

October 8, 2019 Project No. 101125003

Ms. Angela Noah Bridge Acquisition, LLC 1600 East Franklin Avenue, Suite D El Segundo, California 90245

Subject: Results of a Subsurface Investigation

Big Lots Warehouse

12322 and 12434 East 4th Street Rancho Cucamonga, California

Dear Ms. Noah:

This report presents the results of a subsurface investigation completed at the Big Lots Warehouse property located at 12322 and 12434 East 4th Street in the city of Rancho Cucamonga, California (site; Figure 1). Work was completed in general accordance with the proposal dated August 30, 2019 between Bridge Acquisition, LLC (Bridge) and Ardent Environmental Group, Inc. (Ardent).

The site is currently used for warehouse, distribution, and retail purposes (Figure 2). Bridge is considering purchasing the site for commercial redevelopment. As part of its real estate due diligence, Bridge retained Ardent to complete a Phase I Environmental Site Assessment (ESA) for the site. Based on the results, a Former Truck Wash is located in the southwestern portion of the site that utilized an underground clarifier to treat wastewater prior to discharging to the municipal sewer system (Figure 2). Since the clarifier is an underground feature, and releases from these types of structures are typically not detected, the clarifier was considered to be a recognized environmental condition (REC). Ardent recommended completing a subsurface investigation in the vicinity of the clarifier. Groundwater has been reported in the site vicinity at depths of approximately 370 to 420 feet below ground surface (bgs).

From at least 1938 through 1975, the site and site vicinity were used for agricultural purposes (i.e. vineyards). In 1983, the southern and central portion of the site was redeveloped with the existing commercial buildings and associated parking lot. The northern portion of the site (ap-

proximately 10-acres) continued to be used for agricultural purposes (Figure 2). During completion of the Phase I ESA, there was no indication of large quantities of pesticides being used, stored, or mixed at the site. Based on this information, and the fact that the site will be used for commercial purposes, Ardent did not present the possible use of agricultural chemicals as an environmental concern to the site. Although not raised as an environmental concern, Bridge requested that soil samples be collected in the northern portion of the site to assess whether elevated concentrations of agricultural chemicals (i.e. pesticides and/or herbicides) were present.

OBJECTIVES

The objectives of the subsurface investigation were to assess whether elevated concentrations of selected chemicals were present in the vicinity of the clarifier, and assess whether elevated concentrations of agricultural chemicals were present in the northern portion of the site.

SUBSURFACE INVESTIGATION

The subsurface investigation was completed on September 4, 2019 and included drilling two soil borings (designated CL1 and CL2) next to the clarifier and collecting 20 surface samples (designated AG1 through AG20) from the agricultural land. Soil lithology generally consisted of dark yellowish brown or moderate yellowish brown, silty fine sand to fine to coarse sand with trace fine gravel. Selected soil samples were analyzed by a State-certified environmental laboratory. Boring logs are presented in Attachment A and laboratory reports are presented in Attachment B. The following presents the results of the sampling and analytical activities.

Clarifier Sampling – The three stage clarifier is located immediately east of the Former Truck Maintenance Area (Figure 3). Prior to start of the drilling activities, the clarifier was measured at a depth of approximately 8 feet bgs. Influent and effluent piping was noted as shown on Figure 3. A sample box was also observed at the southern end of the clarifier.

The soil borings were drilled to a depth of approximately 15 feet bgs using direct push drilling equipment. A continuous sample was collected throughout the boring to the total depth. Soil was inspected in the field for stains, odors, and elevated photoionization detector (PID) readings. No stained, odorous, or elevated PID readings were noted. Soil samples collected at a depth of approximately 10 feet bgs in each boring were chemically analyzed for volatile organic compounds (VOCs) and total petroleum hydrocarbons carbon

chain C_6 - C_{32} (TPHcc) in general accordance with EPA Method Nos. 8260B and 8015 (modified). Samples collected for analyses of VOCs were preserved in the field in accordance with EPA Method No. 5035. Laboratory results indicated no detectable concentrations of TPHcc or VOCs (Table 1).

Agricultural Sampling – Prior to the start of start of field work, Ardent prepared a scaled map of the area to be sampled for agricultural chemicals (Figure 4). It should be noted that organochlorine pesticides (OCPs) were banned in the United States in 1972. After this time frame, organophosphorus pesticides (OPPs) were used. Based on the longevity of agricultural land use in this portion of the site, soil samples were analyzed for both OCPs and OPPs. Arsenic, in the form of arsenical herbicides, has also been applied to agricultural lands. Based on this information, arsenic was also tested.

The agricultural sampling in the northern portion of the site was completed in general accordance with the Department of Toxic Substances Control (DTSC) Interim Guidance for Sampling Agricultural Properties (third revision), dated August 7, 2008. Based on these guidelines, 20 shallow soil samples needed to be collected throughout the 10-acre property. To obtain these samples, Ardent prepared a general grid and collected one sample from each of the grids, as shown on Figure 4. Each sample was generally collected at a depth of approximately 0.5-foot bgs using a shovel.

As per the DTSC guidelines, the samples were composited by the laboratory in five 4-point composite samples (e.g. AG1, AG2, AG3, and AG4 composited as "Composite 1;" AG5, AG6, AG7, and AG8 composited as "Composite 2;" etc.). Each composite sample (5 total) were analyzed for OCPs and OPPs in general accordance with EPA Method Nos. 8081A and 8141A, respectively. As per the DTSC guideline, one discrete soil sample from each set of four composite samples (AG2, AG5, AG10, AG13, and AG18) were chosen for analyses of arsenic in general accordance with EPA Method No. 6010B.

Laboratory results of the composite samples indicated no detectable concentrations of OPPs. With the exception of dichlorodiphenyldichloroethylene (DDE, a breakdown product of dichlorodiphenyltrichloroethane [DDT]), no detectable concentrations of OCPs were reported. DDE was reported in each composite sample at concentrations ranging from 0.004 to 0.024 milligrams per kilogram (mg/kg; Table 2). The detectable concentrations

were compared to state and federal screening levels for the protection of human health. The DTSC, Human and Ecological Risk Office (HERO), Human Health Risk Assessment Note 3, provides screening levels for soil for industrial/commercial properties based on a human health risk criteria (DTSC-SLi). The EPA also provides Regional Screening Levels for soil for industrial/commercial properties (EPA-RSLi). These very conservative guidelines are based on the protection of human health through dermal contact, inhalation, and ingestion. No DTSC-SLi values are available for DDE. As shown on Table 2, the concentrations of DDE detected at the site are well below the EPA-RSLi value of 9.3 mg/kg. Based on these results, no human health risk is present.

Laboratory results of discrete samples (AG2, AG5, AG10, AG13, and AG18) indicated concentrations of arsenic ranging from 0.441 to 0.595 mg/kg. Metals are naturally occurring. Due to the granitic nature of California geology, concentrations of arsenic typically exceed the human health risk guideline prepared by the state (0.36 mg/kg) and federal (3 mg/kg) agencies. Although the detectable concentrations did not exceed the federal screening levels, the concentrations did exceed the state agency guidelines. The DTSC recently completed a study of naturally occurring concentrations of arsenic for school sites for the Los Angeles Unified School District (LAUSD). Based on its study, the DTSC concluded that arsenic would be considered elevated at concentrations exceeding 12 mg/kg (DTSC, 2005). Based on these commonly used cleanup guidelines presented by the DTSC, laboratory results of the soil samples analyzed would be considered low and would not pose a risk to human health. Based on the depth to groundwater, low concentrations of residual chemicals, and the low mobility of DDE and arsenic in soil, there is a low likelihood that these constituents would impact groundwater.

CONCLUSIONS AND RECOMMNEDATIONS

Based on the results of a Phase I ESA, a three-stage clarifier was formerly used in the southwestern portion of the site as part of the Former Truck Wash. Two soil borings were drilled next to this feature and soil samples were obtained. No soil staining or odors were noted, and no elevated PID readings were measured. Laboratory results indicated no detectable concentrations of petroleum hydrocarbons and VOCs. Based on this information, there is a low likelihood that elevated concentrations of petroleum hydrocarbons or VOCs are present in the vicinity of the clarifier.

