GEOTECHNICAL EXPLORATION PROPOSED SELF-STORAGE FACILITY 3701 NORTH PACIFIC PLACE LONG BEACH, CALIFORNIA

Prepared For:

InSite Property Group

811 North Catalina Avenue, Suite 1306 Redondo Beach, California 90277

Project No. PWAS_20190823b

November 14, 2019

CARL KIM GEOTECHNICAL, INC. 945 Baileyana Road Hillsborough, CA 94010 949-441-8143 carlkimgeo@gmail.com November 14, 2019

Project No. PWAS_20190823b

Insite Property Group 811 North Catalina Avenue, Suite 1306 Redondo Beach, California 90277

Attention: Mr. CJ Rogers

Subject: Geotechnical Exploration Proposed Self-Storage Facility 3701 North Pacific Place Long Beach, California 90806

In response to your request, Carl Kim Geotechnical, Inc. (Carl Kim Geo) has performed geotechnical exploration for the subject project. The purpose of this study was to characterize engineering properties of onsite soils, identify geologic and seismic hazards that may impact the site, and develop foundation and earthwork recommendations.

InSite Property Group proposes to redevelop the 13.94-acre property into a self-storage facility with a 151,000 square foot 3-story building, and roughly 585 recreational vehicle (RV) parking spaces (the "Project"). Retaining walls up to 12 feet tall are proposed along much of the site perimeter.

Carl Kim Geo understands that the project site was used for oil and gas operations as a sump facility from about 1926 into the 1960's to contain drilling mud, produced water, and associated hydrocarbons. Most recently, the project site was operated as a golf school and driving range, but appears to have sat fallow for a number of years as only paved parking areas, concrete slabs, and a shade structure remain in the southern part of the site. The project site is a Brownfield development regulated by the California Department of Toxic Substances Control (DTSC); as such, Carl Kim Geo understands that environmental considerations (soil vapor and potential impacts to groundwater and soil) are being addressed by others.

Fill, sump materials, alluvium, and Lakewood Formation were encountered during prior and recent explorations at the site. Where measured, groundwater was encountered at an average depth of about 52 feet or at Elevation of -3.9 feet mean sea level. The historic high groundwater level reported by the California Geological Survey is on the order of 20 feet below the ground surface below the lower portions of the site.

Existing uncertified fill and sump materials will continue to settle due to their consistency and high moisture content. Because of the anticipated settlement, the cover fill soils and underlying sump materials in their current state are not suitable for the support of foundations of proposed habitable structures. Carl Kim Geo

CARL KIM GEOTECHNICAL, INC. 945 Baileyana Road Hillsborough, CA 94010 949-441-8143 carlkimgeo@gmail.com recommends that proposed habitable buildings be supported on driven pile foundations extending through the existing fill and sump materials into the underlying natural soil. Building floor slabs should also be structurally supported on pile foundations. Foundations for light ancillary structures (trash enclosures, etc.) can be supported on spread footings if settlement-induced damage and the corresponding required repair are deemed acceptable.

As an alternative to pile foundations, ground improvement may be performed to support the proposed building on a mat foundation.

We appreciate the opportunity to work with you on this project. If you have any questions, or if we can be of further service, please call us at your convenience.

Respectfully submitted,

Carl Kim Geotechnical, Inc.

Carl C. Kim Senior Principal Engineer

AL Aillet (

Andrew Hillstrand Consulting Engineering Geologist

ARH/CCK

Distribution: (4) Addressee

TABLE OF CONTENTS

Section	<u>l</u>		Pa	age
1.0	INTRO	DUCTIO	N	1
	1.1	Site Lo	cation and Project Description	1
	1.2	Purpos	e and Scope	3
		Task 1	- Document Review and planning	3
		Task 2	 Subsurface Exploration and Laboratory Testing 	3
		Task 3	–Geologic/Seismic Hazards Evaluation	4
		Task 4	- Engineering Analysis and Report	4
2.0	GEOLC		ONDITIONS	
	2.1	Geolog	ic Setting	5
	2.2	Site Ge	eology	5
	2.3	Ground	lwater	6
3.0	GEOLC	OGIC HA	ZARDS	8
	3.1	Faulting	g and Seismicity	8
		3.1.1	Fault Investigation and Surface Rupture Hazard	8
		3.1.2	Historical Seismicity	9
		3.1.3	Seismicity	9
	3.2	Second	lary Seismic Hazards	9
		3.2.1	Liquefaction	. 10
		3.2.2	Seismically-Induced Settlement	. 10
		3.2.3	Lateral Spreading or Flow Failure	. 10
		3.2.4	Seismically-Induced Landslides	. 10
		3.2.5	Seiches and Tsunamis	. 10
		3.2.6	Ground Lurching	. 11
	3.3	Floodin	g Hazards	. 11

PWAS_20190823b

TABLE OF CONTENTS (Continued)

Section

<u>Page</u>

	3.4	Expans	sive Soils	11
	3.5	Corrosi	ive Soils	11
	3.6	Subsur	face Gases	12
	3.7	Subsid	ence	
	3.8	Miscell	aneous	12
4.0	CONCL	USION	s	13
5.0	RECOM	RECOMMENDATIONS		
	5.1	Earthw	ork and Grading	15
		5.1.1	Site Preparation	15
		5.1.2	General Grading Recommendations	15
		5.1.3	Pipe Bedding	16
		5.1.4	Trench Backfill	16
	5.2	Pile Fo	undations	16
		5.2.1	Pile Capacities	17
		5.2.2	Downdrag Loads	17
		5.2.3	Settlement	
		5.2.4	Lateral Resistance	
		5.2.5	Pile Installation	20
		5.2.6	Ultimate Values	20
	5.3	Slabs-o	on-Grade	20
	5.4	Lateral	Earth Pressures	22
	5.5	Seismi	c Design Parameters	23
	5.6	Pavem	ent Design	23

TABLE OF CONTENTS (Continued)

Section

<u>Page</u>

		5.6.1	Asphalt Concrete Paving		23
		5.6.2	Portland Cement Concrete Paving]	24
		5.6.3	Specifications		24
	5.7	Tempo	rary Excavations		25
	5.8	Additio	nal Geotechnical Services		25
6.0	COUNT	ry of L	OS ANGELES BUILDING CODE S	ECTION 111 STATEMENT	27
7.0	LIMITA	TIONS			28
Figures	<u>i</u>				

<u>Figures</u>

Figure 1 – Site Location	Rear of Text
Figure 1A – Site Layout Over Historic Aerial	Rear of Text
Figure 2 – Geologic Map	Rear of Text
Figure 3 – Groundwater Table	Rear of Text
Figure 4 – Regional Fault	Rear of Text
Figure 5 – Historic Seismicity	Rear of Text
Figure 6 – Seismic Hazards	Rear of Text
Figure 7 – Tsunami Inundation	Rear of Text
Figure 8 – Flood Hazard Zones	Rear of Text

<u>Plates</u>

Plate 1 – Geotechnical Map	Rear of Text
Plate 2 – Geotechnical Cross Section	Rear of Text

TABLE OF CONTENTS (Continued)

Section

AppendicesRear of TextAppendix A – ReferencesRear of TextAppendix B – Geotechnical ExplorationsRear of TextAppendix C – Laboratory TestsRear of TextAppendix D – Seismic Design Parameters and Liquefaction AnalysisRear of TextAppendix E – Earthwork Grading Guide SpecificationsRear of Text

<u>Page</u>

1.0 INTRODUCTION

1.1 SITE LOCATION AND PROJECT DESCRIPTION

The project site is located at 3701 North Pacific Place, Long Beach, California. The site location and immediate vicinity are shown on Figure 1, *Site Location*. The Site is located at latitude N33.82660° and longitude W118.20306°.

The proposed 13.86-acre development site is located in the City of Long Beach, Los Angeles County, California (Figure 1). As of the date of this report the site is vacant with remnants of parking areas, foundations of buildings, and landscaping in the southern portion of the site while the remainder of the site is open land with abundant weeds, scattered concrete and organic debris, and tall wooden poles that presumably held up perimeter netting for prior golf school and driving range operations. Site terrain is somewhat hummocky presumably from grading of the golf school.

The project site is bordered by "Government Owned Parcels" on the west and south that abut the Los Angeles River levee and the 710/405 freeway interchange, respectively. The northeast portion of the site is contiguous with a Pacific Railroad easement while the southeastern edge of the project site borders mostly vacant industrial zoned parcels (Los Angeles County, 2019¹) (*Figure 1, Site Location Map*). Land uses around the site are mixed with residential and a school to the east of the Pacific Railroad with open space and freeways to the north, west, and south.

The project site is a Brownfield development regulated by the California Department of Toxic Substances Control (DTSC); as such, Carl Kim Geo understands that environmental considerations (soil vapor and potential impacts to groundwater and soil) are being addressed by others. The Site is part of the "Long Beach Industrial Park (A.K.A. Former Oil Operators)" facility. In brief, the site supported oil and gas operations as a sump facility. The sumps served as a central brine water treatment facility where oil brine (drilling mud and other waste materials) were treated or contained onsite from roughly 1926 to the 1960's (LFR, 2009) (Appendix A, References). Comprehensive site history is covered in referenced reports, specifically LFR (2009 and 2007a), which can be found on the Envirostore website along with other environmental-focused regulatory and investigation data (Envirostor ID: 70000161)². For context refer to Figure 1A which shows the planned improvement concept and property boundaries over a September 10, 1944 aerial photo of the site.

¹ Parcel viewer available at <u>https://portal.assessor.lacounty.gov/mapsearch?c=-118.2021714803091,33.8266981224895,18</u>

² Envirostore link at <u>https://www.envirostor.dtsc.ca.gov/public/profile_report.asp?global_id=70000161</u>

According to a topographic survey and grading plans for the site (Joseph A. Truxaw and Associates, 2019) (Truxaw), existing ground elevations within proposed development areas vary from about Elevation +72 to +36 feet mean sea level (msl). Existing slopes roughly 15 to 20 feet tall descend toward and beyond the site boundaries along the west edge of the site and along portions of the east edge of the property while slopes ascend toward the south up to the 405/710 onramps and interchange, which are elevated a few tens of feet above the southern edge of the property. Plate 1, Geotechnical Map depicts these features.

InSite Property Group (Insite) proposes to redevelop the site into a self-storage facility that will include includes building a three-story, 151,200-square-foot storage building, roughly 585 recreational vehicle (RV) parking spaces, and a 10-foot-tall exterior security fence. Roughly 85 RV parking spaces may be covered with photo voltaic canopies. Access from the site will be from the northwest terminus and extension of North Pacific Place along what is presumed and existing easement.

The proposed self-storage building will be three stories tall, and no basement levels are planned. The lowest level will have a finished floor elevation of about +56 feet msl. The current grading concept reflects roughly 41,000 cubic yards of cut and 74,000 cubic yards of fill with a resulting 33,000 cubic yards of import. Most of the cut will occur in the northern portion of the site with a maximum of about 15 vertical feet. The majority of the fill will be placed in the southern part of the site and will be on the order of ten feet. Grading plans by Truxaw (2019) also depict retaining walls surrounding the site with typical heights on the order of 5 to 10 feet and isolated areas where walls will be up to 14 feet tall. About 50,000 cubic yards of material are expected to be placed as engineered fill. Existing and proposed project features are shown Plate 1.

An existing storm drain traverses the proposed building site from northeast to southwest (Plate 1). We understand that the invert of the storm drain is about 15 to 20 feet below the planned finished floor of the proposed building.

Typical dead plus live column loads are anticipated to range from about 400 to 800 kips. Maximum dead plus live column loads are not expected to exceed 1,200 kips.

1.2 PURPOSE AND SCOPE

The purpose of this study was to characterize engineering properties of onsite soils, identify geologic and seismic hazards impacting the Site, and develop geotechnical recommendations for foundations and earthwork. The tasks completed as part of this study are described below in more detail.

TASK 1 - DOCUMENT REVIEW AND PLANNING

As part of our study, we reviewed several geotechnical documents and maps pertinent to the subject site. The documents reviewed are referenced in Appendix A.

Because the site is regulated by California State Department of Toxic Substances Control (DTSC), Carl Kim Geotechnical, Inc. prepared an exploration plan (provided to the DTSC for review and approval) and comprehensive Health and Safety Plan describing proposed means and methods for obtaining the necessary subsurface information for geotechnical design of the Project. Other tasks included site reconnaissance, marking of boring locations, contacting Underground Services Alert, and obtaining boring permits from the City of Long Beach.

TASK 2 - SUBSURFACE EXPLORATION AND LABORATORY TESTING

Seven (7) hollow-stem auger borings and 7 cone penetrometer test (CPT) soundings were advanced to obtain representative subsurface data for grading and foundation design. Exploration locations are shown on Plate 1. In general, explorations were advanced to a target depth of 50 to 75 feet below the existing ground surface (bgs) or deeper than 20 feet below the bottom of undocumented fill and sump materials unless refusal was encountered.

Because of the proximity of the zoned active Cherry Hill Fault to the proposed development Carl Kim Geo performed a limited fault investigation consisting of a transect of eight (8) CPT soundings and three soil core borings to assess portions of the development for the presence of active fault traces.

In total fifteen (15) CPT soundings and ten (10) hollow-stem auger borings were drilled to investigate the site. Logs of borings and soundings are attached in Appendix B, Field Exploration Appendix.

Geotechnical laboratory testing was performed as part of the current study. Results are attached in Appendix C, Laboratory Test Results. The program consisted of testing selected representative specimens, prepared from representative samples, of the earth materials to obtain the following properties and characteristics:

- Soil classification (ASTM D2488);
- Moisture and density (ASTM D 2216 and D 2937);

- Particle size distribution (ASTM D 422);
- Plasticity Index (ASTM D 4318);
- Expansion Index (ASTM D 4829);
- Direct Shear (ASTM D3080);
- Consolidation (ASTM D 2435);
- Compaction (ASTM D 1557);
- R-value (CTM 301); and
- Corrosivity (CTM 643, 417, 422).

TASK 3 -GEOLOGIC/SEISMIC HAZARDS EVALUATION

Using available geologic data, we have developed information on the general geologic conditions beneath the project including the locations of documented active and potentially active faults near the site. This study addresses the potential for primary earthquake hazards (ground shaking and surface rupture) and secondary earthquake hazards (liquefaction, seismic settlement, seiches, and earthquake-induced landsliding) impacting the site. Seismic Design Parameters are attached in Appendix D.

TASK 4 - ENGINEERING ANALYSIS AND REPORT

The results of subsurface exploration, laboratory testing, geologic-seismic hazards, and geotechnical design recommendations are summarized below.

2.0 GEOLOGIC CONDITIONS

2.1 GEOLOGIC SETTING

The project site is located near the east edge of West Coast Hydrologic Basin, within the southwestern block of the Los Angeles Basin. The block is roughly rectangular in shape, is 28 miles long from northwest to southeast and is approximately 5 to 12 miles wide. Most of the block is a low plain extending from Santa Monica in the northwest to Long Beach in the southeast. The southwest portion of the block is marked by the Palos Verdes Hills, which rise to an elevation of approximately 1,300 feet msl. The Palos Verdes Hills are the most prominent topographic feature of this block and is separated from the nearly flat plain to the north and northeast by the northwest trending Palos Verdes fault (Yerkes and Campbell, 2005). The West Coast Basin is bounded on the northeast by the Newport-Inglewood Structural Zone, which is marked by series of northwest-trending faults and folds that form a chain of low eroded scarps and elongated hills and terraces that extend from Newport Bay to Beverley Hills.

The site borders the Los Angeles River drainage which drains southward toward the San Pedro Bay and Pacific Ocean. Portions of the site are located only a few tens of feet west of the Cherry Hill Fault while proposed habitable structures are located about 465 feet or greater from the mapped fault trace. The proposed 3-story storage building appears to be just outside of the associated Alquist-Priolo Earthquake Fault Zone. The Cherry Hill Fault is associated with the Newport-Inglewood Structural Zone (NISZ) and trends north-northwest and has a right-lateral sense of movement with an oblique component of west wall down. The fault trace is marked by a topographic lineament somewhat coincident with toe of the slope immediately east and near the Pacific Electric rail line east of the site. The documented regional geologic conditions of the site and vicinity are shown on Figure 3, *Geology*.

2.2 SITE GEOLOGY

Generally, earth materials at the site consist of undocumented fill over varying amounts of sump materials over Holocene to Pleistocene alluvium and Pleistocene Lakewood formation. The geotechnical map for the site is shown on Plate 1. The materials underlying the Site are described below.

<u>Artificial Fill (map symbol Afu)</u>: Approximately 3 to 20 feet of material that appeared to be uncertified cover fill was encountered over sump materials in most locations investigated. Encountered materials consisted of admixtures of silt, clay, and sand. Some areas of the site had liberal amounts of concrete rubble of various sizes. CKG-5, CKG-4, and CPT-13 through 15 encountered concrete, brick, or refusal at varying depths indicating the possible presence of buried coarse material. Fill depths are expected to be greater along the edges of the sumps, but may be variable.

<u>Sump Material (AFs)</u>: Sump materials encountered were highly variable, but generally clayey, very soft in zones with varying amounts of petroleum hydrocarbon content, and moisture content. Soil consistencies encountered varied from stiff to very soft.

Thicknesses of sump materials encountered during the current investigations varied from 0 to about 20 feet at (CPT-8 and CKG-4. The average thickness of sump materials based on the current borings and CPT's is about 10 feet. According to referenced reports wastes were placed within basins with exterior earthen berms. Reportedly during the 1970's, "land farming" activities yielded some processed (dried and recompacted) soils, however zones of sludge or clayey soils near the liquid limit exist in zones (LFR, 2009) (LFR, 2007a, b).

<u>Quaternary Alluvium (Map Symbol - Qal)</u>: Quaternary alluvium, consists generally of silt and clay with silty sand, sand, and clayey sand interbeds/ facies typical of fluvial and estuarine sequences. Thicknesses encountered varied from zero in boring CKG-10 to about 21 feet at CKG-1.

<u>Lakewood Formation (QL)</u>: The Lakewood Formation is locally interpreted to be comprised of Upper Pleistocene age older alluvium consisting of weakly-cemented to semi-consolidated older alluvium consisting of interbedded claystone, sandy claystone, sandstone and silty sandstone. The material is stiff and dense relative to the overlying alluvium materials.

Estimated/measured depths for the bottom of sump materials are interpreted primarily from borings and CPT soundings from the current investigation. Select prior exploration points were also considered in this study to inform design and construction planning; however, much of the prior subsurface data was gathered a decade or more in the past, and for purposes other than geotechnical design³.

The estimated lateral limits and vertical thickness of sump material shown on Plate 1 are reproduced from prior work presented in LFR (2009). LFR's produced an isopach map that contoured the base of the sump materials, which is reproduced on Plate 1. On Plate 1 we have tabulated the interpreted depths of material contacts for our explorations. Note that significant localized variations in depth and lateral limits of materials may be present because of prior land uses and numerous grading events at and around the site.

2.3 GROUNDWATER

According to the California Geological Survey (1998b), the historic high groundwater level at the site is anticipated to be about 20 feet bgs near the Los Angeles River Levee (about Elevation +15 to +20 feet msl).

³ Select files containing investigation data from prior work at the site can be found at the following link: <u>https://ldrv.ms/u/s!AjsyFTgBQau1hYcRaCIHLqAfFDHLSw?e=vR0AxK</u>

Groundwater was encountered at depths of about 45 to 57½ feet bgs during the current investigation. The highest groundwater depth/elevation was measured at boring CPT-12 (Elevation -3.2 feet). In general groundwater water was encountered near the bottom contact of alluvium near a depth of 50 feet bgs (Elevation -3 feet msl).

Carl Kim Geo understands that the project environmental consultant, Roux Associates, Inc. (Roux) gauged found and gauged select existing monitoring wells during early September 2019. Reportedly, MW-3 was obstructed above groundwater while groundwater at MW-7 was at a depth of 49.65 feet below datum (Elevation -0.49 feet msl) (Roux Associates, 2019a).

3.0 GEOLOGIC HAZARDS

Geologic hazards include surface faulting, ground lurching, seismic shaking, landslides, liquefaction, seismically-induced settlement, lateral spreading, seismically-induced landslides, flooding, expansive soils, corrosive soils, and soil gas. The following sections discuss these hazards and their potential impacts at the site in more detail.

3.1 FAULTING AND SEISMICITY

In general, the primary seismic hazards for sites in the region include strong ground shaking and surface fault rupture. Our discussion of faults potentially impacting the site is prefaced with a discussion of California legislation and state policies concerning the classification and land-use criteria associated with faults. By definition of the California Geological Survey (CGS), an active fault is a fault which has had surface displacement within Holocene time (about the last 11,000 years). Similarly, a fault whose recency of past movement is older than 11,700 years is a pre-Holocene fault, and does not meet State criteria as "active". Age-undetermined faults are those whose age of most recent movement is not known and is unconstrained. These updated definitions were necessary to eliminate agency and practitioner confusion for fault investigation reports as mandated by the Alquist-Priolo Earthquake Faulting Zones Act of 1972 (AP Act) and recently revised Special Publication 42 (CGS, 2018). The intent of this act is to prevent citing of habitable structures across traces of "active" faults.

Based on our review, an EFZ⁴ encroaches onto the proposed development (Bryant, 1985) (CGS, 1999); therefore, Carl Kim Geo performed a fault investigation for the planned development. A planned habitable structure (3-story self-storage building) will be located approximately 465 feet west of the mapped trace of the Cherry Hill fault. The proposed building appears to be a few tens of feet outside of the EFZ. Regional faults are shown on Figure 4 while the EFZ and mapped location of the Cherry Hill Fault are shown on Figure 4.

3.1.1 FAULT INVESTIGATION AND SURFACE RUPTURE HAZARD

Carl Kim Geo performed a limited fault investigation that focused on the site for the planned 3-story self-storage building. The tasks performed included, but was not limited to review of literature for the site and region, and review of available aerial photos. Because of the depth of man-made and potentially impacted soils Carl Kim Geo investigated the critical portion of the building envelope

⁴ <u>https://maps.conservation.ca.gov/cgs/EQZApp/app/</u>

and greater than 50 feet beyond for the presence of active fault traces via a transect of eight (8) CPT and three (3) near-continuously cored hollow-stem-auger borings. Each exploration was advanced to about 75 feet below ground surface. After excavations were completed the boring locations were surveyed by Truxaw and provided to Carl Kim Geo. Plate 1 depicts the locations of the explorations in plan view while Plate 2, Cross-Section A-A' depicts the subsurface data gathered along with geologic interpretations. Man-made fills, alluvium, and Lakewood Formation were encountered.

Strata of the Lakewood Formation correlate well across the site. Lakewood strata have a relatively consistent gentle apparent dip of about 1 degree along transect toward the east-northeast.

Groundwater depths encountered at the time of drilling (ATD) are plotted on Plate 2. Presumably because of the clay content of soils under the site, pore dissipation testing in the CPT soundings and select borings did not always yield a groundwater depth result. Groundwater elevations were relatively consistent at -3 to about -4 feet msl across the 320-foot transect.

Based on these data from our fault investigation, Carl Kim Geo did not find evidence of faulting within the proposed building footprint.

3.1.2 HISTORICAL SEISMICITY

Although Southern California has been seismically active during the past 200 years, written accounts of only the strongest shocks survive the early part of this period. Early descriptions of earthquakes are rarely specific enough to allow an association with any particular fault zone. It is also not possible to precisely locate epicenters of earthquakes that have occurred prior to the twentieth century.

A search of historical earthquakes was performed using the USGS database (<u>https://earthquake.usgs.gov/earthquakes/search/</u>) for the time period between 1769 and the present. Within that time frame, 59 earthquakes of magnitude 4 or greater were found within a 100-kilometer radius of the site (Figure 6, *Historical Seismicity*).

3.1.3 SEISMICITY

The site is located within a seismically active region, as is all of Southern California. Based on the available subsurface information for the site, the site was designated as Site Class D.

A PGA_M of 0.63g was selected for the Maximum Considered Earthquake (2% probability of exceedance in 50 years) based on published acceleration parameters per Article 1613 of the 2016 California Building Code (CBC). Details are presented in Appendix D.

3.2 SECONDARY SEISMIC HAZARDS

In general, secondary seismic hazards for sites in the region could include soil liquefaction, seismicallyinduced settlement, lateral spreading, landsliding, seiches and tsunamis. These potential secondary seismic hazards are discussed below.

3.2.1 LIQUEFACTION

Liquefaction and dynamic settlement of soils can be caused by strong ground motion due to earthquakes. Research and historical data indicate that loose, saturated granular soils are most susceptible to liquefaction. According to CGS (1998), large portions of the site, including the planned building site, are in areas deemed susceptible to liquefaction and requiring additional study (Figure 6).

The results of our site-specific liquefaction analysis indicate that liquefaction potential is generally limited to isolated, non-continuous zones (CPT-2 and CPT-11). The overall liquefaction potential for the site is deemed low.

3.2.2 SEISMICALLY-INDUCED SETTLEMENT

Seismically-induced settlement consists of dry dynamic settlement (above groundwater) and liquefaction-induced settlement (below groundwater). These settlements occur primarily within loose to medium dense sandy soil due to reduction in volume during, and shortly after, an earthquake event.

The potential seismically-induced settlement is estimated to be up to about 2 inches.

3.2.3 LATERAL SPREADING OR FLOW FAILURE

For lateral spreading or flow failure to occur, a continuous, laterally unconstrained liquefiable zone must be free to move along gently sloping ground toward an unconfined area. Due to the presence of low-lying areas west and east of the Site, the potential for lateral spreading flow failure is considered significant. The magnitude of lateral displacement will have to be verified once grading details are finalized and we are provided with topographic information for the subject low-lying areas immediately adjacent to the site.

3.2.4 SEISMICALLY-INDUCED LANDSLIDES

According to the State of California Seismic Hazards Zones Map for the Long Beach Quadrangle (CGS, 1998), the site is located in an area potentially susceptible to earthquake induced landsliding (Figure 7). The area appears to be confined to small area where a slope that ascends southward off-site toward the 710/405 interchange. Based on our professional experience and the relatively gentle topography of the site and surrounding areas, the potential for seismically-induced slope instability is considered low provided slopes are not over-steepened.

3.2.5 SEICHES AND TSUNAMIS

Tsunamis are long wavelength seismic sea waves (long compared to the ocean depth) generated by sudden movements of the ocean bottom during submarine earthquakes, landslides, or volcanic activity. A seiche is an oscillation (wave) of a body of water in an enclosed or semi-enclosed basin or tank that varies in period, depending on the physical dimensions of the structure, from a few minutes to several hours, and in height from several inches to several feet. A seiche is caused chiefly by local changes in atmospheric pressure, aided by winds, tidal currents, and occasionally earthquakes.

The project site is not located within a tsunami inundation zone (Figure 7). Accordingly, the potential for damage due to either a tsunami or seiche is deemed low.

3.2.6 GROUND LURCHING

Ground lurching is defined as movement of low density soil materials on a bluff, steep slope, or embankment due to earthquake shaking. Because of the presence of sump materials that are saturated to super-saturated (sludges) and walls up to 14-feet tall and minor slopes exist along the west and east edge of the site the re proposed Since there are no significant slopes at the site, it is our opinion that the potential for ground lurching as a result of nearby or distant seismic events is moderate.

3.3 FLOODING HAZARDS

According to a Federal Emergency Management Agency (FEMA) flood insurance rate map data (FEMA, 2019), the Site appears to be in an "Area of Undetermined Flood Hazard". Flood zones for the site and vicinity are shown on Figure 9, *Flood Hazard*.

3.4 EXPANSIVE SOILS

Expansive soils contain significant amounts of clay particles that swell considerably when wetted and which shrink when dried. Foundations constructed on these soils are subject to uplifting forces caused by the swelling. Without proper mitigation measures, heaving and cracking of both building foundations and slabs-on-grade could result.

Laboratory testing of selected samples from the current investigation indicate that near-surface onsite soils have a range of expansion potentials from low to high expansion potential. Many soils encountered at shallow depths contain significant clay content such that when processed engineered fills may have medium to high expansion potential.

Expansion Index test results are attached in Appendix C.

3.5 CORROSIVE SOILS

Most of the Site is underlain by sump materials. Accordingly, subsurface materials at the site are classified as corrosive to severely corrosive to metals, and deleterious to concrete and steel reinforcing in concrete. Corrosivity test results are tabulated and attached in Appendix C.

3.6 SUBSURFACE GASES

Most of the Site is underlain by sump materials. Accordingly, hazardous soil gases are anticipated and will require mitigation.

3.7 SUBSIDENCE

Based on review of referenced reports the site is not within an area of known significant subsidence associated with groundwater or petroleum withdrawal, peat oxidation, or hydro-compaction.

The sludges and wet, uncompacted sump materials at the site will continue to densify over time and induce localized subsidence and settlement. Based on the proposed grading of the site, which includes up to 10 feet of additional fill over some areas, over 12 inches of ground surface settlement may occur.

3.8 MISCELLANEOUS

Existing subsurface utilities including a petroleum pipeline and storm drains are shown on Plate 1 and came from Truxaw (2019a, b). One storm drain appears to pass under the proposed building footprint.

Based on review of referenced aerial photos and referenced reports several portions of the site and periphery were developed previously. The site and surrounding areas have been altered from multiple phases of grading and development. Buried construction debris may be present/buried in uncertified fill and sump areas that were not specifically investigated. Notable conditions that appear on aerial photos reviewed and on Figure 1A include:

- Within the north eastern portion of the proposed storage building it appears that a dry dock was in constructed and in use presumably to drill two oil wells in that area. No records were found documenting the construction or destruction of the dry dock.
- About 130 feet west of CKG-7 above ground storage tanks and oil well derricks appear in aerial photos. Presently scattered concrete fragments can be found on ground in the area and in areas north and east of CKG-7.
- During investigations coarse materials (concrete fragments and other items) have also been observed in areas near CKG-4, CKG-5, and CPT-14 and CPT-15.
- Remnants of the golf school infrastructure including building foundations, landscape and hardscape, etc.

4.0 CONCLUSIONS

Based on the results of our study, it is our opinion that the proposed development is feasible from a geotechnical standpoint. In our opinion, the following geotechnical factors should be considered:

- We encountered fill, sump materials, alluvium, and older alluvium (Lakewood Formation) in our explorations at the site.
- Our review of the geologic literature (Appendix A) and results of our limited fault study indicate there are no known active faults within the footprint of the proposed building.
- The main seismic hazards that may affect the site are strong ground shaking, liquefaction, and lateral spreading.
- Groundwater was encountered at a depth of about 45 to 57½ feet bgs. The historic high groundwater level reported by the California Geological Survey is 20 feet below the ground surface along the lower potions of the site. In our opinion, the design groundwater level should be assumed at Elevation +20 feet msl.
- Localized perched water can be expected in zones above the alluvium surface.
- Because of the nature of the former use of the site as a disposal facility, the sludge and sump materials zone is expected to be heterogeneous. Depths and thicknesses may vary significantly laterally.
- The expansion potential of near-surface onsite soils range from low to high.
- The onsite soils are deemed corrosive to buried ferrous metals and concrete.
- The sump materials are anticipated to be corrosive to concrete and ferrous metals.
- The undocumented fill and sump materials will likely continue to settle due to their consistency.
- Because of the anticipated settlement, the undocumented fill soils and sump materials are not suitable for support of the proposed foundations and floor slabs.
- The proposed building should be supported on pile foundations extending through the existing fill and/or sump materials into the underlying natural soil. Building floor slabs should also be structurally supported on pile foundations.
- Alternatively, the materials below the building area may be improved to accommodate support of the building on a mat foundation.
- Foundations for light ancillary structures (trash enclosures, etc.) can be supported on spread footings.

5.0 **RECOMMENDATIONS**

The existing undocumented fill and sump materials will continue to settle due to their consistency. The planned grading and any surcharging should be implemented several months before installation of foundations or utilities. In general, we recommend that the utility spine be located around the perimeter of the site where the depth of undocumented fill and sump materials is shallower. Buried utilities crossing the middle of the site will traverse boundaries (side walls) and saddles of disposal pits, which will maximize differential settlement along the utility line.

If deemed acceptable to ownership and utility operators, planned underground utilities may be supported over undocumented fill and sump materials if the utility alignment is surcharged with a temporary fill thickness equivalent to twice the anticipated dead plus live loading imposed by the planned use of the facility. The width of the fill stockpile surface should extend from both sides of the utility line a horizontal distance equal to the distance from the top of the stockpile to the utility invert.

Because of the anticipated settlement, the existing fill soils and sump materials are not suitable for support of foundations and floor slab for the proposed building. Ideally, the proposed building would be supported on driven pile foundations extending through the refuse and into the underlying natural soil. Building floor slabs would then also be structurally supported on pile foundations.

As a result of the anticipated settlement, the refuse will cause downdrag loads on the foundations. Also, the exterior grade will settle differentially from pile-supported structures and entrances to pile-supported structures will require maintenance. Any utilities supported over undocumented fill or sump materials should be expected to settle. Utility connections to pile supported elements, including the proposed building (if pile supported), should be able to accommodate up to 12 inches of differential settlement.

Due to the presence of the existing storm drain across the site and the relatively shallow depth to the bottom of sump materials below the building footprint, we recommend that a ground improvement alternative be explored. Regardless of the foundation option selected, the ownership and serviceability of the existing storm drain needs to be verified, including a formal survey of its alignment and elevation. This information is necessary to avoid damaging the storm drain if it is to remain in service or to design and construct a replacement.

Ground improvement may be performed to enhance subsurface materials below the building footprint, which would enable the use of a mat foundation. Preliminary discussions with specialty contractors indicate that ground improvement is feasible. A cost-effective approach to mitigate the settlement of sump materials may consist of surcharging the building pad with a fill stockpile imposing a bearing pressure equivalent to the design bearing pressure of a mat foundation for the building. The undocumented fill, which extends

roughly 15 feet below existing grade, may be improved with surface densification techniques. The performance target for ground improvement would be to mitigate the total combined static and seismic settlement to less than $1\frac{1}{2}$ inches. A pilot test will be required to verify the effectiveness of the ground improvement program.

Potential hazardous soil gas generation and collection beneath the buildings are being addressed by others and should be accounted for in the foundation design.

Carl Kim Geo should review the grading plans, shoring plans, foundation plans, and specifications when they are available to verify that the recommendations presented in this report have been properly interpreted and incorporated.

5.1 EARTHWORK AND GRADING

All earthwork and grading should be performed in accordance with the following recommendations and *Earthwork and Grading Guide Specifications* presented in Appendix E.

5.1.1 SITE PREPARATION

Prior to construction, the area of proposed new structures should be cleared of any vegetation and demolition trash and debris. These materials should be removed from the site. Any underground obstructions onsite should be removed. Efforts should be made to locate any existing utility lines to be removed or rerouted where interfering with the proposed construction. Any resulting cavities should be properly backfilled and compacted. After the site is cleared, the soils should be carefully observed for the removal of all unsuitable deposits. All undocumented fill should be excavated from below proposed improvements not supported on pile foundations.

5.1.2 GENERAL GRADING RECOMMENDATIONS

Overexcavation and recompaction should extend a minimum horizontal distance equal to the vertical distance between the proposed footing bottom (if any structures are not to be pile supported) and depth of overexcavation. After completion of the overexcavation and prior to fill placement, the exposed soils should be scarified to a minimum depth of 12 inches, moisture conditioned and compacted to at least 90 percent relative compaction based on ASTM Test Method D 1557.

In areas where the subgrade consists of clayey soils, additional measures are recommended. Clay soils should be overexcavated as necessary to permit the placing of at least 2 feet of relatively non-expansive soils beneath all concrete slabs and walks. After excavating as recommended, the moisture content of the soils should be determined, and the soils slowly and uniformly moistened (or dried) as necessary to bring the soils to a uniformly moist condition. Any surface soils that may have dried out too much should be slowly and uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moistened as necessary to bring the soils to a uniformly moist condition. The moisture content of the clay soils should be brought to about 4% over optimum moisture content to a depth of 12 inches. The moisture content of the relatively

non-expansive and predominantly granular soils should be brought to 2 to 3 percent above optimum moisture content to a depth of 6 inches. The moisture content of the subgrade should be checked and approved prior to placing the required fill.

The onsite soils, less any deleterious material or organic matter, can be used in required fills. Cobbles larger than 6 inches in largest diameter should not be used in the fill. Any required import material should consist of relatively non-expansive soils with an Expansion Index (EI) less than 35. The imported materials should contain sufficient fines (binder material) so as to be relatively impermeable and result in a stable subgrade when compacted. All proposed import materials should be approved by Carl Kim Geo prior to being placed at the site.

5.1.3 PIPE BEDDING

Any proposed pipe should be placed on properly placed bedding materials. Pipe bedding should extend to a depth in accordance to the pipe manufacturer's specification. The pipe bedding should extend to at least 12 inches over the top of the pipeline. The bedding material may consist of compacted free-draining sand, gravel, or crushed rock. Pipe bedding material should have a Sand Equivalent (SE) of at least 30.

5.1.4 TRENCH BACKFILL

Trench excavations above pipe bedding may be backfilled with onsite soils under the observation of the geotechnical consultant. All fill soils should be placed in loose lifts, moisture conditioned as required and compacted to a minimum of 90 percent relative compaction based on ASTM Test Method D 1557. Lift thickness will be dependent on the equipment used as suggested in the latest edition of the *Standard Specifications for Public Works Construction* (Greenbook). The fill soils should extend to the bottom of the aggregate base for new pavement, or to finished grade.

5.2 PILE FOUNDATIONS

We have evaluated various pile foundation systems and have determined that driven pre-cast, prestressed square concrete piles are the most cost-effective foundation alternative.

5.2.1 PILE CAPACITIES

The downward and uplift capacities of square driven pre-stressed concrete piles are presented in the following table. We have assumed that piles will extend through existing fill and sump materials. Based on the currently available information, the maximum depth of fill or sump materials is not anticipated to exceed 30 feet bgs within the proposed building footprints (Plate 2).

	14-inch-	16-inch-
Pile Length	square	square
50	250	300
60	300	400

Driven Precast Concrete Pile Capacities (in Kips)

The top of the pile is anticipated to be about 5 feet bgs. Accordingly, the table above assumes a minimum embedment of 10 feet in alluvium underlying refuse. Dead plus live load capacities are shown in the table above. A one-third increase may be used for wind or seismic loads. A factor of safety of 2 was used in determining the pile capacities.

Uplift capacities may be taken as equal to 60 percent of the downward capacities. The skin friction developed in the natural soils and the reduced skin friction anticipated in the refuse was used to develop the allowable uplift capacities of the piles. The capacities presented are based on the strength of the soils; the strength of the pile section should be checked to verify the structural capacity of the piles. The downdrag loads caused by the settlement of the refuse should be added to the structural loads in determining pile lengths.

In general, the refuse will be in direct contact with the piles, preventing buckling within the piles; however, localized voids may develop within the refuse. We recommend that the piles be designed for an unsupported length of 5 feet.

Piles in groups may be spaced at 3 pile widths on-centers. If the piles are so spaced, no reduction in axial capacity due to group action need be considered in the design.

5.2.2 DOWNDRAG LOADS

In addition to the building loads on the piles, the settlement of the undocumented fill and sump materials in contact with the pile will create downward loading on the piles. The magnitude of the load will depend on the thickness of settling zone and the developed friction between the piles and the settling zone. The downdrag loads can be reduced by pre-drilling the pile location prior to installing the production pile. If pre-drilling is selected, a displacement-type drill will be required to prevent generation of cuttings contaminated with sump materials.

We estimate that the required cross-sectional area of the pre-drilling will be about 80 to 100 percent of the cross-sectional area of the pile. The optimal area will be determined during the indicator pile program. Based on data from prior pile load tests at the nearby sites, a 14-inch-square pile driven 30 feet directly through the undocumented fill and sump materials will develop about 120 kips of downdrag load if it is installed after pre-drilling. A 16-inch-square pile driven 30 feet directly through the refuse will develop about 140 kips of downdrag load if it is installed after pre-drilling. The optimum size will be verified during the indicator pile program.

5.2.3 SETTLEMENT

The settlement of the proposed buildings, supported on driven piling in the manner recommended, will be less than 1 inch. Differential settlement will be about $\frac{1}{2}$ inch or less.

5.2.4 LATERAL RESISTANCE

Lateral loads may be resisted by the piles and by the passive resistance of the soils. The lateral capacity of the piles will depend on the pile type and size, the permissible deflection, and on the degree of fixity at the top of the pile.

We have calculated the lateral load, maximum moments, and depths to zero moment for 14- and 16-inch-square, pre-stressed, precast concrete piles using the computer program LPILE by ENSOFT, Inc. Based anticipated structural pile details, we used a concrete compressive strength value (f_c) of 6 kips per square inch (ksi) and a yield stress (f_y) of 270 ksi for the steel reinforcing.

To account for the reduction in bending stiffness due to concrete cracking, a subroutine in the program LPILE that computes the bending stiffness as a function of applied bending moment and axial loading was incorporated into the analyses. We have assumed that the minimum steel reinforcing consists of six and eight ½-inch-diameter low relaxation Grade 1860 tendons, for 14-and 16-inch-square piles respectively, with clear concrete cover thickness of 3 inches.

Our computations were performed for pile head deflections of 1/4 inch and 1/2 inch. The results are summarized in the tables below.

	Pile H	Pile Head Deflection (inches)				
	1	/4	1	/2		
Pile Head Condition	Free	Fixed	Free	Fixed		
Lateral Load (kips)	15	28	20	40		
Maximum Moment (inch-kips)	480	900	680	1240		
Depth to Maximum Moment (ft)	5	0	5	0		
Depth to Zero Moment (ft)	16	18	16	18		

Lateral Load Design Data 14-inch Square Driven Pile

	Pile Head Deflection (inch			nches)
	1	/4	1	/2
Pile Head Condition	Free	Fixed	Free	Fixed
Lateral Load (kips)	20	36	28	52
Maximum Moment (inch-kips)	680	1300	960	1800
Depth to Maximum Moment (ft)	5½	0	5½	0
Depth to Zero Moment (ft)	18	22	18	22

Lateral Load Design Data 16-inch Square Driven Pile

The capacities presented in the table above are for pile lengths equal to or greater than 30 feet below the bottom of pile cap. The lateral capacity and reduction in the bending moment are based in part on the assumption that any required backfill adjacent to the pile caps and grade beams are properly compacted.

