

APPENDIX J

PRELIMINARY DRAINAGE REPORT

P:\HNT1901.02 - Yorba Linda\Draft ISMND\Draft ISMND_Yorba Linda Blvd Widening Improvements Project_9.18.20.docx «09/18/20»

This page intentionally left blank

200 E. Sandpointe Avenue Suite 200 Santa Ana, CA 92707

HNTB

www.hntb.com

Technical Memorandum

December 10, 2019	
James Enriquez, P.E.	

Yorba Linda Boulevard Widening Project

Preliminary Drainage Report

Project

Date:

Author:

Subject:

The proposed project is located on the east side of the City of Yorba Linda on the border with Anaheim Hills. The project consists of roadway widening improvements at select locations along Yorba Linda Boulevard between La Palma Avenue and Santa Ana Canyon Road in order to provide additional carrying capacity and alleviate traffic congestion. This section of Yorba Linda Boulevard is a heavily used corridor, includes an interchange with State Route 91 (SR-91) and provides the primary ingress/egress for the Savi Ranch retail center.

The purpose of this technical memorandum is to evaluate the effects of the roadway widening on existing drainage systems and provide preliminary recommendations for drainage improvements to mitigate any adverse effects. This memorandum also provides preliminary recommendations for storm water quality improvements that will be finalized in a project-specific Water Quality Management Plan (WQMP) prepared during the final design of the project.

Description

The project area is tributary to two existing storm drain systems; one owned and operated by the City of Anaheim and the other by Caltrans as shown in the Hydrology Map in Attachment 2 and described below:

- Drainage Areas A and B: The majority of the project area, Drainage Areas A and B, are tributary to a 60-inch RCP storm drain located in Pullman Avenue that is owned and operated by the City of Anaheim. The as-built plans for this storm drain system, including laterals, are included in Attachment 4 and include City of Anaheim Plan Nos. 14761 through 14773. Areas A and B drain to two existing catch basins located on Savi Ranch Parkway east of Pullman Avenue connected to Lines D-5 and D-6 of the system (Plan Nos. 14767 and 14769).
- **Drainage Area C:** Drainage Area C is tributary to existing catch basins located on the west side of Weir Canyon Rd immediately south of the SR-91 eastbound offramp. These catch basins are part of the drainage system constructed for the SR-91/Yorba Linda Boulevard interchange.

Calculation and Methodology

Hydrology

The hydrology analysis was performed in accordance with the Orange County Hydrology Manual (Published in 1986) and the Addendum No. 1 (Published in 1995). A 25-year Design Storm frequency was used because the existing storm drain system servicing the project area was designed for a 25-year Design Storm.

Hydrologic calculations were completed using the computer software HydroWIN (RATSCx 2016) Version 23.0 (Release date 07/01/2016). The software is distributed by Advanced Engineering Software (AES) at <u>www.advancedengineeringsoftware.com</u>. The use of this software is in accordance with the Orange County Hydrology Manual. The software defines subareas and routing paths by means of node numbers with designated data relating to elevation, path of travel distances, soil group, land use type, and conveyance type. The hydrology map and accompanying data used in the computer modeling are included in Attachment 2.

Hydraulics

Hydraulics calculations for the existing mainline storm drain on Pullman Street were completed using the computer software Water Surface and Pressure Gradient Hydraulic Analysis System Program (WSPGW) Version 14.08 distributed by CIVILDESIGN Corporation at <u>www.civildesign.com</u>. Hydraulic performance of catch basin connector pipes was checked using a Microsoft Excel spreadsheet developed by the Los Angeles County Department of Public Works for catch basins connected in series.

The size of catch basin opening was calculated using FlowMaster V8i (SELECTseries 1) distributed by Bentley Systems, Inc. at <u>www.bentley.com</u>. This software uses FHWA HEC 22 methodology.

Hydraulic calculations are included in Attachment 3.

Hydrologic and Hydraulic Results & Recommendations

Drainage Areas A and B

The proposed project results in a net increase in the runoff to the existing 60-inch RCP storm drain in Pullman Avenue. Most of the increased runoff is a result of the widening of Yorba Linda Boulevard between La Palma Avenue and Savi Ranch Parkway. This area adds 0.73 acres of impervious drainage area that currently falls directly into the Santa Ana River. The 25-year runoff to the two catch basins located on Savi Ranch Parkway east of Pullman Avenue increases from 19.1 cfs¹ to 26.0 cfs (See Table 1). The WSPGW hydraulic calculations in Attachment 3 show that the existing storm drain pipes have adequate capacity to convey the added flow and no improvements to the conduits are recommended. The water surface in the 60-inch mainline increases by a maximum of 0.064 ft. The water surface in the connector pipes for these two catch basins, Lines D-5 and D-6 (Plan Nos. 14767 and 14769), also increases by an insignificant amount and the "V" Depth calculation sheets show that the catch basins and connector pipes have over 1 ft of reserve hydraulic head at peak flow despite an increase of 0.89 ft of required head resulting from the increased flow rate. Such a minimal impact to hydraulic performance keeps the design of the storm drain well within City and County design standards.

Table 2 shows the summary of the catch basin sizing calculations included in Attachment 3. The catch basin on the north side of Savi Ranch Parkway serves Drainage Area A. Runoff from Drainage Area A increases from 6.4 cfs to 13.36 cfs and requires replacement of the existing 6-ft wide catch basin with a 17-ft wide catch basin to maintain the existing depth and spread on the street. The catch basin on the south side of the street serves Drainage Area B. The flow from Drainage Area B decreases slightly and the 6-ft wide catch basin will remain in place.

Drainage Area C

The proposed project results in an insignificant increase (0.02 cfs) in the runoff to the existing catch basins on Weir Canyon Road resulting from a slight increase in impervious area (0.09 acres). No drainage improvements are recommended at this location.

¹ 25-year Design Storm flow rate shown on City of Anaheim Plan No. 14769. Existing condition hydrology was not modeled because the plan shows the existing design capacity.

Drainage	Exis	ting	Prop	osed	Notes
Area	Total Area (Acre)	25-year Runoff (CFS)	Total Area (Acres)	25-year Runoff (CFS)	
Area A		6.4	5.87	13.36	Existing condition not modeled since as-built plans show design flow rate.
Area B		12.7	5.23	12.64	Existing condition not modeled since as-built plans show design flow rate.
Area C	1.5	5.41	1.5	5.43	Increased flow due to negligible increase in impervious area.

TABLE 1: HYDROLOGY RESULTS (25-Year Design Storm)

TABLE 2: CATCH BASIN SIZING RESULTS (25-Year Design Storm)

Drainage	E>	cisting	Pr	oposed	Notes
Area	25-year Runoff (CFS)	Catch Basin Width (FT)	25-year Runoff (CFS)	Catch Basin Width (FT)	
Area A	6.4	6.0	13.36	17.0	
Area B	12.7	6.0	12.64	6.0	
Area C					Two existing grating catch basins to remain due to insignificant flow increase of 0.02 cfs.

Water Quality Management Plan Recommendations

The project is located within the Santa Ana Region in the North Orange County Permit Area. The project is classified as a Priority Project per Table 7.II-2 of Section 7.II-1.2 of the Model WQMP because it consists of the construction of more than 5,000 SF of roadway surface. The project also adds 52,811 SF of impervious area (2,371 SF for S/E corner of Yorba Linda Blvd & Savi Ranch Pkwy; 3,920 SF for N/W corner of Yorba Linda Blvd & Santa Ana Cyn Rd; and 46,520 for the east side of Yorba Linda Blvd).

For public agency projects classified as Priority Projects, Section 7.II-1.5 of the Model WQMP requires implementation of United States Environmental Protection Agency (USEPA) guidance, "Managing Wet Weather with Green Infrastructure: Green Streets" Manual (Green Streets) in a manner consistent with the maximum extent practicable (MEP) standard. Table 3 lists the types of infrastructure recommended by the Green Streets Manual and the applicability to this project.

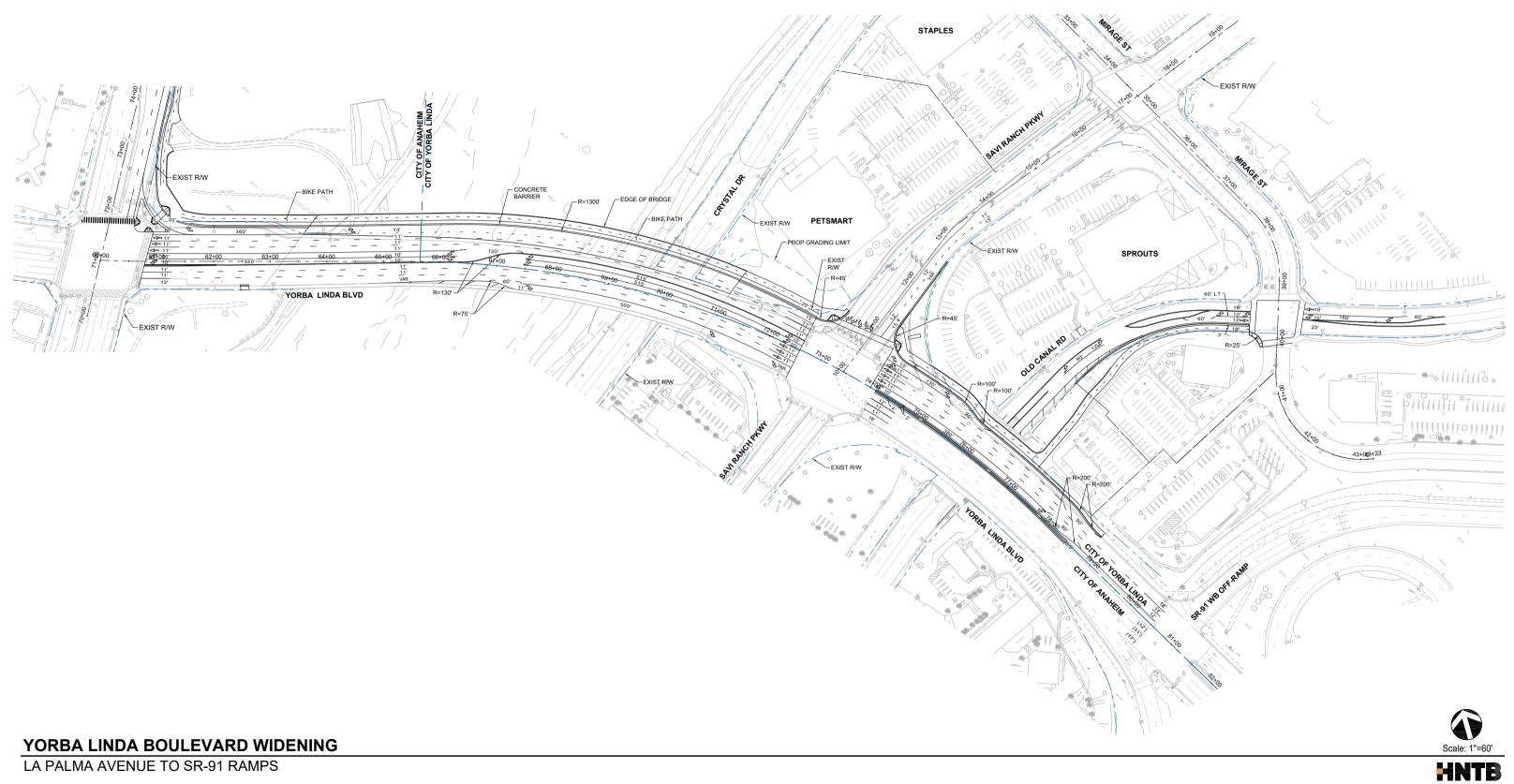
As indicated in Table 3, the width of the proposed street widening has been limited to the minimum width required to achieve the desired traffic volume capacity enhancements and pedestrian and bike improvements. Permeable pavement is not appropriate for the volume and weight of vehicular traffic traveling on these roadways. The recommended storm water treatment is a combination of landscaped planters and biofiltration vaults.

Filterra Vaults were considered but did not provide the required treatment volume due to the configuration of the drainage areas. Since the existing underground drainage systems in the area do not extend into the project area, surface drainage for the entire project area (Drainage Areas A and B) is conveyed in the street gutter to an existing system on Savi Ranch Parkway just east of Pullman Avenue. Drainage Area C is also conveyed in the gutter to existing catch basins on Weir Canyon Road just south of the eastbound SR-91

offramp. By the time runoff is caught by the underground storm drain system, the amount of accumulated runoff exceeds the treatment volume capacity of Filterra Vaults.

Therefore, Modular Wetlands System Linear vaults (manufactured by BioClean) are recommended for this project. These are larger biofiltration vaults designed for flow-based treatment with the capacity to treat larger areas. The recommended locations and approximate sizes of the vaults are shown in the Hydrology Map in Attachment 2. The product information for these vaults is included in Attachment 5.

The vaults recommended for Drainage Areas A and B are located on Savi Ranch Parkway between Pullman Avenue and Yorba Linda Boulevard. Right-of-way acquisition will be required for these vaults since the existing sidewalk is 8 feet wide and the proposed vaults are 9 feet wide. Right-of-way acquisition will also need to include additional width to provide the desired sidewalk width around the back of the planted vault. It shall also be noted that these four vaults are located within the City of Anaheim. The right-of-way to be acquired for the widening of Weir Canyon Road north of Santa Ana Canyon Road will also need to include right-of-way for the proposed vault.


The final design for the project will include the preparation of a final Water Quality Management Plan and refinement of the design of the biofiltration vaults.

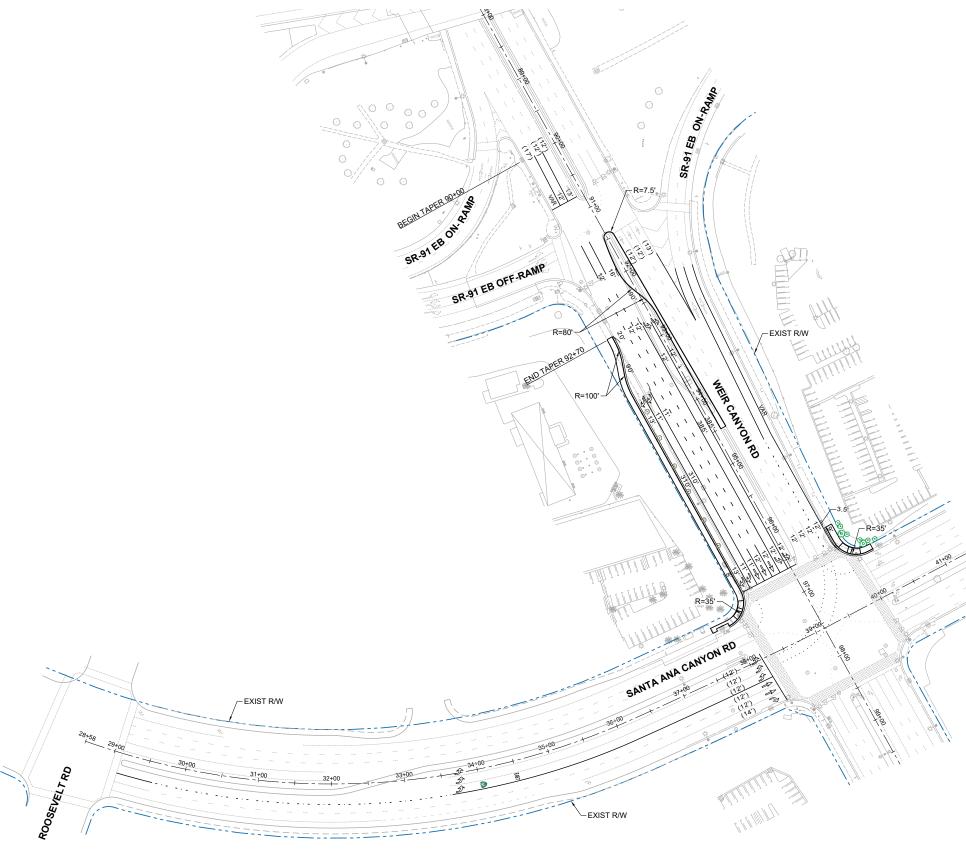
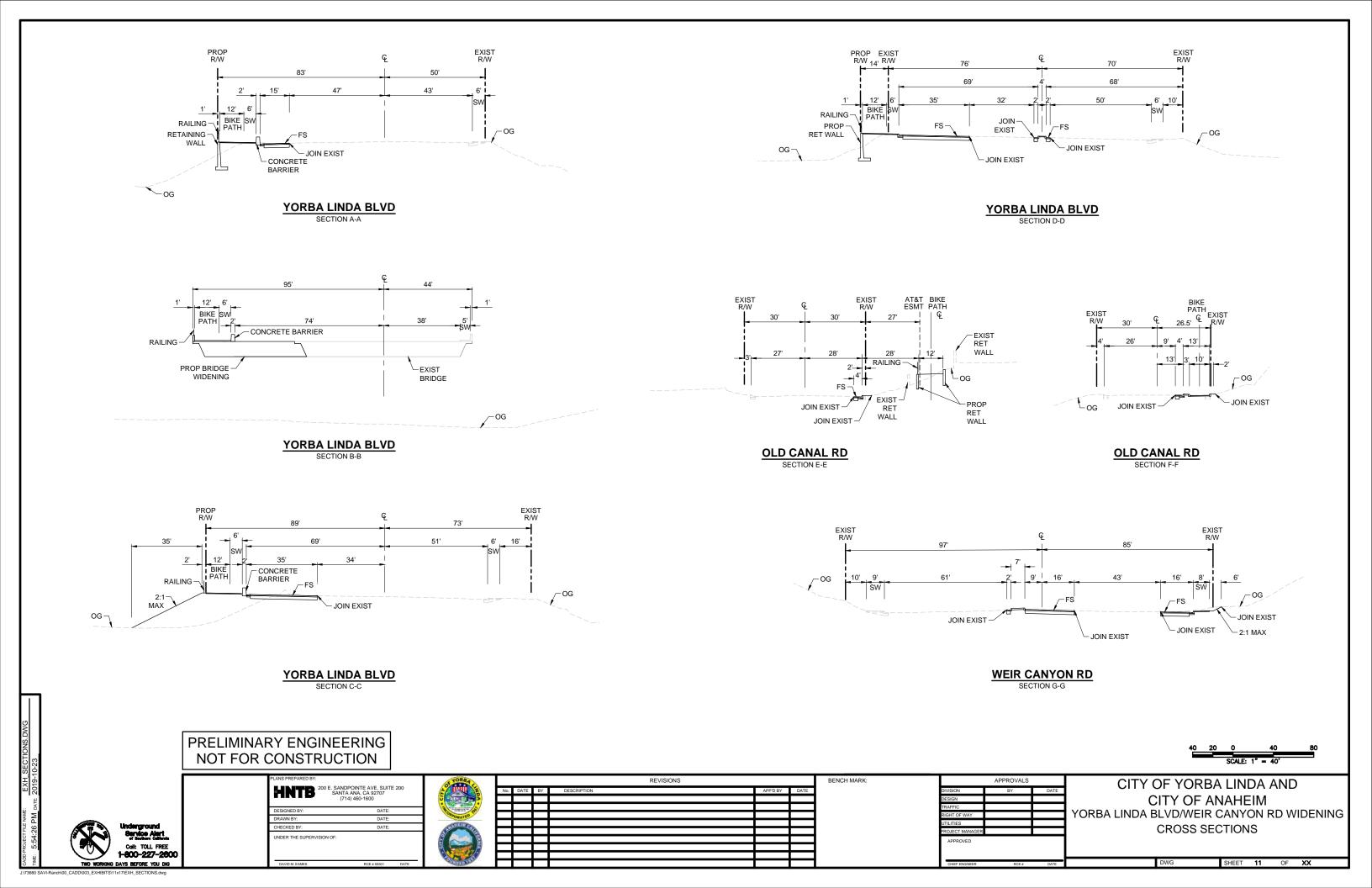

Infrastructure Recommended in Green Streets Manual	Implementation Notes
Alternative Street Design (Street Widths)	The purpose of the project is to widen existing roadways. The amount of widening recommended is limited to the minimum width that will achieve the required volume capacity enhancements and pedestrian/bike improvements.
Bioretention Curb Extensions and Sidewalk Planters	The existing and proposed street configuration do not accommodate curb extensions. Modular Wetlands System Linear vaults are recommended within the sidewalk areas at select locations and include landscaping (See Hydrology Map in Attachment 2 for proposed locations).
Permeable Pavement	Permeable pavement is not appropriate for the volume and weight of vehicular traffic on these roadways.
Sidewalk Trees and Tree Boxes	Modular Wetlands System Linear vaults are recommended within the sidewalk areas at select locations and include landscaping (See Hydrology Map in Attachment 2 for proposed locations).

