION

PRE-SCHOOL COMPONENT



NOT TO SCALE

FIGURE 7-3 **NET PROJECT TRAFFIC VOLUMES**

WEEKDAY AM PEAK HOUR

FIGURE 7-4 **NET PROJECT TRAFFIC VOLUMES**

WEEKDAY PM PEAK HOUR

8.0 TRAFFIC IMPACT ANALYSIS METHODOLOGY

The study intersections were evaluated using the Critical Movement Analysis (CMA) method of analysis that determines Volume-to-Capacity (v/c) ratios on a critical lane basis. The overall intersection v/c ratio is subsequently assigned a Level of Service (LOS) value to describe intersection operations. Level of Service varies from LOS A (free flow) to LOS F (jammed condition). A description of the CMA method and corresponding Level of Service is provided in *Appendix C*.

8.1 Impact Criteria and Thresholds

The relative impact of the added project traffic volumes expected to be generated by the proposed project during the weekday AM and PM peak hours was evaluated based on analysis of existing and future operating conditions at the study intersections, without and with the proposed project. The previously discussed capacity analysis procedures were utilized to evaluate the future v/c relationships and service level characteristics at each study intersection.

The significance of the potential impacts of project-generated traffic was identified using the traffic impact criteria set forth in LADOT's *Transportation Impact Study Guidelines*, December 2016. According to the City's published traffic study guidelines, the impact is considered significant if the project-related increase in the v/c ratio equals or exceeds the thresholds presented in *Table 8–1*.

	Table 8-1								
	CITY OF LOS ANGELES	3							
INTER	INTERSECTION IMPACT THRESHOLD CRITERIA								
Final v/c	Level of Service	Project Related Increase in <i>v/c</i>							
> 0.701 - 0.800	C	equal to or greater than 0.040							
> 0.801 - 0.900	D	equal to or greater than 0.020							
> 0.901	E or F	equal to or greater than 0.010							

The City's Sliding Scale Method requires mitigation of project traffic impacts whenever traffic generated by the proposed development causes an increase of the analyzed intersection v/c ratio by an amount equal to or greater than the values shown above.

It should be noted that in consultation with LADOT staff and consistent with previously approved transportation studies for other developments in the vicinity of the project, adjustments to the CMA intersection capacity values for the study intersections were applied to account for the reduced traffic flows at the intersections due to downstream congestion along the Wilshire Boulevard and Westwood Boulevard corridors. A 25 percent (25%) reduction in intersection capacity for two-phase (assumed at 1,125 vehicles per hour), three-phase (assumed at 1,069 vehicles per hour), and four-

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

phase (assumed at 1,031 vehicles per hour) intersections are reflected in the level of service calculations for the study intersections.

8.2 Traffic Impact Analysis Scenarios

Traffic impacts at the study intersections were analyzed for the following conditions:

- [a] Existing conditions.
- [b] Existing with project conditions.
- [c] Condition [b] with implementation of project mitigation measures, where necessary.
- [d] Condition [a] plus 0.20 percent (0.20%) annual ambient traffic growth through year 2025 and with completion and occupancy of the related projects (i.e., future without project conditions).
- [e] Condition [d] with completion and occupancy of the proposed project.
- [f] Condition [e] with implementation of project mitigation measures, where necessary.

It should be noted that Condition [b] above is a hypothetical scenario in that it calculates the traffic due to the occupancy of the proposed project in addition to the existing traffic volumes, but changes to existing volumes are expected to occur throughout the project's construction period due to other area projects and regional growth. However, this condition has been prepared to be consistent with the general rule under CEQA that the potential impacts of a development project are to be measured against existing conditions. Condition [d] above analyzes future conditions upon completion and full occupancy of the proposed project, which is expected to occur in year 2025.

9.0 TRAFFIC ANALYSIS

The traffic impact analysis prepared for the study intersections using the CMA methodology and application of the City of Los Angeles significant traffic impact criteria is summarized in *Table 9-1*. The CMA data worksheets for the analyzed intersections are contained in *Appendix C*.

9.1 Existing Conditions

9.1.1 Existing Conditions

As indicated in column [1] of *Table 9–1*, one study intersection is presently operating at LOS B or better during the weekday AM and PM peak hours under existing conditions. The remaining five study intersections are presently operating at LOS E or F during the peak hours shown below:

•	Int. No. 1: Westwood Blvd/Wilshire Blvd	PM Peak Hour: v/c =0.959, LOS E
•	Int. No. 3: Westwood Blvd/Santa Monica Blvd	AM Peak Hour: v/c =1.294, LOS F PM Peak Hour: v/c =1.189, LOS F
•	Int. No. 4: Glendon Ave/Wilshire Blvd	PM Peak Hour: v/c =1.020, LOS F
•	Int. No. 5: Selby Ave/Wilshire Blvd	PM Peak Hour: v/c =0.912, LOS E
•	Int. No. 6: Westholme Ave/Wilshire Blvd	PM Peak Hour: v/c =0.992, LOS E

The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in *Figures 5–1* and *5–2*, respectively.

9.1.2 Existing With Project Conditions

As shown in column [2] of *Table 9–1*, application of the City's threshold criteria to the "Existing With Project" scenario indicates that the proposed project is not expected to result in significant impacts at any of the six study intersections. Incremental, but not significant, impacts are noted at the study intersections. Because there are no significant impacts, no traffic mitigation measures are required or recommended for the study intersections under the "Existing With Project" conditions. The existing with project traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 9–1* and *9–2*, respectively.

9.2 Future Conditions

9.2.1 Future Without Project Conditions

The future cumulative baseline conditions were forecast based on the addition of traffic generated by the completion and occupancy of the related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The v/c ratios at all of the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in

LINSCOTT, LAW & GREENSPAN, engineers

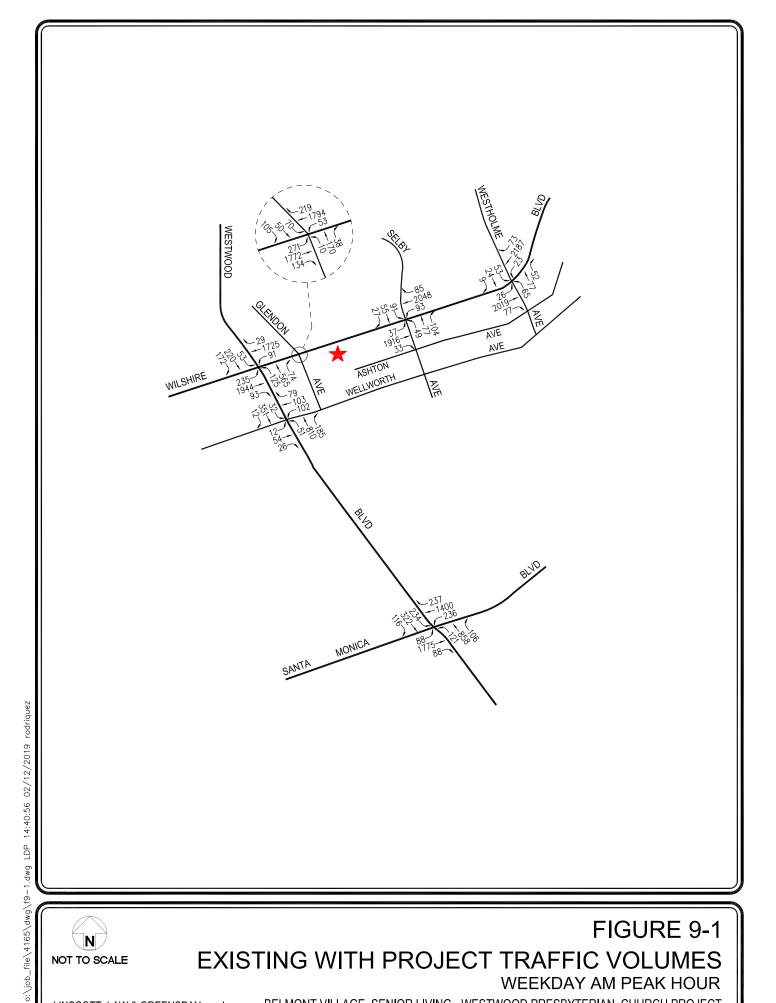
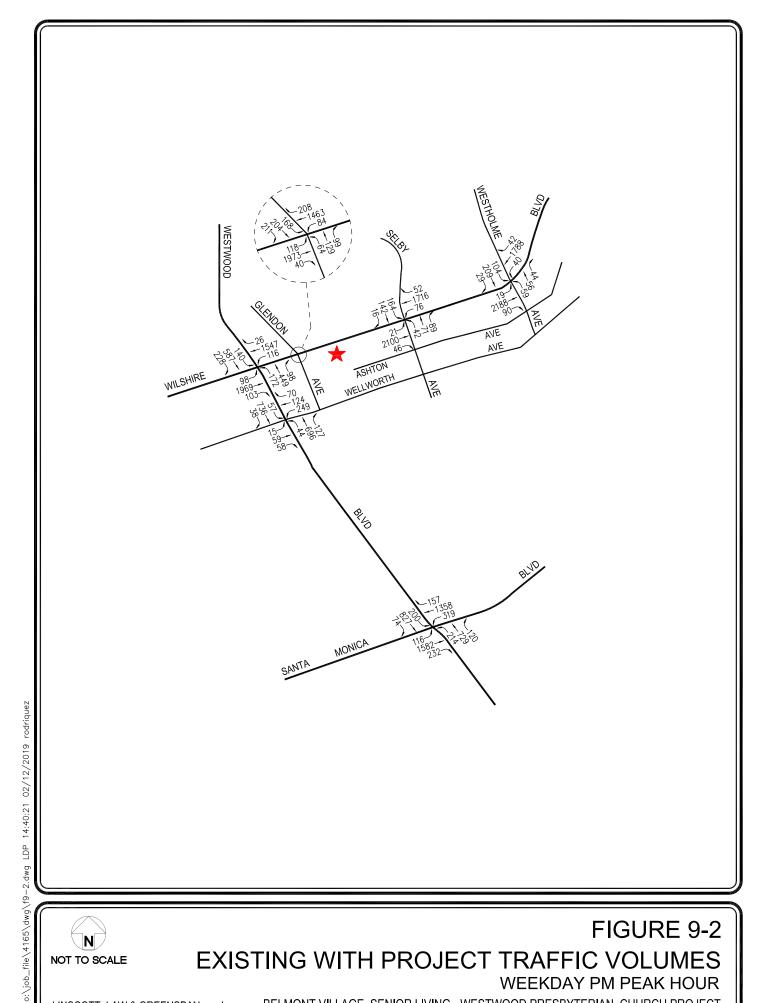

LLG Ref. 1-16-4165-1

Table 9-1 SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE WEEKDAY AM AND PM PEAK HOURS

			[1]				[2]		[3]				[4]	
					YEAR 2018	9118			YEAR 2025	3025	YEAR 2025	2025		
			YEAR 2018	2018	EXISTING WITH	WITH	CHANGE	SIGNIF.	FUTURE W/O	O/M	FUTURE WITH	WITH	CHANGE	SIGNIF.
NO.	INTERSECTION	PEAK HOUR	EXISTING V/C LO	ING	PROJECT V/C LC	CT	V/C [(2)-(1)]	IMPACT [a]	PROJECT V/C LC	CT	PROJECT V/C LC	LOS	V/C [(4)-(3)]	IMPACT [a]
-	Westwood Boulevard/	AM	2880	D	0.841	D	0.004	Z	0.885	D	0.890	D	0.005	No
	Wilshire Boulevard	PM	0.959	ш	0.963	ш	0.004	N _O	1.021	I IL	1.025	Ц	0.004	o N
2	Westwood Boulevard/	AM	0.549	A	0.552	Ą	0.003	No	0.572	A	0.575	Ą	0.003	No
	Wellworth Avenue	PM	0.671	В	0.673	В	0.002	No	0.715	Ü	0.718	Ü	0.003	No
3	Westwood Boulevard/	AM	1.294	币	1.295	币	0.001	No	1.366	Ħ	1.367	F	0.001	No
	Santa Monica Boulevard	PM	1.189	ഥ	1.190	ഥ	0.001	No	1.302	ഥ	1.303	ц	0.001	No
4	Glendon Avenue/	AM	0.865	D	0.868	D	0.003	No	0.889	D	0.892	D	0.003	No
	Wilshire Boulevard	PM	1.020	ഥ	1.024	ഥ	0.004	N _o	1.059	ഥ	1.063	ഥ	0.004	No
'n	Selby Avenue/	AM	0.832	D	0.836	D	0.004	No	0.866	D	0.870	D	0.004	No
	Wilshire Boulevard	PM	0.912	Ш	0.915	ш	0.003	N _o	0.948	Щ	0.952	Щ	0.004	No
9	Westholme Avenue/ Wilshire Boulevard	AM PM	0.834	D	0.837	D	0.003	$_{ m o}^{ m N}$	0.864	D	0.868	D F	0.004	o Z o


According to LADOT's "Transportation Impact Study Guidelines," December 2016, a transportation impact on an intersection shall be deemed significant in accordance with the following table: [a]

Project Related Increase in v/c equal to or greater than 0.040 equal to or greater than 0.020 equal to or greater than 0.010 LOS C D D E/F Final v/c >0.701 - 0.800 >0.801 - 0.900 >0.901

FIGURE 9-1 **EXISTING WITH PROJECT TRAFFIC VOLUMES**

WEEKDAY AM PEAK HOUR

FIGURE 9-2 **EXISTING WITH PROJECT TRAFFIC VOLUMES**

WEEKDAY PM PEAK HOUR

Table 6–1. As presented in column [3] of Table 9–1, one of the six study intersection is expected to operate at LOS C or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related projects traffic under the future without project conditions. The remaining five study intersections are expected to operate at LOS E or F during the peak hours shown below with the addition of growth in ambient traffic and related projects traffic:

Int. No. 1: Westwood Blvd/Wilshire Blvd
 PM Peak Hour: v/c=1.021, LOS F
 Int. No. 3: Westwood Blvd/Santa Monica Blvd
 AM Peak Hour: v/c=1.366, LOS F
 PM Peak Hour: v/c=1.302, LOS F
 Int. No. 4: Glendon Ave/Wilshire Blvd
 PM Peak Hour: v/c=1.059, LOS F

• Int. No. 5: Selby Ave/Wilshire Blvd PM Peak Hour: v/c=0.948, LOS E

• Int. No. 6: Westholme Ave/Wilshire Blvd PM Peak Hour: v/c=1.045, LOS F

The future without project (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in *Figures 9–3* and *9–4*, respectively.

9.2.2 Future With Project Conditions

As shown in column [4] of *Table 9–1*, application of the City's threshold criteria to the "With Proposed Project" scenario indicates that the proposed project is not expected to result in significant impacts at any of the six study intersections. Incremental, but not significant, impacts are noted at the study intersections. Because there are no significant impacts, no traffic mitigation measures are required or recommended for the study intersections under the "Future With Project" conditions. The future with project (existing, ambient growth, related projects and project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 9–5* and *9–6*, respectively.

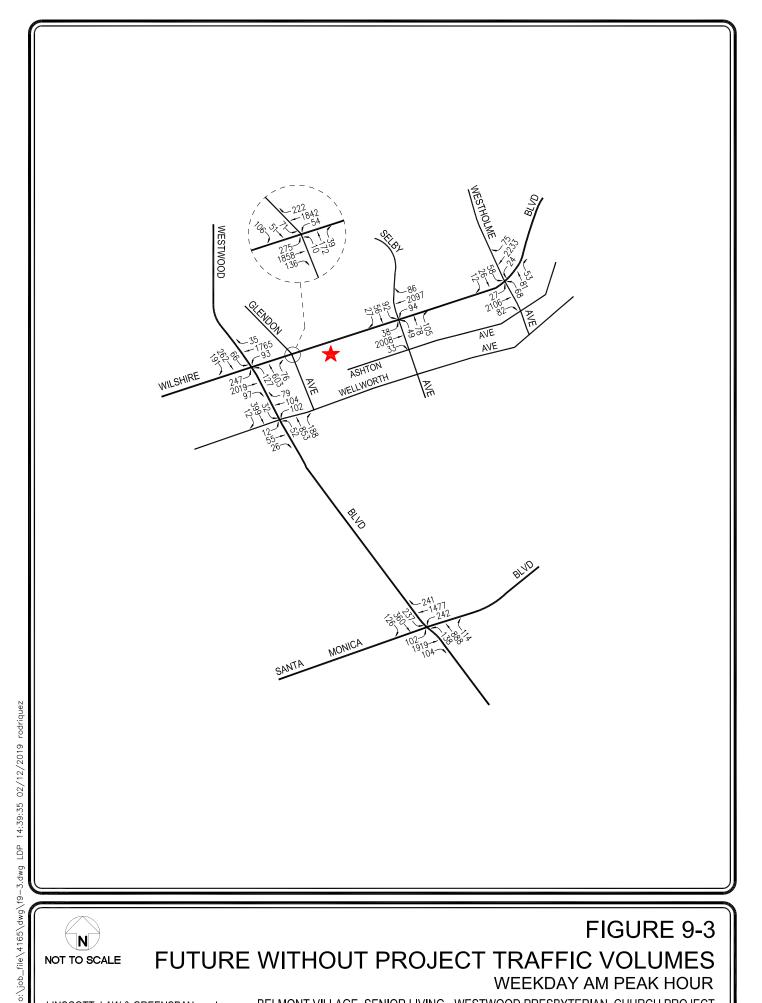
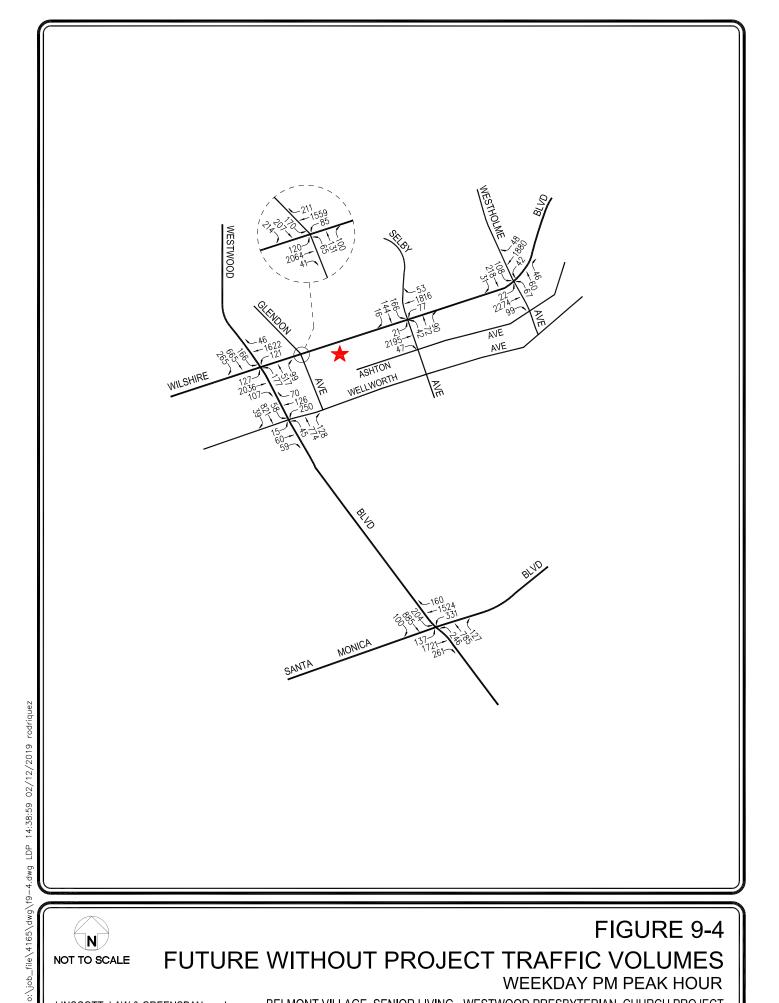
9.3 City of Los Angeles High Injury Network Review

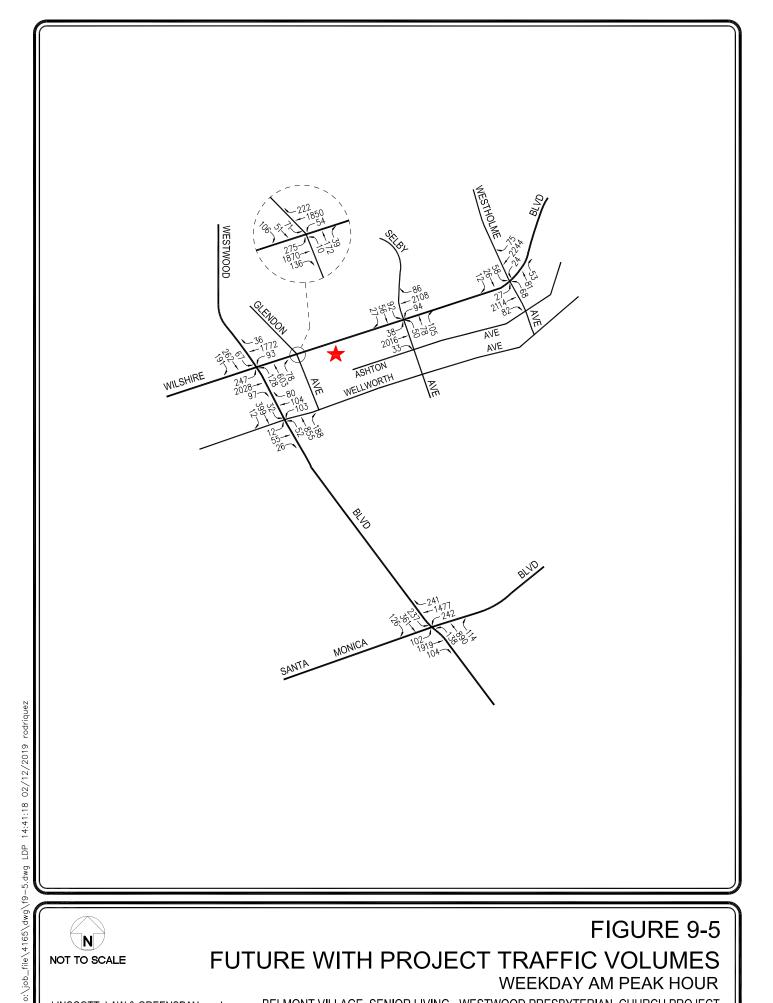
Vision Zero is an initiative which prioritizes the safety of pedestrians and bicyclists on public streets, with the understanding that roads which are safe for vulnerable users will be safer for all users, in an effort to eliminate traffic fatalities. Key elements of the initiative, such as reducing traffic speeds, are founded on the principles of engineering, education, enforcement, evaluation, and equity. Originating in Sweden, the policy has been adopted in numerous other North American cities, including California cities such as San Francisco and San Diego.

