# GEOTECHNICAL INVESTIGATION MORGAN HILL SEWER TRUNK PHASE 1 AND PHASE 2 ALIGNMENTS

### SOUTH OF HIGHLAND AVENUE SANTA CLARA COUNTY, CALIFORNIA

NOVEMBER 2, 2018 PROJECT NO. 2016.0096

#### **SUBMITTED TO:**

HydroScience Engineers, Inc. 1800 Sutter Street, Suite 590 Concord, CA 94520

#### **PREPARED BY:**

Geo-Logic

Geo-Logic Associates 16055 Caputo Drive, Suite D Morgan Hill, California 95037 (408) 778-2818

## GEOTECHNICAL INVESTIGATION PROPOSED MORGAN HILL SEWER TRUNK, SOUTH OF HIGHLAND PHASE 1 AND PHASE 2 SANTA CLARA COUNTY, CALIFORNIA

#### **TABLE OF CONTENTS**

| 1. | INT  | RODUCTION                                       | 1  |
|----|------|-------------------------------------------------|----|
|    | 1.1  | GENERAL                                         | 1  |
|    | 1.2  | PROJECT DESCRIPTION                             | 1  |
|    | 1.3  | INFORMATION PROVIDED                            |    |
|    | 1.4  | PURPOSE AND SCOPE OF SERVICES                   | 2  |
| 2. | SITE | E INVESTIGATION                                 | 4  |
|    | 2.1  | SUBSURFACE EXPLORATION                          | 4  |
|    | 2.2  | LABORATORY TESTING                              | 5  |
| 3. | FIN  | DINGS                                           | 6  |
|    | 3.1  | SURFACE CONDITIONS                              | 6  |
|    | 3.2  | SUBSURFACE CONDITIONS                           | 7  |
|    | 3.2. | .1 Phase 1 Alignment                            | 7  |
|    | 3.2. |                                                 |    |
|    | 3.3  | GROUNDWATER                                     |    |
|    | 3.4  | VARIATIONS IN SUBSURFACE CONDITIONS             |    |
| 4. | SEIS | SMIC CONSIDERATIONS                             | _  |
|    | 4.1  | SEISMIC SOURCES                                 | _  |
|    | 4.2  | GROUND MOTIONS AND SEISMICITY                   |    |
|    | 4.3  | LIQUEFACTION                                    |    |
| 5. |      | CUSSION AND CONCLUSIONS                         |    |
|    | 5.1  | GENERAL                                         |    |
|    | 5.2  | SURFACE FAULT RUPTURE                           |    |
|    | 5.3  | SEISMIC GROUND SHAKING                          |    |
|    | 5.4  | ANTICIPATED EXCAVATION SOIL CONDITIONS          |    |
|    | 5.5  | GROUNDWATER                                     |    |
|    | 5.6  | EXCAVATIONS AND SHORING                         |    |
|    | 5.7  | BUOYANCY FORCE ON PIPELINE                      |    |
| _  | 5.8  | EXISTING IMPROVEMENTS                           |    |
| 6. |      | CCOMENDATIONS                                   |    |
|    | 6.1  |                                                 |    |
|    | 6.1. |                                                 |    |
|    | 6.1. | · · · · · · · · · · · · · · · · · · ·           |    |
|    | 6.1. |                                                 |    |
|    | 6.1. | '                                               |    |
|    | 6.1. |                                                 |    |
|    | 6.1. |                                                 |    |
|    | 6.2  | PIPELINE BUOYANCY                               |    |
| _  | 6.3  | LATERAL SOIL PRESSURE FOR TEMPORARY SHORING     |    |
| 7. |      | AN REVIEW, EARTHWORK AND FOUNDATION OBSERVATION |    |
| 8. | LIM  | 1ITATIONS                                       | 24 |

#### **FIGURES**

Figure 1 – Boring Location Map (Phase 1 Alignment)

Figure 2 – Boring Location Map (Phase 2 Alignment, north)

Figure 3 – Boring Location Map (Phase 2 Alignment, south)

#### **APPENDIX A - Subsurface Exploration**

Keys to Soil Classification (Fine and Coarse Grained Soils)
Logs of Drill Holes, DH-1 through DH-17 (Phase 1 Alignment)
Logs of Drill Holes, DH-1A through DH-23A (Phase 2 Alignment)

#### **APPENDIX B - Laboratory Test Results**

Figure B-1 Atterberg Limits Report (Phase 1 Alignment)

Figures B-2 & B-3 Unconfined Compressive Strength (Phase 1 Alignment)

Figures B-4 to B-16 Particle Size Analysis (Phase 1 Alignment)
Figure B-17 to B-19 Atterberg Limits Report (Phase 2 Alignment)

Figures B-20 to B-33 Unconfined Compressive Strength (Phase 2 Alignment)

Figure B-34 Consolidated Undrained Triaxial Compression (Phase 2 Alignment)

Figures B-35 to B-40 Direct Shear Report (Phase 2 Alignment)
Figures B-41 to B-79 Particle Size Analysis (Phase 2 Alignment)

Figure B-80 Hydraulic Conductivity Report (Phase 2 Alignment)

#### **APPENDIX C – Analytical Test Results**

#### APPENDIX D – Technical Memorandum from DCM Consulting

#### 1. INTRODUCTION

#### 1.1 General

This report presents the results of our geotechnical investigation for the proposed Morgan Hill Sewer Trunk South of Highland project between San Martin and Gilroy, in Santa Clara County, California. This report combines our investigation for the Phase 1 alignment conducted in 2016-2017 and our current investigation for the Phase 2 alignment. The proposed pipeline alignment is shown on the Boring Location Maps, Figures 1, 2, and 3, of this report.

This report presents our conclusions and geotechnical recommendations for design and construction of the proposed pipeline. These conclusions and recommendations are based on subsurface information collected during our investigation. The conclusions and recommendations in this report should not be extrapolated to other areas or used for other projects without our review.

#### 1.2 Project Description

The proposal project involves construction of a 36-inch diameter sanitary sewer pipeline. The proposed Phase 1 alignment will begin at Harding Avenue and Highland Avenue in San Martin in the north, then trend easterly along Highland Avenue, continuing southerly along the southbound side of Monterey Road to Cohansey Avenue. The total length of the Phase 1 pipeline is approximately 17,800 feet. The proposed pipe invert will be approximately 5 to 16 feet below ground surface. The Phase 1 pipeline will be constructed using conventional open cut and cover method.

The proposed Phase 2 alignment will begin at the south end of the Phase 1 alignment, at Monterey Road and Cohansey Avenue in the north, continuing south along Monterey Road, turning east along Las Animas Avenue, continuing south along Murray Avenue, turning west and then south along Chestnut Street, turning east along East 7<sup>th</sup> Street to the City of Gilroy Corporation Yard, crossing under Highway 101 to a Pacific Gas & Electric facility, and continuing south along Renz Lane to an existing sewer pipeline west of Camino Arroyo. The total length of the Phase 2 pipeline is approximately 17,200 feet. The proposed pipe invert will be approximately 6 to 19 feet below ground surface and will be constructed using conventional open cut and cover method except at the following five trenchless undercrossing locations.

- Union Pacific Railroad (UPRR) tracks crossing at Las Animas Avenue
- Miller Slough crossing at Murray Avenue
- Leavesley Road crossing at Murray Avenue
- Miller Slough crossing at Chestnut Street

• Highway 101 crossing at east of East 7<sup>th</sup> Street (City of Gilroy Corporation Yard)

We understand that pilot tube guided auger boring method is being recommended by DCM Consulting, Inc., project consultant for the trenchless pipeline construction aspect of the project. A copy of the Technical Memorandum prepared by DCM Consulting, dated October 10, 2018 is included in Appendix D of this report.

The above project descriptions are based on information provided to us. If the actual project differs from the descriptions above, Geo-Logic Associates should be contacted to review our conclusions and recommendations and present any necessary modifications to address the different project development schemes.

#### 1.3 Information Provided

For this investigation, we were provided with the following information.

- 1. A drawing titled "Figure 2, Preliminary Phase 1 Alignment, Sewer Trunk Line Project, City of Morgan Hill," prepared by HydroScience Engineers, undated.
- 2. A set of 19 sheets of 30% submittal design plans prepared by HydroScience Engineers, dated December 2016.
- 3. Sheets 6 through 38 of the design plans titled "Sewer Trunk South of Highland, Plan and Profile," prepared by HydroScience, dated August 2018.
- 4. Technical Memorandum, Geotechnical and Trenchless Engineering, Five Undercrossings, City of Morgan Hill Sewer Trunk South of Highland, prepared by DCM Consulting, Inc., dated October 10, 2018.

#### 1.4 Purpose and Scope of Services

The purpose of our geotechnical investigation was to perform subsurface exploration at selected locations along the proposed pipeline alignment and to develop geotechnical recommendations for design and construction of the pipeline. The following work was performed.

- 1. Performed site visits to observe surface conditions and to mark locations of our subsurface exploration along the proposed pipeline alignments.
- Assisted the City of Morgan Hill in obtaining an encroachment permit from County of Santa Clara for our Phase 1 field work and encroachment permits from City of Gilroy for our Phase 2 field work. Traffic control plans were prepared and submitted with the permit applications.

- 3. Obtained a boring permit from Santa Clara Valley Water District for borings deeper than 45 feet (Phase 2 field exploration).
- 4. Obtained well permits from Santa Clara Valley Water District for the five groundwater monitoring wells at the five trenchless under-crossings (Phase 2 alignment).
- 5. Notified Underground Service Alert of our exploration.
- 6. Coordinated our field exploration with the County of Santa Clara, City of Gilroy, and Santa Clara Valley Water District.
- 7. Performed subsurface exploration by means of seventeen exploratory drill holes for Phase 1 and twenty three exploratory drill holes for Phase 2.
- 8. Converted one of the borings at each of the five under-crossing sites to a groundwater monitoring wells.
- 9. Measured groundwater levels in the monitoring wells periodically.
- 10. Performed geotechnical laboratory tests on selected soil samples obtained from the drill holes.
- 11. Performed analytical testing on three selected soil samples from the Phase 1 drill holes as preliminary screening of hazardous materials in the samples.
- 12. Provided drill hole logs and laboratory test results to DCM Consulting, Inc., project consultant for the trenchless construction portion of the project.
- 13. Performed engineering analysis of the collected data.
- 14. Prepared a draft report for our Phase 1 alignment investigation.
- 15. Prepared this geotechnical investigation report presenting our findings, conclusions and recommendations for both Phase 1 and Phase 2 pipeline alignments.

#### 2. SITE INVESTIGATION

Our Phase 1 and Phase 2 field investigations each consisted of a site reconnaissance and a subsurface exploration program. The site reconnaissance was to observe existing site surface conditions. The subsurface exploration was to explore soil conditions along the proposed pipeline alignment.

#### 2.1 Subsurface Exploration

Our subsurface exploration program for Phase 1 included seventeen exploratory drill holes (DH-1 through DH-17) performed on December 5, 6 and 7, 2016, to a depth of about 20 feet below ground surface. The subsurface exploration program for Phase 2 included twenty three exploratory drill holes (DH-1A through DH-23A) performed on August 28 through 31, September 1, 5, and 6, 2017, and May 22, 2018, to depths between roughly 18 and 60 feet below ground surface. Drilling was conducted using truck-mounted drill rigs equipped with 8-inch diameter hollow-stem augers. The drill holes were located in the field by referencing to existing site features and pacing; therefore, their locations are approximate. The approximate locations of the Phase 1 drill holes are shown on Figure 1 of this report and on Figures 2 and 3 for the Phase 2 drill holes. The approximate station numbers of the drill holes obtained from the August 2018 HydroScience plan and profile drawings are listed below.

| Phase 1    |         |  |  |  |
|------------|---------|--|--|--|
| Drill Hole | Station |  |  |  |
| DH-1       | 344+00  |  |  |  |
| DH-2       | 336+40  |  |  |  |
| DH-3       | 320+50  |  |  |  |
| DH-4       | 310+00  |  |  |  |
| DH-5       | 299+50  |  |  |  |
| DH-6       | 289+00  |  |  |  |
| DH-7       | 278+50  |  |  |  |
| DH-8       | 268+00  |  |  |  |
| DH-9       | 257+50  |  |  |  |
| DH-10      | 247+00  |  |  |  |
| DH-11      | 236+50  |  |  |  |
| DH-12      | 226+00  |  |  |  |
| DH-13      | 215+50  |  |  |  |
| DH-14      | 205+00  |  |  |  |
| DH-15      | 194+50  |  |  |  |
| DH-16      | 184+00  |  |  |  |
| DH-17      | 173+50  |  |  |  |

|                   | Phase 2 |  |  |
|-------------------|---------|--|--|
| <b>Drill Hole</b> | Station |  |  |
| DH-1A             | 162+40  |  |  |
| DH-2A             | 153+00  |  |  |

| Phase 2    |         |  |
|------------|---------|--|
| Drill Hole | Station |  |
| DH-3A      | 151+10  |  |
| DH-4A      | 142+20  |  |
| DH-5A      | 131+60  |  |
| DH-6A      | 123+10  |  |
| DH-7A      | 121+10  |  |
| DH-8A      | 111+00  |  |
| DH-9A      | 103+10  |  |
| DH-10A     | 98+50   |  |
| DH-11A     | 93+20   |  |
| DH-12A     | 83+10   |  |
| DH-13A     | 75+30   |  |
| DH-14A     | 64+80   |  |
| DH-15A     | 58+50   |  |
| DH-16A     | 52+10   |  |
| DH-17A     | 50+30   |  |
| DH-18A     | 42+10   |  |
| DH-19A     | 34+20   |  |
| DH-20A     | 23+60   |  |
| DH-21A     | 20+00   |  |
| DH-22A     | 10+20   |  |
| DH-23A     | 2+10    |  |
|            |         |  |

Soil samples were obtained from the drill holes using a 2-inch outside diameter (1.4-inch inside diameter) split-barrel sampler (also called a Standard Penetration Test sampler) and a 3-inch outside diameter (2½-inch inside diameter) split barrel sampler with 6-inch-long liners. Drive samples were obtained by driving a soil sampler up to 18 inches into the earth material using a 140-pound hammer falling 30 inches. The hammer was operated using a wire winch and pulley system. The number of blows required to drive the samplers was recorded for each 6-inch penetration interval. The number of blows required to drive the sampler the last 12 inches, or the penetration interval indicated on the log where harder material was encountered, is shown as blows per foot (blow count) on the drill hole logs.

Visual classification of soils encountered in our drill holes was made in general accordance with the Unified Soil Classification System (ASTM D 2487 and D 2488). The laboratory test results were used to refine our field classifications. Two Keys to Soil Classification, one for fine grained soils and one for coarse grained soils, are included in Appendix A together with the drill hole logs.

#### 2.2 Laboratory Testing

Laboratory tests were performed on selected soil samples recovered from the drill holes. The geotechnical testing included water content, dry density, Atterberg limits, unconfined compression, triaxial consolidated undrained shear, direct shear, particle size analysis, percent passing a No. 200 sieve, and hydraulic conductivity. Most of the laboratory test results are presented on the drill hole logs at the corresponding sample depths. The results of the Atterberg limits, unconfined compression, triaxial shear, direct shear, particle size analysis, and hydraulic conductivity tests are presented graphically on separate sheets in Appendix B.

In addition to geotechnical testing, analytical testing was performed on three selected soil samples collected from our Phase 1 drill holes. Analytical testing included CAM 17 metals, pesticides, volatile organic compounds, and hydrocarbon (gasoline, diesel, and motor oil). The results of the analytical testing are included in Appendix C. The objective of the analytical testing was preliminary screening of potential hazardous materials in the subsurface soils. Additional testing will be necessary based on the quantity of off-haul and requirements of the receiving party.

#### 3. FINDINGS

#### 3.1 Surface Conditions

The proposed sewer trunk will be constructed mostly in existing roadways within Santa Clara County and City of Gilroy. Portions of the Phase 2 alignment will be construction within the City of Gilroy Corporation Yard on East 7<sup>th</sup> Street and a Pacific Gas & Electric facility on Renz Lane.

<u>Phase 1 Alignment</u>: Between Harding Avenue and Monterey Road, Highland Avenue is a paved street with one traffic lane in each eastbound and westbound direction, generally with unpaved shoulders. There are no sidewalks except for the section bordering the north side of the Santa Clara County Sig Sanchez Government Center in the southwest corner of Highland Avenue and Monterey Road.

Along Monterey Road, between Highland Avenue and Cohansey Avenue, the proposed pipeline will be constructed along the southbound shoulder. Within this section, Monterey Road is a paved street with two lanes of traffic in each northbound and southbound direction, a paved median and a paved shoulder on each side of the road, and sections of sidewalk on each side. There is an overhead telephone line along the southbound side of Monterey Road. The proposed pipeline will cross several private driveway entrances and intersecting streets, including Carls Court, Neva Drive, Fitzgerald Avenue, and Day Road.

Topography along the Phase 1 alignment is essentially flat lying, with a gentle downslope from west to east along Highland Avenue, and from north to south along Monterey Road. The areas along the Phase 1 alignment are sparsely developed with agriculture, commercial and residential developments.

<u>Phase 2 Alignment</u>: Within the Phase 2 alignment, Monterey Road is a paved street with two lanes of traffic in each northbound and southbound direction, a paved median and a paved shoulder on each side of the road, and sections of sidewalk on each side. Las Animas Avenue is a paved street with one traffic lane in each eastbound and westbound direction, with sidewalk along most of the eastbound lane. Murray Avenue, Chestnut Street, East 7<sup>th</sup> Street, and Renz Lane are paved streets with single traffic lanes in each direction.

Topography along the Phase 2 pipeline alignment is essentially flat lying, with a gentle downslope from north to south. Areas along the northern portion of the Phase 2 alignment are sparsely developed with agriculture. The middle and southern portions of the Phase 2 alignment are more densely developed with commercial and residential developments.

#### 3.2 Subsurface Conditions

The subsurface soils encountered in our drill holes can generally be described as alluvium with localized fill. The soils encountered in our drill holes are described below. Phase 1 drill holes are numbered as DH-1 through DH-17. Phase 2 drill holes are numbered as DH-1A through DH-23A. The stations referenced below are based on the August 2018 Plan and Profile drawings prepared by HydroScience.

#### 3.2.1 Phase 1 Alignment

DH-1 was located at roughly Station 344+00 and DH-2 was located at roughly Station 366+40. In these holes, a pavement section consisting of roughly 3 to 4 inches of asphalt concrete over roughly 3 to 9 inches of base was encountered at the surface. The pavement section is underlain by stiff to hard lean clays with variable amounts of sand to a depth of roughly 7½ feet bgs. The clays are underlain by layers of medium dense to very dense clayey sand with gravel and well graded sand with gravel and clay to well graded gravel with sand and clay to the maximum explored depth of roughly 20 feet bgs.

DH-3 was located at roughly Station 320+50. A pavement section consisting of roughly 3 inches of asphalt concrete over roughly 10 inches of base was encountered at the surface. The pavement section is underlain by a layer of loose fill consisting of poorly graded sand to a depth of roughly 4 feet bgs. The fill is underlain by very stiff lean clay with sand to a depth of roughly 7½ feet bgs; and medium dense to dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-4 was located at roughly Station 310+00. A pavement section consisting of roughly 6 inches of asphalt concrete over roughly 10 inches of base was encountered at the surface. The pavement section is underlain by hard sandy lean clay to a depth of roughly 12 feet bgs; and medium dense to very dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-5 was located at roughly Station 299+50. The surficial soil layer consists of hard, lean clay to lean clay with sand to a depth of roughly 4 feet bgs. This clay is underlain by medium dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-6 was located at roughly Station 289+00. The surficial soil layers consist of stiff to very stiff lean clay to a depth of roughly 7½ feet bgs; and medium dense to dense poorly graded sand with gravel and clay to the maximum explored depth of roughly 20 feet bgs.

DH-7 was located at roughly Station 278+50. The surficial soil layer consists of very stiff fat clay to a depth of roughly 4½ feet bgs. This fat clay is underlain by medium dense to very dense well graded sand with gravel and clay to clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-8 was located at roughly Station 268+00. The surficial soil layer consists of very stiff fat clay to a depth of roughly 4 feet bgs. This fat clay is underlain by dense clayey sand to a depth of roughly 7½ feet bgs; and medium dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-9 was located at roughly Station 257+50. The surficial soil layer consists of medium dense clayey sand to a depth of roughly 4 feet bgs. This sand is underlain by medium dense to dense clayey sand with gravel to a depth of roughly 17 feet bgs; and very stiff lean clay to the maximum explored depth of roughly 20 feet bgs.

DH-10 was located at roughly Station 247+00. The surficial soil layer consists of very stiff lean clay with sand to a depth of roughly 4 feet bgs. This clay is underlain by dense to very dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-11 was located at roughly Station 236+50. The surficial soil layer consists of hard lean clay with sand to a depth of roughly 4 feet bgs. This clay is underlain by dense to very dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-12 was located at roughly Station 226+00. The surficial soil layer consists of very stiff sandy lean clay to a depth of roughly 4 feet bgs. This clay is underlain by medium dense to dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-13 was located at roughly Station 215+50. The surficial soil layer consists of stiff to very stiff lean clay to a depth of roughly 12 feet bgs. This clay is underlain by stiff sandy lean clay to a depth of roughly 17 feet bgs; and stiff lean clay to the maximum explored depth of roughly 20 feet bgs.

DH-14 was located at roughly Station 205+00. The surficial soil layer consists of medium dense clayey sand to a depth of roughly 4 feet bgs. This sandy is underlain by medium dense clayey sand with gravel to a depth of roughly 7½ feet bgs; and very stiff sandy lean clay to the maximum explored depth of roughly 20 feet bgs.

DH-15 was located at roughly Station 194+50. The surficial soil layer consists of hard lean clay with sand to a depth of roughly 4 feet bgs. This clay is underlain by medium dense to very dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

DH-16 was located at roughly Station 184+00. The surficial soil layer consists of hard, high plasticity fat clay with sand to a depth of roughly 7½ feet bgs. This clay is underlain by medium dense clayey sand with gravel to a depth of roughly 12 feet bgs; and medium dense to dense well graded gravel with sand and clay to the maximum explored depth of roughly 20 feet bgs.

DH-17 was located at roughly Station 173+50. The surficial soil layer consists of hard, lean clay with sand to a depth of roughly 6 feet bgs. This clay is underlain by medium dense to dense well graded sand with gravel and clay to the maximum explored depth of roughly 20 feet bgs.

#### 3.2.2 Phase 2 Alignment

Phase 2 drill hole DH-1A was located at West Las Animas Avenue and Monterey Road. Holes DH-2A, DH-3A, and DH-4A were located on Las Animas Avenue. Holes DH-5A through DH-15A were located on Murray Avenue. Holes DH-16A through DH-18A were located on Chestnut Street. Hole DH-19A was located on East 7th street. Hole DH-20A was located inside the City of Gilroy Corporation Yard. Hole DH-21A was located in the Pacific Gas & Electric facility at the north end of Renz Lane. Holes DH-22A and DH-23A were located on Renz Lane. The soil conditions encountered in these drill holes are described below.

In DH-1A, a pavement section consisting of roughly 3 inches of asphalt concrete over roughly 9 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff to hard lean clay with sand to a depth of roughly 7½ feet bgs, and dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

In DH-2A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 8+ inches of base was encountered at the surface. The pavement section is underlain by fill consisting of medium dense, clayey sand to a depth of about 2 feet bgs. The fill is underlain by lean clay with sand to a depth of roughly 4 feet bgs; medium dense to dense clayey sand with variable amounts of gravel to a depth of about 20¾ feet bgs; very stiff lean clay with sand to a depth of roughly 24¾ feet bgs; stiff to hard fat clay and lean clay with sand to a depth of roughly 32 feet bgs; medium dense clayey sand with gravel to the maximum explored depth of roughly 50 feet bgs.

In DH-3A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by fill consisting of medium dense clayey sand with gravel to a depth of roughly 4 feet bgs. The fill is underlain by alluvium material consisting of very stiff to hard lean clay and sandy lean clay to a depth of 11½ feet bgs; medium dense clayey sand and clayey sand with gravel to a depth of roughly 22 feet bgs; well graded sand with gravel and clay to a depth of roughly 25 feet bgs; dense poorly graded sand with gravel and silt to a depth of about 30 feet bgs; dense clayey sand to a depth of roughly 37 feet bgs; very stiff sandy lean clay to dense clayey sand to a depth of roughly 45½ feet bgs; hard lean clay with sand to a depth of roughly 49 feet bgs; and very dense clayey sand to the maximum explored depth of roughly 50 feet bgs.

In DH-4A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff lean clay to a depth of roughly 3½ feet bgs, and medium dense clayey sand with gravel and clayey gravel with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-5A, a layer of alluvium consisting of medium dense clayey sand to very stiff to hard sandy lean clay was encountered from the surface to roughly 5 feet bgs. This layer is underlain by medium dense to dense clayey sand with gravel to clayey gravel with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-6A, a pavement section consisting of roughly 7 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard lean clay with sand to a depth of roughly 8 feet bgs; medium dense to very dense clayey sand to a depth of roughly 28 feet bgs; medium dense poorly graded sand with clay to clayey sand to a depth of roughly 32½ feet bgs; stiff lean clay with sand and lean clay to a depth of roughly 51½ feet bgs; very dense clayey to silty sand to a depth of roughly 56½ feet bgs; very dense poorly graded gravel with clay and sand to a depth of roughly 58½ feet bgs; and hard lean clay to the maximum explored depth of roughly 59.2 feet bgs.

In DH-7A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff sandy lean clay to a depth of roughly 4 feet bgs; medium dense to dense clayey sand to a depth of roughly 25 feet bgs; and stiff lean clay with sand to the maximum explored depth of roughly 60 feet bgs.

In DH-8A, a pavement section consisting of roughly 6 inches of asphalt concrete over roughly 7 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of medium dense clayey gravel with sand to a depth of roughly 2½ feet bgs; very stiff to hard lean clay with sand to a depth of roughly 12 feet bgs; medium dense clayey sand to a depth of about 16½ feet bgs; and stiff to very stiff lean clay with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-9A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 7 inches of base was encountered at the surface. The pavement section is underlain by fill consisting of medium dense clayey sand with gravel to a depth of roughly 2½ feet bgs. The fill is underlain by alluvium consisting of very stiff to hard lean clay to a depth of roughly 12 feet bgs; dense clayey sand with gravel to a depth of roughly 17 feet bgs; and very stiff sandy lean clay to medium dense clayey sand to the maximum explored depth of roughly 20 feet bgs.

In DH-10A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 12 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard sandy lean clay to a depth of roughly 4 feet bgs; very dense clayey gravel to a depth of roughly 7½ feet bgs; very stiff to hard sandy lean clay to a depth of about 12 feet bgs; very dense clayey sand with gravel and clayey gravel with sand to a depth of roughly 28½ feet bgs; dense well graded sand with gravel to a depth of roughly 32 feet bgs; medium dense clayey sand with gravel to a depth of roughly 34½ feet bgs; very stiff lean clay to a depth of roughly 36½ feet bgs; very dense clayey gravel with sand to a depth of roughly

42 feet bgs; very stiff lean clay with sand to sandy lean clay and dense silty to clayey sand to the maximum explored depth of roughly 50 feet bgs.

In DH-11A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 12 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of stiff fat clay to a depth of roughly 4 feet bgs; and layers of medium dense to dense clayey sand with gravel, clayey gravel with sand, well graded gravel with sand, poorly graded sand with gravel and silt, and silty sand with gravel to a depth of roughly 42 feet bgs. These granular soils are underlain by very stiff lean clay to the maximum explored depth of roughly 50 feet bgs.

In DH-12A, a pavement section consisting of roughly 10 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff fat clay to a depth of roughly 4 feet bgs; very stiff lean clay to lean clay with sand to a depth of roughly 7½ feet bgs; medium dense clayey sand with gravel to clayey gravel with sand to a depth of roughly 17 feet bgs; and very stiff lean clay to lean clay with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-13A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 8 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of medium dense clayey gravel with sand to a depth of roughly 7½ feet bgs; stiff lean clay to lean clay with sand to a depth of roughly 12 feet bgs; and medium dense clayey sand with gravel to the maximum explored depth of roughly 20 feet bgs.

In DH-14A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 7 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff to hard lean clay with sand to sandy lean clay to a depth of roughly 7½ feet bgs; medium dense clayey gravel with sand, clayey sand with gravel, and clayey sand to the maximum explored depth of roughly 20 feet bgs.

In DH-15A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 7 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard lean clay with sand to a depth of roughly 7 feet bgs; and medium dense to very dense clayey gravel with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-16A, a pavement section consisting of roughly 1 inch of asphalt concrete over roughly 12 inches of Portland cement concrete was encountered at the surface. The pavement section is underlain by fill consisting of medium dense clayey gravel with sand to a depth of roughly 7 feet bgs. This layer is underlain by alluvium consisting of medium dense to dense clayey sand with gravel to clayey gravel with sand to a depth of roughly 21½ feet bgs; dense clayey sand to a depth of roughly 25 feet bgs; dense poorly graded sand with gravel and clay to a depth of roughly 27½ feet bgs; medium dense silty sand to a depth of roughly 31 feet bgs, dense well

graded gravel with sand to a depth of 42 feet bgs; and dense to very dense clayey sand to the maximum explored depth of roughly 50 feet bgs.

In DH-17A, a pavement section consisting of roughly 4 inches of asphalt concrete over roughly 3 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard lean clay with sand to a depth of roughly 7½ feet bgs; loose clayey sand to a depth of roughly 12 feet bgs; medium dense clayey gravel with sand and clayey sand with gravel to a depth of roughly 26 feet bgs; dense well graded gravel with sand to a depth of roughly 29 feet bgs; dense poorly graded sand with gravel and silt to a depth of roughly 32 feet bgs; and dense to very dense well graded gravel with sand and silt to the maximum explored depth of roughly 50 feet bgs.

In DH-18A, a pavement section consisting of roughly 3 inches of asphalt concrete over roughly 2 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard sandy lean clay to a depth of roughly 4 feet bgs; and medium dense to dense clayey sand with gravel to clayey gravel with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-19A, a pavement section consisting of roughly 2 inches of asphalt concrete over roughly 3 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of medium dense clayey sand to a depth of roughly 4 feet bgs; and medium dense to dense clayey gravel with sand to the maximum explored depth of roughly 18 feet bgs.

In DH-20A, a pavement section consisting of roughly 2 inches of asphalt concrete over roughly 6 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of hard lean clay with sand to a depth of roughly 2 feet bgs; medium dense to dense clayey gravel with sand to a depth of roughly 12 feet bgs; dense clayey sand with gravel to a depth of roughly 16 feet bgs; layers of medium dense to dense poorly graded gravel with sand and clay, clayey gravel with sand, poorly graded sand with gravel and clay, poorly graded gravel with sand and clay to a depth of roughly 31½ feet bgs; stiff lean clay to a depth of roughly 37 feet bgs; medium dense clayey gravel with sand to a depth of roughly 47 feet bgs; and stiff lean clay to the maximum explored depth of roughly 60 feet bgs.

In DH-21A, a section of fill consisting of fat clay with sand and clayey sand with gravel was encountered from the ground surface to roughly 2 feet bgs. The fill section is underlain by alluvium consisting of very stiff to hard fat clay with sand to a depth of roughly 4 feet bgs; hard sandy lean clay to a depth of roughly 7½ feet bgs; medium dense poorly graded sand with gravel and clay to a depth of roughly 19 feet bgs; loose clayey sand to a depth of roughly 20 feet bgs; medium dense to dense clayey gravel with sand to a depth of roughly 24 feet bgs; stiff sandy lean clay to loose to medium dense clayey sand to a depth of roughly 27½ feet bgs; medium dense clayey sand to a depth of roughly 39½ feet bgs; and firm to hard lean clay and lean clay with sand to the maximum explored depth of roughly 60 feet bgs.

In DH-22A, a pavement section consisting of roughly 2 inches of asphalt concrete over roughly 4 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of stiff to very stiff sandy lean clay to a depth of roughly 11½ feet bgs; and dense clayey gravel with sand to the maximum explored depth of roughly 20 feet bgs.

In DH-23A, a pavement section consisting of roughly 5 inches of asphalt concrete over roughly 12 inches of base was encountered at the surface. The pavement section is underlain by alluvium consisting of very stiff to hard lean clay and lean clay with sand to a depth of roughly 7½ feet bgs; and medium dense to dense well graded sand with gravel and clay to the maximum explored depth of roughly 20 feet bgs.

The above are generalized descriptions of the subsurface soil conditions encountered in our drill holes. For more detailed descriptions of the encountered soil conditions, refer to the drill hole logs in Appendix A.

#### 3.3 Groundwater

Groundwater was encountered in DH-2A, DH-3A, DH-6A, DH-7A, DH-10A, DH-11A, DH-16A, DH-17A, DH-DH-20A, and DH-21A at the time of drilling. These Phase 2 drill holes were 50 to 60 feet deep for the five proposed trenchless under-crossings. Groundwater was not encountered in the remaining drill holes which were 18 to 20 feet deep.

| Drill Hole | Date      | Groundwater Level Encountered at Time of Drilling (feet) |
|------------|-----------|----------------------------------------------------------|
| DH-2A      | 8/28/2017 | 24.5                                                     |
| DH-3A      | 8/28/2017 | 26                                                       |
| DH-6A      | 8/29/2017 | 25                                                       |
| DH-7A      | 8/29/2017 | 31                                                       |
| DH-10A     | 8/30/2017 | 23                                                       |
| DH-11A     | 8/30/2017 | 26                                                       |
| DH-20A     | 9/5/2017  | 31.5                                                     |
| DH-21A     | 5/22/2018 | 30                                                       |

Drill holes DH-3A, DH-6A, DH-11A, DH-17A, and DH-20A were converted to groundwater monitoring wells. The groundwater levels measured periodically in these monitoring wells are shown in the table below.

| Well ID | Corresponding Depth of Well |        | Measured Depth to Groundwater (feet) |           |           |            |
|---------|-----------------------------|--------|--------------------------------------|-----------|-----------|------------|
| Well ID | Drill Hole                  | (feet) | 1/23/2018                            | 3/30/2018 | 8/20/2018 | 10/31/2018 |
| GW-1    | DH-3A                       | 50     | 23.7                                 | 19.4      | 33.1      | 38.5       |
| GW-2    | DH-6A                       | 59.2   | 22.7                                 | 18.3      | 33.9      | 37.7       |
| GW-3    | DH-11A                      | 50     | 22.1                                 | 15.3      | 27.4      | 30.3       |
| GW-4    | DH-17A                      | 50     | 22.7                                 | 18.3      | 37.4      | 39.3       |
| GW-5    | DH-20A                      | 60     | 20.8                                 | 19.4      | 35.5      | 37.6       |

No groundwater monitoring wells were installed within the Phase 1 alignment. However, our review of groundwater information available from Santa Clara Valley Water District suggests a relatively shallow groundwater level of 8.4 feet bgs measured in April 2006 in the vicinity of the Phase 1 alignment. The reviewed available information suggests that average groundwater level in the vicinity of the Phase 1 alignment generally ranged about 30 to 40 feet bgs, with high average groundwater level as shallow as roughly 13 to 15 feet bgs between November 2005 and April 2006 and between November 2010 and April 2011.

It should be noted that fluctuations in the groundwater level may occur due to seasonal variations in rainfall and temperature, pumping from wells, regional groundwater recharge program, irrigation or other factors that were not evident at the time of our investigation.

#### 3.4 Variations in Subsurface Conditions

Our interpretations of soil and groundwater conditions, as described in this report, are based on data obtained from our investigations for the Phase 1 and Phase 2 pipeline alignments. Our conclusions and geotechnical recommendations are based on these interpretations. Please realize the project areas have undergone different phases of development and construction. Therefore, it is likely that undisclosed variations in subsurface conditions exist at the site, such as old foundations, abandoned utilities and localized areas of deep and loose fill. Careful observations should be made during construction to verify our interpretations. Should variations from our interpretations be found, we should be notified to evaluate whether any revisions should be made to our recommendations.

#### 4. SEISMIC CONSIDERATIONS

#### 4.1 Seismic Sources

The Greater San Francisco Bay Area is seismically dominated by the active San Andreas Fault system, the general boundary between the northward moving Pacific Plate (west of the fault) and the southward moving North American Plate (east of the fault). This movement is distributed across a complex system of generally strike-slip, right lateral, parallel and subparallel faults.

The project area is not located within a State of California Earthquake Fault Zone and no mapped active faults are known to cross the site. Regional faults that have a potential to generate large magnitude earthquakes are listed below. Approximate distances and direction from the project site to these nearby faults are tabulated below.

| Fault                               | North End of<br>Phase 1 | South End of<br>Phase 1/North End<br>of Phase 2 | South End of<br>Phase 2 |
|-------------------------------------|-------------------------|-------------------------------------------------|-------------------------|
| Calaveras (central section)         | 6¼ km northeast         | 6¼ km northeast                                 | 5½ km northeast         |
| Sargent                             | 9¼ km southwest         | 8½ km southwest                                 | 5½ km southwest         |
| San Andreas (Santa Cruz Mt section) | 14¼ km southwest        | 13 km southwest                                 | 12¼ km southwest        |
| Zayante-Vergeles                    | 18½ km southwest        | 17¾ km southwest                                | 17¾ km southwest        |
| San Gregorio                        | 54½ km southwest        | 54½ km southwest                                | 56 km west              |

#### 4.2 Ground Motions and Seismicity

We used the USGS Seismic Design Maps Application 3.1.0 to determine the peak ground acceleration at each drill hole location along the proposed pipeline alignment. For each drill hole location, we first determined its latitude and longitude, and its site class based on regional information from the USGS website. The peak ground acceleration values calculated by the USGS Seismic Design Maps Application are geometric mean values adjusted for site class effects ( $PGA_{M}$ ).

Our review of the USGS regional information suggests the drill holes are generally located within Site Class C with the exception of drill holes DH-20A, DH-22A, and DH-23A which are located within Site Class D. Using the Site Class and the latitude and longitude of the drill holes, the geometric mean peak ground acceleration values determined by the USGS Seismic Design Maps Application range between 0.585g and 0.613g.

The Working Group on California Earthquake Probabilities (WGCEP) estimates of the probabilities of major earthquakes are now in their sixth iteration, with the greatest changes in approach being the inclusion of multifault rupture scenarios, in the progressive consideration of more potential seismic sources, the possibility of earthquakes on unrecognized faults, and the

inclusion of the notion of fault "readiness". Current estimates (WGCEP, 2014) for the San Francisco region indicate a 72% probability of a large (magnitude 6.7 or greater) earthquake in the San Francisco Bay area as a whole over the 30-year period beginning in 2014; this overall probability is greater than the previous (WGCEP, 2007) probability of 63%, due mainly to the inclusion of multifault rupture scenarios. The estimate for the Calaveras fault alone is 14.4% (revised up from the 7% presented by WGCEP, 2007); for the (northern) San Andreas fault alone, 27.4% (revised upward from the WGCEP (2007) value of 21%); and for the Hayward fault, 45.3% (revised upward from the WGCEP (2007) value of 31%).

#### 4.3 Liquefaction

Soil liquefaction is a phenomenon in which saturated granular soils, and certain fine-grained soils, lose their strength due to the build-up of excess pore water pressure during cyclic loading, such as that induced by earthquakes. Soils most susceptible to liquefaction are saturated, clean, loose, fine-grained sands and non-plastic silts. Certain gravels, plastic silts, and clays are also susceptible to liquefaction. The primary factors affecting soil liquefaction include: 1) intensity and duration of seismic shaking; 2) soil type; 3) relative density of granular soils; 4) moisture content and plasticity of fine-grained soils; 5) overburden pressure; and 6) depth to ground water.

Our review of the Santa Clara County Liquefaction Hazard Zone maps (County of Santa Clara, 2012) indicates the proposed pipeline alignment is not located within a County Liquefaction Hazard Zone except for a relatively short section near the intersection of Highland Avenue and Harding Avenue in the Phase 1 alignment and at the locations of DH-20A though DH-23A in Phase 2 alignment. A detailed liquefaction analysis is not in the scope of this investigation.

#### 5. DISCUSSION AND CONCLUSIONS

#### 5.1 General

From a geotechnical viewpoint, it is our opinion that construction of the proposed pipeline is feasible provided our recommendations are incorporated in the design and construction of the project. Detailed recommendations are presented in the "RECOMMENDATIONS" section of this report. Geotechnical discussion and conclusions for the primary considerations of this project are presented below.

#### 5.2 Surface Fault Rupture

The project site is not located in an Alquist-Priolo Earthquake Fault Zone. Because no active or potentially active faults are known to cross the site, it is reasonable to conclude the risk of fault rupture through the proposed pipeline alignments is low.

#### 5.3 Seismic Ground Shaking

The project area is in an area of high seismicity. Based on general knowledge of site seismicity, it should be anticipated that, during the design life of the improvements, the site will be subject to high intensity ground shaking. The proposed improvements should be designed accordingly using applicable design codes and experience of the design professionals.

#### **5.4 Anticipated Excavation Soil Conditions**

As currently planned, the majority of the proposed pipeline will be constructed using conventional cut and cover method except at the five proposed trenchless under-crossing locations. For the cut and cover sections, the invert of the proposed pipeline will range between roughly 6 and 19 feet below ground surface. These excavations will generally extend through the upper clay layers and into the underlying sand and gravel layers, except where deeper clay layers were encountered. Although not necessarily mentioned in the drill hole logs specifically, the contractor should be aware of the presence of cobbles in the granular soil layers, especially the impact of cobbles on trenchless construction.

#### 5.5 Groundwater

Groundwater was not encountered in our 20-foot deep drill holes at the time of drilling. In the 50 to 60-foot deep drill holes at the five proposed trenchless under-crossing sites within the Phase 2 alignment, groundwater was encountered between depths of 24.5 and 31.5 feet at the time of drilling. In the piezometers installed at these five under-crossing sites, groundwater was at least 27 feet bgs during the summer months. In March 2018, the measured groundwater level in the piezometers ranged between roughly 15 and 20 feet bgs. Refer to Section 3.3 of this report for additional information regarding regional groundwater.

The presence of groundwater will affect the proposed construction, especially pits for the trenchless construction. Groundwater is expected to be at a higher level during and shortly after the rainy months, especially after a wet winter. Excavations extending into groundwater will require dewatering and special considerations so construction can proceed in a "dry" condition. Special handling and disposal of the groundwater may be required. The bottom of the excavations should be over-excavated and replaced with a crushed rock section to create a more stable working platform. Refer to the "Recommendations" section of the report.

#### 5.6 Excavations and Shoring

Conventional excavation equipment of sufficient size and power should be capable to dig through the anticipated subsurface soils along the pipeline alignment, depending on the wear and tear the contractor is willing to accept. No bedrock was encountered in any of our drill holes.

The selection, design, installation, maintenance and removal of the shoring system are the sole responsibility of the contractors, and should comply with the requirements of OSHA and local jurisdiction.

#### 5.7 Buoyancy Force on Pipeline

Pipes below groundwater level will be subject to buoyancy force. Our review of regional groundwater information suggests a high groundwater level of about 8.4 feet bgs in the vicinity of the proposed pipeline. This high groundwater level would be above the proposed invert of the pipeline in many areas. The proposed pipeline should be designed accordingly for buoyancy force based on this high groundwater level.

#### 5.8 Existing Improvements

Design and construction of the proposed improvements should take into account the existing improvements. Excavation near existing improvements should be performed carefully to avoid damage to the existing improvements.

#### 6. RECCOMENDATIONS

#### 6.1 Earthwork

Earthwork construction should conform to the project plans and specifications, and applicable local jurisdiction requirements. General guidelines are presented below.

#### 6.1.1 Clearing and Stripping

Clearing and grubbing should include removal of obstructions and deleterious materials, including designated pavements, abandoned utility lines, debris, and obstructions. If tree roots are encountered, an arborist should be consulted regarding removed of tree roots. Depressions, voids and holes that extend below finish grade should be cleaned and backfilled with engineered fill.

#### 6.1.2 Excavations, Temporary Construction Slopes and Dewatering

Excavations of roughly 6 to 19 feet in depth are anticipated for construction of the sewer pipeline except at the five proposed trenchless under-crossings where deeper excavations on the order of 20 to 30 feet may be required for construction of the boring and receiving pits. The excavations should be readily accomplished with conventional construction equipment of sufficient size and power, depending on the wear and tear the contractor is willing to accept. Excavations should be constructed in accordance with the current Cal-OSHA safety standards and local jurisdiction requirements. The stability and safety of excavations, braced or unbraced, is the responsibility of the contractor. Special care should be exercised when excavating near existing structures or underground structures and improvements.

The contractor is responsible for the design, installation, maintenance and removal of temporary shoring and bracing systems. The presence of existing structures, pavements, and underground utilities must be incorporated in the design of the shoring and bracing systems. Existing improvements outside the excavation areas should be protected.

Removal of the shoring system should not result in significant voids which could cause shifting and settlement of the backfill, and settlement of the road surface. Voids should be backfilled with sand or cement slurry, or other appropriate means to reduce the potential for settlement.

Groundwater along the proposed pipeline alignment is discussed in Section 3.3 of this report, including groundwater levels measured periodically in the monitoring wells at the five undercrossing sites. The presence of groundwater should be considered in the design and construction of the boring and receiving pits. It is recommended that construction be performed during the late summer months when groundwater is generally at its lowest. If construction is to be performed during or after the rainy months, groundwater level could rise above the planned excavation depth.

If groundwater is encountered during construction, dewatering should be provided to lower the groundwater to at least 3 feet below the bottom of the excavation. The design, installation, permitting, maintenance, and removal of dewatering systems are the responsibility of the contractor.

Relatively wet soil should be anticipated at the bottom of the planned excavations. If a firm work surface is needed, the bottom of the excavations should be over-excavated to a depth of at least 2 feet and replaced with a crushed rock section. The rock should be 1½-inch or ¾-inch by No. 4, clean crushed rock. Deeper over-excavation may be required depending on the conditions exposed and should be determined by the project geotechnical engineer at the time of construction. The crushed rock should be encapsulated in a geotextile fabric, such as Mirafi FW 402 or equivalent, to help stabilize the bottom and to separate the crushed rock from the adjacent soils.

The deeper excavations will encounter granular soils and the presence of cobbles should be anticipated. The contractor should be prepared to handle cobbles in the excavations.

#### 6.1.3 Material for Backfill

Material for pipe zone backfill is defined as the material extending from the bottom of the trench to 6 inches above the pipe. In general, pipe zone backfill should consist of sand free from deleterious material and meeting the project specifications.

Trench zone backfill is the material extending from 6 inches above the pipe to the base of the pavement section. To reduce the potential trench settlement due to variable native soil types and compaction difficulties, use of Class 2 Aggregate Base (Caltrans Standard Specifications, latest edition) as the trench zone backfill is recommended.

All fills should be approved by the project geotechnical engineer prior to delivery to the site. At least five working days prior to importing to the site, a representative sample of the proposed import fill should be delivered to our laboratory for evaluation.

#### 6.1.4 Backfill Placement and Compaction

Engineered fill should be placed in horizontal lifts each not exceeding 8 inches in loose thickness, moisture conditioned to the required moisture content, and mechanically compacted to meet the recommended relative compaction. Relative compaction or compaction is defined as the in-place dry density of the compacted soil divided by the laboratory maximum dry density as determined by ASTM Test Method D1557, latest edition, expressed as a percentage.

Moisture conditioning of soils should consist of adding water to the soils if they are too dry and allowing the soils to dry if they are too wet.

The sand bedding (pipe zone backfill) should be compacted to a minimum of 90 percent relative compaction. The aggregate base above should be compacted to a minimum of 95 percent relative compaction at a water content of between 1 and 3 percent above the laboratory optimum value.

#### 6.1.5 Pavement Restoration

Restoration of pavements after construction should conform to the design plans and project specifications.

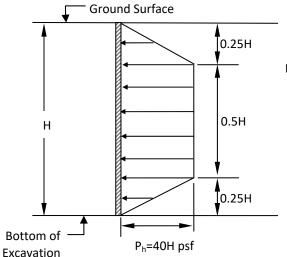
#### 6.1.6 Wet Weather Construction

If construction is to be performed during the winter rainy months, the owner and the contractors should be fully aware of the potential impact of wet weather. Rainstorms can cause delay to construction and damage to previously completed work by saturating compacted fill or backfill, or flooding excavations.

Earthwork during rainy months will require extra effort and caution by the contractors. The contractors are responsible for protecting their work to avoid damage by rainwater. Standing pools of water should be pumped out immediately. Construction during wet weather conditions should be addressed in the project construction bid documents and/or specifications. We recommend the contractors submit a wet weather construction plan outlining procedures they will employ to protect their work and to minimize damage to their work by rainstorms.

#### **6.2 Pipeline Buoyancy**

Pipes below groundwater level will be subject to buoyancy force. Our review of regional groundwater information suggests a high groundwater level of about 8.4 feet bgs in the vicinity of the proposed pipeline alignments. We recommend the proposed pipeline be designed for buoyancy force based on this high groundwater level.


#### 6.3 Lateral Soil Pressure for Temporary Shoring

Unbraced excavation shoring may be designed for an active lateral soil pressure of 40 pounds per cubic foot (pcf, equivalent fluid weight) if the top of the shoring system is allowed to move laterally and such movement will not impact adjacent improvements. If movement at the top of the shoring system is not allowed or desired, an at-rest soil pressure of 60 pcf should be considered. Any applicable surcharge loads, including traffic, construction equipment, and storage, should be added to the lateral soil pressure in the shoring system design.

To simulate the effect of traffic and equipment loading, a uniform lateral pressure of 250 pounds per square foot (psf) may be considered. Even with the inclusion of equipment

surcharge, heavy construction equipment should not be closer than 5 feet from the perimeter of the construction excavations.

Braced excavations should be designed for a trapezoidal lateral pressure distribution as shown below.



#### Notes:

- Lateral pressures from surcharge loads not shown.
- Excavation is dewatered with groundwater level at least 3 feet below bottom of excavation.
- 3. Seismic force not included.

<u>Lateral Soil Pressure for Temporary Braced Excavations</u>

#### 7. PLAN REVIEW, EARTHWORK AND FOUNDATION OBSERVATION

Post-report geotechnical services by Geo-Logic Associates (GLA), typically consisting of preconstruction design consultations and reviews, construction observation and testing services, are necessary for GLA to confirm the recommendations contained in this report. This report is based on limited sampling and investigation, and by those constraints may not have discovered local anomalies or other varying conditions that may exist on the project site. Therefore, this report is only preliminary until GLA can confirm that actual conditions in the ground conform to those anticipated in the report. Accordingly, as an integral part of this report, GLA recommends post-report geotechnical services to assist the project team during design and construction of the project. GLA requires that it perform these services if it is to remain as the project geotechnical engineer-of-record.

During design, GLA can provide consultation and supplemental recommendations to assist the project team in design and value engineering, especially if the project design has been modified after completion of our report. It is impossible for us to anticipate every design scenario and use of construction materials during preparation of our report. Therefore, retaining GLA to provide post-report consultation will help address design changes, answer questions and evaluate alternatives proposed by the project designers and contractors.

Prior to issuing project plans and specifications for construction bidding purposes, GLA should review the grading, drainage and foundation plans and the project specifications to determine if the intent of our recommendations has been incorporated in these documents. We have found that such a review process will help reduce the likelihood of misinterpretation of our recommendations which may cause construction delay and additional cost.

Construction phase services can include, among other things, the observation and testing during site clearing, stripping, excavation, mass grading, subgrade preparation, fill placement and compaction, backfill compaction, foundation construction and pavement construction activities.

Geo-Logic Associates would be pleased to provide cost proposals for follow-up geotechnical services. Post-report geotechnical services may include additional field and laboratory services.

#### 8. LIMITATIONS

In preparing the findings and professional opinions presented in this report, Geo-Logic Associates (GLA) has endeavored to follow generally accepted principles and practices of the engineering geologic and geotechnical engineering professions in the area and at the time our services were performed. No warranty, express or implied, is provided.

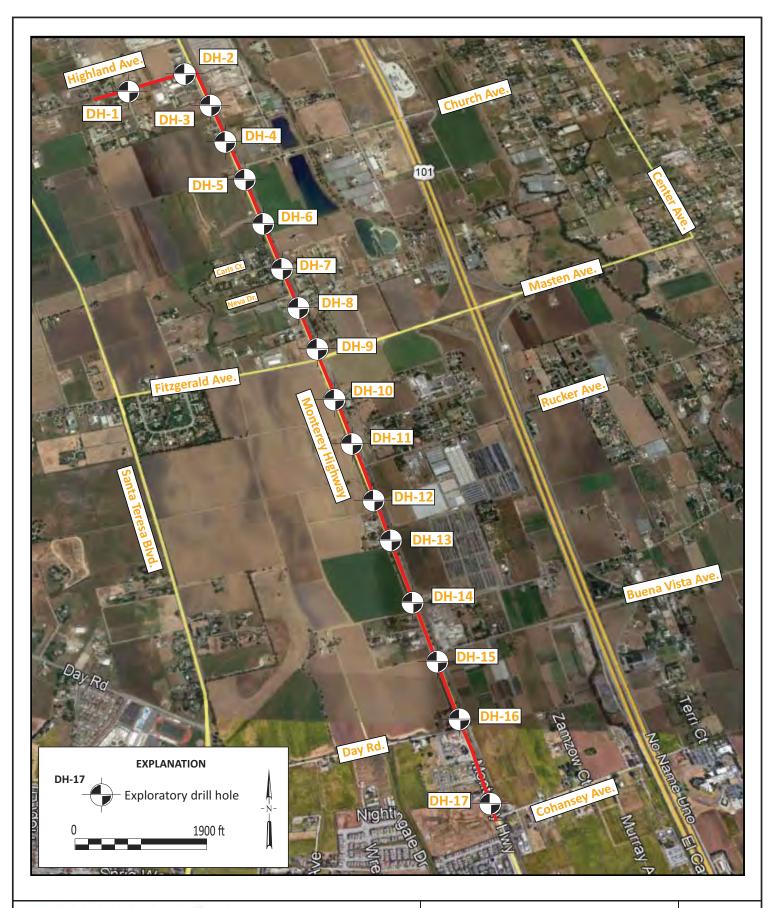
The conclusions and recommendations contained in this report are based, in part, on information that has been provided to us. In the event that the general development concept or general location and type of structures are modified, our conclusions and recommendations shall not be considered valid unless we are retained to review such changes and to make any necessary additions or changes to our recommendations. To remain as the project geotechnical engineer-of-record, GLA must be retained to provide geotechnical services as discussed under the Post-report Geotechnical Services section of this report.

Subsurface exploration is necessarily confined to selected locations and conditions may, and often do, vary between these locations. Should conditions different from those described in this report be encountered during project development, GLA should be consulted to review the conditions and determine whether our recommendations are still valid. Additional exploration, testing, and analysis may be required for such evaluation.

Should persons concerned with this project observe geotechnical features or conditions at the site or surrounding areas which are different from those described in this report, those observations should be reported immediately to GLA for evaluation.

It is important that the information in this report be made known to the design professionals involved with the project, that our recommendations be incorporated into project drawings and documents, and that the recommendations be carried out during construction by the contractor and subcontractors. It is not the responsibility of PGLA to notify the design professionals and the project contractors and subcontractors.

The findings, conclusions and recommendations presented in this report are applicable only to the specific project development on this specific site. These data should not be used for other projects, sites or purposes unless they are reviewed by GLA or a qualified geotechnical professional.


Report prepared by,

**Geo-Logic Associates** 

Chalerm (Beeson) Liang

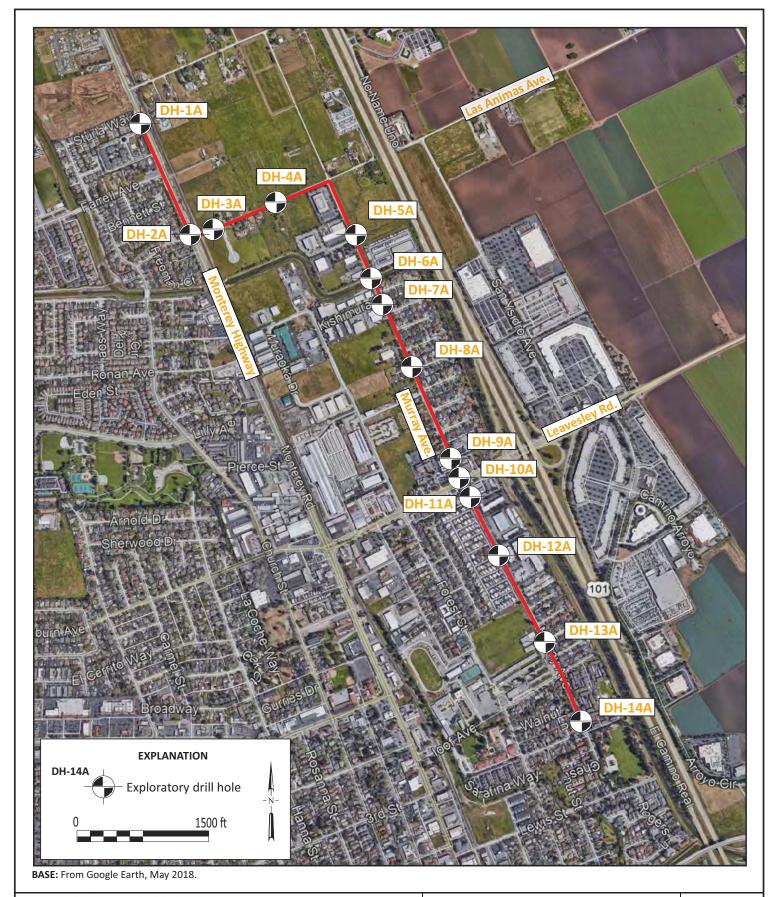
GE 2031

Distribution: HydroScience Engineers, Cindy Preuss (6)





16055 Caputo Drive, Suite D Morgan Hill, California 95037 Phone (408) 778-2818 Fax (408) 779-6879


Drafted By: Francesca Senes Date: 10/31/2018
Checked By: Beeson Liang Revision: 10/31/2018

BORING LOCATION MAP MORGAN HILL SEWER TRUNK LINE PHASE 1 & 2

> SAN MARTIN TO GILROY, CALIFORNIA

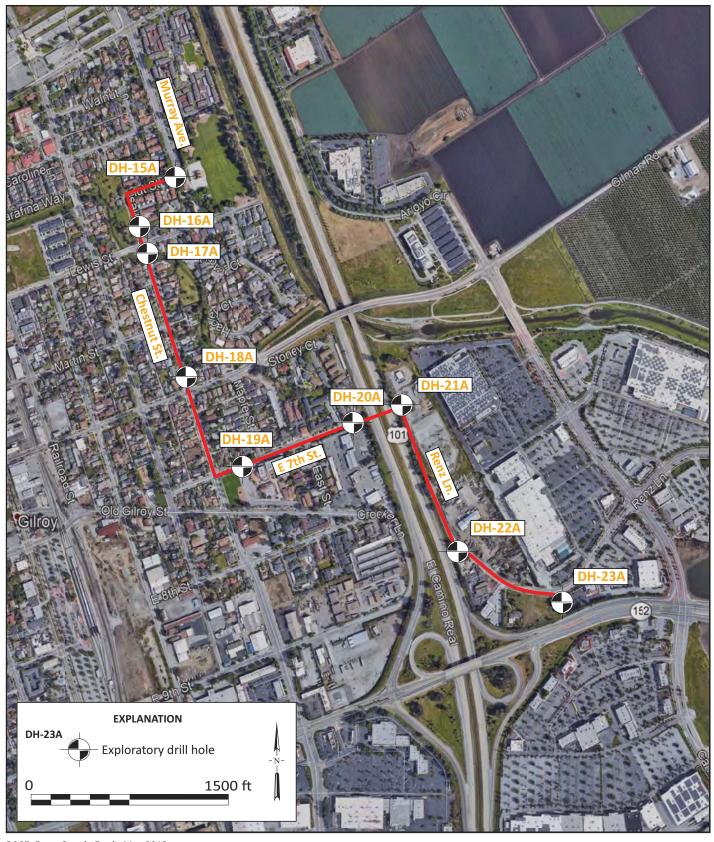
FIGURE 1

PROJECT 2016.0096





16055 Caputo Drive, Suite D Morgan Hill, California 95037 Phone (408) 778-2818 Fax (408) 779-6879


Drafted By: Francesca Senes Date: 10/31/2018
Checked By: Beeson Liang Revision: 10/31/2018

BORING LOCATION MAP MORGAN HILL SEWER TRUNK LINE PHASES 1 & 2

> SAN MARTIN TO GILROY, CALIFORNIA

FIGURE 2

PROJECT 2016.0096



BASE: From Google Earth, May 2018.



16055 Caputo Drive, Suite D Morgan Hill, California 95037 Phone (408) 778-2818

Drafted By: Francesca Senes Date: 10/31/2018
Checked By: Beeson Liang Revision: 10/31/2018

BORING LOCATION MAP MORGAN HILL SEWER TRUNK LINE PHASES 1 & 2

> SAN MARTIN TO GILROY, CALIFORNIA

FIGURE 3

PROJECT 2016.0096

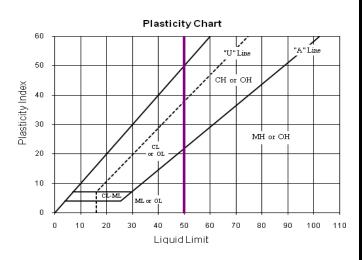
#### **APPENDIX A – SUBSURFACE EXPLORATION**

Keys to Soil Classification,

Logs of Drill Holes DH-1 through DH-17 (Phase 1 Alignment),

and

Logs of Drill Holes DH-1A through DH-23A (Phase 2 Alignment)


### KEY TO SOIL CLASSIFICATION - FINE GRAINED SOILS (50% OR MORE IS SMALLER THAN NO. 200 SIEVE SIZE)

| MAJOR DIVISIONS                     |           |                                      | GROUP<br>SYMBOLS | GROUP NAMES                                                                                                                        |
|-------------------------------------|-----------|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                     | Inorganic | PI < 4 or plots<br>below "A" line    | ML               | Silt, Silt with Sand or Gravel, Sandy or Gravelly Silt, Sandy or Gravelly Silt with Sand or Gravel                                 |
| SILTS AND<br>CLAYS<br>(Liquid Limit | Inorganic | PI > 7 or plots on or above "A" line | CL               | Lean Clay, Lean Clay with Sand or Gravel, Sandy or<br>Gravelly Lean Clay, Sandy or Gravelly Lean Clay with Sand<br>or Gravel       |
| less than 50)<br>Low<br>Plasticity  | Inorganic | PI between 4 and 7                   | CL-ML            | Silty Clay, Silty Clay with Sand or Gravel, Sandy or Gravelly Silty Clay, Sandy or Gravelly Silty Clay with Sand or Gravel         |
|                                     | Organic   | See footnote 3                       | OL               | Organic Silt (below "A" Line) or Organic Clay (on or above "A" Line) (1,2)                                                         |
| SILTS AND<br>CLAYS                  | Inorganic | PI plots below<br>"A" line           | МН               | Elastic Silt, Elastic Silt with Sand or Gravel, Sandy or Gravelly Elastic Silt, Sandy or Gravelly Elastic Silt with Sand or Gravel |
| (Liquid Limit<br>50 or<br>greater)  | Inorganic | PI plots on or above "A" line        | СН               | Fat Clay, Fat Clay with Sand or Gravel, Sandy or Gravelly Fat Clay, Sandy or Gravelly Fat Clay with Sand or Gravel                 |
| High<br>Plasticity                  | Organic   | See note 3 below                     | ОН               | Organic Silt (below "A" Line) or Organic Clay (on or above "A" Line) (1,2)                                                         |

- 1. If soil contains 15% to 29% plus No. 200 material, include "with sand" or "with gravel" to group name, whichever is predominant.
- 2. If soil contains ≥30% plus No. 200 material, include "sandy" or "gravelly" to group name, whichever is predominant. If soil contains ≥15% of sand or gravel sized material, add "with sand" or "with gravel" to group name.
- 3. Ratio of liquid limit of oven dried sample to liquid limit of not dried sample is less than 0.75.

| CONSISTENCY | UNCONFINED<br>SHEAR STRENGTH<br>(KSF) | STANDARD<br>PENETRATION<br>(BLOWS/FOOT) |
|-------------|---------------------------------------|-----------------------------------------|
| VERY SOFT   | < 0.25                                | < 2                                     |
| SOFT        | 0.25 – 0.5                            | 2 – 4                                   |
| FIRM        | 0.5 – 1.0                             | 5 – 8                                   |
| STIFF       | 1.0 – 2.0                             | 9 – 15                                  |
| VERY STIFF  | 2.0 – 4.0                             | 16 – 30                                 |
| HARD        | > 4.0                                 | > 30                                    |

| MOISTURE | CRITERIA                                                  |
|----------|-----------------------------------------------------------|
| Dry      | Absence of moisture, dusty, dry to the touch              |
| Moist    | Damp, but no visible water                                |
| Wet      | Visible free water, usually soil is below the water table |



#### **GEO-LOGIC ASSOCIATES**

#### **KEY TO SOIL CLASSIFICATION - COARSE GRAINED SOILS** (MORE THAN 50% IS LARGER THAN NO. 200 SIEVE SIZE)

| MAJOR DIVISIONS                |                                     | GROUP<br>SYMBOLS            | GROUP NAMES <sup>1</sup> |                                                                         |  |
|--------------------------------|-------------------------------------|-----------------------------|--------------------------|-------------------------------------------------------------------------|--|
|                                | Gravels<br>with less                | Cu ≥ 4 and<br>1 ≤ Cc ≤ 3    | GW                       | Well Graded Gravel, Well Graded Gravel with Sand                        |  |
|                                | than 5%<br>fines                    | Cu < 4 and/or<br>1 > Cc > 3 | GP                       | Poorly Graded Gravel, Poorly Graded Gravel with Sand                    |  |
| GRAVELS                        |                                     | ML or MH fines              | GW-GM                    | Well Graded Gravel with Silt, Well Graded Gravel with Silt and Sand     |  |
| (more than 50% of              | Gravels<br>with 5% to               | IVIL OF WITT HITES          | GP-GM                    | Poorly Graded Gravel with Silt, Poorly Graded Gravel with Silt and Sand |  |
| coarse<br>fraction is          | 12% fines                           | CL or CH fines              | GW-GC                    | Well Graded Gravel with Clay, Well Graded Gravel with Clay and Sand     |  |
| larger than No. 4 sieve        |                                     | OL OF OFFICES               | GP-GC                    | Poorly Graded Gravel with Clay, Poorly Graded Gravel with Clay and Sand |  |
| size)                          | Gravels                             | ML or MH fines              | GM                       | Silty Gravel, Silty Gravel with Sand                                    |  |
|                                | with more<br>than 12%<br>fines      | CL or CH fines              | GC                       | Clayey Gravel, Clayey Gravel with Sand                                  |  |
|                                |                                     | CL-ML fines                 | GC-GM                    | Silty Clayey Gravel; Silty, Clayey Gravel with Sand                     |  |
|                                | Sands with<br>less than<br>5% fines | Cu ≥ 6 and<br>1 ≤ Cc ≤ 3    | SW                       | Well Graded Sand, Well Graded Sand with Gravel                          |  |
|                                |                                     | Cu < 6 and/or<br>1 > Cc > 3 | SP                       | Poorly Graded Sand, Poorly Graded Sand with Gravel                      |  |
| SANDS                          | Sands with<br>5% to 12%<br>fines    | ML or MH fines              | SW-SM                    | Well Graded Sand with Silt, Well Graded Sand with Silt and Gravel       |  |
| (50% or<br>more of             |                                     | ands with                   | SP-SM                    | Poorly Graded Sand with Silt, Poorly Graded Sand with Silt and Gravel   |  |
| coarse<br>fraction is          |                                     |                             | SW-SC                    | Well Graded Sand with Clay, Well Graded Sand with Clay and Gravel       |  |
| smaller than No. 4 sieve       |                                     | CL of CITIIIles             | SP-SC                    | Poorly Graded Sand with Clay, Poorly Graded Sand with Clay and Gravel   |  |
| size)                          | Sands with                          | ML or MH fines              | SM                       | Silty Sand, Silty Sand with Gravel                                      |  |
|                                | more than<br>12% fines              | CL or CH fines              | SC                       | Clayey Sand, Clayey Sand with Gravel                                    |  |
|                                | 12 /0 111165                        | CL-ML fines                 | SC-SM                    | Silty, Clayey Sand; Silty, Clayey Sand with Gravel                      |  |
|                                |                                     |                             |                          |                                                                         |  |
| US STANDAI                     | RD SIEVES                           | 3 Inch                      | ¾ Inch                   | No. 4 No. 10 No. 40 No. 200  COARSE   MEDIUM   FINE                     |  |
| COARSE FINE COARSE MEDIUM FINE |                                     |                             |                          |                                                                         |  |

| RELATIVE DENSITY<br>(SANDS AND GRAVELS) | STANDARD<br>PENETRATION<br>(BLOWS/FOOT) |
|-----------------------------------------|-----------------------------------------|
| Very Loose                              | 0 - 4                                   |
| Loose                                   | 5 – 10                                  |
| Medium Dense                            | 11 – 30                                 |
| Dense                                   | 31 - 50                                 |
| Very Dense                              | 50+                                     |

**COBBLES & BOULDERS** 

1. Add "with sand" to group name if material contains 15% or greater of sand-sized particle. Add "with gravel" to group name if material contains 15% or greater of gravel-sized particle.