TABLE 3: GREEN STREETS INFRASTRUCTURE MATRIX

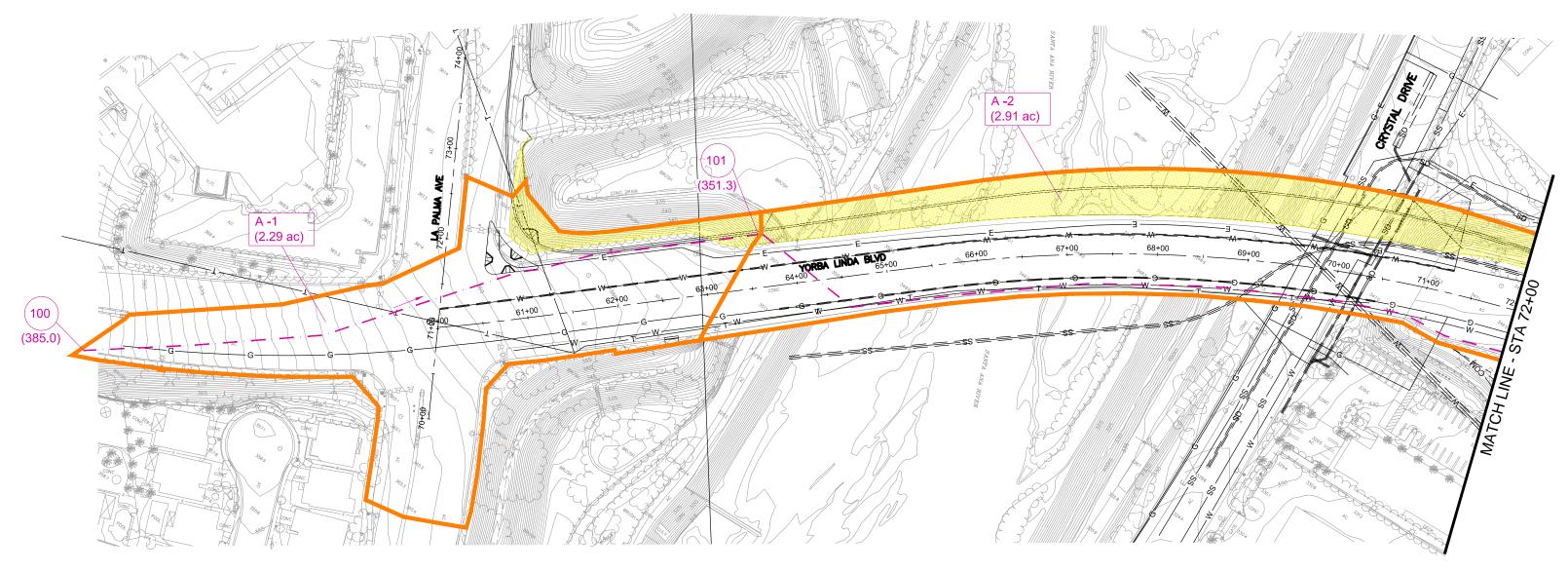
ATTACHMENT 1

PROPOSED IMPROVEMENTS EXHIBITS



WEIR CANYON ROAD WIDENING

SANTA ANA CANYON ROAD TO SR-91 RAMPS



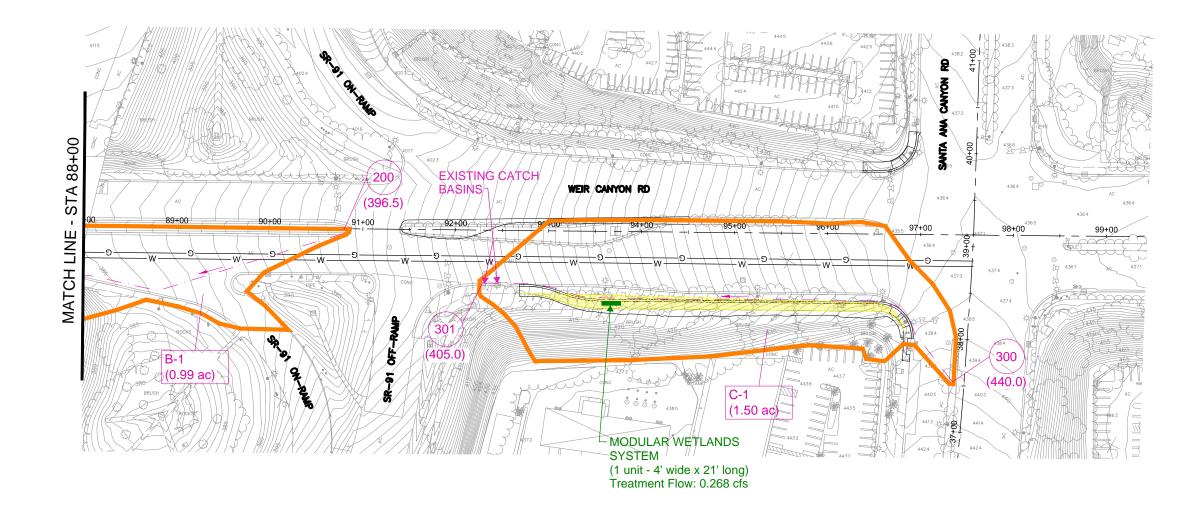
ATTACHMENT 2

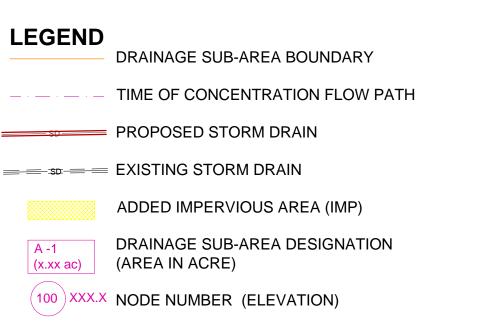
HYDROLOGIC MAPS AND CALCULATIONS


LEGEND	DRAINAGE SUB-AREA BOUNDARY
· · ·	TIME OF CONCENTRATION FLOW PATH
<u>\$p</u>	PROPOSED STORM DRAIN
<u>sp</u>	EXISTING STORM DRAIN
	ADDED IMPERVIOUS AREA (IMP)
A -1 (x.xx ac)	DRAINAGE SUB-AREA DESIGNATION (AREA IN ACRE)
100 XXX.X	NODE NUMBER (ELEVATION)

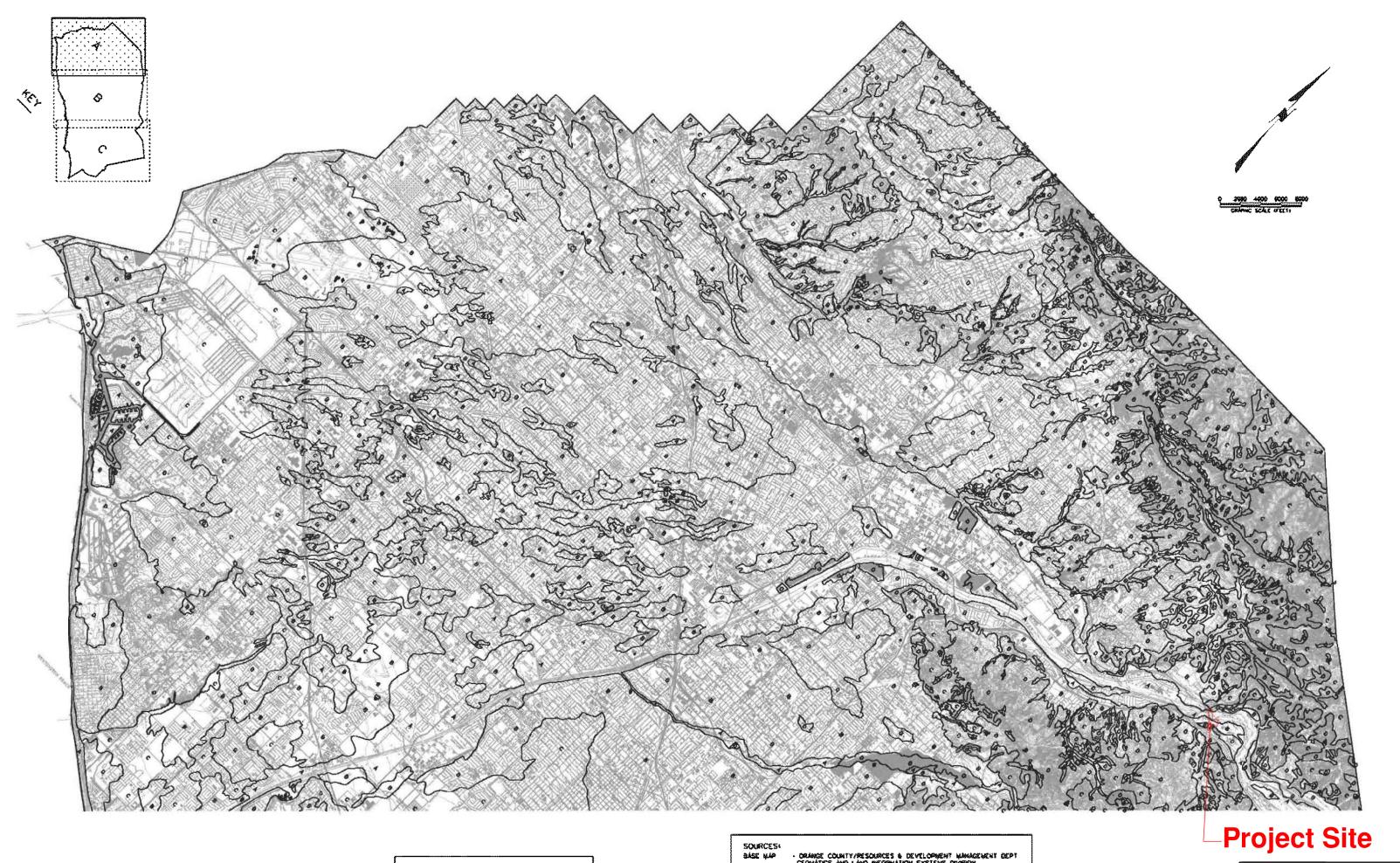
YORBA LINDA BOULEVARD/WEIR CANYON ROAD WIDENING

HYDROLOGY MAP EXHIBIT - PROPOSED CONDITION


YORBA LINDA BOULEVARD/WEIR CANYON ROAD WIDENING


HYDROLOGY MAP EXHIBIT - PROPOSED CONDITION

GEND	
	DRAINAGE SUB-AREA BOUNDARY
· ·	TIME OF CONCENTRATION FLOW PATH
= \$D	PROPOSED STORM DRAIN
	EXISTING STORM DRAIN
	ADDED IMPERVIOUS AREA (IMP)
A -1 x.xx ac)	DRAINAGE SUB-AREA DESIGNATION (AREA IN ACRE)
100 XXX.X	NODE NUMBER (ELEVATION)



YORBA LINDA BOULEVARD/WEIR CANYON ROAD WIDENING

HYDROLOGY MAP EXHIBIT - PROPOSED CONDITION

ORANGE	COUNTI	٢
HYDROLOG	Y MANUAL	

E.E.G.E.ND A 8 C 0 HYDROLOGIC SOL CROUPS ------ HYDROLOGIC SOL CROUP BOLHOARY

 ORIANCE COUNTY/RESOURCES & DEVELOPMENT WARACEMENT BEPT DEQUATION AND LAND BEGRIVATION SYSTEMS DIVISION
SOU, SURVEY OF ORÁNGE COUNTY AND WESTENN PÁRT OF RAVERSEE COUNTY, CALFORDA, USDÁ, SOU, CONSERVATION SERVICE, 1978. son groups

HYDROLOGIC CLÁSSIFICÁTION OF SOLS ORÂNGE COUNTY, CÁLIFORNIA PLĂTE A

							Hydrolog	ıy Data		
					١	orba Line		rd Widening Proj	ect	
Sub	Area		Startin	g Node	Endin	g Node	(Soil Ty Distance		Use Type (Ac)	
No.	Area (Ac)	Process Code	No.	Elev (ft)	No.	Elev (ft)	between nodes (ft)	a _p	a _i	Comments
A-1	2.29		100.0	385.0	101.0	351.3	761.0	0.00	2.29	Initial Subarea
A-2	2.91		101.0	351.3	102.0	345.5	890.0	0.00	2.91	Street Flow Analysis Thru Subarea
A-3	0.67		102.0	345.5	103.0	326.5	545.0	0.00	0.67	Street Flow Analysis Thru Subarea
B-1	0.99		200.0	396.5	201.0	374.8	643.0	0.00	0.99	Initial Subarea
B-2	2.28		201.0	374.8	202.0	348.0	758.0	0.00	2.28	Street Flow Analysis Thru Subarea
B-3	1.96		202.0	348.0	203.0	326.5	825.0	0.00	1.96	Street Flow Analysis Thru Subarea
C-1	1.50		300.0	440.0	301.0	405.0	552.0	0.58	0.92	Initial Subarea (Existing)
C-1	1.50		300.0	440.0	301.0	405.0	552.0	0.49	1.01	Initial Subarea (Proposed)
TOTAL:	14.10							1.07	13.03	

YORBAEX3.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1436 Analysis prepared by: * HNTB Corporation * Yorba Linda Blvd Widening Project * Drainage Area C (Existing) FILE NAME: YORBAEX3.DAT TIME/DATE OF STUDY: 11:30 12/12/2019 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ===== _____ ____ 30.0 20.0 0.018/0.018/0.020 2.00 0.0313 0.167 0.0150 1 0.67 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

YORBAEX3.RES 300.00 TO NODE 301.00 IS CODE = 21 FLOW PROCESS FROM NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 552.00 ELEVATION DATA: UPSTREAM(FEET) = 440.00 DOWNSTREAM(FEET) = 405.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.595 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.124 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Τc GROUP (ACRES) (INCH/HR) LAND USE (DECIMAL) CN (MIN.) 0.58 0.850 PUBLIC PARK В 0.30 56 10.48 В 0.92 0.30 0.100 56 6.60 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.390 SUBAREA RUNOFF(CFS) = 5.41 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 1.50 5.41 _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) 1.5 TC(MIN.) =6.60 = EFFECTIVE AREA(ACRES) = 1.50 AREA-AVERAGED Fm(INCH/HR)= 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.390 PEAK FLOW RATE(CFS) 5.41 = _____ _____ END OF RATIONAL METHOD ANALYSIS

♠

YORBAPR1.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1436 Analysis prepared by: * HNTB Corporation * Yorba Linda Lbd Widening Project * Drainage Area A (Proposed) FILE NAME: YORBAPR1.DAT TIME/DATE OF STUDY: 11:31 12/12/2019 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ===== _____ ____ 30.0 20.0 0.018/0.018/0.020 2.00 0.0313 0.167 0.0150 1 0.67 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

YORBAPR1.RES FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 761.00 ELEVATION DATA: UPSTREAM(FEET) = 385.00 DOWNSTREAM(FEET) = 351.30 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.057 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.682 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL В 2.29 0.30 0.100 56 8.06 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 7.53TOTAL AREA(ACRES) = 2.29 PEAK FLOW RATE(CFS) = 7.53 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED)<<<<<</pre> UPSTREAM ELEVATION(FEET) = 351.30 DOWNSTREAM ELEVATION(FEET) = 345.50 STREET LENGTH(FEET) = 890.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.09 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.54HALFSTREET FLOOD WIDTH(FEET) = 21.05 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.67 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.44 STREET FLOW TRAVEL TIME(MIN.) = 5.55 Tc(MIN.) = 13.61 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.737

```
Page 2
```

YORBAPR1.RES SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL В 2.91 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100SUBAREA AREA(ACRES) = 2.91 SUBAREA RUNOFF(CFS) = 7.09 EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.2PEAK FLOW RATE(CFS) = 12.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.23 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 1.54 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1651.00 FEET. FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED)<<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 345.50 DOWNSTREAM ELEVATION(FEET) = 326.50 STREET LENGTH(FEET) = 545.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45HALFSTREET FLOOD WIDTH(FEET) = 16.21 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.39 STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 15.33 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.558 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap (INCH/HR) LAND USE GROUP (ACRES) (DECIMAL) CN COMMERCIAL В 0.67 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30

YORBAPR1.RES SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.67SUBAREA RUNOFF(CFS) = 1.52 EFFECTIVE AREA(ACRES) = 5.87 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.9 PEAK FLOW RATE(CFS) = 13.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.21 FLOW VELOCITY(FEET/SEC.) = 5.26 DEPTH*VELOCITY(FT*FT/SEC.) = 2.38 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 2196.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.9 TC(MIN.) = 15.33 EFFECTIVE AREA(ACRES) = 5.87 AREA-AVERAGED Fm(INCH/HR)= 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.100 PEAK FLOW RATE(CFS) = 13.36______ _____ END OF RATIONAL METHOD ANALYSIS

♠

YORBAPR2.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1436 Analysis prepared by: * HNTB Corporation * Yorba Linda Blvd Widening Project * Drainage Area B (Proposed) FILE NAME: YORBAPR2.DAT TIME/DATE OF STUDY: 11:32 12/12/2019 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ===== _____ ____ 30.0 20.0 0.018/0.018/0.020 2.00 0.0313 0.167 0.0150 1 0.67 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

YORBAPR2.RES FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 643.00 ELEVATION DATA: UPSTREAM(FEET) = 396.50 DOWNSTREAM(FEET) = 374.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.953 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.709 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc GROUP (ACRES) (INCH/HR) LAND USE (DECIMAL) CN (MIN.) 0.99 0.30 56 7.95 COMMERCIAL В 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = 3.28TOTAL AREA(ACRES) = 0.99 PEAK FLOW RATE(CFS) = 3.28 201.00 TO NODE FLOW PROCESS FROM NODE 202.00 IS CODE = 62 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED)<<<<<</pre> UPSTREAM ELEVATION(FEET) = 374.80 DOWNSTREAM ELEVATION(FEET) = 348.00 STREET LENGTH(FEET) = 758.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.46 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37HALFSTREET FLOOD WIDTH(FEET) = 11.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.47 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.67 STREET FLOW TRAVEL TIME(MIN.) = 2.82 Tc(MIN.) = 10.78 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.123

```
Page 2
```

