Appendix M Transportation Assessment

CITY OF LOS ANGELES INTER-DEPARTMENTAL CORRESPONDENCE

4141 N. Whitsett Avenue DOT Case No. SFV20-109676 DOT Project ID No. 49868

Date: June 11, 2021

To: Susan Jimenez, Administrative Clerk Department of City Planning Ciccuite Condens From: Vicente Cordero, Transportation Engineer

Department of Transportation

Subject: TRANSPORTATION ASSESSMENT FOR THE HARVARD-WESTLAKE RIVER PARK PROJECT LOCATED AT 4141 NORTH WHITSETT AVENUE (CPC-2020-1511-VCU-SPR-WDI/ENV-2020-7765-CE)

The Department of Transportation (LADOT) has reviewed the transportation assessment prepared by Fehr & Peers dated April 2021, for the proposed Harvard-Westlake River Park Project located at 4141 North Whitsett Avenue in the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Planning Area of the City of Los Angeles. On July 30, 2019, pursuant to Senate Bill (SB) 743 and the recent changes to Section 15064.3 of the State's California Environmental Quality Act (CEQA) Guidelines, the City of Los Angeles adopted vehicle miles traveled (VMT) as the criteria by which to determine transportation impacts under CEQA. Based on the VMT thresholds established in LADOT's Transportation Assessment Guidelines (TAG), the proposed project would not result in a significant transportation impact on VMT as described below.

DISCUSSION AND FINDINGS

A. Project Description

The proposed project consists of the development of two athletic fields with bleacher seating and field lights, an 80,249 square-foot multi-purpose gymnasium, a 52-meter swimming pool with seating, and eight tennis courts with seating. The project would also include ancillary field buildings, a pool house, and small security kiosk. The existing golf and tennis facilities will be demolished, however the on-site putting green and clubhouse with café would be retained and rehabilitated. The project would also provide approximately 5.4 acres of publicly accessible open space and landscaped trails connecting to the adjacent Zev Yaroslavsky Los Angeles River Greenway (Zev Greenway) and on-site landscaped areas, water features, and recreational amenities. A total of 503 vehicular parking spaces would be provided within a single-level underground parking structure. A small surface parking area for 29 additional vehicular parking spaces would also be provided. Vehicular access will be provided via two driveways, one directly along Whitsett Avenue (northern driveway) and one as an extension of the Valleyheart Drive stub located south of LAFD Station 78 (southern driveway). The project is expected to be completed by the year 2025.

B. Freeway Safety Analysis

Per the Interim Guidance for Freeway Safety Analysis memorandum issued by DOT May 1, 2020 to address Caltrans safety concerns on freeways, the study addresses the project's effects on vehicle queuing on freeway ramps. Such an evaluation measures the project's potential to lengthen a forecasted ramp queue and create speed differentials between vehicles exiting the freeway ramps and vehicles operating on the freeway mainline. The evaluation included in the assessment identified the number of project trips expected to be added to nearby freeway ramps serving the project site. It was determined that the Project would add 25 or more peak hour trips to the following freeway off-ramp:

• US-101 Southbound Off-ramp & Coldwater Canyon Avenue (3-4 PM peak hour)

Analysis of the US-101 Southbound off-ramp to Coldwater Canyon Avenue was conducted using Synchro software and HCM 2016. It was determined by the analysis that the queue length on this ramp is not projected to exceed ramp capacity in the Future Base or Future plus Project scenarios during the 3-4PM peak hour. Assuming an average queue storage length of 25 feet per car, the project is projected to add one car length to the queue in the 3-4 PM peak hour. The addition is not projected to exceed the ramp storage and therefore is not projected to have a significant safety impact for the US-101 Southbound off-ramp to Coldwater Canyon Avenue and no further analysis is required for this off-ramp. The off-ramp queuing analysis is shown in **Attachment A.**

C. CEQA Screening Threshold

A trip generation analysis was conducted to determine if the project would exceed the net 250 daily vehicle trips (DVT) screening threshold set forward by the TAG. The assessment concluded that implementation of the project would not result in a significant transportation impact. The traffic analysis included further discussion on the screening of the following CEQA transportation thresholds:

1. Threshold T-1: Conflicting with Plans, Programs, Ordinances, or Policies

The transportation assessment evaluated the proposed project for conformance with the adopted City's transportation plans and policies for all travel modes. It was determined by the analysis that the project does not obstruct or conflict with the City's development policies and standards for the transportation system.

2. Threshold T-2.1: Causing Substantial Vehicle Miles Traveled

The assessment projected that the project would generate a net increase in 770 daily vehicle trips on a typical school day during the academic year and an estimated net decrease of 2,098 daily VMT. The analysis concluded that the project would not result in a significant VMT impact as discussed below under Section C, CEQA Transportation Analysis.

3. Threshold T-3: Substantially Increasing Hazards Due To a Geometric Design Feature or Incompatible Use

The project does not involve any design features that are unusual for the area or any incompatible use.

D. CEQA Transportation Analysis

The new LADOT Transportation Assessment Guidelines (TAG) provide instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds. The project is classified under two different uses. First, it would be classified as an education facility since it

will be owned and operated by Harvard-Westlake School, and will be utilized by their students, employees, and associated programs in conjunction with their operation as a private high school. Second, the community use component of the project would be classified as a community-serving recreational facility and is therefore exempt from the VMT analysis.

The total net daily VMT for all trips to and from the project site on an average day were estimated to assess the VMT impact of the project. The project's total daily VMT was calculated by multiplying the estimated average number of daily trips by an average trip length for each group of users of the site. The different populations that will make trips to and from the project site include Harvard-Westlake students, visiting teams, spectators, and employees. Trips generated by potential Harvard-Westlake Special Events were averaged across the academic year. The net total VMT takes credit for existing VMT associated with the existing Weddington Golf & Tennis course. The project is projected to generate an estimated net decrease of 2,098 daily VMT. The analysis concluded that the project would result in less than significant impacts on VMT and VMT in cumulative conditions. A copy of the VMT estimates are provided in **Attachment B.**

E. Access and Circulation

The access and circulation analysis included a delay study of the following intersections using the Highway Capacity Manual (HCM) methodology which calculates the amount of delay per vehicle based upon the intersection traffic volumes, lane configurations, and signal timing:

- Whitsett Avenue & Moorpark Avenue
- Whitsett Avenue & Valley Spring Lane
- Whitsett Avenue & Ventura Boulevard
- Coldwater Canyon Avenue & Moorpark Avenue
- Coldwater Canyon Avenue & Ventura Boulevard

Existing and Cumulative Traffic Conditions

Due to the COVID-19 pandemic, counts could not be collected at these intersections in 2020 since they would not reflect typical conditions. Weekday PM peak period turning movement counts were collected in April 2019 at the three study intersections along Whitsett Avenue. Historical LADOT counts from 2017 were used for two intersections along Coldwater Canyon Avenue, and an ambient growth factor of 0.6% per year was applied to adjust the traffic volumes to reflect the baseline year 2020. To evaluate the potential impacts of the project on opening year (2025), estimates of future traffic conditions were developed for the study area to forecast future conditions. An ambient growth factor of 0.6% per year was applied to adjust the baseline year (2020) traffic volumes to reflect the effect of ambient growth by the year 2025.

Under the HCM methodology, level of service (LOS) at signalized and unsignalized intersections is defined based on the delay experienced per vehicle. The results for the Year 2020 Baseline, Opening (2025) No Project, and Opening (2025) Plus Project Conditions delay and LOS for the study intersections are shown in **Attachment C**.

Residential Street Cut-Through Analysis

The objective of the residential street cut-through analysis is to determine potential increases in average daily traffic volumes on designated Local Streets, as classified in the City's General Plan that can be identified as cut-through trips generated by the project. The analysis was conducted on the following four local residential street segments near the project site:

- 1. Valley Spring Lane Between Babcock Ave and Whitsett Ave
- 2. Valley Spring Lane Between Whitsett Ave and Wilkinson Ave
- 3. Woodbridge Street Between Babcock Ave and Whitsett Ave
- 4. Woodbridge Street Between Whitsett Ave and Wilkinson Ave

The traffic study indicated that the project is not projected to create an excessive burden on any of the street segments in neither the Non-Event Scenario nor the Special Event Scenario. The projected increase in weekday two-way daily volumes as a result of the project is below the impact threshold of 120 trips as shown in **Attachment D.**

DOT finds that the transportation assessment adequately evaluated potential project-related delays and level of service at the studied intersections.

PROJECT REQUIREMENTS

A. CEQA-Related Mitigation

There are no CEQA related requirements required for this project.

B. Non-CEQA-Related Requirements and Considerations

To comply with transportation and mobility goals and provisions of adopted City plans and ordinances, the applicant should be required to implement the following:

1. Construction Impacts

DOT recommends that a construction worksite traffic control plan be submitted to DOT's Citywide Temporary Traffic Control Section for review and approval prior to the start of any construction work. Refer to <u>https://ladot.lacity.org/businesses/temporary-traffic-control-plans</u> to determine which section to coordinate review of the worksite traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that construction related traffic be restricted to off-peak hours to the extent possible.

2. Highway Dedication and Street Widening Requirements

The project does include additions or new construction along Whitsett Avenue, designated as an Avenue II, but it is on a property with more restrictive zoning than R2. The land use designation is A1-1XL-RIO (River Improvement Overlay District). Therefore, the project is not subject to dedication requirements.

The applicant should check with the Bureau of Engineering's Land Development Group to determine if there are any other applicable highway dedication, street widening, and/or sidewalk requirements for this project.

3. Parking Requirements

The traffic study indicated that a total of 532 vehicle parking spaces will be provided, including 503 spaces in a subterranean parking garage and 29 surface parking spaces. Additionally, a total of 100 bicycle parking spaces are proposed at various locations within the project site, including 72 spaces at grade and 28 spaces below grade. The applicant should check with the Department of Building and Safety on the number of Code-required parking spaces needed for the project.

4. Driveway Access and Circulation

Vehicular access would be provided to the project site via two driveways, one northern driveway directly along Whitsett Avenue and one southern driveway as an extension of the Valleyheart Drive stub located south of LAFD Station 78. Both driveways would provide access to the subterranean parking structure with 503 parking spaces. Access for passenger loading would be provided via the southern driveway, which would lead to a turnaround designed to accommodate buses, shuttles, and automobiles, as well as the surface lot with 29 parking stalls. There will be no driveway access from Valley Spring Lane or from Bellaire Avenue. The proposed driveway access and circulation are illustrated in **Attachment E**.

Several pedestrian entry gates would be provided along Whitsett Avenue and Valley Spring Lane to provide access for pedestrians and bicyclists (although only the pedestrian entrances along Whitsett Avenue would provide access to the interior of the Project Site). Off-site from the Project Site, the Project would also provide improvements to the segment of Valleyheart Drive south of LAFD Station 78 and to portions of the Zev Greenway adjacent to the Project Site and would install ADA accessible pedestrian ramps leading to the Zev Greenway at Coldwater Canyon Avenue and connecting the Project Site to the Zev Greenway.

The review of this study does not constitute approval of the existing driveway dimensions, access, and circulation scheme with regard to this project. Those elements require separate review and approval and should be coordinated with LADOT's Valley Planning Coordination Section (6262 Van Nuys Boulevard, Room 320, @ 818-374-4699). To minimize and prevent last-minute design changes, the applicant should contact LADOT before the commencement of building or parking layout design efforts, for driveway width and internal circulation requirements. New driveways should be Case-2, designed with a recommended width of 30 feet for two-way operations, or 16 feet for one-way operations, or to the satisfaction of LADOT.

4. Development Review Fees

Section 19.15 of the LAMC identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact Sheila Ahoraian of my staff at (818) 374-4690.

Attachments

J:\Projects\SFV\49868-4141 Whitsett-RiverPark

cc: Jessica Fugate, Council District 2
 Claudia Rodriguez, DCP Valley Planning
 Steve Rostam, DOT East Valley District
 Ali Nahass, BOE Valley District
 Quyen Phan, BOE Land Development Group
 Ribeka Toda, Fehr & Peers Transportation Consultants

5

Attachment A Freeway Off-Ramp Queuing

				FRE	RVARD-WES EWAY OFF- BASE (2025)		UEING ANA	LYSIS	5				
		Max					Future	Base Cond	litions	Future p	lus Projec	t Conditions	
Ramp	Cross Street	Length		Ramp Capacity by Movement at Off- Ramp Terminus Intersection			3-4 PM 95th Percentile Queue		Queue Exceeds			Queue Length Increase (car	Potential Safety Issue? [c]
		(ft)	Lane	Movement	Length [a]		Queue (ft)	Max (ft)	Storage?	Queue (ft)	Max (ft)	lengths) [b]	
US-101 SB Off-Ramp	Coldwater Canyon Avenue	800	64	Left Left/Through/Right Right	270 800 270	Signal	177 75 58	177	No	177 83 78	177	1	No
a] Ramp leng point	ths determined ba	ased on sca	led dis	stances from on-line a	ierial photog	raphs. Per L	ADOT guidar	ice, max le	ngth is mea	asured from t	he termina	al intersection to	the gore

(b) Assumes an average storage length per car of 25 feet.

[c] If a proposed project adds two or more car lengths to a ramp queue that extends to the freway maineline, then the location must be tested for safety issues.

Attachment B **VMT Results**

				D-WESTLAK	ILE 10 E RIVER PARK P TION ESTIMATE								
	Daily	3 P\$4 -	4 PM Peak Hou	r Trips	5 PMI - 6 PM Peak Hour Trips								
	(Non-Event				N	on-Event Scenari	0	Spe	pecial Event Scenario				
Land Uses	Day) ⁵	Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total			
HW Athletic Use	446	108	19	127	48	107	155	0	0	0			
HW Special Events	0	Ø	0	0	0	0	C	50	500	550			
Community Use ⁹	1,248	17	17	34	17	17	3.4	17	17	34			
mployees	98	5	5	10	5	20	25	5	20	25			
iubtotal	1,792	130	41	171	70	144	214	72	537	609			
xisting Use Adjustment	1,022	-55	-48	-103	-54	-71	- 125	-54	-71	- 125			
Net New Trips	770	75	-7	68	16	73	89	18	466	484			

The new trips associated with HW Athletics is shown in Appendix H.

2. The new trips associated with HW Special Events is shown in Appendix H.

3. The trip estimates for the community uses are based on rates in the ITE Trip Generation Manual, 10th Edition. The peak hour trips are estimated based on the Tennis Courts land use (LU 490) because only the tennis courts will be open to the public during the peak hour periods when Harvard-Westlake is using the other facilities. The divily trips are estimated based on the Recreational Community Center land use (LU 495), subtracting the portion of the daily trips that occur between 3-8 PM, when the site will not be open to the public, based on the time-of-day distribution data in Appendix A of the Recreation chapter of the manual

4. The existing use at the site is Weddington Golf and Tennis. The trips were counted at the site on Tuesday, February 12, 2019.

5. The daily trips represent the average daily trips on a typical school day during the academic year.

Table 4: Net Total Daily VMT Estimate

Population Group	Average Daily Trip Generation	Average One-Way Trip Length (miles)	Daily VMT
Project			
HW Shuttles	58	1.5	87
HW Private Vehicles ¹	43 (inbound)	1.5 (inbound)	65
HW Other	132	12.9	1,703
Employees	98	13.3	1,303
HW Special Events	60 ²	12.9	774
Total Daily VMT			3,932
Existing Use Credit			
Weddington Golf & Tennis	-1,022	5.9	-6,030
Existing VMT Credit			-6,030
Net Total Daily VMT			
Net Total Daily VMT			-2,098

Note: Additional information regarding the methodology used to estimate trip generation for each of the populations, and the resultant estimated trips, is provided in Chapter 4.2.

¹ Only the inbound trips are included in the VMT estimate for the HW private vehicles because the outbound trip lengths were found to be the same as the existing outbound trip length for student vehicles leaving the Upper School to return home ² Annual Special Event trips averaged across academic year weekdays.

Attachment C Summary of Delay and Levels of Service (LOS)

TABLE 9 HARVARD-WESTLAKE RIVER PARK PROJECT YEAR 2020 BASELINE CONDITIONS INTERSECTION LEVELS OF SERVICE									
NO.	Intersection	Peak Hour	Baseline	(2020)					
NO.	Intersection	Peak Hour	Delay (sec/veh)	LOS					
1	Whitsett Avenue & Moorpark Ave	3-4 PM	35.8	D					
1	Whitsett Avenue & Moorpark Ave	5-6 PM	33.5	С					
2	Whiteett Avenue R. Valley Caving Long	3-4 PM	21.0	С					
2	Whitsett Avenue & Valley Spring Lane	5-6 PM	22.8	С					
3	Whitsett Avenue & Ventura Boulevard	3-4 PM	30.9	С					
2	vvintsett Avenue & ventura boulevard	5-6 PM	31.8	С					
4	Colductor Conven Avenue & Meanarth Ave	3-4 PM	32.4	С					
4	Coldwater Canyon Avenue & Moorpark Ave	5-6 PM	38.9	D					
5	Coldwater Canvon Avenue & Venture Revieward	3-4 PM	61.9	E					
2	Coldwater Canyon Avenue & Ventura Boulevard	5-6 PM	53.3	D					

Summary of Delay and Levels of Service (LOS)

		Opening Ye	w (2525) No	Project	Opening Tear (2020) Plus Project Special Event Scienario						95 th P	lan constila ⁻¹		Project Contributes t	
	Study Intersection	Intersection LDS (3-4 PM/ 5-6	Directo	ynal LOS	Intersection LDS () 4 PM/5-6 PM)		enal LOS	Movement?	Storage Length	Opening Tear (2025) No Project		Pice P	rear (2025) merct int Scenario	Unint	ngtable Namp ^a
		PMI	54PM	5-6 PM	4 P36(2-6 P14)	14.PM	5-6 PM			3-4 PM	STAPM	1-4 PM	SHEPM	3-4 PM	344
			£	D		E	D	EBL.	150	125	500	125	125		
			<u> </u>	D C	E	C	EBR	2,525	700	625 50	675 75	600 50		10	
			F	F		C F	F	WBL	100	75	150	150	125	x >	
			c	d		c	c	WBT	950	425	425	425	423	10	
1	Whitsett Ave &	D/D	8	8	D/D	8	B	WBR	50	50	79	\$Ø	75	e	
	Moorpark St	5,5	Ċ	c	0,2	C	C	NBL	75	125	375	125	150		
			C C	C C		C C	<u>с</u>	NBR	1,250	275	350	275	350 ()	<u> </u>	
			C	D		C	D	581	75	100	150	100	150		
			B	8		5	В	SBT	225	200	200	200	200	4	
			8	8		8	В	SBR	0	0	6	Ó	0	4	
			8	F		F	F	EBL	100	25	25	25	25	*	
			F	F		F	F B	EBR	100	25 25	25 25	25	25 25	s. E	8
	·		р F	F		ų Į	F	WBL	100	25	25	25	25	2	
			F	F		ŧ	F	78W	100	25	25	25	25	.4	
2	Whitsett Ave & Valley Spring Ln ³	C/D	В	С	C/D	ē	С	转移政	50	29	25	25	25	17	
		0	A	A	00	A	A	NBL	1000	25	25	25	25	-	
			A	A .		A	A	NBT NBR	1000	с е	U N		H		-
			8	- 9.		B	5	SBL	500	25	25	25	25		
			A.	A		A	A	SBT	500						
			÷.,	-		10	s.	SBR	50	~	- di	i.	ē	3	1
		-	F	F C	-	F	F	EBL	100 2.656	200	225 425	250	225 400	4	
		ŀ	C	C	ŀ	C	C	EBR	50	400	100	100	100	a.	2
		ŀ	D	D	ŀ	D	10	WBL	156	75	50	75	50		
			D	Ø.		D	F	WBT	1,025	550	625	\$50	625	8	r.
3	Whitsett Ave & Ventura Blvd	D/D	3	В	DVD	ß	В	WBR	50	175	200	200	200	8	
		-/-	D	D	-	D	D	NBL	29	125	125	125	125	-	
		ŀ	D	A D	-	A 0	A 0	NBT NBR	175	200	200	200	225	-10	-4
	E	ŀ	D	D		D	D	SBL	350	125	125	150	150		
			C	В		C	C	Sat	350	125	125	125	125	18	4
			8	B		Ø	B	SBR	50	125	125	125	200	e.	
			D	Ø		D	D	EBL	125	129	100	125	100	α	ŝ.
	í – – – – – – – – – – – – – – – – – – –	H	C	C	-	C	C	EBT	925	475	475	475	500 50		¢
		-	B	8 D	-	B D	B	EBR WBL	100	25	50	25	100	-	E E
			c l	č	F	c	c	WBT	2,525	500	475	475	475	-	¢
4	Coldwater Canyon Avz &	D/D	c	C	D/E	c	C	WBR	100	75	γs	75	75	*	×
*	Moorpark St	0/0	D	Ð	Urc	D	E	NBL	25	150	150	150	175	al.	2
		-	с	- C	-	D	F	NBT	1,850	525	525	550	600	e	3
		ŀ	D	C a	F	E F	F	NBR SBL	75	G 175	250	0 200	0. 250	-	
		ŀ	D	F D		D	D	581	275	425	425	425	475		
			0	D	H	D	D	SBR	0	0	D	0	0		é
			F	6		F	F	181	150	475	375	475	375		2
			Ŧ	Po.		F	÷.	EBT	700	\$75	575	\$75	575	Z	D
		-	A,	A: F	L L	A E	A F	EBR	50	75	75	75	75	е т	
		-	E D	D D	F	E D	F	WBL WBT	200	100	425	125 425	135 425	e e	1
	Coldwater Canyon Ave &	17.40	c	C	E F	c	D	WBR	100	100	75	100	125	- 19	
ð -	Ventura Bivd	F/E	£	f	F/E	E	E	NBL	100	375	400	375	375	-	~
			С	C		С	C	NBT	375	325	375	350	400	1.	10
		Ļ	C	C	F	C	C	NBR	325	150	125	150	125	~	120
		-	F D	f D	F	F D	F D	SBL SBT	350	250 325	250 325	250 325	250 325	se	
			D	D	-	D	D	SBT SBR	1,850 0	0	0	0	0	<u> </u>	1

Attachment C (cont'd) Summary of Delay and Levels of Service (LOS)