The capacities reflect the anticipated subsidence. The capacities are based on loosened and displaced cover fill and refuse adjacent to the pile due to the anticipated pre-drilling.

For piles in groups spaced at least 3 pile widths on centers, no reduction in the lateral capacity need be considered for the first row of piles. For subsequent rows in the direction parallel to loading, piles in groups spaced closer than 8 pile widths on centers will have a reduction in lateral capacity due to group effects. The lateral capacity of piles in groups spaced at 3 pile widths on centers may be assumed to be reduced by half. The reduction for other pile spacings may be interpolated between no reduction for piles spaced at 8 pile widths on centers and the reduction for piles spaced at 3 pile widths on centers.

The passive resistance of properly compacted fill against pile caps, grade beams, and turn-down walls will depend on the method of installation. The future settlement of the refuse will cause disturbance of the soils adjacent to poured in place structure and the soils settle. The passive resistance of properly compacted fill may be assumed to be equal to the pressure developed by a fluid with a density of 200 pounds per cubic foot (pcf). It will require about ³/₄ inch of displacement to mobilize the full passive resistance of 4 feet of compacted backfill. For ¹/₄ inch and ¹/₂ inch displacement, the passive resistance from the same 4 feet of compacted backfill would decrease to 150 pcf and 175 pcf, respectively.

A one-third increase in the quoted passive values may be used for wind or seismic loads. The lateral resistance of the piles and the passive resistance of the soils may be combined without reduction in determining the total lateral resistance.

Friction between structurally supported slabs and the subgrade soils should not be considered due to the anticipated refuse settlement.

5.2.5 PILE INSTALLATION

The specification of pile driving criteria for termination of pile driving will depend on the pile hammer used and the characteristics of the pile selected for construction. Once the pile driving system is selected, wave equation analysis should be performed to evaluate drivability and to develop driving criteria. The final driving criteria should be developed using wave equation analysis incorporating the results of the indicator pile program recommended below.

Unless refusal is encountered, driving should not be terminated until blowcounts in excess of the number required to develop the allowable pile load are achieved. Refusal may be defined as driving resistance corresponding to 3 times the required blowcounts.

We recommend that 2 indicator piles be driven at the site of each proposed structure to verify the required pile lengths and to evaluate the efficiency of driving systems before production piles are cast or ordered. The indicator piles should be ordered 10 feet longer than the design length to allow for instrumentation and possible variations in the subsurface materials. We will provide proposed locations of indicator piles after the pile foundation plan is finalized. Dynamic measurements during the indicator pile program using a Pile Driving Analyzer (PDA) is recommended on all indicator piles to develop blowcount and refusal criteria required to develop design capacities as well as to evaluate the induced stresses on the piles and the depth of pre-drilling, if required.

If pre-drilling is required to maintain induced stresses on piles below acceptable levels, the auger for pre-drilling should have a cross-sectional area no larger than 80% of the cross-sectional area of the pile and pre-drilling should be limited to the cover fill unless displacement-type augers that do not generate spoils are used.

5.2.6 ULTIMATE VALUES

The various values recommended for foundation design are for use with loadings determined by a conventional working stress design. If the structures are analyzed based on an ultimate design concept, the recommended axial pile capacities may be multiplied by 1.5.

In no event however, should the pile lengths be reduced from those required for support of dead plus live loads when using the working stress design method.

5.3 SLABS-ON-GRADE

As previously mentioned, because of the potential for settlement of the subgrade, all floors slabs and other "slabs-on-grade" should be structurally supported to maintain grade uniformity within each building. However, due to the anticipated subsidence, there may be difficulties in maintaining access between the pile-supported structure and the exterior grades. One method in providing access would be diligence maintenance of transition areas between the pile-supported building and slabs and non-pile supported adjacent areas (mostly pavement). We understand that the currently preferred method is to add pavement overlays as necessary to future depressed areas that will restore design grades. This method is deemed feasible considering the gradual nature of the anticipated settlement and cost-effective considering that

mobilization for pavement overlays will be required to address pavement settlement-induced distress.

Another method in providing access would be in the use of transition slabs between the building and the exterior slabs. Such transition slabs could be about 20 feet in length, hinged at the building and supported on grade at the other end and reinforced to span its 20-foot length. The slab would thereby be able to maintain building access while experiencing the anticipated movement and could be periodically releveled. The requirements of the ADA Act should be met for all grade changes.

Concrete slabs not underlain by refuse may be designed using a modulus of subgrade reaction of 150 pci provided the subgrade is prepared as described in Section 6.1. From a geotechnical standpoint, we recommend slab-on-grade be a minimum 5 inches thick with No. 3 rebars placed at the center of the slab at 24 inches on center in each direction. The structural engineer should design the actual thickness and reinforcement based on anticipated loading conditions. Where moisture-sensitive floor coverings or equipment is planned, the slabs should be protected by a minimum 10-mil-thick vapor barrier between the slab and subgrade.

Minor cracking of concrete after curing due to drying and shrinkage is normal and should be expected; however, concrete is often aggravated by a high water/cement ratio, high concrete temperature at the time of placement, small nominal aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of low-slump concrete or low water/cement ratios can reduce the potential for shrinkage cracking. Additionally, our experience indicates that the use of reinforcement in slabs and foundations can generally reduce the potential for concrete cracking.

To reduce the potential for excessive cracking, concrete slabs-on-grade should be provided with construction or weakened plane joints at frequent intervals. Joints should be laid out to form approximately square panels.

5.4 LATERAL EARTH PRESSURES

Recommended lateral earth pressures are provided as equivalent fluid unit weights, in psf/ft. or pcf., for retaining walls in drained conditions using onsite sandy soils as backfill.

	Equivalent Fluid Unit Weight (psf/ft)	
Condition	Level Backfill, Static Condition	
Active	35	
At-Rest	55	
Passive*	300	
Coefficient of Friction	0.35	

*See Section 6.2.4 for discussion of reduced passive resistance for areas underlain by refuse

The above passive resistance values do not contain an appreciable factor of safety, so the structural engineer should apply the applicable factors of safety and/or load factors during design.

Cantilever walls that are designed for a deflection at the top of the wall of at least 0.001H, where H is equal to the wall height, may be designed using the active earth pressure condition. Rigid walls that are not free to rotate, walls that are braced at the top, and walls that provide indirect support for foundations should be designed using the at-rest condition. A seismic increment of 20 pcf may be added to the active earth pressure above to evaluate seismic loading on walls.

The above lateral earth pressures are based on fully drained conditions. Infiltrating surface water may build-up behind proposed basement walls. Therefore, walls below grade should be designed to resist hydrostatic pressures (equivalent fluid pressure of 62.4 pounds per cubic foot) or be provided with positive drainage behind the wall.

Lateral load resistance will be provided by the sliding resistance at the base of the foundation and the passive pressure developed along the front of the foundation. A frictional resistance coefficient of 0.35 may be used at the concrete and soil interface.

In addition to the above lateral forces due to retained earth, the appropriate loads due to surcharges should be considered in the design of retaining structures.

5.5 SEISMIC DESIGN PARAMETERS

The following values may be used for the seismic design method based on the 2016 CBC (based on ASCE 7-10). Seismic response spectra are presented in Appendix B.

Categorization/Coefficient	Design Value
Site Class	D
Seismic Design Category	D
Adjusted spectral response acceleration parameter at short period, $S_{\mbox{\scriptsize MS}}$	1.650 g
Adjusted spectral response acceleration parameter at a period of 1 sec, S _{M1}	0.922 g
Design spectral response acceleration parameter at short period, S _{DS}	1.100 g
Design spectral response acceleration parameter at a period of 1 sec, S _{D1}	0.615 g
Peak Ground Acceleration for Maximum Considered Earthquake (MCE _G), PGA _M	0.630 g

5.6 PAVEMENT DESIGN

To provide support for paving, the subgrade soils should be prepared as recommended in Section 5.1. Settlement of the undocumented fill and sump materials in paving areas will occur and maintenance will be required. Compaction of the subgrade, including trench backfills, to at least 95%, and achieving a firm, hard, and unyielding surface will be important for paving support. The preparation of the paving area subgrade should be performed immediately prior to placement of the base course. Proper drainage of the paved areas should be provided since this will reduce moisture infiltration into the subgrade and increase the life of the paving. The preliminary paving thicknesses presented in the table below are based on our observations of the on-site soil conditions and construction considerations.

5.6.1 ASPHALT CONCRETE PAVING

The required paving and base thicknesses will depend on the expected wheel loads and volume of traffic (Traffic Index or TI). The R-values of existing near surface fill ranged from 5 to 20. Assuming that the paving subgrade will consist of the on-site or comparable soils (minimum R-value of 10) compacted to at least 95% of the maximum dry density obtainable by the ASTM Designation D1557 method of compaction as recommended, the minimum recommended paving thicknesses are presented in the following table.

Asphalt Concrete (AC) Paving Thickness

Area	Traffic Index	AC Paving (inches)	Base Course (inches)
Automobile Parking	4	3	6
Heavy Truck	6	3	13

The asphalt paving sections were determined using the Caltrans design method. We can determine the recommended paving and base course thicknesses for other Traffic Indices if required. Careful inspection is recommended to verify that the recommended thicknesses or greater are achieved, and that proper construction procedures are followed.

5.6.2 PORTLAND CEMENT CONCRETE PAVING

Portland cement concrete (PCC) paving sections were determined in accordance with procedures developed by the Portland Cement Association. Concrete paving sections for a range of Traffic Indices are presented in the following table. We have assumed that the Portland Cement Concrete will have a compressive strength of at least 4,000 pounds per square inch.

PCC Paving Thickness

Traffic Index	PCC Paving (inches)	Base Course (inches)
4	6	4
7	7	6

The paving should be provided with expansion joints at regular intervals no more than 15 feet in each direction. Load transfer devices, such as dowels or keys, are recommended at joints in the paving to reduce possible offsets. The paving sections in the above table have been developed based on the strength of unreinforced concrete. Steel reinforcing may be added to the paving to reduce cracking and to prolong the life of the paving.

5.6.3 SPECIFICATIONS

The base course should conform to requirements of Section 26 of State of California Department of Transportation Standard Specifications (Caltrans), latest edition, or meet the specifications for untreated base as defined in Section 200-2 of the latest edition of the Standard Specifications for Public Works Construction (Green Book). The existing asphalt paving may be used for base course if it is crushed and processed to meet the requirements of crushed miscellaneous base per the Green Book. The base course should be compacted to at least 95 percent relative compaction. The asphalt concrete should conform to the specifications outlined in Section 203-6 of the Green Book, and asphalt concrete construction methods should meet the requirements of Section 302-5 of the Green Book.

5.7 TEMPORARY EXCAVATIONS

All temporary excavations, including utility trenches, retaining wall excavations and foundation excavations should be performed in accordance with project plans, specifications, and all OSHA requirements. Excavations 5 feet or deeper should be laid back or shored in accordance with OSHA requirements before personnel are allowed to enter.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the cut, unless the cut is shored appropriately. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of any adjacent existing site foundation should be properly shored to maintain support of the adjacent structure.

During construction, the soil conditions should be regularly evaluated to verify that conditions are as anticipated. The contractor should be responsible for providing the "competent person" required by OSHA, standards to evaluate soil conditions. Close coordination between the competent person and the geotechnical engineer should be maintained to facilitate construction while providing safe excavations.

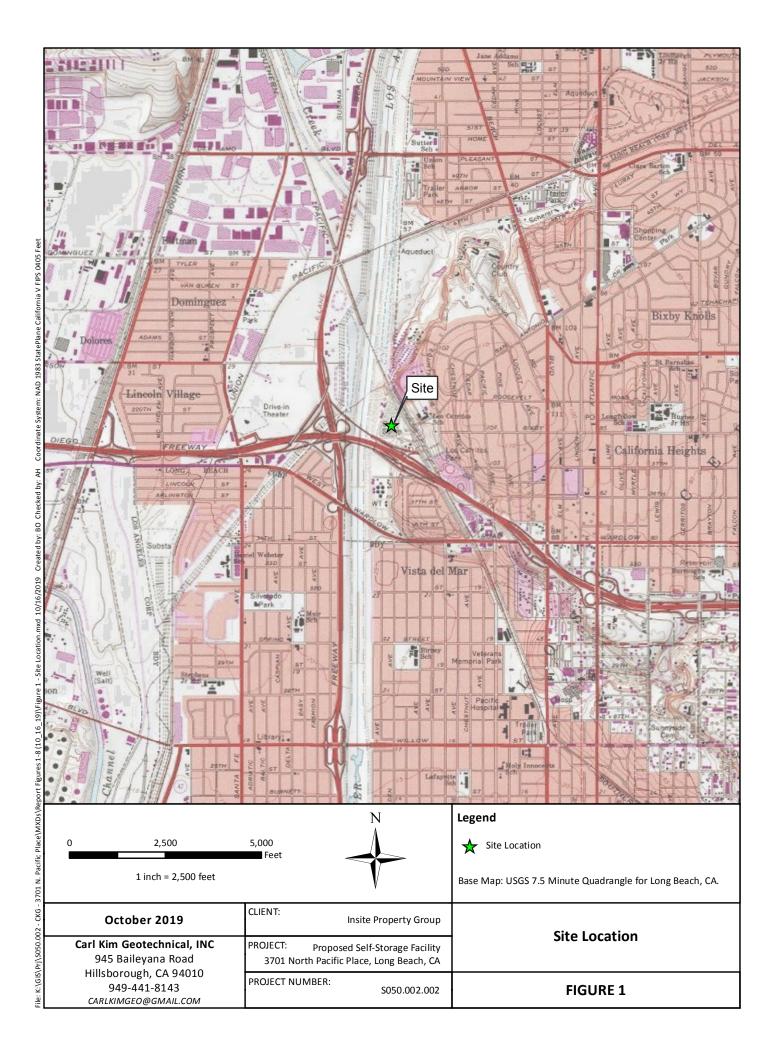
5.8 ADDITIONAL GEOTECHNICAL SERVICES

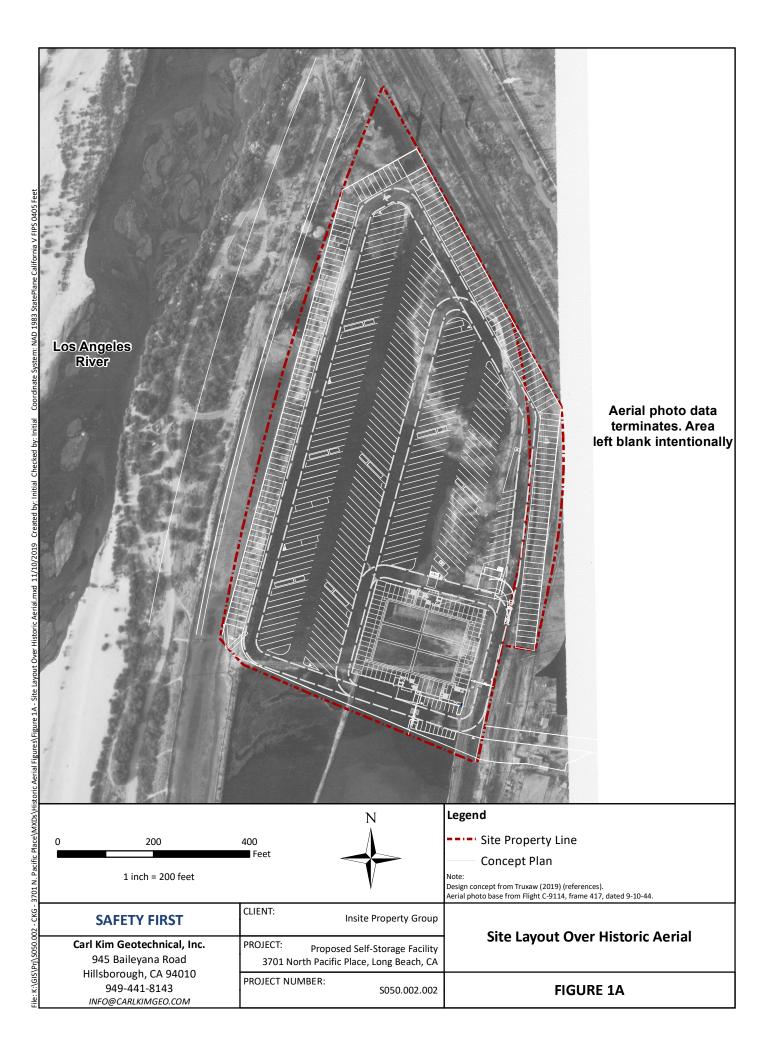
The geotechnical recommendations presented in this report are based on subsurface conditions as interpreted from limited subsurface explorations and limited laboratory testing. Our conclusions and recommendations presented in this report should be reviewed and verified by Carl Kim Geo during site construction and revised accordingly if exposed geotechnical conditions vary from our preliminary findings and interpretations. The recommendations presented in this report are only valid if Carl Kim Geo verifies the site conditions during construction. Geotechnical observation and testing should be provided during the following activities:

- Grading and excavation of the site;
- Overexcavation and compaction;
- Compaction of all fill materials;
- Excavation and installation of foundations;
- After excavation of all slabs and footings and prior to placement of steel or concrete to confirm the slabs and footings are founded in firm, compacted fill;
- Utility trench backfilling and compaction; and
- When any conditions are encountered that varies significantly from the conditions described in this report.

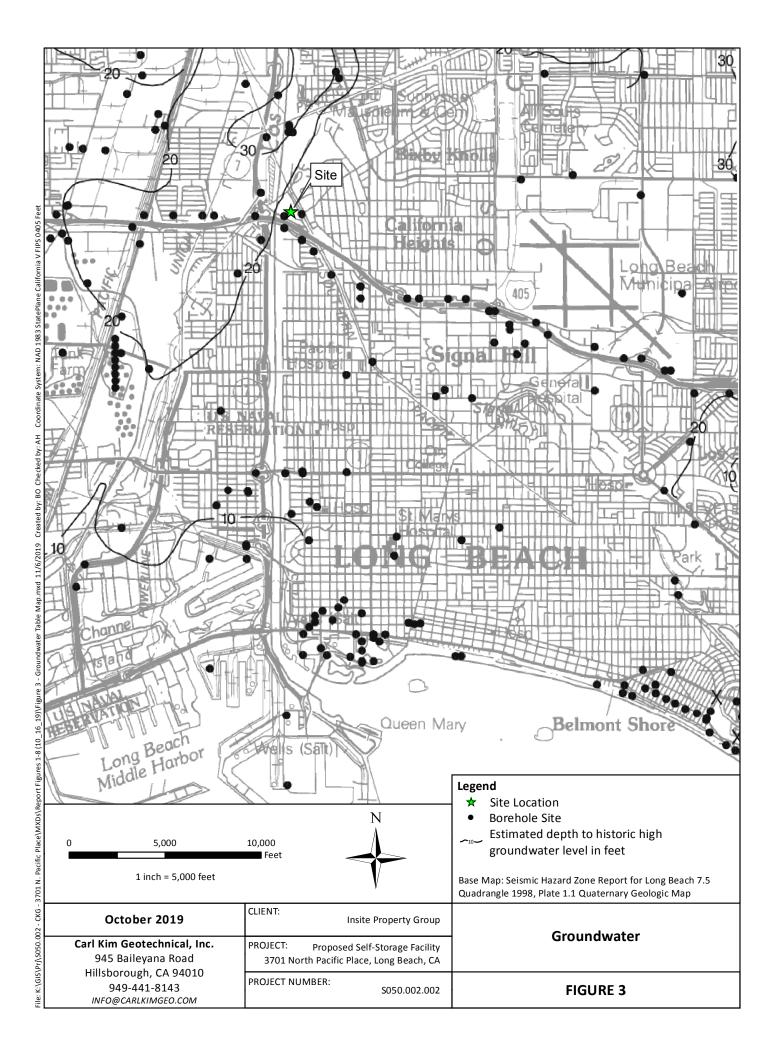
Carl Kim Geo should review the final grading and foundation plans and specifications, when available, to comment on the geotechnical aspects. Our recommendations should be revised, as necessary, based on future plans and incorporated into the final design plans and specifications.

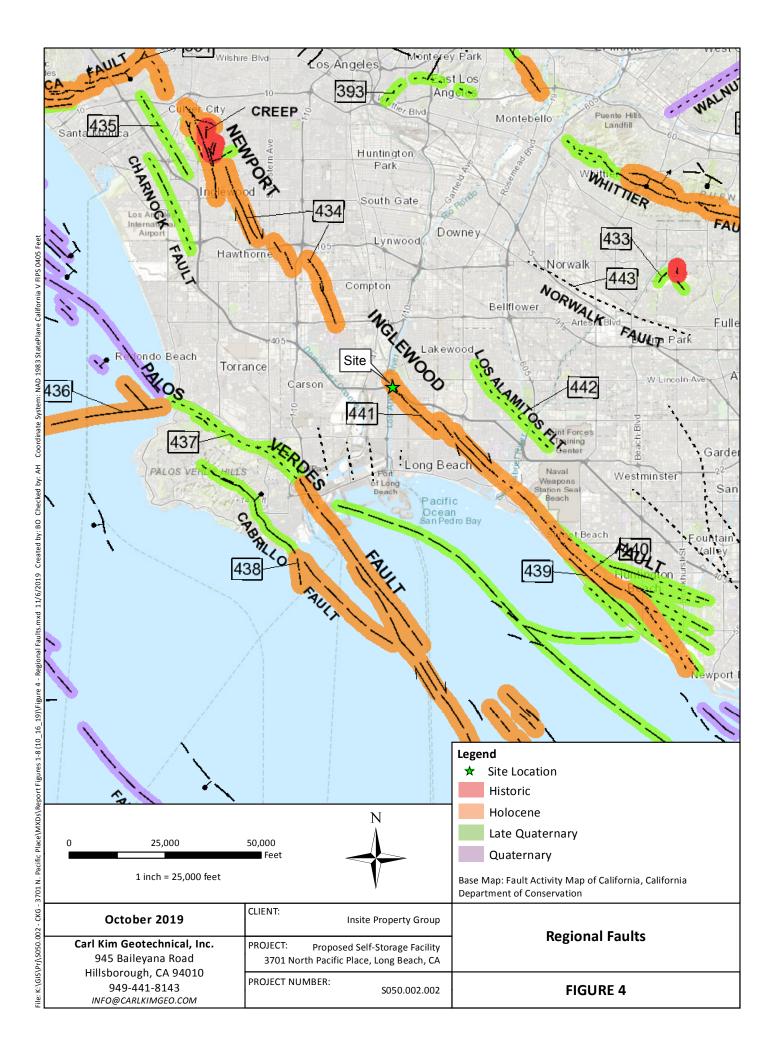
6.0 COUNTY OF LOS ANGELES BUILDING CODE SECTION 111 STATEMENT

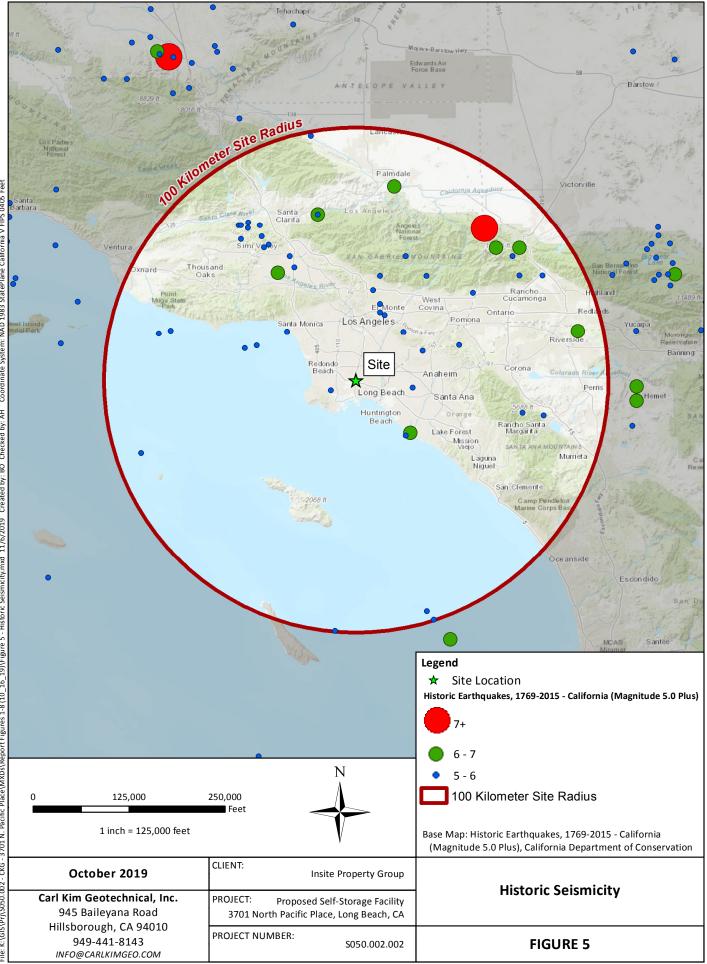

Provided that the recommendations in this report are implemented, it is Carl Kim Geo's opinion that the proposed project will be safe from the hazards of landslide, settlement, or slippage, and that the proposed project will not adversely affect the stability of adjacent properties.

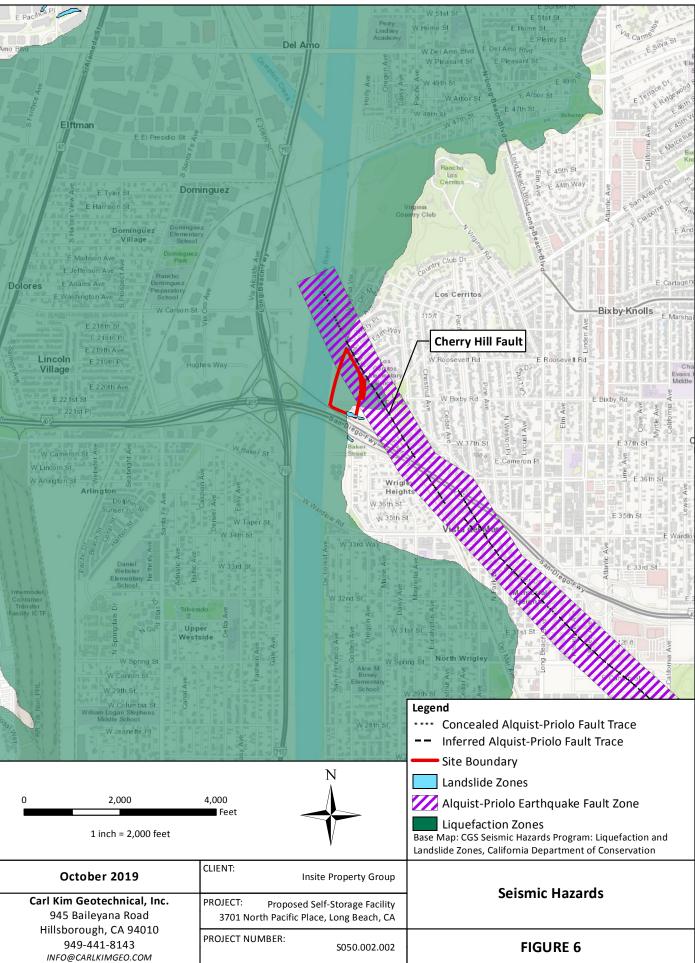

7.0 LIMITATIONS


The geotechnical engineering analyses presented in this geotechnical exploration report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No other warranty, express or implied, is made regarding the conclusions, recommendations, and opinions presented in this report.

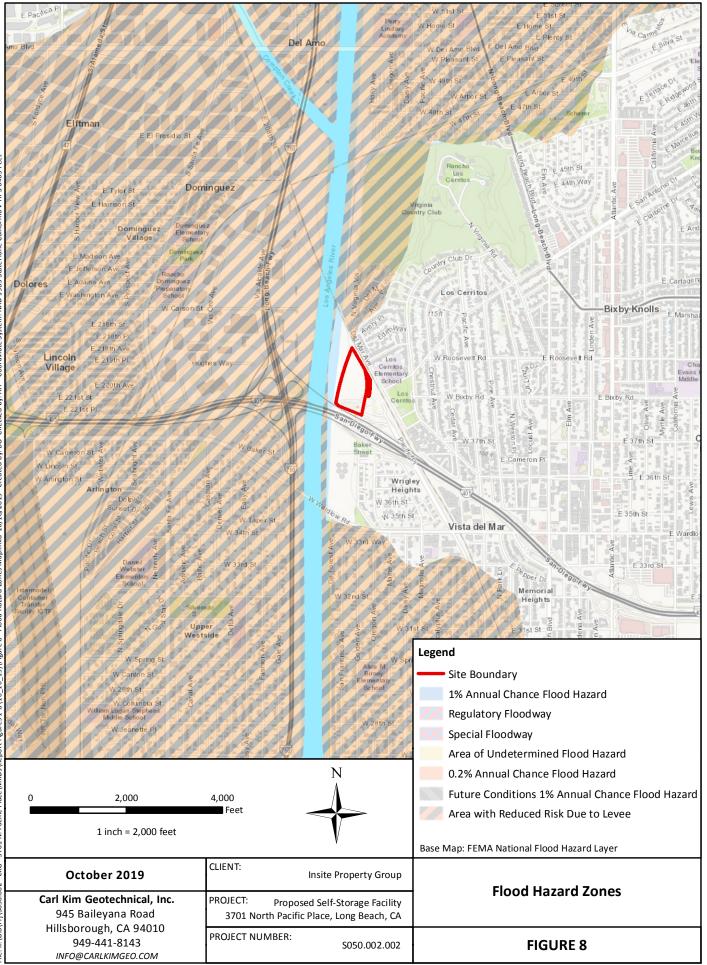

Please also note that our evaluation was limited to assessment of the geologic and seismic aspects of the site, and did not include evaluation of structural issues, environmental concerns or the presence of hazardous materials. Our conclusions, recommendations and opinions are based on an analysis of the observed site conditions, engineering characteristics of the observed site soils and our review of the referenced geologic literature and reports. If geologic conditions different from those described in this report are encountered, our office should be notified and additional recommendations, if warranted, will be provided upon request.


FIGURES









NAD 1983 StatePlane California V FIPS 0405 Fee Coordinate System: AH Checked by: Created by: BO 11/6/2019 pxq 19)/Figure 6 - Seismic Hazards Map. 3701 N. Pacific Place\MXDs\Report Figures 1-8 (10_16_ - CKG - 3 File: K:\GIS\Prj\S050.002 -

State NAD 1983 AH BO ş Place\MXDs\R acific 701 SS K:\GIS\Prj\S050.002 File: **APPENDIX A**

REFERENCES

APPENDIX A

REFERENCES

- Bryant, William A., (Bryant) 1985, California Division of Mines and Geology, Fault Evaluation Report FER-173, Northern Newport-Inglewood Fault Zone, Los Angeles County, California, dated November 15, 1985
- California Department of Water Resources, 1961, Planned utilization of the ground water basins of the coastal plain of Los Angeles County: Bulletin 104, Appendix A, dated June 1961.
- California Geological Survey (CGS), 1998, Seismic Hazard Zone Report for the 7.5 Minute Long Beach Quadrangle, Los Angeles County, California, SHZR 028, dated 1998 (updated 1/13/06)
- CGS, 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special publication 117A, (revised and re-adopted) dated September 11, 2008.
- CGS, 2009, Tsunami Inundation Hazard Map for Emergency Planning, Long Beach Quadrangle, Scale of 1:24,000, Dated March 1, 2009
- CGS, 1999, Earthquake Fault Zones of Required Investigation, Long Beach Quadrangle, Official Map, signed by State Geologist James Davis, EFZ's released July 1, 1986 and SHZ's released March 25, 1999, scale of 1 to 24,000 (updated 2016).
- CGS, 2016, Geologic Map of the Long Beach 30 x 60 Quadrangle, California, Version 2.0, Scale of 1:1,000,000, contour interval of 10 meters, dated 2016
- CGS, 2018, Special Publication 42, Earthquake Fault Zones, A Guide for Government Agencies, Property owners / Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps, Revised 2018
- Federal Emergency Management Agency (FEMA), 2009, FEMA Flood Map Service Center, web interface for flood hazard mapping. <u>https://msc.fema.gov/portal/home</u>
- InSite, 2019, Conceptual Masterplan [package, ten pages], undated
- Jennings, C.W., 1994, Fault Activity Map of California and Adjacent Areas; California Division of Mines and Geology, Geologic Data Map 6, Scale 1:750,000.
- KSP Studio (KSP), 2019, Conceptual Site Plan, 3701 North Pacific Place, Long Beach, CA, Option 3, KSP Project No. 20492, Sheet 2, Scale of 1" to 60', dated 9.30.19
- LFR, 2007a, Historical Review of CRG Properties Former Oil Operators' North Site, Long Beach, California, LFR Project No. 002-10231-01, dated March 7, 2007.
- LFR, 2007b, Revised Characterization Data Report, Former Oil Operators North Site, 3701 Pacific Place, Long Beach, California, LFR Project No. 002-10231-01, dated March 12, 2007.
- LFR, 2009, Final Remedial Investigation Report, Former Oil Operators North Site, 3701 Pacific Place, Long Beach, California, LFR project No. 002-10231-06, dated May 27, 2009.

[City of] Long Beach, 1988, City of Long Beach General Plan, Seismic Safety Element, dated October 1988

Long Beach, 2017, Hazard Mitigation Plan, dated February 28, 2017.

- Roux Associates, Inc. (Roux), 2019a, E-mail and Personal Communication with Jaydeep Purandare and Peter Shimer, September/October 2019.
- Roux Associates (Roux), 2019b, Former Oil Operators, Inc., 3701 Pacific Place, Long Beach, California [presentation by Jaydeep Purandare and Mauricio H. Escobar to DTSC representatives.], June 29, 2019.
- Joseph C. Truxaw and Associates, Inc. (Truxaw), 2019a, ALTA/NSPS Land Title Survey, 3701 North Pacific Place, In the City of Long Beach, County of Los Angeles, California, Project Number IPG 19058, 4 sheets, Scale of 1" to 30', dated 8-28-19.
- Truxaw, 2019b, [Preliminary] Earthwork Exhibit, InSite Pacific Self Storage, 3701 N. Pacific Place, Long Beach, CA, scale of 1" to 100', dated 9/17/2019
- Yerkes, R.F., and Campbell, R.H., 2005, Preliminary Geologic Map of the Los Angeles 30' x 60' Quadrangle, Southern California, United States Geological Survey (U.S.G.S.) Open-File Report 2005-1019, Version 1.0, Map Scale 1:100,000.
- Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E., and Vedder, J.G., 1965, Geology of the Los Angeles basin, California--an introduction: U.S. Geological Survey Professional Paper 420-A

DIGITAL AERIAL PHOTOS

- Fairchild Aerial Surveys (Fairchild), Flight C-300, Frame 142-143 and 155-156, Scale 1:18,000, flight begin date December 31, 1927.
- Fairchild Aerial Surveys (Fairchild), Flight C-9114, Frame 416-418 and 155-156, Scale 1:3,600, flight begin date September 8-10, 1944.⁵
- Pacific Air Industries (PAI), Flight PAI-LA-Basin-62_151V, frames 115 and 116, Scale 1:18,000, start date January 28, 1962.⁵
- Teledyne Geotronics, Flight TG-7600, frame 4-10, Scale 1:24,000, frame dated 3-22-76.5
- United States Department of Agriculture (USDA), Flight AXJ-13K, frame 216 and 217, Scale ~1:18,000, flight dated 10-19-53.⁵

⁵University of California Santa Barbara (UCSB) digital collection, <u>http://mil.library.ucsb.edu/ap_indexes/FrameFinder/</u>

APPENDIX B

FIELD EXPLORATIONS

APPENDIX B

FIELD EXPLORATIONS

Subsurface explorations during the current geotechnical investigation consisted of drilling and sampling using hollow-stem-auger drilling and cone penetration test (CPT) soundings. Explorations were supervised and logged by qualified representatives. Earth materials encountered were visually classified in accordance with the Unified Soil Classification System (USCS), as practicable. Stratigraphic boundaries are indicated on the logs. Some soil/material types transition gradually. The logs of the borings and the report presenting the results of the CPT soundings are presented in this appendix.

Work was performed in accordance with means and methods disclosed to approved by Department of Toxic Substances Control representatives and per the requirements of the City of Long Beach Environmental Health [Boring] Permit No. 2681.

Carl Kim Geotechnical prepared and implemented a site-specific Health and Safety Plan (Plans) for all staff and subcontractor site work.

RECONNAISSANCE AND LOGISTICS

Locations of the borings and CPT soundings were chosen to obtain subsurface information at locations appropriate for the objective of this report. Prior to conducting the subsurface explorations, Carl Kim Geotechnical personnel evaluated each drill site for equipment access and marked proposed locations.

Underground Service Alert (USA) was contacted greater than 48 hours in advance of subsurface work. USA contacted members (i.e. utility infrastructure owners) to provide clearance for drilling with respect to underground utility lines. No underground utilities were encountered with drilling equipment during the current investigation.

SUBSURFACE EXPLORATION

A total of 10 hollow stem auger borings, designated CKG-1 through CKG-10 were drilled October 2, 2019 through October 8, 2019 by ABC Liovan Drilling of Signal Hill, California. Drilling was performed using a truck mounted CME 75 drill rig operated by a driller and two driller's assistants. Borings ranged in depth of from 20 feet to 75 feet below ground surface.

PWAS_20190823b

Cone Penetrometer Test (CPT) soundings were performed at 15 different locations October 1, 2, and 4, 2019. CPT soundings are designated CPT-1 through CKCPT-15. Shear wave measurements were obtained at CPT-11 on 5-foot increments.

CPT interpretations are included in this appendix.

BOREHOLE SEALING

Each borehole was abandoned using positive displacement methods (tremie pipe) with neat cement grout. As noted in the logs some borings presumably encountered subsurface voids that cause the neat cement grout to settle below ground surface. In these locations borings were partially backfilled with hydrated bentonite chips to bridge the voids.

SAMPLING

Representative relatively undisturbed and bulk (bag) samples were obtained from the borings. Samples were logged, labeled, and retained for laboratory testing. Sample depths are indicated on the logs.

Relatively undisturbed samples were obtained by driving a Modified California Split-Spoon Sampler, with a 3.0-inch outside diameter, into the bottom of the boring at desired depths. The barrel of the sampler was lined with 1-inch-tall by 2.41-inch inside diameter geotechnical sampling rings. The rings containing the undisturbed samples were placed in plastic cans, labeled, and transported to Smith-Emery Labs of Los Angeles via courier.

The number of blows to achieve a 6-inch penetration of the sampler was recorded and is shown on the logs. The blow counts provide an indication of the density or consistency of the in-situ earth materials.

In addition to obtaining undisturbed and large bulk samples, Standard Penetration Tests (SPT) were performed in each of the hollow-stem auger borings. The SPTs were performed in accordance with the ASTM D1586 Test Method. The results of the tests are indicated on the boring logs, where blow counts or N-values are given for each 6 inches of driving. Samples of the materials obtained from the SPT sampler were placed in plastic bags for transport to the laboratory.

For the fault investigation, near continuous core sample was obtained from CKG-1, CKG-2, and CKG-9 using hollow-stem auger drilling and a CME soil coring system. Core runs varied from 3 to 5 feet in length. Core sample was placed in wooden core boxes, logged, and photographed. Core boxes were retained onsite. As of the date of this document Carl Kim Geotechnical understands that the samples were vandalized. Therefore, the core samples will be disposed of.

Each split spoon sample was screened for organic vapors using a Minirae 3000 photoionization detector (PID).