Mayor Eric Garcetti issued Executive Directive No. 10 in August 2015, formally launching the Vision Zero initiative in Los Angeles. Vision Zero is also a stated safety objective in the Mobility Plan 2035, which sets the goal of zero traffic deaths by 2035. Jointly directed by the Department of Transportation and the Police Department, Vision Zero takes a multi-disciplinary approach to

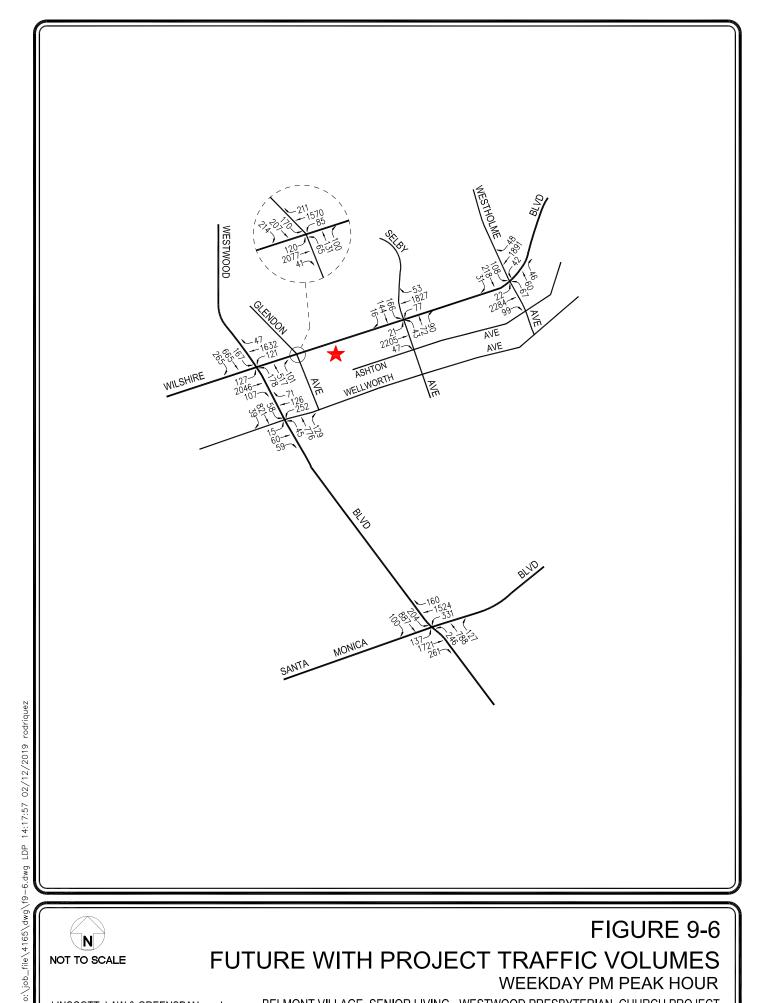
LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1


FIGURE 9-3

FUTURE WITHOUT PROJECT TRAFFIC VOLUMES WEEKDAY AM PEAK HOUR


FUTURE WITHOUT PROJECT TRAFFIC VOLUMES

WEEKDAY PM PEAK HOUR

FIGURE 9-5 FUTURE WITH PROJECT TRAFFIC VOLUMES

WEEKDAY AM PEAK HOUR

FIGURE 9-6 FUTURE WITH PROJECT TRAFFIC VOLUMES

WEEKDAY PM PEAK HOUR

identifying safety risk factors and implementing solutions on a citywide scale. Using a methodology originally developed by the San Francisco Public Health Department, the Vision Zero Task Force has identified streets where investments in safety will have the most impact in reducing severe injuries and traffic fatalities in the City9. These roads are collectively known as the High Injury The HIN will be reviewed for potential engineering re-design as well as educational and enforcement campaigns.

The proposed project is located along the south side of Wilshire Boulevard between Glendon Avenue and Malcolm Avenue within the West Los Angeles Transportation Improvement and Mitigation Specific Plan area of the City of Los Angeles. As shown in Figure 9-7, roadways in the immediate vicinity of the proposed project which have been identified on the HIN are noted below:


- Westwood Boulevard
- Glendon Avenue

Wilshire Boulevard along the project frontage is not identified as part of the HIN in the project vicinity. Therefore, it is determined that the proposed project is not situated on the HIN.

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

⁹ Vision Zero Los Angeles 2015-2025, August 2015.

-56-

10.0 CONGESTION MANAGEMENT PROGRAM TRAFFIC IMPACT ASSESSMENT

The Congestion Management Program (CMP) is a state-mandated program that was enacted by the California State Legislature with the passage of Proposition 111 in 1990. The program is intended to address the impact of local growth on the regional transportation system.

As required by the 2010 Congestion Management Program, a Traffic Impact Assessment (TIA) has been prepared to determine the potential impacts on designated monitoring locations on the CMP highway system. The analysis has been prepared in accordance with procedures outlined in the 2010 Congestion Management Program, Los Angeles County Metropolitan Transportation Authority, October 2010.

According to Section D.9.1 (Appendix D, page D-6) of the 2010 CMP manual, the criteria for determining a significant transportation impact is listed below:

"A significant transportation impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02), causing or worsening LOS F (V/C > 1.00); if the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C > 0.02)."

The CMP impact criteria apply for analysis of both intersection and freeway monitoring locations.

10.1 Freeways

The following CMP freeway monitoring location in the project vicinity has been identified:

• CMP Station Location

Seg. No. 1070 I-405 Freeway north of Venice Boulevard

The CMP TIA guidelines require that freeway monitoring locations must be examined if the proposed project will add 150 or more trips (in either direction) during either the weekday AM or PM peak hours. The proposed project will not add 150 or more trips (in either direction) during either the weekday AM or PM peak hours to CMP freeway monitoring locations which is the threshold for preparing a traffic impact assessment, as stated in the CMP manual. The proposed project is anticipated to generate well below the 150 AM or PM peak hour trip threshold at the mainline freeway segments in closest proximity to the above freeway monitoring location. Therefore, no further review of potential impacts to freeway monitoring locations that are part of the CMP highway system is required.

10.2 Intersections

The following CMP intersection monitoring locations in the project vicinity have been identified:

• <u>CMP Station</u> <u>Intersection</u>

LINSCOTT, LAW & GREENSPAN, engineers

Int. No. 5 Santa Monica Boulevard/Wilshire Boulevard

Int. No. 86 Beverly Glen Boulevard/Wilshire Boulevard

The CMP TIA guidelines require that intersection monitoring locations must be examined if the proposed project will add 50 or more trips during either the weekday AM or PM peak hours. The proposed project will not add 50 or more trips during either the weekday AM or PM peak hours (i.e., of adjacent street traffic) at CMP monitoring intersections, as stated in the CMP manual as the threshold criteria for a traffic impact assessment. The proposed project is anticipated to contribute less than 50 peak hour vehicle trips during the weekday AM and PM peak hours. Therefore, no further review of potential impacts to intersection monitoring locations that are part of the CMP highway system is required.

10.3 Transit Impact Review

As required by the 2010 Congestion Management Program, a review has been made of the potential impacts of the project on transit service. As discussed in Subsection 4.5 herein, existing transit service is provided in the vicinity of the proposed project.

The project trip generation, as shown in *Table 7–1*, was adjusted by values set forth in the CMP and further adjusted by LADOT (i.e., person trips equal 1.4 times vehicle trips, and transit trips equal 3.5 percent of the total person trips) to estimate transit trip generation. Pursuant to the CMP guidelines and LADOT input, the proposed project is forecast to generate demand for 2 transit trips during the weekday AM peak hour and 2 transit trips during the weekday PM peak hour. Over a 24-hour period, the proposed project is forecast to generate demand for 36 weekday daily transit trips. Therefore, the calculations are as follows:

- AM Peak Hour = $41 \times 1.4 \times 0.035 = 2$ Transit Trips
- PM Peak Hour = $49 \times 1.4 \times 0.035 = 2$ Transit Trips
- Daily Trips = $732 \times 1.4 \times 0.035 = 36$ Transit Trips

As shown in *Table 4*–2, 21 transit lines and routes are provided adjacent to or in close proximity to the project site. As outlined in *Table 4*–2, under the "No. of Buses During Peak Hour" column, these 21 transit lines provide services for an average of (i.e., average of the directional number of buses during the peak hours) roughly 171 and 166 buses during the weekday AM and PM peak hours, respectively. Therefore, based on the above calculated weekday AM and PM peak hour trips, this would correspond to less than one additional transit rider per bus. It is anticipated that the existing transit service in the project area will adequately accommodate the increase of project-generated transit trips. Thus, given the number of project-generated transit trips per bus, no project impacts on existing or future transit services in the project area are expected to occur as a result of the proposed project.

LINSCOTT, LAW & GREENSPAN, engineers

11.0 CONCLUSIONS

- **Project Description** The proposed project consists of the construction of a new Eldercare Facility containing up to 176 units. The Eldercare Facility will contain 54 Senior Independent Housing dwelling units, 76 Assisted Living Care Housing guest rooms, and 46 Alzheimer's/Dementia Care Housing guest rooms as well as associated residential amenities and service areas. In addition, a new two-story Education Center building containing 18 preschool classrooms and 3,260 square feet of administrative offices for the Church will be constructed at the southern portion of the site. The Church's sanctuary will be retained while the existing administrative offices, preschool/classroom space, and single-family residence will be demolished to accommodate the proposed project. Construction of the proposed project is expected to commence in year 2019 with occupancy by year 2025.
- *Vehicular Site Access* Vehicular access to the project site will be provided via three driveways: two driveways on Wilshire Boulevard and one driveway on Ashton Avenue.
- *Study Scope* A total of six study intersections were selected for analysis in consultation with LADOT staff in order to determine potential impacts related to the proposed project.
- **Project Trip Generation** The proposed project is expected to generate a net increase of 41 vehicle trips (23 inbound trips and 18 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, the proposed project is expected to generate a net increase of 49 vehicle trips (25 inbound trips and 24 outbound trips). Over a 24-hour period, the proposed project is forecast to generate a net increase of 732 vehicle trips (366 inbound trips and 366 outbound trips) during a typical weekday.
- Related Projects The City of Los Angeles Departments of Transportation and Planning were consulted to obtain the list of development projects (related projects) in the area. A total of 29 related projects was identified and considered as part of the cumulative traffic analysis. In addition, an annual growth rate of 0.20 percent (0.20%) to the year 2025 (i.e., the anticipated project build-out year) was used for analysis purposes. Therefore, application of this ambient growth factor in addition to the forecast traffic generated by the related projects allows for a conservative forecast of future traffic volumes in the project study area as incorporation of both (i.e., an ambient traffic growth rate and a detailed list of cumulative development projects) is expected to overstate potential future traffic volumes. Further, as described in Section 6.0 above, CEQA only requires that one of these two approaches be employed in developing the future traffic volume forecasts.
- Transportation Impact Analysis It is concluded that the proposed project is not expected to
 result in significant impacts at any of the six study intersections under either the Existing With
 Project or Future With Project conditions based on the City of Los Angeles thresholds of
 significance used for evaluating traffic impacts. Because there are no significant impacts, no
 traffic mitigation measures are required or recommended for the study intersections.

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

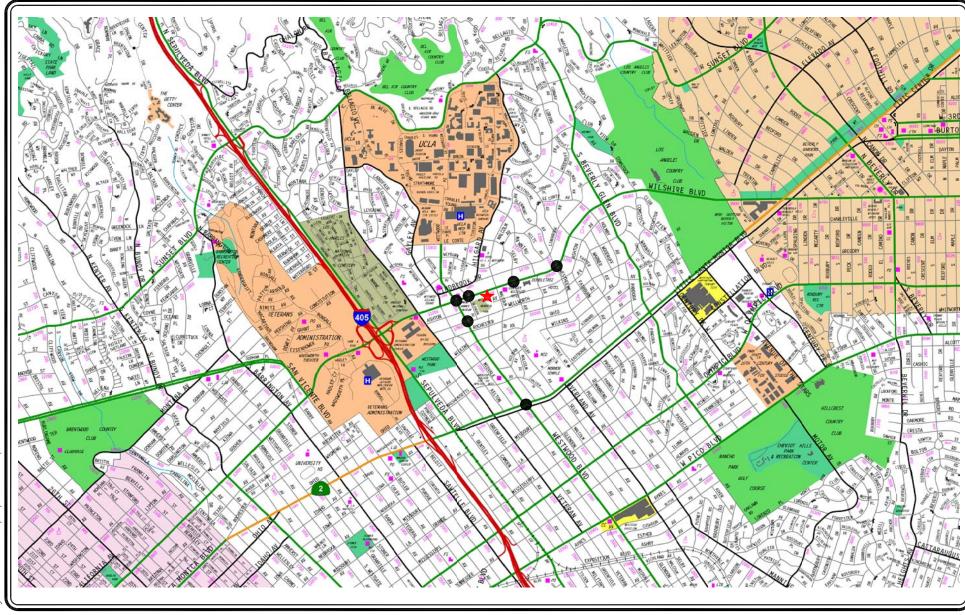
Appendix A
Traffic Study Memorandum of Understanding
TI CD 6.1.16.116

LADOT

Transportation Impact Study Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Impact Study for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Impact Study Guidelines:

I. PROJECT INFOR	MATION						
Project Name: Belmont Village	Senior Living - Westwoo	d Presbyterian C	hurch				
Project Address: 10822 Wilshire	e Boulevard and 10812 A	shton Avenue					
Project Description: Construction	n of a senior eldercare facility v	vith 76 assisted living	g guestrooms, 46	alzheimer's guest	rooms, and 54 ir	ndependent dwe	elling units.
Replace existing 80-student pre-school							
LADOT Project Case Number	r: <u>WLA18-106728</u>	F	roject Site	Plan attache	d? (Required	d) 🔳 Yes	□ No
II. TRIP GENERATI	ON						
Geographic Distribution: N	25.00 %	S 25.00	%	E 25.00	%	W 25.00	%
Illustration of Project trip dis	stribution percentag	ges at Study ir	ntersections	attached? (Required)	■ Yes □	No
Trip Generation Adjustment	ts (Evact amount of credi	t subject to appre	oval by LADOT)				
Trip deficitation Aujustinen	Yes No	t subject to uppre	wal by LADOT)				
Transit Usage							
Transportation Demand Management							
Existing Active Land Use							
Previous Land Use							
Internal Trip							
Pass-By Trip							
Source of Trip Generation Ra	ate(s)? 🔲 ITE 9 th E	dition 🔳 (Other: <u>ITE 1</u>	0th Edition, Wes	st LA TIMP		
Trip generation table includi afternoon peak hour volume	•	•		-		•] No
	<u>IN</u>	OUT	-	TOTAL			
AM Trips PM Trips	23 25	18 24	41 49				
III. STUDY AREA AN	ID ASSUMPTIO	NS					
Project Buildout Year: 2025	; 	Ambie	nt or CMP (Growth Rate	: 0.20	%	Per Yr.
Related Projects List, researd	thed by the consulta	nt and appro	ved by LAD	OT, attached	1? (Required)) 🔳 Yes	□ No
Subject to Freeway Impact A MOU; selecting "yes" implies that at a			sis? (Freew	ay analysis scre	ening filter m	ust be include	ed in this
Map of Study Intersections a	ttached? (May be subje	ect to LADOT revi	sion after initia	ıl impact analysi	s) 🔳 Ye	es 🗆 No	
Is this Project located on a st	reet within the High	Injury Netwo	ork? □ Ye	s 🔳 No			



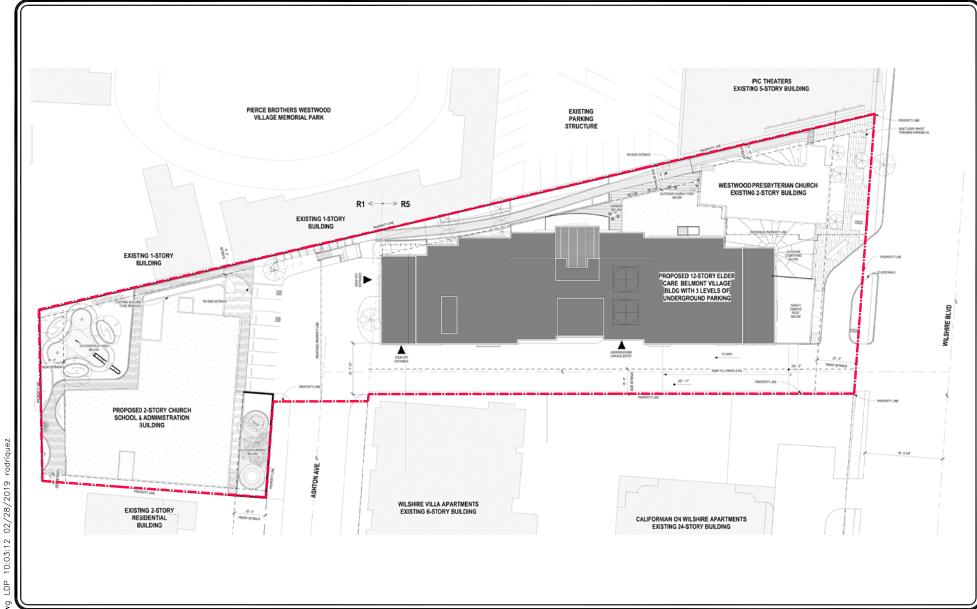
IV. CONTACT INFORMATION

	<u>CONSULTANT</u>		DEVELOPER	
Name: Francesca	a S. Bravo, Linscott, Law & Greenspan Eng	gineers	Stephen Broiller, Belmont Village Senior Village	
Address: 600 S.	Lake Avenue, Suite 500, Pasadena, CA	91106	7660 Woodway Drive, Suite 400, Houston, TX 77063	
Phone Number:	T 626-796-2322 / F 626-792-0941		T 713-463-1794	
E-Mail: bravo@ll	gengineers.com		sbrollie@belmontvillage.com	
Approved by: 2	Francesca S. Bravo Objectify report by frances 5 them. On Life Engineers, p.s. enabl-barvorligerpiperers com, crtl5 Date: 2019 228 160738-0800 Consultant's Representative	/8/19 Date	LADOT Representative Date	

<u>List of Study Intersections (refer to Figure 1-1)</u>

- 1. Westwood Boulevard/Wilshire Boulevard
- 2. Westwood Boulevard/Wellworth Avenue
- 3. Westwood Boulevard/Santa Monica Boulevard
- 4. Glendon Avenue/Wilshire Boulevard
- 5. Selby Avenue/Wilshire Boulevard
- 6. Westholme Avenue/Wilshire Boulevard

MAP SOURCE: RAND MCNALLY & COMPANY


PROJECT SITE

STUDY INTERSECTION

FIGURE 1-1 VICINITY MAP

LINSCOTT, LAW & GREENSPAN, engineers

BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

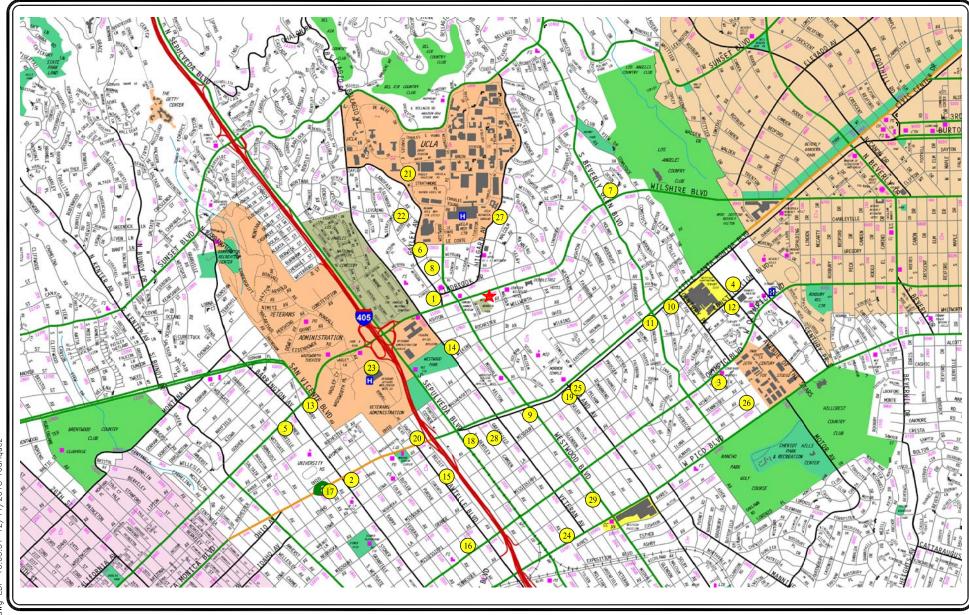
SOURCE: HUITT-ZOLLARS

FIGURE 2-3 SITE PLAN

STREET LEVEL PLAN

LINSCOTT, LAW & GREENSPAN, engineers

BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN CHURCH PROJECT



SOURCE: HUITT-ZOLLARS

FIGURE 2-4 SITE PLAN

GROUND LEVEL PLAN

BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN CHURCH PROJECT

MAP SOURCE: RAND MCNALLY & COMPANY

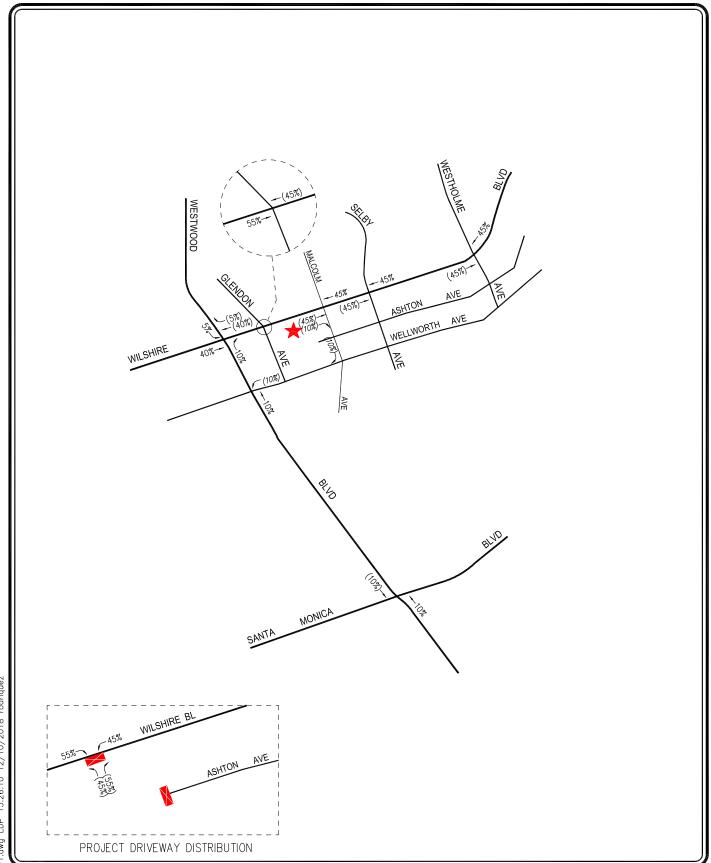

★ PROJECT SITE

FIGURE 6-1 LOCATION OF RELATED PROJECTS

LINSCOTT, LAW & GREENSPAN, engineers

BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

o:\job_file\4165\dwg\f6-1.dwg LDP 1C

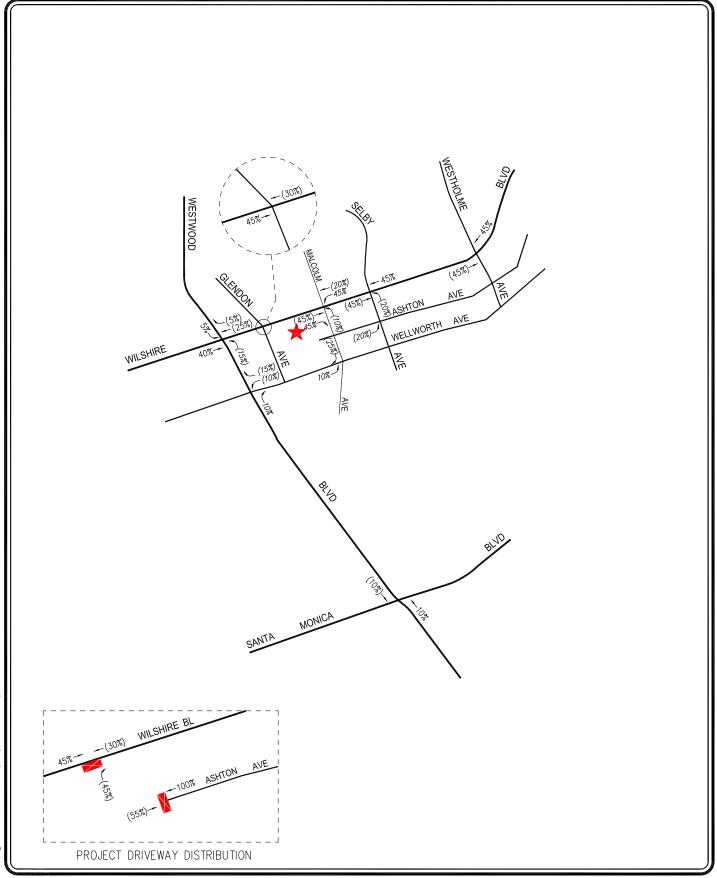
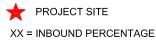