The northern portion of the site has historically and is currently being used for agricultural purposes. Shallow soil samples were collected from the agricultural portion of the site and analyzed for agricultural chemicals including OCPs, OPPs, and arsenic. Laboratory results indicated no detectable concentrations of OPPs, and no detectable to low concentrations of OPPs (namely DDE). Low concentrations of arsenic were also reported. The concentrations of DDE were well below state and federal guidelines for the protection of human health, and the concentrations of arsenic were well below the federal guidelines for the protection of human health and regulatory accepted background concentrations. Based on this information, there is a low likelihood that elevated concentrations of agricultural chemicals are present in the northern portion of the site.

Based on the results of the subsurface investigation, Ardent recommends no further investigations at this time. If you have any questions or comments regarding this report, please call the undersigned at your convenience.

Sincerely,

Ardent Environmental Group, Inc.

Matthew Penksaw Staff Scientist Paul A. Roberts, P.G. Principal Geologist

PAR/MP/aw

Attachments: Table 1 – Laboratory Results of Soil Sampling, Clarifier

Table 2 – Laboratory Results of Soil Sampling, Agricultural

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – Clarifier Sampling
Figure 4 – Agricultural Sampling
Attachment A – Boring Logs

Attachment B – Laboratory Reports

Distribution: (1) Addressee – via email

References

- California Department of Toxic Substances Control (DTSC), 2005, Final Report Background Metals at Los Angeles Unified School Sites Arsenic: Supplement to the DTSC Preliminary Endangerment Assessment (PEA) for evaluating background concentrations of arsenic at Los Angeles Unified School District (LAUSD) school sites, dated June 6.
- California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO), 2019, Human Health Risk Assessment (HHRA) Note Number 3, DTSC Screening Levels (DTSC-SL), dated April.
- Environmental Protection Agency (EPA) Region 9, 2019, Regional Screening Levels (EPA-RSLs), Summary Table, dated April.

TABLE 1 - LABORATORY RESULTS OF SOIL SAMPLES, CLARIFIER

		Sample Depth		TPHcc (C ₆ -C ₃₂) (mg/kg)		VOCs	
Boring ID	Date Sampled	(feet bgs)	TPHg (C ₆ -C ₁₂)	TPHd (C ₁₃ -C ₂₂)	TPHo (C ₂₃ -C ₃₂)	(mg/kg)	
CL1	9/4/2019	10	ND<10	ND<10	ND<50	ND<0.005-0.010	
CL2	9/4/2019	10	ND<10	ND<10	ND<50	ND<0.005-0.010	

Notes:

Boring ID – soil boring identification

feet bgs – feet below the ground surface

TPHcc – total petroleum hydrocarbons carbon chain C6-C32 analyzed in general accordance with EPA Method No. 8015 (modified)

TPHg – total petroleum hydrocarbons as gasoline

TPHd - total petroleum hydrocarbons as diesel fuel

TPHo - total petroleum hydrocarbons as oil

mg/kg – milligrams per kilogram

VOCs – volatile organic compounds analyzed in general accordance with EPA Method No. 8260B

ND – no detectable concentration above the shown laboratory detection limit

101125003 Tables 1

TABLE 2 - LABORATORY RESULTS OF SOIL SAMPLES, AGRICULTURAL

Sample ID	Date Sampled	Sample Depth	OPP		OCP ng/kg)	Arsenic
Sample 1D	Date Sampled	(feet bgs)	(mg/kg)	DDE	All Others	(mg/kg)
Composite 1 (AG1, AG2, AG3, AG4)	9/4/2019	0.5	ND<0.05	0.023	ND<0.001-0.020	
Composite 2 (AG5, AG6, AG7, AG8)	9/4/2019	0.5	ND<0.05	0.021	ND<0.001-0.020	
Composite 3 (AG9, AG10, AG11, AG12)	9/4/2019	0.5	ND<0.05	0.007	ND<0.001-0.020	
Composite 4 (AG13, AG14, AG15, AG16)	9/4/2019	0.5	ND<0.05	0.004	ND<0.001-0.020	
Composite 5 (AG17, AG18, AG19, AG20)	9/4/2019	0.5	ND<0.05	0.024	ND<0.001-0.020	
AG2	9/4/2019	0.5				0.485
AG5	9/4/2019	0.5				0.595
AG10	9/4/2019	0.5				0.568
AG13	9/4/2019	0.5				0.551
AG18	9/4/2019	0.5				0.441
	Regul	an Health)				
	DTSC-SLi	NA	Various	0.36		
	EPA-RSLi	9.6	Various	3		
Backgr Notes:	ound for Arsenic	NA	NA	12		

Notes:

Sample ID - soil boring identification

feet bgs - feet below the ground surface

OPP – organophosphorus pesticides analyzed in general accordance with EPA Method No. 8141A

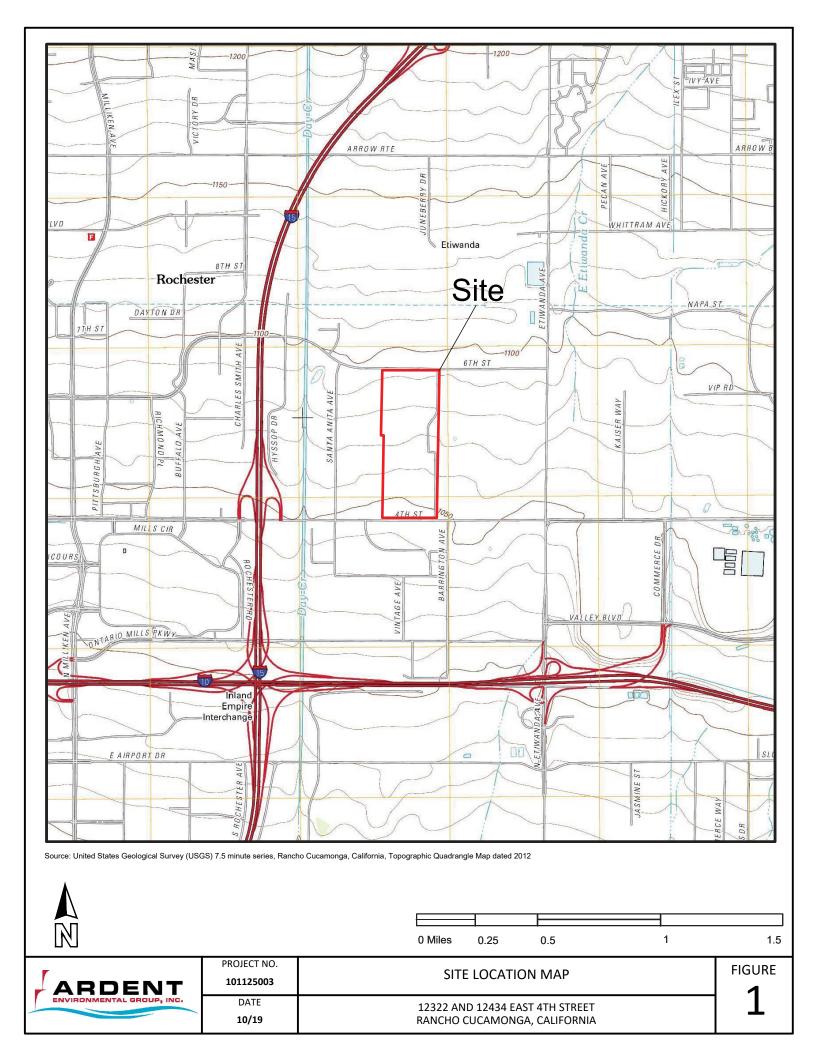
OCP - organochlorine pesticides analyzed in general accordance with EPA Method No. 8091A