YORBAPR2.RES SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL В 2.28 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100SUBAREA AREA(ACRES) = 2.28SUBAREA RUNOFF(CFS) = 6.35 EFFECTIVE AREA(ACRES) = 3.27 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 3.3 PEAK FLOW RATE(CFS) = 9.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71 FLOW VELOCITY(FEET/SEC.) = 4.86 DEPTH*VELOCITY(FT*FT/SEC.) = 1.98 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 1401.00 FEET. FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 62_____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STREET TABLE SECTION # 1 USED)<<<<<<</pre> _____ UPSTREAM ELEVATION(FEET) = 348.00 DOWNSTREAM ELEVATION(FEET) = 326.50 STREET LENGTH(FEET) = 825.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.47 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.45HALFSTREET FLOOD WIDTH(FEET) = 16.13 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.56 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.05 STREET FLOW TRAVEL TIME(MIN.) = 3.02 Tc(MIN.) = 13.80 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.716 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap (INCH/HR) LAND USE GROUP (ACRES) (DECIMAL) CN COMMERCIAL В 1.96 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30

YORBAPR2.RES SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 1.96 SUBAREA RUNOFF(CFS) = 4.74EFFECTIVE AREA(ACRES) = 5.23 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 5.2 PEAK FLOW RATE(CFS) = 12.64 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.84 FLOW VELOCITY(FEET/SEC.) = 4.64 DEPTH*VELOCITY(FT*FT/SEC.) = 2.15 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 2226.00 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.2 TC(MIN.) = 13.80 EFFECTIVE AREA(ACRES) = 5.23 AREA-AVERAGED Fm(INCH/HR)= 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.100 PEAK FLOW RATE(CFS) = 12.64 _____ _____ END OF RATIONAL METHOD ANALYSIS

♠

YORBAPR3.RES

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1436 Analysis prepared by: * HNTB Corporation * Yorba Linda Blvd Widening Project * Drainage Area C (Proposed) FILE NAME: YORBAPR3.DAT TIME/DATE OF STUDY: 11:33 12/12/2019 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY (FT) (FT) NO. (FT) (FT) (FT) (FT) (n) === ===== _____ ____ 30.0 20.0 0.018/0.018/0.020 2.00 0.0313 0.167 0.0150 1 0.67 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

YORBAPR3.RES 300.00 TO NODE 301.00 IS CODE = 21 FLOW PROCESS FROM NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 552.00 ELEVATION DATA: UPSTREAM(FEET) = 440.00 DOWNSTREAM(FEET) = 405.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.595 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.124 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Τc GROUP (ACRES) (INCH/HR) LAND USE (DECIMAL) CN (MIN.) 0.49 0.850 PUBLIC PARK В 0.30 56 10.48 В 1.01 0.30 0.100 56 6.60 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.345 SUBAREA RUNOFF(CFS) = 5.43 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 1.50 5.43 _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.5 TC(MIN.) =6.60 EFFECTIVE AREA(ACRES) = 1.50 AREA-AVERAGED Fm(INCH/HR)= 0.10 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.345 PEAK FLOW RATE(CFS) 5.43 = _____ _____ END OF RATIONAL METHOD ANALYSIS

♠

ATTACHMENT 3

HYDRAULIC CALCULATIONS

T1 Y	ORBA LIND	A PULLMAN	ST	DRA	IN (Q=2	25YR) -	ASBUILT	PLANS			
T2 J	J. ENRIQUE	Z									
Т3											
SO	2910.00	312.00	1					321.80			
R	2910.00	312.00	1		.013						
JX	2985.75	312.09	1	2	.013	16.90		312.25	45.00		
R	2995.00	312.10	1		.013					1	
R	3022.69	312.13	1		.013				64.44		
JX	3022.69	312.13	1	2	.013	14.30		312.25	45.00		
R	3027.35	312.14	1		.013					1	
R	3037.96	312.15	1		.013						
JX	3095.08	312.22	1	2	.013	9.00		314.02	90.00		
JX	3257.96	312.42	1	3	.013	10.90		313.00	45.00		
R	3267.11	312.44	1		.013					1	
R	3595.10	313.41	1		.013						
R	3625.00	313.47	1		.013				38.32		
JX	3625.00	313.47	1	4	.013	20.40		314.99	45.00		
R	3670.35	313.54	1		.013				57.49		
R	3750.00	313.72	1		.013						
R	3769.90	313.76	1		.013						
R	3781.04	313.78	1		.013					1	
SH	3781.04	313.78	1		.013						
CD	1 4		5	.00							
CD	2 4		3	.00							
CD	3 4		2	.75							
CD	4 4		2	.00							
Q		24.800 1	.0								

W S P G W - EDIT LISTING - Version 14.10Date:12-11-2019Time:12:57:53WATER SURFACE PROFILE - CHANNEL DEFINITION LISTINGPAGE1 FILE: YORBAEX.WSW CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 0 5.000 CD 2 4 0 3.000 CD 3 4 0 2.750 CD 4 4 0 2.000 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS -YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - ASBUILT PLANS HEADING LINE NO 2 IS -J. ENRIQUEZ HEADING LINE NO 3 IS -

						SPG		TNG					PAGE NO	2
ELEMENT NO	1 79 7	WAT SYSTEM OUT	ER SURFACE	PROFILE *	- ELEM	ENT CAR	D LISI	ING						
EDEMENT NO	TIDY	U/S DATA	STATION	INVERT	SECT					W	S ELEV			
		0,0 Dilli	2910.000	312.000	1						321.800			
ELEMENT NO	2 IS A	REACH	*	*	_						521.000			
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			2910.000	312.000	1			.013			.000	.000	.000	0
ELEMENT NO	3 IS A	JUNCTION	*	*	*	*			*		*		*	
		U/S DATA	STATION	INVERT	SECT	LAT-1 L	AT-2	Ν	Q3	Q4	INVERT-3 IN	IVERT-4 PH	I 3 PHI 4	
			2985.750	312.090	1	2	0	.013	16.900	.000	312.250	.045	.000	.000
											RADIUS	ANGLE		
											.000	.000		
ELEMENT NO	4 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		DEACU	2995.000 *	312.100	⊥ *			.013			.000	.000	.000	1
ELEMENT NO	5 IS A	. REACH U/S DATA		INVERT	SECT			NT				ANGLE	ANG PT	MAN H
		U/S DATA	STATION 3022.690	312.130	SECI 1			N .013			RADIUS 24.620	ANGLE 64.440	ANG PI	MAN H 0
ELEMENT NO	6 TG A	JUNCTION	\$022.090	\$12.130	*	*		.013	*		24.020	04.440	*	0
	0 10 A	U/S DATA	STATION	INVERT	SECT	LAT-1 L	ΔͲ-2	Ν	03	04	INVERT-3 IN	WERT-4 PH	т з рнт 4	
		0,0 Dilli	3022.690	312.130	1	2	0	.013	14.300	.000	312.250	.045	.000	.000
											RADIUS	ANGLE		
											.000	.000		
THE ABOVE ELE	EMENT CO	NTAINED AN	INVERT ELE	V WHICH W	AS NOT	GREATE	R THAN	THE	PREVIOUS I	NVERT ELEV	/ -WARNING			
THE ABOVE ELE	EMENT CO	NTAINED AN	INVERT ELE	V WHICH W	AS NOT	GREATE	R THAN	THE	PREVIOUS I	NVERT ELEV	/ -WARNING			
ELEMENT NO	7 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3027.350	312.140	1			.013			.000	.000	.000	1
ELEMENT NO	8 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
		TIDIOTION	3037.960 *	312.150	1 .			.013	*		.000	.000	.000	0
ELEMENT NO	9 IS A	JUNCTION U/S DATA	* STATION	INVERT	SECT	LAT-1 L	λ Π Ο	N		04	* INVERT-3 IN	ייים א שרושיט	* I 3 PHI 4	
		U/S DAIA	3095.080	312.220	SECT 1	LAI-I L 2	A1-2 0	.013	Q3 9.000	.000	314.020	.090	.000	.000
			2022.080	512.220	Ŧ	2	U	.013	9.000	.000	RADIUS	ANGLE	.000	.000
											.000	.000		

		141 75 FT	ER SURFACE	DROFTIE		S P G		PTNC					PAGE NO	3
ELEMENT NO	10 TS A	JUNCTION	ER SURFACE	FROFILE *	- 61994 *	ENI CA	KD LISI	LING	*		*		*	
	10 10 11	U/S DATA	STATION	INVERT	SECT 1	LAT-1	LAT-2	Ν	Q3	04	TNVERT-3 TI	NVERT-4 PH	ТЗРНТ4	
		0,0 2	3257.960	312.420	1	3	0	.013	10.900	.00		.045 ANGLE .000	.000	.000
ELEMENT NO	11 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3267.110	312.440	1			.013			.000	.000	.000	1
ELEMENT NO	12 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3595.100	313.410	1			.013			.000	.000	.000	0
ELEMENT NO	13 IS A		*	*										
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3625.000	313.470	1			.013			44.706	38.320	.000	0
ELEMENT NO	14 IS A		*	*	*	*			*		*		*	
		U/S DATA	STATION	INVERT		LAT-1		N	Q3	Q4		NVERT-4 PH		
			3625.000	313.470	1	4	0	.013	20.400	.00		.045	.000	.000
											RADIUS	ANGLE		
THE ABOVE EL						CDDAM					.000	.000		
THE ABOVE EL														
ELEMENT NO			INVERI ELE	V WHICH W.	AS NUI *	GREAT	EK IHAN	N IRE	PREVIOUS 1	NVERI EL.	SV -WARNING			
EDEMENT NO	13 13 A	U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		075 DAIA	3670.350	313.540	1			.013			45.197	57.490	.000	0
ELEMENT NO	16 TS A	REACH	*	*	*			.010			13.197	57.150	.000	0
	10 10 11	U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		-,	3750.000	313.720	1			.013			.000	.000	.000	0
ELEMENT NO	17 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3769.900	313.760	1			.013			.000	.000	.000	0
ELEMENT NO	18 IS A	REACH	*	*										
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3781.040	313.780	1			.013			.000	.000	.000	1
ELEMENT NO	19 IS A				*				*					
		U/S DATA	STATION	INVERT	SECT					1	V S ELEV			
			3781.040	313.780	1						.000			

W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7244 WATER SURFACE PROFILE LISTING

YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - ASBUILT PLANS

J. ENRIQUEZ

********	*******	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	******	******	*******	******	******	* * * * * * * * *	******	* * * * * * * * *	*****	* * * * * *	***
Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vel (FPS)	Vel Head	Energy Grd.El.	Super Elev	Critical	Flow Top Width	Height/ DiaFT		ZL	No Wt Prs/F	
_ L/Elem *******	 Ch Slope *******	-	-	******	******	SF Ave	 HF *******	 SE Dpth ******	 Froude N *******	 Norm Dp ******	 "N" ******	 X-Fall	 ZR ****	 Type *****	
2910.000	312.000	9.800	321.800	96.30	4.90	.37	322.17	 .00 	 2.79 	.00 	 5.000 	.000 .000	.00	0	.0
JUNCT STR	.0012	1	1	1		.0011	.09	9.80	.00	1	.013	.00	.00	PIPE	
2985.750 -	312.090	9.972	322.062	79.40	4.04	.25	322.32	.00 	2.52	.00 	5.000	.000 	.00	0 -	.0
9.250	.0011	1	I	I		.0009	.01	9.97	.00	3.80	.013	.00	.00	PIPE	
2995.000	312.100	9.984		79.40	4.04	.25	322.34	.00	2.52	.00	5.000	.000	.00	0	.0
- 27.690	.0011				 	.0009	.03	 .00	 .00	 3.80 	 .013	 .00	.00	- PIPE	
3022.690	312.130	10.022	322.152	79.40	4.04	.25	322.41	.00	2.52	.00	5.000	.000	.00	0	.0
JUNCT STR	.0000	 			 	.0008	.00	10.02	.00	 	.013	.00	.00	PIPE	
3022.690	312.130	 10.143 	322.273	65.10	3.32	.17	322.44	.00 .00	 2.27 	.00 	5.000	.000 	.00	0	.0
4.660	.0021	1	I			.0006	.00	10.14	.00	2.62	.013	.00		PIPE	
3027.350	312.140	10.144	322.284	65.10	3.32	.17	322.46	.00	2.27	.00	5.000	.000 	.00	0	.0
10.610	.0009				 	.0006	.01	10.14	.00	 3.43	.013	.00		PIPE	
3037.960	312.150	10.141	322.291	65.10	3.32	.17	322.46	.00 	2.27	.00	5.000	.000	.00	0	.0
JUNCT STR	.0012					.0005	.03	10.14	.00		.013	.00	.00	- PIPE	
3095.080	312.220	10.172	322.392	56.10	2.86	.13	322.52	.00	2.10	.00	5.000	.000 	.00	0	.0
JUNCT STR	.0012	 			 	.0004	.06	10.17	.00		.013	.00		- PIPE	
3257.960	312.420	10.091	322.511	45.20	2.30	.08	322.59	.00	1.88	.00	5.000	.000	.00	0	.0
- 9.150	.0022					.0003	.00	10.09	.00	2.11	.013	 .00		- PIPE	

PAGE 1

Date:12-11-2019 Time:12:58: 8

FILE: YORBAEX.WSW

W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7244 WATER SURFACE PROFILE LISTING

YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - ASBUILT PLANS

J. ENRIQUEZ

	Invert	Depth	Water	Q	Vel	Vel	Energy		Critical					No Wth	
Station _	Elev _	(FT)	Elev	(CFS)	(FPS) 	Head	Grd.El.	Elev	Depth	Width	DiaF"I" 	or I.D.	ZL 	Prs/Pij	ρ
L/Elem	Ch Slope				i -	SF Ave	HF	SE Dpth	Froude N	Norm Dp	"N"	X-Fall	ZR	Type Cl	h
*******	*******	******	******	*******	******	******	*******	******	******	******	******	******	****	*****	*
3267.110	312.440	10.078	322.518	45.20	2.30	.08	322.60	.00	1.88	.00	5.000	.000	.00	0.1	0
- 3207.110														-	0
327.990	.0030					.0003	.10	10.08	.00	1.94	.013	.00	.00	PIPE	
3595.100	313.410	9.207	322.617	45.20	2.30	.08	322.70	.00	1.88	.00	5.000	.000	.00	0 .	~
3595.100					2.30 							.000		-	U
29.900	.0020			1		.0003	.01	.00	.00	2.16	.013	.00	.00	PIPE	
3625.000	313.470	9.167	322.637	45.20	2.30	.08	322.72	.00	1.88	.00	5.000	.000			~
3625.000				45.20								.000	.00 -	0.0	U
JUNCT STR	.0000	I	I	I	1 1	.0002	.00	.00	.00	I	.013	.00	.00	PIPE	
3625.000	313.470	9.224	322.694	24.80	1.26 	.02	322.72	.00	1.38	.00	5.000	.000	.00 -	0.	0
45.350	.0015	1	I	I		.0001	.00	.00	.00	1.68	.013	.00	.00	PIPE	
															_
3670.350	313.540	9.162	322.702	24.80	1.26 	.02	322.73	.00	1.38	.00	5.000	.000	.00	0.	0
79.650	.0023					.0001	.01	9.16	.00	1.52	.013	.00	1	PIPE	
3750.000	313.720	8.990	322.710	24.80	1.26 	.02	322.73	.00	1.38	.00	5.000	.000	.00	0.	0
19.900	.0020					.0001	.00	8.99	.00	1.56	.013	.00	1	PIPE	
3769.900	313.760	8.951		24.80	1.26	.02	322.74	.00	1.38	.00	5.000	.000	.00	0.	0
- 11.140	.0018					.0001	.00	8.95		1.61	.013		.00	- PIPE	
3781.040	313.780	8.934	322.714	24.80	1.26	.02		.00	1.38	.00	5.000	.000	.00	0.	0
-													-	-	

PAGE 2

Date:12-11-2019 Time:12:58: 8

FILE: YORBAEX.WSW

T1 YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - PROPOSED											
T2 J	T2 J. ENRIQUEZ										
Т3											
SO	2910.00	312.00	1					321.80			
R	2910.00	312.00	1		.013						
JX	2985.75	312.09	1	2	.013	16.90		312.25	45.00		
R	2995.00	312.10	1		.013					1	
R	3022.69	312.13	1		.013				64.44		
JX	3022.69	312.13	1	2	.013	14.30		312.25	45.00		
R	3027.35	312.14	1		.013					1	
R	3037.96	312.15	1		.013						
JX	3095.08	312.22	1	2	.013	9.00		314.02	90.00		
JX	3257.96	312.42	1	3	.013	14.82		313.00	45.00		
R	3267.11	312.44	1		.013					1	
R	3595.10	313.41	1		.013						
R	3625.00	313.47	1		.013				38.32		
JX	3625.00	313.47	1	4	.013	20.40		314.99	45.00		
R	3670.35	313.54	1		.013				57.49		
R	3750.00	313.72	1		.013						
R	3769.90	313.76	1		.013						
R	3781.04	313.78	1		.013					1	
SH	3781.04	313.78	1		.013						
CD	1 4 5.00										
CD	2 4	4 3.00									
CD	0 3 4 2.75										
CD	4 4		2	.00							
Q		24.800 1	.0								

W S P G W - EDIT LISTING - Version 14.10Date:12-11-2019Time: 1: 5:37WATER SURFACE PROFILE - CHANNEL DEFINITION LISTINGPAGE1 FILE: YORBAPR.WSW CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 4 0 5.000 CD 2 4 0 3.000 CD 3 4 0 2.750 CD 4 4 0 2.000 WSPGW PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS -YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - PROPOSED HEADING LINE NO 2 IS -J. ENRIQUEZ HEADING LINE NO 3 IS -

						SPGW							PAGE NO	2
ELEMENT NO	1 1 7 7	WA'I SYSTEM OUT	ER SURFACE	PROFILE *	- ELEM	ENT CARI) LISI	'ING						
ELEMENT NO	IISA	U/S DATA	STATION	INVERT	SECT					147	S ELEV			
		U/S DAIA	2910.000	312.000	1					vv	321.800			
ELEMENT NO	2 IS A	REACH	*	\$12.000	_						521.000			
	2 10 11	U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		0,0 2	2910.000	312.000	1			.013			.000	.000	.000	0
ELEMENT NO	3 IS A	JUNCTION	*	*	*	*			*		*		*	
		U/S DATA	STATION	INVERT	SECT	LAT-1 LA	AT-2	Ν	Q3	Q4	INVERT-3 IN	VERT-4 PH	I 3 PHI 4	
			2985.750	312.090	1	2	0	.013	16.900	.000	312.250	.045	.000	.000
											RADIUS	ANGLE		
											.000	.000		
ELEMENT NO	4 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			2995.000	312.100	1			.013			.000	.000	.000	1
ELEMENT NO	5 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3022.690	312.130	1			.013			24.620	64.440	.000	0
ELEMENT NO	6 IS A	JUNCTION	*	*	*	*			*	~ .	*		*	
		U/S DATA	STATION	INVERT		LAT-1 LA		N	Q3	Q4	INVERT-3 IN			
			3022.690	312.130	1	2	0	.013	14.300	.000	312.250 RADIUS	.045 ANGLE	.000	.000
											.000	.000		
THE ABOVE ELE	MENT CO	NTAINFD AN	TNVERT FLF	и мнтсн м	AG NOT	CREATER	THAN	דעד ו	PREVIOUS T	NVERT ELEV		.000		
THE ABOVE ELE									PREVIOUS II					
ELEMENT NO	7 IS A		*	*	*	OICD/II DI		11111	11010000 1		MINUVING			
	, 10 11	U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		-,	3027.350	312.140	1			.013			.000	.000	.000	1
ELEMENT NO	8 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3037.960	312.150	1			.013			.000	.000	.000	0
ELEMENT NO	9 IS A	JUNCTION	*	*	*	*			*		*		*	
		U/S DATA	STATION	INVERT	SECT	LAT-1 LA	AT-2	N	Q3	Q4	INVERT-3 IN	VERT-4 PH		
			3095.080	312.220	1	2	0	.013	9.000	.000	314.020	.090	.000	.000
											RADIUS	ANGLE		
											.000	.000		