	11	NTERSECTIO		D-WESTLA	BLE 11B KE RIVER P ND QUEUE		and the second sec	ENARIO		
			Opening Year (2025) No Project		Year (2025) Imject – ent Scenario		Storaige	95th Ferc	emile Queue	Project
	Study Intersection	Intersection LOS (S=6 PM)	105		Directional LOS	Movement	Length	Opening Year (2025) No Project	Opening Year (2025) Plus Project - Coartal Fauer Cranarie	Unaccept Quesaing
		2.112	S-6 PM	And a	5-6 PM	181	150	5161PM	5:6 PM 125	5-6 PM
			D		D	EBT	2.525	625	525	
			e	1	C	202	50	50	50	
			F	1	F	VM3t	100	150	150	1
			C		С	WBT	950	425	425	4
¥	Whitsett Ave & Moorpark St	D	B	D	2	特別的設	50	75	23	1
			C		D	NBL	75	175	200	2
			C C		C C	NBT NBR	1,250	350 D	350	
			D		D	SBL	75	150	150	
			8		B	SBT	225	200	200	6
			в		B	SBR	0	0	0	
			F		F	EBL	100	25	25	1
			10		F	EBT	100	25	25	
			В		В	EBR	30	25	25	4
			F		F	WBL	100	25	25	1
			F		F	WBT	100	25	25	٤
2	Whitsett Ave & Valley Spring Ln3	D	<u> </u>	D	C	WBR	50	25	25	<u>ę-</u>
			A A		A A	NBL	1000	25	25	÷ S
					8	NBR	1000			
			3		ß	SBL	600	25	25	2
			A		4	SBT	600		1	é.
					~	SBR	50		di.	÷.
		-								
	1	1 1	F		5	EBL	100	225	225	3
			C	ŀ	D	SET	2.650	425	400	1
			C	t	C	EBR	50	100	100	4
			D	ľ	Ð	WBL	150	50	50	2
		[0		F	WBT	1,025	625	625	۰.
3	Whitsett Ave & Ventura Blvd	D	9	E	8	WBR	50	200	200	1.0
			D	-	E	NBL	25	125	125	5
			A	ł	A	16M	175	200	225	
			D	H	D	M9R SBL	350	0	175	
		1 1	8	ŀ	B	SBL S81	350	125	1/5	- 10
			8	ł	C	SBR	50	125	450	r.
			D		D	EBL	125	100	100	\$
			c	ŀ	C	EBT	925	475	500	
		t	B	F	8	EBR	100	50	50	
		1	D	F	ē.	WBL	150	190	100	÷
		1 2	С	F	C .	WBT	2,525	475	475	r
	Coldwater Canyon Ave & Moorpark St	0	С	F	C	WBR	100	75	75	14
			D		E	NBL	75	150	200	
			C	F	F	NBT	1,850	525	775	
			3	F	F	NBR	0	0	0	41
		1 F	F D	-	F D	SBL	275	250 425	275 475	4. 7
			D	H	0	SBR	0	0	4/5	2
			3		F	581	150	375	375	
		1 F	F	F	F	EBT	700	575	575	*
			A	F	A	EBR	50	75	75	
		t	~	-	1	WBL	200	125	125	-1-
			F			W8T	2,650	425	450	2
			F D	F	F					
	Coldwater Canyon Ave & Ventura Rivel		F D C	E	D	WBR	100	75	275	
	Coldwater Canyon Ave & Ventura Blvd	(6)	F D C	E	D E	WBR NBL	100 100	400	375	8
	Coldwater Canyon Ave & Ventura Blvd	(6)	F D C F C	E	D E C	WBR NBL NBT	100 100 375	400 375	375 400	
	Coldwater Canyon Ave & Ventura Blvd	(1)	F D C F C	E	D E C C	WBR NBL NBT NBR	100 100 375 325	400 375 125	375 400 125	5 C
	Coldwater Canyon Ave & Ventura Blvd		F D C C C S	E	D E C	WBR NBL NBT NBR SBL	100 100 375 325 350	400 375 125 250	375 400 125 250	5 - - -
	Coldwater Canyon Ave & Ventura Blvd		F D C F C	E -	D E C C	WBR NBL NBT NBR	100 100 375 325	400 375 125	375 400 125	5 C

Attachment D

Residential Street Cut-Through Analysis

TABLE 14 HARVARD-WESTLAKE RIVER PARK PROJECT NEIGHBORHOOD STREET IMPACT ANALYSIS – OPENING YEAR PLUS PROJECT ANALYSIS												
	Weekday	Two-Way	With Project - Non-Event Scenario						With Project	t - Special E	vent Scenario	
Street Segment	Baseline (2020)	Opening Year (2025) No Project	Project Trips	Opening Year (2025) Plus Project	ALC: COMPANY OF	Evaluation Criteria	Excessively Burdened?		Opening Year (2025) Plus Project	Project % Increase	Evaluation Criteria ¹	Excessively Burdened?
Valley Spring Lane	910	935	15	953	1.60%	120 Trips	NO	23	961	2.40%	120 Trips	NO
Between Babcock Ave and Whitsett Ave						120 1100						
Valley Spring Lane			10			120 Trips	NO	10			120 Trips	NO
Between Whitsett Ave and Wilkinson Ave ²			10			120 11105	140	I.V.	_		120 11,00	
Woodbridge Street			25			2.20 M	NO	40			120 Trips	NO
Between Babcock Ave and Whitsett Ave ²			25			120 Trips	NO	49			120 mps	NU
Woodbridge Street			10			120 Trips	NO	10			120 Trips	NO
Between Whitsett Ave and Wilkinson Ave ² 1 Uses City of Los Angeles evaluation criteria for re	cidential street	commente			terre a state	14 March						
a costa city or cos migeres evaluation criteria for te	CHARLING AN ADVISION OF A DATA STATE STATE OF A DATA STATE STATE OF A DATA STATE S	เลยนูก คยุ(ค.ร.										

2. Baseline counts were not available at these locations due to COVID-19. Therefore, the most restrictive evaluation criteria (threshold of adding 120 project trips to the segment) was used for these locations.

Attachment E Project Site Plan

Harvard-Westlake River Park Project

Transportation Assessment Draft

Prepared for: Harvard-Westlake School

Project Location:

4141 Whitsett Avenue Studio City, CA 91604

Assessor Parcel Numbers: 2375-018-020 and Portion of APN 2375-018-903 Los Angeles River Parcel 276

APRIL 2021

LA19-3193.02

Fehr / Peers

Table of Contents

1. Introduction	1
1.1 Project Description	1
1.2 Transportation Assessment Scope	3
1.3 Organization of Transportation Assessment	6
2. Environmental Setting	7
2.1 Existing Conditions	7
Study Area	7
Existing Street System	7
Transit Lines	10
Existing Bicycle and Pedestrian Facilities	14
2.2 Cumulative Conditions	16
Planned Bicycle Facilities	16
Related Projects	16
3. CEQA Transportation Assessment	. 19
3.1 Plans, Programs, Ordinances and Policies Review	19
3.2 Vehicle Miles Traveled Analysis	22
Impact Criteria	22
Impact Analysis	22
Summary	25
3.3 Geometric Design Feature Review	26
3.4 Freeway Safety Analysis	28
Methodology	28
Analysis	29
4. Non-CEQA Transportation Assessment	. 32
4.1 Pedestrian, Bicycle, and Transit Access	32
4.2 Project Access, Safety, and Circulation Evaluation	38
Study Analysis Locations	38
Level of Service Methodology	38
Analysis Scenarios	42
Baseline Level of Service	43
Project Traffic	45
Opening Year Traffic Volumes	53

Opening Year Operational Analysis	55
4.3 Site Access Evaluation	59
Project Driveways	
Passenger Loading Evaluation	62
Potential Corrective Actions	63
4.4 Project Construction	64
Anticipated Construction Activity	64
Construction Period Evaluation Criteria	66
Construction Analysis	67
4.5 Residential Street Cut-Through Analysis	70
Neighborhood Street Evaluation Criteria	70
Opening Year Plus Project Analysis	71
5. Summary and Conclusions	73

Appendices

Appendix A: Memorandum of Understanding
Appendix B: Transportation Analysis Guidelines Screening Responses and Supporting Analysis
Appendix C: Plans, Programs, Ordinances and Policies Review
Appendix D: Substantially Increasing Hazards due to a Geometric Design Feature Review
Appendix E: Synchro Queuing Reports
Appendix F: Count Sheets
Appendix G: LOS Analysis Sheets
Appendix H: Peak Hour Traffic Volumes and Lane Configurations
Appendix I: Driveway LOS Analysis Sheet

List of Figures

Figure 1: Project Site Map	4
Figure 2: Project Site Plan	
Figure 3: Public Transit	
Figure 4: Existing and Proposed Bikeways	15
Figure 5: Related Projects Map	17
Figure 6. Pedestrian Destinations and Infrastructure Inventory.	
Figure 7: Study Intersections	
Figure 8. Trip Distribution Maps	50

List of Tables

Table 1: TAG Screening Criteria Issue Areas	3
Table 2: Public Transit Service	11
Table 3: Related Projects Land Use	18
Table 4: Net Total Daily VMT Estimate	24
Table 5: Freeway Off-Ramp Queueing Analysis Future Base (2025) Plus Project Scenario	31
Table 6: Pedestrian Amenities Summary	37
Table 7. Study Locations	40
Table 8: LOS Thresholds for Signalized and Unsignalized Intersections	41
Table 9: Baseline Conditions Intersection Levels of Service	44
Table 10: Trip Generation Estimates	49
Table 11: Opening Year LOS and Queue Lengths	57
Table 12. Project Driveway LOS and Queuing.	61
Table 13: Construction Evaluation	69
Table 14: Residential Street Analysis	72

1. Introduction

This Transportation Assessment (TA) documents the assumptions, methodologies, and findings of a study conducted by Fehr & Peers to evaluate the potential transportation impacts of the proposed project (the Project). The area proposed for the Project consists of a 16.1-acre (701,428 square foot) parcel, owned by the School (the Property), and located at 4141 Whitsett Avenue, and a 1.1-acre (47,916 square foot) parcel the School leases from Los Angeles County (Leased Property) (portion of Assessor Parcel Number [APN] 2375-018-903), which collectively comprise the 17.2-acre (749,344 square foot) project site (Project Site).

This TA was conducted to support the analysis of transportation within an Environmental Impact Report (EIR) being prepared for the Project, and to otherwise meet Los Angeles Department of Transportation (LADOT) requirements in accordance with LADOT's *Transportation Assessment Guidelines* (TAG).¹

1.1 Project Description

The Project would occupy the majority of the block (except Los Angeles Fire Department [LAFD] Fire Station 78 located in the southeast corner of the block and portions of areas adjacent to the Los Angeles River) bounded by Valley Spring Lane to the north, Whitsett Avenue to the east, the Los Angeles River to the south, and Bellaire Avenue to the west. The Project Site is located within the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan area of the City of Los Angeles (City). The adjacent land uses are residential land uses to the west, north, and east, and the Los Angeles River to the south. **Figure 1** shows the location of the Project Site in the context of the surrounding street system. Regional access to the Project Site is provided by the Ventura Freeway (US-101), with interchanges approximately 1.2 miles to the northeast (Laurel Canyon Boulevard) and 1.3 miles to the northwest (Coldwater Canyon Avenue).

The Project as analyzed in this TA involves the redevelopment of the approximately 17.2-acre Project Site for use as an athletic and recreational facility for Harvard-Westlake School (also referred to as the School) and for shared use with community members. The majority of the Project Site, 16.1 acres, is currently occupied by Weddington Golf & Tennis, a nine-hole, 27-par golf course and tennis facility and associated surface parking of 89 stalls. The Project includes the development of two athletic fields with bleacher seating and field lights, an 80,249-square-foot multi-purpose gymnasium, a 52-meter swimming pool with seating, and eight tennis courts with seating. The Project would also include ancillary field buildings, a pool house, and small security kiosk. These facilities would also be available for community use when not in use by the School. The existing on-site putting green and clubhouse with café would be retained and rehabilitated and would be open to the community. The Project would also provide approximately 5.4 acres of publicly accessible open space and landscaped trails connecting to the adjacent Zev Yaroslavsky Los Angeles River Greenway (Zev Greenway) and on-site landscaped areas, water features, and recreational amenities.

¹ LADOT, Transportation Assessment Guidelines, July 2020.

The Project would include 503 vehicular parking spaces within a single-level underground parking structure. A small surface parking area for 29 additional vehicular parking spaces would also be provided. Bike parking will also be provided, including 72 spaces at grade and 28 spaces below grade (100 spaces total) at various locations within the Project Site.

The Project's Site Plan is presented in **Figure 2**. Vehicular access would be provided to the Project Site via two driveways, one directly along Whitsett Avenue (north driveway) and one as an extension of the Valleyheart Drive stub located south of LAFD Station 78 (south driveway). Both driveways would provide access to the subterranean parking structure with 503 parking spaces. Access for passenger loading would be provided via the south driveway, which would lead to a turnaround designed to accommodate buses, shuttles, and automobiles, as well as to a surface lot with 29 parking stalls. There will be no driveway access from Valley Spring Lane or from Bellaire Avenue. Several pedestrian entry gates would be provided along Whitsett Avenue and Valley Spring Lane to provide access for pedestrians and bicyclists (although only the pedestrian entrances along Whitsett Avenue would provide access to the interior of the Project Site).

Off-site from the Project Site, the Project would also provide improvements to the segment of Valleyheart Drive south of LAFD Station 78 and to portions of the Zev Greenway adjacent to the Project Site and would install ADA accessible pedestrian ramps leading to the Zev Greenway at Coldwater Canyon Avenue and connecting the Project Site to the Zev Greenway.

HW River Park Project Draft Transportation Assessment April 2021

1.2 Transportation Assessment Scope

The scope of work for this TA was determined in consultation with the LADOT and is in accordance with the City's CEQA transportation thresholds of significance adopted in July 2019 and LADOT's TAG updated in July 2020. The base assumptions and technical methodologies were discussed with LADOT as part of the TA approach and agreed to in a transportation assessment memorandum of understanding (MOU) dated November 18, 2020. The MOU is included in **Appendix A** to this document.

The TAG establishes an updated set of guidelines, methods, and impact criteria for CEQA considerations that focus on vehicle miles traveled (VMT), geometric hazards, and policy conflicts. The TAG also establishes a framework for various non-CEQA analyses including a pedestrian, bicycle, and transit access assessment, a project access, safety, and circulation assessment, project construction, and residential street cut-through analysis. Each area of analysis is described in the TAG with a discussion of screening criteria, the methodology for analysis, impact criteria, and potential mitigation options. Based on the screening criteria set forth in the TAG, the following issue areas in **Table 1** – as described in the TAG – are evaluated in this TA (the screening analysis is available in **Appendix B**):

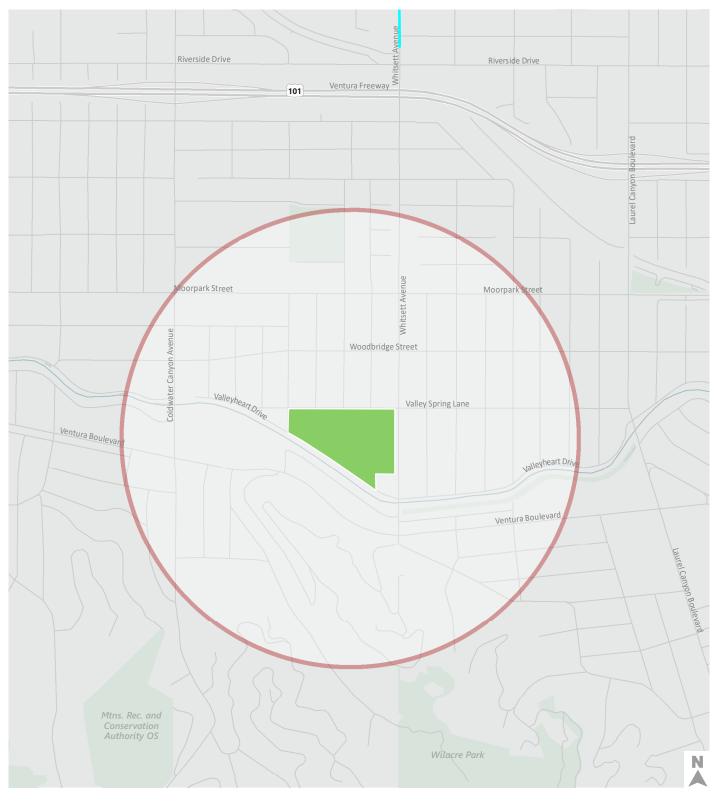

TAG Issue Area	Analysis Required?		
CEQA Analyses:			
Conflicts with Plans, Programs, Ordinances, and Policies	Yes		
Causing Substantial Additional Vehicle Miles Traveled	Yes		
Substantially Inducing Additional Automobile Travel	N/A ²		
Geometric Design Features	Yes		
Non-CEQA Analyses:			
Pedestrian, Bicycle, and Transit Access	Yes		
Project Access, Safety, and Circulation	Yes		
Project Construction	Yes		
Residential Street Cut-Through	No ³		

Table 1: TAG Screening Criteria Issue Areas

³ While the Project is not required to analyze residential cut-through streets per the screening, this analysis was still conducted due to the location of the Project adjacent to a residential area and to address to community concerns that the routes to and from the Project may go through the residential area.

² This TAG issue area is specific to transportation projects that increase vehicular capacity, and thus, is not applicable to this Project.

Project Site
0.5 Mile Radius

Figure 1

Project Study Area

Figure 2

Site Plan

1.3 Organization of Transportation Assessment

This TA is divided into five chapters, including this introduction, Chapter 1. Chapter 2 describes the environmental setting and the existing and cumulative conditions of the transportation system in the study area, including an inventory of the streets, highways, bicycle & pedestrian networks, and transit service. The required CEQA analyses are summarized in Chapter 3, and includes a review of the City's plans, programs, ordinances, and policies, a VMT analysis, a geometric design hazards evaluation, and a freeway analysis. Chapter 4 includes the required non-CEQA transportation analyses, and contains a pedestrian, bicycle, and transit access assessment, a Project access, safety and circulation evaluation, Project construction analysis, and residential street cut-through analysis. Chapter 5 contains the TA summary and conclusions.

Appendices to this TA include details of the technical analysis, as follows:

- A. Appendix A includes a copy of the Memorandum of Understanding approved by LADOT that confirms TA parameters and assumptions.
- B. Appendix B includes responses to the TAG Project screening criteria and supporting analysis.
- C. Appendix C provides a detailed review of the Project's consistency with relevant plans, programs, ordinances, and policies.
- D. Appendix D provides additional detail regarding the geometric design hazards review.
- E. Appendix E contains the Synchro queuing reports for the freeway analysis.

2. Environmental Setting

2.1 Existing Conditions

The majority of the 17.2-acre Project Site is currently occupied by Weddington Golf & Tennis, a recreational facility with a golf course and tennis courts. Existing on-site facilities include the 2,700 square-foot clubhouse with a 10-seat café, a 799 square-foot tennis shack, 16 tennis courts, 25-stall driving range, and a nine-hole par 27 golf course. The Project Site also includes 89 surface parking spaces. Vehicular access to the existing parking areas on the Project Site is provided via one inbound and one outbound driveway on Whitsett Avenue, one service driveway on Valley Spring Lane, and a second service driveway at the Valleyheart Drive stub. Pedestrian access to the Project Site is at these same driveway locations.

Study Area

The Project Site is located in the Studio City community within the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan area. Based on guidance from the TAG, the study area selected for analysis includes a ¼-mile radius around the Project Site and extends to Laurel Canyon Boulevard to the east, Moorpark Street to the north, Coldwater Canyon Avenue to the west, and Ventura Boulevard to the south. The study area is in a suburban setting and is mostly surrounded by residential land uses. The LAFD Station 78 is adjacent to the Project Site in the southeast corner of the block.

Existing Street System

Major streets serving the study area include Ventura Boulevard and Moorpark Street in the east-west direction and Coldwater Canyon Avenue, Whitsett Avenue, and Laurel Canyon Boulevard in the north-south direction. Regional access to the Project Site is provided by the US-101, with interchanges approximately 1.2 miles to the northeast (Laurel Canyon Boulevard) and 1.3 miles to the northwest (Coldwater Canyon Avenue). Local access to the Project Site is provided by several local streets and avenues, including Whitsett Avenue, Moorpark Street and Ventura Boulevard. Per the City's Mobility Element, *Mobility Plan 2035*⁴, the following are the designation of the adjoining streets:

- Whitsett Avenue (between Valley Spring and Valleyheart) Avenue II
- Valley Spring Lane (between Whitsett and Bellaire) Local Street Standard
- Bellaire Avenue (between Valley Spring and Valleyheart) Local Street Standard
- Valleyheart Drive Local Street Standard. Valleyheart Drive is designated as a Local Street in Mobility Plan 2035. However, between Whitsett Avenue and Bellaire Avenue, it does not exist and is a paper street only. The existing paved portion of Valleyheart Drive, adjacent to the fire station, is owned by the City of Los Angeles. The remaining portion of the Valleyheart Drive right-of-way

⁴ City of Los Angeles, Mobility Plan 2035, An Element of the General Plan, adopted September 7, 2016.

to the west to Bellaire Avenue, which is not constructed as a street, is owned by Los Angeles County.