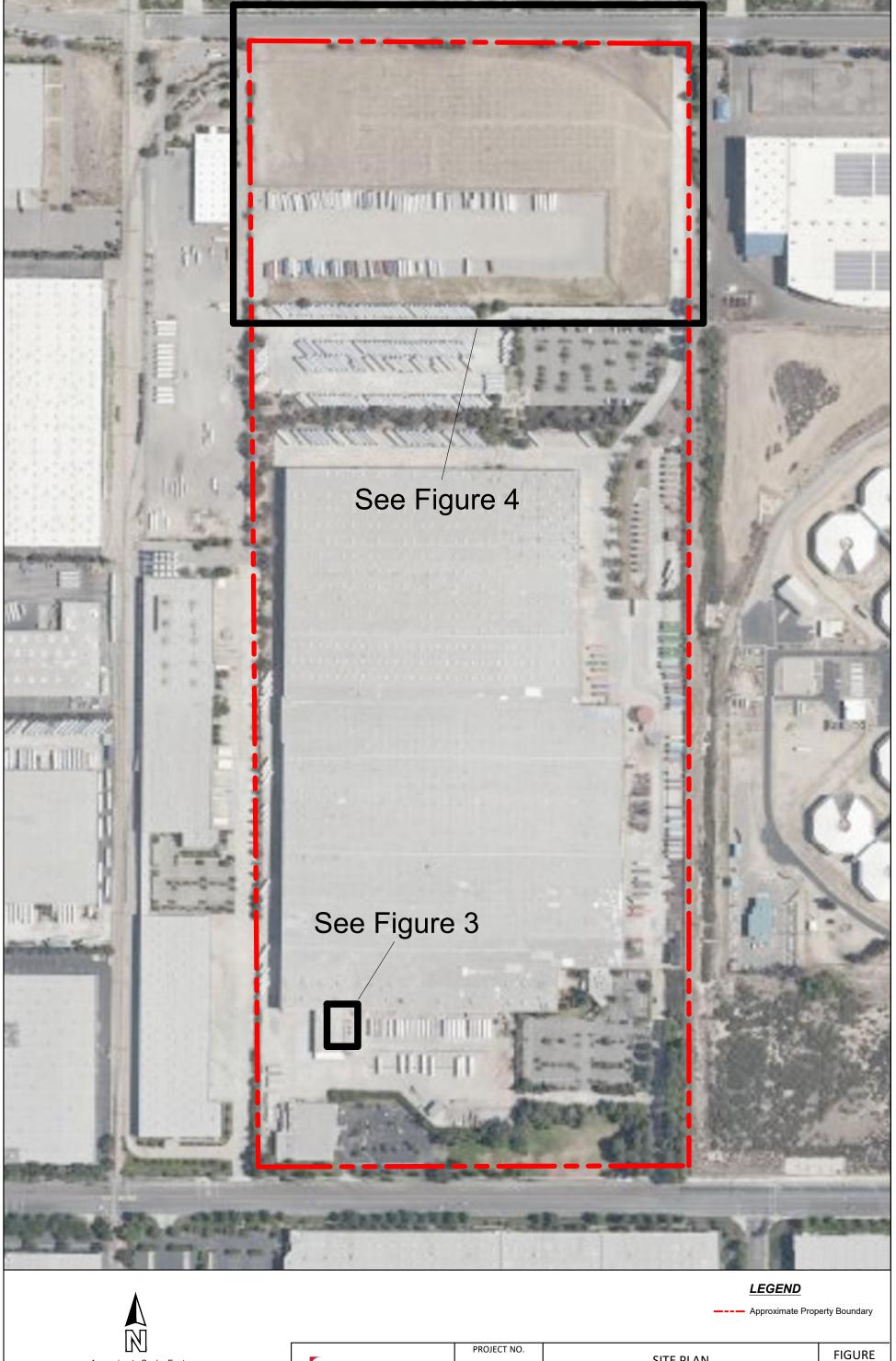
Arsenic analyzed in general accordance with EPA Method No. 6010B

mg/kg – milligrams per kilogram

DDE – dichlorodiphenyldichloroethylene

DTSC-SLi - California Department of Toxic Substances Control, Human and Ecological Risk Office (HERO), Human Health Risk Assessment (HHRA), Note 3, Screening Levels


for industrial/commercial land use, dated April 2019


EPA-RSLi - Environmental Protection Agency (EPA), Regional Screening Levels for industrial/commercial land use, dated April 2019.

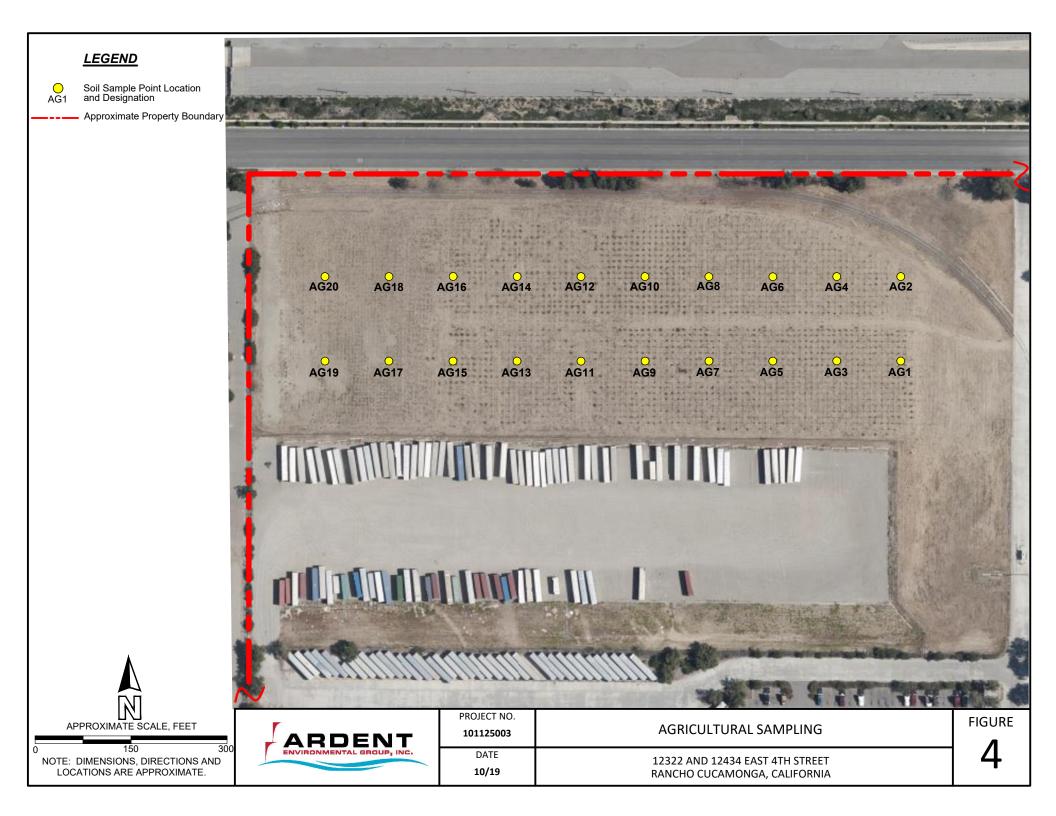
Background for Arsenic - California Department of Toxic Substances Control (DTSC), Final Report Background Metals at Los Angeles Unified School Sites - Arsenic:

Supplement to the DTSC Preliminary Endangerment Assessment (PEA) for evaluating background concentrations of arsenic at Los Angeles Unified School District (LAUSD) school sites, dated June 6, 2005