EXPLORATION LOGS

CKG-1 through CKG-10

CPT-1 through 10

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-1 Sheet 1 of 3

Drilling Method			STI	EM AU	GER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	al Depth Borehole 75 FEET	BGS		
Drill Rig Гуре	CME	E 85							proximate face Elevation 49.9	2 FEE	ET BG	s
Ground and Dat				2 FEE1 3-19	ΓBG	S AT	D ON	Sampling Method(s) Bulk, CME Dat	^{mmer} 140 LB AUT	TO, 3	0" DR	OP
	e NE			ENT 5%	6 BE	ΝΤΟΝ	NITE	Location CO-LOCATED WITH CPT-2				
66 56 Elevation (feet) 1	Depth (feet)	Sample Number	Sample Type	Recovered (in) / Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
43.32	0					SP		FILL - SAND (SP) - dark brown, dry, fine, poorly grade				
-		BULK-1 0-3		36/60	2.0	CL		CLAY-SANDY CLAY (CL) - dark olive gray, damp, soft plasticity, sand is fine, some gravel, black staining, pet odor, some dark oily residue, trace asphalt chunks	-firm, low - roleum-like - - -			
44.92 — - -	5		XXXXXXXXXXXXXXXXXXX	60/60	10	SP CL		SAND (SP) - black, damp, fine, poorly graded, strong p odor, oily residue/staining CLAY (CL) - black, damp, soft, low plasticity, sand is fin gravel, petroleum-like odor, trace black staining/oily res	ne, some			
- 39.92 — -	10					SP-SN		SAND-SILTY SAND (SP-SM) - black, damp, loose to d poorly graded, silty interbeds, dark oily staining, strong odor, scattered concrete pieces	petroleum-like			
-	-			36/60	15.0	SP		SAND (SP) - black, damp, fine, poorly graded, strong p odor, oily residue/staining, varying clay content	petroleum-like -			
34.92 — - -				30/60	8.9	CL SP CL-ML		SUMP MATERIAL(?): - CLAY (CL) - black, damp, very plasticity, sand is fine, some gravel, petroleum-like odo oily staining SAND (SP) - black, damp, fine, poorly graded, strong p odor, black oily staining, varying clay content, piece of sample at 16 feet bgs ALLUVIUM: - SILTY CLAY - CLAYEY SILT (CL-ML) - soft, no to low plasticity, rootlets, laminar silt beds, mod	or, trace black petroleum-like paper in black, moist,			
- 29.92 —	- 20							petroleum-like odor, sand content increases with depth CLAYEY SAND				

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-1 Sheet 2 of 3

Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Recovered (in) / Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE
ш 29.92 —	й 20 —	Š	N X	ай Ч	₫	́ СL-ML		MATERIAL DESCRIPTION ALLUVIUM: - SILTY CLAY - CLAYEY SILT (CL-ML) - black, moist,	Ň	ū	TESTS
-				24/24				 soft, no to low plasticity, rootlets, laminar silt beds, moderate petroleum-like odor, sand content increases with depth, grades into a CLAYEY SAND 			
- - 24.92	- 25 -		XXXXX	36/36	4.6	SC		CLAYEY SAND (SC) - black, moist, fine, poorly graded, some clay with no to low plasticity, decreasing fine content with depth, moderate petroleum-like odor, grades into a SILTY SAND			
-	· -			54/60	1.1	SM		SILTY SAND (SM) - black, damp, fine, poorly graded, moderate petroleum-like odor, decreasing fine content, grades into a SAND			
19.92 — - -	30			48/60	0.5	SP SP		SAND (SP) - dark olive gray, damp, fine to medium grain, poorly graded, massively bedded, faint petroleum-like odor, rare fines, beach sand Becomes gray, dry to damp, driller notes harder drilling conditions from 32 to 35 feet bgs			
- 14.92 — - -	· 35 — · 35 —		XXXXXXXXX	30/30	0.0						
- 9.92 - - -	40 <u>-</u> 40			60/60	0.0	CL-ML		LAKEWOOD FORMATION: SILTY CLAY-CLAYEY SILT (CL-ML) - (MUDSTONE) - gray mottled with dark yellowish brown, damp, firm, up to 15% fine sand, low plasticity, laminar beds, remnant rootlets			
4.92	45			42/60	0.0	SM		SILTY SAND (SM) - dark green, damp, predominantly fine grain with - some medium, poorly graded, laminar beds, fissile along faint laminar - beds			
-0.08	50			30/60	0.0	SM SP		Becomes dark greeninsh gray, decreasing fine content, grades into SAND SAND (SP) - dark greeninsh gray, moist to wet, fine to medium grain poorly graded, laminar beds			
-5.08 —	55										
								terra phase			

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-1 Sheet 3 of 3

Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Recovered (in) / Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS
-5.08 — -	55			30/30	0.0	SP		SAND (SP) - dark greeninsh gray, moist to wet, fine to medium grain, poorly graded, laminar beds			
- - -10.08	- - 60			30/30		SP		Becomes gray and greenish gray mottled with dark yellowish brown along bed planes, fine to medium, beach sand, weakly cemented, relatively hard drilling until 60 feet bgs	-		
-				36/36	0.0	SP		- ✔Increased clay content, grades into CLAYEY SAND -	-		
-15.08	65 —			36/36		SC		CLAYEY SAND (SC) - olive mottled with gray, wet, soft to firm, fine, —poorly graded, clay content varies, low plasticity –			
-				36/36	0.0			-	-		
-20.08 — -	70 -			24/24 24/24	0.0	SC-CI		CLAYEY SAND - SANDY CLAY (SC-CL) - strong brown mottled with gray, damp, firm, low plasticity, sand is fine, poorly graded			
- -25.08	- 75			24/24	0.0			- - DRILLED AND SAMPLED WITH CME SOIL CORING SYSTEM	-		
-								- TOTAL DEPTH = 75 FEET _ GROUNDWATER MEASURED AT 53.2 FEET BGS ATD BACKFILLED WITH NEAT CEMENT ON 10/03/19 -			
	80 —							- 	-		
-								-			
-35.08 —	85 — -										
- -40.08	90							- -			
								terraphase			

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-2 Sheet 1 of 3

Drilled 10-3	-19						Logged By DANIEL PHELPS	Checked By ANDRE	N HIL	LSTR	AND
Method	LOWS	STEM		GER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 75 FEET	BGS		
Drill Rig Type CME	E 85						Drilling Contractor ABC LIOVIN	Surface Lievation	84 FEE	ET AM	SL
Groundwater I and Date Mea				тво	GS AT	TD ON	Sampling Method(s) Bulk, CME	Hammer N/A Data			
Borehole NE	AT CEI OUT	MEN	T 5%	BEI	NTON	NITE	Location CO-LOCATED WITH CPT-4				
Elevation (feet)	Sample Number	Sample Type Recovered (in) /	Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
47.84 - 0	BULK-1X 0-3 X X X 0-3 X X X				SM-ML	d	ILL: SILTY SAND - SANDY SILT (SM-ML) - dark ry, fine, poorly graded, rootlets	-			
42.84 - 5	-	34 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6/60	8.5	CL	fii	UMP MATERIAL: SANDY CLAY (CL) - black, da ne, low plasticity, varying fine content with alterna layey layers, oily residue, strong petroleum-like o	ting sandy and			
 37.84 - 10 	_		6/60	1.0	SM SP	fii	ILTY SAND (SM) - olive gray mottled with yellow ne to medium, poorly graded, mild petroleum-like AND (SP) - dark gray, damp, fine to medium, poo lay intermixed	odor			
 32.84 - 15 	-	**************************************	2/60	0.8	SP	A	?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-	dium, poorly			
27.84 _ 20 _					SC		ANDY CLAY (SC) - black, damp, fine, poorly gra lasticity, roots, root hairs, oily residue, mild petrol				

Project: INSITE, LONG BEACH Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-2 Sheet 2 of 3

Project Number: PWAS_20190823B

Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Recovered (in) / Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
27.84 — -	20			36/36	0.4	SC		SANDY CLAY (SC) - black, damp, fine, poorly graded, no to low plasticity, roots, root hairs, oily residue, mild petroleum like odor, gradually fining upwards			
- - 22.84 —	- 25			24/24	0.1	SC SM		Grades into a SILTY SAND (SM)			
-				36/36	0.0	SIVI		SILTY SAND (SM) - black, damp, fine, poorly graded, roots, mild - petroleum-like odor - -			
- 17.84 —	30 —			24/24		SM		Becomes very dark gray			
-				60/60	0.0						
12.84 — -	35 — -					SM SP		Decreasing fine content, grades into SAND (SP) SAND (SP) - dark olive gray mottled with orange, damp, fine to medium, poorly graded, some silty interbeds			
-				36/60	0.0	SP		Becomes dark greenish gray, mostly massive with scattered beds			
7.84 — -	40			30/30	0.0			 			
- 2.84 —	45 —			30/30	0.0	ML		- CLAYEY SILT (ML) (MUDSTONE) - light gray mottled with orange, —dry to damp, soft to firm, trace fine sand, low plasticity, laminar, fissile —			
-				48/60	0.0	ML		along bed planes, sand and fine content varies			
-2.16 —	50			36/36	0.0	SP		 SAND (SP) - olive gray mottled with orange, damp, wet, fine to medium, poorly graded, massively bedded with scattered laminations; beach sand 			
-7.16	- - 55			24/24	0.0						

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-2 Sheet 3 of 3

Project Number: PWAS_20190823B

Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Recovered (in) / Total (in)	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHEF TESTS
-7.16 — -	55 —			36/36	0.0	SP SP		SAND (SP) - olive gray mottled with orange, damp, wet, fine to - medium, poorly graded, massively bedded with scattered laminations, - - beach sand Becomes gray with mottled with orange, damp, weakly to moderately - cemented, massively bedded			
- 	60 — - 60 —			0/24 36/36	0.0	SC SP		CLAYEY SAND (SC) - gray mottled with orange, moist, fine to medium, poorly graded, low plasticity - SAND (SP) - gray mottled with orange, moist, fine to medium, poorly			
- - 	 65			24/24 30/36	0.0			- graded, scattered white mineralization -			
- - - -22.16 -	70 -			24/24	0.0	SP SC		Becomes fine to coarse grain CLAYEY SAND (SC) - dark brown mottled with orange and gray, damp, increased density relative to above SAND unit, fine, poorly graded, no to low plasticity, massively bedded,			
- - - -27.16				30/36 24/24	0.0	SC-CI		Clay content increases, becomes CLAYEY SAND - SANDY CLAY			
-								DRILLED AND SAMPLED WITH CME CORING MACHINE TOTAL DEPTH DRILLED = 75 FEET GROUNDWATER ENCOUNTERED AT 51.39 FEET BGS ATD BACKFILLED WITH NEAT CEMENT 10-03-19			
-32.16 - -	80							 			
- 37.16 —	85							 			
- - - 42.16	90										
								terraphase			

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-3 Sheet 1 of 2

Date(s) Drilled 10-4 -	-19					Logged By DANIEL PHELPS	Checked By ANDRE	N HIL	LSTR/	AND
Method		TEM AU	JGER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 50 FEET	BGS		
Drill Rig Type CME	85					Drilling Contractor ABC LIOVIN	Approximate Surface Elevation 49.1	8 FE	ET AM	SL
Groundwater I and Date Mea		OT ENC	OUN	TERI	ED	Sampling Method(s) Bulk, California, SPT	Hammer Data 140 LB AU	то, з	0" DR	OP
Borehole NE Backfill GR	AT CEN OUT	IENT 59	% BEI	NTO	IITE	Location SOUTHEAST CORNER OF PROPOS	ED BUILDING			
Elevation (feet) Depth (feet)	Sample Number	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
49.18 0 -	BULK-1		Ľ	SM	F	FILL: SILTY SAND (SM) - dark yellowish brown, d boorly graded, roots, trace gravels	ry, fine to medium, - - -	^		El: 47 MAX: 128 pcf @10% R: 31 CHEM
 44.18 - 5 	R-1	5 16 7	20.3	SM SM		Becomes black, stained, fine, petroleum-like odor	-	8	102	
 39.18 - 10 	SPT-1	P 2 2	428	SP-SM	- p - c - c	SUMP MATERIAL (?): SAND - SILTY SAND (SP- black, damp-moist, very loose, fine to medium, po betroleum-like odor, scattered areas with visible la days with low plasticity, pinhole voids ALLUVIUM (?): CLAYEY SAND (SC) - reddish bro lark gray, damp, medium dense, fine to medium, j	orly graded, minar beds, some - 	17		
34.18 - 15 	R-2	6 13 21	16.6			lasticity, scattered faint laminations, rootlets, fain		14	122	CONS
 29.18 - 20 	SPT-2	6 12 18	0.2	SC		Becomes dark reddish brown, some pinhole voids	-	13		
24.18 25				SM		BILTY SAND (SM) - dark olive brown mottled with lamp, medium dense, fine, poorly graded, faint lar				

Project Number: PWAS 20190823B

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-3 Sheet 2 of 2

Sampling Resistance, blows/ft Dry Unit Weight, pcf bpm Water Content, % Sample Number Elevation (feet) **USCS Symbol** PID Reading, Sample Type Graphic Log Depth (feet) REMARKS AND OTHER weight.tpl MATERIAL DESCRIPTION TESTS 24.18 25 SM 7 CONS R-3 11 0.0 18 111 DS moist 17 blows, pid. SP SAND (SP) - gray, mottled with orange and white, damp, medium dense, fine to medium, poorly graded, visible beds, scattered white mineralization, beach sand sample, 19.18 30 4 7 11 SPT-3 2.6 ē No rec. Pacific Place, Long Beach, CA\Technical\Boring Logs\InSITE LONG BEACH.bg4[CK Geotech - Shallow, HSA, 14.18 35 SP LAKEWOOD FORMATION: SAND (SP) - olive and light yellowish 20 R-4 0.0 104 6 brown, dry to damp, very dense, fine, poorly graded, weakly cemented 50-5' 9.18-40 • 13 19 Becomes olive gray, dense, beach sand SPT-4 0.0 5 19 ML CLAYEY SILT (ML) (MUDSTONE) - light olive brown mottled with orange, gray and red, damp, hard, low plasticity, trace fine sands, laminar 4.18 45 9 14 R-5 0.0 39 SM SILTY SAND (SM) - light olive brown mottled with gray and orange, moist, dense, fine, poorly graded, estimated 10% to 20% fines -0.82 50 10 16 TOTAL DEPTH DRILLED = 50 FEET SPT-5 0.0 20 TOTAL DEPTH SAMPLED = 51.5 FEET 25 NO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/04/19 nical\002 - 3701 N. -5.82 55 Carl Kim -10.82 60 \S050 terraphase engineering

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-4 Sheet 1 of 2

Drilled	-4-19							Checked By ANDRE	N HILI	LSTR	AND
weimod	OLLOW	/ ST	EM AU	GER			Size/Type & HOLLOW STEW AUGER	Total Depth of Borehole 50 FEET	BGS		
туре	ME 85							Approximate Surface Elevation 48.0)3 FEE	ET AM	SL
Groundwate and Date N	leasured		T ENC				Sampling Method(s) Bulk, California, SPT	Hammer Data 140 LB AU	то, з	0" DR	ОР
Borehole N Backfill	NEAT C		ENT 5%	6 BEI	NTOM	NITE	Location SOUTHWEST CORNER OF PROPOSE	D BUILDING			
Elevation (feet)		Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
48.03 - 0	BULK- 0-5				SM		FILL: SILTY SAND (SM) - dark yellowish brown, dry graded, roots	/, fine, poorly - -			
43.03 — 5 -	- 	ШИ	7 10 8	25.4	SC		CLAYEY SAND (SC) - black with gray, damp, fine, p plasticity, oily residue, strong petroleum-like odor, so and rubber pieces SUMP MATERIAL: CLAYEY SAND (SC) - black wit	cattered concrete	11		
- - 38.03 — 10 - -	- - - - R-1	X	3 4 7	39.2			fine, poorly graded, low plasticity, black and gray lar in some areas, petroleum-like odor	minations visible - - -	20	98	
- - 33.03 — 15 - -	- - - - SPT-2	N M	3 3 6	119	SC-CL		CLAYEY SAND - SANDY CLAY (SC-CL) - black, m sand is fine, poorly graded, rootlets, remnant woody petroleum-like odor SILTY SAND (SM) - dark olive gray mottled with oliv moist, loose, fine, non plastic to low plasticity, strong odor	v vegetation, 	17		
- - 28.03 — 20 - -	- - - R-2		8 7 10	387	M			- - - -	19	99	
23.03 25	-				ML		SILT - SANDY SILT (ML) - very dark gray, damp to is fine to medium grain, low plasticity, laminar beds, petroleum-like odor terraphase e n g i n e e r i n g				

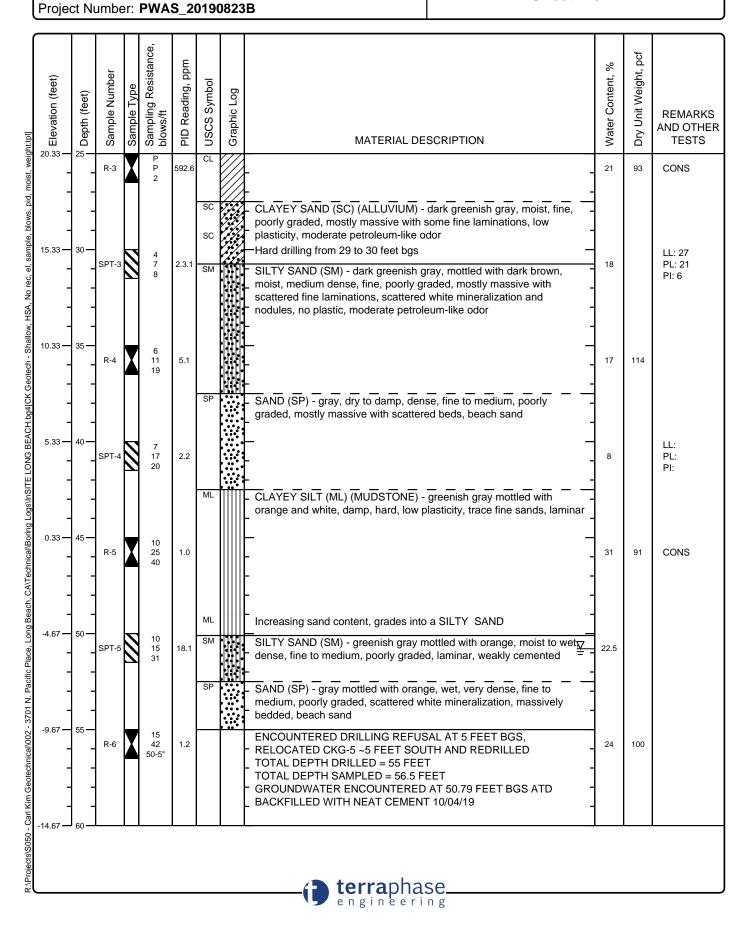
Project Number: PWAS_20190823B

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-4 Sheet 2 of 2

SPT-3		2 4 7 4 7 8 9 26 35 6 6 6 12	678 1.4 1.4	ML CL SC-CI		ALLUVIUM/WEATHERED LAKEWOOD FORMATION: SILTY CLAY (CL) - dark gray, damp, stiff, trace fine sand, low to medium plasticity, laminar beds, rounded gray nodules, root hairs, possible shell fragments, petroleum-like odor	29 36 17 17 18 18	86	
SPT-4		7 8 9 26 35	1.4	SC-CI		 (CL) - dark gray, damp, stiff, trace fine sand, low to medium plasticity, laminar beds, rounded gray nodules, root hairs, possible shell fragments, petroleum-like odor LAKEWOOD FORMATION: CLAYEY SAND - SANDY CLAY (SC-CL) - dark gray, damp,very dense-very hard , sand is fine, poorly graded, low plasticity, massively bedded, trace pinhole voids, petroleum-like odor SILTY SAND (SM) - dark olive gray mottled with dark brown and white mineralizations, damp, loose, fine, poorly graded, non-plastic, 	- - - - - - - - - - - - - - - - - - -		
R-4	4	26 35 6 6				 dark gray, damp,very dense-very hard , sand is fine, poorly graded, low plasticity, massively bedded, trace pinhole voids, petroleum-like odor SILTY SAND (SM) - dark olive gray mottled with dark brown and white mineralizations, damp, loose, fine, poorly graded, non-plastic, 	-	109	
-	X	6	0.6			white mineralizations, damp, loose, fine, poorly graded, non-plastic,	- - - ¹⁸	109	
SPT-5			1	1			1		
]		6 15 30	1.3	SM		 Becomes greenish black mottled with olive, moist, dense, fine to medium, poorly graded, massively bedded, trace white mineralizations, micaceous, fine beach sand 	24		
R-5		6 12 12	0.1	SM		 SILTY SAND (SP) - greenish gray mottled with trace red discoloration, moist, medium dense, fine, poorly graded, massivley bedded TOTAL DEPTH DRILLED = 50 FEET TOTAL DEPTH SAMPLED = 51.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/04/19 	- - - - - -	109	
-									
						-	-		
	R-5	R-5	R-5 12	R-5 12 0.1	R-5 12 0.1	6 R-5 12 0.1	R-5 6 12 12 0.1 TOTAL DEPTH DRILLED = 50 FEET TOTAL DEPTH SAMPLED = 51.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/04/19	R-5 6 12 0.1 TOTAL DEPTH DRILLED = 50 FEET TOTAL DEPTH SAMPLED = 51.5 FEET 18 NO GROUNDWATER ENCOUNTERED	R-5 R-5

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA


Project Number: PWAS_20190823B

Log of Boring CKG-5 Sheet 1 of 2

Date(s) Drilled	10-4	-19						Logged By DANIEL PHELPS	Checked By ANDRE	N HILI	LSTR	AND
wethod			ST	EM AU	GER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 55 FEET	BGS		
Drill Rig Type	СМЕ	E 85						Drilling Contractor ABC LIOVIN	Approximate Surface Elevation 45.3	3 FEE	ЕТ АМ	SL
Groundward and Date				-	ET BO	GS A	TD ON	Sampling Method(s) Bulk, California, SPT	Hammer Data 140 LB AU	то, з	0" DR	OP
Borehole Backfill		AT CI	EME	ENT 5%	6 BEI	NTOP	NITE	Location NORTHWEST CORNER OF PROPOSE	ED BUILDING			
55 얁 Elevation (feet)	Oepth (feet)	Sample Number	Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHEF TESTS
40.00 - -	_	BULK-1 0-3				ML		iLL: SANDY SILT (ML) - pale brown, dry to damp, lasticity	sand is fine, low - -			El: 56 MAX: 121
- 40.33 — -	5	R-1	X	22 16 12	157.7	CL	ri li	CLAY (CL) - black, damp, soft, trace fine sand, low esidue/staining, concrete rubble, strong petroleum ncreased gravel, massively bedded, suspected brid trong petroleum-like odor	like odor ck flakes, rootlets,	13	101	pcf@8.5% R: 20 CHEM
- 35.33 — - -	10	SPT-1		2 2 1	240.6	CL	s 	trong petroleum-like odor 5UMP MATERIAL (?): CLAY (CL) - black with dark amp, firm, trace fine sand, poorly graded, low plas	gray layering,	17		LL: 37 PL: 16 Pl: 21
_ 30.33 — _ _ _		R-2	X	2 3 4	491.7			aint laminations, root hairs, strong petroleum-like o		23	87	CONS
- 25.33 — -	20	SPT-2		P P P	699.1	CL		Becomes dark olive gray, trace fine sands, massive lack oily residue, strong petroleum-like odor, pinho	ble voids, cracks _	56		LL: 51 PL: 23 PI: 28
- - 20.33						CL	b k	LLUVIUM (?): SANDY CLAY (CL) - dark olive gra lack, moist, very soft, sand is fine, low plasticity, m bot hairs, strong petroleum like-odor terraphase e n g i n e e r i n g				

Project: INSITE, LONG BEACH Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-5 Sheet 2 of 2

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-6 Sheet 1 of 2

Drilled	10-7	-							Checked By ANDRE		L918/	AND
Method			STE	EM AU	GER			Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 50 FEET	BGS		
Drill Rig Type	CME	E 85						Drilling Contractor ABC LIOVIN	Surface Lievation	6 FEE	ET AM	ISL
Groundv and Date			NO	T ENC	OUN	TER	ED	Sampling Method(s) Bulk, California, SPT	Hammer Data 140 LB AU T	FO, 3	0" DR	OP
Borehole Backfill		AT C	EME	ENT 5%	6 BE	NTOM	NITE	Location NORTHEAST CORNER OF PROPOSE	ED BUILDING			
95 56 Elevation (feet)	o Depth (feet)	Sample Number	X Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	INSCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
-	-	BULK-′ 0-3					_ p _	ILL: SILT (ML) - pale brown, dry, firm, sand is fine lasticity, roots	- - 			
41.26 —	5	SPT-1		2 2 2	0.6	SM	t(ILTY SAND (SM) - dark greenish gray, dry to dan b medium grain with occasional coarse, poorly gra lasticity, scattered white mineralization, faint petro LLUVIUM (?): CLAYEY SAND (SC) - dark olive g	Ided, no to low Deum-like odor	13		
- 36.26 — - -	- - 10 - -	R-1	X	5 5 9	0.3	sc	fi	ne, poorly graded, low plasticity, predominantly m with some scattered faint laminations, faint petroleu ecomes black, rare roots and root hairs, varying f	assively bedded um-like odor - 	9	93	
- 31.26 — -	- 15 — -	SPT-2		3 2 4	54				- - -	17		
- - 26.26 — -	- 20 — -	R-2	X	8 12 16	4.2	sc		ecomes very dark gray, massively bedded, sand	- - content increases - -	12	121	
- - 21.26	- 25 -					SM	v III v	ILTY SAND (SM) - dark grayish brown, damp, find ith occasional coarse, poorly graded, no to low pl lays, massively bedded, slight petroleum-like odor terraphase	asticity, trace			

Project Number: PWAS_20190823B

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-6 Sheet 2 of 2

5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5	⁵² Depth (feet)	Sample Number	Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS
-	-	SPT-3		4 6 6	1.7	SM		_	14		
- - 16.26 — -	- - 30 - -	R-3	X	8 15 17	0.8	SM		LAKEWOOD FORMATION (?): SILTY SAND (SM) - dark olive brown, damp, fine to medium with occational coarse grain, poorly graded, predominantly massively bedded with scattered faint —laminations, varying fine content	14	119	
- 11.26 — - -	- 35 -	SPT-4		10 14 20	5.2	SP		SAND (SP) - olive brown mottled with gray and orange, dry to damp, fine, poorly graded, fine beach sand	4		
- 6.26 — - -	- 40 — - -	R-4	X	12 32 46	0.6	SP		Some laminar beds, no odor 	8	97	
- 1.26 — -	45 —	SPT-5		15 32 34	1.6	SP		 SAND (SP) - gray mottled with orange, damp to moist, very dense, fine, poorly graded, massively bedded, weakly cemented, no odor 	18		
-3.74	- 50 — -	R-5	X	6 16 50-5"	0.3	SP		Becomes dark greenish gray mottled with orange and olive TOTAL DEPTH DRILLED = 50 FEET TOTAL DEPTH SAMPLED = 51.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/07/19	19	111	
-8.74	55								-		
-13.74	- 60							terra phase			L

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-7 Sheet 1 of 1

Date(s) Drilled	10-0	7-19						Logged By DANIEL PHELPS	Checked By ANDREW	V HILI	LSTR	AND		
Drilling Method		LOW	ST	EM AU	GER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 25 FEET BGS					
Drill Rig Type	см	E 85						Drilling Contractor ABC LIOVIN	Approximate Surface Elevation 70.11 FEET AMSL					
Ground and Dat			NO	T ENC	OUN	TER	ED	Sampling Bulk, California, Modified Method(s) California, SPT	Hammer Data 140 LB AUT	AUTO, 30" DROP				
Borehol Backfill			EME	ENT 5%	6 BE	NTOM	NITE	Location NORTHERN PORTION OF SITE						
Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log			Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE		
面 70.11—	0 0	ű	ХХ	йд	Ē	⊃ SM		MATERIAL DESCRIPTION FILL: SILTY SAND (SM) - grayish brown, dry, fine t	o medium, poorly	8	Ō	TESTS		
-		BULK-1 0-3						graded, roots, no odor	- - - -					
65.11 -	5—	R-1	X	8 14 16	0.1	SM		ncrease in gravels up to 3-inch diameter	-	13	93			
-		CKG-7-7.	5	8 13 21		SC	///- (CLAYEY SAND (SC) - dark yellowish brown, dry to Jense, fine, poorly graded, sand and fine content v have low plasticity						
60.11 -	10	SPT-1		6 7 12	0.3				-	12				
- 55.11 —						CL		SANDY CLAY (CL) - dark brown and dark yellowish lamp, very stiff, sand is fine, low plasticity, 1-inch g	n brown, dry to ravels					
-	-	R-2	X	9 11 12	0.3				-	15	108			
-		CKG-7-17.	5	6 9 16		SC		CLAYEY SAND (SC) - dark brown and dark yellowi damp, medium dense, fine, low plasticity, scattered	sh brown, dry to asphalt pieces					
50.11 -	20 —	SPT-2		6 12 12	0.3				-	15				
-	-					CL		SANDY CLAY (CL) - very dark grayish brown, dry t sand is fine, low plasticity, clasts of sand and silty n						
45.11 —	25 —							TOTAL DEPTH DRILLED = 25 FEET terraphase engineering	/			1		

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-8 Sheet 1 of 1

Date(s) Drilled	0-7-	19							necked By ANDREV	V HILI	_STR/	AND
ivietnou			ST	EM AU	GER				Borehole 20 FEET	BGS		
Drill Rig Type CME 85									Approximate Surface Elevation 63.67 FEET AMSL			SL
Groundwater Level NOT ENCOUNTERED and Date Measured								Sampling Bulk, California, Modified Ha Method(s) California, SPT Da	ammer ata	TO, 30)" DR	OP
Borehole Backfill	NE/ GRO		EME	ENT 5%	BEI	NTON	NITE	Location NORTHWEST PORTION OF THE SITE				
	Depth (feet)	Sample Number	Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
63.67 — - -	0 - - -	3ULK-1 0-3	\sim			SC		FILL: CLAYEY SAND (SC) - very dark greyish brown, ine, poorly graded, low plasticity, scattered gravel, no	odor			
- 58.67 — - -		SPT-1 CKG-8-6.5		4 8 10 8 7 15	0.0	CL		SANDY CLAY (CL) - dark yellowish brown, dry, sand i lasticity, scattered gravels, some silt	s fine, low	12		
- 53.67 — ^ - -	- 10	R-1 xg-8-11.5	X	7 8 12	0.1	SC		CLAYEY SAND (SC) - very dark grayish brown, dry to ine, low plasticity, some silt, clay, and gravel	o damp, sand is	15	111	
- 48.67 — - -		SPT-2		4 7 11	0.1	CL		SANDY CLAY (CL) - very gark grayish brown with gra lamp, sand is fine, low to medium plasticity	-	37		
- 43.67 — 2 - - -	- - 20 - -	R-2	X	20 38 39	1.1	SM		SILTY SAND (SM) - dark gray, damp, fine, poorly grac gravel, peices of tile, petroleum-like odor TOTAL DEPTH DRILLED = 20 FEET TOTAL DEPTH SAMPLED = 21.5 FEET NO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/07/19	ded, common	6	114	
38.67								terraphase	-			

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-9 Sheet 1 of 1

Drilled	10-0	7-19						Logged By DANIEL PHELPS	Checked By ANDRE						
ivietnoa			ST	EM AU	GER			Drill Bit Size/Type 8" HOLLOW STEM AUGER	Total Depth of Borehole 20 FEET	BGS					
Drill Rig Type	СМЕ	E 85						Drilling Contractor ABC LIOVIN	Approximate Surface Elevation 64.89 FEET AMSL						
Groundv and Date	vater I e Mea	Level isured	NO	T ENC	OUN	TER	ED	Sampling Bulk, California, Modified Method(s) California, SPT	Hammer 140 LB AU	то, з	0" DR	OP			
Borehole Backfill		AT CI OUT	EME	ENT 5%	6 BEI	NTOP	NITE	Location NORTEASTERN PORTION OF SITE							
Elevation (feet)	Depth (feet)	Sample Number	Sample Type	Sampling Resistance, blows/ft	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS			
64.89 — - -	0	BULK-1 0-3				CL	r / / A	ILL: SILTY CLAY (CL) - dark brown, dry, sand is bots	fine, low plasticity, - - -						
- 59.89 - -	- 5	R-1 скg-9-6.	X	13 13 15 8 10 14	0.0	SM		ILTY SAND (SM) - light yellowish brown, dry, me oorly graded, no to low plasticity, scattered grave		4	91				
- 54.89 — -	- 10 — -	R-2	X	50-6	0.1	CL		ANDY CLAY (CL) - dark grayish brown with pale amp, hard, sand is fine, low plasticity, gravels	yellow and gray,	12	105				
- - 49.89 - - -	- 15	SPT-1 CKG-9-16.	- -	2 2 4 6 8	0.2	SC		LAYEY SAND (SC) - dark reddish brown, damp, lense, fine, poorly graded, low plasticity, scattered		12					
- 44.89 - -	20	SPT-2		4 4 8	19.0	CL	fi - T T - N	SUMP MATERIAL: SANDY CLAY (CL) - black, da ne, low plasticity, oily residue/staining, strong pet OTAL DEPTH DRILLED = 20 FEET OTAL DEPTH SAMPLED = 21.5 FEET IO GROUNDWATER ENCOUNTERED BACKFILLED WITH NEAT CEMENT 10/07/19		14					
39.89	25 —							terraphase							

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-10 Sheet 1 of 3

Drilled	10-8									Checked By ANDRE		STR	AND
vietriou			STEM	AU	GER				Size/Type 8" HOLLOW STEM AUGER				
Drill Rig Type									Drilling Contractor ABC LIOVIN Approximate Surface Elevation 41.61 FEET AM				
and Dat	oundwater Level45.51 FEET BGS ATD ON d Date MeasuredSampling Method(s)Bulk, California, CMEHammer Data140 LB AUTO, 30" DROP										OP		
Borehol Backfill		AT CE OUT	EMENT	5%	BEN	юто	NITE		Location CO-LOCATED WITH CPT-7				
Elevation (feet)	Depth (feet)	Sample Number	Sampling Resistance, blows/ft	Sample Type	Recovered (in) /	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION		Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHE TESTS
41.61 — - -	- 0 <u>-</u>	BULK-1 0-3				0.1	SM-SC		TOP SOIL/ALLUVIUM: SILTY SAND - CLAYE - light brown, dry, fine, poorly graded, some cla low plasticity, roots, no odor				
36.61 — - - -	5			XXXXXXXXXXXXXXXXXX	30/60	0.1	SM-SC		ALLUVIUM: SILTY SAND - CLAYEY SAND (S brown mottled with gray, dry, fine, poorly grad plasticity, roots, no odor				
31.61 — - - -	- 10		8 10 16		18/18 0/42	0.1	SM-SC		Becomes damp, medium dense	- - -			
26.61 — - - 21.61 —					30/30 30/30	0.1	SM-SC		 -?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?	prown and gray, d content varies,			

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Project Number: PWAS_20190823B

Log of Boring CKG-10 Sheet 2 of 3

Elevation (feet)	³ Depth (feet)	Sample Number	Sampling Resistance, blows/ft	Sample Type	Recovered (in) /	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS
21.61 — - - -	· 20 —		19 30 46		18/18 12/12 30/30	0.1	SM-SC		Becomes mottled with white and gray, dense, increased white mineralization	-		
16.61 — - -	25		19 30 46		18/18 12/12	0.1	ML		CLAYEY SILT (ML) (MUDSTONE) - yellowish brown mottled with gray and orange with trace white mineral stringers, damp, very stiff, trace fine sand, low plasticity, clay content varies, laminar, some moderately indurated pieces	-		
11.61 —	30		18 24 24		30/30	0.1	SM		SAND (SP) - yellowish brown mottled with gray and orange, moist, fine to medium, poorly graded, massively bedded with scattered faint laminar beds SILTY SAND (SM) - greenish black, moist, dense, fine, poorly graded, laminar, weakly cemented, micaceous	-		
-13.39 - - - - - - - - - - - - - - - - - - -	- - - - 35				12/12 30/30		SP		 SAND (SP) - dark greenish gray, mottled with orange and brown, damp, medium dense, fine to medium, poorly graded, massive with occasional beds, weakly cemented 	-		
-				XXXXXXXXX	30/30 30/30		SP SP		 Increase in mottled orange and brown coloration between 35-36 feet bgs 4-inch thick stringer of black silty sand 	-		
1.61 — -	40		15 16 14		18/18 12/12	0.1	CL		SILTY CLAY (CL) - yellowish brown mottled with gray and dark - brown, damp, very stiff, trace fine sand, medium plasticity, laminar	-		
-3.39 —	45 —			XXXXXXXX	30/30 30/30	0.1	SC		Becomes fissile on bed planes, increase in sand content, 2-inch high flame structure at contact with CLAYEY SAND -CLAYEY SAND (SC) - olive gray mottled with gray and dark brown, fine, poorly graded, low plasticity SANDY CLAY (CL) - olive gray mottled with gray and dark			
- - -8.39	 				30/30		SM-SC		 SANDY CLAY (CL) - blive gray motiled with gray and dark brown, damp, firm, sand is fine, low plasticity SAND (SP) - olive gray mottled with orange, damp, moist, fine, poorly graded, massively bedded, fine content decreases with depth Becomes wet, decreased fine content 	7 - -		Add H2O down augers for heaving sands
-			14 24 36		18/18	0.1	SP SP		- Becomes gray mottled with orange, fine, dense - Fine content varies with alternating clayey and sandy layers	4		
- 13.39 —					30/30					1		

Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA

Log of Boring CKG-10 Sheet 3 of 3

Elevation (feet)	Depth (feet)	Sample Number	Sampling Resistance, blows/ft	Sample Type	Recovered (in) /	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Water Content, %	Dry Unit Weight, pcf	REMARKS AND OTHER TESTS
-13.39 — - - - - - - - - - - - - - - - - - - -	55 — 						SP SP		Fine content varies with alternating clayey and sandy layers Becomes olive brown, massively bedded			
			6 5 6		18/18 0/12 12/30	0.1	SP SC		Becomes loose CLAYEY SAND (SC) - dark yellowish brown mottled with orange, damp, relative increase in density, fine, poorly graded, areas of low plasticity, massive, sand and fine content varies			
-23.39 — 	65			xxxxxxxxxxxx	30/30 30/30				- · · · · · · · · · · · · · · · · · · ·			
-28.39 — - - -	70			<u>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>			SP		SAND (SP) - olive brown, wet, medium, poorly graded, massive SILT - SANDY SILT (ML) - olive brown, wet, sand is very fine,			
-18.39 — -18.39 — -23.39 — -23.39 — - -28.39 — - - - - - - - - - - - - - - - - - - -	75				2000		CL		 non plastic, laminar SILTY CLAY (CL) (MUDSTONE) - light brownish gray mottled with orange and dark gray, dry to damp, firm, some fine sand, laminar. DRILLED AND SAMPLED WITH CME SOIL CORING SYSTEM TOTAL DEPTH DRILLED = 75 FEET GROUNDWATER ENCOUNTERED AT 45.51 FEET BGS ATD DRACKETLED AND SAMPLED WITH AND AN ADDITIONAL DEPTH DRILLED = 75 FEET 			
-38.39 — 	· 80 —								- BACKFILLED WITH NEAT CEMENT 10-08-19			
-43.39 — -43.49 — -	· 85 —											
-48.39 —	-48.39 90											

Project: INSITE, LONG BEACH Project Location: 3701 N. PACIFIC PLACE, LONG BEACH, CA Project Number: PWAS_20190823B

Key to Log of Boring Sheet 1 of 1

_																	
eight.tpl]	Elevation (feet)	N Depth (feet)	ی Sample Number	A Sample Type	다 Recovered (in) / Total (in)	DID Reading, ppm	- USCS Symbol	Graphic Log	MATERIAL DESCRIPTION						o Water Content, %	T Dry Unit Weight, pcf	REMARKS AND OTHER TESTS 12
st, we	_							8			<u>'</u>				10		12
CME, Recovery, EI, Sample, NO Blows, PID, Mc	 COLUMN DESCRIPTIONS Elevation (feet): Elevation (MSL, feet). Depth (feet): Depth in feet below the ground surface. Sample Number: Sample identification number. Sample Type: Type of soil sample collected at the depth interval shown. Recovered (in) / Total (in): Inches of recovery / total inches of boring tubing. PID Reading, ppm: The reading from a photo-ionization detector, in parts per million. USCS Symbol: USCS symbol of the subsurface material. Graphic Log: Graphic depiction of the subsurface material encountered. 							 MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive text. Water Content, %: Water content of the soil sample, expressed as percentage of dry weight of sample. Dry Unit Weight, pcf: Dry weight per unit volume of soil sample measured in laboratory, in pounds per cubic foot. REMARKS AND OTHER TESTS: Comments and observations regarding drilling or sampling made by driller or field personnel. 									
BEACH.bg4[CK Geo	FIELD AND LABORATORY TEST ABBREVIATIONS CHEM: Chemical tests to assess corrosivity COMP: Compaction test COMP: Compaction test CONS: One-dimensional consolidation test LL: Liquid Limit, percent MATERIAL GRAPHIC SYMBOLS Image: Descent State Lean CLAY, CLAY w/SAND, SANDY CLAY (CL) Image: Descent State SILTY CLAY (CL-ML) Image: Descent State Clayey SAND (SC)						PI: Plasticity Index, percent SA: Sieve analysis (percent passing No. 200 Sieve) UC: Unconfined compressive strength test, Qu, in ksf WA: Wash sieve (percent passing No. 200 Sieve) Clayey SAND to Sandy CLAY (SC-CL) Silty SAND (SM) Poorly graded SAND (SP)										
, CA\Te										P	oorly graded	SAND	with Silt	(SP-SM)			
Beach	TYPIC	AL S	AMP	LER	GRA	PHIC	SYN	IBOL	<u>s</u>			<u>отн</u>	ER GRA	PHIC SY	MBO	LS	
02 - 3701 N. Pacific Place, Long E	Bu	lk Sa	mple				CI	ME Sa	ampler			¥ 7	Water leve Water leve Minor cha stratum Inferred/g Queried c	el (after w nge in ma radational	aiting) aterial p I contac	ropertie	es within a
nical\0	GENE	RAL	ΝΟΤΙ	ES													
I Kim Geotechr	gradua	I. Field criptior	d desc ns on t	riptio hese	ns may logs a	have have	been nly at	modif the sp	bil Classification System. Desc ied to reflect results of lab tests ecific boring locations and at tl es.	5.						0	

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

Insite, Long Beach Storage 3701 N. Pacific Place Long Beach, CA October 1, 2 & 4, 2019

Prepared for:

Mr. Andy Hillstrand Carl Kim Geotechnical, Inc. 945 Baileyana Road Hillsborough, CA 94010 Office (650) 627-4410

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Summary of Shear Wave Velocities
- Pore Pressure Dissipation Graphs
- CPT Data Files (sent via email)

SUMMARY

OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Insite, Long Beach Storage project located at 3701 N. Pacific Place in Long Beach, California. The work was performed by Kehoe Testing & Engineering (KTE) on October 1, 2 & 4, 2019. The scope of work was performed as directed by Carl Kim Geotechnical, Inc. personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at fifteen locations to determine the soil lithology. A summary is provided in **TABLE 2.1**.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	75	
CPT-2	75	
CPT-3	75	
CPT-4	75	
CPT-5	75	
CPT-6	75	
CPT-7	75	
CPT-8	50	
CPT-9	50	
CPT-10	50	
CPT-11	75	
CPT-12	75	
CPT-13	30	Refusal
CPT-14	39	Refusal
CPT-15	41	Refusal

TABLE 2.1 - Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Sleeve Friction (fs)
- Inclination
- Penetration Speed
- Dynamic Pore Pressure (u) Pore Pressure Dissipation (at selected depths)

At location CPT-11, shear wave measurements were obtained at approximately 5-foot intervals. The shear wave is generated using an air-actuated hammer, which is located inside the front jack of the CPT rig. The cone has a triaxial geophone, which recorded the shear wave signal generated by the air hammer.

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil classification on the CPT plots is derived from the attached CPT Classification Chart (Robertson) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

The CPT data files have also been provided. These files can be imported in CPeT-IT (software by GeoLogismiki) and other programs to calculate various geotechnical parameters.