The *Mobility Plan 2035* (Los Angeles Department of Planning, General Plan Mobility Element), approved by the Los Angeles City Council in August 2015 and amended in September 2016, categorizes streets into typologies and sets general definitions for each designation. Each of the street designations are defined as the following:

- Freeways High-volume, high-speed roadways with limited access provided by interchanges that carry regional traffic through and do not provide local access to adjacent land uses.
- Arterial Streets Major streets that serve through traffic and provide access to major commercial activity centers. Arterials are divided into two categories:
 - Boulevards represent the widest streets that typically provide regional access to major destinations and include two categories:
 - Boulevard I provides up to four travel lanes in each direction with a target operating speed of 40 mph.
 - Boulevard II provides up to three travel lanes in each direction with a target operating speed of 35 mph.
 - Avenues pass through both residential and commercial areas and include three categories:
 - Avenue I provides up to two travel lanes in each direction with a target operating speed of 35 mph.
 - Avenue II provides up to two travel lanes in each direction with a target operating speed of 30 mph.
 - Avenue III provides up to two travel lanes in each direction with a target operating speed of 25 mph.
- Collector Streets Generally located in residential neighborhoods and provide access to and from arterial streets for local traffic and are not intended for cut-through traffic. Collector Streets provide one travel lane in each direction with a target operating speed of 25 mph.
- Local Streets Intended to accommodate lower volumes of vehicle traffic and provide parking on both sides of the street. Local Streets provide one travel lane in each direction with a target operating speed of 15 to 20 mph. Local Streets can be:
 - Continuous local streets that connect to other streets at both ends
 - Non-Continuous local streets that lead to a dead-end

In addition, the *Mobility Plan 2035* identifies corridors proposed to prioritize bicycle, pedestrian, transit, and vehicle infrastructure improvements. Each of the networks are defined as the following:

- The Neighborhood-Enhanced Network (NEN) is a selection of streets that provide comfortable and safe routes for localized travel of slower-moving modes such as walking, bicycling, or other slow speed motorized means of travel.
- The Transit-Enhanced Network (TEN) is the network of arterial streets prioritized to improve existing and future bus service for transit riders.
- The Bicycle-Enhanced Network (BEN) is a network of streets to receive treatments that prioritize bicyclists. Tier 1 Protected Bicycle Lanes are bicycle facilities that are separated from vehicular traffic. Tier 2 and Tier 3 Bicycle Lanes are facilities on roadways with striped separation. Tier 2 Bicycle Lanes are those more likely to be built by *2035*.
- The Vehicle-Enhanced Network (VEN) identifies streets that prioritize vehicular movement and offer safe, consistent travel speeds and reliable travel times.
- The Pedestrian-Enhanced Districts (PEDs) identify where pedestrian improvements on arterial streets could be prioritized to provide better walking connections to and from the major destinations within communities.

Described below are the primary freeway and roadways that provide regional and local access to the study area.

Freeways

• **US-101** runs in the east-west direction located north of the Project Site. In the vicinity of the study area, US-101 provides five lanes in each direction. Access to the Project Site study area is provided by interchanges at Coldwater Canyon Avenue and at Laurel Canyon Boulevard.

East – West Streets

- Ventura Boulevard is designated as a Boulevard II and is located south of the Project Site. Ventura Boulevard provides two through lanes in each direction with parking permitted on both sides of the street. Ventura Boulevard is included in the High-Injury Network (HIN), the Bicycle Enhanced Network (proposed Tier 3 Bicycle Lane), and TEN in the *Mobility Plan 2035*. Ventura Boulevard is also part of the PED, except for the portion between Fairway Avenue and Laurelgrove Avenue.
- Moorpark Street is designated as an Avenue II and is located north of the Project Site. Moorpark
 Street provides one through lane in each direction. A center left-turn lane is provided along
 portions of Moorpark Street. One parking lane and one bicycle lane are provided in each
 direction. Moorpark Street is part of the BEN in the *Mobility Plan 2035*, and the proposed Tier 2
 Bicycle Lane has been constructed.
- **Valley Spring Lane** is designated as a Local Street and is located adjacent to the Project Site to the north. Valley Spring Lane provides one lane in each direction with parking allowed on both sides and no parking allowed on the south side between 10 PM and 6 AM.

North – South Streets

- **Coldwater Canyon Avenue** is designated as Avenue II and is located west of the Project Site. Coldwater Canyon Avenue provides two lanes in each direction with parking permitted on both sides of the street, except in the segment between Ventura Boulevard and 100 feet south of Woodbridge Street. The portion of Coldwater Canyon Avenue south of Woodbridge Street is included in the Pedestrian Enhanced Networks in the *Mobility Plan 2035*. Coldwater Canyon Avenue provides access to the existing Harvard-Westlake Upper School Campus (Upper School Campus).
- Whitsett Avenue is designated as Avenue II and is located adjacent to the Project Site to the east. In the southbound direction, Whitsett Avenue provides two lanes and one parking lane. In the northbound direction, Whitsett Avenue provides one lane between Ventura Boulevard and Woodbridge Street and two lanes between Woodbridge Street and Moorpark Street. Parking is provided in the northbound direction, though it is restricted during peak periods between Ventura Boulevard and Woodbridge Street and Woodbridge Street so that an additional travel lane may be provided, increasing the number of travel lanes from one to two.
- Laurel Canyon Boulevard is designated as Avenue I and is located east of the study area. Laurel Canyon Boulevard provides two lanes in each direction with parking permitted on both sides of the street. Laurel Canyon Boulevard is included in the BEN (proposed Tier 2 Bicycle Lane). The portion between Ventura Place and Ventura Boulevard is included in the HIN. The portion south of the Valley Spring Lane is part of the PED in the *Mobility Plan 2035*.

Transit Lines⁵

The Project Site is not located within a Transit Priority Area or Transit Oriented Communities (TOC) area; however, it is served by several local and regional bus lines. The Project Site is located approximately 2.5 miles from the Los Angeles County Metropolitan Transit Authority (Metro) B (Red) Line Universal City Station and approximately 2.3 miles from the North Hollywood Station, which also serves the Metro G (Orange) Line. The Project Site is immediately adjacent to the Metro 167 Local Line and LADOT Downtown Area Short Hop (DASH) Line Van Nuys/Studio City on Whitsett Avenue. Ventura Boulevard is served by Metro Local Routes 167, 150 and 240, and Metro Rapid Route 750. See **Figure 3** for a map of the surrounding public transit lines. **Table 2** below provides a description of the public transit routes operating on the streets within the study area.

Figure 3 shows the various local bus routes, rapid bus routes, and bus rapid transit (BRT) lines providing service in the vicinity of the study area. The Project is located southwest of the Metro North Hollywood Station, which is served by the Metro B (Red) and G (Orange) Lines. Three local Metro (Route 150, 167, and 240), one Metro Rapid (Route 750), and one DASH line (Van Nuys/Studio City) serve the area.

⁵ This section describes transit services based on pre-COVID-19 conditions. Metro and LADOT have been making service changes as part of their ongoing and evolving response to COVID-19.

TABLE 2 HARVARD-WESTLAKE RIVER PARK PROJECT EXISTING TRANSIT SERVICE									
Transit Route	Operator	Service Type	Service From	Via	Weekday Headways				
Transit Noute	operator	Service Type	Service from	Via	AM	PM			
167	Metro	Local	Studio City to Chatsworth	Whitsett Avenue	40-50 mins.	40-50 mins.			
150	Metro	Local	Studio City to Canoga Park	Ventura Boulevard	20-45 mins.	20-45 mins.			
240	Metro	Local	Studio City to Northridge	Ventura Boulevard	20-30 mins.	20-30 mins.			
750	Metro	Rapid	Studio City to Canoga Park	Ventura Boulevard	20 mins.	20 mins.			
Van Nuys/Studio City	LADOT	Chuttle	Studia City ta Van Nuur	Maite ett. Aurenue	20 mins	20 min a			
Clockwise/Counterclockwise	LADUT	Shuttle	Studio City to Van Nuys	Whitsett Avenue	30 mins.	30 mins.			
Orange Line	Metro	BRT	North Hollywood to Chatsworth	Chandler Boulevard	5 mins.	5 mins.			
Red Line	Metro	Heavy Rail	North Hollywood to Union Station	Lankershim Boulevard	10 mins.	10 mins.			
This table describes transit service	s based on pr	e-COVID-19 conditio	ns. Metro and LADOT have been making service chang	ges as part of their ongoing and evolvin	g response to COVID	-19.			

HW River Park Project Draft Transportation Assessment April 2021

The transit lines in the vicinity of the Project Site include:

- <u>Metro Line 167</u> Line 167 provides local service between Studio City and the Chatsworth neighborhood in Los Angeles. This line runs east of the Project Site along Whitsett Avenue with two stops near the Project Site. Line 167 has average headways of 40-50 minutes during the weekday AM and PM peak periods. Line 167 has two stops in the southbound direction near the Project Site. The northern stop is located at the intersection of Whitsett Avenue & Valley Spring Lane, directly across the street from the Project. The southern stop is at located the intersection of Ventura Boulevard & Whitsett Avenue, which includes a bus bench.
- Metro Line 150 Line 150 provides local service between Studio City and the Canoga Park neighborhood in Los Angeles. This line runs south of the Project Site along Ventura Boulevard. Line 150 has average headways of 20-45 minutes during the weekday AM and PM peak periods. In the westbound direction, the closest stop to the Project Site – the Ventura/Whitsett stop includes a bus shelter, a bus bench and two trash bins. In the eastbound direction, the Ventura/Whitsett stop includes a bus shelter, a bus bench, and a trash bin.
- <u>Metro Line 240</u> Line 240 provides local service between Studio City and the Northridge neighborhood in Los Angeles, and it shares the same route as Line 150 between Ventura Boulevard/ Reseda Boulevard and Universal City/ Studio City Station. This line runs south of the Project Site along Ventura Boulevard. Line 240 has average headways of 20-30 minutes during the weekday AM and PM peak periods. Line 240 shares the same bus stops with Metro Line 150 in the Project vicinity.
- Metro Rapid 750 Metro Rapid 750 provides express service through Studio City to the Canoga Park neighborhood in Los Angeles. The line runs south of the Project Site along Ventura Boulevard. Line 750 has average headways of 20 minutes during peak periods. It has one bus stop in each direction at the intersection of Ventura Boulevard & Coldwater Canyon Avenue. The eastbound stop includes two bus benches and two trash bins. The westbound stop includes a bus bench and two trash bins.
- <u>LADOT DASH Van Nuys/Studio City</u> The Van Nuys/Studio City DASH provides circulator service in neighborhoods of Van Nuys, Sherman Oaks, and Studio City in Los Angeles. There are several stops near the Project Site on Whitsett Avenue. The Van Nuys/Studio City DASH has headways of 30 minutes during the weekday AM and PM peak periods. The northbound DASH has two stops. The northern stop at the intersection of Whitsett Avenue & Valley Spring Lane does not include any bus bench or shelter. The southern stop at the intersection of Whitsett Avenue & Valleyheart Drive includes a bus bench and a trash bin. The southbound DASH includes an existing bus stop at the intersection of Whitsett Avenue & Valley Spring Lane, which does not include bus benches or bus shelter.

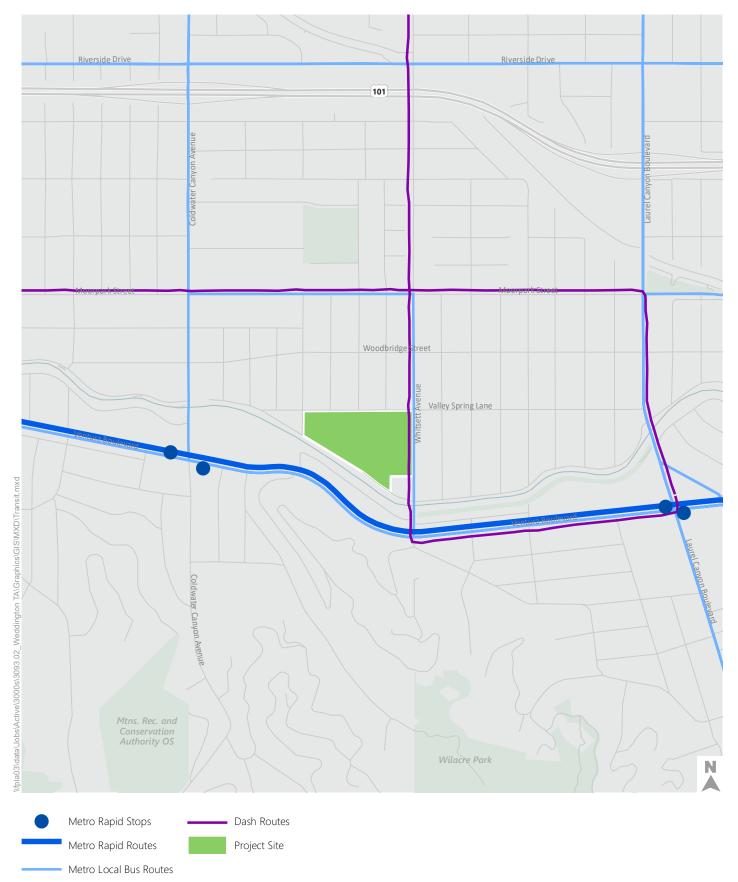


Figure 3

Transit Network

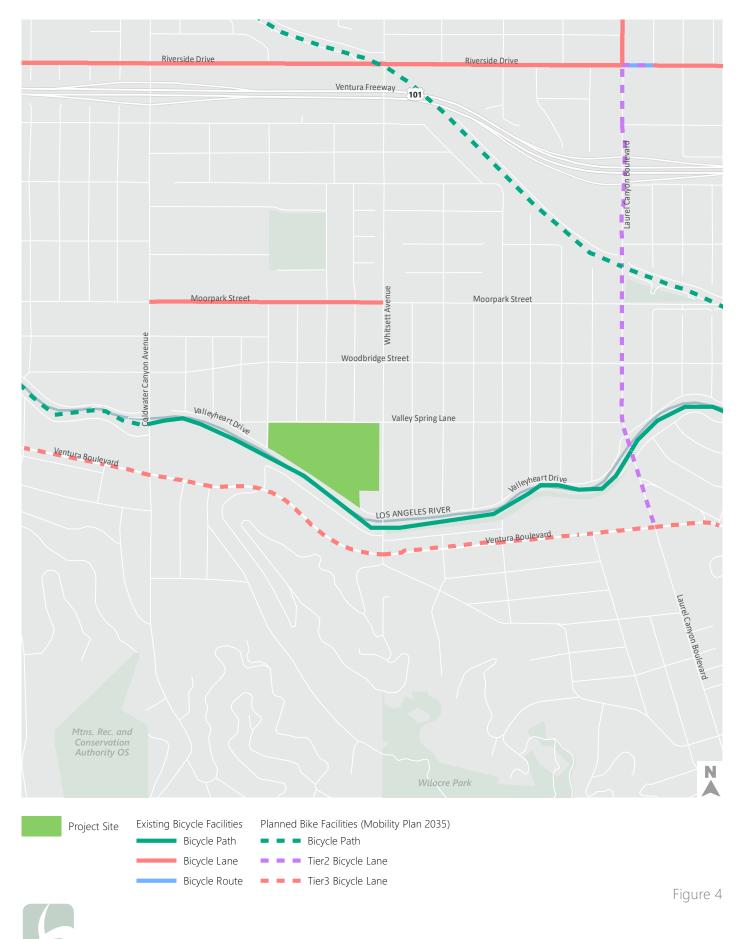
HW River Park Project Draft Transportation Assessment April 2021

Existing Bicycle and Pedestrian Facilities

The Project's southern frontages are across the river from the existing Los Angeles River Bicycle Path, which is part of the BEN identified in the City's *Mobility Plan 2035*. The Project frontages are not along streets that are part of the PED.

Bicycle Facilities

Figure 4 shows the existing and planned citywide designated bicycle facilities in the Project area. The existing bicycle path segments along the Los Angeles River from Laurel Canyon Boulevard to Whitsett Avenue and from Whitsett Avenue to Coldwater Canyon Avenue were completed and opened to the public in 2004 and 2019, respectively. The segment of Moorpark Street between Coldwater Canyon Avenue and Whitsett Avenue includes an existing bicycle lane in each direction.


Pedestrian Facilities

Sidewalks are present along the Whitsett Avenue frontage of the Project Site. Sidewalks are not present along the east side of Bellaire Avenue and the south side of Valley Spring Lane adjacent to the Project Site. The Zev Greenway, which is a segment of the Los Angeles River Trail, is located along the south side of the Project Site.

High-Injury Network

The City of Los Angeles' HIN spotlights streets with a high concentration of traffic collisions that result in severe injuries and deaths, with an emphasis on those involving people walking and bicycling. The Project frontages are not along streets that are part of the HIN.

Existing and Planned Bicycle Facilities

2.2 Cumulative Conditions

The Project Site is within a residential area in the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan (Community Plan) area and the Los Angeles River Improvement Overlay District. The area surrounding the Project Site is developed primarily with low-intensity residential with some commercial development to the south along Ventura Boulevard. In the *Mobility Plan 2035*, there are no major planned transportation improvements in the study area, except for the proposed bicycle path segment west of Coldwater Canyon Avenue along the Los Angeles River (see **Figure 4**) per the BEN.

Planned Bicycle Facilities

The *Mobility Plan 2035* identifies corridors proposed to receive improved bicycle, pedestrian, and vehicle infrastructure improvements. Bicycle Paths are bicycle facilities outside of the roadway, such as the Los Angeles River bicycle path. Tier 1 Protected Bicycle Lanes are bicycle facilities that are separated from vehicular traffic. Tier 2 and Tier 3 Bicycle Lanes are facilities on roadways with striped separation. Tier 2 Bicycle Lanes are those which are more likely to be built by 2035. **Figure 4** shows the following planned bicycle improvements (along with existing bike facilities) in the study area per the *Mobility Plan 2035*:

- Planned bicycle paths in the study area include the Los Angeles River bicycle path segments west of Coldwater Canyon Avenue. The bicycle path segments east of Coldwater Canyon Avenue have been completed and opened to the public.
- There are no planned Tier 1 facilities in the study area.
- A Tier 2 facility is planned on Laurel Canyon Boulevard in the study area.
- A Tier 3 facility is planned on Ventura Boulevard in the study area.

Related Projects

Figure 5 is an area map showing the location of the Project and related land use development projects under the cumulative conditions. Based on information provided by LADOT on October 27, 2020 and other sources, there are five mixed-use projects, including health club, restaurant, retail, and residential land uses, in a radius of half mile of the Project Site and a quarter mile beyond the outermost study intersections. All of these projects are located on Ventura Boulevard. **Table 3** shows the list of related projects and their corresponding land uses.

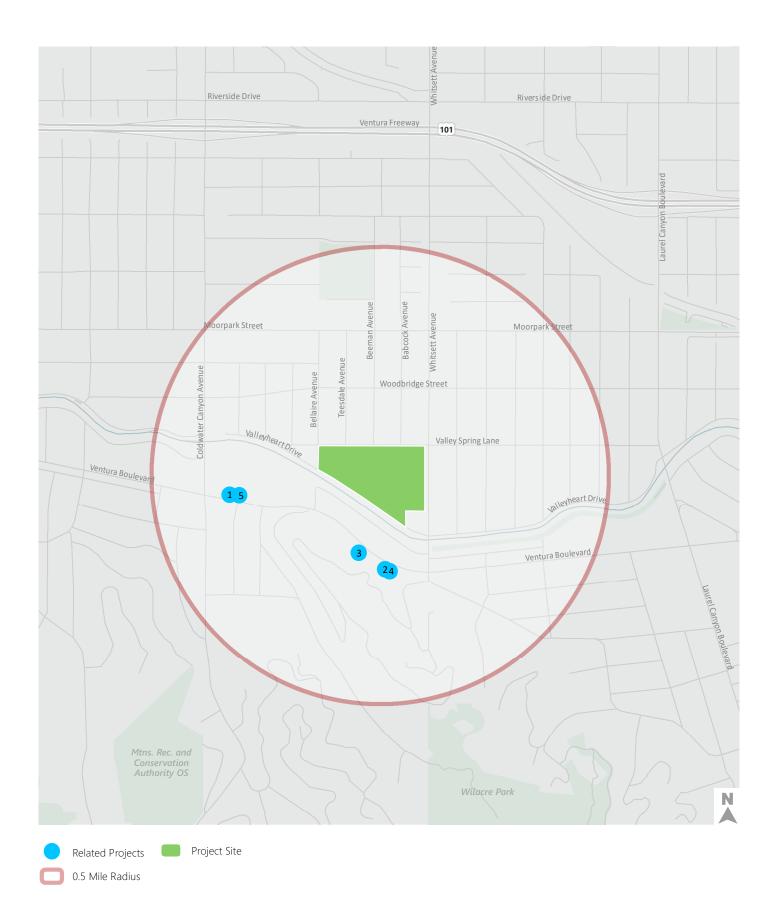


Figure 5

Related Projects

TABLE 3 HARVARD-WESTLAKE RIVER PARK PROJECT RELATED PROJECTS											
No.	Project Location	Land Use	Size		Trip Generation AM PM						
NO.					Daily	IN	OUT	TOTAL	IN	OUT	TOTAL
1	12833 Ventura Boulevard (Sportsman's Lodge)	Addition of health club and restaurants to existing hotel	91.466	ksf	2,001	50	54	104	68	68	136
2	12548 Ventura Bouevard	Retail Apartments Other	10.747 62 1.925	ksf du ksf	1,000	23	41	64	46	34	80
3	12582 Ventura Boulevard	Mixed Use	15.700	ksf	997	36	28	64	38	32	70
4	12544 Ventura Boulevard	Mixed Use	12.782	ksf	570	20	14	34	20	20	40
5	12833 Ventura Boulevard (Sportsman's Lodge)	Apartments	504	du	5 5 6 2	201	251	452	292	181	473
5		Restaurant	30.000	ksf	5,563	201	251	452	292		
			Total		10,131	330	388	718	464	335	799
<u>Notes:</u> ksf = one ⁻ du = dwel	thousand square feet ling units				i						

Related projects list is based on information provided by LADOT on October 27, 2020 and other sources.

3. CEQA Transportation Assessment

3.1 Plans, Programs, Ordinances and Policies Review

The purpose of this section is to determine whether the Project conflicts with a transportation-related City plan, program, ordinance, or policy that was adopted to protect the environment. A project would not be shown to result in an impact merely based on whether a project would not implement an adopted plan, program, ordinance, or policy. Rather, it is the intention of this threshold test to ensure that proposed development does not conflict with nor preclude the City from implementing adopted plans, programs, ordinances, or policies.⁶ Furthermore, under CEQA, a project is considered consistent with an applicable plan if it is consistent with the overall intent of the plan and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every policy. Finally, any inconsistency with an applicable policy, plan, or regulation is only a significant impact under CEQA if the policy, plan, or regulation were adopted for the purpose of avoiding or mitigating an environmental effect and if the inconsistency itself would result in a direct physical impact on the environment.