XX = INBOUND PERCENTAGE (XX) = OUTBOUND PERCENTAGE

FIGURE 7-1 PROJECT TRIP DISTRIBUTION


RESIDENTIAL COMPONENT

LINSCOTT, LAW & GREENSPAN, engineers BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

o:\job_file\4165\dwg\f7-1.dwg LDP 15:26:10 12/10/2018 rodriquez

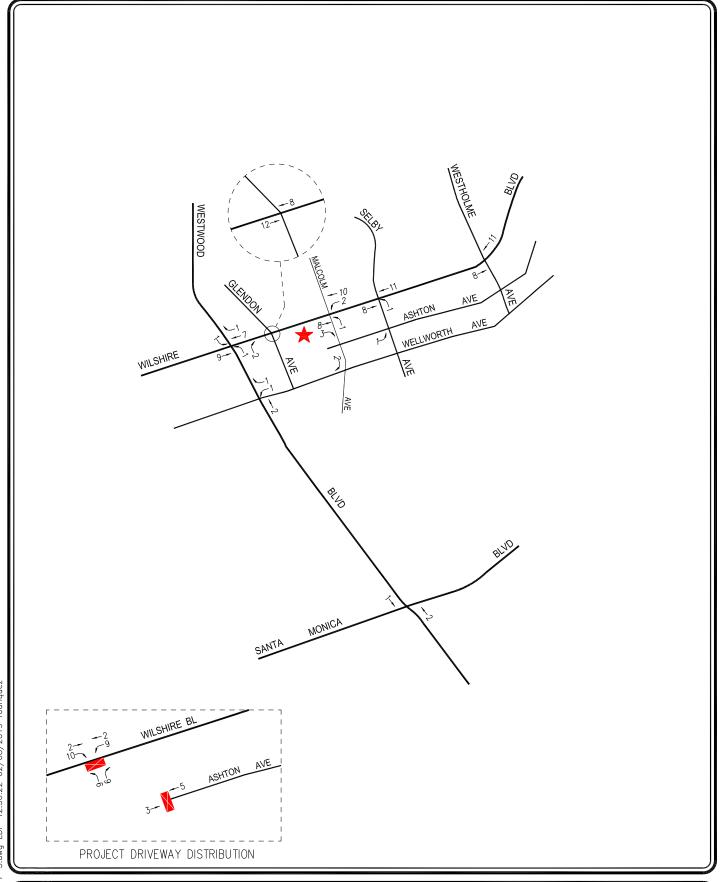

(XX) = OUTBOUND PERCENTAGE

FIGURE 7-2 PROJECT TRIP DISTRIBUTION

PRE-SCHOOL COMPONENT

LINSCOTT, LAW & GREENSPAN, engineers BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

o:\job_file\4165\dwg\f7-2.dwg LDP 09:48:54 02/07/2019 rodriquez

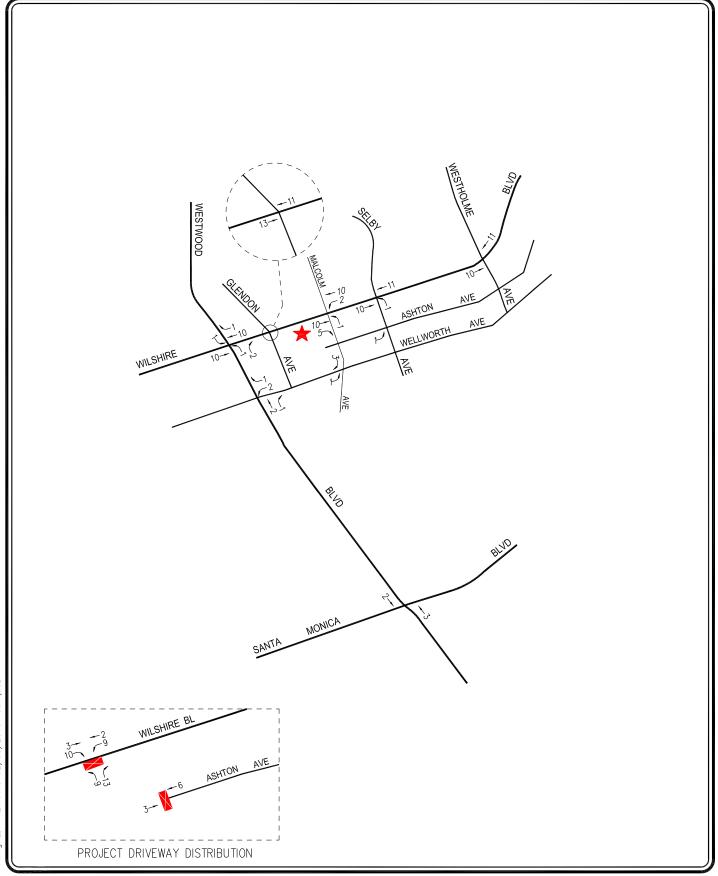


FIGURE 7-3 NET PROJECT TRAFFIC VOLUMES

WEEKDAY AM PEAK HOUR

LINSCOTT, LAW & GREENSPAN, engineers BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

FIGURE 7-4 NET PROJECT TRAFFIC VOLUMES

WEEKDAY PM PEAK HOUR

LINSCOTT, LAW & GREENSPAN, engineers BELMONT VILLAGE SENIOR LIVING - WESTWOOD PRESBYTERIAN PROJECT

Table 6-1
RELATED PROJECTS LIST AND TRIP GENERATION [1]

MAP	PROJECT	PROJECT NAME/NUMBER	LAND USE	DATA	PROJECT DATA	DAILY TRIP ENDS [2]		PEAK H			PEAK H	
NO.	STATUS	ADDRESS/LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
1	Proposed	10955 West Wilshire Boulevard	Apartment Retail	250 DU 6,510 GLSF	[3] [4]	1,663 278	26 4	102 2	128 6	101 12	54 12	155 24
2	Proposed	ENV-2015-2957-EIR 11674 Santa Monica Boulevard	Grocery Store Apartment	55,430 GSF 166 DU	[5] [3]	5,667 1,104	117 17	71 68	188 85	268 67	257 36	525 103
3	Proposed	Bellwood Avenue Senior Care 10330 West Bellwood Avenue	Medical Office	24,000 GSF	[1]	958	53	5	58	29	84	113
4	Proposed	Century City Center 1950 South Avenue Of The Stars	Office	725,830 GSF	[1]	4,603	604	83	687	103	501	604
5	Proposed	11750 West Wilshire Boulevard	Apartments Restaurant/Retail	376 DU 5,000 GSF	[1]	(400)	(22)	99	77	(22)	(64)	(86)
6	Proposed	10970 West Le Conte Avenue	Medical Office	38,539 GSF	[1]	734	31	(4)	27	13	70	83
7	Proposed	888 South Devon Avenue	Apartments	32 DU	[1]	213	3	13	16	10	6	16
8	Proposed	Cava Grill Restaurant 1073 South Broxton Avenue	Restaurant	2,328 GSF	[1]	593	(6)	(6)	(12)	15	13	28
9	Proposed	1855 South Westwood Boulevard	Apartments Retail	33 DU 3,000 GLSF	[3] [4]	219 128	3 2	14 1	17 3	13 5	7 6	20 11
10	Proposed	10306 West Santa Monica Boulevard	Apartments	90 DU	[6]	598	9	37	46	29	15	44
11	Proposed	10400 West Santa Monica Boulevard	Apartment	96 DU	[3]	638	10	43	53	32	18	50
12	Proposed	Century Plaza Hyatt Regency Hotel 2025 South Avenue of the Stars	Condominiums Hotel Retail Restaurant	193 DU 240 Rooms 93,814 GLSF 10,309 GSF	[1]	3,690	7	34	41	367	181	548
13	Proposed	11600 West Wilshire Boulevard	Medical Office Office	120,160 GSF 120,874 GSF	[1]	1,280	25	15	40	35	65	100
14	Under Construction	ZA-2018-1717-ZAA 1361 South Kelton Avenue	Apartments	15 DU	[3]	100	2	6	8	6	3	9
15	Proposed	11272 West Nebraska Avenue	Apartment	24 DU	[3]	160	2	10	12	10	5	15
16	Proposed	Trident Center 11355 West Olympic Boulevard	Office	120,242 GSF	[1]	1,246	133	33	166	49	122	171

Table 6-1 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

MAP	PROJECT	PROJECT NAME/NUMBER	LAND USE DA	A.T.A	PROJECT DATA	DAILY TRIP ENDS [2]		PEAK HOLUMES			PEAK H	
NO.	STATUS	ADDRESS/LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
17	Proposed	Buerge East 11750 West Santa Monica Boulevard	Apartments Retail/Restaurant	187 DU	[1]	1,006	(5)	65	60	80	33	113
18	Proposed	1736 South Sepulveda Boulevard	Retail	9,311 GLSF	[1]	84	11	1	12	4	18	22
19	Proposed	ENV-2018-310EAF 1822 South Selby Avenue	Apartment	10 DU	[3]	67	1	4	5	4	2	6
20	Proposed	ENV-2018-3039-MND 11261 West Santa Monica Boulevard	Apartment	119 DU	[3]	791	12	49	61	48	26	74
21	Proposed	UCLA Long Range Development Plan and Student Housing Projects	Student Housing	6,900 Beds	[7]	(77)	(10)	(14)	(24)	(5)	17	12
22	Proposed	ENV-2018-2602-EAF 626 South Landfair Avenue	Apartment	10 DU	[3]	67	1	4	5	4	2	6
23	Proposed	EMGD VA Bridge Housing 11301 Wilshire Boulevard	Housing	102 Beds	[1]	130	6	7	13	8	5	13
24	Proposed	ENV-2018-3610 EAF 11001 West Pico Boulevard	Apartment	89 DU	[8]	651	9	32	41	32	18	50
25	Proposed	ENV-2018-511-EAF 1822 South Overland Avenue	Apartment	16 DU	[8]	117	2	5	7	6	3	9
26	Proposed	ENV-2018-511-EAF 2363 South Fox Hills Drive	Apartment	16 DU	[8]	117	2	5	7	6	3	9
27	Proposed	ENV-2018-6817-EAF 900 South Hilgard Avenue	Apartment	64 DU	[8]	468	7	22	29	23	13	36
28	Proposed	ENV-2018-5818-EAF 11835 South Greenfield Avenue	Apartment	16 DU	[8]	117	2	5	7	6	3	9
29	Proposed	ENV-2018-6720-EAF 2301 South Westwood Boulevard	Apartment	62 DU	[8]	454	7	22	29	22	13	35
TOTA	L			I .	<u> </u>	27,464	1,065	833	1,898	1,380	1,547	2,927

^[1] Source: City of Los Angeles Department of Transportation (LADOT) and Department of City Planning (LADCP), except as noted below. The peak hour traffic volumes were forecast on trip data provided by LADOT and by applying trip rates as provided in the ITE "Trip Generation", 9th Edition, 2012 and "Trip Generation Manual", 10th Edition, 2017 (as referenced in the Project Data Source column). For those related projects that LADOT provided trip data, the peak hour directional in the manual were utilized.

^[2] Trips are one-way traffic movements, entering or leaving.

^[3] ITE Land Use Code 220 (Apartment) trip generation average rates.

^[4] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

^[5] ITE Land Use Code 850 (Supermarket) trip generation average rates.

^[6] Source: "10306-10330 Santa Monica Boulevard Apartment Project" Addendum Traffic Analysis prepared by LLG Engineers dated September 2018.

^[7] Source: "UCLA LRDP Amendment (2017) and Student Housing Projects DSEIR, August 2017.

^[8] ITE Land Use Code 220 (Multifamily Housing) 10th Edition trip generation average rates.

Table 7-1 PROJECT TRIP GENERATION [1]

		DAILY TRIP ENDS [2]		PEAK HO			PEAK HO	
LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project Assisted Living [3] Independent Living [4] Day Care Center [5],[6] - Less Pass-by Adjustment (10%) [7]	122 Guest Rooms 54 DU 9,599 GSF[8]	505 200 457 (46)	15 4 56 (6)	7 7 50 (5)	22 11 106 (11)	18 2 62 (6)	17 2 69 (7)	35 4 131 (13)
Subtotal Proposed Project		1,116	69	59	128	76	81	157
Less Existing Uses Day Care Center [5],[6] - Less Pass-by Adjustment (10%) [7]	(8,750) GSF	(417) 42	(51) 5	(45) 5	(96) 10	(56) 6	(63) 6	(119) 12
Single Family Residence [9]	(1) DU	(9)	0	(1)	(1)	(1)	0	(1)
Subtotal Existing Uses		(384)	(46)	(41)	(87)	(51)	(57)	(108)
NET CHANGE		732	23	18	41	25	24	49

- [1] Sources: ITE "Trip Generation Manual", 10th Edition, 2017 and West Los Angeles Transportation Improvement and Mitigation Program (WLA TIMP) Specific Plan, March 8, 1997.
- [2] Trips are one-way traffic movements, entering or leaving.
- $\cite{Matter 1.00} ITE\ Land\ Use\ Code\ 254\ (Assisted\ Living)\ trip\ generation\ average\ rates.$
 - Daily Trip Rate: 4.14 trips/Occupied Bed; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.18 trips/Occupied Bed; 68% inbound/32% outbound
 - PM Peak Hour Trip Rate: 0.29 trips/Occupied Bed; 50% inbound/50% outbound

The trip generation forecast is based on one occupied bed per guest room.

- [4] ITE Land Use Code 252 (Senior Adult Housing Attached) trip generation average rates.
 - Daily Trip Rate: $3.70\ trips/DU;\,50\%$ inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.20 trips/DU; 35% inbound/65% outbound
 - PM Peak Hour Trip Distribution: 55% inbound/45% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 0.08 trips/DU
- [5] ITE Land Use Code 565 (Day Care Center) trip generation average rates.
 - Daily Trip Rate: $47.62\ trips/1,\!000\ SF$ of floor area; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 11.00 trips/1,000 SF of floor area; 53% inbound/47% outbound
 - PM Peak Hour Trip Distribution: 47% inbound/53% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 13.62 trips/1,000 SF of floor area
- [6] It should be noted that the existing Westwood Presbyterian Church sanctuary will remain and no changes are proposed as part of this project.
- [7] Source: LADOT policy on pass-by trip adjustments, Transportation Impact Study Guidelines, LADOT, December 2016.
 - Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion.
 - Pass-by trips are attracted from the traffic passing the site on an adjacent street or roadway that offers direct access to the site.
- [8] Measured within building walls, and not including 143 square feet of outdoor covered unoccupied areas.
- [9] ITE Land Use Code 210 (Single-Family Detached Housing) trip generation average rates.
 - Daily Trip Rate: 9.44 trips/dwelling unit; 50% inbound/50% outbound
 - AM Peak Hour Trip Rate: 0.74 trips/dwelling units; 25% inbound/75% outbound
 - PM Peak Hour Trip Distribution: 63% inbound/37% outbound
 - WLA TIMP PM Peak Hour Trip Rate: 1.01 trips/dwelling units

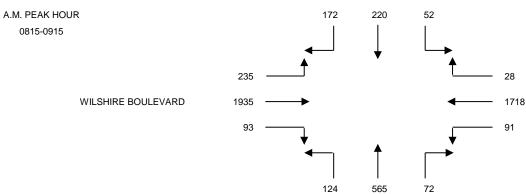
APPENDIX B MANUAL TRAFFIC COUNT DATA

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: **BELMONT VILLAGE - LOS ANGELES** DATE: WEDNESDAY, OCTOBER 16, 2018

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION: N/S WESTWOOD BOULEVARD


E/W WILSHIRE BOULEVARD

FILE NUMBER: 1-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	23	33	8	9	401	8	12	85	23	20	373	70
0715-0730	30	44	5	12	438	15	12	105	28	21	405	80
0730-0745	30	46	12	8	455	17	15	142	32	25	420	69
0745-0800	43	50	7	6	424	19	14	142	33	20	446	73
0800-0815	40	53	10	8	406	20	15	125	31	17	487	67
0815-0830	38	57	16	7	420	17	11	150	41	14	491	58
0830-0845	41	55	10	4	448	22	17	143	33	18	483	53
0845-0900	49	56	14	7	429	23	23	134	26	24	488	71
0900-0915	44	52	12	10	421	29	21	138	24	37	473	53
0915-0930	38	62	15	6	400	20	16	132	33	31	457	50
0930-0945	49	57	21	4	412	15	21	125	43	25	446	51
0945-1000	59	74	25	6	391	12	23	116	35	26	423	35

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	126	173	32	35	1718	59	53	474	116	86	1644	292	4808
0715-0815	143	193	34	34	1723	71	56	514	124	83	1758	289	5022
0730-0830	151	206	45	29	1705	73	55	559	137	76	1844	267	5147
0745-0845	162	215	43	25	1698	78	57	560	138	69	1907	251	5203
0800-0900	168	221	50	26	1703	82	66	552	131	73	1949	249	5270
0815-0915	172	220	52	28	1718	91	72	565	124	93	1935	235	5305
0830-0930	172	225	51	27	1698	94	77	547	116	110	1901	227	5245
0845-0945	180	227	62	27	1662	87	81	529	126	117	1864	225	5187
0900-1000	190	245	73	26	1624	76	81	511	135	119	1799	189	5068

WESTWOOD BOULEVARD

DATA PROVIDED BY:

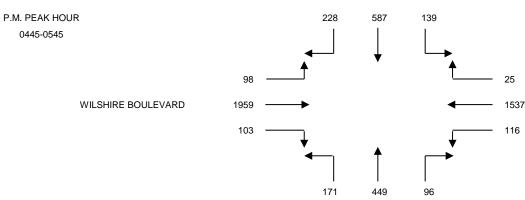
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

FAX: 626-446-2877

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: **BELMONT VILLAGE - LOS ANGELES** DATE: WEDNESDAY, OCTOBER 16, 2018


PERIOD: 03:00 PM TO 06:00 PM INTERSECTION: N/S WESTWOOD BOULEVARD E/W WILSHIRE BOULEVARD

1-PM FILE NUMBER:

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	50	114	22	3	374	23	27	90	36	35	405	36
0315-0330	54	118	35	2	403	31	18	111	44	26	488	25
0330-0345	51	121	28	2	375	34	20	125	46	28	473	28
0345-0400	55	132	26	6	410	49	25	103	41	28	455	28
0400-0415	43	127	39	10	413	42	36	98	43	25	471	25
0415-0430	52	138	38	5	416	30	32	103	28	34	487	34
0430-0445	40	145	20	3	380	30	20	116	26	20	469	20
0445-0500	57	140	25	5	369	40	29	120	38	21	470	21
0500-0515	58	154	40	8	392	34	21	102	35	28	508	26
0515-0530	64	157	37	7	404	21	23	117	44	26	504	23
0530-0545	49	136	37	5	372	21	23	110	54	28	477	28
0545-0600	47	120	34	3	387	18	28	106	31	36	481	36

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0300-0400	210	485	111	13	1562	137	90	429	167	117	1821	117	5259
0315-0415	203	498	128	20	1601	156	99	437	174	107	1887	106	5416
0330-0430	201	518	131	23	1614	155	113	429	158	115	1886	115	5458
0345-0445	190	542	123	24	1619	151	113	420	138	107	1882	107	5416
0400-0500	192	550	122	23	1578	142	117	437	135	100	1897	100	5393
0415-0515	207	577	123	21	1557	134	102	441	127	103	1934	101	5427
0430-0530	219	596	122	23	1545	125	93	455	143	95	1951	90	5457
0445-0545	228	587	139	25	1537	116	96	449	171	103	1959	98	5508
0500-0600	218	567	148	23	1555	94	95	435	164	118	1970	113	5500

WESTWOOD BOULEVARD

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

FAX: 626-446-2877

PEDESTRIAN - BICYCLE COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: WESTWOOD BOULEVARD / WILSHIRE BOULEVARD

FILE: 1AMPED-BIKE

	PE	DESTRIAN	MOVEMEN	TS
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	Α	В	С	D
0700-0715	21	23	22	59
0715-0730	32	26	28	60
0730-0745	25	66	30	60
0745-0800	68	44	20	54
0800-0815	23	65	27	65
0815-0830	69	58	21	71
0830-0845	72	65	30	68
0845-0900	64	68	29	77
0900-0915	94	73	31	63
0915-0930	43	57	18	84
0930-0945	51	29	26	68
0945-1000	61	50	27	71