It should be noted that it is not always possible to clearly identify a soil type based on gc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

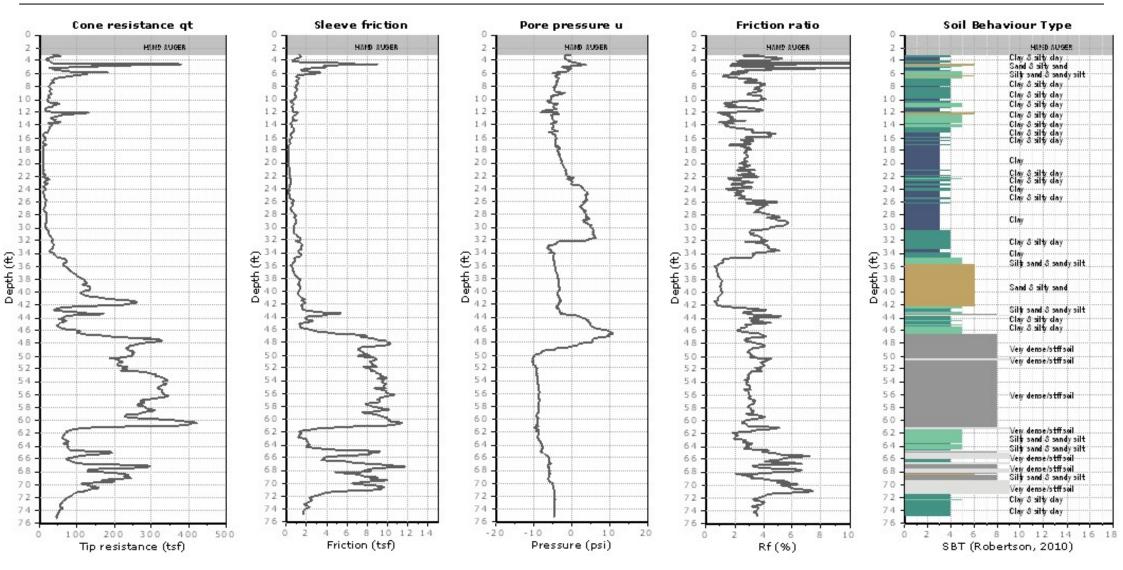
If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

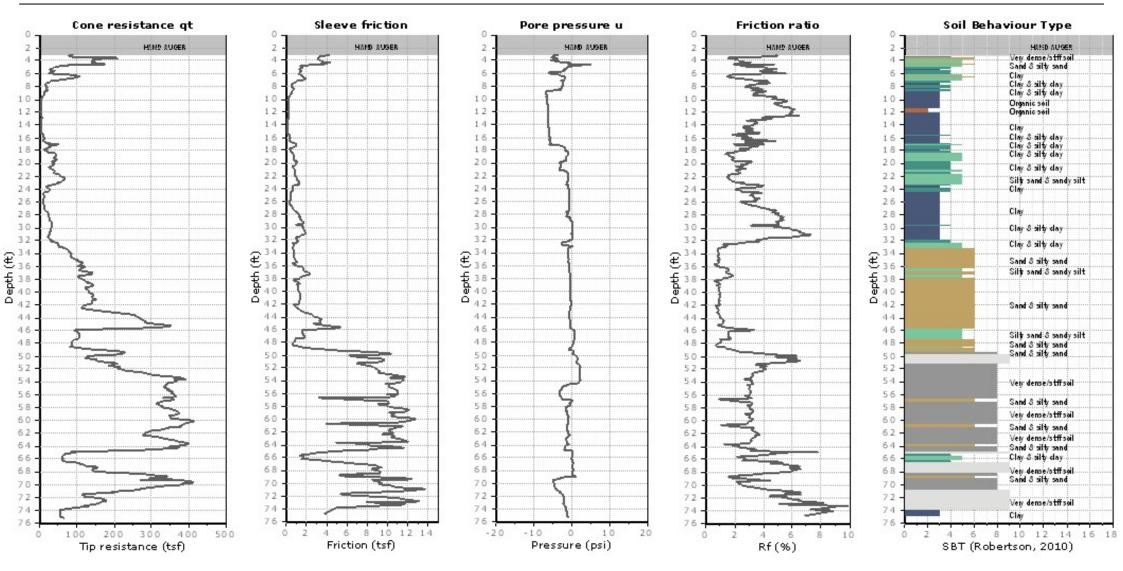
P. M.ho

Steven P. Kehoe President


10/09/19-mc-1000

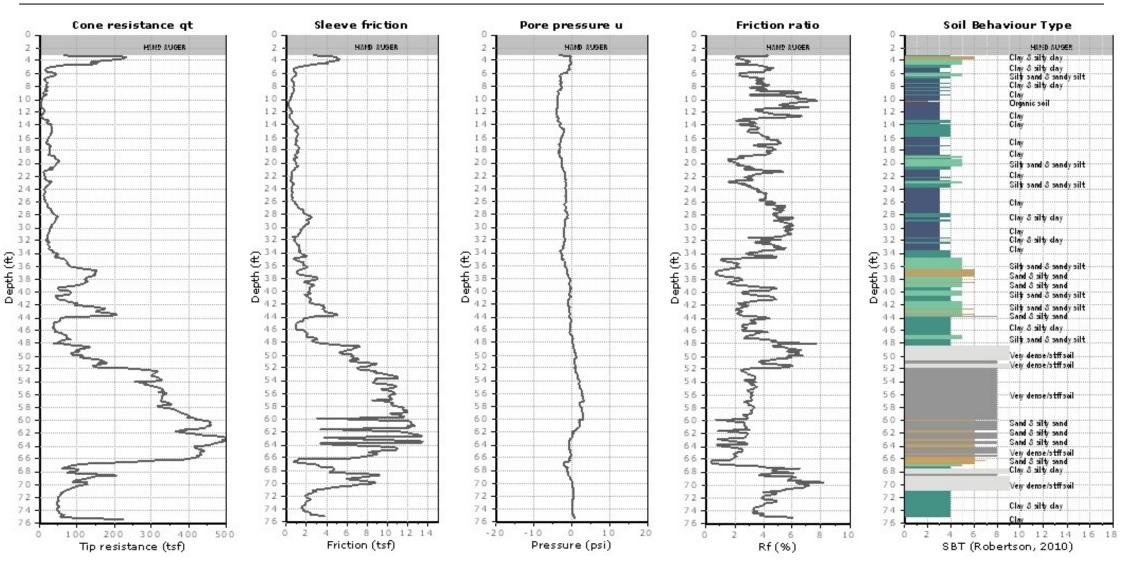
APPENDIX

Project: Carl Kim Geotechnical / InSite, Long Beach Storage


Location: Long Beach, CA

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

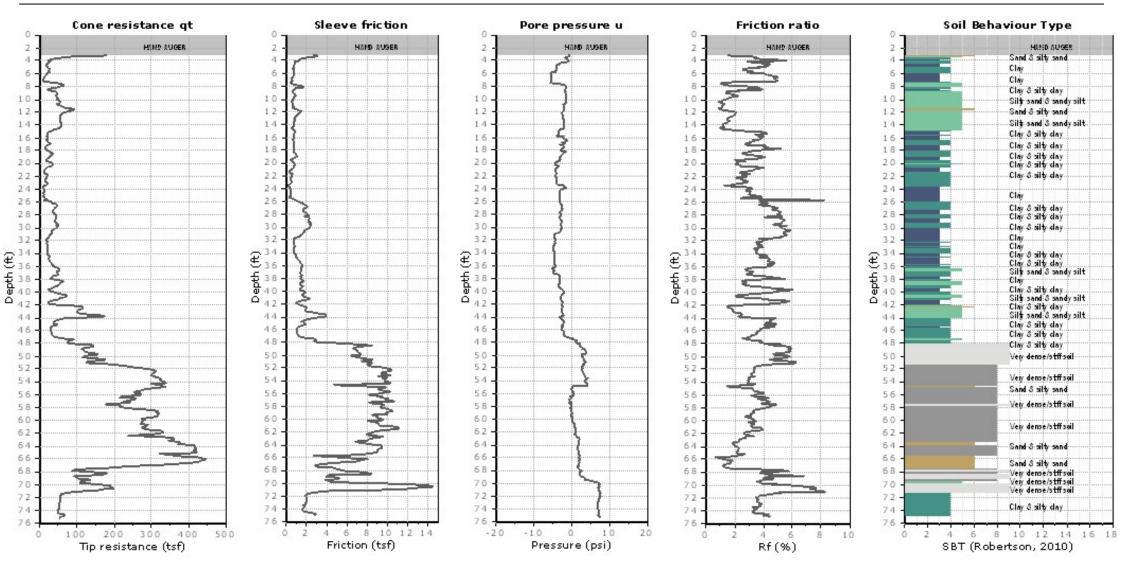
Location: Long Beach, CA



CPT-2 Total depth: 75.20 ft, Date: 10/1/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

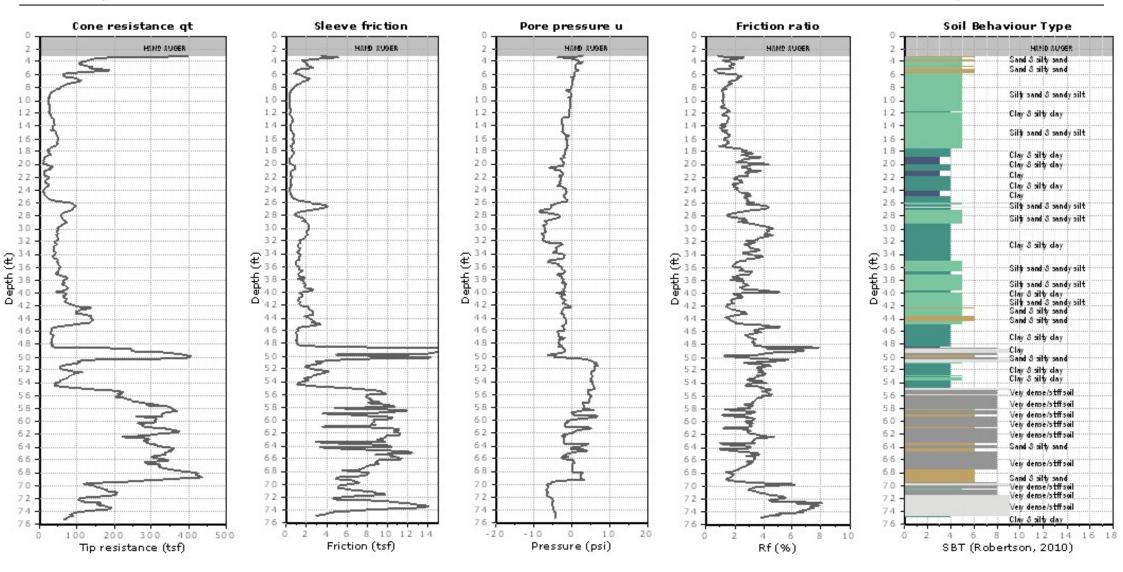
Location: Long Beach, CA



CPT-3 Total depth: 75.48 ft, Date: 10/1/2019

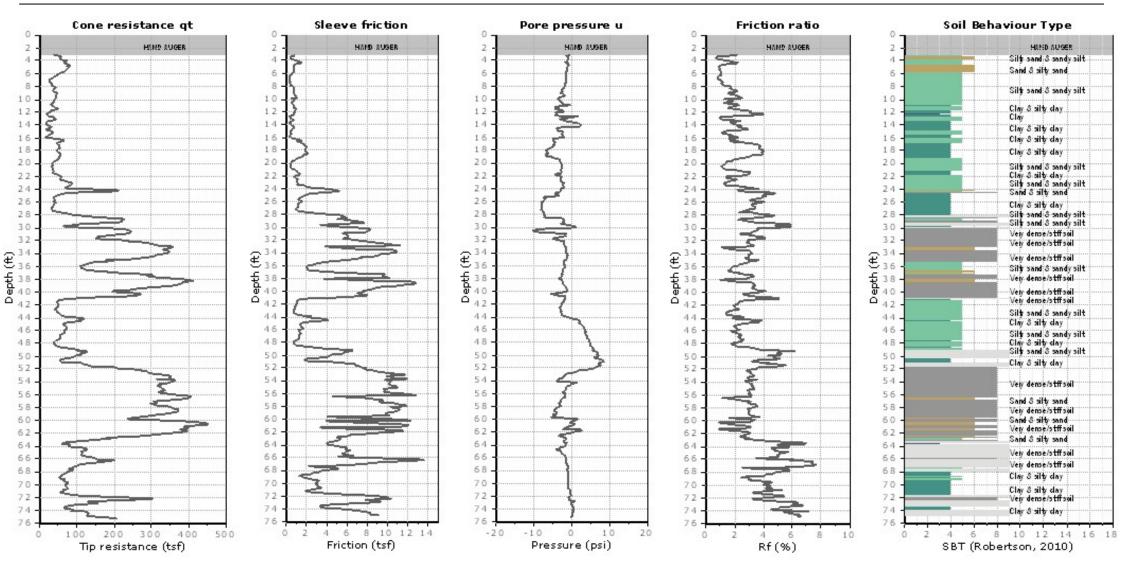
Project: Carl Kim Geotechnical / InSite, Long Beach Storage

Location: Long Beach, CA



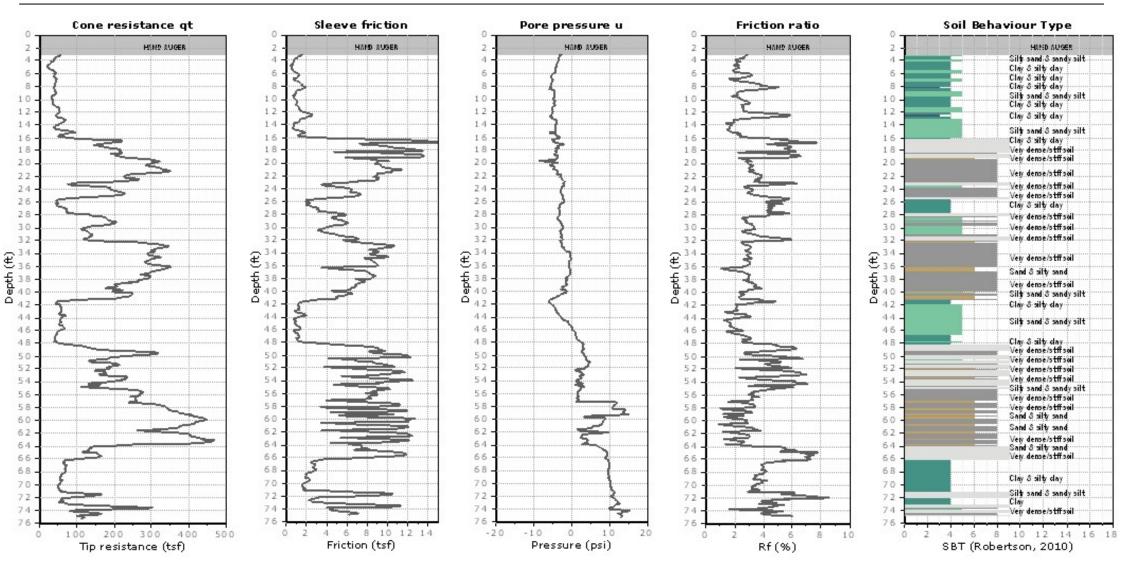
CPT-4 Total depth: 75.27 ft, Date: 10/1/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage


Location: Long Beach, CA

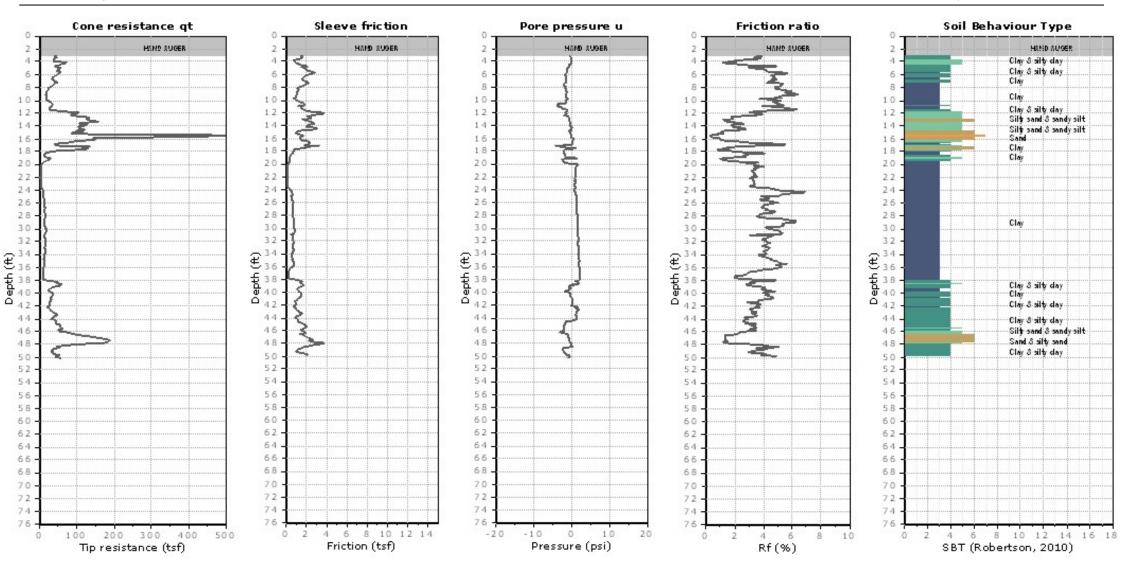
Project: Carl Kim Geotechnical / InSite, Long Beach Storage

Location: Long Beach, CA

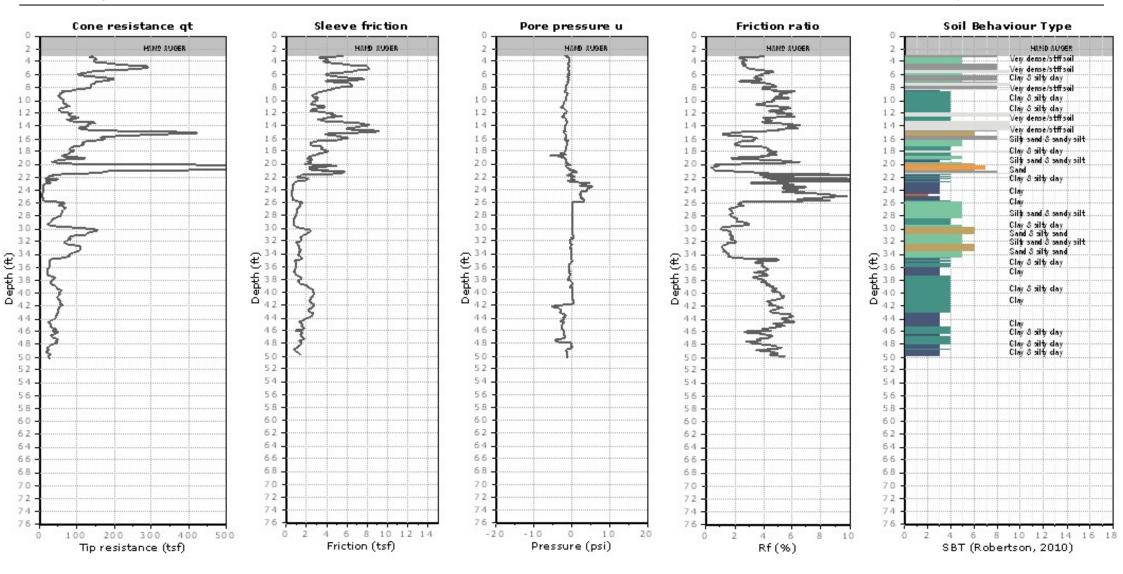


CPT-6 Total depth: 75.34 ft, Date: 10/2/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

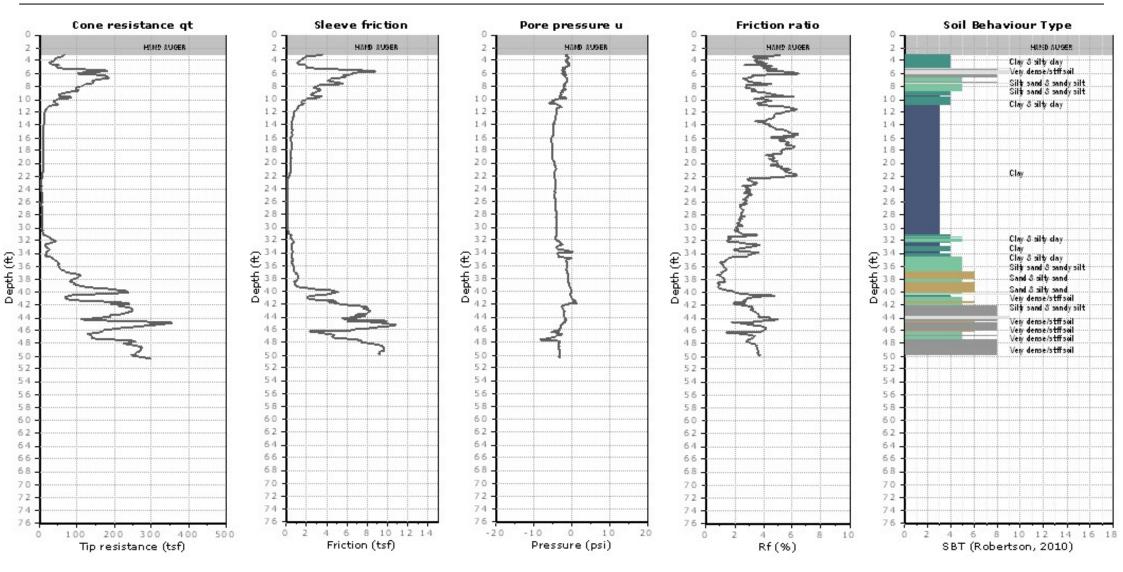

Location: Long Beach, CA

Project: Carl Kim Geotechnical / InSite, Long Beach Storage


Location: Long Beach, CA

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

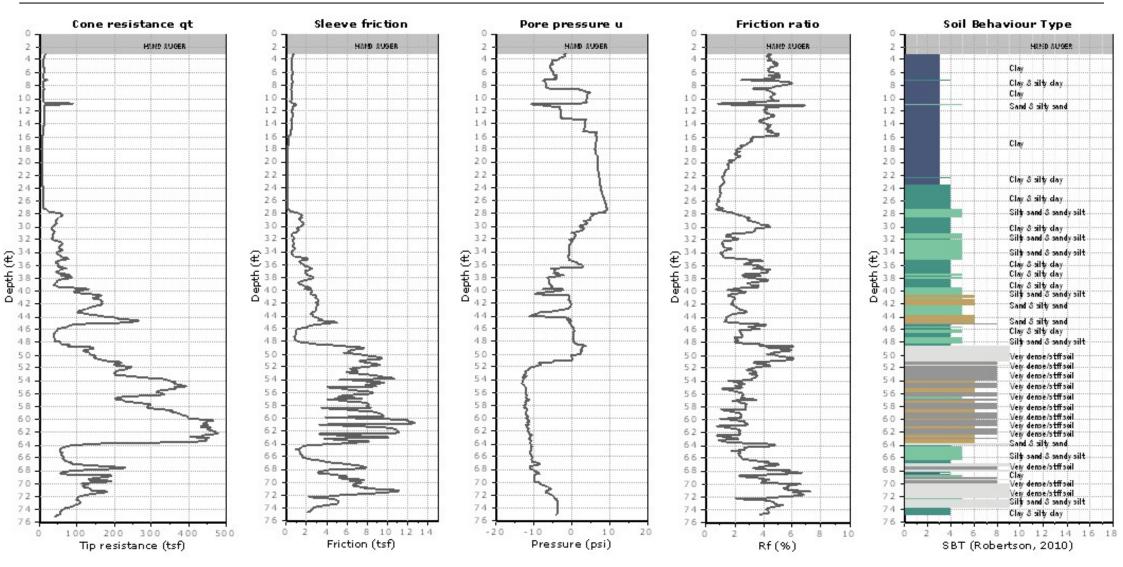
Location: Long Beach, CA



CPT-9 Total depth: 50.22 ft, Date: 10/2/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

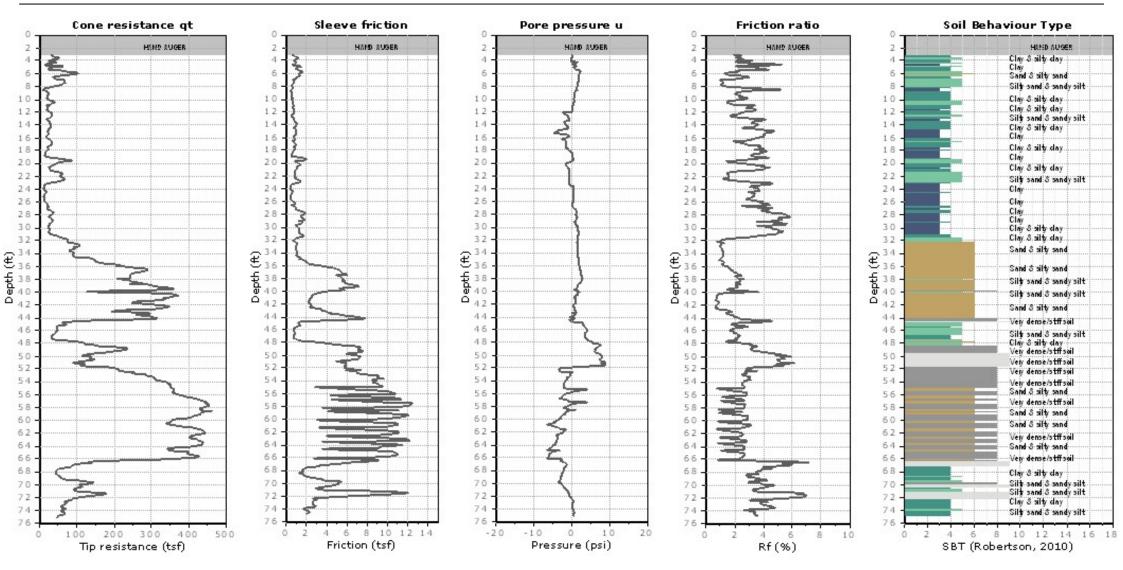
Location: Long Beach, CA



CPT-10 Total depth: 50.36 ft, Date: 10/2/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

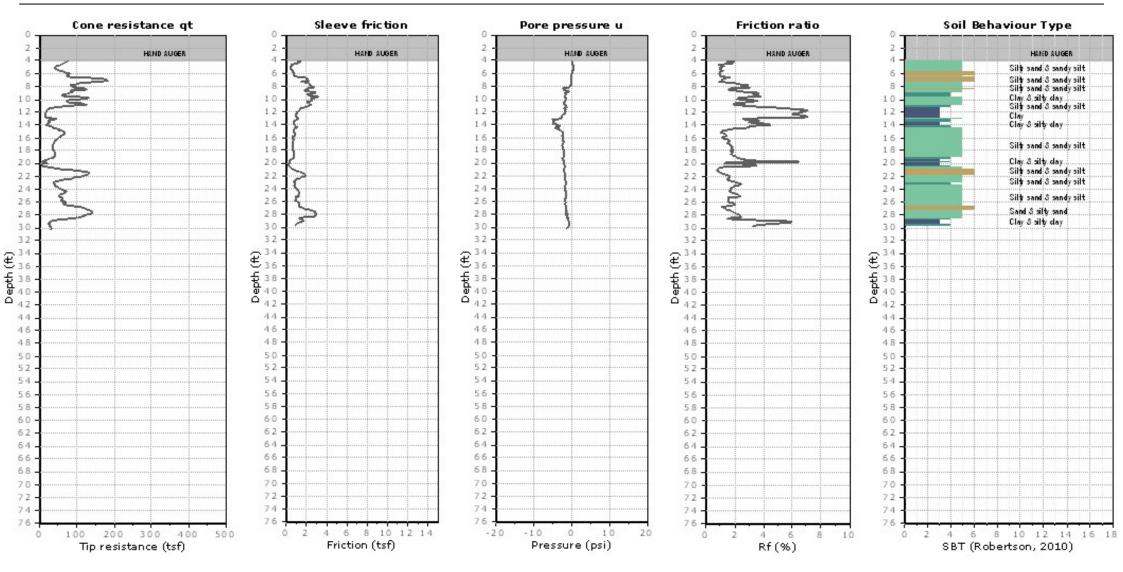
Location: Long Beach, CA



CPT-11 Total depth: 75.15 ft, Date: 10/4/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

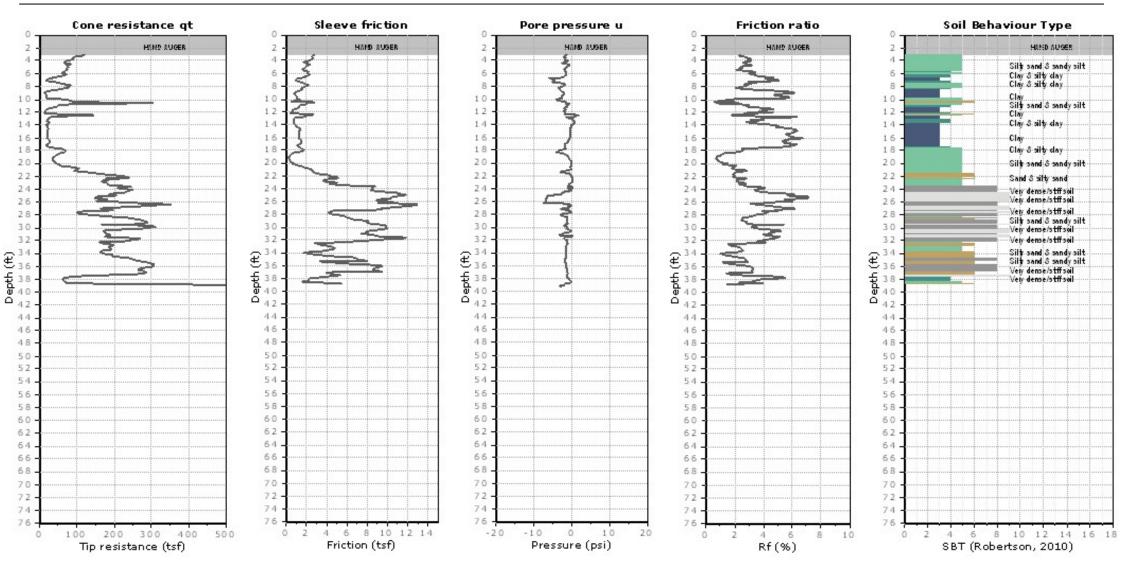
Location: Long Beach, CA


CPeT-IT v.2.3.1.8 - CPTU data presentation & interpretation software - Report created on: 10/5/2019, 12:21:41 PM Project file: C:\CPT Project Data\CarlKim-LongBeach10-19\CPT Report\Plots.cpt

CPT-12 Total depth: 75.15 ft, Date: 10/4/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

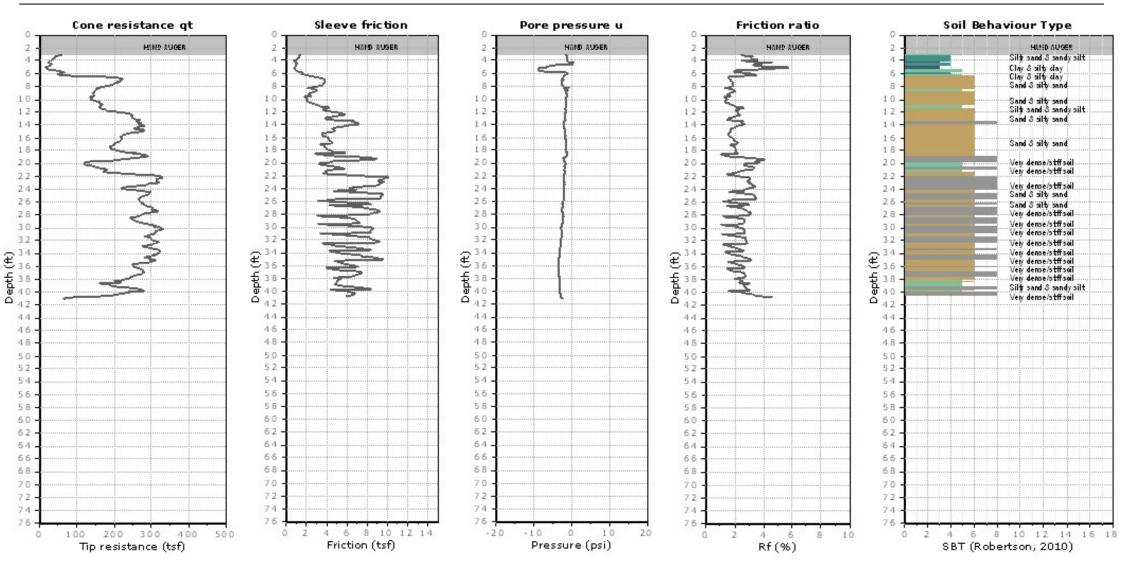
Location: Long Beach, CA


CPeT-IT v.2.3.1.8 - CPTU data presentation & interpretation software - Report created on: 10/5/2019, 12:22:00 PM Project file: C:\CPT Project Data\CarlKim-LongBeach10-19\CPT Report\Plots.cpt

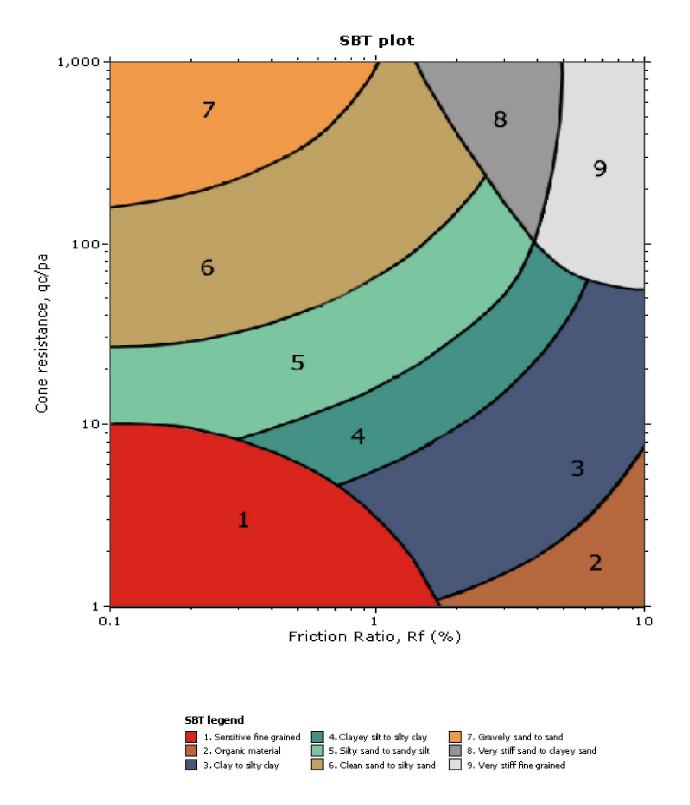
CPT-13 Total depth: 30.12 ft, Date: 10/4/2019

Project: Carl Kim Geotechnical / InSite, Long Beach Storage

Location: Long Beach, CA



CPT-14 Total depth: 39.25 ft, Date: 10/4/2019


Project: Carl Kim Geotechnical / InSite, Long Beach Storage

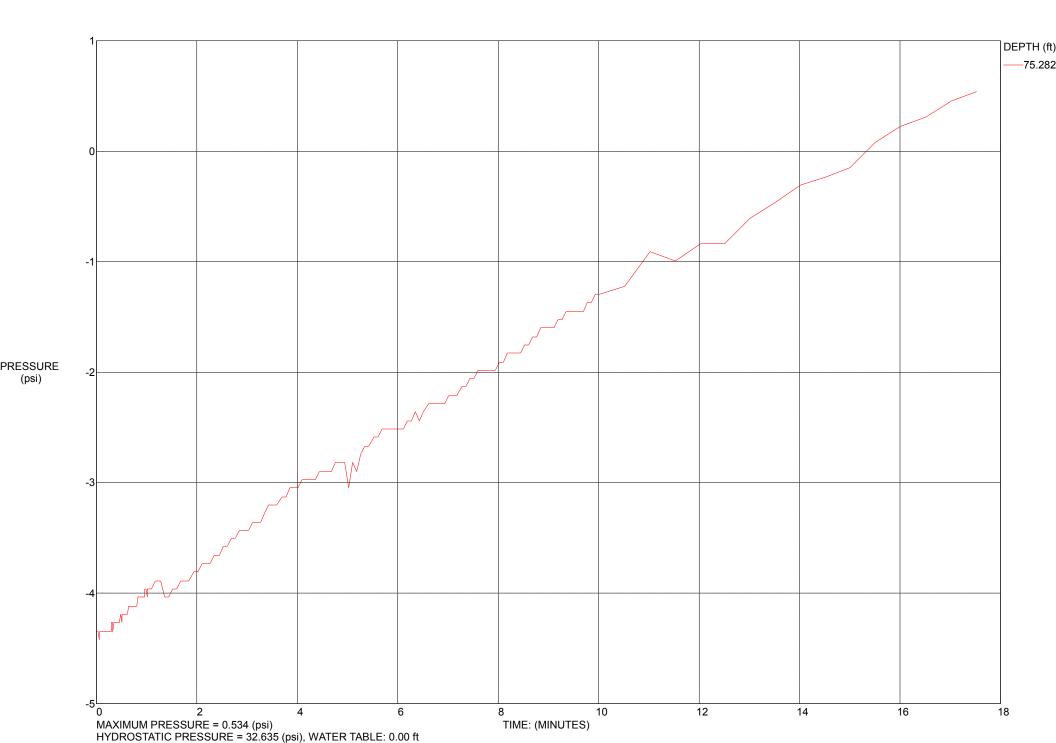
Location: Long Beach, CA

CPT-15 Total depth: 41.08 ft, Date: 10/4/2019

Carl Kim Geotechnical InSite, Long Beach Storage Long Beach, CA

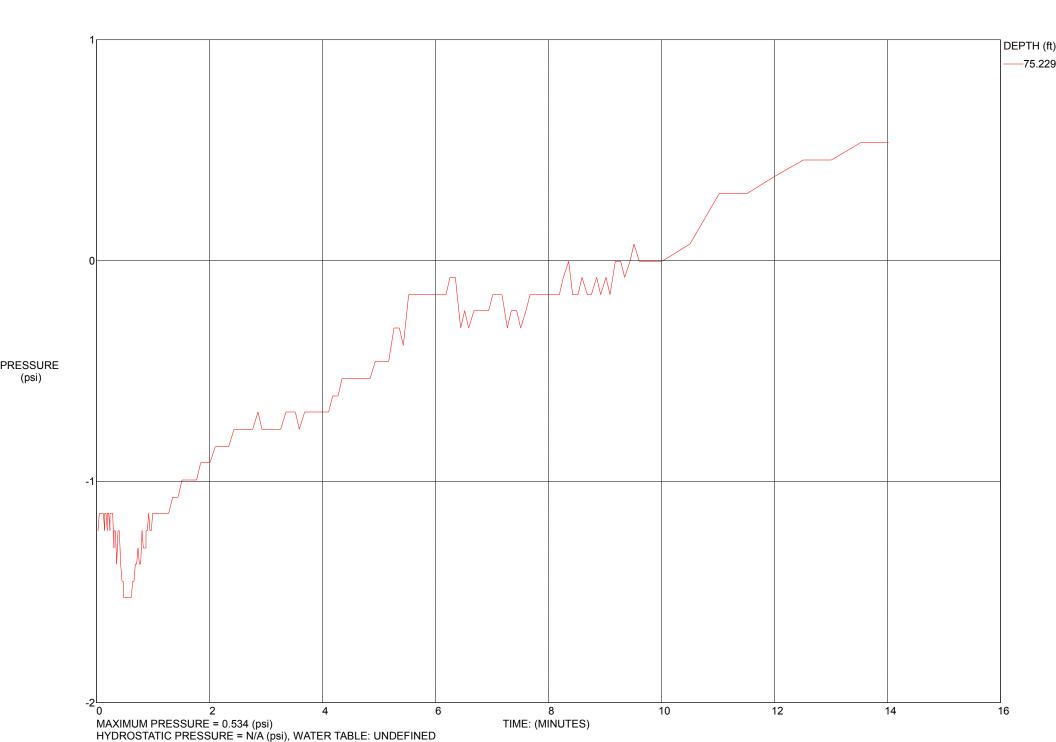
CPT Shear Wave Measurements

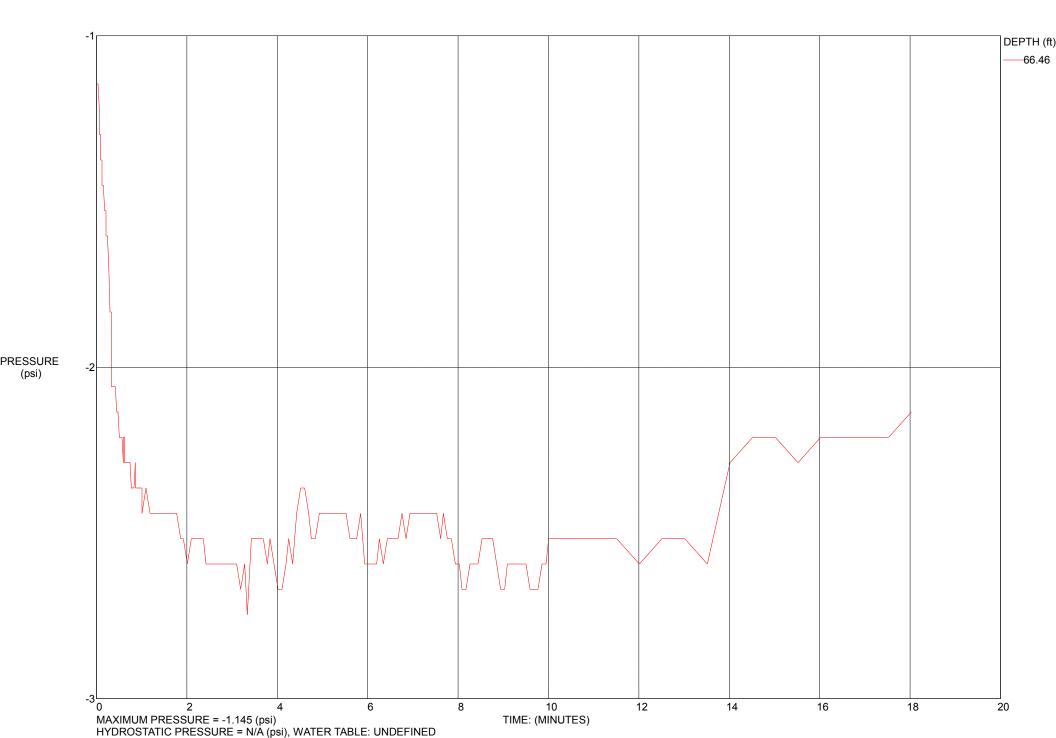
Location	Tip Depth (ft)	Geophone Depth (ft)	Travel Distance (ft)	S-Wave Arrival (msec)	S-Wave Velocity from Surface (ft/sec)	Interval S-Wave Velocity (ft/sec)
CPT-11	5.09	4.09	5.72	10.92	523.89	, <u>,</u>
	10.04	9.04	9.89	17.44	566.82	638.74
	15.09	14.09	14.65	25.48	574.83	592.21
	20.11	19.11	19.52	33.48	583.16	609.67
	25.00	24.00	24.33	39.60	614.42	785.44
	30.02	29.02	29.29	45.28	646.96	873.82
	35.01	34.01	34.24	52.44	653.02	691.35
	40.06	39.06	39.26	59.52	659.68	709.02
	45.08	44.08	44.26	65.32	677.60	861.52
	50.03	49.03	49.19	70.64	696.39	927.03
	54.99	53.99	54.14	75.60	716.11	996.99
	60.01	59.01	59.15	79.24	746.41	1375.67
	65.06	64.06	64.18	82.64	776.68	1482.16
	70.05	69.05	69.17	86.52	799.42	1283.76
	75.16	74.16	74.27	89.38	830.92	1783.93