This evaluation was conducted by reviewing City documents such as the Los Angeles *Mobility Plan 2035*, *Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan*, Vision Zero Los Angeles, the LADOT Manual of Policies and Procedures (MPP), Citywide Design Guidelines, Los Angeles River Design Guidelines, and municipal code sections.

- City of Los Angeles Mobility Plan 2035⁷ is the City's document to guide the operations and design of streets and other public rights of way. It lays out a vision for designing safer, more vibrant streets, that are accessible to people no matter how they travel. The Project's proposed land use and operations design features were reviewed and compared to existing and future conditions resulting from the Project, including site access, high injury network identification, pedestrian, bicycle and transit accessibility and loading. The Project is consistent with the reviewed policies of the *Mobility Plan 2035*. See Appendix C, adapted from Table 2.1-2 of the TAG, for a detailed review of consistency with relevant policies in *Mobility Plan 2035*.
- Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan⁸ is one of 35 Community Plans in the City of Los Angeles that establishes the policies and programs that inform the framework for local land use, circulation, and service systems within the selected community plan area. The Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan (Community Plan) highlights the Studio City Golf Course (also known as Weddington Golf & Tennis, a component of the Project Site) as a Major Development Opportunity Site, with the

⁸ The *Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan* was adopted in 1998 and amended in 2016 as part of the Mobility Plan 2035 Update. While an updated Community Plan is currently under development, the plan from 2016 is currently in effect and forms the basis for this review of conflicts relating to the transportation system.

⁶ City of Los Angeles Department of Transportation, *Transportation Assessment Guidelines*, July 2020, page 2-2.

⁷ City of Los Angeles, *Mobility Plan 2035, An Element of the General Plan,* adopted September 7, 2016.

desire of developing on the site with a use that is compatible with the surrounding area, as a key access site for the future development for the Los Angeles River, and with design features that encourage waterfront access to the Los Angeles River. The Project's land use and site plan design coincide with the Community Plan's intent to redevelop the site and improve connection to the Los Angeles River. The Project is consistent with the transportation components of the Community Plan. See **Appendix C** for a detailed review of consistency with relevant policies in the Community Plan.

- Vision Zero Los Angeles⁹ is a plan that strives to eliminate traffic-related deaths in Los Angeles by 2025 through multiple strategies, such as modifying streets to better serve vulnerable road users. The Project is not located along any Vision Zero HIN priority corridors. See Appendix C for further determination support.
- **LADOT Manual of Policies and Procedures**¹⁰ contains the design standards to ensure the safe and efficient use of City streets. MPP 321 provides the basic criteria for review of driveway designs.
- The **Citywide Design Guidelines**¹¹ includes sections relevant to development projects where improvements are proposed within the public realm. Specifically, Guidelines one through three provide building design strategies that support the pedestrian experience. The Guidelines provide best practices in designing that apply in three spatial categories of site planning, building design and public right of way. The Guidelines should be followed to ensure that the project design supports pedestrian safety, access, and comfort as they access to and from the building and the immediate public right of way. See **Appendix C** for more information.
- The Los Angeles River Design Guidelines¹² highlights best practices for designing development projects to increase awareness of, and access to the Los Angeles River and provides direction for proceeding with the design of a project located within the River Improvement Overlay (RIO) District.

The Project features, location, and design generally support multimodal transportation options and would be consistent with policies, plans, and programs that support alternative transportation, including the *Mobility Plan 2035* and the *Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan*. The Project features are intended to minimize impacts to the public right-of-way and enhance the user experience by integrating multimodal transportation options. The Project would encourage bicycle use to and from the Project Site by providing long-term and short-term bicycle parking in proximity to the existing bicycle path along the Los Angeles River. Although the Project frontages are not along any streets part of the PED, the Project would encourage pedestrian activity by providing a three-quarter mile long internal pedestrian path that would be open to the public to circumnavigate the perimeter of the Project Site. The pedestrian path would run parallel to Bellaire Avenue and Valley Spring Lane, with three accesses on Valley Spring Lane effectively serving as the pedestrian circulation along these streets where there is

¹² City of Los Angeles Department of City Planning, *Los Angeles River Design Guidelines*, 2015.

⁹ Vision Zero Los Angeles 2015-2025 Action Plan, Effective January 2017.

¹⁰ City of Los Angeles Department of Transportation, *Manual of Policies and Procedures Section 321*, February 2003.

¹¹ City of Los Angeles Department of City Planning, *Citywide Design Guidelines*, October 24, 2019.

currently no sidewalk adjacent to the Project Site. The Project also proposes new pedestrian access between the Project Site and the Zev Greenway, which is a segment of the Los Angeles River Trail located along the south edge of the Project Site, as well as between the Zev Greenway and Coldwater Canyon Avenue. In addition, the Project would support multi-modal travel by providing shuttle buses to transfer students, employees, and visitors between the Upper School Campus and the Project Site and separating the vehicular driveways from the entry of pedestrian/bicyclists/public transit riders to the Project. The Project will provide passenger loading zones inside the Project Site accessed via the south driveway on Valleyheart Drive. The Project design and features would not substantially increase hazards, conflicts, or preclude City action to fulfill or implement projects associated with these networks and will contribute to overall walkability through enhancements to the Project Site and streetscape.

Five related projects were identified in Chapter 2. None of them would share any adjacent street frontages with the Project Site as they are all located along Ventura Boulevard. The Project would provide infrastructure improvements on-site and off-site that would enhance mobility for pedestrians and bicyclists in the future. Accordingly, no significant cumulative impacts are anticipated to which both the Project and the related projects would contribute in regard to City transportation policies or standards adopted to protect the environment and support multimodal transportation options.

Appendix C provides additional detail regarding the Project's plans, programs, ordinances, and policies conflict review conducted per the City's TAG.

3.2 Vehicle Miles Traveled Analysis

In accordance with LADOT TAG and CEQA guidance, proposed land use projects need to assess whether they cause a substantial vehicle miles traveled impact. The following section summarizes an assessment of VMT generated by the Project.

Impact Criteria

The City's VMT impact criteria for development projects are specified in the TAG. The VMT impact criteria depend on a project's land use.

The Project would be classified under two different uses.

First, the Project would be classified as an educational facility since it will be owned and operated by Harvard-Westlake School, and will be utilized by their students, employees, and associated programs in conjunction with their operation as a private high school. Per Section 2.2.4 of the July 2020 LADOT TAG, in order to provide a conservative analysis, the TA will assume that the Project will attract people from a broader area and not just from the immediate vicinity.

Second, the community use component of the Project would be classified as a community-serving recreational facility. Per LADOT, community-serving recreational facilities are exempt from VMT analysis.

Since the community use component (publicly accessible park and recreational areas) of the Project is exempt from VMT analysis, the VMT analysis focuses on the Harvard-Westlake athletic activities use, as an educational facility. Per Section 2.2.4 of the TAG, the Project would result in a significant VMT impact if the Project is expected to result in a net increase in daily VMT.

Therefore, the Project would be assessed on whether the school-related activities associated with the Project would result in a net increase in daily VMT.

Impact Analysis

The total net daily VMT for all trips to and from the Project Site on an average day was estimated to assess the VMT impact of the Project. The Project's total daily VMT was calculated by multiplying the estimated average number of daily trips by an average trip length for each group of users of the site. For this Project, there are different populations that will make trips to and from the Project Site, including Harvard-Westlake students, visiting teams, spectators, and employees. In addition, trips generated by potential Harvard-Westlake Special Events (which are defined as events that are not related to regular academic activities or athletic programs, practices, or competitions that are expected to draw more than 100 attendees, including conferences, admission events and sports team banquets) at the Project Site were averaged across the academic year. Finally, the net total VMT for these trips will be eliminated with

the Project.¹³ As indicated earlier, the VMT associated with the community use of the Project is not included in the analysis, as it is exempt per LADOT.

The description and the methodology for estimating the average trip lengths for each population is described below. Further information regarding the methodology used to estimate daily trip generation for each of the populations, and the resultant estimated daily trips, is provided in Chapter 4.2.

Harvard-Westlake (HW) Shuttles consists of the Harvard-Westlake students taking the shuttle between the Upper School and the Project Site. The average trip length (1.5 miles) was estimated as the driving distance between the Upper School Campus and the Project Site.

HW Private Vehicles consists of the Harvard-Westlake students driving their private vehicles from the Upper School Campus to the Project Site. The average inbound trip length was estimated to be 1.5 miles, as the driving distance between the Upper School and the Project Site. The outbound trips (students driving home after an activity at the Project Site) are not estimated to generate a net increase in VMT as there was no difference found between the average trip length to the Upper School Campus from which the students would be driving home without the Project (12.9 miles) and the average trip length to the Project Site from which the students would be driving home with the Project (12.9 miles). These distances were estimated using a weighted average trip length based on a trip distribution by zip code to the Upper School Campus and the trip length from each zip code to the Project Site. The trip distribution by zip code was developed using zip code data provided by Harvard-Westlake School of the number of Harvard-Westlake student households in each zip code. A map showing the trip distribution by zip code can be found in **Appendix A**.

HW Other consists of the remaining visitors to the Project Site related to Harvard-Westlake athletic activities, including Harvard-Westlake coaches, visiting team athletes and coaches, and spectators. The average trip length was estimated as the average trip length to the Project Site (12.9 miles) similar to that for the Harvard-Westlake student population.

Employees consist of staff at the Project Site holding roles in security, custodial, landscaping, kitchen, team store, staff, and athletics administration. Based on information from Harvard-Westlake, it is estimated that 49 employees will commute to and from the Project Site on a typical day. The average trip length (13.3 miles) was estimated as a weighted average trip length based on a trip distribution by zip code and the trip length from each zip code to the Project Site. The trip distribution by zip code was developed using zip code data provided by Harvard-Westlake of the subset of the existing employees that could work at the Project Site.

HW Special Events consists of the attendees at Harvard-Westlake Special Events that may occur on the Project Site. The average trip length was estimated as the average trip length to the Project Site (12.9 miles), similar to that for the Harvard-Westlake student population. Conservatively, up to 27 events of up

¹³ Some existing components of Weddington Golf & Tennis, such as the café and putting green, will remain as part of the Project. However, the trip generation associated with these components is included in the overall Project trip generation. As such, the full existing use credit is taken for Weddington Golf & Tennis.

to 500 attendees and three events of up to 2,000 attendees are anticipated per year, of which 15 would be on weekdays and 15 on weekend days. Given the infrequency of the events, the annual event attendance was averaged across academic year weekdays to estimate the daily average weekday attendance.

Weddington Golf & Tennis consists of the patrons of the existing golf and tennis facility. The average trip length (5.9 miles) was estimated as a weighted average trip length based on a trip distribution by zip code and the trip length from each zip code to the Project Site. The trip distribution by zip code was developed using zip code data provided by Weddington Golf & Tennis of the number of tennis players in each zip code based on a survey conducted over the course of a week in September 2019.

As shown in **Table 4**, the Project is projected to generate an estimated net decrease of 2,098 daily VMT. Additional information regarding the trip generation assumptions can be found in Section 4.3.

Population Group	Average Daily Trip Generation		
Project			
HW Shuttles	58	1.5	87
HW Private Vehicles ¹	43 (inbound)	1.5 (inbound)	65
HW Other	132	12.9	1,703
Employees	98	13.3	1,303
HW Special Events	60 ²	12.9	774
Total Daily VMT			3,932
Existing Use Credit			
Weddington Golf & Tennis	-1,022	5.9	-6,030
Existing VMT Credit			-6,030
Net Total Daily VMT			
Net Total Daily VMT			-2,098

Table 4: Net Total Daily VMT Estimate

Note: Additional information regarding the methodology used to estimate trip generation for each of the populations, and the resultant estimated trips, is provided in Chapter 4.2.

¹ Only the inbound trips are included in the VMT estimate for the HW private vehicles because the outbound trip lengths were found to be the same as the existing outbound trip length for student vehicles leaving the Upper School to return home

² Annual Special Event trips averaged across academic year weekdays.

HW River Park Project Draft Transportation Assessment April 2021

Summary

The analysis conducted demonstrates that the Project would result in less than significant impacts on VMT since the Project would result in a decrease in VMT for the Project Site. Similarly, the Project would result in less than significant impacts on VMT in cumulative conditions, and further analysis is not necessary.

3.3 Geometric Design Feature Review

This section discusses impacts regarding the potential for an increase of hazards due to a geometric design feature that generally relates to the design of access points to and from the Project Site and may include safety, operational, or capacity impacts.

Pedestrian access to the pathway that circumnavigates the Project Site would be provided via three entry gates along Valley Spring Lane. The primary pedestrian entry to the Project Site's interior and its athletic amenities would be accessed via the sidewalk along the east side of the Project Site on Whitsett Avenue. The pedestrian entry gates to be located along Valley Spring Lane currently do not have sidewalks along the Project frontage. The Project's three-quarter mile long pedestrian path would run parallel to Valley Spring Lane and Bellaire Avenue, and will effectively serve as the pedestrian circulation along streets where there is currently no sidewalk. This pedestrian path would also create a new connection to the Zev Greenway.

Students, visitors, and employees arriving to the Project Site by bicycle would have the same access opportunities as pedestrians and would be able to utilize on-site bicycle parking facilities. The Project's access locations would be designed to City standards and would provide adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls that meet the City's requirements to protect pedestrian safety. All roadways and driveways will intersect at right angles. Street trees and other potential impediments to adequate driver and pedestrian visibility would be minimal. Pedestrian entrances separated from vehicular driveways would provide access from the adjacent streets and transit stops.

There are two driveways proposed as part of the Project, one of which (north driveway) would be on Whitsett Avenue, an arterial facility, several hundred feet south of Valley Spring Lane. The other driveway (south driveway) would be an extension of Valleyheart Drive, which intersects with Whitsett Avenue just south of the LAFD Station 78. Access to the subterranean parking structure would be provided via both the north and south driveways. The south driveway would also lead to a turnaround area for passenger loading and serve as access to the surface parking area. The south driveway will only allow entry into the subterranean garage, and all exits from the garage will be via the north driveway. The north parking structure driveway would be flat for at least 25 feet within the Project Site before it intersects with the Whitsett Avenue sidewalk, per the site plan. To reduce conflicts and enhance safety, a triangular median island will be provided on the north driveway configured to restrict turns into and out of the driveway to right-turns only. No new driveways would be installed along Valley Spring Lane or Bellaire Avenue, and the existing service driveway on Valley Spring Lane would be removed, thus eliminating an existing potential conflict location.

The driveways would be wider than the recommended widths in the LADOT Manual of Policies and Procedures, but the number of driveways would be reduced from four existing driveways to two Project driveways, which would reduce potential driveway conflicts between vehicles and pedestrians. The driveways would not require the removal or relocation of existing passenger transit stops and would be designed and configured to avoid or minimize potential conflicts with transit services and pedestrian

traffic. Pedestrians and bicycles would have separate entrances to the Project Site from vehicular driveways. The Project driveways will not be located along a street that is part of the designated HIN. As a result, the Project would not substantially increase hazards, conflicts, and would contribute to overall walkability and bike-ability through enhancements to the Project Site. **Appendix D** contains more detailed responses to the TAG evaluation questions that support this conclusion.

3.4 Freeway Safety Analysis

In May 2020, LADOT provided interim guidance on freeway safety analysis for land use proposals that are required to prepare a TA¹⁴. The freeway safety analysis evaluates a proposed project's effects to cause or lengthen a forecasted off-ramp queue onto the freeway mainline and create speed differentials between vehicles exiting the freeway off-ramps and vehicles operating on the freeway mainline that could constitute a potential safety impact under CEQA.

The interim guidance on freeway safety analysis requires analysis of freeway off-ramps where a proposed project adds 25 or more trips in either the morning or afternoon peak hour to be studied for potential queuing impacts. If the proposed project is not projected to add 25 or more peak hour trips at any freeway off-ramps, then a freeway ramp analysis is not required. The Project is projected to add 25 or more trips to the following freeway off-ramp:

• US-101 Southbound Off-ramp & Coldwater Canyon Avenue (3-4 PM peak hour)

Methodology

If a freeway ramp analysis is required, the interim guidance provides the following steps to determine if the proposed project may constitute a potential safety impact under CEQA.

- For the identified freeway off-ramps, prepare a queuing study for the "Future with Project" conditions for the proposed project build-out year. Evaluate the adequacy of the existing and future storage lengths with the 95th percentile queue and 100% of the storage length on each lane of the ramp from the stop line to the gore point. When an auxiliary lane is present, add 50% of the length of the auxiliary lane to the ramp storage area.
- If the proposed project traffic is expected to cause or add to a queue extending onto the freeway mainline by less than two car lengths, the proposed project would cause a less-than-significant safety impact. If the queue is already extending or projected to extend onto the freeway mainline, and the addition of traffic generated by the proposed project would increase the overflow onto the mainline lanes by less than two car lengths, the project would cause a less-than-significant safety impact.
- If a proposed project adds two or more car lengths to the ramp backup that extends to the freeway mainline, then the location must be tested for safety issues which include a test for speed differential between the off-ramp queue and the mainline of the freeway during the particular peak hour. If the speed differential between the mainline lane speeds and the ramp traffic is below 30 mph, the project would be considered to cause a less-than-significant safety impact. If the speed differential is 30 mph or more, then there is a potential safety issue. The Caltrans Performance Measurement System (PeMS) data should be used to identify freeway operating speed(s) during the peak hour being analyzed. If reliable PeMS data are not available at the

¹⁴ Los Angeles Department of Transportation, *LADOT Transportation Assessments – Interim Guidance for Freeway Safety Analysis* (May 2020).

subject location, other sources of speed data including location-based services data from available sources could be used.

- If the speed differential is 30 mph or more, which may result in a potential safety issue, the guidance suggests a proposed project should consider the following preferred corrective measures to offset a potential safety issue:
 - Transportation demand management program(s) to reduce the project's trip generation,
 - Investments to active transportation infrastructure, or transit system amenities (or expansion) to reduce the project's trip generation, and/or
 - Potential operational change(s) to the ramp terminal operations including, but not limited to, lane reassignment, traffic signalization, signal phasing or timing modifications, etc. This option requires coordination with Caltrans and LADOT to assess feasibility and for approval of the proposed measure(s).

A physical change to the ramp itself (addition of auxiliary lane, ramp widening, etc.) may be considered. However, this change would have to demonstrate substantial safety benefits, not be a VMT-inducing improvement, and not result in other environmental issues. If the cost of the physical change to the ramp is substantial, then a fair-share contribution to the improvement may be required if necessary requirements are met, including, but not limited to, Caltrans defining the improvement cost, and opening a Project File/Project Account to accept a financial contribution for the improvement.

Analysis

As noted, the Project is projected to add 25 or more trips to the US-101 Southbound Off-ramp to Coldwater Canyon Avenue during the 3-4 PM peak hour. A queuing study for the "Future with Project" conditions was conducted for the Project buildout year (2025) using trip generation and future traffic volumes detailed in Chapter 4. Per the guidance, the adequacy of the existing and future storage lengths was evaluated with the 95th percentile queue where 100% of the storage length on each lane of the ramp from the stop line to the gore point was used. **Table 5** shows the queue lengths and analysis results for the freeway off-ramp in the Future Base and Future plus Project scenarios.

Project traffic volumes and future background traffic volumes at the one analyzed off-ramp were estimated using the methodologies described in Chapter 4 of this report.

US-101 Southbound Off-ramp & Coldwater Canyon Avenue

Analysis of the US-101 Southbound off-ramp to Coldwater Canyon Avenue was conducted using the Synchro software and HCM 2016.

The queue length on the US-101 Southbound offramp to Coldwater Canyon Avenue is not projected to exceed ramp capacity in the Future Base or Future plus Project scenarios during the 3-4 PM peak hour. Although the Project is projected to add one car length (assuming an average queue storage length of 25 feet per car) to the queue in the 3-4 PM peak hour, the addition is not projected to exceed the ramp storage in the 3-4 PM peak hour. Therefore, the Project is not projected to have a significant safety impact for the US-101 Southbound off-ramp to Coldwater Canyon Avenue and no further analysis is required for this off-ramp.

Detailed queue calculations are provided in Appendix E.

TABLE 5 HARVARD-WESTLAKE RIVER PARK PROJECT FREEWAY OFF-RAMP QUEUEING ANALYSIS FUTURE BASE (2025) AND PLUS PROJECT SCENARIOS

		Max					Future	Base Conc	litions	Future plus Project Conditions			
Ramp	Cross Street	Length	Ramp Capacity by Movement at Off- Ramp Terminus Intersection		Ramp Terminus Control	3-4 PM 95th Percentile Queue		Queue Exceeds	3-4 PM 95th Percentile Queue		Queue Length	Satety	
	(ft)	Lane	Movement	Length [a]		Queue (ft)	Max (ft)	Storage?	Queue (ft)	Max (ft)	lengths) [b]		
				Left	270		177			177			
US-101 SB Off-Ramp	Coldwater Canyon Avenue	800	3	Left/Through/Right	800	Signal	75	177	No	83	177	1	No
Off-Ramp Canyon Avenue			Right	270		58			78				

[a] Ramp lengths determined based on scaled distances from on-line aerial photographs. Per LADOT guidance, max length is measured from the terminal intersection to the gore point.

[b] Assumes an average storage length per car of 25 feet.

[c] If a proposed project adds two or more car lengths to a ramp queue that extends to the freway maineline, then the location must be tested for safety issues.

4. Non-CEQA Transportation Assessment

The purpose of the non-CEQA transportation assessment required in LADOT's TAG is to promote orderly development, evaluate and address transportation-system deficiencies, and promote public safety and the general welfare by ensuring that development projects are properly related to their sites, surrounding properties, and traffic circulation.

4.1 Pedestrian, Bicycle, and Transit Access

The pedestrian, bicycle, and transit facilities assessment is intended to determine a project's potential effects on pedestrian, bicycle, and transit facilities in the vicinity of the proposed project based on an evaluation of physical or demand-based considerations that would affect the experience of people utilizing the multimodal transportation network.