NA - not appliable/not available

ARDENT

Approximate Scale, Feet


PROJECT NO. SITE PLAN 101125003

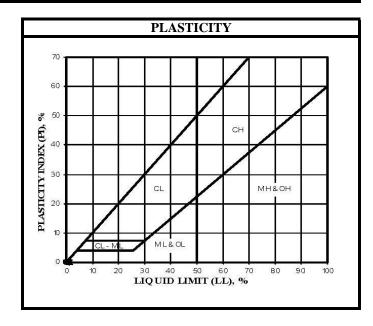
DATE

10/19

12322 AND 12434 EAST 4TH STREET RANCHO CUCAMONGA, CALIFORNIA

Warehouse Building Roll-up Door Former Truck Wash **Utility Pipeline** Influent Pipeline Clarifier • CL1 Former • CL2 Truck Maintenance Area - W ----- W -Door-Effluent **Pipeline LEGEND** Soil Boring Location and CL1 Designation -w- Water Pipeline APPROXIMATE SCALE, FEET NOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. PROJECT NO. **FIGURE CLARIFIER SAMPLING** 101125003 DATE 12322 AND 12434 EAST 4TH STREET 10/19 RANCHO CUCAMONGA, CALIFORNIA

ATTACHMENT A BORING LOGS


DEPTH (feet)	Bulk SAMPLES Driven	BLOWS/ FOOT	SAMPLE ID	ORGANIC VAPORS (ppm)	SYMBOL	CLASSIFICATION U.S.C.C.	BORING LOG EXPLANATION SHEET			
5 -		XX/XX					Bulk sample. Modified split-barrel drive sampler. No recovery with modified split-barrel drive sampler. Continuous push 2.25-inch O.D. (1.5-inch I.D.) sampler. No recovery with a continuous push sampler. Continuous push 1.5-inch O.D. (1.0-inch I.D.) sampler. Hand auger or logged soil cuttings.			
15 -							Solid line denotes actual change. Dashed line denotes approximate change. Groundwater encountered during drilling. Groundwater measured after drilling. The total depth line is a solid line that is drawn at the bottom of the boring BORING LOG			
_	EXPLANATION OF BORING LOG SYMBOLS PROJECT NO. DATE FIGURE									

U.S.C.S. METHOD OF SOIL CLASSIFICATION

MA	JOR DIVISIONS	SYMBO	L	TYPICAL NAMES
ze)			GW	Well graded gravels or gravel-sand mixtures, little or no fines
COARSE-GRAINED SOIL.S (More than 1/2 of soil > No. 200 sieve size)	GRAVELS (More than 1/2 of coarse		(†P	Poorly graded gravels or gravel-sand mixtures, little or no fines
SOILS 200 siev	fraction > No. 4 sieve size)		GM	Silty gravels, gravel-sand-silt mixtures
COARSE-GRAINED han 1/2 of soil > No.			GC	Clayey gravels, gravel-sand-clay mixtures
E-GR.			sw	Well graded sands or gravelly sands, little or no fines
DARSI n 1/2 o	SANDS (More than 1/2 of coarse		SP	Poorly graded sands or gravelly sands, little or no fines
CC re tha	fraction < No. 4 sieve size)		SM	Silty sands, sand-silt mixtures
(Mc			SC	Clayey sands, sand-clay mixtures
200			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fined sands or clayey silts
SOILS < No. 200	SILTS & CLAYS Liquid limit < 50		CL	Inorganic clays of low to medium plasticity gravelly clays, sandy clays, silty clays, lean
NED f soil size)			OL	Organic silts and organic silty clays of low plasticity
FINE-GRAINED SOILS (More than 1/2 of soil < No. sieve size)			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
INE-	SILTS & CLAYS Liquid limit > 50		СН	Inorganic clays of high plasticity, fat clays
I (Mo:			ОН	Organic clays of medium to high plasticity, organic silty clays, organic silts
HIGH	HIGHLY ORGANIC SOILS		PT	Peat and other highly organic soils

GRAIN SIZE CHART								
CLASSIFICATION	RANGE OF GRAIN SIZE							
CLASSIFICATION	U.S. Standard Sieve Size	Grain Size in Millimeters						
BOULDERS	Above 12"	Above 305						
COBBLES	12" to 3"	305 to 76.2						
GRAVEL Coarse Fine	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 73.2 to 19.1 19.1 to 4.76						
SAND Coarse Medium Fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075						
Silt & Clay	Below No. 200	Below 0.075						

Ardent Environmental Group, Inc. 1827 Capital Street, Suite 103 Corona, California 92880

BORING NUMBER CL1 PAGE 1 OF 1

				lephone: 95 x: 951-736-					
CLIEN	T Bridge Acq	uisitio	n, LLC	:		PROJECT NAME Big Lots			
PROJ	ECT NUMBER	1011	25003				East 4th Street, Rancho Cucamonga, CA		
DATE	STARTED 9/	4/19		COMF	PLETED 9/4/19	GROUND ELEVATION	HOLE SIZE 2.25-inches		
DRILL	ING CONTRA	CTOR	Core	Probe Intern	ational	GROUND WATER LEVELS:			
DRILL	DRILLING METHOD_Direct Push					AT TIME OF DRILLING			
					KED BY Paul Roberts				
	NOTES								
O DEPTH (ft)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	IPTION		
GINTIPROJECTS\101125003 WL.GPJ	CL1-5	0.0	SM	0.3	staining noted.	wn (10 YR 4/2), moist, silty fine So	AND, no petroleum hydrocarbon odor or		
GENERAL BH / SOIL GAS - GINT STD US.GDT - 9/9/19 13:47 - C:PROGRAM FILES (X86) 1			sw	13.0	(SW) Moderate yellowish brown (10 YR 5/4), moist, fine to coarse SAND with trace fine gravel, no petroleum hydrocarbon odor or staining noted. (SM) Moderate yellowish brown (10 YR 5/4), moist, silty fine SAND, no petroleum hydrocarbon odor o staining noted.				
15 h	CL1-15	0.0		15.0					
. GD.				1, 1, 1, 0, 0	No groundwater encou Bottom of borehole at	intered.			
J D U					- Dottorn of potentie at	13.0 1001.			
ν N									
<u>0</u>									
ĞĞ									
NOS									
BH/									
ERAL									
GENE		_							

Ardent Environmental Group, Inc. 1827 Capital Street, Suite 103 Corona, California 92880

BORING NUMBER CL2 PAGE 1 OF 1

Telephone: 951-736-5334 Fax: 951-736-7560									
CLIENT Bridge Acquisition, LLC							PROJECT NAME Big Lots		
ROJE	CT NUMBER	1011	125003					East 4th Street, Rancho Cucamonga, CA	
ATE S	STARTED 9/	4/19			СОМР	LETED 9/4/19	GROUND ELEVATION	HOLE SIZE 2.25-inches	
DRILLING METHOD _Direct Push						AT TIME OF DRILLING_			
.OGGE	D BY Matth	ew Pe	nksaw	/	CHECI	KED BY Paul Roberts			
O UEP'IH (ft)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRI	PTION	
				4 4 7	0.5	6 inches CONCRETE.			
5	CL2-5	0.0	SM			staining noted.		AND, no petroleum hydrocarbon odor or	
10	CL2-10	0.0	SW		9.0	(SW) Moderate yellowish brown (10 YR 5/4), moist, fine to coarse SAND with trace fine gravel, no petroleum hydrocarbon odor or staining noted. (SM) Moderate yellowish brown (10 YR 5/4), moist, silty fine SAND, no petroleum hydrocarbon odor or staining noted.			
SM S						No groundwater encou Bottom of borehole at	intered. 15.0 feet.		
	PROJECT PROJEC	PROJECT NUMBER PATE STARTED 9/ PRILLING CONTRA PRILLING METHOD OGGED BY Matth OTES STARTED 9/ PRILLING METHOD OGGED BY Matth OTES CL2-5 CL2-5 CL2-10	PROJECT NUMBER 1012 PATE STARTED 9/4/19 PRILLING CONTRACTOR PRILLING METHOD Direct OGGED BY Matthew Periotes TO (##) CL2-5 CL2-5 O.0 CL2-10 O.0	ELIENT Bridge Acquisition, LLC PROJECT NUMBER 101125003 PATE STARTED 9/4/19 PRILLING CONTRACTOR Core PRILLING METHOD Direct Push OGGED BY Matthew Penksaw HOTES CL2-10 0.0 SM CL2-10 0.0 SM SM SM	ELIENT Bridge Acquisition, LLC ROJECT NUMBER 101125003 PATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES STATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES STATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES STATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES STATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES STATE STARTED 9/4/19 SW STATE STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES SW STATE STARTED 9/4/19 SW STARTED 9/4/19 PRILLING CONTRACTOR Core Probe PRILLING METHOD Direct Push OGGED BY Matthew Penksaw POTES SW STARTED 9/4/19 SW STARTED 9/4/19 POTES SW STARTED 9/4/19 SW STARTED 9/4/19 POTES 10 10 10 10 10 10 10 10 10 10 10 10 10	ELIENT Bridge Acquisition, LLC ROJECT NUMBER 101125003 PATE STARTED 9/4/19 COMP PRILLING CONTRACTOR Core Probe International Principle of Pri	CL2-10 CCL2-15 CCL2-15 CCL2-15 CCL2-15 CCL2-15 CCL2-15 CCMPLETED 9/4/19 COMPLETED 9/4/19 CHECKED BY Paul Roberts CHECKED BY Paul Roberts CHECKED BY Paul Roberts (SM) Dark yellowish browstaining noted. SW 10.0 (SW) Moderate yellowish petroleum hydrocarbon of staining noted. SM SM SM *No groundwater encoted.	ROJECT NAME Big Lots ROJECT NUMBER 101125003 PROJECT NAME Big Lots PROJECT NAME Big Lot PROJECT N	