Shear Wave Source Offset -

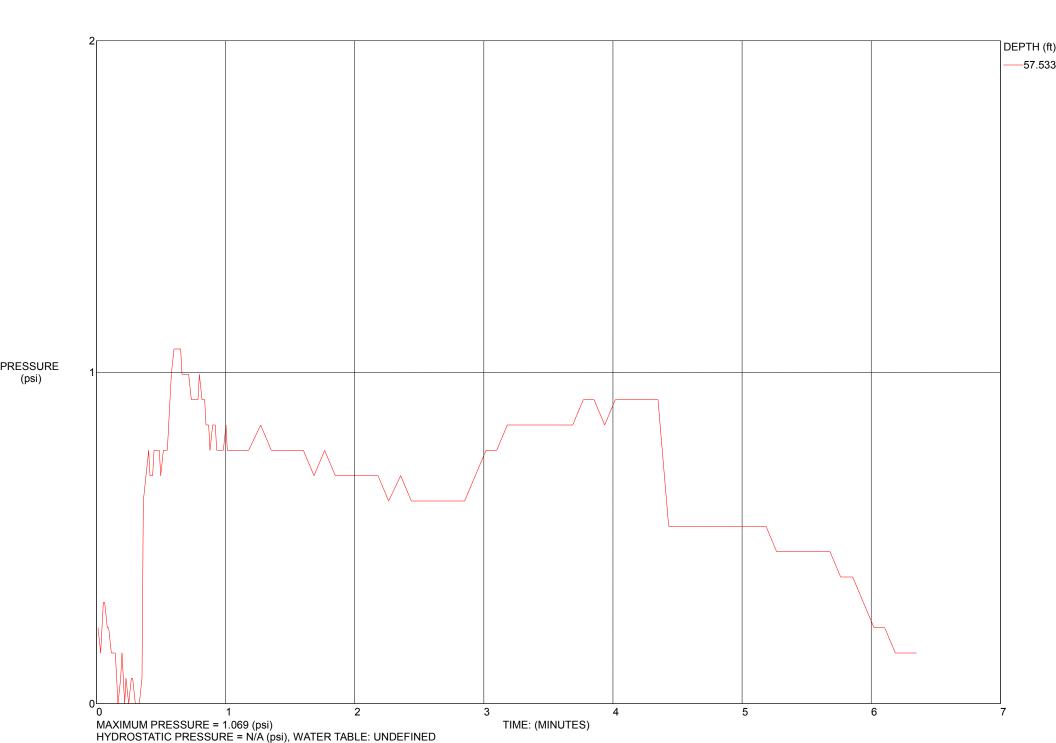
4 ft

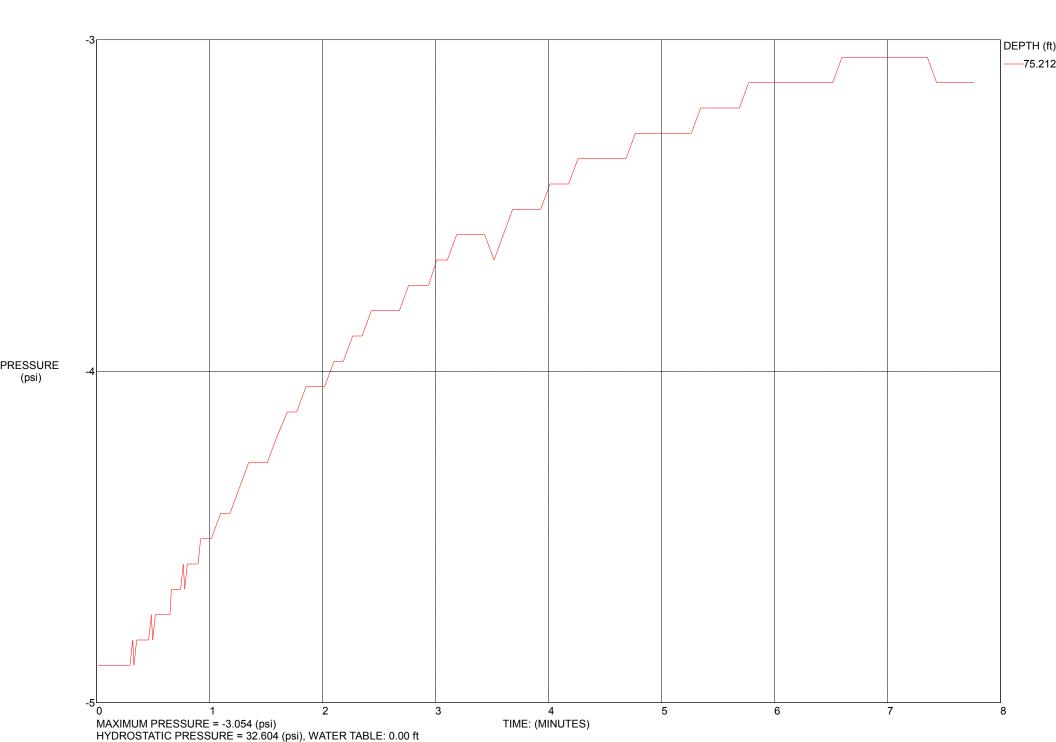
S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

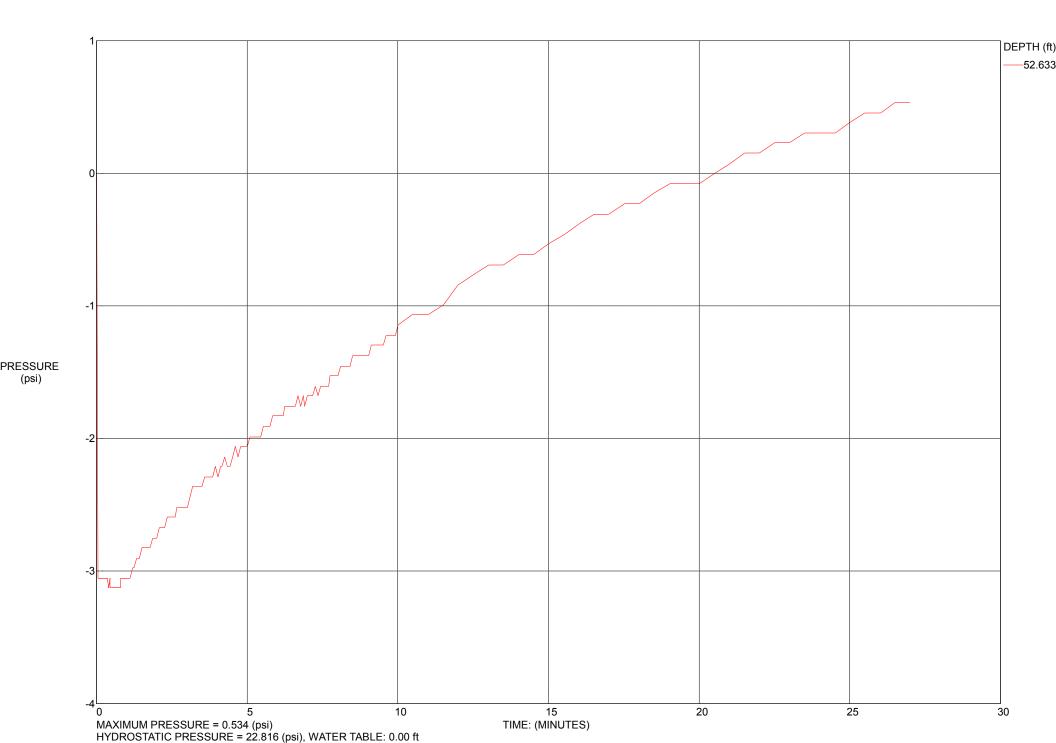

TEST ID: CPT-1

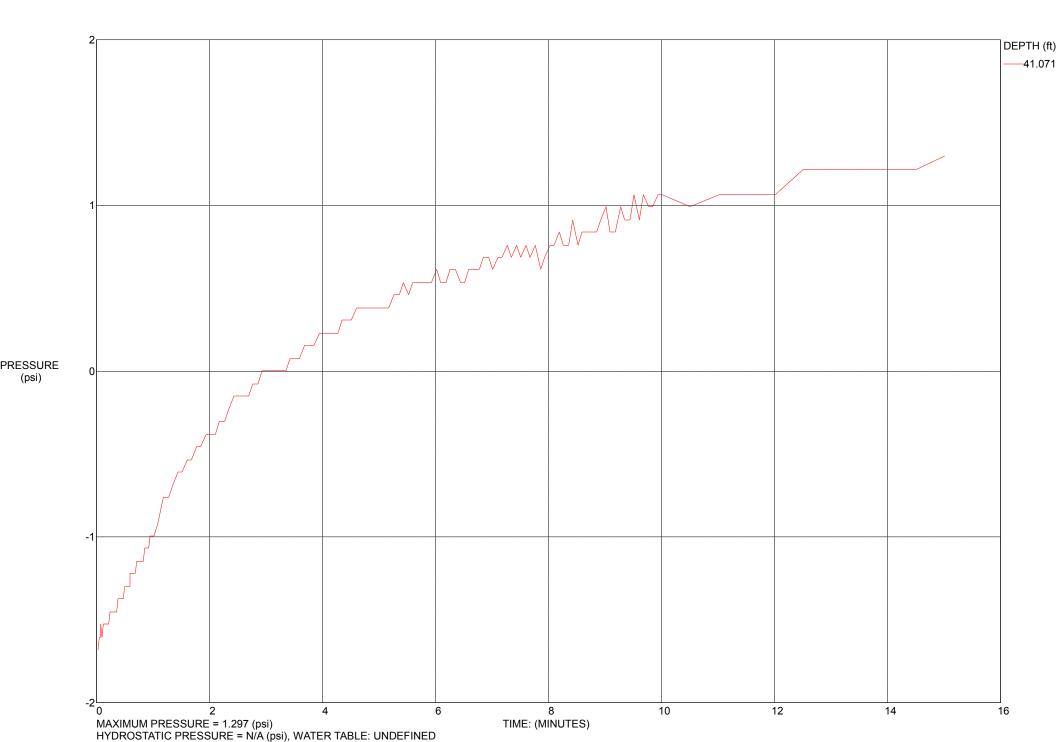


TEST ID: CPT-2






TEST ID: CPT-5


TEST ID: CPT-12

TEST ID: CPT-15

APPENDIX C

LABORATORY TESTS

SMITH-EMERY Laboratories

MOISTURE CONTENT AND IN SITU DENSITY DETERMINATIONS AND DEGREE OF SATURATION

791/781 East Washington Blvd., Los Angeles, CA Tel. No.: (213) 745-5333; Fax No.: (213) 741-8621

ASTM D2166/1587

Client	Carl Kim Geotechnical/Smith-Emery Anaheim Lab. Ref. No. 877,879								&880						
Project N	ame:	Long beac	ch Storage PWAS_20190823	SEG File No.: CKG LB											
Location:		3701 N. P	3701 N. Pacific Pace, Long Beach City, CA Date Sampled: 10/4/19												
												Date R	eceived:	10/8/19	
		BH No.:	CKG-3 to CKG-5	Sp.gr.	2.650							Date	e Tested:	10/16/19)
		Ring dia:	2.416	Area in ²	4.584							Sam	pled by:	DP	
				DENSI	TY OF S	AMPL	E		MOIS	TURE	CONT	<u>ENT</u>			
Boring	Sample	Sample	Soil	Sample	Wt. of soil	Wt. of	wet	Dry	wet wt	dry wt	can wt	can	moist.	initial	%
No.	No.	Depth	Description	Ht	& Rings	Rings	Density	Density	(g)	(g)	(g)	no	cont.	Void	Saturation
		(ft)		(in)	(g)	(g)	pcf	Pcf					(%)	e	
CGK-3	R-1	5	Fill Matl base & asph/ SM	6	1022.7	222.0	110.8	101.7	650.8	612.3	179.4	P1	8.9	0.63	37.7
	SPT-1	10-11.5	Drk Brw SM	SPT					270.9	239.1	49.4	8	16.8		
	SPT-2	20-21.5	Brw SC	SPT					261.4	237.0	49.9	13	13.0		
	SPT-3	30-31.5	Olv Brw SP-SM/SM	SPT					217.3	202.6	49.4	85	9.6		
	R-4	35-36.5	Olv brw SP-SM	6	1052.1	259.0	109.7	104.0	187.9	180.8	53.4	57	5.6	0.59	25.0
	SPT-4	40-41.5	Olv SP-SM	SPT					200.7	194.2	50.2	99	4.5		
	SPT-5	50-51.5	Olv brw SM	SPT					209.0	182.0	49.7	49	20.4		
CKG-4	SPT-1	5-6.5	Fill Matl Vry Dk Brw SC/SM	SPT					288.6	264.5	49.8	107	11.2		
	R-1	10-11.5	Blk SM (petroluem odor)	6	1114.3	269.4	116.9	97.7	180.2	158.8	50.0	170	19.7	0.69	75.3
	SPT-2	15-16.5	vry Drk Brw CL/SC	SPT					263.1	232.2	54.0	81	17.3		
	R-2	20-21.5	Dk Olv Brw SC	6	1125.0	272.9	117.9	99.1	192.3	169.9	51.7	46	19.0	0.67	75.2
	SPT-3	25-26.5	Blk ML (petroluem odor)	SPT					239.1	196.5	49.9	10	29.1		
	R-3	30-31.5	Dk Olv Gry CL	5	928.5	224.4	116.9	85.8	178.8	144.6	50.4	106	36.3	0.93	103.7
	SPT-4	35-36.5	Dk Olv Gry CL/SC	SPT					250.5	222.0	54.3	40	17.0		
	R-4	40-41.5	Olv Brw SM	5	1000.5	222.2	129.2	109.4	186.5	165.8	51.5	32	18.1	0.51	93.9
	SPT-5	45-46.5	Lt Greensh Gry SM	SPT					271.6	228.8	48.8	177	23.8		
	R-5	50-51.5	Lt Greensh Gry SM	5	1000.5	222.2	129.2	109.4	186.5	165.8	51.5	32	18.1	0.51	93.9
CKG-5	R-1	5-6.5	Fill Matl Blk SM/GP-GM	6	1089.0	263.7	114.2	101.2	287.7	260.8	50.7	101	12.8	0.63	53.6
	SPT-1	10-11.5	BLK CL/CK (w/ Odor)	SPT					240.2	212.5	50.1	92	17.1		
	SPT-2	20-21.5	Vrk Drk Brw/BLK CL/SC	SPT					208.9	151.4	49.4	136	56.4		
	SPT-3	30-31.5	Lt Greensh Gry SC/SM	SPT					255.4	224.4	49.7	168	17.7		
		40-41.5	Lt Gry SP-SM	SPT					224.0	211.4	51.0	64	7.9		
		50-51.5	Lt Gry SM	SPT					264.9	225.4	49.7	174	22.5		
	R-6	55-56.5	Gry SP-SM	5	970.8	223.5	124.1	100.0	189.6	162.6	50.4	112	24.1	0.65	97.6
														<u> </u>	

Tested By: E.Saucedo

Date Tested: 10/16/19

Date Checked: 10/17/19

Checked By: A.Cabanilla

Lab. Ref. No. 877,879 &880

SMITH-EMERY Laboratories

MOISTURE CONTENT AND IN SITU DENSITY DETERMINATIONS AND DEGREE OF SATURATION

791/781 East Washington Blvd., Los Angeles, CA Tel. No.: (213) 745-5333; Fax No.: (213) 741-8621

ASTM D2166/1587

Client	Carl Kii	m Geotechnical/Smith-Emery Anaheim								Lab. Ref. No. 883,885,887 &889							
Project Name:		Long beach Storage PWAS_20190823												SEG File No.: CKG LB			
Location:		3701 N. P	3701 N. Pacific Pace, Long Beach City, CA											Date Sampled: 10/7/19			
												Date R	eceived:	10/8/19			
		BH No.:	CKG-6 to CKG-9	Sp.gr.	2.650							Date	Tested:	10/16/19)		
		Ring dia:	2.416	Area in ²	4.584							Sam	pled by:	DP			
				DENSITY OF SAMPLE MOISTURE CONTENT													
Boring	Sample	Sample	Soil	Sample	Wt. of soil	Wt. of	wet	Dry	wet wt	dry wt	can wt	can	moist.	initial	%		
No.	No.	Depth	Description	Ht	& Rings	Rings	Density	Density	(g)	(g)	(g)	no	cont.	Void	Saturation		
		(ft)		(in)	(g)	(g)	pcf	Pcf					(%)	e			
CGK-6	SPT-1	5-6.5	Brw SM	SPT					253.3	230.2	49.5	29	12.8				
	R-1	10-11.5	Lt Greenh Gry SP trace of lump	5	831.1	219.6	101.5	93.0	266.4	248.1	49.2	167	9.2	0.78	31.3		
	SPT-2	15-16.5	Dk Olv Bw SM/SC-SM	SPT					254.6	225.8	55.5	14	16.9				
	R-2	20-21.5	BLK/Brw CL/SC	6	1246.9	269.1	135.3	121.2	216.2	198.8	49.6	131	11.7	0.36	84.7		
	SPT-3	25-26.5	Brw SM	SPT					266.6	240.3	49.6	173	13.8				
	R-3	30-31.5	Brw SM	6	1239.7	268.1	134.4	118.5	220.5	200.5	52.0	33	13.5	0.40	90.2		
	SPT-4	35-36.5	Olv Brw SP	SPT					218.9	212.9	50.1	179	3.7				
	R-4	40-41.5	Olv Brw SP/SP-SM	6	1025.6	266.6	105.0	96.9	172.4	162.9	50.0	27	8.4	0.71	31.5		
	SPT-5	45-46.5	Olv Brw ML	SPT					233.9	206.1	53.5	73	18.2				
	R-5	50-51.5	Gry SM/SP-SM	6	1215.8	263.5	131.8	111.0	210.1	184.9	50.5	12	18.8	0.49	101.4		
CKG-7	R-1	5-6.5	Olv Brw SM/Fill Matl	5	857.4	222.2	105.5	93.4	282.7	256.2	51.5	23	12.9	0.77	44.5		
	SPT-1	10-11.5	Olv Brw SM/ML	SPT					243.2	222.9	54.3	83	12.0				
	R-2	15-16.5	Olv Brw SM	6	1149.3	255.6	123.7	107.8	309.8	276.8	52.1	80	14.7	0.53	72.9		
	SPT-2	20-21.5	Brw SC/CL	SPT					265.8	238.2	50.0	89	14.7				
	R-3	25-26.5	Brw SM	6	1166.5	258.8	125.6	111.9	239.5	218.8	49.6	175	12.2	0.48	67.9		
CKG-8	SPT-1	5-6.5	Brw SC/CL	SPT					235.7	215.6	49.6	142	12.1				
	R-1	10-11.5	Brw SC	5	995.4	224.4	128.0	111.3	178.7	161.8	49.6	145	15.1	0.49	82.1		
	SPT-2	15-16.5	Dk Brw CL	SPT					287.7	223.4	49.5	162	37.0				
	R-2	20-21.5	Dk Brw/BLK SM	5	951.4	222.2	121.1	113.9	333.1	316.5	51.4	12	6.3	0.45	36.8		
CKG-9	R-1	5-6.5	Brw SM/ML	5		224.4	94.0	90.5	273.6	265.1	49.4	104	3.9	0.83	12.6		
		10-11.5	Olv Gry CL/SC	5	928.2	223.3	117.0	104.8	306.8	279.9	50.0	54	11.7	0.58	53.6		
		15-16.5	Brw SC	SPT					244.8	224.5	49.5	59	11.6				
	SPT-2	20-21.5	Drk Brw SC	SPT					259.4	234.0	49.5	178	13.8				

Tested By: E.Saucedo

Checked By: A.Cabanilla

Date Tested: 10/16/19 Date Checked: 10/17/19

SMITH-EMERY Laboratories Liquid Limit, Plastic Limit, and Plasticity Index ASTM D4318

ORATOR					Lab. Ref. No.:	881
Client:	SEG Report No.:	G-19-18xx				
Project:	Long Beach Stora	ge			SEG File No.:	CKGLB
Location:	371 N. Pacific Pla	ce, Long Beach	City, CA		Date Sampled:	10/4/19
Material Descrip	ption: Very Dark	Grayish Brown	Lean CLAY w/ S	and	Date Received:	10/8/19
Liquid Limit App	p.: 14645	Grooving Tool:	# 10	_	Date Tested:	10/24/19
Balance	e: 15612017	Oven:	SQ-2	-	Sampled by:	DP
Bore Hole No	o.: CKG-5	Sample No.:		Depth (ft): 10'	
	Sample Preparation:	wet	dry X	Mass of T	Test Specimen (g):	152.00
PLASTIC LIM	<u>IIT TEST</u>	Trials			Ave.	
		1	2	3		
Dish Number		4	8			
a) wt. of dish + v	wet soil (g)	45.38	45.17			
b) wt. of dish $+$	dry soil (g)	44.20	44.03			
c) wt. of moistur	re (g)=[a-b]	1.18	1.14			
d)wt. of dish (g)		36.93	36.99			
e) wt. of dry soil	l (g) =[b-d]	7.27	7.04]
f) moisture conte	ent %=[e/c]*100	16.2	16.2		16	
LIQUID LIMI	<u>T TEST</u>	Trials				
		1	2	3	4	
Dish Number		6	13	37		
Number of Blow	VS	35	28	22		
g) wt. of dish + y	wet soil (g)	48.42	46.86	48.22		
h) wt. of dish $+$	dry soil (g)	45.44	44.19	45.13		
i) wt. of moistur	e(g)=[g-h]	2.98	2.67	3.09		
j)wt. of dish (g)		36.99	36.85	36.93		
k) wt. of dry soil	l (g)=[h-j]	8.45	7.34	8.2]
1) moisture conte	ent %=[i/k]*100	35.3	36.4	37.7		J
		·		· · · · · · · · · · · · · · · · · · ·		

Liquid Limit	Plastic Limit	Plasticity Index	Classification		
37	16	21	CL		

Tested by: A.Cabanilla

Checked by: Angelito Cabanilla

SMITH-EMERY Laboratories Liquid Limit, Plastic Limit, and Plasticity Index ASTM D4318

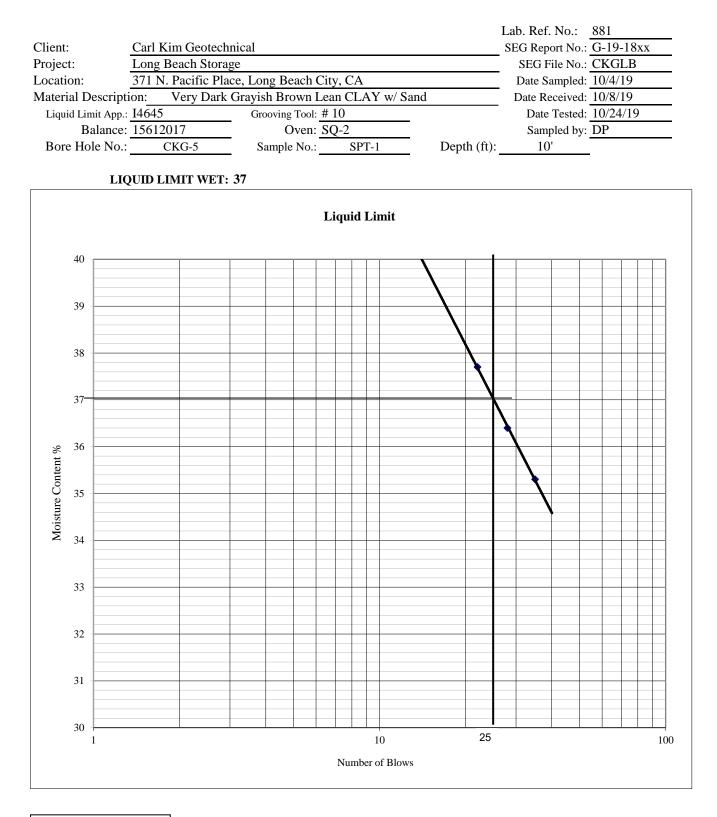


PLATE NO.: B-

SMITH-EMERY Laboratories Liquid Limit, Plastic Limit, and Plasticity Index ASTM D4318

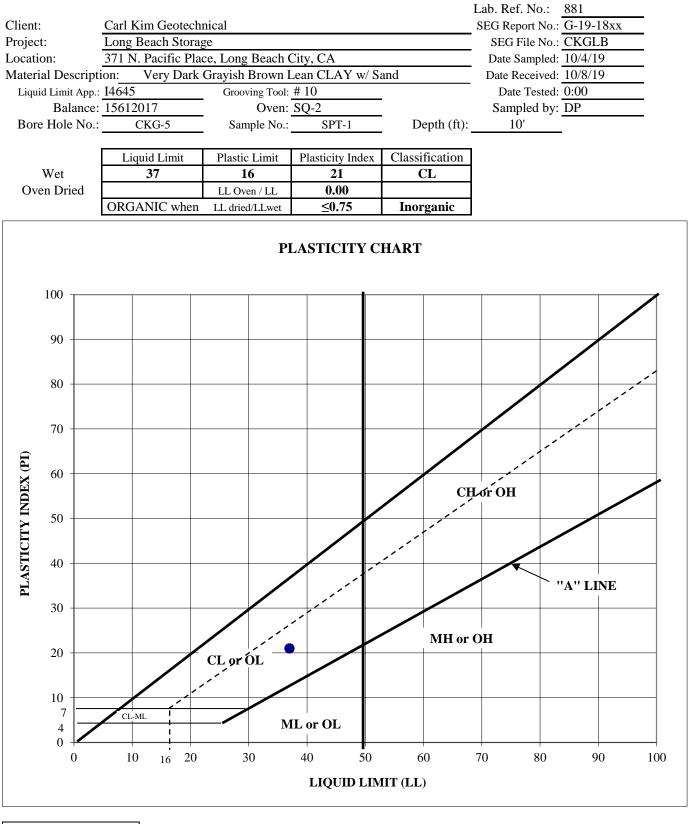


PLATE NO.: B-6A

ORATOR					Lab. Ref. No.:	881
Client:	Carl Kim Geotech	SEG Report No.:	G-19-18xx			
Project:	Long Beach Stora	ge			SEG File No.:	CKGLB
Location:	371 N. Pacific Pla	ce, Long Beach	City, CA		Date Sampled:	10/4/19
Material Descrip	tion: Very Dark	Grayish Brown	Fat CLAY		Date Received:	10/8/19
Liquid Limit App	.: I4645	Grooving Tool	: # 10	_	Date Tested:	10/24/19
Balance	: 15612017	Oven	: SQ-2		Sampled by:	DP
Bore Hole No.	: CKG-5	Sample No.		Depth (ft):20'	
	Sample Preparation:	wet	dry X	Mass of 7	Fest Specimen (g):	155.93
PLASTIC LIM	<u>IT TEST</u>	Trials			Ave.	
		1	2	3		
Dish Number		15	28			
a) wt. of dish + v	vet soil (g)	44.14	44.14			
b) wt. of dish $+ d$	lry soil (g)	42.76	42.80			
c) wt. of moisture	e (g)=[a-b]	1.38	1.34			
d)wt. of dish (g)		36.80	37.01			
e) wt. of dry soil	(g) =[b-d]	5.96	5.79			
f) moisture conte	ent %=[e/c]*100	23.2	23.1		23	
						-
LIQUID LIMIT	T TEST	Trials				
		1	2	3	4	
Dish Number		2	8	31		
Number of Blow	S	34	22	18		
g) wt. of dish + w	vet soil (g)	47.87	45.77	47.02		
h) wt. of dish $+ d$	lry soil (g)	44.38	42.65	43.42		
i) wt. of moisture	e (g)=[g-h]	3.49	3.12	3.60		
j)wt. of dish (g)		36.99	36.74	36.85		
k) wt. of dry soil	(g)=[h-j]	7.39	5.91	6.57		
1) moisture conte	ent %=[i/k]*100	47.2	52.8	54.8		
					-	

Liquid Limit	Plastic Limit	Plasticity Index	Classification
51	23	28	СН

Tested by: A.Cabanilla

Checked by: Angelito Cabanilla

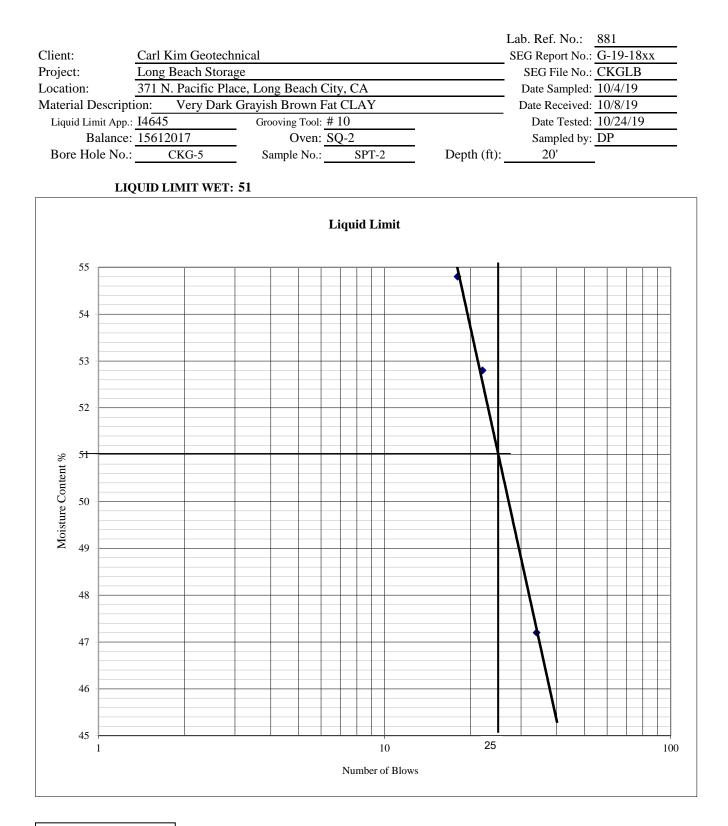


PLATE NO.: B-

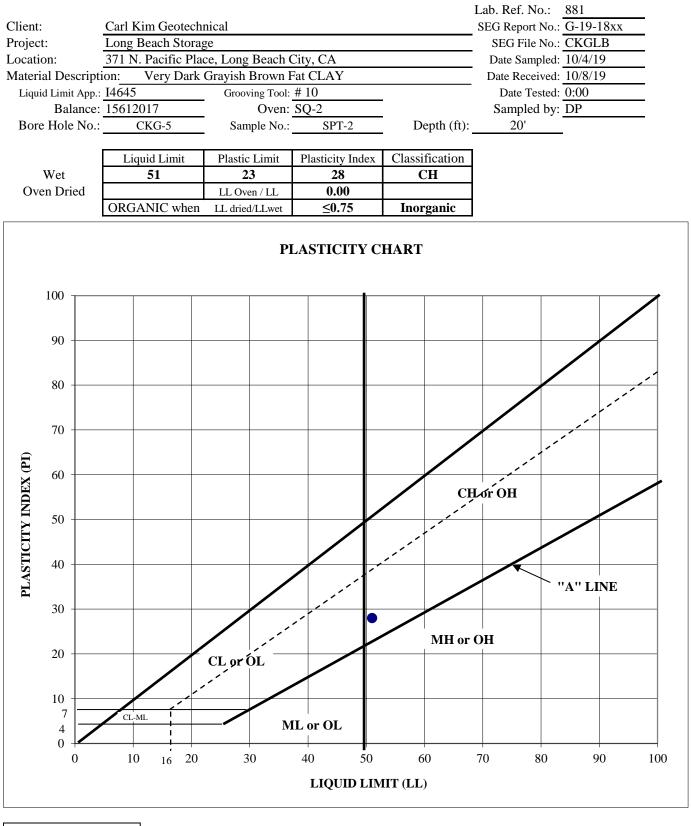


PLATE NO.: B-6A

					Lab. Ref. No.:	881
Client:	Carl Kim Geotech	SEG Report No.:	G-19-18xx			
Project:	Long Beach Stora	ge			SEG File No.:	CKGLB
Location:	371 N. Pacific Pla	ce, Long Beach	City, CA		Date Sampled:	10/4/19
Material Descrip	otion: Olive Silty	Clayey SAND			Date Received:	10/8/19
Liquid Limit App	o.: I4645	Grooving Tool:	# 10	_	Date Tested:	10/25/19
Balance	e: 15612017	Oven:	SQ-2	_	Sampled by:	DP
Bore Hole No	.: CKG-5	Sample No.:	SPT-3	Depth (ft):	30'	-
	Sample Preparation:	wet	dry X	Mass of Te	est Specimen (g):	155.93
PLASTIC LIM	IT TEST	Trials			Ave.	
		1	2	3		
Dish Number		20	17			
a) wt. of dish $+ v$	wet soil (g)	46.32	45.41			
b) wt. of dish $+ a$	dry soil (g)	44.72	43.91			
c) wt. of moistur	re (g)=[a-b]	1.6	1.5			
d)wt. of dish (g)		36.94	36.72			
e) wt. of dry soil	(g) =[b-d]	7.78	7.19]
f) moisture conte	ent %=[e/c]*100	20.6	20.9		21	
						-
LIQUID LIMI	<u>f test</u>	Trials				
		1	2	3	4	
Dish Number		9	12	25		
Number of Blow	/8	34	29	23		
g) wt. of dish + v	wet soil (g)	47.22	47.11	45.99		
h) wt. of dish + dry soil (g)		45.13	44.92	44.01]
i) wt. of moisture	e (g)=[g-h]	2.09	2.19	1.98		
j)wt. of dish (g)		37.11	36.7	36.90]
k) wt. of dry soil	l (g)=[h-j]	8.02	8.22	7.11		
1) moisture conte	ent %=[i/k]*100	26.1	26.6	27.8		J
		I			1	

Liquid Limit	Plastic Limit	Plasticity Index	Classification
27	21	6	CL-ML

Tested by: A.Cabanilla

Checked by: Angelito Cabanilla

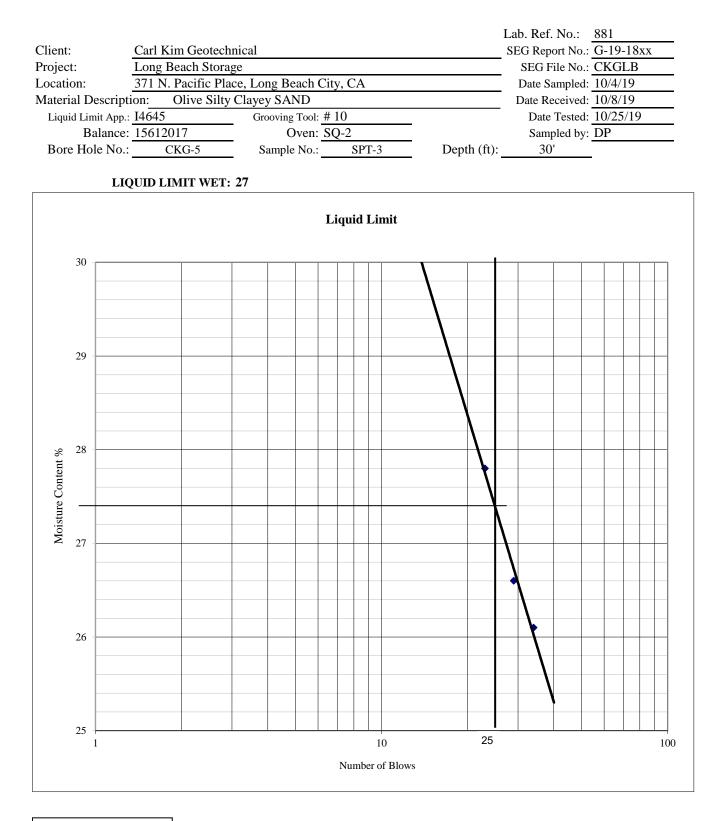


PLATE NO.: B-

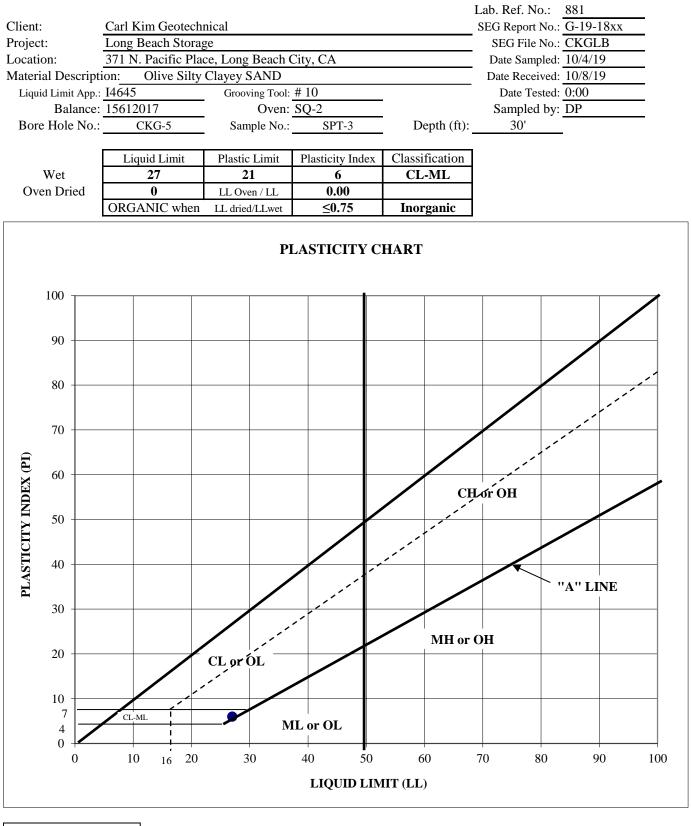


PLATE NO.: B-6A

					Lab. Ref. No.:	881
Client:	Carl Kim Geotech	SEG Report No.:	G-19-18xx			
Project:	Long Beach Stora	ge			SEG File No.:	CKGLB
Location:	371 N. Pacific Pla	ce, Long Beach C	City, CA		Date Sampled:	10/4/19
Material Descrip	otion: Greenish C	Gray Poorly Grade	ed SAND with S	Silty/SM	Date Received:	10/8/19
Liquid Limit App	o.: <u>14645</u>	Grooving Tool:	# 10	_	Date Tested:	10/24/19
Balance	e: 15612017	Oven:	SQ-2	_	Sampled by:	DP
Bore Hole No	.: CKG-5	Sample No.:		Depth (ft):	40'	
	Sample Preparation:	wet	dry X	Mass of Te	est Specimen (g):	152.00
PLASTIC LIM	<u>IT TEST</u>	Trials			Ave.	
		1	2	3		
Dish Number		15	28			
a) wt. of dish $+ v$	wet soil (g)					
b) wt. of dish $+ a$	dry soil (g)					
c) wt. of moistur	re (g)=[a-b]					
d)wt. of dish (g)		36.80	37.01			
e) wt. of dry soil	-					
f) moisture conte	ent %=[e/c]*100					
		·		-		
LIQUID LIMI	<u>r test</u>	Trials				
		1	2	3	4	
Dish Number						
Number of Blow	/S					
g) wt. of dish + v	wet soil (g)	SAMPLE TEST	NO LIQUID	LIMIT		
h) wt. of dish $+ a$	dry soil (g)					
i) wt. of moisture	e (g)=[g-h]					
j)wt. of dish (g)						
k) wt. of dry soil	(g)=[h-j]					
1) moisture conte	ent %=[i/k]*100					
						-