The pedestrian, bicycle, and transit facilities surrounding the Project site were assessed to determine potential Project effects on pedestrian, bicycle, and transit facilities in the vicinity of the Project. **Figure 6** provides a map of pedestrian destinations and an inventory of the pedestrian facilities (i.e., crosswalks and curb ramps) within 1,320 feet of the edge of the Project Site. The Project Site itself will serve as an athletic facility for Harvard-Westlake School and a community park attracting people from the nearby community. Pedestrian destinations for Harvard-Westlake students and nearby residents includes commercial facilities, restaurants, and places of worship along Ventura Boulevard, Whitsett Avenue, and Moorpark Street. Offsite from the Project Site, the Project would also repave the segment of Valleyheart Drive south of LAFD Station 78, improve portions of the Zev Greenway adjacent to the Project Site, and install ADA accessible pedestrian ramps connecting the Project Site to the Zev Greenway and connecting the Zev Greenway to Coldwater Canyon Avenue.

As shown in **Figure 6**, curb ramps, tactile warnings, and/or marked crosswalks are not provided at many of the nearby intersections. Some crosswalk legs at signalized intersections do not have push buttons, but this is appropriate as these intersections are pretimed to provide walk phases for every signal cycle. **Table 6** also identifies locations with missing sidewalks, pedestrian push buttons, other pedestrian amenities such as street trees, bus benches, or lighting, and typical sidewalk width ranges.

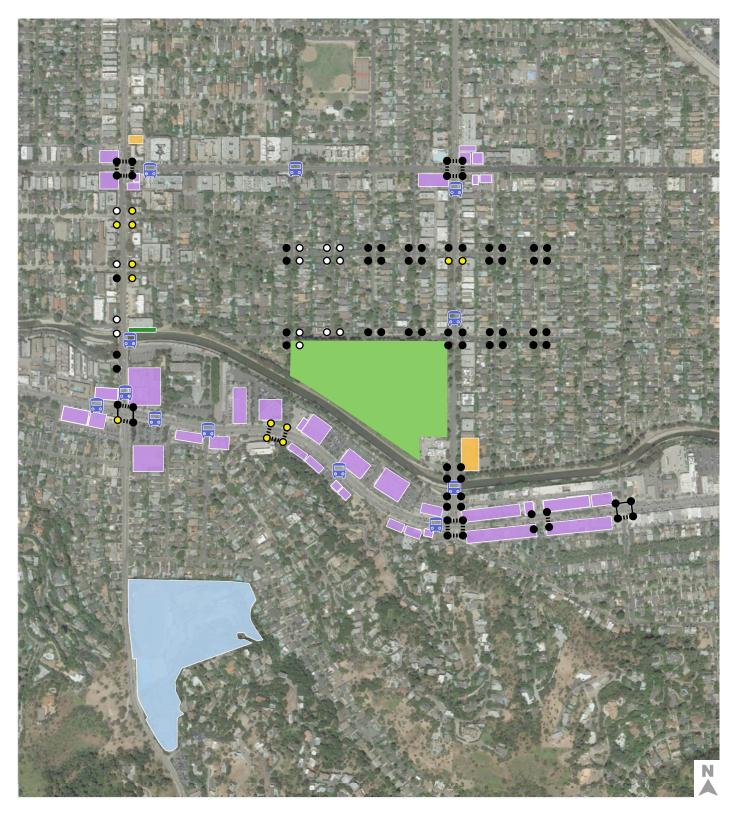
The following checklist from the TAG was reviewed to evaluate whether direct or indirect Project effects would lead to removal, modification, or degradation of pedestrian, bicycle, or transit facilities:

- Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts
 - No, the Project would not remove or degrade existing pedestrian facilities in the pedestrian environment because the Project would retain the existing sidewalk widths adjacent to the

Project Site on Whitsett Avenue. Sidewalks are not present on the east side of Bellaire Avenue and on the south side of Valley Spring Lane adjacent to the Project Site. The Project would construct a three-quarter mile long internal pedestrian path that would run parallel to Bellaire Avenue and Valley Spring Lane, thus improving the pedestrian infrastructure along the perimeter of the Project Site. The Project would improve pedestrian connection to the Zev Greenway by constructing a new pedestrian ramp from Coldwater Canyon Avenue, as well as a new pedestrian path from the Project Site.

- Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.)
 - No, the Project would not remove or degrade the existing bikeways and/or supporting facilities, including the existing bike path along the Los Angeles River. The Project will provide 72 short-term bike parking spaces and 28 long-term bike parking spaces to promote bicycle connectivity between the Project Site, the Los Angeles River, and the surrounding neighborhoods.
- Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities
 - No, the Project would not remove or degrade existing transit and/or local circulator facilities.
- Removal of other existing transportation system elements supporting sustainable mobility
 - No, the Project does not propose to remove sustainable transportation elements.
- Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds
 - No, the Project does not propose any changes to the public right-of-way that would increase street crossing distance for pedestrians, increase the number of travel lanes, or increase turning speeds.
- Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way
 - No, the Project does not propose to remove, degrade, or narrow sidewalks or limit pedestrian access paths. The Project would retain the existing sidewalk width adjacent to the Project Site on Whitsett Avenue. Sidewalks are not present on the east side of Bellaire Avenue and on the south side of Valley Spring Lane adjacent to the Project Site. The Project would construct a three-quarter mile long internal pedestrian path that would run parallel to Bellaire Avenue and Valley Spring Lane, thus improving the pedestrian infrastructure along the perimeter of the Project Site. The Project would improve pedestrian connection to the Zev Greenway by constructing a new pedestrian ramp from Coldwater Canyon Avenue, as well as a new pedestrian path from the Project Site.

HW River Park Project Draft Transportation Assessment April 2021


- Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.)
 - No, the Project does not propose the removal or narrowing of existing sidewalk-street buffering elements. The Project would retain the existing parkway along Whitsett Avenue.
- Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting.
 - Yes, the Project would increase pedestrian and vehicle volume around the Project Site. While most of the students, employees, and spectators arriving for the Harvard-Westlake athletic activities would arrive via vehicle or shuttle and would enter the Project Site through the two driveways, some may choose to walk onto the Project Site if they are walking from the Harvard-Westlake Upper School, a nearby transit stop, or the surrounding neighborhood. In addition, members of the community accessing the recreational facilities open to the public may drive or walk to the Project Site. This activity would increase pedestrian activity as well as vehicle activity. All crosswalks at the intersections surrounding the Project Site are unmarked and uncontrolled. Given the relatively small number of pedestrians anticipated on any given crosswalk, the crosswalks are not anticipated to meet crosswalk warrants.
- Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.).
 - Yes, the Project will generate an increase in pedestrian volumes where there are missing pedestrian facilities between the Project and nearby major destinations or transit stops, as shown in **Figure 6**. There are currently no sidewalks along the north side of the Project frontage on Valley Spring Lane. The Project is providing a parallel pedestrian path, which will improve the pedestrian facilities in the area.
- Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas.
 - Yes, the Project may generate an increase in transit demand at the nearby bus stops at Whitsett Avenue/Valley Spring Lane, Whitsett Avenue/Valleyheart Drive, and Whitsett Avenue/Ventura Boulevard. The intersections of Whitsett Avenue & Valley Spring Lane and Whitsett Avenue & Valleyheart Drive lack marked pedestrian crossings. However, it is anticipated that most transit trips would be via the shuttles provided by Harvard-Westlake to transport the students to and from the Upper School campus, and these shuttles will conduct on-site pick-up/drop-offs at the turnaround at the end of Valleyheart Drive.

HW River Park Project Draft Transportation Assessment April 2021

The responses provided above reflect conditions upon Project completion. During construction there may be temporary closures that result in temporary impacts. The Project frontages are not along streets that are part of the High-Injury Network (HIN).

Project Site

10

Pedestrian Facilities

- O Curb Ramp with Tactile Warning
- Curb Ramp without Tactile Warning
- O Missing Curb Ramp
- Continental Crosswalk
- Lateral Crosswalk
 - Future ADA Connection

Destination Types

Commercial Harvard-Westlake Upper School Religious Bus Stops

Figure 6

Pedestrian Destinations and Infrastructure Inventory

TABLE 6 HARVARD-WESTLAKE RIVER PARK PROJECT PEDESTRIAN AMENITIES SUMMARY									
Street	Intersection	Missing Ped Button	Missing Ped Signals	Identified Amenities: Bus benches, shelters, street trees, bike share, pedestrian lights					
	Moorpark St	No	No						
	Woodbridge St	n/a (not signalized)	n/a (not signalized)	Street trees (adequate), pedestrian lights					
Whitsett Ave	Valley Spring Ln	n/a (not signalized)	n/a (not signalized)	(inadequate), bus benches/ shelters (adequate in Whitsett/Moorpark SW and					
Whitsett Ave	Valleyheart Dr (N)	n/a (not signalized)	n/a (not signalized)	Whitsett/Ventura NW), Bike Share Station					
	Valleyheart Dr (S)	n/a (not signalized)	n/a (not signalized)	(inadequate)					
	Ventura Blvd	E to W	No						
	Laurelgrove Ave	E to W	No	Street trees (adequate except Fariway),					
Ventura Blvd	Rhodes Ave	Yes	Yes	pedestrian lights (adequate in Rhodes and Coldwater Canyon), bus benches/ shelters					
Ventura bivu	Fairway Ave	SE to SW	No	(adequate in Laurelgove/Ventura NW/SW and Coldwater Canyon/Ventura SE), Bike Share					
	Coldwater Canyon Ave	E to W	No	Station (inadequate)					
	Valleyheart Dr (S)	n/a (not signalized)	n/a (not signalized)						
	Valleyheart Dr (N)	n/a (not signalized)	n/a (not signalized)	Street trees (adequate), pedestrian lights					
Coldwater Canyon Ave	Woodbridge St	n/a (not signalized)	n/a (not signalized)	(adequate), bus benches/ shelters (adequate in Coldwater Canyon/Moorpark NW/SE), Bike					
	Bloomfield St	n/a (not signalized)	n/a (not signalized)	Share Station (inadequate)					
	Moorpark St	All	No						
	Bellaire Ave	n/a (not signalized)	n/a (not signalized)						
	Teesdale Ave	n/a (not signalized)	n/a (not signalized)						
Weedbridge Ct	Beeman Ave	n/a (not signalized)	n/a (not signalized)	Street trees (adequate), pedestrian lights					
Woodbridge St	Babcock Ave	n/a (not signalized)	n/a (not signalized)	(inadequate), bus benches/ shelters (inadequate), Bike Share Station (inadequate)					
	Wilkinson Ave	n/a (not signalized)	n/a (not signalized)						
	Rhodes Ave	n/a (not signalized)	n/a (not signalized)						
	Bellaire Ave	n/a (not signalized)	n/a (not signalized)						
	Teesdale Ave	n/a (not signalized)	n/a (not signalized)						
Valley Carine Le	Beeman Ave	n/a (not signalized)	n/a (not signalized)	Street trees (adequate), pedestrian lights					
Valley Spring Ln	ng Ln Babcock Ave n/a (r		n/a (not signalized)	(inadequate), bus benches/ shelters (inadequate), Bike Share Station (inadequate)					
	Wilkinson Ave	n/a (not signalized)	n/a (not signalized)						
	Rhodes Ave	n/a (not signalized)	n/a (not signalized)						

ſ

4.2 Project Access, Safety, and Circulation Evaluation

This section documents the peak hour intersection analysis conducted based on the screening criteria and trip threshold for intersection analyses provided in the TAG.

Study Analysis Locations

Four signalized intersections and one unsignalized intersection were selected for analysis in consultation with LADOT. The study locations were selected for analysis based on guidance from LADOT's TAG, which indicates that intersections immediately adjacent to the site and in proximity to the site through which 100 or more project-generated trips would travel should be analyzed. The study intersections and street segments are illustrated in **Figure 7** and listed in **Table 7A** and **Table 7B**.

Level of Service Methodology

Intersection Level of Service – Highway Capacity Manual

Per the direction of LADOT, this analysis uses the *Highway Capacity Manual*, 6th Edition (HCM) (Transportation Research Board, 2016) methodology to evaluate the operation of Project driveways and nearby intersections. This was performed using the Synchro 10.0 software program. Synchro calculates vehicle delay and level of service (LOS) based on procedures outlined in the HCM. This methodology was used to determine the intersection delay in seconds and corresponding level of service (LOS) at the signalized and unsignalized intersections. The calculation of delay represents the amount of delay experienced by vehicles passing through the intersection. The unsignalized intersection was analyzed using the 2-way stop method from the HCM 6th Edition. Delay was calculated based on the worst-case approach (for the 2-way stop-controlled intersection), and used to assign the corresponding LOS, as presented in **Table 8**. Access is considered constrained if the addition of Project related trips contributes to unacceptable queueing at a Project driveway or nearby signalized intersections. The network was built to match the existing roadway lane configurations, including storage bay and taper lengths.

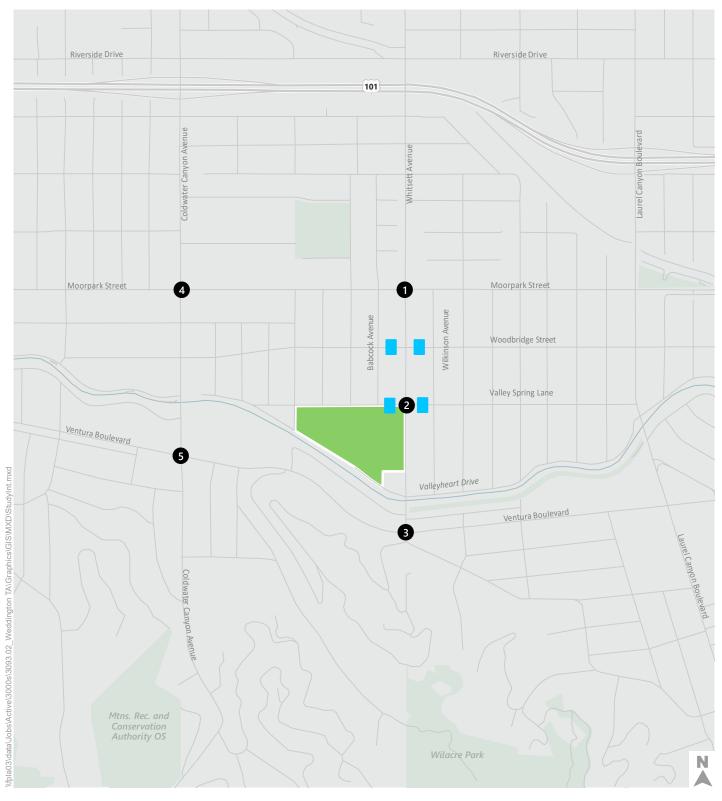


Figure 7

Study Intersections & Street Segments

TABLE 7A HARVARD-WESTLAKE RIVER PARK PROJECT STUDY INTERSECTIONS								
ID	N/S Street Name	E/W Street Name	Year of Count					
1	Whitsett Avenue	Moorpark Street	2019					
2	Whitsett Avenue ¹	Valley Spring Lane	2019					
3	Whitsett Avenue	Ventura Boulevard	2019					
4	Coldwater Canyon Avenue	Moorpark Street	2017 ^[2]					
5 Coldwater Canyon Avenue Ventura Boulevard 2017 ^[2]								
1. Unsig	nalized, two-way stop-controlled interse	ction.						
2. Due to	o the COVID-19 pandemic, historical cou	nts were retrieved for Intersection 4 and 5.						

TABLE 7B HARVARD-WESTLAKE RIVER PARK PROJECT STUDY SEGMENTS								
ID	Street Name	Between	Year of Count					
1	Valley Spring Lane	Babcock Avenue & Whitsett Avenue	2019					
•								
2	Valley Spring Lane	Whitsett Avenue & Wilkinson Avenue	Unavailable ¹					
2 3		Whitsett Avenue & Wilkinson Avenue Babcock Avenue & Whitsett Avenue	Unavailable ¹ Unavailable ¹					

TABLE 8 HARVARD-WESTLAKE RIVER PARK PROJECT LOS THRESHOLDS FOR SIGNALIZED AND UNSIGNALIZED INTERSECTIONS								
Level of Service	Signalized Intersection Average	Unsignalized Intersection Average						
(LOS)	Control Delay (sec/veh)	Control Delay (sec/veh)						
А	<u><</u> 10.0	<u><</u> 10.0						
В	> 10.1 to 20.0	> 10.1 to 15.0						
С	> 20.1 to 35.0	> 15.1 to 25.0						
D	> 35.1 to 55.0	> 25.1 to 35.0						
E	> 35.1 to 50.0							
F	> 80.0	> 50.0						
Source: Highway Capac	ity Manual , 6 th Edition Transportation Resea	arch Board, 2016.						

Analysis Scenarios

The following four scenarios were analyzed:

- Baseline (2020) Conditions Intersection turning movement counts were obtained for the study area and LOS was calculated to determine baseline conditions.
- Opening Year (2025) No Project Based on the City of Los Angeles travel demand model and at the direction of LADOT, it was established that an ambient growth rate of 0.6% per year should be applied to adjust the baseline year traffic volumes to reflect the effects of regional growth and development. This adjustment was applied to the baseline year (2020) traffic volume data to reflect the effect of ambient growth by the year 2025. Additionally, Opening Year traffic forecasts include the effects of known specific projects, called related projects, expected to be implemented in the vicinity of the Project Site prior to the buildout date of the Project.
- Opening Year (2025) Plus Project, Non-Event Scenario The Project trip estimates for the Non-Event Scenario were added to the Opening Year No Project forecasts. The Non-Event Scenario represents the trips associated with a typical day of Harvard-Westlake athletic activities and community use of the Project Site.
- Opening Year (2025) Plus Project, Special Event Scenario The Project trip estimates for the Special Event Scenario were added to the Opening Year No Project forecasts. The Special Event Scenario represents the trips associated with a Harvard-Westlake Special Event day, specifically a conference day. Only the 5-6 PM peak hour was studied for the Special Event Scenario, as it is not anticipated that the Special Events would generate trips during the 3-4 PM peak hour.

Year 2020 Baseline Traffic Volumes

Intersection turning movement counts were obtained for the study area and LOS was calculated to determine Year 2020 baseline conditions. New weekday PM peak period turning movement counts were collected in April 2019 at the three study intersections along Whitsett Avenue (Study Intersections 3, 4, and 5). Turning movement counts were not collected at the two study intersections along Coldwater Canyon Avenue (Study Intersections 1 and 2) at this time. Due to the COVID-19 pandemic and the shelter-in-place orders from the Governor and County, along with a memo released by LADOT in April 2020, turning movements counts could not be collected at these intersections in 2020 since they would not reflect typical conditions. Therefore, historical LADOT counts from 2017 were used for the two intersections along Coldwater Canyon Avenue, and an ambient growth factor of 0.6% per year was applied to adjust the traffic volumes to reflect baseline year 2020.

The Year 2020 baseline weekday afternoon peak hour volumes at the study intersections are provided in **Appendix H**, as well as the lane configurations of the study intersections. Count sheets for these intersections are contained in **Appendix F**.

Baseline Level of Service

The Year 2020 baseline traffic volumes in **Appendix H** were analyzed using the intersection capacity analysis methodology described above to determine the baseline operating conditions at the study intersections.

Table 9 summarizes the baseline weekday peak hour LOS for the study intersections. As indicated, four of the five study intersections operate at LOS D or better during both peak hours under baseline conditions, and the intersection of Coldwater Canyon Avenue & Ventura Boulevard operates at LOS E in the 3-4 PM peak hour. Analysis sheets are provided in **Appendix G**.

TABLE 9HARVARD-WESTLAKE RIVER PARK PROJECTYEAR 2020 BASELINE CONDITIONS INTERSECTION LEVELS OF SERVICE

NO.	Intersection	Peak Hour	Baseline	Baseline (2020)		
NU.	Intersection	Peak Hour	Delay (sec/veh)	LOS		
1	Whitsett Avenue & Moorpark Ave	3-4 PM	35.8	D		
I		5-6 PM	33.5	С		
2 W	Whitsett Avenue & Valley Spring Lane	3-4 PM	21.0	C		
		5-6 PM	22.8	С		
3	Whitsett Avenue & Ventura Boulevard	3-4 PM	30.9	C		
		5-6 PM	31.8	С		
Λ	Coldwater Capyon Avenue & Meerpark Ave	3-4 PM	32.4	C		
4	Coldwater Canyon Avenue & Moorpark Ave	5-6 PM	38.9	D		
F	Coldwater Conven Avenue & Venture Pouloverd	3-4 PM	61.9	E		
5	Coldwater Canyon Avenue & Ventura Boulevard	5-6 PM	53.3	D		

HW River Park Project Draft Transportation Assessment April 2021

Project Traffic

The development of peak hour vehicular traffic estimates for the Project involves the use of a three-step process: trip generation, trip distribution, and traffic assignment.

Trip Generation

As discussed in Chapter 1, the Project consists of an athletic and recreational facility for Harvard-Westlake School and for shared use with community members. The Project includes the development of two athletic fields with bleacher seating and field lights, an 80,249-square-foot multi-purpose gymnasium, a 52-meter swimming pool with seating, and eight tennis courts with seating. The Project would also include ancillary field buildings, a pool house, and small security kiosk. These facilities would also be available for community use when not in use by the School. The existing on-site putting green and clubhouse with café would be retained and rehabilitated and would be open to the community. The Project would also provide approximately 5.4 acres of publicly accessible open space and landscaped trails connecting to the adjacent Zev Yaroslavsky Los Angeles River Greenway (Zev Greenway) and on-site landscaped areas, water features, and recreational amenities.

For this Project, there would be different populations that would make trips to and from the Project Site, including Harvard-Westlake students, visiting teams, spectators, community members, and employees. In addition, there would be trips generated by potential Harvard-Westlake Special Events at the Project Site. The net total trip generation took credit for existing VMT associated with the existing Weddington Golf & Tennis, as these trips would be eliminated with the Project.¹⁵

Adjustments were also made to account for trips generated by transportation network companies. Given the relatively recent introduction of shared mobility transportation network companies (TNCs) such as Lyft and Uber in the urban transportation network, minimal industry research has been conducted to measure the mode split of TNC vehicles. Anecdotal evidence suggests, however, that usage has been steadily growing in recent years. To account for TNC usage, it was assumed that TNCs would replace 10% of the vehicle trips estimated to be generated by the Harvard-Westlake Athletic Use and the HW Special Events.

The description and the methodology for estimating the 90th percentile¹⁶ trip generation for the 3-4 PM and 5-6 PM peak hours for each population are described below. More information on the assumptions used in the trip generation estimate can be found in Attachment 3A of the LADOT MOU, which can be found in **Appendix A**.