SILTS AND CLAYS

SANDS

| MOISTURE | CRITERIA                                                 |
|----------|----------------------------------------------------------|
| Dry      | Absence of moisture, dusty, dry to the touch             |
| Moist    | Damp, but no visible water                               |
| Wet      | Visible free water, usually soi is below the water table |

#### **GEO-LOGIC ASSOCIATES**

**GRAVELS** 

| DRILL RIG: Mobile B56, 140# downhole hammer & wire winch  LOGGED BY: CSS  HOLE DIAMETER: 8" hollow stem auger  B = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" OD SPT)  S = Slough in sample  GROUND WATER DEPTH: Final:  Final:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>DATE:</b> 12/5/2016                                                                  | LOG OF EXPLORATORY DRILL HOLE                                     |                     |                            |        |                   |                     |                         |                 |                  |                     | DH- 1               |                       |            |                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------|----------------------------|--------|-------------------|---------------------|-------------------------|-----------------|------------------|---------------------|---------------------|-----------------------|------------|----------------|--|--|
| ## HOLE DIAMETER: 8" hollow stem auger    D=3" CO, 25" ID Spile-spoon   2 Standard Penetrometer (2" OD SPT)   Spile  | PROJECT NAME:                                                                           | Morgan Hill Sewer Trunk Phase 1 PROJECT N                         |                     |                            |        |                   |                     |                         |                 | UMBI             | /IBER: 2016.009     |                     |                       |            |                |  |  |
| SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRILL RIG: Mobile                                                                       | Mobile B56, 140# downhole hammer & wire winch LOGGED B            |                     |                            |        |                   |                     |                         |                 | SED B            | Y:                  | CSS                 |                       |            |                |  |  |
| SAMPLER: 1-Standard Ponetrometer (2" OD SPT)  DESCRIPTION OF EARTH MATERIALS  DESCRIPTION OF E | HOLE DIAMETER: 8" hollow stem auger                                                     |                                                                   |                     |                            |        |                   |                     |                         | HOLE ELEVATION: |                  |                     |                     |                       |            |                |  |  |
| ALLUVIUM, SANDY LEAN CLAY: Dark brown (7.5YR 3/3), moist, hard; with mostly fine sand   CL   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLER:                                                                                | X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD | GROUND WATER DEPTH: |                            |        |                   |                     |                         |                 |                  |                     | <br>                |                       |            |                |  |  |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/3), moist, with mostly fine sand dense; mostly subangular sand; with fine to coarse gravel   CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/4), moist, very dense; fine to coarse gravel   CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/4), moist, very dense; fine to coarse gravel   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                                   | SOIL                | DEPTH<br>(ft)              | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID          | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf)   | FAILURE<br>STRAIN (%) | UNCONFINED | STRENGTH (psf) |  |  |
| CLAYEY SAND with GRAVEL: Dark growth brown (10YR 4/3), moist, herdium dense to dense; mostly fine sand   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAVEMENT (±3" AC, ±9                                                                    | " base)                                                           |                     |                            |        |                   |                     |                         |                 |                  |                     |                     |                       |            |                |  |  |
| moist, stiff to very stiff; with mostly fine sand    Soc   Soc   Doc   25   3.7   21   105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7.5YR 3/3), moist, hard; with mostly fine sand  LEAN CLAY with SAND: Brown (10YR 4/3), |                                                                   | CL                  | 2 3                        | D      | 23                |                     |                         | 25              | 13               | 10                  | 122                 |                       |            |                |  |  |
| brown (10YR 4/4), moist, medium dense to dense; mostly fine sand  CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse mostly subangular sand; with fine to coarse gravel  CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse mostly subangular sand; with fine to coarse gravel  13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                   | CL                  | - 4<br>- 5<br>- 6<br>- 7   |        | 25                |                     |                         |                 | 21               |                     | 105                 |                       |            |                |  |  |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse mostly subangular sand; with fine to coarse gravel  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | brown (10YR 4/4), moi                                                                   | st, medium dense to                                               | SC                  | 10                         | D      | 44                |                     | 45                      |                 | 15               |                     | 120                 |                       |            |                |  |  |
| BOTTOM OF HOLE = 20 Feet  No groundwater encountered  20   1   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (10YR 4/2), moist, very<br>mostly subangular san<br>gravel                              | dense; fine to coarse                                             | SC                  | 13<br>14<br>15<br>16<br>17 | 1      |                   | (no sa              | imple r                 | recove          | ry)              |                     |                     |                       |            |                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOTTOM OF                                                                               |                                                                   |                     | 20                         | ı      | 47                |                     |                         |                 |                  |                     |                     |                       |            |                |  |  |
| 1 *** <del>*=</del> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.044                                                                                   |                                                                   | ssoc                | IATE                       | s<br>S |                   | 1                   | 1                       | 1               | 1                | PA                  | <b>PAGE:</b> 1 of 1 |                       |            |                |  |  |

| DATE: 12/5/2016 LOG C                                                                                                                                                                                                        | LOG OF EXPLORATORY DRILL HOLE   |                   |             |                   |                     |                         |        |       |                     |                      | DH- 2                 |            |                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|------------|-------------------------------|--|--|
| PROJECT NAME: Morgan Hill Sewer Trur                                                                                                                                                                                         | Morgan Hill Sewer Trunk Phase 1 |                   |             |                   |                     |                         | PROJ   | ECT N | ER: 2016.0096       |                      |                       |            |                               |  |  |
| DRILL RIG: Mobile B56, 140# downhole ha                                                                                                                                                                                      | mme                             | r & w             | ire         | winch             | 1                   |                         | LOGG   | SED B | Y:                  | CSS                  |                       |            |                               |  |  |
| HOLE DIAMETER: 8" hollow stem auger                                                                                                                                                                                          |                                 |                   |             |                   |                     |                         | HOLE   | ELEV  | ATIO                | N:                   |                       |            |                               |  |  |
| D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" O  S = Slough in sample                                                                                                          | D SPT)                          | GROUND WA         |             |                   |                     |                         |        | PTH:  | Initia<br>Final     |                      |                       |            |                               |  |  |
| DESCRIPTION OF<br>EARTH MATERIALS                                                                                                                                                                                            |                                 | DEPTH<br>(ft)     | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |  |  |
| PAVEMENT (±4" AC, ±3" base)  ALLUVIUM, LEAN CLAY with SAND: Dark brown (7.5YR 3/3), moist, hard; with mostly fine sand                                                                                                       |                                 | 1<br>2<br>3       | S<br>D      | 26                | 4.5+<br>4.5+        |                         |        | 16    |                     | 112                  |                       |            |                               |  |  |
| SANDY LEAN CLAY: Brown (7.5YR 4/3), moist, hard; with mostly fine to medium sand                                                                                                                                             | CL                              | - 4<br>- 5<br>- 6 | S<br>D<br>D | 45                | 4.5<br>4.5+         |                         |        | 16    |                     | 118                  |                       |            |                               |  |  |
| WELL GRADED SAND with GRAVEL and CLAY to WELL GRADED GRAVEL with SAND and CLAY: Dark grayish brown (10YR 4/2), moist, medium dense; fine to coarse subangular to subrounded sand; fine to coarse gravel  dense to very dense |                                 |                   | S<br> <br>  | 26                |                     |                         |        |       |                     |                      |                       |            |                               |  |  |
|                                                                                                                                                                                                                              |                                 | 13<br>14<br>15    | S<br> <br>  | 51                |                     | . 11                    |        | 9     |                     |                      |                       |            |                               |  |  |
| very dense                                                                                                                                                                                                                   |                                 | 17<br>18<br>19    | S           | 63                |                     |                         |        |       |                     |                      |                       |            |                               |  |  |
| No groundwater encountered                                                                                                                                                                                                   |                                 | 20                | ı           |                   |                     |                         |        |       |                     |                      |                       |            |                               |  |  |
|                                                                                                                                                                                                                              | GEO-LOGIC ASSOCIATES            |                   |             |                   |                     |                         |        |       | PA                  | GE:                  | 1 o                   | f 1        |                               |  |  |

| <b>DATE:</b> 12/5/2016                                                                                                                                                                                                                                                                                                                     | LOG OF EXPLORATORY DRILL HOLE                                                                                              |              |                            |             |                   |                     |                         |        |        |                     | DH- 3       |           |            |            |                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|-------------|-------------------|---------------------|-------------------------|--------|--------|---------------------|-------------|-----------|------------|------------|----------------|--|
| PROJECT NAME:                                                                                                                                                                                                                                                                                                                              | Morgan Hill Sewer Trunk Phase 1 PROJECT                                                                                    |              |                            |             |                   |                     |                         | JECT N | UMB    | BER: 2016.0096      |             |           |            |            |                |  |
| DRILL RIG: Mobile                                                                                                                                                                                                                                                                                                                          | e B56, 140# downhole ha                                                                                                    | mme          | r & w                      | ire         | winch             | l                   |                         | LOG    | GED B  | Y:                  | CSS         |           |            |            |                |  |
| HOLE DIAMETER:                                                                                                                                                                                                                                                                                                                             | 8" hollow stem auger                                                                                                       |              |                            |             |                   |                     |                         | HOLI   | E ELEV | ATIO                | N:          |           |            |            |                |  |
| SAMDI FR:                                                                                                                                                                                                                                                                                                                                  | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample |              | GRO                        | DUND        | Initia<br>Final   |                     |                         |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            | IPTION OF<br>MATERIALS                                                                                                     | SOIL<br>TYPE | DEPTH<br>(ft)              | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER  | PLASTICITY<br>INDEX | DRY DENSITY | FAILURE   | STRAIN (%) | UNCONFINED | STRENGTH (psf) |  |
| PAVEMENT (±3" AC, ±1                                                                                                                                                                                                                                                                                                                       | .0" base)                                                                                                                  |              |                            |             |                   |                     |                         |        |        |                     |             | $\dagger$ | $\exists$  |            |                |  |
| FILL, POORLY GRADED SAND: Yellowish brown (10YR 5/6), moist, loose; fine sand  ALLUVIUM, LEAN CLAY with SAND: Brown (7.5YR 4/3), moist, very stiff; with mostly fine to medium sand  CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, medium dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel |                                                                                                                            | SP           | 2 3                        | S<br>D<br>D | 7                 |                     |                         |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | CL           | - 4<br>- 5<br>- 6<br>- 7   | S<br> <br>  | 20                |                     |                         |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | SC           | 10<br>11<br>12<br>13<br>14 | S           | 28                |                     | 13                      |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |              | 16<br>17<br>18             | S           | 40                |                     |                         |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            | F HOLE = 20 Feet<br>ater encountered                                                                                       |              | 20                         | I           |                   |                     |                         |        |        |                     |             |           |            |            |                |  |
|                                                                                                                                                                                                                                                                                                                                            | GEO-LOGIC AS                                                                                                               | ssoc         | IATES                      | S           |                   |                     |                         |        |        | P.                  | AGE:        | 1         | . of       | 1          |                |  |

| ALLUVIUM, SANDY LEAN CLAY: Dark brown (7.5YR 3/3), moist, hard; with mostly fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>DATE:</b> 12/5/2016  | 56, 140# downhole hammer & wire winch  LOGGED BY: CSS  ' hollow stem auger  #OLE ELEVATION: |                |               |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|----------------|---------------|--------|-------------------|---------------------|-------------------------|--------|----------|---------------------|-------------------|-----------------------|------------|-------------------------------|
| ## HOLE DIAMETER: 8" hollow stem auger    D = 3" CD, 29" ID Split-spoon   X = 24" CD, 2" CD, 2" ID Split-spoon   X = 24" CD, 2"  | PROJECT NAME:           | Morgan Hill Sewer Trunl                                                                     | k Pha          | se 1          |        |                   |                     |                         | PROJ   | ECT N    | IUMBI               | ER:               | 202                   | L6.00      | 96                            |
| SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRILL RIG: Mobile       | B56, 140# downhole ha                                                                       | mme            | r & w         | ire    | winch             | 1                   |                         | LOGO   | GED B    | <b>Y</b> :          | CSS               |                       |            |                               |
| SAMPLER:   x = 2xf * CD 2 * If * Spills appoint   S = Slough in sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOLE DIAMETER:          | 8" hollow stem auger                                                                        |                |               |        |                   |                     |                         | HOLE   | ELEV     | ATIO                | N:                |                       |            |                               |
| PAVEMENT (±6" AC, ±10" base)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLER:                | X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OE                           | SPT)           | 1             |        | GRO               | DUND                | WAT                     | ER DE  | PTH:     |                     |                   |                       |            |                               |
| ALLUVIUM, SANDY LEAN CLAY: Dark brown (7.5YR 3/3), moist, hard; with mostly fine sand   CL   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                                                             | SOIL           | DEPTH<br>(ft) | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER    | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, SANDY LEAN CLAY: Dark brown (7.5VR 3/3), moist, hard; with mostly fine sand   CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAVEMENT (±6" AC, ±10   | )" base)                                                                                    |                |               |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| (7.5YR 3/3), moist, hard; with mostly fine sand    2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                             |                | 11            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10/0 R 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  CLAYEY SAND with GRAVEL: Dark grayish brown (10/0 R 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  The state of th |                         |                                                                                             | stly fine sand |               |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| S   D   45   13   120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                                                             | , D 23 4.5+    |               |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                                                             |                | 5             |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  The substituting the substitution of  |                         |                                                                                             |                | 6             | D      | 45                |                     |                         |        | 13       |                     | 120               |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  The substituting the substitution of  |                         |                                                                                             |                | 7             |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  The state of |                         |                                                                                             |                | 8             |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             |                | 9             | S      | 50/6"             |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             |                | 10            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND with GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             |                | 11            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| CLAYEY SAND With GRAVEL: Dark grayish brown (10YR 4/2), moist, very dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                                                             | SC             | 12            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| coarse gravel  14   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (10YR 4/2), moist, very | dense; fine to coarse                                                                       |                | 13            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                       | ded sand; with fine to                                                                      |                | 14            | S      |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| medium dense to dense BOTTOM OF HOLE = 20 Feet No groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                             |                | 15            | I      | 68                |                     | 20                      |        |          |                     |                   |                       |            |                               |
| medium dense to dense BOTTOM OF HOLE = 20 Feet No groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                             |                | 16            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| medium dense to dense BOTTOM OF HOLE = 20 Feet No groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                             |                | 17            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| medium dense to dense  BOTTOM OF HOLE = 20 Feet  No groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                             |                | 18            |        |                   |                     |                         |        |          |                     |                   |                       |            |                               |
| No groundwater encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | medium dense to der     | ise                                                                                         |                | 19            | S      | 22                |                     |                         |        |          |                     |                   |                       |            |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOTTOM OF               | HOLE = 20 Feet                                                                              |                | 20            | I      | 32                |                     |                         |        |          |                     |                   |                       |            |                               |
| GEO-LOGIC ASSOCIATES PAGE: 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INO BIOUIIUWA           |                                                                                             | SSOC           | IATE          | <br>S  |                   | <u> </u>            | <u> </u>                | 1      | <u> </u> | P.A                 | \GE:              | 1 (                   | of 1       |                               |

| <b>DATE:</b> 12/6/2016                                             | LOG O                                                                                                                      | F EXF        | PLOR           | ΑT          | ORY I             | DRILL               | HOLE                    | •      |                  |                     |                      | DH                    | - 5        |                |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|----------------|
| PROJECT NAME:                                                      | Morgan Hill Sewer Trunl                                                                                                    | k Pha        | se 1           |             |                   |                     |                         | PROJ   | ECT N            | UMB                 | ER:                  | 201                   | 6.009      | )6             |
| DRILL RIG: Mobile                                                  | B40, 140# downhole ha                                                                                                      | mme          | r & w          | ire         | winch             | 1                   |                         | LOGG   | GED B            | Y:                  | CSS                  |                       |            |                |
| HOLE DIAMETER:                                                     | 8" hollow stem auger                                                                                                       |              |                |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                   |                       |            |                |
| SAMPLER:                                                           | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)         |                |             | GRO               | DUND                | WATE                    | ER DEI | PTH:             | Initia<br>Fina      |                      |                       |            |                |
|                                                                    | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY SAND: Very dark grayis moist, hard; with mostl | h brown (10YR 4/2),                                                                                                        | CL           | 1<br>2<br>3    | S<br>D<br>D | 11                | 4.5                 |                         |        | 19               |                     | 106                  |                       |            |                |
|                                                                    | AVEL: Dark grayish brown ium dense; fine to coarse ded sand; with fine to                                                  | SC           |                | S<br>D      | 39                |                     |                         |        | 10               |                     | 125                  |                       |            |                |
|                                                                    |                                                                                                                            |              | 9              | S<br>I<br>I | 18                |                     | 19                      |        |                  |                     |                      |                       |            |                |
|                                                                    |                                                                                                                            |              | 11             |             |                   |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                    |                                                                                                                            |              | 13             | S<br>I<br>I | 16                |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                    |                                                                                                                            |              | 15             |             |                   |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                    |                                                                                                                            |              | 17<br>18<br>19 | S           |                   |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                    | HOLE = 20 Feet                                                                                                             |              | 20             | 1<br>       | 27                |                     |                         | 0      |                  |                     |                      |                       |            |                |
| No groundwa                                                        | ter encountered                                                                                                            |              |                |             |                   |                     |                         |        |                  |                     |                      |                       |            | _              |
|                                                                    | GEO-LOGIC AS                                                                                                               | SSOC         | IATE           | S           |                   |                     |                         |        |                  | P/                  | AGE:                 | 1 0                   | of 1       |                |

| <b>DATE</b> : 12/6/2016                      | LOG O                                                                                                                      | F EXF        | المار،                    | ΑT              | ORY I             | DRILL               | HOL                     | E      |       |                     |                   | DH-                   | 6                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|-----------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                | Morgan Hill Sewer Trunk                                                                                                    | k Pha        | se 1                      |                 |                   |                     |                         | PROJ   | ECT N | UMB                 | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                            | e B40, 140# downhole hai                                                                                                   | mmei         | r & w                     | ire             | winch             | 1                   |                         | LOGO   | GED B | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                               | 8" hollow stem auger                                                                                                       |              |                           |                 |                   |                     |                         | HOLE   | ELEV  | ATIO                | ٧:                |                       |                                             |
| SAMPLER:                                     | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)       |                           |                 | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Final     |                   |                       |                                             |
|                                              | IPTION OF<br>MATERIALS                                                                                                     | SOIL<br>TYPE | DEPTH<br>(ft)             | SAMPLE          | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY<br>brown (10YR 3/2), moi |                                                                                                                            | CL           | ·····1·····<br>·····2···· | S<br>D<br>D     | 11                | 3                   |                         |        | 22    |                     | 104               |                       |                                             |
| LEAN CLAY: Dark brow                         | vn (7.5YR 3/4), moist, stiff                                                                                               | CL           | - 4<br>- 5<br>- 6<br>- 7  | S<br> <br>      | 12                |                     |                         |        |       |                     |                   |                       |                                             |
| Dark grayish brown (10                       | ID with GRAVEL and CLAY:  OYR 4/2), moist, medium subangular to subrounded rse gravel                                      | SP-<br>SC    | 10 11 12 13 14 15 16 17   | S 1 1           | 14                |                     |                         |        |       |                     |                   |                       |                                             |
|                                              | F HOLE = 20 Feet<br>ater encountered<br>GEO-LOGIC AS                                                                       | SSOC         | 18<br>19<br>20            | S<br> <br> <br> | 39                |                     |                         |        |       | P/                  | AGE:              | 1 01                  | f 1                                         |

| <b>DATE:</b> 12/5/2016                       | LOG O                                                                                                                      | F EXI     | 2LOR           | ΑT          | ORY I             | DRILL               | HOL                     | E      |        |                     |                      | DH-                   | 7                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|-------------------|---------------------|-------------------------|--------|--------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                | Morgan Hill Sewer Trunl                                                                                                    | k Pha     | se 1           |             |                   |                     |                         | PROJ   | ECT N  | UМВІ                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                            | B40, 140# downhole ha                                                                                                      | mme       | r & w          | ire         | winch             | 1                   |                         | LOGO   | GED BY | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                               | 8" hollow stem auger                                                                                                       |           |                |             |                   |                     |                         | HOLE   | ELEV   | ATIO                | <b>1</b> :           |                       |                                             |
| SAMDI FR:                                    | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | D SPT)    | •              |             | GRO               | DUND                | WAT                     | ER DE  | PTH:   | Initia<br>Final     |                      |                       |                                             |
|                                              | IPTION OF<br>MATERIALS                                                                                                     | SOIL      | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER  | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (bsf) |
| ALLUVIUM, FAT CLAY: very stiff               | : Black (10YR 2/1), moist,                                                                                                 | СН        | 12             | S           | 18                |                     |                         |        |        |                     |                      |                       |                                             |
| <br>                                         |                                                                                                                            | T         | 3<br>4         | D           | 10                | 2.25                |                         | 59     | 28     | 38                  | 92                   |                       |                                             |
| CLAYEY SAND with GR<br>to Dark grayish brown | with GRAVEL and CLAY to<br>RAVEL: Brown (10YR 4/3)<br>(10YR 3/2), moist, very<br>subangular to subrounded<br>ravel         | SC/<br>SC | 6 7            | S<br>D<br>D | 90/9"             |                     |                         |        | 10     |                     | 133                  |                       |                                             |
| medium dense                                 |                                                                                                                            |           | 10<br>11       | S<br> <br>  | 18                |                     | 12                      |        |        |                     |                      |                       |                                             |
| dense                                        |                                                                                                                            |           | 12<br>13<br>14 | S           | 20                |                     |                         |        |        |                     |                      |                       |                                             |
|                                              |                                                                                                                            |           | 15<br>16       | 1           | 39                |                     |                         |        |        |                     |                      |                       |                                             |
| wet, mostly subround                         | ded cand and gravel                                                                                                        |           | 17             | ς           |                   |                     |                         |        |        |                     |                      |                       |                                             |
| medium dense<br>BOTTOM OF                    | F HOLE = 20 Feet ater encountered                                                                                          |           | - 20           | S<br>1<br>1 | 13                |                     |                         |        |        |                     |                      |                       |                                             |
|                                              | GEO-LOGIC AS                                                                                                               | ssoc      | .IATE          | S           |                   |                     |                         |        |        | P.A                 | AGE:                 | 1 of                  | f 1                                         |

| DATE: 12/6/2016 LOG C                                                                                                                         | F EXI     | PLOR                     | ΑT              | ORY I             | DRILL               | HOLE                    | E        |          |                     |                      | DH-                   | 8                                            |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|-----------------|-------------------|---------------------|-------------------------|----------|----------|---------------------|----------------------|-----------------------|----------------------------------------------|----------------|
| PROJECT NAME: Morgan Hill Sewer Trur                                                                                                          | ık Pha    | ECT N                    | UMBI            | ER:               | 201                 | 6.00                    | 96       |          |                     |                      |                       |                                              |                |
| DRILL RIG: Mobile B40, 140# downhole ha                                                                                                       | amme      | r & w                    | ire             | winch             | 1                   |                         | LOGG     | SED B    | <b>Y</b> :          | CSS                  |                       |                                              |                |
| HOLE DIAMETER: 8" hollow stem auger                                                                                                           |           |                          |                 |                   |                     |                         | HOLE     | ELEV     | ATIO                | N:                   |                       |                                              |                |
| D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" O  S = Slough in sample                           | D SPT)    |                          |                 | GRO               | DUND                | WATI                    | ER DEI   | PTH:     | Initia<br>Final     |                      |                       |                                              |                |
| DESCRIPTION OF EARTH MATERIALS                                                                                                                | SOIL TYPE | DEPTH<br>(ft)            | SAMPLE          | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER    | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED                                   | STRENGTH (psf) |
| ALLUVIUM, FAT CLAY: Very dark grayish brown (10YR 4/2), moist, very stiff                                                                     | СН        | 1                        |                 |                   |                     |                         |          |          |                     |                      |                       |                                              |                |
|                                                                                                                                               |           | ····2····                | S<br>D<br>D     | 17                | 3.25<br>3.75        |                         |          | 21       |                     | 105                  |                       |                                              |                |
| CLAYEY SAND: Strong brown (7.5YR 4/6), moist, dense; fine to coarse subangular to subrounded sand                                             | SC        | - 4<br>- 5<br>- 6<br>- 7 | S<br>D          | 60                |                     |                         |          | 12       |                     | 121                  |                       |                                              |                |
| CLAYEY SAND with GRAVEL: Dark brown (10YR 3/3), moist, medium dense; fine to coarse subangular to subrounded sand; with fine to coarse gravel | SC        |                          | S               | 13                |                     | 14                      |          |          |                     |                      |                       |                                              |                |
|                                                                                                                                               |           | 14<br>15<br>16<br>17     | S<br>  I<br>  I | 18                |                     |                         |          |          |                     |                      |                       |                                              |                |
| BOTTOM OF HOLE = 20 Feet                                                                                                                      |           | 18<br>19<br>20           | S<br> <br>      | 24                |                     |                         |          |          |                     |                      |                       |                                              |                |
| No groundwater encountered  GEO-LOGIC A                                                                                                       | SSOC      |                          | ∟∟<br>S         |                   |                     | <u> </u>                | <u> </u> | <u> </u> | PΔ                  | l<br>\GE:            | 1 o                   | <u>                                     </u> |                |

| <b>DATE:</b> 12/7/2016                                                        | LOG OI                                                                                                             | F EXF        | PLOR/         | ΑT          | ORY I             | DRILL               | НО        | LE         |       |       |                     |                      | DH-                   | 9          |                               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|-------------------|---------------------|-----------|------------|-------|-------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                                 | Morgan Hill Sewer Trunk                                                                                            | k Pha        | se 1          |             |                   |                     |           | P          | ROJ   | ECT N | IUMBI               | ER:                  | 201                   | 6.00       | )96                           |
| DRILL RIG: Mobile E                                                           | B40, 140# downhole har                                                                                             | mmei         | r & w         | ire         | winch             | 1                   |           | L          | oge   | SED B | Y:                  | CSS                  |                       |            |                               |
| HOLE DIAMETER: 8                                                              | 8" hollow stem auger                                                                                               |              |               |             |                   |                     |           | Н          | IOLE  | ELEV  | 'ATIOI              | N:                   |                       |            |                               |
| SAMPLER: X                                                                    | D = 3" OD, 2½" ID Split-spoon  C = 2½" OD, 2" ID Split-spoon  = Standard Penetrometer (2" OD  S = Slough in sample | ) SPT)       |               |             | GRO               | DUND                | WA        | TER        | DEF   | PTH:  | Initia<br>Final     |                      |                       |            |                               |
|                                                                               | PTION OF<br>IATERIALS                                                                                              | SOIL<br>TYPE | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING | #200 SIEVE | LIMIT | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, CLAYEY SAN<br>3/4), moist, medium der                               | •                                                                                                                  | CI           | 11            | S           |                   |                     |           |            |       |       |                     |                      |                       |            |                               |
|                                                                               |                                                                                                                    |              | 33            | S<br>D<br>D | 28                |                     |           |            |       | 15    |                     | 117                  |                       |            |                               |
| CLAYEY SAND with GRA<br>3/4), moist, dense; fine s<br>subrounded sand; with f | _                                                                                                                  | SC           | 5 6           | S<br>D      | 64                |                     |           |            |       |       |                     |                      |                       |            |                               |
|                                                                               |                                                                                                                    |              | 7             | D           | -                 |                     |           |            |       | 9     |                     | 120                  |                       |            |                               |
|                                                                               |                                                                                                                    |              | 9             | S<br> <br>  | 45                |                     |           |            |       |       |                     |                      |                       | ••••••     |                               |
|                                                                               | 1                                                                                                                  |              | 11            |             |                   |                     |           |            |       |       |                     |                      |                       |            |                               |
|                                                                               |                                                                                                                    |              | 12<br>13      |             |                   |                     |           |            |       |       |                     |                      |                       |            |                               |
| dark yellowish brown (<br>dense                                               | (10YR 4/4), medium                                                                                                 |              | 14            | S<br> <br>  | 20                |                     | 12        |            |       |       |                     |                      |                       |            |                               |
| L                                                                             |                                                                                                                    |              | 16<br>17      |             |                   |                     |           |            |       |       |                     |                      |                       |            |                               |
| LEAN CLAY: Brown (10Y)<br>(7.5YR 5/6), moist, very                            | 'R 5/3) and strong brown<br>stiff                                                                                  | CL           | 18            |             |                   |                     |           |            |       |       |                     |                      |                       |            |                               |
|                                                                               | HOLE = 20 Feet<br>er encountered                                                                                   |              | 19<br>20      | S<br> <br>  | 19                |                     |           |            |       |       |                     |                      |                       |            |                               |
| J                                                                             | GEO-LOGIC AS                                                                                                       | SSOC         | IATE:         | <br>S       |                   |                     |           |            |       |       | P.A                 | AGE:                 | 1 of                  | <br>f 1    |                               |

| <b>DATE:</b> 12/7/2016 | LOG O                                                                                                                      | F EXF  | 2LOR                     | ΑT          | ORY I             | DRILL               | HOLI                    |        |                  |                     |                      | DH-                   | - 10       | ,                             |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:          | Morgan Hill Sewer Trun                                                                                                     | k Pha  | se 1                     |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.0        | 096                           |
| DRILL RIG: Mobile      | e B40, 140# downhole ha                                                                                                    | mme    | r & w                    | ire         | winch             | 1                   |                         | LOGO   | SED B            | <b>Y</b> :          | CSS                  |                       |            |                               |
| HOLE DIAMETER:         | 8" hollow stem auger                                                                                                       |        |                          |             |                   |                     |                         | HOLE   | ELEV             | OITA                | N:                   |                       |            |                               |
| SAMPLER:               | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | D SPT) |                          |             | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Final     |                      | <br>                  | _          |                               |
|                        | RIPTION OF<br>MATERIALS                                                                                                    | SOIL   | DEPTH<br>(ft)            | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
|                        | AY with SAND: Dark brown ry stiff; with fine to coarse                                                                     | CL     | 2                        | S<br>D<br>D | 21                | 2                   |                         |        | 16               |                     | 117                  |                       |            |                               |
| dry to moist, very den | RAVEL: Brown (7.5YR 5/3), nse; fine to coarse nded sand; with mostly                                                       | SC     | - 4<br>- 5<br>- 6<br>- 7 | S<br> <br>  | 58                |                     | 13                      |        |                  |                     |                      |                       |            |                               |
| dense, with fine to c  | oarse gravel                                                                                                               |        | 10                       | S<br> <br>  | 41                |                     | 21                      |        | 8                |                     |                      |                       |            |                               |
| dense to very dense    |                                                                                                                            |        | 12<br>13<br>14<br>15     | S<br>I<br>I | 50                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                        |                                                                                                                            |        | 16<br>17<br>18           |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
|                        | F HOLE = 20 Feet<br>vater encountered                                                                                      |        | 19<br>20                 | S<br> <br>  | 41                |                     |                         |        |                  |                     |                      |                       |            | <br>0                         |
| No groundwa            | GEO-LOGIC AS                                                                                                               | SSOC   | IATE:                    | ∟<br>S      |                   |                     | <u> </u>                |        | <u> </u>         | P.                  | AGE:                 | 10                    | of 2       |                               |

| <b>DATE:</b> 12/6/2016                                                                    | LOG O                                                                                                                      | F EXF        | 2LOR                     | ΑT          | ORY I             | DRILL               | HOL                     | E      |       |                     |                      | DH-                   | 11                                          |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                             | Morgan Hill Sewer Trunl                                                                                                    | k Pha        | se 1                     |             |                   |                     |                         | PROJ   | ECT N | UMB                 | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                                                                         | B40, 140# downhole ha                                                                                                      | mme          | r & w                    | ire         | winch             | 1                   |                         | LOGO   | GED B | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                                            | 8" hollow stem auger                                                                                                       |              |                          |             |                   |                     |                         | HOLE   | ELEV  | OITA                | ٧:                   |                       |                                             |
| SAMPLER:                                                                                  | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)       | •                        |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Fina      |                      |                       |                                             |
|                                                                                           | PTION OF<br>MATERIALS                                                                                                      | SOIL         | DEPTH<br>(ft)            | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY<br>(7.5YR 4/4), moist, hard                                           | <b>Y with SAND:</b> Brown d; with mostly fine sand                                                                         | CL           | 23                       | S<br>D<br>D | 21                | 4.5+<br>4.5+        |                         |        | 22    |                     | 100                  |                       |                                             |
| CLAYEY SAND with GRA<br>dry to moist, very dense<br>subangular to subround<br>fine gravel |                                                                                                                            | SC           | - 4<br>- 5<br>- 6<br>- 7 | S           | 50/6"             |                     |                         |        |       |                     |                      |                       |                                             |
| dense, with fine to co                                                                    | arse gravel                                                                                                                |              | 9 10                     | S<br>I<br>I | 49                |                     | 14                      |        |       |                     |                      |                       |                                             |
|                                                                                           |                                                                                                                            |              | 11<br>12<br>13<br>14     | S           | 31                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                           |                                                                                                                            |              | 15<br>16<br>17           | 1           |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                           |                                                                                                                            |              | 18                       | S           |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                           | HOLE = 20 Feet<br>ter encountered                                                                                          | <del> </del> | 20                       | ı           | 34                |                     |                         |        |       |                     | ·····                |                       |                                             |
|                                                                                           | GEO-LOGIC AS                                                                                                               | SSOC         | IATE                     | 5           |                   |                     |                         |        |       | P/                  | AGE:                 | 1 of                  | f 1                                         |

| <b>DATE:</b> 12/7/2016                            | LOG O                                                                                                                      | F EXF        | ،LOR             | ΑT          | ORY I             | DRILL               | HOL                     | E      |       |                                                  |                      | DH-                   | 12                                          |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------|-------------------|---------------------|-------------------------|--------|-------|--------------------------------------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                     | Morgan Hill Sewer Trunk                                                                                                    | k Pha        | se 1             |             |                   |                     |                         | PROJ   | ECT N | UMBI                                             | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile I                               | B40, 140# downhole hai                                                                                                     | mmei         | r & w            | ire         | winch             | 1                   |                         | LOGO   | GED B | Y:                                               | CSS                  |                       |                                             |
| HOLE DIAMETER: 8                                  | 8" hollow stem auger                                                                                                       |              |                  |             |                   |                     |                         | HOLE   | ELEV  | ATIO                                             | ۷:                   |                       |                                             |
| SAMPLER:                                          | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)       |                  |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Final                                  |                      |                       |                                             |
|                                                   | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft)    | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX                              | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, SANDY LEA<br>4/2), moist, very stiff; w |                                                                                                                            | CL           | 2 3              | S<br>D<br>D | 13                | 2.25<br>2.5         |                         |        | 16    |                                                  | 117                  |                       |                                             |
|                                                   | AVEL: Brown (7.5YR 4/3), fine to coarse subangular ith mostly fine gravel                                                  | SC           | 4<br>5<br>6<br>7 | S<br>I<br>I | 13                |                     |                         |        |       |                                                  |                      |                       |                                             |
|                                                   |                                                                                                                            |              | 9 10             | S<br>I<br>I | 21                |                     | 20                      |        |       |                                                  |                      |                       |                                             |
|                                                   |                                                                                                                            |              | 11<br>12<br>13   |             |                   |                     |                         |        |       |                                                  |                      |                       |                                             |
| dense, with fine to coa                           | arse gravel                                                                                                                |              | 15               | S<br> <br>  | 33                |                     |                         |        |       |                                                  |                      |                       |                                             |
|                                                   |                                                                                                                            |              | 16<br>17<br>18   |             |                   |                     |                         |        |       |                                                  |                      |                       |                                             |
|                                                   | HOLE = 20 Feet                                                                                                             |              | 19               | S<br> <br>  | 32                |                     |                         |        |       |                                                  |                      |                       |                                             |
| No groundwat                                      | ter encountered                                                                                                            |              |                  | Ш           |                   |                     |                         | Í      |       | <del>                                     </del> |                      |                       | <u> </u>                                    |
|                                                   | GEO-LOGIC AS                                                                                                               | SSOC         | IATE!            | 5           |                   |                     |                         |        |       | P.                                               | AGE:                 | 1 of                  | f <b>1</b>                                  |

| <b>DATE:</b> 12/7/2016                             | LOG O                                                                                                                      | F EXF  | PLOR.         | ΑT          | ORY               | DRILL               | HOL                     | E      |       |                     |                   | DH-                   | 13                                          |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                      | Morgan Hill Sewer Trun                                                                                                     | k Pha  | se 1          |             |                   |                     |                         | PROJ   | ECT N | UMB                 | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                                  | B40, 140# downhole ha                                                                                                      | mme    | r & w         | ire         | winch             | 1                   |                         | LOGO   | GED B | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                     | 8" hollow stem auger                                                                                                       |        |               |             |                   |                     |                         | HOLE   | ELEV  | ATIOI               | N:                |                       |                                             |
| SAMPLER:                                           | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | D SPT) |               |             | GRO               | DUND                | WAT                     | ER DEI | PTH:  | Initia<br>Final     |                   |                       |                                             |
|                                                    | PTION OF<br>MATERIALS                                                                                                      | SOIL   | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY moist, stiff to very stiff     |                                                                                                                            | CL     | 1             |             |                   |                     |                         |        |       |                     |                   |                       |                                             |
|                                                    |                                                                                                                            |        | 3             | S<br>D<br>D | 18                | 2                   |                         |        | 23    |                     | 103               |                       |                                             |
|                                                    |                                                                                                                            |        | 5             | S           |                   |                     |                         |        |       |                     |                   |                       |                                             |
| brown (7.5YR 4/4), ve                              | ry stiff                                                                                                                   |        | ······6·····  | D<br>D      | 71                | 4.5+<br>4.5+        |                         |        | 14    |                     | 116               | 3                     | 7480                                        |
|                                                    |                                                                                                                            |        | 89            | S           |                   |                     |                         |        |       |                     |                   |                       |                                             |
|                                                    |                                                                                                                            |        | 10            | 1           | 29                |                     |                         |        |       |                     |                   |                       |                                             |
| SANDY LEAN CLAY: Light 6/2) mottled with stron     | ht brownish gray (10YR<br>ng brown (7.5YR 4/6),                                                                            | CL     | - 12<br>- 13  |             |                   |                     |                         |        |       |                     |                   |                       |                                             |
| moist, stiff; with mostly                          | / fine to medium sand                                                                                                      |        | 14            | S<br>I<br>I | 18                |                     | 64                      |        | 17    |                     |                   |                       |                                             |
|                                                    |                                                                                                                            |        | 16            | ********    |                   |                     |                         |        |       |                     |                   |                       |                                             |
| LEAN CLAY: Gray (10YR<br>(7.5YR 4/6), moist, stiff | R 6/1) with strong brown                                                                                                   | CL     | 17            |             |                   |                     |                         |        |       |                     |                   |                       |                                             |
|                                                    | HOLE = 20 Feet<br>ter encountered                                                                                          |        | 19<br>20      | S<br>I<br>I | 15                |                     |                         |        |       |                     |                   |                       |                                             |
|                                                    | GEO-LOGIC AS                                                                                                               | ssoc   | IATE          | S           |                   |                     |                         |        |       | P/                  | AGE:              | 1 o                   | f 1                                         |

| <b>DATE:</b> 12/7/2016                                                         | LOG O                                                                                                                      | F EXF        | ²LOR                                         | ΑT          | ORY I             | ORILL               | HOL                     | E      |       |                     |                      | DH-                   | 14                                          |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                  | Morgan Hill Sewer Trunl                                                                                                    | k Pha        | se 1                                         |             |                   |                     |                         | PROJ   | ECT N | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                                                              | B40, 140# downhole ha                                                                                                      | mme          | r & w                                        | ire         | winch             | 1                   |                         | LOGG   | GED B | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                                 | 8" hollow stem auger                                                                                                       |              |                                              |             |                   |                     |                         | HOLE   | ELEV  | ATIO                | <b>V</b> :           |                       |                                             |
| SAMPLER:                                                                       | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)       |                                              |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Final     |                      | <br>                  |                                             |
|                                                                                | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft)                                | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, CLAYEY SA<br>(7.5YR 2.5/2), moist, m<br>to medium sand               | AND: Very dark brown<br>nedium dense; mostly fine                                                                          | SC           | 2 3                                          | S<br>D<br>D | 20                |                     |                         |        | 16    |                     | 115                  |                       |                                             |
| CLAYEY SAND with GR. 3/3), moist, medium de subangular to subround fine gravel |                                                                                                                            | SC           | - 4<br>- 5<br>- 6<br>- 7                     | S<br> <br>  | 19                |                     | 21                      |        | 10    |                     |                      |                       |                                             |
| SANDY LEAN CLAY: Bro<br>moist, very stiff; with m                              |                                                                                                                            | CL           | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | S           | 51                |                     |                         |        |       |                     |                      |                       |                                             |
| brown (7.5YR 4/3), m                                                           |                                                                                                                            |              | 19                                           | S           | 22                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                | HOLE = 20 Feet<br>Iter encountered                                                                                         |              | 20                                           | l           |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                | GEO-LOGIC AS                                                                                                               | ssoc         | .IATE                                        | S           |                   |                     |                         |        |       | P.A                 | AGE:                 | 1 of                  | f 1                                         |

| <b>DATE:</b> 12/7/2016                                                                             | LOG O                                                                                                                      | F EXF  | PLOR                     | ΑТ          | ORY I             | DRILL               | HOLE                    | Ē      |                  |                     |                   | DH-                   | - 15       |                               |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                                                      | Morgan Hill Sewer Trun                                                                                                     | k Pha  | se 1                     |             |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:               | 201                   | 6.00       | 096                           |
| DRILL RIG: Mobile                                                                                  | B40, 140# downhole ha                                                                                                      | mme    | r & w                    | ire         | winch             | 1                   |                         | LOGO   | SED B            | Y:                  | CSS               |                       |            |                               |
| HOLE DIAMETER:                                                                                     | 8" hollow stem auger                                                                                                       |        |                          |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                |                       |            |                               |
| SAMPLER:                                                                                           | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT) | 1                        |             | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Final     |                   |                       |            |                               |
|                                                                                                    | PTION OF<br>MATERIALS                                                                                                      | SOIL   | DEPTH<br>(ft)            | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY<br>(7.5YR 3/3), moist, hard<br>medium sand                                     | with SAND: Dark brown d; with mostly fine to                                                                               | CL     | 23                       | S<br>D<br>D | 16                | 4.5+<br>4.5+        |                         |        | 9                |                     | 92                |                       |            |                               |
| CLAYEY SAND with GR.<br>to strong brown (7.5YR<br>very dense; fine to coa<br>subrounded sand; with | rse subangular to                                                                                                          | SC     | - 4<br>- 5<br>- 6<br>- 7 | S<br>D      | 78                |                     |                         |        | 8                |                     | 111               |                       |            |                               |
| medium dense                                                                                       |                                                                                                                            |        | 9<br>10<br>11            | S<br> <br>  | 21                |                     | 21                      |        | 10               |                     |                   |                       |            |                               |
| dense, with fine to co                                                                             | arse gravel                                                                                                                |        | 12<br>13<br>14           | S           |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
| dense, with fine to co                                                                             | arse graver                                                                                                                |        | 15<br>16<br>17           | <u> </u>    | 33                |                     |                         |        |                  |                     |                   |                       |            |                               |
| very dense<br>BOTTOM OF                                                                            | HOLE = 20 Feet                                                                                                             |        | 18<br>19                 | S<br> <br>  | 56                |                     |                         |        |                  |                     |                   |                       |            |                               |
|                                                                                                    | ter encountered                                                                                                            |        | 20                       |             |                   |                     |                         |        |                  | •                   |                   |                       | <u> </u>   |                               |
|                                                                                                    | GEO-LOGIC AS                                                                                                               | ssoc   | IATE                     | S           |                   |                     |                         |        |                  | PA                  | GE:               | 1 o                   | f 1        |                               |

| <b>DATE:</b> 12/7/2016                          | LOG O                                                                                                                      | F EXF     | PLOR                 | ΑТ                          | ORY I             | DRILL               | HOLE                    |        |                  |                     |                   | DH-                   | 16                                          |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                   | Morgan Hill Sewer Trun                                                                                                     | k Pha     | se 1                 |                             |                   |                     |                         | PROJ   | ECT N            | UMB                 | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                               | B40, 140# downhole ha                                                                                                      | mme       | r & w                | ire                         | winch             | 1                   |                         | LOGG   | SED B            | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                  | 8" hollow stem auger                                                                                                       |           |                      |                             |                   |                     |                         | HOLE   | ELEV             | ATION               | ۷:                |                       |                                             |
| SAMPLER:                                        | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT)    |                      |                             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                   |                       |                                             |
|                                                 | PTION OF<br>MATERIALS                                                                                                      | SOIL      | DEPTH<br>(ft)        | SAMPLE                      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, FAT CLAY v<br>4/4), moist, hard; with | with SAND: Brown (7.5YR mostly fine sand                                                                                   | СН        | 1                    |                             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                 |                                                                                                                            |           | 2                    | S<br>D<br>D                 | 17                | 4.5                 |                         | 55     | 20               | 33                  | 106               | 6                     | 13530                                       |
|                                                 |                                                                                                                            |           | 56                   | S<br>D 78 4.5+<br>D 4.5+ 15 |                   |                     |                         |        | 107              |                     |                   |                       |                                             |
|                                                 | ——————————————————————————————————————                                                                                     | SC        |                      | S<br> <br>                  | 24                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                 | L with SAND and CLAY: ist, dense; fine to coarse rse subangular to                                                         | GW-<br>GC | 12<br>13<br>14<br>15 | S -                         | 33                |                     | 10                      |        |                  |                     |                   |                       |                                             |
|                                                 |                                                                                                                            |           | 16<br>17             |                             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| medium dense<br>BOTTOM OF                       | HOLE = 20 Feet                                                                                                             |           | 19                   | S<br> -<br> -               | 11                |                     |                         |        |                  |                     | ,                 |                       |                                             |
|                                                 | ter encountered                                                                                                            |           | 20                   |                             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                 | GEO-LOGIC AS                                                                                                               | ssoc      | IATES                | S                           |                   |                     |                         |        |                  | PA                  | GE:               | 1 of                  | 1                                           |

| <b>DATE:</b> 12/7/2016                         | LOG O                                                                                                                      | F EXF  | PLOR/         | ΑT          | ORY I             | DRILL               | HOL                     | E      |       |                     |                      | DH-                   | 17                                          |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                  | Morgan Hill Sewer Trun                                                                                                     | k Pha  | se 1          |             |                   |                     |                         | PROJ   | ECT N | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                              | e B40, 140# downhole ha                                                                                                    | mme    | r & w         | ire         | winch             | 1                   |                         | LOGO   | GED B | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                                 | 8" hollow stem auger                                                                                                       |        |               |             |                   |                     |                         | HOLE   | ELEV  | OITA                | N:                   |                       |                                             |
| SAMPLER:                                       | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | D SPT) |               |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Final     |                      |                       |                                             |
|                                                | IPTION OF<br>MATERIALS                                                                                                     | SOIL   | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM, LEAN CLAY<br>(7.5YR 4/4), moist, har | Y with SAND: Brown rd; with mostly fine sand                                                                               | CL     | 22            | S           |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                |                                                                                                                            |        | 34            | D           | 16                | 4.5+                |                         |        | 16    |                     | 116                  |                       |                                             |
| WELL GRADED SAND                               | · — — — — — — · with GRAVEL and CLAY:                                                                                      | SW-    | 6             | S<br> <br>  | 44                |                     |                         |        |       |                     |                      |                       |                                             |
| Brown (7.5YR 4/4), mo                          | pist, dense; fine to coarse nded sand; with fine to                                                                        | SC     | 8             |             |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                |                                                                                                                            |        | 10            | S<br> <br>  | 33                |                     | 12                      |        |       |                     |                      |                       |                                             |
|                                                |                                                                                                                            |        | 11            |             |                   |                     |                         |        |       |                     |                      |                       |                                             |
| medium dense                                   |                                                                                                                            |        | 13<br>14      | S           | 16                | /                   |                         |        |       |                     |                      |                       |                                             |
|                                                |                                                                                                                            |        | 15<br>16      | I           |                   | (NO Sa              | impie                   | recove | ry)   |                     |                      |                       |                                             |
|                                                |                                                                                                                            |        | 17<br>18      | c           |                   |                     |                         |        |       |                     |                      |                       |                                             |
|                                                | F HOLE = 20 Feet<br>ater encountered                                                                                       |        | 19<br>- 20    | S<br>1<br>1 | 33                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                | GEO-LOGIC AS                                                                                                               | ssoc   | IATE:         | S           |                   |                     |                         |        |       | P.A                 | AGE:                 | 1 of                  | f 1                                         |

| <b>DATE:</b> 9/1/2017                                                             | LOG O                                                                                                                      | F EXF     | PLOR           | ΑT          | ORY I             | DRILL               | HOLE                    | Ē      |                  |                     |                      | DH-                   | 1A         |                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                                     | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ase 2          |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | R:                   | 201                   | 6.00       | 96                            |
| DRILL RIG: Mobile                                                                 | B56, 140# downhole han                                                                                                     | nmer      | with           | wir         | e win             | ch                  |                         | LOGO   | GED B            | Y:                  | CSS                  |                       |            |                               |
| HOLE DIAMETER:                                                                    | 8" hollow stem augers                                                                                                      |           |                |             |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                   | ±219                  |            |                               |
| SAMPLER:                                                                          | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)      |                |             | GRO               | DUND                | WATI                    | R DE   | РТН:             | Initia<br>Final     |                      |                       |            |                               |
|                                                                                   | IPTION OF<br>MATERIALS                                                                                                     | SOIL      | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±3" AC ov                                                               | er ±9" baserock)                                                                                                           |           | 1              |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
|                                                                                   | Y with SAND: Dark brown y stiff to hard; with fine                                                                         | CL        | 23             | S<br>D<br>D | 17                | >4.5                |                         |        | 16               |                     | 115                  |                       |            |                               |
|                                                                                   |                                                                                                                            |           | 5<br>6         | S<br>D      | 36                | 4.5<br>>4.5         |                         |        | 14               |                     | 121                  |                       |            |                               |
| CLAYEY SAND with GR<br>brown (10YR 4/3 to 3/<br>coarse, subangular to s<br>gravel | 3); moist; dense; fine to                                                                                                  | SC/<br>GC | 9 10           | S<br>I<br>I | 31                |                     | 15                      |        |                  |                     |                      |                       |            |                               |
|                                                                                   |                                                                                                                            |           | 12<br>13<br>14 | S<br>I<br>I | 41                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                                                                                   |                                                                                                                            |           | 16<br>17<br>18 | 0           |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
|                                                                                   | HOLE = 20 Feet                                                                                                             |           | 19<br>20       | S<br>I<br>I | 34                |                     |                         |        |                  |                     |                      |                       |            |                               |
| No Groundwa                                                                       | ater Encountered  GEO-LOGIC AS                                                                                             | SSOC      | IATE           | <br>S       |                   |                     |                         |        |                  | PA                  | GE:                  | 1 o                   | 1<br>f 1   |                               |

| <b>DATE:</b> 8/28/2017                                                                            | LOG O                                                                                                                      | F EXF        | PLOR           | ΑT               | ORY               | DRILL               | HOLE                    | Ē      |                  |                     |                      | DH-                   | 2A                                          |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                                     | Morgan Hill Sewer Trun                                                                                                     | k, Pha       | se 2           |                  |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                                                                               | 356, 140# downhole han                                                                                                     | nmer         | with           | wir              | e win             | ch                  |                         | LOGO   | SED B            | <b>Y</b> :          | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                                                    | 8" hollow stem augers                                                                                                      |              |                |                  |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                   | ±216                  |                                             |
| SAMPLER:                                                                                          | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | O SPT)       |                |                  | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      | <br>24.5 ft           |                                             |
|                                                                                                   | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft)  | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±4" AC ov                                                                               | er 8"+ Baserock)                                                                                                           |              |                |                  |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| FILL: CLAYEY SAND: Br<br>4/3 to 3/3); moist; med<br>coarse, angular to sub                        |                                                                                                                            | SC           | 22             | S<br>D<br>D      | 15                | >4.5                |                         |        | 14               |                     | 115                  |                       |                                             |
| LEAN CLAY with SAND<br>moist; very stiff; with f                                                  |                                                                                                                            |              | 4              |                  |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                                   | Dark yellowish brown (10YR 4/4); Sim dense; mostly fine sand                                                               |              |                |                  | 37                |                     |                         |        | 13               |                     | 114                  |                       |                                             |
|                                                                                                   |                                                                                                                            |              | 78             | D                |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| clayey sand with GR<br>brown (10YR 4/3 to 3/<br>to dense; fine to coarse<br>subrounded sand and f | 3); moist; medium dense<br>e, subangular to                                                                                | SC           | 910            | S<br>D<br>D      | 46                |                     |                         |        | 8                |                     | 122                  |                       |                                             |
|                                                                                                   |                                                                                                                            |              | 11             |                  |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                                   |                                                                                                                            |              | 13<br>14       | S                |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                                   |                                                                                                                            | 15   31      |                |                  |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| CLAYEY SAND: Brown medium dense; fine to                                                          |                                                                                                                            | SC           | 16<br>17<br>18 |                  |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| direct shear test, see                                                                            | Appendix B                                                                                                                 |              | 19<br>20       | S<br>D<br>D<br>S | 24                |                     | 47                      | 34     | 18               | 18                  | 109                  |                       |                                             |
|                                                                                                   | GEO-LOGIC AS                                                                                                               | SOCI         |                |                  |                   |                     |                         |        |                  | PA                  | GE:                  | 1 of                  | 3                                           |

| <b>DATE:</b> 8/28/2017                           | LOG O                                                                                                                      | F EXF  | PLOR           | ΑТ          | ORY I             | DRILL               | HOLE                    | <u> </u> |                                         |                     |                   | DH-                   | 2A                                          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------|-------------------|---------------------|-------------------------|----------|-----------------------------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                    | Morgan Hill Sewer Trun                                                                                                     | k, Pha | se 2           |             |                   |                     |                         | PROJ     | ECT N                                   | UМВІ                | R:                | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                                | B56, 140# downhole han                                                                                                     | nmer   | with           | wir         | e win             | ch                  |                         | LOGG     | SED B                                   | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                   | 8" hollow stem augers                                                                                                      |        |                |             |                   |                     |                         | HOLE     | ELEV                                    | ATION               | ۷:                | ±216                  |                                             |
| SAMPLER:                                         | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT) |                |             | GRO               | DUND                | WATI                    | R DEI    | РТН:                                    | Initia<br>Final     |                   | <br>24.5              | ft                                          |
|                                                  | IPTION OF<br>MATERIALS                                                                                                     | SOIL   | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT                        | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND: continu                             | ed                                                                                                                         | SC     |                | 1           | 31                |                     |                         |          |                                         |                     |                   |                       |                                             |
|                                                  | : Mottled brown (10YR<br>(7.5YR 4/6); moist; very<br>oxide                                                                 | CL     | 21             | S<br>D<br>D | 15                | 3.5<br>3.0          | 83                      | 38       | 28                                      | 20                  | 97                | 12                    | 3124                                        |
|                                                  |                                                                                                                            |        | 23             | I<br>I<br>S | 14                | 1.5                 | 74                      |          |                                         |                     |                   |                       |                                             |
| FAT CLAY: Brown (10Y                             | 'R 4/3); moist; stiff to hard                                                                                              | СН     | 25             | D<br>D<br>S | 19                | 3.75                | 92                      | 50       | 28                                      | 27                  | 96                | 3.0                   | 4348                                        |
| LEAN CLAY with SANE<br>stiff to very stiff; with | <b>D:</b> Brown (10YR 5/3); moist; fine sand                                                                               | CL     | 26             | 1<br>1<br>S | 14                |                     |                         |          |                                         |                     |                   |                       |                                             |
| by 28.5 ft, mottled grand strong brown (7.5      | ayish brown (10YR 5/2)<br>5YR 4/6)                                                                                         |        | 28<br>29       | D<br>S<br>I | 28                | >4.5<br>>4.5        | 84                      | 40       | 23                                      | 22                  | 104               | 8                     | 5688                                        |
|                                                  |                                                                                                                            |        | 30             | Ι           | 14                | ·····               |                         |          |                                         |                     |                   |                       |                                             |
|                                                  |                                                                                                                            |        | -31            |             |                   |                     | ·····                   |          |                                         | ·····               |                   |                       |                                             |
| to brown (10YR 4/2 to                            | RAVEL: Dark grayish brown a 4/3); wet; medium dense; gular to subrounded sand les (based on choppy                         | SC     | 32<br>33<br>34 | S           |                   |                     |                         |          |                                         |                     |                   |                       |                                             |
| drilling and poor samp                           |                                                                                                                            |        | 35             | D<br>D      | 33                |                     |                         |          | 13                                      |                     | 129               |                       |                                             |
|                                                  |                                                                                                                            |        | 36             |             |                   |                     |                         |          |                                         |                     |                   |                       |                                             |
|                                                  |                                                                                                                            |        | 37             |             |                   |                     |                         |          |                                         |                     |                   |                       |                                             |
| very dense                                       |                                                                                                                            |        | 38             | 1           | 50/4"             | (no sa              | mple r                  | ecover   | ed)                                     |                     |                   |                       |                                             |
|                                                  |                                                                                                                            |        | 40             |             |                   |                     |                         |          | *************************************** |                     |                   |                       |                                             |
|                                                  | GEO-LOGIC AS                                                                                                               | SSOC   |                | <br>S       |                   |                     |                         |          |                                         | PΑ                  | GE:               | 2 of                  | 3                                           |

| <b>DATE:</b> 8/28/2017 | LOG C                                                                                                                     | )F EXF                                  | PLOR          | ΑT     | ORY               | DRILL               | HOLI                    | <b>.</b> |                  |                     |                   | DH-                   | 2A                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|--------|-------------------|---------------------|-------------------------|----------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:          | Morgan Hill Sewer Trur                                                                                                    | nk, Pha                                 | se 2          |        |                   |                     |                         | PROJ     | ECT N            | UMBI                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile      | B56, 140# downhole har                                                                                                    | mmer                                    | with          | wir    | e win             | ch                  |                         | LOGO     | SED B            | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:         | 8" hollow stem augers                                                                                                     |                                         |               |        |                   |                     |                         | HOLE     | ELEV             | OITA                | ۷:                | ±216                  | )                                           |
| SAMPLER:               | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" O<br>S = Slough in sample | DD SPT)                                 |               |        | GRO               | DUND                | WATI                    | ER DE    | РТН:             | Initia<br>Final     |                   | <br>24.5              | ft                                          |
|                        | RIPTION OF<br>MATERIALS                                                                                                   | SOIL                                    | DEPTH<br>(ft) | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND with GR    | AVEL: continued                                                                                                           | SC                                      | -41           | S<br>S | 64                |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 42            |        |                   |                     |                         | ····     |                  |                     |                   |                       | •                                           |
|                        |                                                                                                                           |                                         | 43            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 44            | S      | 50/6"             |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 45            |        |                   |                     |                         |          | •                |                     |                   |                       | •                                           |
|                        |                                                                                                                           | *************************************** | 46            |        |                   |                     |                         | ·····    |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           | *************************************** | 47            |        |                   |                     | •                       |          |                  |                     |                   |                       | •                                           |
|                        |                                                                                                                           | ***********                             | 48            | S      |                   |                     |                         | 0        |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 49<br>50      | l<br>I | 85/<br>10"        |                     |                         |          |                  |                     |                   |                       |                                             |
| воттом о               | F HOLE = 50 Feet                                                                                                          |                                         | 51            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 52            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 53            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 54            |        |                   |                     |                         |          |                  |                     |                   | -                     |                                             |
|                        |                                                                                                                           |                                         | 55            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 56            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 57            |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | -58           |        |                   |                     |                         |          |                  |                     |                   |                       |                                             |
|                        |                                                                                                                           |                                         | 59            |        |                   |                     |                         |          |                  |                     |                   | -                     |                                             |
|                        | GEO-LOGIC A                                                                                                               | SSOC                                    |               | <br>S  |                   | <u> </u>            | <u> </u>                | <u> </u> |                  | P/                  | L<br>AGE:         | 3 o                   | <u>l</u><br>f 3                             |

| <b>DATE</b> : 8/28/2017                                                                       | LOG O                                                                                                              | F EXF  | PLOR                 | ΑТ              | ORY I             | ORILL               | HOLI                    |        |                  |                     |                      | DH-                   | 3A                                          |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|----------------------|-----------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                                 | Morgan Hill Sewer Trunl                                                                                            | k, Pha | se 2                 |                 |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B                                                                           | 56, 140# downhole ham                                                                                              | nmer   | with                 | wir             | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER: 8                                                                              | B" hollow stem augers                                                                                              |        |                      |                 |                   |                     |                         | HOLE   | ELEV             | ATION               | ۷:                   | ±215                  |                                             |
| SAMPLER:                                                                                      | = 3" OD, 2½" ID Split-spoon<br>= 2½" OD, 2" ID Split-spoon<br>= Standard Penetrometer (2" OD<br>= Slough in sample | SPT)   |                      |                 | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Final     |                      | ±26 ft                |                                             |
| EARTH M                                                                                       | TION OF<br>ATERIALS                                                                                                | SOIL   | DEPTH<br>(ft)        | SAMPLE          | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (pcf) |
| PAVEMENT (±4" AC over                                                                         | r ±8" Baserock)                                                                                                    |        |                      |                 |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| FILL: CLAYEY SAND with<br>grayish brown (10YR 3/2<br>fine to coarse, subangula<br>fine gravel | 2); moist; medium dense;                                                                                           | SC     | 23                   | S<br>D<br>D     | 17                |                     |                         |        | 11               |                     | 126                  |                       |                                             |
| ALLUVIUM: LEAN CLAY:<br>moist; very stiff to hard                                             | Brown (10YR 4/3);                                                                                                  | CL     | 5<br>6<br>7          | S<br>D          | 37                | 2.75<br>>4.5        |                         |        | 17               |                     | 113                  |                       |                                             |
| SANDY LEAN CLAY: Brow<br>very stiff; with mostly fir                                          |                                                                                                                    | CL     | 9 10                 | S<br> <br> <br> | 24                |                     |                         |        |                  |                     |                      |                       |                                             |
| CLAYEY SAND: Mottled I<br>strong brown (7.5YR 4/6<br>mostly fine sand                         | brown (10YR 5/3) and<br>); moist; medium dense;                                                                    | SC     | 11<br>12<br>13<br>14 | S<br>D<br>D     | 26                |                     |                         |        | 17               |                     | 116                  |                       |                                             |
| CLAYEY SAND with GRA'<br>4/3); moist; medium der<br>with fine gravel                          |                                                                                                                    | SC     | 16<br>17<br>18       | 0               |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| direct shear test, see Ap                                                                     | ppendix B                                                                                                          |        | 19<br>20             | S<br>D<br>D     | 25                |                     | 31                      | 33     | 15               | 17                  | 117                  |                       |                                             |
|                                                                                               | GEO-LOGIC AS                                                                                                       | SSOC   | IATE                 | s               |                   |                     |                         | •      | •                | PA                  | GE:                  | 1 o                   | f 3                                         |

| <b>DATE:</b> 8/28/2017                               | LOG O                                                                                                                      | F EXF     | PLOR           | ΑT               | ORY I             | DRILL               | HOLE                    | <b>.</b> |                  |                     |                   | DH-                   | 3A                                          |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------|-------------------|---------------------|-------------------------|----------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                        | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | se 2           |                  |                   |                     |                         | PROJ     | ECT N            | UМВІ                | ER:               | 2016                  | 5.0096                                      |
| DRILL RIG: Mobile                                    | B56, 140# downhole han                                                                                                     | nmer      | with           | wir              | e win             | ch                  |                         | LOGG     | ED B             | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                       | 8" hollow stem augers                                                                                                      |           |                |                  |                   |                     |                         | HOLE     | ELEV             | ATIO                | N:                | ±215                  |                                             |
| SAMPLER:                                             | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Of<br>S = Slough in sample | O SPT)    |                |                  | GRO               | DUND                | WATI                    | ER DEI   | РТН:             | Initia<br>Final     |                   | ±26 ft                | t                                           |
|                                                      | IPTION OF<br>MATERIALS                                                                                                     | SOIL      | DEPTH<br>(ft)  | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| <b>CLAYEY SAND with GR</b> . ±4" thick clay at appro |                                                                                                                            | SC        | 21             | S<br> <br> -     | 22                |                     | 29                      |          |                  |                     |                   |                       |                                             |
| Brown to dark grayish                                | with GRAVEL and CLAY:<br>brown (10YR 4/3 to 4/2);<br>to dense; fine to coarse,<br>ded sand; fine gravel                    | SW-<br>SC | 22<br>23<br>24 | S<br>D<br>S<br>I | 53<br>29          |                     | 8                       | 39       | 10               | 24                  | 115               | 2                     | 561                                         |
| Brown to dark grayish                                | D with GRAVEL and SILT:<br>brown (10YR 4/3 to 4/2);<br>ne to coarse, subangular                                            | SP-<br>SM | 25<br>26       | S<br>D<br>D      | 76                |                     | 6                       | 21       | 10               | 3                   | 122               |                       |                                             |
| to subrounded sand; fi                               | _                                                                                                                          |           | 27<br>28       | I<br>S<br>D      | 42                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                      |                                                                                                                            |           | 29<br>30       | D<br>S<br>I      | 57<br>32          |                     |                         |          | 14               |                     | 123               |                       |                                             |
| <b>CLAYEY SAND:</b> Dark br dense; fine sand         | own (10YR 3/3); wet;                                                                                                       | SC        | 31             |                  |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| with SAND: Dark brow                                 | AVEL to CLAYEY GRAVEL<br>n (10YR 3/3); wet; dense;<br>ular to subrounded sand<br>es                                        | SC/<br>GC | 33             | S                | 39                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                      |                                                                                                                            |           | 35<br>36       | I                |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| grayish brown (10YR 3                                | CLAYEY SAND: Very dark                                                                                                     | CL/<br>SC | 37<br>38       |                  |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| to subrounded sand                                   | e to medium, subangular                                                                                                    |           | 39<br>40       | S<br>S<br>I      | 44                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                      | GEO-LOGIC A                                                                                                                | SSOC      | IATE           | <br>S            |                   |                     | I                       | <u> </u> | <u>I</u>         | P.A                 | I<br>AGE:         | 2 of                  | · 3                                         |

| <b>DATE</b> : 8/28/2017 | LOG O                                                                                                                      | F EXF        | PLOR          | ΑT           | ORY       | D   | RILL                | HOL                     | E              |              |                     |                      | DH                    | - 3A                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------|-----------|-----|---------------------|-------------------------|----------------|--------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:           | Morgan Hill Sewer Trun                                                                                                     | k, Pha       | se 2          |              |           |     |                     |                         | PRO            | ECT N        | IUMB                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B     | 56, 140# downhole han                                                                                                      | nmer         | with          | wir          | e wi      | ncł | า                   |                         | LOG            | GED B        | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:          | 8" hollow stem augers                                                                                                      |              |               |              |           |     |                     |                         | HOLI           | ELEV         | ΆΤΙΟΙ               | ۷:                   | ±215                  | 5                                           |
| SAMPLER:                | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | ) SPT)       |               |              | GF        | ROL | JND                 | WAT                     | ER DE          | PTH:         | Initia<br>Fina      |                      | ±26<br>26 ft          |                                             |
|                         | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft) | SAMPLE       | BLOWS PER |     | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID         | WATER        | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| SANDY LEAN CLAY to C    | LAYEY SAND: continued                                                                                                      | CL/<br>SC    | -41           |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 42            | 0            |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | -43<br>-44    | S            |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 45            | <br>         | 37        | (!  | no sa               | mple                    | <br>recove<br> | <br>red)<br> |                     |                      |                       |                                             |
| _                       | Brown (10YR 5/3)<br>own (7.5YR 4/6); moist to                                                                              | CL           | 46            |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
| wet; hard               |                                                                                                                            |              | 47<br>48      |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
| CLAYEY SAND: Dark bro   | <br>own (10YR 3/3); wet; very                                                                                              | SC           | 49            | S            | 75,       |     |                     |                         |                | -            |                     |                      |                       |                                             |
| dense                   | (20 5, 5), 5, 15.,                                                                                                         |              | 50            | I            | 10'       |     |                     |                         |                | -            |                     |                      |                       |                                             |
| BOTTOM OF               | HOLE = 50 Feet                                                                                                             |              | 51<br>52      |              |           |     |                     |                         | -              | -            |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | - 53          | o            |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 54<br>55      |              |           |     |                     |                         |                | -            |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 56            |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 57            |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 58<br>Ea      |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         |                                                                                                                            |              | 59<br>60      |              |           |     |                     |                         |                |              |                     |                      |                       |                                             |
|                         | GEO-LOGIC AS                                                                                                               | SSOC         | IATE          | <u></u><br>S |           |     |                     |                         | 1              |              | P/                  | AGE:                 | 3 0                   | of 3                                        |

| <b>DATE:</b> 8/28/2017                  | LOG O                                                                                                                      | F EXI  | PLOR           | ΑT          | ORY I             | DRILL               | HOLE                    | •      |                  |                     |                   | DH                    | - 4/       | 4                             |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                           | Morgan Hill Sewer Trun                                                                                                     | k, Pha | ase 2          |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | R:                | 20                    | 16.0       | 096                           |
| DRILL RIG: Mobile                       | B56, 140# downhole han                                                                                                     | nmer   | with           | wir         | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS               |                       |            |                               |
| HOLE DIAMETER:                          | 8" hollow stem augers                                                                                                      |        |                |             |                   |                     |                         | HOLE   | ELEV             | ATION               | <b>N</b> :        | ±21                   | 3½         |                               |
| SAMPLER:                                | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT) |                |             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                   |                       |            |                               |
|                                         | IPTION OF<br>MATERIALS                                                                                                     | SOIL   | DEPTH (ft)     | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STEAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±4" AC ov                     | ver ±8" baserock)                                                                                                          |        |                |             |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
| ALLUVIUM: LEAN CLA<br>moist; very stiff | <b>Y:</b> Dark brown (10YR 3/3);                                                                                           | CL     | 2 3            | S<br>D<br>D | 12                | 2.75                |                         |        | 15               |                     | 105               |                       |            |                               |
| 3/3); moist; medium o                   | RAVEL: Dark brown (7.5YR dense; fine to coarse, nded sand; with fine gravel                                                | SC     |                | S<br>D<br>D | 32                |                     |                         |        | 13               |                     | 121               |                       |            |                               |
|                                         |                                                                                                                            | GC     | 10<br>11<br>12 | D           |                   |                     |                         |        | 7                |                     | 122               |                       |            |                               |
|                                         | <b>SAND:</b> Very dark grayish ist; medium dense; fine to subrounded sand and                                              |        | 13<br>14<br>15 | S<br>D<br>D | 38                |                     |                         |        | 8                |                     | 105               |                       |            |                               |
|                                         |                                                                                                                            |        | 16             |             |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
| dense                                   |                                                                                                                            |        | 18<br>19       | S           | 40                |                     |                         |        |                  |                     |                   |                       |            |                               |
|                                         | F HOLE = 20 Feet<br>ater Encountered                                                                                       |        | 20             | <u> </u>    |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
|                                         | GEO-LOGIC AS                                                                                                               | ssoc   | IATE           | S           |                   |                     |                         |        |                  | PΑ                  | GE:               | 1                     | of 1       |                               |

| <b>DATE:</b> 9/1/2017                                                                             | LOG O                                                                                                                      | F EXF     | PLOR             | ΑТ          | ORY I             | ORILL               | HOLI                    | Ē                                     |                  |                     |                   | DH                    | - 5A       |                               |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------|-------------------|---------------------|-------------------------|---------------------------------------|------------------|---------------------|-------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                                                     | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ise 2            |             |                   |                     |                         | PROJ                                  | ECT N            | UMBI                | ER:               | 201                   | 6.00       | 096                           |
| DRILL RIG: Mobile I                                                                               | B56, 140# downhole han                                                                                                     | nmer      | with             | wir         | e win             | ch                  |                         | LOGO                                  | SED B            | <b>Y</b> :          | CSS               |                       |            |                               |
| HOLE DIAMETER:                                                                                    | 8" hollow stem augers                                                                                                      |           |                  |             |                   |                     |                         | HOLE                                  | ELEV             | ATIO                | <b>N</b> :        | ±211                  | 1½         |                               |
| SAMPLER:                                                                                          | D = 3" OD, 2%" ID Split-spoon<br>X = 2%" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)      |                  |             | GRO               | DUND                | WATI                    | ER DE                                 | РТН:             | Initia<br>Final     |                   |                       |            |                               |
|                                                                                                   | IPTION OF<br>MATERIALS                                                                                                     | SOIL TYPE | DEPTH<br>(ft)    | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID                                | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| ALLUVIUM: CLAYEY SA<br>Brown (7.5YR 4/3); mo<br>sand/very stiff to hard<br>medium, angular to sul | clay; mostly fine to                                                                                                       | SC/<br>CL | 1<br>2<br>3      | S<br>D<br>D | 27                | >4.5<br>>4.5        |                         |                                       | 11               |                     | 107               |                       |            |                               |
|                                                                                                   |                                                                                                                            | SC/<br>GC | 5<br>6<br>7<br>8 | S<br>D      | 17                | (no sa              | mple i                  | ecove                                 | (y)              |                     |                   |                       |            |                               |
|                                                                                                   |                                                                                                                            |           | 9<br>10<br>11    | S<br>I      | 25                |                     |                         |                                       |                  |                     |                   |                       |            |                               |
|                                                                                                   |                                                                                                                            |           | 12<br>13<br>14   | S           | 33                |                     |                         |                                       |                  |                     |                   |                       |            |                               |
| medium dense to den                                                                               | se                                                                                                                         |           | 15<br>16         | I           |                   |                     |                         |                                       |                  |                     |                   |                       |            |                               |
|                                                                                                   |                                                                                                                            |           | 17<br>18         |             |                   |                     |                         |                                       |                  |                     |                   |                       |            |                               |
| POTTON CO                                                                                         | : UOLE = 20 Fe = 1                                                                                                         |           | 19               | S<br>I      | 35                |                     |                         | · · · · · · · · · · · · · · · · · · · |                  |                     |                   |                       |            |                               |
|                                                                                                   | HOLE = 20 Feet<br>ater Encountered                                                                                         |           | 20               | <u> </u>    |                   |                     |                         |                                       |                  |                     |                   |                       |            |                               |
|                                                                                                   | GEO-LOGIC AS                                                                                                               | SSOC      | IATES            | <u> </u>    | <u> </u>          |                     |                         | 1                                     | 1                | PA                  | AGE:              | 1 c                   | f 1        |                               |