	BICYCLIST MOVEMENTS										
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG							
PERIOD	А	В	С	D							
0700-0715	0	0	0	0							
0715-0730	1	0	1	0							
0730-0745	1	1	0	4							
0745-0800	0	0	1	4							
0800-0815	0	0	1	3							
0815-0830	0	0	0	2							
0830-0845	2	0	1	3							
0845-0900	0	0	1	4							
0900-0915	0	1	0	8							
0915-0930	0	0	0	7							
0930-0945	2	1	0	6							
0945-1000	0	0	0	5							

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0700-0800	146	159	100	233	638
0715-0815	148	201	105	239	693
0730-0830	185	233	98	250	766
0745-0845	232	232	98	258	820
0800-0900	228	256	107	281	872
0815-0915	299	264	111	279	953
0830-0930	273	263	108	292	936
0845-0945	252	227	104	292	875
0900-1000	249	209	102	286	846

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	2	1	2	8	13
0715-0815	2	1	3	11	17
0730-0830	1	1	2	13	17
0745-0845	2	0	3	12	17
0800-0900	2	0	3	12	17
0815-0915	2	1	2	17	22
0830-0930	2	1	2	22	27
0845-0945	2	2	1	25	30
0900-1000	2	2	0	26	30

PEDESTRIAN - BICYCLE COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: WESTWOOD BOULEVARD / WILSHIRE BOULEVARD

FILE: 1PMPED-BIKE

	PEDESTRIAN MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0300-0315	65	83	24	65						
0315-0330	31	47	31	85						
0330-0345	70	59	28	56						
0345-0400	53	67	35	76						
0400-0415	49	59	23	92						
0415-0430	66	72	28	78						
0430-0445	48	49	35	92						
0445-0500	36	46	42	83						
0500-0515	81	96	37	98						
0515-0530	33	57	31	91						
0530-0545	42	48	23	90						
0545-0600	15	47	28	95						

	BICYCLIST MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0300-0315	2	1	0	0						
0315-0330	0	0	1	1						
0330-0345	0	0	0	1						
0345-0400	0	1	1	1						
0400-0415	0	0	0	0						
0415-0430	0	0	0	2						
0430-0445	0	4	0	0						
0445-0500	0	1	0	1						
0500-0515	0	0	1	1						
0515-0530	0	0	0	0						
0530-0545	0	0	0	0						
0545-0600	0	0	1	1						

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0300-0400	219	256	118	282	875
0315-0415	203	232	117	309	861
0330-0430	238	257	114	302	911
0345-0445	216	247	121	338	922
0400-0500	199	226	128	345	898
0415-0515	231	263	142	351	987
0430-0530	198	248	145	364	955
0445-0545	192	247	133	362	934
0500-0600	171	248	119	374	912

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0300-0400	2	2	2	3	9
0315-0415	0	1	2	3	6
0330-0430	0	1	1	4	6
0345-0445	0	5	1	3	9
0400-0500	0	5	0	3	8
0415-0515	0	5	1	4	10
0430-0530	0	5	1	2	8
0445-0545	0	1	1	2	4
0500-0600	0	0	2	2	4

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: WEDNESDAY, OCTOBER 16, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: N/S WESTWOOD BOULEVARD

E/W WELLWORTH AVENUE

FILE NUMBER: 2-AM

- 6													
	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
-	0700-0715	1	64	12	7	5	8	27	145	9	8	4	2
	0715-0730	3	56	8	6	17	7	20	156	7	4	5	1
	0730-0745	2	67	6	10	10	13	32	180	10	5	8	0
	0745-0800	6	68	5	20	25	17	55	217	15	9	13	1
	0800-0815	4	66	7	23	29	22	40	201	14	7	9	2
	0815-0830	4	71	5	20	34	29	47	200	11	8	7	1
	0830-0845	2	79	6	20	24	30	43	208	14	5	11	2
	0845-0900	2	83	8	22	34	21	45	195	13	9	19	3
	0900-0915	2	99	9	16	24	23	51	203	13	5	12	5
	0915-0930	6	90	9	20	21	27	46	202	11	7	12	2
	0930-0945	4	84	11	18	28	22	38	196	11	7	8	2
	0945-1000	4	97	8	13	21	19	28	183	9	6	11	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	12	255	31	43	57	45	134	698	41	26	30	4	1376
0715-0815	15	257	26	59	81	59	147	754	46	25	35	4	1508
0730-0830	16	272	23	73	98	81	174	798	50	29	37	4	1655
0745-0845	16	284	23	83	112	98	185	826	54	29	40	6	1756
0800-0900	12	299	26	85	121	102	175	804	52	29	46	8	1759
0815-0915	10	332	28	78	116	103	186	806	51	27	49	11	1797
0830-0930	12	351	32	78	103	101	185	808	51	26	54	12	1813
0845-0945	14	356	37	76	107	93	180	796	48	28	51	12	1798
0900-1000	16	370	37	67	94	91	163	784	44	25	43	12	1746

WELLWORTH AVENUE

12 351 32 12 78 54 103 26 101

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

FAX: 626-446-2877

WESTWOOD BOULEVARD

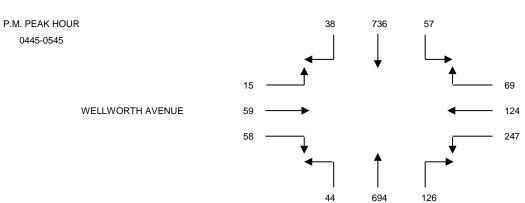
INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: WEDNESDAY, OCTOBER 16, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: N/S WESTWOOD BOULEVARD


E/W WELLWORTH AVENUE

FILE NUMBER: 2-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	10	190	7	9	24	52	27	171	5	8	8	1
0315-0330	9	170	8	16	21	49	32	171	4	13	9	2
0330-0345	8	193	6	14	20	38	26	181	6	7	12	2
0345-0400	6	179	10	15	19	50	31	166	10	9	11	0
0400-0415	8	204	13	19	16	50	41	178	14	12	10	1
0415-0430	6	201	8	15	24	62	31	159	11	19	8	3
0430-0445	7	205	13	10	25	56	26	165	6	16	9	4
0445-0500	11	189	7	16	21	70	28	181	8	12	11	5
0500-0515	9	184	11	14	34	65	32	171	12	18	16	2
0515-0530	11	180	18	19	37	47	37	174	14	16	16	4
0530-0545	7	183	21	20	32	65	29	168	10	12	16	4
0545-0600	10	170	15	22	44	57	20	172	13	15	15	3

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0300-0400	33	732	31	54	84	189	116	689	25	37	40	5	2035
0315-0415	31	746	37	64	76	187	130	696	34	41	42	5	2089
0330-0430	28	777	37	63	79	200	129	684	41	47	41	6	2132
0345-0445	27	789	44	59	84	218	129	668	41	56	38	8	2161
0400-0500	32	799	41	60	86	238	126	683	39	59	38	13	2214
0415-0515	33	779	39	55	104	253	117	676	37	65	44	14	2216
0430-0530	38	758	49	59	117	238	123	691	40	62	52	15	2242
0445-0545	38	736	57	69	124	247	126	694	44	58	59	15	2267
0500-0600	37	717	65	75	147	234	118	685	49	61	63	13	2264

WESTWOOD BOULEVARD

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

PEDESTRIAN - BICYCLE COUNT SUMMARY

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: WESTWOOD BOULEVARD / WELLWORTH AVENUE

FILE: 2AMPED-BIKE

	PEDESTRIAN MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0700-0715	2	4	1	15						
0715-0730	0	5	5	4						
0730-0745	0	15	9	12						
0745-0800	5	8	10	24						
0800-0815	5	12	14	13						
0815-0830	3	13	8	13						
0830-0845	1	9	11	13						
0845-0900	1	15	9	22						
0900-0915	2	9	5	20						
0915-0930	0	17	11	14						
0930-0945	1	14	6	17						
0945-1000	6	8	3	17						

15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	Α	В	С	D
0700-0715	0	0	1	1
0715-0730	0	0	0	2
0730-0745	0	1	0	7
0745-0800	1	1	0	4
0800-0815	0	2	2	3
0815-0830	0	0	1	8
0830-0845	0	1	1	4
0845-0900	1	0	0	5
0900-0915	0	1	0	10
0915-0930	2	1	0	13
0930-0945	0	0	0	4
0945-1000	0	0	0	8

BICYCLIST MOVEMENTS

	PEDESTRIAN MOVEMENTS				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	7	32	25	55	119
0715-0815	10	40	38	53	141
0730-0830	13	48	41	62	164
0745-0845	14	42	43	63	162
0800-0900	10	49	42	61	162
0815-0915	7	46	33	68	154
0830-0930	4	50	36	69	159
0845-0945	4	55	31	73	163
0900-1000	9	48	25	68	150

	BICYCLIST MOVEMENTS				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	1	2	1	14	18
0715-0815	1	4	2	16	23
0730-0830	1	4	3	22	30
0745-0845	1	4	4	19	28
0800-0900	1	3	4	20	28
0815-0915	1	2	2	27	32
0830-0930	3	3	1	32	39
0845-0945	3	2	0	32	37
0900-1000	2	2	0	35	39

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: WESTWOOD BOULEVARD / WELLWORTH AVENUE

FILE: 2PMPED-BIKE

	PEDESTRIAN MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0300-0315	4	24	13	22						
0315-0330	9	27	19	26						
0330-0345	10	33	27	36						
0345-0400	10	30	27	30						
0400-0415	8	32	27	20						
0415-0430	9	35	19	29						
0430-0445	7	33	24	34						
0445-0500	4	40	20	31						
0500-0515	12	41	20	29						
0515-0530	10	42	22	32						
0530-0545	2	38	33	26						
0545-0600	7	46	18	52						

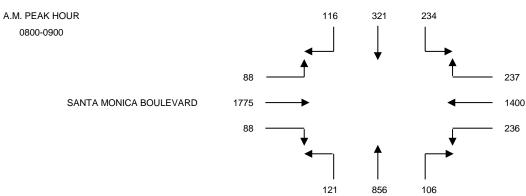
	BICYCLIST MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	А	В	С	D						
0300-0315	0	3	1	1						
0315-0330	0	3	1	1						
0330-0345	0	9	1	3						
0345-0400	0	2	0	3						
0400-0415	1	1	2	0						
0415-0430	0	8	0	0						
0430-0445	0	4	1	5						
0445-0500	0	7	1	2						
0500-0515	0	8	1	1						
0515-0530	0	13	3	3						
0530-0545	0	11	1	2						
0545-0600	0	16	2	4						

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0300-0400	33	114	86	114	347
0315-0415	37	122	100	112	371
0330-0430	37	130	100	115	382
0345-0445	34	130	97	113	374
0400-0500	28	140	90	114	372
0415-0515	32	149	83	123	387
0430-0530	33	156	86	126	401
0445-0545	28	161	95	118	402
0500-0600	31	167	93	139	430

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0300-0400	0	17	3	8	28
0315-0415	1	15	4	7	27
0330-0430	1	20	3	6	30
0345-0445	1	15	3	8	27
0400-0500	1	20	4	7	32
0415-0515	0	27	3	8	38
0430-0530	0	32	6	11	49
0445-0545	0	39	6	8	53
0500-0600	0	48	7	10	65

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: WEDNESDAY, OCTOBER 16, 2018


PERIOD: 07:00 AM TO 10:00 AM
INTERSECTION: N/S WESTWOOD BOULEVARD

E/W SANTA MONICA BOULEVARD

FILE NUMBER: 3-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	11	42	18	27	230	21	10	142	26	17	289	20
0715-0730	23	55	23	30	253	23	11	167	33	15	324	24
0730-0745	21	57	34	40	297	34	15	180	37	22	375	23
0745-0800	30	68	42	52	375	45	24	194	31	20	405	22
0800-0815	34	82	53	50	354	52	32	215	34	23	442	27
0815-0830	32	79	57	53	365	60	28	219	27	23	437	18
0830-0845	28	73	63	64	324	60	22	214	25	20	462	19
0845-0900	22	87	61	70	357	64	24	208	35	22	434	24
0900-0915	20	85	63	69	315	58	23	194	27	18	467	21
0915-0930	24	90	57	50	324	49	21	190	26	22	450	26
0930-0945	25	87	53	53	352	50	30	187	33	20	432	24
0945-1000	26	80	55	48	341	47	22	181	30	18	405	23

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	85	222	117	149	1155	123	60	683	127	74	1393	89	4277
0715-0815	108	262	152	172	1279	154	82	756	135	80	1546	96	4822
0730-0830	117	286	186	195	1391	191	99	808	129	88	1659	90	5239
0745-0845	124	302	215	219	1418	217	106	842	117	86	1746	86	5478
0800-0900	116	321	234	237	1400	236	106	856	121	88	1775	88	5578
0815-0915	102	324	244	256	1361	242	97	835	114	83	1800	82	5540
0830-0930	94	335	244	253	1320	231	90	806	113	82	1813	90	5471
0845-0945	91	349	234	242	1348	221	98	779	121	82	1783	95	5443
0900-1000	95	342	228	220	1332	204	96	752	116	78	1754	94	5311

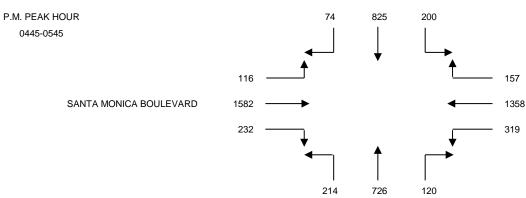
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877 WESTWOOD BOULEVARD

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: WEDNESDAY, OCTOBER 16, 2018


PERIOD: 03:00 PM TO 06:00 PM
INTERSECTION: N/S WESTWOOD BOULEVARD

E/W SANTA MONICA BOULEVARD

FILE NUMBER: 3-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	19	213	42	37	251	67	24	183	37	42	324	30
0315-0330	25	220	38	40	364	72	22	173	40	50	315	27
0330-0345	26	204	42	37	375	85	30	157	43	60	338	24
0345-0400	22	218	30	51	341	80	33	177	37	55	325	34
0400-0415	23	223	44	50	352	90	28	183	46	54	385	30
0415-0430	20	227	48	43	347	70	26	184	49	84	367	31
0430-0445	22	221	50	42	318	82	28	191	52	52	352	25
0445-0500	21	211	52	38	325	77	30	188	40	54	385	34
0500-0515	17	204	53	40	375	73	31	181	56	53	391	25
0515-0530	19	200	40	41	333	91	27	177	57	65	418	27
0530-0545	17	210	55	38	325	78	32	180	61	60	388	30
0545-0600	15	209	51	40	301	81	30	174	55	57	378	33

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0300-0400	92	855	152	165	1331	304	109	690	157	207	1302	115	5479
0315-0415	96	865	154	178	1432	327	113	690	166	219	1363	115	5718
0330-0430	91	872	164	181	1415	325	117	701	175	253	1415	119	5828
0345-0445	87	889	172	186	1358	322	115	735	184	245	1429	120	5842
0400-0500	86	882	194	173	1342	319	112	746	187	244	1489	120	5894
0415-0515	80	863	203	163	1365	302	115	744	197	243	1495	115	5885
0430-0530	79	836	195	161	1351	323	116	737	205	224	1546	111	5884
0445-0545	74	825	200	157	1358	319	120	726	214	232	1582	116	5923
0500-0600	68	823	199	159	1334	323	120	712	229	235	1575	115	5892

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877 WESTWOOD BOULEVARD

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: WESTWOOD BOULEVARD / SANTA MONICA BOULEVARD

FILE: 3AMPED-BIKE

	PEDESTRIAN MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0700-0715	6	7	5	5						
0715-0730	11	10	11	8						
0730-0745	13	27	17	11						
0745-0800	18	30	13	6						
0800-0815	16	27	10	7						
0815-0830	16	26	10	8						
0830-0845	23	21	8	8						
0845-0900	22	32	9	10						
0900-0915	15	34	13	9						
0915-0930	10	30	15	10						
0930-0945	11	28	10	11						
0945-1000	9	18	11	5						

	BICYCLIST MOVEMENTS									
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0700-0715	2	2	2	1						
0715-0730	3	5	3	2						
0730-0745	2	4	3	2						
0745-0800	4	7	5	3						
0800-0815	5	6	4	3						
0815-0830	3	8	2	1						
0830-0845	5	5	5	2						
0845-0900	4	8	4	3						
0900-0915	5	9	6	2						
0915-0930	6	10	2	4						
0930-0945	4	8	5	2						
0945-1000	2	7	4	4						

	PE	PEDESTRIAN MOVEMENTS							
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D	TOTALS				
0700-0800	48	74	46	30	198				
0715-0815	58	94	51	32	235				
0730-0830	63	110	50	32	255				
0745-0845	73	104	41	29	247				
0800-0900	77	106	37	33	253				
0815-0915	76	113	40	35	264				
0830-0930	70	117	45	37	269				
0845-0945	58	124	47	40	269				
0900-1000	45	110	49	35	239				

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0700-0800	11	18	13	8	50
0715-0815	14	22	15	10	61
0730-0830	14	25	14	9	62
0745-0845	17	26	16	9	68
0800-0900	17	27	15	9	68
0815-0915	17	30	17	8	72
0830-0930	20	32	17	11	80
0845-0945	19	35	17	11	82
0900-1000	17	34	17	12	80

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES

DATE: WEDNESDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: WESTWOOD BOULEVARD / SANTA MONICA BOULEVARD

FILE: 3PMPED-BIKE

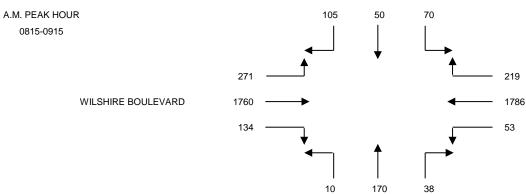
	PEDESTRIAN MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0300-0315	12	20	13	10					
0315-0330	10	23	18	13					
0330-0345	13	24	15	10					
0345-0400	21	33	17	10					
0400-0415	18	21	11	13					
0415-0430	16	25	15	15					
0430-0445	17	28	14	15					
0445-0500	24	31	16	12					
0500-0515	18	35	11	20					
0515-0530	22	19	12	23					
0530-0545	16	18	17	25					
0545-0600	11	22	16	17					

	BICYCLIST MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	А	В	С	D					
0300-0315	3	2	2	3					
0315-0330	2	5	5	5					
0330-0345	5	4	6	6					
0345-0400	1	2	4	4					
0400-0415	2	5	6	7					
0415-0430	3	2	5	8					
0430-0445	2	0	2	9					
0445-0500	4	1	4	11					
0500-0515	5	2	3	6					
0515-0530	3	0	5	8					
0530-0545	4	2	6	10					
0545-0600	5	3	2	9					

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0300-0400	56	100	63	43	262
0315-0415	62	101	61	46	270
0330-0430	68	103	58	48	277
0345-0445	72	107	57	53	289
0400-0500	75	105	56	55	291
0415-0515	75	119	56	62	312
0430-0530	81	113	53	70	317
0445-0545	80	103	56	80	319
0500-0600	67	94	56	85	302

	В	BICYCLIST MOVEMENTS						
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG				
PERIOD	Α	В	С	D	TOTALS			
0300-0400	11	13	17	18	59			
0315-0415	10	16	21	22	69			
0330-0430	11	13	21	25	70			
0345-0445	8	9	17	28	62			
0400-0500	11	8	17	35	71			
0415-0515	14	5	14	34	67			
0430-0530	14	3	14	34	65			
0445-0545	16	5	18	35	74			
0500-0600	17	7	16	33	73			

CLIENT: LLG - PASADENA


PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM
INTERSECTION: N/S GLENDON AVENUE
E/W WILSHIRE BOULEVARD

FILE NUMBER: 4-AM

١	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	0700-0715	17	3	8	50	442	6	2	13	2	10	300	72
	0715-0730	15	6	6	45	454	8	4	14	2	19	330	64
	0730-0745	21	8	11	40	418	11	3	21	3	24	380	70
	0745-0800	30	6	12	49	487	9	6	30	2	20	423	68
	0800-0815	30	7	10	66	433	9	11	48	2	19	450	63
	0815-0830	33	13	16	59	410	7	10	52	3	22	461	63
	0830-0845	31	14	18	71	437	10	10	38	4	32	457	71
	0845-0900	21	10	19	46	478	17	11	33	1	33	430	61
	0900-0915	20	13	17	43	461	19	7	47	2	47	412	76
	0915-0930	30	19	22	59	410	20	9	40	2	41	400	72
	0930-0945	43	14	23	54	405	23	12	68	5	53	405	66
	0945-1000	30	18	27	55	370	16	8	42	2	33	410	52

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	83	23	37	184	1801	34	15	78	9	73	1433	274	4044
0715-0815	96	27	39	200	1792	37	24	113	9	82	1583	265	4267
0730-0830	114	34	49	214	1748	36	30	151	10	85	1714	264	4449
0745-0845	124	40	56	245	1767	35	37	168	11	93	1791	265	4632
0800-0900	115	44	63	242	1758	43	42	171	10	106	1798	258	4650
0815-0915	105	50	70	219	1786	53	38	170	10	134	1760	271	4666
0830-0930	102	56	76	219	1786	66	37	158	9	153	1699	280	4641
0845-0945	114	56	81	202	1754	79	39	188	10	174	1647	275	4619
0900-1000	123	64	89	211	1646	78	36	197	11	174	1627	266	4522

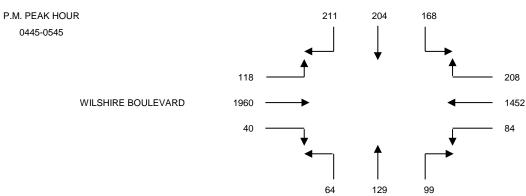
DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877 GLENDON AVENUE

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM


INTERSECTION: N/S GLENDON AVENUE

E/W WILSHIRE BOULEVARD

FILE NUMBER: 4-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	43	29	42	48	346	22	13	25	10	13	462	51
0315-0330	46	31	36	59	410	19	17	20	11	10	438	33
0330-0345	52	36	29	43	360	17	13	23	11	13	481	43
0345-0400	53	36	27	45	413	20	20	36	17	14	499	37
0400-0415	51	38	35	49	401	23	20	38	13	10	420	27
0415-0430	46	40	27	53	320	13	19	31	12	15	446	26
0430-0445	46	24	26	37	324	22	21	23	8	13	492	24
0445-0500	58	58	40	52	401	17	30	28	12	12	495	32
0500-0515	46	36	37	51	387	20	24	34	14	8	502	27
0515-0530	66	41	40	45	358	21	25	42	19	11	487	25
0530-0545	41	69	51	60	306	26	20	25	19	9	476	34
0545-0600	35	44	37	55	294	20	28	34	15	14	483	54