Liquid Limit	Plastic Limit	Plasticity Index	Classification
NP	NP	NP	SP-SM/SM

Tested by: A.Cabanilla

Checked by: Angelito Cabanilla

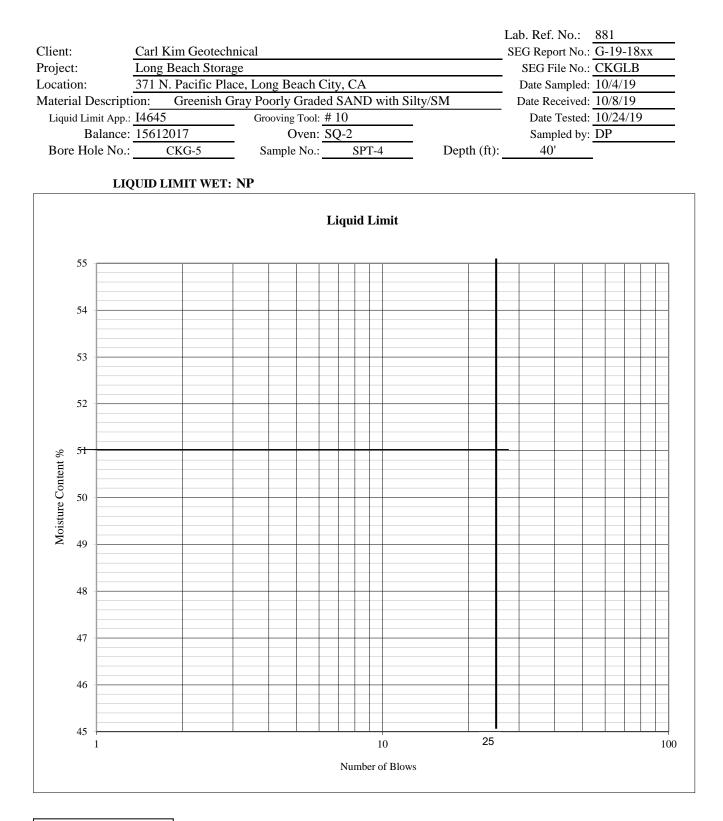
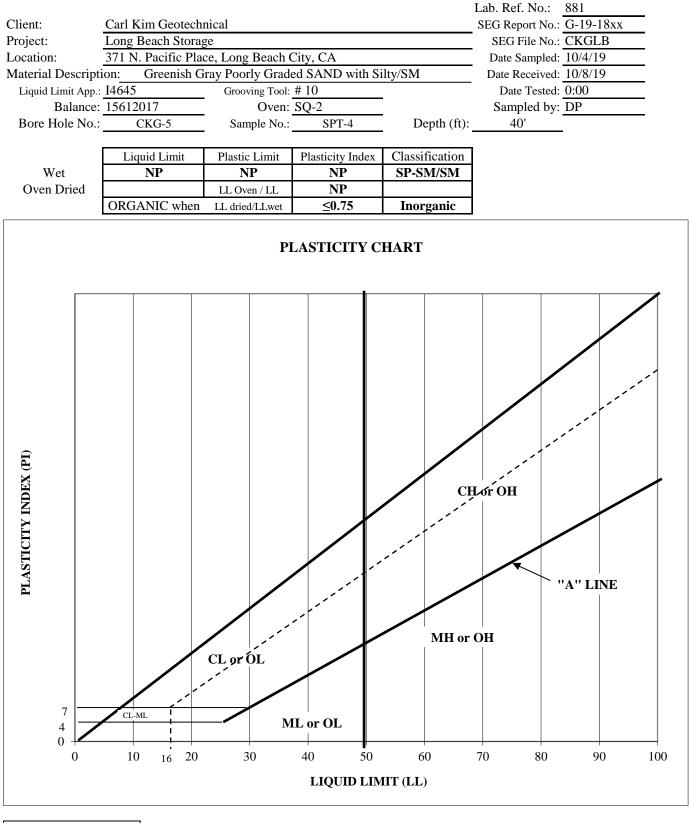
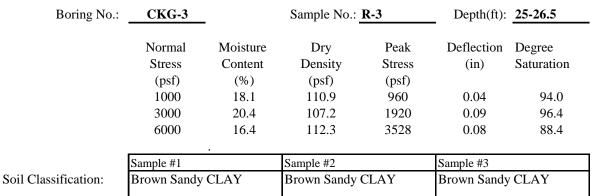
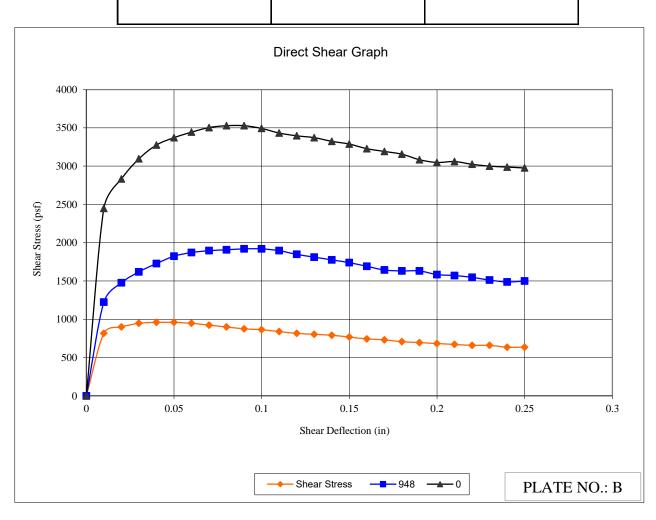


PLATE NO.: B-




PLATE NO.: B-6A



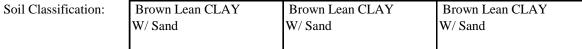
791/781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621 DIRECT SHEAR TEST ASTM D3080

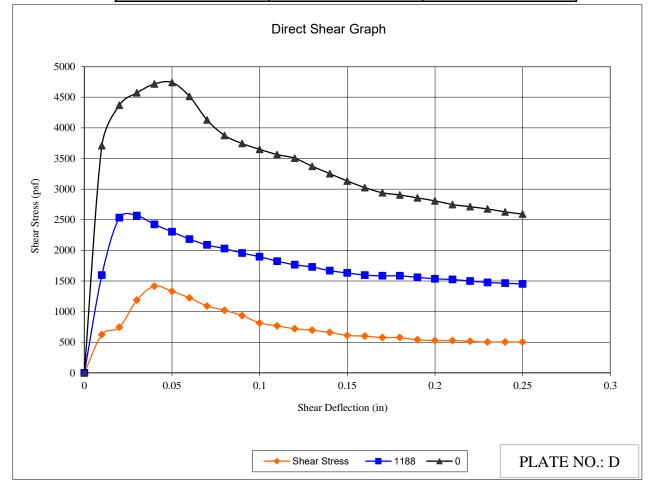
Client:	Carl Kim Geotechnical/Smith-Emery Anaheim	SEG Report No.: G-19-18xx
Project:	Long Beach Storage /PN PWAS_20190823	SEG File No.: SKGLB
Location:	3701 N. Pacific Place, Long Beach, CA	Date Sampled: 10/4/19
Remark:	intact sample	Date Received: 10/8/19
		Date Tested: 10/18/19

Lab. Ref. No.: 876

791/ 781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621 DIRECT SHEAR TEST ASTM D3080

Client:	Carl Kim C	arl Kim Geotechnical/Smith-Emery Anaheim					SEG Report No.: G-19-18xx				
Project:	Long Beac							-			: SKGLB
Location:								Date	e Sampled	10/4/19	
Remark: intact sample						_	Date	Received	1: 10/8/19		
								-	Dat	e Tested:	10/18/19
]	Boring No.:	CKG-3			Sample	No.: R-3		Depth	n(ft): 25-	-26.5	
		Sample #	7 1		Sample #	2		Sample #3	3		1
Soil Classi	ification:	Brown S	Sandy CL	AY	Brown S	andy CLA	Y	Brown S	andy CL	AY	1
			<u>PE</u>	AK STRE	<u>NGTH</u>						
				Shea	r Stress (Fraph					
								$\mathbf{y} = 0$	0.5154x ·	+ 418.11	
4000	1					I					
3500											
3000								\checkmark			
							/				
Max. Stress (psf) 7200											
2000 gt					$ \rightarrow $						
IX. S											
ž ₁₅₀₀	_										
1000											
		T									
500											
200											
0											
	0	1000	200	0	3000	4000)	5000	60	00	7000
		[• N	Aax. Load (psi)	Linear (Max.	Load (psf))		PI /	ATE NO	· A
		L					• "				


STRENGTH INTERCEPT (KSF)= 0.418FRICTION ANGLE (θ) PHI in ° = 27.3 Ave. Degree of saturation: 92.9 Ave. Initial Voids: 0.53



791/781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621 DIRECT SHEAR TEST ASTM D3080

		Lab. Ref. No.: <u>876</u>
Client:	Carl Kim Geotechnical/Smith-Emery Anaheim	SEG Report No.: G-19-18xx
Project:	Long Beach Storage /PN PWAS_20190823	SEG File No.: SKGLB
Location:	3701 N. Pacific Place, Long Beach, CA	Date Sampled: 10/4/19
Remark:	intact sample	Date Received: 10/8/19
		Date Tested: 10/21/19

Boring No.:	CKG-3	_	Sample No.: R-5		Depth(ft):	45-46.5	
	Normal	Moisture	Dry	Peak	Deflection	Degree	
	Stress	Content	Density	Stress	(in)	Saturation	
	(psf)	(%)	(psf)	(psf)			
	1000	28.5	95.0	1416	0.04	99.5	
	3000	28.2	94.9	2568	0.03	98.2	
	6000	28.1	95.3	4740	0.05	99.0	
	Sample #1		Sample #2		Sample #3		
	Sumpro #1		Sampio #2		Sumple #3		

791/ 781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621 DIRECT SHEAR TEST ASTM D3080

Project: Long Beach Storage /PN PWAS_20190823 SEG File Location: 3701 N. Pacific Place, Long Beach, CA Date Samp Remark: intact sample Date Receind Date Receind Date Test Boring No.: CKG-3 Sample No.: R-5 Depth(ft): 45-46.5 Sample #1 Sample #2 Sample #3	No.: G-19-18xx No.: SKGLB pled: 10/4/19 ived: 10/8/19 ted: 10/21/19
Intact sample Date Receive Boring No.: CKG-3 Sample No.: R-5 Depth(ft): 45-46.5 Soil Classification: Sample #1 Sample #2 Sample #3 Soil Classification: Brown Lean CLAY Brown Lean CLAY Brown Lean CLAY	ived: 10/8/19
Date Test Boring No.: CKG-3 Sample No.: R-5 Depth(ft): 45-46.5 Sample #1 Sample #2 Sample #3 Soil Classification: Brown Lean CLAY Brown Lean CLAY	
Boring No.:CKG-3Sample No.: R-5Depth(ft): 45-46.5Soil Classification:Sample #1Sample #2Sample #3Brown Lean CLAYBrown Lean CLAYBrown Lean CLAY	ted: 10/21/19
Sample #1Sample #2Sample #3Soil Classification:Brown Lean CLAYBrown Lean CLAYBrown Lean CLAY	
Soil Classification: Brown Lean CLAY Brown Lean CLAY Brown Lean CLAY	
W/Sand W/Sand W/Sand	
Wy Said Wy Said	
PEAK STRENGTH]
Shear Stress Graph y = 0.6695x + 676.	42
5000	
4500	
4000	
3500	
Image: Second	
(1) 3000 2500 2000	
₩ 2000	
1500	
1000	
500	
0 1000 2000 3000 4000 5000 6000	7000
	7000
◆ Max. Load (psf) — Linear (Max. Load (psf)) PLATE	E NO.: C

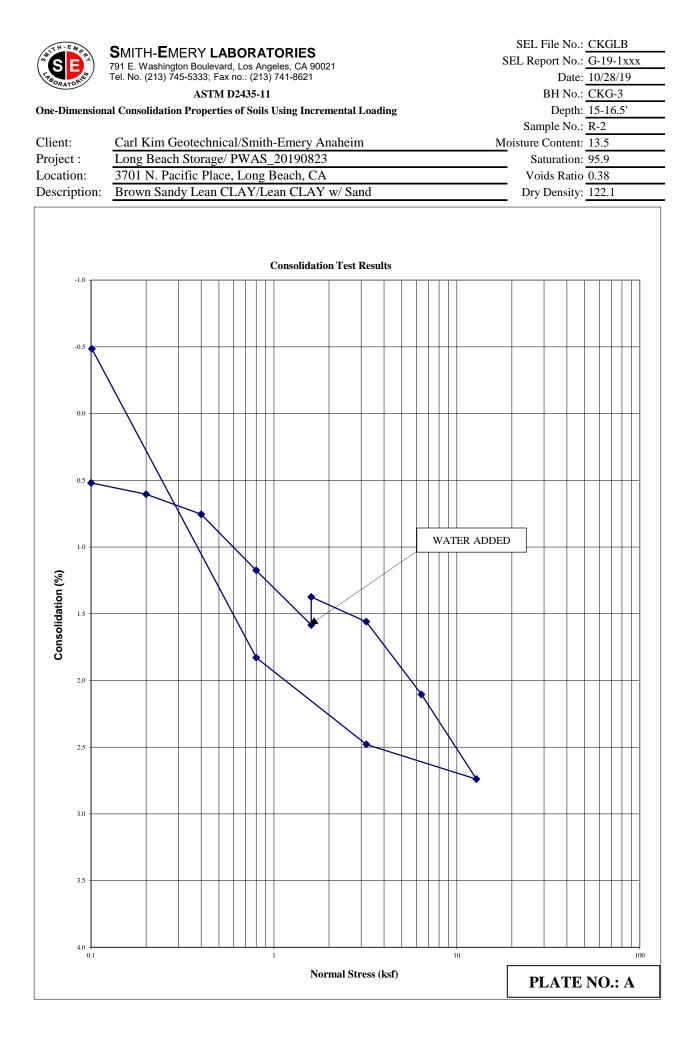
STRENGTH INTERCEPT (KSF)= 0.676FRICTION ANGLE (θ) PHI in ° = 33.9Ave. Degree of saturation: 98.9Ave. Initial Voids: 0.77

791/781 East Washington Boulevard, Los Angeles, CA 90021

Tel.: (213) 745-5333; Fax (213)741-8621 ASTM D2435-11

Une-Dimensional Consolidation Properties of Soils Using Incremental Loading

CONSOL NO. 1


Client:	Carl Kim G	eotechnical/Smith	SEL File No.: CKGLB			
Project:	Long Beach	Storage/ PWAS_2	0190823	S	EL Report No.: G-19-1xxx	
Location:	3701 N. Paci	fic Place, Long Be	each, CA	Date Sampled : 10/4/19		
						Date Received: 10/8/19
BORING NO .:	CKG-3	SAMPLE NO .:	R-2	DEPTH (FT.):	15-16.5'	Date Tested : 10/17/19

SOIL DESCRIPTION: Brown Sa

Brown Sandy Lean CLAY/Lean CLAY w/ Sand

NORMAL	DIAL	TOTAL	DEVICE	NORMAL	CORRECTED	
PRESSURE	READING	DEFLECTION	CORRECTION	PRESSURE	DEFLECTION	Graph
(KSF)	(INCH)	(INCH)	(INCH)	(KSF)	(%)	
0	0.24715	0.00000	0.00000	0	0.00	0
0.1	0.24125	0.00590	0.00070	0.1	0.520	0.260
0.2	0.23990	0.00725	0.00120	0.2	0.605	0.303
0.4	0.23770	0.00945	0.00190	0.4	0.755	0.378
0.8	0.23230	0.01485	0.00310	0.8	1.175	0.588
1.6	0.22610	0.02105	0.00520	1.6	1.585	0.793
1.6	0.22820	0.01895	0.00520	1.6	1.375	0.688
3.2	0.22395	0.02320	0.00760	3.2	1.560	0.780
6.4	0.21560	0.03155	0.01050	6.4	2.105	1.053
12.8	0.20595	0.04120	0.01380	12.8	2.740	1.370
3.201	0.21185	0.03530	0.01050	3.201	2.480	1.240
0.801	0.22055	0.02660	0.00830	0.801	1.830	0.915
0.101	0.24540	0.00175	0.00660	0.101	-0.485	-0.243

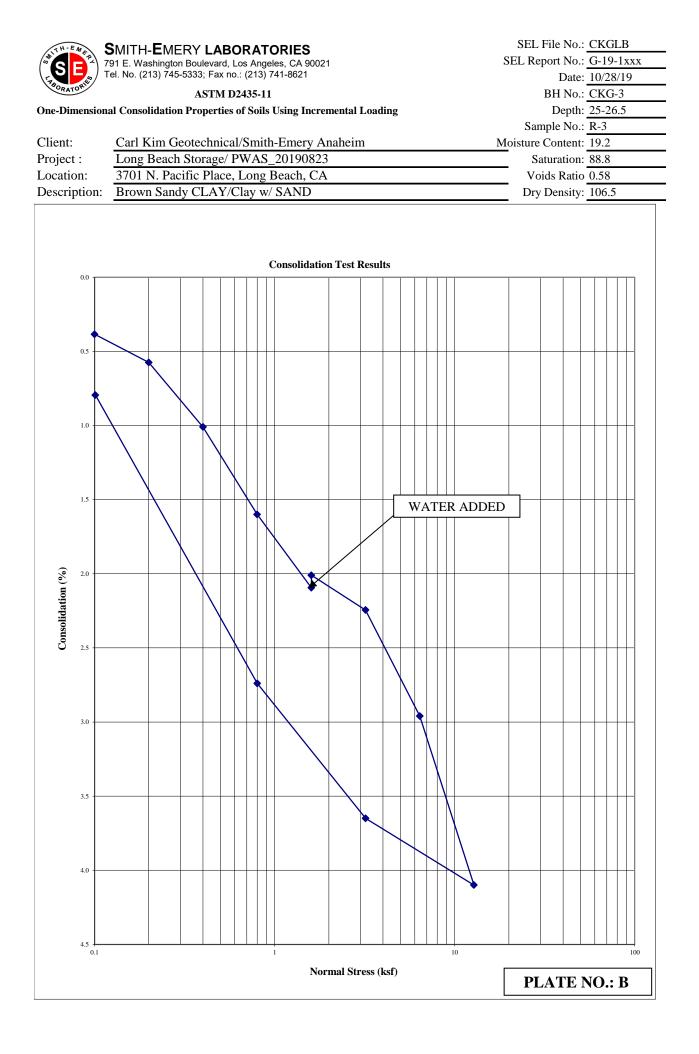
Measure Sample Ht. (in)	0.998	1.012	0.998	1.000
Height of sample (in)	1.002			
Final Height of sample (in)	<u>0.961</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft ³)	0.002658	75.27	(cm ³)	
Final volume of sample (ft3)	0.002549	72.17	(cm ³)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	212.0	214.5		
2) wt. of dry soil + Ring	192.1	192.1		
3) wt. of Ring (g)	44.8	44.8		
4) wt of moisture (g)	19.9	22.4		
5) % moisture content	13.5	15.2	1	
6) wt. of dry soil Ws (g)	147.3	147.3	1	
7) Wet density (pcf)	138.6	140.6	1	
8) dry density (pcf)	122.1	122.1	1	
9) Vs=Ws/GS	54.6	54.6	1	
10) Voids Ratio (V-Vs)/(Vs)	0.38	0.38	1	
Degree of Saturation	95.9	108.0		

791/781 East Washington Boulevard, Los Angeles, CA 90021

Tel.: (213) 745-5333; Fax (213)741-8621 ASTM D2435-11

One-Dimensional Consolidation Properties of Soils Using Incremental Loading

Client:	Carl Kim Geotechnical/Smith-Emery Anaheim					SEL File No.: CKGLB
Project:	Long Beach Storage/ PWAS_20190823				S	SEL Report No.: G-19-1xxx
Location:	3701 N. Pac	ific Place, Long Be	each, CA			Date Sampled : 10/4/19
					Date Received: 10/8/19	
BORING NO .:	CKG-3	SAMPLE NO .:	R-3	DEPTH (FT.):	25-26.5	Date Tested : 10/17/19


SOIL DESCRIPTION: Brown Sandy CLAY/Clay w/ SAND

CONSOL NO. 2

NORMAL PRESSURE (KSF)	DIAL READING (INCH)	TOTAL DEFLECTION (INCH)	DEVICE CORRECTION (INCH)	NORMAL PRESSURE (KSF)	CORRECTED DEFLECTION (%)	Graph
0.0	0.25675	0.00000	0.00000	0	0.0000	0
0.1	0.25210	0.00465	0.00080	0.1	0.38	0.1925
0.2	0.24970	0.00705	0.00130	0.2	0.57	0.2875
0.4	0.24435	0.01240	0.00230	0.4	1.01	0.5050
0.8	0.23715	0.01960	0.00360	0.8	1.60	0.8000
1.6	0.23050	0.02625	0.00530	1.6	2.10	1.0475
1.6	0.23135	0.02540	0.00530	1.6	2.01	1.0050
3.2	0.22730	0.02945	0.00700	3.2	2.25	1.1225
6.4	0.21815	0.03860	0.00900	6.4	2.96	1.4800
12.8	0.20435	0.05240	0.01140	12.8	4.10	2.0500
3.201	0.21125	0.04550	0.00900	3.201	3.65	1.8250
0.801	0.22225	0.03450	0.00710	0.801	2.74	1.3700
0.101	0.24280	0.01395	0.00600	0.101	0.79	0.3975

Measure Sample Ht. (in)	0.9985	1.0060	1.0050	0.9960
· · · · · · · · · · · · · · · · · · ·		1.0000	1.0050	0.7700
Height of sample (in)	<u>1.001</u>			
Final Height of sample (in)	<u>0.949</u>			
Diameter of sample (in)	<u>2.416</u>			
Volume of sample (ft ³)	0.002657	75.23	(cm^3)	
Final volume of sample (ft3)	<u>0.002518</u>	71.29	(cm^3)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	199.2	204.7		
2) wt. of dry soil + Ring	174.6	174.6		
3) wt. of Ring (g)	46.2	46.2		
4) wt of moisture (g)	24.6	30.1		
5) % moisture content	19.2	23.4		
6) wt. of dry soil Ws (g)	128.4	128.4		
7) Wet density (pcf)	126.9	131.4		
8) dry density (pcf)	106.5	106.5		
9) Vs=Ws/GS	47.6	47.6		
10) Voids Ratio (V-Vs)/(Vs)	0.58	0.58		
Degree of Saturation	88.8	108.6		

SEG FILE NO.:CKGLBJOB NAME:Long Beach Storage /PN PWAS_20190823

BORING NO.: CKG-3 SAMPLE NO.: R2 DEPTH (FT.): 15-16.5

SOIL DESCRIPTION:

Brown Sandy Lean CLAY/Lean CLAY w/ Sand

		CONSC	DL NO. 1			
		Loading (Kips)	3.2 ksf			
LOG of	DIAL	TOTAL	DEVICE	LOG of		
TIME	READING	DEFLECTION	CORRECTION	TIME	DEFORMATION	Graph
(HR)	(INCH)	(INCH)	(INCH)	(Min.)	(in)	
0.000	0.22820	0.0000	0.0000	0	0.00	0
0.00167	0.22565	0.00255	0.00760	0.10	-0.51	-0.25
0.00417	0.22550	0.00270	0.00760	0.25	-0.49	-0.25
0.00833	0.22540	0.00280	0.00760	0.50	-0.48	-0.24
0.01666	0.22535	0.00285	0.00760	1	-0.48	-0.24
0.03333	0.22515	0.00305	0.00760	2	-0.46	-0.23
0.06666	0.22490	0.00330	0.00760	4	-0.43	-0.22
0.13333	0.22470	0.00350	0.00760	8	-0.41	-0.21
0.25000	0.22455	0.00365	0.00760	15	-0.40	-0.20
0.50000	0.22430	0.00390	0.00760	30	-0.37	-0.19
1	0.22405	0.00415	0.00760	60	-0.35	-0.17
2	0.22385	0.00435	0.00760	120	-0.33	-0.16
4	0.22360	0.00460	0.00760	240	-0.30	-0.15
8	0.22345	0.00475	0.00760	480	-0.29	-0.14

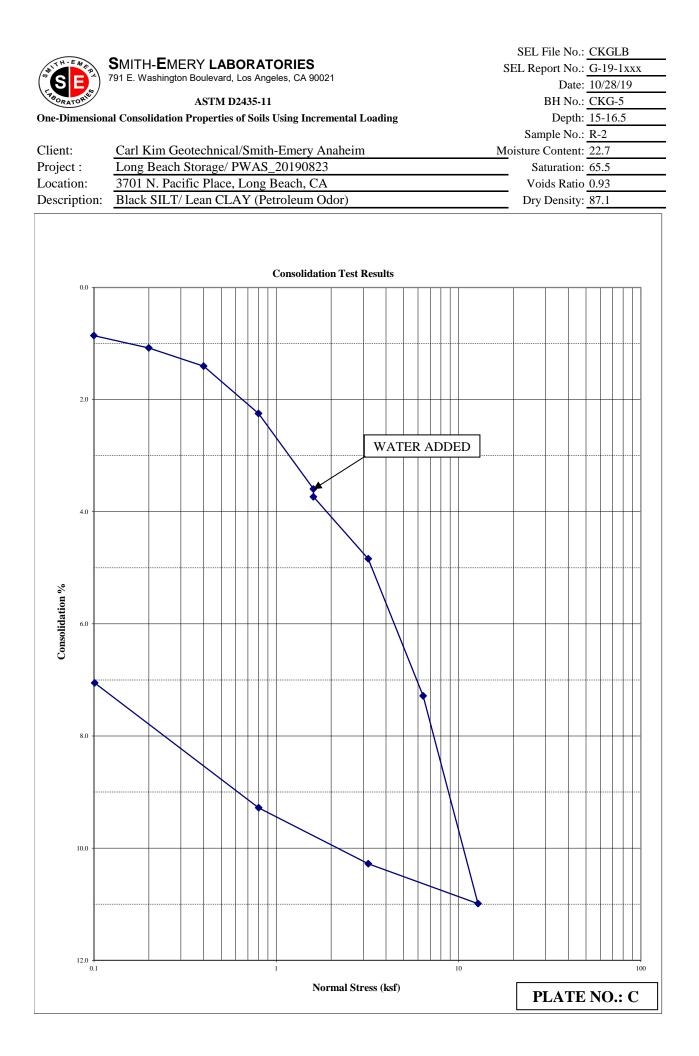
Measure Sample Ht. (in)	1.0125	1.0115	1.0165	1.0100
Height of sample (in)	1.013			
Final Height of sample (in)	<u>1.001</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft ³)	0.002687	76.07	(cm^3)	
Final volume of sample (ft3)	0.002657	75.23	(cm ³)	
Assumed Sp. Gr. (SG)	2.700	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	212.0	214.5		
2) wt. of dry soil + Ring	192.1	192.1		
3) wt. of Ring (g)	44.8	44.8		
4) wt of moisture (g)	19.9	22.4		
5) % moisture content	13.5	15.2		
6) wt. of dry soil Ws (g)	147.3	147.3		
7) Wet density (pcf)	137.1	139.1		
8) dry density (pcf)	120.8	122.1	1	
9) Vs=Ws/GS	54.6	54.6	1	
10) Voids Ratio (V-Vs)/(Vs)	0.39	0.38	1	
Degree of Saturation	92.3	108.2	1	

791/781 East Washington Boulevard, Los Angeles, CA 90021 Tel.: (213) 745-5333; Fax (213)741-8621

ASTM D2435-11

One-Dimensional Consolidation Properties of Soils Using Incremental Loading

Client:	Carl Kim Geotechnical/Smith-Emery Anaheim					SEL File No.: Ch	KGLB
Project:	Long Beach Storage/ PWAS_20190823				S	EL Report No.: G-	-19-1xxx
Location:	on: 3701 N. Pacific Place, Long Beach, CA					Date Sampled : 10)/4/19
					Date Received: 10)/8/19	
BORING NO.:	O.: <u>CKG-5</u> SAMPLE NO.: <u>R-2</u> DEPTH (FT.):				15-16.5	Date Tested : 10)/17/19


SOIL DESCRIPTION:

Black SILT/ Lean CLAY (Petroleum Odor)

CONSOL NO. 3

NORMAL	DIAL	TOTAL	DEVICE	NORMAL	CORRECTED	
PRESSURE	READING	DEFLECTION	CORRECTION	PRESSURE	DEFLECTION	Graph
(KSF)	(INCH)	(INCH)	(INCH)	(KSF)	(%)	
0	0.27140	0.00000	0.00000	0	0.000	0
0.1	0.26220	0.00920	0.00060	0.1	0.860	0.430
0.2	0.25950	0.01190	0.00110	0.2	1.080	0.540
0.4	0.25545	0.01595	0.00190	0.4	1.405	0.702
0.8	0.24570	0.02570	0.00320	0.8	2.250	1.125
1.6	0.23065	0.04075	0.00480	1.6	3.595	1.7975
1.6	0.22925	0.04215	0.00480	1.6	3.735	1.868
3.2	0.21610	0.05530	0.00690	3.2	4.840	2.420
6.4	0.18925	0.08215	0.00930	6.4	7.285	3.643
12.8	0.14970	0.12170	0.01180	12.8	10.990	5.495
3.201	0.15970	0.11170	0.00890	3.201	10.280	5.140
0.801	0.17220	0.09920	0.00640	0.801	9.280	4.64
0.101	0.19645	0.07495	0.00440	0.101	7.055	3.528

				1
Measure Sample Ht. (in)	1.0350	1.0350	1.0020	1.0005
Height of sample (in)	<u>1.018</u>			
Final Height of sample (in)	<u>0.896</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft ³)	0.002701	76.49	(cm^3)	
Final volume of sample (ft3)	<u>0.002378</u>	67.34	(cm^3)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	174.5	171.6		
2) wt. of dry soil + Ring	150.3	150.3		
3) wt. of Ring (g)	43.5	43.5		
4) wt of moisture (g)	24.2	21.3		
5) % moisture content	22.7	19.9		
6) wt. of dry soil Ws (g)	106.8	106.8		
7) Wet density (pcf)	106.8	104.5		
8) dry density (pcf)	87.1	87.1		
9) Vs=Ws/GS	39.6	39.6		
10) Voids Ratio (V-Vs)/(Vs)	0.93	0.93		
Degree of Saturation	65.5	57.6		

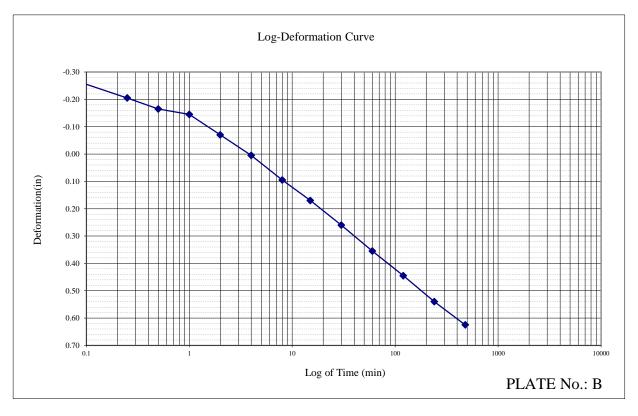
SEG FILE NO.: CKGLB JOB NAME: Long Beach Storage /PN PWAS_20190823

BORING NO.: <u>CKG-5</u> SAMPLE NO.: <u>R-2</u> DEPTH (FT.): <u>15-16.5</u>

SOIL DESCRIPTION: Black SILT/ Lean CLAY (Petroleum Odor)

		CONSOL NO. 3				
		Loading (Kips)	3.2			
LOG of	DIAL	TOTAL	DEVICE	LOG of		
TIME	READING	DEFLECTION	CORRECTION	TIME	DEFORMATION	Graph
(hr)	(INCH)	(INCH)	(INCH)	(Min.)	(in)	
0	0.22925	0.0000	0.00000	0	0.0000	0
0.002	0.22490	0.0044	0.00690	0.10	-0.2550	-0.1275
0.004	0.22440	0.0049	0.00690	0.25	-0.2050	-0.1025
0.008	0.22400	0.0053	0.00690	0.50	-0.1650	-0.0825
0.017	0.22380	0.0055	0.00690	1	-0.1450	-0.072
0.033	0.22305	0.0062	0.00690	2	-0.0700	-0.035
0.067	0.22230	0.0070	0.00690	4	0.0050	0.0025
0.133	0.22140	0.0079	0.00690	8	0.0950	0.047
0.25	0.22065	0.0086	0.00690	15	0.1700	0.085
0.50	0.21975	0.0095	0.00690	30	0.2600	0.13
1	0.21880	0.0105	0.00690	60	0.3550	0.178
2	0.21790	0.0114	0.00690	120	0.4450	0.2225
4	0.21695	0.0123	0.00690	240	0.5400	0.27
8	0.21610	0.0132	0.00690	480	0.6250	0.3125

Measure Sample Ht. (in)	1.0350	1.0350	1.0020	1.0005
Height of sample (in)	1.018			
Final Height of sample (in)	<u>1.008</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft ³)	0.002701	76.49	(cm^3)	
Final volume of sample (ft3)	0.002674	75.71	(cm ³)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	174.5	171.6		
2) wt. of dry soil + Ring	150.3	150.3	1	
3) wt. of Ring (g)	43.5	43.5	1	
4) wt of moisture (g)	24.2	21.3	1	
5) % moisture content	22.7	19.9		
6) wt. of dry soil Ws (g)	106.8	106.8		
7) Wet density (pcf)	106.8	104.5		
8) dry density (pcf)	87.1	88.0	1	
9) Vs=Ws/GS	39.6	39.6	1	
10) Voids Ratio (V-Vs)/(Vs)	0.93	0.91	1	
Degree of Saturation	65.5	58.9	1	



791/781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621

SEG FILE NO.: JOB NAME:	CKGLB Storage /PN PW	/AS_20190823			Date Received: DateTested:	10/8/19 10/22/19
BORING NO.:	CKG-5	SAMPLE NO.:	R-2	DEPTH (FT.):	15-16.5	_
SOIL DESCRIPT	ΓΙΟN:	Black SILT/ Lean	CLAY (Petro			
	0	·		7		

% moisture content	22.7
dry density (pcf)	87.1
Degree of Saturation	65.5
Voids Ratio (V-Vs)/(Vs)	0.9

CONSOL N	NO. 3
Loading (Kips)	3.2

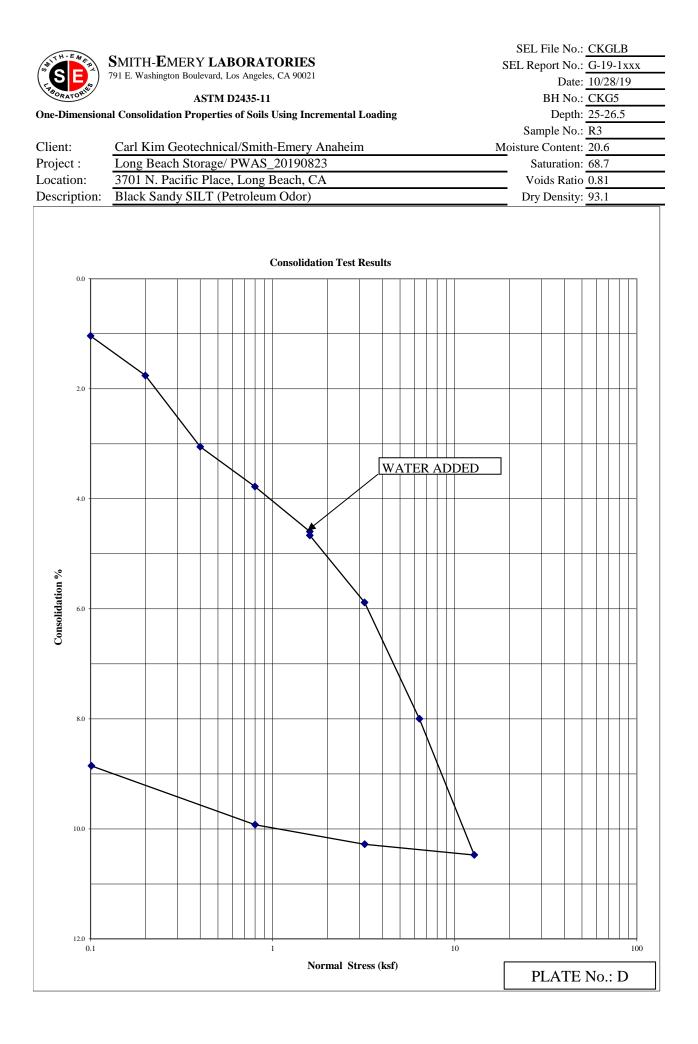
791/781 East Washington Boulevard, Los Angeles, CA 90021

Tel.: (213) 745-5333; Fax (213)741-8621 ASTM D2435-11

One-Dimensional Consolidation Properties of Soils Using Incremental Loading

Client:	Carl Kim Geotechnical/Smith-Emery Anaheim					SEL File No.:	CKGLB
Project:	Long Beach Storage/ PWAS_20190823				S	EL Report No.:	G-19-1xxx
Location:	3701 N. Pacific Place, Long Beach, CA					Date Sampled :	10/4/19
						Date Received:	10/8/19
BORING NO .:	CKG5	SAMPLE NO.:	R3	DEPTH (FT.):	25-26.5	Date Tested :	10/17/19

SOIL DESCRIPTION:


FA

Black Sandy SILT (Petroleum Odor)

CONSOL NO. 4

NORMAL	DIAL	TOTAL	DEVICE	NORMAL	CORRECTED	
PRESSURE	READING	DEFLECTION	CORRECTION	PRESSURE	DEFLECTION	Graph
(KSF)	(INCH)	(INCH)	(INCH)	(KSF)	(%)	
0	0.27075	0.00000	0.00000	0	0.0000	0
0.1	0.25955	0.01120	0.00080	0.1	1.0400	0.5200
0.2	0.25185	0.01890	0.00130	0.2	1.7600	0.8800
0.4	0.23800	0.03275	0.00220	0.4	3.0550	1.5275
0.8	0.22915	0.04160	0.00380	0.8	3.7800	1.8900
1.6	0.21950	0.05125	0.00530	1.6	4.5950	2.2975
1.6	0.21880	0.05195	0.00530	1.6	4.6650	2.3325
3.2	0.20470	0.06605	0.00720	3.2	5.8850	2.9425
6.4	0.18145	0.08930	0.00930	6.4	8.0000	4.0000
12.8	0.15450	0.11625	0.01150	12.8	10.4750	5.2375
3.201	0.15845	0.11230	0.00950	3.201	10.2800	5.1400
0.801	0.16380	0.10695	0.00770	0.801	9.9250	4.9625
0.101	0.17640	0.09435	0.00580	0.101	8.8550	4.4275

Measure Sample Ht. (in)	0.9985	0.9945	0.9950	0.9945
• • • •		0.9943	0.9950	0.9945
Height of sample (in)	<u>0.996</u>			
Final Height of sample (in)	<u>0.879</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft3)	0.002641	74.80	(cm^3)	
Final volume of sample (ft3)	0.002333	66.06	(cm^3)	
Assumed Sp. Gr. (SG)	2.700	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	180.1	176.5		
2) wt. of dry soil + Ring	157.1	157.1		
3) wt. of Ring (g)	45.4	45.4		
4) wt of moisture (g)	23.0	19.4		
5) % moisture content	20.6	17.4		
6) wt. of dry soil Ws (g)	111.7	111.7		
7) Wet density (pcf)	112.3	109.3		
8) dry density (pcf)	93.1	93.1		
9) Vs=Ws/GS	41.4	41.4		
10) Voids Ratio (V-Vs)/(Vs)	0.81	0.81		
Degree of Saturation	68.7	58.0		

JOB NAME:	Long Beach Sto	orage /PN PWAS_	20190823			
BORING NO.:	CKG5	SAMPLE NO.:	R3	DEPTH (FT.):	25-26.5	
SOIL DESCRIPT	TION:	Black Sandy SIL	T (Petroleum Od	or)		
		CONSC	DL NO. 4]		
		Loading (Kips)	3.2			
LOG of	DIAL	TOTAL	DEVICE	LOG of		
TIME	READING	DEFLECTION	CORRECTION	TIME	DEFORMATION	Graph
(hr)	(INCH)	(INCH)	(INCH)	(Min.)	(in)	
0	0.21880	0.00000	0.00000	0	0.0000	
0.002	0.21170	0.00710	0.00720	0.10	-0.0100	-0.005
0.004	0.21085	0.00795	0.00720	0.25	0.0750	0.037
0.008	0.21040	0.00840	0.00720	0.50	0.1200	0.060
0.017	0.21010	0.00870	0.00720	1	0.1500	0.075
0.033	0.20920	0.00960	0.00720	2	0.2400	0.120
0.067	0.20845	0.01035	0.00720	4	0.3150	0.157
0.133	0.20770	0.01110	0.00720	8	0.3900	0.195
0.25	0.20725	0.01155	0.00720	15	0.4350	0.217
0.50	0.20675	0.01205	0.00720	30	0.4850	0.242
1	0.20620	0.01260	0.00720	60	0.5400	0.270
2	0.20565	0.01315	0.00720	120	0.5950	0.297
4	0.20520	0.01360	0.00720	240	0.6400	0.320

0 -0.0050 0.0375 0.0600 0.0750 0.1200 0.1575 0.1950 0.2175 0.2425 0.2700 0.2975 0.3200

0.3450

SEG FILE NO.:

8

CKGLB

0.20470

SAMPLE MOISTURE CONTENT/DRY DENSITY

0.00720

480

0.6900

Measure Sample Ht. (in)	0.9985	0.9945	0.9950	0.9945
Height of sample (in)	0.996			
Final Height of sample (in)	<u>0.990</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft3)	0.002641	74.80	(cm ³)	
Final volume of sample (ft3)	0.002628	74.41	(cm^3)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	180.1	176.5		
2) wt. of dry soil + Ring	157.1	157.1		
3) wt. of Ring (g)	45.4	45.4		
4) wt of moisture (g)	23.0	19.4		
5) % moisture content	20.6	17.4		
6) wt. of dry soil Ws (g)	111.7	111.7		
7) Wet density (pcf)	112.3	109.9		
8) dry density (pcf)	93.1	93.6		
9) Vs=Ws/GS	41.4	41.4		
10) Voids Ratio (V-Vs)/(Vs)	0.81	0.80		
Degree of Saturation	68.7	58.7	1	

0.01410

791/781 East Washington Boulevard, Los Angeles 90021 Tel. No. (213) 745-5333: Fax No.: (213) 741-8621

SEG FILE NO.: JOB NAME:	CKGLB Long Beach St	torage /PN PWAS_20	0190823		Date Received: DateTested:	10/8/19 10/22/19
BORING NO.:	CKG5	SAMPLE NO.:	R3	DEPTH (FT.):	25-26.5	_
SOIL DESCRIPT	TION:	Black Sandy SILT	(Petroleum O	dor)		
	Q	% moisture content	20.	6		
		dry density (pcf)	93.	1		
	De	egree of Saturation	68.	7		
	Voids	Ratio (V-Vs)/(Vs)	68.	7		
		CONSOL Loading (Kips)	2 NO. 4 3.2			

791/781 East Washington Boulevard, Los Angeles, CA 90021

Tel.: (213) 745-5333; Fax (213)741-8621 ASTM D2435-11

Une-Dimensional Consolidation Properties of Soils Using Incremental Loading


Client:	Carl Kim Geotechnical/Smith-Emery Anaheim					SEL File No.: CKGLB
Project:	Long Beach Storage/ PWAS_20190823				S	EL Report No.: G-19-1xxx
Location:	3701 N. Pacific Place, Long Beach, CA					Date Sampled : 10/4/19
						Date Received: 10/8/19
BORING NO .:	CKG-5	SAMPLE NO .:	R-4	DEPTH (FT.):	35-36.5'	Date Tested : 10/28/19