| <b>DATE:</b> 8/29/2017                         | LOG O                                                                                                                      | F EXI     | PLOR          | ΑT            | ORY I             | DRILL               | HOLI                    |          |                  |                     |                   | DH-                   | 6A                                          |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|---------------|---------------|-------------------|---------------------|-------------------------|----------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                  | Morgan Hill Sewer Trunl                                                                                                    | k, Pha    | ase 2         |               |                   |                     |                         | PROJ     | ECT N            | UМВІ                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                            | 356, 140# downhole ham                                                                                                     | nmer      | with          | wir           | e win             | ch                  |                         | LOGG     | ED B             | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                 | 8" hollow stem augers                                                                                                      |           |               |               |                   |                     |                         | HOLE     | ELEV             | ATIO                | N:                | ±210                  |                                             |
| SAMPLER:                                       | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)      |               |               | GRO               | DUND                | WATI                    | ER DEI   | PTH:             | Initia<br>Final     |                   | 25 ft<br>             |                                             |
|                                                | PTION OF<br>MATERIALS                                                                                                      | SOIL TYPE | DEPTH<br>(ft) | SAMPLE        | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±7" AC over                          | er ±8" baserock)                                                                                                           |           | _             |               |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| ALLUVIUM: LEAN CLAY<br>4/3); moist; hard; with | with SAND: Brown (10YR fine sand                                                                                           | CL        | 2 3           | S<br>D<br>D   | 20                | >4.5<br>>4.5        |                         |          |                  |                     |                   |                       |                                             |
|                                                |                                                                                                                            |           | 5<br>6        | S<br>D        | 93/<br>8"         | >4.5                |                         |          | 15               |                     | 115               |                       |                                             |
|                                                | own (7.5YR 3/4); moist;<br>ubangular to subrounded                                                                         | SC        | 9 10          | S<br>I<br>I   | 38                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                |                                                                                                                            |           | 111213        | 0             |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| medium dense                                   |                                                                                                                            |           | 14            | S<br>I<br>I   | 26                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                |                                                                                                                            |           | 16            |               |                   |                     |                         |          |                  |                     |                   |                       |                                             |
| very dense                                     |                                                                                                                            |           | 19            | S<br>I<br>I   | 55                |                     |                         |          |                  |                     |                   |                       |                                             |
|                                                | GEO-LOGIC AS                                                                                                               | SSOC      | IATE          | <u>∟</u><br>S | 1                 | <u> </u>            | <u> </u>                | <u> </u> |                  | PA                  | I<br>AGE:         | 1 o                   | <br>f 3                                     |

| <b>DATE:</b> 8/29/2017                            | LOG O                                                                                                                      | F EXF                                   | PLOR          | ΑТ          | ORY               | DRILL               | HOLI                    | E      |                  |                     |                                       | DH-                   | 6A         |                               |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|---------------------------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                     | Morgan Hill Sewer Trun                                                                                                     | k, Pha                                  | ase 2         |             |                   |                     |                         | PROJ   | ECT N            | имві                | ER:                                   | 201                   | 6.0        | 096                           |
| DRILL RIG: Mobile                                 | B56, 140# downhole han                                                                                                     | nmer                                    | with          | wir         | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS                                   |                       |            |                               |
| HOLE DIAMETER:                                    | 8" hollow stem augers                                                                                                      |                                         |               |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                                    | ±210                  | )          |                               |
| SAMPLER:                                          | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)                                    |               |             | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Final     |                                       | 25 ft<br>             |            |                               |
|                                                   | IPTION OF<br>MATERIALS                                                                                                     | SOIL TYPE                               | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf)                     | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND: continu                              | ed                                                                                                                         | SC                                      |               |             |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 21            |             |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 23            |             |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 24            | S           |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
| by 25', brown (10YR 4                             | 4/3), wet                                                                                                                  |                                         | 25            | <br>        | 30                |                     |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 26            |             |                   |                     |                         |        |                  |                     | o                                     |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 27            |             |                   |                     |                         |        | •                |                     |                                       |                       |            | •••••                         |
| POORLY GRADED SAN                                 | <br>D with CLAY to CLAYEY                                                                                                  | SP-                                     | 28            |             |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
| <b>SAND:</b> Dark grayish bromedium dense; mostly |                                                                                                                            | SC/<br>SC                               | 29            |             |                   |                     |                         | ·      |                  |                     | · · · · · · · · · · · · · · · · · · · |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 30            |             |                   |                     |                         |        |                  |                     |                                       |                       |            |                               |
| direct shear test, see A                          | Appendix B                                                                                                                 | SC                                      | 31            | S<br>D<br>D | 15                |                     | 18                      |        |                  |                     |                                       |                       |            |                               |
| LEAN CLAY with SAND                               | : Brown (10YR 5/3); moist                                                                                                  | CL                                      | 33            | S           |                   | 1.0                 | 10                      |        |                  |                     |                                       |                       |            |                               |
| to wet; stiff; with most                          | ly fine sand                                                                                                               | S*************************************  | 34            | I<br>S      | 15                | 2.25                | 84                      | 28     |                  | 13                  |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 35            | D<br>D      | 26                | 1.5<br>2.0          |                         |        |                  |                     | o                                     |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 36            | S           |                   | 2.0                 |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | 37            | I<br>S      | 14                |                     |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   |                                                                                                                            |                                         | - 38          | D<br>D      | 23                | 1.25<br>2.75        | 77                      | 38     | 21               | 21                  | 106                                   | 8                     | 2          | 908                           |
| approx. 4" thick claye                            | y sand lens                                                                                                                |                                         | - 39          | S           |                   | 1.25                | , ,                     |        |                  |                     | 100                                   |                       |            |                               |
|                                                   |                                                                                                                            | *************************************** | 40            | l i         | 13                | 1.5                 |                         |        |                  |                     |                                       |                       |            |                               |
|                                                   | GEO-LOGIC AS                                                                                                               | SSOC                                    | IATE          | S           |                   |                     |                         |        |                  | PA                  | GE:                                   | 2 o                   | f 3        |                               |

| <b>DATE</b> : 8/29/2017                               | LOG O                                                                                                                    | F EXF      | PLOR           | ΑT          | ORY I             | DRILL               | HOLE                    | •      |                  |                     |                   | DH-                   | 6A                                          |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                         | Morgan Hill Sewer Trunk                                                                                                  | k, Pha     | ise 2          |             |                   |                     |                         | PROJ   | ECT N            | имві                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B                                   | 56, 140# downhole ham                                                                                                    | mer        | with           | wir         | e win             | ch                  |                         | LOGG   | ED B             | <b>Y</b> :          | CSS               |                       |                                             |
| HOLE DIAMETER:                                        | 8" hollow stem augers                                                                                                    |            |                |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                | ±210                  |                                             |
| SAMPLER:                                              | D = 3" OD, 2½" ID Split-spoon<br>K = 2½" OD, 2" ID Split-spoon<br>= Standard Penetrometer (2" OD<br>5 = Slough in sample | SPT)       |                |             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                   | 25 ft<br>             |                                             |
|                                                       | PTION OF<br>IATERIALS                                                                                                    | SOIL TYPE  | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| LEAN CLAY: Brown (10Y stiff                           | R 5/3); moist to wet; very                                                                                               | CL         | 41             | S<br>D<br>D | 34                | 3.5<br>4.0          | 97                      | 43     | 21               | 26                  | 108               | 6                     | 4852                                        |
|                                                       |                                                                                                                          |            | 42<br>43       | S<br>I<br>I | 17                | 3.5<br>3            |                         |        |                  |                     |                   |                       |                                             |
|                                                       |                                                                                                                          |            | 44<br>45       |             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                       |                                                                                                                          |            | 46<br>47       | S<br>D<br>D | 30                | 3                   |                         |        | 28               |                     | 97                |                       |                                             |
|                                                       |                                                                                                                          |            | 48             |             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| by 48.5', sandy silty cla                             | у                                                                                                                        |            | 49<br>50       | S<br>D<br>D | 21                | 4<br>4.5            |                         |        | 22               |                     | 106               |                       |                                             |
|                                                       |                                                                                                                          |            | -51            |             |                   |                     |                         |        |                  |                     |                   | ······                |                                             |
| <b>CLAYEY to SILTY SAND:</b> wet; very dense; fine sa | Dark brown (10YR 4/3);<br>nd                                                                                             | SC/<br>SM  | 52<br>53       |             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                       |                                                                                                                          |            | 54             | S<br>I<br>I | 58                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                       | YEL with CLAY and SAND: \ YR 4/2); wet; very dense; ar to subrounded sand                                                | GP-\<br>GC | 55<br>56<br>57 |             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| LEAN CLAY: Mottled light 6/2) and strong brown (      |                                                                                                                          | CL \       | 58             |             |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| воттом ог н                                           | OLE = 59.2 Feet                                                                                                          |            | - 59<br>- 60   | D           | 50/2"             |                     |                         |        | 12               |                     | 103               |                       |                                             |
|                                                       | GEO-LOGIC AS                                                                                                             | 200        |                | <br>c       |                   |                     | ]                       |        |                  | D.4                 | GE:               | 3 of                  | . 2                                         |

| <b>DATE:</b> 8/29/2017                                           | LOG O                                                                                                                      | F EXI        | PLOR          | ΑT                                           | ORY I             | DRILL               | HOLE                    |        |                  |                     |                      | DH-                   | 7A                                          |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------------------------------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                    | Morgan Hill Sewer Trun                                                                                                     | k, Pha       | se 2          |                                              |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                                              | B56, 140# downhole han                                                                                                     | nmer         | with          | wir                                          | e win             | ch                  |                         | LOGO   | SED B            | <b>Y</b> :          | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                   | 8" hollow stem augers                                                                                                      |              |               |                                              |                   |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                   | ±210                  |                                             |
| SAMPLER:                                                         | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Ol<br>S = Slough in sample | D SPT)       |               |                                              | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      | ±31 ft<br>            |                                             |
|                                                                  | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft) | SAMPLE                                       | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±4" AC ov                                              | er ±8" baserock)                                                                                                           |              |               |                                              |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| ALLUVIUM: SANDY LEA<br>4/3); moist; very stiff; v                | -                                                                                                                          | CL           | 2 3           | S<br>D<br>D                                  | 8                 | 3.5<br>2.5          |                         |        | 16               |                     | 115                  |                       |                                             |
| CLAYEY SAND: Dark br<br>medium dense; fine to<br>subrounded sand | own (7.5YR 3/4); moist;<br>coarse, subangular to                                                                           | SC           | 56            | S<br>D                                       | 25                |                     |                         |        | 10               |                     | 118                  |                       |                                             |
|                                                                  |                                                                                                                            |              | 89            | S                                            |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                  |                                                                                                                            |              | 10<br>11      | D                                            | 28                |                     |                         |        | 8                |                     | 117                  |                       |                                             |
|                                                                  |                                                                                                                            |              | 12<br>13      |                                              |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| dense                                                            |                                                                                                                            |              | 14<br>15      | S<br> <br> <br>                              | 36                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                  |                                                                                                                            |              | 16<br>17      |                                              |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                  |                                                                                                                            |              | 18<br>19      | S<br>I                                       | 49                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                  | GEO-LOGIC A                                                                                                                | ssoc         | 20            | <u>                                     </u> |                   |                     |                         |        |                  | P.A                 | GE:                  | 1 of                  | 3                                           |

| <b>DATE:</b> 8/29/2017                        | LOG                                                                                                                        | OF EX                                   | PLOR          | ΑТ          | ORY               | DRILL               | HOLE                    |                                         |       |                     |                   | DH-                                     | 7A                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|-------------|-------------------|---------------------|-------------------------|-----------------------------------------|-------|---------------------|-------------------|-----------------------------------------|---------------------------------------------|
| PROJECT NAME:                                 | Morgan Hill Sewer Trun                                                                                                     | k, Pha                                  | ase 2         |             |                   |                     |                         | PROJ                                    | ECT N | IUMB                | ER:               | 201                                     | 6.0096                                      |
| DRILL RIG: Mobile                             | B56, 140# downhole han                                                                                                     | nmer                                    | with          | wir         | e wir             | ich                 |                         | LOGO                                    | GED B | <b>Y</b> :          | CSS               |                                         |                                             |
| HOLE DIAMETER:                                | 8" hollow stem augers                                                                                                      |                                         |               |             |                   |                     |                         | HOLE                                    | ELEV  | OITA                | N:                | ±210                                    |                                             |
| SAMPLER:                                      | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | D SPT)                                  |               |             | GR                | OUND                | WAT                     | ER DE                                   | PTH:  | Initia<br>Fina      |                   | ±31 ft<br>                              |                                             |
|                                               | IPTION OF<br>MATERIALS                                                                                                     | SOIL                                    | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID                                  | WATER | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%)                   | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND: continu                          | ied                                                                                                                        | SC                                      |               |             |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 21            |             |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 22            |             |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 23            | c           |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 24            | S<br>I      | 25                |                     |                         |                                         |       |                     |                   |                                         |                                             |
| LEAN CLAY with SAND<br>5/2) mottled with stro |                                                                                                                            | CL                                      | 25<br>26      |             |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
| moist; stiff; with mostl                      | = :                                                                                                                        | *************************************** | 27            |             |                   |                     |                         |                                         |       |                     |                   | *************************************** |                                             |
| water on sampler                              |                                                                                                                            | ************                            | 28            |             |                   |                     |                         |                                         |       |                     |                   |                                         |                                             |
| water on sampler                              |                                                                                                                            |                                         | 29            | S<br>D      | 20                | 2.75                |                         |                                         |       |                     |                   |                                         | ***************************************     |
|                                               |                                                                                                                            |                                         | 30            | D           |                   | 2.75                |                         |                                         | 15    |                     | 110               | 14                                      | 3067                                        |
| wet                                           |                                                                                                                            |                                         | 31            | S           |                   | 1.5                 |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 32<br>33      | D<br>D<br>S | 22                | 2.5                 | 74                      | 25                                      | 18    | 12                  | 114               | 11                                      | 3628                                        |
|                                               |                                                                                                                            |                                         | 34            | <br>        | 17                |                     |                         | • • • • • • • • • • • • • • • • • • • • |       |                     |                   |                                         | ***************************************     |
| some thin sandy lense                         | es                                                                                                                         |                                         | 35            | S<br>D<br>D | 19                | 2.5                 |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 36            | S<br> <br>  | 12                |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               |                                                                                                                            |                                         | 37            | S<br>D<br>D | 22                | 2.75<br>1.5         | 78                      | 31                                      | 22    | 15                  | 106               | 15                                      | 2592                                        |
|                                               |                                                                                                                            |                                         | 39            | S           | 16                | 1.5                 | , ,                     |                                         |       |                     | 100               |                                         |                                             |
|                                               |                                                                                                                            |                                         | 40            | I           | 10                |                     |                         |                                         |       |                     |                   |                                         |                                             |
|                                               | GEO-LOGIC AS                                                                                                               | ssoc                                    | IATE          | S           | _                 |                     |                         |                                         |       | P/                  | AGE:              | 2 of                                    | 3                                           |

| CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>DATE:</b> 8/29/2017 | LOG                                                               | OF EX  | PLOR          | ΑТ                                    | ORY D             | RILL I              | HOLE                    |        |                  |                     |                   | DH-                   | 7A                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------|--------|---------------|---------------------------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| HOLE DIAMETER: 8" hollow stem augers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROJECT NAME:          | Morgan Hill Sewer Trun                                            | k, Pha | ase 2         |                                       |                   |                     |                         | PROJ   | ECT N            | UMBE                | ER:               | 201                   | 6.0096                                      |
| SAMPLER: x = 24° CD, 21° Di Spilt-spoon x = 24° CD, 21° Di Spilt-spoon le Standard Penetrometer (2° DO SPT) S = Slough in sample  DESCRIPTION OF EARTH MATERIALS  CL  41 D  46 1.75  42 1  16 46 2  47 47 48 5  50 D  41 1.75  51 D  42 D  53 D  44 1.75  55 D  44 1.75  56 D  57 D  58 D  59 D  50 D  41 1.75  42 D  43 D  44 D  45 D  46 D  46 D  47 D  48 | DRILL RIG: Mobile      | B56, 140# downhole han                                            | nmer   | with          | wir                                   | e win             | ch                  |                         | LOGO   | GED B            | Y:                  | CSS               |                       |                                             |
| SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOLE DIAMETER:         | 8" hollow stem augers                                             |        |               |                                       |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                | ±210                  |                                             |
| CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPLER:               | X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Ol | D SPT) |               |                                       | GRO               | DUND                | WATI                    | R DE   | PTH:             |                     |                   |                       |                                             |
| 41 D 46 1.75 22 107  42 S 1 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                   | SOIL   | DEPTH<br>(ft) | SAMPLE                                | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEAN CLAY with SAND:   | : continued                                                       | CL     |               |                                       | 46                | 1.75                |                         |        |                  |                     |                   |                       |                                             |
| 43   1   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                   |        |               | D                                     | 40                | 1.5                 |                         |        | 22               |                     | 107               |                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                   |        |               | <br>                                  | 16                |                     |                         | ,      |                  |                     | ¢                 |                       |                                             |
| 45 D 37  46 47  48 48  49 S D 41 1.75  50 D 41 2.25  23 105  51 52 53  53 S 54 S S 59 S 59 S 59 S 59 S 59 S 59 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                                   |        | 44            | S                                     |                   | 3.0                 |                         |        | 21               |                     | 110               |                       |                                             |
| 47 - 48 - 49 S D A1 1.75 D |                        |                                                                   |        | 45            |                                       | 37                |                     |                         |        |                  |                     |                   |                       |                                             |
| 48   49   S   D   41   1.75   2.25   23   105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                                                   |        | 46            |                                       |                   |                     |                         |        |                  |                     | ····              |                       |                                             |
| 49   S   D   41   1.75   2.25   23   105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                   |        | 47            |                                       |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                                                   |        |               | s                                     |                   |                     |                         |        |                  |                     | 0                 |                       |                                             |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                   |        |               | D                                     | 41                |                     |                         |        | 23               |                     | 105               |                       |                                             |
| 52   53   54   S   29   55   1   29   56   57   58   59   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                   |        |               |                                       |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| 54 S 29 55 55 58 59 S 59 S 60 BOTTOM OF HOLE = 60 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                   |        |               | ·····                                 |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| 55   29   55   29   56   57   58   59   5   26   60   BOTTOM OF HOLE = 60 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                   |        | - 53          | · · · · · · · · · · · · · · · · · · · |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| 55   56   57   58   59   5   26   60   BOTTOM OF HOLE = 60 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                   |        | 54            | S                                     | 20                |                     |                         |        |                  |                     |                   |                       |                                             |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                   |        | 55            | <u>I</u>                              |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| 58   59   S   1   26     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                   |        |               |                                       |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| BOTTOM OF HOLE = 60 Feet   59   1   26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                   |        |               |                                       |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| BOTTOM OF HOLE = 60 Feet 60 Feet 60 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                   |        |               | s                                     |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| BOTTOM OF HOLE = 60 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                   |        |               | <br>                                  | 26                |                     |                         |        |                  |                     |                   |                       |                                             |
| GEO-LOGIC ASSOCIATES PAGE: 3 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BOTTOM OF              |                                                                   | ssoc   |               | <br>S                                 |                   |                     |                         |        |                  | ΡΔ                  | <br>\GE:          | 3 o                   | <u> </u><br>f 3                             |

| <b>DATE</b> : 9/1/2017                                                                  | LOG O                                                                                                                      | F EXF  | PLOR                     | ΑT          | ORY               | DRILL               | HOLE                    |        |                  |                     |                      | DH-                   | 8A                                          |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                           | Morgan Hill Sewer Trun                                                                                                     | k, Pha | se 2                     |             |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                                                                     | 356, 140# downhole han                                                                                                     | nmer   | with                     | wir         | e win             | ch                  |                         | LOGG   | SED B            | <b>/</b> :          | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                                          | 8" hollow stem augers                                                                                                      |        |                          |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                   | ±207                  |                                             |
| SAMPLER:                                                                                | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | SPT)   |                          |             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      |                       |                                             |
|                                                                                         | PTION OF<br>MATERIALS                                                                                                      | SOIL   | DEPTH<br>(ft)            | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±6" AC over                                                                   | er ±7" baserock)                                                                                                           |        |                          |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| ALLUVIUM: CLAYEY GR<br>dark gray (7.5YR 3/1); n<br>angular to subrounded<br>coarse sand | noist; medium dense; fine                                                                                                  | GC     | 23                       | S<br>D<br>D | 22                |                     |                         |        | 13               |                     | 111                  |                       |                                             |
| LEAN CLAY with SAND:<br>moist; very stiff to hard                                       | Dark brown (7.5YR 3/3);<br>l; with fine sand                                                                               | CL     | ·····4····<br>·····5···· | S           |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                         |                                                                                                                            |        | ·····6····               | D<br>D      | 38                | >4.5<br>>4.5        |                         |        | 15               |                     | 102                  |                       |                                             |
|                                                                                         |                                                                                                                            |        | 9                        | S           | 25                | 4.5<br>>4.5         |                         |        |                  |                     | 107                  |                       |                                             |
|                                                                                         |                                                                                                                            |        | 10<br>11                 | υ.          |                   | >4.5                |                         |        | 17               |                     | 107                  |                       |                                             |
| CLAYEY SAND: Dark bromedium dense; mostly                                               |                                                                                                                            | SC     | 12<br>13                 |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                         |                                                                                                                            |        | 14<br>15                 | 3<br>       | 20                |                     |                         |        |                  |                     |                      |                       |                                             |
| (10YR 5/2) and strong b                                                                 | Mottled grayish brown prown (7.5YR 4/6); moist;                                                                            | CL     | 16<br>17                 |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| stiff to very stiff; with fi                                                            |                                                                                                                            |        | 18<br>19                 | S<br>I      | 23                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                         | HOLE = 20 Feet<br>ter Encountered                                                                                          |        | 20                       | I           |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                         | GEO-LOGIC AS                                                                                                               | SSOC   | IATE                     | S           |                   |                     |                         |        |                  | PA                  | GE:                  | 1 o                   | f 1                                         |

| <b>DATE:</b> 9/1/2017                                                      | LOG O                                                                                                                      | F EXI     | PLOR                       | ΑТ          | ORY I             | ORILL               | HOLE                    |        |                  |                     |                   | DH-                   | · 9A       |                               |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                              | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ase 2                      |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:               | 201                   | 6.0        | 096                           |
| DRILL RIG: Mobile                                                          | B56, 140# downhole ham                                                                                                     | nmer      | with                       | wir         | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS               |                       |            |                               |
| HOLE DIAMETER:                                                             | 8" hollow stem augers                                                                                                      |           |                            |             |                   |                     |                         | HOLE   | ELEV             | ATION               | ۷:                | ±204                  | 1½         |                               |
| SAMPLER:                                                                   | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)    |                            |             | GRO               | DUND                | WATI                    | R DEI  | PTH:             | Initia<br>Final     |                   |                       |            |                               |
|                                                                            | IPTION OF<br>MATERIALS                                                                                                     | SOIL TYPE | DEPTH (ft)                 | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±5" AC ov                                                        | ver ±7" baserock)                                                                                                          |           |                            |             |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
| (7.5YR 3/1); moist; me<br>coarse, angular to subi<br>gravel                | rounded sand; with fine                                                                                                    | SC<br>CL  | 2<br>2<br>3                | S<br>D<br>D | 16                | 2.5                 |                         |        | 18               |                     | 114               |                       |            |                               |
| stiff to hard brownish yellow (10Y)                                        | <b>Y</b> (7.5YR 3/3); moist; very R6/6); dry to moist;                                                                     |           | 5<br>6                     | S<br>D<br>D | -51               | >4.5                |                         |        | 17               |                     | 116               |                       |            |                               |
| brown (10YR 3/4); mo                                                       | oist                                                                                                                       |           |                            | S<br>D<br>D | 24                | >4.5<br>4.5         |                         |        | 20               |                     | 110               |                       |            |                               |
|                                                                            | AVEL: Dark yellowish ist; dense; fine to coarse, ided sand; with fine gravel                                               | SC        | 11<br>12<br>13<br>14<br>15 | S<br>D<br>D | 56                |                     |                         |        | 9                |                     | 128               |                       |            |                               |
| SANDY LEAN CLAY to (<br>(10YR 3/3); moist; very<br>dense sand; mostly fine |                                                                                                                            | CL/<br>SC | 16<br>17<br>18             | S           |                   |                     |                         |        |                  |                     |                   |                       |            |                               |
|                                                                            | HOLE = 20 Feet                                                                                                             |           | 20                         | l<br>I      | 18                |                     |                         |        |                  |                     |                   |                       |            |                               |
| No Groundwa                                                                | ater Encountered  GEO-LOGIC AS                                                                                             |           |                            |             |                   |                     |                         |        |                  | _                   | GE:               |                       | <br>  f 1  |                               |

| <b>DATE:</b> 8/30/2017                      | LOG O                                                                                                                      | F EXI  | PLOR                       | ΑТ          | ORY I             | DRILL               | HOLI                    |          |                  |                     |                      | DH                    | - 10       | Α                          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|-------------|-------------------|---------------------|-------------------------|----------|------------------|---------------------|----------------------|-----------------------|------------|----------------------------|
| PROJECT NAME:                               | Morgan Hill Sewer Trun                                                                                                     | k, Pha | ase 2                      |             |                   |                     |                         | PROJ     | ECT N            | UMBI                | ER:                  | 201                   | 16.0       | 096                        |
| DRILL RIG: Mobile                           | B56, 140# downhole han                                                                                                     | nmer   | with                       | wir         | e win             | ch                  |                         | LOGG     | SED B            | <b>Y</b> :          | CSS                  |                       |            |                            |
| HOLE DIAMETER:                              | 8" hollow stem augers                                                                                                      |        |                            |             |                   |                     |                         | HOLE     | ELEV             | ATION               | ۷:                   | ±203                  | 3          |                            |
| SAMPLER:                                    | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT) |                            |             | GRO               | DUND                | WATI                    | ER DEI   | PTH:             | Initia<br>Final     |                      | 23 ft<br>             |            |                            |
|                                             | IPTION OF<br>MATERIALS                                                                                                     | SOIL   | DEPTH<br>(ft)              | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE STRENGTH (psf) |
| PAVEMENT (±5" AC or                         | n ±12" PCC on baserock)                                                                                                    |        | 11                         | 0           |                   |                     |                         |          |                  |                     |                      |                       |            |                            |
| ALLUVIUM: SANDY LE<br>brown (10YR 4/4); moi | AN CLAY: Dark yellowish ist; hard; fine sand                                                                               | 2<br>3 | S<br>D                     | 23          | >4.5              |                     |                         | 16       |                  | 108                 |                      |                       |            |                            |
| CLAYEY GRAVEL: yello<br>moist; very dense   | - 4<br>- 5<br>- 6<br>- 7                                                                                                   | S<br>D | 50/4"                      | >4.5        |                   |                     | 10                      |          | 120              |                     |                      |                       |            |                            |
|                                             | ottled pale brown (10YR<br>(7.5YR 5/8); moist; very                                                                        | CL     | 8<br>9<br>10<br>11         | S<br>D<br>D | 36                | >4.5<br>>4.5        |                         |          | 15               |                     | 117                  |                       |            |                            |
| (10YR 4/2) mottled wi                       | RAVEL: Dark grayish brown<br>th strong brown (7.5YR<br>e to coarse, subangular to<br>h fine gravel                         | SC     | 12<br>13<br>14<br>15<br>16 | S<br>I<br>I | 35                |                     |                         |          |                  |                     |                      |                       |            |                            |
| (10YR 4/2); moist to w                      | SAND: Dark grayish brown ret; dense; fine to coarse, anded sand & gravel; with                                             | GC     | 18<br>19<br>20             |             |                   |                     |                         |          |                  |                     |                      |                       |            |                            |
|                                             | GEO-LOGIC A                                                                                                                | SSOC   | IATE                       | ∟<br>S      |                   |                     | <u> </u>                | <u> </u> | <u> </u>         | PA                  | GE:                  | 1 (                   | 1<br>of 3  |                            |

| <b>DATE:</b> 8/30/2017                          | LOG O                                                                                                                      | F EXF    | PLOR          | ΑТ          | ORY I             | DRILL               | HOLE                    | Ē      |       |                     |                                         | DH-                   | 10A                                         |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|-----------------------------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                   | Morgan Hill Sewer Trun                                                                                                     | k, Pha   | se 2          |             |                   |                     |                         | PROJ   | ECT N | <b>UM</b> BI        | ER:                                     | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                             | 356, 140# downhole han                                                                                                     | nmer     | with          | wir         | e win             | ch                  |                         | LOGG   | GED B | Y:                  | CSS                                     |                       |                                             |
| HOLE DIAMETER:                                  | 8" hollow stem augers                                                                                                      |          |               |             |                   |                     |                         | HOLE   | ELEV  | ATIO                | N:                                      | ±203                  |                                             |
| SAMPLER:                                        | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)     |               |             | GRO               | DUND                | WATI                    | ER DE  | РТН:  | Initia<br>Final     |                                         | 23 ft<br>             |                                             |
|                                                 | PTION OF<br>MATERIALS                                                                                                      | SOIL     | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY (pcf)                       | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
|                                                 | VEL with SAND and CLAY:                                                                                                    | GC       |               |             |                   |                     |                         |        |       |                     |                                         |                       |                                             |
| Dark grayish brown (10 dense; fine to coarse, s | YR 4/2); moist to wet; ubangular to subrounded                                                                             |          | 21            | S           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
| sand & gravel; with cob                         | _                                                                                                                          |          | 22            | D<br>D<br>S | 62                |                     | 10                      | 30     | 9     | 14                  | 128                                     |                       |                                             |
|                                                 |                                                                                                                            |          | 23            | <u> </u>    | 44                |                     |                         |        |       |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            |          | 24            | S           | 0                 |                     |                         |        |       |                     |                                         |                       |                                             |
| very dense                                      |                                                                                                                            |          | 25            | D           | 50/6"             |                     |                         |        | 9     |                     | 122                                     |                       |                                             |
| dense<br>±4 in. thick clay from a               | pprox. 26.5-27 ft                                                                                                          |          | 26            | S<br>1<br>1 | 36                |                     |                         | ······ |       |                     |                                         |                       |                                             |
|                                                 | O with GRAVEL and SILT:                                                                                                    | SP-      | 27            | S           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
| Dark grayish brown (10 cobbles                  | YR 4/2); wet; dense; with                                                                                                  | SM<br>SW | 28            | D<br>D<br>S | 52                |                     | 7                       | NP     | 11    | NP                  | 110                                     |                       |                                             |
| WELL GRADED SAND w                              | uith GRAVEL: Dark grayish                                                                                                  |          | 29            | ر<br>ا<br>ا | 50                |                     |                         |        | 26    |                     |                                         |                       |                                             |
| brown (10YR 4/2); wet;                          | dense                                                                                                                      |          | 30            | S           |                   |                     | 4                       | NP     | 26    | NP                  |                                         |                       |                                             |
|                                                 |                                                                                                                            |          | 31            | D           | 50/5.5            | 5" (no<br>          | sampl                   | e reco | very) |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            | SC       | 32            | S           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
| CLAYEY SAND with GRA<br>(10YR 5/2); wet; mediu  | <b>AVEL:</b> Grayish brown m dense; fine to coarse                                                                         | JC       | - 33          | 1           | 25                |                     | 45                      |        | 14    |                     |                                         |                       |                                             |
| sand                                            | ·                                                                                                                          |          | 34            | S           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            | CL       |               | I           | 16                |                     |                         |        |       |                     |                                         |                       |                                             |
| <b>LEAN CLAY:</b> Grayish browet; very stiff    | own (10YR 5/2); moist to                                                                                                   | CL       | 35            | !           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            |          | 36            |             | 0                 |                     |                         | 9      |       |                     | •                                       |                       |                                             |
| (10YR 4/2); wet; very o                         |                                                                                                                            | GC       | 37            |             |                   |                     |                         |        |       |                     |                                         |                       |                                             |
| cobbles                                         | ded sand & gravel; with                                                                                                    |          | 38            | C           |                   |                     |                         |        |       |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            |          | 39            | <br> <br>   | 59                |                     |                         |        |       |                     |                                         |                       |                                             |
|                                                 |                                                                                                                            |          | 40            |             | •                 |                     |                         | •      |       |                     | *************************************** |                       |                                             |
|                                                 | GEO-LOGIC AS                                                                                                               | ssoc     | IATE          | S           |                   |                     |                         |        |       | P.A                 | AGE:                                    | 2 of                  | 3                                           |

| <b>DATE:</b> 8/30/2017                                                                        | LOG O                                                                                                                      | F EXF     | PLOR                       | ΑT          | ORY                                   | DRILL               | . HOLI                  | E      |                  |                     |                   | DH                    | - 10A                                       |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-------------|---------------------------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                                 | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ise 2                      |             |                                       |                     |                         | PROJ   | ECT N            | UMBI                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile I                                                                           | B56, 140# downhole han                                                                                                     | nmer      | with                       | wir         | e win                                 | ch                  |                         | LOGG   | SED B            | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                                                                | 8" hollow stem augers                                                                                                      |           |                            |             |                                       |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                | ±203                  | 3                                           |
| SAMPLER:                                                                                      | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | D SPT)    |                            |             | GRO                                   | DUND                | WAT                     | ER DE  | РТН:             | Initia<br>Final     |                   | 23 ft<br>             |                                             |
|                                                                                               | IPTION OF<br>MATERIALS                                                                                                     | SOIL      | DEPTH<br>(ft)              | SAMPLE      | BLOWS PER<br>FOOT                     | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY GRAVEL with S                                                                          | SAND: continued                                                                                                            | GC        |                            |             | · · · · · · · · · · · · · · · · · · · |                     |                         |        |                  |                     |                   |                       |                                             |
| LEAN CLAY with SAND<br>Mostly strong brown (7<br>stiff; with fine to coars<br>subrounded sand |                                                                                                                            | CL        | 42<br>43<br>44<br>45<br>46 | S<br>I<br>I | 25                                    |                     |                         |        |                  |                     |                   |                       |                                             |
| SILTY to CLAYEY SAND<br>(10YR 4/4) with strong<br>moist; dense; fine sand                     | brown (7.5YR) spots;                                                                                                       | SC/<br>SM | 47<br>48<br>49             | S           | 31                                    |                     |                         |        |                  |                     |                   | -                     |                                             |
| воттом оғ                                                                                     | HOLE = 50 Feet                                                                                                             |           | 50<br>51<br>52             |             |                                       |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                               |                                                                                                                            |           | 53                         |             |                                       |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                               |                                                                                                                            |           | 54<br>55                   |             |                                       |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                               |                                                                                                                            |           | 56                         |             |                                       |                     |                         |        |                  |                     | ·····             |                       |                                             |
|                                                                                               |                                                                                                                            |           | 57<br>58                   |             |                                       |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                               |                                                                                                                            |           | 59                         |             |                                       |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                               | GEO-LOGIC A                                                                                                                | ssoc      | IATE                       | <u> </u>    |                                       |                     |                         |        |                  | PA                  | \GE:              | 3 c                   | of 3                                        |

| <b>DATE:</b> 8/30/2017    | LOG O                                                                                                                      | F EXF  | PLOR          | ΑТ          | ORY I             | ORILL               | HOLE                    |        |                  |                     |                      | DH-                   | 11/        | 4                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|---------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:             | Morgan Hill Sewer Trunl                                                                                                    | k, Pha | se 2          |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.00       | )96                           |
| DRILL RIG: Mobile E       | B56, 140# downhole ham                                                                                                     | nmer   | with          | wir         | e win             | ch                  |                         | LOGG   | SED B            | <b>Y</b> :          | CSS                  |                       |            |                               |
| HOLE DIAMETER:            | 8" hollow stem augers                                                                                                      |        |               |             |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                   | ±201                  | 1/2        |                               |
| SAMPLER:                  | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)   | Ī             |             | GRO               | DUND                | WATI                    | R DEI  | PTH:             | Initia<br>Final     |                      | 26 ft<br>             |            |                               |
|                           | PTION OF<br>MATERIALS                                                                                                      | SOIL   | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±5" AC ov       | er ±12" baserock)                                                                                                          |        | 1             |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
| ALLUVIUM: FAT CLAY: stiff | Black (10YR 2/1); moist;                                                                                                   | 23     | S<br>D<br>D   | 11          | 1.75              |                     |                         | 24     |                  | 101                 |                      |                       |            |                               |
|                           | strong brown (7.5YR 4/6); fine to coarse, angular to                                                                       | SC     | 6             | S<br>D<br>D | 18                |                     |                         |        | 18               |                     | 112                  |                       |            |                               |
|                           |                                                                                                                            |        | 9             | S<br>I<br>I | 21                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                           |                                                                                                                            |        | 12            |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
| dense                     |                                                                                                                            |        | 14<br>15      | S<br>I      | 34                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                           |                                                                                                                            |        | 16<br>17      |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
| medium dense              |                                                                                                                            |        | 18<br>19      | S<br>D<br>D | 34                |                     |                         |        | 16               |                     | 111                  |                       |            |                               |
|                           | GEO-LOGIC AS                                                                                                               | ssoc   | 20<br>IATE    |             |                   |                     |                         |        |                  | PΑ                  | GE:                  | 1 o                   | f 3        |                               |

| <b>DATE:</b> 8/30/2017                                                      | LOG C                                                                                                                      | )F EX     | PLOR             | ΑТ               | ORY D             | RILL I              | HOLE                    |                 |                  |                     |                      | DH-                   | 11/        | A                             |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------|-------------------|---------------------|-------------------------|-----------------|------------------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:                                                               | Morgan Hill Sewer Trunl                                                                                                    | ر, Pha    | se 2             |                  |                   |                     |                         | PROJ            | ECT N            | UMBE                | ER:                  | 201                   | 6.00       | )96                           |
| DRILL RIG: Mobile E                                                         | 356, 140# downhole ham                                                                                                     | ımer      | with '           | wir              | e win             | ch                  |                         | LOGG            | ED B             | <b>Y</b> :          | CSS                  |                       |            |                               |
| HOLE DIAMETER:                                                              | 8" hollow stem augers                                                                                                      |           |                  |                  |                   |                     |                         | HOLE            | ELEV             | ATION               | ۷:                   | ±201                  | 1/2        |                               |
| SAMPLER:                                                                    | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | ) SPT)    |                  |                  | GRO               | DUND                | WATI                    | R DEI           | PTH:             | Initia<br>Final     |                      | 26 ft<br>             |            |                               |
| EARTH N                                                                     | PTION OF<br>MATERIALS                                                                                                      | SOIL      | DEPTH<br>(ft)    | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID<br>LIMIT | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND with GRA                                                        | AVEL: continued                                                                                                            | SC        | 21               |                  |                   |                     |                         |                 |                  |                     |                      |                       |            |                               |
| (10YR 5/2) to brown (7<br>brown (7/5YR 4/6); mo<br>dense; fine to coarse, s | ist; medium dense to ubangular to subrounded                                                                               | 22 23     | S<br>D<br>D<br>S | 39               |                   | 27                  |                         | 16              |                  | 113                 |                      |                       |            |                               |
|                                                                             | es likely but not observed                                                                                                 | 24<br>25  | I<br>S<br>D      | 47<br>70         |                   | 4                   | 25                      | 7               | 10               | 123                 |                      |                       |            |                               |
| dense; fine to coarse gr                                                    | ravel; with fine to coarse  O with GRAVEL and SILT:                                                                        | SP-<br>SM | 26<br>27         | S<br>I<br>I<br>S | 27                |                     |                         |                 |                  |                     |                      |                       |            |                               |
| Dark brown (10YR 3/3), coarse, subangular to s fine gravel                  |                                                                                                                            |           | 2829             | D<br>D<br>S      | 42<br>35          |                     | 8                       |                 | 12               | NP                  | 115                  |                       |            |                               |
| SILTY SAND with GRAV<br>3/3); wet; dense; fine t<br>gravel and cobbles      | <b>/EL:</b> Dark brown (10YR o coarse sand; with fine                                                                      | SM        | 30               | S<br>D<br>D<br>S | 51                |                     | 19                      |                 | 15               | NP                  | 114                  |                       |            |                               |
| grayish brown to dark<br>(10YR 5/2); very dense                             |                                                                                                                            |           | 32               | <br>             | 71                |                     | 13                      |                 | 8                |                     |                      |                       |            |                               |
| for sample @ 30.5-31.<br>permeability test, see<br>direct shear test, see   | Appendix B                                                                                                                 |           | 34<br>35         | S                | 50/6"             | (no sa              | mple r                  | ecover          | ed)              |                     |                      |                       |            |                               |
|                                                                             |                                                                                                                            |           | 36               |                  |                   |                     |                         |                 |                  |                     |                      |                       |            |                               |
|                                                                             |                                                                                                                            |           | 37               |                  |                   |                     |                         |                 |                  |                     |                      |                       |            |                               |
|                                                                             |                                                                                                                            |           | 38               |                  |                   |                     |                         |                 |                  |                     |                      |                       |            |                               |
|                                                                             |                                                                                                                            |           | 39               | S<br>I           | 50/6"             |                     |                         |                 |                  |                     |                      |                       |            |                               |
|                                                                             |                                                                                                                            |           | 40               |                  |                   |                     |                         |                 |                  |                     |                      |                       |            |                               |
|                                                                             | GEO-LOGIC AS                                                                                                               | SOC       | IATES            | S                |                   |                     |                         |                 |                  | PA                  | GE:                  | 2 of                  | f 3        |                               |

| <b>DATE:</b> 8/30/2017 | LOG O                                                                                                                      | F EXF                                   | PLOR          | ΑT     | ORY               | DRILL               | HOLE                    | <b>.</b> |          |                     |                      | DH-                   | 11A                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|--------|-------------------|---------------------|-------------------------|----------|----------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:          | Morgan Hill Sewer Trun                                                                                                     | k, Pha                                  | se 2          |        |                   |                     |                         | PROJ     | ECT N    | UMBI                | ER:                  | 2016                  | 5.0096                                      |
| DRILL RIG: Mobile I    | B56, 140# downhole han                                                                                                     | nmer                                    | with          | wir    | e win             | ch                  |                         | LOGG     | SED B    | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:         | 8" hollow stem augers                                                                                                      |                                         |               |        |                   |                     |                         | HOLE     | ELEV     | OITA                | N:                   | ±201                  | V <sub>2</sub>                              |
| SAMPLER:               | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Of<br>S = Slough in sample | D SPT)                                  |               |        | GR                | DUND                | WATI                    | ER DE    | PTH:     | Initia<br>Final     |                      | 26 ft<br>             |                                             |
|                        | IPTION OF<br>WATERIALS                                                                                                     | SOIL                                    | DEPTH<br>(ft) | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER    | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| SILTY SAND with GRAV   | <b>/EL:</b> continued                                                                                                      | SM                                      |               |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 41            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            | CL                                      | 42            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
| moist; very stiff      |                                                                                                                            |                                         | 43            | S      |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 44            | I<br>I | 22                |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 45            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            | *************************************** | 46            |        |                   |                     |                         | 0        |          |                     |                      |                       |                                             |
|                        |                                                                                                                            | *************************************** | 47            |        |                   |                     |                         |          | •        |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 48            | s      |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 49            | D<br>D | 44                | 1.0<br>4.0          | 99                      |          | 26       |                     | 100                  |                       |                                             |
| воттом оғ              | HOLE = 50 Feet                                                                                                             |                                         | 50            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 51<br>52      |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 53            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 54            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 55            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 56            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 57            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 58            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 59            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        |                                                                                                                            |                                         | 60            |        |                   |                     |                         |          |          |                     |                      |                       |                                             |
|                        | GEO-LOGIC A                                                                                                                | SSOC                                    | IATE          | <br>S  |                   | 1                   | 1                       | <u> </u> | <u> </u> | P/                  | \GE:                 | 3 of                  | 3                                           |

| <b>DATE:</b> 9/6/2017                                                                           | LOG O                                                                                                                     | F EXI     | PLOR                     | ΑT          | ORY I             | DRILL               | HOLE                    |        |                  |                     |                      | DH-                   | 12A                       |                |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------|----------------|
| PROJECT NAME:                                                                                   | Morgan Hill Sewer Trun                                                                                                    | k, Pha    | ase 2                    |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.009                     | 96             |
| DRILL RIG: Mobile E                                                                             | 353, 140# downhole han                                                                                                    | nmer      | with                     | wir         | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS                  |                       |                           |                |
| HOLE DIAMETER:                                                                                  | 8" hollow stem augers                                                                                                     |           |                          |             |                   |                     |                         | HOLE   | ELEV             | ATION               | ۷:                   | ±200                  | 1/2                       |                |
| SAMPLER:                                                                                        | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" O<br>S = Slough in sample | D SPT)    |                          |             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      |                       |                           |                |
|                                                                                                 | PTION OF<br>MATERIALS                                                                                                     | SOIL      | DEPTH<br>(ft)            | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE | STRENGTH (psf) |
| PAVEMENT (±10" AC o                                                                             | ver ±8" baserock)                                                                                                         |           | 1                        |             |                   |                     |                         |        |                  |                     |                      |                       |                           |                |
| ALLUVIUM: FAT CLAY: very stiff                                                                  | Black (10YR 2/1); moist;                                                                                                  | СН        | 2<br>3                   | S<br>D      | 15                | 3.75<br>3.5         |                         |        | 23               |                     | 104                  |                       |                           |                |
| LEAN CLAY to LEAN CL<br>grayish brown (10YR 4,<br>fine sand, abundant ma                        | /2); moist; very stiff; with                                                                                              | CL        | - 4<br>- 5<br>- 6<br>- 7 | S<br>D<br>D | 17                | 3<br>3.5            |                         |        | 16               |                     | 118                  |                       |                           |                |
| CLAYEY SAND with GRA<br>with SAND: Brown (7.5<br>medium dense; fine to<br>subrounded sand and g | coarse, subangular to                                                                                                     | SC/<br>GC | 8<br>9<br>10<br>11       | S<br>D<br>D | 38                |                     |                         |        | 9                |                     | 121                  |                       |                           |                |
|                                                                                                 |                                                                                                                           |           | 13<br>14<br>15           | S<br>I<br>I | 28                |                     |                         |        |                  |                     |                      |                       |                           |                |
| LEAN CLAY to LEAN CL                                                                            |                                                                                                                           | CL        | 17                       |             |                   |                     |                         |        |                  |                     |                      |                       |                           |                |
| grayish brown (10YR 4)<br>fine sand                                                             | /2); moist; very stiff; with                                                                                              |           | 18<br>19                 | S           |                   |                     |                         |        |                  |                     |                      |                       |                           |                |
|                                                                                                 | HOLE = 20 Feet                                                                                                            |           | 20                       | 1<br> <br>  | 15                |                     |                         |        |                  |                     |                      |                       |                           |                |
| ino Groundwa                                                                                    | eter Encountered  GEO-LOGIC A                                                                                             | SSOC      | ΙΔΤΕ                     | <br>Տ       |                   |                     |                         |        |                  | DA                  | GE:                  | 1 o                   | L<br>f 1                  |                |

| <b>DATE:</b> 9/1/2017                                                                                                     | LOG OF EXPLO          | RAT             | ORY I             | DRILL HOL                             | E                          |                                    | DH- 13A                                                              |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------------|---------------------------------------|----------------------------|------------------------------------|----------------------------------------------------------------------|
| PROJECT NAME: Morgan Hill Sew                                                                                             | er Trunk, Phase       | 2               |                   |                                       | PROJECT NU                 | MBER:                              | 2016.0096                                                            |
| DRILL RIG: Mobile B56, 140# downh                                                                                         | ole hammer wit        | h wir           | e win             | ch                                    | LOGGED BY:                 | CSS                                |                                                                      |
| HOLE DIAMETER: 8" hollow stem a                                                                                           | ugers                 |                 |                   |                                       | HOLE ELEVA                 | TION:                              | ±200½                                                                |
| D = 3" OD, 2½" ID Split-<br>X = 2½" OD, 2" ID Split-<br>I = Standard Penetrome<br>S = Slough in sample                    | spoon                 |                 | GRO               | OUND WAT                              | ER DEPTH:                  | Initial:<br>Final:                 |                                                                      |
| DESCRIPTION OF EARTH MATERIALS                                                                                            | SOIL<br>TYPE<br>DEPTH | (ft)<br>SAMPLE  | BLOWS PER<br>FOOT | POCKET PEN (tsf) % PASSING #200 SIEVE | LIQUID LIMIT WATER CONTENT | PLASTICTIY INDEX DRY DENSITY (pcf) | FAILURE<br>STRAIN (%)<br>UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±4" AC over ±8" baserock)                                                                                       |                       |                 |                   |                                       |                            |                                    |                                                                      |
| ALLUVIUM: CLAYEY GRAVEL with SAND: brown (7.5YR 3/3); moist; medium dense; coarse, subangular to subrounded sand a gravel | Dark GC fine to and   | D<br>D          | 33                |                                       | 6                          | 106                                |                                                                      |
|                                                                                                                           | 5                     | S               | 14                |                                       |                            |                                    |                                                                      |
| LEAN CLAY to LEAN CLAY with SAND: Bro (7.5YR 4/3); moist; stiff; with fine to medi subangular to subrounded sand          | um,g                  |                 | 13                |                                       |                            |                                    |                                                                      |
| CLAYEY SAND with GRAVEL: Brown (7.5Yl                                                                                     | R 4/3); SC            | 2               |                   |                                       |                            |                                    |                                                                      |
| moist; medium dense; fine to coarse, sub-<br>to subrounded sand and gravel                                                | _                     | 4 S             | 17                |                                       |                            |                                    |                                                                      |
|                                                                                                                           | <u>1</u> ,            | 6               |                   |                                       |                            |                                    |                                                                      |
|                                                                                                                           |                       | 7<br>8          |                   |                                       |                            |                                    |                                                                      |
| medium dense to dense  BOTTOM OF HOLE = 20 Feet                                                                           | <u>1</u>              | 9 S<br>1<br>0 I | 30                |                                       |                            |                                    |                                                                      |
| No Groundwater Encountered                                                                                                | OGIC ASSOCIAT         |                 |                   |                                       |                            | PAGE:                              | 1 of 1                                                               |

| <b>DATE</b> : 9/6/2017                                                      | LOG O                                                                                                                      | F EXF     | PLOR                 | ΑТ          | ORY I             | ORILL               | HOLE                    | Ē      |                  |                     |                      | DH                    | - 14/      | 1              |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|----------------|
| PROJECT NAME:                                                               | Morgan Hill Sewer Trunl                                                                                                    | k, Pha    | ase 2                |             |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:                  | 201                   | 6.00       | 96             |
| DRILL RIG: Mobile B                                                         | 353, 140# downhole ham                                                                                                     | nmer      | with                 | wir         | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS                  |                       |            |                |
| HOLE DIAMETER:                                                              | 8" hollow stem augers                                                                                                      |           |                      |             |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                   | ±196                  | 5          |                |
| SAMPLER:                                                                    | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | O SPT)    |                      |             | GRO               | DUND                | WATI                    | R DE   | PTH:             | Initia<br>Final     |                      |                       |            |                |
|                                                                             | PTION OF<br>MATERIALS                                                                                                      | SOIL TYPE | DEPTH<br>(ft)        | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | STRENGTH (psf) |
| PAVEMENT (±5" AC ove                                                        | er ±7" baserock)                                                                                                           |           |                      |             |                   |                     |                         |        |                  |                     |                      |                       |            |                |
| ALLUVIUM: LEAN CLAY<br>dark brown (7.5YR 4/3<br>with fine sand              | with SAND: Brown to to 3/3); moist; very stiff;                                                                            | CL        | 2 3                  | S<br>D<br>D | 11                | 3.75                |                         |        | 21               |                     | 106                  |                       |            |                |
| LEAN CLAY to SANDY LI<br>grayish brown (10YR 5/<br>(7.5YR 4/6); moist; hard | 2) and strong brown                                                                                                        | CL        | 4<br>5<br>6          | S<br>D      | 27                | 4<br>4.5            |                         |        | 19               |                     | 118                  |                       |            |                |
|                                                                             | AND: Brown (10YR 4/3);<br>fine to coarse, subangular<br>d gravel                                                           | GC        | 8<br>9<br>10         | S<br> <br>  | 27                |                     |                         |        |                  |                     |                      |                       |            |                |
| 3/3 to 2/3); moist; med                                                     | AVEL: Dark brown (7.5YR lium dense; fine to subangular sand and fine                                                       | SC        | 12<br>13<br>14<br>15 | S<br> <br>  | 16                |                     |                         |        |                  |                     |                      |                       |            |                |
| CLAYEY SAND: Brown (1<br>medium dense; fine san                             | · · · · · · · · · · · · · · · · · · ·                                                                                      |           | 16<br>17             | 0           |                   |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                             | AND: Brown (10YR 4/3), ine to coarse, subangular d gravel                                                                  | SC<br>GC  | 18<br>19             | S           |                   |                     |                         |        |                  |                     |                      |                       |            |                |
|                                                                             | HOLE = 20 Feet                                                                                                             | الا       | 20                   | <br>        | 23                |                     |                         |        |                  |                     |                      |                       |            |                |
| NO Groundwa                                                                 | ter Encountered  GEO-LOGIC AS                                                                                              | SSOC      | IATE                 | ∟_<br>S     |                   |                     | <u> </u>                |        | <u> </u>         | PΔ                  | l<br>\GE:            | 1 o                   | 1<br>f 1   |                |

| <b>DATE:</b> 9/6/2017                                                      | LOG O                                                                                                                      | F EXF     | PLOR                 | ΑT          | ORY I             | ORILL               | HOLE                    |        |                  |                     |                      | Dŀ      | I- 15      | δA                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|---------|------------|-------------------------------|
| PROJECT NAME:                                                              | Morgan Hill Sewer Trunl                                                                                                    | k, Pha    | se 2                 |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 20      | 16.0       | 096                           |
| DRILL RIG: Mobile B                                                        | 53, 140# downhole ham                                                                                                      | nmer      | with                 | wir         | e win             | ch                  |                         | LOGO   | SED B            | <b>Y</b> :          | CSS                  |         |            |                               |
| HOLE DIAMETER:                                                             | 8" hollow stem augers                                                                                                      |           |                      |             |                   |                     |                         | HOLE   | ELEV             | ATIO                | <b>N</b> :           | ±19     | 5½         |                               |
| SAMPLER:                                                                   | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)      |                      |             | GRO               | DUND                | WATI                    | R DE   | PTH:             | Initia<br>Final     |                      |         |            |                               |
|                                                                            | PTION OF<br>MATERIALS                                                                                                      | SOIL TYPE | DEPTH<br>(ft)        | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±5" AC ove                                                       | er ±7" baserock)                                                                                                           |           |                      |             |                   |                     |                         |        |                  |                     |                      |         |            |                               |
| ALLUVIUM: LEAN CLAY<br>dark brown (7.5YR 4/3<br>fine sand                  | with SAND: Brown to to 3/3); moist; hard; with                                                                             | CL        | 1<br>2<br>3          | S<br>D<br>D | 30                | >4.5<br>>4.5        |                         |        |                  |                     |                      |         |            |                               |
| LEAN CLAY with SAND:<br>(10YR 4/2) mottled with<br>4/6); moist; hard; with | n strong brown (7.5YR                                                                                                      | CL        | 4<br>5<br>6          | S<br>D      | 24                | >4.5<br>>4.5        |                         |        |                  |                     |                      |         |            |                               |
|                                                                            | <b>AND:</b> Brown (10YR 4/3);<br>fine to coarse, subangular<br>d gravel                                                    | GC        | 9<br>10<br>11        | S<br>I<br>I | 26                |                     |                         |        |                  |                     |                      |         |            |                               |
|                                                                            |                                                                                                                            |           | 13<br>14<br>15<br>16 | S<br>I<br>I | 27                |                     |                         |        |                  |                     |                      |         |            |                               |
| very dense                                                                 | ery dense  BOTTOM OF HOLE = 20 Feet                                                                                        |           |                      |             |                   |                     |                         |        |                  |                     |                      |         |            |                               |
|                                                                            | HOLE = 20 Feet<br>ter Encountered                                                                                          |           | 20                   |             | 62                |                     |                         |        |                  |                     |                      |         |            | ·····                         |
|                                                                            | GEO-LOGIC AS                                                                                                               | ssoc      | IATE                 | 5           |                   |                     |                         |        |                  | PA                  | AGE:                 | 1       | of 1       |                               |

| DATE: 8/31/2017 LOG (                                                                                                                                          | )F EXI    | PLOR           | ΑT          | ORY I             | DRILL               | . HOLI                  | E      |       |                     |                      | DH-                   | 16A                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME: Morgan Hill Sewer Trur                                                                                                                           | nk, Pha   | se 2           |             |                   |                     |                         | PROJ   | ECT N | IUMB                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B56, 140# downhole ha                                                                                                                        | mmer      | with           | wir         | e win             | ch                  |                         | LOGG   | SED B | Y:                  | CSS                  |                       |                                             |
| <b>HOLE DIAMETER:</b> 8" hollow stem augers                                                                                                                    |           |                |             |                   |                     |                         | HOLE   | ELEV  | ΆΤΙΟΙ               | N:                   | ±197                  |                                             |
| D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" C  S = Slough in sample                                            | D SPT)    | 1              |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Fina      |                      | ±23 ft<br>            | 1                                           |
| DESCRIPTION OF EARTH MATERIALS                                                                                                                                 | SOIL      | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±1" AC over ±12" PCC concrete)                                                                                                                       |           |                |             |                   |                     |                         |        |       |                     |                      |                       |                                             |
| FILL: CLAYEY GRAVEL with SAND: Very dark brown (10YR 2/2); moist; medium dense; fine to coarse, subangular to subrounded sand and fine gravel                  | GC        | 3              | S<br>D<br>D | 17                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                                                                                                |           | - 5<br>- 6     | S<br>D<br>D | 39                |                     |                         |        |       |                     |                      |                       |                                             |
| ALLUVIUM: CLAYEY SAND with GRAVEL to CLAYEY GRAVEL with SAND: Brown (7.5YR 4/3); moist to wet; dense; fine to coarse, subangular to subrounded sand and gravel | SC/<br>GC | 89             | S           | 36                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                                                                                                |           | 10<br>11<br>12 |             |                   |                     |                         |        |       |                     |                      |                       |                                             |
| medium dense                                                                                                                                                   |           | 13<br>14<br>15 | S<br>I<br>I | 16                |                     |                         |        |       |                     |                      |                       |                                             |
|                                                                                                                                                                |           | 16<br>17       |             |                   |                     |                         |        |       |                     |                      | -                     |                                             |
|                                                                                                                                                                |           | 18<br>19<br>20 | S<br>D<br>D | 32                |                     |                         |        | 16    |                     | 117                  |                       |                                             |
| GEO-LOGIC A                                                                                                                                                    | SSOC      |                | <br>S       |                   |                     |                         |        |       | P/                  | AGE:                 | 1 o                   | <u> </u><br>f 3                             |

| <b>DATE:</b> 8/31/2017                                                  | LOG O                                                                                                                      | F EXF                                   | PLOR          | ΑT               | ORY               | DRILL               | HOL                     | Ē      |                  |                     |                   | DH-                   | 16A                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                           | Morgan Hill Sewer Trun                                                                                                     | k, Pha                                  | ase 2         |                  |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:               | 201                   | 5.0096                                      |
| DRILL RIG: Mobile                                                       | B56, 140# downhole han                                                                                                     | nmer                                    | with          | wir              | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                                          | 8" hollow stem augers                                                                                                      |                                         |               |                  |                   |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                | ±197                  |                                             |
| SAMPLER:                                                                | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)                                    |               |                  | GRO               | DUND                | WATI                    | ER DEI | РТН:             | Initia<br>Final     |                   | ±23 ft<br>            |                                             |
|                                                                         | IPTION OF<br>WATERIALS                                                                                                     | SOIL TYPE                               | DEPTH<br>(ft) | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY SAND with GRAGE GRAVEL with SAND: co                             |                                                                                                                            | SC/<br>GC                               | 21            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| CLAYEY SAND: Dark gr.<br>(10YR 5/3 to 4/3), mois<br>fine to medium sand | ayish brown to brown<br>st to wet; dense; mostly                                                                           | SC                                      | 22<br>23      | S                |                   |                     |                         |        |                  |                     | 0                 |                       |                                             |
| direct shear test, see A                                                | Appendix B                                                                                                                 | *************************************** | 24            | D<br>D<br>S      | 51                |                     |                         | ·      | 13<br>16         |                     | 123<br>115        |                       |                                             |
| Dark grayish brown to                                                   | D with GRAVEL and CLAY:<br>brown (10YR 5/3 to 4/3);<br>ne to coarse; subangular                                            | GC                                      | 25<br>26      | I<br>I<br>S      | 37                |                     |                         |        |                  |                     |                   |                       |                                             |
| to subrounded sand an                                                   | _                                                                                                                          |                                         | 27            | D<br>D           | 27                |                     | 7                       | 39     | 14               | 24                  | 115               | 2                     | 446                                         |
|                                                                         | ight brownish gray (10YR<br>(7.5YR 4/6); moist to wet;<br>nd                                                               | SM                                      | 28<br>29      | S<br>1<br>1<br>S | 16                |                     |                         | •      |                  |                     | •                 |                       |                                             |
|                                                                         |                                                                                                                            |                                         | 30            | D<br>D<br>S      | 31                |                     | 15                      |        | 19               | NP                  | 105               | 2                     | 446                                         |
| brown to brown (10YR                                                    | L with SAND: Dark grayish 5/3 to 4/3); moist to wet; subangular to subrounded                                              | GW                                      | 31            | I<br>I<br>S      | 50                |                     |                         |        |                  |                     |                   |                       |                                             |
| sand and gravel                                                         | subungular to subrounded                                                                                                   |                                         | 33            | D<br>D<br>S      | 55                |                     | 3                       |        | 8                | NP                  | 118               |                       |                                             |
|                                                                         |                                                                                                                            |                                         | 35            | . I              | 43                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                         |                                                                                                                            |                                         | 36<br>37      |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                         |                                                                                                                            |                                         | 38            | ·····            |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                         |                                                                                                                            |                                         | 39            | S<br> <br>  I    | 41                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                         | GEO-LOGIC AS                                                                                                               | l<br>SSOC                               |               | <u>L</u><br>S    |                   |                     | <u> </u>                |        |                  | P.A                 | <br>\GE:          | 2 of                  | · 3                                         |

| <b>DATE:</b> 8/31/2017                                                | LOG O                                                                                                                      | LOG OF EXPLORATORY DRILL HOLE rgan Hill Sewer Trunk, Phase 2 PROJECT N |                                              |        |                   |                     |                         |        |                  |                     |                      |                       |            |                            |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|----------------------------|
| PROJECT NAME:                                                         | Morgan Hill Sewer Trun                                                                                                     | k, Pha                                                                 | se 2                                         |        |                   |                     |                         | PROJ   | ECT N            | имві                | ER:                  | 20                    | 16.0       | 096                        |
| DRILL RIG: Mobile                                                     | B56, 140# downhole han                                                                                                     | nmer                                                                   | with                                         | wir    | e win             | ch                  |                         | LOGO   | GED B            | Y:                  | CSS                  |                       |            |                            |
| HOLE DIAMETER:                                                        | 8" hollow stem augers                                                                                                      |                                                                        |                                              |        |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                   | ±19                   | 7          |                            |
| SAMPLER:                                                              | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Of<br>S = Slough in sample | O SPT)                                                                 |                                              |        | GRO               | DUND                | WAT                     | ER DE  | PTH:             | Initia<br>Final     |                      | ±23 f                 | t          |                            |
|                                                                       | IPTION OF<br>MATERIALS                                                                                                     | SOIL TYPE                                                              | DEPTH<br>(ft)                                | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STEAIN (%) | UNCONFINED | COMPRESSIVE STRENGTH (psf) |
| WELL GRADED GRAVE                                                     | <b>L with SAND:</b> continued                                                                                              | GW                                                                     | 41                                           |        |                   |                     |                         |        |                  |                     |                      |                       |            |                            |
| CLAYEY SAND: Mottle<br>(10YR 6/2) and strong<br>to wet; dense to very | brown (7.5YR 4/6); moist                                                                                                   | SC                                                                     | 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49 | S      | 50                |                     |                         |        |                  |                     |                      |                       |            |                            |
| воттом ог                                                             | F HOLE = 50 Feet                                                                                                           |                                                                        | 50<br>51<br>52<br>53<br>54<br>55             |        | 39                |                     |                         |        |                  |                     |                      |                       |            |                            |
|                                                                       |                                                                                                                            |                                                                        | 56<br>57<br>58<br>59                         |        |                   |                     |                         |        |                  |                     |                      |                       |            |                            |

| DATE: 8/31/2017 LOG C                                                                                                                                | )F EXI    | PLOR                          | ΑT          | ORY I             | ORILL               | HOLI                    |        |                  |                     |                      | DH-                   | 17A        |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|----------------|
| PROJECT NAME: Morgan Hill Sewer Trur                                                                                                                 | nk, Pha   | ase 2                         |             |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:                  | 201                   | 6.009      | 96             |
| DRILL RIG: Mobile B53, 140# downhole har                                                                                                             | mmer      | with                          | wir         | e win             | ch                  |                         | LOGG   | GED B            | Y:                  | CSS                  |                       |            |                |
| HOLE DIAMETER: 8" hollow stem augers                                                                                                                 |           |                               |             |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                   | ±195                  | 1/2        |                |
| D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" O  S = Slough in sample                                  | D SPT)    |                               |             | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Final     |                      | 30 ft<br>             |            |                |
| DESCRIPTION OF EARTH MATERIALS                                                                                                                       | SOIL      | DEPTH<br>(ft)                 | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | STRENGTH (psf) |
| PAVEMENT (±4" AC over ±3" baserock)                                                                                                                  | <u> </u>  |                               |             |                   |                     |                         |        |                  |                     |                      |                       |            |                |
| ALLUVIUM: LEAN CLAY with SAND: Very dark gray (10YR 3/1); dry to moist; hard; fine sand;                                                             | CL        | 22                            | S           |                   |                     |                         |        |                  |                     |                      |                       |            |                |
| grades coarser with depth                                                                                                                            |           | 3                             | D<br>D      | 23                | >4.5                |                         | ·····  | 19               |                     | 110                  |                       |            |                |
| LEAN CLAY with SAND: Dark yellowish brown (10YR 4/4), moist, very stiff; with fine sand                                                              | CL        |                               | S<br>D      | 11                | 3.5<br>>4.5         |                         |        | 16               |                     | 108                  |                       |            |                |
| CLAYEY SAND: Mottled light brownish gray (10YR 6/2) and strong brown (7.5YR 4/6); moist; loose; fine sand                                            | SC        | 9 10                          | S<br>I<br>I | 9                 |                     |                         |        |                  |                     |                      |                       |            |                |
| CLAYEY GRAVEL with SAND and CLAYEY SAND with GRAVEL: Brown (10YR 4/3), moist; medium dense; fine to coarse, subangular to subrounded sand and gravel | GC/<br>SC | 11 12 13 14 15 16 17 18 19 20 | S   1   1   | 23                |                     |                         |        | 5                |                     |                      |                       |            |                |
| GEO-LOGIC A                                                                                                                                          | SSOC      | IATE                          | <br>S       |                   |                     |                         | ]      | I                | PA                  | GE:                  | 1 o                   | f 3        |                |

| <b>DATE:</b> 8/31/2017                                                                     | LOG O                                                                                                                      | F EXF     | PLOR           | ΑТ                    | ORY               | DRILL               | HOLI                    | E      |                  |                     |                      | DH-                   | 17A                                         |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                              | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ise 2          |                       |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B                                                                        | 53, 140# downhole han                                                                                                      | nmer      | with           | wir                   | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                                             | 8" hollow stem augers                                                                                                      |           |                |                       |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                   | ±195                  | 1/2                                         |
| SAMPLER:                                                                                   | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | O SPT)    |                |                       | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      | 30 ft<br>             |                                             |
|                                                                                            | PTION OF<br>MATERIALS                                                                                                      | SOIL      | DEPTH<br>(ft)  | SAMPLE                | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY GRAVEL with SA<br>SAND with GRAVEL: cor                                             |                                                                                                                            | GC/<br>SC | 21             |                       |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                            | AVEL: Dark grayish brown (4/3); moist to wet; dense parse, subangular to                                                   | SC        | 22<br>23<br>24 | S<br>I                | 52                |                     |                         |        | 8                |                     |                      |                       |                                             |
|                                                                                            |                                                                                                                            |           | 25<br>26       | S<br> <br> <br>       | 57                |                     |                         |        |                  |                     |                      |                       |                                             |
| brown to brown (10YR 5                                                                     | with SAND: Dark grayish 5/3 to 4/3); moist to wet; ubangular to subrounded                                                 | GW        | 27<br>28       | S<br>D<br>S<br>I      | 61<br>42          | DS                  | 4                       | 35     | 9<br>8           | 20                  | 115<br>110           |                       |                                             |
| Dark grayish brown (10)                                                                    | with GRAVEL and SILT:<br>YR 5/3); moist to wet;<br>ubangular to subrounded                                                 | SP-<br>SM | 29<br>30<br>31 | S<br>D<br>D<br>S      | 61                |                     | 9                       |        | 14               | NP                  | 111                  |                       |                                             |
| WELL GRADED GRAVEL Dark grayish brown to b moist to wet; dense; fin to subrounded sand and | e to coarse, subangular                                                                                                    | GW-<br>GM | 32<br>33<br>34 | I<br>S<br>D<br>S<br>I | 51<br>59<br>45    |                     | 7                       |        | 12               |                     | 124                  |                       |                                             |
|                                                                                            |                                                                                                                            |           | 35<br>36       | <b>!</b>              |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                            |                                                                                                                            |           | 37             |                       |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                            |                                                                                                                            |           | 38             | S                     | 45                |                     |                         |        |                  |                     |                      | •                     |                                             |
|                                                                                            |                                                                                                                            |           | 40             | ı.                    | 45                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                                            | GEO-LOGIC AS                                                                                                               | ssoc      | IATE           | S                     |                   |                     |                         |        |                  | PA                  | AGE:                 | 2 o                   | f 3                                         |

| <b>DATE:</b> 8/31/2017      | LOG                                                                                                                       | OF EXE                                  | PLOR          | ΑT        | ORY       | ' DI | RILL                | HOL                     | E      |       |                     |                      | DH-                   | 17A                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|-----------|-----------|------|---------------------|-------------------------|--------|-------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:               | Morgan Hill Sewer Trur                                                                                                    | nk, Pha                                 | se 2          |           |           |      |                     |                         | PROJ   | ECT N | IUMB                | ER:                  | 201                   | 6.0096                                      |
| DRILL RIG: Mobile           | B53, 140# downhole ha                                                                                                     | mmer                                    | with          | wir       | e wi      | nch  | า                   |                         | LOGO   | SED B | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:              | 8" hollow stem augers                                                                                                     |                                         |               |           |           |      |                     |                         | HOLE   | ELEV  | ΆΤΙΟΙ               | N:                   | ±195                  | 1/2                                         |
| SAMPLER:                    | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" C<br>S = Slough in sample | D SPT)                                  |               |           | GF        | ROL  | JND                 | WAT                     | ER DE  | РТН:  | Initi:<br>Fina      |                      | 30 ft<br>             |                                             |
|                             | EIPTION OF<br>MATERIALS                                                                                                   | SOIL                                    | DEPTH<br>(ft) | SAMPLE    | BLOWS PER | 1007 | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| WELL GRADED GRAVE continued | L with SAND and SILT:                                                                                                     | GW-<br>GM                               | -41           |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 42            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 43            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
| very dense                  |                                                                                                                           |                                         |               |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           | 45                                      |               |           |           |      |                     | 0                       |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 46            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           | *************************************** | 47            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 48            | S         |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 49            | <br> <br> | 66        |      |                     |                         |        |       |                     |                      |                       |                                             |
| воттом о                    | F HOLE = 50 Feet                                                                                                          |                                         | 51            |           |           |      |                     | 0                       |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 52            |           | ·····     |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | -53-          |           | ·         |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 54            |           | ·         |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 55            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 56            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 57            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | - 58          |           |           |      |                     | 0                       |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 59            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             |                                                                                                                           |                                         | 60            |           |           |      |                     |                         |        |       |                     |                      |                       |                                             |
|                             | GEO-LOGIC A                                                                                                               | SSOC                                    | IATE          | S         |           |      |                     |                         |        |       | P/                  | AGE:                 | 3 o                   | f 3                                         |

| <b>DATE:</b> 8/31/2017 | LOG O                                                                                                                      | F EXI     | PLOR           | ΑT          | ORY I             | DRILL               | HOLE                    | •      |                  |                     |                      | DH                    | - 18       | A                             |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|------------|-------------------------------|
| PROJECT NAME:          | Morgan Hill Sewer Trun                                                                                                     | k, Pha    | ase 2          |             |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:                  | 20                    | 16.0       | 096                           |
| DRILL RIG: Mobile      | B56, 140# downhole han                                                                                                     | nmer      | with           | wir         | e win             | ch                  |                         | LOGG   | SED B            | Y:                  | CSS                  |                       |            |                               |
| HOLE DIAMETER:         | 8" hollow stem augers                                                                                                      |           |                |             |                   |                     |                         | HOLE   | ELEV             | ATION               | ۷:                   | ±19                   | 5          |                               |
| SAMPLER:               | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" Of<br>S = Slough in sample | D SPT)    | Ī              |             | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                      |                       |            |                               |
|                        | RIPTION OF<br>MATERIALS                                                                                                    | SOIL      | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
|                        | AN CLAY: Dark brown d; with fine to medium,                                                                                | CL        | 1<br>2         | S<br>D<br>D | 15                | >4.5                |                         |        | 18               |                     | 112                  |                       |            |                               |
| with SAND: Grayish b   | RAVEL to CLAYEY GRAVEL<br>rown to brown (10YR 5/2<br>m dense; fine to coarse,<br>nded sand and gravel                      | SC/<br>GC | 5<br>6         | S<br>D      | 32                |                     |                         |        | 9                |                     | 118                  |                       |            |                               |
|                        |                                                                                                                            |           | 9<br>10<br>11  | S<br>I<br>I | 26                |                     |                         |        |                  |                     |                      |                       |            |                               |
| dark grayish brown (   | 10YR 4/2)                                                                                                                  |           | 12<br>13<br>14 | S           | 24                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                        |                                                                                                                            |           | 15<br>16<br>17 |             |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
| dense                  | BORING = 20 feet                                                                                                           |           | 18<br>19       | S           | 41                |                     |                         |        |                  |                     |                      |                       |            |                               |
|                        | rater Encountered                                                                                                          |           | 20             | I!          |                   |                     |                         |        |                  |                     |                      |                       |            |                               |
|                        | GEO-LOGIC A                                                                                                                | ssoc      | IATE           | S           |                   |                     |                         |        |                  | PΑ                  | GE:                  | 1 (                   | of 1       |                               |