ATTACHMENT B LABORATORY REPORTS

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 11, 2019

Mr. Paul Roberts Ardent Environmental Group, Inc.

1827 Capital Street, #103

Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

Project: 101125003

Lab I.D.: 190904-37 through -62

Dear Mr. Roberts:

The analytical results for the soil samples, received by our laboratory on September 4, 2019, are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C6-C12	C13-C22	C23-C32	DF
CL1-10	190904-38	ND	ND	ND	1
CL2-10	190904-41	ND	ND	ND	1_
METHOD BLANK		ND	ND	ND	1_
	PQL	10	10	50	

COMMENTS

C6-C12 = GASOLINE RANGE

C13-C22 = DIESEL RANGE

C23-C32 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B QA/QC Report

Date Analyzed: 9/5/2019

Units: mg/Kg (ppm)

Matrix:

Soil/Solid/Sludge/Liquid

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 190904-2 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C10~C28 Range	0	200	212	106%	203	102%	4%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP
C10~C28 Range	200	196	98%	75-125

Analyzed and Reviewed By: ______

Final Reviewer: ____

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL

SAMPLING DATE: 09/04/19

REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19

DATE ANALYZED: 09/05/19

DATE REPORTED: 09/11/19

SAMPLE I.D.: **CL1-10** LAB I.D.: 190904-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL

SAMPLING DATE: 09/04/19

REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19

DATE ANALYZED: 09/05/19

DATE REPORTED: 09/11/19

SAMPLE I.D.: CL1-10 LAB I.D.: 190904-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

101125003 PROJECT:

MATRIX: SOIL DATE RECEIVED: 09/04/19 SAMPLING DATE: 09/04/19 DATE ANALYZED:09/05/19 REPORT TO:MR. PAUL ROBERTS DATE REPORTED: 09/11/19

SAMPLE I.D.: CL2-10 LAB I.D.: 190904-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND —	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel (951) 736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL DATE RECEIVED: 09/04/19 SAMPLING DATE: 09/04/19 DATE ANALYZED: 09/05/19 REPORT TO: MR. PAUL ROBERTS DATE REPORTED: 09/11/19

SAMPLE I.D.: CL2-10 LAB I.D.: 190904-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

METHOD BLANK REPORT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL DATE RECEIVED: 09/04/19 SAMPLING DATE: 09/04/19 DATE ANALYZED: 09/04/19 REPORT TO:MR. PAUL ROBERTS DATE REPORTED: 09/11/19

METHOD BLANK REPORT FOR LAB I.D.: 190904-38, -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE RESULT	PQL X1
ND	0.020
ND	0.005
ND	0.020
ND	0.005
ND	0.005
ND	0.005
ND	0.010
ND	0.005
	ND

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

METHOD BLANK REPORT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL DATE RECEIVED:09/04/19 SAMPLING DATE: 09/04/19 DATE ANALYZED:09/04/19 REPORT TO: MR. PAUL ROBERTS DATE REPORTED: 09/11/19

METHOD BLANK REPORT FOR LAB I.D.: 190904-38, -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5035/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM SAMPLE RESULT PARAMETER POL X1 1,3-DICHLOROPROPANE 0.005 ND 2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 CIS-1,3-DICHLOROPROPENE ND 0.005 TRANS-1,3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE 0.005 ND 2-HEXANONE ND 0.020 0.005 HEXACHLOROBUTADIENE ND ISOPROPYLBENZENE ND 0.005 0.005 4-ISOPROPYLTOLUENE ND 4-METHYL-2-PENTANONE (MIBK) ND 0.020 ND METHYL tert-BUTYL ETHER (MTBE) 0.005 METHYLENE CHLORIDE ND 0.010 0.005 NAPHTHALENE ND N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 1,1,2,2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) 0.005 ND TOLUENE ND 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 0.005 TRICHLOROFLUOROMETHANE ND 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 0.005 O-XYLENE

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

COMMENTS PQL = PRACTICAL QUANTIES PQL = NON-DETECTED OR BELOW THE PQL AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

Machine:

9/4-5/2019

C

Matrix:

Solid/Soil/Liquid

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

190904-73 MS/MSD

opined editiple man ii-i.		10000 1001							
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.038	76%	0.042	84%	8%	75-125	0-20
Chlorobenzene	0	0.050	0.041	82%	0.044	88%	6%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.040	79%	0.041	82%	3%	75-125	0-20
Toluene	0	0.050	0.039	78%	0.042	84%	6%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.039	78%	0.042	84%	6%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.050	100%	75-125
Chlorobenzene	0.050	0.056	112%	75-125
Chloroform	0.050	0.052	104%	75-125
1,1-Dichlorothene	0.050	0.054	108%	75-125
Ethylbenzene	0.050	0.057	114%	75-125
o-Xylene	0.050	0.055	110%	75-125
m,p-Xylene	0.100	0.114	114%	75-125
Toluene	0.050	0.051	102%	75-125
1,1,1-Trichloroethane	0.050	0.053	106%	75-125
Trichloroethene (TCE)	0.050	0.052	104%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	190904-2	190904-3	190904-4	190904-5	190904-6	190904-7
Dibromofluoromethane	50.0	70-130	105%	112%	111%	112%	112%	114%	117%
Toluene-d8	50.0	70-130	97%	95%	96%	99%	98%	96%	953%
4-Bromofluorobenzene	50.0	70-130	98%	100%	102%	100%	101%	100%	99%
			×				/		
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			190904-8	190904-9	190904-10	190904-11	190904-38	190904-41	190904-65
Dibromofluoromethane	50.0	70-130	114%	117%	114%	112%	119%	116%	119%
Toluene-d8	50,0	70-130	98%	98%	97%	98%	98%	98%	94%
4-Bromofluorobenzene	50.0	70-130	99%	98%	99%	99%	100%	101%	95%
Curre note Decours	I sulvasus	LACD W DC	0/00	0/ 00	0/00	0/00	0/ 00	0/80	***
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			190904-73	190904-31	190904-32	190904-33			
Dibromofluoromethane	50.0	70-130	117%	110%		112%			
Toluene-d8	50.0	70-130	100%	100%		101%	1		
4-Bromofluorobenzene	50.0	70-130	101%	97%		97%			

* = Surrogate fail due to matrix interference;	LCS, MS, MSD are in cont	rol therefore the ana	lysis is in control
--	--------------------------	-----------------------	---------------------

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

(0)

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

101125003 PROJECT:

MATRIX: SOIL DATE RECEIVED: 09/04/19 SAMPLING DATE: 09/04/19DATE ANALYZED: 09/06/19 REPORT TO: MR. PAUL ROBERTS DATE REPORTED:09/11/19