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0300-0400	194	132	134	195	1529	78	63	104	49	50	1880	164	4572
0315-0415	202	141	127	196	1584	79	70	117	52	47	1838	140	4593
0330-0430	202	150	118	190	1494	73	72	128	53	52	1846	133	4511
0345-0445	196	138	115	184	1458	78	80	128	50	52	1857	114	4450
0400-0500	201	160	128	191	1446	75	90	120	45	50	1853	109	4468
0415-0515	196	158	130	193	1432	72	94	116	46	48	1935	109	4529
0430-0530	216	159	143	185	1470	80	100	127	53	44	1976	108	4661
0445-0545	211	204	168	208	1452	84	99	129	64	40	1960	118	4737
0500-0600	188	190	165	211	1345	87	97	135	67	42	1948	140	4615

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877 GLENDON AVENUE

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: GLENDON AVENUE / WILSHIRE BOULEVARD

FILE: 4AMPED-BIKE

	PE	PEDESTRIAN MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG						
PERIOD	Α	В	С	D						
0700-0715	5	3	6	5						
0715-0730	12	5	8	14						
0730-0745	13	9	5	12						
0745-0800	14	18	17	13						
0800-0815	5	9	20	18						
0815-0830	5	6	26	16						
0830-0845	18	10	23	16						
0845-0900	10	23	38	21						
0900-0915	9	34	39	22						
0915-0930	17	17	40	26						
0930-0945	12	20	34	20						
0945-1000	6	21	17	12						

	BICYCLIST MOVEMENTS							
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG				
PERIOD	Α	В	С	D				
0700-0715	0	2	0	0				
0715-0730	1	2	0	0				
0730-0745	0	3	0	1				
0745-0800	0	0	1	0				
0800-0815	0	4	2	0				
0815-0830	0	1	1	0				
0830-0845	0	2	0	0				
0845-0900	0	1	0	0				
0900-0915	0	5	1	1				
0915-0930	0	1	2	0				
0930-0945	0	4	0	0				
0945-1000	0	3	1	0				

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	44	35	36	44	159
0715-0815	44	41	50	57	192
0730-0830	37	42	68	59	206
0745-0845	42	43	86	63	234
0800-0900	38	48	107	71	264
0815-0915	42	73	126	75	316
0830-0930	54	84	140	85	363
0845-0945	48	94	151	89	382
0900-1000	44	92	130	80	346

	В	BICYCLIST MOVEMENTS						
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG				
PERIOD	А	В	С	D	TOTALS			
0700-0800	1	7	1	1	10			
0715-0815	1	9	3	1	14			
0730-0830	0	8	4	1	13			
0745-0845	0	7	4	0	11			
0800-0900	0	8	3	0	11			
0815-0915	0	9	2	1	12			
0830-0930	0	9	3	1	13			
0845-0945	0	11	3	1	15			
0900-1000	0	13	4	1	18			

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: GLENDON AVENUE / WILSHIRE BOULEVARD

FILE: 4PMPED-BIKE

	PEDESTRIAN MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0300-0315	12	25	31	22					
0315-0330	26	45	31	24					
0330-0345	11	25	34	30					
0345-0400	20	33	64	34					
0400-0415	21	38	40	23					
0415-0430	19	36	68	32					
0430-0445	20	37	28	29					
0445-0500	32	50	44	24					
0500-0515	10	32	28	26					
0515-0530	28	45	48	17					
0530-0545	29	26	37	16					
0545-0600	10	36	35	12					

	BICYCLIST MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0300-0315	1	2	2	0					
0315-0330	0	0	0	0					
0330-0345	1	2	0	1					
0345-0400	0	1	0	1					
0400-0415	0	0	0	0					
0415-0430	0	1	1	1					
0430-0445	1	0	0	0					
0445-0500	0	1	0	0					
0500-0515	0	1	2	2					
0515-0530	0	2	2	2					
0530-0545	0	3	1	6					
0545-0600	1	2	2	3					

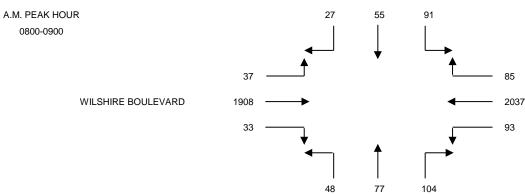
	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0300-0400	69	128	160	110	467
0315-0415	78	141	169	111	499
0330-0430	71	132	206	119	528
0345-0445	80	144	200	118	542
0400-0500	92	161	180	108	541
0415-0515	81	155	168	111	515
0430-0530	90	164	148	96	498
0445-0545	99	153	157	83	492
0500-0600	77	139	148	71	435

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0300-0400	2	5	2	2	11
0315-0415	1	3	0	2	6
0330-0430	1	4	1	3	9
0345-0445	1	2	1	2	6
0400-0500	1	2	1	1	5
0415-0515	1	3	3	3	10
0430-0530	1	4	4	4	13
0445-0545	0	7	5	10	22
0500-0600	1	8	7	13	29

CLIENT: LLG - PASADENA

PROJECT: **BELMONT VILLAGE - LOS ANGELES** DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM INTERSECTION: N/S SELBY AVENUE


> E/W WILSHIRE BOULEVARD

FILE NUMBER: 5-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	3	2	8	12	510	9	10	9	12	6	307	4
0715-0730	2	8	10	14	518	10	10	11	10	8	353	8
0730-0745	3	16	18	14	509	18	15	16	15	12	409	5
0745-0800	5	10	18	18	500	15	24	27	13	10	422	5
0800-0815	10	10	17	24	504	20	37	20	12	7	452	11
0815-0830	6	17	19	20	512	20	26	14	11	10	497	6
0830-0845	4	18	26	23	502	33	21	21	10	9	490	9
0845-0900	7	10	29	18	519	20	20	22	15	7	469	11
0900-0915	6	11	22	29	497	20	26	37	11	8	428	5
0915-0930	4	18	17	32	433	39	25	24	8	11	403	14
0930-0945	7	23	22	28	461	33	21	38	7	12	411	27
0945-1000	2	19	34	33	425	28	25	31	4	25	323	38

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	13	36	54	58	2037	52	59	63	50	36	1491	22	3971
0715-0815	20	44	63	70	2031	63	86	74	50	37	1636	29	4203
0730-0830	24	53	72	76	2025	73	102	77	51	39	1780	27	4399
0745-0845	25	55	80	85	2018	88	108	82	46	36	1861	31	4515
0800-0900	27	55	91	85	2037	93	104	77	48	33	1908	37	4595
0815-0915	23	56	96	90	2030	93	93	94	47	34	1884	31	4571
0830-0930	21	57	94	102	1951	112	92	104	44	35	1790	39	4441
0845-0945	24	62	90	107	1910	112	92	121	41	38	1711	57	4365
0900-1000	19	71	95	122	1816	120	97	130	30	56	1565	84	4205

SELBY AVENUE

DATA PROVIDED BY:

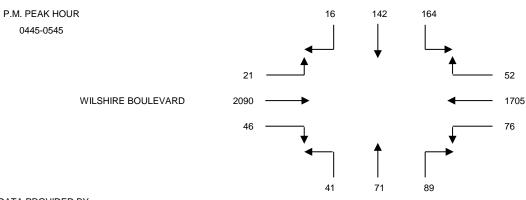
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

FAX: 626-446-2877

CLIENT: LLG - PASADENA

PROJECT: **BELMONT VILLAGE - LOS ANGELES** DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM INTERSECTION: N/S SELBY AVENUE


> E/W WILSHIRE BOULEVARD

5-PM FILE NUMBER:

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	9	17	25	8	406	22	17	15	11	8	502	4
0315-0330	8	26	26	12	420	23	28	18	10	16	473	8
0330-0345	4	18	30	11	433	19	19	18	6	10	487	4
0345-0400	2	20	23	10	421	11	20	14	11	13	495	4
0400-0415	6	25	32	14	453	18	16	13	7	13	538	5
0415-0430	2	22	28	9	449	10	18	19	9	19	489	4
0430-0445	3	20	26	12	413	16	20	16	6	14	507	5
0445-0500	2	34	38	14	420	10	20	15	7	10	503	3
0500-0515	6	32	38	11	427	16	26	18	9	14	531	4
0515-0530	5	46	44	11	453	23	18	16	14	12	552	6
0530-0545	3	30	44	16	405	27	25	22	11	10	504	8
0545-0600	6	38	31	18	352	21	26	19	15	15	493	12

	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	0300-0400	23	81	104	41	1680	75	84	65	38	47	1957	20	4215
	0315-0415	20	89	111	47	1727	71	83	63	34	52	1993	21	4311
	0330-0430	14	85	113	44	1756	58	73	64	33	55	2009	17	4321
	0345-0445	13	87	109	45	1736	55	74	62	33	59	2029	18	4320
	0400-0500	13	101	124	49	1735	54	74	63	29	56	2037	17	4352
	0415-0515	13	108	130	46	1709	52	84	68	31	57	2030	16	4344
	0430-0530	16	132	146	48	1713	65	84	65	36	50	2093	18	4466
	0445-0545	16	142	164	52	1705	76	89	71	41	46	2090	21	4513
-	0500-0600	20	146	157	56	1637	87	95	75	49	51	2080	30	4483

SELBY AVENUE

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

FAX: 626-446-2877

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: SELBY AVENUE / WILSHIRE BOULEVARD

FILE: 5AMPED-BIKE

	PEDESTRIAN MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0700-0715	3	2	6	5					
0715-0730	8	6	8	4					
0730-0745	9	7	9	9					
0745-0800	2	8	11	2					
0800-0815	4	9	11	10					
0815-0830	4	8	9	3					
0830-0845	8	12	17	4					
0845-0900	9	10	16	7					
0900-0915	11	12	10	2					
0915-0930	6	3	13	0					
0930-0945	4	15	11	8					
0945-1000	4	8	11	2					

	BICYCLIST MOVEMENTS								
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0700-0715	0	1	0	0					
0715-0730	0	3	0	0					
0730-0745	0	0	0	1					
0745-0800	1	2	0	0					
0800-0815	0	0	1	0					
0815-0830	0	3	1	1					
0830-0845	1	5	0	0					
0845-0900	1	1	0	0					
0900-0915	0	2	2	0					
0915-0930	0	3	0	0					
0930-0945	1	1	1	0					
0945-1000	2	2	0	0					

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0700-0800	22	23	34	20	99
0715-0815	23	30	39	25	117
0730-0830	19	32	40	24	115
0745-0845	18	37	48	19	122
0800-0900	25	39	53	24	141
0815-0915	32	42	52	16	142
0830-0930	34	37	56	13	140
0845-0945	30	40	50	17	137
0900-1000	25	38	45	12	120

	В				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	1	6	0	1	8
0715-0815	1	5	1	1	8
0730-0830	1	5	2	2	10
0745-0845	2	10	2	1	15
0800-0900	2	9	2	1	14
0815-0915	2	11	3	1	17
0830-0930	2	11	2	0	15
0845-0945	2	7	3	0	12
0900-1000	3	8	3	0	14

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: SELBY AVENUE / WILSHIRE BOULEVARD

FILE: 5PMPED-BIKE

	PE	DESTRIAN	MOVEMEN	TS
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	А	В	С	D
0300-0315	3	3	9	6
0315-0330	9	9	8	4
0330-0345	8	2	12	8
0345-0400	8	6	10	7
0400-0415	7	3	10	4
0415-0430	4	3	20	11
0430-0445	10	2	10	9
0445-0500	4	3	16	2
0500-0515	9	6	10	8
0515-0530	9	9	14	7
0530-0545	12	7	16	8
0545-0600	7	15	16	7

	BICYCLIST MOVEMENTS							
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG				
PERIOD	Α	В	С	D				
0300-0315	0	0	0	0				
0315-0330	0	0	0	0				
0330-0345	1	1	0	0				
0345-0400	2	0	0	1				
0400-0415	0	0	0	2				
0415-0430	1	0	1	2				
0430-0445	1	0	1	1				
0445-0500	1	0	1	1				
0500-0515	0	0	0	0				
0515-0530	1	0	0	0				
0530-0545	1	0	1	0				
0545-0600	1	0	1	1				

	PE	DESTRIAN	MOVEMEN	TS	
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0300-0400	28	20	39	25	112
0315-0415	32	20	40	23	115
0330-0430	27	14	52	30	123
0345-0445	29	14	50	31	124
0400-0500	25	11	56	26	118
0415-0515	27	14	56	30	127
0430-0530	32	20	50	26	128
0445-0545	34	25	56	25	140
0500-0600	37	37	56	30	160

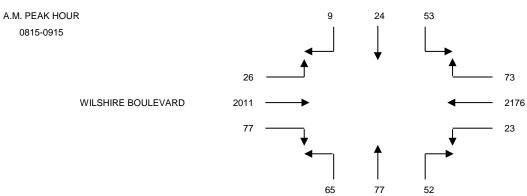
	В	BICYCLIST MOVEMENTS						
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG				
PERIOD	Α	В	С	D	TOTALS			
0300-0400	3	1	0	1	5			
0315-0415	3	1	0	3	7			
0330-0430	4	1	1	5	11			
0345-0445	4	0	2	6	12			
0400-0500	3	0	3	6	12			
0415-0515	3	0	3	4	10			
0430-0530	3	0	2	2	7			
0445-0545	3	0	2	1	6			
0500-0600	3	0	2	1	6			

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: N/S WESTHOLME AVENUE


E/W WILSHIRE BOULEVARD

FILE NUMBER: 6-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0700-0715	4	5	4	10	510	3	4	8	12	10	350	2
0715-0730	5	4	8	12	527	3	5	10	14	12	370	3
0730-0745	2	5	13	9	522	3	10	18	21	18	430	2
0745-0800	3	5	10	13	561	5	11	19	19	21	422	4
0800-0815	2	2	9	18	541	8	12	16	15	16	468	6
0815-0830	3	3	8	18	524	6	15	19	15	18	492	8
0830-0845	2	4	10	22	563	6	16	20	14	20	505	8
0845-0900	2	7	16	18	550	4	10	18	18	20	503	5
0900-0915	2	10	19	15	539	7	11	20	18	19	511	5
0915-0930	5	12	13	25	485	13	11	20	10	14	451	9
0930-0945	4	14	10	30	427	22	10	22	11	10	401	9
0945-1000	6	14	12	32	473	24	12	18	10	12	375	9

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0700-0800	14	19	35	44	2120	14	30	55	66	61	1572	11	4041
0715-0815	12	16	40	52	2151	19	38	63	69	67	1690	15	4232
0730-0830	10	15	40	58	2148	22	48	72	70	73	1812	20	4388
0745-0845	10	14	37	71	2189	25	54	74	63	75	1887	26	4525
0800-0900	9	16	43	76	2178	24	53	73	62	74	1968	27	4603
0815-0915	9	24	53	73	2176	23	52	77	65	77	2011	26	4666
0830-0930	11	33	58	80	2137	30	48	78	60	73	1970	27	4605
0845-0945	13	43	58	88	2001	46	42	80	57	63	1866	28	4385
0900-1000	17	50	54	102	1924	66	44	80	49	55	1738	32	4211

WESTHOLME AVENUE

DATA PROVIDED BY:

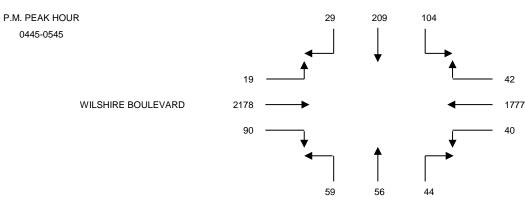
THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978

PH: 626-446-7978 FAX: 626-446-2877

CLIENT: LLG - PASADENA

PROJECT: **BELMONT VILLAGE - LOS ANGELES** DATE: THURSDAY, OCTOBER 17, 2018

PERIOD: 03:00 PM TO 06:00 PM INTERSECTION: N/S WESTHOLME AVENUE


E/W WILSHIRE BOULEVARD

6-PM FILE NUMBER:

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
0300-0315	8	20	19	14	430	9	8	10	20	25	483	5
0315-0330	6	20	16	14	440	5	7	12	20	23	490	5
0330-0345	6	17	19	7	437	6	5	8	14	24	503	5
0345-0400	5	20	18	10	453	7	4	7	17	22	510	6
0400-0415	6	33	15	12	460	10	6	14	19	20	500	9
0415-0430	7	35	14	10	458	14	4	16	20	18	483	10
0430-0445	10	39	20	11	420	14	6	17	22	18	546	8
0445-0500	10	50	26	10	433	10	10	10	15	20	542	6
0500-0515	9	56	27	11	441	7	13	11	14	22	520	4
0515-0530	5	52	30	11	468	11	11	20	16	25	561	4
0530-0545	5	51	21	10	435	12	10	15	14	23	555	5
0545-0600	4	55	20	8	405	10	9	17	13	27	527	4

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
0300-0400	25	77	72	45	1760	27	24	37	71	94	1986	21	4239
0315-0415	23	90	68	43	1790	28	22	41	70	89	2003	25	4292
0330-0430	24	105	66	39	1808	37	19	45	70	84	1996	30	4323
0345-0445	28	127	67	43	1791	45	20	54	78	78	2039	33	4403
0400-0500	33	157	75	43	1771	48	26	57	76	76	2071	33	4466
0415-0515	36	180	87	42	1752	45	33	54	71	78	2091	28	4497
0430-0530	34	197	103	43	1762	42	40	58	67	85	2169	22	4622
0445-0545	29	209	104	42	1777	40	44	56	59	90	2178	19	4647
0500-0600	23	214	98	40	1749	40	43	63	57	97	2163	17	4604

WESTHOLME AVENUE

DATA PROVIDED BY:

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91005 PH: 626-446-7978 FAX: 626-446-2877

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 07:00 AM TO 10:00 AM

INTERSECTION: WESTHOLME AVENUE / WILSHIRE BOULEVARD

FILE: 6AMPED-BIKE

	PE	DESTRIAN	MOVEMEN	TS
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	Α	В	С	D
0700-0715	2	7	10	4
0715-0730	3	7	11	5
0730-0745	4	3	4	7
0745-0800	1	5	5	3
0800-0815	2	6	7	4
0815-0830	3	5	5	5
0830-0845	5	7	12	4
0845-0900	4	5	6	5
0900-0915	4	4	5	4
0915-0930	5	6	6	6
0930-0945	7	12	6	3
0945-1000	5	13	5	5

	В	BICYCLIST MOVEMENTS							
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG					
PERIOD	Α	В	С	D					
0700-0715	0	3	0	0					
0715-0730	0	4	0	0					
0730-0745	1	4	1	0					
0745-0800	0	3	0	0					
0800-0815	0	2	0	0					
0815-0830	0	2	0	0					
0830-0845	1	5	0	2					
0845-0900	0	3	0	0					
0900-0915	0	2	1	1					
0915-0930	0	2	0	0					
0930-0945	2	10	1	1					
0945-1000	1	8	0	0					

	PE				
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0700-0800	10	22	30	19	81
0715-0815	10	21	27	19	77
0730-0830	10	19	21	19	69
0745-0845	11	23	29	16	79
0800-0900	14	23	30	18	85
0815-0915	16	21	28	18	83
0830-0930	18	22	29	19	88
0845-0945	20	27	23	18	88
0900-1000	21	35	22	18	96

	В	ICYCLIST N	MOVEMENT	S	
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0700-0800	1	14	1	0	16
0715-0815	1	13	1	0	15
0730-0830	1	11	1	0	13
0745-0845	1	12	0	2	15
0800-0900	1	12	0	2	15
0815-0915	1	12	1	3	17
0830-0930	1	12	1	3	17
0845-0945	2	17	2	2	23
0900-1000	3	22	2	2	29

CLIENT: LLG - PASADENA

PROJECT: BELMONT VILLAGE - LOS ANGELES
DATE: THURSDAY, OCTOBER 18, 2018

PERIOD: 03:00 PM TO 06:00 PM

INTERSECTION: WESTHOLME AVENUE / WILSHIRE BOULEVARD

FILE: 6PMPED-BIKE

	PE	DESTRIAN	MOVEMEN	TS
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	А	В	С	D
0300-0315	3	1	3	3
0315-0330	4	4	4	3
0330-0345	4	2	3	2
0345-0400	3	3	4	3
0400-0415	5	4	6	4
0415-0430	6	5	5	7
0430-0445	7	4	7	10
0445-0500	3	5	8	8
0500-0515	5	5	10	8
0515-0530	5	7	7	12
0530-0545	5	5	4	7
0545-0600	7	4	4	5

	В	ICYCLIST N	<i>I</i> OVEMENT	S
15-MINUTE	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG
PERIOD	Α	В	С	D
0300-0315	0	0	0	4
0315-0330	0	0	0	3
0330-0345	1	0	1	2
0345-0400	0	0	0	2
0400-0415	0	0	0	3
0415-0430	1	1	1	3
0430-0445	0	1	1	4
0445-0500	0	0	0	8
0500-0515	0	0	0	10
0515-0530	0	0	0	12
0530-0545	0	1	1	6
0545-0600	0	0	0	7

	PE	DESTRIAN	MOVEMEN	TS	
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	А	В	С	D	TOTALS
0300-0400	14	10	14	11	49
0315-0415	16	13	17	12	58
0330-0430	18	14	18	16	66
0345-0445	21	16	22	24	83
0400-0500	21	18	26	29	94
0415-0515	21	19	30	33	103
0430-0530	20	21	32	38	111
0445-0545	18	22	29	35	104
0500-0600	22	21	25	32	100

	В	ICYCLIST N	MOVEMENT	S	
1-HOUR	NORTH LEG	EAST LEG	SOUTH LEG	WEST LEG	
PERIOD	Α	В	С	D	TOTALS
0300-0400	1	0	1	11	13
0315-0415	1	0	1	10	12
0330-0430	2	1	2	10	15
0345-0445	1	2	2	12	17
0400-0500	1	2	2	18	23
0415-0515	1	2	2	25	30
0430-0530	0	1	1	34	36
0445-0545	0	1	1	36	38
0500-0600	0	1	1	35	37

AΡ	D	F	N	n	IV	\mathbf{C}
$\boldsymbol{\sqcap}$	г	ᆫ	I۷	v	IA	\mathbf{C}

CMA AND LEVELS OF SERVICE EXPLANATION CMA DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 1-16-4165-1

CRITICAL MOVEMENT ANALYSIS (CMA) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Level of Service concept denotes any one of a number of differing combinations of operating conditions which may take place as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 *Highway Capacity Manual*. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

Critical Movement Analysis (CMA) is a procedure which provides a capacity and level of service geometry and traffic signal operation and results in a level of service determination for the intersection as a whole operating unit.