		ע עו	ER SURFACE	DPOFTLE		S P G		PTNC					PAGE NO	3
ELEMENT NO	10 TS A	JUNCTION	.ER SORFACE	*	- 1010141 *	±NI CA. *		IING	*		*		*	
	10 10 11	U/S DATA	STATION	INVERT	SECT 1	LAT-1	LAT-2	N	Q3	04	INVERT-3 IN	IVERT-4 PH	I 3 PHI 4	
		-,	3257.960	312.420	1	3	0	.013	14.820	.000		.045 ANGLE .000	.000	.000
ELEMENT NO	11 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3267.110	312.440	1			.013			.000	.000	.000	1
ELEMENT NO	12 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3595.100	313.410	1			.013			.000	.000	.000	0
ELEMENT NO	13 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			N			RADIUS	ANGLE	ANG PT	MAN H 0
ELEMENT NO	14 70 3	TINIOUTON	3625.000 *	313.470	1	*		.013	*		44.706 *	38.320	.000	0
ELEMENI NO	14 IS A	U/S DATA	STATION	INVERT	SECT 1	LAT-1		N	Q3	04	INVERT-3 IN	זזת 4 תרקות		
		U/S DATA	3625.000	313.470	1	LAI-I . 4	LAI-2 0	.013	20.400	.000		.045	.000	.000
			3025.000	515.470	Ŧ	4	0	.013	20.400	.000	RADIUS	ANGLE	.000	.000
											.000	.000		
THE ABOVE EL	EMENT CO	WTATNED AN	INVERT ELEN	WHICH W	AS NOT	GREAT	ER THAN	V THE	PREVIOUS T	NVERT ELE		.000		
THE ABOVE EL														
ELEMENT NO	15 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3670.350	313.540	1			.013			45.197	57.490	.000	0
ELEMENT NO	16 IS A	REACH	*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
			3750.000	313.720	1			.013			.000	.000	.000	0
ELEMENT NO	17 IS A		*	*	*									
		U/S DATA	STATION	INVERT	SECT			Ν			RADIUS	ANGLE	ANG PT	MAN H
	10 70 7	553 44	3769.900 *	313.760	1 .			.013			.000	.000	.000	0
ELEMENT NO	18 IS A	REACH U/S DATA	* STATION	* INVERT	* SECT			N			RADIUS	ANGLE	ANG PT	MAN H
		U/S DATA	3781.040	313.780	SECT 1			.013			.000	.000	ANG PI	MAN H 1
ELEMENT NO	19 TC 7	CVCTEM UEA		313./00	⊥ *			.013	*		.000	.000	.000	T
	TO TO A	U/S DATA	STATION	INVERT	SECT					W	S ELEV			
		CID DAIA		313.780	1					**	.000			
			3,01.010	313.700	-									

W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7244 WATER SURFACE PROFILE LISTING YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - PROPOSED

J. ENRIQUEZ

*******	* * * * * * * * * * *	* * * * * * * * * *	*********	********	******	******	*****	******	* * * * * * * * * *	* * * * * * * * *	******	* * * * * * * * *	* * * * * *	****	* * *
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super	1	Flow Top			ļ	No Wt	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/1	Pip
L/Elem -	Ch Slope					SF Ave		1	Froude N		 "N"	X-Fall	ZR	Type	Ch
*******	******	******	******	******	******	******	******	******	*******	******	******	******	****	****	* * *
2910.000	312.000	9.800	321.800	100.22	5.10	.40	322.20	.00	2.85	.00	5.000	.000	.00	0	.0
- JUNCT STR	 .0012							9.80			.013			- - PIPE	
UDNCI DIR	.0012					.0015	.05		.00		.015	.00	.00		
2985.750	312.090	9.991	322.081	83.32	4.24	.28	322.36	.00	2.59	.00	5.000	.000		0	.0
9.250	.0011					.0010	.01	9.99	 .00	3.98	.013	.00		- PIPE	
2995.000	312.100	10.004 	322.104	83.32	4.24	.28	 322.38 	.00 	 2.59 	.00	5.000	.000	.00	0 -	.0
27.690	.0011					.0010	.03	.00	.00	3.98	.013	.00		PIPE	
3022.690	312.130	10.050	322.180	83.32	4.24	.28	322.46	.00 	2.59	.00	5.000	.000	.00 -	0	.0
JUNCT STR	.0000					.0009	.00	10.05	.00	I	.013	.00		PIPE	
3022.690	312.130	10.180	322.310	69.02	3.52	.19	322.50	.00 	2.34	.00	5.000	.000 	.00 -	0 _	.0
4.660	.0021					.0007	.00	10.18	.00	2.71	.013	.00		PIPE	
3027.350	312.140	10.182	322.322	69.02	3.52	.19	322.51	.00 	2.34	.00 	5.000	.000 	.00 -	0 -	.0
10.610	.0009					.0007	.01	10.18	.00	3.59	.013	.00		'PIPE	
3037.960	' 312.150 	10.180	322.330	69.02	3.52	.19	' 322.52 	.00 	2.34 	.00 	5.000	.000 		' 0 -	.0
JUNCT STR	.0012					.0006	.04	10.18	.00	I	.013	.00	'.00	'PIPE	
3095.080	312.220	10.221	322.441	60.02	3.06	.15	322.59	.00 	2.18	.00 	5.000	.000 	.00 -	0 -	.0
JUNCT STR	.0012	, , , , , , , , , , , , , , , , , , ,				.0004	.07	10.22	.00		.013	.00		'PIPE	
3257.960	312.420	10.155 	322.576	45.20	2.30	.08	322.66	.00 	1.88 	.00 	5.000	.000 		0	.0
9.150	.0022	1	I I		I I	.0003	.00	10.16	.00	2.11	.013	.00		PIPE	

PAGE 1

Date:12-11-2019 Time: 1: 5:46

FILE: YORBAPR.WSW

W S P G W - CIVILDESIGN Version 14.08

Program Package Serial Number: 7244 WATER SURFACE PROFILE LISTING

YORBA LINDA PULLMAN ST DRAIN (Q=25YR) - PROPOSED

J. ENRIQUEZ

FILE: YORBAPR.WSW

********	*****	*******	* * * * * * * * * * *	******	******	******	*******	*******	******	* * * * * * * * *	******	* * * * * * * * *	*****	*****	:**
	Invert	Depth	Water	Q	Vel	Vel	Energy	Super		Flow Top				No Wt	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Depth	Width	DiaFT	or I.D.	ZL	Prs/P	'ip
- L/Elem	 Ch Slope					SF Ave	 HF	 SF Doth	 Froude N	 Norm Dn	 "N"	 X-Fall	 ZR	Type	Ch
********		******	*******	*******	******				*******				*****	*****	
	i i									İ		İ		i	
3267.110	312.440	10.142	322.582	45.20	2.30	.08	322.66	.00	1.88	.00	5.000	.000	.00	0	.0
-									1	1	1		-	-	
327.990	.0030		I		1	.0003	.10	10.14	.00	1.94	.013	.00	.00	PIPE	
3595.100	313.410	9.271	322.681	45.20	2.30	.08	322.76	.00	1.88	.00	5.000	.000	.00	0	.0
-													-	-	
29.900	.0020					.0003	.01	.00	.00	2.16	.013	.00	.00	PIPE	
3625.000	313.470	9.231	322.701	45.20	2.30 	.08	322.78	.00	1.88	.00	5.000	.000	.00	0	.0
JUNCT STR						.0002	.00	.00	.00		.013	.00	-	- PIPE	
001101 0111										I					
3625.000	313.470	9.288	322.758	24.80	1.26	.02	322.78	.00	1.38	.00	5.000	.000	.00	0	.0
-								1		1	1		-		
45.350	.0015		I		1	.0001	.00	.00	.00	1.68	.013	.00	.00	PIPE	
3670.350	313.540	9.226	322.766	24.80	1.26	.02	322.79	.00	1.38	.00	5.000	.000	.00	0	. 0
-													-	-	••
79.650	.0023					.0001	.01	9.23	.00	1.52	.013	.00	.00	PIPE	
3750.000	313.720	9.054	322.774	24.80	1.26 	.02	322.80	.00	1.38	.00	5.000	.000	.00	0	.0
19.900	.0020					.0001	.00	9.05	.00	1.56	.013	.00	.00	PIPE	
10.000															
3769.900	313.760	9.016	322.776	24.80	1.26	.02	322.80	.00	1.38	.00	5.000	.000	.00	0	.0
-									1	1	1			-	
11.140	.0018		1		1	.0001	.00	9.02	.00	1.61	.013	.00	.00	PIPE	
3781.040	313.780	8.998	322.778	24.80	1.26	.02	322.80	.00	1.38	.00	5.000	.000	.00	0	. 0
-													-	-	

PAGE 2

Date:12-11-2019 Time: 1: 5:46

SERIESCB.XLS

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS (For use on Los Angeles County Department of Public Works projects only)						
CATCH BASIN	I "V" D	EPTI	H CALCS. IN	SERIES		
PROJECT:	Yorba	Lind	a Blvd Wider	ning	SH.	OF
JOB NO.					BY:	J. Enriquez
COMMENTS:	Existing	Cond	ition			
	INPUT				OUTP	TUT
C.B. at Sta.	11+24.0	<mark>4 Sav</mark>	i Ranch Parkwa	l y		
HGL elev. =	322.51	ft.		Pipe Area 1 =		
Curb face =		in.		K1 =		
Freeboard =		in.			3.22	
L.D. drop =	2.00	in.		Hv1 =		
				1.2 x Hv1 =		
U/S C.B. DATA				Sf x L1 =	0.19	ft.
T.C elev. =						
Connector pipe L1 =	144.82	ft.		Pipe Area 2 =		
Connector pipe D1 =				K2 =		
C.B. design Q1 =	19.10	cfs			6.48	
				Hv2 =		
				1.2 x Hv2 =		
D/S C.B. DATA				Sf x L2 =	0.39	ft.
T.C elev. =						
Connector pipe L2 =	64.63	ft.		Available H2 =		
Connector pipe D2 =	30.00	in.		Req'd H2 =		ft.
C.B. design Q2 =	12.70	cfs	Avail H2	2>=Req'd H2 ?	OK	
				Available H =	3.61	
				Req'd H =		ft.
			Avail	H>=Req'd H?		
				Min. V1 =		
				Use V1 =	7.00	ft.
			V2in > V1 - G	G + (L1*0.01) =		
				Use V2in =		
				Min. V2out =		
				Use V2out =	<mark>13.36</mark>	ft.

SERIESCB.XLS

LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS (For use on Los Angeles County Department of Public Works projects only)						
CATCH BASIN	1 "V" D	EPT	H CALCS. IN	SERIES		
PROJECT:	Yorba	Linc	a Blvd Wider	ning	SH.	OF
JOB NO.					BY:	J. Enriquez
COMMENTS:	Propose	d Coi	ndition			
	INPUT				OUTP	TUY
C.B. at Sta.	11+24.0	<mark>4 Sa</mark> v	/i Ranch Parkwa	У		
HGL elev. =				Pipe Area 1 =		
Curb face =		in.		K1 =	529	
Freeboard =	6.00	in.			4.38	
L.D. drop =	2.00	in.		Hv1 =		
				1.2 x Hv1 =		
U/S C.B. DATA				Sf x L1 =	0.35	ft.
T.C elev. =						
Connector pipe L1 =				Pipe Area 2 =		
Connector pipe D1 =				K2 =		
C.B. design Q1 =	26.00	cfs			7.87	
				Hv2 =		
				1.2 x Hv2 =		
D/S C.B. DATA				Sf x L2 =	0.57	ft.
T.C elev. =						
Connector pipe L2 =				Available H2 =		
Connector pipe D2 =				Req'd H2 =		ft.
C.B. design Q2 =	12.64	cfs	Avail H2	2>=Req'd H2 ?	OK	
				Available H =	3.54	
			-	Req'd H =		ft.
			Avail	H>=Req'd H?		.
				Min. V1 =		
				Use V1 =	7.00	ft.
					0.00	<i>a</i>
			V2in > V1 - G	G + (L1*0.01) =		
				Use V2in =		
				Min. V2out =		
				Use V2out =	13.30	π.

Drainage Area A (EXISTING)

Solve For	Spread		
Input Data			
Discharge		6.40	ft³/s
Gutter Width		2.00	ft
Gutter Cross Slope		0.08	ft/ft
Road Cross Slope		0.02	ft/ft
Curb Opening Length		6.00	ft
Opening Height		0.67	ft
Curb Throat Type	Inclined		
Local Depression		2.00	in
Local Depression Width		2.00	ft
Throat Incline Angle	ç	90.00	degrees
Results			
Spread	2	21.90	ft
Depth		0.56	ft
Gutter Depression		0.13	ft
Total Depression		0.29	ft

Drainage Area A (PROPOSED)

Solve For	Spread		
Input Data			
Discharge		13.36	ft³/s
Gutter Width		2.00	ft
Gutter Cross Slope		0.08	ft/ft
Road Cross Slope		0.02	ft/ft
Curb Opening Length		17.00	ft
Opening Height		0.67	ft
Curb Throat Type	Inclined		
Local Depression		2.00	in
Local Depression Width		2.00	ft
Throat Incline Angle		90.00	degrees
Results			
Spread		21.50	ft
Depth		0.56	ft
Gutter Depression		0.13	ft
Total Depression		0.29	ft

Drainage Area B (EXISTING)

Solve For	Spread		
Input Data			
Discharge		12.70	ft³/s
Gutter Width		2.00	ft
Gutter Cross Slope		0.08	ft/ft
Road Cross Slope		0.02	ft/ft
Curb Opening Length		6.00	ft
Opening Height		0.67	ft
Curb Throat Type	Inclined		
Local Depression		2.00	in
Local Depression Width		2.00	ft
Throat Incline Angle		90.00	degrees
Results			
Spread		34.58	ft
Depth		0.82	ft
Gutter Depression		0.13	ft
Total Depression		0.29	ft

Drainage Area B (PROPOSED)

Solve For	Spread		
Input Data			
Discharge		12.64	ft³/s
Gutter Width		2.00	ft
Gutter Cross Slope		0.08	ft/ft
Road Cross Slope		0.02	ft/ft
Curb Opening Length		7.00	ft
Opening Height		0.67	ft
Curb Throat Type	Inclined		
Local Depression		2.00	in
Local Depression Width		2.00	ft
Throat Incline Angle		90.00	degrees
Results			
Spread		32.27	ft
Depth		0.77	ft
Gutter Depression		0.13	ft
Total Depression		0.29	ft

ATTACHMENT 4

AS-BUILT PLANS

GENERAL NOTES

- All necessary utility construction within the street right of way shall be completed prior to paying per this plan.
- 2. All work, as shown on this plan, shall be in accordance with the applicable sections of standard specifications, for public works construction, City of Anaheim standard plans, contract documents and standard specification suppli-and the latest revisions thereof.
- All paving removal shall be sawcut at the City Engineer's direction. Minimum depth of cut: 14".
- 4: "No expansive soil exists or will be imported for use within the public right of way."
- 5. Methods of handling irrigation lines within limits of improvements: A. Abandoned lines - Remove & plug to construction limits B. Lines in service - Relocate out of the street right of way
- 6. 4" Thick sand blanket under all sidewalks and 4" thick aggregate base section under all curb and gutter is required unless a report from a registered soils engineer is submitted and approved stating that the soil is non-expansive and that the sand blanket and/or aggregate base is not required.
- Reports of compaction within the traveled way of all streets shall be submitted to and accepted by the City Engineer prior to placing any street paving.
- 8. Prior to approval of improvements by the Engineering Division and acceptance by the City, centerline monuments shall be set at all points of intersecting streets, beginning of curves, points of reverse curve, end of curves, center of cul-de-sacs and any other points so designated by the Field Engineer. Ties to monuments shall be set and a copy of said ties shall be furnished to the Field Engineer office.
- 9. Adjust all storm drain and sewer manholes, and water valves, to grade 1D. All regulatory signs shall be placed within 24 hours after curb returns have been constructed in locations as shown on these plans.
- It shall be the contractors responsibility to protect all traffic signs where applicable.
- "Following completion of construction, the survey markers which have been disturbed by the construction activities shall be reset in their original location and the ties submitted to the Survey Division for approval."
- Before the forms have been set and 24 hours prior to the placement of any concrete for sidewalk or drive approach construction the 'contractor shall adjust all necessary utilities within the parkway to grade and obtain approval from the Field Eng. 999-5126.
- Notify Underground Service Alert on 1-800-422-4133 a minimum of 48 hrs. prior to start of construction within the Public Right-of-14 way.
- "Soil cement trench backfill shall be required to within 1' of the finished grade where sewer or storm drain is to be constructed out-side of the public right of way at a slope of 5:1 or more, unlese waived by the Field Engineer." 15.

PRIVATE ENGINEER'S NOTICE TO CONTRACTOR

PRIVATE ENGINEER'S NOTICE TO CONTRACTOR THE EXISTENCE AND LOCATION OF ANY UNDERGROOND UTILITIES OR STRUCTURES SHOWN ON THESE PLANS ARE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. TO THE BEST OF OUR KNOWLEDGE THERE ARE NO EXISTING UTILITIES EXCEPT THOSE SHOWN ON THIS PLAN. THE CONTRACTOR IS REQUIRED TO TAKE ALL PRECAUTIONARY MEASURES TO PROTECT THE UTILITIES SHOWN, AND ANY OTHER LINES OR STRUCTURES NOT SHOWN ON THESE PLANS, AND IS RESPONSIBLE FOR THE PROTECTION OF, AND ANY DAMAGE TO THESE LINES OR STRUCTURES. CONSTRUCTION NOTES

1 +CONST. * AC OVER * AB CONST. TYPE "A" CURB & GUTTER, B" C.F., PER CITY STD. DETAIL NO. 104-"B" CURB & GUTTER, 6" C.F. PER CITY STD. DETAIL NO. 104-1

- EDIAN CURB & GUTTER PER DETAIL ON PLAN NO. 14762
- ISLAND CURB & GUTTER PER DETAIL ON PLAN ND. 14762
- THICK PCC SIDEWALK PER CITY STD. DETAIL ND. 11D-C
- METAL BEAM GUARD RAILING PER CITY STD. DETAIL NO. 120
- DEPRESSION FOR SIDEWALK ACCESS RAMPS PER CITY STD. DETAIL NO. 124-0
- RB DEPRESSION FOR ISLAND ACCESS RAMPS
- EINFORCED CONCRETE PROTECTION PER DETAIL ON PLAN NO. 14763
- ERN STAMPED CONCRETE (BOMANITE) HACIENDA BROWN BASKET WEAVE
- TREET NAME SIGNS PER CITY STD. DETAIL NO. 127
- PCC INTERCEPTOR DRAIN PER DETAIL ON PLAN NO. 14766
- PCC DOWN DRAIN PER DETAIL ON PLAN NO. 14765
- 15 CONST. CONC. BLOCK SPLASH WALL PER DETAIL IN ADDENDUM NO. LEXNIBIT 2 OVEREXCAVATE TO 2' BELOW EXISTING GROUND OR SUBGRADE (WHICHEVER IS LOWER). BACKFILL WITH UNCLASSIFIED FILL TO 90% RELATIVE COMPACTION.
- CONST. DBL 36" BRICK & MORTAR BULKHEAD
- *STRUCTURAL SECTION TO BE DETERNINED AND APPROVED PRION TO PLACING PAVEMENT.
- THIGPLAN HAS GEEN EXAMINE O AND IS APPRDYED DNLY AS TO COMPATIGILITY WITH AOJDINING EXISTING OR FUTURE

and the second second

I IMPROVEMENTS AND CONFORMANCE WITH CITY OF ANAHEIM
STANGARD DETAILS AND THE REQUIREMENTS FOR THE FOL-
LOWING APPLICABLE FACTORS: RIGHT DF WAY, RDADWAY
MATERIALS, ALIGNMENTS AND GRADES, HYOROLDGY ANO
HYDRAULICS DESIGN OF STORM DRAIN DR SANITARY SEWER
SYSTEMS AND UNGERGROUND CONDUIT DR OPEN-CHANNEL

ALIGNMENTS.	GRADES, SIZES AND	MATERIALS.