EPA 6010B FOR TTLC-ARSENIC

UNITS: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	ARSENIC RESULT	DF
AG2	190904-44	0.485	1
AG5	190904-47	0.595	1
AG10	190904-52	0.568	1
AG13	190904-55	0.551	1
AG18	190904-60	0.441	1
Method Blank	525	ND	1

POL 0.30

COMMENTS:

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = DF X PQL

ND = Non-Detected or below the Actual Detection Limit

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

STLC Limit for Arsenic = 5 PPM

* = STLC analysis <u>is</u> recommended (if marked)

*** = The concentration exceeds the TTLC Limit @ 500 PPM, therefore the sample is defined as hazardous waster as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by:_

0A/OC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 9/6/2019	9/6/2019							Unit	Unit: mg/Kg(ppm)	pm)
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec MSD	% RPD
Arsenic(As)	190905-22	50.0	102	PASS	1.90	50.0	44.2	85%	44.4	85%	%0
Lead(Pb)	190905-22	50.0	107	PASS	1.91	50.0	42.0	%08	42.2	81%	%0
Nickel(Ni)	190905-22	50.0	101	PASS	5.98	50.0	49.9	88%	50.5	89%	1%
ANALY	ANALYSIS DATE.: 9/6/2019	9/6/2019									
Analysis	Spk.Sample ID	CONC.	%Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec % RPD MSD	% RPD

MS/MSD Status:

%

%88

0.110

89%

0.125

PASS

66

0.125

190905-35

Mercury (Hg)

Analysis	%MS	%MSD	%TCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Nickel(Ni)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20

ANALYST: FINAL REVIEWER:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 1 (AG1/AG2/AG3/AG4 Composite)

LAB I.D.: 190904-43/44/45/46 (Composite)

Organophosphorus Pesticides Analysis Method: EPA 8141A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	. 1
Bolstar (Sulprofos)	ND	0.05	1
Chlorpyrifos	ND	0.05	1
Coumaphos	ND	0.05	1
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1
Diazinon	ND	0.05	1
Dichlorvos	ND	0.05	1
Disulfoton	ND	0.05	1
Ethoprop	ND	0.05	1
Fensulfothion	ND	0.05	1
Fenthion	ND	0.05	1
Merphos	ND	0.05	1
Methyl Parathion	ND	0.05	1
Mevinphos	ND	0.10	1
Naled	ND	0.10	1
Phorate	ND	0.05	1
Ronnel	ND	0.05	1
Tetrachlorvinphos (Stirophos)	ND	0.05	- : 1::
Tokuthion (Prothiofos)	ND	0.05	- 1
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 2 (AG5/AG6/AG7/AG8 Composite)

LAB I.D.: 190904-47/48/49/50 (Composite)

Organophosphorus Pesticides Analysis Method: EPA 8141A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	1
Bolstar (Sulprofos)	ND	0.05	1
Chlorpyrifos	ND	0.05	1.
Coumaphos	ND	0.05	1
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1
Diazinon	ND	0.05	1
Dichlorvos	ND	0.05	1
Disulfoton	ND	0.05	1
Ethoprop	ND	0.05	1
Fensulfothion	ND	0.05	1
Fenthion	ND	0.05	1
Merphos	ND	0.05	1
Methyl Parathion	ND	0.05	1
Mevinphos	ND	0.10	1
Naled	ND	0.10	1
Phorate	ND	0.05	1
Ronnel	ND	0.05	1
Tetrachlorvinphos (Stirophos)	ND	0.05	1
Tokuthion (Prothiofos)	ND	0.05	1
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY: _______CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 3 (AG9/AG10/AG11/AG12 Composite)

LAB I.D.: 190904-51/52/53/54 (Composite)

Organophosphorus Pesticides Analysis

Method: EPA 8141A
Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	1
Bolstar (Sulprofos)	ND	0.05	1
Chlorpyrifos	ND	0.05	1
Coumaphos	ND	0.05	1
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1
Diazinon	ND	0.05	1
Dichlorvos	ND	0.05	1
Disulfoton	ND	0.05	1
Ethoprop	ND	0.05	1
Fensulfothion	ND	0.05	1
Fenthion	ND	0.05	1
Merphos	ND	0.05	1
Methyl Parathion	ND	0.05	1
Mevinphos	ND	0.10	1
Naled	ND	0.10	1
Phorate	ND	0.05	1
Ronnel	ND	0.05	1
Tetrachlorvinphos (Stirophos)	ND	0.05	1
Tokuthion (Prothiofos)	ND	0.05	1
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL/ DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 4 (AG13/AG14/AG15/AG16 Composite)

LAB I.D.: 190904-55/56/57/58 (Composite)

Organophosphorus Pesticides Analysis Method: EPA 8141A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	1
Bolstar (Sulprofos)	ND	0.05	1
Chlorpyrifos	ND	0.05	1
Coumaphos	ND	0.05	1
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1
Diazinon	ND	0.05	1
Dichlorvos	ND	0.05	1
Disulfoton	ND	0.05	1
Ethoprop	ND	0.05	1.
Fensulfothion	ND	0.05	1
Fenthion	ND	0.05	1
Merphos	ND	0.05	1
Methyl Parathion	ND	0.05	1
Mevinphos	ND	0.10	1.
Naled	ND	0.10	1
Phorate	ND	0.05	1
Ronnel	ND	0.05	- 1
Tetrachlorvinphos (Stirophos)	ND	0.05	1
Tokuthion (Prothiofos)	ND	0.05	1 1 c
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED:09/04/19 DATE EXTRACTED: 09/05/19

MATRIX: SOIL SAMPLING DATE: 09/04/19 DATE ANALYZED: 09/05/19 DATE REPORTED: 09/11/19 REPORT TO: MR. PAUL ROBERTS

SAMPLE I.D.: Composite 5 (AG17/AG18/AG19/AG20 Composite)

LAB I.D.: 190904-59/60/61/62 (Composite)

Organophosphorus Pesticides Analysis Method: EPA 8141A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	1_
Bolstar (Sulprofos)	ND	0.05	1_
Chlorpyrifos	ND	0.05	11_
Coumaphos	ND	0.05	1_
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1_
Diazinon	ND	0.05	1_
Dichlorvos	ND	0.05	1_
Disulfoton	ND	0.05	1_
Ethoprop	ND	0.05	1
Fensulfothion	ND	0.05	1_
Fenthion	ND	0.05	1
Merphos	ND	0.05	1_
Methyl Parathion	ND	0.05	1_
Mevinphos	ND	0.10	1_
Naled	ND	0.10	1_
Phorate	ND	0.05	1_
Ronnel	ND	0.05	1_
Tetrachlorvinphos (Stirophos)	ND	0.05	1_
Tokuthion (Prothiofos)	ND	0.05	1_
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

METHOD BLANK REPORT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel (951) 736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19 MATRIX: SOIL DATE EXTRACTED: 09/05/19 SAMPLING DATE: 09/04/19 DATE ANALYZED: 09/05/19 REPORT TO: MR. PAUL ROBERTS DATE REPORTED: 09/11/19

METHOD BLANK REPORT FOR LAB I.D.: 190904-43/44/45/46 (COMPOSITE), 190904-47/48/49/50 (COMPOSITE), 190904-51/52/53/54 (COMPOSITE), 190904-55/56/57/58 (Composite), 190904-59/60/61/62 (Composite)

> Organophosphorus Pesticides Analysis Method: EPA 8141A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Azinphos Methyl	ND	0.05	1
Bolstar (Sulprofos)	ND	0.05	1
Chlorpyrifos	ND	0.05	1
Coumaphos	ND	0.05	1
Demeton-O	ND	0.05	1
Demeton-S	ND	0.05	1
Diazinon	ND	0.05	1
Dichlorvos	ND	0.05	1
Disulfoton	ND	0.05	1
Ethoprop	ND	0.05	_ 1
Fensulfothion	ND	0.05	1
Fenthion	ND	0.05	1
Merphos	ND	0.05	1
Methyl Parathion	ND	0.05	1
Mevinphos	ND	0.10	1
Naled	ЙD	0.10	1
Phorate	ND	0.05	1
Ronnel	ND	0.05	1
Tetrachlorvinphos (Stirophos)	ND	0.05	1
Tokuthion (Prothiofos)	ND	0.05	1
Trichloronate	ND	0.05	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