| <b>DATE:</b> 9/6/2017                                                 | LOG O                                                                                                                      | LOG OF EXPLORATORY DRILL HOLE |               |                 |                   |                     |                         |        |                  |                     |                   | DH-                   | 19A                                         |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-----------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                         | Morgan Hill Sewer Trun                                                                                                     | k, Pha                        | ase 2         |                 |                   |                     |                         | PROJ   | ECT N            | UMBI                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile                                                     | B53, 140# downhole han                                                                                                     | nmer                          | with          | wir             | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                                        | 8" hollow stem augers                                                                                                      |                               |               |                 |                   |                     |                         | HOLE   | ELEV             | ATIO                | N:                | ±193                  |                                             |
| SAMPLER:                                                              | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | SPT)                          |               |                 | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                   |                       |                                             |
|                                                                       | IPTION OF<br>MATERIALS                                                                                                     | SOIL TYPE                     | DEPTH<br>(ft) | SAMPLE          | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
|                                                                       | AND: Very dark grayish ist; medium dense; fine to                                                                          | SC                            | 1<br>23       | S<br>D<br>D     | 13                |                     |                         |        | 12               |                     | 115               |                       |                                             |
| CLAYEY GRAVEL with 3/3); moist; medium dangular to subrounded cobbles | GC                                                                                                                         |                               | S<br>D        | 30              |                   |                     |                         | 6      |                  | 122                 |                   |                       |                                             |
|                                                                       |                                                                                                                            |                               | 9 10          | S<br>I<br>I     | 23                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                       |                                                                                                                            |                               | 11<br>12      |                 |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| at 15', drilling advanc                                               | ced ~1.5 ft in 5 mins;                                                                                                     |                               | 13<br>14      | S               | 40                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                       |                                                                                                                            |                               | 15<br>16      | I               |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| medium dense                                                          |                                                                                                                            |                               | 17<br>18      | S<br> <br> <br> | 28                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                       | HOLE = 18 Feet<br>ater Encountered                                                                                         |                               | 19            |                 |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                       | GEO-LOGIC AS                                                                                                               |                               | 20            |                 |                   |                     |                         |        |                  |                     | AGE:              | 1 01                  |                                             |

| <b>DATE:</b> 9/5/2017                                                    | LOG O                                                                                                                      | LOG OF EXPLORATORY DRILL HOLE |               |             |                   |                     |                         |        |                  |                     |                      |                       | 20A                                         |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|----------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                            | Morgan Hill Sewer Trunl                                                                                                    | k, Pha                        | se 2          |             |                   |                     |                         | PROJ   | ECT N            | IUMB                | ER:                  | 201                   | 5.0096                                      |
| DRILL RIG: Mobile E                                                      | 356, 140# downhole ham                                                                                                     | nmer                          | with          | wir         | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS                  |                       |                                             |
| HOLE DIAMETER:                                                           | 8" hollow stem augers                                                                                                      |                               |               |             |                   |                     |                         | HOLE   | ELEV             | OITA                | N:                   | ±193                  |                                             |
| SAMPLER:                                                                 | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | O SPT)                        |               |             | GRO               | DUND                | WATI                    | ER DE  | PTH:             | Initia<br>Fina      |                      | 31.5 ft<br>           |                                             |
|                                                                          | PTION OF<br>MATERIALS                                                                                                      | SOIL                          | DEPTH<br>(ft) | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY<br>(pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±2" AC over                                                    | er ±6" baserock)                                                                                                           |                               |               |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| ALLUVIUM: LEAN CLAY<br>gray (10YR 2/2); moist;                           | •                                                                                                                          | CL                            | 2             | S           | 17                | 4.5                 |                         |        |                  |                     |                      |                       |                                             |
| CLAYEY GRAVEL with S<br>(10YR 4/1); moist; medi<br>angular to subrounded | ium dense to dense; fine                                                                                                   | GC                            | 3             | D           | 1/                |                     |                         |        | 7                |                     | 106                  |                       |                                             |
| coarse sand                                                              |                                                                                                                            |                               | 5             | S<br>D      | 37                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          |                                                                                                                            |                               | ····7····     | D           |                   |                     |                         |        | 4                |                     | 106                  |                       |                                             |
|                                                                          |                                                                                                                            |                               | 8             | S           | 35                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          |                                                                                                                            |                               | 10            |             | 33                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          |                                                                                                                            |                               | 12            |             |                   | ·                   |                         |        |                  |                     |                      |                       |                                             |
| 3/3); moist; dense; fine                                                 | _                                                                                                                          | SC                            | 13            |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| subrounded sand; with                                                    | Tine gravei                                                                                                                |                               | 14            | S<br> -     | 33                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          |                                                                                                                            |                               | 15<br>16      |             |                   |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          | VEL with SAND and CLAY: ); moist; medium dense to ingular to subrounded                                                    | GP-<br>GC                     | 17            | S           |                   |                     |                         |        |                  |                     |                      |                       |                                             |
| gravel; with fine to coa                                                 | =                                                                                                                          |                               | 18<br>19      | D<br>D<br>S | 44                |                     | 11                      | 52     | 12               | 34                  | 113                  |                       |                                             |
|                                                                          |                                                                                                                            |                               | 20            | <br>        | 51                |                     |                         |        |                  |                     |                      |                       |                                             |
|                                                                          | GEO-LOGIC AS                                                                                                               | ssoc                          | IATE          | S           |                   |                     |                         |        |                  | P/                  | AGE:                 | 1 of                  | 3                                           |

| <b>DATE:</b> 9/5/2017                                                                                                                 | LOG O                                                                                                                      | F EXF        | PLOR          | ΑT               | ORY I             | DRILL               | HOLE                    | Ē      |                  |                     |                   | DH-                   | 20A                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME:                                                                                                                         | Morgan Hill Sewer Trun                                                                                                     | k, Pha       | ase 2         |                  |                   |                     |                         | PROJ   | ECT N            | UМВІ                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile E                                                                                                                   | B56, 140# downhole han                                                                                                     | nmer         | with          | wir              | e win             | ch                  |                         | LOGG   | ED B             | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER:                                                                                                                        | 8" hollow stem augers                                                                                                      |              |               |                  |                   |                     |                         | HOLE   | ELEV             | ATION               | N:                | ±193                  |                                             |
| SAMPLER:                                                                                                                              | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OI<br>S = Slough in sample | O SPT)       |               |                  | GRO               | DUND                | WATI                    | ER DEI | PTH:             | Initia<br>Final     |                   | 31.5 ft<br>           |                                             |
|                                                                                                                                       | PTION OF<br>MATERIALS                                                                                                      | SOIL<br>TYPE | DEPTH<br>(ft) | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
|                                                                                                                                       | <b>SAND:</b> Dark brown (7.5YR e, angular to subrounded rse sand                                                           | GC           | 21            | S<br>D<br>D<br>S | 55                |                     | 13                      | 46     | 11               | 30                  | 127               | 2                     | 1771                                        |
| POORLY GRADED SANI                                                                                                                    | <br>D with GRAVEL and CLAY:                                                                                                | SP-          | 22            | I<br>I<br>S      | 67                |                     |                         |        |                  |                     |                   |                       |                                             |
| Dark brown (7.5YR 3/3) coarse, angular to subrand cobbles                                                                             | SC                                                                                                                         | 24<br>25     | D<br>S<br>I   | 71<br>47         |                   | 9                   | 40                      | 11     | 24               | 121                 | 2                 | 936                   |                                             |
| POORLY GRADED GRAVEL with SAND and CLAY Dark brown (7.5YR 3/3); moist; dense; fine to coarse, angular to subrounded gravel; with fine |                                                                                                                            |              | 26<br>27      | S<br>D           | 57                |                     | 11                      | 28     | 8                | 14                  | 136               |                       |                                             |
| to coarse sand and cob                                                                                                                | bles                                                                                                                       |              | 28            | S<br>1<br>1      | 36                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                                                       |                                                                                                                            |              | 30<br>31      |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| LEAN CLAY: Mottled br<br>strong brown (7.5YR 4)                                                                                       |                                                                                                                            | CL           | 32            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                                                       |                                                                                                                            |              | 33            | S<br>D           | 15                | 1.25                |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                                                       |                                                                                                                            |              | 35            | D                |                   |                     |                         |        | 26               |                     | 90                |                       |                                             |
| CLAYEY GRAVEL with S<br>3/3); moist; medium de                                                                                        | ——————————————————————————————————————                                                                                     | GC           | 37            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| angular to subrounded<br>coarse sand                                                                                                  |                                                                                                                            |              | 39            | S                | 22                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                                                       | GEO-LOGIC AS                                                                                                               |              | 40            | D                |                   |                     |                         |        |                  |                     | \GE:              | 2 01                  |                                             |

| <b>DATE</b> : 9/5/2017 <b>LO</b>                                                                                  | LOG OF EXPLORATORY DRILL HOLE |               |        |                   |                     |                         |          |          |                     |                   |                       | 20A                                         |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--------|-------------------|---------------------|-------------------------|----------|----------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME: Morgan Hill Sewer 1                                                                                 | Trunk, Pha                    | se 2          |        |                   |                     |                         | PROJ     | ECT N    | <b>UM</b> BI        | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B56, 140# downhole                                                                              | hammer v                      | with          | wir    | e win             | ch                  |                         | LOGO     | SED B    | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER: 8" hollow stem aug                                                                                 | ers                           |               |        |                   |                     |                         | HOLE     | ELEV     | ATIO                | N:                | ±193                  |                                             |
| D = 3" OD, 2½" ID Split-spoo<br>X = 2½" OD, 2" ID Split-spoo<br>I = Standard Penetrometer<br>S = Slough in sample | on                            |               |        | GRO               | DUND                | WAT                     | ER DE    | PTH:     | Initia<br>Final     |                   | 31.5 f                | t                                           |
| DESCRIPTION OF EARTH MATERIALS                                                                                    | SOIL                          | DEPTH<br>(ft) | SAMPLE | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER    | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY GRAVEL with SAND: continued                                                                                | GC                            |               |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 41            |        |                   |                     |                         |          |          |                     | 0                 |                       |                                             |
|                                                                                                                   |                               | 42            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 43            | S      |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 44<br>45      | 1      | 38                |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 45<br>46      |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 40            |        |                   |                     |                         |          | 0        |                     |                   |                       |                                             |
| LEAN CLAY: Mottled brown (10YR 5/3) and strong brown (7.5YR 4/6); moist to wet; stiff                             | CL                            | 48            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
| , , , , , , , , , , , , , , , , , , , ,                                                                           |                               | 49<br>        | S      |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 50            | <br> - | 13                | 2<br>1.75           |                         |          |          |                     | •                 |                       |                                             |
|                                                                                                                   |                               | 51            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 52            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | -53           |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | -54           | S      |                   | ·····               |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 55            | D<br>D | 14                | 2<br>2.5            |                         |          | 25       |                     | 103               |                       |                                             |
|                                                                                                                   |                               | 56            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 57            |        |                   |                     |                         |          |          |                     | 0                 |                       |                                             |
|                                                                                                                   |                               | 58            |        |                   |                     |                         |          |          |                     |                   |                       |                                             |
|                                                                                                                   |                               | 59            | S<br>D |                   | 3.5                 |                         |          |          |                     |                   |                       |                                             |
| BOTTOM OF HOLE = 60 Feet                                                                                          |                               | 60            | D      | 24                | 2.75                |                         |          | 23       |                     | 107               |                       |                                             |
| GEO-LOGI                                                                                                          | C ASSOCI                      | ATE:          | ∟<br>S | <u> </u>          | <u> </u>            | <u> </u>                | <u> </u> | <u> </u> | P.A                 | GE:               | 3 of                  | 3                                           |

| <b>DATE:</b> 5/22/2018                                                                                                                        | LOG O                                                                                                                      | F EXI            | PLOR           | ΑT          | ORY               | DRILL               | HOLI                    | E      |       |                     |                   | DH-                   | 21A                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------|-------------------|---------------------|-------------------------|--------|-------|---------------------|-------------------|-----------------------|---------------------------|
| PROJECT NAME:                                                                                                                                 | Morgan Hill Sewer Trun                                                                                                     | k, Pha           | ase 2          |             |                   |                     |                         | PROJ   | ECT N | UMBI                | ER:               | 201                   | 6.0096                    |
| DRILL RIG: Mobile E                                                                                                                           | 353 140# automatic ham                                                                                                     | mer v            | v rods         | 5           |                   |                     |                         | LOGG   | SED B | Y:                  | CSS               |                       |                           |
| HOLE DIAMETER:                                                                                                                                | 8" hollow stem augers                                                                                                      |                  |                |             |                   |                     |                         | HOLE   | ELEV  | ATION               | N:                | ±191                  | 1/2                       |
| SAMPLER:                                                                                                                                      | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)             |                |             | GRO               | DUND                | WAT                     | ER DE  | PTH:  | Initia<br>Final     |                   | 30 ft<br>30 ft        |                           |
|                                                                                                                                               | IPTION OF<br>MATERIALS                                                                                                     | SOIL             | DEPTH<br>(ft)  | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE |
| FILL: FAT CLAY with SA with GRAVEL                                                                                                            | AND and CLAYEY SAND                                                                                                        | CH/<br>SC        | 11             | S           |                   |                     |                         |        | 7     |                     | 114               |                       |                           |
|                                                                                                                                               | with SAND: Black (10YR o hard; with mostly fine to                                                                         | СН               | 3              | D<br>D      | 23                |                     |                         |        |       |                     |                   |                       |                           |
| SANDY LEAN CLAY: Da<br>4/2) mottled with stro<br>moist; hard; with most                                                                       | CL                                                                                                                         | 4<br>5<br>6<br>7 | S<br>D         | 15          | 4.5+<br>4.5+      |                     |                         | 19     |       | 99                  |                   |                       |                           |
| POORLY GRADED SAND with GRAVEL and CLAY: Brown (7.5YR 4/4); moist; medium dense; fine to coarse, angular to subrounded sand; with fine gravel |                                                                                                                            |                  | 9 11           | S<br>D<br>D | 16                |                     |                         |        |       |                     |                   |                       |                           |
|                                                                                                                                               |                                                                                                                            |                  | 12<br>13<br>14 | S           |                   |                     |                         |        |       |                     |                   |                       |                           |
|                                                                                                                                               |                                                                                                                            |                  | 15<br>16       | 1           | 12                |                     | 11                      |        | 6     |                     |                   | -                     |                           |
|                                                                                                                                               |                                                                                                                            |                  | 17<br>18       | S<br>D      | 46                |                     |                         |        |       |                     |                   |                       |                           |
|                                                                                                                                               | (10YR 5/3) mottled with (6); moist to wet; loose;                                                                          | SC               | 19<br>20       | S<br>1<br>1 | 9                 |                     | 32                      |        | 15    |                     |                   |                       |                           |
|                                                                                                                                               | GEO-LOGIC AS                                                                                                               | ssoc             | IATE           | S           |                   |                     |                         |        |       | PΑ                  | GE:               | 1 o                   | f 3                       |

| <b>DATE</b> : 5/22/2018                                                                                  | LOG OF EXPLORATORY DRILL HOLE                                                                                     |          |               |                  |                   |                     |                         |        |                  |                     |                   | DH-                   | 21A                                         |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------|---------------|------------------|-------------------|---------------------|-------------------------|--------|------------------|---------------------|-------------------|-----------------------|---------------------------------------------|
| PROJECT NAME: N                                                                                          | Norgan Hill Sewer Trun                                                                                            | k, Pha   | se 2          |                  |                   |                     |                         | PROJ   | ECT N            | имві                | ER:               | 201                   | 6.0096                                      |
| DRILL RIG: Mobile B5                                                                                     | 3 140# automatic ham                                                                                              | mer v    | v rods        | 5                |                   |                     |                         | LOGG   | ED B             | Y:                  | CSS               |                       |                                             |
| HOLE DIAMETER: 8                                                                                         | " hollow stem augers                                                                                              |          |               |                  |                   |                     |                         | HOLE   | ELEV             | ATIO                | ۷:                | ±191                  | 1/2                                         |
| SAMPLER: X                                                                                               | = 3" OD, 2½" ID Split-spoon<br>= 2½" OD, 2" ID Split-spoon<br>= Standard Penetrometer (2" O<br>= Slough in sample | D SPT)   |               |                  | GRO               | DUND                | WATI                    | ER DEI | РТН:             | Initia<br>Final     |                   | 30 ft<br>30 ft        |                                             |
| DESCRIP<br>EARTH MA                                                                                      |                                                                                                                   | SOIL     | DEPTH<br>(ft) | SAMPLE           | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE<br>STRAIN (%) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH (psf) |
| CLAYEY GRAVEL with SA<br>(10YR 5/4); moist to wet;<br>dense; fine to coarse, and<br>sand and gravel      | ; medium dense to                                                                                                 | GC       | 21            | S<br>D<br>D<br>S | 30                |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                          | _                                                                                                                 |          | 23            | S                |                   |                     | 14                      | 0      | 12               |                     |                   |                       |                                             |
| TXCU test, see Appendix<br>SANDY LEAN CLAY to CL<br>brown (10YR 5/2) mottle<br>(7.5YR 4/6); moist to wet | CL/<br>SC                                                                                                         | 24<br>25 | D<br>S<br>I   | 11<br>8          |                   |                     |                         | 13     |                  | 124                 |                   | TXCU                  |                                             |
| medium dense sand; with                                                                                  |                                                                                                                   | 26<br>27 | S<br>D<br>D   | 19               | 1.25<br>1.75      |                     |                         | 20     |                  | 110                 | 6                 | 1606                  |                                             |
| CLAYEY SAND: Brown (10 dense; fine to coarse san                                                         |                                                                                                                   | SC       | 28            | S<br>I<br>I      | 17                |                     | 15                      |        | 15               |                     |                   |                       |                                             |
|                                                                                                          |                                                                                                                   |          | 30            |                  |                   | 0                   |                         | o      |                  |                     | ·····             |                       |                                             |
|                                                                                                          |                                                                                                                   |          | 31            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                          |                                                                                                                   |          | 32            |                  |                   | 0                   |                         | ······ |                  |                     | ·····             |                       |                                             |
|                                                                                                          |                                                                                                                   |          | -33           |                  |                   | 0                   |                         | •      |                  |                     | 0                 |                       |                                             |
| fine to coarse subangula sand                                                                            | ar to subrounded                                                                                                  |          | 34            | D<br>D           | 81                |                     |                         |        | 9                |                     | 140               |                       |                                             |
|                                                                                                          |                                                                                                                   |          | 36            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                          |                                                                                                                   |          | 37            |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                          |                                                                                                                   | - 38     |               |                  |                   |                     |                         |        |                  |                     |                   |                       |                                             |
| see next page                                                                                            |                                                                                                                   |          | 39<br>40      | S<br>I<br>I      | 6                 |                     |                         |        |                  |                     |                   |                       |                                             |
|                                                                                                          | GEO-LOGIC A                                                                                                       | SSOC     |               | <u>L</u><br>S    |                   |                     |                         |        |                  | P.A                 | GE:               | 2 of                  | l<br>f 3                                    |

| <b>DATE:</b> 5/22/2018                                                | LOG O                                                                                                                      | F EXF    | PLOR          | ΑT          | ORY       | <b>′</b> [ | RILL                | ноі             | LE         |        |       |            |                |             |       | DH                     | 1- 2       | 21A         |                |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|-----------|------------|---------------------|-----------------|------------|--------|-------|------------|----------------|-------------|-------|------------------------|------------|-------------|----------------|
| PROJECT NAME:                                                         | Morgan Hill Sewer Trun                                                                                                     | k, Pha   | se 2          |             |           |            |                     |                 | F          | PROJ   | ECT I | ΝU         | МВ             | ER:         |       | 20                     | 16         | .009        | 6              |
| DRILL RIG: Mobile I                                                   | 353 140# automatic hami                                                                                                    | mer v    | v rods        | 5           |           |            |                     |                 | l          | LOGG   | ED E  | BY:        |                | CSS         | ŝ     |                        |            |             |                |
| HOLE DIAMETER:                                                        | 8" hollow stem augers                                                                                                      |          |               |             |           |            |                     |                 | ŀ          | HOLE   | ELE   | <b>/</b> A | TIOI           | N:          |       | ±19                    | 1½         | :           |                |
| SAMPLER:                                                              | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" OD<br>S = Slough in sample | SPT)     |               |             | GI        | RO         | UND                 | WA <sup>.</sup> | TEI        | R DEI  | PTH:  |            | Initia<br>Fina |             |       | 30 ft<br>30 ft         |            |             |                |
|                                                                       | IPTION OF<br>MATERIALS                                                                                                     | SOIL     | DEPTH<br>(ft) | SAMPLE      | BLOWS PER | FOOL       | POCKET PEN<br>(tsf) | % PASSING       | #ZUU SIEVE | LIQUID | WATER | XHIOTHUS A | PLASTICITY     | DRY DENSITY | (bct) | FAILURE<br>STRAIN (9/) | STRAIN (%) | COMPRESSIVE | STRENGTH (psf) |
|                                                                       | OYR 5/2) mottled with<br>/6); moist to wet; firm to                                                                        | CL       | -41           |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
| stiff                                                                 |                                                                                                                            |          | 42            |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
|                                                                       |                                                                                                                            |          | 43            |             |           |            |                     | ***********     |            |        |       |            |                |             |       |                        |            |             |                |
| interbedded CLAY, SII<br>SAND with GRAVEL: N<br>5/3) and strong brown |                                                                                                                            | 44<br>45 | S<br>I<br>I   | 35          |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
| wet; stiff                                                            |                                                                                                                            |          | 46            |             | 0         |            |                     |                 |            |        |       |            |                | • 0         |       |                        |            |             |                |
| -                                                                     | 2) mottled with strong                                                                                                     | CL       | 47<br>48      |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
| brown (7.5YR 4/6); mc                                                 | oist to wet; stiff to very stiff                                                                                           |          | 49<br>50      | S<br>1<br>1 | 17        |            | 3.25<br>3.5         |                 |            |        |       |            |                |             |       |                        |            |             |                |
|                                                                       |                                                                                                                            |          | 51            |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
|                                                                       |                                                                                                                            |          | -52           |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
|                                                                       |                                                                                                                            |          | 53            | _           |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
| very stiff to hard                                                    |                                                                                                                            |          | 54<br>55      | S<br>D<br>D | 29        |            | 4.5+<br>4.5+        |                 |            |        |       |            |                |             |       |                        |            |             |                |
| LEAN CLAY to LEAN CL<br>gray (10YR 3/1); wet; s                       | AY with SAND: Very dark stiff to very stiff                                                                                | CL       | 56            |             | 0         |            |                     |                 |            |        |       |            |                | • 0         |       |                        | ·*****     |             |                |
|                                                                       |                                                                                                                            |          | 57            |             |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
|                                                                       |                                                                                                                            |          | 58<br>59      | S           |           |            |                     |                 |            |        |       |            |                |             |       |                        |            |             |                |
| ROTTOM O                                                              | F HOLE = 60 Feet                                                                                                           |          | 60            | D<br>D      | 29        |            | 3.25<br>1.5         |                 |            |        |       |            |                |             |       |                        |            |             |                |
| BOTTOWIO                                                              | GEO-LOGIC AS                                                                                                               |          | I <u>o</u> te | <br>S       | <u> </u>  |            |                     |                 | _1_        |        |       | $\dagger$  | D/             | \GE:        | . 1   | 2 .                    | of         | 3           |                |

| S = Slough in sample                                                                                                                                           | ner w     | ith v                        |                                                            | GRO               |                     | WATE                    | LOGG            | ELEV                                    |                     | CSS<br>N:         | ±19     |            | .00        | 96             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|------------------------------------------------------------|-------------------|---------------------|-------------------------|-----------------|-----------------------------------------|---------------------|-------------------|---------|------------|------------|----------------|
| HOLE DIAMETER:  8" hollow stem augers  D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" OD SP  S = Slough in sample | PT)       |                              |                                                            | GRC               |                     | WATE                    | HOLE            | ELEV                                    | ATION<br>Initia     | N:                | ±19     | 91         |            |                |
| D = 3" OD, 2½" ID Split-spoon  X = 2½" OD, 2" ID Split-spoon  I = Standard Penetrometer (2" OD SP  S = Slough in sample                                        |           | ft)                          | TE .                                                       |                   | OUND                | WATE                    |                 |                                         | Initia              | nl:               | ±19     | 91         |            |                |
| SAMPLER: X = 2½" OD, 2" ID Split-spoon I = Standard Penetrometer (2" OD SP S = Slough in sample                                                                |           | ft)                          | TE .                                                       |                   | UND                 | WATI                    | R DEI           | PTH:                                    |                     |                   |         |            |            |                |
| DESCRIPTION OF EARTH MATERIALS                                                                                                                                 | SOIL TYPE | ft)                          | I = Standard Penetrometer (2" OD SPT) S = Slough in sample |                   |                     |                         |                 |                                         |                     | •                 |         |            |            |                |
|                                                                                                                                                                |           | 7                            | SAMPLE                                                     | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID<br>LIMIT | WATER<br>CONTENT                        | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE | STRAIN (%) | UNCONFINED | STRENGTH (psf) |
| 4/4); dry; stiff to very stiff clay; with fine sand  CLAYEY GRAVEL with SAND: Brown (7.5YR 4/4); moist; dense; fine to coarse, subangular to                   | GC        | 6<br>7<br>8<br>9<br>10<br>11 | S D D                                                      | 18                |                     |                         |                 | 13                                      |                     | 97                |         |            |            |                |
| BOTTOM OF BORING = 20 feet                                                                                                                                     |           | 15<br>16<br>17<br>18         | S                                                          | <b>37 49</b>      |                     |                         |                 |                                         |                     |                   |         |            |            |                |
| No Groundwater Encountered  GEO-LOGIC ASS                                                                                                                      |           | 20                           |                                                            |                   |                     |                         |                 | *************************************** |                     | GE:               |         | of         |            |                |

| <b>DATE:</b> 5/22/2018                                                                   | rog (                                                                                                                     |           |                   |             | DH                | I- 23               | 3A                      |          |                  |                     |                   |         |            |                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------|-------------------|---------------------|-------------------------|----------|------------------|---------------------|-------------------|---------|------------|-------------------------------|
| PROJECT NAME:                                                                            | Morgan Hill Sewer Trur                                                                                                    | nk, Pha   | ase 2             |             |                   |                     |                         | PROJ     | ECT N            | UMBI                | R:                | 20      | 16.0       | 096                           |
| DRILL RIG: Mobile                                                                        | B53, 140# downhole ha                                                                                                     | mmer      | with              | wir         | e win             | ch                  |                         | LOGG     | SED B            | Y:                  | CSS               |         |            |                               |
| HOLE DIAMETER:                                                                           | 8" hollow stem augers                                                                                                     |           |                   |             |                   |                     |                         | HOLE     | ELEV             | ATION               | ۷:                | ±18     | 8          |                               |
| SAMPLER:                                                                                 | D = 3" OD, 2½" ID Split-spoon<br>X = 2½" OD, 2" ID Split-spoon<br>I = Standard Penetrometer (2" C<br>S = Slough in sample | D SPT)    |                   |             | GRO               | DUND                | WATI                    | ER DEI   | PTH:             | Initia<br>Final     |                   |         |            |                               |
|                                                                                          | IPTION OF<br>MATERIALS                                                                                                    | SOIL      | DEPTH<br>(ft)     | SAMPLE      | BLOWS PER<br>FOOT | POCKET PEN<br>(tsf) | % PASSING<br>#200 SIEVE | LIQUID   | WATER<br>CONTENT | PLASTICITY<br>INDEX | DRY DENSITY (pcf) | FAILURE | UNCONFINED | COMPRESSIVE<br>STRENGTH (psf) |
| PAVEMENT (±5" AC ov                                                                      | er ±12" baserock)                                                                                                         |           | 1                 |             |                   |                     |                         |          |                  |                     |                   |         |            |                               |
| ALLUVIUM: LEAN CLAY<br>(10YR 4/2); moist; hard                                           |                                                                                                                           | CL        | 2 3               | S<br>D<br>D | 19                | 4.5<br>4.25         |                         |          | 19               |                     | 110               |         |            |                               |
| LEAN CLAY with SAND<br>(10YR 4/2) mottled wit<br>4/6); moist; very stiff;<br>medium sand | th strong brown (7.5YR                                                                                                    | CL        | - 4<br>- 5<br>- 6 | S<br>D      | 17                | 3.0                 | 67                      |          | 17               |                     | 104               |         |            |                               |
| Brown (7.5YR 4/3); mo                                                                    | with GRAVEL and CLAY: sist; medium dense to angular to subrounded                                                         | SW-<br>SC |                   | S<br>D<br>D | 42                |                     |                         |          | 7                |                     |                   |         |            |                               |
| medium dense                                                                             |                                                                                                                           |           | 12<br>13<br>14    | S           | 21                |                     |                         |          |                  |                     |                   |         |            |                               |
|                                                                                          |                                                                                                                           |           | 15<br>16<br>17    | . I         |                   |                     |                         |          |                  |                     |                   |         |            |                               |
| modium dones to do-                                                                      | 50                                                                                                                        |           | 18<br>19          | S           |                   |                     |                         |          |                  |                     |                   |         |            |                               |
|                                                                                          | se<br>BORING = 20 feet<br>ater Encountered                                                                                |           | 20                | <br>        | 31                |                     |                         |          |                  |                     |                   |         |            |                               |
|                                                                                          | GEO-LOGIC A                                                                                                               | SSOC      | IATE              | <br>S       |                   |                     |                         | <u> </u> | <u> </u>         | PA                  | GE:               | 1       | of 1       | _                             |

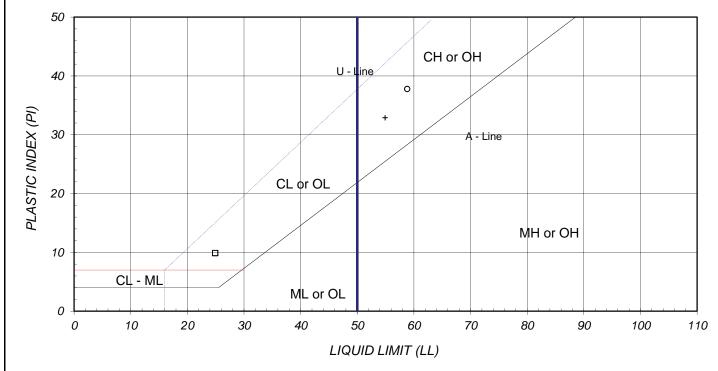
#### **APPENDIX B**

#### LABORATORY TEST RESULTS

| Figure B-1           | Atterberg Limits Report (Phase 1 Alignment)                     |
|----------------------|-----------------------------------------------------------------|
| Figures B-2 & B-3    | Unconfined Compressive Strength (Phase 1 Alignment)             |
| Figures B-4 to B-16  | Particle Size Analysis (Phase 1 Alignment)                      |
| Figure B-17 to B-19  | Atterberg Limits Report (Phase 2 Alignment)                     |
| Figures B-20 to B-33 | Unconfined Compressive Strength (Phase 2 Alignment)             |
| Figure B-34          | Consolidated Undrained Triaxial Compression (Phase 2 Alignment) |
| Figures B-35 to B-40 | Direct Shear Report (Phase 2 Alignment)                         |
| Figures B-41 to B-79 | Particle Size Analysis (Phase 2 Alignment)                      |
| Figure B-80          | Hydraulic Conductivity Report (Phase 2 Alignment)               |






Summary Report ASTM D-4318

Project No: Lab Log No.: 4141 Pacific Geotechnical Engineering 2016.0096.100 Project Name: Report Date: Morgan Hill Sewer Trunk December 23, 2016

|        | 708    | SAMPLE         | SAMPLE                            | LIQUID | PLASTIC | PLASTIC |
|--------|--------|----------------|-----------------------------------|--------|---------|---------|
| LSN    | SYMBOL | IDENTIFICATION | DESCRIPTION                       | LIMIT  | LIMIT   | INDEX   |
| 4141A  |        | DH1 @ 2.5'     | Brown Sandy Lean Clay with Gravel | 25     | 15      | 10      |
| 4141Q  | 0      | DH7 @ 2.5'     | Dark Brown Fat Clay               | 59     | 21      | 38      |
| 4141AO | +      | DH16 @ 2.5'    | Brown Fat Clay                    | 55     | 22      | 33      |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |
|        |        |                |                                   |        |         |         |

<sup>\*</sup> Visual Classification based on ASTM D-2488

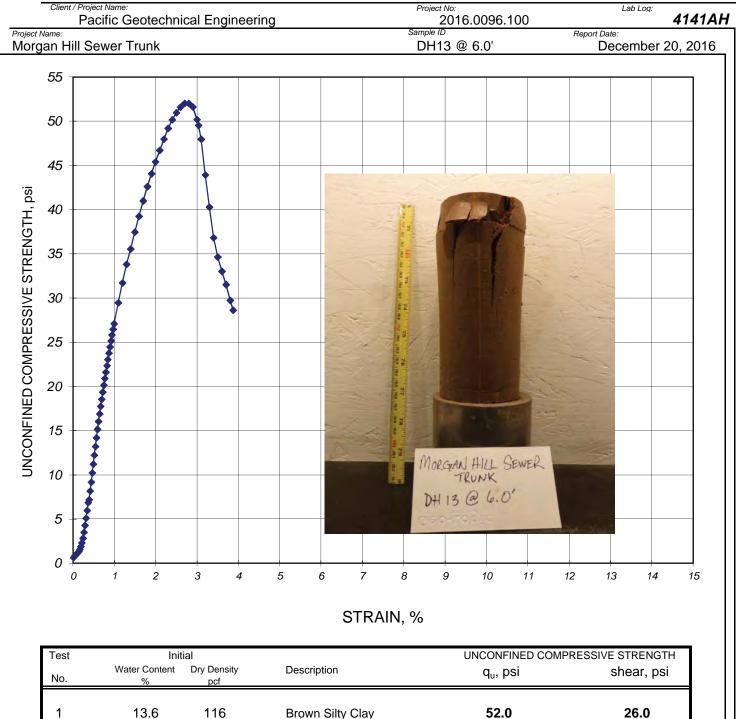
# **PLASTICITY CHART**



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Pacific Geotech \ 2016.0096.100Rrint Date: Entered By: Reviewed By: JL

4141 12/28/16 DCN: PI-rp (rev. 9/18/12)


LLN:

KH



#### **UNCONFINED COMPRESSIVE** STRENGTH

#### **ASTM D-2166**

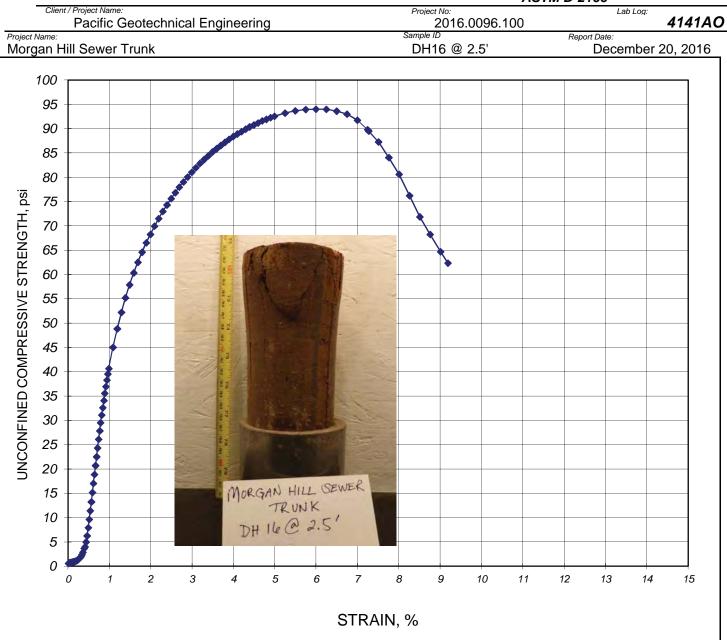


NOTE:

Sample Diameter = 2.4 in. Strain Rate: 0.030 Sample Height Strain %: 0.50 6.0 in. Height / Dia. Ratio = 2.5 Test Date: December 19, 2016

\* Water content determined on total sample after test.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.


in./ min.

% / min.



#### **UNCONFINED COMPRESSIVE** STRENGTH

#### **ASTM D-2166**

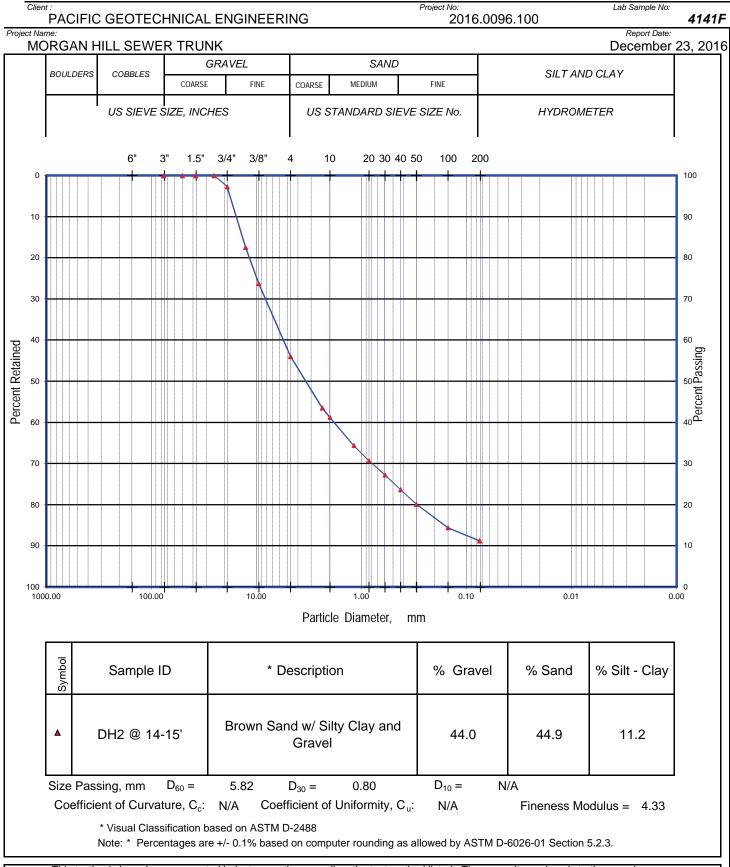


| Test<br>No. | Init<br>Water Content<br>% | ial<br>Dry Density<br>pcf | Description    | UNCONFINED COMP<br>q <sub>u</sub> , psi | RESSIVE STRENGTH<br>shear, psi |
|-------------|----------------------------|---------------------------|----------------|-----------------------------------------|--------------------------------|
| 1           | 20.3                       | 106                       | Brown Fat Clay | 94.0                                    | 47.0                           |
|             |                            |                           |                |                                         |                                |

NOTE:

Sample Diameter = 2.4 in. Strain Rate: 0.030 in./ min. Sample Height = 5.2 in. Strain %: 0.50 % / min. Height / Dia. Ratio = 2.2 Test Date: December 19, 2016

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

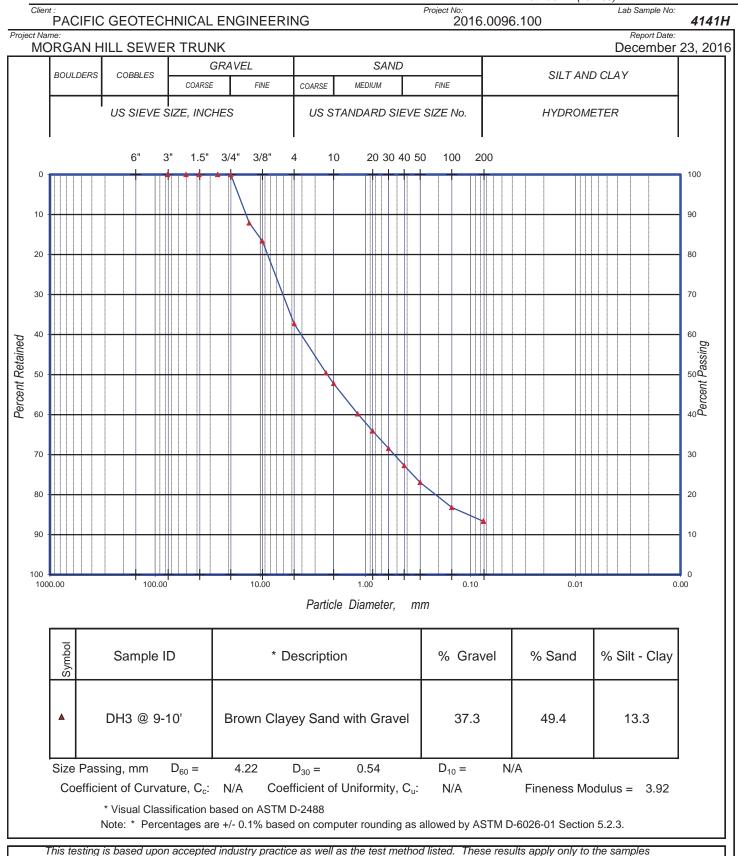

KH

# Geo-Logic

# PARTICLE SIZE ANALYSIS

Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the sample supplied and tested for the above referenced job.

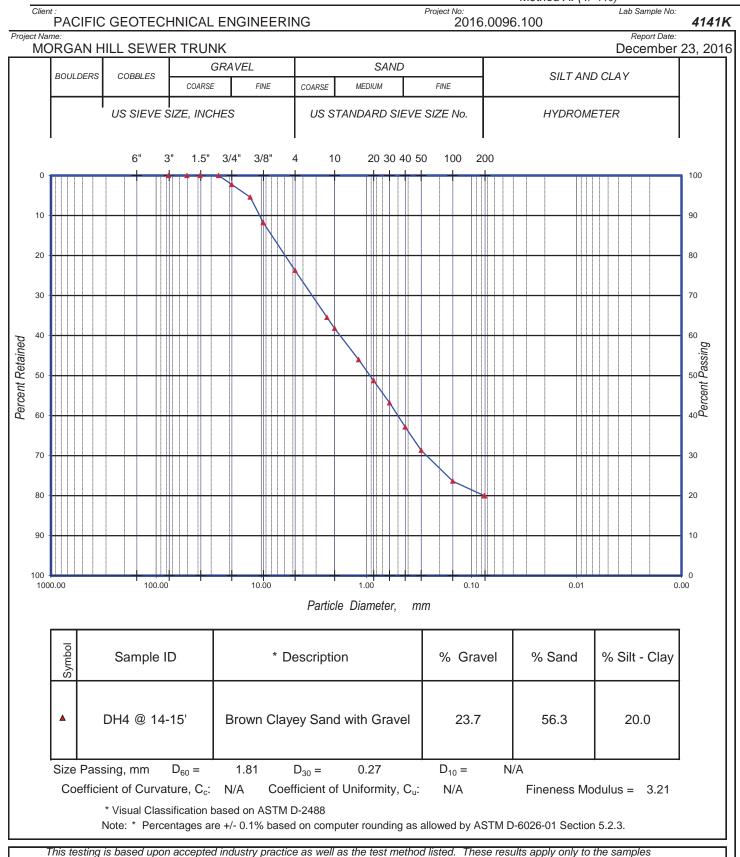


#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job.


DCN: MA-rp (rev. 6/27/12)

JL



#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

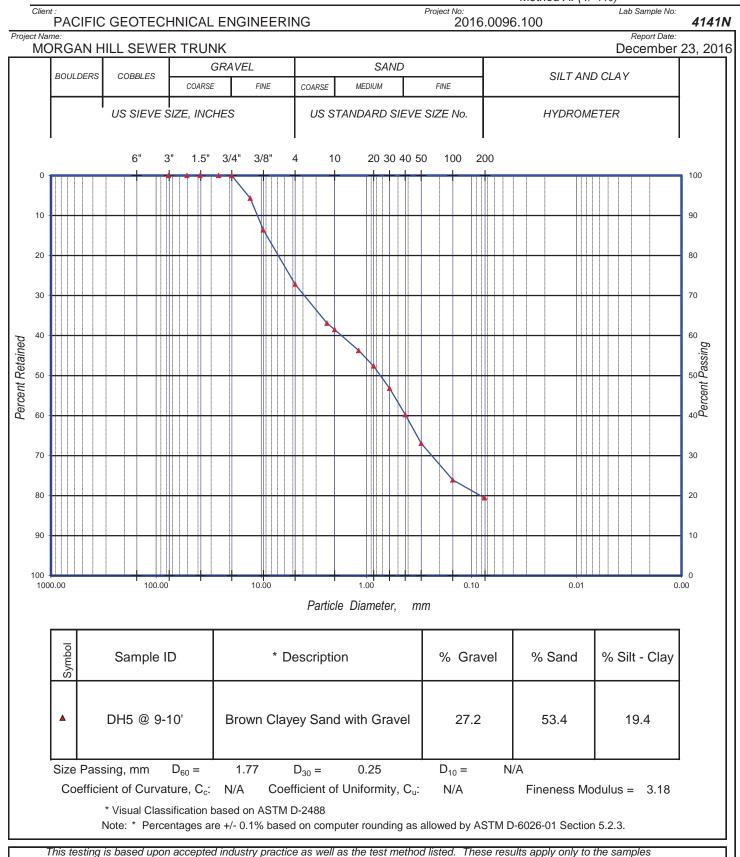


L: Labexcel \ Projects \ Client \ Client Name \ 4141 \ 4141K-ma Prin

Print Date:

supplied and tested for the above referenced job.

Entered By: Reviewed By:


JL

LSN:



#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



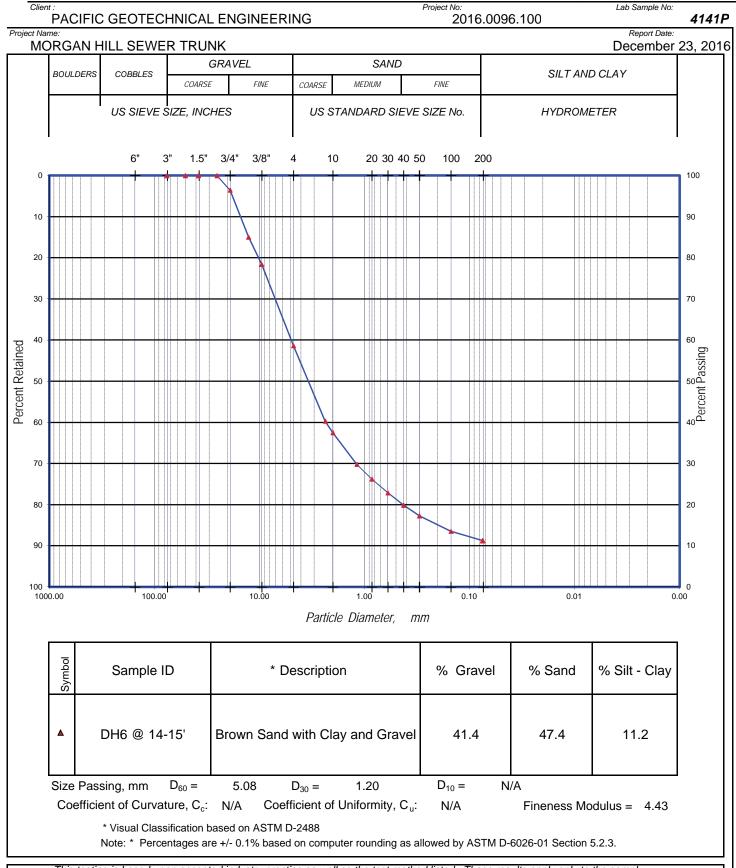
supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Client \ Name \ 4141 \ 4141N-ma Print Date: Entered By:

Entered By: Reviewed By:

JL

4141N

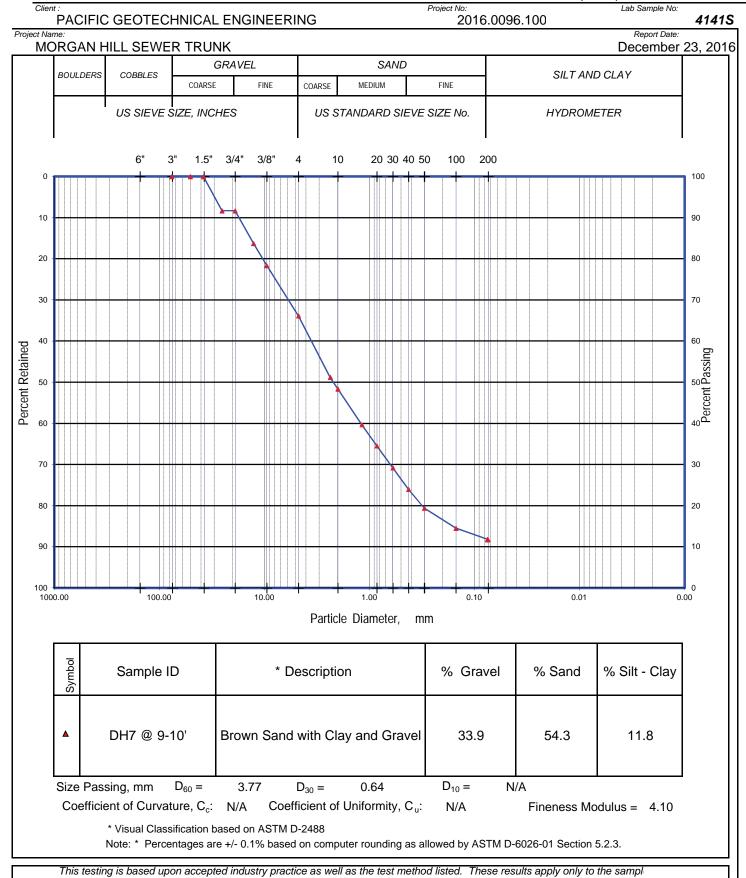

LSN:

# Geo-Logic

# PARTICLE SIZE ANALYSIS

Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

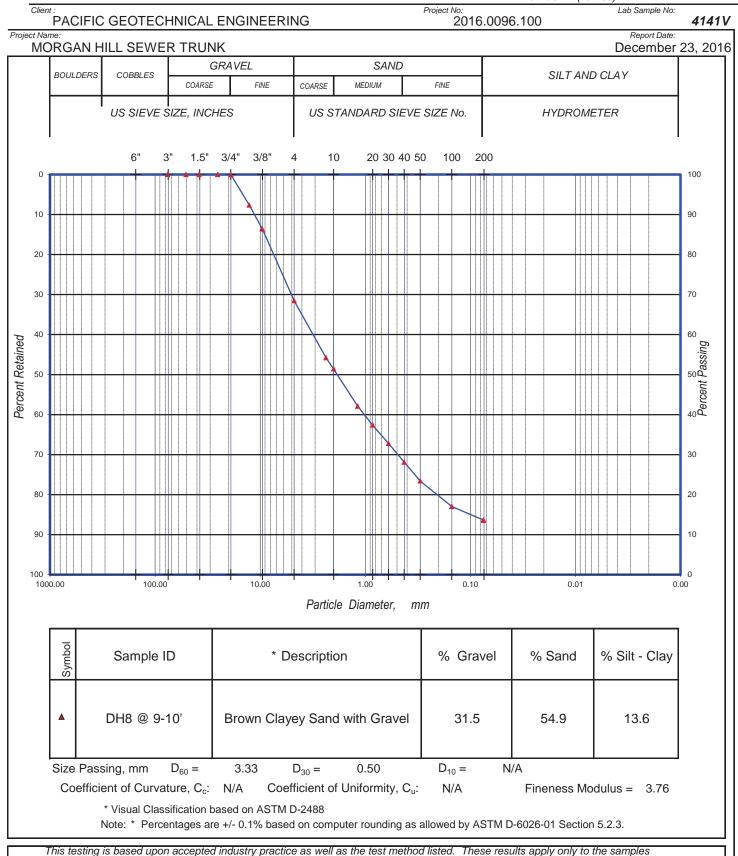



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




4141S



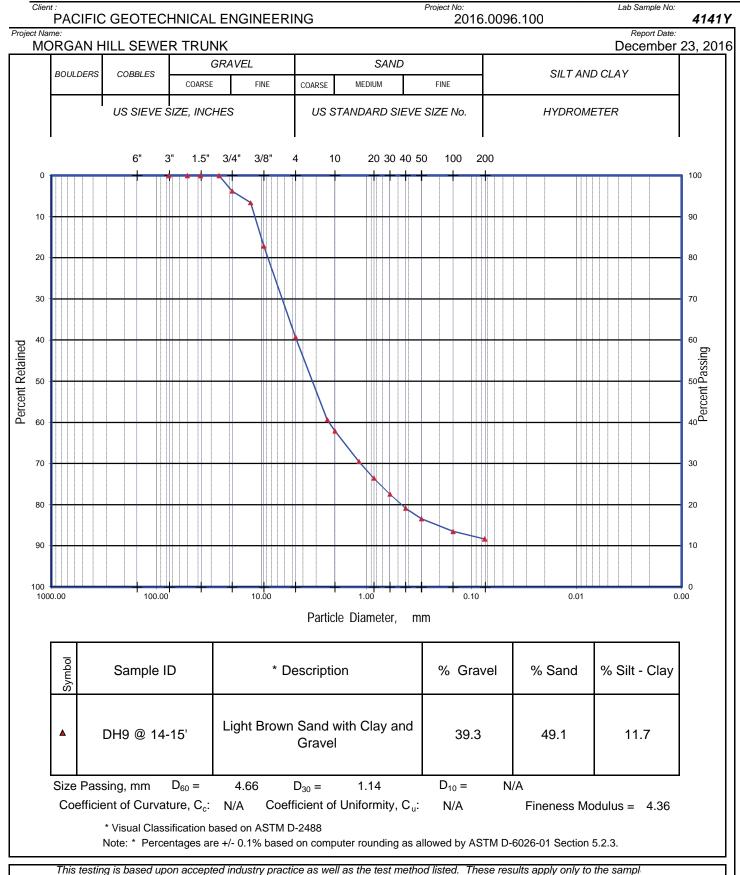
#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Client Name \ 4141 \ 4141V-ma Print Date: Entered By: Reviewed By:


LSN: 12/23/16 JL KH DCN: MA-rp (rev. 6/27/12)

4141V

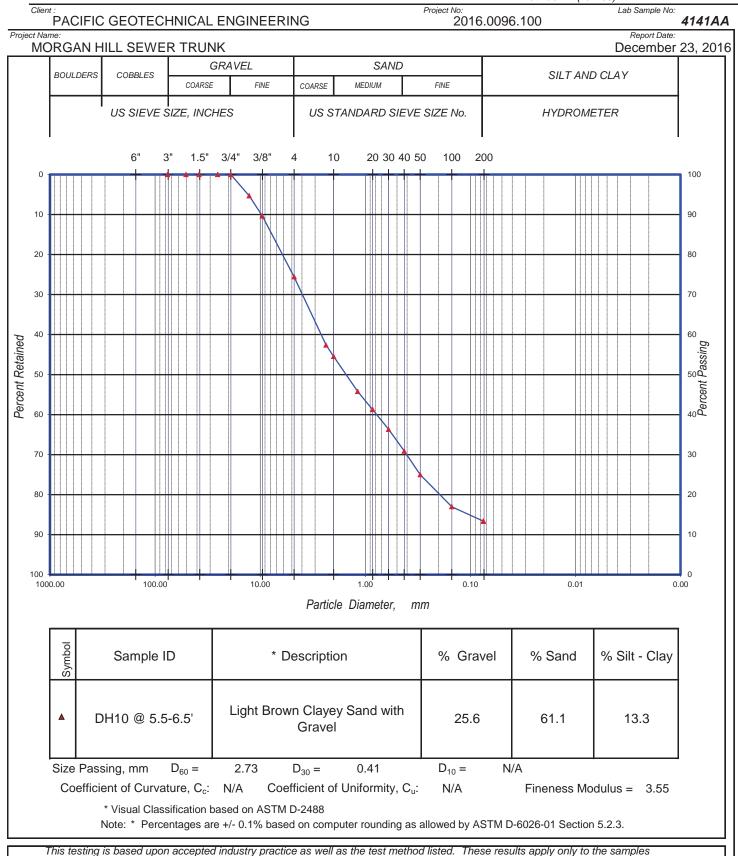


Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job


DCN: MA-rp (rev. 6/27/12)

4141Y



#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



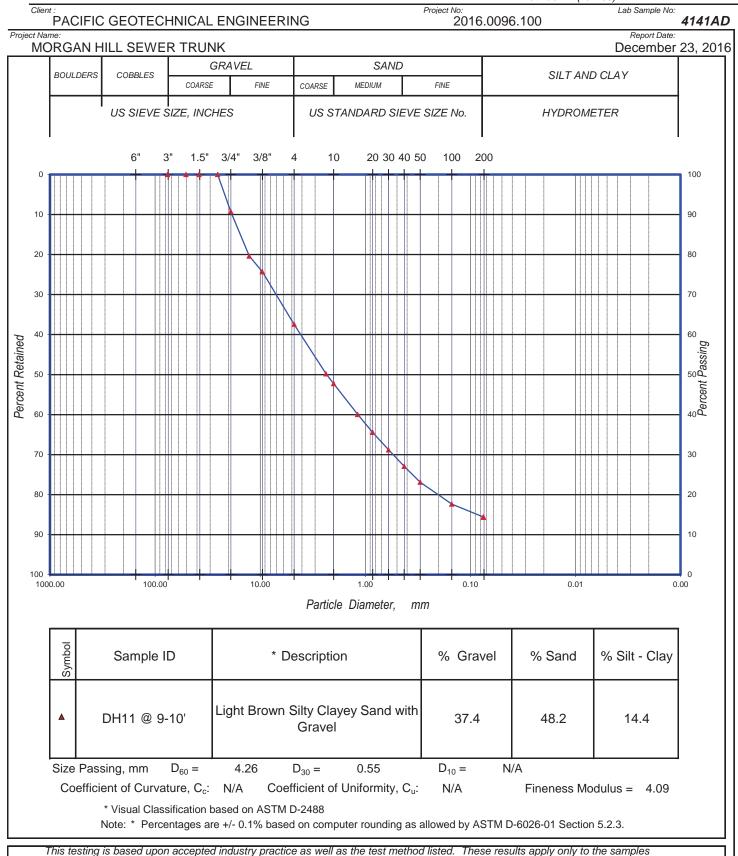
supplied and tested for the above referenced job.

12/23/16

L: Labexcel \ Projects \ Client \ Client Name \ 4141 \ 4141AA-ma Print Date: Entered By: Reviewed By:

DCN: MA-rp (rev. 6/27/12)

KH


JL

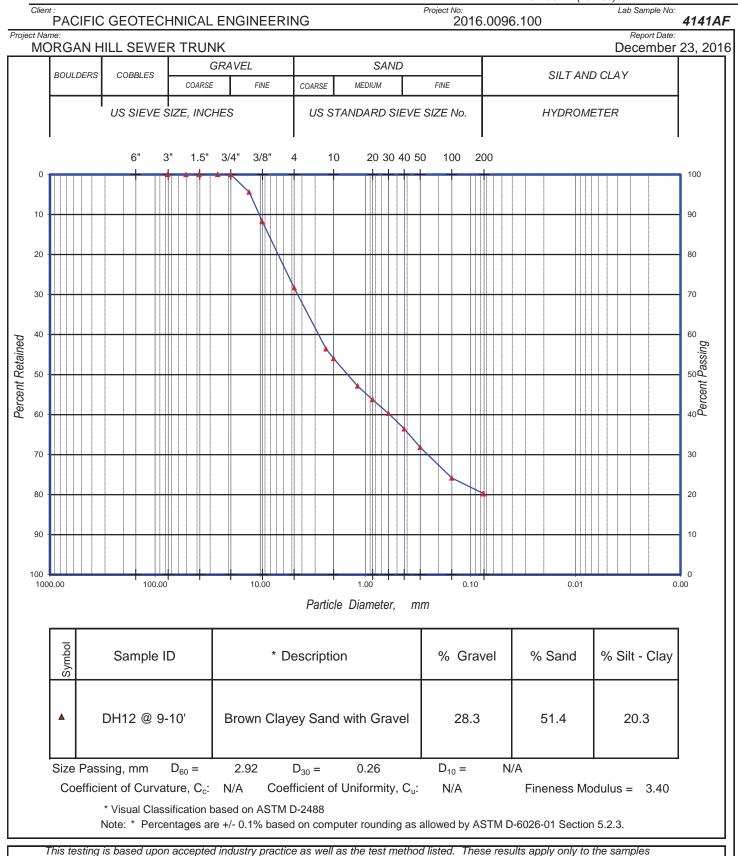
LSN: 4141AA



#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




supplied and tested for the above referenced job. Reviewed By:

DCN: MA-rp (rev. 6/27/12)

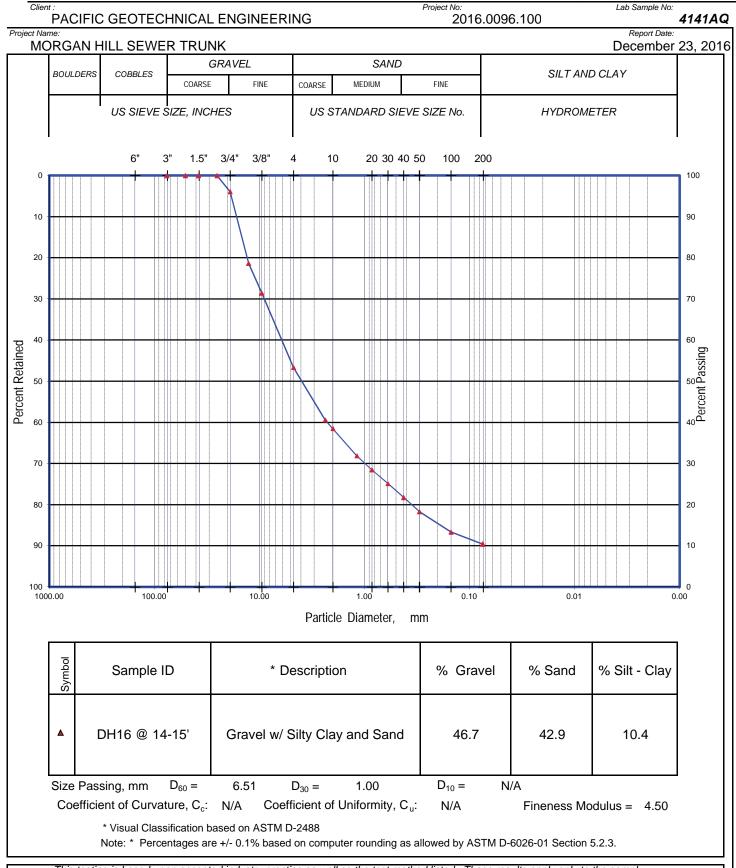


#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job.


Entered By:

JL



#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the sample supplied and tested for the above referenced job

DCN: MA-rp (rev. 6/27/12)

4141AQ



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No. Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.100 4141AS Report Date: MORGAN HILL SEWER TRUNK December 23, 2016 **GRAVEL** SAND **BOULDERS** COBBLES SILT AND CLAY COARSE MEDIUM FINE FINE COARSE US STANDARD SIEVE SIZE No. US SIEVE SIZE, INCHES **HYDROMETER** 3/4" 3/8" 1.5" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 Percent Retained Percent Passing 50 60 70 30 80 20 10 90 100 10.00 1.00 100.00 0.10 1000.00 0.01 0.00 Particle Diameter, Symbol Sample ID \* Description % Gravel % Sand % Silt - Clay  $\blacktriangle$ DH17 @ 9-10' Brown Sand with Clay and Gravel 34.8 53.5 11.7  $D_{60} =$ 0.65  $D_{10} =$ N/A Size Passing, mm 3.87  $D_{30} =$ Coefficient of Curvature, C<sub>c</sub>: N/A Coefficient of Uniformity, Cu: N/A Fineness Modulus = 4.09 \* Visual Classification based on ASTM D-2488 Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the sample supplied and tested for the above referenced job

DCN: MA-rp (rev. 6/27/12)

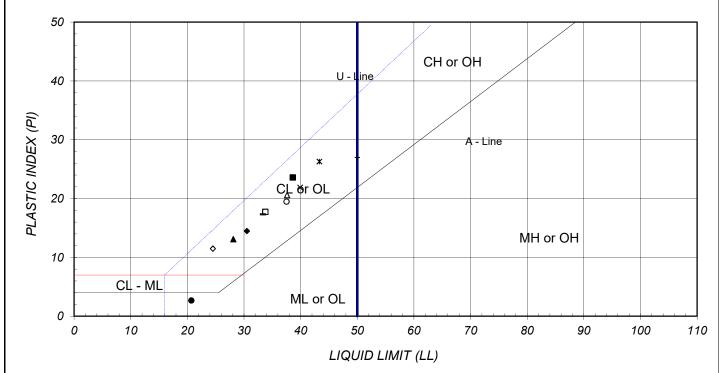
KH

4141AS

JL

## ATTERBERG LIMITS




Summary Report ASTM D-4318

Project No. Lab Log No.: 4308 Pacific Geotechnical Engineering 2016.0096.300 Project Name: Report Date: Morgan Hill Sewer Trunk - Gilroy 2017 December 14, 2017

|        | 70,              | SAMPLE             | SAMPLE                                                | LIQUID | PLASTIC | PLASTIC |
|--------|------------------|--------------------|-------------------------------------------------------|--------|---------|---------|
| LSN    | SYMBOL           | IDENTIFICATION     | DESCRIPTION                                           | LIMIT  | LIMIT   | INDEX   |
| 4308D  |                  | DH-2A @ 19.0'      | Yellowish Brown Clayey Sand (SC)                      | 34     | 16      | 18      |
| 4308E  | 0                | DH-2A @ 22.0'      | Light Brown Lean Clay with Sand (CL)                  | 38     | 18      | 20      |
| 4308F  | +                | DH-2A @ 25.0 '     | Brown Fat Clay (CH)                                   | 50     | 23      | 27      |
| 4308G  | x                | DH-2A @ 28.0'      | Yellowish Brown Lean Clay with Sand (CL)              | 40     | 18      | 22      |
| 4308L  | -                | DH-3A @ 19.5'      | Brown Clayey Sand with Gravel                         | 33     | 16      | 17      |
| 4308M  |                  | DH-3A @ 22.0-22.5' | Brown Well Graded Sand with Clay and Gravel (SW-SC)   | 39     | 15      | 24      |
| 4308N  | •                | DH-3A @ 25.5'      | Brown Poorly Graded Sand with Silt and Gravel (SP-SM) | 21     | 18      | 3       |
| 4308T  | $\blacktriangle$ | DH-6A @ 33-34'     | Light Brown Lean Clay with Sand (CL)                  | 28     | 15      | 13      |
| 4308V  | $\triangle$      | DH-6A @ 38.0'      | Light Brown Lean Clay with Sand (CL)                  | 38     | 17      | 21      |
| 4308W  | ж                | DH-6A @ 41.0'      | Light Brown Lean Clay (CL)                            | 43     | 17      | 26      |
| 4308AE | $\Diamond$       | DH-7A @ 32.0'      | Light Brown Lean Clay with Sand (CL)                  | 25     | 13      | 12      |
| 4308AG | •                | DH-7A @ 38.0'      | Light Brown Lean Clay with Sand (CL)                  | 31     | 16      | 15      |

Note: NP = Nonplastic (ASTM D-4318, 19.1.4)

#### **PLASTICITY CHART**



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Pacific Geotech \ 2016.0096.300RABt Date:

Entered By:

Reviewed By:

JL

LLN:

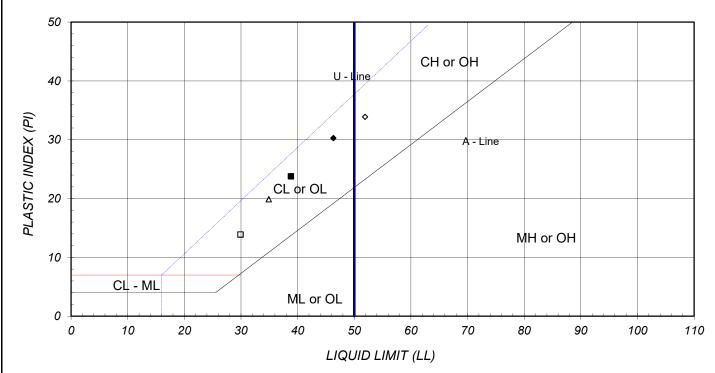
4308

<sup>\*</sup> Visual Classification based on ASTM D-2488





Summary Report
ASTM D-4318


Client:
Pacific Geotechnical Engineering
Project No:
2016.0096.300
Project Name:
Morgan Hill Sewer Trunk - Gilroy 2017

Lab Log No.:
Report Date:
December 14, 2017

|        | 307        | SAMPLE              | SAMPLE                                                      | LIQUID | PLASTIC | PLASTIC |
|--------|------------|---------------------|-------------------------------------------------------------|--------|---------|---------|
| LSN    | SYMBOL     | IDENTIFICATION      | DESCRIPTION                                                 | LIMIT  | LIMIT   | INDEX   |
| 4308AN |            | DH-10A @ 22.0'      | Light Brown Poorly Graded Gravel with Sand and Clay (GP-GC) | 30     | 16      | 14      |
| 4308AP | 0          | DH-10A @ 28.0'      | Light Brown Poorly Graded Sand w/ Silt & Gravel (SP-SM)     | NP     | NP      | NP      |
| 4308AQ | +          | DH-10A @ 29-30'     | Light Brown Poorly Graded Sand with Gravel (SP)             | NP     | NP      | NP      |
| 4308AW | x          | DH-11A @ 28.0'      | Dark Brown Poorly Graded Sand with Silt and Gravel (SP-SM)  | NP     | NP      | NP      |
| 4308AX | -          | DH-11A @ 31.0'      | Light Brown Silty Sand with Gravel (SM)                     | NP     | NP      | NP      |
| 4308BD |            | DH-16A @ 26.5-27.0' | Light Brown Well Graded Sand with Clay and Gravel (SW-SC)   | 39     | 15      | 24      |
| 4308BE | •          | DH-16A @ 30.0'      | Brown Silty Sand (SM)                                       | NP     | NP      | NP      |
| 4308BF | <b>A</b>   | DH-16A @ 32.5'      | Brown Well Graded Gravel with Sand (GW)                     | NP     | NP      | NP      |
| 4308BL | Δ          | DH-17A @ 27.0'      | Brown Well Graded Gravel with Sand (GW)                     | 35     | 15      | 20      |
| 4308BM | ж          | DH-17A @ 30.0'      | Brown Poorly Graded Sand with Silt and Gravel (SP-SM)       | NP     | NP      | NP      |
| 4308BQ | $\Diamond$ | DH-20A @ 18.0'      | Light Brown Poorly Graded Gravel with Sand and Clay (GP-GC) | 52     | 18      | 34      |
| 4308BR | •          | DH-20A @ 21.0'      | Light Brown Clayey Gravel with Sand (GC)                    | 46     | 16      | 30      |

Note: NP = Nonplastic (ASTM D-4318, 19.1.4)

#### PLASTICITY CHART



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Pacific Geotech \ 2016.0096.300Rribt Date:

Entered By:

Reviewed By:

JL

LLN:

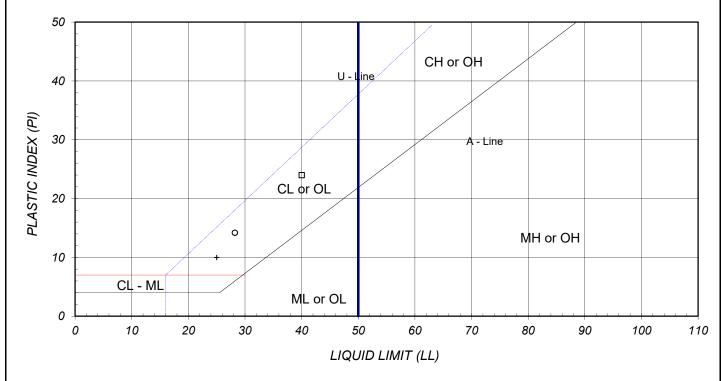
<sup>\*</sup> Visual Classification based on ASTM D-2488





Summary Report
ASTM D-4318

Client:
Pacific Geotechnical Engineering
Project No:
2016.0096.300
Project Name:
Morgan Hill Sewer Trunk - Gilroy 2017


A 308

Report Date:
December 14, 2017

|        | 307    | SAMPLE              | SAMPLE                                                      | LIQUID | PLASTIC | PLASTIC |
|--------|--------|---------------------|-------------------------------------------------------------|--------|---------|---------|
| LSN    | SYMBOL | IDENTIFICATION      | DESCRIPTION                                                 | LIMIT  | LIMIT   | INDEX   |
| 4308BS |        | DH-20A @ 24.0'      | Light Brown Poorly Graded Sand w/ Clay & Gravel (SP-SC)     | 40     | 16      | 24      |
| 4308BT | 0      | DH-20A @ 26.5-27.0' | Light Brown Poorly Graded Gravel with Sand and Clay (GP-GC) | 28     | 14      | 14      |
| 4308BY | +      | DH-11A @ 24.5-25.0' | Brown Well Graded Gravel with Sand (GW)                     | 25     | 15      | 10      |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |
|        |        |                     |                                                             |        |         |         |

Note: NP = Nonplastic (ASTM D-4318, 19.1.4)

#### **PLASTICITY CHART**



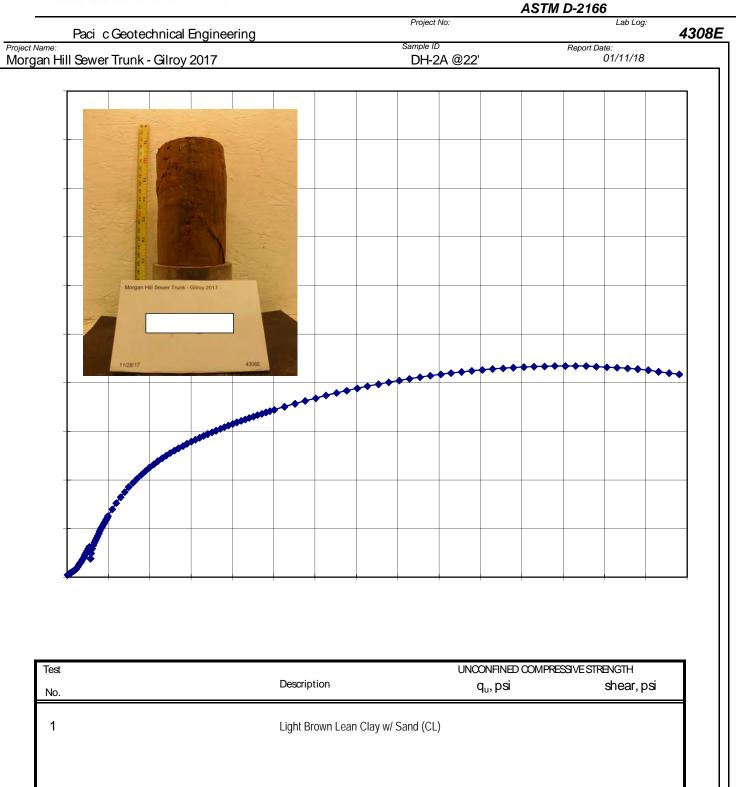
This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

L: Labexcel \ Projects \ Client \ Pacific Geotech \ 2016.0096.300Rrint Date:

Entered By:

Reviewed By:

JL


LLN:

KH

4308

<sup>\*</sup> Visual Classification based on ASTM D-2488





NOTE:

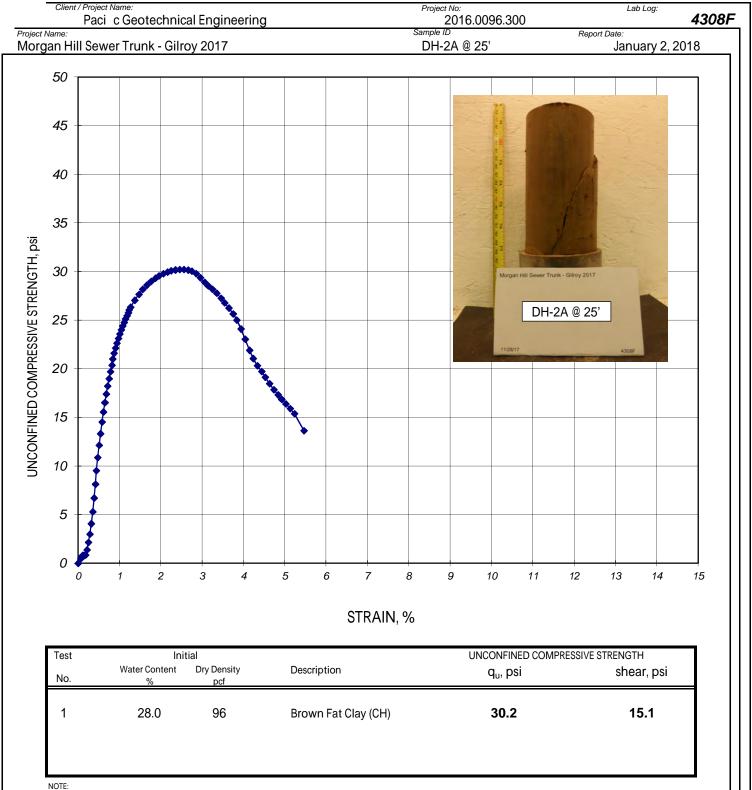
Sample Diameter = 2.4 in.