ALIGNMENTS, GRADES, SIZES AND MATERIALS.		NO. DATE INITIAL	DESCRIPTION OF REVISION DATE APPR.	CITY ENGINEER	<i>D</i> 472	OF CAUTO ASSESSMENT
DEVICIONO			REFERENCES	ECALE: AS SHOWN	DATE	STREET & STORM
REVISIONS			REFERENCES	PREPARED UNDER THE SUPERVISION OF		SAVI RANCH PARKW
NO. DATE INITIAL DESCRIPTION	DATE APPR	BENCH MARK: EL. = 345.697	PLANS FOR THESE IMPROVEMENTS CITY OF ANAHEIM STO. O		10-15-04	
A 5-19-83 MH REVISED TRAFFIC SIGNS & PAVEMENT LEGENDS	75/83 4		OM THE RIVERSIDE STREET - (14761 - 14766, 14772, 14773	R.C.E. HO. 30700		STREET, CRYSTAL
A G-27.83 MSM CHANGE PER CITY OF ANAHEIM	17. 4	FWY. TO A CONC. HOWL. ON THE WEE		APPROVAL	3-22-88	T
A 5-20-83 MSM ADDED TELEPHONE CONSTRUCTION ONTA ON WEIR CANYON ROMA		THE CENTERLINE OF WEIR CYN. RD., 8.A.Y.I. CANAL. SET IN THE TOP OF		DEPUTY CITY ENGINEER		
A 7.5-83 AUF ADDED FIRE HYDRANTS, CHANGED F.H. LOCATION YORGA LINDA SIDE ONEY		0.C. 8. 1976 ADJ. 3KK-20-71	THE CONC. HOWL APPR	APPROVED APPROVED	3-52-59	CITY
A 7/883 AUF SEWER LATERAL RELOCATION YORDA LINDA SIDE ONLY A 9-8043 AJF WATER LINE AND INTERTIE RELACATION AND REVISION		0.C. 8. 1916 AUG. SAN 20-11	OATE 3-16-28 OATE	CITY ENGIATER	3.00.00	0111

8-12-83 LOE REVISED SLOPE \$ S. Q. INLETS \$ OLD CANAL RO, STA 20+87 TO 32+9

1-19-51 H.C.C. PER CITY OF AMARGIM PLAN CHECK 19-39 M.C.R. PER "AS BUILT" 5-16-84 L.A.S. ADDED 8" V.C.P. SEWER LINE

REVISED PER YLC.MA

A 8-R-83 LOE REVISEO SLOPE & S. A. INLETS SE A 8-5-83 MSM WATER LINE AND INTERTIE RELOCATION

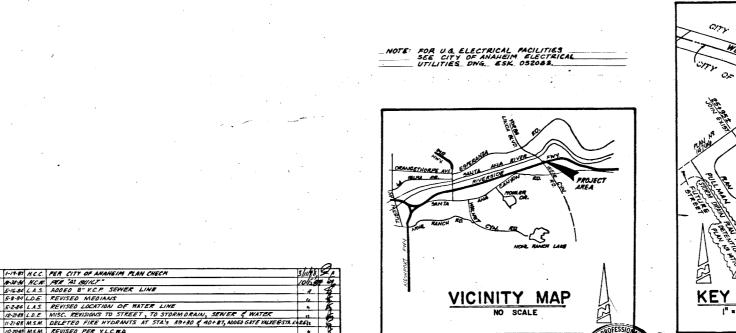
AS 9399 MAY CHURCH FRE OTV GAUAREUA A 9399 MAY CHURCH FRE OTV GAUAREUA A 2295 LDE DELETED ER, ADDED E W CURD I SUTTER O SAVI RAUCH PRUM

A SAN AND ADDED & W CURB & GUTTER & SANT RALLAT. A SANG MSM REVISED MWR MET AT OLD CHALL RA STA. 27+70 A 82533 MSM ADDED SEWER AT OLD CHALL & MIRASE

10-11-83 M.S.M. AODED STEEL

CITY OF ANAHEIM

PLANS FOR THE CONSTRUCTION OF


SAVI RANCH PARKWAY FROM 490'± NE'LY OF TO PULLMAN ST.

OLD CANAL ROAD FROM 695' NE'LY OF TO PULLMAN ST.

PULLMAN STREET FROM CRYSTAL DR. TO OLD CANAL ROAD

CRYSTAL DRIVE FROM 215' NE'LY OF TO PULLMAN ST.

WEIR CANYON ROAD WEIR CYN. RD. BRIDGE TO 479' + SE'LY FROM

APPROVOQ

WHRA A.P. 88-01

10 5 34

STREET I	PROVEMENTS	•
4	14764	SAVI RANCH PKNY - FROM 490'± NE
5	14766	OLD CANAL RD - FROM 695'± NE'LY
6	1476 6	PULLMAN ST - FROM CRYSTAL DR TO
STORM DR	AIN IMPROVI	EMENTS
7	14767	PULLMAN ST - FROM SANTA ANA RIV
8	14768	OLD CANAL RD - FROM 450'± NE'L
g	14769	PRDFILES AND DETAILS
A 10	14770	150'WEST OF WEIR CANYON RD FR TO OLD CANAL RD.
A11	14771	CRYSTAL DR - FROM WEIR CANYO
TRAFFIC		
12	14772	SIGNING AND STRIPING
REFEREN	E	
13	14773	WEIR CANYON RD - FROM 1050'± N FWY TO 1550'± NORTH OF RIVERSI
GRADING		BORROW SITE SOUTH OF OLD CA

TITLE SHEET

Sht. He. Plan He.

1.