EPA 8141A QA/QC Report

Matrix:

Solid/Soil/Sludge/Liquid

Date Analyzed:

9/5-6/2019

%REC

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

190904-43~46 MS/MSD

Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Ethoprop	0.00	0.250	0.311	124%	0.307	123%	1%	0-30%	40-140
Phorate	0.00	0.250	0.298	119%	0.291	116%	2%	0-30%	40-140
Ronnel	0.00	0.250	0.323	129%	0.317	127%	2%	0-30%	40-140
Bolstar	0.00	0.250	0.297	119%	0.283	113%	5%	0-30%	40-140

Lab Control Spike (LCS) Recovery:

Analyte	spk conc	LCS	% REC	ACP %REC
Ethoprop	0.250	0.311	124%	40-140
Phorate	0.250	0.302	121%	40-140
Ronnel	0.250	0.320	128%	40-140
Bolstar	0.250	0.299	120%	40-140

ACP%

	M-BLK	190904-43~46	190904-47~50	190904-51~54	190904-55~58	190904-59~62	
40-140	129%	131%	120%	122%	119%	117%	
40-140	107%	132%	111%	117%	111%	110%	
			71				
%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
		-					
	40-140	40-140 129% 40-140 107%	40-140 129% 131% 40-140 107% 132%	40-140 129% 131% 120% 40-140 107% 132% 111%	40-140 129% 131% 120% 122% 40-140 107% 132% 111% 117%	40-140 129% 131% 120% 122% 119% 40-140 107% 132% 111% 117% 111%	40-140 129% 131% 120% 122% 119% 117% 40-140 107% 132% 111% 117% 111% 110%

%REC

Surrogate Recovery	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.						
Tributyl Phosphate						
Triphenyl Phosphate						

%REC

S.R. = Sample Result

Surrogate Recovery

* = Surrogate fail due to matrix interference (If Marked)

spk conc = Spike Concentration

Note: LCS, MS, MSD are in control therefore results are in control.

%REC

%REC

%REC

%REC

%REC = Percent Recovery

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By: ______

ay

Final Reviewer:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/06/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 1 (AG1/AG2/AG3/AG4 Composite)

LAB I.D.: 190904-43/44/45/46 (Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	4
alpha-BHC	ND	0.001	4
beta-BHC	ND	0.001	4
gamma-BHC (Lindane)	ND	0.001	4
delta-BHC	ND	0.001	4
alpha-Chlordane	ND	0.001	4
gamma-Chlordane	ND	0.001	4
Total Chlordane (Technical)	ND	0.005	4
4,4'-DDD	ND	0.001	4
4,4'-DDE	0.023	0.001	4
4,4'-DDT	ND	0.001	4_
Dieldrin	ND	0.001	4
Endosulfan I	ND	0.001	4
Endosulfan II	ND	0.001	4
Endosulfan Sulfate	ND	0.001	4
Endrin	ND	0.001	4
Endrin Aldehyde	ND	0.001	4
Endrin Ketone	ND	0.001	4
Heptachlor Epoxide	ND	0.001	4
Heptachlor	ND	0.001	4
Methoxyclor	ND	0.001	4
Toxaphene	ND	0.020	4

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19

SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE ANALYZED: 09/06/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 2 (AG5/AG6/AG7/AG8 Composite)

LAB I.D.: 190904-47/48/49/50 (Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	5
alpha-BHC	ND -	0.001	5
beta-BHC	ND	0.001	5
gamma-BHC (Lindane)	ND	0.001	5
delta-BHC	ND	0.001	5
alpha-Chlordane	ND	0.001	5_
gamma-Chlordane	ND	0.001	5_
Total Chlordane (Technical)	ND	0.005	5_
4,4'-DDD	ND	0.001	5_
4,4'-DDE	0.021	0.001	5
4,4'-DDT	ND	0.001	5
Dieldrin	ND	0.001	5
Endosulfan I	ND	0.001	5_
Endosulfan II	ND	0.001	5
Endosulfan Sulfate	ND	0.001	5_
Endrin	ND	0.001	5_
Endrin Aldehyde	ND	0.001	5
Endrin Ketone	ND	0.001	5_
Heptachlor Epoxide	ND	0.001	5
Heptachlor	ND	0.001	5_
Methoxyclor	ND	0.001	5_
Toxaphene	ND	0.020	5

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

DATE RECEIVED: 09/04/19
MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/06/19
DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 3 (AG9/AG10/AG11/AG12 Composite)

LAB I.D.: 190904-51/52/53/54 (Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	2
alpha-BHC	ND	0.001	2
beta-BHC	ND	0.001	2
gamma-BHC (Lindane)	ND	0.001	2
delta-BHC	ND	0.001	2
alpha-Chlordane	ND	0.001	2
gamma-Chlordane	ND	0.001	2
Total Chlordane (Technical)	ND	0.005	2
4,4'-DDD	ND	0.001	2
4,4'-DDE	0.007	0.001	2
4,4'-DDT	ND	0.001	2
Dieldrin	ND	0.001	2
Endosulfan I	ND	0.001	2
Endosulfan II	ND	0.001	2
Endosulfan Sulfate	ND	0.001	2
Endrin	ND	0.001	2
Endrin Aldehyde	ND	0.001	2
Endrin Ketone	ND	0.001	2
Heptachlor Epoxide	ND	0.001	2
Heptachlor	ND	0.001	2
Methoxyclor	ND	0.001	2
Toxaphene	ND	0.020	2

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:_

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel (951) 736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL

SAMPLING DATE: 09/04/19 REPORT TO: MR. PAUL ROBERTS DATE RECEIVED: 09/04/19

DATE EXTRACTED: 09/05/19 DATE ANALYZED: 09/06/19

DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 4 (AG13/AG14/AG15/AG16 Composite)

LAB I.D.: 190904-55/56/57/58 (Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	2
alpha-BHC	ND	0.001	2
beta-BHC	ND	0.001	2
gamma-BHC (Lindane)	ND	0.001	_2
delta-BHC	ND	0.001	2
alpha-Chlordane	ND	0.001	2
gamma-Chlordane	ND	0.001	2
Total Chlordane (Technical)	ND	0.005	2
4,4'-DDD	ND	0.001	2
4,4'-DDE	0.004	0.001	2
4,4'-DDT	ND	0.001	2
Dieldrin	ND	0.001	2
Endosulfan I	ND	0.001	2
Endosulfan II	ND	0.001	2
Endosulfan Sulfate	ND	0.001	2
Endrin	ND	0.001	2
Endrin Aldehyde	ND	0.001	2
Endrin Ketone	ND	0.001	2
Heptachlor Epoxide	ND	0.001	2
Heptachlor	ND	0.001	2
Methoxyclor	ND	0.001	2
Toxaphene	ND	0.020	2

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:_

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel(951)736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL DATE EXTRACTED: 09/04/19
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS DATE REPORTED: 09/11/19

SAMPLE I.D.: Composite 5 (AG17/AG18/AG19/AG20 Composite)

LAB I.D.: 190904-59/60/61/62 (Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	5
alpha-BHC	ND	0.001	5
beta-BHC	ND	0.001	5
gamma-BHC (Lindane)	ND	0.001	5
delta-BHC	ND	0.001	5
alpha-Chlordane	ND	0.001	5
gamma-Chlordane	ND	0.001	5
Total Chlordane (Technical)	ND	0.005	5
4,4'-DDD	ND	0.001	5
4,4'-DDE	0.024	0.001	5
4,4'-DDT	ND	0.001	5
Dieldrin	ND	0.001	5
Endosulfan I	ND	0.001	5
Endosulfan II	ND	0.001	5
Endosulfan Sulfate	ND	0.001	5
Endrin	ND	0.001	5
Endrin Aldehyde	ND	0.001	5
Endrin Ketone	ND	0.001	5
Heptachlor Epoxide	ND	0.001	5
Heptachlor	ND	0.001	5
Methoxyclor	ND	0.001	5
Toxaphene	ND	0.020	5

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:
CAL-DHS ELAP CERTIFICATE No.: 1555

METHOD BLANK REPORT

CUSTOMER: Ardent Environmental Group, Inc.