Sample Height = 5.3 in.

Height / Dia. Ratio = 2.2

Strain Rate:

in./ min.


Strain %:

%/ min.

Test Date:



#### **ASTM D-2166**



Sample Diameter = 2.4 in. Sample Height = 5.3 in.

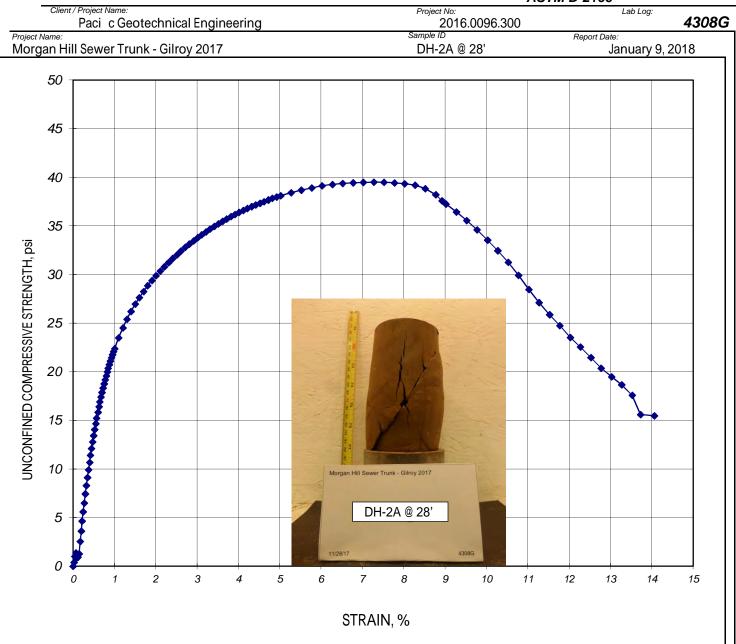
Height / Dia. Ratio = 2.2

Strain Rate: (

0.10 in./ min.

% / min.

Strain %: 2


2.0 %/1

Test Date:

December 7, 2018



#### **ASTM D-2166**

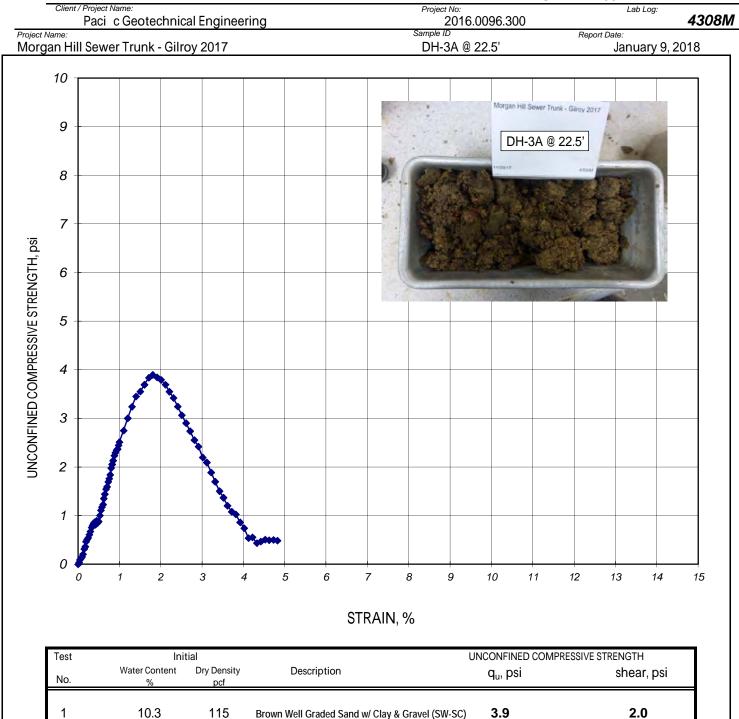


| Test Initial |                    | tial               | U                                      | UNCONFINED COMPRESSIVE STRENGTH |            |  |
|--------------|--------------------|--------------------|----------------------------------------|---------------------------------|------------|--|
| No.          | Water Content<br>% | Dry Density<br>pcf | Description                            | q <sub>u</sub> , psi            | shear, psi |  |
| 1            | 22.9               | 104                | Yellowish Brown Lean Clay w/ Sand (CL) | 39.5                            | 19.8       |  |
|              |                    |                    |                                        |                                 |            |  |

NOTE:

Sample Diameter = 2.4 in. Strain Rate: 0.050 in./ min.

Sample Height = 5.4 in. Strain %: 1.00 % / min.


Height / Dia. Ratio = 2.2 Test Date: December 7, 2018

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

ORMS \ GLA Forms \ Reports \ 2016.0 \ 4308G-ucrp Print Date: Entered By: Reviewed By: LSN:



#### **ASTM D-2166**



NOTE:

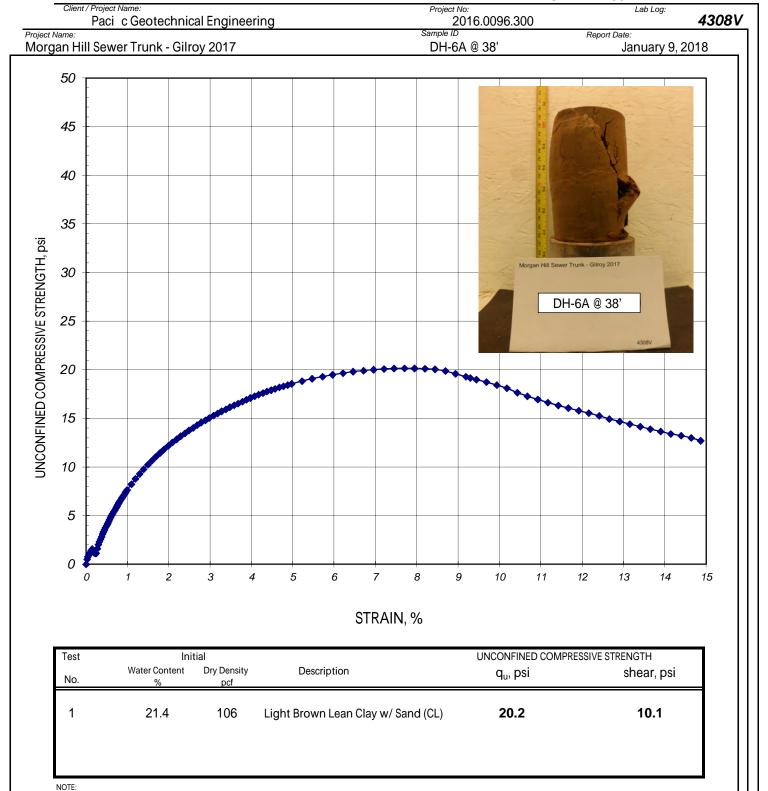
Sample Diameter = 2.4 in. Sample Height = 5.5 in.

Height / Dia. Ratio = 2.3

Strain Rate: 0.05

in./ min.

Strain % :


1.0 % / min.

Test Date:

December 8, 2018



#### **ASTM D-2166**



Sample Diameter =

2.4 in.

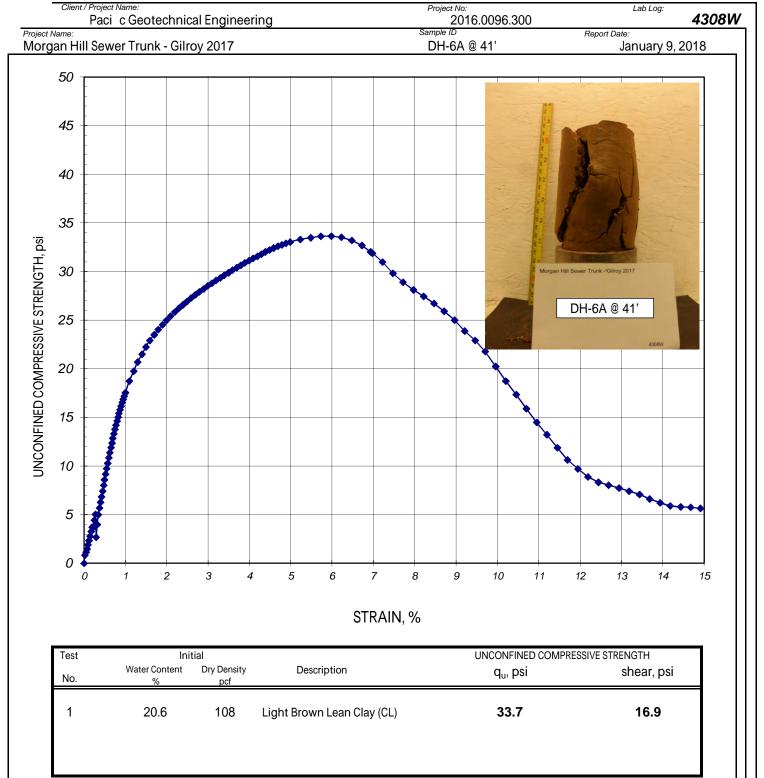
Strain Rate:

0.05 in./ min.

Sample Height = 5.0 in.

Strain %:

1.0 % / min.


Height / Dia. Ratio = 2.1

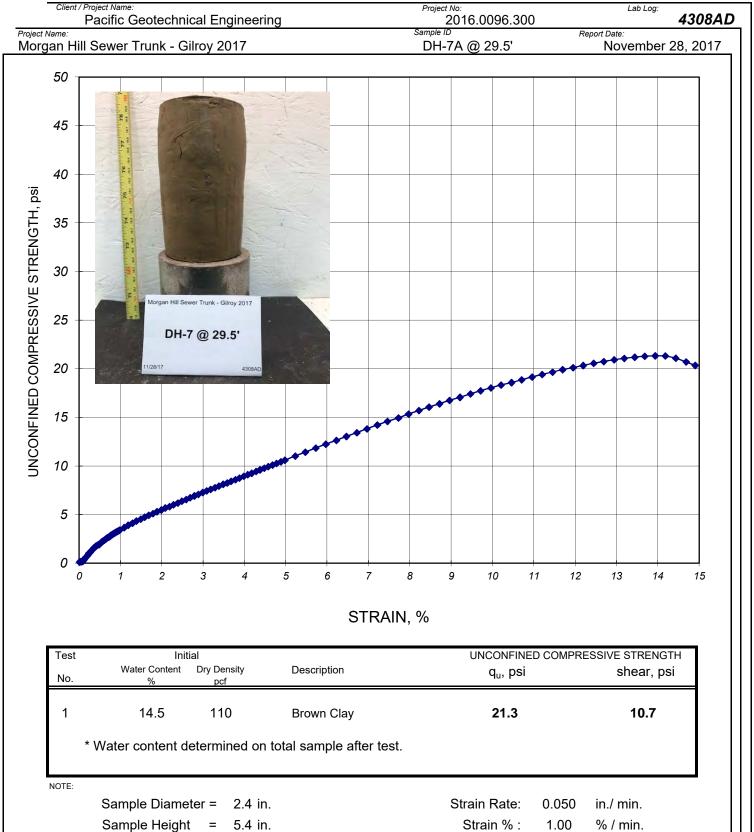
Test Date:

December 8, 2018



#### **ASTM D-2166**




NOTE:

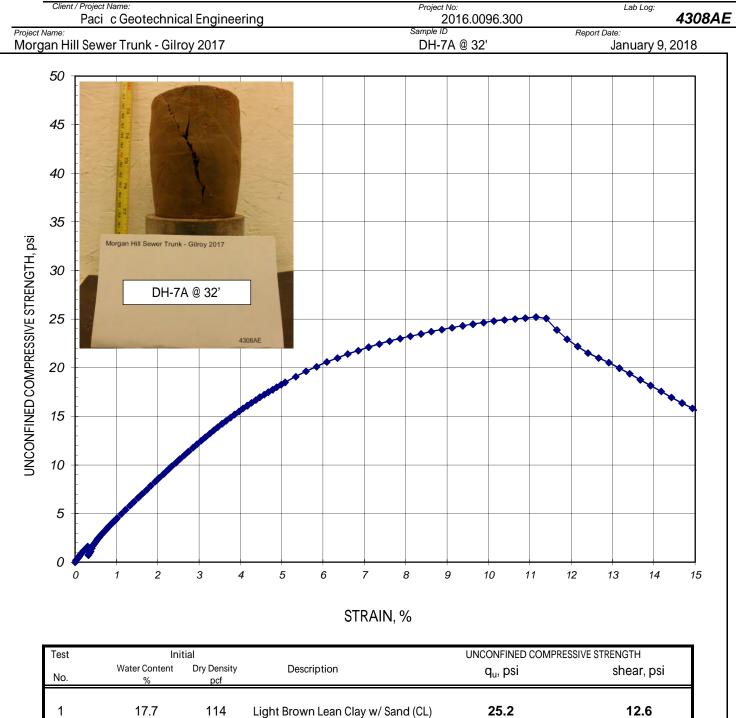
Sample Diameter = 2.4 in. Sample Height = 5.0 in. Height / Dia. Ratio = 2.1

Strain Rate: 0.05 in./ min. Strain %: 1.0 % / min. Test Date: December 8, 2018



#### **ASTM D-2166**




This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

Height / Dia. Ratio = 2.3

Test Date: November 28, 2017



#### **ASTM D-2166**



| Test |                                   |     |                                    | UNCONFINED COMPRESSIVE STRE |            |  |
|------|-----------------------------------|-----|------------------------------------|-----------------------------|------------|--|
| No.  | Water Content Dry Density D % pcf |     | Description                        | q <sub>u</sub> , psi        | shear, psi |  |
| 1    | 17.7                              | 114 | Light Brown Lean Clay w/ Sand (CL) | 25.2                        | 12.6       |  |

Sample Diameter = 2.4 in.

Height / Dia. Ratio = 1.7

NOTE:

Strain Rate:

in./ min.

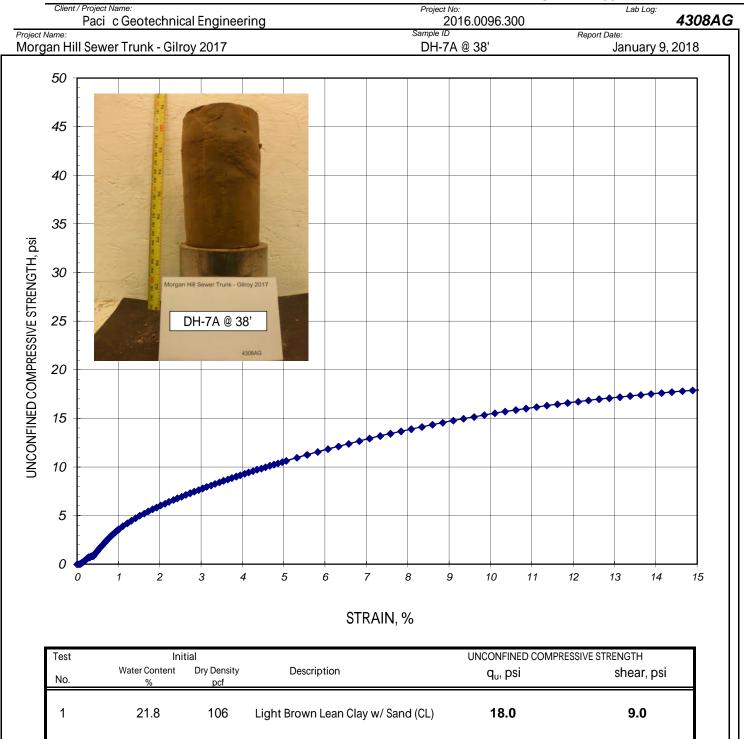
Sample Height = 4.1 in.

Short sample-tube not full

Strain %:

% / min.

Test Date:


December 11, 2018

0.04

1.0



#### **ASTM D-2166**



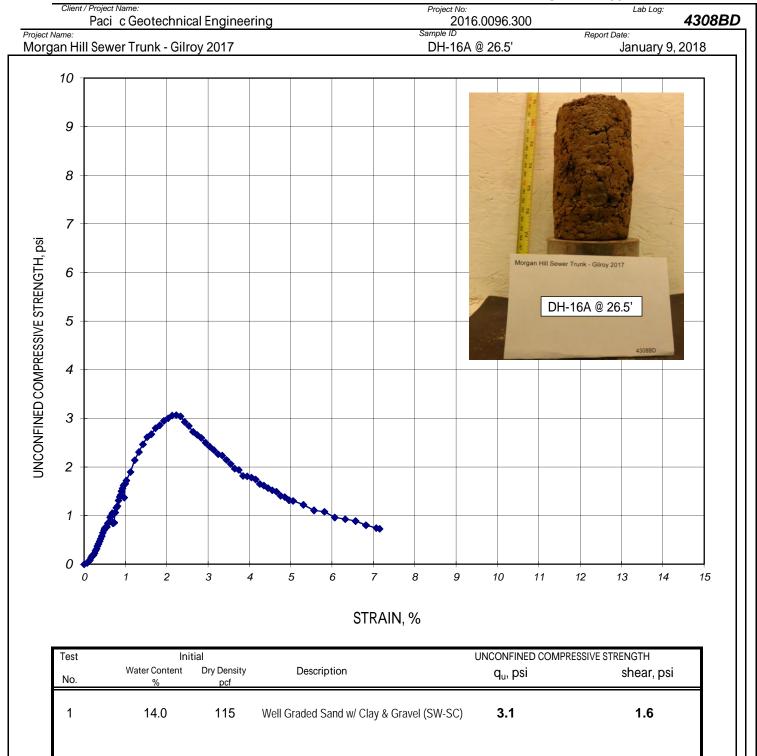
NOTE:

Sample Diameter = 2.4 in. Sample Height = 5.2 in.

Height / Dia. Ratio = 2.2

Strain Rate: 0.05 in./ min.

Strain %: 1.0 % / min.


Test Date: December 11, 2018

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

Entered By:



#### **ASTM D-2166**



NOTE:

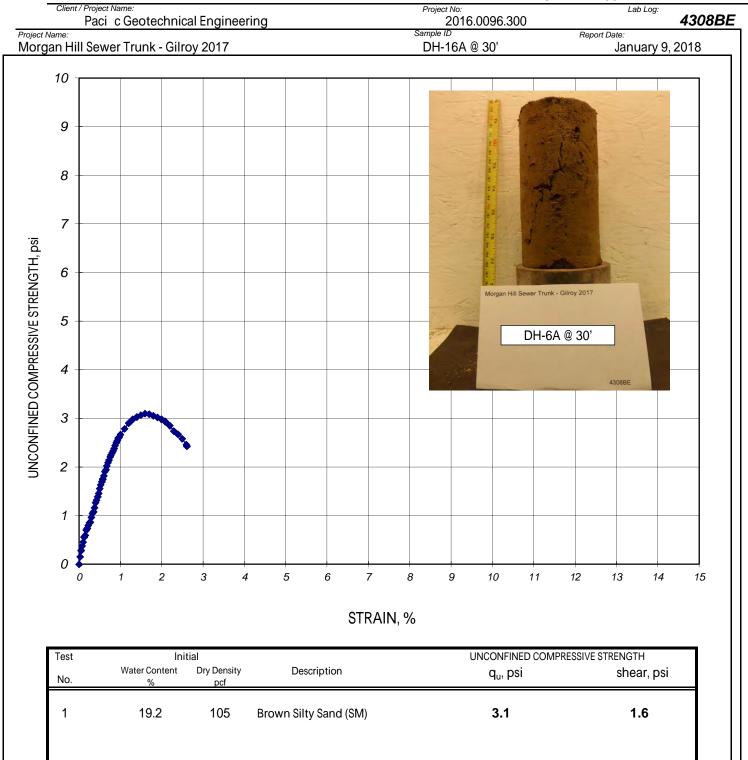
Sample Diameter = 2.4 in. Sample Height = 4.8 in.

Height / Dia. Ratio = 2.0

Strain Rate: 0.02

02 in./ min.

Strain %:


0.5 % / min.

Test Date: Decem

December 11, 2018



#### **ASTM D-2166**

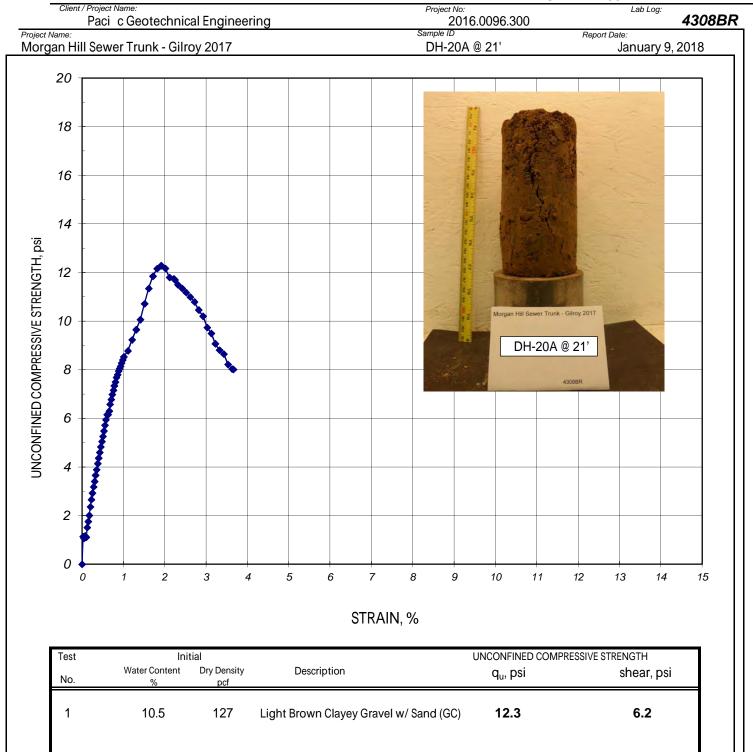


NOTE:

Sample Diameter = 2.4 in.

Sample Height = 5.1 in.

Height / Dia. Ratio = 2.1


Strain Rate: 0.03 in./ min.
Strain %: 0.5 % / min.

Test Date: December 12, 2018

Entered By:



#### **ASTM D-2166**



NOTE:

Sample Diameter = 2.4 in. Sample Height = 5.4 in.

Height / Dia. Ratio = 2.2

Strain Rate:

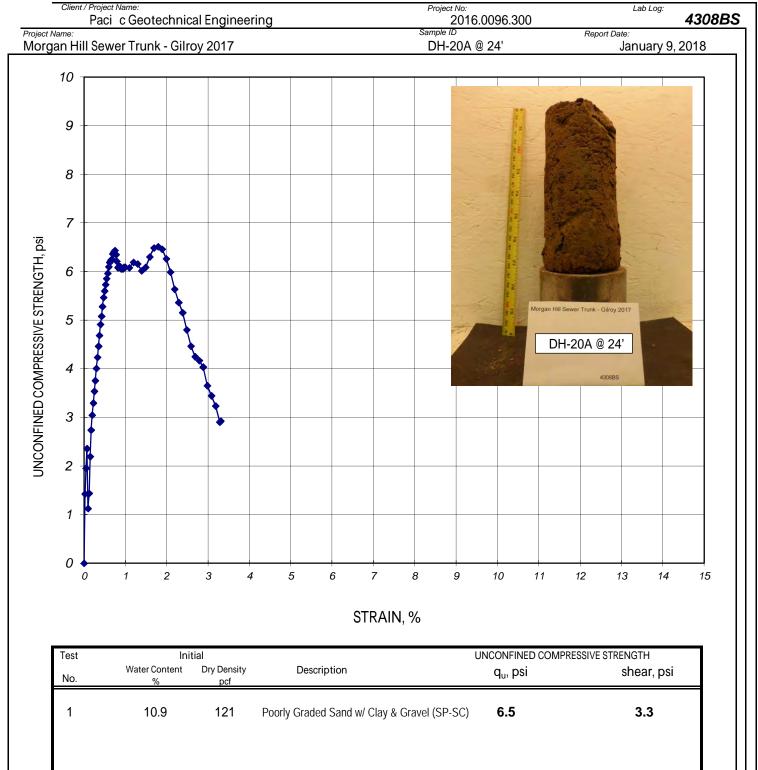
0.03 i

in./ min.

Strain %:

0.5

% / min.


Test Date:

Entered By:

December 12, 2018



#### **ASTM D-2166**



NOTE:

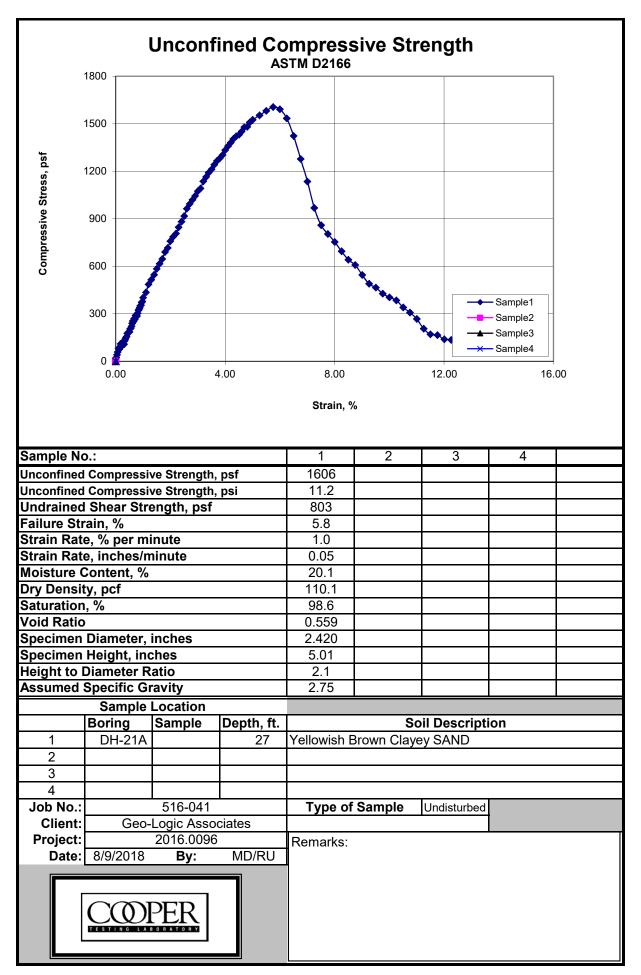
Sample Diameter = 2.4 in. Sample Height = 5.8 in.

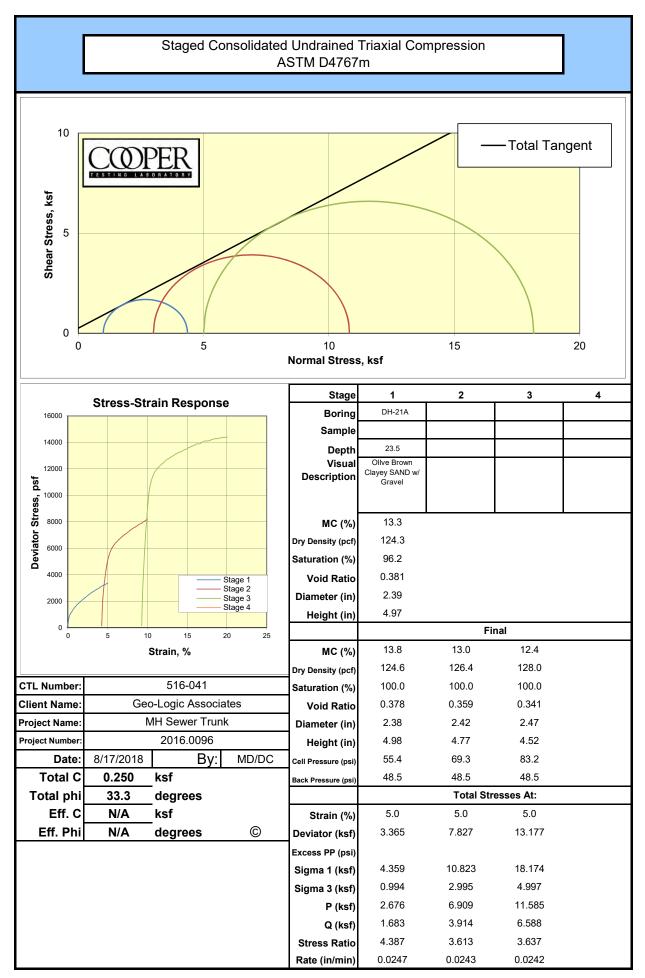
Height / Dia. Ratio = 2.4

Strain Rate:

0.03 in

in./ min.


Strain %:

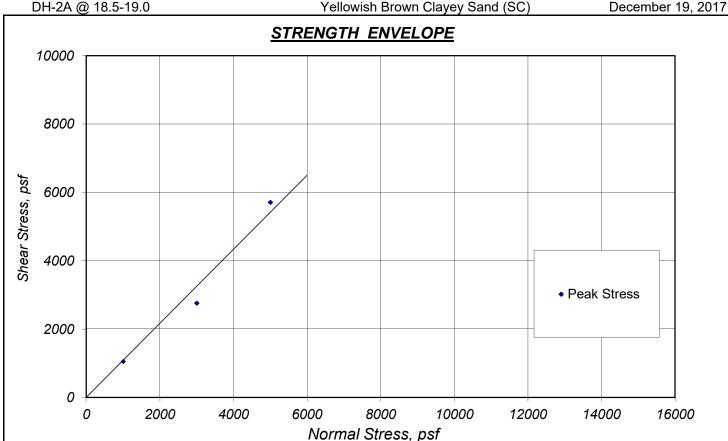

0.5

% / min.

Test Date:

December 12, 2018








Consolidated - Drained Test ASTM D- 3080

Client / Project Name: Project No.: Lab Log: 2016.0096.300 Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 4308D

Sample: Report Date: Soil Description:



Peak Coefficient of Friction 1.083 Friction Angle 47.3 Cohesion, 0

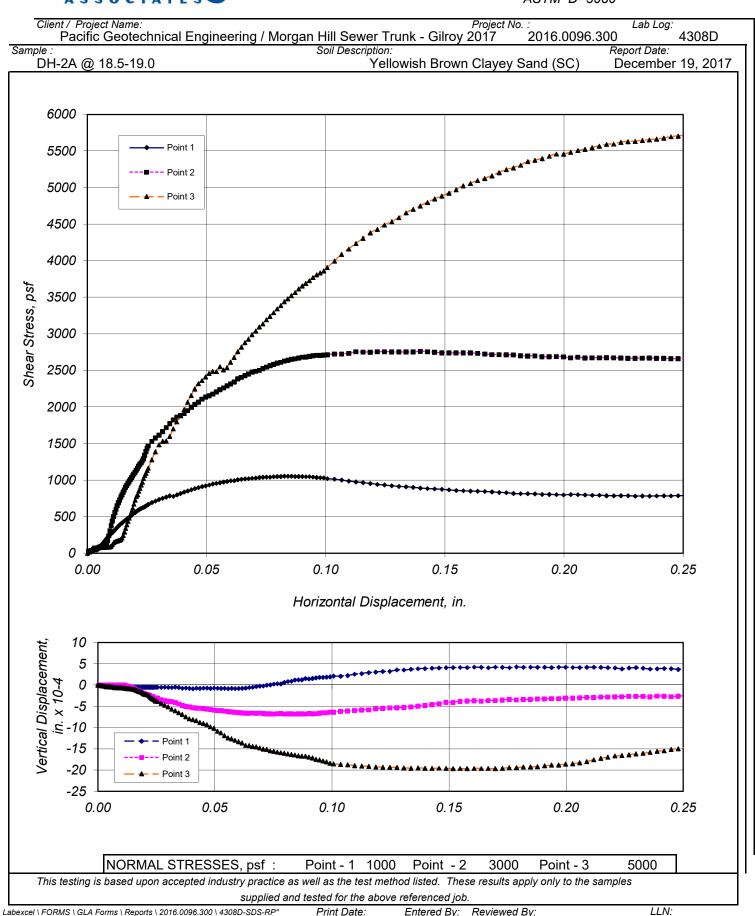
Note: Intercept changed to "0"

|       | Normal | Shear Stress | Ini     | tial    | Fir     | nal     |
|-------|--------|--------------|---------|---------|---------|---------|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry     |
| No.   |        |              | Content | Density | Content | Density |
|       | psf    | psf          | %       | pcf     | %       | pcf     |
| 1     | 1000   | 1054         | 18.2    | 109.0   | 20.2    | 110.0   |
| 2     | 3000   | 2760         | 15.6    | 110.1   | 19.7    | 112.9   |
| 3     | 5000   | 5712         | 12.5    | 114.0   | 17.5    | 118.0   |
|       |        |              |         |         |         |         |

0.005 Sample Diameter, in.: Horizontal Displacement Rate, in. / min. :

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

Labexcel \ FORMS \ GLA Forms \ Reports \ 2016.0096.300 \ 4308D-SDS-RP" LLN: Print Date: Entered By: Reviewed By: 1/11/2018


KH

4308D

krc

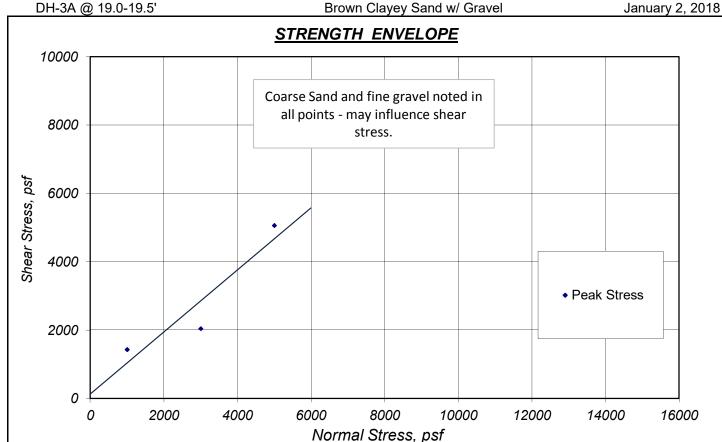


ASTM D-3080



DCN: SDS-rp (rev. 03/23/10)

krc




Consolidated - Drained Test

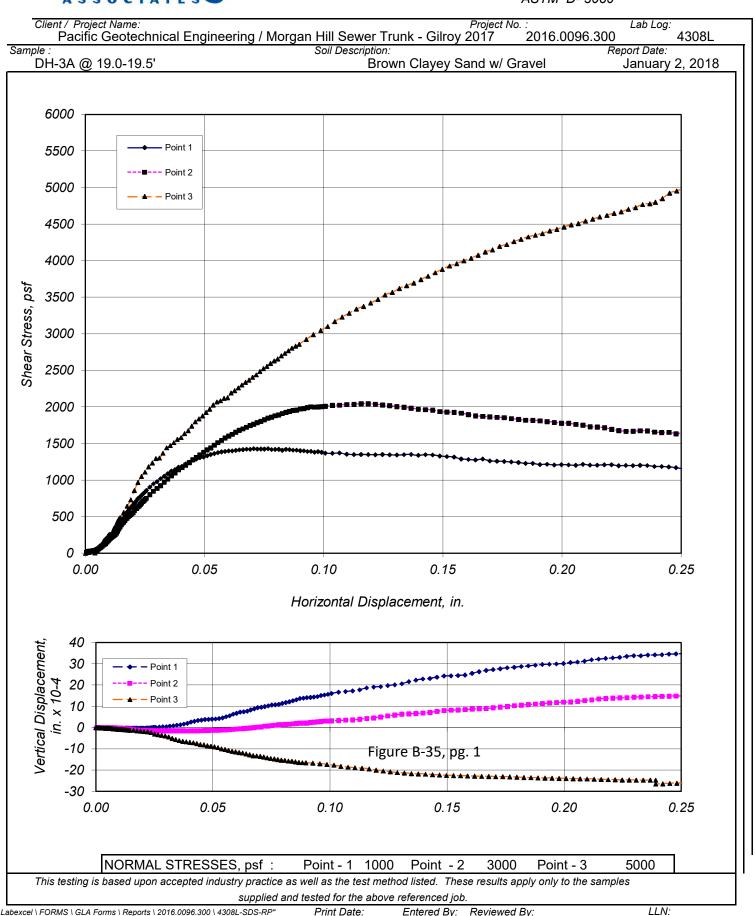
ASTM D- 3080

Client / Project Name: Project No.: Lab Log:
Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 2016.0096.300 4308L

Sample: Soil Description: Report Date:



Peak
Coefficient of Friction : 0.908
Friction Angle : 42.2
Cohesion, psf: : 120.0


|       | Normal | Shear Stress | Ini     | tial    | Fir     | Final Water Dry Content Density % pcf |  |
|-------|--------|--------------|---------|---------|---------|---------------------------------------|--|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry                                   |  |
| No.   |        |              | Content | Density | Content | Density                               |  |
|       | psf    | psf          | %       | pcf     | %       | pcf                                   |  |
| 1     | 1000   | 1431         | 15.2    | 116.7   | 19.9    | 117.8                                 |  |
| 2     | 3000   | 2045         | 18.7    | 110.9   | 21.2    | 113.3                                 |  |
| 3     | 5000   | 5064         | 15.1    | 109.6   | 17.9    | 116.9                                 |  |
|       |        |              |         |         |         |                                       |  |

Horizontal Displacement Rate, in. / min.: 0.005 Sample Diameter, in.: 2.43

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



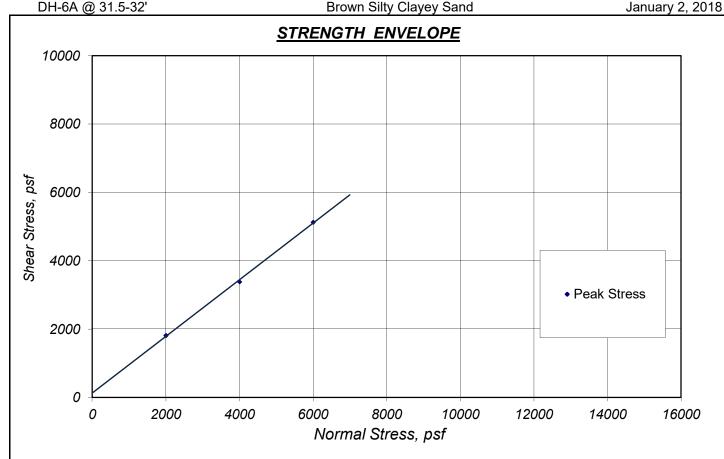
ASTM D-3080



DCN: SDS-rp (rev. 03/23/10)

krc

KH


1/11/2018



Consolidated - Drained Test ASTM D- 3080

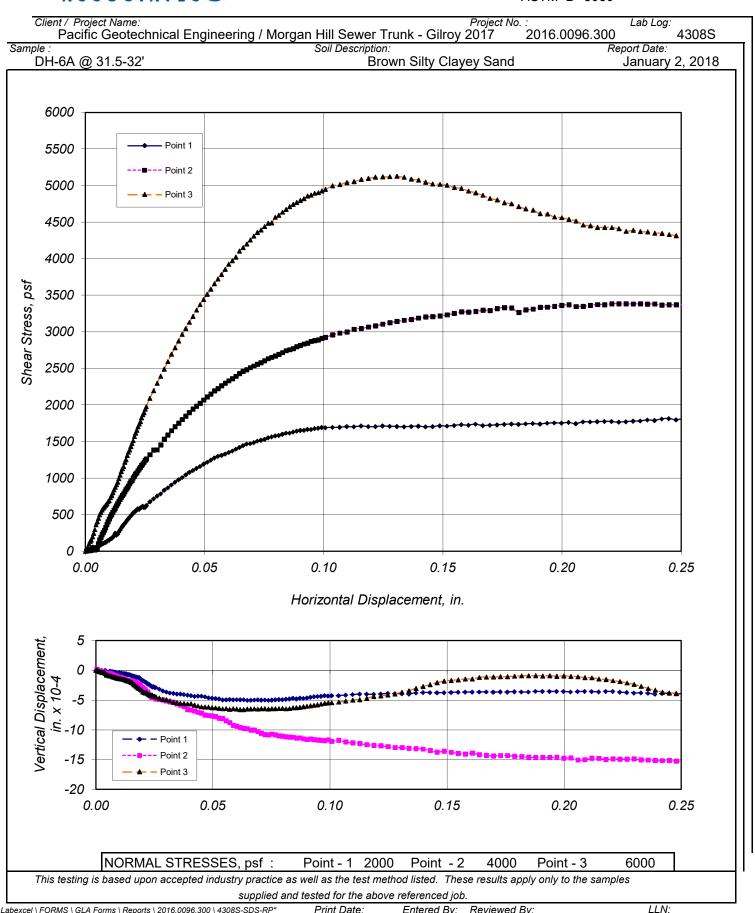
Client / Project Name: Project No. : Lab Log: 2016.0096.300 Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 4308S

Sample: Soil Description: Report Date:



Peak Coefficient of Friction 0.829 Friction Angle 39.6 Cohesion, psf: 130.0

|       | Normal | Shear Stress | Ini     | tial    | Fir     | nal     |
|-------|--------|--------------|---------|---------|---------|---------|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry     |
| No.   |        |              | Content | Density | Content | Density |
|       | psf    | psf          | %       | pcf     | %       | pcf     |
| 1     | 2000   | 1814         | 21.8    | 109.5   | 22.1    | 113.6   |
| 2     | 4000   | 3384         | 20.8    | 107.9   | 19.8    | 115.1   |
| 3     | 6000   | 5128         | 16.1    | 110.7   | 17.8    | 117.2   |
|       |        |              |         |         |         |         |


0.005 Sample Diameter, in.: Horizontal Displacement Rate, in. / min. :

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

Labexcel \ FORMS \ GLA Forms \ Reports \ 2016.0096.300 \ 4308S-SDS-RP\* Print Date: LLN: Entered By: Reviewed By:

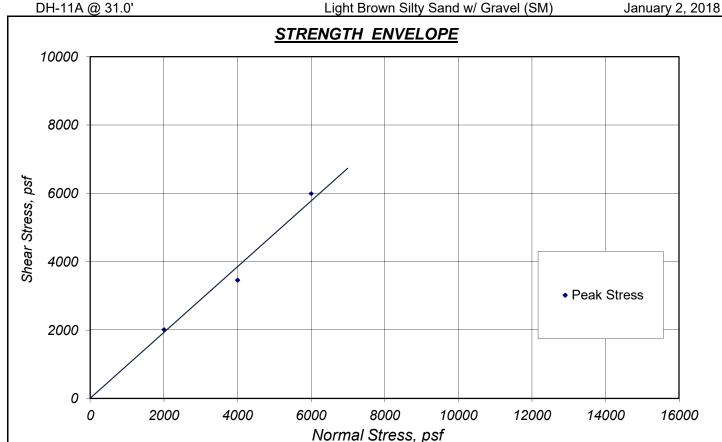


ASTM D-3080



KH

krc


1/11/2018



Consolidated - Drained Test ASTM D- 3080

Client / Proiect Name: Project No.: Lab Log: 2016.0096.300 Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 4308AX

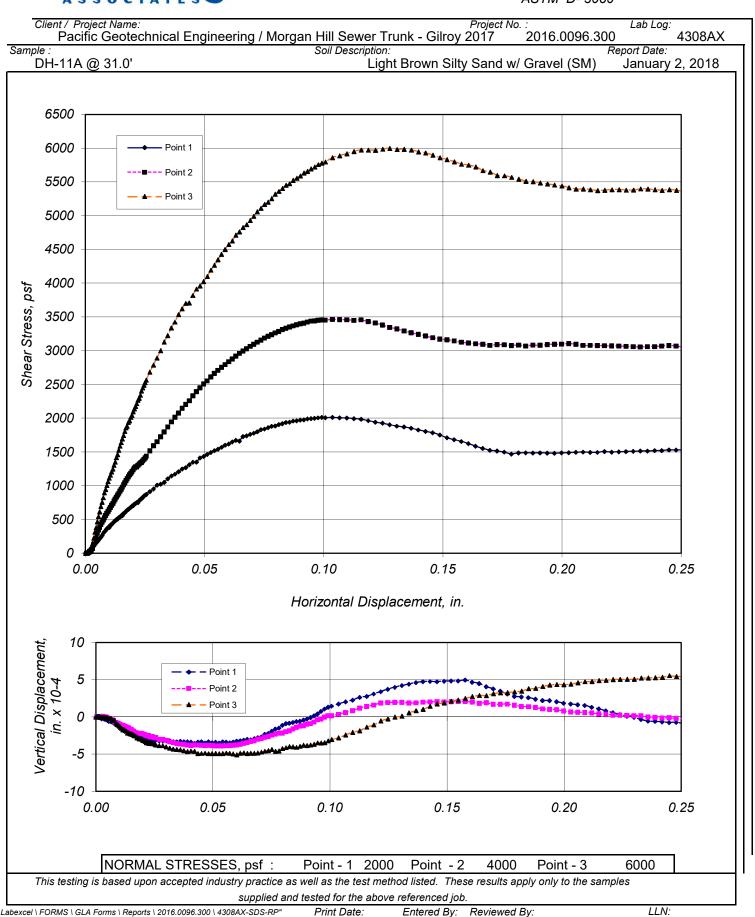
Sample: Report Date: Soil Description:



Peak Coefficient of Friction 0.962 Friction Angle 43.9 Cohesion, 0.0

Note: Intercept changed to "0"

|       | Normal | Shear Stress | Ini     | tial    | Fir     | nal     |
|-------|--------|--------------|---------|---------|---------|---------|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry     |
| No.   |        |              | Content | Density | Content | Density |
|       | psf    | psf          | %       | pcf     | %       | pcf     |
| 1     | 2000   | 2013         | 15.1    | 114.4   | 17.0    | 117.2   |
| 2     | 4000   | 3464         | 14.7    | 118.4   | 17.4    | 122.6   |
| 3     | 6000   | 5997         | 12.8    | 120.3   | 16.2    | 128.9   |
|       |        |              |         |         |         |         |


0.005 Sample Diameter, in.: Horizontal Displacement Rate, in. / min. :

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

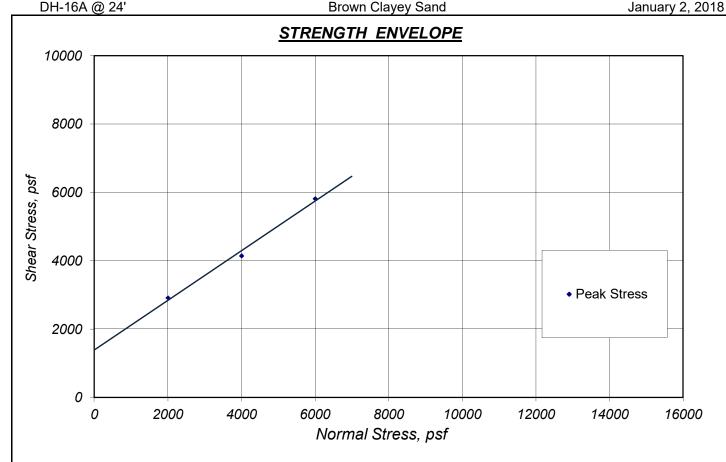
Labexcel \ FORMS \ GLA Forms \ Reports \ 2016.0096.300 \ 4308AX-SDS-RP" Print Date: Entered By: Reviewed By:



ASTM D-3080



DCN: SDS-rp (rev. 03/23/10)


krc



Consolidated - Drained Test ASTM D- 3080

Client / Project Name: Project No.: Lab Log: 2016.0096.300 4308BC Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017

Sample: Soil Description: Report Date:

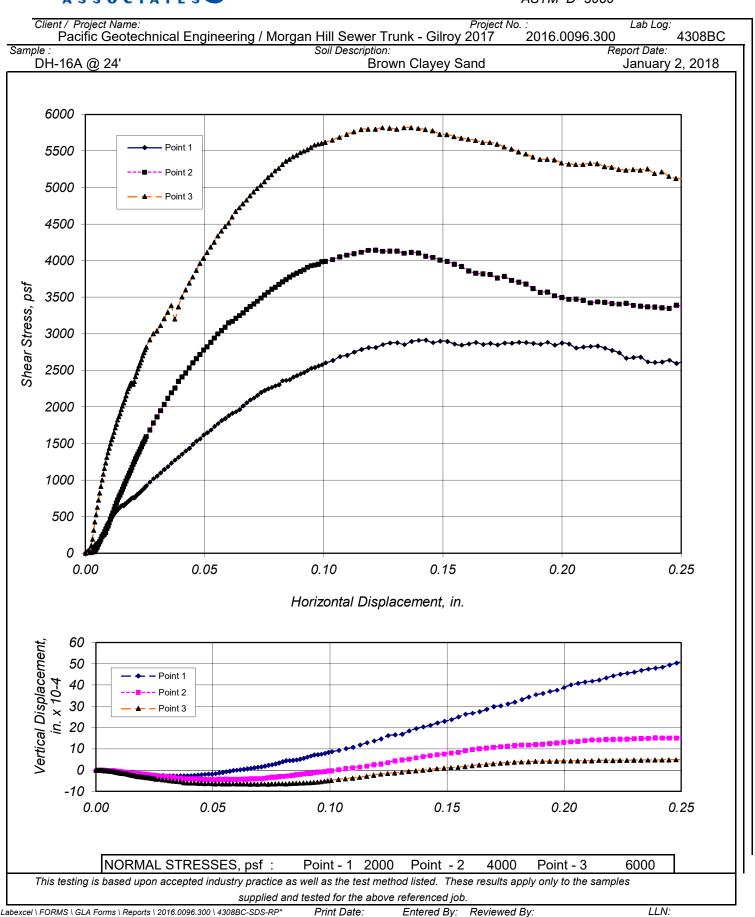


Peak Coefficient of Friction 0.726 Friction Angle 36.0 Cohesion, psf: 1390

|       | Normal | Shear Stress | Initial |         | Final   |         |
|-------|--------|--------------|---------|---------|---------|---------|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry     |
| No.   |        |              | Content | Density | Content | Density |
|       | psf    | psf          | %       | pcf     | %       | pcf     |
| 1     | 2000   | 2914         | 12.9    | 123.3   | 16.0    | 125.7   |
| 2     | 4000   | 4145         | 16.1    | 114.6   | 19.1    | 119.1   |
| 3     | 6000   | 5820         | 16.4    | 115.3   | 18.2    | 121.3   |
|       |        |              |         |         |         |         |

0.005 Sample Diameter, in.: Horizontal Displacement Rate, in. / min. :

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.


Labexcel \ FORMS \ GLA Forms \ Reports \ 2016.0096.300 \ 4308BC-SDS-RP" Print Date: Entered By: Reviewed By: 1/11/2018 DCN: SDS-rp (rev. 03/23/10) KH

4308BC

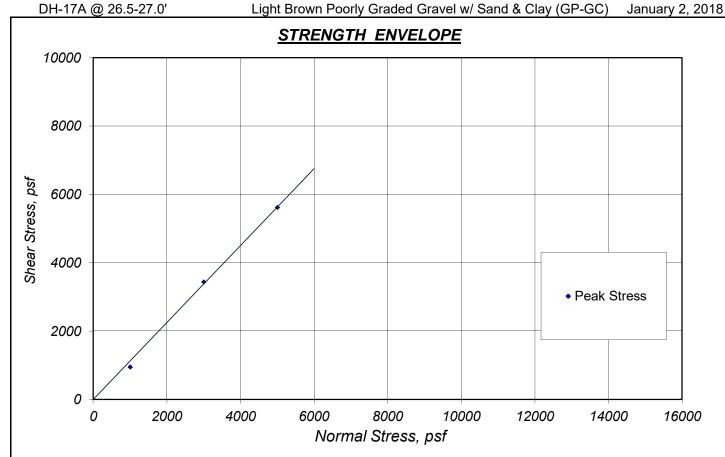
krc



ASTM D-3080



DCN: SDS-rp (rev. 03/23/10)


krc



Consolidated - Drained Test ASTM D- 3080

Client / Proiect Name: Project No.: Lab Log: 4308BQ Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 2016.0096.300

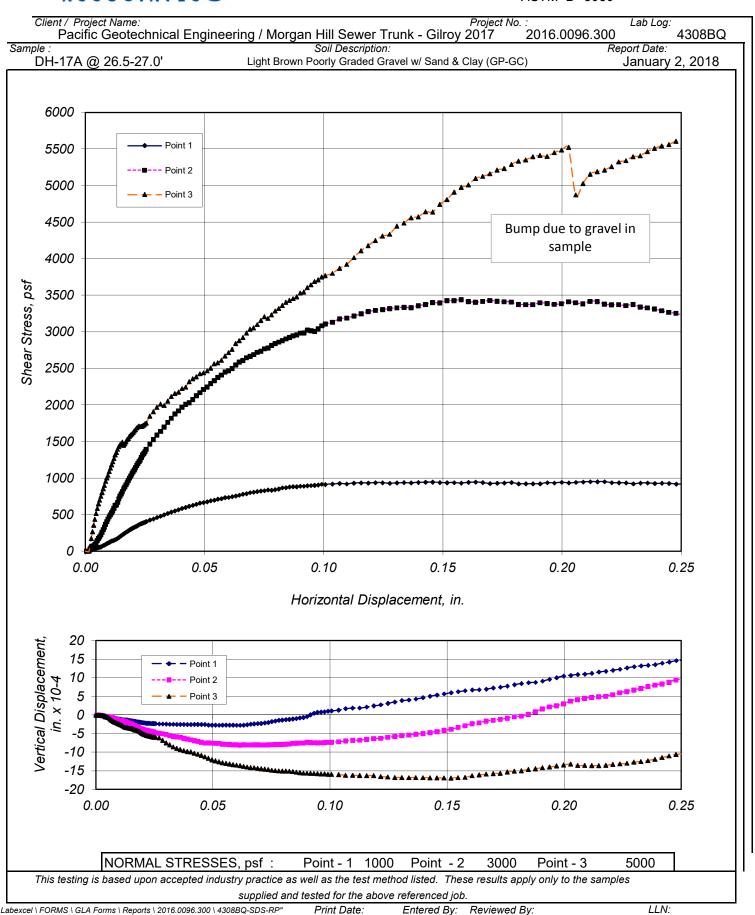
Sample: Report Date: Soil Description:



Peak Coefficient of Friction 1.126 Friction Angle 48.4 Cohesion, 0

Note: Intercept changed to "0"

|       | Normal | Shear Stress | Ini     | tial    | Fir     | nal     |
|-------|--------|--------------|---------|---------|---------|---------|
| Point | Stress | Peak         | Water   | Dry     | Water   | Dry     |
| No.   |        |              | Content | Density | Content | Density |
|       | psf    | psf          | %       | pcf     | %       | pcf     |
| 1     | 1000   | 951          | 11.8    | 113.0   | 18.4    | 115.7   |
| 2     | 3000   | 3441         | 9.3     | 115.9   | 15.5    | 123.3   |
| 3     | 5000   | 5623         | 8.8     | 115.1   | 16.1    | 125.7   |
|       |        |              |         |         |         |         |


0.005 Sample Diameter, in.: Horizontal Displacement Rate, in. / min. :

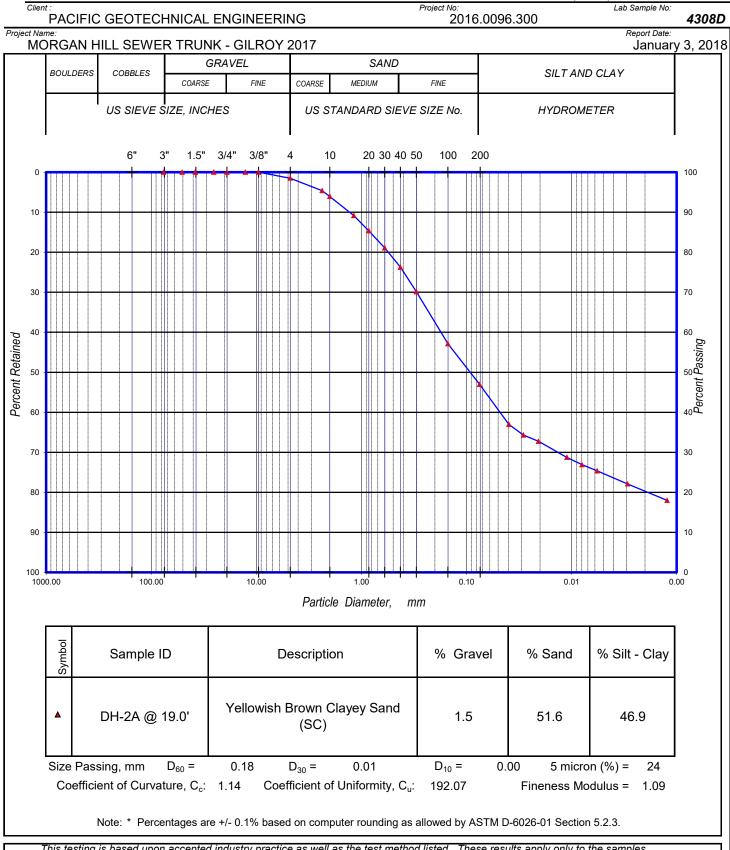
This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

Labexcel \ FORMS \ GLA Forms \ Reports \ 2016.0096.300 \ 4308BQ-SDS-RP" Print Date: Entered By: Reviewed By: 1/11/2018



ASTM D-3080




DCN: SDS-rp (rev. 03/23/10)

krc



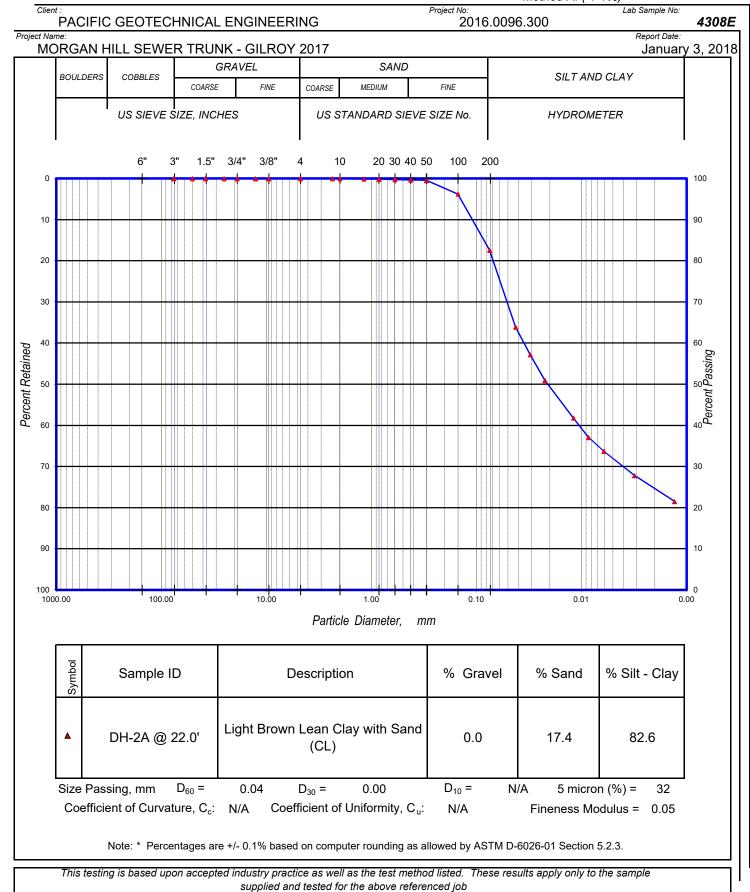
#### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job. Entered By:

KH


LSN:

JL



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



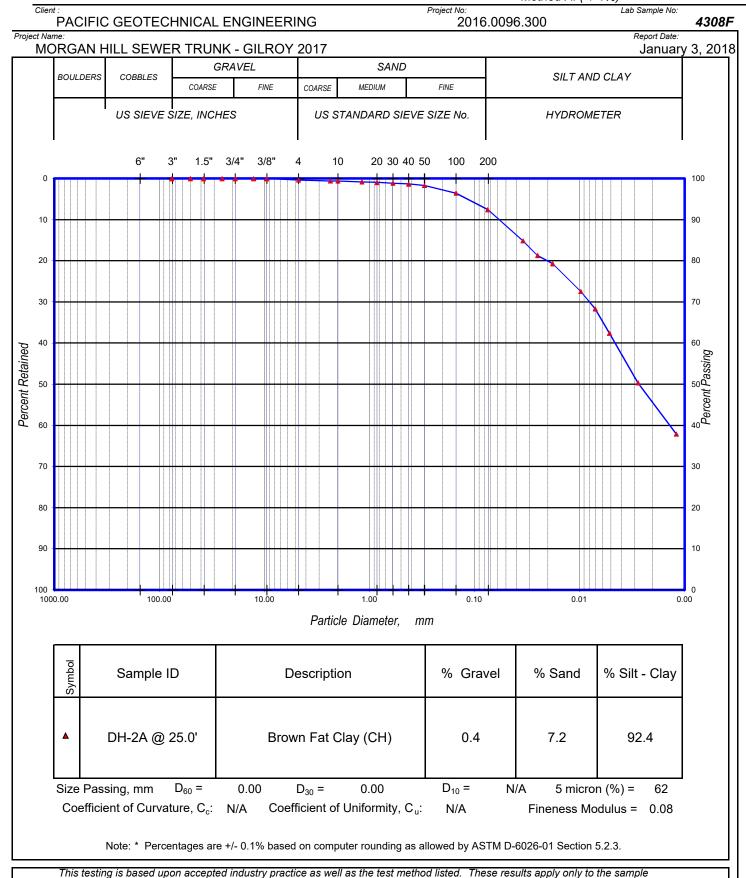


Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BX Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 11, 2018 SAND **GRAVEL** BOULDERS COBBLES SILT AND CLAY COARSE FINE MEDIUM FINE COARSE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 3/8" 1.5" 3/4" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 Percent Retained Percent Passing 50 60 70 30 80 20 10 90 100 1.00 100.00 10.00 0.10 0.01 1000.00 0.00 Particle Diameter, Symbol Sample ID \* Description % Gravel % Sand % Silt - Clay DH-2A @ 23.0-24.0' Brown Silty Clay w/ Sand 0.0 25.9 74.1  $D_{60} =$ 0.01  $D_{10} =$ N/A 5 micron (%) = Size Passing, mm 0.05  $D_{30} =$ Coefficient of Curvature, Cc: N/A Coefficient of Uniformity, C<sub>u</sub>: N/A Fineness Modulus = 0.01 \* Visual Classification based on ASTM D-2488 Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the sample supplied and tested for the above referenced job

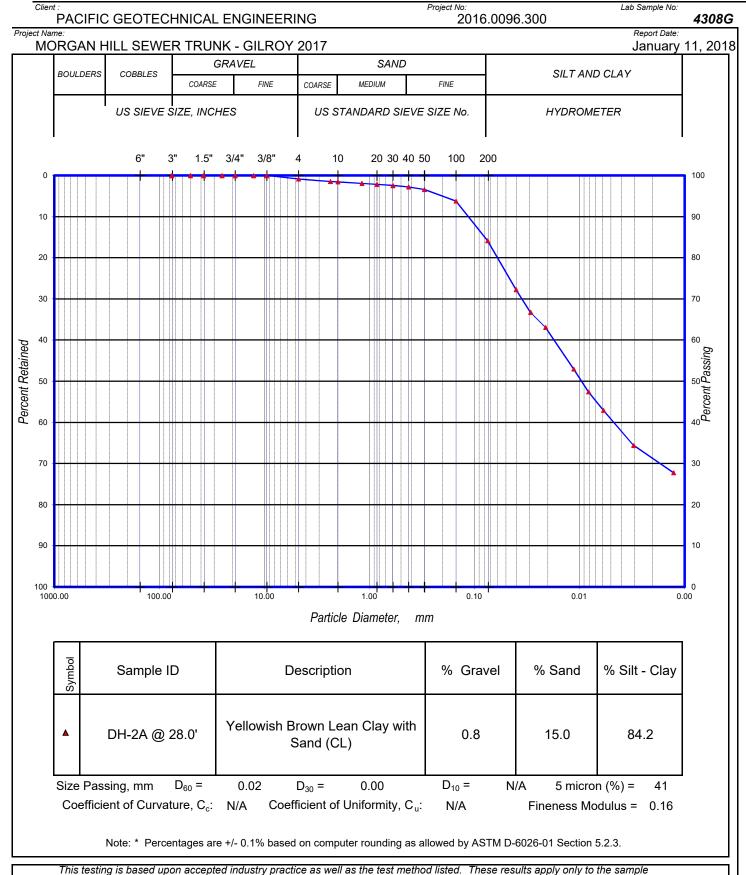

DCN: MA-rp (rev. 6/27/12)

4308BX



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

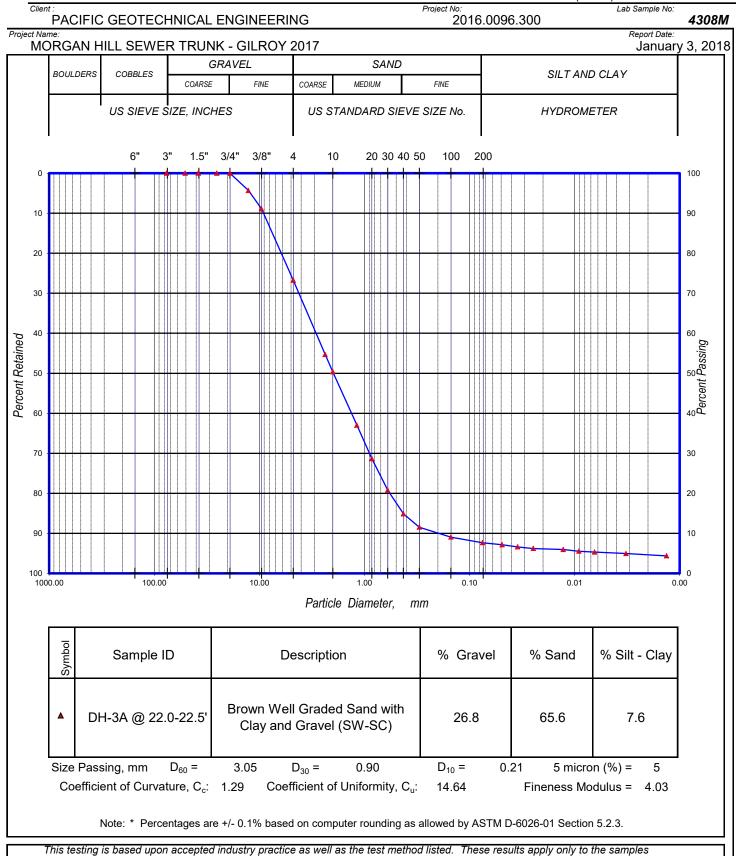



4308F



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




4308G

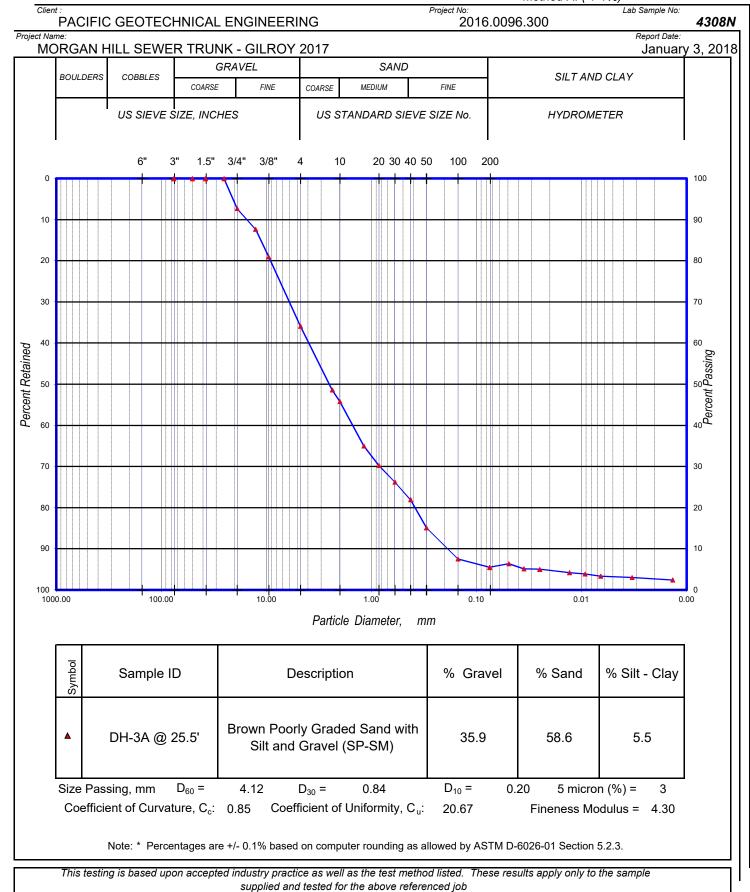


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job.