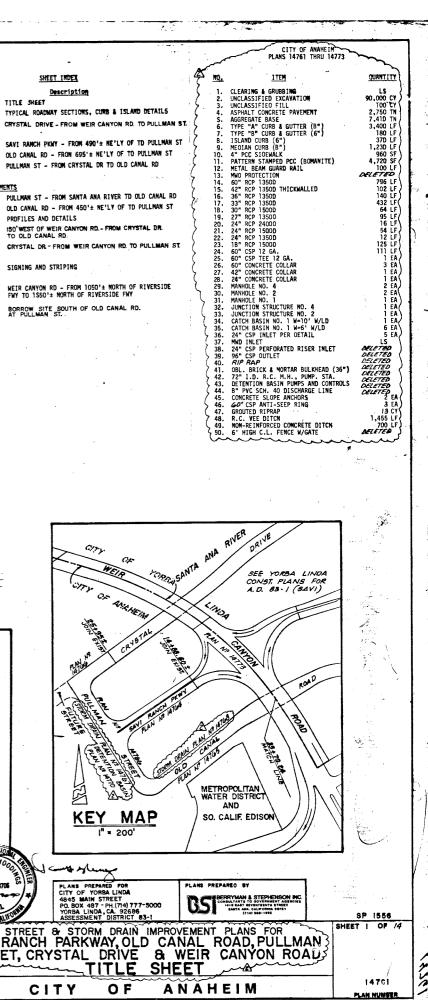
2

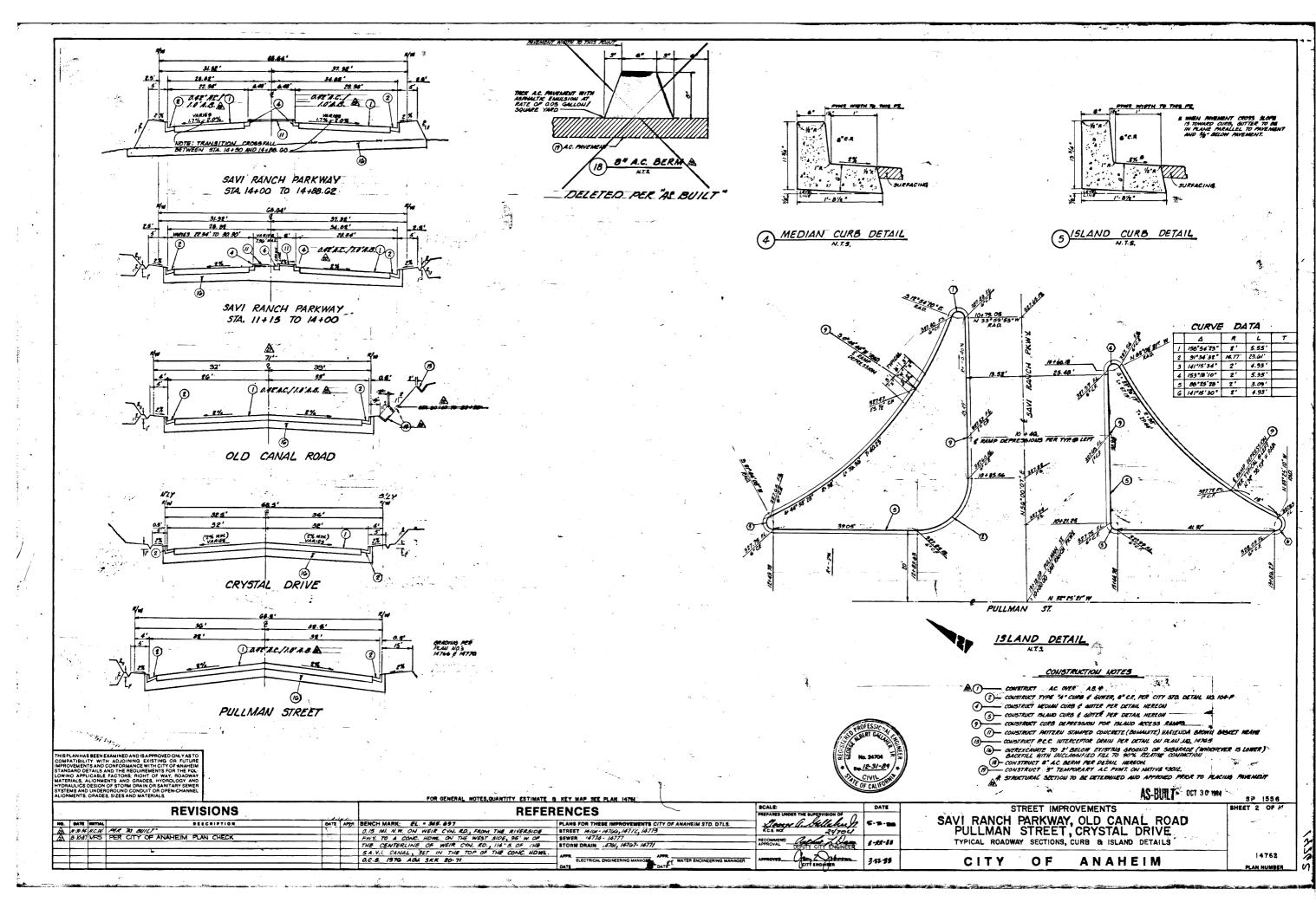
A 3

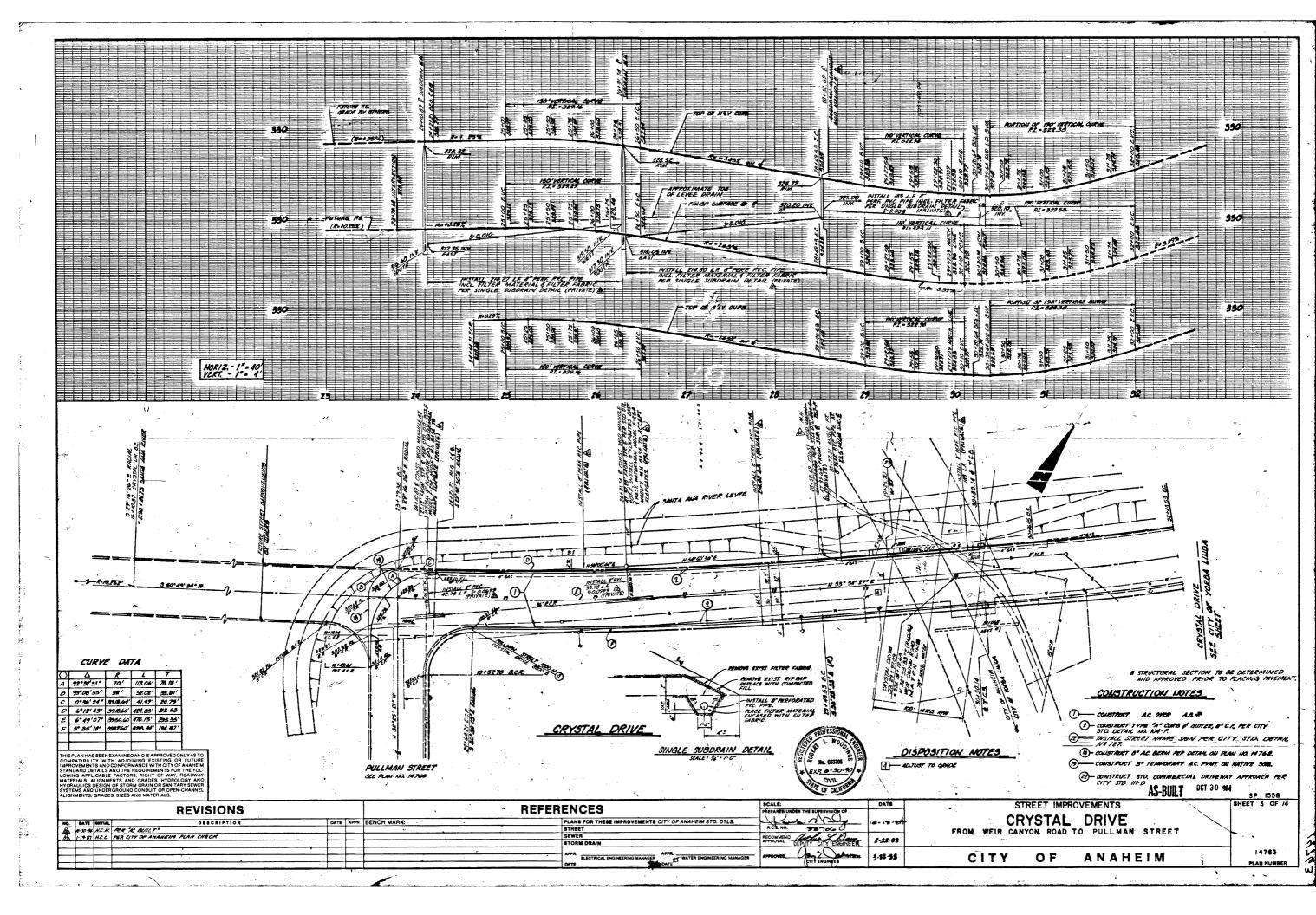
14761

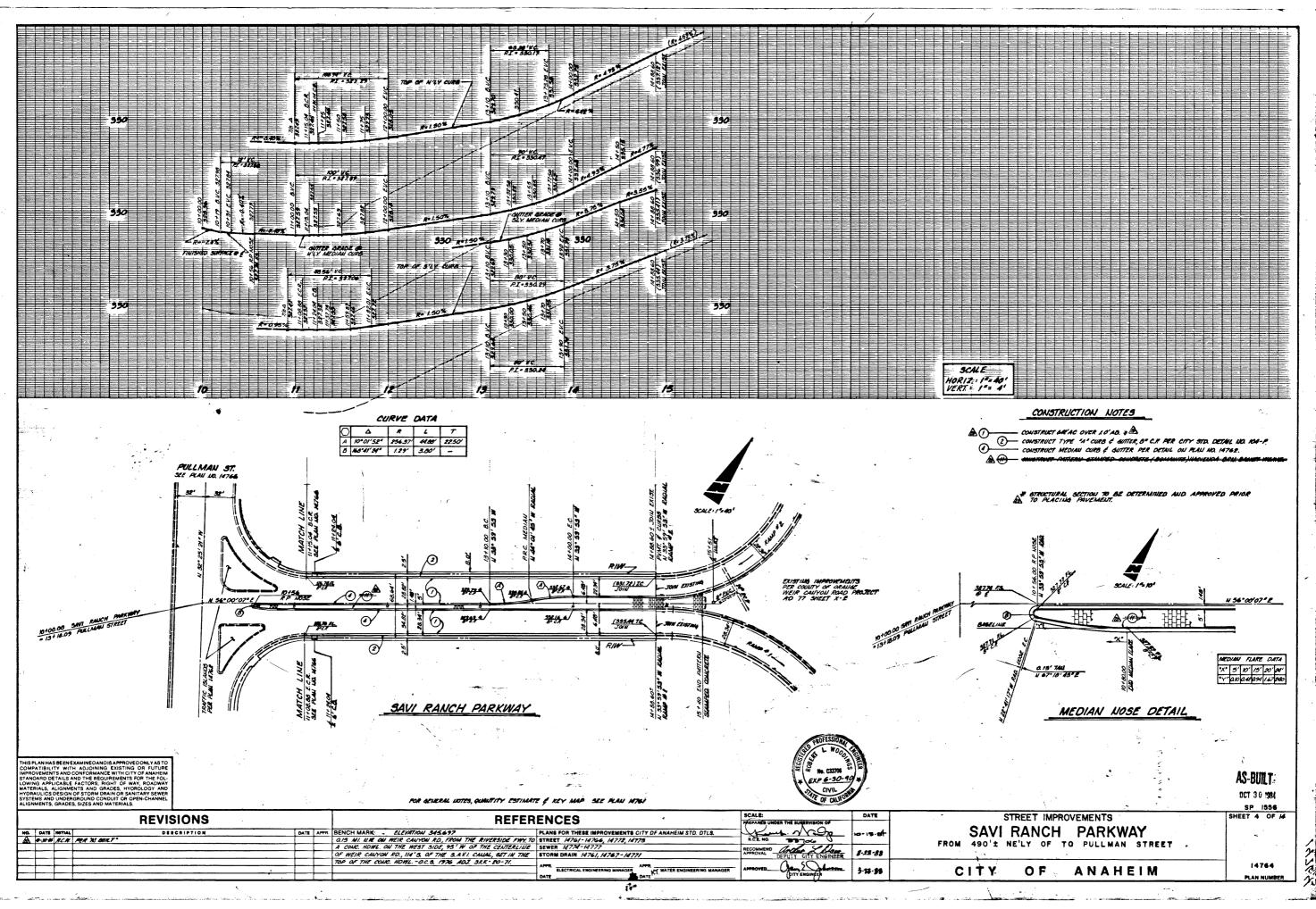
14762

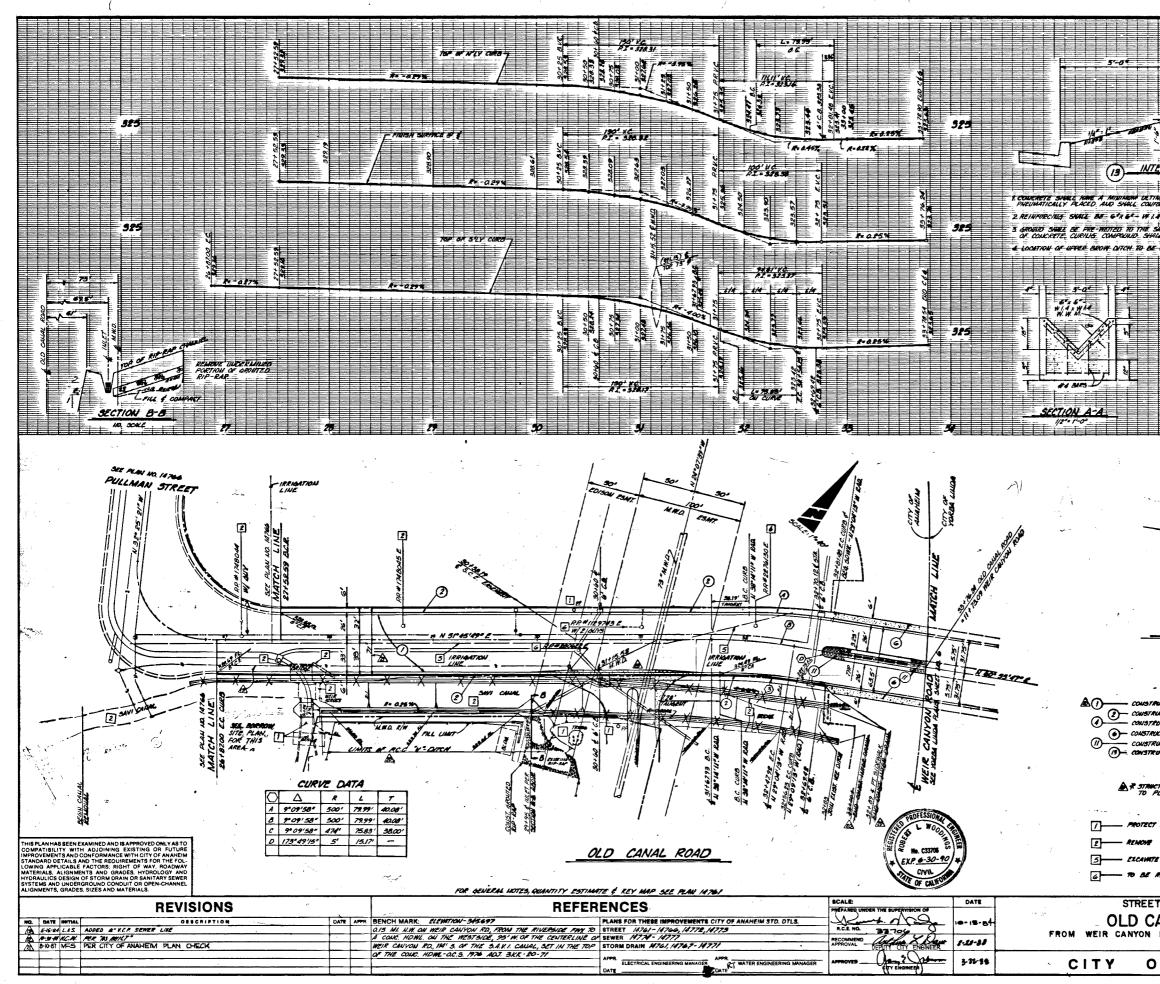
14763

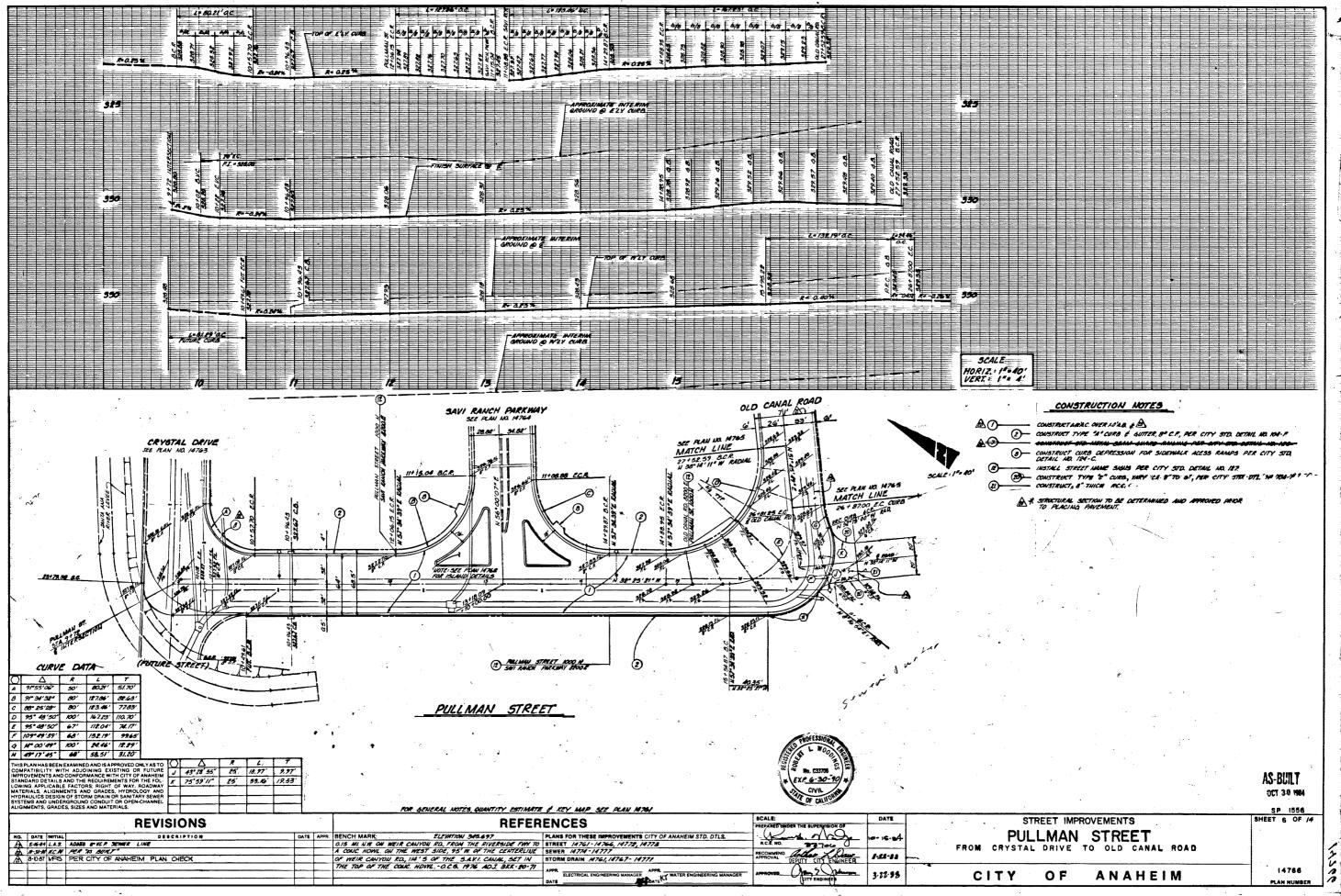

VALWO.