The per lane volume for each movement in the intersection is determined and the per lane intersection capacity based on the Transportation Research Board (TRB) Report 212 (*Interim Materials on Highway Capacity*). The resulting CMA represents the ratio of the intersection's cumulative volume over its respective capacity (V/C ratio). Critical Movement Analysis takes into account lane widths, bus and truck operations, pedestrian activity and parking activity, as well as number of lanes and geometrics.

The Level of Service (abbreviated from the *Highway Capacity Manual*) are listed here with their corresponding CMA and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Critical Mo	vement Analysis Characte	ristics
Level of Service	Load Factor	Equivalent CMA
A (free flow)	0.0	0.00 - 0.60
B (rural design)	0.0 - 0.1	0.61 - 0.70
C (urban design)	0.1 - 0.3	0.71 - 0.80
D (maximum urban design)	0.3 - 0.7	0.81 - 0.90
E (capacity)	0.7 - 1.0	0.91 - 1.00
F (force flow)	Not Applicable	Not Applicable

SERVICE LEVEL A

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity (CMA = 1.0) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

SERVICE LEVEL F

Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

Note	:# S/I	North-South Street:		Westwood Boulevard	ard		Year of	f Count:	2018	Amk	Ambient Growth (%):	vth (%):	0.2	Conduc	Conducted by: L	LLG Engineers	neers	Date:	2/	2/12/2019	
No.	1	East-West S		re Boulevarc			Projecti	on Year:	2025		Pea	k Hour:	AM	Revie					selmont Villa	ge Senior L	iving - We
Mail	oddo	sed Ø'ing: N/S-1,	No. of Phases E/W-2 or Both-3?			0							0	<u>'</u>							0
MOVEMENT	Right	Turns: FREE-1, N	RTOR-2 or OLA-3?		SB WB	e 0	NB EB			NB- EB-	0 0	SB WB	m 0	NB EB	0 0	SB WB	m 0	NB	0 0	SB WB	e 0
MoveMeny		ATSAC-1 or	ATSAC+ATCS-2? Override Capacity			2 1031			2 1031				2 1031				2 1031				2 1031
MOVEMENT MOVEMBRE MOVEMENT MOVEMBRE MOVEMENT MOVEMBRE MOVEMENT MOVEMBRE MOVEMBRE MOVEMBRE				EXISTI	NG CONDIT	NOI	EXISTI	IG PLUS PR	ROJECT	FUTUR	E CONDITIC	ON WO PRO	JECT	FUTUR	E CONDITIO	N W/ PRO	JECT	FUTURE	W/ PROJEC	T W/ MITIG	ATION
Left Hough Right		MOVEMI	ENT	Volume		Lane Volume		Total Volume	Lane	Added			Lane Volume								Lane Volume
Thirting Holland Hol	ИВ	Left	delicad	124		124	-	125	125	-			127	-	128		128	0	128		128
Fight Hampstragnt 72 67 72 74 74 3 76 67 66 76 76 76 76	IUO8	Throu	gh Sh	299	0 01 +	212	0	265	213	30	603) (V -	226	0	603	0 01 4	227	0	603	0 01 4	227
Left-Right Higher Left-Right Left-Righ	ІНТЯ	Lucion Right	gn-Kignt	72	- 0	72	2	74	74	က	92	- 0	92	2	2/8	- 0	78	0	78	- 0	78
Left hough State Left hough State St	ON	1 1	hrough-Right ight		0 0							0 0				0 0				0 0	
Through Right Trace Trace Through Right Trace Trace Through Right Trace Trace Trace Through Right Trace Trac	aı	: . Ee د ر		52	- 0	52	-	53	53	13	99	- 0	99	-	29	- 0	29	0	29	← (29
Through-Right	NUOE	Throu	hrough gh	220) N ·	86	0	220	86	39	262	o 0 -	113	0	262	o 0 -	113	0	262	o 0 -	113
J. Left Right J. Left Righ	нтис	1	gh-Right hrough-Right	172	c	0	0	172	0	17	191	0	0	0	191	0	0	0	191	0	0
Left Through 1935 2 129 9 247 2 136 0 247 2 136 0 247 2 136 0 247 2 2 2 2 2 2 2 2 2	s		ight		0							0				0				0	
1		T Left		235	2	129	c	235	129	σ	247	2	136	C	247	2	136	C	247	2	136
Through Right 1935 3 645 9 1944 648 57 2019 3 673 9 2028 3 676 0 2028 3 Through Right 91 2 50 0 91 50 172 3 573 1 2 1 29 3 7 35 1 36	ΠD	→ Left-TI	hrough	8	10	3	o	2	3)	ř,	10	3	•	Ť	10	3			10	3
Fight Figh	noe	Through	gh ah-Riaht	1935	က င	645	O	1944	648	22	2019	က င	673	6	2028	ო 0	929	0	2028	ო 0	929
\$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ Left-Right \$\frac{1}{7}\$ \$\frac{1}{	ITSA3	Right ← Left-TI	errregn. hrough-Right	63	0 - 0	31	0	93	31	ဇ	26) - 0	34	0	26) - 0	33	0	26) - 0	33
f Left Le			ight		0	ı						0				0				0	
← Inter-Inroagn 1718 9 573 7 1725 575 23 1765 3 588 7 1772 9 1772 9 ↑ Through-Right 28 1 28 1 29 3 7 35 1 36 36 </th <th>a</th> <th>Left</th> <th></th> <th>91</th> <th>2 0</th> <th>20</th> <th>0</th> <th>91</th> <th>50</th> <th>_</th> <th>93</th> <th>2 0</th> <th>51</th> <th>0</th> <th>93</th> <th>2 0</th> <th>51</th> <th>0</th> <th>93</th> <th>2 0</th> <th>51</th>	a	Left		91	2 0	20	0	91	50	_	93	2 0	51	0	93	2 0	51	0	93	2 0	51
Left-Right Lef	NUOE	↑ Throu	nrougn gh gh-Bight	1718	⊃ m ⊂	573	7	1725	575	23	1765	o m c	588	7	1772	o m c	591	0	1772	o m c	591
North-South: 264 North-South: 266 North-South: 292 North-South: 294 North-South: East-West: 702 East-West: 704 East-West: 724 East-West: Fast-West: SUM: 966 SUM: 970 SUM: 1016 SUM: 1021 SUM: 0.937 0.941 0.941 0.985 0.990 0.990 0.990 D D D D D D D	MEST	Right Right Left-I	gr. N.g.i hrough-Right iaht	28	0-00	2	-	59	က	۲	35	o - o o	7	-	36	0 - 00	ю	0	36	0-00	ю
0.937 0.941 0.985 0.990 0.890 0.897 0.897 D D		CR	ITICAL VOLUMES	Nor. E	th-South: ast-West: SUM:	264 702 966	Nort Ea	h-South: st-West: SUM:	266 704 970		Nort Ea	h-South: Ist-West: SUM:	292 724 1016		North Eas		294 727 1021		North Eas		294 727 1021
0.837 0.841 0.885 0.890 D D D		VOLUME/CAPAC	SITY (V/C) RATIO:			0.937			0.941				0.985				0.090				066.0
D D	NC.	ESS ATSAC/ATC	S ADJUSTIMENT:			0.837			0.841				0.885				0.890				0.890
		LEVEL O	F SERVICE (LOS):			D			D				D				O				D

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.005

Significant impacted? NO

Δ*ν/c* after mitigation: 0.005 Fully mitigated? N/A

CMA1.xlsm

2/12/2019-3:10 PM

:#S/I	North-South Street:		Westwood Boulevard	ırd		Year of	f Count:	2018	Amb	Ambient Growth (%):	vth (%):	0.2	Conduc	Conducted by: 1	LLG Engineers	neers	Date:	2	2/12/2019	
-	East-West Street:		Wilshire Boulevard			Projection Year:	on Year:	2025		Pea	Peak Hour:	PM	Reviev		0		Project:	Project: Belmont Village Senior Living - W	ige Senior I	iving - We
oddo	No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3?	No. of Phases V-2 or Both-3?			0 0			0				0		•					,	0
Right	Right Turns: FREE-1, NRTOR-2 or OLA-3?	IR-2 or OLA-3?	NB 0 EB- 0	SB WB	m 0 0	NB EB	0 SB 0 WB	m O 0	NB EB	0 0	SB WB	e 0 0	NB EB	0 0	SB WB	m 0 0	NB EB	0 0	SB WB	m О (
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	· ATSAC+ATCS-2? Override Capacity			2 1031			2 1031				2 1031				2 1031				2 1031
			EXISTI	EXISTING CONDITION	NOI	EXISTIN	EXISTING PLUS PROJECT	OJECT	FUTURE	E CONDITIC	FUTURE CONDITION W/O PROJECT	JECT	FUTUR	FUTURE CONDITION W/ PROJECT	ON W/ PRO	JECT	FUTURE	FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIC	BATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
ИD	Left	45	171	← ⊂	171	_	172	172	4	177	← ⊂	177	-	178	← ⊂	178	0	178	← C	178
BONI	Through		449	0 4 -	182	0	449	182	62	517	0 0 -	205	0	517	o 0 +	206	0	517	0 0 +	206
нтяс	Right	11.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0	96	- 0 0	96	2	86	86	2	66	- 0 0	66	2	101	- 0 0	101	0	101	- 0 0	101
)N	← Left-Right			00							00	ı			00				00	
αN	Left Through	-	139	← 0	139	-	140	140	25	166	0	166	-	167	← C	167	0	167	← C	167
BONI	Through	- 1 - 1 - 1	287	o 01 -	204	0	287	204	20	999) (V -	233	0	999	0 01 +	233	0	999	o 01 -	233
HTU		ignt	228	- 🖚	0	0	228	0	34	265		0	0	265		0	0	265	- 🖚	0
os	← Left-Through-Right ← Left-Right	gh-Right		0 0							0 0				0 0				0 0	
ΙD	J Left Left-Through	q	86	0 0	24	0	86	54	28	127	0 0	70	0	127	0 0	20	0	127	0 0	70
NUO	Through	, <u>*</u>	1959	, m с	653	10	1969	656	49	2036	. ო ⊂	629	10	2046	, m С	682	0	2046	, m с	682
∃TSA	Right		103	o ← 0	18	0	103	17	က	107	o ← (19	0	107	o ← (18	0	107	o ← 0	18
' 3	Left-Right	gn-Kignt		0 0							0 0				00				0 0	
(f Left		116	2	64	0	116	64	က	121	2	29	0	121	2	29	0	121	2	67
ЭИПО	Left-Through	gh	1537	0 m	512	10	1547	516	63	1622	0 m	541	10	1632	0 က	544	0	1632	0 m	544
атѕ	↓ Through-Right ↑↑ Right	ight	25	o -	0	-	56	0	24	46	o -	0	-	47	o -	0	0	47	o -	0
ΜE	← Left-Through-Right	gh-Right		00							00				00				00	
	CRITIC	CRITICAL VOLUMES	Nort Ea	North-South: East-West:	375 717 1092	North- East	orth-South: East-West: SUM:	376 720 1096		Norti Ea	North-South: East-West: SUM:	410 746 1156		Nortl Ea	North-South: East-West: SUM:	411 749 1160		Nortt Ea≀	North-South: East-West: SUM:	411 749 1160
	VOLUME/CAPACITY (V/C) RATIO:	(V/C) RATIO:			1.059			1.063				1.121				1.125				1.125
//C1	V/C LESS ATSAC/ATCS ADJUSTMENT:	DJUSTIMENT:			0.959			0.963				1.021				1.025				1.025
	LEVEL OF SE	LEVEL OF SERVICE (LOS):			ш			ш				ш				ш				ш
		REMARKS:																		

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004

Significant impacted? NO

Δν/c after mitigation: 0.004 Fully mitigated?

CMA1.xlsm

NB- 0 NB- 0 NB- 1125 1 NB- 0 NB- 1125 1 NB- 0 NB- 1125 NB- N	NB C C EB C C C C C C C C C	NB- 0 SB- 0 0 0 0 0 0 0 0 0
NB- 0 NB- 0 SB- 0 NB- 0 1125 11	NB- C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Lane	DNI F O	
Lane Volume Added Volume Total Volume No. of Lanes Lanes Volume 51 0 52 1 52 405 34 853 2 427 185 0 188 1 188 176 43 399 2 200 12 0 12 1 12 12 0 12 0 12 92 0 55 0 93 0 0 26 0 0 102 0 102 0 0 284 0 104 0 285 0 0 79 0 0		
405 34 853 2 427 405 34 853 2 427 185 0 188 1 188 186 0 0 0 176 43 399 2 200 12 0 12 1 12 12 0 12 0 12 92 0 55 0 93 92 0 26 0 0 102 0 102 0 0 284 0 104 0 285 0 0 79 0 0 0 0 79 0 0		7 4 8 3 9 5 6 0
405 34 853 2 185 0 188 1 176 43 399 2 12 0 12 1 92 0 55 0 0 0 26 0 102 0 104 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0 0 0 79 0		
32 0 188 1 176 43 399 2 12 0 12 1 0 0 26 0 0 0 26 0 0 0 79 0	£ (6)	
32 0 32 1 176 43 399 2 12 0 12 1 0 0 12 0 0 0 26 0 0 0 26 0 0 0 26 0 0 0 26 0 0 0 0 79 0		
12	6	_
12 0 12 1 12 0 12 1 0 0 12 0 0 0 55 0 102 0 55 0 0 0 26 0 0 0 26 0 0 0 79 0	"	_
12 0 12 1 12 0 12 0 92 0 55 0 0 0 26 0 102 0 102 0 0 0 79 0	-	_
12 0 12 0 92 0 55 0 0 0 26 0 102 0 102 0 284 0 104 0 0 0 79 0	12 54 26	
92 0 55 0 0 0 26 0 102 0 102 0 0 0 79 0	2 24 <u>-</u> 26 24	
0 0 26 0 1 102 0 102 0 284 0 104 0 0 0 79 0	26	
102 0 102 0 284 0 104 0 0 0 79 0		
102 0 102 0 284 0 104 0 0 0 79 0	ı	ł
284 0 104 0 0 0 79 0	1 102	101
0 0 79 0	103	282 0
	62	0
South: 437 North-South: 459 West: 296 East-West: 297 SUM: 733 SUM: 756	North-South: East-West: SUM:	436 294 730
0.652		0.649
2 0.5		0.549
A		A

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003

Δ*ν/c* after mitigation: 0.003 Fully mitigated? N/A Significant impacted? NO

CMA2.xlsm

I/S #:	North-South Street:	Westwood Boulevard	rard		Year of	of Count:	2018	Amb	Ambient Growth (%):	vth (%):	0.2	Conduc	Conducted by: L	LLG Engineers	leers	Date:	21	2/12/2019	
2	East-West Street: We	Wellworth Avenue	4		Projecti	Projection Year:	2025		Peal	Peak Hour:	PM	Reviewed by:	ed by:		4	³roject: <mark>B</mark>	Project: Belmont Village Senior Living	ge Senior L	iving - We
oddo	No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3?			0				•			0 0				0				0
Right	Right Turns: FREE-1, NRTOR-2 or OLA-3?	t-3? NB 0 EB 0	SB WB	00	NB- EB-	0 SB 0 WB	0 0	NB-	0 0	SB WB	0 0	KB.	00	SB WB	0 0	NB EB	0 0	SB WB	0 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	:2? ity		2 1125			2 1125				2 1125				2 1125				2 1125
			EXISTING CONDITION	TION	EXISTII	EXISTING PLUS PROJECT	OJECT	FUTURE	FUTURE CONDITION W/O PROJECT	N W/O PRC	JECT	FUTURE	FUTURE CONDITION W/ PROJECT	N W/ PRO.	JECT	FUTURE \	FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIG	ATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes ∨	Lane Volume V	Added Volume	Total Volume	No. of Lanes	Lane Volume
αÞ	Left	44	← 0	44	0	44	44	0	45	← 0	45	0	45	— c	45	0	45	← c	45
BOU	Through	694	0 00 0	347	2	969	348	02	774	0 00 0	387	2	9//	0 00 0	388	0	922	0 00 0	388
ІНТЯ	Inrough-Right Right	126	⊃ -	126	~	127	127	0	128	> ←	128	-	129	o ←	129	0	129	o ←	129
ON	← Left-Through-Right ← Left-Right	_	0 0							0 0				0 0				0 0	
ПD	Tett	22	← 0	22	0	22	22	0	28	- 0	28	0	28	← 0	28	0	28	← 0	58
NUOS	← Lert-Inrougn ↓ Through	736	0 0 0	368	0	736	368	75	821	0 0 0	411	0	821	0 0 0	411	0	821	0 0 0	411
ЭНТ	ム Through-Right	38	0 ←	38	0	38	38	0	39	0 ←	36	0	39	o -	39	0	39	o -	39
nos	← Left-Through-Right		0 0							00				0 0				0 0	
		-																	
aı	Left → Left-Through	15	0 0	15	0	15	15	0	12	0 0	15	0	15	0 0	15	0	15	0 0	15
NUO	Through	29	000	132	0	29	132	0	09	000	134	0	09	000	134	0	09	000	134
8TS,		28	00	0	0	28	0	0	29	00	0	0	29	00	0	0	29	00	0
∀ ∃	← Left-Through-Right ← Left-Right		- 0							← 0				- 0				← 0	
	# d	247		247	C	249	249	c	250	C	250	C	252	c	252	c	252	C	252
ПND	← Left-Through		0 0		ı		2)		00		ı	}	0 0)		0 0	
108	Through Through-Right	124	o c	440	0	124	443	0	126	00	446	0	126	0 0	449	0	126	o c	449
ITS∃	Right	69	0 0 .	0	~	70	0	0	20	o o ·	0	~	7	00.	0	0	71	0 0	0
M	੯ Left-Through-Right ├ Left-Right		0							0				0				0	
	CRITICAL VOLUMES	ν 	North-South: East-West:	412 455	North- East	h-South: ist-West:	412 458 970		Nortl Ea	North-South: East-West:	456 461		North Eas	North-South: East-West:	456 464		North Eas	North-South: East-West:	456 464
	VOI UME/CAPACITY (V/C) RATIO:	ċ	9	(900	0.10								040				020
7//C	V/C LESS ATSAC/ATCS ADJUSTMENT:	- 1		0.671			0.673				0.715				0.010				0.010
	LEVEL OF SERVICE (LOS):	s):		М			В				ပ				ပ				U
	REMARKS:	S:																	

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003

Significant impacted? NO

Δ*ν/c* after mitigation: 0.003 Fully mitigated? N/A

CMA2.xlsm

I/S #:	North-South Street:		Westwood Boulevard	ırd		Year of	f Count:	2018	Amb	Ambient Growth (%):	vth (%):	0.2	Conduc	Conducted by:	LLG Engineers	neers	Date:	2	2/12/2019	
က	East-West Street:		Santa Monica Boulevard	evard		Projection Year:	on Year:	2025		Peal	Peak Hour:	AM	Reviev		0		Project:	Project: Belmont Village Senior Living - W	ge Senior L	iving - We
oddO	No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3?	No. of Phases N-2 or Both-3?			0			0				0		•		0 0			,	0
Right	Right Turns: FREE-1, NRTOR-2 or OLA-3?	OR-2 or OLA-3?	NB 0 EB 3	SB WB	0 %	NB EB	0 SB 3 WB		NB EB	0 8	SB WB	0 8	NB EB	0 %	SB WB	0 %	NB EB	0 %	SB WB	3 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	· ATSAC+ATCS-2? Override Capacity			2 1031			2 1031				2 1031				2 1031				2 1031
			EXISTIN	EXISTING CONDITION	NOI	EXISTIN	EXISTING PLUS PROJECT	OJECT	FUTURE	FUTURE CONDITION W/O PROJECT	N WO PRC	JECT	FUTUR	FUTURE CONDITION W/ PROJECT	ON W/ PRO	JECT	FUTURE	FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIC	3ATION
	MOVEMENT	L	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
ИD	Left	q	121	← ⊂	121	0	121	121	15	138	← ⊂	138	0	138	← ⊂	138	0	138	← ⊂	138
BONI	Through		856) - -	481	2	828	482	20	888) - -	501	2	890) - -	502	0	890) - -	502
нтяс	Right - A	Right	106	- 0 0	106	0	106	106	7	114	- 0 0	114	0	114	- 0 0	114	0	114	- 0 0	114
ON	Left-Right	ugir-Nigiri t		00	I						00	I			00				00	
dΝ	Left Teff-Through	40	234	← C	234	0	234	234	0	237	← C	237	0	237	← C	237	0	237	← C	237
BONI	Through	- 1	321	0 00 0	161	_	322	161	34	360	0 00 0	180	_	361	0 00 0	181	0	361	0 00 0	181
IHTU		Kignt .	116	o ← (92	0	116	92	∞	126	o ← (86	0	126	o ← (86	0	126	o ← (86
os	← Left-Throu Left-Right Left-Right	Left-Through-Right Left-Right		0 0							0 0				0 0				0 0	
ИD	Left Left Left Left	nah	88	0 0	48	0	88	48	13	102	0 0	26	0	102	0 0	26	0	102	0 0	26
NUOS	Through Through Eight	+45 <u>1</u> 0	1775	, m С	592	0	1775	592	119	1919	, m с	640	0	1919	, m С	640	0	1919	, m С	640
∃TSA	Right	<u>.</u>	88	o ← 0	0	0	88	0	15	104	o ← 0	0	0	104	o ← 0	0	0	104	o ← 0	0
/3	Left-I hrou	Lett-I hrough-Right Left-Right		00							0 0				00				00	
(Left		236	2	130	0	236	130	က	242	2	133	0	242	2	133	0	242	2	133
INNO	Left-Through Through Thro	ngh	1400	O M	467	0	1400	467	22	1477	0 m	492	0	1477	O m	492	0	1477	0 m	492
атг	← Through-Right ← Right	Right	237	o -	က	0	237	က	-	241	0 ←	4	0	241	o -	4	0	241	o –	4
ME	→ Left-Throu → Left-Right	Left-Through-Right Left-Right		00							00				00				00	
	CRITIC	CRITICAL VOLUMES	Nort Ea	North-South: East-West:	715	North- East	orth-South: East-West:	716 722		Norti Ea:	North-South: East-West:	738 773		North Eas	North-South: East-West:	739		North Eas	North-South: East-West:	739
	CITAG (O)() VTIOAGAO(EMILIO)	OIT 40 (O)//			165/		SOM	1430				101			SOIN	7101			SOIN	7101
70//	VOLUME/CAPACITY (V/C) RATIO:	ADJUSTMENT:			1.394			1.395				1.466 1.366			,	1.467				1.467
	LEVEL OF SE	LEVEL OF SERVICE (LOS):			ш			ш				ш				ш				ш
		RFM4RKS.																		