DCN: MA-rp (rev. 6/27/12)

LSN:



### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



4308N



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

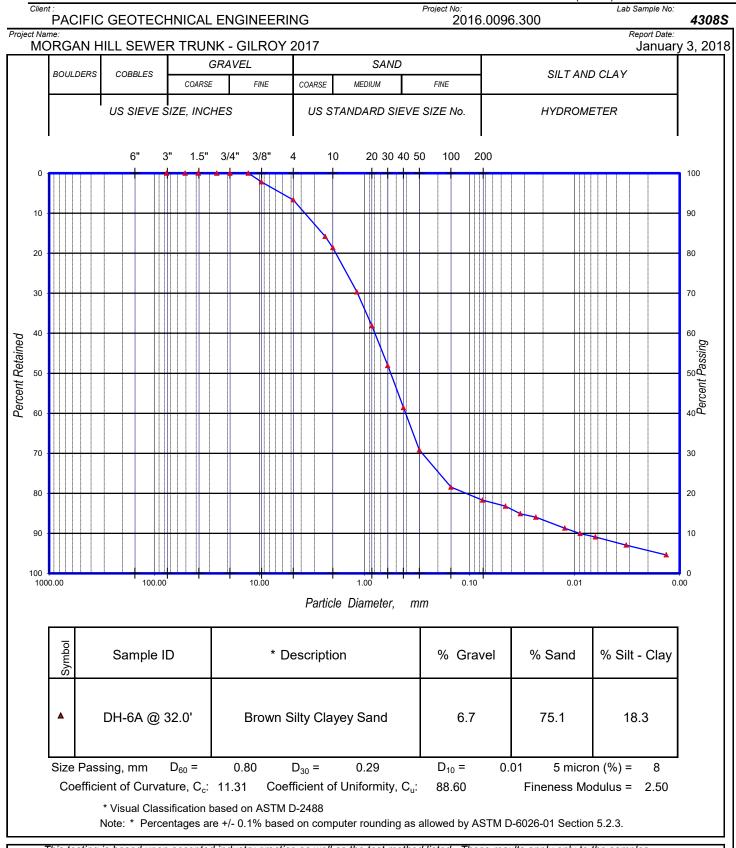
Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 43080 Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbo Sample ID \* Description % Gravel % Sand % Silt - Clay Brown Silty Clayey Sand with DH-3A @ 20.5-21.5' 28.9 42.1 29.1 Gravel Size Passing, mm  $D_{60} =$ 1.93  $D_{30} =$ 0.08  $D_{10} =$ 0.00 5 micron (%) = Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 0.75 396.48 Fineness Modulus = \* Visual Classification based on ASTM D-2488 Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3. This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples

supplied and tested for the above referenced job.

01/05/18

JL

DCN: MA-rp (rev. 6/27/12)

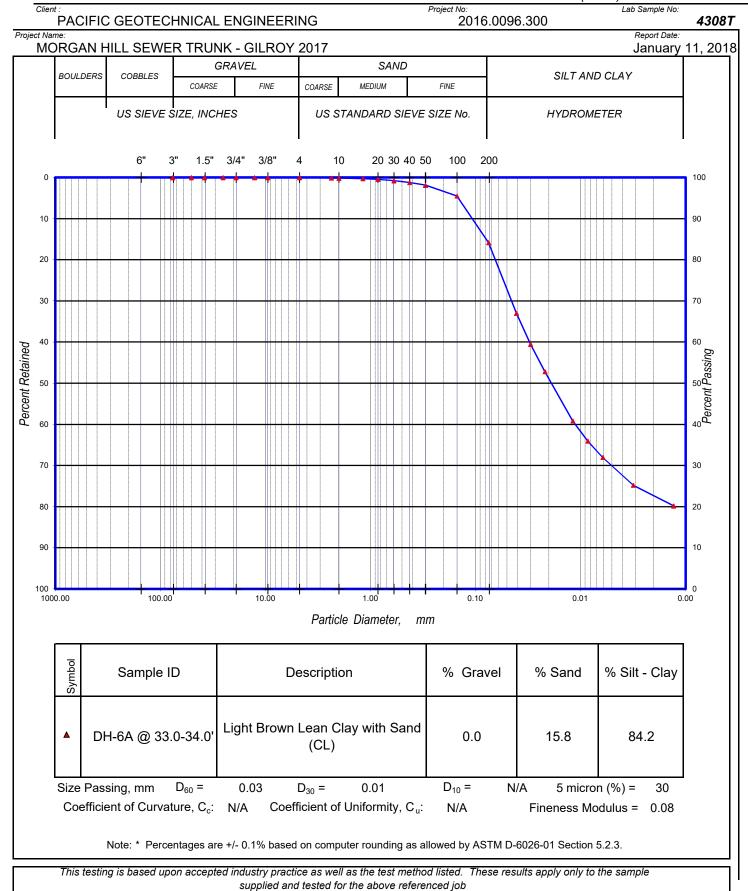

LSN:

KH



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

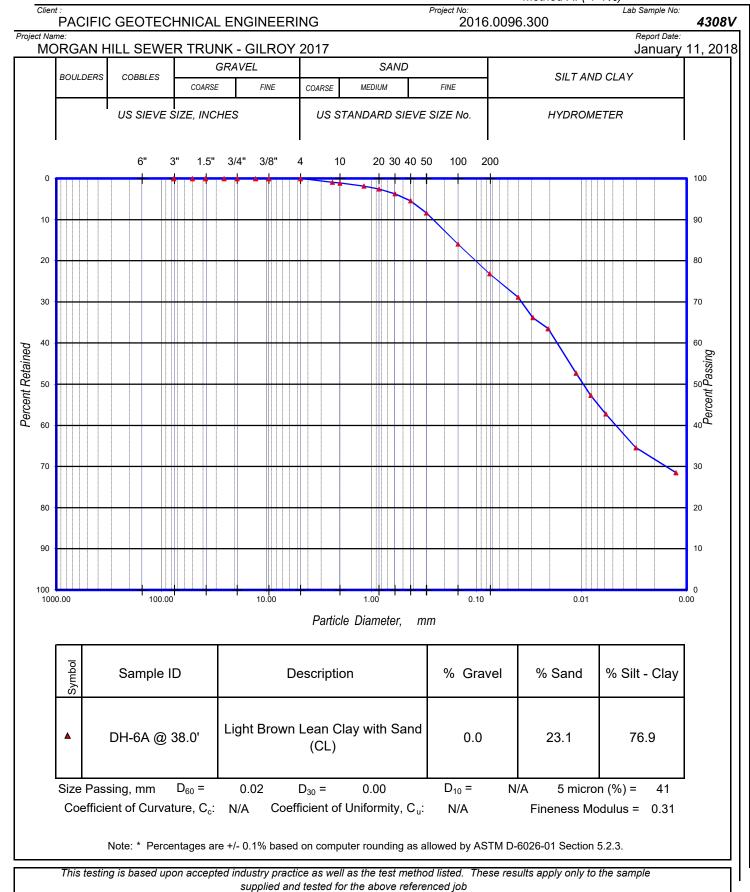



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job. LSN:



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

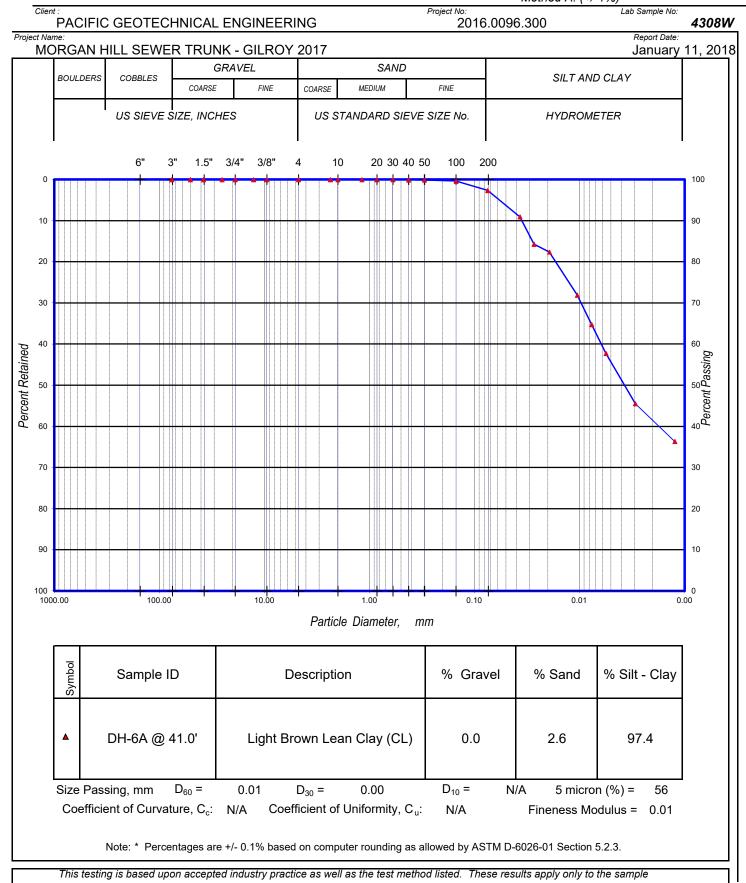



4308T



### Test Report

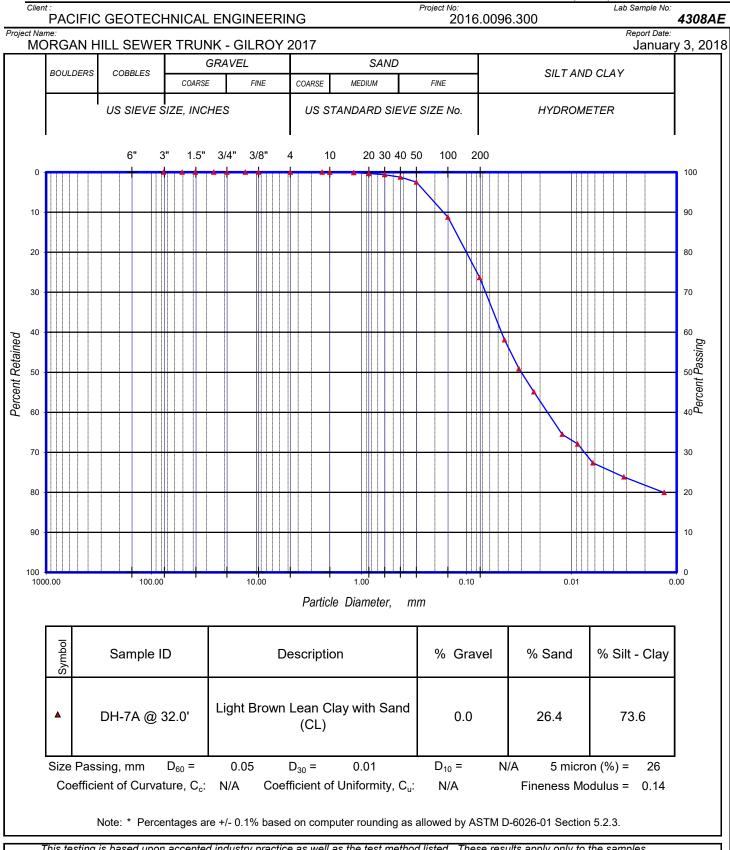
ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




4308V



### Test Report


ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)





## Test Report

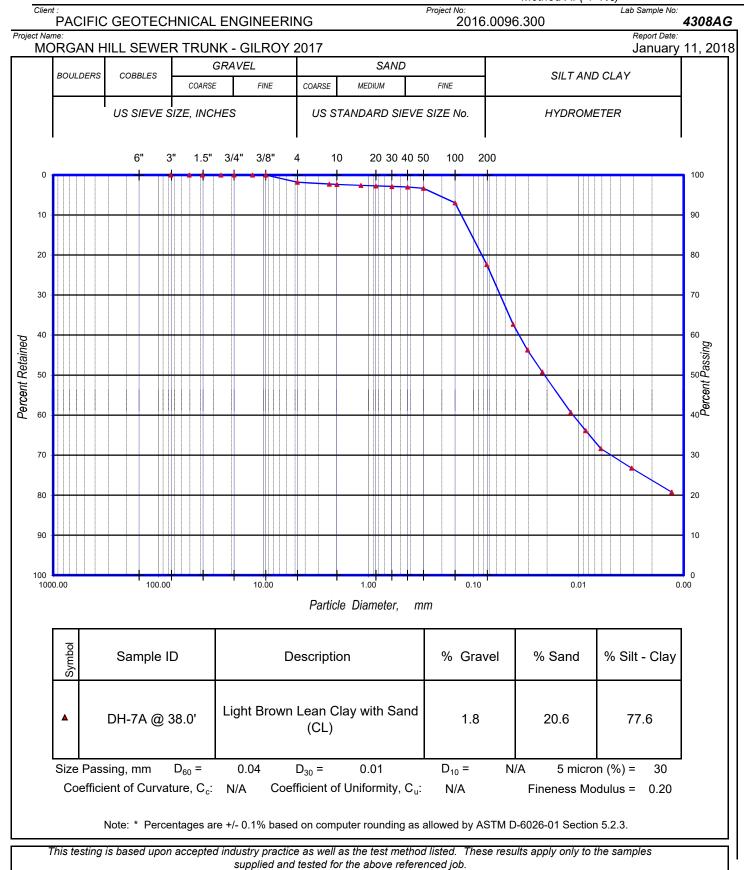
ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

JL

01/04/18


DCN: MA-rp (rev. 6/27/12)

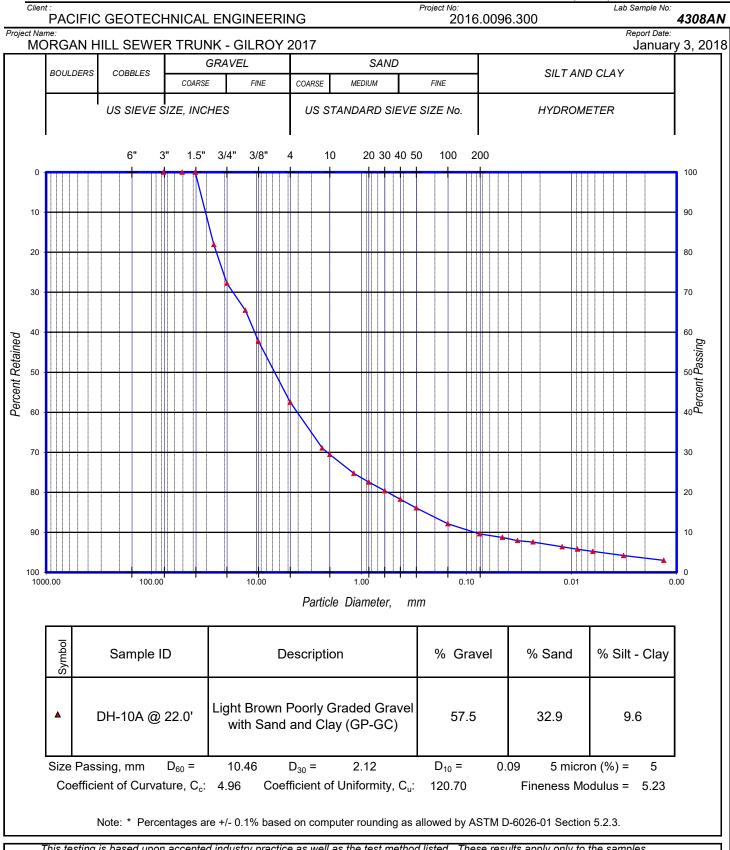
KH



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



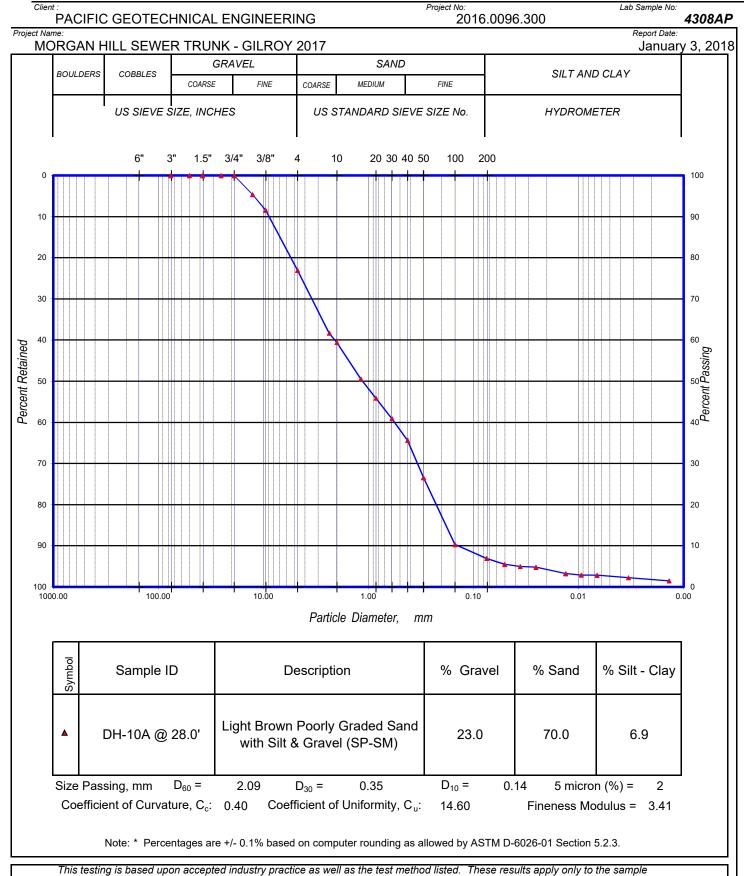

JL

KH



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



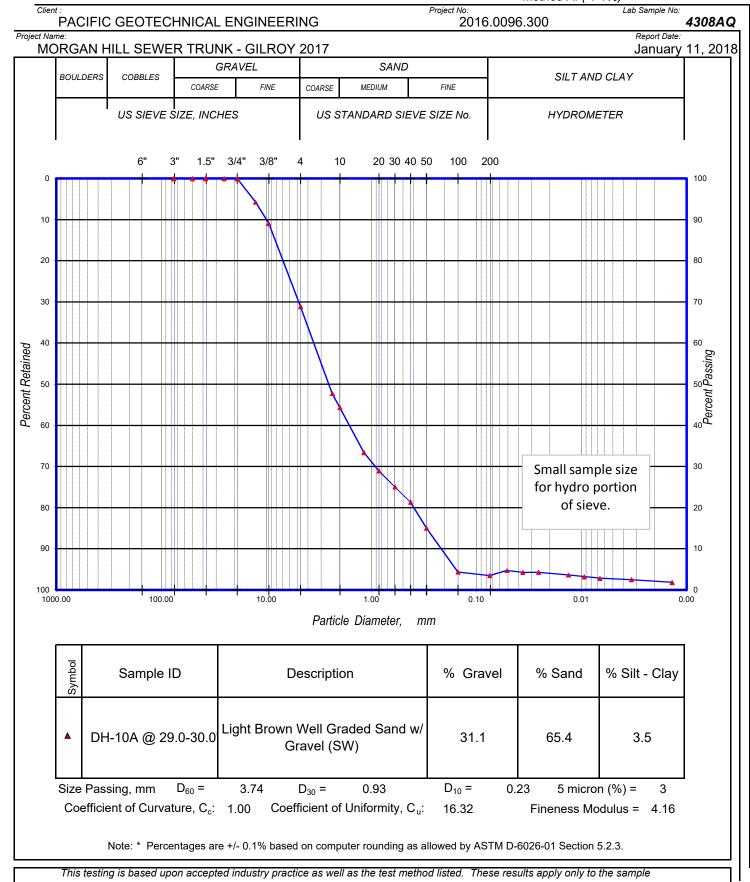

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

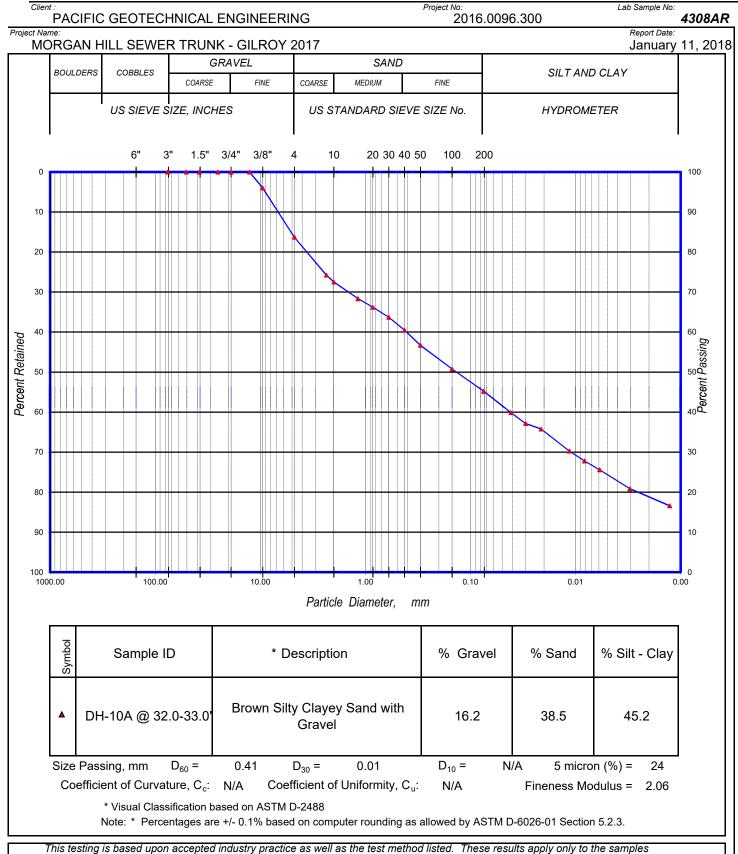



DCN: MA-rp (rev. 6/27/12)

4308AP



### Test Report


ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



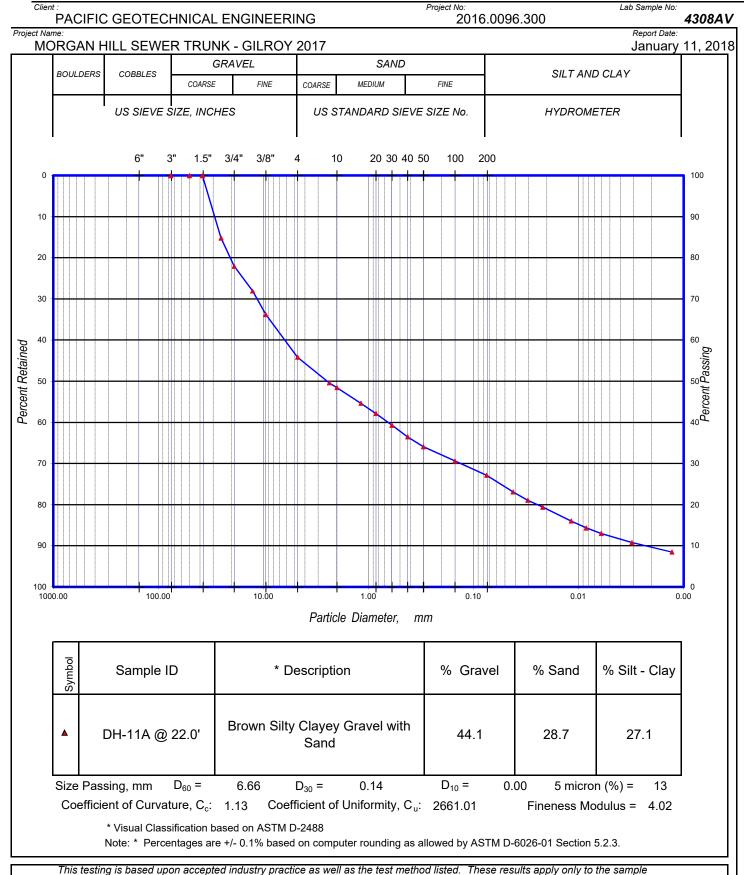


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



DCN: MA-rp (rev. 6/27/12)


JL

4308AR



### Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job

DCN: MA-rp (rev. 6/27/12)

JL

KH



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BY Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Brown Well Graded Gravel with DH-11A @ 24.5-25.0' 68.6 27.7 3.7 Sand (GW) Size Passing, mm  $D_{60} =$ 16.93 4.40  $D_{10} =$ 0.38 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 3.00 44.38 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

JL

01/05/18

DCN: MA-rp (rev. 6/27/12)

KH

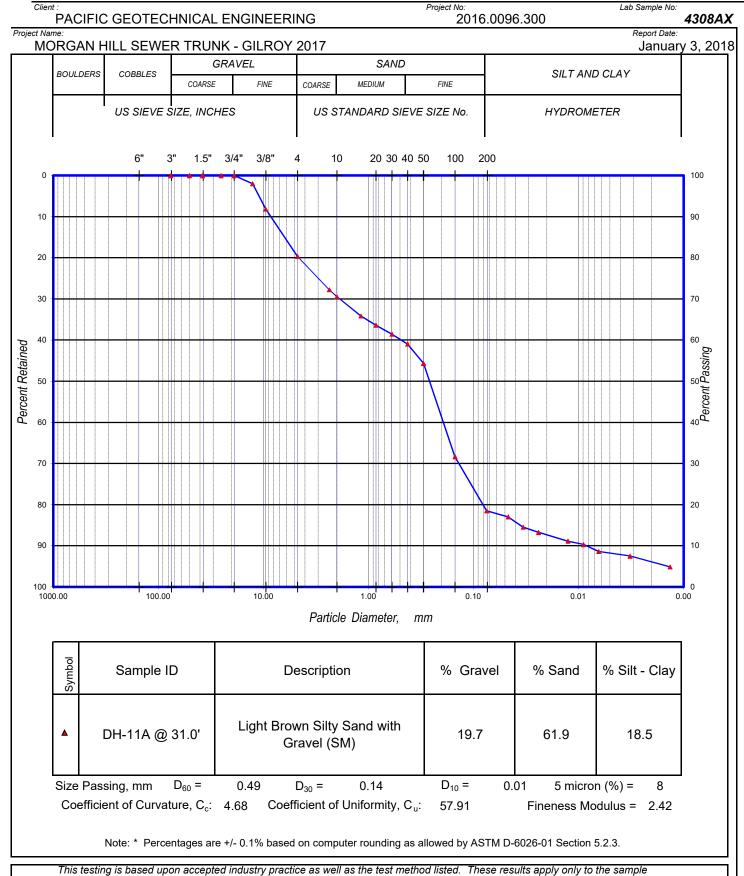


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: 4308AW PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 3" 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Dark Brown Poorly Graded Sand DH-11A @ 28.0' 37.8 53.9 8.3 with Silt and Gravel (SP-SM) Size Passing, mm  $D_{60} =$ 4.31 0.49  $D_{10} =$ 0.12 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 0.45 34.96 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.


JL

Reviewed Bv:



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



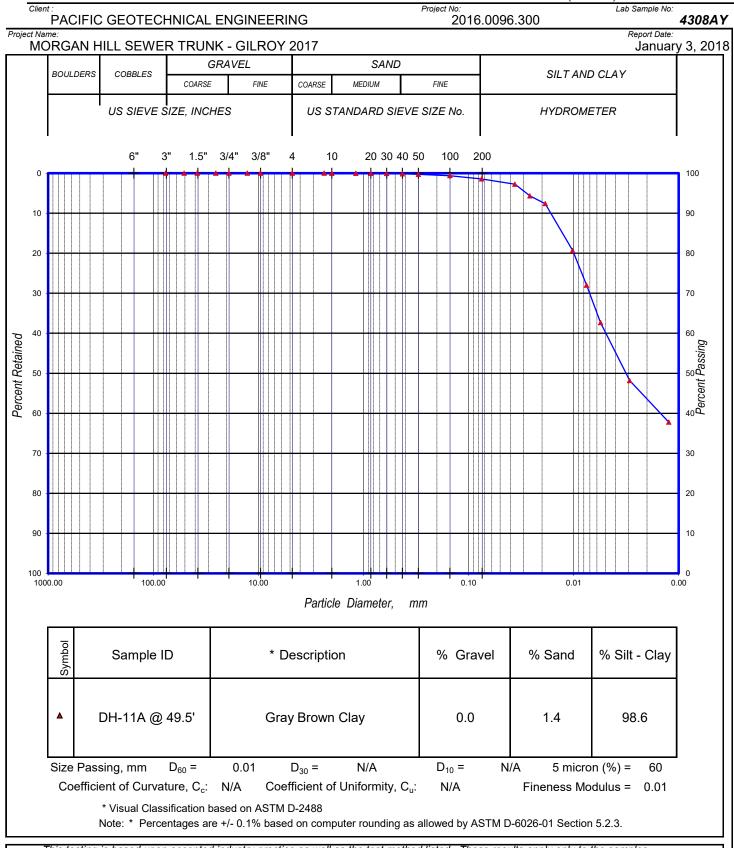


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: 2016.0096.300 PACIFIC GEOTECHNICAL ENGINEERING 4308AY-1 Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbo Sample ID \* Description % Gravel % Sand % Silt - Clay Brown Silty Clayey Sand with DH-11A @ 32-33' 31.5 55.0 13.4 Gravel Size Passing, mm  $D_{60} =$ 3.05  $D_{30} =$ 0.34  $D_{10} =$ 0.04 5 micron (%) = Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 0.94 76.41 Fineness Modulus = \* Visual Classification based on ASTM D-2488 Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

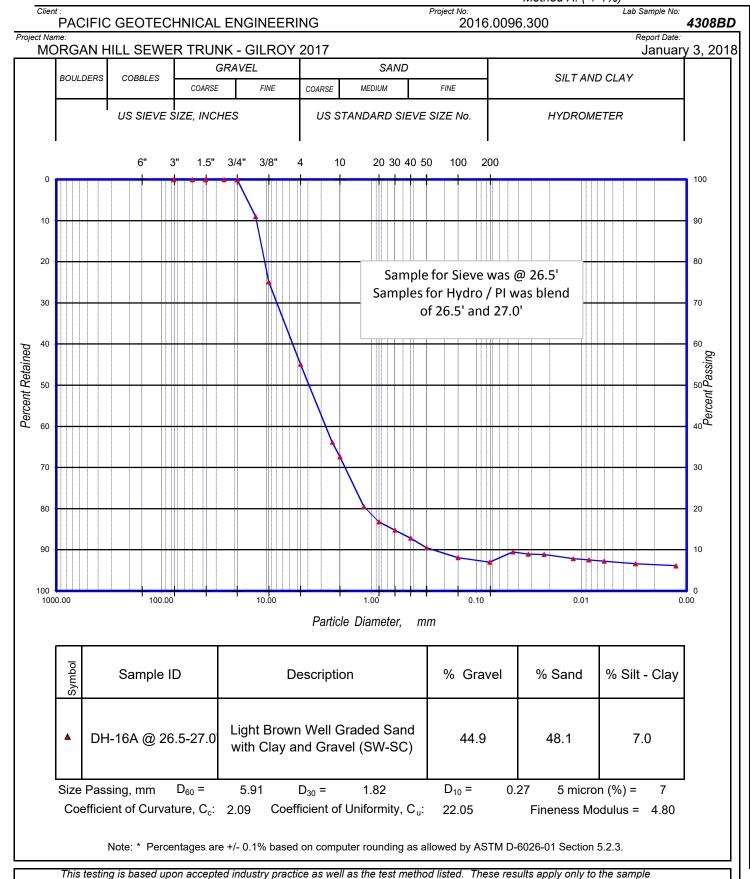

JL

LSN:



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method B:(+/-0.1%)



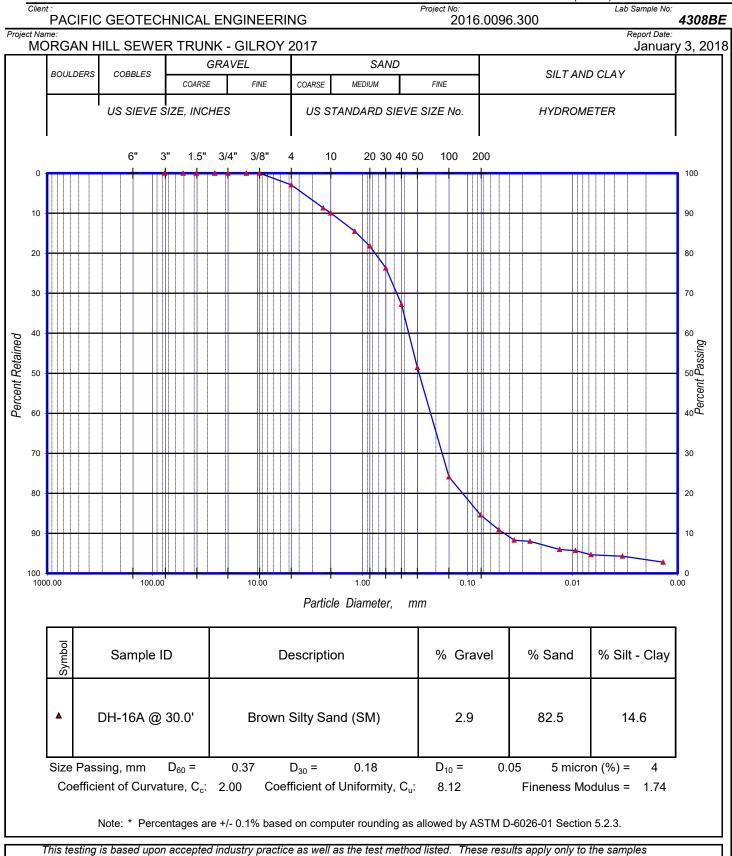

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)




supplied and tested for the above referenced job

L: Labexcel \ Projects \ Client \ Client \ Name \ 4308 \ 4308BD-ma \ Print \ Date: Entered \ By: Reviewed \ By:



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job.

DCN: MA-rp (rev. 6/27/12)

4308BE



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BF Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Brown Well Graded Gravel with DH-16A @ 32.5' 58.8 38.0 3.2 Sand (GW) Size Passing, mm  $D_{60} =$ 11.67 2.13  $D_{10} =$ 0.33 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 1.16 34.87 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3. This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples

supplied and tested for the above referenced job.

DCN: MA-rp (rev. 6/27/12)

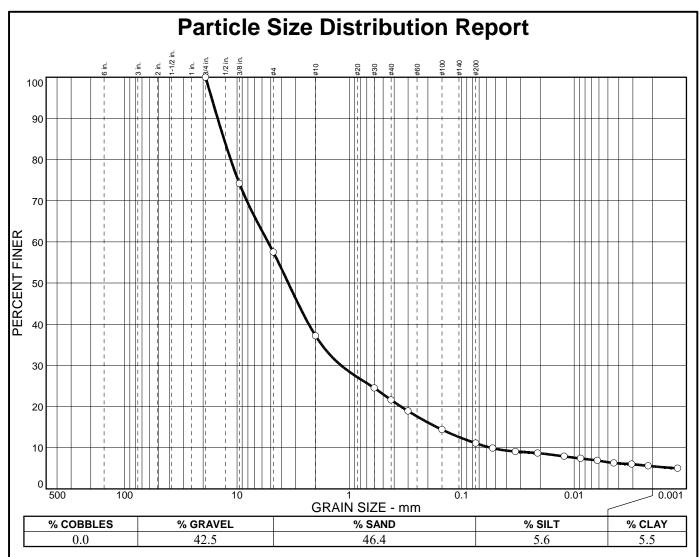


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BL Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.00 0.01 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Brown Well Graded Gravel with DH-17A @ 27.0' 61.7 34.2 4.1 Sand (GW) Size Passing, mm  $D_{60} =$ 15.24 3.07  $D_{10} =$ 0.41 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 1.49 36.79 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job. Entered By:




## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BM Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 3" 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Brown Poorly Graded Sand with DH-17A @ 30.0' 20.7 70.5 8.9 Silt and Gravel (SP-SM) Size Passing, mm  $D_{60} =$ 1.09 0.31  $D_{10} =$ 0.09 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, Cu: Coefficient of Curvature, C<sub>c</sub>: 0.97 12.25 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



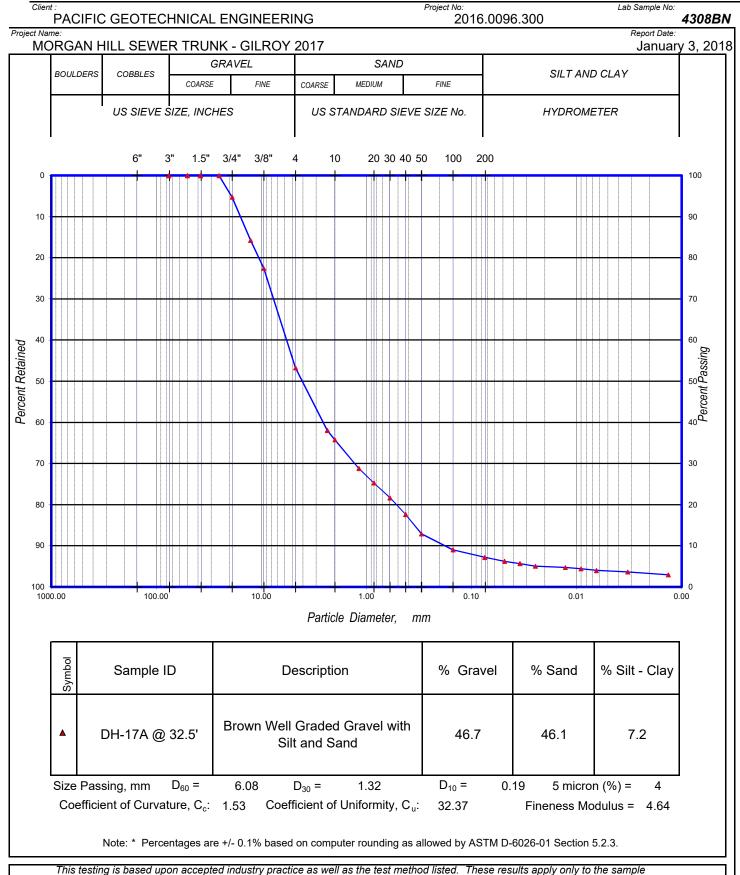
| SIEVE                                                                                                                                     | PERCENT                                                                                                                                     | SPEC.*  | PASS?  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| SIZE                                                                                                                                      | FINER                                                                                                                                       | PERCENT | (X=NO) |
| 3/4 in. 3/8 in. #4 #10 #30 #40 #50 #100 #200 #270 0.0332 mm. 0.0122 mm. 0.0087 mm. 0.0062 mm. 0.0044 mm. 0.0031 mm. 0.0022 mm. 0.0012 mm. | 100.0<br>74.2<br>57.5<br>37.2<br>24.5<br>21.6<br>18.9<br>14.4<br>11.1<br>9.9<br>9.1<br>8.7<br>7.9<br>7.4<br>6.9<br>6.3<br>6.0<br>5.6<br>5.0 |         |        |

| Soil Description                                                           |                                                     |                                                    |  |
|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--|
| Yellowish Brov                                                             | Yellowish Brown Poorly Graded SAND w/ Clay & Gravel |                                                    |  |
|                                                                            |                                                     |                                                    |  |
|                                                                            |                                                     |                                                    |  |
| DI                                                                         | Atterberg Limits                                    | DI                                                 |  |
| PL=                                                                        | LL=                                                 | Pl=                                                |  |
|                                                                            | Coefficients                                        |                                                    |  |
| $D_{85} = 13.1$                                                            | $D_{60} = 5.30$                                     | D <sub>50</sub> = 3.50<br>D <sub>10</sub> = 0.0549 |  |
| D <sub>85</sub> = 13.1<br>D <sub>30</sub> = 1.19<br>C <sub>u</sub> = 96.58 | $D_{15} = 0.166$ $C_{c} = 4.82$                     | $D_{10} = 0.0549$                                  |  |
| C <sub>U</sub> = 90.38                                                     | $C_{C} = 4.82$                                      |                                                    |  |
|                                                                            | Classification                                      |                                                    |  |
| USCS=                                                                      | AASHTO                                              | )=                                                 |  |
| Remarks                                                                    |                                                     |                                                    |  |
|                                                                            |                                                     |                                                    |  |
|                                                                            |                                                     |                                                    |  |
|                                                                            |                                                     |                                                    |  |

Sample No.: Source of Sample: DH-21A Date: 8/15/18 Location: Elev./Depth: 14-15'

**COOPER TESTING LABORATORY** 

**Client:** Geo-Logic Associates


**Project:** MH Sewer Trunk - 2016.0096

Project No: 516-041 Figure



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



supplied and tested for the above referenced job



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

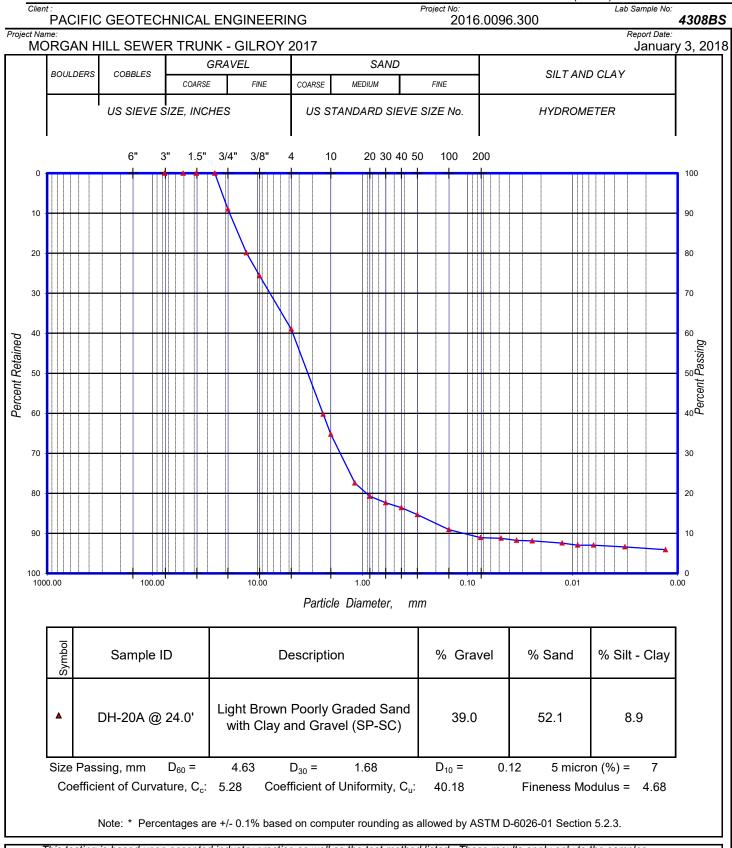
Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BQ Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Light Brown Poorly Graded Gravel DH-20A @ 18.0' 45.1 43.9 11.0 with Sand and Clay (GP-GC) Size Passing, mm  $D_{60} =$ 6.01 1.09  $D_{10} =$ 0.03 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, C<sub>II</sub>: Coefficient of Curvature, C<sub>c</sub>: 7.45 228.63 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3. This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples

supplied and tested for the above referenced job. Entered By: Reviewed Bv:



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)


Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BR Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Light Brown Clayey Gravel with DH-20A @ 21.0' 45.2 41.5 13.3 Sand (GC) Size Passing, mm  $D_{60} =$ 5.80 1.50  $D_{10} =$ 0.01 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, C<sub>II</sub>: Coefficient of Curvature, C<sub>c</sub>: 58.56 882.52 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.



## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)



This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job. Entered By:

01/05/18

DCN: MA-rp (rev. 6/27/12)

KH

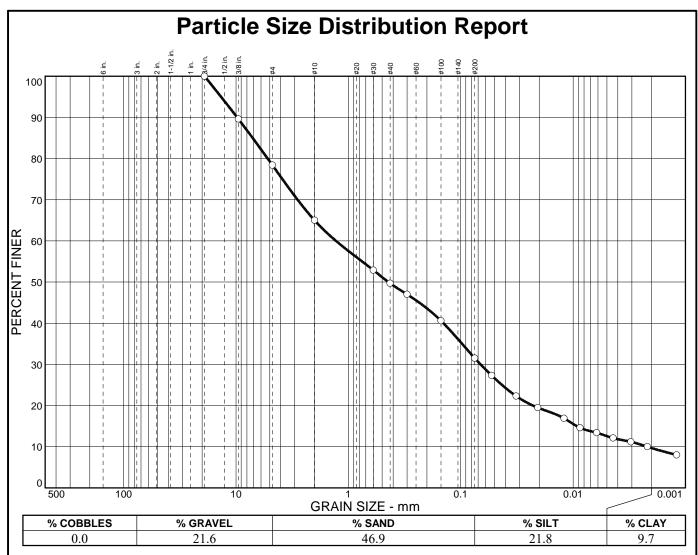


## Test Report

ASTM D-6913 / D-7928, (replacing D-422) Method A: (+/-1%)

Client Project No: Lab Sample No: PACIFIC GEOTECHNICAL ENGINEERING 2016.0096.300 4308BT Project Name Report Date: MORGAN HILL SEWER TRUNK - GILROY 2017 January 3, 2018 **GRAVEL** SAND BOULDERS COBBLES SILT AND CLAY COARSE COARSE **MEDIUM** FINE US SIEVE SIZE, INCHES US STANDARD SIEVE SIZE No. **HYDROMETER** 1.5" 3/4" 3/8" 10 20 30 40 50 100 200 0 100 10 90 20 80 30 70 40 60 Percent Retained Percent Passing 60 70 30 20 80 90 10 100 1000.00 100.00 10.00 0.10 0.01 0.00 Particle Diameter, Symbol Sample ID Description % Gravel % Sand % Silt - Clay Light Brown Poorly Graded Gravel DH-20A @ 26.5-27.0' 58.9 29.8 11.3 with Sand and Clay (GP-GC) Size Passing, mm  $D_{60} =$ 13.07 2.51  $D_{10} =$ 0.06 5 micron (%) =  $D_{30} =$ Coefficient of Uniformity, C<sub>II</sub>: Coefficient of Curvature, C<sub>c</sub>: 7.64 206.89 Fineness Modulus = Note: \* Percentages are +/- 0.1% based on computer rounding as allowed by ASTM D-6026-01 Section 5.2.3.

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.


L: Labexcel \ Projects \ Client \ Client Name \ 4308 \ 4308BT-ma Print Date:

Entered By: Reviewed By:

JL

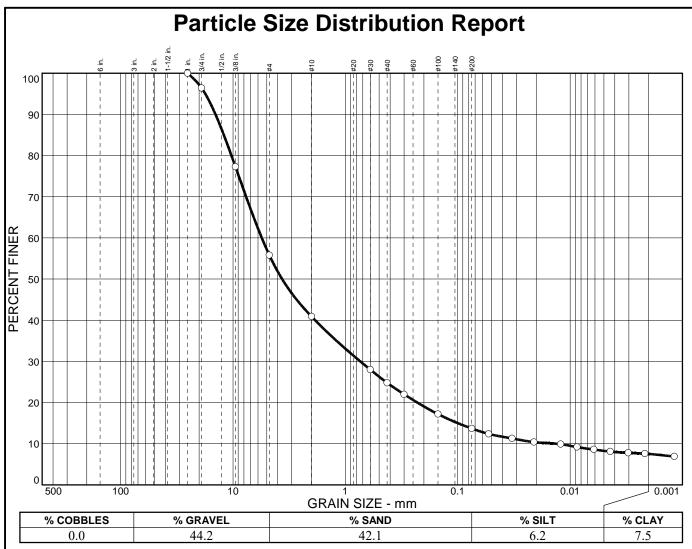
4308BT

LSN:



| SIEVE      | PERCENT | SPEC.*  | PASS?  |
|------------|---------|---------|--------|
| SIZE       | FINER   | PERCENT | (X=NO) |
| 3/4 in.    | 100.0   |         |        |
| 3/8 in.    | 89.6    |         |        |
| #4         | 78.4    |         |        |
| #10        | 65.0    |         |        |
| #30        | 52.9    |         |        |
| #40        | 49.7    |         |        |
| #50        | 47.0    |         |        |
| #100       | 40.6    |         |        |
| #200       | 31.5    |         |        |
| #270       | 27.3    |         |        |
| 0.0321 mm. | 22.3    |         |        |
| 0.0206 mm. | 19.5    |         |        |
| 0.0120 mm. | 16.9    |         |        |
| 0.0087 mm. | 14.6    |         |        |
| 0.0062 mm. | 13.4    |         |        |
| 0.0044 mm. | 12.1    |         |        |
| 0.0031 mm. | 11.2    |         |        |
| 0.0022 mm. | 10.0    |         |        |
| 0.0012 mm. | 8.0     |         |        |
|            |         |         |        |

| Soil Description Yellowish Brown Clayey SAND w/ Gravel                        |                                                                                                                                                |                                                     |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| PL=                                                                           | Atterberg Limits LL=                                                                                                                           | PI=                                                 |
| D <sub>85</sub> = 7.12<br>D <sub>30</sub> = 0.0666<br>C <sub>u</sub> = 591.42 | $\begin{array}{c} \underline{\text{Coefficients}} \\ \text{D}_{60} = 1.29 \\ \text{D}_{15} = 0.0093 \\ \text{C}_{\text{C}} = 1.58 \end{array}$ | D <sub>50</sub> = 0.440<br>D <sub>10</sub> = 0.0022 |
| USCS=                                                                         | Classification<br>AASHTO                                                                                                                       | O=                                                  |
| <u>Remarks</u>                                                                |                                                                                                                                                |                                                     |
|                                                                               |                                                                                                                                                |                                                     |


Sample No.: Source of Sample: DH-21 Date: 8/15/18 Location: Elev./Depth: 19-20'

**COOPER TESTING LABORATORY** 

**Client:** Geo-Logic Associates

**Project:** MH Sewer Trunk - 2016.0096

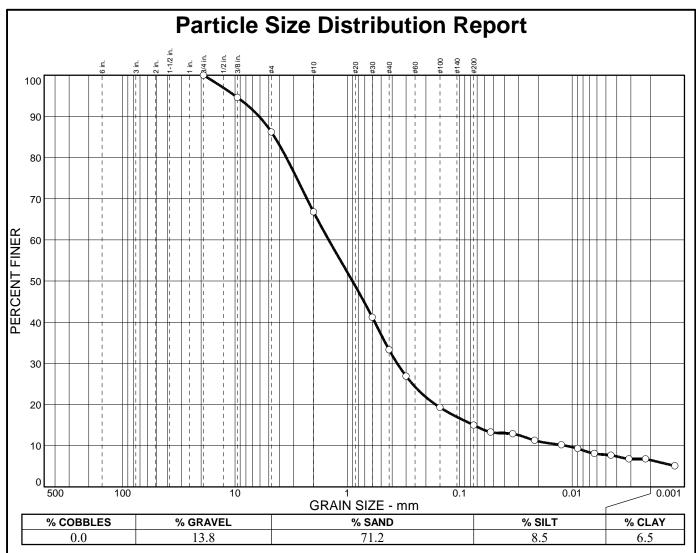
Project No: 516-041 Figure



| SIEVE                                                                                                                                            | PERCENT                                                                                                                                                | SPEC.*  | PASS?  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| SIZE                                                                                                                                             | FINER                                                                                                                                                  | PERCENT | (X=NO) |
| 1 in. 3/4 in. 3/8 in. #44 #10 #30 #40 #50 #100 #200 #270 0.0328 mm. 0.0210 mm. 0.0087 mm. 0.0087 mm. 0.0044 mm. 0.0032 mm. 0.0022 mm. 0.0021 mm. | 100.0<br>96.4<br>77.3<br>55.8<br>40.9<br>28.0<br>24.8<br>22.0<br>17.2<br>13.7<br>12.4<br>11.3<br>10.4<br>9.9<br>9.2<br>8.6<br>8.1<br>7.8<br>7.6<br>6.9 |         |        |

| Soil Description  Reddish Brown Clayey GRAVEL w/ Sand                        |                                                                                    |                                                    |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|
| PL=                                                                          | Atterberg Limits<br>LL=                                                            | Pl=                                                |
| D <sub>85</sub> = 12.1<br>D <sub>30</sub> = 0.737<br>C <sub>u</sub> = 425.38 | Coefficients D <sub>60</sub> = 5.55 D <sub>15</sub> = 0.0998 C <sub>C</sub> = 7.50 | D <sub>50</sub> = 3.65<br>D <sub>10</sub> = 0.0130 |
| USCS=                                                                        | Classification<br>AASHT                                                            | O=                                                 |
|                                                                              | <u>Remarks</u>                                                                     |                                                    |
|                                                                              |                                                                                    |                                                    |

Sample No.: Source of Sample: DH-21 **Elev./Depth:** 22-23' Location:


**COOPER TESTING LABORATORY** 

Client: Geo-Logic Associates

**Project:** MH Sewer Trunk - 2016.0096

**Project No: 516-041 Figure** 

**Date:** 8/15/18



| SIEVE      | PERCENT | SPEC.*  | PASS?  |
|------------|---------|---------|--------|
| SIZE       | FINER   | PERCENT | (X=NO) |
| 3/4 in.    | 100.0   |         |        |
| 3/8 in.    | 94.6    |         |        |
| #4         | 86.2    |         |        |
| #10        | 66.8    |         |        |
| #30        | 41.2    |         |        |
| #40        | 33.3    |         |        |
| #50        | 26.9    |         |        |
| #100       | 19.3    |         |        |
| #200       | 15.0    |         |        |
| #270       | 13.3    |         |        |
| 0.0337 mm. | 12.9    |         |        |
| 0.0215 mm. | 11.3    |         |        |
| 0.0125 mm. | 10.2    |         |        |
| 0.0089 mm. | 9.3     |         |        |
| 0.0063 mm. | 8.1     |         |        |
| 0.0045 mm. | 7.7     |         |        |
| 0.0031 mm. | 6.8     |         |        |
| 0.0022 mm. | 6.8     |         |        |
| 0.0012 mm. | 5.1     |         |        |
|            |         |         |        |

| Soil Description Olive Brown Clayey SAND                                     |                                                          |                                                     |
|------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| PL=                                                                          | Atterberg Limits<br>LL=                                  | PI=                                                 |
| D <sub>85</sub> = 4.45<br>D <sub>30</sub> = 0.360<br>C <sub>u</sub> = 129.70 | Coefficients D60= 1.47 D15= 0.0750 C <sub>C</sub> = 7.82 | D <sub>50</sub> = 0.902<br>D <sub>10</sub> = 0.0113 |
| USCS=                                                                        | Classification<br>AASHT                                  | O=                                                  |
|                                                                              | <u>Remarks</u>                                           |                                                     |
|                                                                              |                                                          |                                                     |

Sample No.: Source of Sample: DH-21 Date: 8/15/18 Location: Elev./Depth: 28-29'

**COOPER TESTING LABORATORY** 

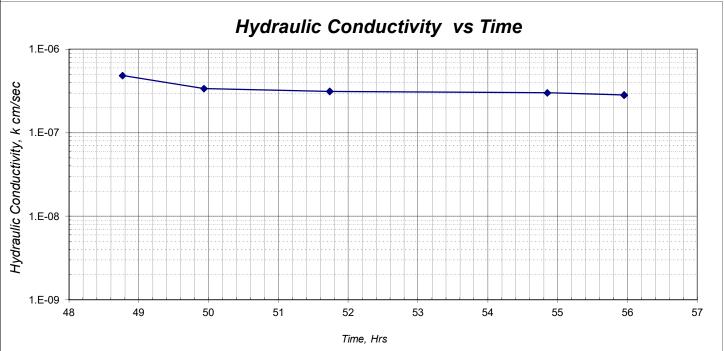
**Client:** Geo-Logic Associates

**Project:** MH Sewer Trunk - 2016.0096

Project No: 516-041 Figure

# HYDRAULIC CONDUCTIVITY

**REPORT** 




Client / Project Name: Project No: Lab Sample Number: 4308BZ

Pacific Geotechnical Engineering / Morgan Hill Sewer Trunk - Gilroy 2017 2016.0096.300 Lab Sample Number: 4308BZ

ample ID: Description: Report Date:

DH-11A 30.5' Brown Clayey Sand December 18, 2017



#### SPECIMEN DATA

| SAMPLE ID:                       | DH-11 30.         | 5'           |
|----------------------------------|-------------------|--------------|
| DESCRIPTION:                     | Brown Clayey Sand |              |
|                                  | <u>INITIAL</u>    | <u>FINAL</u> |
|                                  |                   |              |
| HEIGHT, in.                      | 3.8               | 3.8          |
| DIAMETER, in.                    | 2.4               | 2.4          |
| WATER CONTENT, %                 | 18.3              | 16.7         |
| DRY DENSITY, pcf                 | 113               | 116          |
| SATURATION, %                    | 100               | 100          |
| (Specific Gravity assumed as 2.7 | )                 |              |
|                                  |                   |              |
|                                  |                   |              |
|                                  |                   |              |
|                                  |                   |              |
|                                  |                   |              |

COMMENTS:

Tap water used as permeant.

#### TEST DATA

| ASTM D-5084, Method C |        |  |
|-----------------------|--------|--|
| EFFECTIVE STRESS:     | 25 psi |  |
| GRADIENT RANGE:       | 9 - 11 |  |
| IN / OUT RATIO:       | 0.98   |  |
| "B" PARAMETER:        | 0.95   |  |
|                       |        |  |

|       |             | HYDRAULIC                     |
|-------|-------------|-------------------------------|
| TRIAL | TIME        | CONDUCTIVITY, k <sup>20</sup> |
| nos.  | <u>hrs.</u> | <u>cm / s</u>                 |
| 1     | 48.8        | 4.8E-07                       |
| 2     | 49.9        | 3.4E-07                       |
| 3     | 51.7        | 3.1E-07                       |
| 4     | 54.9        | 3.0E-07                       |
| 5     | 56.0        | 2.8E-07                       |
|       |             |                               |

**AVERAGE LAST 4: 3.1E-07** 

corrected to 20° C

This testing is based upon accepted industry practice as well as the test method listed. These results apply only to the samples supplied and tested for the above referenced job.

# APPENDIX C ANALYTICAL TEST RESULTS



Date of Report: 02/09/2017

**Beeson Liang** 

Geologic/Pacific Geotechnical Engineering 16055-D Caputo Drive Morgan Hill, CA 95037

Client Project: MH Sewer Trunk 2016.0096

BCL Project: Soil Analysis
BCL Work Order: 1702487
Invoice ID: B259080

Enclosed are the results of analyses for samples received by the laboratory on 1/27/2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Tina Green Client Services Manager

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101



#### **Table of Contents**

| Sample Information                           |    |
|----------------------------------------------|----|
| Chain of Custody and Cooler Receipt form     | 3  |
| Laboratory / Client Sample Cross Reference   | 5  |
| Sample Results                               |    |
| 1702487-01 - DH3 S.S-6.5 Feet                |    |
| Organochlorine Pesticides (EPA Method 8081A) | 6  |
| Volatile Organic Analysis (EPA Method 8260B) | 7  |
| Total Petroleum Hydrocarbons                 | 10 |
| Total Concentrations (TTLC)                  | 11 |
| 1702487-02 - DH11 5.5-6.0 Feet               |    |
| Organochlorine Pesticides (EPA Method 8081A) | 12 |
| Volatile Organic Analysis (EPA Method 8260B) | 13 |
| Total Petroleum Hydrocarbons                 | 16 |
| Total Concentrations (TTLC)                  | 17 |
| 1702487-03 - DH17 5.5 - 6.5 Feet             |    |
| Organochlorine Pesticides (EPA Method 8081A) | 18 |
| Volatile Organic Analysis (EPA Method 8260B) | 19 |
| Total Petroleum Hydrocarbons                 | 22 |
| Total Concentrations (TTLC)                  | 23 |
| Quality Control Reports                      |    |
| Organochlorine Pesticides (EPA Method 8081A) |    |
| Method Blank Analysis                        | 24 |
| Laboratory Control Sample                    | 25 |
| Precision and Accuracy                       | 26 |
| Volatile Organic Analysis (EPA Method 8260B) |    |
| Method Blank Analysis                        | 27 |
| Laboratory Control Sample                    | 31 |
| Precision and Accuracy                       | 32 |
| Total Petroleum Hydrocarbons                 |    |
| Method Blank Analysis                        | 34 |
| Laboratory Control Sample                    | 35 |
| Precision and Accuracy                       | 36 |
| Total Concentrations (TTLC)                  |    |
| Method Blank Analysis                        | 37 |
| Laboratory Control Sample                    | 38 |
| Precision and Accuracy                       | 39 |
| Notes                                        |    |
| Notes and Definitions                        | 41 |

Report ID: 1000571737



Chain of Custody and Cooler Receipt Form for 1702487 Page 1 of 2 \* Standard Turnaround = 10 work days Notes Yes (Needed for EDT) BC Laboratories, Inc. – 4100 Atlas Ct. – Bakersfield, CA 93308 – 661.327.4911 – Fax: 661.327.1918 – www.bclabs.com System # # of work days\* Comments: Sample Matrix Drinking Water Ground Water Waste Water Analysis Requested 1-12-17 Chain of Custody Form Date SUB-DUT (Negded for EDF) MOO Global ID Sampled Sampled Project Name: M # Souldy Trunk 11:00 12/6/16/14:30 OFK BY Project #: 2016. 0096 Send Copy to State of CA? (EDT) Ž Ž 121516 EDF Required? ☐ Yes ☐ Yes Global ID #: Sampler(s): Same as above N 7 4) Zip Email Address: blighty(b) (Peo -light, COM Phone: 408-778-288 Fax: 408-779-687 Description Laboratories, Inc. 1605507 utin: Seeson Hierau ient Ro-Logic. treet Address: City, State, Zip: Vork Order #: Billing Address: Client: \_ PO#: City: Attn:

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 3 of 41



Chain of Custody and Cooler Receipt Form for 1702487 Page 2 of 2

| BC LABORATORIES INC.                                                    |                                         |                  | COOLER         | RECEIP   | T FORM                           |         |                   | Pag       | ge                                         | Of \                                           |
|-------------------------------------------------------------------------|-----------------------------------------|------------------|----------------|----------|----------------------------------|---------|-------------------|-----------|--------------------------------------------|------------------------------------------------|
| Submission #: 17-02487                                                  |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| SHIPPING INFOR<br>Fed Ex □ UPS □ Ontrac<br>BC Lab Field Service ☑ Other | □ Ha                                    | nd Delive        |                | Ice CI   | SHIPPING<br>nest ⊠<br>her □ (Spe | None    | Box □             | 18        | FREE LIC<br>YES   W /                      | NO 🗆                                           |
| Refrigerant: Ice 🖟 Blue Ice [                                           | ] Nor                                   | ne 🗆             | Other 🗆        | Com      | ments:                           |         |                   |           |                                            |                                                |
| - 「一直の表現の表現の表現を表現している。」 「 「                                             | Contail                                 |                  | il.            | ⊠ Con    | nments:                          |         |                   |           |                                            |                                                |
| All samples received? Yes Å No □                                        | All sample                              | s containe       | rs intact? \   | ∕es⊠. No | <b>.</b> 🗆                       | Descrip | otion(s) mat      | ch COC?   | Yes 🐧 No                                   | Ö                                              |
| \/                                                                      |                                         |                  |                |          | _ Thermor                        |         | <i>2</i> 07<br>°c |           | ne <u>  1</u>   Z7<br>Init <u>  K 1</u> Y2 |                                                |
| SAMPLE NUMBERS                                                          |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| OT PE UNPRES                                                            | 1 1                                     | 2                | 3              | 4        | <u> </u>                         | 6       | 7                 | <u> 8</u> | 9                                          | <u>  10                                   </u> |
| oz / 8oz / 16oz PE UNPRES                                               | T                                       | i <sub>s</sub> , |                |          |                                  |         |                   |           |                                            | 1                                              |
| oz Cr*6                                                                 | 1                                       |                  |                | l        | 1                                |         |                   | l         | ,                                          | 1                                              |
| OT INORGANIC CHEMICAL METALS                                            | 1                                       |                  | 1              |          | <b>T</b>                         |         |                   | l .       |                                            | T                                              |
| NORGANIC CHEMICAL METALS 40z / 80z / 160z                               |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| T CYANIDE                                                               | 1                                       | -                | -              |          | <b> </b>                         |         |                   |           | ļ                                          | <del> </del>                                   |
| T NITROGEN FORMS                                                        | -                                       |                  | - <del> </del> |          |                                  |         |                   |           |                                            | <del> </del>                                   |
| T TOTAL SULFIDE                                                         | <del> </del>                            |                  | -              |          | <u> </u>                         |         |                   |           |                                            | <del> </del>                                   |
| z. NITRATE / NITRITE                                                    | <b> </b>                                | -                |                |          |                                  |         |                   |           |                                            | -                                              |
| T TOTAL ORGANIC CARBON                                                  | ļ                                       |                  |                |          |                                  |         |                   |           |                                            |                                                |
| F CHEMICAL OXYGEN DEMAND                                                | <b> </b>                                | <del> </del>     | 1              |          | <b> </b>                         |         |                   |           |                                            | <b> </b>                                       |
| A PHENOLICS                                                             | <b>-</b>                                | <del> </del>     | <del>  </del>  |          | -                                |         |                   |           |                                            | <u> </u>                                       |
| mI VOA VIAL TRAVEL BLANK                                                | ļ                                       | <del></del>      | <del> </del>   |          |                                  |         |                   |           |                                            |                                                |
| ml VOA VIAL                                                             | <b>-</b>                                | <del> </del>     | -              |          |                                  |         |                   |           |                                            |                                                |
| F EPA 1664                                                              | l                                       | <del> </del>     | <del>  </del>  |          |                                  |         |                   |           |                                            |                                                |
| ODOR                                                                    | <b></b>                                 | <del> </del>     | <del>  </del>  |          |                                  |         |                   |           |                                            |                                                |
| DIOLOGICAL                                                              | <b></b>                                 | +                | <del>  </del>  |          |                                  |         |                   |           |                                            |                                                |
| CTERIOLOGICAL                                                           | <u> </u>                                | <del> </del>     |                |          |                                  |         |                   |           |                                            |                                                |
| ml VOA VIAL-504                                                         |                                         | <b></b>          |                |          |                                  |         |                   |           |                                            |                                                |
| EPA 508/608/8080                                                        |                                         | <del> </del>     | <b></b>        |          |                                  |         |                   |           |                                            |                                                |
| EPA 515.1/8150                                                          | *************************************** | <del> </del>     |                |          |                                  |         |                   |           |                                            |                                                |
| EPA 525<br>EPA 525 TRAVEL BLANK                                         |                                         | <b></b>          |                |          |                                  |         |                   |           |                                            |                                                |
| nl EPA 547                                                              | <b></b>                                 | <b></b>          |                |          |                                  |         |                   |           |                                            |                                                |
| il EPA 531.1                                                            |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| EPA 548                                                                 |                                         |                  | <del></del>    |          |                                  |         |                   |           |                                            |                                                |
| EPA 549                                                                 |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| EPA 8015M                                                               |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| EPA 8270                                                                |                                         | ·                |                |          |                                  |         |                   |           |                                            |                                                |
| / 160z / 32oz AMBER                                                     |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| (160z) 320z JAR                                                         | A                                       | A                | A              |          |                                  |         |                   |           |                                            |                                                |
| L SLEEVE                                                                | * .                                     |                  |                |          |                                  |         |                   |           |                                            | 1                                              |
| VIAL                                                                    |                                         |                  | ,              |          |                                  |         |                   |           |                                            |                                                |
| STIC BAG                                                                |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| LAR BAG                                                                 |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| ROUS IRON                                                               |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| ORE                                                                     |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
| RT KIT                                                                  |                                         |                  |                |          |                                  |         |                   |           |                                            | ———                                            |
| MA CANISTER                                                             |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |
|                                                                         |                                         |                  |                |          |                                  |         |                   |           |                                            |                                                |

Report ID: 1000571737



16055-D Caputo Drive Morgan Hill, CA 95037 Reported: 02/09/2017 12:48
Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

### **Laboratory / Client Sample Cross Reference**

| Laboratory | Client Sample Informati | on                  |                |                  |
|------------|-------------------------|---------------------|----------------|------------------|
| 1702487-01 | COC Number:             |                     | Receive Date:  | 01/27/2017 22:16 |
|            | Project Number:         |                     | Sampling Date: | 12/05/2016 11:00 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | DH3 S.S-6.5 Feet    | Lab Matrix:    | Solids           |
|            | Sampled By:             |                     | Sample Type:   | Soil             |
| 1702487-02 | COC Number:             |                     | Receive Date:  | 01/27/2017 22:16 |
|            | Project Number:         |                     | Sampling Date: | 12/06/2016 14:30 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | DH11 5.5-6.0 Feet   | Lab Matrix:    | Solids           |
|            | Sampled By:             |                     | Sample Type:   | Soil             |
| 1702487-03 | COC Number:             |                     | Receive Date:  | 01/27/2017 22:16 |
|            | Project Number:         |                     | Sampling Date: | 12/07/2016 13:15 |
|            | Sampling Location:      |                     | Sample Depth:  |                  |
|            | Sampling Point:         | DH17 5.5 - 6.5 Feet | Lab Matrix:    | Solids           |
|            | Sampled By:             |                     | Sample Type:   | Soil             |

16055-D Caputo Drive Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Organochlorine Pesticides (EPA Method 8081A)**

| BCL Sample ID:          | 1702487-01 | Client Sample | e Name: | DH3 S.S-6    | 6.5 Feet, 12 | 2/5/2016 11:00: | :00AM          |              |      |
|-------------------------|------------|---------------|---------|--------------|--------------|-----------------|----------------|--------------|------|
| Constituent             |            | Result        | Units   | PQL          | MDL          | Method          | TTLC<br>Limits | Lab<br>Quals | Run# |
| Aldrin                  |            | ND            | mg/kg   | 0.00050      | 0.000055     | EPA-8081A       | 1.4            | S05          | 1    |
| alpha-BHC               |            | ND            | mg/kg   | 0.00050      | 0.000064     | EPA-8081A       |                | S05          | 1    |
| beta-BHC                |            | ND            | mg/kg   | 0.00050      | 0.000071     | EPA-8081A       |                | S05          | 1    |
| delta-BHC               |            | ND            | mg/kg   | 0.00050      | 0.000059     | EPA-8081A       |                | S05          | 1    |
| gamma-BHC (Lindane)     |            | ND            | mg/kg   | 0.00050      | 0.000034     | EPA-8081A       | 4.0            | S05          | 1    |
| Chlordane (Technical)   |            | ND            | mg/kg   | 0.050        | 0.0015       | EPA-8081A       | 2.5            | S05          | 1    |
| 4,4'-DDD                |            | ND            | mg/kg   | 0.00050      | 0.000085     | EPA-8081A       | 1.0            | S05          | 1    |
| 4,4'-DDE                |            | ND            | mg/kg   | 0.00050      | 0.000083     | EPA-8081A       | 1.0            | S05          | 1    |
| 4,4'-DDT                |            | ND            | mg/kg   | 0.00050      | 0.000078     | EPA-8081A       | 1.0            | S05          | 1    |
| Dieldrin                |            | ND            | mg/kg   | 0.00050      | 0.000070     | EPA-8081A       | 8.0            | S05          | 1    |
| Endosulfan I            |            | ND            | mg/kg   | 0.00050      | 0.000087     | EPA-8081A       |                | S05          | 1    |
| Endosulfan II           |            | ND            | mg/kg   | 0.00050      | 0.00011      | EPA-8081A       |                | S05          | 1    |
| Endosulfan sulfate      |            | ND            | mg/kg   | 0.00050      | 0.000099     | EPA-8081A       |                | S05          | 1    |
| Endrin                  |            | ND            | mg/kg   | 0.00050      | 0.000087     | EPA-8081A       | 0.2            | S05          | 1    |
| Endrin aldehyde         |            | ND            | mg/kg   | 0.00050      | 0.000097     | EPA-8081A       |                | S05          | 1    |
| Heptachlor              |            | ND            | mg/kg   | 0.00050      | 0.000057     | EPA-8081A       | 4.7            | S05          | 1    |
| Heptachlor epoxide      |            | ND            | mg/kg   | 0.00050      | 0.000078     | EPA-8081A       |                | S05          | 1    |
| Methoxychlor            |            | ND            | mg/kg   | 0.00050      | 0.00011      | EPA-8081A       | 100            | S05          | 1    |
| Toxaphene               |            | ND            | mg/kg   | 0.050        | 0.0013       | EPA-8081A       | 5              | S05          | 1    |
| TCMX (Surrogate)        |            | 29.3          | %       | 20 - 130 (LC | L - UCL)     | EPA-8081A       |                | S05          | 1    |
| Decachlorobiphenyl (Sur | rogate)    | 42.0          | %       | 40 - 130 (LC | L - UCL)     | EPA-8081A       |                | S05          | 1    |

|       |           |           | Run            |         |            |          | QC       |  |
|-------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run # | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1     | EPA-8081A | 01/30/17  | 02/05/17 11:04 | HKS     | GC-17      | 0.990    | B[B0055  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 6 of 41 Report ID: 1000571737