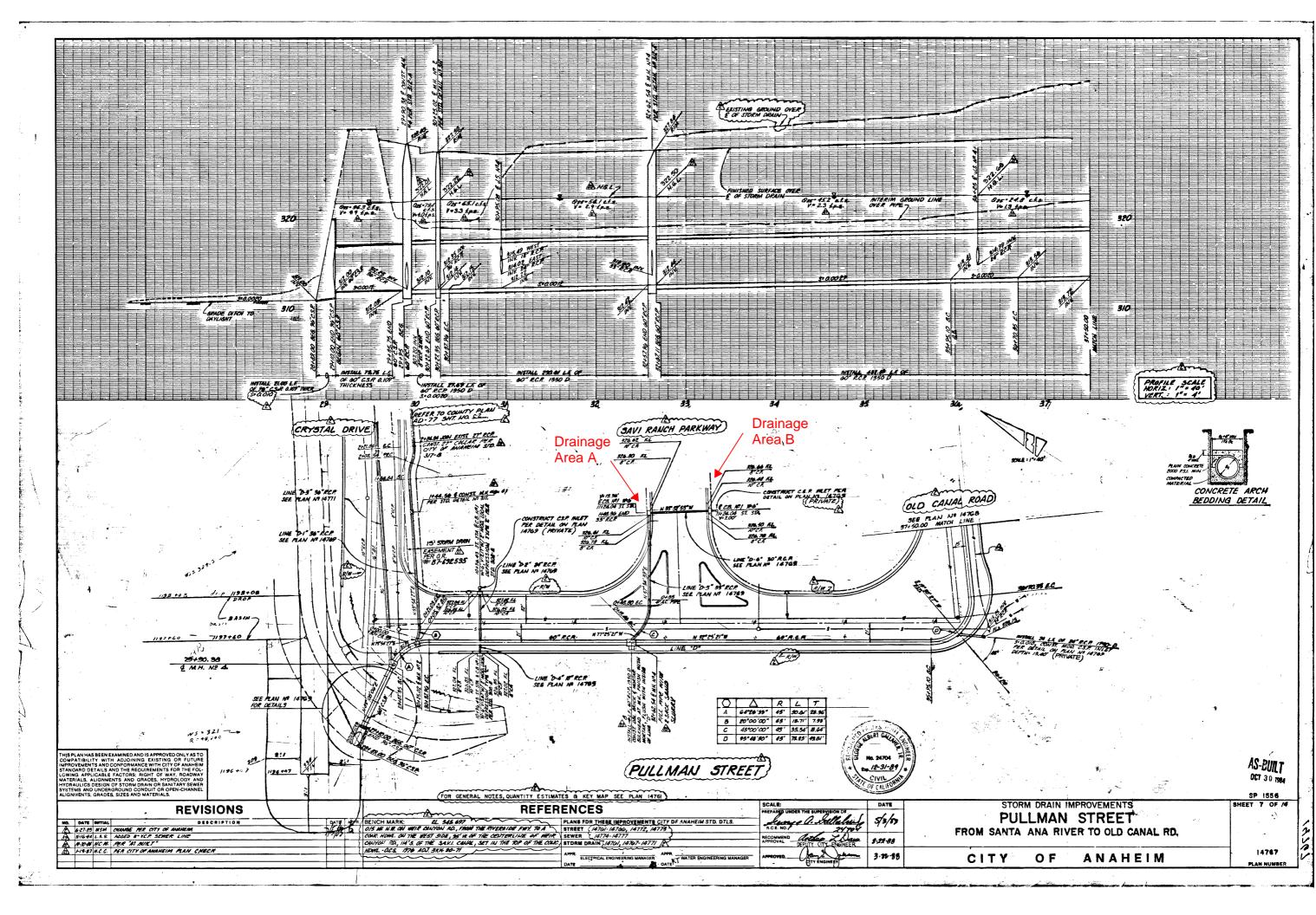

No. C33706

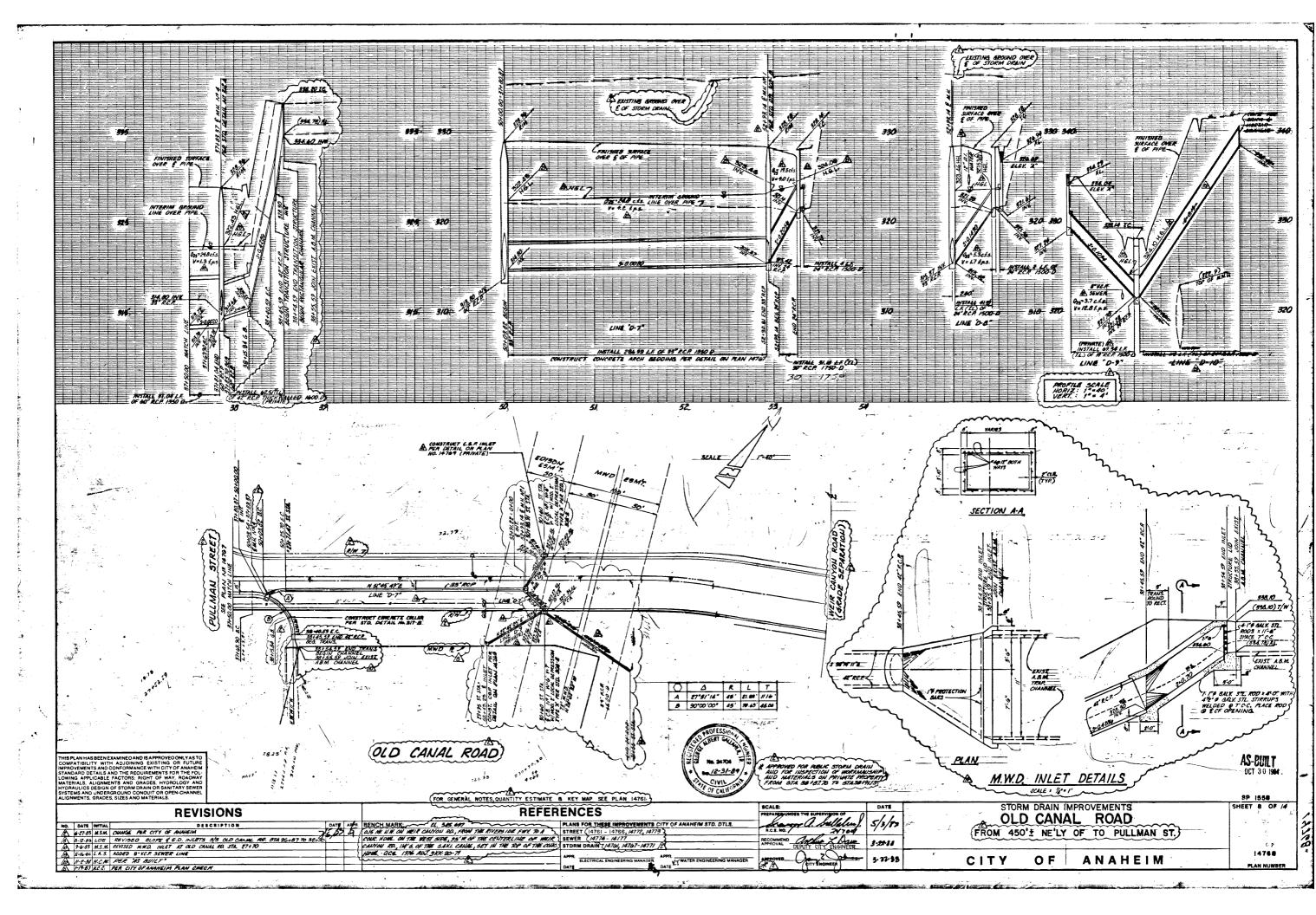

CIVIL

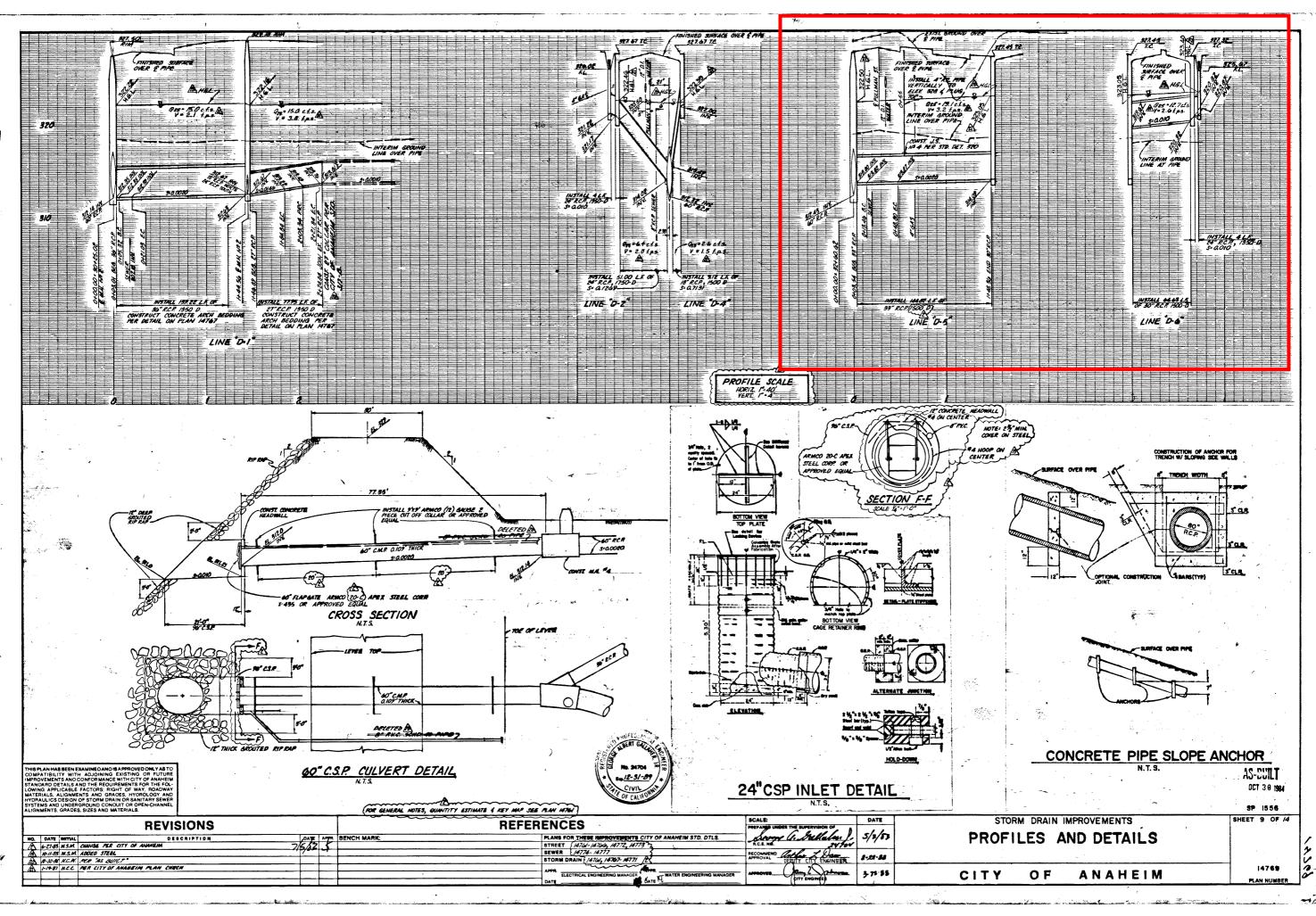

SHEET INDEX

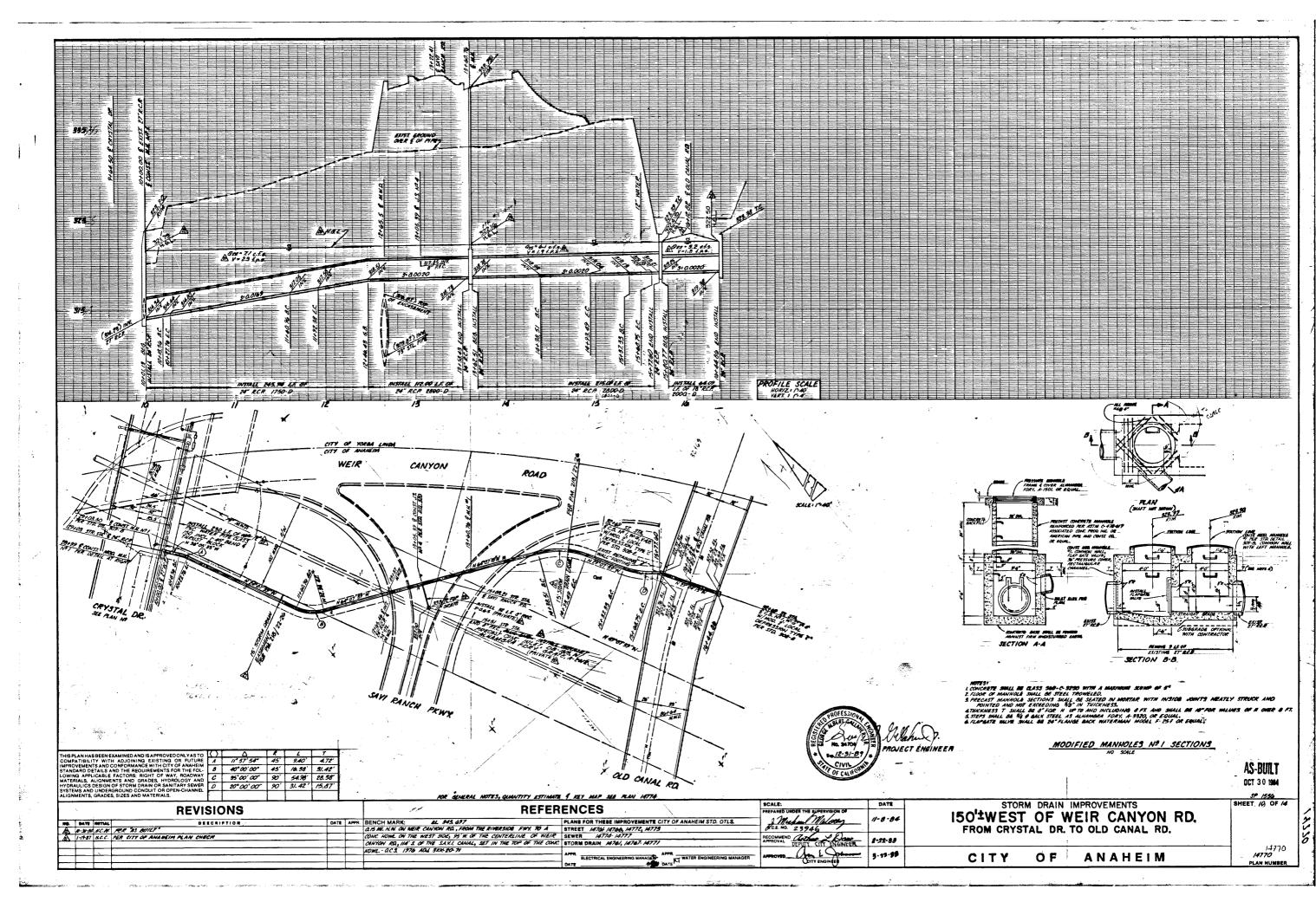

Description

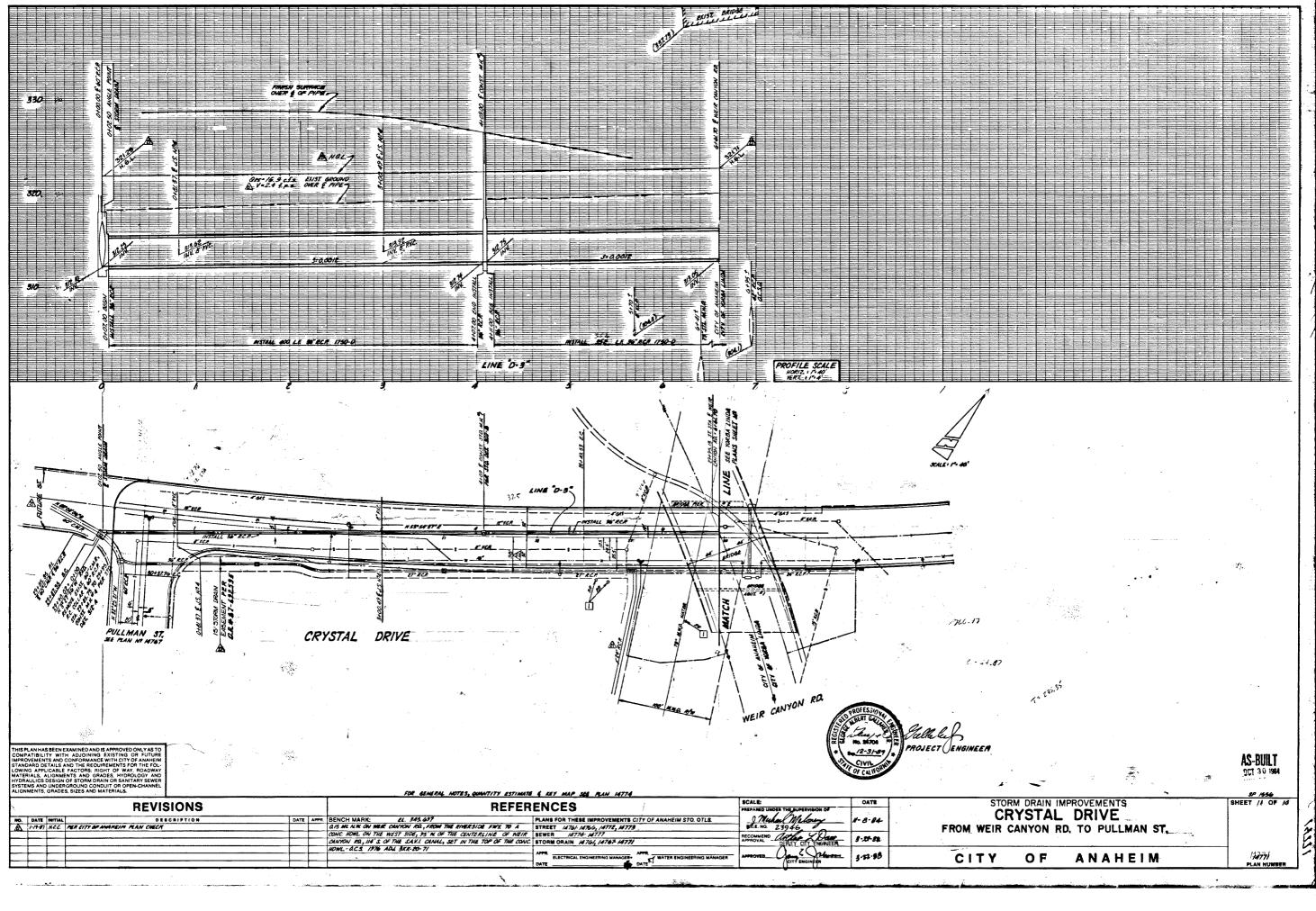


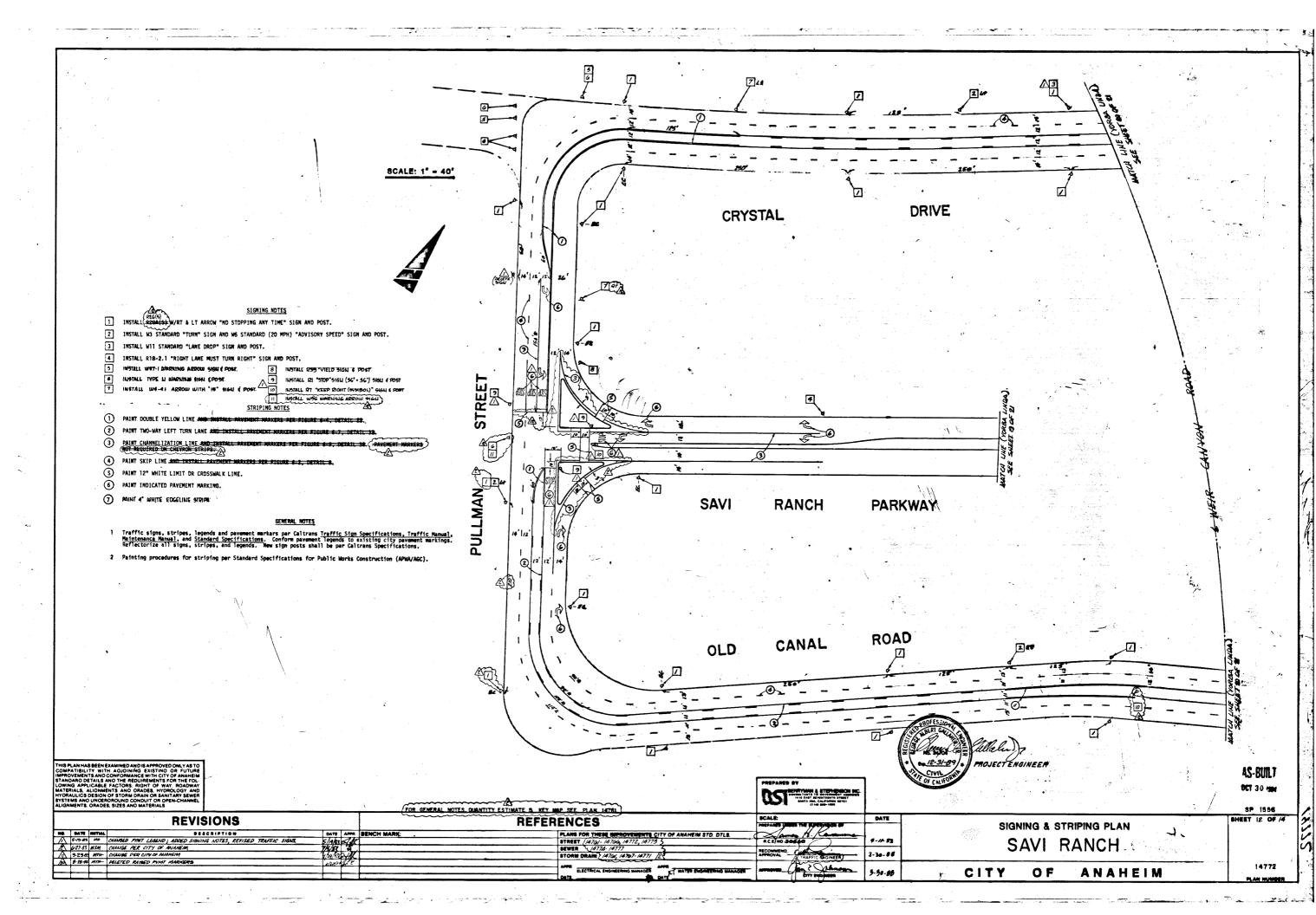


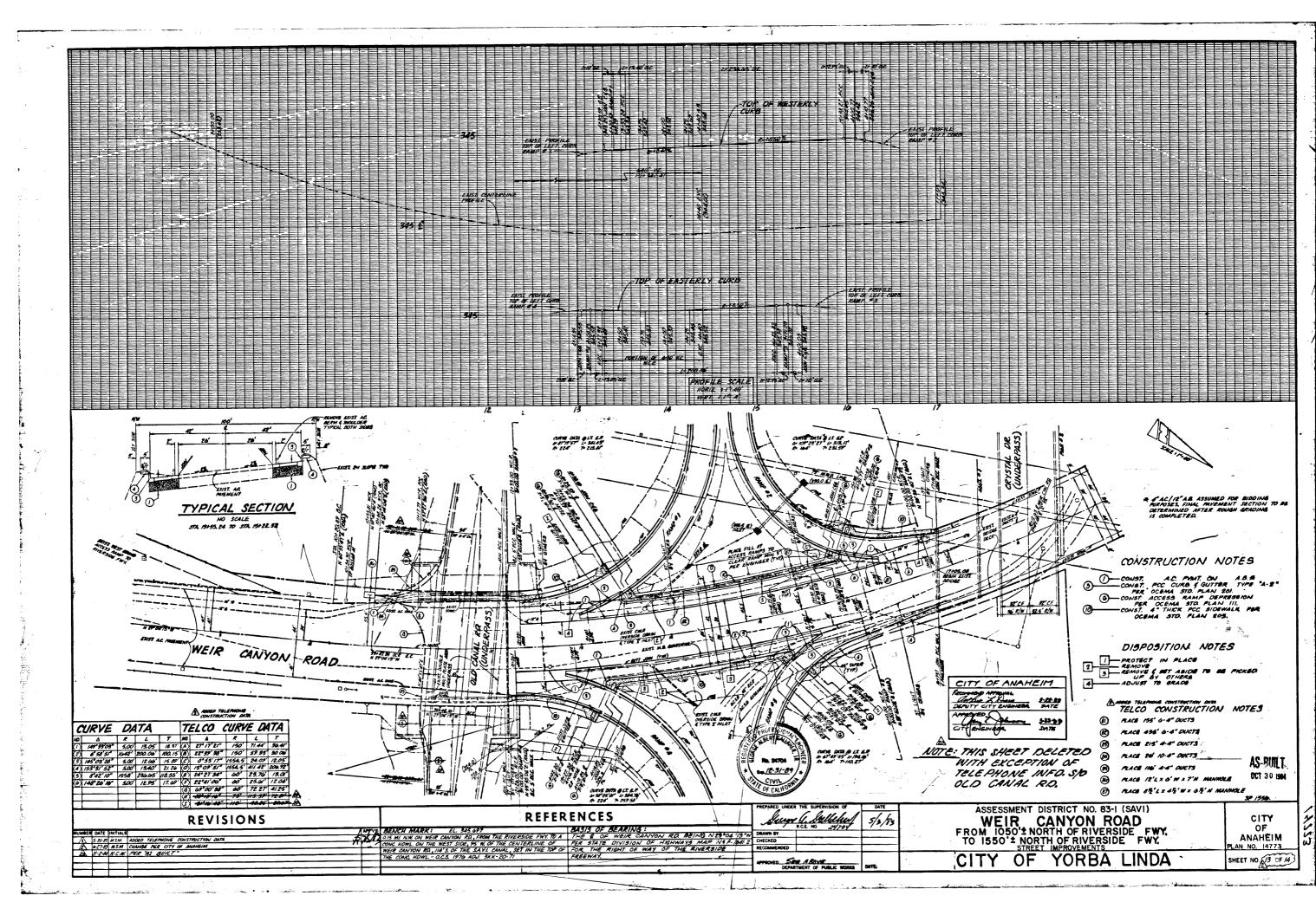


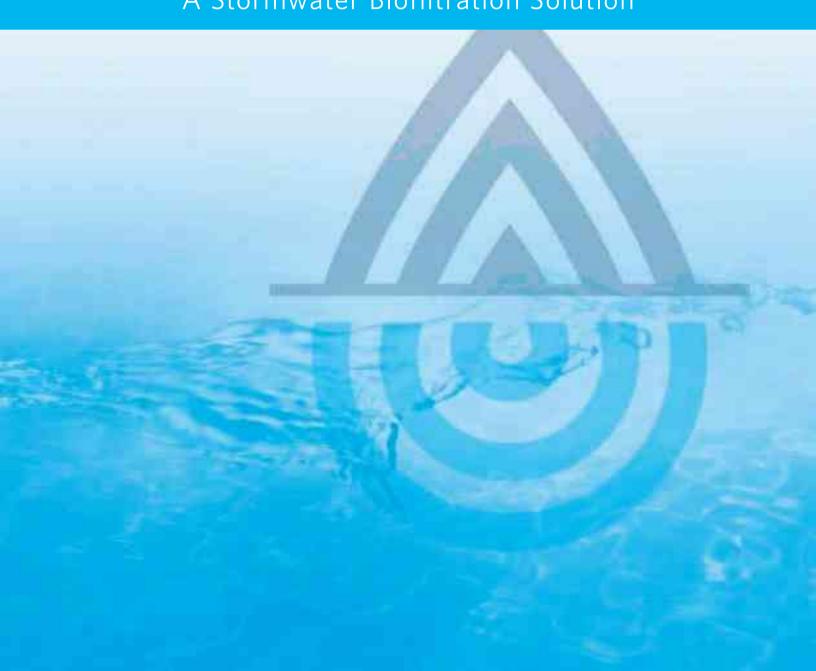



5.04	
r6", r6"	
IT IT IT IT IT IT IT IT IT IT IT IT IT I	
ERCEPTOR DRAIN	
1/2*= 1/-0*	
MARTE COMPRESSIVE STREMARY & 28 DAYS OF 1505 RSL C FORM TO SECTION 2621 OF THE UNIFORM BUILDING COCC	
A . W 14 WELDED WIRE MESH (WWM) OR APPROVED EQUA	
SATISFACTION OF THE BUILDING OFFICIAL OF EUGLIEF PRIA ALL BE USED WHEN REQUIRED BY THE BUILDING OFFICIAL	TO PLACEMENT
	ar Eugineer
DETERMINED BY ENGINEER	
IT IN IN	
TE ALBURS	
╡ <u></u> <u>-</u> <u></u>	
DOWN DRAIN	
1/8*=1-0*	
	AL AND A
	*45+
	*45+
A MOST N GEOLOTZ	*45+
	*45+
A MOST N GEOLOTZ	*45+
MEDIAN TRANSITION DETAIL	*45+
A MOST N GEOLOTZ	*45+
MEDIAN TRANSITION DETAIL	*45+
MEDIAN TRANSITION DETAIL CONSTRUCTION NOTES MECHANAL OVER INAL #	* 2 -
MEDIAN TRANSITION DETAIL CONSTRUCTION NOTES METARIA OVER N'AB # A NOT THE A CURG & WITER, OF C.F. ATR CITY STA DETAIL IN NOT THE A CURG & WITER, OF C.F. ATR CITY STA DETAIL IN NOT THE DIAN CURG & WITER PER DETAIL ON PLAN AD NOTA	2 AM-A
MEDIAN TRANSITION DETAIL CONSTRUCTION NOTES MICTARIA COVER AVAGE # A RUCT MEDIAN CURS & AUTER, OF CR. ARE CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL IN RUCT MEDIAN CURS & AUTER CITY STO DETAIL	а. <i>194-г</i> . - Д
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL CONSTRUCTION NOTES NET MAIL OVER 11'AB # A NET MAIL OVER 11'AB # A NET MAIL OVER 11'AB # A NET MAIL OVER 5' AUTER, OF C.F. AT CITY STD DETAIL IN NET 4" THICK REC. SUBMAR REP. CITY STD DETAIL NO. INFO NET 4" THICK REC. SUBMAR REP. CITY STD DETAIL NO. INFO NET ATTICK STAMPED COLCRETE (BOMMUTE)MECIEND BO	а. <i>194-г</i> . - Д
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL CONSTRUCTION NOTES NET MAIL OVER 11'AB # A NET MAIL OVER 11'AB # A NET MAIL OVER 11'AB # A NET MAIL OVER 5' AUTER, OF C.F. AT CITY STD DETAIL IN NET 4" THICK REC. SUBMAR REP. CITY STD DETAIL NO. INFO NET 4" THICK REC. SUBMAR REP. CITY STD DETAIL NO. INFO NET ATTICK STAMPED COLCRETE (BOMMUTE)MECIEND BO	
MEDIAN TRANSITION DETAIL	2. 100-1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	2. 100-1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	2. 100-1. 2. 1-1. 2. 1-1. 2. 1-1. 2. 1-1. 2. 1-1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	2 / 20 2
	2 / 20 2
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION NOTES METAIL OUT ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	a nou-re b-a comu causer meane an
	AS-EUILT DCT 30 1994 SP 1356
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION NOTES METANIC OVER IN AL # A NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & CONCRETE (BOMMAN PER DETAIL ADOME. CONSTRUCTION TO BE DETERMINED AND APPROVED PRIM PLACING ANVEMENT. DISPOSITION NOTES T IN PLACE T IMPROVEMENTS	AS-EUILT DCT 30 1994 SP 1356
	AS-BUILT DOT 30 1994 SHEET 5 OF 14
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION NOTES METANIC OVER IN AL # A NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & AUTER, & C.F. MET CITY STA DETAIL IN NOT TYPE 'A' CURO & CONCRETE (BOMMAN PER DETAIL ADOME. CONSTRUCTION TO BE DETERMINED AND APPROVED PRIM PLACING ANVEMENT. DISPOSITION NOTES T IN PLACE T IMPROVEMENTS	AS-BUILT DOT 30 1994 SHEET 5 OF 14
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION NOTES MEDIAN CORE N'AB # A MEDIAN CORE & ANTER PC C, AR OTY STA DETAIL WA NOT TYPE '4' CORE & ANTER PC DETAIL ON PLAN NO. NOTES MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTE MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTE MEDIAN CORE & ANTER PC DETAIL ADOME. MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTES TO DISPOSITION NOTES TIMPROVEMENTS ANAL ROAD	AS-EUILT OCT 30 1994 SHEET 5 OF 14 14765
MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION DETAIL MEDIAN TRANSITION NOTES MEDIAN CORE N'AR # A MEDIAN CORE & ANTER PC CF, MR COTY STA DETAIL IN MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTES MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTES MEDIAN CORE & ANTER PC DETAIL ON PLAN NO. NOTES MEDIAN SECTION TO BE DETERMINED AND APPROVED FROM PLACING MICRON TO BE DETERMINED AND APPROVED FROM PLACING MICRON TO BE DETERMINED AND APPROVED FROM PLACING MICRON TO BE DETERMINED AND APPROVED FROM PLACING THICKNERTS AND CRUSH IN PLACE EXISTING IRRIGATION SYSTEM RELOCATED BY OTHERS ANAL ROAD ROAD TO PULLMAN STREET	AS-EUILT OCT 30 1994 SHEET 5 OF 14 14765