HW Athletic Use consists of users and visitors to the Project Site related to Harvard-Westlake athletic activities. This includes the Harvard-Westlake students traveling between the Upper School Campus to the

¹⁶ Instead of the maximum day trip scenario, Fehr & Peers selected the 90th percentile total trips for each peak hour, as the 90th percentile would represent most days of the school year and exclude the exceptional days such as big rivalry game days that only occur on a handful of days a year.

¹⁵ Some existing components of Weddington Golf & Tennis, such as the café and putting green, will remain as part of the Project. However, the trip generation associated with these components is included in the overall Project trip generation. As such, the full existing use credit is taken for the existing Weddington Golf & Tennis.

Project Site (some taking the shuttle and some driving their private vehicles), Harvard-Westlake coaches, visiting team athletes and coaches, and spectators. Harvard-Westlake provided a spreadsheet of Harvard-Westlake Athletics data from the 2018-2019 school year, since this was the last complete school year before COVID-19. This data includes the practice schedule for each level of each sport (e.g., Basketball Varsity Girls), including the beginning and end date of the season, the days of week in which practices were conducted, the duration of the practices, and the number of participants. There was also data on home games for each sport, including the number of spectators. This data was converted to an estimate of inbound and outbound person trips for each day of the 2018-2019 school year, including peak hour trips. The hourly person trips were converted to hourly vehicle trips by applying average vehicle occupancy (AVO) factors specific to each population group (e.g., students, coaches, spectators). The final inbound and outbound peak hour trips were determined by selecting an actual date that most closely matched the 90th percentile total trips for the peak hour. For the 3-4 PM peak hour, the date was Wednesday, September 5, 2018. For the 5-6 PM peak hour, the date was Monday, March 4, 2019.

HW Special Events consists of the attendees at Harvard-Westlake events that may occur on the Project Site. Conservatively, up to 27 events of up to 500 attendees and three events of up to 2,000 attendees are anticipated per year, of which 15 would be on weekdays and 15 on weekend days. The analysis was conducted for an event anticipated to generate the highest number of vehicle trips – an educational summit expected to draw 500 attendees and average vehicle occupancy (AVO) of 1. The 2,000-attendee events were not analyzed as the attendees for those events would be bussed into the Project Site in buses with an AVO of 40, and thus the vehicle trip generation was found to be smaller than the 500-attendee events with an AVO of 1.

Community Use consists of members of the public that visit the Project Site outside of Harvard-Westlake-use hours, as well as those using the tennis courts during Harvard-Westlake use hours (the tennis courts are the only facility open to the public during Harvard-Westlake-use hours). The trip estimates for the community uses are based on rates in the ITE Trip Generation Manual, 10th Edition. The peak hour trips are estimated based on the Tennis Courts land use (LU 490) because only the tennis courts will be open to the public during the peak hour periods when Harvard-Westlake is using the other facilities. The daily trips are estimated based on the Recreational Community Center land use (LU 495), subtracting the portion of the daily trips that occur between 3-8 PM, when the site generally will not be open to the public, based on the time-of-day distribution data in Appendix A of the Recreation chapter of the manual.

Employees consist of staff at the Project Site holding roles in security, custodial, landscaping, kitchen, team store, staff, and athletics administration. Based on information from Harvard-Westlake, it is estimated that 49 employees will commute to and from the Project Site on a typical day. The peak hour trip generation was estimated based on a preliminary shift schedule provided by Harvard-Westlake.

Weddington Golf & Tennis consists of the patrons of the existing golf and tennis facility. Counts were collected at the site in February 2019 to estimate the peak hour trip generation for the use. Based on the

HW River Park Project Draft Transportation Assessment April 2021

counts, approximately 103 trips (55 inbound/48 outbound) during the 3-4 PM peak hour and 125 trips (54 inbound/71 outbound) during the 5-6 PM peak hour were estimated to no longer enter or leave the site by vehicle. As such, these trips were subtracted from the Project's overall trip generation as an existing use credit.

As shown in **Table 10**, the Project is projected to generate an estimated net increase of 68 trips (75 inbound/-7 outbound) during the 3-4 PM peak hour and 89 trips (16 inbound/73 outbound) during the 5-6 PM peak hour for the Non-Event Scenario. For the Special Event Scenario, the Project is projected to generate an estimated net increase of 484 trips (18 inbound/466 outbound) during the 5-6 PM peak hour.

Trip Distribution

The geographic distribution of trips generated by the Project is dependent on characteristics of the street system serving the Project Site; the level of accessibility of routes to and from the Project Site, locations of employment, commercial centers, and residential areas from which the visitors to the Project would be drawn.

The methodology for estimating the trip distribution for the 3-4 PM and 5-6 PM peak hours for each population is described below.

HW Athletic Use consists of users and visitors to the Project Site related to Harvard-Westlake athletic activities. This includes the Harvard-Westlake students traveling between the Upper School Campus to the Project Site (some taking the shuttle and some driving their private vehicles), Harvard-Westlake coaches, visiting team athletes and coaches, and spectators. The trip distribution for the Harvard-Westlake students traveling home after practice or a game, as well as the Harvard-Westlake coaches, visiting team athletes and coaches, was estimated using zip code data provided by Harvard-Westlake School of the number of Harvard-Westlake student households in each zip code.

HW Special Events consists of the attendees at Harvard-Westlake events that may occur on the Project Site. The trip distribution was estimated to be similar to that for the Harvard-Westlake student population.

Community Use consist of members of the public that visit the Project Site outside of Harvard-Westlakeuse hours, as well as those using the tennis courts during Harvard-Westlake use hours (the tennis courts are the only facility open to the public during Harvard-Westlake-use hours). The trip distribution was estimated to be similar to that for the Weddington Golf & Tennis visitors, which was developed using zip code data for tennis players by zip code.

Employees consist of staff at the Project Site holding roles in security, custodial, landscaping, kitchen, team store, staff, and athletics administration. The trip distribution by zip code was developed using zip code data provided by Harvard-Westlake of the subset of the existing employees that could work at the Project Site.

Weddington Golf & Tennis consists of the patrons of the existing golf and tennis facility. The trip distribution by zip code was developed using zip code data provided by Weddington Golf & Tennis of the

number of tennis players in each zip code based on a survey conducted over the course of a week in September 2019.

Traffic Assignment

The traffic to be generated by the Project was assigned to the street network using the distribution patterns described in **Figure 8**. **Appendix H** provides the assignment of the Project-generated peak hour traffic volumes at the analyzed intersections during the PM peak hours. The assignment of traffic volumes took into consideration the locations of the Project driveways.

TABLE 10 HARVARD-WESTLAKE RIVER PARK PROJECT TRIP GENERATION ESTIMATE										
3 PM - 4 PM Peak Hour Trips 5 PM - 6 PM Peak Hour Trips										
				Non-Event Scenario				Special Event Scenario		
Land Uses	Inbound	Outbound	Total	Inbound	Outbound	Total	Inbound	Outbound	Total	
HW Athletic Use ¹	108	19	127	48	107	155	0	0	0	
HW Special Events	0	0	0	0	0	0	50	500	550	
Community Use ³	17	17	34	17	17	34	17	17	34	
Employees	5	5	10	5	20	25	5	20	25	
Subtotal	130	41	171	70	144	214	72	537	609	
Existing Use Adjustment ⁴	-55	-48	-103	-54	-71	-125	-54	-71	-125	
Net New Trips	75	-7	68	16	73	89	18	466	484	

1. The new trips associated with HW Athletics is shown in Appendix H.

2. The new trips associated with HW Special Events is shown in Appendix H.

3. The trip estimates for the community uses are based on rates in the ITE Trip Generation Manual, 10th Edition. The peak hour trips are estimated based on the Tennis Courts land use (LU 490) because only the tennis courts will be open to the public during the peak hour periods when Harvard-Westlake is using the other facilities. The daily trips are estimated based on the Recreational Community Center land use (LU 495), subtracting the portion of the daily trips that occur between 3-8 PM, when the site will not be open to the public, based on the time-of-day distribution data in Appendix A of the Recreation chapter of the manual.

4. The existing use at the site is Weddington Golf and Tennis. The trips were counted at the site on Tuesday, February 12, 2019.

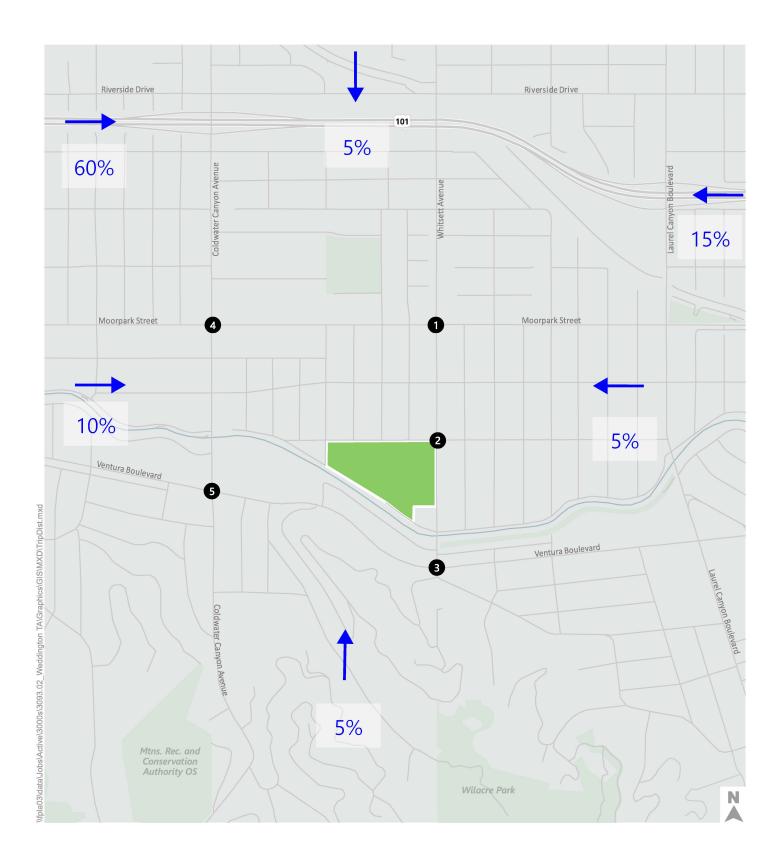


Figure 8A

Trip Distribution Map Harvard-Westlake Visitors

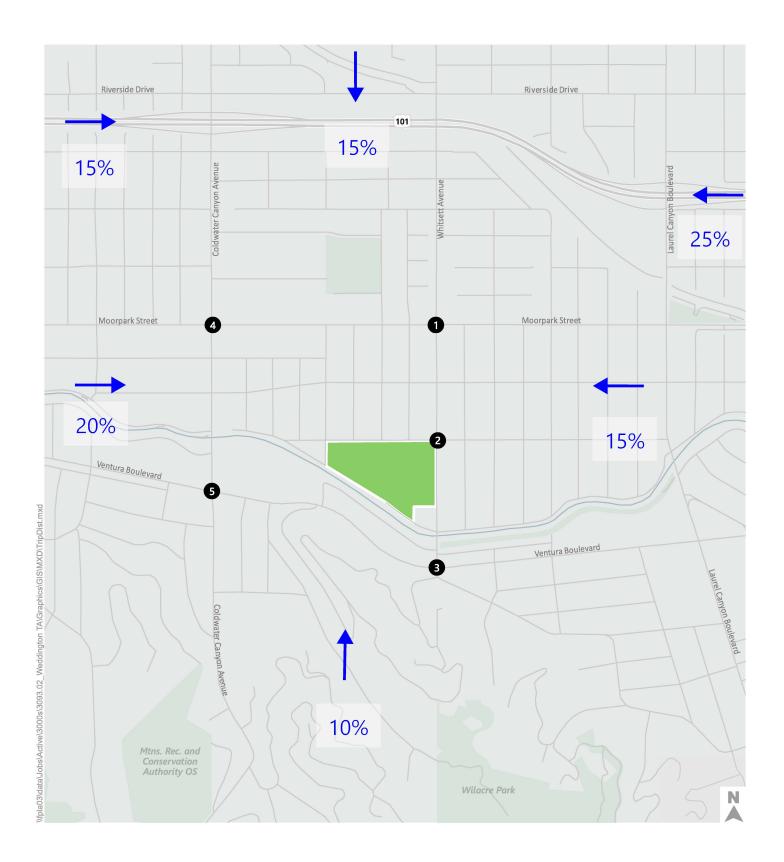
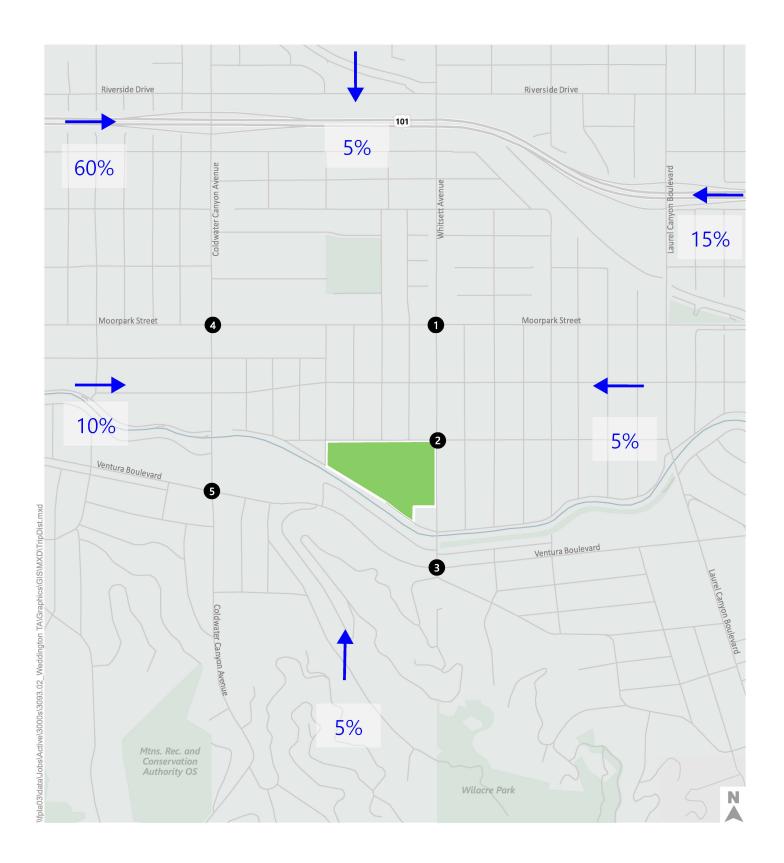



Figure 8B

Trip Distribution Map **Community Users**



Figure 8C

Trip Distribution Map Harvard-Westlake Employees

Opening Year Traffic Volumes

To evaluate the potential impacts of the Project on Opening Year (2025) conditions, it was necessary to develop estimates of future traffic conditions in the area both without and with Project traffic. First, estimates of traffic growth were developed for the study area to forecast future conditions without the Project. These forecasts included traffic increases as a result of both regional ambient traffic growth and traffic generated by specific developments in the vicinity of the Project (related projects).

These projected traffic volumes, identified herein as the Opening Year No Project conditions, represent the future conditions without the Project. The traffic generated by the Project was then estimated and assigned to the surrounding street system. Project traffic was added to the Opening Year No Project conditions to form Opening Year Plus Project traffic conditions, which were analyzed to determine the incremental traffic impacts attributable to the Project itself.

The assumptions and analysis methodology used to develop each of the future year scenarios discussed above are described in more detail in the following sections.

Background or Ambient Growth

Based on the City of Los Angeles travel demand model and at the direction of LADOT, it was established that an ambient growth factor of 0.6% per year should be applied to adjust the baseline year traffic volumes to reflect the effects of regional growth and development. This adjustment was applied to the baseline year (2020) traffic volume data to reflect the effect of ambient growth by the year 2025.

Related Project Traffic Generation and Assignment

Opening Year traffic forecasts include the effects of known specific projects, called related projects, expected to be implemented in the vicinity of the Project Site prior to the buildout date of the Project. The list of related projects was prepared based on data from LADOT and verified by City Planning. A total of 5 related projects were identified in the study area; these projects were listed in Table 3 and their locations were illustrated in Figure 5 in Chapter 2.

Trip Generation

For related projects provided by LADOT, the trip generation was used as provided. For related projects provided by other sources, trip generation was estimated using the ITE Trip Generation Manual, 10th Edition. Table 3 presents the resulting trip generation estimates for these related projects. These projections are conservative in that they do not in every case account for either the existing uses to be removed or the possible use of non-motorized travel modes (transit, walking, etc.). Mitigation measures associated with the related projects are also not in every case accounted for in the analysis.

Trip Distribution

The geographic distribution of the traffic generated by the related projects is dependent on several factors. These factors include the type and density of the proposed land uses, the geographic distribution of population from which employees and potential patrons of proposed commercial developments may

be drawn, the locations of employment and commercial centers to which residents of residential projects may be drawn, and the location of the projects in relation to the surrounding street system.

Traffic Assignment

Using the estimated trip generation and trip distribution patterns described above, traffic generated by the related projects was assigned to the street network.

Transportation Infrastructure Projects

In addition to the ambient growth and related development projects in the area, programmed improvements to local streets were considered for this analysis. As a mitigation measure for one of the related projects, two intersections in the study area are planned for lane configuration changes by year 2025 per confirmation by LADOT staff. The north side of Ventura Boulevard east of Coldwater Canyon Avenue is proposed to be restriped to provide an exclusive westbound right-turn-only lane. Ventura Boulevard east of Whitsett Avenue will be restriped to install an exclusive westbound right-turn-only lane. The Opening Year (2025) No Project and Plus Project conditions lane geometry reflects the lane geometries with these projects.

Opening Year No Project Traffic Volumes

Opening Year (2025) No Project weekday PM peak hour traffic volumes and lane geometries for the analyzed intersections are provided in **Appendix H**. The Opening Year (2025) No Project traffic conditions represent an estimate of future conditions without the proposed Project inclusive of the ambient background growth and related projects traffic.

Opening Year Plus Project Traffic Projections

The Project traffic volumes were added to the Opening Year (2025) No Project traffic projections, resulting in Opening Year (2025) Plus Project PM peak hour traffic volumes. As provided in **Appendix H**, the Opening Year (2025) Plus Project scenario represents future traffic conditions with the completion of the Project.

Opening Year Operational Analysis

The Opening Year (2025) No Project and Plus Project peak hour traffic volumes were analyzed to determine the projected LOS and maximum queue lengths for the turn pockets and through movements for each of the analyzed intersections. Project access is considered constrained if the project's traffic would contribute to unacceptable queuing on an Avenue or Boulevard (as designated in the Mobility Plan 2035) at project driveway(s) or would cause or substantially extend queuing at nearby signalized intersections.

The project would be considered to contribute to unacceptable or extended queuing if the turn pocket capacity is exceeded after the addition of the project's traffic and:

- 1. The projected peak hour intersection LOS is D and the turn lane queue increases by greater than 75 feet on any approach with the directional approach LOS at E or F, or
- 2. The projected peak hour intersection LOS is E or F and the turn lane queue increases by greater than 50 feet on any approach with the directional approach LOS at E or F.

Source: Eddie Guerrero, Los Angeles Department of Transportation, 1/13/2021.

Table 11 summarizes the Opening Year (2025) No Project and Plus Project LOS for the study intersections, along with the 95th percentile queue lengths and approach LOS for the vehicular movements at study intersections.

Four of the five study intersections are projected to operate at LOS D or better during the PM peak hours under Opening Year No Project. The following signalized intersection is projected to operate at LOS E or F during the PM peak hours under Opening Year No Project conditions:

- 5. Coldwater Canyon Avenue & Ventura Boulevard
 - LOS F in the 3-4 PM peak hour
 - \circ LOS E in the 5-6 PM peak hour

Three of the five study intersections are projected to operate at LOS D or better during the PM peak hours under Opening Year Plus Project conditions for the Non-Event Scenario. The following intersections are projected to operate at LOS E or F during the PM peak hours under Opening Year Plus Project conditions for the Non-Event Scenario:

- 4. Coldwater Canyon Avenue & Moorpark Street
 - LOS E in the 5-6 PM peak hour
- 5. Coldwater Canyon Avenue & Ventura Boulevard
 - LOS F in the 3-4 PM peak hour
 - LOS E in the 5-6 PM peak hour

Two of the five study intersections are projected to operate at LOS D or better during the PM peak hours under Opening Year Plus Project conditions for the Special Event Scenario. The following intersections are projected to operate at LOS E or F during the PM peak hours under Opening Year Plus Project conditions for the Special Event Scenario:

- 3. Whitsett Avenue & Ventura Boulevard
 - LOS E in the 5-6 PM peak hour
- 4. Coldwater Canyon Avenue & Moorpark Street
 - LOS F in the 5-6 PM peak hour
- 5. Coldwater Canyon Avenue & Ventura Boulevard
 - LOS E in the 5-6 PM peak hour

As shown in **Table 11**, per the City's criteria, no instances were found of the Project projected to cause or substantially contribute to unacceptable queuing at nearby signalized intersections.

Detailed intersection LOS worksheets for the study intersections are presented in Appendix G.