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001

Significant impacted? NO

Δν/c after mitigation: 0.001
Fully mitigated? N/A

CMA3.xlsm

2/12/2019-3:10 PM

Authority Auth	:# S/I	North-South Street:		Westwood Boulevard	ırd		Year of	f Count:	2018	Amb	Ambient Growth (%):	/th (%):	0.2	Conduc	Conducted by: L	LLG Engineers	neers	Date:	21.	2/12/2019	
NB- 0 SB- 0 0 SB-	3	East-West Street:		Monica Boul	evard		Projectiv	on Year:	2025		Peal	k Hour:	PM	Reviev		O		Project: B	Belmont Village Senior Living	ye Senior Li	iving - We
NB- 0 SB- 3 NB- 0 SB- 0 NB- 0 NB- 0 SB- 0 NB-	oddo	Nc sed Ø'ing: N/S-1, E/W-2	o. of Phases 2 or Both-3?			0			0				0 0				0 0				0 0
MOVEMBENT MOVE	Right	Turns: FREE-1, NRTOR	1-2 or OLA-3?		SB WB	0 m	NB-			NB EB	0 %	SB WB	0 %	RB-	0 m	SB WB	0 က	₩ 	O m	SB WB	O %
MOVEMENT MOVEMENT		ATSAC-1 or ATSA Overri	AC+ATCS-2? ide Capacity			2 1031			2 1031				2 1031				2 1031				2 1031
MOVEMENT Working Working Working Noting Noting Working Noting Noti				EXISTI	NG CONDIT	NOI	EXISTIN	IG PLUS PR	олест	FUTURE	CONDITIO	N WO PRC	JECT	FUTUR	E CONDITIO	N W/ PRO	JECT	FUTURE	FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIG	ATION
Left-Right		MOVEMENT		Volume		Lane Volume		Total Volume	Lane Volume	Added Volume	Total Volume					No. of Lanes	Lane Volume	Added Volume	Total I	No. of Lanes	Lane Volume
Through-Right 120	ИD	Left	2	214	← ⊂	214	0	214	214	29	246		246		246	← C			246	← C	246
F. Hirtough-Right 120 12	INO8	Through	= -	726) - -	423	က	729	425	49	785	· - ·	456	က	788	· - ·	458	0	788	· - ·	458
	нтя	Right	jur.	120	- 0	120	0	120	120	2	127	- 0	127	0	127	- 0	127	0	127	- 0	127
Left-Through Right	ON	← Left-Throug ← Left-Right	h-Right		0 0							0 0				0 0				0 0	
Through Right	ИВ	Tett T. €	1	200	← 0	200	0	200	200	-	204	← 0	204	0	204	← ¢	204	0	204	← ¢	204
Flight	NOE		= -	825	0 00 0	413	2	827	414	48	885	0 00 0	443	2	887	0 00 0	444	0	887	0 00 0	444
1	IHTU		gnt Frieds	74	⊃ - (42	0	74	42	25	100	⊃ - (63	0	100	> - 0	63	0	100	⊃ -	63
Left-Through 1582 3 527 0 1582 527 117 1721 3 574 0 172 Through-Right 1582 3 527 0 1582 527 117 1721 3 574 0 172 Through-Right 232 1 18 0 232 18 26 261 1 15 0 26 Left-Through-Right 158 3 453 0 158 453 147 1524 3 508 0 152 Through-Right 157 1 0 0 157 0 157 0 147 1524 3 508 0 168 Left-Through-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 1 0 0 157 0 147 1524 3 508 0 168 Left-Right 157 1 1 1 1 1 1 1 1 1	os	1 1	n-Kignt		00							00				00				00	
Left-Through Right								9,7			10		L		10,	d	ļ		10,		L
Through Right 1582 3 527 0 1582 527 117 1721 3 574 0 172 Through-Right 232 1 18 0 232 18 26 261 1 15 0 26 Left-Right 232 175 0 319 175 8 331 2 182 0 33 Through-Right 157 1 0 157 0 1 160 1 0 0 162 Through-Right 157 1 0 0 157 0 1 160 1 0 0 162 Through-Right 157 1 0 0 157 0 1 160 1 0 0 162 Through-Right 157 1 0 0 157 0 1 160 1 160 1 0 0 164 Through-Right 157 1 0 0 157 0 1 160 1 160 1 160 1 Through-Right 157 1 0 0 157 0 1 160 1 160 1 160 1 Through-Right 157 1 0 0 157 0 1 160 1 160 1 160 1 160 1 Through-Right 157 1 0 0 157 0 1 160 1	ИD	Left Left-Throug	ء	116	N 0	64	0	116	64	10	137	N 0	75	0	137	N 0	75	0	137	N 0	75
Fight Figh	NOO	Through	ţ	1582	m С	527	0	1582	527	117	1721	е	574	0	1721	m С	574	0	1721	е	574
Left-Right	TSA:	Right Left-Through	h-Right	232	o — c	18	0	232	18	26	261	o — c	15	0	261	o – c	15	0	261) - C	15
← Left Left 319 2 175 0 319 175 8 331 2 182 0 33 182 0 <t< th=""><th>3</th><td>∠ Left-Right</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td></t<>	3	∠ Left-Right			0							0				0				0	
← Through Laft-Inrough 1358 3 453 0 1358 453 0 1358 453 147 1524 0 0 150 0 150 0 150 0 150 0 150 0 150 0 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 <	a	← Left	l,	319	2 0	175	0	319	175	80	331	0.0	182	0	331	2 0	182	0	331	2 0	182
The continual	NUOS	Through	c ;	1358	o m c	453	0	1358	453	147	1524	o m c	208	0	1524	o m c	208	0	1524	o m c	508
North-South: 627 North-South: 628 North-South: 689	MESTE	Right Left-Through	h-Right	157	0 - 0	0	0	157	0	-	160	o - 0	0	0	160	o – o	0	0	160	o — O	0
East-West: 702 East-West: 756 SUM: 1329 SUM: 1330 SUM: 1445 1.289 1.290 1.402 1.189 1.190 1.302		∵ Left-Right		Nort	h-South:	627	Norti	h-South:	628		North	o n-South:	689		North	0 North-South:	069		North-	0 North-South:	069
1.289 1.290 1.189 1.190		CRITICA	L VOLUMES	ŭ	st-West: SUM:	702	Ea	st-West: SUM:	702 1330		Ea		756 1445		Eas		756 1446		Easi		756 1446
1.189		VOLUME/CAPACITY (V/C) RATIO:			1.289			1.290			•	1.402			•	1.403				1.403
	/ // //	ESS ATSAC/ATCS AD	JUSTMENT:			1.189			1.190				1.302				1.303				1.303
LEVEL OF SERVICE (LOS):		LEVEL OF SEK	VICE (LUS):			L			L				L				_				L

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001

Significant impacted? NO

Δν/c after mitigation: 0.001
Fully mitigated? N/A

CMA3.xlsm

East-Vined States Figure	1/S #:		North-South Street:	Glendon Avenue	Avenue			Year of	f Count:	2018	Amb	Ambient Growth (%):	/th (%):	0.2	Conduc	Conducted by:	LLG Engineers	neers	Date:	2	2/12/2019	
No.	4			Wilshire E	Soulevard			Projection		2025		Peal	k Hour:	AM	Revie					Belmont Villa	ige Senior I	Living - We
Mail	ddo	osed Ø'in	No. of Ph ng: N/S-1, E/W-2 or Bot				0			0				0				0				0
March Marc	Righ	t Turns: F	REE-1, NRTOR-2 or OI			SB WB-	ი 0	NB EB			NB- EB-	0 0	SB WB	ი 0	NB EB-	00	SB WB	ი 0	NB EB-	0 0	SB WB	0 3
MOVEMENT MOVEMENT		AT	SAC-1 or ATSAC+ATC Override Cap:	:S-2? acity			2 1069			2 1069				2 1069				2 1069				2 1069
MOVEMBRIT MOVE				-	EXISTIN	G CONDIT	NOI	EXISTIN	IG PLUS PRO	JECT	FUTURE	E CONDITIO	N W/O PRC	JJECT	FUTUR	E CONDITI	ON W/ PRO	JECT	FUTURE	W/ PROJEC	T W/ MITIC	SATION
Through Right 10 10 10 10 10 10 10 1			MOVEMENT	<u> </u>	Volume		Lane	Project Traffic	Φ	Lane	Added Volume	Total Volume		Lane		Total Volume		-		Total Volume		Lane Volume
Through Right Through Righ	αı	← *	Left		10	1	10	0	1	10	0	10	ĺ	10	-	10	1	-	_	10		10
Fight Hough Right St. of the fight Hough Right Fight Hough Right Fight Hough Right Fight Hough Right St. of the	NUO	~ ←	Lert-Inrougn Through		170	00	218	0	170	218	0	172	00	221	0	172	00	221	0	172	00	221
Left-Right Lef	ЭНТЯ	11	Through-Right Right		38	0 0	0	0	38	0	0	38	0 0	0	0	39	0 0	0	0	39	0 0	0
Left-mough Tribogh T	ON	+ }	Left-Through-Right Left-Right			- 0							- 0				- 0				- 0	
Flethmough Fle	d	<u></u>	Left		02	-	02	0	20	02	0	71	-	7	0	7	-	7	0	71	-	71
Through Right 105 1	חחב	<u></u>	Left-Through)	0	2))	2)		0	•)		0	•)		0	•
Fight Figh	IBOI	→ ¬	Through Through-Right		20	← 0	20	0	20	20	0	51	← 0	21	0	51	- 0	21	0	21	- 0	51
1	нти	→ ¬ ¬	Right		105	o ← 0	0	0	105	0	0	106	o ← 0	0	0	106	· - c	0	0	106	o ← 0	0
Left Through Tribough Tribo	os	∤ ≺	Left-I hrough-Right Left-Right			00							00				00				00	
Left-Through 1760 27 149 0 275 2 151 2 2 2 2 2 2 2 2 2				•																		
Through Right 1760 3 587 12 1772 591 73 1858 3 619 12 1870 3 623 0 1870 3 67 Through Right 134 0 134 134 0 136 136 0	ΙD	77	Left Left-Through		271	0 0	149	0	271	149	0	275	0 0	151	0	275	0 0	151	0	275	N C	151
Fight	NUO	1 F	Through		1760	, ო c	287	12	1772	591	73	1858	, ო c	619	12	1870		623	0	1870	, ო c	623
Left-Right Lef	HTSA	* ^*\$	Right		134	o ← c	134	0	134	134	0	136	o ← c	136	0	136	o ← c	136	0	136	o ← c	136
f Left Left Left Left 614 654 1 654 1 654 1 654 1 654 1 654 1 654 665 664 665 665 665 665 665 665 665	Э _	~ ~	Left-Infough-Kight			00							00				00				00	
Tuber Intrody Transcription 1786 3 595 8 1794 598 31 1842 3 614 8 1850 0 1850 0 Through-Right 219 1 184 0 219 1 184 0 222 1 187 0 222 1 187 0 222 1 Left-Through-Right 0 219 1 184 0 219 1 187 0 222 1 187 0 222 1 0 222 1 187 0 222 1 0 222 1 187 0 222 1 0 222 1 0 222 1 187 0 222 1 0 222 1 187 0 222 1 0 222 1 0 222 1 0 222 1 0 222 1 0 0	а	<u>_</u>	Left		53	← 0	53	0	53	53	0	54	- 0	54	0	54	- 0	54	0	54	← 0	54
Thirdugh-right	NUOS	•↓↓	Through		1786	o m c	595	œ	1794	298	31	1842	o m c	614	80	1850	o m c	617	0	1850	o ო c	617
Full Head of Party Care Properties Care P	ESTE	, J.J.	Right		219	o ← c	184	0	219	184	0	222	o ← c	187	0	222	o ← c	187	0	222	o ← c	187
North-South: 288 North-South: 288 North-South: 292 North-South: East-West: 744 East-West: 747 East-West: 765 East-West: 768 East-West: SUM: 1036 0.968 0.968 0.869 0.899 0.892 D D D D D D D D	M	. الم	Left-Right			00							00				00				00	
0.965 0.968 0.989 0.992 0.892 0.868 0.868 0.892 0.892 0.892 0.892 0.892 0.892			CRITICAL VOLU	MES	North Ea		288 744 1032	Norti Ea	h-South: st-West: SUM:	288 747 1035		Nortt Ea		292 765 1057		Nort Ea	h-South: st-West: SUM:	292 768 1060		North Ea	st-West: SUM:	292 768 1060
0.865 0.868 0.889 0.892 0.892 D		VOLUM	IE/CAPACITY (V/C) RA	VTIO:			0.965			0.968				0.989				0.992				0.992
D D D	<u>//</u>	LESS AT	SAC/ATCS ADJUSTIM	ENT:			0.865			0.868				0.889				0.892				0.892
		_	LEVEL OF SERVICE (L	:0S):			۵			۵				۵				۵				۵

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO

Δ*ν/c* after mitigation: 0.003 Fully mitigated? N/A

CMA4.xlsm

2/12/2019-3:10 PM

I/S #: North	North-South Street: Glendo	Glendon Avenue			Year of	of Count:	2018	Am	Ambient Growth (%):	wtn (%):	0.2	Condu	Conducted by: 1	LLG Engineers	neers	Date:	7	2/12/2019	
Eas	East-West Street: Wilshir	Wilshire Boulevard			Projecti	Projection Year:	2025		Pea	Peak Hour:	PM	Revie	Reviewed by:		_	Project:	Belmont Village Senior Living	e Senior Li	ving - W
pposed Ø'i	No. of Phases Opposed Ø'ing: N/S-1, E/W-2 or Both-3?			0			0				0				0				0
jht Turns: i	Right Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	၈ ၀	NB- EB-	0 SB 0 WB		NB EB	0 0	SB WB	e 0	NB- EB	00	SB WB	၈ ၀	NB EB	0 0	SB WB	e 0
Ψ	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			2 1069			2 1069				2 1069				2 1069				2 1069
		EXISTI	EXISTING CONDITION	NOI	EXISTING	NG PLUS PROJECT	ROJECT	FUTUR	E CONDITION	FUTURE CONDITION W/O PROJECT	олест	FUTUR	FUTURE CONDITION W/ PROJECT	ON W/PRO	JECT	FUTURE	FUTURE W/ PROJECT W/ MITIGATION	W/MITIG	ATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added	Total Volume	No. of Lanes V	Lane Volume
Ç~ €T	Left eft-Through	64	0 0	64	0	64	64	0	-	0 0	65	0	92	0 0	65	0	65	0 0	65
	Through	129	000	292	0	129	292	0	131	000	296	0	131	000	296	0	131	000	296
11	i nrougn-kignt Right	66	00	0	0	66	0	0	100	00	0	0	100	00	0	0	100	00	0
} }	Left-Through-Right Left-Right		- 0							- 0				- 0				- 0	
ر د	Left	168	← 0	168	0	168	168	0	170	← 0	170	0	170	← 0	170	0	170	← 0	170
→	Through	204	o ← 0	204	0	204	204	0	207	o ← 0	207	0	207	o ← 0	207	0	207	o ← 0	207
₹ 7 ↑	I hrough-Right Right I eft-Through-Right	211	o ← c	146	0	211	146	0	214	o - c	148	0	214	o - c	148	0	214	o ← c	148
	Left-Right		0						ı	0		ı		0		ı	ı	0	
7 -	Left	118	0.0	65	0	118	99	0	120	8 6	99	0	120	01 0	99	0	120	0.0	99
1 1 1	Through	1960	o m c	653	13	1973	658	92	2064	o m c	889	13	2077	o m c	692	0	2077	o m c	692
→	riffougri-Right Right Left-Through-Right	40	o – o	40	0	40	40	0	4	o - 0	4	0	4	o - 0	14	0	4	o - 0	4
ΥΥ -	Left-Right		0							0				0				0	
<u>_</u>	Left	84	- 0	84	0	84	84	0	85	- 0	82	0	82	- 0	82	0	85	- 0	82
→ ↓↓	Lert-Inrougn Through Through Bight	1452	o m c	484	7	1463	488	87	1559	⊃ m ⊂	520	Ξ	1570	o m c	523	0	1570	o m c	523
141	Right Right Left-Through-Right Left-Right	208	o - o o	124	0	208	124	0	211	0-00	126	0	211	0-00	126	0	211	0-00	126
	CRITICAL VOLUMES	Nori E	North-South: East-West: SUM:	460 737 1197	Non E&	North-South: East-West: SUM:	460 742 1202		Nor	North-South: East-West: SUM:	466 773 1239		Norti Ea.	North-South: East-West: SUM:	466 777 1243		North- Easi	North-South: East-West: SUM:	466 777 1243
VOLUI	VOLUME/CAPACITY (V/C) RATIO:			1.120			1.124				1.159				1.163				1.163
C LESS A	V/C LESS ATSAC/ATCS ADJUSTMENT:			1.020			1.024 F				1.059				1.063				1.063
	LEVEL OF SERVICE (LOS).			_															

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004

Significant impacted? NO

Δν/c after mitigation: 0.004
Fully mitigated? N/A

CMA4.xlsm

Enstytients (a) Enstytients (b) Enstytient	:# S/I		North-South Street: Sell	Selby Avenue			Year of	f Count:	2018	Amb	Ambient Growth (%):	th (%):	0.2	Conduc	Conducted by:	LLG Engineers	neers	Date:	2	2/12/2019	
No.	2			shire Bouleva	ırd		Projecti	on Year:	2025		Peak	Hour:	AM	Reviev					Selmont Villa	ge Senior I	_iving - W
Mail	ddO	osed Ø'in	No. of Phase g: N/S-1, E/W-2 or Both-3			0	'		0	'			0	'			0 0	'			0
MOVEMENT MOVEMENT	Righ	: Turns: Fl	REE-1, NRTOR-2 or OLA-	NB EB	SB WB-	0 0	NB-		00	NB EB	00	SB WB	00	NB EB	00	SB WB	0 0	NB EB	00	SB WB	0 0
MOVEMENT Control Con		ATS	SAC-1 or ATSAC+ATCS-2 Override Capacit	<i>د</i> >		2 1125			2 1125				2 1125				2 1125				2 1125
MOVEMENT MOVEMENT					TING COND	NOIL	EXISTII	NG PLUS PRO	JECT	FUTURE	CONDITIO	N W/O PRO	JECT	FUTURE	CONDITIC	N W/ PRO	JECT	FUTURE	W/ PROJEC	T W/ MITIC	SATION
Left Hough Left Hough Left Hough Left Hough Left Hough Right T/7 0 229			MOVEMENT	Volume		Lane Volume	Project Traffic	σ.	Lane Volume	Added Volume	Total Volume				Total Volume				Total Volume		Lane Volume
Find the proof of the proof o	an	₹	Left	48	1	48	_		49	0	49		49	-	20		-	4	20		20
Through Right 104 0 0 104 0 0 104 0 0 104 0	NOO	┌ ←	Lerr-Inrougn Through	77	00	229	0	12	230	0	78	0 0	232	0	78	0 0	233	0	78	00	233
+ Left-Through Right 1	ВНТ	· L1	Through-Right	104	0 0	c	C	104	C	c	105	0 0	c	c	ر ک	0 0	C	c	۲ ۲	0 0	c
Left-Right St. of the Left-Through Right St. of the Left	ИОК	-+	Left-Through-Right		o ← (>		5	•	o	3	o ← ()	•	3	o ← ()	•	3) - (•
Left Hough Hight Sign Si		<u>}</u>	Left-Right	_	0							0	Ī			0				0	
Through Right SS N N N N N N N N	ИD	<u>د</u> د	Left	91	0 0	91	0	91	9	0	92	0 0	92	0	92	0 0	95	0	92	0 0	95
Hindugh-right Fight Hindugh-Right Hind	NOE	→	Through	22	000	173	0	22	173	0	26	000	175	0	26	000	175	0	26	000	175
1	IHTU	♪ ノー	I nrougn-Right Right	27	00,	0	0	27	0	0	27	00,	0	0	27	00,	0	0	27	00,	0
Left	os	⊹ ≺	Left-Through-Right Left-Right		0 -							- 0				- 0				- 0	
→ Left-Through 37 1 37 37 37 37 37 37 37 38 1 38 0 38 1 38 0 38 1 38 0 38 1 38 0 38 1 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0 38 0																					
Through Right 33 636 8 1916 639 73 2008 3 669 8 2016 3 672 0 2016 3 1 Fight Through Right 33 1 33 0 33 1 33 0 33 1 Fight Through Right 33 1 33 0 33 1 33 0 33 1 Fight Through Right 33 1 34 35 34 34 34 34 34 34	al	√ √	Left eff-Through	37	← C	37	0	37	37	0	38	← ⊂	38	0	88	← ⊂	38	0	38	← c	38
Fight High High High High High High High High	NUO	1 }	Through	1908	. m c	636	80	1916	639	73	2008	, ო c	699	80	2016	. m c	672	0	2016	ကေ	672
1 Left-Right 1 1 1 1 1 1 1 1 1	∃TSA	→ ~ ~	Right	33	> ← 0	33	0	33	33	0	33	o ← c	33	0	33	o ← c	33	0	33	o ← c	33
f Left Left Left 93 1 93 0 94 1 94 0 94 1 94 0 94 1 94 0 94 1 94 0 94 1 94 0 94 1 94 0 94 1 94 0 94 1 0 94 1 94 0 94 1 0 94 1 0 94 1 0 94 0 94 1 0 94 1 2 0 94 1 8	'э	~~~	Left-Right	_	00		ı	٦		1	1	00		1	1	00	ı	1	1	00	
Tutificialism Volume/CAPACITY (V/C) RATIOs 679 11 2048 683 31 2097 3 699 11 2108 3 703 0 2108 0 Through-Right 85 1 85 1 85 1 86 1	а	<u> </u>	Left	93	- 0	93	0	93	93	0	94	← 0	94	0	96	- 0	94	0	94	← 0	94
Figure F	NUO	• ↓ ↓	Through	2037	o m c	629	Ξ	2048	683	31	2097	o ო c	669	-	2108	o m c	703	0	2108	o m c	703
F Left-Right	ESTE	. I f	Right	85	o ← c	85	0	85	85	0	98	o - c	98	0	98	o – c	98	0	98	o ← c	86
North-South: 320 North-South: 321 North-South: 324 North-South: 325 North-South: East-West: 729 East-West: 732 East-West: 763 East-West: 766 East-West: SUM: 0.932 0.936 0.966 0.970 0.970 D D D D D D	M	, ل	Left-Right		0							00				00				00	
0.932 0.936 0.966 0.966 0.832 0.836 0.866 D			CRITICAL VOLUME		orth-South: East-West: SUM:		Nort Ea	h-South: ist-West: SUM:	321 732 1053		North Eas		324 763 1087		North Eas		325 766 1091		North Ea:	-South: st-West: SUM:	325 766 1091
0.832 0.836 0.866 D D		NOLUM	E/CAPACITY (V/C) RATIC	ä		0.932			0.936				996.				0.970				0.970
D D	§ 	LESS AT	SAC/ATCS ADJUSTMENT			0.832			0.836				998.				0.870				0.870
		7	EVEL OF SERVICE (LUS	_		D			D				D				D				D