1827 Capital Street, #103, Corona, CA 92880

Tel (951) 736-5334 E-Mail: PRoberts@ArdentEnv.com

PROJECT: 101125003

MATRIX: SOIL
SAMPLING DATE: 09/04/19
REPORT TO: MR. PAUL ROBERTS

DATE RECEIVED: 09/04/19
DATE EXTRACTED: 09/05/19
DATE ANALYZED: 09/05/19
DATE REPORTED: 09/11/19

METHOD BLANK REPORT FOR LAB I.D.: 190904-43/44/45/46 (COMPOSITE), 190904-47/48/49/50(COMPOSITE), 190904-51/52/53/54 (COMPOSITE), 190904-55/56/57/58(Composite), 190904-59/60/61/62(Composite)

Organochlorine Pesticides Analysis

Method: EPA 8081A

Unit: mg/Kg = Milligram Per Kilogram = PPM

PARAMETER	SAMPLE RESULT	PQL	DF
Aldrin	ND	0.001	1
alpha-BHC	ND	0.001	1
beta-BHC	ND	0.001	1
gamma-BHC (Lindane)	ND	0.001	1
delta-BHC	ND	0.001	1
alpha-Chlordane	ND	0.001	1
gamma-Chlordane	ND	0.001	1
Total Chlordane (Technical)	ND	0.005	1
4,4'-DDD	ND	0.001	1
4,4'-DDE	ND	0.001	- 1
4,4'-DDT	ND	0.001	1 ₅
Dieldrin	ND	0.001	- o 1:
Endosulfan I	ND	0.001	1
Endosulfan II	ND	0.001	1
Endosulfan Sulfate	ND	0.001	1
Endrin	ND	0.001	1
Endrin Aldehyde	ND	0.001	1
Endrin Ketone	ND	0.001	1
Heptachlor Epoxide	ND	0.001	1
Heptachlor	ND	0.001	1
Methoxyclor	ND	0.001	1
Toxaphene	ND	0.020	1

COMMENTS:

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = PQL X DF

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

DATA REVIEWED AND APPROVED BY:

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

EPA 8081 QA/QC Report

Matrix:

Soil/Solid/Liquid(Oil)

Date Analyzed: <u>9/5-6/2019</u>

Unit:

mg/Kg (ppm)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:

190903-1 MS/MSD

Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %REC
Gamma-BHC	0.000	0.00500	0.00524	105%	0.00532	106%	2%	0-20%	70-130
Aldrin	0.000	0.00500	0.00548	110%	0.00552	110%	1%	0-20%	70-130
4,4-DDE	0.000	0.00500	0.00562	112%	0.00556	111%	1%	0-20%	70-130

Lab Control Spike (LCS) Recovery:

Analyte	spk conc	LCS	% REC	ACP %REC		
Gamma-BHC	0.00500	0.00541	108%	75-125		
Aldrin	0.00500	0.00563	113%	75-125		
4,4-DDE	0.00500	0.00580	116%	75-125		
Dieldrin	0.00500	0.00535	107%	75-125		

Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	190904-12A&B	190904-13A&B	190904-14A&B	190904-15A&B	190903-1	190904-43~4
Tetra-chloro-meta-xylene	50-150	108%	104%	115%	112%	108%	109%	101%
Decachlorobiphenyl	50-150	95%	85%	87%	89%	83%	87%	92%
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		190904-47~50	190904-51~54	190904-55~58	190904-59~62			
Tetra-chloro-meta-xylene	50-150	112%	108%	112%	107%			
Decachlorobiphenyl	50-150	97%	91%	95%	92%			
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.								
Tetra-chloro-meta-xylene	50-150							
Decachlorobiphenyl	50-150							

S.R. = Sample Result

* = Surrogate fail due to matrix interference (If Marked)

spk conc = Spike Concentration

Note: LCS, MS, MSD are in control therefore results are in control.

%REC = Percent Recovery

ACP %RPD = Acceptable Percent RPD Range

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By:

(M)

Final Reviewer:

AG1 462 463 AGS AGG AGT O Dispose of O Return to Client O Store (30 Days) Instructions for Sample Storage After Analysis: Composite 2= AG9, 4610, AG11, Dan POSite 1= Misc./PO# Compress = COMMENTS 49 V 160° Made But San 101125003 Sampler's Signature: Project Name/ID: **Analysis Required** GloH Sale Williame: 1242 418 48 49 0 8 0100 8 0100 8 0100 X X X Date & Time: Date & Time: Uoc 3 8 260 Tel: 951-736-5334 × X Paul Roberts rozim Yes 2 **PRESERVATION** 2 Yes 2 Project Contact: 1 26/6 NSAC-Fax/Email: *TEMPERATURE* No. OF CONTAINERS 7 T Soil XIRTAM Received by: Received by: Received by: SAMPLING DATE TIME SHS NA 550 906 **Turnaround Time** 910 920 930 0 1 Week (Standard Other: 1827 Capital Stroct, #108 Same Day 0 48 Hours 0 72 Hours 0 24 Hours b!/h/b Company Name:
RYCOLENT FRINTINGMENTAL GROWD. Conna. CA 92880 7 17 20 7 Enviro-Chem, Inc. Laboratories Tel: (909) 590-5905 Fax: (909) 590-5907 -Toholo! Relinquished by: Mathw Kenthaw LAB ID CA-DHS ELAP CERTIFICATE #1555 1214 E. Lexington Avenue, Compaches O CONDO AC CAMPS/ACD Pomona, CA 91766 SAMPLE ID Relinquished by: Relinquished by: CL2-15 City/State/Zip: CL2-10 CL 1-15 5-270 01-170 CL1-5 A62 Address: A63 AGS AG7 A66 A69 AGY AG8 AGI

CHAIN OF CUSTODY RECORD

WHITE WITH SAMPLE · YELLOW TO CLIENT

Page of

Date:

O Dispose of O Return to Client O Store (30 Days) 3444 Instructions for Sample Storage After Analysis: AGB, AGIM, AGIS AG13 AGIY, AGIS. Misc./PO# COMMENTS Composit 4= Composit 5 AGIG AG16 101125003 Sampler's Signature るをある Project Name/ID: O Other: **Analysis Required** Date & Time: Date & Time: 41418 6908 11808 Paul Roberts Non **PRESERVATION** Project Contact: P8810-Fax/Email: *ARUTARA MATURE* <u>==</u> No. OF CONTAINERS Soil **XINTAM** Received by: Received by: Received by: SAMPLING DATE TIME \$ **Turnaround Time** 0 1 Week (Standard) O Same Day O 24 Hours O 48 Hours 9/4/19 Company Name: AVOIRMY SAVVINDAMMENTAI GIOULD 0 72 Hours Address: 1827 Capital struct, #108 CONDIA. CA 92880 Relinquished by: Mathem Wenkyaw Enviro-Chem, Inc. Laboratories Tel: (909) 590-5905 Fax: (909) 590-5907 LABID CA-DHS ELAP CERTIFICATE #1555 1214 E. Lexington Avenue, Pomona, CA 91766 Composits Camposit 4 - Composite 3 SAMPLEID City/State/Zip: Relinquished by: Relinquished by: AG20-AGIO AG 14 AC17 AG 13 AGIS AG17. A611 AG16 AG 18 AG19

CHAIN OF CUSTODY RECORD

WHITE WITH SAMPLE · YELLOW TO CLIENT

Page 2 of