SOIL DESCRIPTION: Gray SILT

CONSOL NO. 1

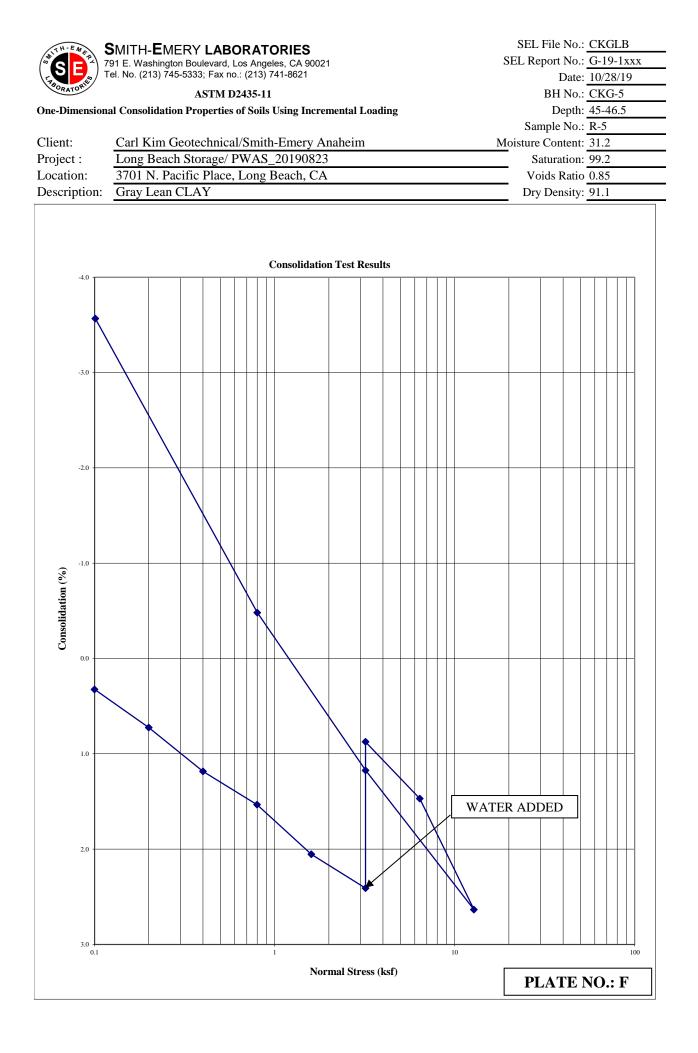
NORMAL PRESSURE (KSF)	DIAL READING (INCH)	TOTAL DEFLECTION (INCH)	DEVICE CORRECTION (INCH)	NORMAL PRESSURE (KSF)	CORRECTED DEFLECTION (%)	Graph
0	0.25655	0.00000	0.00000	0	0.00	0
0.1	0.25380	0.00275	0.00070	0.1	0.205	0.102
0.2	0.25155	0.00500	0.00120	0.2	0.380	0.190
0.4	0.24935	0.00720	0.00190	0.4	0.530	0.265
0.8	0.24611	0.01044	0.00310	0.8	0.734	0.367
1.6	0.24055	0.01600	0.00520	1.6	1.080	0.540
3.2	0.23430	0.02225	0.00760	3.2	1.465	0.733
3.2	0.23345	0.02310	0.00760	3.2	1.550	0.775
6.4	0.22410	0.03245	0.01050	6.4	2.195	1.098
12.8	0.20905	0.04750	0.01380	12.8	3.370	1.685
3.201	0.21555	0.04100	0.01050	3.201	3.050	1.525
0.801	0.22395	0.03260	0.00830	0.801	2.430	1.215
0.101	0.24005	0.01650	0.00660	0.101	0.990	0.495

	1.007	1.010	1.007	1.005
Measure Sample Ht. (in)	1.007	1.013	1.005	1.007
Height of sample (in)	1.008			
Final Height of sample (in)	<u>0.961</u>			
Diameter of sample (in)	<u>2.416</u>			
Volume of sample (ft ³)	0.002674	75.73	(cm^3)	
Final volume of sample (ft3)	0.002548	72.16	(cm^3)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	205.9	207.2		
2) wt. of dry soil + Ring	182.6	182.6		
3) wt. of Ring (g)	44.5	44.5		
4) wt of moisture (g)	23.3	24.6		
5) % moisture content	16.9	17.8		
6) wt. of dry soil Ws (g)	138.1	138.1		
7) Wet density (pcf)	132.9	134.0		
8) dry density (pcf)	113.7	113.7		
9) Vs=Ws/GS	51.1	51.1		
10) Voids Ratio (V-Vs)/(Vs)	0.48	0.48		
Degree of Saturation	94.7	100.0		

791/781 East Washington Boulevard, Los Angeles, CA 90021

Tel.: (213) 745-5333; Fax (213)741-8621 ASTM D2435-11

One-Dimensional Consolidation Properties of Soils Using Incremental Loading


Client:	Carl Kim Ge	eotechnical/Smith-l	Emery Ana	heim	SEL File No.: CKGLB SEL Report No.: G-19-1xxx Date Sampled : 10/4/19 Date Received: 10/8/19			
Project:	Long Beach	Storage/ PWAS_2	0190823		SEL Report No.: G-19-1xxx Date Sampled : 10/4/19 Date Received: 10/8/19		G-19-1xxx	
Location:	3701 N. Pac	ific Place, Long Be	each, CA					
						Date Received: 1	0/8/19	
BORING NO .:	CKG-5	SAMPLE NO .:	R-5	DEPTH (FT.):	45-46.5	Date Tested : 1	0/28/19	

SOIL DESCRIPTION: Gray Lean CLAY

CONSOL NO. 2

NORMAL PRESSURE (KSF)	DIAL READING (INCH)	TOTAL DEFLECTION (INCH)	DEVICE CORRECTION (INCH)	NORMAL PRESSURE (KSF)	CORRECTED DEFLECTION (%)	Graph
0.0	0.25490	0.00000	0.00000	0	0.0000	0
0.1	0.25085	0.00405	0.00080	0.1	0.33	0.1625
0.2	0.24635	0.00855	0.00130	0.2	0.73	0.3625
0.4	0.24075	0.01415	0.00230	0.4	1.19	0.5925
0.8	0.23595	0.01895	0.00360	0.8	1.54	0.7675
1.6	0.22905	0.02585	0.00530	1.6	2.06	1.0275
3.2	0.22380	0.03110	0.00700	3.2	2.41	1.2050
3.2	0.23915	0.01575	0.00700	3.2	0.88	0.4375
6.4	0.23120	0.02370	0.00900	6.4	1.47	0.7350
12.8	0.21715	0.03775	0.01140	12.8	2.64	1.3175
3.201	0.23415	0.02075	0.00900	3.201	1.18	0.5875
0.801	0.25260	0.00230	0.00710	0.801	-0.48	-0.2400
0.101	0.28455	-0.02965	0.00600	0.101	-3.57	-1.7825

		1		
Measure Sample Ht. (in)	1.0050	1.0050	1.0020	1.0030
Height of sample (in)	<u>1.004</u>			
Final Height of sample (in)	<u>0.966</u>			
Diameter of sample (in)	2.416			
Volume of sample (ft ³)	0.002663	75.41	(cm^3)	
Final volume of sample (ft3)	0.002563	72.57	(cm^3)	
Assumed Sp. Gr. (SG)	<u>2.700</u>	Unit of Water (pcf):	62.4	
	Before	After		
1) wt. of wet soil + Ring (g)	188.5	193.2		
2) wt. of dry soil + Ring	154.1	154.1		
3) wt. of Ring (g)	44.0	44.0		
4) wt of moisture (g)	34.4	39.1		
5) % moisture content	31.2	35.5		
6) wt. of dry soil Ws (g)	110.1	110.1		
7) Wet density (pcf)	119.5	123.4		
8) dry density (pcf)	91.1	91.1		
9) Vs=Ws/GS	40.8	40.8		
10) Voids Ratio (V-Vs)/(Vs)	0.85	0.85		
Degree of Saturation	99.2	112.8		

791/781 E. Washington Blvd., Los Angeles CA 90021 Tel.No.: (213) 745-5333; Fax No. (213) 741-8621

Expansion Index

UBC 18-2/ASTM D4829-11

Client: Carl Kim Ge	otechnical/ Smith	-Emery Anaheii			Lab. Ref. No.:	876
	torage PWAS_201	•			SEL File No.:	
Location: 371 N. Long	0	70023			Date Sampled:	
		C +) ID				
Material Description:	Olive Brown Cla				Date Received:	
<u> </u>	Sample No.	Blk-1	Depth (ft.)		Date Tested:	
Equipment: Used:	Ring I.D.:			SE SQ-1	Chamber No.:	
2		B846769478	5 #Rammer:		-	Height Measuremen
Area of specimen (in^2)	12.57	Initial Ht. (in)		Final Ht. (in)		1.0000
Ring Diameter (in)	4.00	Initial Vol. ft ³		Final Vol. ft ³	0.00759	1.0000
Undisturbed Sample			Assumed sp. gr		2.700	1.0000
Remolded Sample	X	% Saturation:	(%mcx sp.grx I	Od)/(sp.gr x 62.4	I-Dd)	1.0000
Initial Moist	ure content	Moist	ure and Densit	y Data	Initial	Final
wt.wet soil + tare	275.2	-	Wt. of wet soil		777.5	815.3
wt. of dry soil + tare	263.2		Wt. of dry soil-	0	743.4	743.4
wt. of tare	130.8		Wt. of Moisture	2	34.1	71.9
Moisture content %	9.1		Wt. of Ring		367.5	367.5
REMARKS		-	Wt of dry soil		375.9	375.9
Sampled by Dan Phelps	-		Moisture Conte	ent %	9.1	19.1
			Wet Density (p	cf)	124.2	130.0
			Dry Density (p	cf)	113.9	109.1
			% Saturation		51	95
Date	Time	Time Lapsed	Load (kPa)/(psi)	Dial Reading	deflection (in.)	
10/21/19	13:20		0	0.0000	0.0000	
			6.9 kPa/ 1 psi	0.0000	0.0000	
	13:30	10 min		0.0033	0.0033	
		6sec	Saturated	0.0036		
10/21/19		15sec		0.0042	-0.0009	
		30sec		0.0049	-0.0016	
		1min		0.0040	-0.0007	
		2min		0.0013	0.0020	
		4min		-0.0022	0.0055	
		8min		-0.0078	0.0111	
		15min		-0.0151	0.0184	
		30min		-0.0255	0.0288	
	14:30	1hr		-0.0369	0.0402	
	15:30	2hrs		-0.0409	0.0442	
10/22/19	7:30	18hrs		-0.0432	0.0465	
				EI 50	47	

Note: **EI** ₅₀ prepare the test specimen in accordance with 8.1-8.4 to achieve degree of saturation $50 \pm 2\%$. The deformation of the specimen is recorded for 24H or until the rate of deformation becomes less than 0.0002 in/h.whichever occur first. A minimum recording time of 3 h is required Report EI zero (0) when result is negative (-).

Expansion Index

0 - 20

TABLE 18-1-B Potential Expansion Result VERY LOWLOW

21 - 50		LOW
51 - 90	·····	MEDIUM
91 - 130	••••••••••	HIGH
> 130	•••••••••	VERY HIGH

Tested By: A. Cabanilla

Checked By: A.Cabanilla

791/781 E. Washington Blvd., Los Angeles CA 90021 Tel.No.: (213) 745-5333; Fax No. (213) 741-8621

Expansion Index

UBC 18-2/ASTM D4829-11

Client: Carl Kim Ge	eotechnical/ Smitl	h-Emery Anahein			Lab. Ref. No.:	880
	Storage PWAS_201				- SEL File No.:	
Location: 371 N. Long		,			Date Sampled:	
			T A X7 (
Material Description:	Very Dark Brow				Date Received:	
Boring No.: CKG-5	Sample No.	Blk-1	Depth (ft.)		Date Tested:	
Equipment: Used:	Ring I.D.			SE SQ-1	Chamber No.:	
		: <u>B846769478</u>	5 #Rammer:		1 0 5 0 1	Height Measuremen
Area of specimen (in^2)	12.57	Initial Ht. (in)		Final Ht. (in)		1.0000
Ring Diameter (in)	4.00	Initial Vol. ft ³		Final Vol. ft^3	0.00764	1.0000
Undisturbed Sample			Assumed sp. gr		2.700	1.0000
Remolded Sample	X	% Saturation:	(%mcx sp.grx I	$\frac{(sp.grx 62.2)}{(sp.grx 62.2)}$	+-Dd)	1.0000
Initial Moist	ure content	<u>M</u> oist	ture and Densit	y Data	Initial	Final
wt.wet soil + tare	254.7		Wt. of wet soil		767.5	801.6
wt. of dry soil + tare	243.9)	Wt. of dry soil-	Ring	733.7	733.7
wt. of tare	130.9)	Wt. of Moisture	8	33.8	67.9
Moisture content %	9.6	5	Wt. of Ring		366.5	366.5
REMARKS		_	Wt of dry soil		367.2	367.2
Sampled by Dan Phelps	-		Moisture Conte	ent %	9.2	18.5
			Wet Density (p	cf)	121.5	125.5
			Dry Density (p	cf)	111.2	105.9
			% Saturation	,	48	85
Date	Time	Time Lapsed	Load (kPa)/(psi)	Dial Reading	deflection (in.)	
10/22/19	12:56	1	0	0.0000	0.0000	
			6.9 kPa/ 1 psi	0.0000	0.0000	
	13:06	10 min		0.0059	0.0059	
		6sec	Saturated	0.0060		
10/22/19		15sec		0.0061	-0.0002	
		30sec		0.0062	-0.0003	
		1min		0.0060	-0.0001	
		2min		0.0055	0.0004	
		4min		0.0040	0.0019	
		8min		0.0011	0.0048	
		15min		-0.0030	0.0089	
		30min		-0.0094	0.0153	
	14:06	1hr		-0.0169	0.0228	
	15:06	2hrs		-0.0261	0.0320	
10/23/19	8:06	19hrs		-0.0501	0.0560	
10/23/19	0.00	171115		-0.0501	0.0500	1

Note: **EI** ₅₀ prepare the test specimen in accordance with 8.1-8.4 to achieve degree of saturation $50 \pm 2\%$. The deformation of the specimen is recorded for 24H or until the rate of deformation becomes less than 0.0002 in/h.whichever occur first. A minimum recording time of 3 h is required Report EI zero (0) when result is negative (-).

TABLE 18-1-B Expansion Index Potential Expansion Result 0 - 20 VERY LOW 21 - 50 LOW 51 - 90 MEDIUM 91 - 130 HIGH > 130 VERY HIGH

Tested By: A. Cabanilla

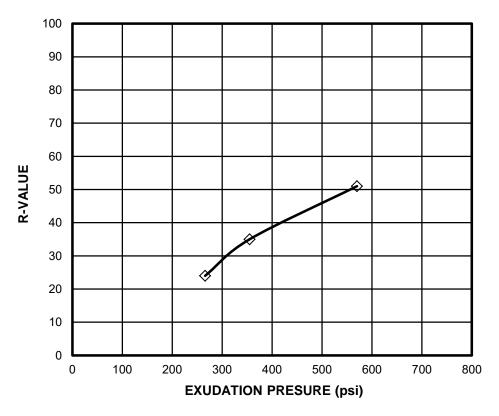
Checked By: A.Cabanilla

(CAL TEST 301)

SMITH-EMERY LABORATORIES

An Independent Commercial Testing Laboratory, Established 1904

1195 N. Tustin Anahiem, California 92807 • Tel. (714) 238-6133 • Fax (714) 238-6144


Report No.: A19-245

SEL JOB #:	New				
Date Sample:	10/16/2019				
Project:	Long Beach Storage P	WAS_2019	0823		
Source:	Native/On Site Material				
SOIL TYPE:	Brown Clayey SAND				
Sample #	1				
BH No.	CKG-3				
	SPECIMEN	А	В	С	
EXUDATION I	PRESSURE (psi)	570	355	266	
PREPARED V	VEIGHT (g)	1100	1100	1100	
FINAL WATER	R ADDED (g)	30	40	50	
WEIGHT, SOI	L & MOLD (g	3106	3127	3125	
WEIGHT, MO	LD (g)	2095	2094	2100	
HEIGHT (in)		2.22	2.3	2.42	
EXPANSION I	DIAL	0	0	0	
STABILOMET	ER @ 1000 lb	0	0	0	
STABILOMET	ER @ 2000 lb	60	84	106	
TURNS DISPL	ACEMENT	3.25	3.34	3.82	
(2.5/d)*((Pv	/Ph)-1)+1	2.28	1.68	1.33	
100/A	bove	44	60	75	
R-V	ALUE TEST	51	35	24	

VALUE AT 300 PSI EXUDATION PRESSURE:

R-VALUE: Corrected:

31

N /			tı.	Ir	5	٠
M	U	ъ	ιι	11	C	
					-	-

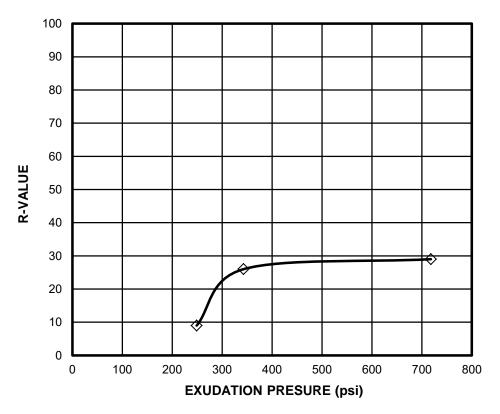
R-VALUE TEST Smith-Emery Laboratory

(CAL TEST 301)

SMITH-EMERY LABORATORIES

An Independent Commercial Testing Laboratory, Established 1904

1195 N. Tustin Anahiem, California 92807 • Tel. (714) 238-6133 • Fax (714) 238-6144


Report No.: A19-245

SEL JOB #:	New			
Date Sample:	10/16/2019			
Project:	Long Beach Storage	e PWAS_20190)823	
Source:	Native/On Site Mate	erial		
SOIL TYPE:	Vry Dark Grayish Br	own Sandy Silt	y CLAY	
Sample #	2			
BH No.	CKG-5			
	SPECIMEN	А	В	С
EXUDATION I	PRESSURE (psi)	718	343	249
PREPARED V	VEIGHT (g)	1100	1100	1100
FINAL WATE	R ADDED (g)	20	40	50
WEIGHT, SOI	L & MOLD (g	3064	3116	3009
WEIGHT, MO	LD (g)	2090	2098	2094
HEIGHT (in)		2.47	2.72	2.55
EXPANSION I	DIAL	0	0	0
STABILOMET	ER @ 1000 lb	0	0	0
STABILOMET	ER @ 2000 lb	104	114	140
TURNS DISPI	ACEMENT	3.25	3.34	3.82
(2.5/d)*((Pv	//Ph)-1)+1	1.41	1.30	1.09
100/A	bove	71	77	91
R-V	ALUE TEST	29	26	9

VALUE AT 300 PSI **EXUDATION PRESSURE:**

R-VALUE: Corrected:

20

Moisture: 7.10%

R-VALUE TEST Smith-Emery Laboratory

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

October 23, 2019

Mr. Robert Greeley Smith Emery Company [Anaheim] 1195 N. Tustin Avenue Anaheim, CA 92807

Report No.: 1910178

Project Name: Long Beach Storage PWAS_20190823 - 3701 N. Pacific Place, Long Beach, CA

Dear Mr. Robert Greeley,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on October 16, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

If you have any questions in reference to this report, please contact your Positive Lab Service coordinator.

Project Manager

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

Certificate of Analysis

Page 2 of 3

Smith Emery Company [Anaheim] 1195 N. Tustin Avenue Anaheim, CA 92807

Attn: Mr. Robert Greeley

File #:73901 Report Date: 10/23/19 Submitted: 10/16/19 **PLS Report No.: 1910178**

Phone: (714) 238-6133 FAX:(714) 238-6144

Project: Long Beach Storage PWAS_20190823 - 3701 N. Pacific Place, Long Beach, CA

Sample ID: BULK-1 CKG-3	0-3 Silty Sand	(191017	78-01)	Sampled:	10/04	/19 00:00	Received: 10,	/16/19 08:3	3		
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	By	Batch
Solubie Chloride	102		1	mg/kg	5.00	DI-Leach	EPA 300.0 M	10/17/19	10/18/19	cg	BJ9181
Soluble Sulfate	367		1	mg/kg	5.00	DI-Leach	EPA 300.0 M	10/17/19	10/18/19	cg	BJ9181
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	Ву	Batch
pH	8.2		1	pH Units	0.1	EPA 9045C	EPA 9045C	10/17/19	10/17/19	dd	BJ9180
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	Ву	Batch
Resistivity, Minimum	1130		1	ohm-cm	1.00	-	CTM 643-2007	10/18/19	10/18/19	VC	BJ9182
Sample ID: BULK-1 CKG-5	0-3 Silty Sand	(191017	78-02)	Sampled:	10/04	/19 00:00	Received: 10/	16/19 08:3	3		
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	By	Batch
Soluble Chloride	3290		10	mg/kg	50.0	DI-Leach	EPA 300.0 M	10/17/19	10/18/19	cg	BJ9181
Soluble Sulfate	608		1	mg/kg	5.00	DI-Leach	EPA 300.0 M	10/17/19	10/18/19	cg	BJ9181
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	By	Batch
рН	7.8		1	pH Units	0.1	EPA 9045C	EPA 9045C	10/17/19	10/17/19	dd	BJ91804
Analyte	Results	Flag	D.F.	Units	PQL	Prep/Te	est Method	Prepared	Analyzed	Ву	Batch
Resistivity, Minimum	178		1	ohm-cm	1.00	•	CTM 643-2007	10/18/19	10/18/19	vc	BJ91824
			-		_						

Quality Control Data

Analyte		Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Batch BJ91811 - C)I-Leach										
Blank		Prepared: 1	LO/17/19 Ana	alyzed: 10/18	/19						en overen general genigheide kere
Soluble Chloride		ND	5.00	mg/kg							
Soluble Sulfate		ND	5.00	mg/kg							
LCS		Prepared: 1	.0/17/19 Ana	alyzed: 10/18	/19						
Soluble Chloride		50.4	5.00	mg/kg	50.00		101	70-130			
Soluble Sulfate		49.4	5.00	mg/kg	50.00		98.8	70-130			
Matrix Spike	Source: 1910178-01	Prepared: 1	.0/17/19 Ana	alyzed: 10/18	/19						
Soluble Chioride		153	5.00	mg/kg	50.00	102	101	70-130			
Soluble Sulfate		425	5.00	mg/kg	50.00	367	115	70-130			
Matrix Spike Dup	Source: 1910178-01	Prepared: 1	.0/17/19 Ana	alyzed: 10/18	/19						
Soluble Chloride		149	5.00	mg/kg	50.00	102	94.5	70-130	6.38	30	
Soluble Sulfate		443	5.00	mg/kg	50.00	367	152	70-130	27.5	30	V-2
Batch BJ91804 - E	PA 9045C										
Duplicate	Source: 1910180-01	Prepared &	Analyzed: 10	/17/19							
pН		9.4	0.1	pH Units		9.4			0.00	5	

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

Certificate of Analysis

Page 3 of 3

File #:73901 Report Date: 10/23/19 Submitted: 10/16/19 **PLS Report No.: 1910178**

Smith Emery Company [Anaheim] 1195 N. Tustin Avenue Anaheim, CA 92807

Phone: (714) 238-6133 FAX:(714) 238-6144

Project: Long Beach Storage PWAS_20190823 - 3701 N. Pacific Place, Long Beach, CA

Notes and Definitions

- V-2 Out-of-Range recovery was due to sample Heterogeneity.
- NA Not Applicable

Attn: Mr. Robert Greeley

- ND Analyte NOT DETECTED at or above the detection limit
- NR Not Reported
- MDL Method Detection Limit
- PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

hill Men

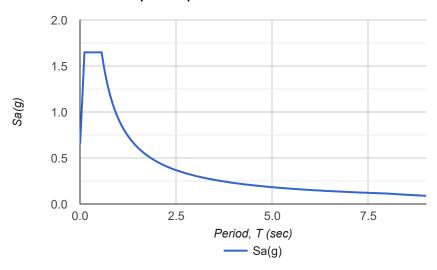
Authorized Signature(s)

791/781 East Washington Blvd., Los Angeles, CA 90021 Tel. No. (213) 745-5333;Fax No. (213) 741-8621 [9]10178	SMITH-EMERY AWAHEIM / C.K.G. Date: OCT. 16, 2019 Page 1 of 1	Project Name: LONG BEACH STORAGE PWAS_20190823 Project No.: NEW	701 N. PACIFIC PLACE, LONG BEACH, CA SOURCE: ON SITE Sampled By: CLIENT/CKG	oring No. / Description Date Time Container No. Test Requested and Standard Type	79-3 SILTY SAND 10.4.19 - ZIPLOC 1 KMIN RESISTIVITY, PH VALUE, SI CHLORING	11 10.4.19 - ZIPLOC 1 (SQI SULFATE				me: Same Day 24hr 5 day Other: RECULAQ	Results Attn: ROB CREELEY & CC ANGELITO Phone / Fax #: //	LAP MANAGER 10,	/ Inclusive D	<u>Halter I war fr.</u> Signature Signature	Signature Title Inclusive Dates	5 10.10.19.0 8:38 Sampting (afte Cuttrinect der Angelike (Bauit)
791/781 East Washii Tel. No. (213) 745-5	WITH-EWERY	me: LONG BI		Boring No. / Depth in Ft.	0-3	CKG-5			34		CHAIN OF CUSTODV.		Signature		Signature	luttrined per maelito
ALL	Client:	Project Na	Location:	Sample Number	E-pato	Bult-1				Turnaround Time:	U NIV HJ	1.		i,		× 10.110.19 6 8:38 Sampling date C

APPENDIX D

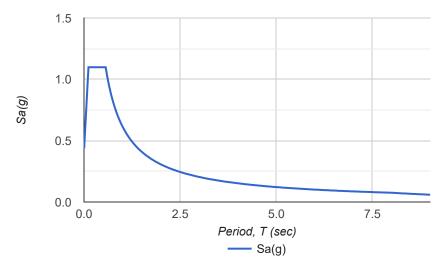
SEISMIC DESIGN PARAMETERS

AND LIQUEFACTION ANALYSIS



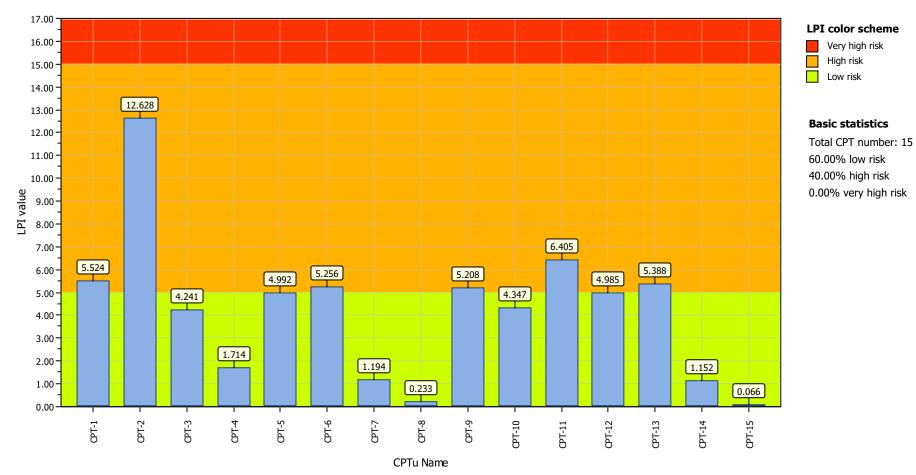
OSHPD

InSite LB Self-Storage


Latitude, Longitude: 33.826368, -118.202516

R hevron Goo	Worley	405 405	Baker St Map data ©201									
Date Design C	ode Referen	nce Document	10/22/2019, 11:09:30 AM ASCE7-10									
Risk Cate												
Site Clas			D - Stiff Soil									
Туре	Value	Description										
SS	1.65	MCE _R ground motion. (for 0.2 second period)										
S ₁	0.615	MCE _R ground motion. (for 1.0s period)	MCE _R ground motion. (for 1.0s period)									
S _{MS}	1.65	Site-modified spectral acceleration value										
S _{M1}	0.922	Site-modified spectral acceleration value										
S _{DS}	1.1	Numeric seismic design value at 0.2 second S	A									
S _{D1}	0.615	Numeric seismic design value at 1.0 second S	A									
Type SDC	Value D	Description Seismic design category										
Fa	1	Site amplification factor at 0.2 second										
Fv	1.5	Site amplification factor at 1.0 second										
PGA	0.63	MCE _G peak ground acceleration										
F _{PGA}	1	Site amplification factor at PGA										
PGA _M	0.63	Site modified peak ground acceleration										
ΤL	8	Long-period transition period in seconds										
SsRT	1.65	Probabilistic risk-targeted ground motion. (0.2 second)										
SsUH	1.72	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration										
SsD	2.537	Factored deterministic acceleration value. (0.2 second)										
S1RT	0.615	Probabilistic risk-targeted ground motion. (1.0 second)										
S1UH	0.632	Factored uniform-hazard (2% probability of exceedance	n 50 years) spectral acceleration.									
S1D	1.107	Factored deterministic acceleration value. (1.0 second)										
PGAd	0.979	Factored deterministic acceleration value. (Peak Ground	Acceleration)									
C _{RS}	0.959	.959 Mapped value of the risk coefficient at short periods										
C _{R1}	0.973 Mapped value of the risk coefficient at a period of 1 s											

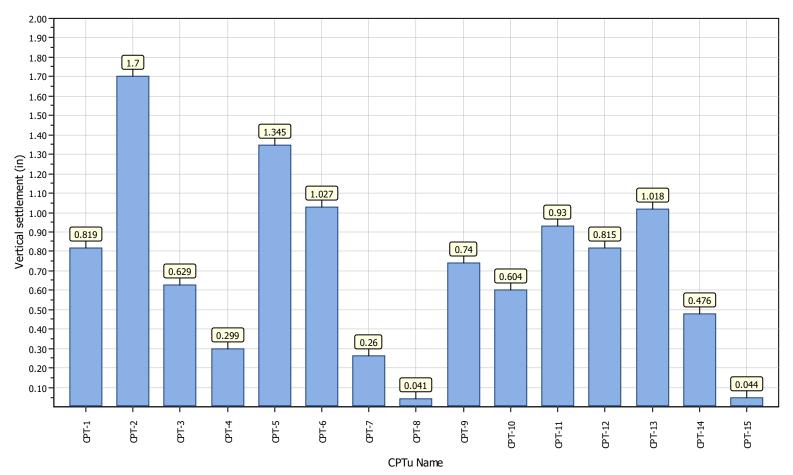
MCER Response Spectrum


DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Project title : InSite LB self storage

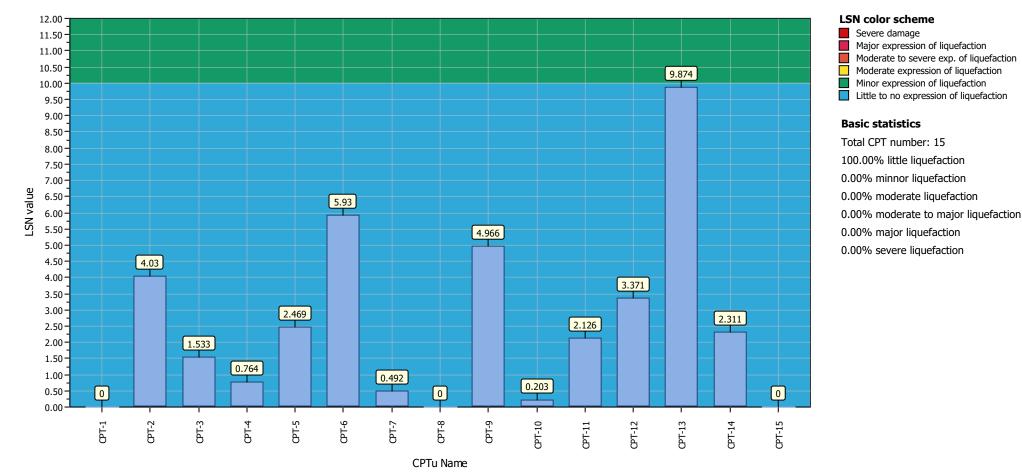
Location :



Overall Liquefaction Potential Index report

Project title : InSite LB self storage

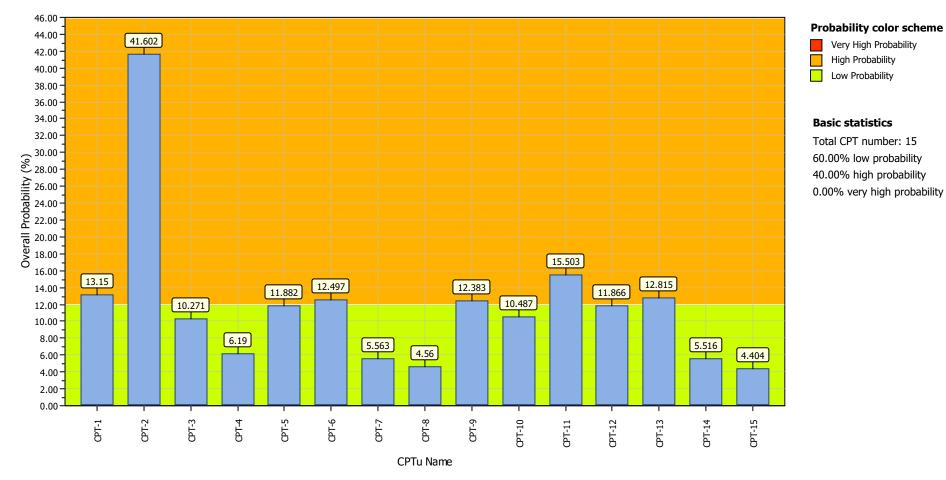
Location :



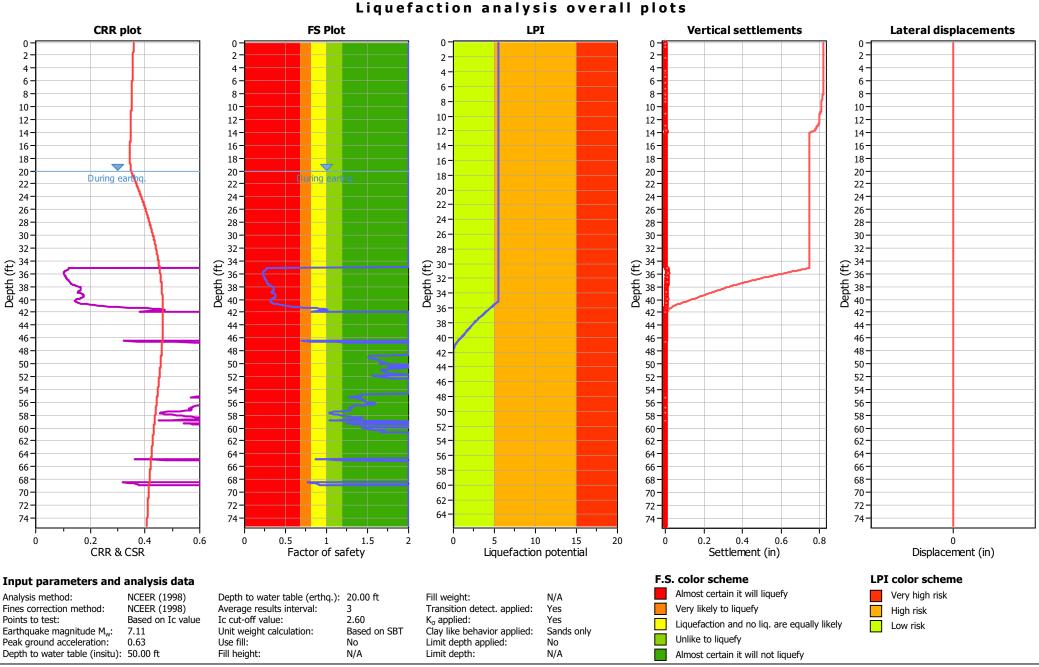
Overall vertical settlements report

Project title : InSite LB self storage

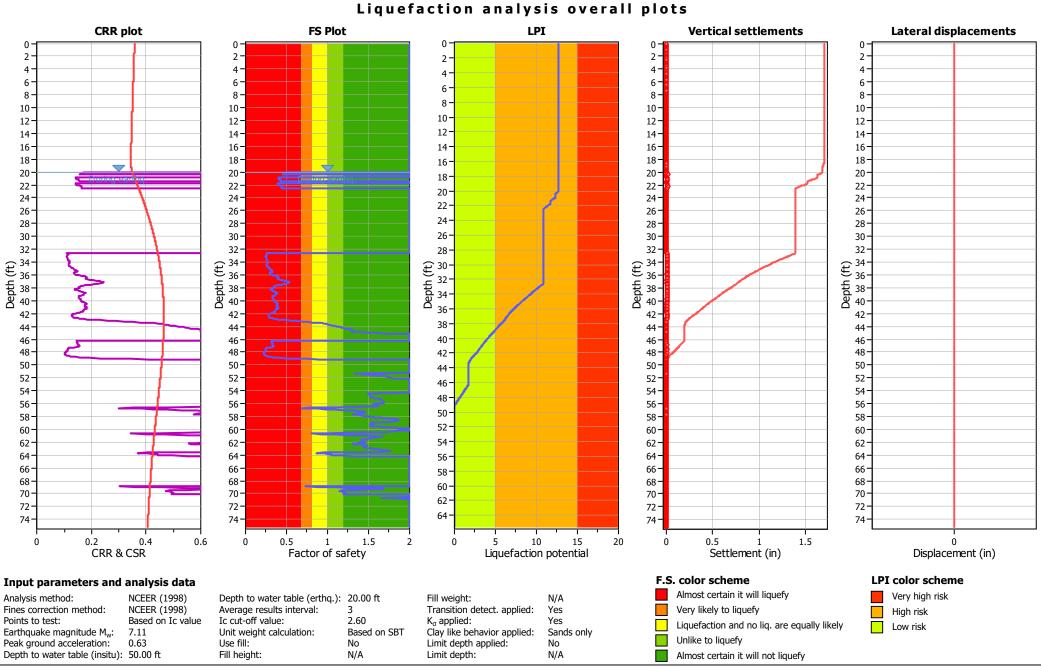
Location :

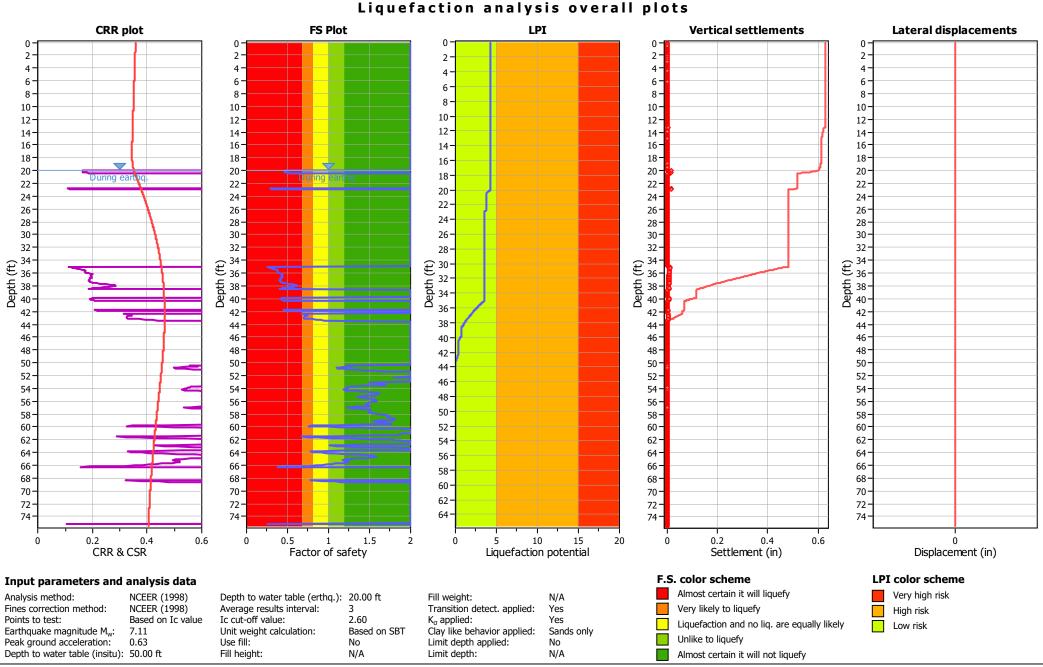


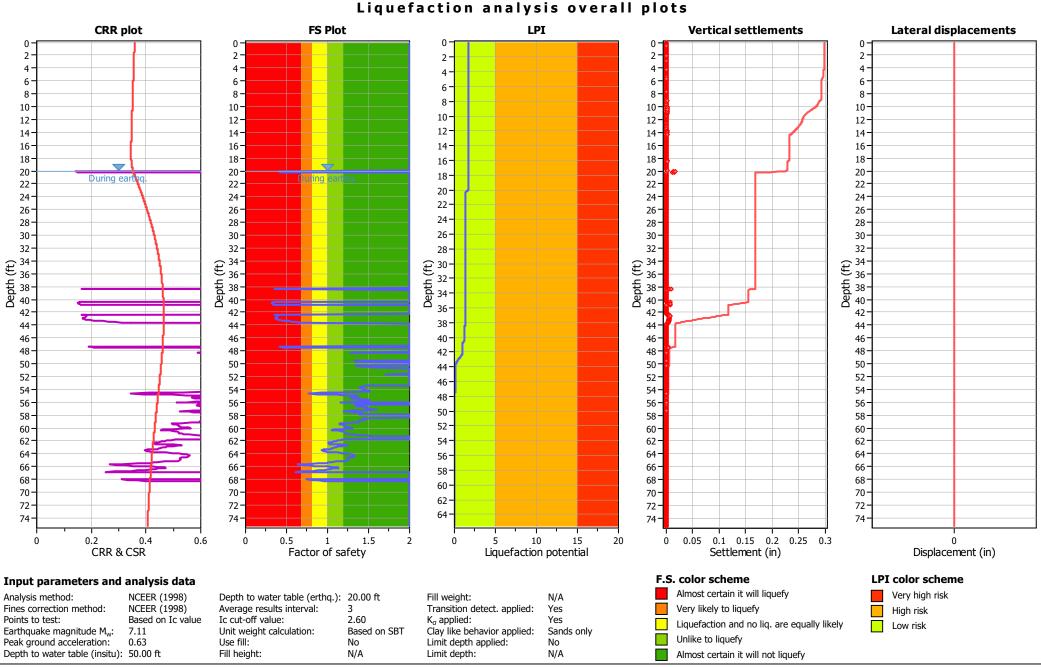
Overall Liquefaction Severity Number report