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 Significant impacted? NO

Δ*ν/c* after mitigation: 0.004
Fully mitigated? N/A

CMA5.xlsm

East-West Street Witshire Boulevard Projection Year 2025 Peak Hour: PM Projection Year 2025 Peak Hour: PM Pums: FREE*1, NRTOR-2 or OLA-37 NB- 122 PM Peak Hour: PM PM Peak Hour: PM PM Peak Hour: PM PM Peak Hour: PM PM PM PM PM PM PM PM	I/S #:	North-South Street:	Selby Avenue	anne			Year of	of Count:	2018	Amt	Ambient Growth (%):	vth (%):	0.2	Conduc	Conducted by: 1	LLG Engi	Engineers	Date:	2/	2/12/2019	
NB- 0 NB-	1		Wilshire B	3oulevard			Projecti	on Year:	2025		Pea	k Hour:	PM	Reviev	Reviewed by:			Project:	Belmont Village Senior Living - W	ge Senior Li	ving - We
NB SB NB O O NB O O O O O O O O O	ιő	No. of Pł ied Ø'ing: N/S-1, E/W-2 or Bo				0			0 0				0	'			0				0
Table Tabl	_	urns: FREE-1, NRTOR-2 or C ATSAC-1 or ATSAC+ATC			SB WB	0 0 0	NB EB			NB EB	0 0	SB WB	0 0 0	NB EB	0 0	SB WB	0 0 0	NB EB	0	SB WB	0 0 0
Volume Lanes Volume Traffic Total Lane Added Total Lanes Volume	ı	Override Cap	pacity	EXISTIN	4G CONDIT	1125 ION	EXISTI		1125 toJECT	FUTUR	E CONDITIC	N W/O PRC	1125 JJECT	FUTUR	FUTURE CONDITION W/ PROJECT	ON W/ PRO	1125 JECT	FUTURE	1125 FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIG	1125 SATION
41		MOVEMENT		Volume	No. of Lanes	Lane		Total Volume	Lane	Added	Total Volume			Added	Total Volume	No. of Lanes	Lane	Added	Total Volume	No. of Lanes	Lane
71 0 201 0 71 202 0 72 0 89 0 0 0 89 0 0 90 0 164 0 164 0 164 164 0 166 0 142 0 322 0 142 322 0 144 0 16 0 0 0 16 0 16 0 16 1 21 21 21 21 21 0 21 1 2090 3 697 10 2100 700 76 2195 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1705 3 568 11 1716 572 87 1816 3 1706 3 568 11 1716 572 87 1816 3 1707 1 1 1 1 1 1 1 1 1 1708 1 1 1 1 1 1 1 1 1 1707 1 1 1 1 1 1 1 1 1 1708 1 1 1 1 1 1 1 1 1	⊢	↑ Left ↑ Left		41		41	-	42	42	0	42			-	43	0 0	43	0	43	0 0	43
164		Through		71	000	201	0	7.1	202	0	72	000	204	0	72	000	205	0	72	000	205
164		Right		88	00	0	0	88	0	0	06	00	0	0	06	00	0	0	06	00	0
164 0 164 0 164 0 166 0 142 0 322 0 142 322 0 144 0 16 0 0 16 0 16 0 144 0 21 1 21 0 21 21 0 16 0 16 0 2080 3 697 10 210 70 76 2195 3 46 1 46 0 46 0 47 1 76 1 76 76 77 1 76 1 76 76 77 1 76 1 76 77 1 0 52 1 52 0 53 1 60 0 52 52 0 53 1 80m 1142 366 North-South: 776 77	_	← Left-Through-Righ ← Left-Right			- 0							- 0				- 0				- 0	
142 0 322 0 142 322 0 144 0		Left F	Т	164	0 0	164	0	164	164	0	166	0 0	166	0	166	0 0	166	0	166	0 0	166
16		Through		142	000	322	0	142	322	0	144	000	326	0	1 4	000	326	0	144	000	326
21 1 21 0 21 1 1 1 0 2100				16	o o ,	0	0	16	0	0	16	00	0	0	16	o o ,	0	0	16	O 0 T	0
21 1 1 21 0 21 21 0 21 1 1 1 1 1 1 1 1 1					- 0							- 0				- 0				- 0	
1,000		ر Left	_	21	-	21	0	21	21	0	21	-	21	0	73	-	21	0	21	-	21
46 1 46 0 46 0 47 1 76 1 76 0 76 76 0 77 1 1705 3 568 11 1716 572 87 1816 3 52 1 52 0 52 53 1 0 0 5 52 0 53 1 East-West: 773 East-West: 776 Fast-West: 80hh: Sulm: 1.012 1.015 1.015 1.015 1.015				2090	0 m	269	10	2100	700	92	2195	0 %	732	10	2205	0 m	735	0	2205	0 m	735
76		Through-Right Right		46	0 + 0	46	0	46	46	0	47	0 - 0	47	0	47	0 + 0	47	0	47	0 - 0	47
76 1 76 0 76 76 0 77 1 1705 3 568 11 1716 572 87 1816 3 52 1 52 0 52 52 0 53 1 0 0 5 5 5 0 53 1 0 0 5 5 5 0 53 1 0 0 5 5 5 0 53 1 0 0 5 5 5 0 53 1 0 0 5 5 5 0 53 1 0 0 5 5 0 5 0 5 10 5 5 0 5 0 5 0 10 5 1 1 1 1 1 1		Left-Right			00							00	I	1	1	00	ı	1	1	00	
1705 3 568		Left		92	← 0	92	0	9/	9/	0	11	- 0	11	0	12	← 0	12	0	11	← 0	77
52 1 52 0 52 52 0 53 1		Through		1705	o m c	268	7	1716	572	87	1816	o m c	909	Ξ	1827	o m c	609	0	1827	o m c	609
North-South: 365 North-South: 366 North-South: East-West: 773 East-West: 776 East-West: SUM: 1138 SUM: 1142 SUM: 1.012 1.015 1.015		Right Left-Right	ŧ	52	0 - 0 0	52	0	25	52	0	53	0 - 00	53	0	23	o - 0 0	53	0	53	o - 0 0	53
1.012		CRITICAL VOLU	UMES	Nort Ea	h-South: st-West: SUM:	365 773 1138	Non Ea	th-South: 1st-West: SUM:	366 776 1142		Norti Ea.	h-South: st-West: SUM:	370 809 1179		North Eas	North-South: East-West: SUM:	371 812 1183		North Eas	North-South: East-West: SUM:	371 812 1183
	l	VOLUME/CAPACITY (V/C) R.	RATIO:			1.012			1.015				1.048				1.052				1.052
0.912 0.915 0.9	7	ESS ATSAC/ATCS ADJUSTIN	WENT:			0.912			0.915				0.948				0.952				0.952
LEVEL OF SERVICE (LOS): E		LEVEL OF SERVICE (I	(LOS):			ш			ш				ш				ш				ш

Version: 1i Beta; 8/4/2011

2/12/2019-3:10 PM

PROJECT IMPACT

Change in v/c due to project: 0.004

Significant impacted? NO

Δ*ν/c* after mitigation: 0.004 Fully mitigated? N/A

CMA5.xlsm

East-West Street: Wilshi	ast-West Street: No. of Phases No. of Phases Sing: N/S-1, E/W-2 or Both-3? HSEE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity MOVEMENT Left Left-Through Through Through Through Through Through Through Left-Right Left-Phrough	Wilshire Boulevard nases th-3?	of se	1069 100N Lane Volume	Projection Years	on Year:	20	9	Pea	Peak Hour:	0 0	Revie	Reviewed by:		0 0 0	₩	Belmont Village Senior Living	ge Senior Li	iving - We
Opposed Ø'ing: N/S-1, E/Right Turns: FREE-1, NRT ATSAC-1 or A1 Ov. MOVEMEN Left CON Through TH Right CON CON Through		NB- 0 EB- 0 EXISTING Volume 77 52 53	SB WB WB OG CONDITI	0 0 2 2 1069 ION Lane Volume	NB			g	C		0				0 0 7	•			0
Right Turns: FREE-1, NRT ATSAC-1 or A1 OWN MOVEMEN Left Left-Through Through Through Right A Left-Through Through Through Through Through		NB 0 EB 0 Volume 77 52 53	SB WB WB OG CONDITI	2 0 2 1069 ION Lane Volume	NB			9	C						2				0
	rSAC+ATCS-2? erride Capacity T rugh -Right nt ough-Right	Volume Volume	G CONDITION OF Lanes 1	1069 ION Lane Volume	EB-	0 WB	. 0	NB EB	0	SB WB	0 0	NB EB	00	SB WB	0	NB	0 0	SB WB	0 0
~ ~ ~ ~ ~ *	Jugh -Right ough-Right ht	Volume 65 77 77 52 53 53 53 54 54 54 55 55 55 55 55 55 55 55 55 55	No. of Lanes 1	ION Lane Volume			2 1069				2 1069				2 1069				2 1069
~ ~ ~ ~ `	vugh -Right ough-Right ht	_		Lane Volume	EXISTIN	EXISTING PLUS PROJECT	ROJECT	FUTUR	FUTURE CONDITION W/O PROJECT	ON WO PRO	JECT	FUTUR	FUTURE CONDITION W/ PROJECT	ON W/ PRO	JECT	FUTURE	FUTURE W/ PROJECT W/ MITIGATION	T W/ MITIG	ATION
~~~ <del>~</del>	sugh -Right sugh-Right ht	65 77 52 53			Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added	Total Volume	No. of Lanes	Lane Volume
	-Right ough-Right at	52 52 53	0000-0	92	0	99	65	2		0 0	89	0	89	0 0	89	0	89	0 0	89
444	Augh-Right  To a company of the comp	53 53	00-00	194	0	11	194	က	8	000	202	0	8	000	202	0	81	000	202
<del>}</del>	ough-Right	53	- 0 0 0	0	0	25	0	0	53	00	0	0	23	0	0	0	53	00	0
	onah	53	0 0							- 0				- 0				- 0	
<u></u>	Sugh	24	0	23	0	53	53	4	28	0	28	0	28	0	28	0	28	0	58
CON Through Through			0	86	0	24	86	2	26	00	96	0	56	00	96	0	26	00	96
THE Through-Right	-Right	σ	0 0	C	c	σ	C	٣	7	00	C	c	5	00	C	C	6	00	C
. → -	Left-Through-Right	)	) <del>-</del> - c	)	)	)	·	)	!	) <del>-</del> - c	)	•	ļ	· ← c	)	)	į	· - c	)
<b>₹</b>																			
D	doir	26	<b>←</b> C	26	0	26	26	-	27	- c	27	0	27	← C	27	0	27	- 0	27
` ↑ ħ		2011	ი ი c	029	80	2019	673	29	2106	o ო c	702	œ	2114	o m c	202	0	2114	o m c	705
S Right  Right  Left-Through-R	nrougr-right Right Left-Through-Right	2.2	o <del>-</del> 0	17	0	12	77	4	82	o — o	82	0	82	0 - 0	82	0	82	o <del>-</del> 0	82
~ ~			0	j						0				0				0	
<u>_</u>		23	~ c	23	0	23	23	-	24	- 0	24	0	24	← 0	24	0	24	- 0	24
OUN  Through Through Through	ougn Right	2176	o m c	725	1	2187	729	26	2233	o m c	744	7	2244	⊃ m ⊂	748	0	2244	o m c	748
ME Right  Meft-Throught	Right Left-Through-Right Left-Right	73	0 - 0 0	73	0	73	73	~	75	o <del>-</del> 0 0	75	0	75	0 - 0 0	75	0	75	o <del>-</del> 0 0	75
CRITI	CRITICAL VOLUMES	North Eas	North-South: East-West: SUM:	247 751 998	North- East	orth-South: East-West: SUM:	247 755 1002		Nort Ea	North-South: East-West: SUM:	260 771 1031		Nortl Ea	North-South: East-West: SUM:	260 775 1035		North Eas	North-South: East-West: SUM:	260 775 1035
VOLUME/CAPACITY (V/C) RATIO:	Y (V/C) RATIO:			0.934			0.937				0.964				0.968				0.968
V/C LESS ATSAC/ATCS ADJUSTMENT:	ADJUSTMENT:			0.834			0.837				0.864				0.868				0.868
LEVEL OF S	LEVEL OF SERVICE (LOS):			n			Ŋ				n				n				D

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004

Significant impacted? NO

Δ*ν/c* after mitigation: 0.004 Fully mitigated? N/A

CMA6.xlsm





NB-   O   SB-	:# S/I		North-South Street: We	Westholme Avenue	/enne			Year of	: Count:	2018	Ā	Ambient Growth (%):	wth (%):	0.2	Condu	Conducted by:	<b>LLG Engineers</b>	ineers	Date:	N	2/12/2019	
Mail	9	East-\		Ishire Boul	evard			Projectic	ın Year:	2025		Pea	ık Hour:	PM	Revie	wed by:			Project:	Belmont Villa	age Senior I	Living - W
Mail	Орр	osed Ø'ing:	No. of Phas : N/S-1, E/W-2 or Both-				0							0				0				0
MOVEMENT   MOVEMENT	Right	Turns: FR	EE-1, NRTOR-2 or OLA				0 0	NB EB			NB	00	SB WB	0 0	NB-	00	SB WB	0 0	NB- EB-	00	SB WB	0 0
MOVEMENT   Movement		ATS/	AC-1 or ATSAC+ATCS- Override Capac	-2? ity		~	2 069			1069				2 1069				2 1069				2 1069
MOVEMBRIT   MOVE					XISTING C	ONDITIO	ž	EXISTIN	G PLUS PR	<b>DJECT</b>	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUF	RE CONDIT	ION W/PRO	JECT	FUTURE	W/ PROJE	ST W/ MITIC	SATION
Left Hough Right		2	MOVEMENT	Volu				Project Traffic	σ.	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume		Lane Volume
Through Right   44   10   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   10	ΔN	<b>←</b> 5	Left Left-Through				59	0		59	7	29	0 0	29	0	29	0 0	29	0	29		29
Fight Hamper Right	IUOE	<del></del>	Through				159	0	26	159	ო	09	000	173	0	09	000	173	0	09	000	173
Heat-Rights	ІНТЯ	J.L.	I nrougn-Rignt Right	,		0 0	0	0	44	0	<del>-</del>	46	00	0	0	46	00	0	0	46	00	0
Left-Through Right   194   0   104   0   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104	ON	<del>+</del> }	Left-Through-Right Left-Right			- 0							- 0				- 0				- 0	
Through Right   209   0   342   0   209   342   0   218   0   357   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   218   0   0   0   0   0   0   0   0   0	al	J_	Left				104	0	104	104	က	108	0	108	0	108	0	108	0	108	0	108
Fight Hinough-Right   Fight Hough-Right   Fi	NUOE	<del>∫</del> → -	Left-Through Through	ŭ			342	0	508	342	9	218	000	357	0	218	000	357	0	218	000	357
1	энтО	ナノゴ	Ihrough-Right Right			00	0	0	59	0	7	31	00	0	0	33	00 7	0	0	31	o o ,	0
Left   Left Through   Left Through	os	<b>⊹</b> ≺	Left-I hrough-Right Left-Right	_		- 0							- 0				- 0				- 0	
Left-Through   Left		7	##				19		19	19	ď	22	-	22	C	33	-	22	c	22	-	22
Through-Right   Start Hough-Right   Start Hough-Right   Start Hough-Right   Start Hough-Right   Start Hough-Right   Start Hough Right   Start Hough-Right   Start Ho	ПИБ	1	Left-Through				2 2		. a	2 62	ט ע	22	0 6	72.0	,	7307	. 0 %	7 75	o c	73 78 78 78 78 78 78 78 78 78 78 78 78 78	. 0 %	72.
Hight Hight Hight   90 11 90 0 90 1 90 11 90 0 90 1 90 11   11	LBO	1	Through-Right	<b>1</b>			3		20	671	3	177	00	3	2	1077	0	5	•	1077	0 0	5
f         Left         40         4         40         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td>FAST</td> <td>~<del>^</del></td> <td>Right Left-Through-Right</td> <td></td> <td></td> <td><del>-</del> 0 €</td> <td>06</td> <td>0</td> <td>06</td> <td>06</td> <td><b>∞</b></td> <td>66</td> <td>- 0 0</td> <td>66</td> <td>0</td> <td>66</td> <td>- 0 0</td> <td>66</td> <td>0</td> <td>66</td> <td>- 0 0</td> <td>66</td>	FAST	~ <del>^</del>	Right Left-Through-Right			<del>-</del> 0 €	06	0	06	06	<b>∞</b>	66	- 0 0	66	0	66	- 0 0	66	0	66	- 0 0	66
Through-Right		ا م															>				>	
Through-Right         42         1         42         1         42         4         42         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4	ΙD	<b>γ</b>	Left Left-Through	-		<b>←</b> C	40	0	40	40	_	42	<b>←</b> C	42	0	45	<b>-</b> ⊂	45	0	42	← ⊂	45
CLESS ATSAC/ATCS ALOUSTINGNT.   Figure 1.0   Figure 1.0	NOE	.↓-↓	Through Through-Right	17.			592		1788	296	78	1880	o m С	627	7	1891	o en ⊂	630	0	1891	o m ⊂	630
F Left-Right         O         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <	NESTI	J.	Right Left-Through-Right			· + 0	42	0	42	42	2	48	0 - 0	48	0	48	0 - 0	48	0	48	o – o	48
North-South: 401   North-South: 401   North-South: 424   South: 424	١	J.,	Left-Right	<u> </u>			707		1	404			0	104			0	404		14	0	707
1.0921.0941.1451.1480.3920.3941.0451.048EFF			CRITICAL VOLUM	ES	North-St East-V	_	401 766 167	Norti Ea:	r-South: st-West: SUM:	769 1170		NON	n-south: ast-West: SUM:	800 1224		NOT	n-South: ast-West: SUM:	424 803 1227		Norti Ea	st-West: SUM:	803 1227
0.992 0.994 1.045 1.048	!	VOLUME	JCAPACITY (VIC) RAT	:O		÷	092			1.094				1.145				1.148				1.148
F F	<u>ა</u>	LESS ATS.	AC/ATCS ADJUSTIMEN	<u>:</u>		0	.992			0.994				1.045				1.048				1.048
		<u>۳</u>	EVEL OF SERVICE (LO	S):			ш			ш				ш				Н				L

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003

Δ*ν/c* after mitigation: 0.003 Fully mitigated? N/A

CMA6.xlsm

Significant impacted? NO

# Appendix C

N₂O Emissions Calculations

## N2O Operational GHG Emission Mobile Calculations - Proposed

Project Code & Title: 17-05200 Belmont Village Westwood Presbyterian

Vehicle Pop	ulation Breakdown*
7470509	Gasoline vehicles
338642	Diesel vehicles
95.7%	Gasoline vehicle %
4.3%	Diesel vehicle %

	VMT per Vehicle Type	
2639659	Project VMT (CalEEMod output)	
2525191	Gasoline vehicle VMT	
114468	Diesel vehicle VMT	

	Gasoline Vehicles
95.7%	Gasoline vehicle %
0.9685	Tons per year mobile NOX emissions (annual output in CalEEMod)
0.93	Gasoline vehicle tons per year NOX emissions
4.16%	Percentage to convert NOX emissions to N2O **
0.0385	Tons per year N2O emissions for gasoline vehicles
0.0350	Metric tons per year N2O emissions for gasoline vehicles

	Diesel Vehicles
0.3316	grams N2O per gallon of fuel for diesel vehicles**
5446.67	Diesel average miles per gallon*
0.00006	grams per mile N2O for diesel vehicles
7.0	grams per year N2O for diesel vehicles
0.0000070	Metric tons per year N2O emissions for diesel vehicles

	CO2E Emissions from N2O
0.0350	Metric tons per year from gasoline + diesel vehicles
298	GWP of N2O***
10.4	CO2E emissions per year from N2O emissions from gasoline + diesel vehicles

### Sources

## *Vehicle population source:

Source: EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: County Region: Los Angeles Calendar Year: 2025 Season: Annual

Vehicle Classification: EMFAC2011 Categories

## **Methodology source:

EMFAC2011 Frequently Asked Questions

https://www.arb.ca.gov/msei/emfac2011-faq.htm

## ***GWP source:

Intergovernmental Panel on Climate Change (IPCC). 2007.

AR4 Climate Change 2007: The Physical Science Basis.

Contrbution of Working Group I to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change.

## N2O Operational GHG Emission Mobile Calculations - Existing

Project Code & Title: 17-05200 Belmont Village Westwood Presbyterian

Vehicle Pop	ulation Breakdown*
7470509	Gasoline vehicles
338642	Diesel vehicles
95.7%	Gasoline vehicle %
4.3%	Diesel vehicle %

VMT per Vehicle Type		
465008	Project VMT (CalEEMod output)	
444843	Gasoline vehicle VMT	
20165	Diesel vehicle VMT	

Gasoline Vehicles		
95.7%	Gasoline vehicle %	
0.3916	Tons per year mobile NOX emissions (annual output in CalEEMod)	
0.37	Gasoline vehicle tons per year NOX emissions	
4.16%	Percentage to convert NOX emissions to N2O **	
0.0156	Tons per year N2O emissions for gasoline vehicles	
0.0141	Metric tons per year N2O emissions for gasoline vehicles	

Diesel Vehicles		
0.3316	grams N2O per gallon of fuel for diesel vehicles**	
5446.67	Diesel average miles per gallon*	
0.00006	grams per mile N2O for diesel vehicles	
1.2	grams per year N2O for diesel vehicles	
0.0000012	Metric tons per year N2O emissions for diesel vehicles	

CO2E Emissions from N2O		
0.0141	Metric tons per year from gasoline + diesel vehicles	
298	GWP of N2O***	
4.2	CO2E emissions per year from N2O emissions from gasoline + diesel vehicles	

### **Sources**

## *Vehicle population source:

Source: EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: County Region: Los Angeles Calendar Year: 2025 Season: Annual

Vehicle Classification: EMFAC2011 Categories

## **Methodology source:

EMFAC2011 Frequently Asked Questions

https://www.arb.ca.gov/msei/emfac2011-faq.htm

## ***GWP source:

Intergovernmental Panel on Climate Change (IPCC). 2007.

AR4 Climate Change 2007: The Physical Science Basis.

Contrbution of Working Group I to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change.