		Opening Year	(2025) No	Project	Opening Year (Special E	2025) Plus P vent Scenari					95th P	ercentile		Project Co	ntributoc
#	Study Intersection	Intersection LOS (3-4 PM/ 5-6	Directio	onal LOS	Intersection LOS (3- 4 PM/5-6 PM)	Directional LOS		Movement ¹	Storage Length	Opening Year (2025) No Project			′ear (2025) ·oject - nt Scenario	Unacc	eptable uing ²
		PM)	3-4 PM	5-6 PM	4 PM/5-6 PM)	3-4 PM	5-6 PM			3-4 PM	5-6 PM	3-4 PM	5-6 PM	3-4 PM	5-6 PN
		-	E	D		E	D	EBL	150	125	100	125	125	-	-
			E C	D C	-	E C	D C	EBT EBR	2,525 50	700 75	625 50	675 75	600 50	-	-
			F	F		F	F	WBL	100	150	150	150	125	-	-
			С	С		С	С	WBT	950	425	425	425	425	-	-
1	Whitsett Ave & Moorpark St	D/D	B C	B C	D/D	B C	B C	WBR NBL	50 75	50 125	75 175	50 125	75 150	-	-
		-	C	C C		C C	C	NBT	1,250	275	350	275	350	-	-
			С	C		С	С	NBR	0	0	0	0	0	-	-
			C	D		C	D	SBL	75	100	150	100	150	-	-
			B	B	-	B	B	SBT SBR	225 0	200 0	200 0	200 0	200 0	-	-
			F	F		F	F	EBL	100	25	25	25	25	-	-
			F	F		F	F	EBT	100	25	25	25	25	-	-
			B	B	-	B	B	EBR WBL	50 100	25 25	25 25	25 25	25 25	-	-
			F	F		F	F	WBL	100	25	25	25	25	-	-
2	Whitsett Ave & Valley Spring Ln ³	C/D	В	C	C/D	В	C	WBR	50	25	25	25	25	 	
۲			A	A		A	A	NBL	1000	25	25	25	25		
		-	A	A _	-	A _	A	NBT NBR	1000 1000	-	-	-	-		
		-	В	B		В	В	SBL	600	25	25	25	25		
			А	А	1	A	А	SBT	600	-	-	-	-		
			-	-		-	-	SBR	50	-	-	-	-		
			F C	F C	-	F C	F C	EBL EBT	100 2,650	200 400	225 425	250 400	225 400		
			C	C C		C C	C	EBR	50	100	100	100	100		
	Whitsett Ave & Ventura Blvd		D	D		D	D	WBL	150	75	50	75	50		
			D	D	4	D	F	WBT	1,025	550	625	550	625		
3		D/D	B D	B D	D/D	B D	B	WBR NBL	50 25	175 125	200 125	200 125	200 125		
		-	A	A	-	A	A	NBT	175	200	200	200	225		
			D	D]	D	D	NBR	0	0	0	0	0	-	-
			D	D		D	D	SBL	350	125	125	150	150		
			C B	B		C B	C B	SBT SBR	350 50	125 125	125 125	125 125	125 200		
			D	D		D	D	EBL	125	125	100	125	100		
			С	C		C	C	EBT	925	475	475	475	500	-	-
			B	B		B	В	EBR	100	25	50	25	50		
		-	D C	D C		D C	E	WBL WBT	150 2,525	100 500	100 475	100 475	100 475		
	Coldwater Canyon Ave &		C	C		C	C	WBR	100	75	75	75	75		
4	Moorpark St	D/D	D	D	D/E	D	E	NBL	75	150	150	150	175	-	-
			C	C		D	F	NBT	1,850	525	525	550	600		
			D F	C F	-	D F	F	NBR SBL	0 75	0 175	0 250	0 200	0 250		
			D	D]	D	D	SBT	275	425	425	425	475		
		<u> </u>	D	D		D	D	SBR	0	0	0	0	0	-	-
			F	F		F	F	EBL	150	475	375	475	375		
			F A	F A		F A	F A	EBT EBR	700 50	575 75	575 75	575 75	575 75	-	-
			E	F	1	E	F	WBL	200	100	125	125	125		-
			D	D		D	F	WBT	2,650	425	425	425	425	-	-
5	Coldwater Canyon Ave &	F/E	C	C F	F/E	C	D	WBR	100	100	75	100	125		-
	Ventura Blvd		E C	F C		E C	E C	NBL NBT	100 375	375 325	400 375	375 350	375 400		-
			C	C	1	C	C	NBR	325	150	125	150	125	-	-
			F	F]	F	F	SBL	350	250	250	250	250	-	-
			D	D		D	D	SBT SBR	1,850	325	325	325	325	-	-

	INT	FERSECTION	HARVARD)-WESTLAK		RK PROJEC - SPECIAL I		ENARIO		
		Opening Year (2025) No Project		Plus Pr	Opening Year (2025) Plus Project - Special Event Scenario		61	95th Perce	Project Contribute	
#	Study Intersection	Intersection Directional LOS (5-6 LOS		Intersection LOS (5-6		Movement ¹	Storage Length	Opening Year (2025) No Project	Opening Year (2025) Plus Project - Special Event Scenario	Unaccepta Queuing
		PM)	5-6 PM	PM)	5-6 PM			5-6 PM	5-6 PM	5-6 PN
			D		E	EBL	150	100	125	-
			D C		F	D C	EBT FBR	2,525 50	625 50	525 50
			F		F	EBR WBL WBT	100	150	150	-
	Whitsett Ave & Moorpark St		C	ŀ	C		950	425	425	-
1			В	6	В	WBR	50	75	75	-
1		D	С	D	D	NBL	75	175	200	-
			С		С	NBT	1,250	350	350	-
			С		C	NBR	0	0	0	-
			D		D	SBL	75	150	150	-
			B		B	SBT SBR	225 0	200 0	200	-
		+	B		F	EBL	100	25	25	-
			F F		F	EBL	100	25	25	-
			B		B	EBR	50	25	25	-
			F		F	WBL	100	25	25	-
			F		F	WBT	100	25	25	-
2	Whitsett Ave & Valley Spring Ln ³	D	С	D	С	WBR	50	25	25	-
2			A	U	A	NBL	1000	25	25	-
			A		A	NBT	1000	-	-	-
			-		- D	NBR	1000	-	-	-
			B		B A	SBL SBT	600 600	- 25	- 25	-
			A _		- -	SBR	50	-	-	-
			F		F	EBL	100	225	225	_
			C		D	EBT	2,650	425	400	-
			С		С	EBR	50	100	100	-
			D		D	WBL	150	50	50	-
			D		F	WBT	1,025	625	625	-
3	Whitsett Ave & Ventura Blvd	D	В	Е	В	WBR	50	200	200	-
-			D		E	NBL	25	125	125	-
			A D		A D	NBT NBR	175 0	200 0	225 0	-
			D		D	SBL	350	125	175	-
			B		B	SBE	350	125	125	_
			B	1	C	SBR	50	125	450	_
			D		D	EBL	125	100	100	-
			С		С	EBT	925	475	500	-
			В		В	EBR	100	50	50	-
			D		E	WBL	150	100	100	-
			C		C	WBT	2,525	475	475	-
4	Coldwater Canyon Ave & Moorpark St	D	C	F	C	WBR	100	75	75	-
			D C		E F	NBL NBT	75 1,850	150 525	200 775	-
			C C		F	NBR	0	0	0	-
			F		F	SBL	75	250	275	-
			D		D	SBT	275	425	475	-
			D		D	SBR	0	0	0	-
			F		F	EBL	150	375	375	-
			F		F	EBT	700	575	575	-
			A		A	EBR	50	75	75	-
			F		F	WBL WBT	200 2,650	125 425	125 450	-
			D C		F D	WBR	2,650	425 75	275	-
5	Coldwater Canyon Ave & Ventura Blvd	E	F	Е	E	NBL	100	400	375	-
			C		C	NBT	375	375	400	-
			C		C	NBR	325	125	125	-
			F		F	SBL	350	250	250	-
			D		D	SBT	1,850	325	325	-
			D		D	SBR	0	0	0	-

4.3 Site Access Evaluation

This section evaluates the site access of the Project driveways, including projected levels of service (LOS) and queuing.

Project Driveways

Vehicular access would be provided to the Project Site via two driveways, one directly along Whitsett Avenue and one as an extension of Valleyheart Drive. Both driveways would provide inbound access to the subterranean parking structure with 503 parking spaces. Egress from the parking structure would be via the northern driveway directly to Whitsett Avenue. Both inbound and outbound access at the north driveway would be limited to right-turns only via a triangular island on the driveway. Access for passenger loading would be provided via the south driveway, which would lead to a turnaround designed to accommodate buses, shuttles, and automobiles, as well as to a surface lot with 29 parking stalls.

A level of service analysis was conducted to evaluate the ability of each driveway access to accommodate the anticipated traffic levels at the driveway access points. The driveways will be unsignalized and stop-controlled and were analyzed as part of the Synchro using the Two-way Stop methodology from *HCM* 6th *Edition*. The HCM methodology determines the average vehicle delay for the stop-controlled approach to find the corresponding LOS based on the definitions presented earlier in **Table 8**. Driveway analysis LOS worksheets are included in **Appendix I**. **Table 12A** and **Table 12B** show the results of the LOS analysis for the north driveway and the Whitsett Avenue & Valleyheart Drive intersection.

Project Driveway LOS Analysis

The LOS for unsignalized intersections is reported for the stop-controlled approach, which in this case is the eastbound approach for the vehicles exiting the driveways and the northbound left-turn movement at Whitsett Avenue & Valleyheart Drive turning in toward the south driveway.

As shown in **Table 12A**, both the north driveway and the intersection of Whitsett Avenue & Valleyheart Drive are projected to operate at LOS D or better during the 3-4 PM peak hour and the 5-6 PM peak hour for the Non-Event Scenario under Opening Year Plus Project conditions. The northbound left-turn movement at Whitsett Avenue & Valleyheart Drive is projected to operate at LOS A for both peak hours in the Non-Event and Special Event Scenarios.

During 5-6 PM peak hour Special Event Scenario, which is the worst-case highest trip generating event anticipated at the Project Site, both are projected to experience higher delays, with LOS E at the north driveway and LOS F at Whitsett Avenue & Valleyheart Drive.

Project Driveway Queuing Analysis

As shown in **Table 12B**, the eastbound movements at both the north driveway and the Whitsett Avenue & Valleyheart Drive intersection are projected to have queues of 25 feet or shorter during the 3-4 PM peak hour and the 5-6 PM peak hour for the Non-Event Scenario under Opening Year (2025) Plus Project conditions. Thus, none of these movements experience unacceptable queueing under these conditions.

During the 5-6 PM peak hour Special Events Scenario, which is the worst-case highest trip generating event anticipated at the Project Site, the eastbound queueing at the north driveway and at Whitsett Avenue & Valleyheart Drive are projected to be 275 feet and 150 feet, respectively. These queues will extend onto the Project Site and will not affect the surrounding street network.

Los Angeles Fire Department Fire Station 78

The LAFD Station 78 is located on the north side of Valleyheart Drive, which serves as access for the Project's south driveway. A site visit was conducted at the fire station in March 2021 and LAFD personnel described their operations. The main driveway used for the departure of the larger fire trucks is located on Whitsett Avenue, north of Valleyheart Drive. There are two other driveways on the north side of Valleyheart Drive. Of these two driveways, the eastern driveway is used for the departure of the smaller apparatus and the western driveway is used for the return of the larger fire trucks. As such, it is essential to minimize effects on access for LAFD vehicles between Valleyheart Drive and Whitsett Avenue and to minimize the eastbound queues at Whitsett Avenue when emergency vehicles need to access Valleyheart Drive. Also, the larger trucks when entering the driveway need to swing wide and use most of the Valleyheart Drive roadway.

				_	TABLE 12A TLAKE RIVER PARK P DRIVEWAYS LEVELS O								
				Opening Year (2025) Plus Project - Delay and LOS									
Driveway No.	Unsignalized Driveway	Movement ¹	3-4 PM Pea	ak Hour	5-6 PM Pea Non-Event S		5-6 PM Peal Special Event		5-6 PM Peak Hour - Special Event Scenario With Corrective Action ²				
			Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS			
1	Whitsett Avenue & North Driveway	EBR	11.2	D	12.6	В	41.6	E	41.6	E			
2	Whitsott Avanua & Vallayhaart Drive	NBL	0.9	A	0.7	A	0.5	A	0.5	А			
2	Whitsett Avenue & Valleyheart Drive	EB LTR	20.7	C	25.5	D	389.9	F	14.8	В			

2. The Correction Action would be to prohibit left-turns out of Valleyheart Drive onto Whitsett Avenue on Special Event Days and force all exiting vehicles to turn right onto Whitsett Avenue.

TABLE 12B HARVARD-WESTLAKE RIVER PARK PROJECT PROJECT ACCESS DRIVEWAYS QUEUES

			Opening Y	ear (2025) Plus l	Project - Estimate	d 95th Percentile	Queue (ft)	
Driveway No.	Unsignalized Driveway	Movement ¹	nt ¹ Available Non-Event Scenario Storage (ft)		nt Scenario	Special Event Scenario	Special Event Scenario With Corrective Action ²	
				3-4 PM	3-4 PM 5-6 PM 5-6 PM			
1	Whitsett Avenue & North Driveway	EBR	NA ^[3]	25	25	275	275	
n	Whitsett Avenue & Valleyheart Drive	NBL	350	25	25	25	25	
2	whitsett Avenue & valleyheart Drive	EB LTR	NA ^[4]	25	25	150	25	

1. EBR = Eastbound Right, NBL = Northbound Left, EBLTR = Eastbound Left/Through/Right

2. The Correction Action would be to prohibit left-turns out of Valleyheart Drive onto Whitsett Avenue on Special Event Days and force all exiting vehicles to turn right onto Whitsett Avenue.

3. The available storage for the eastbound approach at the Whitsett Avenue & North Driveway extends into the subterranean garage.

4. The available storage for the eastbound approach at the Whitsett Avenue & South Driveway extends to the turnaround.

Passenger Loading Evaluation

The purpose of this section is to determine whether passenger loading demand can be accommodated within the proposed on-site turnaround off of Valleyheart Drive, and whether it may create unintended pedestrian, bicycle, or vehicle conflicts.

Access for passenger loading would be provided via one, two-way driveway from the Valleyheart Drive stub located south of Los Angeles Fire Department Station 78 (south driveway), which would lead to a turnaround designed to accommodate buses, shuttles, and automobiles, as well as to a surface lot with 29 parking stalls. The passenger loading demand would include shuttle buses and TNCs. The turnaround is proposed to have a central island with a 28 feet radius, and a two-way driveway of 30 feet in width. The available storage capacity would be approximately 425 feet, which is the equivalent of 17 vehicles assuming an average vehicle storage length of 25 feet. Conservatively assuming that each shuttle or TNC vehicle stays in the turnaround for three minutes each (TNC stays are likely shorter than three minutes), the storage capacity for a 15-minute period would be 85 vehicles.

On Non-Event days, the Project would provide three shuttle buses to transport students, coaches, and visitors between the Project Site and the Harvard-Westlake Upper School campus with an anticipated service of every 5 to 10 minutes. For the Non-Event scenario, the Project is estimated to generate seven TNC trips during the 3-4 PM peak hour and seven TNC trips during the 5-6 PM peak hour. Conservatively assuming that all seven TNC vehicles arrive and depart within a 15-minute period, there would be three shuttles and seven TNC vehicles, or 10 vehicles total, in the turnaround in a 15-minute period, which is less than the storage capacity of 85 vehicles. Therefore, the passenger loading demand would be accommodated with this on-site passenger loading facility.

On Special Event days, which is the worst-case highest trip generating event anticipated at the Project Site, the Project is estimated to generate 50 TNC trips during the 5-6 PM peak hour. In this scenario, there would be no shuttle buses, as this event would not occur simultaneously with Harvard-Westlake athletic activities.¹⁷ Conservatively assuming that all 50 TNC vehicles arrive and depart within a 15-minute period, there would be 50 vehicles total in the turnaround in a 15-minute period, which is less than the storage capacity of 85 vehicles. Therefore, the passenger loading demand would be accommodated with this onsite passenger loading facility.

The Project is proposing to separate the vehicular driveways from the entry of pedestrian/bicyclists/public transit riders. Pedestrian access to the Project Site would be provided via the primary pedestrian entry on Whitsett Avenue. The primary pedestrian entry would be connected to the passenger loading zone by pedestrian paths on site. Students, visitors, and employees arriving to the Project Site by bicycle would have the same access opportunities as pedestrians and would be able to utilize on-site bicycle parking

¹⁷ There are other Special Event days that may occur simultaneously with Harvard-Westlake athletic activities. However, the total trip generation for combining those Special Events and the Harvard-Westlake athletic activities was estimated to be less than this scenario, which assumes an Educational Summit with 500 attendees not occurring simultaneously with Harvard-Westlake athletic activities.

facilities. Therefore, the Project's multimodal amenities and location of driveways would minimize vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts.

Potential Corrective Actions

After identifying the Project related access constraint at the south driveway on Whitsett Avenue during the Special Event Scenario, the following corrective action was identified to minimize the access constraints:

- On Special Event Days, prohibit left turns out of the south driveway and force all exiting vehicles to turn right onto Whitsett Avenue. This can be employed using traffic control officers (TCOs) as part of an event management plan to be developed with LADOT. This change would improve the projected LOS at the southern driveway from LOS F to LOS B, and would reduce the projected queue length from 150 feet to 25 feet, as shown in Table 12A and Table 12B.
- To minimize effects on access for LAFD vehicles on Valleyheart Drive, implement a warning light that would hold back vehicles exiting the Project turnaround onto Valleyheart Drive when an emergency vehicle is approaching Valleyheart Drive from Whitsett Avenue or exiting from one of the two LAFD driveways on Valleyheart Drive. This warning light would be activated by a button pressed by LAFD staff in the emergency vehicles.

4.4 Project Construction

This section assesses whether the construction of the project would interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility, considering three categories of construction impacts per the LADOT TAG: (1) temporary transportation constraints, (2) temporary loss of access, and (3) temporary loss of bus stops or rerouting of bus lines.

Construction of the Project would commence with demolition of the existing golf and tennis facilities (other than the existing café and putting green which will remain). This phase would be followed by site preparation and grading/excavation. Building foundations would then be laid, followed by building/facility construction, architectural coatings, paving/concrete installation, and landscape installation. Project construction is anticipated to be completed in 2025. It is estimated that approximately 250,000 cubic yards of export would be hauled from the Project Site.

Anticipated Construction Activity

Project construction is expected to take a total of approximately 30 months to complete. The construction is anticipated to involve six key phases:

- Phase 1: Demolition 2 months
- Phase 2: Site Preparation 2 months
- Phase 3: Grading/Excavation 7 months
- Phase 4: Building/Facility Construction 17 months
- Phase 5: Architectural Coatings 12 months
- Phase 6: Paving 1 month

Construction Trucks

Haul Trucks

Hauling activity is expected to occur during Phases 1, 2, and 3. During Phase 1, up to 150 haul truck trips per day are anticipated on peak haul days. During Phase 2, up to 102 haul truck export trips are anticipated on peak haul days. Phases 1 and 2 would occur concurrently in the first month of Project construction, and thus a combined 252 maximum daily haul truck trips would be generated during this time. During Phase 3, up to 300 haul truck export trips are anticipated on peak haul days.

Hauling hours are anticipated to begin at 8:00 AM and continue to 4:00 PM. The inbound haul route would come from the US-101, head southbound on Coldwater Canyon Avenue, eastbound on Moorpark Street, and southbound on Whitsett Avenue to access the Project Site. The outbound haul route would leave the Project Site and head southbound on Whitsett Avenue, westbound on Ventura Boulevard, and northbound on Coldwater Canyon Avenue to reach US-101. The staging area is expected to be located on the Project Site.

Equipment and Delivery Trucks

In addition to haul trucks, the Project is expected to generate equipment and delivery trucks during construction. One example would be for concrete delivery, which would be required for the parking garage and the buildings on-site. Other deliveries could include plumbing supplies, electrical fixtures, and items used in furnishing the buildings. These materials would be delivered to the Project Site and stored on-site. These deliveries are expected to occur in variously sized vehicles including small delivery trucks to cement mixer trucks and 18-wheel trucks. Additionally, construction equipment would have to be delivered to the Project Site. This equipment could include cranes, bulldozers, excavators, and other large items of machinery. Most of the heavy equipment is expected to be transported to the Project Site on large trucks such as 18-wheelers or other similar vehicles.

The following construction activities are expected to involve the following number of equipment/delivery truck trips per day on peak activity days:

- Utilities/Trenching 6 truck trips
- Foundation/Columns/Decks 200 truck trips
- Building Construction 40 truck trips
- Architectural Finishes 40 truck trips
- Asphalt Paving 10 truck trips
- Landscape 80 truck trips
- Pool/Canopy/Building 70 truck trips

Construction Employees

The number of construction workers would vary throughout the construction period with Phase 5 generating the highest number of employees. The following construction activities are expected to involve up to the following number of workers on site per day on peak activity days:

- Demolition 40 workers
- Initial Site Preparation 40 workers
- Grading/Excavating 35 workers
- Utilities/Trenching 35 workers
- Foundation/Columns/Decks 100 workers
- Building Construction 100 workers
- Architectural Finishes 140 workers

HW River Park Project Draft Transportation Assessment April 2021

- Asphalt Paving 30 workers
- Landscape 100 workers
- Pool/Canopy/Building 100 workers

Construction Worker Parking

During all phases of construction, employees are expected to park on the Project Site.

Construction Period Evaluation Criteria

The LADOT TAG provides three categories to be considered in regard to in-street construction effects: temporary traffic constraints, temporary loss of access, and temporary loss of bus stops or rerouting of bus lines. The evaluation criteria to be considered in each of these categories are as follows:

- Temporary Traffic Constraints:
 - The length of time of temporary street closures or closures of two more traffic lanes;
 - The classification of the street (major arterial, state highway, substandard hillside local or collector, etc.) affected;
 - o The existing congestion levels on the affected street segments and intersections;
 - The operational constraints of substandard hillside streets needing to access construction sites;
 - Whether the affected street directly leads to a freeway on- or off-ramp or other state highway;
 - o Potential safety issues involved with street or lane closures;
 - The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.
- Temporary Loss of Access:
 - The length of time of any loss of pedestrian or bicycle circulation past a construction area;
 - The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area;
 - The length of time any loss or impedance of access by emergency vehicles or area residents to hillside properties;
 - The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility;
 - o The availability of nearbyvehicular or pedestrian access within 1/4 mile of the lost access;
 - The type of land uses affected, and related safety, convenience, and/or economic issues.
- Temporary Loss of Bus Stops or Rerouting of Bus Lines:

- The length of time that an existing bus stop would be unavailable or that existing service would be interrupted;
- The availability of a nearby location (within ¹/₄ mile) to which the bus stop or route can be temporarily relocated;
- The existence of other bus stops or routes with similar routes/destinations within a ¹/₄ mile radius of the affected stops or routes;
- Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).

Los Angeles Municipal Code (LAMC) Section 41.40 provides that construction activities are limited to the hours from 7:00 AM to 9:00 PM on weekdays and from 8:00 AM to 6:00 PM on Saturdays and holidays. No construction is permitted on Sundays.