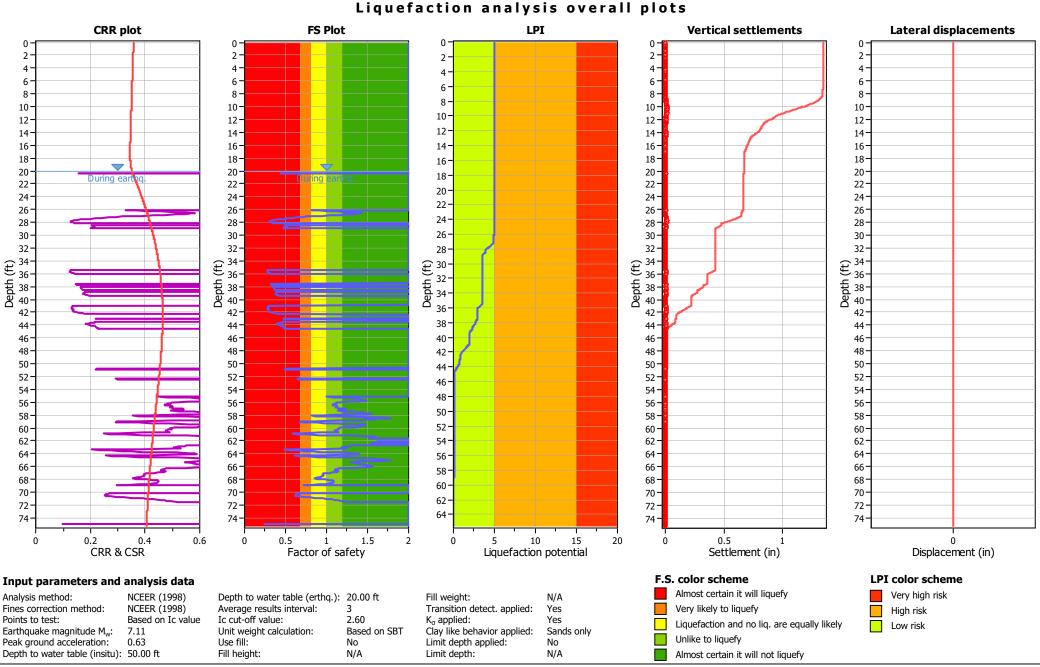


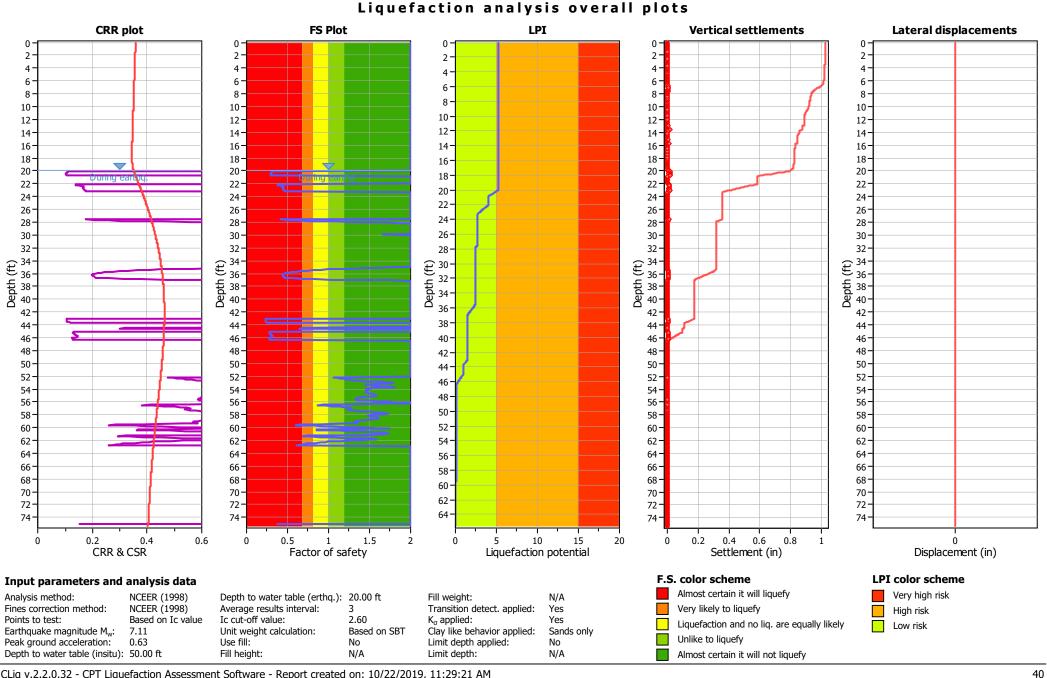
Project title : InSite LB self storage

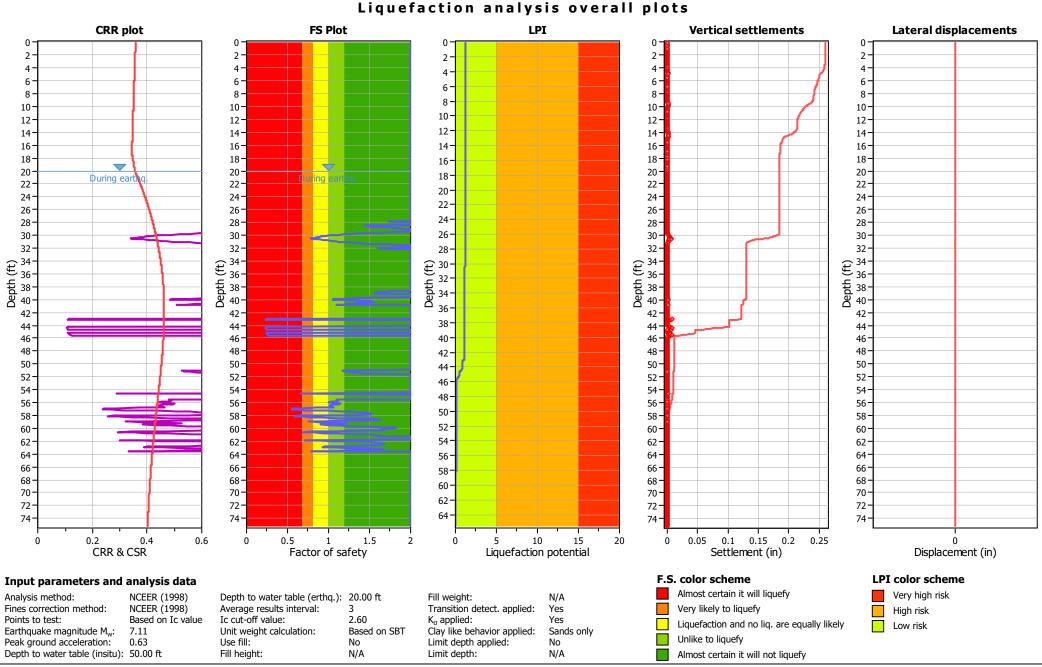

Location :


Overall Probability for Liquefaction report

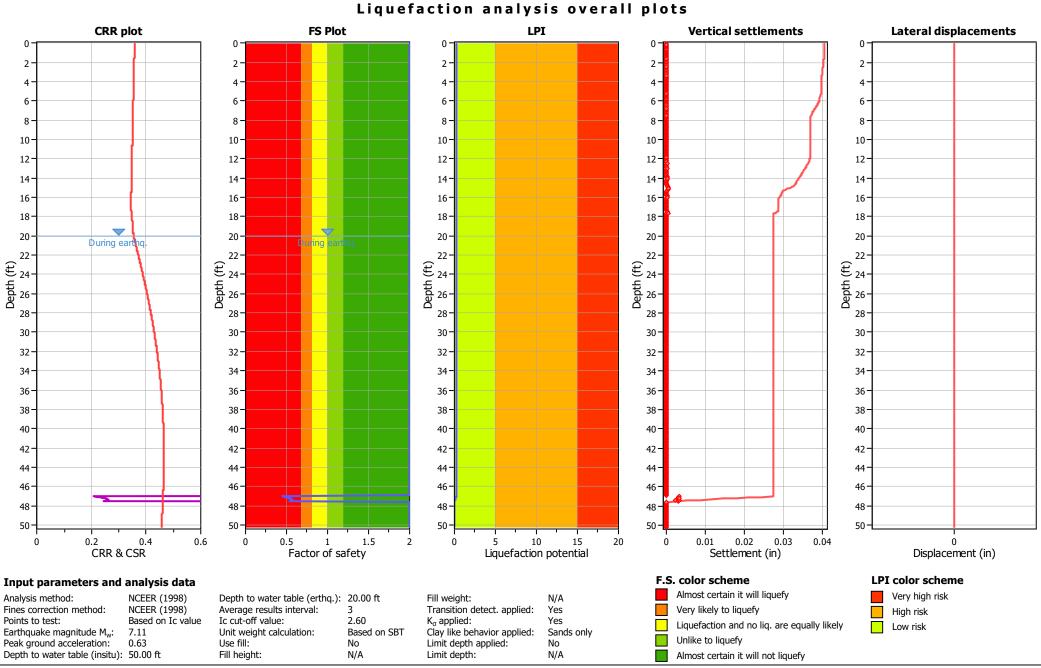

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:08 AM Project file: C:\Users\car\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq


CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:10 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

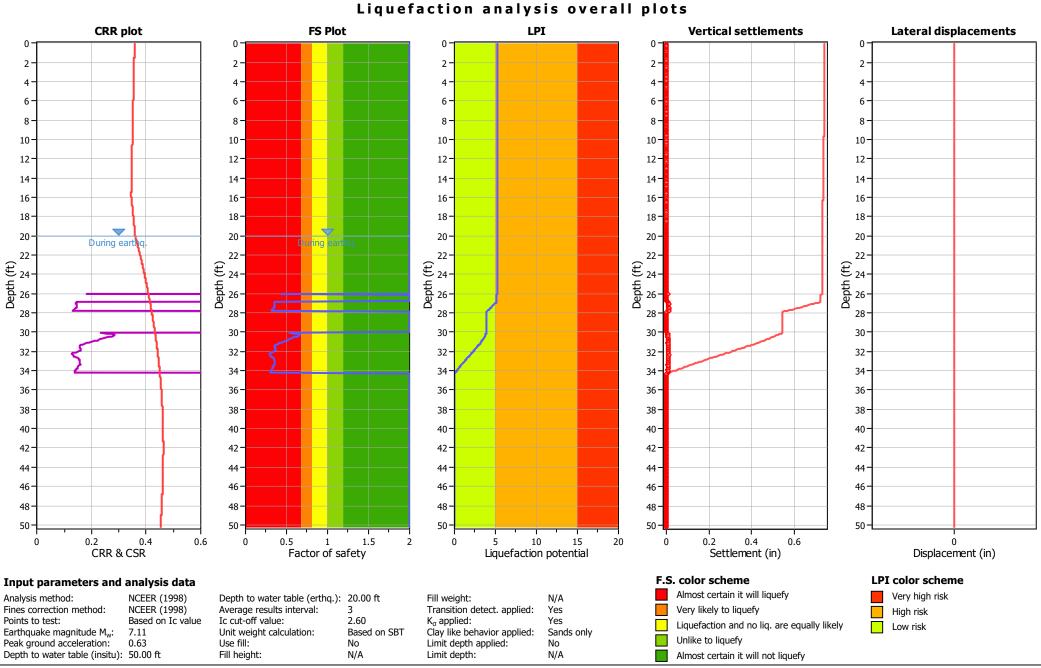

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:12 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq


CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:14 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

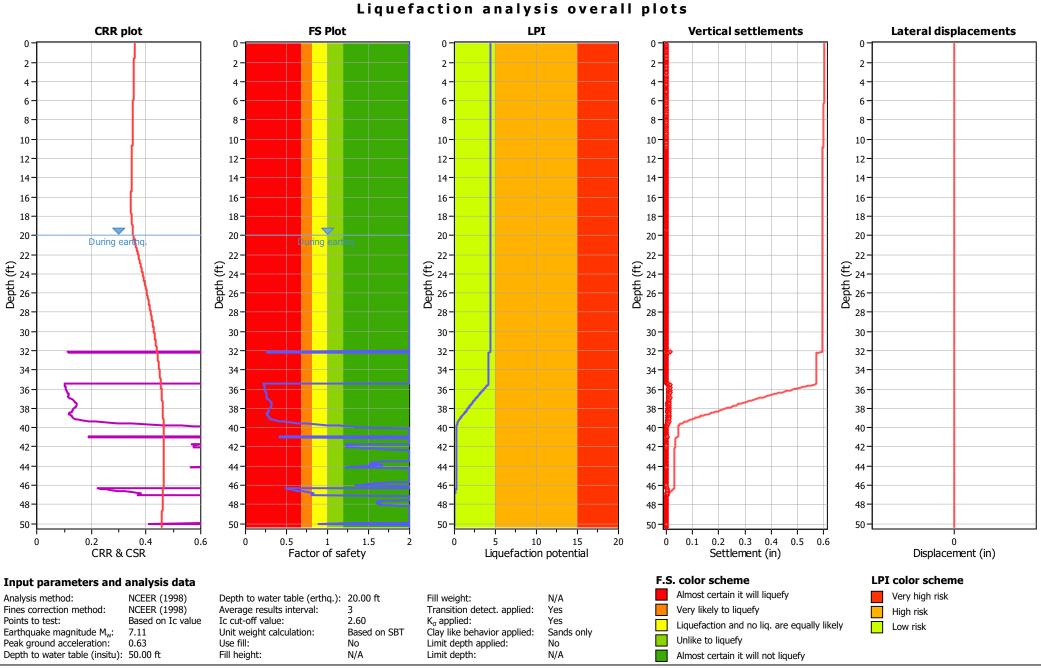
CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:17 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

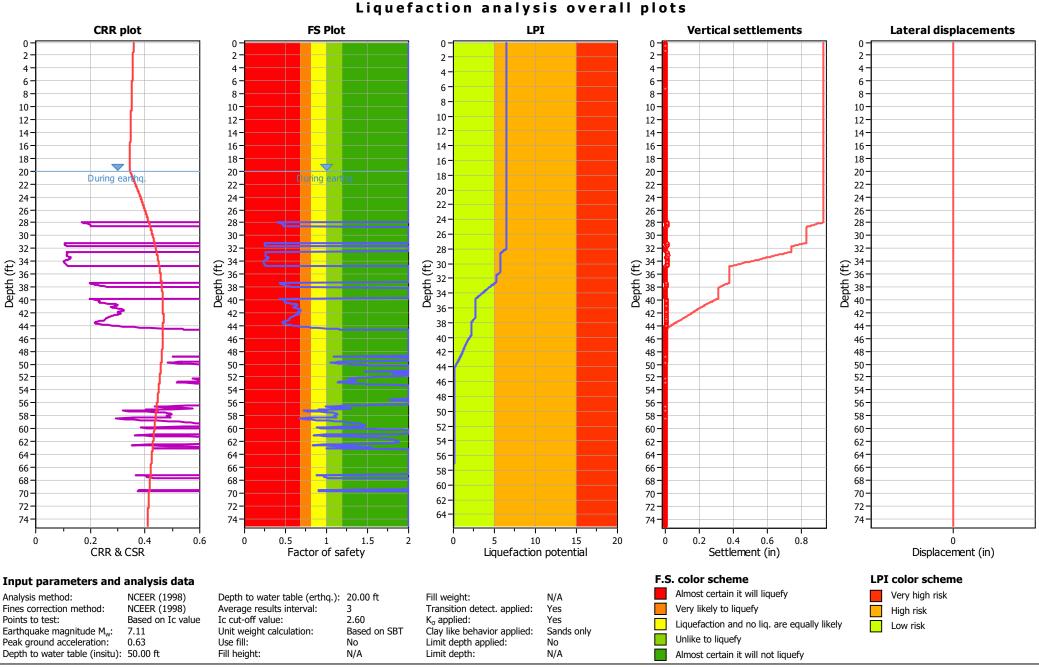


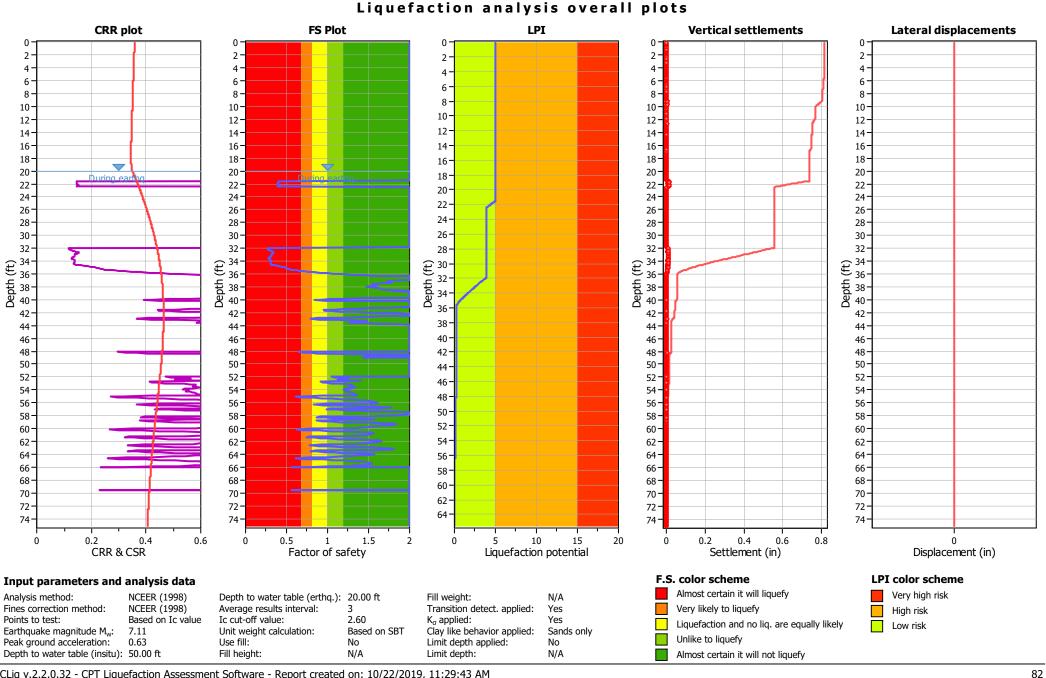
CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:21 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

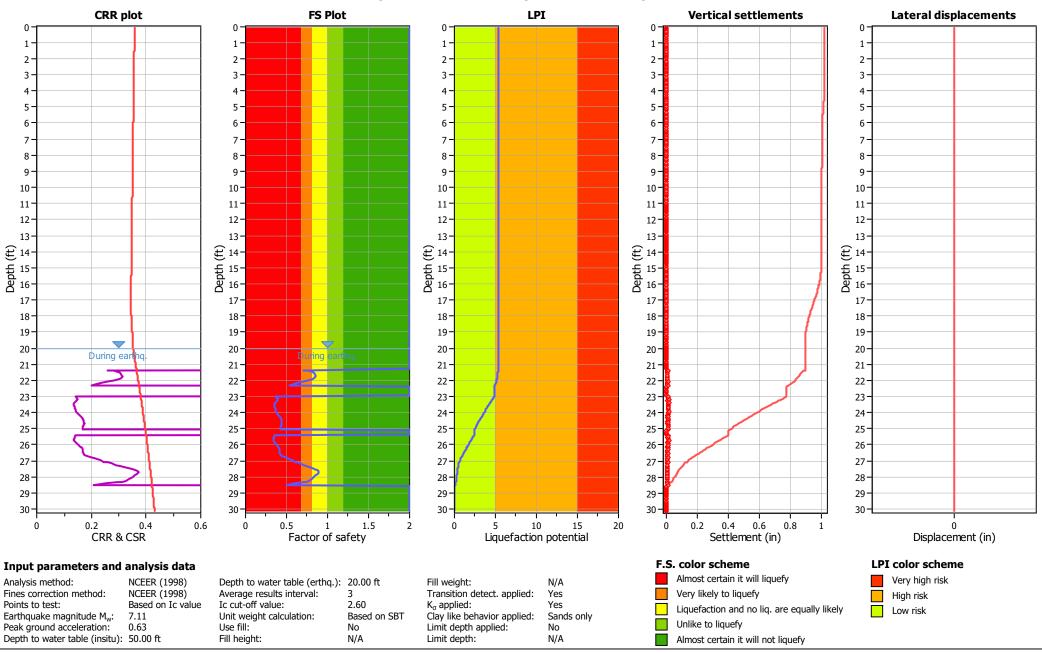


CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:24 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

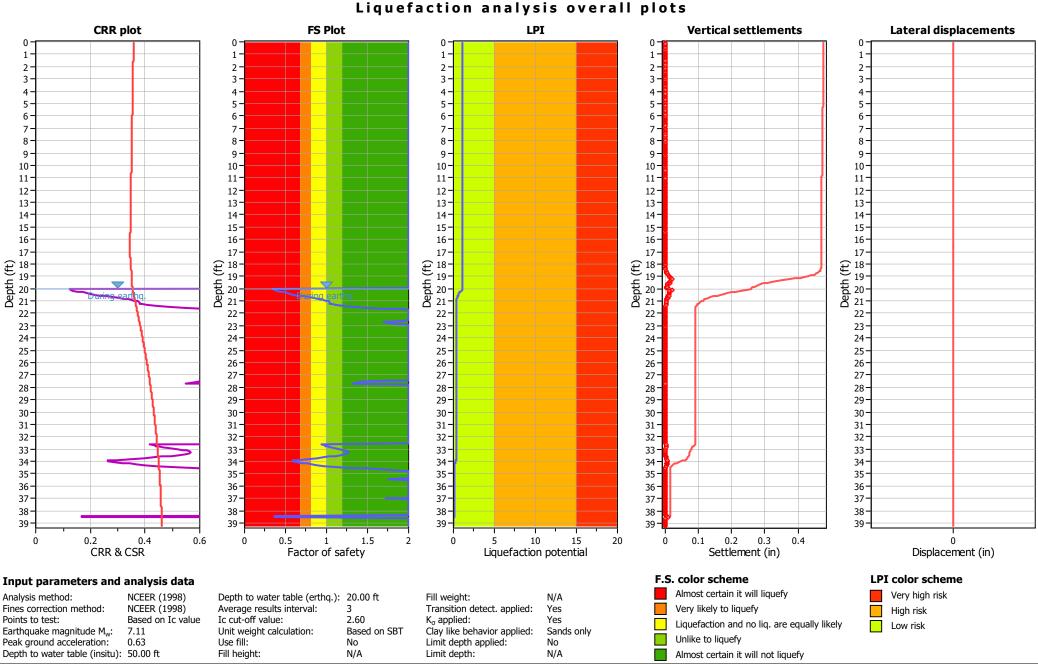

47


CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:27 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

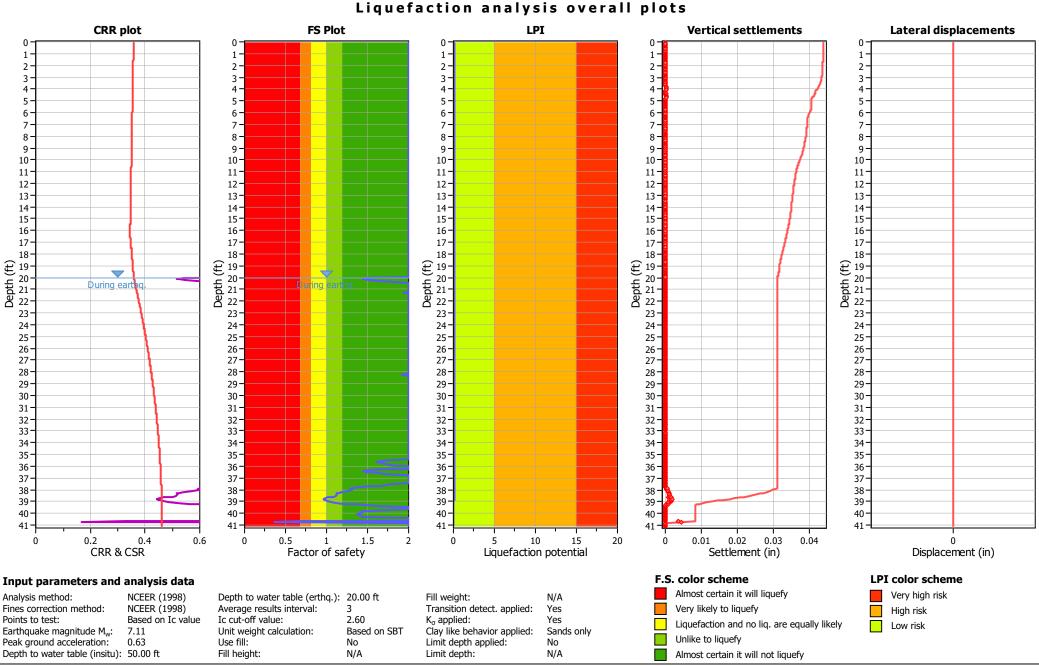

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:30 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq


CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:34 AM Project file: C:\Users\car\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:37 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq



CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:43 AM Project file: C:\Users\car\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq


Liquefaction analysis overall plots

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:46 AM Project file: C:\Users\car\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:48 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

96

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 10/22/2019, 11:29:53 AM Project file: C:\Users\carl\OneDrive\Documents\CK BUSINESS\projects\insite lb self storage\analysis\insite lb.clq

APPENDIX E

EARTHWORK AND GRADING GUIDE SPECIFICATIONS

APPENDIX E

CARL KIM GEOTECHNICAL, INC. EARTHWORK AND GRADING GUIDE SPECIFICATIONS

TABLE OF CONTENTS

<u>Section</u>	<u>Appendix E Page</u>	2
E-1.0 GE	INERAL	
E-1.1 E-1.2 E-1.3	Intent	
E-2.0 PR	EPARATION OF AREAS TO BE FILLED 2)
E-2.1 E-2.2 E-2.3 E-2.4 E-2.5	Clearing and Grubbing 2 Processing 3 Overexcavation 3 Benching 3 Evaluation/Acceptance of Fill Areas 3	3
E-3.0 FIL	L MATERIAL4	ŀ
E-3.1 E-3.2 E-3.3	Fill Quality	ŀ
E-4.0 FIL	L PLACEMENT AND COMPACTION4	ŀ
E-4.1 E-4.2 E-4.3 E-4.4 E-4.5 E-4.6	Fill Layers4Fill Moisture Conditioning5Compaction of Fill5Compaction of Fill Slopes5Compaction Testing5Compaction Test Locations6	$\hat{\mathbf{D}}$
E-5.0 EX	CAVATION	;
E-6.0 TR	ENCH BACKFILLS	;
E-6.1 E-6.2 E-6.3	Safety)

E-1.0 GENERAL

E-1.1 Intent

These Earthwork and Grading Guide Specifications are for grading and earthwork shown on the current, approved grading plan(s) and/or indicated in the Carl Kim Geotechnical, Inc. (Carl Kim Geo) geotechnical report(s). These Guide Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the project-specific recommendations in the geotechnical report shall supersede these Guide Specifications. Carl Kim Geo shall provide geotechnical observation and testing during earthwork and grading. Based on these observations and tests, Carl Kim Geo may provide new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).

E-1.2 Role of Carl Kim Geotechnical, Inc.

Prior to commencement of earthwork and grading, Carl Kim Geo shall meet with the earthwork contractor to review the earthwork contractor's work plan, to schedule sufficient personnel to perform the appropriate level of observation, mapping and compaction testing. During earthwork and grading, Carl Kim Geo shall observe, map, and document subsurface exposures to verify geotechnical design assumptions. If observed conditions are found to be significantly different than the interpreted assumptions during the design phase, Carl Kim Geo shall inform the owner, recommend appropriate changes in design to accommodate these observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include (1) natural ground after clearing to receiving fill but before fill is placed, (2) bottoms of all "remedial removal" areas, (3) all key bottoms, and (4) benches made on sloping ground to receive fill.

Carl Kim Geo shall observe moisture-conditioning and processing of the subgrade and fill materials, and perform relative compaction testing of fill to determine the attained relative compaction. Carl Kim Geo shall provide *Daily Field Reports* to the owner and the Contractor on a routine and frequent basis.

E-1.3 The Earthwork Contractor

The earthwork contractor (Contractor) shall be qualified, experienced and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The

Contractor shall review and accept the plans, geotechnical report(s), and these Guide Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing grading and backfilling in accordance with the current, approved plans and specifications.

The Contractor shall inform the owner and Carl Kim Geo of changes in work schedules at least one working day in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that Carl Kim Geo is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish earthwork and grading in accordance with the applicable grading codes and agency ordinances, these Guide Specifications, and recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of Carl Kim Geo, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, adverse weather, etc., are resulting in a quality of work less than required in these specifications, Carl Kim Geo shall reject the work and may recommend to the owner that earthwork and grading be stopped until unsatisfactory condition(s) are rectified.

E-2.0 PREPARATION OF AREAS TO BE FILLED

E-2.1 <u>Clearing and Grubbing</u>

Vegetation, such as brush, grass, roots and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies and Carl Kim Geo. Care should be taken not to encroach upon or otherwise damage native and/or historic trees designated by the Owner or appropriate agencies to remain. Pavements, flatwork or other construction should not extend under the "drip line" of designated trees to remain.

Carl Kim Geo shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 3 percent of organic materials (by dry weight: ASTM D 2974-00). Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

E-2.2 Processing

Existing ground that has been declared satisfactory for support of fill, by Carl Kim Geo, shall be scarified to a minimum depth of 6 inches (15 cm). Existing ground that is not satisfactory shall be over-excavated as specified in the following Section E-2.3. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.

E-2.3 Overexcavation

In addition to removals and over-excavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be over-excavated to competent ground as evaluated by Carl Kim Geo during grading. All undocumented fill soils under proposed structure footprints should be excavated

E-2.4 Benching

Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), (>20 percent grade) the ground shall be stepped or benched. The lowest bench or key shall be a minimum of 15 feet (4.5 m) wide and at least 2 feet (0.6 m) deep, into competent material as evaluated by Carl Kim Geo. Other benches shall be excavated a minimum height of 4 feet (1.2 m) into competent material or as otherwise recommended by Carl Kim Geo. Fill placed on ground sloping flatter than 5:1 (horizontal to vertical units), (<20 percent grade) shall also be benched or otherwise over-excavated to provide a flat subgrade for the fill.

E-2.5 Evaluation/Acceptance of Fill Areas

All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by Carl Kim Geo as suitable to receive fill. The Contractor shall obtain a written acceptance (*Daily Field Report*) from Carl Kim Geo prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys and benches.

E-3.0 FILL MATERIAL

E-3.1 Fill Quality

Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by Carl Kim Geo prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to Carl Kim Geo or mixed with other soils to achieve satisfactory fill material.

E-3.2 Oversize

Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 6 inches (15 cm), shall not be buried or placed in fill unless location, materials and placement methods are specifically accepted by Carl Kim Geo. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 feet (3 m) measured vertically from finish grade, or within 2 feet (0.61 m) of future utilities or underground construction.

E-3.3 Import

If importing of fill material is required for grading, proposed import material shall meet the requirements of Section E-3.1, and be free of hazardous materials ("contaminants") and rock larger than 3-inches (8 cm) in largest dimension. All import soils shall have an Expansion Index (EI) of 20 or less and a sulfate content no greater than (\leq) 500 parts-per-million (ppm). A representative sample of a potential import source shall be given to Carl Kim Geo at least four full working days before importing begins, so that suitability of this import material can be determined and appropriate tests performed.

E-4.0 FILL PLACEMENT AND COMPACTION

E-4.1 Fill Layers

Approved fill material shall be placed in areas prepared to receive fill, as described in Section E-2.0, above, in near-horizontal layers not exceeding 8 inches (20 cm) in loose thickness. Carl Kim Geo may accept thicker layers if

testing indicates the grading procedures can adequately compact the thicker layers, and only if the building officials with the appropriate jurisdiction approve. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.

E-4.2 Fill Moisture Conditioning

Fill soils shall be watered, dried back, blended and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM) Test Method D 1557-09.

E-4.3 Compaction of Fill

After each layer has been moisture-conditioned, mixed, and evenly spread, each layer shall be uniformly compacted to not-less-than (\geq) 90 percent of the maximum dry density as determined by ASTM Test Method D 1557-09. In some cases, structural fill may be specified (see project-specific geotechnical report) to be uniformly compacted to at-least (\geq) 95 percent of the ASTM D 1557-09 modified Proctor laboratory maximum dry density. For fills thicker than (>) 15 feet (4.5 m), the portion of fill deeper than 15 feet below proposed finish grade shall be compacted to 95 percent of the ASTM D 1557-09 laboratory maximum density. Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

E-4.4 Compaction of Fill Slopes

In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by back rolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet (1 to 1.2 m) in fill elevation, or by other methods producing satisfactory results acceptable to Carl Kim Geo. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of the ASTM D 1557-09 laboratory maximum density.

E-4.5 Compaction Testing

Field-tests for moisture content and relative compaction of the fill soils shall be performed by Carl Kim Geo. Location and frequency of tests shall be at our field representative(s) discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).

E-4.6 Compaction Test Locations

Carl Kim Geo shall document the approximate elevation and horizontal coordinates of each density test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that Carl Kim Geo can determine the test locations with sufficient accuracy. Adequate grade stakes shall be provided.

E-5.0 EXCAVATION

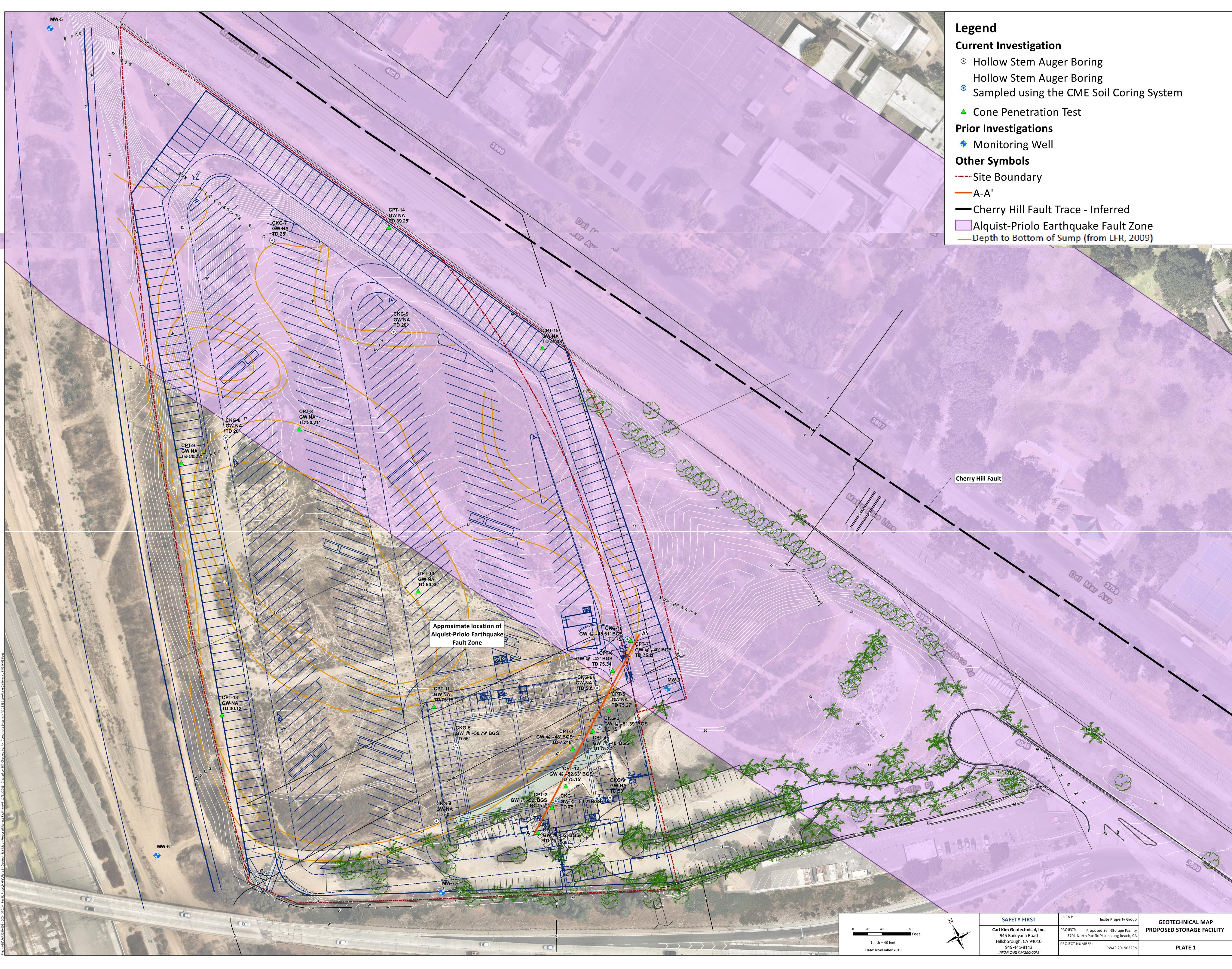
Excavations, as well as over-excavation for remedial purposes, shall be evaluated by Carl Kim Geo during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by Carl Kim Geo based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, then observed and reviewed by Carl Kim Geo prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by Carl Kim Geo.

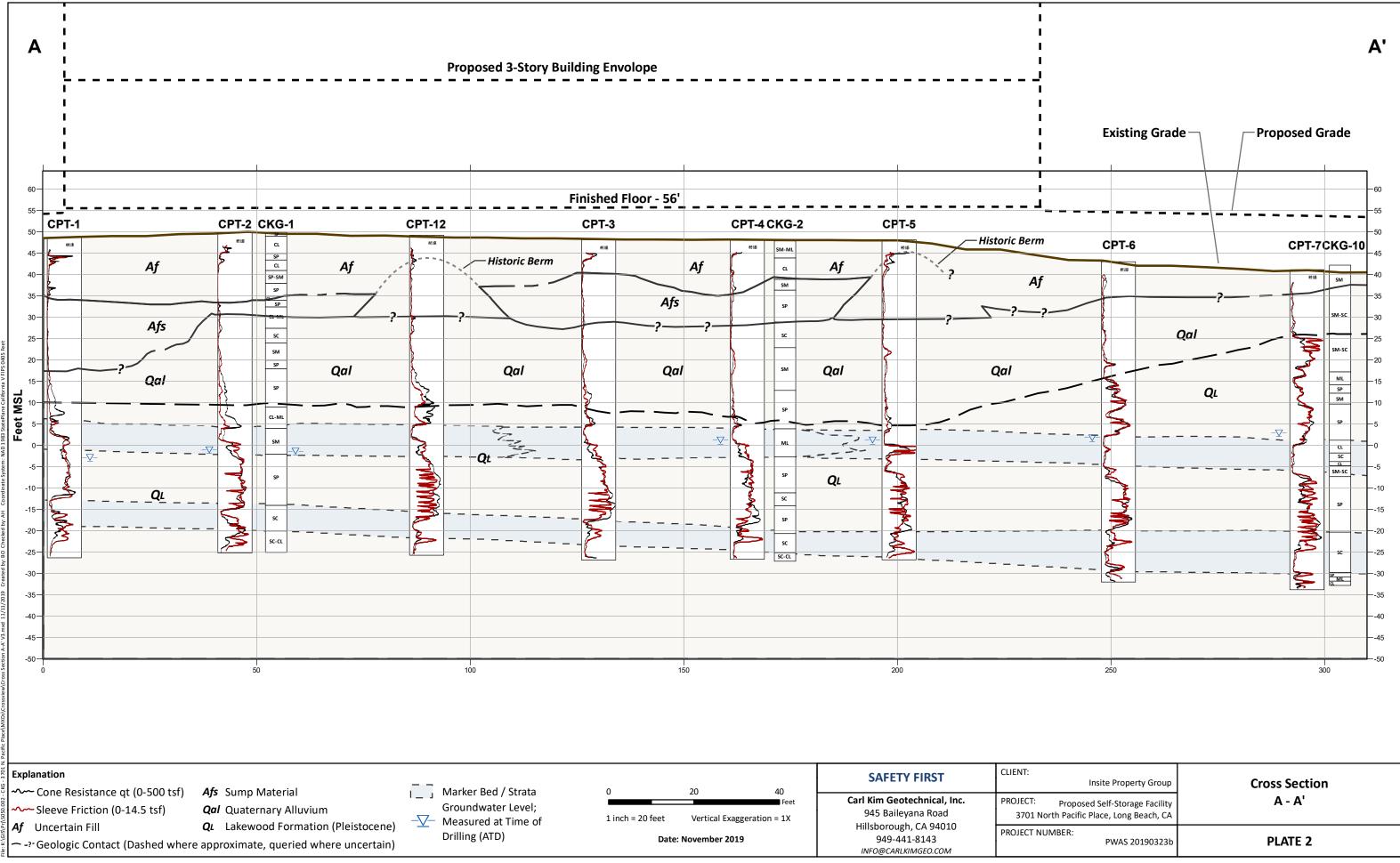
E-6.0 TRENCH BACKFILLS

E-6.1 Safety

The Contractor shall follow all OSHA and Cal/OSHA requirements for safety of trench excavations. Work should be performed in accordance with Article 6 of the *California Construction Safety Orders*, 2003 Edition or more current (see also: <u>http://www.dir.ca.gov/title8/sb4a6.html</u>).

E-6.2 Bedding and Backfill


All utility trench bedding and backfill shall be performed in accordance with applicable provisions of the 2012 Edition of the *Standard Specifications for Public Works Construction* (Green Book). Bedding material shall have a Sand Equivalent greater than 30 (SE>30). Bedding shall be placed to 1-foot (0.3 m) over the top of the conduit, and densified by jetting in areas of granular soils, if allowed by the permitting agency. Otherwise, the pipe-bedding zone should be backfilled with Controlled Low Strength Material (CLSM) consisting of at least one sack of Portland cement per cubic-yard of sand, and conforming to Section 201-6 of the 2012 Edition of the *Standard Specifications for Public Works Construction* (Green Book). Backfill over the bedding zone shall be placed and


densified mechanically to a minimum of 90 percent of relative compaction (ASTM D 1557-09) from 1 foot (0.3 m) above the top of the conduit to the surface. Backfill above the pipe zone shall <u>not</u> be jetted. Jetting of the bedding around the conduits shall be observed by Carl Kim Geo and backfill above the pipe zone (bedding) shall be observed and tested by Carl Kim Geo.

E-6.3 Lift Thickness

Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to Carl Kim Geo that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method, and only if the building officials with the appropriate jurisdiction approve.

PLATES

Proposed Self-Storage Facility North Pacific Place, Long Beach, CA	A-A				
IUMBER: PWAS 20190323b	PLATE 2				