ATTACHMENT 5

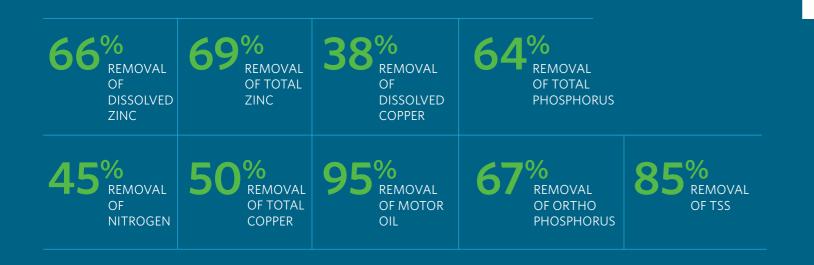
WATER QUALITY EXHIBITS

Modular Wetlands[®] System Linear A Stormwater Biofiltration Solution

OVERVIEW

The Bio Clean Modular Wetlands[®] System Linear represents a pioneering breakthrough in stormwater technology as the only biofiltration system to utilize patented horizontal flow, allowing for a smaller footprint, higher treatment capacity, and a wide range of versatility. While most biofilters use little or no pretreatment, the Modular Wetlands[®] incorporates an advanced pretreatment chamber that includes separation and pre-filter cartridges. In this chamber, sediment and hydrocarbons are removed from runoff before entering the biofiltration chamber, reducing maintenance costs and improving performance.

Horizontal flow also gives the system the unique ability to adapt to the environment through a variety of configurations, bypass orientations, and diversion applications.


The Urban Impact

For hundreds of years, natural wetlands surrounding our shores have played an integral role as nature's stormwater treatment system. But as cities grow and develop, our environment's natural filtration systems are blanketed with impervious roads, rooftops, and parking lots.

Bio Clean understands this loss and has spent years re-establishing nature's presence in urban areas, and rejuvenating waterways with the Modular Wetlands[®] System Linear.

PERFORMANCE

The Modular Wetlands[®] continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, hydrocarbons, and bacteria. Since 2007 the Modular Wetlands[®] has been field tested on numerous sites across the country and is proven to effectively remove pollutants through a combination of physical, chemical, and biological filtration processes. In fact, the Modular Wetlands[®] harnesses some of the same biological processes found in natural wetlands in order to collect, transform, and remove even the most harmful pollutants.

APPROVALS

The Modular Wetlands[®] System Linear has successfully met years of challenging technical reviews and testing from some of the most prestigious and demanding agencies in the nation and perhaps the world. Here is a list of some of the most high-profile approvals, certifications, and verifications from around the country.

Washington State Department of Ecology TAPE Approved

The MWS Linear is approved for General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus treatment at 1 gpm/ft² loading rate. The highest performing BMP on the market for all main pollutant categories.

California Water Resources Control Board, Full Capture Certification

The Modular Wetlands[®] System is the first biofiltration system to receive certification as a full capture trash treatment control device.

Virginia Department of Environmental Quality, Assignment

The Virginia Department of Environmental Quality assigned the MWS Linear the highest phosphorus removal rating for manufactured treatment devices to meet the new Virginia Stormwater Management Program (VSMP) regulation technical criteria.

Maryland Department of the Environment, Approved ESD Granted Environmental Site Design (ESD) status for new cons

Granted Environmental Site Design (ESD) status for new construction, redevelopment, and retrofitting when designed in accordance with the design manual.

MASTEP Evaluation

The University of Massachusetts at Amherst – Water Resources Research Center issued a technical evaluation report noting removal rates up to 84% TSS, 70% total phosphorus, 68.5% total zinc, and more.

Rhode Island Department of Environmental Management, Approved BMP

Approved as an authorized BMP and noted to achieve the following minimum removal efficiencies: 85% TSS, 60% pathogens, 30% total phosphorus, and 30% total nitrogen.

ADVANTAGES

- HORIZONTAL FLOW BIOFILTRATION
- GREATER FILTER SURFACE AREA
- PRETREATMENT CHAMBER
- PATENTED PERIMETER VOID AREA

- NO DEPRESSED PLANTER AREA
- AUTO DRAINDOWN MEANS NO MOSQUITO VECTOR

OPERATION

The Modular Wetlands® System Linear is the most efficient and versatile biofiltration system on the market, and it is the only system with horizontal flow which:

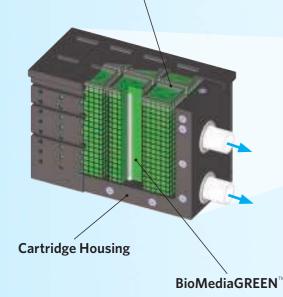
- Improves performance
- Reduces footprint
- Minimizes maintenance

Figure 1 & Figure 2 illustrate the invaluable benefits of horizontal flow and the multiple treatment stages.

PRETREATMENT 1

SEPARATION

- Trash, sediment, and debris are separated before entering the pre-filter cartridges
- Designed for easy maintenance access


PRE-FILTER CARTRIDGES

- Over 25 sq. ft. of surface area per cartridge
- Utilizes BioMediaGREEN[™] filter material
- Removes over 80% of TSS and 90% of hydrocarbons
- Prevents pollutants that cause clogging from migrating to the biofiltration chamber

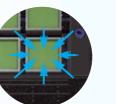
Curb Inlet

Pre-filter Cartridge

Individual Media Filters

Vertical Underdrain Manifold

1

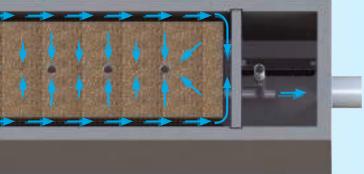

WetlandMEDIA^{TT}

Draindown Line

2

Flow Control Riser

Figure 2, Top View



PERIMETER VOID AREA

3

2x to 3x more surface area than traditional downward flow bioretention systems.

BIOFILTRATION 2

HORIZONTAL FLOW

- Less clogging than downward flow biofilters
- Water flow is subsurface
- Improves biological filtration

PATENTED PERIMETER VOID AREA

- Vertically extends void area between the walls and the WetlandMEDIA[™] on all four sides
- Maximizes surface area of the media for higher treatment capacity

WETLANDMEDIA

- Contains no organics and removes phosphorus
- Greater surface area and 48% void space
- Maximum evapotranspiration
- High ion exchange capacity and lightweight

Figure 1

DISCHARGE 3

FLOW CONTROL

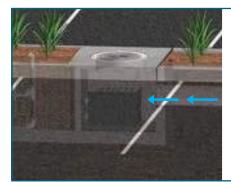
- Orifice plate controls flow of water through WetlandMEDIA[™] to a level lower than the media's capacity
- Extends the life of the media and improves performance

DRAINDOWN FILTER

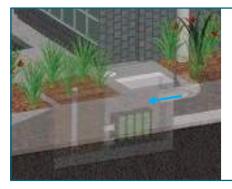
- The draindown is an optional feature that completely drains the pretreatment chamber
- Water that drains from the pretreatment chamber between storm events will be treated

CONFIGURATIONS

The Modular Wetlands[®] System Linear is the preferred biofiltration system of civil engineers across the country due to its versatile design. This highly versatile system has available "pipe-in" options on most models, along with built-in curb or grated inlets for simple integration into your storm drain design.


CURB TYPE

The Curb Type configuration accepts sheet flow through a curb opening and is commonly used along roadways and parking lots. It can be used in sump or flow-by conditions. Length of curb opening varies based on model and size.


GRATE TYPE

The Grate Type configuration offers the same features and benefits as the Curb Type but with a grated/drop inlet above the systems pretreatment chamber. It has the added benefit of allowing pedestrian access over the inlet. ADA-compliant grates are available to assure easy and safe access. The Grate Type can also be used in scenarios where runoff needs to be intercepted on both sides of landscape islands.

VAULT TYPE

The system's patented horizontal flow biofilter is able to accept inflow pipes directly into the pretreatment chamber, meaning the Modular Wetlands[®] can be used in end-of-the-line installations. This greatly improves feasibility over typical decentralized designs that are required with other biofiltration/ bioretention systems. Another benefit of the "pipe-in" design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements.

DOWNSPOUT TYPE

The Downspout Type is a variation of the Vault Type and is designed to accept a vertical downspout pipe from rooftop and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter, and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.

ORIENTATIONS

SIDE-BY-SIDE

The Side-By-Side orientation places the pretreatment and discharge chamber adjacent to one another with the biofiltration chamber running parallel on either side. This

minimizes the system length, providing a highly compact footprint. It has been proven useful in situations such as streets with directly adjacent sidewalks, as half of the system can be placed under that sidewalk. This orientation also offers internal bypass options as discussed below.

BYPASS

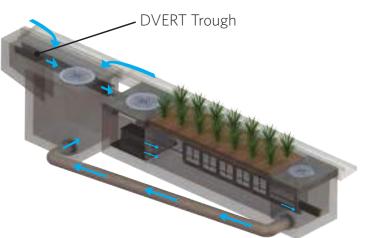
INTERNAL BYPASS WEIR (SIDE-BY-SIDE ONLY)

The Side-By-Side orientation places the pretreatment and discharge chambers adjacent to one another allowing for integration of internal bypass. The wall between these chambers can act as a bypass weir when flows exceed the system's treatment capacity, thus allowing bypass from the pretreatment chamber directly to the discharge chamber.

EXTERNAL DIVERSION WEIR STRUCTURE

This traditional offline diversion method can be used with the Modular Wetlands[®] in scenarios where runoff is being piped to the system. These simple and effective structures are generally configured with two outflow pipes. The first is a smaller pipe on the upstream side of the diversion weir - to divert low flows over to the Modular Wetlands[®] for treatment. The second is the main pipe that receives water once the system has exceeded treatment capacity and water flows over the weir.

FLOW-BY-DESIGN


This method is one in which the system is placed just upstream of a standard curb or grate inlet to intercept the first flush. Higher flows simply pass by the Modular Wetlands[®] and into the standard inlet downstream.

END-TO-END

The End-To-End orientation places the pretreatment and discharge chambers on opposite ends of the biofiltration chamber, therefore minimizing the width of the system to 5 ft. (outside dimension). This orientation is perfect for linear projects and street retrofits where existing utilities and sidewalks limit the amount of space available for installation. One limitation of this orientation is that bypass must be external.

DVERT LOW FLOW DIVERSION

This simple yet innovative diversion trough can be installed in existing or new curb and grate inlets to divert the first flush to the Modular Wetlands[®] via pipe. It works similar to a rain gutter and is installed just below the opening into the inlet. It captures the low flows and channels them over

to a connecting pipe exiting out the wall of the inlet and leading to the MWS Linear. The DVERT is perfect for retrofit and green street applications that allow the Modular Wetlands[®] to be installed anywhere space is available.

SPECIFICATIONS

FLOW-BASED DESIGNS

The Modular Wetlands[®] System Linear can be used in stand-alone applications to meet treatment flow requirements. Since the Modular Wetlands[®] is the only biofiltration system that can accept inflow pipes several feet below the surface, it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

MODEL #	DIMENSIONS	WETLANDMEDIA SURFACE AREA (sq. ft.)	TREATMENT FLOW RATE (cfs)
MWS-L-4-4	4' × 4'	23	0.052
MWS-L-4-6	4' x 6'	32	0.073
MWS-L-4-8	4' x 8'	50	0.115
MWS-L-4-13	4' x 13'	63	0.144
MWS-L-4-15	4' x 15'	76	0.175
MWS-L-4-17	4' x 17'	90	0.206
MWS-L-4-19	4' x 19'	103	0.237
MWS-L-4-21	4' x 21'	117	0.268
MWS-L-6-8	7' x 9'	64	0.147
MWS-L-8-8	8' x 8'	100	0.230
MWS-L-8-12	8' x 12'	151	0.346
MWS-L-8-16	8' x 16'	201	0.462
MWS-L-8-20	9′ x 21′	252	0.577
MWS-L-8-24	9′ x 25′	302	0.693
MWS-L-10-20	10' x 20'	302	0.693

VOLUME-BASED DESIGNS HORIZONTAL FLOW BIOFILTRATION ADVANTAGE

Box Culvert Prestorage Modular Wetlands® System Lin

The Modular Wetlands[®] System Linear offers a unique advantage in the world of biofiltration due to its exclusive horizontal flow design: Volume-Based Design. No other biofilter has the ability to be placed downstream of detention ponds, extended dry detention basins, underground storage systems and permeable paver reservoirs. The systems horizontal flow configuration and built-in orifice control allows it to be installed with just 6" of fall between inlet and outlet pipe for a simple connection to projects with shallow downstream tie-in points. In the example above, the Modular Wetlands[®] is installed downstream of underground box culvert storage. Designed for the water quality volume, the Modular Wetlands[®] will treat and discharge the required volume within local draindown time requirements.

DESIGN SUPPORT

Bio Clean engineers are trained to provide you with superior support for all volume sizing configurations throughout the country. Our vast knowledge of state and local regulations allow us to quickly and efficiently size a system to maximize feasibility. Volume control and hydromodification regulations are expanding the need to decrease the cost and size of your biofiltration system. Bio Clean will help you realize these cost savings with the Modular Wetlands[®], the only biofilter than can be used downstream of storage BMPs.

ADVANTAGES

- LOWER COST THAN FLOW-BASED DESIGN
- MEETS LID REQUIREMENTS

GN • BUILT-IN ORIFICE CONTROL STRUCTURE• WORKS WITH DEEP INSTALLATIONS

APPLICATIONS

The Modular Wetlands® System Linear has been successfully used on numerous new construction and retrofit projects. The system's superior versatility makes it beneficial for a wide range of stormwater and waste water applications - treating rooftops, streetscapes, parking lots, and industrial sites.

INDUSTRIAL

Many states enforce strict regulations for discharges from industrial sites. The Modular Wetlands® has helped various sites meet difficult EPA-mandated effluent limits for dissolved metals and other pollutants.

STREETS

Street applications can be challenging due to limited space. The Modular Wetlands[®] is very adaptable, and it offers the smallest footprint to work around the constraints of existing utilities on retrofit projects.

RESIDENTIAL

Low to high density developments can benefit from the versatile design of the Modular Wetlands[®]. The system can be used in both decentralized LID design and cost-effective end-of-the-line configurations.

PARKING LOTS

Parking lots are designed to maximize space and the Modular Wetlands'[®] 4 ft. standard planter width allows for easy integration into parking lot islands and other landscape medians.

COMMERCIAL

Compared to bioretention systems, the Modular Wetlands[®] can treat far more area in less space, meeting treatment and volume control requirements.

MIXED USE

The Modular Wetlands® can be installed as a raised planter to treat runoff from rooftops or patios, making it perfect for sustainable "live-work" spaces.

PLANT SELECTION

Abundant plants, trees, and grasses bring value and an aesthetic benefit to any urban setting, but those in the Modular Wetlands® System Linear do even more - they increase pollutant removal. What's not seen, but very important, is that below grade, the stormwater runoff/flow is being subjected to nature's secret weapon: a dynamic physical, chemical, and biological process working to break down and remove non-point source pollutants. The flow rate is controlled in the Modular Wetlands[®], giving the plants more contact time so that pollutants are more successfully decomposed, volatilized, and incorporated into the biomass of the Modular Wetlands'® micro/macro flora and fauna.

A wide range of plants are suitable for use in the Modular Wetlands[®], but selections vary by location and climate. View suitable plants by visiting biocleanenvironmental.com/plants.

INSTALLATION

The Modular Wetlands[®] is simple, easy to install, and has a space-efficient design that offers lower excavation and installation costs compared to traditional tree-box type systems. The structure of the system resembles precast catch basin or utility vaults and is installed in a similar fashion.

The system is delivered fully assembled for quick installation. Generally, the structure can be unloaded and set in place in 15 minutes. Our experienced team of field technicians is available to supervise installations and provide technical support.

MAINTENANCE

Reduce your maintenance costs, man hours, and materials with the Modular Wetlands[®]. Unlike other biofiltration systems that provide no pretreatment, the Modular Wetlands® is a self-contained treatment train which incorporates simple and effective pretreatment.

Maintenance requirements for the biofilter itself are almost completely eliminated, as the pretreatment chamber removes and isolates trash, sediments, and hydrocarbons. What's left is the simple maintenance of an easily accessible pretreatment chamber that can be cleaned by hand or with a standard vac truck. Only periodic replacement of low-cost media in the pre-filter cartridges is required for long-term operation, and there is absolutely no need to replace expensive biofiltration media.

5796 Armada Drive Suite 250 Carlsbad, CA 92008 855.566.3938 stormwater@forterrabp.com biocleanenvironmental.com