16055-D Caputo Drive

Morgan Hill, CA 95037

Reported: 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID:            | 1702487-01 | Client Sampl |       |        |         |           |                |              |      |
|---------------------------|------------|--------------|-------|--------|---------|-----------|----------------|--------------|------|
| Constituent               |            | Result       | Units | PQL    | MDL     | Method    | TTLC<br>Limits | Lab<br>Quals | Run# |
| Benzene                   |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| Bromobenzene              |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| Bromochloromethane        |            | ND           | mg/kg | 0.0050 | 0.00092 | EPA-8260B |                | A26          | 1    |
| Bromodichloromethane      |            | ND           | mg/kg | 0.0050 | 0.00084 | EPA-8260B |                | A26          | 1    |
| Bromoform                 |            | ND           | mg/kg | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1    |
| Bromomethane              |            | ND           | mg/kg | 0.0050 | 0.0016  | EPA-8260B |                | A26          | 1    |
| n-Butylbenzene            |            | ND           | mg/kg | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1    |
| sec-Butylbenzene          |            | ND           | mg/kg | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1    |
| ert-Butylbenzene          |            | ND           | mg/kg | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1    |
| Carbon tetrachloride      |            | ND           | mg/kg | 0.0050 | 0.0011  | EPA-8260B |                | A26          | 1    |
| Chlorobenzene             |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| Chloroethane              |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| Chloroform                |            | ND           | mg/kg | 0.0050 | 0.00063 | EPA-8260B |                | A26          | 1    |
| Chloromethane             |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| 2-Chlorotoluene           |            | ND           | mg/kg | 0.0050 | 0.0018  | EPA-8260B |                | A26          | 1    |
| 4-Chlorotoluene           |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| Dibromochloromethane      |            | ND           | mg/kg | 0.0050 | 0.00099 | EPA-8260B |                | A26          | 1    |
| 1,2-Dibromo-3-chloropropa | ane        | ND           | mg/kg | 0.0050 | 0.0017  | EPA-8260B |                | A26          | 1    |
| 1,2-Dibromoethane         |            | ND           | mg/kg | 0.0050 | 0.0010  | EPA-8260B |                | A26          | 1    |
| Dibromomethane            |            | ND           | mg/kg | 0.0050 | 0.0018  | EPA-8260B |                | A26          | 1    |
| 1,2-Dichlorobenzene       |            | ND           | mg/kg | 0.0050 | 0.00081 | EPA-8260B |                | A26          | 1    |
| 1,3-Dichlorobenzene       |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| 1,4-Dichlorobenzene       |            | ND           | mg/kg | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1    |
| Dichlorodifluoromethane   |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| 1,1-Dichloroethane        |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| 1,2-Dichloroethane        |            | ND           | mg/kg | 0.0050 | 0.00085 | EPA-8260B |                | A26          | 1    |
| 1,1-Dichloroethene        |            | ND           | mg/kg | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1    |
| cis-1,2-Dichloroethene    |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| rans-1,2-Dichloroethene   |            | ND           | mg/kg | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1    |
| 1,2-Dichloropropane       |            | ND           | mg/kg | 0.0050 | 0.00081 | EPA-8260B |                | A26          | 1    |
| 1,3-Dichloropropane       |            | ND           | mg/kg | 0.0050 | 0.0011  | EPA-8260B |                | A26          | 1    |
| 2,2-Dichloropropane       |            | ND           | mg/kg | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1    |
| 1,1-Dichloropropene       |            | ND           | mg/kg | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1    |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 41

16055-D Caputo Drive

Morgan Hill, CA 95037

**Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID: 1702                | 2487-01 Client Samp | ole Name: | DH3 S.S-     | 6.5 Feet, 12 | 2/5/2016 11:00: | 00AM           |              |       |
|------------------------------------|---------------------|-----------|--------------|--------------|-----------------|----------------|--------------|-------|
| Constituent                        | Result              | Units     | PQL          | MDL          | Method          | TTLC<br>Limits | Lab<br>Quals | Run # |
| cis-1,3-Dichloropropene            | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       | Lillito        | A26          | 1     |
| trans-1,3-Dichloropropene          | ND                  | mg/kg     | 0.0050       | 0.0012       | EPA-8260B       |                | A26          | 1     |
| Ethylbenzene                       | ND                  | mg/kg     | 0.0050       | 0.0015       | EPA-8260B       |                | A26          | 1     |
| Hexachlorobutadiene                | ND                  | mg/kg     | 0.0050       | 0.0017       | EPA-8260B       |                | A26          | 1     |
| Isopropylbenzene                   | ND                  | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| p-Isopropyltoluene                 | ND                  | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| Methylene chloride                 | ND                  | mg/kg     | 0.010        | 0.0024       | EPA-8260B       |                | A26          | 1     |
| Methyl t-butyl ether               | ND                  | mg/kg     | 0.0050       | 0.00050      | EPA-8260B       |                | A26          | 1     |
| Naphthalene                        | ND                  | mg/kg     | 0.0050       | 0.0014       | EPA-8260B       |                | A26          | 1     |
| n-Propylbenzene                    | ND                  | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| Styrene                            | ND                  | mg/kg     | 0.0050       | 0.0014       | EPA-8260B       |                | A26          | 1     |
| 1,1,1,2-Tetrachloroethane          | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       |                | A26          | 1     |
| 1,1,2,2-Tetrachloroethane          | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       |                | A26          | 1     |
| Tetrachloroethene                  | ND                  | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| Toluene                            | ND                  | mg/kg     | 0.0050       | 0.0012       | EPA-8260B       |                | A26          | 1     |
| 1,2,3-Trichlorobenzene             | ND                  | mg/kg     | 0.0050       | 0.0021       | EPA-8260B       |                | A26          | 1     |
| 1,2,4-Trichlorobenzene             | ND                  | mg/kg     | 0.0050       | 0.0020       | EPA-8260B       |                | A26          | 1     |
| 1,1,1-Trichloroethane              | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       |                | A26          | 1     |
| 1,1,2-Trichloroethane              | ND                  | mg/kg     | 0.0050       | 0.00077      | EPA-8260B       |                | A26          | 1     |
| Trichloroethene                    | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       | 2040           | A26          | 1     |
| Trichlorofluoromethane             | ND                  | mg/kg     | 0.0050       | 0.0011       | EPA-8260B       |                | A26          | 1     |
| 1,2,3-Trichloropropane             | ND                  | mg/kg     | 0.0050       | 0.0016       | EPA-8260B       |                | A26          | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroeth | ane ND              | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| 1,2,4-Trimethylbenzene             | ND                  | mg/kg     | 0.0050       | 0.0013       | EPA-8260B       |                | A26          | 1     |
| 1,3,5-Trimethylbenzene             | ND                  | mg/kg     | 0.0050       | 0.0015       | EPA-8260B       |                | A26          | 1     |
| Vinyl chloride                     | ND                  | mg/kg     | 0.0050       | 0.0016       | EPA-8260B       |                | A26          | 1     |
| Total Xylenes                      | ND                  | mg/kg     | 0.010        | 0.0034       | EPA-8260B       |                | A26          | 1     |
| p- & m-Xylenes                     | ND                  | mg/kg     | 0.0050       | 0.0022       | EPA-8260B       |                | A26          | 1     |
| o-Xylene                           | ND                  | mg/kg     | 0.0050       | 0.0012       | EPA-8260B       |                | A26          | 1     |
| 1,2-Dichloroethane-d4 (Surroga     | te) 105             | %         | 70 - 121 (LC | CL - UCL)    | EPA-8260B       |                |              | 1     |
| Toluene-d8 (Surrogate)             | 102                 | %         | 81 - 117 (LC | CL - UCL)    | EPA-8260B       |                |              | 1     |
| 4-Bromofluorobenzene (Surroga      | ate) 103            | %         | 74 - 121 (LC | CL - UCL)    | EPA-8260B       |                |              | 1     |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 41



16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID | 1702487-01 | Client Sar | mple Name:       | DH3 S.S-6.5 F | eet, 12/5/2016 | 11:00:00AM |                |  |
|---------------|------------|------------|------------------|---------------|----------------|------------|----------------|--|
| Run #         | Method     | Prep Date  | Run<br>Date/Time | Analyst       | Instrument     | Dilution   | QC<br>Batch ID |  |
| 1             | EPA-8260B  | 01/30/17   | 01/30/17 16:55   | 5 ADC         | MS-V3          | 1          | B[A1908        |  |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 41

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

### Geologic/Pacific Geotechnical Engineering

16055-D Caputo Drive Morgan Hill, CA 95037

## **Total Petroleum Hydrocarbons**

| BCL Sample ID:        | 1702487-01 | Client Sampl | e Name: | DH3 S.S-6    | 6.5 Feet, 1 | 2/5/2016 11:00:00 | DAM        |              |       |
|-----------------------|------------|--------------|---------|--------------|-------------|-------------------|------------|--------------|-------|
| Constituent           |            | Result       | Units   | PQL          | MDL         | Method            | MB<br>Bias | Lab<br>Quals | Run # |
| TPH - Gasoline        |            | ND           | mg/kg   | 20           | 5.0         | EPA-8015B/FFP     | ND         | S05          | 1     |
| TPH - Diesel (FFP)    |            | ND           | mg/kg   | 10           | 1.2         | EPA-8015B/FFP     | ND         | S05          | 1     |
| TPH - Motor Oil       |            | ND           | mg/kg   | 20           | 6.5         | EPA-8015B/FFP     | ND         | S05          | 1     |
| Tetracosane (Surrogat | e)         | 95.6         | %       | 20 - 145 (LC | L - UCL)    | EPA-8015B/FFP     |            | S05          | 1     |

|      |               |           | Run            |         |            |          | QC       |  |
|------|---------------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method        | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-8015B/FFP | 01/30/17  | 02/03/17 20:22 | AS1     | GC-2       | 0.984    | B[A2394  |  |

Page 10 of 41 Report ID: 1000571737

16055-D Caputo Drive Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Concentrations (TTLC)**

| BCL Sample ID: | 1702487-01 | Client Sampl | e Name: | DH3 S.S- | 6.5 Feet, 1 | 2/5/2016 11:00: | 00AM           |              |       |
|----------------|------------|--------------|---------|----------|-------------|-----------------|----------------|--------------|-------|
| Constituent    |            | Result       | Units   | PQL      | MDL         | Method          | TTLC<br>Limits | Lab<br>Quals | Run # |
| Antimony       |            | ND           | mg/kg   | 5.0      | 0.33        | EPA-6010B       | 500            |              | 1     |
| Arsenic        |            | 1.9          | mg/kg   | 1.0      | 0.40        | EPA-6010B       | 500            |              | 1     |
| Barium         |            | 110          | mg/kg   | 0.50     | 0.18        | EPA-6010B       | 10000          |              | 1     |
| Beryllium      |            | 0.44         | mg/kg   | 0.50     | 0.047       | EPA-6010B       | 75             | J            | 1     |
| Cadmium        |            | ND           | mg/kg   | 0.50     | 0.052       | EPA-6010B       | 100            |              | 1     |
| Chromium       |            | 99           | mg/kg   | 0.50     | 0.050       | EPA-6010B       | 2500           |              | 1     |
| Cobalt         |            | 17           | mg/kg   | 2.5      | 0.098       | EPA-6010B       | 8000           |              | 1     |
| Copper         |            | 34           | mg/kg   | 1.0      | 0.050       | EPA-6010B       | 2500           |              | 1     |
| Lead           |            | 6.2          | mg/kg   | 2.5      | 0.28        | EPA-6010B       | 1000           |              | 1     |
| Mercury        |            | 0.11         | mg/kg   | 0.16     | 0.041       | EPA-7471A       | 20             | J,S05        | 2     |
| Molybdenum     |            | ND           | mg/kg   | 2.5      | 0.050       | EPA-6010B       | 3500           |              | 1     |
| Nickel         |            | 110          | mg/kg   | 0.50     | 0.15        | EPA-6010B       | 2000           |              | 1     |
| Selenium       |            | ND           | mg/kg   | 1.0      | 0.98        | EPA-6010B       | 100            |              | 1     |
| Silver         |            | 0.29         | mg/kg   | 0.50     | 0.067       | EPA-6010B       | 500            | J            | 1     |
| Thallium       |            | ND           | mg/kg   | 5.0      | 0.64        | EPA-6010B       | 700            |              | 1     |
| Vanadium       |            | 73           | mg/kg   | 0.50     | 0.11        | EPA-6010B       | 2400           |              | 1     |
| Zinc           |            | 41           | mg/kg   | 2.5      | 0.087       | EPA-6010B       | 5000           |              | 1     |

|       |           |           | Run            |         |            |          | QC       |  |
|-------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run # | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1     | EPA-6010B | 02/01/17  | 02/01/17 13:46 | JCC     | PE-OP3     | 0.935    | B[B0016  |  |
| 2     | EPA-7471A | 01/31/17  | 02/01/17 13:22 | MEV     | CETAC2     | 1.025    | B[A2372  |  |

Page 11 of 41 Report ID: 1000571737

16055-D Caputo Drive Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Organochlorine Pesticides (EPA Method 8081A)**

| Constituent   Result   Units   PQL   MDL   Method   Limits   Quals   Run # Aldrin   ND   mg/kg   0.00050   0.000055   EPA-8081A   1.4   S05   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BCL Sample ID:          | 1702487-02 | Client Sampl | e Name: | DH11 5.5     | -6.0 Feet, 1 | 2/6/2016 2:30: | :00PM |     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|--------------|---------|--------------|--------------|----------------|-------|-----|-------|
| Alpha-BHC   ND   mg/kg   0.0050   0.00064   EPA-8081A   S05   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constituent             |            | Result       | Units   | PQL          | MDL          | Method         |       |     | Run # |
| beta-BHC         ND         mg/kg         0.00050         0.00071         EPA-8081A         S05         1           detta-BHC         ND         mg/kg         0.00050         0.00059         EPA-8081A         S05         1           gamma-BHC (Lindane)         ND         mg/kg         0.00050         0.00034         EPA-8081A         4.0         S05         1           Chlordane (Technical)         ND         mg/kg         0.00050         0.00058         EPA-8081A         4.0         S05         1           Chlordane (Technical)         ND         mg/kg         0.00050         0.00085         EPA-8081A         4.0         S05         1           4,4*-DDD         ND         mg/kg         0.00050         0.00088         EPA-8081A         1.0         S05         1           4,4*-DDT         ND         mg/kg         0.00050         0.00008         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.00007         EPA-8081A         1.0         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.0001         EPA-8081A         S05         1           Endrin ald                                                                                                                                                   | Aldrin                  |            | ND           | mg/kg   | 0.00050      | 0.000055     | EPA-8081A      | 1.4   | S05 | 1     |
| delta-BHC         ND         mg/kg         0.00050         0.00059         EPA-8081A         S05         1           gamma-BHC (Lindane)         ND         mg/kg         0.00050         0.00034         EPA-8081A         4.0         S05         1           Chiordane (Technical)         ND         mg/kg         0.0050         0.0015         EPA-8081A         2.5         S05         1           4,4*-DDD         ND         mg/kg         0.00050         0.00085         EPA-8081A         1.0         S05         1           4,4*-DDE         ND         mg/kg         0.00050         0.00008         EPA-8081A         1.0         S05         1           4,4*-DDT         ND         mg/kg         0.00050         0.000078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.000078         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.000078         EPA-8081A         8.0         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1                                                                                                                                                              | alpha-BHC               |            | ND           | mg/kg   | 0.00050      | 0.000064     | EPA-8081A      |       | S05 | 1     |
| gamma-BHC (Lindane)         ND         mg/kg         0.00050         0.000034         EPA-8081A         4.0         S05         1           Chlordane (Technical)         ND         mg/kg         0.050         0.0015         EPA-8081A         2.5         S05         1           4,4*-DDD         ND         mg/kg         0.0050         0.00085         EPA-8081A         1.0         S05         1           4,4*-DDE         ND         mg/kg         0.00050         0.00083         EPA-8081A         1.0         S05         1           4,4*-DDT         ND         mg/kg         0.00050         0.000078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.000070         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.00007         EPA-8081A         8.0         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000097         EPA-8081A         0.2         S05         1                                                                                                                                                  | beta-BHC                |            | ND           | mg/kg   | 0.00050      | 0.000071     | EPA-8081A      |       | S05 | 1     |
| Chlordane (Technical)         ND         mg/kg         0.050         0.0015         EPA-8081A         2.5         S05         1           4,4'-DDD         ND         mg/kg         0.00050         0.00088         EPA-8081A         1.0         S05         1           4,4'-DDE         ND         mg/kg         0.00050         0.00083         EPA-8081A         1.0         S05         1           4,4'-DDT         ND         mg/kg         0.00050         0.000078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.000078         EPA-8081A         1.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.00007         EPA-8081A         8.0         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor                                                                                                                                                              | delta-BHC               |            | ND           | mg/kg   | 0.00050      | 0.000059     | EPA-8081A      |       | S05 | 1     |
| 4,4'-DDD         ND         mg/kg         0.00050         0.00085         EPA-8081A         1.0         S05         1           4,4'-DDE         ND         mg/kg         0.00050         0.000083         EPA-8081A         1.0         S05         1           4,4'-DDT         ND         mg/kg         0.00050         0.000078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.000070         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.000087         EPA-8081A         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.000099         EPA-8081A         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000099         EPA-8081A         0.2         S05         1           Heptachlor         ND         mg/kg         0.00050         0.000097         EPA-8081A         4.7         S05         1           Heptachlor epoxid                                                                                                                                                   | gamma-BHC (Lindane)     |            | ND           | mg/kg   | 0.00050      | 0.000034     | EPA-8081A      | 4.0   | S05 | 1     |
| 4,4'-DDE         ND         mg/kg         0.00050         0.00083         EPA-8081A         1.0         S05         1           4,4'-DDT         ND         mg/kg         0.00050         0.00078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.00070         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.00087         EPA-8081A         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endris sulfate         ND         mg/kg         0.00050         0.00099         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.00099         EPA-8081A         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.00097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.00097         EPA-8081A         4.7         S05         1           Methoxychlor         ND         mg/kg <td< td=""><td>Chlordane (Technical)</td><td></td><td>ND</td><td>mg/kg</td><td>0.050</td><td>0.0015</td><td>EPA-8081A</td><td>2.5</td><td>S05</td><td>1</td></td<> | Chlordane (Technical)   |            | ND           | mg/kg   | 0.050        | 0.0015       | EPA-8081A      | 2.5   | S05 | 1     |
| 4,4'-DDT         ND         mg/kg         0.00050         0.00078         EPA-8081A         1.0         S05         1           Dieldrin         ND         mg/kg         0.00050         0.000070         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.00087         EPA-8081A         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.00099         EPA-8081A         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.00097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.00097         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000078         EPA-8081A         505         1           Methoxychlor         ND         mg/kg         0.00                                                                                                                                                   | 4,4'-DDD                |            | ND           | mg/kg   | 0.00050      | 0.000085     | EPA-8081A      | 1.0   | S05 | 1     |
| Dieldrin         ND         mg/kg         0.00050         0.00070         EPA-8081A         8.0         S05         1           Endosulfan I         ND         mg/kg         0.00050         0.00087         EPA-8081A         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.000099         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.000097         EPA-8081A         0.2         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000057         EPA-8081A         505         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg                                                                                                                                                            | 4,4'-DDE                |            | ND           | mg/kg   | 0.00050      | 0.000083     | EPA-8081A      | 1.0   | S05 | 1     |
| Endosulfan I         ND         mg/kg         0.00050         0.00087         EPA-8081A         S05         1           Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.000099         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.000087         EPA-8081A         0.2         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.000097         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000078         EPA-8081A         505         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         5         505         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         505         1           TCMX (Surrogate)         60.0 <td< td=""><td>4,4'-DDT</td><td></td><td>ND</td><td>mg/kg</td><td>0.00050</td><td>0.000078</td><td>EPA-8081A</td><td>1.0</td><td>S05</td><td>1</td></td<> | 4,4'-DDT                |            | ND           | mg/kg   | 0.00050      | 0.000078     | EPA-8081A      | 1.0   | S05 | 1     |
| Endosulfan II         ND         mg/kg         0.00050         0.00011         EPA-8081A         S05         1           Endosulfan sulfate         ND         mg/kg         0.00050         0.000099         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.000087         EPA-8081A         0.2         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.000057         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000078         EPA-8081A         S05         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         505         1           Toxaphene         ND         mg/kg         0.050         0.0011         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         505         1                                                                                                                                                                                                              | Dieldrin                |            | ND           | mg/kg   | 0.00050      | 0.000070     | EPA-8081A      | 8.0   | S05 | 1     |
| Endosulfan sulfate         ND         mg/kg         0.00050         0.000099         EPA-8081A         S05         1           Endrin         ND         mg/kg         0.00050         0.000087         EPA-8081A         0.2         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.000097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.00057         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000078         EPA-8081A         505         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                            | Endosulfan I            |            | ND           | mg/kg   | 0.00050      | 0.000087     | EPA-8081A      |       | S05 | 1     |
| Endrin         ND         mg/kg         0.00050         0.00087         EPA-8081A         0.2         S05         1           Endrin aldehyde         ND         mg/kg         0.00050         0.00097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.00057         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.00078         EPA-8081A         S05         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Endosulfan II           |            | ND           | mg/kg   | 0.00050      | 0.00011      | EPA-8081A      |       | S05 | 1     |
| Endrin aldehyde         ND         mg/kg         0.00050         0.00097         EPA-8081A         S05         1           Heptachlor         ND         mg/kg         0.00050         0.000057         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.000078         EPA-8081A         S05         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Endosulfan sulfate      |            | ND           | mg/kg   | 0.00050      | 0.000099     | EPA-8081A      |       | S05 | 1     |
| Heptachlor         ND         mg/kg         0.00050         0.000057         EPA-8081A         4.7         S05         1           Heptachlor epoxide         ND         mg/kg         0.00050         0.00078         EPA-8081A         S05         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Endrin                  |            | ND           | mg/kg   | 0.00050      | 0.000087     | EPA-8081A      | 0.2   | S05 | 1     |
| Heptachlor epoxide         ND         mg/kg         0.00050         0.00078         EPA-8081A         S05         1           Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Endrin aldehyde         |            | ND           | mg/kg   | 0.00050      | 0.000097     | EPA-8081A      |       | S05 | 1     |
| Methoxychlor         ND         mg/kg         0.00050         0.00011         EPA-8081A         100         S05         1           Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heptachlor              |            | ND           | mg/kg   | 0.00050      | 0.000057     | EPA-8081A      | 4.7   | S05 | 1     |
| Toxaphene         ND         mg/kg         0.050         0.0013         EPA-8081A         5         S05         1           TCMX (Surrogate)         60.0         %         20 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heptachlor epoxide      |            | ND           | mg/kg   | 0.00050      | 0.000078     | EPA-8081A      |       | S05 | 1     |
| TCMX (Surrogate) 60.0 % 20 - 130 (LCL - UCL) EPA-8081A S05 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methoxychlor            |            | ND           | mg/kg   | 0.00050      | 0.00011      | EPA-8081A      | 100   | S05 | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toxaphene               |            | ND           | mg/kg   | 0.050        | 0.0013       | EPA-8081A      | 5     | S05 | 1     |
| Decachlorobiphenyl (Surrogate)         33.9         %         40 - 130 (LCL - UCL)         EPA-8081A         S05         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCMX (Surrogate)        |            | 60.0         | %       | 20 - 130 (LC | L - UCL)     | EPA-8081A      |       | S05 | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decachlorobiphenyl (Sui | rrogate)   | 33.9         | %       | 40 - 130 (LC | L - UCL)     | EPA-8081A      |       | S05 | 1     |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-8081A | 01/30/17  | 02/05/17 11:18 | HKS     | GC-17      | 0.993    | B[B0055  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 12 of 41 Report ID: 1000571737

16055-D Caputo Drive

Morgan Hill, CA 95037

**Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID:           | 1702487-02 | Client Sampl | e Name: | DH11 5.5-6.0 Feet, 12/6/2016 2:30:00PM |         |           |                |              |       |
|--------------------------|------------|--------------|---------|----------------------------------------|---------|-----------|----------------|--------------|-------|
| Constituent              |            | Result       | Units   | PQL                                    | MDL     | Method    | TTLC<br>Limits | Lab<br>Quals | Run # |
| Benzene                  |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Bromobenzene             |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Bromochloromethane       |            | ND           | mg/kg   | 0.0050                                 | 0.00092 | EPA-8260B |                | A26          | 1     |
| Bromodichloromethane     |            | ND           | mg/kg   | 0.0050                                 | 0.00084 | EPA-8260B |                | A26          | 1     |
| Bromoform                |            | ND           | mg/kg   | 0.0050                                 | 0.0015  | EPA-8260B |                | A26          | 1     |
| Bromomethane             |            | ND           | mg/kg   | 0.0050                                 | 0.0016  | EPA-8260B |                | A26          | 1     |
| n-Butylbenzene           |            | ND           | mg/kg   | 0.0050                                 | 0.0015  | EPA-8260B |                | A26          | 1     |
| sec-Butylbenzene         |            | ND           | mg/kg   | 0.0050                                 | 0.0012  | EPA-8260B |                | A26          | 1     |
| ert-Butylbenzene         |            | ND           | mg/kg   | 0.0050                                 | 0.0012  | EPA-8260B |                | A26          | 1     |
| Carbon tetrachloride     |            | ND           | mg/kg   | 0.0050                                 | 0.0011  | EPA-8260B |                | A26          | 1     |
| Chlorobenzene            |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Chloroethane             |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| Chloroform               |            | ND           | mg/kg   | 0.0050                                 | 0.00063 | EPA-8260B |                | A26          | 1     |
| Chloromethane            |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 2-Chlorotoluene          |            | ND           | mg/kg   | 0.0050                                 | 0.0018  | EPA-8260B |                | A26          | 1     |
| 4-Chlorotoluene          |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| Dibromochloromethane     |            | ND           | mg/kg   | 0.0050                                 | 0.00099 | EPA-8260B |                | A26          | 1     |
| 1,2-Dibromo-3-chloroprop | ane        | ND           | mg/kg   | 0.0050                                 | 0.0017  | EPA-8260B |                | A26          | 1     |
| 1,2-Dibromoethane        |            | ND           | mg/kg   | 0.0050                                 | 0.0010  | EPA-8260B |                | A26          | 1     |
| Dibromomethane           |            | ND           | mg/kg   | 0.0050                                 | 0.0018  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichlorobenzene      |            | ND           | mg/kg   | 0.0050                                 | 0.00081 | EPA-8260B |                | A26          | 1     |
| 1,3-Dichlorobenzene      |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,4-Dichlorobenzene      |            | ND           | mg/kg   | 0.0050                                 | 0.0015  | EPA-8260B |                | A26          | 1     |
| Dichlorodifluoromethane  |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloroethane       |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichloroethane       |            | ND           | mg/kg   | 0.0050                                 | 0.00085 | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloroethene       |            | ND           | mg/kg   | 0.0050                                 | 0.0012  | EPA-8260B |                | A26          | 1     |
| cis-1,2-Dichloroethene   |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| rans-1,2-Dichloroethene  |            | ND           | mg/kg   | 0.0050                                 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichloropropane      |            | ND           | mg/kg   | 0.0050                                 | 0.00081 | EPA-8260B |                | A26          | 1     |
| 1,3-Dichloropropane      |            | ND           | mg/kg   | 0.0050                                 | 0.0011  | EPA-8260B |                | A26          | 1     |
| 2,2-Dichloropropane      |            | ND           | mg/kg   | 0.0050                                 | 0.0013  | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloropropene      |            | ND           | mg/kg   | 0.0050                                 | 0.0012  | EPA-8260B |                | A26          | 1     |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 13 of 41

Geologic/Pacific Geotechnical Engineering

Reported: 02/09/2017 12:48
16055-D Caputo Drive

Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID:                | 1702487-02 | Client Sampl | e Name: | DH11 5.5     | -6.0 Feet, 1 | 2/6/2016 2:30: | 00PM           |              |       |
|-------------------------------|------------|--------------|---------|--------------|--------------|----------------|----------------|--------------|-------|
| Constituent                   |            | Result       | Units   | PQL          | MDL          | Method         | TTLC<br>Limits | Lab<br>Quals | Run # |
| cis-1,3-Dichloropropene       |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      |                | A26          | 1     |
| trans-1,3-Dichloropropene     |            | ND           | mg/kg   | 0.0050       | 0.0012       | EPA-8260B      |                | A26          | 1     |
| Ethylbenzene                  |            | ND           | mg/kg   | 0.0050       | 0.0015       | EPA-8260B      |                | A26          | 1     |
| Hexachlorobutadiene           |            | ND           | mg/kg   | 0.0050       | 0.0017       | EPA-8260B      |                | A26          | 1     |
| Isopropylbenzene              |            | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| p-Isopropyltoluene            |            | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| Methylene chloride            |            | ND           | mg/kg   | 0.010        | 0.0024       | EPA-8260B      |                | A26          | 1     |
| Methyl t-butyl ether          |            | ND           | mg/kg   | 0.0050       | 0.00050      | EPA-8260B      |                | A26          | 1     |
| Naphthalene                   |            | ND           | mg/kg   | 0.0050       | 0.0014       | EPA-8260B      |                | A26          | 1     |
| n-Propylbenzene               |            | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| Styrene                       |            | ND           | mg/kg   | 0.0050       | 0.0014       | EPA-8260B      |                | A26          | 1     |
| 1,1,1,2-Tetrachloroethane     |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      |                | A26          | 1     |
| 1,1,2,2-Tetrachloroethane     |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      |                | A26          | 1     |
| Tetrachloroethene             |            | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| Toluene                       |            | ND           | mg/kg   | 0.0050       | 0.0012       | EPA-8260B      |                | A26          | 1     |
| 1,2,3-Trichlorobenzene        |            | ND           | mg/kg   | 0.0050       | 0.0021       | EPA-8260B      |                | A26          | 1     |
| 1,2,4-Trichlorobenzene        |            | ND           | mg/kg   | 0.0050       | 0.0020       | EPA-8260B      |                | A26          | 1     |
| 1,1,1-Trichloroethane         |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      |                | A26          | 1     |
| 1,1,2-Trichloroethane         |            | ND           | mg/kg   | 0.0050       | 0.00077      | EPA-8260B      |                | A26          | 1     |
| Trichloroethene               |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      | 2040           | A26          | 1     |
| Trichlorofluoromethane        |            | ND           | mg/kg   | 0.0050       | 0.0011       | EPA-8260B      |                | A26          | 1     |
| 1,2,3-Trichloropropane        |            | ND           | mg/kg   | 0.0050       | 0.0016       | EPA-8260B      |                | A26          | 1     |
| 1,1,2-Trichloro-1,2,2-trifluo | roethane   | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| 1,2,4-Trimethylbenzene        |            | ND           | mg/kg   | 0.0050       | 0.0013       | EPA-8260B      |                | A26          | 1     |
| 1,3,5-Trimethylbenzene        |            | ND           | mg/kg   | 0.0050       | 0.0015       | EPA-8260B      |                | A26          | 1     |
| Vinyl chloride                |            | ND           | mg/kg   | 0.0050       | 0.0016       | EPA-8260B      |                | A26          | 1     |
| Total Xylenes                 |            | ND           | mg/kg   | 0.010        | 0.0034       | EPA-8260B      |                | A26          | 1     |
| p- & m-Xylenes                |            | ND           | mg/kg   | 0.0050       | 0.0022       | EPA-8260B      |                | A26          | 1     |
| o-Xylene                      |            | ND           | mg/kg   | 0.0050       | 0.0012       | EPA-8260B      |                | A26          | 1     |
| 1,2-Dichloroethane-d4 (Sui    | rogate)    | 105          | %       | 70 - 121 (LC | L - UCL)     | EPA-8260B      |                |              | 1     |
| Toluene-d8 (Surrogate)        |            | 98.7         | %       | 81 - 117 (LC | L - UCL)     | EPA-8260B      |                |              | 1     |
| 4-Bromofluorobenzene (Su      | rrogate)   | 98.9         | %       | 74 - 121 (LC | L - UCL)     | EPA-8260B      |                |              | 1     |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 14 of 41



Geologic/Pacific Geotechnical Engineering

Reported: 02/09/2017 12:48
16055-D Caputo Drive

Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID | 1702487-02 | Client Sar | mple Name:       | Run QC  |            |          |         |  |
|---------------|------------|------------|------------------|---------|------------|----------|---------|--|
| Run #         | Method     | Prep Date  | Run<br>Date/Time | Analyst | Instrument | Dilution |         |  |
| 1             | EPA-8260B  | 01/30/17   | 01/30/17 17:18   | B ADC   | MS-V3      | 1        | B[A2213 |  |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 15 of 41

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

#### Geologic/Pacific Geotechnical Engineering 16055-D Caputo Drive

Morgan Hill, CA 95037

## **Total Petroleum Hydrocarbons**

| BCL Sample ID:       | 1702487-02 | Client Sampl | e Name: | DH11 5.5     | DH11 5.5-6.0 Feet, 12/6/2016 2:30:00PM |               |            |              |       |  |  |
|----------------------|------------|--------------|---------|--------------|----------------------------------------|---------------|------------|--------------|-------|--|--|
| Constituent          |            | Result       | Units   | PQL          | MDL                                    | Method        | MB<br>Bias | Lab<br>Quals | Run # |  |  |
| TPH - Gasoline       |            | ND           | mg/kg   | 20           | 5.0                                    | EPA-8015B/FFP | ND         | S05          | 1     |  |  |
| TPH - Diesel (FFP)   |            | ND           | mg/kg   | 10           | 1.2                                    | EPA-8015B/FFP | ND         | S05          | 1     |  |  |
| TPH - Motor Oil      |            | ND           | mg/kg   | 20           | 6.5                                    | EPA-8015B/FFP | ND         | S05          | 1     |  |  |
| Tetracosane (Surroga | te)        | 93.6         | %       | 20 - 145 (LC | CL - UCL)                              | EPA-8015B/FFP |            | S05          | 1     |  |  |

|      |               |           | Run            |         |            |          | QC       |  |
|------|---------------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method        | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-8015B/FFP | 01/30/17  | 02/03/17 20:45 | AS1     | GC-2       | 0.997    | B[A2394  |  |

Page 16 of 41 Report ID: 1000571737

16055-D Caputo Drive

Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Concentrations (TTLC)**

| BCL Sample ID: | 1702487-02 | Client Sampl | e Name: | DH11 5.5 | -6.0 Feet, | 12/6/2016 2:30: | 00PM           |              |       |
|----------------|------------|--------------|---------|----------|------------|-----------------|----------------|--------------|-------|
| Constituent    |            | Result       | Units   | PQL      | MDL        | Method          | TTLC<br>Limits | Lab<br>Quals | Run # |
| Antimony       |            | ND           | mg/kg   | 5.0      | 0.33       | EPA-6010B       | 500            | <u> </u>     | 1     |
| Arsenic        |            | 2.3          | mg/kg   | 1.0      | 0.40       | EPA-6010B       | 500            |              | 1     |
| Barium         |            | 120          | mg/kg   | 0.50     | 0.18       | EPA-6010B       | 10000          |              | 1     |
| Beryllium      |            | 0.40         | mg/kg   | 0.50     | 0.047      | EPA-6010B       | 75             | J            | 1     |
| Cadmium        |            | ND           | mg/kg   | 0.50     | 0.052      | EPA-6010B       | 100            |              | 1     |
| Chromium       |            | 130          | mg/kg   | 0.50     | 0.050      | EPA-6010B       | 2500           |              | 1     |
| Cobalt         |            | 17           | mg/kg   | 2.5      | 0.098      | EPA-6010B       | 8000           |              | 1     |
| Copper         |            | 32           | mg/kg   | 1.0      | 0.050      | EPA-6010B       | 2500           |              | 1     |
| Lead           |            | 5.5          | mg/kg   | 2.5      | 0.28       | EPA-6010B       | 1000           |              | 1     |
| Mercury        |            | 0.056        | mg/kg   | 0.16     | 0.041      | EPA-7471A       | 20             | J,S05        | 2     |
| Molybdenum     |            | ND           | mg/kg   | 2.5      | 0.050      | EPA-6010B       | 3500           |              | 1     |
| Nickel         |            | 110          | mg/kg   | 0.50     | 0.15       | EPA-6010B       | 2000           |              | 1     |
| Selenium       |            | 1.2          | mg/kg   | 1.0      | 0.98       | EPA-6010B       | 100            |              | 1     |
| Silver         |            | 0.36         | mg/kg   | 0.50     | 0.067      | EPA-6010B       | 500            | J            | 1     |
| Thallium       |            | 1.2          | mg/kg   | 5.0      | 0.64       | EPA-6010B       | 700            | J            | 1     |
| Vanadium       |            | 77           | mg/kg   | 0.50     | 0.11       | EPA-6010B       | 2400           |              | 1     |
| Zinc           |            | 45           | mg/kg   | 2.5      | 0.087      | EPA-6010B       | 5000           |              | 1     |

|       |           |           | Run            |         |            |          | QC       |  |
|-------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run # | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1     | EPA-6010B | 02/01/17  | 02/01/17 13:48 | JCC     | PE-OP3     | 0.926    | B[B0016  |  |
| 2     | EPA-7471A | 01/31/17  | 02/01/17 13:28 | MEV     | CETAC2     | 1.008    | B[A2372  |  |

Page 17 of 41 Report ID: 1000571737

16055-D Caputo Drive

Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Organochlorine Pesticides (EPA Method 8081A)**

| BCL Sample ID:          | 1702487-03 | Client Sample | e Name: | DH17 5.5     | - 6.5 Feet, | 12/7/2016 1:1 | 5:00PM         |              |       |
|-------------------------|------------|---------------|---------|--------------|-------------|---------------|----------------|--------------|-------|
| Constituent             |            | Result        | Units   | PQL          | MDL         | Method        | TTLC<br>Limits | Lab<br>Quals | Run # |
| Aldrin                  |            | ND            | mg/kg   | 0.00050      | 0.000055    | EPA-8081A     | 1.4            | S05          | 1     |
| alpha-BHC               |            | ND            | mg/kg   | 0.00050      | 0.000064    | EPA-8081A     |                | S05          | 1     |
| beta-BHC                |            | ND            | mg/kg   | 0.00050      | 0.000071    | EPA-8081A     |                | S05          | 1     |
| delta-BHC               |            | ND            | mg/kg   | 0.00050      | 0.000059    | EPA-8081A     |                | S05          | 1     |
| gamma-BHC (Lindane)     |            | ND            | mg/kg   | 0.00050      | 0.000034    | EPA-8081A     | 4.0            | S05          | 1     |
| Chlordane (Technical)   |            | ND            | mg/kg   | 0.050        | 0.0015      | EPA-8081A     | 2.5            | S05          | 1     |
| 4,4'-DDD                |            | ND            | mg/kg   | 0.00050      | 0.000085    | EPA-8081A     | 1.0            | S05          | 1     |
| 4,4'-DDE                |            | ND            | mg/kg   | 0.00050      | 0.000083    | EPA-8081A     | 1.0            | S05          | 1     |
| 4,4'-DDT                |            | ND            | mg/kg   | 0.00050      | 0.000078    | EPA-8081A     | 1.0            | S05          | 1     |
| Dieldrin                |            | ND            | mg/kg   | 0.00050      | 0.000070    | EPA-8081A     | 8.0            | S05          | 1     |
| Endosulfan I            |            | ND            | mg/kg   | 0.00050      | 0.000087    | EPA-8081A     |                | S05          | 1     |
| Endosulfan II           |            | ND            | mg/kg   | 0.00050      | 0.00011     | EPA-8081A     |                | S05          | 1     |
| Endosulfan sulfate      |            | ND            | mg/kg   | 0.00050      | 0.000099    | EPA-8081A     |                | S05          | 1     |
| Endrin                  |            | ND            | mg/kg   | 0.00050      | 0.000087    | EPA-8081A     | 0.2            | S05          | 1     |
| Endrin aldehyde         |            | ND            | mg/kg   | 0.00050      | 0.000097    | EPA-8081A     |                | S05          | 1     |
| Heptachlor              |            | ND            | mg/kg   | 0.00050      | 0.000057    | EPA-8081A     | 4.7            | S05          | 1     |
| Heptachlor epoxide      |            | ND            | mg/kg   | 0.00050      | 0.000078    | EPA-8081A     |                | S05          | 1     |
| Methoxychlor            |            | ND            | mg/kg   | 0.00050      | 0.00011     | EPA-8081A     | 100            | S05          | 1     |
| Toxaphene               |            | ND            | mg/kg   | 0.050        | 0.0013      | EPA-8081A     | 5              | S05          | 1     |
| TCMX (Surrogate)        |            | 43.7          | %       | 20 - 130 (LC | L - UCL)    | EPA-8081A     |                | S05          | 1     |
| Decachlorobiphenyl (Sur | rrogate)   | 31.2          | %       | 40 - 130 (LC | L - UCL)    | EPA-8081A     |                | S05          | 1     |

|      |           |           | Run            |         |            |          | QC       |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-8081A | 01/30/17  | 02/06/17 14:35 | HKS     | GC-17      | 1.014    | B[B0055  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 18 of 41 Report ID: 1000571737

Geologic/Pacific Geotechnical Engineering

Reported: 02/09/2017 12:48
16055-D Caputo Drive

Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID:          | 1702487-03 | Client Sampl | DH17 5.5 - 6.5 Feet, 12/7/2016 1:15:00PM |        |         |           |                |              |       |
|-------------------------|------------|--------------|------------------------------------------|--------|---------|-----------|----------------|--------------|-------|
| Constituent             |            | Result       | Units                                    | PQL    | MDL     | Method    | TTLC<br>Limits | Lab<br>Quals | Run # |
| Benzene                 |            | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Bromobenzene            |            | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Bromochloromethane      |            | ND           | mg/kg                                    | 0.0050 | 0.00092 | EPA-8260B |                | A26          | 1     |
| Bromodichloromethane    | )          | ND           | mg/kg                                    | 0.0050 | 0.00084 | EPA-8260B |                | A26          | 1     |
| Bromoform               |            | ND           | mg/kg                                    | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1     |
| Bromomethane            |            | ND           | mg/kg                                    | 0.0050 | 0.0016  | EPA-8260B |                | A26          | 1     |
| n-Butylbenzene          |            | ND           | mg/kg                                    | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1     |
| sec-Butylbenzene        |            | ND           | mg/kg                                    | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1     |
| tert-Butylbenzene       |            | ND           | mg/kg                                    | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1     |
| Carbon tetrachloride    |            | ND           | mg/kg                                    | 0.0050 | 0.0011  | EPA-8260B |                | A26          | 1     |
| Chlorobenzene           |            | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| Chloroethane            |            | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| Chloroform              |            | ND           | mg/kg                                    | 0.0050 | 0.00063 | EPA-8260B |                | A26          | 1     |
| Chloromethane           |            | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 2-Chlorotoluene         |            | ND           | mg/kg                                    | 0.0050 | 0.0018  | EPA-8260B |                | A26          | 1     |
| 4-Chlorotoluene         |            | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| Dibromochloromethane    | e          | ND           | mg/kg                                    | 0.0050 | 0.00099 | EPA-8260B |                | A26          | 1     |
| 1,2-Dibromo-3-chlorop   | ropane     | ND           | mg/kg                                    | 0.0050 | 0.0017  | EPA-8260B |                | A26          | 1     |
| 1,2-Dibromoethane       |            | ND           | mg/kg                                    | 0.0050 | 0.0010  | EPA-8260B |                | A26          | 1     |
| Dibromomethane          |            | ND           | mg/kg                                    | 0.0050 | 0.0018  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichlorobenzene     |            | ND           | mg/kg                                    | 0.0050 | 0.00081 | EPA-8260B |                | A26          | 1     |
| 1,3-Dichlorobenzene     |            | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,4-Dichlorobenzene     |            | ND           | mg/kg                                    | 0.0050 | 0.0015  | EPA-8260B |                | A26          | 1     |
| Dichlorodifluoromethar  | ne         | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloroethane      |            | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichloroethane      |            | ND           | mg/kg                                    | 0.0050 | 0.00085 | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloroethene      |            | ND           | mg/kg                                    | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1     |
| cis-1,2-Dichloroethene  |            | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| trans-1,2-Dichloroether | ne         | ND           | mg/kg                                    | 0.0050 | 0.0014  | EPA-8260B |                | A26          | 1     |
| 1,2-Dichloropropane     |            | ND           | mg/kg                                    | 0.0050 | 0.00081 | EPA-8260B |                | A26          | 1     |
| 1,3-Dichloropropane     |            | ND           | mg/kg                                    | 0.0050 | 0.0011  | EPA-8260B |                | A26          | 1     |
| 2,2-Dichloropropane     |            | ND           | mg/kg                                    | 0.0050 | 0.0013  | EPA-8260B |                | A26          | 1     |
| 1,1-Dichloropropene     |            | ND           | mg/kg                                    | 0.0050 | 0.0012  | EPA-8260B |                | A26          | 1     |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 19 of 41

Geologic/Pacific Geotechnical Engineering

Reported: 02/09/2017 12:48
16055-D Caputo Drive

Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID: 17024                | 487-03 Client Samı | ole Name: | DH17 5.5     | - 6.5 Feet, | 12/7/2016 1:15 | 5:00PM         |              |       |
|-------------------------------------|--------------------|-----------|--------------|-------------|----------------|----------------|--------------|-------|
| Constituent                         | Result             | Units     | PQL          | MDL         | Method         | TTLC<br>Limits | Lab<br>Quals | Run # |
| cis-1,3-Dichloropropene             | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      |                | A26          | 1     |
| trans-1,3-Dichloropropene           | ND                 | mg/kg     | 0.0050       | 0.0012      | EPA-8260B      |                | A26          | 1     |
| Ethylbenzene                        | ND                 | mg/kg     | 0.0050       | 0.0015      | EPA-8260B      |                | A26          | 1     |
| Hexachlorobutadiene                 | ND                 | mg/kg     | 0.0050       | 0.0017      | EPA-8260B      |                | A26          | 1     |
| Isopropylbenzene                    | ND                 | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| p-Isopropyltoluene                  | ND                 | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| Methylene chloride                  | ND                 | mg/kg     | 0.010        | 0.0024      | EPA-8260B      |                | A26          | 1     |
| Methyl t-butyl ether                | ND                 | mg/kg     | 0.0050       | 0.00050     | EPA-8260B      |                | A26          | 1     |
| Naphthalene                         | ND                 | mg/kg     | 0.0050       | 0.0014      | EPA-8260B      |                | A26          | 1     |
| n-Propylbenzene                     | ND                 | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| Styrene                             | ND                 | mg/kg     | 0.0050       | 0.0014      | EPA-8260B      |                | A26          | 1     |
| 1,1,1,2-Tetrachloroethane           | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      |                | A26          | 1     |
| 1,1,2,2-Tetrachloroethane           | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      |                | A26          | 1     |
| Tetrachloroethene                   | ND                 | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| Toluene                             | ND                 | mg/kg     | 0.0050       | 0.0012      | EPA-8260B      |                | A26          | 1     |
| 1,2,3-Trichlorobenzene              | ND                 | mg/kg     | 0.0050       | 0.0021      | EPA-8260B      |                | A26          | 1     |
| 1,2,4-Trichlorobenzene              | ND                 | mg/kg     | 0.0050       | 0.0020      | EPA-8260B      |                | A26          | 1     |
| 1,1,1-Trichloroethane               | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      |                | A26          | 1     |
| 1,1,2-Trichloroethane               | ND                 | mg/kg     | 0.0050       | 0.00077     | EPA-8260B      |                | A26          | 1     |
| Trichloroethene                     | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      | 2040           | A26          | 1     |
| Trichlorofluoromethane              | ND                 | mg/kg     | 0.0050       | 0.0011      | EPA-8260B      |                | A26          | 1     |
| 1,2,3-Trichloropropane              | ND                 | mg/kg     | 0.0050       | 0.0016      | EPA-8260B      |                | A26          | 1     |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ane ND             | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| 1,2,4-Trimethylbenzene              | ND                 | mg/kg     | 0.0050       | 0.0013      | EPA-8260B      |                | A26          | 1     |
| 1,3,5-Trimethylbenzene              | ND                 | mg/kg     | 0.0050       | 0.0015      | EPA-8260B      |                | A26          | 1     |
| Vinyl chloride                      | ND                 | mg/kg     | 0.0050       | 0.0016      | EPA-8260B      |                | A26          | 1     |
| Total Xylenes                       | ND                 | mg/kg     | 0.010        | 0.0034      | EPA-8260B      |                | A26          | 1     |
| p- & m-Xylenes                      | ND                 | mg/kg     | 0.0050       | 0.0022      | EPA-8260B      |                | A26          | 1     |
| o-Xylene                            | ND                 | mg/kg     | 0.0050       | 0.0012      | EPA-8260B      |                | A26          | 1     |
| 1,2-Dichloroethane-d4 (Surrogate    | e) 105             | %         | 70 - 121 (LC | L - UCL)    | EPA-8260B      |                |              | 1     |
| Toluene-d8 (Surrogate)              | 99.5               | %         | 81 - 117 (LC | L - UCL)    | EPA-8260B      |                |              | 1     |
| 4-Bromofluorobenzene (Surrogat      | te) 104            | %         | 74 - 121 (LC | L - UCL)    | EPA-8260B      |                |              | 1     |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 20 of 41



Geologic/Pacific Geotechnical Engineering Reported: 02/09/2017 12:48

16055-D Caputo Drive Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# Volatile Organic Analysis (EPA Method 8260B)

| BCL Sample ID | 1702487-03 | Client Sar | Elient Sample Name: DH17 5.5 - 6.5 Feet, 12/7/2016 1:15:0 |         |            |          | Л              |  |
|---------------|------------|------------|-----------------------------------------------------------|---------|------------|----------|----------------|--|
| Run #         | Method     | Prep Date  | Run<br>Date/Time                                          | Analyst | Instrument | Dilution | QC<br>Batch ID |  |
| 1             | EPA-8260B  | 01/30/17   | 01/30/17 17:41                                            | ADC     | MS-V3      | 1        | B[A2213        |  |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 21 of 41

Geologic/Pacific Geotechnical Engineering 02/09/2017 12:48 Reported: 16055-D Caputo Drive Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Petroleum Hydrocarbons**

| BCL Sample ID:        | 1702487-03 | Client Sampl | e Name: | DH17 5.5 - 6.5 Feet, 12/7/2016 1:15:00PM |          |               |            |              |      |  |
|-----------------------|------------|--------------|---------|------------------------------------------|----------|---------------|------------|--------------|------|--|
| Constituent           |            | Result       | Units   | PQL                                      | MDL      | Method        | MB<br>Bias | Lab<br>Quals | Run# |  |
| TPH - Gasoline        |            | ND           | mg/kg   | 20                                       | 5.0      | EPA-8015B/FFP | ND         | S05          | 1    |  |
| TPH - Diesel (FFP)    |            | ND           | mg/kg   | 10                                       | 1.2      | EPA-8015B/FFP | ND         | S05          | 1    |  |
| TPH - Motor Oil       |            | ND           | mg/kg   | 20                                       | 6.5      | EPA-8015B/FFP | ND         | S05          | 1    |  |
| Tetracosane (Surrogat | e)         | 93.7         | %       | 20 - 145 (LC                             | L - UCL) | EPA-8015B/FFP |            | S05          | 1    |  |

|      | Run           |           |                |         |            | QC       |          |  |  |  |
|------|---------------|-----------|----------------|---------|------------|----------|----------|--|--|--|
| Run# | Method        | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |  |  |
| 1    | EPA-8015B/FFP | 01/30/17  | 02/03/17 21:08 | AS1     | GC-2       | 1.007    | B[A2394  |  |  |  |

Page 22 of 41 Report ID: 1000571737

16055-D Caputo Drive

Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Concentrations (TTLC)**

| BCL Sample ID: | 1702487-03 | Client Sampl | e Name: | DH17 5.5 | - 6.5 Feet, | 12/7/2016 1:15 | 5:00PM         |              |       |
|----------------|------------|--------------|---------|----------|-------------|----------------|----------------|--------------|-------|
| Constituent    |            | Result       | Units   | PQL      | MDL         | Method         | TTLC<br>Limits | Lab<br>Quals | Run # |
| Antimony       |            | ND           | mg/kg   | 5.0      | 0.33        | EPA-6010B      | 500            |              | 1     |
| Arsenic        |            | 2.1          | mg/kg   | 1.0      | 0.40        | EPA-6010B      | 500            |              | 1     |
| Barium         |            | 110          | mg/kg   | 0.50     | 0.18        | EPA-6010B      | 10000          |              | 1     |
| Beryllium      |            | 0.39         | mg/kg   | 0.50     | 0.047       | EPA-6010B      | 75             | J            | 1     |
| Cadmium        |            | ND           | mg/kg   | 0.50     | 0.052       | EPA-6010B      | 100            |              | 1     |
| Chromium       |            | 100          | mg/kg   | 0.50     | 0.050       | EPA-6010B      | 2500           |              | 1     |
| Cobalt         |            | 14           | mg/kg   | 2.5      | 0.098       | EPA-6010B      | 8000           |              | 1     |
| Copper         |            | 30           | mg/kg   | 1.0      | 0.050       | EPA-6010B      | 2500           |              | 1     |
| Lead           |            | 5.3          | mg/kg   | 2.5      | 0.28        | EPA-6010B      | 1000           |              | 1     |
| Mercury        |            | 0.066        | mg/kg   | 0.16     | 0.041       | EPA-7471A      | 20             | J,S05        | 2     |
| Molybdenum     |            | ND           | mg/kg   | 2.5      | 0.050       | EPA-6010B      | 3500           |              | 1     |
| Nickel         |            | 120          | mg/kg   | 0.50     | 0.15        | EPA-6010B      | 2000           |              | 1     |
| Selenium       |            | 2.0          | mg/kg   | 1.0      | 0.98        | EPA-6010B      | 100            |              | 1     |
| Silver         |            | 0.29         | mg/kg   | 0.50     | 0.067       | EPA-6010B      | 500            | J            | 1     |
| Thallium       |            | ND           | mg/kg   | 5.0      | 0.64        | EPA-6010B      | 700            |              | 1     |
| Vanadium       |            | 72           | mg/kg   | 0.50     | 0.11        | EPA-6010B      | 2400           |              | 1     |
| Zinc           |            | 39           | mg/kg   | 2.5      | 0.087       | EPA-6010B      | 5000           |              | 1     |

|      |           |           | Run            |         | QC         |          |          |  |
|------|-----------|-----------|----------------|---------|------------|----------|----------|--|
| Run# | Method    | Prep Date | Date/Time      | Analyst | Instrument | Dilution | Batch ID |  |
| 1    | EPA-6010B | 02/01/17  | 02/01/17 13:49 | JCC     | PE-OP3     | 0.990    | B[B0016  |  |
| 2    | EPA-7471A | 01/31/17  | 02/01/17 13:30 | MEV     | CETAC2     | 1.025    | B[A2372  |  |

Page 23 of 41 Report ID: 1000571737

16055-D Caputo Drive Morgan Hill, CA 95037 Reported: 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Organochlorine Pesticides (EPA Method 8081A)

### **Quality Control Report - Method Blank Analysis**

| Constituent                    | QC Sample ID | MB Result | Units | PQL                  | MDL      | Lab Quals |
|--------------------------------|--------------|-----------|-------|----------------------|----------|-----------|
| QC Batch ID: B[B0055           |              |           |       |                      |          |           |
| Aldrin                         | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000055 |           |
| alpha-BHC                      | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000064 |           |
| beta-BHC                       | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000071 |           |
| delta-BHC                      | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000059 |           |
| gamma-BHC (Lindane)            | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000034 |           |
| Chlordane (Technical)          | B[B0055-BLK1 | ND        | mg/kg | 0.050                | 0.0015   |           |
| 4,4'-DDD                       | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000085 |           |
| 4,4'-DDE                       | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000083 |           |
| 4,4'-DDT                       | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000078 |           |
| Dieldrin                       | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000070 |           |
| Endosulfan I                   | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000087 |           |
| Endosulfan II                  | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.00011  |           |
| Endosulfan sulfate             | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000099 |           |
| Endrin                         | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000087 |           |
| Endrin aldehyde                | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000097 |           |
| Heptachlor                     | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000057 |           |
| Heptachlor epoxide             | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.000078 |           |
| Methoxychlor                   | B[B0055-BLK1 | ND        | mg/kg | 0.00050              | 0.00011  |           |
| Toxaphene                      | B[B0055-BLK1 | ND        | mg/kg | 0.050                | 0.0013   |           |
| TCMX (Surrogate)               | B[B0055-BLK1 | 70.4      | %     | 20 - 130 (LCL - UCL) |          |           |
| Decachlorobiphenyl (Surrogate) | B[B0055-BLK1 | 75.8      | %     | 40 - 13              |          |           |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 24 of 41

Reported: 02/09/2017 12:48 16055-D Caputo Drive Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Organochlorine Pesticides (EPA Method 8081A)

### **Quality Control Report - Laboratory Control Sample**

|                                |              |      |           |                |       |                     |     | Control L           | imits |              |
|--------------------------------|--------------|------|-----------|----------------|-------|---------------------|-----|---------------------|-------|--------------|
| Constituent                    | QC Sample ID | Туре | Result    | Spike<br>Level | Units | Percent<br>Recovery | RPD | Percent<br>Recovery | RPD   | Lab<br>Quals |
| QC Batch ID: B[B0055           |              |      |           |                |       |                     |     |                     |       |              |
| Aldrin                         | B[B0055-BS1  | LCS  | 0.0043099 | 0.0049342      | mg/kg | 87.3                |     | 70 - 130            |       |              |
| gamma-BHC (Lindane)            | B[B0055-BS1  | LCS  | 0.0042763 | 0.0049342      | mg/kg | 86.7                |     | 60 - 140            |       |              |
| 4,4'-DDT                       | B[B0055-BS1  | LCS  | 0.0039375 | 0.0049342      | mg/kg | 79.8                |     | 60 - 140            |       |              |
| Dieldrin                       | B[B0055-BS1  | LCS  | 0.0042204 | 0.0049342      | mg/kg | 85.5                |     | 70 - 130            |       |              |
| Endrin                         | B[B0055-BS1  | LCS  | 0.0040293 | 0.0049342      | mg/kg | 81.7                |     | 60 - 140            |       |              |
| Heptachlor                     | B[B0055-BS1  | LCS  | 0.0041306 | 0.0049342      | mg/kg | 83.7                |     | 60 - 140            |       |              |
| TCMX (Surrogate)               | B[B0055-BS1  | LCS  | 0.0074579 | 0.0098684      | mg/kg | 75.6                |     | 20 - 130            |       |              |
| Decachlorobiphenyl (Surrogate) | B[B0055-BS1  | LCS  | 0.014628  | 0.019737       | mg/kg | 74.1                |     | 40 - 130            |       |              |

Page 25 of 41 Report ID: 1000571737

Geologic/Pacific Geotechnical Engineering
16055-D Caputo Drive
Reported: 02/09/2017 12:48
Project: Soil Analysis

Morgan Hill, CA 95037 Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Organochlorine Pesticides (EPA Method 8081A)**

## **Quality Control Report - Precision & Accuracy**

|                                | •    |               |             |               |              |             | •      | Control Limits |     |          |       |
|--------------------------------|------|---------------|-------------|---------------|--------------|-------------|--------|----------------|-----|----------|-------|
|                                |      | Source        | Source      |               | Spike        |             |        | Percent        |     | Percent  | Lab   |
| Constituent                    | Type | Sample ID     | Result      | Result        | Added        | Units       | RPD    | Recovery       | RPD | Recovery | Quals |
| QC Batch ID: B[B0055           | Use  | d client samp | ole: Y - De | scription: DH | 3 S.S-6.5 F€ | eet, 12/05/ | 2016 1 | 1:00           |     |          |       |
| Aldrin                         | MS   | 1702487-01    | ND          | 0.0034017     | 0.0049669    | mg/kg       |        | 68.5           |     | 50 - 140 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0035828     | 0.0049669    | mg/kg       | 5.2    | 72.1           | 30  | 50 - 140 |       |
| gamma-BHC (Lindane)            | MS   | 1702487-01    | ND          | 0.0035146     | 0.0049669    | mg/kg       |        | 70.8           |     | 50 - 140 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0036377     | 0.0049669    | mg/kg       | 3.4    | 73.2           | 30  | 50 - 140 |       |
| 4,4'-DDT                       | MS   | 1702487-01    | ND          | 0.0032844     | 0.0049669    | mg/kg       |        | 66.1           |     | 50 - 140 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0036010     | 0.0049669    | mg/kg       | 9.2    | 72.5           | 30  | 50 - 140 |       |
| Dieldrin                       | MS   | 1702487-01    | ND          | 0.0031470     | 0.0049669    | mg/kg       |        | 63.4           |     | 40 - 140 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0032570     | 0.0049669    | mg/kg       | 3.4    | 65.6           | 30  | 40 - 140 |       |
| Endrin                         | MS   | 1702487-01    | ND          | 0.0034179     | 0.0049669    | mg/kg       |        | 68.8           |     | 50 - 150 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0035801     | 0.0049669    | mg/kg       | 4.6    | 72.1           | 30  | 50 - 150 |       |
| Heptachlor                     | MS   | 1702487-01    | ND          | 0.0034265     | 0.0049669    | mg/kg       |        | 69.0           |     | 60 - 140 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0035510     | 0.0049669    | mg/kg       | 3.6    | 71.5           | 30  | 60 - 140 |       |
| TCMX (Surrogate)               | MS   | 1702487-01    | ND          | 0.0071772     | 0.0099338    | mg/kg       |        | 72.3           |     | 20 - 130 |       |
|                                | MSD  | 1702487-01    | ND          | 0.0074815     | 0.0099338    | mg/kg       | 4.2    | 75.3           |     | 20 - 130 |       |
| Decachlorobiphenyl (Surrogate) | MS   | 1702487-01    | ND          | 0.012184      | 0.019868     | mg/kg       |        | 61.3           |     | 40 - 130 |       |
|                                | MSD  | 1702487-01    | ND          | 0.012686      | 0.019868     | mg/kg       | 4.0    | 63.9           |     | 40 - 130 |       |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 26 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 Reported: 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Method Blank Analysis**

| Constituent                 | QC Sample ID | MB Result | Units | PQL    | MDL     | Lab Quals |
|-----------------------------|--------------|-----------|-------|--------|---------|-----------|
| QC Batch ID: B[A1908        |              |           |       |        |         |           |
| Benzene                     | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| Bromobenzene                | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| Bromochloromethane          | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00092 |           |
| Bromodichloromethane        | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00084 |           |
| Bromoform                   | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| Bromomethane                | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0016  |           |
| n-Butylbenzene              | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| sec-Butylbenzene            | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| tert-Butylbenzene           | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| Carbon tetrachloride        | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |
| Chlorobenzene               | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| Chloroethane                | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| Chloroform                  | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00063 |           |
| Chloromethane               | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 2-Chlorotoluene             | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0018  |           |
| 4-Chlorotoluene             | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| Dibromochloromethane        | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00099 |           |
| 1,2-Dibromo-3-chloropropane | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0017  |           |
| 1,2-Dibromoethane           | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0010  |           |
| Dibromomethane              | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0018  |           |
| 1,2-Dichlorobenzene         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00081 |           |
| 1,3-Dichlorobenzene         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,4-Dichlorobenzene         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| Dichlorodifluoromethane     | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| 1,1-Dichloroethane          | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,2-Dichloroethane          | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00085 |           |
| 1,1-Dichloroethene          | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| cis-1,2-Dichloroethene      | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| trans-1,2-Dichloroethene    | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,2-Dichloropropane         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.00081 |           |
| 1,3-Dichloropropane         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |
| 2,2-Dichloropropane         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| 1,1-Dichloropropene         | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| cis-1,3-Dichloropropene     | B[A1908-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 27 of 41

Geologic/Pacific Geotechnical Engineering Reported: 02/09/2017 12:48

Project: Soil Analysis 16055-D Caputo Drive Morgan Hill, CA 95037

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL                  | MDL           | Lab Quals |
|---------------------------------------|--------------|-----------|-------|----------------------|---------------|-----------|
| QC Batch ID: B[A1908                  |              |           |       |                      |               |           |
| trans-1,3-Dichloropropene             | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0012        |           |
| Ethylbenzene                          | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0015        |           |
| Hexachlorobutadiene                   | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0017        |           |
| Isopropylbenzene                      | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| p-Isopropyltoluene                    | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| Methylene chloride                    | B[A1908-BLK1 | ND        | mg/kg | 0.010                | 0.0024        |           |
| Methyl t-butyl ether                  | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.00050       |           |
| Naphthalene                           | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0014        |           |
| n-Propylbenzene                       | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| Styrene                               | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0014        |           |
| 1,1,1,2-Tetrachloroethane             | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0011        |           |
| 1,1,2,2-Tetrachloroethane             | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0011        |           |
| Tetrachloroethene                     | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| Toluene                               | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0012        |           |
| 1,2,3-Trichlorobenzene                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0021        |           |
| 1,2,4-Trichlorobenzene                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0020        |           |
| 1,1,1-Trichloroethane                 | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0011        |           |
| 1,1,2-Trichloroethane                 | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.00077       |           |
| Trichloroethene                       | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0011        |           |
| Trichlorofluoromethane                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0011        |           |
| 1,2,3-Trichloropropane                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0016        |           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| 1,2,4-Trimethylbenzene                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |
| 1,3,5-Trimethylbenzene                | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0015        |           |
| Vinyl chloride                        | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0016        |           |
| Total Xylenes                         | B[A1908-BLK1 | ND        | mg/kg | 0.010                | 0.0034        |           |
| p- & m-Xylenes                        | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0022        |           |
| o-Xylene                              | B[A1908-BLK1 | ND        | mg/kg | 0.0050               | 0.0012        |           |
| 1,2-Dichloroethane-d4 (Surrogate)     | B[A1908-BLK1 | 106       | %     | 70 - 12              | I (LCL - UCL) |           |
| Toluene-d8 (Surrogate)                | B[A1908-BLK1 | 101       | %     | 81 - 117 (LCL - UCL) |               |           |
| 4-Bromofluorobenzene (Surrogate)      | B[A1908-BLK1 | 101       | %     | 74 - 12              |               |           |
| QC Batch ID: B[A2213                  |              |           |       |                      |               |           |
| Benzene                               | B[A2213-BLK1 | ND        | mg/kg | 0.0050               | 0.0013        |           |

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 28 of 41 Report ID: 1000571737

16055-D Caputo Drive Morgan Hill, CA 95037 Reported: 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Method Blank Analysis**

| Constituent                 | QC Sample ID | MB Result | Units | PQL    | MDL     | Lab Quals |
|-----------------------------|--------------|-----------|-------|--------|---------|-----------|
| QC Batch ID: B[A2213        |              |           |       |        |         |           |
| Bromobenzene                | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| Bromochloromethane          | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00092 |           |
| Bromodichloromethane        | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00084 |           |
| Bromoform                   | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| Bromomethane                | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0016  |           |
| n-Butylbenzene              | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| sec-Butylbenzene            | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| tert-Butylbenzene           | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| Carbon tetrachloride        | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |
| Chlorobenzene               | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| Chloroethane                | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| Chloroform                  | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00063 |           |
| Chloromethane               | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 2-Chlorotoluene             | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0018  |           |
| 4-Chlorotoluene             | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| Dibromochloromethane        | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00099 |           |
| 1,2-Dibromo-3-chloropropane | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0017  |           |
| 1,2-Dibromoethane           | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0010  |           |
| Dibromomethane              | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0018  |           |
| 1,2-Dichlorobenzene         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00081 |           |
| 1,3-Dichlorobenzene         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,4-Dichlorobenzene         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0015  |           |
| Dichlorodifluoromethane     | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| 1,1-Dichloroethane          | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,2-Dichloroethane          | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00085 |           |
| 1,1-Dichloroethene          | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| cis-1,2-Dichloroethene      | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| trans-1,2-Dichloroethene    | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0014  |           |
| 1,2-Dichloropropane         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.00081 |           |
| 1,3-Dichloropropane         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |
| 2,2-Dichloropropane         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0013  |           |
| 1,1-Dichloropropene         | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |
| cis-1,3-Dichloropropene     | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0011  |           |
| trans-1,3-Dichloropropene   | B[A2213-BLK1 | ND        | mg/kg | 0.0050 | 0.0012  |           |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 29 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Method Blank Analysis**

| Constituent                           | QC Sample ID | MB Result | Units | PQL     | MDL           | Lab Quals |
|---------------------------------------|--------------|-----------|-------|---------|---------------|-----------|
| QC Batch ID: B[A2213                  |              |           |       |         |               |           |
| Ethylbenzene                          | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0015        |           |
| Hexachlorobutadiene                   | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0017        |           |
| Isopropylbenzene                      | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| p-Isopropyltoluene                    | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| Methylene chloride                    | B[A2213-BLK1 | ND        | mg/kg | 0.010   | 0.0024        |           |
| Methyl t-butyl ether                  | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.00050       |           |
| Naphthalene                           | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0014        |           |
| n-Propylbenzene                       | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| Styrene                               | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0014        |           |
| 1,1,1,2-Tetrachloroethane             | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0011        |           |
| 1,1,2,2-Tetrachloroethane             | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0011        |           |
| Tetrachloroethene                     | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| Toluene                               | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0012        |           |
| 1,2,3-Trichlorobenzene                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0021        |           |
| 1,2,4-Trichlorobenzene                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0020        |           |
| 1,1,1-Trichloroethane                 | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0011        |           |
| 1,1,2-Trichloroethane                 | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.00077       |           |
| Trichloroethene                       | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0011        |           |
| Trichlorofluoromethane                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0011        |           |
| 1,2,3-Trichloropropane                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0016        |           |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| 1,2,4-Trimethylbenzene                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0013        |           |
| 1,3,5-Trimethylbenzene                | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0015        |           |
| Vinyl chloride                        | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0016        |           |
| Total Xylenes                         | B[A2213-BLK1 | ND        | mg/kg | 0.010   | 0.0034        |           |
| p- & m-Xylenes                        | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0022        |           |
| o-Xylene                              | B[A2213-BLK1 | ND        | mg/kg | 0.0050  | 0.0012        |           |
| 1,2-Dichloroethane-d4 (Surrogate)     | B[A2213-BLK1 | 97.9      | %     | 70 - 12 | 1 (LCL - UCL) |           |
| Toluene-d8 (Surrogate)                | B[A2213-BLK1 | 97.9      | %     | 81 - 11 | 7 (LCL - UCL) |           |
| 4-Bromofluorobenzene (Surrogate)      | B[A2213-BLK1 | 104       | %     | 74 - 12 | 1 (LCL - UCL) |           |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 30 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Laboratory Control Sample**

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QC Sample ID | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.050500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.049130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81 - 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A1908-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.050830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.050620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.049460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81 - 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B[A2213-BS1  | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.049360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A1908-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1<br>B[A2213-BS1 | B[A1908-BS1 LCS B[A2213-BS1 LCS | B[A1908-BS1 LCS 0.11896 B[A1908-BS1 LCS 0.11746 B[A1908-BS1 LCS 0.12298 B[A1908-BS1 LCS 0.12298 B[A1908-BS1 LCS 0.11442 B[A1908-BS1 LCS 0.12365 B[A1908-BS1 LCS 0.11996 B[A1908-BS1 LCS 0.11503 B[A1908-BS1 LCS 0.11503 B[A1908-BS1 LCS 0.12088 B[A1908-BS1 LCS 0.050500 B[A2213-BS1 LCS 0.12082 B[A2213-BS1 LCS 0.11282 B[A2213-BS1 LCS 0.11281 B[A2213-BS1 LCS 0.11281 B[A2213-BS1 LCS 0.11834 B[A2213-BS1 LCS 0.11572 B[A2213-BS1 LCS 0.11284 B[A2213-BS1 LCS 0.11847 B[A2213-BS1 LCS 0.11616 B[A2213-BS1 LCS 0.050620 B[A2213-BS1 LCS 0.0049460 | QC Sample ID         Type         Result         Level           B[A1908-BS1         LCS         0.11896         0.12500           B[A1908-BS1         LCS         0.11746         0.12500           B[A1908-BS1         LCS         0.12298         0.12500           B[A1908-BS1         LCS         0.11442         0.12500           B[A1908-BS1         LCS         0.11996         0.12500           B[A1908-BS1         LCS         0.11503         0.12500           B[A1908-BS1         LCS         0.12088         0.12500           B[A1908-BS1         LCS         0.12088         0.12500           B[A1908-BS1         LCS         0.11677         0.12500           B[A1908-BS1         LCS         0.050500         0.050000           B[A1908-BS1         LCS         0.049130         0.050000           B[A1908-BS1         LCS         0.050830         0.050000           B[A2213-BS1         LCS         0.12082         0.12500           B[A2213-BS1         LCS         0.11778         0.12500           B[A2213-BS1         LCS         0.11281         0.12500           B[A2213-BS1         LCS         0.11572         0.12500 | QC Sample ID         Type         Result         Level         Units           B[A1908-BS1         LCS         0.11896         0.12500         mg/kg           B[A1908-BS1         LCS         0.11746         0.12500         mg/kg           B[A1908-BS1         LCS         0.12298         0.12500         mg/kg           B[A1908-BS1         LCS         0.12365         0.12500         mg/kg           B[A1908-BS1         LCS         0.11996         0.12500         mg/kg           B[A1908-BS1         LCS         0.11503         0.12500         mg/kg           B[A1908-BS1         LCS         0.12088         0.12500         mg/kg           B[A1908-BS1         LCS         0.11677         0.12500         mg/kg           B[A1908-BS1         LCS         0.050500         0.050000         mg/kg           B[A1908-BS1         LCS         0.049130         0.050000         mg/kg           B[A1908-BS1         LCS         0.050830         0.050000         mg/kg           B[A2213-BS1         LCS         0.12082         0.12500         mg/kg           B[A2213-BS1         LCS         0.11281         0.12500         mg/kg           B[A2213-BS1         L | QC Sample ID         Type         Result         Level         Units         Recovery           B[A1908-BS1         LCS         0.11896         0.12500         mg/kg         95.2           B[A1908-BS1         LCS         0.11746         0.12500         mg/kg         94.0           B[A1908-BS1         LCS         0.12298         0.12500         mg/kg         98.4           B[A1908-BS1         LCS         0.11442         0.12500         mg/kg         91.5           B[A1908-BS1         LCS         0.12365         0.12500         mg/kg         98.9           B[A1908-BS1         LCS         0.11996         0.12500         mg/kg         96.0           B[A1908-BS1         LCS         0.11503         0.12500         mg/kg         96.0           B[A1908-BS1         LCS         0.12088         0.12500         mg/kg         96.7           B[A1908-BS1         LCS         0.16077         0.12500         mg/kg         93.4           B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         93.3           B[A1908-BS1         LCS         0.049130         0.050000         mg/kg         98.3           B[A1908-BS1         LCS <t< td=""><td>QC Sample ID         Type         Result         Level         Units         Recovery         RPD           B[A1908-BS1         LCS         0.11896         0.12500         mg/kg         95.2         94.0         B[A1908-BS1         LCS         0.11746         0.12500         mg/kg         94.0         98.4         B[A1908-BS1         LCS         0.12298         0.12500         mg/kg         98.4         98.4         B[A1908-BS1         LCS         0.11442         0.12500         mg/kg         91.5         B[A1908-BS1         LCS         0.12365         0.12500         mg/kg         98.9         B[A1908-BS1         LCS         0.11996         0.12500         mg/kg         96.0         B[A1908-BS1         LCS         0.11996         0.12500         mg/kg         96.0         B[A1908-BS1         LCS         0.11503         0.12500         mg/kg         96.7         B[A1908-BS1         LCS         0.11677         0.12500         mg/kg         96.7         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         93.4         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         98.3         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         98.3         B[A1908-BS1</td><td>  Result   Spike   Level   Wnits   Recovery   Result   Recovery   Recovery  </td><td>QC Sample ID         Type         Result         Level         Units         Recovery         RPD         Recovery         RPD           B[A1908-BS1]         LCS         0.11896         0.12500         mg/kg         95.2         70 - 130         -           B[A1908-BS1]         LCS         0.11746         0.12500         mg/kg         94.0         70 - 130         -           B[A1908-BS1]         LCS         0.12298         0.12500         mg/kg         98.4         70 - 130         -           B[A1908-BS1]         LCS         0.11442         0.12500         mg/kg         91.5         70 - 130         -           B[A1908-BS1]         LCS         0.12365         0.12500         mg/kg         98.9         70 - 130         -           B[A1908-BS1]         LCS         0.11996         0.12500         mg/kg         96.0         70 - 130         -           B[A1908-BS1]         LCS         0.11503         0.12500         mg/kg         96.7         70 - 130         -           B[A1908-BS1]         LCS         0.12088         0.12500         mg/kg         93.4         70 - 130         -           B[A1908-BS1]         LCS         0.059000         0.050000         mg/kg</td></t<> | QC Sample ID         Type         Result         Level         Units         Recovery         RPD           B[A1908-BS1         LCS         0.11896         0.12500         mg/kg         95.2         94.0         B[A1908-BS1         LCS         0.11746         0.12500         mg/kg         94.0         98.4         B[A1908-BS1         LCS         0.12298         0.12500         mg/kg         98.4         98.4         B[A1908-BS1         LCS         0.11442         0.12500         mg/kg         91.5         B[A1908-BS1         LCS         0.12365         0.12500         mg/kg         98.9         B[A1908-BS1         LCS         0.11996         0.12500         mg/kg         96.0         B[A1908-BS1         LCS         0.11996         0.12500         mg/kg         96.0         B[A1908-BS1         LCS         0.11503         0.12500         mg/kg         96.7         B[A1908-BS1         LCS         0.11677         0.12500         mg/kg         96.7         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         93.4         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         98.3         B[A1908-BS1         LCS         0.050500         0.050000         mg/kg         98.3         B[A1908-BS1 | Result   Spike   Level   Wnits   Recovery   Result   Recovery   Recovery | QC Sample ID         Type         Result         Level         Units         Recovery         RPD         Recovery         RPD           B[A1908-BS1]         LCS         0.11896         0.12500         mg/kg         95.2         70 - 130         -           B[A1908-BS1]         LCS         0.11746         0.12500         mg/kg         94.0         70 - 130         -           B[A1908-BS1]         LCS         0.12298         0.12500         mg/kg         98.4         70 - 130         -           B[A1908-BS1]         LCS         0.11442         0.12500         mg/kg         91.5         70 - 130         -           B[A1908-BS1]         LCS         0.12365         0.12500         mg/kg         98.9         70 - 130         -           B[A1908-BS1]         LCS         0.11996         0.12500         mg/kg         96.0         70 - 130         -           B[A1908-BS1]         LCS         0.11503         0.12500         mg/kg         96.7         70 - 130         -           B[A1908-BS1]         LCS         0.12088         0.12500         mg/kg         93.4         70 - 130         -           B[A1908-BS1]         LCS         0.059000         0.050000         mg/kg |

Report ID: 1000571737 4100 Atlas Court Bakersheld, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 31 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Precision & Accuracy**

|                                   |             |               |          |          |          |                | Control Limits |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
|-----------------------------------|-------------|---------------|----------|----------|----------|----------------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|
|                                   |             | Source        | Source   |          | Spike    |                |                | Percent      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Percent              | Lab   |
| Constituent                       | Туре        | Sample ID     | Result   | Result   | Added    | Units          | RPD            | Recovery     | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recovery             | Quals |
|                                   | Llas        | d aliant aamn | Jos N    |          |          |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
| QC Batch ID: B[A1908              |             | d client samp |          | 0.44000  | 0.40500  |                |                | 05.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 400               |       |
| Benzene                           | MS          | 1701379-12    | ND       | 0.11988  | 0.12500  | mg/kg          | 0.7            | 95.9<br>05.3 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
|                                   | MSD         | 1701379-12    | ND       | 0.11907  | 0.12500  | mg/kg          | 0.7            |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
| Bromodichloromethane              | MS          | 1701379-12    | ND       | 0.11941  | 0.12500  | mg/kg          |                | 95.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
|                                   | MSD         | 1701379-12    | ND       | 0.12203  | 0.12500  | mg/kg          | 2.2            | 97.6         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Chlorobenzene                     | MS          | 1701379-12    | ND       | 0.12909  | 0.12500  | mg/kg          |                | 103          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.12767  | 0.12500  | mg/kg          | 1.1            | 102          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Chloroethane                      | MS          | 1701379-12    | ND       | 0.12704  | 0.12500  | mg/kg          |                | 102          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.11354  | 0.12500  | mg/kg          | 11.2           | 90.8         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| 1,4-Dichlorobenzene               | MS          | 1701379-12    | ND       | 0.12897  | 0.12500  | mg/kg          |                | 103          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.13235  | 0.12500  | mg/kg          | 2.6            | 106          | cent overy         RPD         Percent Recovery           5.9         70 - 130           5.3         20         70 - 130           5.5         70 - 130           7.6         20         70 - 130           02         20         70 - 130           02         20         70 - 130           03         70 - 130         70 - 130           06         20         70 - 130           7.2         70 - 130         70 - 130           3.0         20         70 - 130           9.6         70 - 130         70 - 130           9.6         70 - 130         70 - 130           7.1         20         70 - 130           9.2         70 - 130         70 - 130           7.6         70 - 121         8.8           70 - 121         8.8         70 - 121           8.8         70 - 121         8.1 - 117           9.3         81 - 117         9.3           81 - 117         9.3         81 - 117           9.1         70 - 130         70 - 130           3.3         70 - 130           3.4         20         70 - 130           3.4         20 |                      |       |
| 1,1-Dichloroethane                | MS          | 1701379-12    | ND       | 0.12144  | 0.12500  | mg/kg          |                | 97.2         | Percent RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |       |
| I, I-DICNIOFOETNANE               | MSD         | 1701379-12    | ND       | 0.11630  | 0.12500  | mg/kg          | 4.3            | 93.0         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
| 1.1 Dichloroothone                |             | 1701379-12    |          | 0.12449  | 0.12500  |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
| 1,1-Dichloroethene                | MS          | 1701379-12    | ND<br>ND | 0.12449  | 0.12500  | mg/kg<br>mg/kg | 8.2            |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
|                                   | MSD         |               |          |          |          |                | 0.2            |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
| Toluene                           | MS          | 1701379-12    | ND       | 0.12776  | 0.12500  | mg/kg          |                | 102          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
|                                   | MSD         | 1701379-12    | ND       | 0.12142  | 0.12500  | mg/kg          | 5.1            | 97.1         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Trichloroethene                   | MS          | 1701379-12    | ND       | 0.12692  | 0.12500  | mg/kg          |                | 102          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.11974  | 0.12500  | mg/kg          | 5.8            | 95.8         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| 1,2-Dichloroethane-d4 (Surrogate) | MS          | 1701379-12    | ND       | 0.048780 | 0.050000 | mg/kg          |                | 97.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 121             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.049420 | 0.050000 | mg/kg          | 1.3            | 98.8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 121             |       |
| Toluene-d8 (Surrogate)            | MS          | 1701379-12    | ND       | 0.048050 | 0.050000 | mg/kg          |                | 96.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81 - 117             |       |
|                                   | MSD         | 1701379-12    | ND       | 0.049640 | 0.050000 | mg/kg          | 3.3            | 99.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81 - 117             |       |
| 4-Bromofluorobenzene (Surrogate)  | MS          | 1701379-12    | ND       | 0.050070 | 0.050000 | mg/kg          |                | 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74 - 121             |       |
| 3,                                | MSD         | 1701379-12    | ND       | 0.052690 | 0.050000 | mg/kg          | 5.1            | 105          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
|                                   | <del></del> | I P           | 1. NI    |          |          |                |                |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |       |
| QC Batch ID: B[A2213              |             | d client samp |          |          |          |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
| Benzene                           | MS          | 1701379-34    | ND       | 0.11135  | 0.12500  | mg/kg          |                | 89.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
|                                   | MSD         | 1701379-34    | ND       | 0.11723  | 0.12500  | mg/kg          | 5.1            | 93.8         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Bromodichloromethane              | MS          | 1701379-34    | ND       | 0.11659  | 0.12500  | mg/kg          |                | 93.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-34    | ND       | 0.11673  | 0.12500  | mg/kg          | 0.1            | 93.4         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Chlorobenzene                     | MS          | 1701379-34    | ND       | 0.12056  | 0.12500  | mg/kg          |                | 96.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-34    | ND       | 0.11902  | 0.12500  | mg/kg          | 1.3            | 95.2         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| Chloroethane                      | MS          | 1701379-34    | ND       | 0.10532  | 0.12500  | mg/kg          |                | 84.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
|                                   | MSD         | 1701379-34    | ND       | 0.11192  | 0.12500  | mg/kg          | 6.1            | 89.5         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| 1,4-Dichlorobenzene               | MS          | 1701379-34    | ND       | 0.12115  | 0.12500  | mg/kg          |                | 96.9         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130             |       |
| .,. 5.011010501120110             | MSD         | 1701379-34    | ND       | 0.12113  | 0.12500  | mg/kg          | 2.0            | 95.0         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |
| 1.1 Diablaroothans                |             |               |          |          |          |                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |
| 1,1-Dichloroethane                | MS          | 1701379-34    | ND<br>ND | 0.10780  | 0.12500  | mg/kg          | 4.0            | 86.2<br>80.8 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>70 - 130 |       |
|                                   | MSD         | 1701379-34    | ND       | 0.11221  | 0.12500  | mg/kg          | 4.0            | 89.8         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130             |       |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 32 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

### Volatile Organic Analysis (EPA Method 8260B)

### **Quality Control Report - Precision & Accuracy**

|      |                                                                          | ·                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Control Limits</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Source                                                                   | Source                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Туре | Sample ID                                                                | Result                                                                                                                                                                                                                                            | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Use  | d client samp                                                            | le: N                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.10274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.10594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.11982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.11689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.11534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.11629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.046530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.050910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.049650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 - 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.050250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 - 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS   | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.051260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSD  | 1701379-34                                                               | ND                                                                                                                                                                                                                                                | 0.051340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | MS MSD MS | Type Sample ID  Used client samp MS 1701379-34 MSD 1701379-34 | Type         Sample ID         Result           Used client sample: N           MS         1701379-34         ND           MSD         1701379-34         ND           MSD         1701379-34         ND           MS         1701379-34         ND           MSD         1701379-34         ND           MS         1701379-34         ND           MSD         1701379-34         ND           MS         1701379-34         ND           MSD         1701379-34         ND           MSD         1701379-34         ND           MSD         1701379-34         ND           MS         1701379-34         ND | Type         Sample ID         Result         Result           Used client sample:         N           MS         1701379-34         ND         0.10274           MSD         1701379-34         ND         0.10594           MS         1701379-34         ND         0.11982           MSD         1701379-34         ND         0.11689           MS         1701379-34         ND         0.11534           MSD         1701379-34         ND         0.046530           MSD         1701379-34         ND         0.050910           MS         1701379-34         ND         0.049650           MSD         1701379-34         ND         0.050250           MS         1701379-34         ND         0.050250 | Type         Sample ID         Result         Result         Added           Used client sample: N           MS         1701379-34         ND         0.10274         0.12500           MSD         1701379-34         ND         0.10594         0.12500           MS         1701379-34         ND         0.11982         0.12500           MSD         1701379-34         ND         0.11689         0.12500           MS         1701379-34         ND         0.11534         0.12500           MSD         1701379-34         ND         0.11629         0.12500           MSD         1701379-34         ND         0.046530         0.050000           MS         1701379-34         ND         0.049650         0.050000           MSD         1701379-34         ND         0.049650         0.050000           MSD         1701379-34         ND         0.050250         0.050000           MS         1701379-34         ND         0.051260         0.050000 | Type         Sample ID         Result         Result         Added         Units           Used client sample: N           MS         1701379-34         ND         0.10274         0.12500         mg/kg           MSD         1701379-34         ND         0.10594         0.12500         mg/kg           MS         1701379-34         ND         0.11982         0.12500         mg/kg           MSD         1701379-34         ND         0.11689         0.12500         mg/kg           MSD         1701379-34         ND         0.11534         0.12500         mg/kg           MSD         1701379-34         ND         0.01629         0.12500         mg/kg           MSD         1701379-34         ND         0.046530         0.050000         mg/kg           MS         1701379-34         ND         0.050910         0.050000         mg/kg           MSD         1701379-34         ND         0.049650         0.050000         mg/kg           MS         1701379-34         ND         0.050250         0.050000         mg/kg           MS         1701379-34         ND         0.050250         0.050000         mg/kg | Type         Sample ID         Result         Added         Units         RPD           Used client sample:         N           MS         1701379-34         ND         0.10594         0.12500         mg/kg         3.1           MS         1701379-34         ND         0.11982         0.12500         mg/kg         pg/kg           MS         1701379-34         ND         0.11689         0.12500         mg/kg         pg/kg           MS         1701379-34         ND         0.11629         0.12500         mg/kg         0.8           MS         1701379-34         ND         0.046530         0.050000         mg/kg         9.0           MS         1701379-34         ND         0.050910         0.050000         mg/kg         9.0           MS         1701379-34         ND         0.049650         0.050000         mg/kg         1.2           MS         1701379-34         ND         0.050250         0.050000         mg/kg         1.2           MS         1701379-34         ND         0.051260         0.050000         mg/kg | Type         Sample ID         Result         Result         Added         Units         RPD         Recovery           Used client sample: N           MS         1701379-34         ND         0.10274         0.12500         mg/kg         3.1         84.8           MSD         1701379-34         ND         0.10594         0.12500         mg/kg         3.1         84.8           MS         1701379-34         ND         0.11982         0.12500         mg/kg         95.9           MSD         1701379-34         ND         0.11689         0.12500         mg/kg         2.5         93.5           MS         1701379-34         ND         0.11534         0.12500         mg/kg         92.3           MSD         1701379-34         ND         0.11629         0.12500         mg/kg         0.8         93.0           MS         1701379-34         ND         0.046530         0.050000         mg/kg         9.0         102           MS         1701379-34         ND         0.049650         0.050000         mg/kg         9.0         102           MS         1701379-34         ND         0.049650         0.050000         mg/kg         1.2 | Source Type         Source Sample ID         Source Result         Result         Spike Added         Units         Percent Recovery         RPD           MS         1701379-34         ND         0.10274         0.12500         mg/kg         82.2         82.2           MSD         1701379-34         ND         0.10594         0.12500         mg/kg         3.1         84.8         20           MS         1701379-34         ND         0.11982         0.12500         mg/kg         95.9         95.9           MSD         1701379-34         ND         0.11689         0.12500         mg/kg         2.5         93.5         20           MS         1701379-34         ND         0.11534         0.12500         mg/kg         92.3         93.0         20           MS         1701379-34         ND         0.11629         0.12500         mg/kg         0.8         93.0         20           MS         1701379-34         ND         0.046530         0.050000         mg/kg         9.0         102           MS         1701379-34         ND         0.049650         0.050000         mg/kg         9.0         102           MS         1701379-34         ND | Source Source Result         Spike Added         Units         Percent Recovery         Percent Recovery           Used client sample:         N           MS         1701379-34         ND         0.10274         0.12500         mg/kg         82.2         70 - 130           MSD         1701379-34         ND         0.10594         0.12500         mg/kg         3.1         84.8         20         70 - 130           MS         1701379-34         ND         0.11982         0.12500         mg/kg         95.9         70 - 130           MSD         1701379-34         ND         0.11689         0.12500         mg/kg         2.5         93.5         20         70 - 130           MS         1701379-34         ND         0.11629         0.12500         mg/kg         92.3         70 - 130           MS         1701379-34         ND         0.11629         0.12500         mg/kg         93.0         20         70 - 130           MS         1701379-34         ND         0.046530         0.050000         mg/kg         93.1         70 - 121           MS         1701379-34         ND         0.050001         0.050000         mg/kg         99.3         81 - 117 |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 33 of 41



16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Petroleum Hydrocarbons**

### **Quality Control Report - Method Blank Analysis**

| Constituent             | QC Sample ID | MB Result | Units | PQL                  | MDL | Lab Quals |
|-------------------------|--------------|-----------|-------|----------------------|-----|-----------|
| QC Batch ID: B[A2394    |              |           |       |                      |     |           |
| TPH - Gasoline          | B[A2394-BLK1 | ND        | mg/kg | 20                   | 5.0 |           |
| TPH - Diesel (FFP)      | B[A2394-BLK1 | ND        | mg/kg | 10                   | 1.2 |           |
| TPH - Motor Oil         | B[A2394-BLK1 | ND        | mg/kg | 20                   | 6.5 |           |
| Tetracosane (Surrogate) | B[A2394-BLK1 | 81.4      | %     | 20 - 145 (LCL - UCL) |     |           |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 34 of 41



16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

## **Total Petroleum Hydrocarbons**

### **Quality Control Report - Laboratory Control Sample**

|                         |              |      |        |                |       |                     | Control Limits |                     |     |              |
|-------------------------|--------------|------|--------|----------------|-------|---------------------|----------------|---------------------|-----|--------------|
| Constituent             | QC Sample ID | Туре | Result | Spike<br>Level | Units | Percent<br>Recovery | RPD            | Percent<br>Recovery | RPD | Lab<br>Quals |
| QC Batch ID: B[A2394    |              |      |        |                |       |                     |                |                     |     |              |
| TPH - Diesel (FFP)      | B[A2394-BS1  | LCS  | 62.421 | 83.056         | mg/kg | 75.2                |                | 64 - 124            |     |              |
| Tetracosane (Surrogate) | B[A2394-BS1  | LCS  | 2.7635 | 3.3223         | mg/kg | 83.2                |                | 20 - 145            |     |              |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 35 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

### **Total Petroleum Hydrocarbons**

### **Quality Control Report - Precision & Accuracy**

|                         |      |               |        |        |        |       |      |          | Cont |          |       |
|-------------------------|------|---------------|--------|--------|--------|-------|------|----------|------|----------|-------|
|                         |      | Source        | Source |        | Spike  |       |      | Percent  |      | Percent  | Lab   |
| Constituent             | Type | Sample ID     | Result | Result | Added  | Units | RPD  | Recovery | RPD  | Recovery | Quals |
| QC Batch ID: B[A2394    | Use  | d client samp | ole: N |        |        |       |      |          |      |          |       |
| TPH - Diesel (FFP)      | MS   | 1701379-34    | ND     | 57.010 | 81.967 | mg/kg |      | 69.6     |      | 52 - 131 |       |
|                         | MSD  | 1701379-34    | ND     | 64.786 | 83.893 | mg/kg | 12.8 | 77.2     | 30   | 52 - 131 |       |
| Tetracosane (Surrogate) | MS   | 1701379-34    | ND     | 2.4964 | 3.2787 | mg/kg |      | 76.1     |      | 20 - 145 |       |
|                         | MSD  | 1701379-34    | ND     | 2.8649 | 3.3557 | mg/kg | 13.7 | 85.4     |      | 20 - 145 |       |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 36 of 41

16055-D Caputo Drive Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Total Concentrations (TTLC)**

# **Quality Control Report - Method Blank Analysis**

| Constituent          | QC Sample ID | MB Result | Units | PQL  | MDL   | Lab Quals |
|----------------------|--------------|-----------|-------|------|-------|-----------|
| QC Batch ID: B[A2372 |              |           |       |      |       |           |
| Mercury              | B[A2372-BLK1 | ND        | mg/kg | 0.16 | 0.041 |           |
| QC Batch ID: B[B0016 |              |           |       |      |       |           |
| Antimony             | B[B0016-BLK1 | ND        | mg/kg | 5.0  | 0.33  |           |
| Arsenic              | B[B0016-BLK1 | ND        | mg/kg | 1.0  | 0.40  |           |
| Barium               | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.18  |           |
| Beryllium            | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.047 |           |
| Cadmium              | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.052 |           |
| Chromium             | B[B0016-BLK1 | 0.25226   | mg/kg | 0.50 | 0.050 | J         |
| Cobalt               | B[B0016-BLK1 | ND        | mg/kg | 2.5  | 0.098 |           |
| Copper               | B[B0016-BLK1 | ND        | mg/kg | 1.0  | 0.050 |           |
| Lead                 | B[B0016-BLK1 | ND        | mg/kg | 2.5  | 0.28  |           |
| Molybdenum           | B[B0016-BLK1 | 0.078483  | mg/kg | 2.5  | 0.050 | J         |
| Nickel               | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.15  |           |
| Selenium             | B[B0016-BLK1 | ND        | mg/kg | 1.0  | 0.98  |           |
| Silver               | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.067 |           |
| Thallium             | B[B0016-BLK1 | ND        | mg/kg | 5.0  | 0.64  |           |
| Vanadium             | B[B0016-BLK1 | ND        | mg/kg | 0.50 | 0.11  |           |
| Zinc                 | B[B0016-BLK1 | 0.19762   | mg/kg | 2.5  | 0.087 | J         |

Page 37 of 41 Report ID: 1000571737

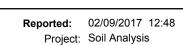
16055-D Caputo Drive Morgan Hill, CA 95037

02/09/2017 12:48 Reported:

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang


# **Total Concentrations (TTLC)**

# **Quality Control Report - Laboratory Control Sample**

|                      |              |      | -       |         |       |          |                       |          |     |       |  |
|----------------------|--------------|------|---------|---------|-------|----------|-----------------------|----------|-----|-------|--|
|                      |              |      |         |         |       |          | <b>Control Limits</b> |          |     |       |  |
|                      |              |      |         | Spike   |       | Percent  |                       | Percent  |     | Lab   |  |
| Constituent          | QC Sample ID | Type | Result  | Level   | Units | Recovery | RPD                   | Recovery | RPD | Quals |  |
| QC Batch ID: B[A2372 |              |      |         |         |       |          |                       |          |     |       |  |
| Mercury              | B[A2372-BS1  | LCS  | 0.87712 | 0.80000 | mg/kg | 110      |                       | 80 - 120 |     |       |  |
| QC Batch ID: B[B0016 |              |      |         |         |       |          |                       |          |     |       |  |
| Antimony             | B[B0016-BS1  | LCS  | 108.63  | 100.00  | mg/kg | 109      |                       | 75 - 125 |     |       |  |
| Arsenic              | B[B0016-BS1  | LCS  | 10.721  | 10.000  | mg/kg | 107      |                       | 75 - 125 |     |       |  |
| Barium               | B[B0016-BS1  | LCS  | 105.61  | 100.00  | mg/kg | 106      |                       | 75 - 125 |     |       |  |
| Beryllium            | B[B0016-BS1  | LCS  | 9.9647  | 10.000  | mg/kg | 99.6     |                       | 75 - 125 |     |       |  |
| Cadmium              | B[B0016-BS1  | LCS  | 10.245  | 10.000  | mg/kg | 102      |                       | 75 - 125 |     |       |  |
| Chromium             | B[B0016-BS1  | LCS  | 109.25  | 100.00  | mg/kg | 109      |                       | 75 - 125 |     |       |  |
| Cobalt               | B[B0016-BS1  | LCS  | 103.59  | 100.00  | mg/kg | 104      |                       | 75 - 125 |     |       |  |
| Copper               | B[B0016-BS1  | LCS  | 99.250  | 100.00  | mg/kg | 99.2     |                       | 75 - 125 |     |       |  |
| Lead                 | B[B0016-BS1  | LCS  | 101.35  | 100.00  | mg/kg | 101      |                       | 75 - 125 |     |       |  |
| Molybdenum           | B[B0016-BS1  | LCS  | 104.81  | 100.00  | mg/kg | 105      |                       | 75 - 125 |     |       |  |
| Nickel               | B[B0016-BS1  | LCS  | 111.12  | 100.00  | mg/kg | 111      |                       | 75 - 125 |     |       |  |
| Selenium             | B[B0016-BS1  | LCS  | 10.475  | 10.000  | mg/kg | 105      |                       | 75 - 125 |     |       |  |
| Silver               | B[B0016-BS1  | LCS  | 9.9235  | 10.000  | mg/kg | 99.2     |                       | 75 - 125 |     |       |  |
| Thallium             | B[B0016-BS1  | LCS  | 117.68  | 100.00  | mg/kg | 118      |                       | 75 - 125 |     |       |  |
| Vanadium             | B[B0016-BS1  | LCS  | 106.44  | 100.00  | mg/kg | 106      |                       | 75 - 125 |     |       |  |
| Zinc                 | B[B0016-BS1  | LCS  | 101.31  | 100.00  | mg/kg | 101      |                       | 75 - 125 |     |       |  |
|                      |              |      |         |         |       |          |                       |          |     |       |  |

Page 38 of 41 Report ID: 1000571737

16055-D Caputo Drive Morgan Hill, CA 95037



Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Total Concentrations (TTLC)**

# **Quality Control Report - Precision & Accuracy**

|                               |      |               |         |         |         |           |      |          | Cont | rol Limits           |       |
|-------------------------------|------|---------------|---------|---------|---------|-----------|------|----------|------|----------------------|-------|
|                               |      | Source        | Source  |         | Spike   |           |      | Percent  |      | Percent              | Lab   |
| Constituent                   | Type | Sample ID     | Result  | Result  | Added   | Units     | RPD  | Recovery | RPD  | Recovery             | Quals |
| 00 D-4-1- ID- DIA0070         | Llse | d client samp | olo: N  |         |         |           |      |          |      |                      |       |
| QC Batch ID: B[A2372  Mercury | DUP  | 1702574-01    | ND      | ND      |         | mg/kg     |      |          | 20   |                      |       |
| ivier cur y                   |      | 1702574-01    | ND      | 0.86460 | 0.79365 |           |      | 109      | 20   | 80 - 120             |       |
|                               | MS   | 1702574-01    | ND      | 0.80619 | 0.79365 | mg/kg     | 7.0  | 109      | 20   | 80 - 120             |       |
|                               | MSD  | 1702374-01    | טאו     | 0.80019 | 0.79303 | mg/kg     | 7.0  | 102      | 20   | 00 - 120             |       |
| QC Batch ID: B[B0016          | Use  | d client samp | ole: N  |         |         |           |      |          |      |                      |       |
| Antimony                      | DUP  | 1702530-01    | ND      | ND      |         | mg/kg     |      |          | 20   |                      |       |
|                               | MS   | 1702530-01    | ND      | 54.488  | 100.00  | mg/kg     |      | 54.5     |      | 16 - 119             |       |
|                               | MSD  | 1702530-01    | ND      | 55.980  | 100.00  | mg/kg     | 2.7  | 56.0     | 20   | 16 - 119             |       |
| Arsenic                       | DUP  | 1702530-01    | 2.1159  | 2.8040  |         | mg/kg     | 28.0 |          | 20   |                      | A02   |
|                               | MS   | 1702530-01    | 2.1159  | 12.342  | 10.000  | mg/kg     |      | 102      |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 2.1159  | 12.628  | 10.000  | mg/kg     | 2.3  | 105      | 20   | 75 - 125             |       |
| Barium                        | DUP  | 1702530-01    | 46.924  | 55.041  |         | mg/kg     | 15.9 |          | 20   |                      |       |
|                               | MS   | 1702530-01    | 46.924  | 145.71  | 100.00  | mg/kg     |      | 98.8     |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 46.924  | 146.71  | 100.00  | mg/kg     | 0.7  | 99.8     | 20   | 75 - 125             |       |
| Beryllium                     | DUP  | 1702530-01    | 0.12798 | 0.13516 |         | mg/kg     | 5.5  |          | 20   |                      | J     |
| •                             | MS   | 1702530-01    | 0.12798 | 9.4789  | 10.000  | mg/kg     |      | 93.5     |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 0.12798 | 9.4763  | 10.000  | mg/kg     | 0.0  | 93.5     | 20   | 75 - 125             |       |
| Cadmium                       | DUP  | 1702530-01    | 0.44717 | 0.39947 |         | mg/kg     | 11.3 |          | 20   |                      | J     |
|                               | MS   | 1702530-01    | 0.44717 | 10.047  | 10.000  | mg/kg     |      | 96.0     |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 0.44717 | 10.023  | 10.000  | mg/kg     | 0.2  | 95.8     | 20   | 75 - 125             |       |
| Chromium                      | DUP  | 1702530-01    | 16.651  | 17.464  |         | mg/kg     | 4.8  |          | 20   |                      |       |
| Cilioniani                    | MS   | 1702530-01    | 16.651  | 115.19  | 100.00  | mg/kg     | 4.0  | 98.5     | 20   | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 16.651  | 117.22  | 100.00  | mg/kg     | 1.7  | 101      | 20   | 75 - 125             |       |
| Cobalt                        | DUP  | 1702530-01    | 3.7471  | 3.5083  |         | mg/kg     | 6.6  |          | 20   |                      |       |
| Cobail                        | MS   | 1702530-01    | 3.7471  | 98.349  | 100.00  | mg/kg     | 0.0  | 94.6     | 20   | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 3.7471  | 97.066  | 100.00  | mg/kg     | 1.3  | 93.3     | 20   | 75 - 125<br>75 - 125 |       |
| Conner                        |      |               |         |         | 100.00  |           |      |          |      | . 5 120              |       |
| Copper                        | DUP  | 1702530-01    | 52.314  | 50.336  | 100.00  | mg/kg     | 3.9  | 04.2     | 20   | 7E 10E               |       |
|                               | MS   | 1702530-01    | 52.314  | 146.63  | 100.00  | mg/kg     | 2.0  | 94.3     | 20   | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 52.314  | 142.31  | 100.00  | mg/kg     | 3.0  | 90.0     |      | 75 - 125             |       |
| Lead                          | DUP  | 1702530-01    | 445.98  | 897.80  | 440.00  | mg/kg     | 67.2 | 465      | 20   |                      | Q01   |
|                               | MS   | 1702530-01    | 445.98  | 565.72  | 100.00  | mg/kg<br> |      | 120      |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 445.98  | 637.25  | 100.00  | mg/kg     | 11.9 | 191      | 20   | 75 - 125             | A03   |
| Molybdenum                    | DUP  | 1702530-01    | 1.8068  | 1.3973  |         | mg/kg     | 25.6 |          | 20   |                      | J,A02 |
|                               | MS   | 1702530-01    | 1.8068  | 97.438  | 100.00  | mg/kg     |      | 95.6     |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 1.8068  | 98.457  | 100.00  | mg/kg     | 1.0  | 96.6     | 20   | 75 - 125             |       |
| Nickel                        | DUP  | 1702530-01    | 13.998  | 27.765  |         | mg/kg     | 65.9 |          | 20   |                      | Q01   |
|                               | MS   | 1702530-01    | 13.998  | 113.46  | 100.00  | mg/kg     |      | 99.5     |      | 75 - 125             |       |
|                               | MSD  | 1702530-01    | 13.998  | 112.35  | 100.00  | mg/kg     | 1.0  | 98.4     | 20   | 75 - 125             |       |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 39 of 41

16055-D Caputo Drive Morgan Hill, CA 95037 **Reported:** 02/09/2017 12:48

Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

# **Total Concentrations (TTLC)**

# **Quality Control Report - Precision & Accuracy**

|                      |             |               |         |         |        |       |      |          | Cont | trol Limits |       |
|----------------------|-------------|---------------|---------|---------|--------|-------|------|----------|------|-------------|-------|
|                      |             | Source        | Source  |         | Spike  |       |      | Percent  |      | Percent     | Lab   |
| Constituent          | Type        | Sample ID     | Result  | Result  | Added  | Units | RPD  | Recovery | RPD  | Recovery    | Quals |
| QC Batch ID: B[B0016 | Use         | d client samp | ole: N  |         |        |       |      |          |      |             |       |
| Selenium             | <b>D</b> UP | 1702530-01    | 1.7633  | 2.6255  |        | mg/kg | 39.3 |          | 20   |             | A02   |
|                      | MS          | 1702530-01    | 1.7633  | 12.319  | 10.000 | mg/kg |      | 106      |      | 75 - 125    |       |
|                      | MSD         | 1702530-01    | 1.7633  | 11.359  | 10.000 | mg/kg | 8.1  | 96.0     | 20   | 75 - 125    |       |
| Silver               | DUP         | 1702530-01    | 0.13160 | 0.13622 |        | mg/kg | 3.4  |          | 20   |             | J     |
|                      | MS          | 1702530-01    | 0.13160 | 9.7951  | 10.000 | mg/kg |      | 96.6     |      | 75 - 125    |       |
|                      | MSD         | 1702530-01    | 0.13160 | 9.8209  | 10.000 | mg/kg | 0.3  | 96.9     | 20   | 75 - 125    |       |
| Thallium             | DUP         | 1702530-01    | ND      | ND      |        | mg/kg |      |          | 20   |             |       |
|                      | MS          | 1702530-01    | ND      | 101.69  | 100.00 | mg/kg |      | 102      |      | 75 - 125    |       |
|                      | MSD         | 1702530-01    | ND      | 102.17  | 100.00 | mg/kg | 0.5  | 102      | 20   | 75 - 125    |       |
| Vanadium             | DUP         | 1702530-01    | 27.163  | 26.383  |        | mg/kg | 2.9  |          | 20   |             |       |
|                      | MS          | 1702530-01    | 27.163  | 123.90  | 100.00 | mg/kg |      | 96.7     |      | 75 - 125    |       |
|                      | MSD         | 1702530-01    | 27.163  | 122.86  | 100.00 | mg/kg | 0.8  | 95.7     | 20   | 75 - 125    |       |
| Zinc                 | DUP         | 1702530-01    | 187.61  | 176.51  |        | mg/kg | 6.1  |          | 20   |             |       |
|                      | MS          | 1702530-01    | 187.61  | 293.25  | 100.00 | mg/kg |      | 106      |      | 75 - 125    |       |
|                      | MSD         | 1702530-01    | 187.61  | 267.49  | 100.00 | mg/kg | 9.2  | 79.9     | 20   | 75 - 125    |       |

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 40 of 41

Geologic/Pacific Geotechnical Engineering Reported: 02/09/2017 12:48

16055-D Caputo Drive Morgan Hill, CA 95037 Project: Soil Analysis

Project Number: MH Sewer Trunk 2016.0096

Project Manager: Beeson Liang

#### **Notes And Definitions**

J Estimated Value (CLP Flag)

MDL Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

A02 The difference between duplicate readings is less than the quantitation limit.

A03 The sample concentration is more than 4 times the spike level.

A26 Sample received past holding time.

Q01 Sample precision is not within the control limits.

S05 The sample holding time was exceeded.

Report ID: 1000571737 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 41 of 41

# APPENDIX D TECHNICAL MEMORANDUM FROM DCM CONSULTING

# **DCM** Consulting, Inc.

# **Technical Memorandum**

P.O. Box 225, Lafayette, CA 94549, Telephone: 925.322.9590 www.dcmconsults.com

To: Cindy Preuss Date: October 10, 2018

**HydroScience Engineers** 

From: Dave Mathy File: No. 253

DCM Consulting, Inc.

Subject: Geotechnical and Trenchless Engineering

Five Undercrossings City of Morgan Hill

Sewer Trunk South of Highland

Reference A: Preliminary Boring Logs and Laboratory Tests

Morgan Hill Sewer Trunk, Phase 2

DH-2A and DH-3A dated 8/28/17 DH-6A and DH-7A dated 8/29/17 DH-10A and DH-11A dated 8/30/17 DH-16A and DH-17A dated 8/31/17

DH-20A and DH-21A dated 9/5/17 and 5/22/18, respectively

By: Geo-Logic Associates

Transmitted and received by email dated 8/28/18

Reference B: Plan and Profile Drawings

City of Morgan Hill

Sewer Trunk South of Highland Drawing Nos.: C001 through C015 By: HydroScience Engineers

Dated: August 31, 2018

Transmitted and received by email dated 8/31/18

Reference C: Plan and Profile Drawings

City of Morgan Hill

Sewer Trunk South of Highland

Drawings Nos.: C012, C012 (2) and C015 - revised on 10/2/18

By: HydroScience Engineers

Dated: August 31, 2018 – revised on 10/2/18 Transmitted and received by email dated 10/2/18

## 1.0 INTRODUCTION

This technical memorandum presents the conclusions and recommendations of a geotechnical and trenchless engineering evaluation of five specific trenchless undercrossings for the City of Morgan Hill's Sewer Trunk South of Highland project. The new trunk sewer pipeline will be 36 inches in inside diameter and will extend from Renz Lane in Gilroy, California (downstream, south end) to the intersection of Las Animas Avenue and Monterey Road in Gilroy, California (upstream, north end) for a total length of

Morgan Hill Trenchless Undercrossings October 10, 2018 Page 2

approximately 15,270 feet (see Reference B). The new trunk sewer will be constructed by conventional open-cut trenching with the exception of the following five trenchless undercrossings:

- UPRR tracks crossing Las Animas Avenue;
- Miller Slough crossing Murray Avenue;
- Leavesley Road (Caltrans 152) crossing Murray Avenue;
- Miller Slough crossing Chestnut Street, and
- Highway 101 east of 7<sup>th</sup> Street.

The current project plans and profiles (see References B and C) illustrate a gravity slope for the 36-inch pipeline. Where possible, at each trenchless undercrossing, this gravity slope will be maintained. Where it is not possible to maintain gravity slopes due to inadequate clearance from existing utilities, channel bottom, etc. or where systemic settlement impacts require greater cover depths, the new trunk sewer pipeline may need to be lowered which will create a localized siphon.

A subsurface geotechnical investigation has been completed for the project by Geo-Logic Associates of Morgan Hill, California. Geo-Logic Associates has completed two test borings at each trenchless undercrossing location and has installed one open standpipe groundwater monitoring well at each undercrossing location (see Reference A).

The current project plans and profiles by HydroScience Engineers (References B and C) and the geotechnical boring logs and laboratory tests by Geo-Logic Associates (Reference A) are the basis of DCM Consulting, Inc.'s trenchless undercrossing evaluations. DCM Consulting, Inc.'s scope of services is described in Task Order No. 2017-01 to Master Agreement for Services between HydroScience Engineers and DCM Consulting, Inc. and included: alignment reconnaissance (completed in conjunction with HydroScience Engineers and Geo-Logic Associates on August 10, 2017); review of geotechnical investigation; and preparation of this technical memorandum. Optional tasks described in Task Order No. 2017-01 have not been authorized or completed.

## 2.0 GEOTECHNICAL FINDINGS

#### 2.1. UPRR Tracks Crossing, Las Animas Avenue

The geotechnical conditions at the UPRR tracks undercrossing on Las Animas Avenue are described in test borings DH-2A and DH-3A and groundwater monitoring well GW-1. The gravity pipe zone at this location is about 20 feet deep to invert (El. 196). The depth of cover on the gravity pipeline below the railroad tracks is approximately 18 feet. The following summarizes selected geotechnical conditions at and near the gravity pipe zone at the UPRR undercrossing:

Composition: clayey sand

• Unified Soil Classification System: SC

Morgan Hill Trenchless Undercrossings October 10, 2018 Page 3

Consistency: medium dense, Standard Penetration Test Blow Count, N-value, N=16

Moisture Content: 15% to 18%

Dry Unit Weight: 109 pcf to 117 pcf

Fines content (% passing a No. 200 sieve): 31%

Atterberg Limits: Liquid Limit = 33% to 34%, Plasticity Index = 17 to 18

• Direct Shear:  $\emptyset = 42^{\circ}$  to  $47^{\circ}$ , c = 0 psf to 12 psf

• Cobbles noted on logs of DH-2A and DH-3A well below the gravity pipe zone

The depth to groundwater at this undercrossing has been recorded by Geo-Logic Associates over the period 1/23/18 to 8/20/18 in groundwater monitoring well GW-1 (at DH-3A location). The depth to groundwater has varied significantly from a wintertime high of 19.4 feet deep to a summertime low of 33.1 feet, a seasonal variance of 13.7 feet.

## 2.2. Miller Slough Crossing, Murray Avenue

The geotechnical conditions at the Miller Slough undercrossing on Murray Avenue are described in test borings DH-6A and DH-7A and groundwater monitoring well GW-2. The gravity pipe zone at this location is about 20 to 23 feet deep to invert (El 190 to 187). The depth of cover on the gravity pipeline below the creek channel bottom is approximately 15 feet. At this elevation the gravity pipeline conflicts with the footing foundations for the Murray Avenue bridge over Miller Slough (See reference 4). As a result, the pipeline elevation must be lowered which will create a siphon under Miller Slough. The minimum separation between the bottom of the bridge footing foundations and top of pipe should be 6 feet. This corresponds to a top of pipe elevation of El 180 or a depth of 30 feet in test borings DH-6A and DH-7A. The following summarizes selected geotechnical conditions at and below El 180 at the Miller Slough undercrossing:

Composition: lean clay with sand with lesser poorly graded sand with clay and clayey sand

Unified Soil Classification System: CL, SC, SP-SC

• Consistency: stiff to medium dense, Standard Penetration Test Blow Count, N-value, N=10 to 26

Moisture Content: 15% to 22%

Dry Unit Weight: 106 pcf to 114 pcf

Fines Content: (% passing a No. 200 sieve); 74% to 97% in clays and 18% in clayey sands

Atterberg Limits: Liquid Limit = 25% to 43%
 Plasticity Index = 12 to 36

• Direct Shear:  $\emptyset = 40^\circ$ , c = 130 psf in clayey sand

Unconfined Compressive Strength: UCS = 2,909 psf to 3,629 psf

No cobbles noted on logs of DH-6A and DH-7A

The depth to groundwater at this undercrossing has been recorded by Geo-Logic Associates over the period 1/23/18 to 8/20/18 in groundwater monitoring well GW-2 (at DH-6A location). The depth to groundwater has varied significantly from a wintertime high of 18.3 feet to a summertime low of 33.9 feet, a seasonal variation of 15.6 feet.

## 2.3. Leavesley Road (Caltrans 152) Crossing, Murray Avenue

The geotechnical conditions at the Leavesley Road (Caltrans 152) undercrossing on Murray Avenue are described in test borings DH-10A and DH-11A and groundwater monitoring well GW-3. The gravity pipe zone at this location is about 20 feet deep to invert (El 182). The depth of cover on the gravity pipeline below Leavesley Road is approximately 17 feet. The following summarizes selected geotechnical conditions at and near the gravity pipe zone at the Leavesley Road (Caltrans 152) undercrossing:

• Composition: clayey sand with gravel, clayey gravel with sand

• Unified Soil Classification System: SC, GC

• Consistency: medium dense to dense, Standard Penetration Test Blow Count, N-value, N=22 to 47

• Moisture Content: 9% to 16%

• Dry Unit Weight: 110 pcf to 128 pcf

Fines Content: (% passing a No. 200 sieve); 10% to 27%

Atterberg Limits: Liquid Limit = 30%
 Plasticity Index = 14

Direct Shear: Ø = 44°, c = 0 psf

• Permeability:  $k = 3.1x10^{-7}$  cm/sec

Percent gravel: 16% to 69%, average = 37%

• Cobbles noted on logs of DH-10A and DH-11A in the pipe zone

The depth to groundwater at this undercrossing has been recorded by Geo-Logic Associates over the period 1/23/18 to 8/20/18 in groundwater monitoring well GW-3 (at DH-11A location). The depth to groundwater has varied significantly from a wintertime high of 15.3 feet deep to a summertime low of 27.4 feet, a seasonal variation of 12.1 feet.

## 2.4. Miller Slough Crossing, Chestnut Street

The geotechnical conditions at the Miller Slough undercrossing on Chestnut Street are described in test borings DH-16A and DH-17A and groundwater monitoring well GW-4. The gravity pipe zone at this location is about 18 feet deep to invert (El. 178). At the Miller Slough channel the depth of cover on the gravity pipeline is approximately 7 feet. The following summarizes selected geotechnical conditions at and near the gravity pipe zone at the Miller Slough undercrossing on Chestnut Street:

• Composition: clayey sand with gravel, clayey gravel with sand

Unified Soil Classification System: SC, GC, GC/SC

Consistency: medium dense, Standard Penetration Test Blow Count, N-value, N=16 to
 27

Moisture Content: 5% to 16%

Dry Unit Weight: 117 pcf to 123 pcf

Fines Content: (% passing a No. 200 sieve); 7% to 9%

Atterberg Limits: Liquid Limit = 39%
 Plasticity Index = 24

• Direct Shear:  $\emptyset = 36^{\circ}$ , c = 1,390 psf

Percent gravel: 45% to 61%

No cobbles noted on logs of DH-16A and DH-17A

The depth to groundwater at this undercrossing has been recorded by Geo-Logic Associates over the period 1/23/18 to 8/20/18 in groundwater monitoring well GW-4 (at DH-16A location). The depth to groundwater has varied significantly from a wintertime high of 18.3 feet deep to a summertime low of 37.4 feet, a seasonal variation of 19.1 feet.

## 2.5. Highway 101 Crossing, East of 7<sup>th</sup> Street

The geotechnical conditions at the Highway 101 undercrossing east of 7<sup>th</sup> Street are described in borings DH-20A and DH-21A and groundwater monitoring well GW-5. The gravity pipe zone at this location is about 19 to 20 feet deep to invert on each side of the highway (E. 173). The depth of cover on the gravity pipeline below Highway 101 is approximately 20 feet. The following summarizes selected geotechnical conditions at and near the gravity pipe zone at the Highway 101 undercrossing.

• Composition: clayey sand with gravel, poorly graded gravel with sand and clay, clayey gravel with sand, poorly graded sand with gravel and clay, clayey sand, clayey gravel with sand

• Unified Soil Classification System: SC, GP-GC, GC, SP-SC, GC

Morgan Hill Trenchless Undercrossings October 10, 2018 Page 6

Consistency: medium dense to dense, Standard Penetration Test Blow Count, N-values, N = 9 to
 51

• Moisture Content: 6% to 15%

Dry Unit Weight: 124 pcf to 127 pcf

Fines Content: (% passing a No. 200 sieve); 11% to 32%

Atterberg Limits: Liquid Limit = 46% to 52%
 Plasticity Index = 30 to 34

CU Triax: Ø = 33°, c = 250 psf

Unconfined Compressive Strength: c = 936 psf to 1,771 psf

Percent gravel: 22% to 59%

Cobbles noted on log DH-20A in pipe zone, no cobbles noted in DH-21A

The depth to groundwater at this undercrossing has been recorded by Geo-Logic Associates over the period 1/23/18 to 8/20/18 in groundwater monitoring well GW-5 (at DH-20A location). The depth to groundwater has varied significantly from a wintertime high of 19.4 feet deep to a summertime low of 35.5 feet, a seasonal variation of 16.1 feet.

#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

## Groundwater

Groundwater elevations as monitored in GW-1 through GW-5 from January 23, 2018 through August 20, 2018 at the project's five trenchless undercrossings have varied significantly from wintertime highs to summertime lows. Wintertime high groundwater is consistently at or above the gravity pipe zone and summertime low groundwater is consistently below the gravity pipe zone (from 4.5 feet to 13 feet below the pipe invert). Since groundwater elevations at or above the gravity pipe zone significantly impact trenchless options and costs and shaft construction options and costs, this technical memorandum assumes that the project plans, specifications and bid documents will limit trenchless construction to late summer (e.g. August/September) when groundwater levels are a minimum of 3 feet below the gravity pipe invert.

In the event that project planning delays construction (i.e., more than one year following the date of this Technical Memorandum), groundwater levels in monitoring wells GW-1 through GW-5 should be recorded a minimum of two times per year (late winter and late summer) on a continuing basis up to bid time. Tabulated or graphical groundwater level fluctuations over time should be provided to bidding contractors.

#### **Trenchless Design**

The following conclusions and recommendations are for each of the project's five trenchless undercrossings. These conclusions and recommendations are based on the soil and groundwater conditions described and referenced above and on the relatively shallow slope of the gravity pipeline and grade sensitivity. Trenchless construction methods considered include:

- Auger Bore and Jack (ABJ), requires 48-inch-minimum steel casing;
- Pilot Tube Guided Auger Bore and Jack (PTGABJ), requires 48-inch-minimum steel casing;
- Pipe Ramming (PR), requires thick wall, 48-inch-minimum steel casing;
- Pilot Tube Guided Pipe Ramming (PTGPR), requires thick wall, 48-inch-minimum steel casing;
- Horizontal Directional Drilling (HDD), direct installation of 36-inch-I.D. HDPE or fusible PVC pipe;
   and
- Microtunneling (MT), direct installation of 36-inch VCP, RCP or FRP pipe

Given the project's favorable soil and summertime groundwater conditions (i.e., firm ground behavior above groundwater) microtunneling, the must expensive of the trenchless construction methods, is not necessary. The most economic trenchless construction method for the project's undercrossings capable of gravity slope grade accuracy is PTGAB. Recent innovations in pilot tube guided boring methods (see Reference 2) allow for pilot tube installation in a wide variety of soil and even bedrock conditions and is not limited to "displaceable" soils any more. These pilot tube innovations can then be applied to the project undercrossings with very accurate line and grade control and less expense than microtunneling.

For all 48-inch steel casing installations, the overcut annular space (i.e. the space outside the casing) must be contact grouted immediately after the casing is fully installed. This is accomplished through grout ports installed in the casing, typically at the 10:00 o'clock and 2:00 o'clock positions at no more than 8 feet apart. Contact grouting will fill any remaining overcut annular space and any inadvertent overexcavation.

#### 3.1. UPRR Tracks Crossing, Las Animas Avenue

Union Pacific Railroad will require a steel casing for the 36-inch-I.D. gravity sewer at this undercrossing. The steel casing will be a minimum of 48 inches in diameter. The depth of cover over the steel casing at the railroad tracks is approximately 18 feet. The invert elevation on the steel casing is approximately El. 195 with gravity grade maintained (see Reference C). The following summarizes trenchless design and construction conclusions and recommendations for the UPRR undercrossing at Las Animas Avenue.

- Design groundwater elevation: El 182 based on summertime groundwater level in GW-1.
- Tunnelman's Ground Classification: firm.

- Trenchless installation method: Pilot Tube Guided Auger Boring (PTGAB), 48-inch steel casing
- Shaft construction: conventional stacked trench shield shoring with steel end plates, guide rail system or sheet piles.
- Dewatering: not required with summertime groundwater levels.
- Tunnel portal ground improvement: not required in firm ground as long as exit and entry portal sizes are kept to a minimum.
- Anticipated jacking load: assuming a 48-inch-O.D. steel casing and an installation length of 100 feet, required jacking loads should be nominal at approximately 130 tons without lubrication and 65 tons with lubrication, well within conventional jacking pad capacity with the given soil conditions.
- Anticipated systemic settlement: assuming 3/8-inch overcut banding on the 48-inch O.D. steel
  casing and no tunnel face loss, systemic settlement at the railroad tracks with 18 feet of cover
  separation is estimated at less than 0.50 inches under non-lubricated conditions and less than
  0.25 inches under lubricated conditions.
- Potential for obstructions: assuming a 48-inch steel casing, obstructions will be defined as objects
  greater than 16 inches in maximum dimension. While cobbles (3 inches to 12 inches in least
  dimension) are noted in borings DH-2A and DH-3A they are well below the pipe zone at 32 feet
  and below. The potential for natural obstructions is low.
- Special conditions: verify depths of fiber optics and other utilities in the railroad right-of-way paralleling the railroad tracks to confirm safe separation from the 48-inch steel casing.

### 3.2. Miller Slough Crossing, Murray Avenue

The Miller Slough undercrossing on Murray Avenue will have to pass beneath both the Miller Slough Channel bottom (El 194) and the Murray Avenue bridge footing foundations (El 187). Since the invert of the gravity pipe approaching Miller Slough is at El 187, there is a conflict with the bridge foundations. The sanitary sewer pipeline will have to be lowered at this undercrossing location creating a siphon under Miller Slough. The minimum separation between the bottom of the bridge footing foundations and new pipeline should be 6 feet if installed by PTGAB (invert at 177) and greater than 20 feet if installed by HDD (invert below El 163). The following summarizes trenchless design and construction conclusions and recommendations for the Miller Slough undercrossing on Murray Avenue.

- Design groundwater elevation: El 176 based on summertime groundwater level in GW-2.
- Tunnelman's Ground Classification: firm.
- Trenchless installation method: Pilot Tube Guided Auger Boring (PTGAB) with 48-inch steel casing or HDD with 36-inch-I.D. HDPE or fusible PVC pipe.

- Shaft construction (for PTGAB): conventional stacked trench shield shoring with steel end plates, guide rail system or sheet piles.
- Dewatering: not required for PTGAB with summertime groundwater levels, not required for wintertime or summertime groundwater levels for HDD.
- Tunnel portal ground improvement (for PTGAB): not required in firm ground as long as exit and entry portal sizes are kept to a minimum.
- Anticipated jacking load (for PTGAB): assuming a 48-inch steel casing and an installation length
  of 300 feet, and full lubrication, required jacking loads should be on the order of 200 tons, well
  within conventional jacking pad capacity with the given soil conditions.
- Anticipated systemic settlement (for PTGAB): assuming 3/8-inch overcut banding on the 48-inch O.D. steel casing and no tunnel face loss, systemic settlement at the bottom of the Murray Avenue bridge footings (6 feet of cover separation) is estimated at less than 0.80 inches under non-lubricated conditions and less than 0.40 inches under lubricated conditions, systemic ground surface settlement with 30 feet of cover is estimated at less than 0.25 inches under non-lubricated conditions and less than 0.12 inches under lubricated conditions.
- Potential for obstructions (for PTGAB): assuming a 48-inch steel casing, obstructions will be
  defined as objects greater than 16 inches in maximum dimension. There are no notations of
  cobbles (3 inches to 12 inches in least dimension) in borings DH-6A and DH-7A. The potential for
  natural obstructions is low.
- Special conditions: verify the location and remnant foundations of any predecessor bridge (pre-1986) to the current Murray Avenue bridge that may represent manmade obstructions to shaft construction or tunneling.
- HDD option: HDD installation of a 36-inch HDPE or fusible PVC pipe will require a bore hole on the order of 60 inches in diameter. The large annular overcut (approximately 150% of the 36-inch pipe O.D.) required for HDD installation presents significant systemic settlement concerns and risks with respect to the Murray Avenue bridge footing foundations. Even with 20 feet of separation, systemic settlement estimates at the bottom of the bridge foundation footings are on the order of 3 to 4 inches. For this reason, PTGAB with a 48-inch steel casing and minor annular overcut is preferred for passing beneath the bridge footings.

## 3.3. Leavesley Road (Caltrans 152) Crossing, Murray Avenue

The Leavesley Road (Caltrans 152) undercrossing on Murray Avenue will have a depth of cover of about 19 feet to the road surface. However, there is an existing 24-inch VCP sanitary sewer running east-west in Leavesley Road with an invert elevation of 186.36. The top of the new 36-inch sewer is at approximately El 185. Accounting for a 48-inch steel casing (required for PTGAB) the top of the casing will be at approximately El 185.5. Assuming the existing 24-inch VCP sanitary sewer pipeline wall thickness at 3 inches, the pipe O.D. of the barrel will be 30 inches. The O.D. at the 24-inch VCP pipe bells will be approximately 36 inches. Therefore, the bottom of the O.D. bell for the existing 24-inch VCP is about 6

inches lower than pipe invert or at about El 185.86. The top of a 48-inch casing will be at El 185.5 with only about 4 inches of separation to the bells of the 24-inch VCP sewer. This nominal separation presents several risk factors including:

- Direct hit and breaking the existing 24-inch sewer.
- Excavating into the existing 24-inch sewer bedding and if bedding is non-cohesive and exhibiting running ground behavior, inadvertent overexcavation of a mixed-face tunneling condition and undermining and breaking the existing 24-inch sewer.
- Close proximity systemic settlement causing joint deflection and damage to the existing 24-inch sewer.

For these reasons it is recommended that the new 36-inch sewer be lowered, creating a siphon, and creating a minimum of 3 feet of separation between existing 24-inch sewer bells and 48-inch casing. That will put the invert of the 48-inch casing at about El 179 or about 23 to 24 feet below street grade. The following summarizes trenchless design and construction conclusions and recommendations for the Leavesley Road (Caltrans 152) undercrossing on Murray Avenue:

- Design groundwater elevation: El 174 based on summertime groundwater level in GW-3.
- Tunnelman's Ground Classification: firm.
- Trenchless installation method: Pilot Tube Guided Auger Boring (PTGAB), 48-inch steel casing.
- Shaft construction: conventional stacked trench shield shoring with steel end plates or guide rail
  system (cobbles and high blow counts noted in DH-10A and DH-11A make sheet pile driving
  difficult with higher levels of ground vibration that may be damaging to utilities in Leavesley
  Road).
- Dewatering: not required with summertime groundwater levels.
- Tunnel portal ground improvement: not required in firm ground as long as exit and entry portal sizes are kept to a minimum.
- Anticipated jacking load: assuming a 48-inch-O.D. steel casing and an installation length of 300 feet, with full lubrication, required jacking loads should be on the order of 200 tons, well within conventional jacking pad capacity with the given soil conditions.
- Anticipated systemic settlement: assuming 3/8-inch overcut banding on the 48-inch O.D. steel
  casing and no tunnel face loss, systemic settlement at the 24-inch VCP sewer (3 feet of cover
  separation) is estimated at 1.20 inches under non-lubricated conditions and 0.60 inches under
  lubricated conditions, ground surface settlement with 19 feet of cover should be less than 0.50
  inches under non-lubricated conditions and less than 0.25 inches under lubricated conditions

- Potential for obstructions: assuming a 48-inch steel casing, obstructions will be defined as objects
  greater than 16 inches in maximum dimension. Cobbles (3" to 12" in least dimension) are noted
  in both borings DH-10A and DH 11A. The potential for natural obstructions is low to moderate.
- Special conditions: With only 3 feet of separation between the top of casing and existing 24-inch VCP sewer, the pipe bedding and pipe embedment materials around the existing 24-inch pipe should be permeation grouted to provide stability and enhanced strength in these soils prior to tunneling. In addition, a utility monitoring point (UMP, see Figure 2) should be installed on the 24-inch pipeline to monitor for settlement.

## 3.4. Miller Slough Crossing, Chestnut Street

The 36-inch gravity pipeline at the Miller Slough undercrossing has approximately 7 feet of cover below the channel bottom. The invert of the 36-inch gravity pipe at about El 178 is approximately 14 feet below top of creek banks and about 18 feet below ground surface at street grades. The following summarizes trenchless design and construction conclusions and recommendations for the Miller Slough undercrossing at Chestnut Street:

- Design groundwater elevation: El 160 based on summertime groundwater level in GW-4.
- Tunnelman's Ground Classification: firm.
- Trenchless installation method: Pilot Tube Guided Auger Boring (PTGAB), 48-inch steel casing.
- Shaft construction: conventional stacked trench shield shoring with steel end plates, guide rail system or sheet piles.
- Dewatering: not required with summertime groundwater levels.
- Tunnel portal ground improvement: not required in firm ground as long as exit and entry portal sizes are kept to a minimum.
- Anticipated jacking load: assuming a 48-inch-O.D. steel casing and an installation length of 100 feet, required jacking loads should be nominal at approximately 130 tons, well within conventional jacking pad capacity with the given soil conditions.
- Anticipated systemic settlement: assuming a 3/8-inch overcut banding on the 48-inch O.D. steel
  casing and no tunnel face loss, systemic settlement at the ground surface with 14 feet of cover is
  estimated at 0.50 inches under non-lubricated conditions and 0.25 inches under lubricated
  conditions.
- Potential for obstructions: assuming a 48-inch steel casing, obstructions will be defined as objects greater than 16 inches in maximum dimension. Cobbles (3" to 12" in least dimension) are not noted in either borings DH-16A and DH 17A. The potential for natural obstructions is low.

• Special conditions: Maintain a distance of at least 2 casing diameters (i.e. 8 feet) between the 48-inch casing and the nearby pedestrian bridge foundations over Miller Slough.

## 3.5. Highway 101 Crossing, East of 7<sup>th</sup> Street

Caltrans will require a steel casing for the 36-inch-I.D. gravity sewer at this location. The 36-inch gravity pipeline at the Highway 101 undercrossing has approximately 20 feet of cover below the highway surface. The invert of the 36-inch gravity sewer is at approximately El 173. The following summarizes trenchless design and construction conclusions and recommendations for the Highway 101 undercrossing east of 7<sup>th</sup> Street:

- Design groundwater elevation: El 158 based on summertime groundwater level in GW-5.
- Tunnelman's Ground Classification: firm.
- Trenchless installation method: Pilot Tube Guided Auger Boring (PTGAB), 48-inch steel casing.
- Shaft construction: conventional stacked trench shield shoring with steel end plates, guide rail
  system or sheet piles (sheet pile installation on the west side of Highway 101 may be difficult due
  to cobbles and high blow counts).
- Dewatering: not required with summertime groundwater levels.
- Tunnel portal ground improvement: not required in firm ground as long as exit and entry portal sizes are kept to a minimum.
- Anticipated jacking load: assuming a 48-inch-O.D. steel casing and an installation length of 300 feet, with full lubrication, required jacking loads should be on the order of 200 tons, well within conventional jacking pad capacity with the given soil conditions.
- Anticipated systemic settlement: assuming 3/8-inch overcut banding on the 48-inch O.D. steel
  casing and no tunnel face loss, systemic settlement at the highway surface with 20 feet of cover
  separation is estimated at less than 0.40 inches under non-lubricated conditions and less than
  0.20 inches under lubricated conditions.
- Potential for obstructions: assuming a 48-inch steel casing, obstructions will be defined as objects
  greater than 16 inches in maximum dimension. Cobbles (3" to 12" in least dimension) are noted
  in and near the tunnel zone in DH-20A but not in DH-21A. The potential for natural obstructions
  is low to moderate.
- Special conditions: Confirm with Caltrans that there are no abandoned facility foundations (e.g., historic highway signs) in conflict with the tunnel zone that may represent manmade obstructions to tunneling.

#### 4.0 LIMITATIONS

This Technical Memorandum has been prepared for the exclusive use of HydroScience Engineers in designing the City of Morgan Hill's Sewer Trunk South of Highland project as described herein. This Technical Memorandum may not be used for any other purpose or for any other project. This Technical Memorandum should only be read and used in conjunction with the project Geotechnical Investigation Report prepared by Geo-Logic Associates of Morgan Hill, California. In the event of delayed construction (i.e., more than one year after the date of this Technical Memorandum), and in recognition of on-going groundwater monitoring and currently evolving trenchless technologies, DCM Consulting, Inc. should be given the opportunity to update the trenchless engineering conclusions and recommendations made herein. Within the limitations of scope, schedule and budget, DCM Consulting, Inc.'s services have been provided in accordance with generally accepted practices in the fields of geotechnical and trenchless engineering as currently practiced in the San Francisco Bay Area at the time this technical memorandum was completed. No warranty or other conditions express or implied is made or intended in connection with the professional engineering services provided for this project.

#### 5.0 REFERENCES

- 1. ASCE Manuals and Reports on Engineering Practice No. 106, Horizontal Auger Boring Projects, Second Edition, Atalah, et al, 2017.
- 2. ASCE Manuals and Reports on Engineering Practice No. 133, Pilot Tube and other Guided Boring Methods, First Edition, 2017.
- 3. "Analysis and Mitigation of Settlement Risks in New Trenchless Installations", Wallin, Wallin and Bennett, NASTT No-Dig Conference Proceedings, 2008.
- 4. Murray Avenue Bridge at West Branch Llagas Creek, Gilroy, California, Santa Clara Valley Water District, 1986.

David C. Mathy

C.E. 28082

G.E. 569

## TUNNELMAN'S GROUND CLASSIFICATION FOR SOILS

| Classification                                                                                                                                                                      | 1                    | Behavior                                                                                                                                                                                                                                             | Typical Soil Types                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FIRM                                                                                                                                                                                |                      | Heading can be advanced without<br>initial support and final lining can be<br>constructed before ground starts to<br>move                                                                                                                            | Loess above water table; hard clay<br>marl, cemented sand and gravel<br>when not highly overstressed.                                                                                                                                                                                                    |  |  |  |  |
| RAVELING                                                                                                                                                                            | Slow Raveling        | Chucks or flakes of material begin to<br>drop out of the arch or walls<br>sometime after the ground has<br>been exposed due to loosening or to<br>overstress and "brittle" fracture<br>(ground separates or breaks along                             | Residual soils or sand with small<br>amounts of binder may be fast<br>raveling below the water table, slow<br>raveling above. Stiff fissured clays<br>may be slow or fast raveling<br>depending upon degree of                                                                                           |  |  |  |  |
|                                                                                                                                                                                     | Fast Raveling        | distinct surfaces, opposed to<br>squeezing ground). In fast raveling<br>ground, the process starts within a<br>few minutes; otherwise the ground<br>is slow raveling.                                                                                | overstress.                                                                                                                                                                                                                                                                                              |  |  |  |  |
| SQUEEZING                                                                                                                                                                           |                      | Ground squeezes or extrudes<br>plastically into tunnel, without<br>visible fracturing or loss of<br>continuity, and without perceptible<br>increase in water content. Ductile,<br>plastic yield and flow due to<br>overstress.                       | Ground with low frictional strength. Rate of squeeze depends on degree of overstress. Occurs at shallow to medium depth in clay of very soft to medium consistency. Stiff to hard clay under high cover may move in combination of raveling at excavation surface and squeezing at depth behind surface. |  |  |  |  |
| RUNNING                                                                                                                                                                             | Cohesive,<br>running | Granular materials without cohesion<br>are unstable at a slope greater than<br>their angle of repose (±30-35°).                                                                                                                                      | Clean, dry granular materials.<br>Apparent cohesion in moist sand or<br>weak cementation in any granular                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                     | Running              | When exposed at steeper slopes,<br>they run like granulated sugar or<br>dune sand until the slope flattens to<br>the angle of repose.                                                                                                                | soil may allow the material to stand<br>for brief period of raveling before it<br>breaks down and runs. Such<br>behavior is cohesive-running.                                                                                                                                                            |  |  |  |  |
| FLOWING                                                                                                                                                                             |                      | A mixture of soil and water flows into the tunnel like a viscous fluid. The material can enter the tunnel from the invert as well as from the face, crown, and walls, and can flow for great distances, completely filling the tunnel in some cases. | Below the water table in silt, sand, or gravel without enough clay content to give significant cohesion and plasticity. May also occur in highly sensitive clay when such material is disturbed.                                                                                                         |  |  |  |  |
| SWELLING                                                                                                                                                                            |                      | Ground absorbs water, increases in volume, and expands slowly into the tunnel.                                                                                                                                                                       | Highly preconsolidated clay with<br>plasticity index in excess of<br>about 30, generally containing<br>significant percentages of<br>montmorillonite.                                                                                                                                                    |  |  |  |  |
| REFERENCE: Heuer, R. E., 1974, Important ground parameters in soft ground tunneling, Subsurface exploration for underground excavation and heavy construction, New England College, |                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Henniker, New Hampshire, American Society of Civil Engineers, New York, P. 41-55.                                                                                                   |                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                          |  |  |  |  |

Figure 1 – Tunnelman's Ground Classification for Soils

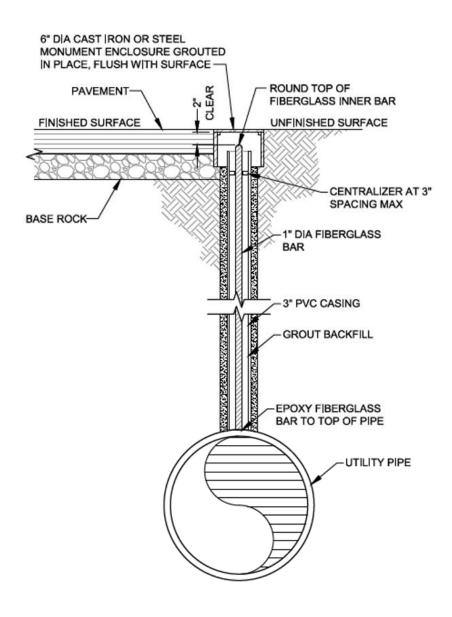



Figure 2 – Utility Monitoring Point (UMP)