Construction Analysis

The assessment of the Project against the evaluation factors described above is presented in **Table 13** and discussed below.

Temporary Traffic Constraints

Long-term closures to travel lanes are not anticipated to occur during construction of the Project. There would be travel lane closures on Project frontages during construction for intermittent periods of time to connect utilities such as water, storm drain, and electrical. Although there is a City of Los Angeles fire station (Station 78) located within the immediate vicinity of the affected streets, access would not be restricted to this facility.

Closures of the sidewalks are anticipated to accommodate Project construction along the Project frontage for intermittent periods of time to connect utilities such as water, storm drain, and electrical. Trench plates would be set each day to maintain sidewalk access during off hours.

Temporary Loss of Access

The existing land uses near the vicinity of the Project Site will remain open throughout construction. Pedestrian and vehicular access to properties located nearby to the Project Site will be open and unobstructed for the duration of construction. No loss of ADA pedestrian access to a transit stop, station, or facilities is anticipated. On-street parking on the Project frontages will be temporarily restricted during the construction period.

Temporary Loss of Bus Stops or Rerouting of Bus Lines

Bus stops are not located along the Project frontages on Whitsett Avenue, Valley Spring Lane or Bellaire Avenue. A bus stop is located on the north side of Valley Spring Lane at the intersection of Whitsett Avenue and Valley Spring Lane, and a bus stop is present on the east side of Whitsett Avenue immediately south of Valleyheart Drive, but construction will not affect these bus stops as they are not

located on the Project frontage. Temporary travel lane closures along Whitsett are anticipated but would not require relocation of bus stops or rerouting of bus lines.

TABLE 13
HARVARD-WESTLAKE RIVER PARK PROJECT
CONSTRUCTION EVALUATION

Evaluation Criteria	Assessment
Temporary Traffic Constraints:	
• The length of time of temporary street closures or	Long-term closures to travel lanes are not anticipated to occur
closures of two or more traffic lanes;	during construction. Portions of Whitsett Avenue will be temporarily
 The classification of the street (major arterial, state 	closed for short-term durations to connect utilities. • Whitsett Avenue is classified as an Avenue II and Valley Spring Lane
highway, substandard hillside local or collector, etc)	is classified as a local street.
affected:	
 The existing congestion levels on the affected street segments and intersections; 	• The intersection of Whitsett Avenue & Valley Spring Lane operates at LOS C during both peak hours under Year 2020 baseline conditions and is projected to operate at LOS C and D in the 3-4 PM and 5-6 PM peak hours (for both Non-Event and Event Scenarios), respectively, under Future plus Project conditions.
 The operational constraints of substandard hillside 	 The construction site is not located in a hillside area.
 streets needing to access construction sites; Whether the affected street directly leads to a freeway 	 None of the affected streets directly lead to a freeway on- or off- ramp or other state highways.
on- or off-ramp or other state highway; • Potential safety issues involved with street or lane	 Worksite traffic control plans would be prepared for any temporary
closures;	lane closures in accordance with applicable City and MUTCD quidelines.
• The presence of emergency services (fire, hospital, etc.)	There is one emergency service (LA Fire Station 78) located
located nearby that regularly use the affected street.	immediately south of the Project Site on Valleyheart Drive and access
Temporary Loss of Access:	would not be restricted to this facility.
• The length of time of any loss of pedestrian or bicycle	1
 circulation past a construction area; The length of time of any loss of vehicular, bicycle, or 	
pedestrian access to a parcel fronting the construction	Portions of the sidewalk on Whitsett Avenue will be temporarily
area; • The length of time of any loss of ADA pedestrian	closed for short-term durations to connect utilities. Trench plates would be set each day to maintain sidewalk access during off hours.
access to a transit station, stop, or facility; • The availability of nearby vehicular or pedestrian	Sidewalks along Valley Spring Lane will remain open. There is no anticipated loss of ADA pedestrian access to a transit station, stop or
access within ¼ mile of the lost access; • The length of time any loss or impedance of access by	facility. The only potential loss of temporary access would be to the
emergency vehicles or area residents to hillside	Project Site itself.
properties;The type of land uses affected, and related safety,	
convenience, and/or economic issues.	
Temporary Loss of Bus Stops or Rerouting of Bus Lines:	
• The length of time that an existing bus stop would be	The bus stops along both sides of Whitsett Avenue at Valley Spring
unavailable or that existing service would be interrupted;	Lane and the bus stop on the east side of Whitsett Avenue immediately south of Valleyheart Drive would not be affected by the
• The availability of a nearby location (within ¼ mile) to	Project construction.
which the bus stop or route can be temporarily relocated;	
• The existence of other bus stops or routes with similar	
routes/ destinations within a ¼mile radius of the affected	
stops or routes: • Whether the interruption would occur on a weekday,	
weekend or holiday, and whether the existing bus route	
typically provides service that/those day(s).	

4.5 Residential Street Cut-Through Analysis

This section presents the results of an analysis conducted regarding the potential for Project impacts on local residential streets in neighborhoods near the Project. Residential streets were assessed for "excessive burdens" using criteria established by the City of Los Angeles. The analysis was conducted on four local residential street segments near the Project Site, which were selected in conjunction with the City of Los Angeles as it was determined to have a greater likelihood of experiencing neighborhood cut-through traffic from the Project.

Counts for one of the segments, Valley Spring Lane west of Whitsett Avenue, were collected in 2019 and is thus available for this analysis. 24-hour machine counts were conducted on the analyzed street segment of Valley Spring Lane, west of Whitsett Avenue, in February 2019. The 2019 volumes were grown by 0.6% per year to reflect and analyze 2020 baseline conditions, which is the baseline year of the Project consistent with the date of the notice of preparation of the environmental impact report. Future daily traffic volumes were projected in a manner similar to the peak hour analysis of the study intersections, including both ambient growth at 0.6% per year as well as anticipated traffic from related projects that could be constructed by 2025. The net new Project trips were assigned to the street network based on the Project trip distribution patterns in **Figure 8** and were added to the Opening Year No Project projection to obtain Opening Year Plus Project projections. Credit was applied for existing trips on this segment associated with the Weddington Golf & Tennis site.

Three additional residential street segments were originally identified for residential street cut-through analysis (Valley Spring Lane east of Whitsett Avenue, Woodbridge Avenue west of Whitsett Avenue, and Woodbridge Avenue east of Whitsett Avenue) but, due to the COVID-19 pandemic and the shelter-in-place orders by the Governor and the County, the manual collection of street segment counts was not feasible at the time of this study. This is also in line with the guidance issued by LADOT in April 2020 regarding the foregoing of manual traffic count collection during the pandemic. Due to the unavailability of counts for these segments, the analysis was conducted using the most restrictive evaluation criteria of 120 or more project-related increase in average daily traffic (ADT), as shown below.

Neighborhood Street Evaluation Criteria

Under the City of Los Angeles guidelines, a local residential street would be considered excessively burdened if the new trips generated by the Project result in increases in ADT volumes as follows:

Projected ADT with Project (Final ADT)	Project-Related Increase in ADT
1 to 999	120 or more
1,000 to 1,999	12% or more of final ADT
2,000 to 2,999	10% or more of final ADT
3,000 or more	8% or more of final ADT

Daily traffic volumes for the baseline conditions and projected Opening Year 2025 conditions are summarized in **Table 14**.

HW River Park Project Draft Transportation Assessment April 2021

Opening Year Plus Project Analysis

According to the results in **Table 14**, the Project is not projected to create an excessive burden on any of the street segments in neither the Non-Event Scenario nor the Special Event Scenario. The projected increase in weekday two-way daily volume as a result of the Project is below the impact threshold of 120 trips according to the City of Los Angeles' criteria for residential street segments.

	TABLE 14 HARVARD-WESTLAKE RIVER PARK PROJECT NEIGHBORHOOD STREET IMPACT ANALYSIS – OPENING YEAR PLUS PROJECT ANALYSIS													
		Weekday Two-Way With Project - Non-Event Scenario Opening Opening				With Project - Special Event Scenario								
Street Segment	Baseline (2020)	Opening Year (2025) No Project	Project Trips	Year (2025) Plus Project	Project % Increase	Evaluation Criteria ¹	Excessively Burdened?	-	Year (2025) Plus Project	Project % Increase	Evaluation Criteria ¹	Excessively Burdened?		
Valley Spring Lane Between Babcock Ave and Whitsett Ave	910	935	15	953	1.60%	120 Trips	NO	23	961	2.40%	120 Trips	NO		
Valley Spring Lane Between Whitsett Ave and Wilkinson Ave ²			10			120 Trips	NO	10			120 Trips	NO		
Woodbridge Street Between Babcock Ave and Whitsett Ave ²			25			120 Trips	NO	49			120 Trips	NO		
Woodbridge Street Between Whitsett Ave and Wilkinson Ave ²			10			120 Trips	NO	10			120 Trips	NO		
 Uses City of Los Angeles evaluation criteria for re Baseline counts were not available at these locat 		0	ore, the most i	restrictive evalua	ition criteria (th	reshold of addir	ng 120 project	trips to the se	gment) was used	l for these loca	tions.			

5. Summary and Conclusions

The study was undertaken to analyze the potential traffic impacts of the Harvard-Westlake River Park Project in the Studio City area of the City of Los Angeles. The following summarizes the results of this analysis:

- The Project as analyzed in this study involves the following land uses:
 - An athletic and recreational facility for Harvard-Westlake School and for shared use with community members.
- This Project proposes two vehicle access driveways, as summarized below:
 - The northern driveway would be directly on Whitsett Avenue. This driveway would provide access to the subterranean parking structure with 503 parking spaces. This driveway is proposed as right-in/right-out only.
 - The southern driveway would be an extension of the Valleyheart Drive stub located off of Whitsett Avenue, south of LAFD Station 78. This driveway would also provide access to the subterranean parking structure, though it will only allow entry into the parking structure and will restrict exiting from the parking structure., This driveway would also provide access for passenger loading using a turnaround designed to accommodate buses, shuttles, and TNCs, as well as to a surface parking lot with 29 parking stalls.
- The Project features, location, and design would be consistent with all of the reviewed City plans, programs, ordinances, and policies that support alternative transportation and have been adopted to protect the environment.
- Based on the Project land use and location, the Project would have a less than significant VMT impact.
- The Project is not projected to substantially increase hazards, conflicts, or preclude City action to fulfill or implement projects associated with surrounding transportation networks and will contribute to overall walkability through enhancements to the Project Site and streetscape. Therefore, the Project would have a less than significant impact.
- Per LADOT's interim Guidance, a freeway safety analysis was conducted for the two US 101 offramps: The US 101 southbound off-ramp at Coldwater Canyon Avenue, and the US 101 northbound off-ramp at Coldwater Canyon Avenue. The Project is projected to have a less than significant freeway safety impact.
- The Project is not expected to have a direct or indirect effect that would lead to removal, modification, or degradation of pedestrian, bicycle, or transit facilities.
- The Project is expected to generate an increase in pedestrian volumes in the vicinity, which currently lacks tactile warnings at intersection curb ramps. It is recommended that tactile warnings and marked crosswalks be installed along at the intersections of Whitsett Avenue & Valley Spring

Lane, Whitsett Avenue & Valleyheart Drive, Babcock Avenue & Valley Spring Lane, Beeman Avenue & Valley Spring Lane, and Teesdale Avenue & Valley Spring Lane as part of the Project improvements.

- The site circulation and access assessment included analysis of five intersections, of which four intersections operate under signal control and one intersection is stop-controlled. The HCM methodology was used for signalized and unsignalized intersections.
- On Non-Event days, the Project is projected to generate an estimated net increase of 68 vehicle trips (75 inbound/-7 outbound) during the 3-4 PM peak hour and 89 vehicle trips (16 inbound/73 outbound) during the 5-6 PM peak hour.
- On Special Event days, assuming the largest trip-generating event, the Project is projected to generate an estimated net increase of 484 vehicle trips (18 inbound/466 outbound) during the 5-6 PM peak hour.
- Per the City's criteria, no instances were found of the Project causing or substantially contributing to unacceptable queuing at nearby signalized intersections.
- On Non-Event days, both the north driveway and the intersection of Whitsett Avenue & Valleyheart Drive are projected to operate at LOS D or better during the 3-4 PM peak hour and the 5-6 PM peak hour Opening Year Plus Project conditions. All movements are projected to have a queue of 25 feet or less, and thus, none of these movements would experience unacceptable queueing under these conditions.
- On Special Event days, the eastbound movements at the southern Project driveway are projected to experience unacceptable queueing under Opening Year (2025) Plus Project conditions. The LOS for this driveway is projected to be LOS F. By applying the corrective action of prohibiting left turns out of the south driveway on event days as part of an event traffic management plan, the LOS would improve to LOS B and the queue would reduce to an acceptable length.
- In order to minimize effects on access for LAFD between Valleyheart Drive and Whitsett Avenue and to minimize the eastbound queues at Whitsett Avenue when emergency vehicles need to access Valleyheart Drive, a warning light that would hold back vehicles exiting the Project turnaround onto Valleyheart Drive is proposed as a corrective action. This warning light would be activated by a button pressed by LAFD staff in the emergency vehicles when an emergency vehicle is approaching Valleyheart Drive from Whitsett Avenue or exiting from one of the two LAFD driveways on Valleyheart Drive.

Appendix A: Memorandum of Understanding

Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

I. PROJECT INFORMATION

Project Name: Harvard-Westlake River Park Project Project Address: 4141 Whitsett Avenue, Studio City, CA Project Description: Harvard-Westlake School is proposing to redevelop the 16.1-acre Weddington Golf & Tennis site, and an adjacent 1.1-acre property leased from Los Angeles County, collectively comprising a 17.2-acre project site (Project Site), for use as an athletic and recreational facility for the School and for shared public use. LADOT Project Case Number: Project Site Plan attached? (Required) Yes D No Attachment 1 П. TRIP GENERATION See Attachment 2 Geographic Distribution: N % S____% E % W % Illustration of Project trip distribution percentages at Study intersections attached? (Required) Yes

Attachment 2

Trip Generation Adjustment (Exact amount of credit subject to approval by LADOT)	Yes	No
Transit Usage		
Transportation Demand Management		
Existing Active Land Use		
Previous Land Use		
Internal Trip		
Pass-By Trip		

Trip generation table including a description of the proposed land uses, ITE rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (*Required*) Sec. DNO

3-4 PM Trips	AM Trips	70 IN	<u>OUT</u> -19	TOTAL 51	Daily Trips 902	Trip generation table and
5-6 PM Trips	PM Trips	5	52	57	(From VMT Calculator)	methodology in
					-	Attachment 3
III. ST	UDY ARE	AANDA	ASSUMPTION	S		
Project Bui	ildout Year:	2025		Ambient Gro	wth Rate: 9	% Per Yr.
Related Pro	ojects List, re	esearched	by the consultar	nt and approved by	LADOT, attached? (Required)	🗏 Yes 🛛 No
Map of Stu	dy Intersect	ions/Segn	nents attached?	Yes 🗆 No Att	tachment 2	Attachment 4
STUDY INTE	RSECTIONS (A	∕ay be subje	ct to LADOT revision a	fter access, safety and c	irculation analysis)	
1 Whitset	t Avenue & Moo	orpark Street		3 White	sett Avenue & Ventura Boulevard	
2 Whitsett	Avenue & Valle	ev Spring La	ne	4 Coldy	vater Canvon Avenue & Moorpark S	Street

Is this Project located on a street within the High Injury Network? 🗆 Yes 🛛 No ⁵ Coldwater Canyon Avenue & Ventura Boulevard

City of Los Angeles Transportation Assessment MOU LADOT Project Case No **49868**

IV. ACCESS ASSESSMENT

Is the project on a lot that is 0.5-acre or more in total gross area? E Yes D No

Is the project's frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City's General Plan? ■ Yes □ No

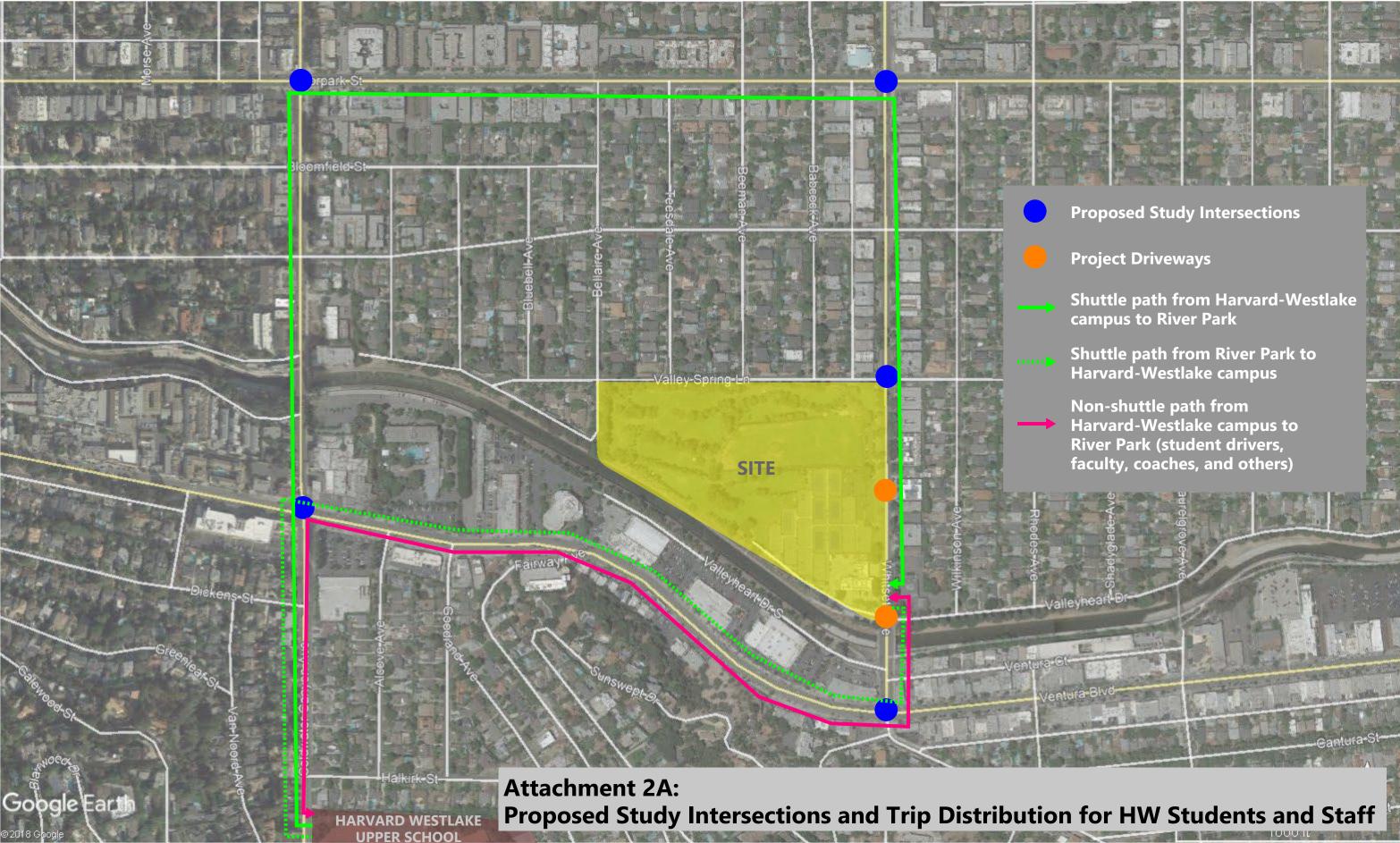
Is the project's building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City's General Plan? ■ Yes □ No

V. CONTACT INFORMATION

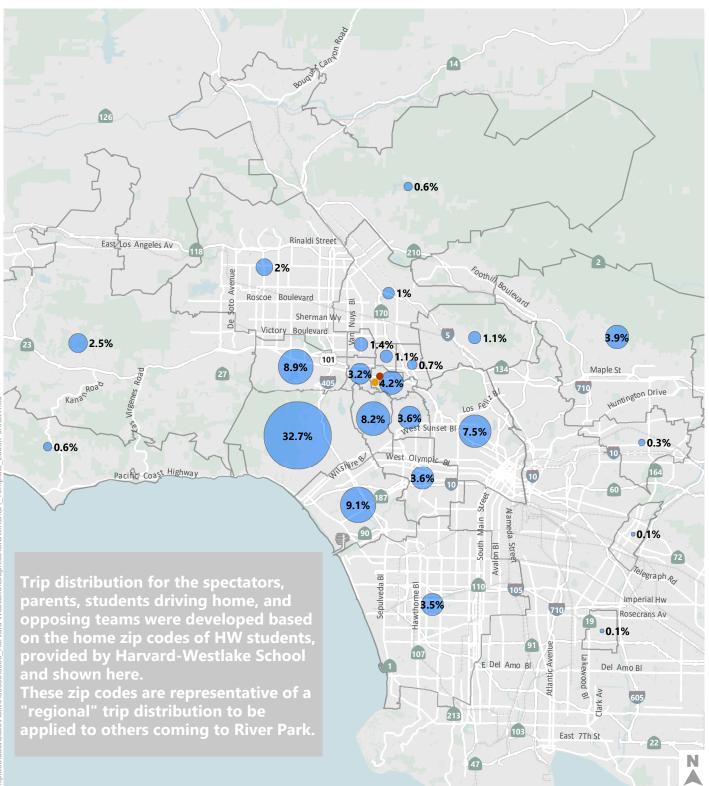
Consultant's Representative

	CONSULTANT	DEVELOPER
Name: T	om Gaul	David Weil
Address:	600 Wilshire Boulevard, Suite 1050, Los Angeles, CA, 90017	3700 Coldwater Canyon Avenue, Los Angeles, CA 91604
Phone Num	ber: 213-261-3050	818-487-6609
E-Mail: <u>t</u> .	gaul@fehrandpeers.com	dweil@hw.com
Approved by	Digitally signed by Thomas Gaul Date: 2020.05.15 V: X 13:45:16-07'00' X	Brandon Willon 61312020

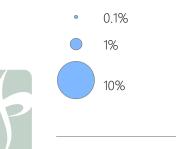
*MOUs are generally valid for two years after signing. If after two years a transportation assessment has not been submitted to LADOT, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.


LADOT Representative

Date


Note: Given the unique land use, the proposed VMT analysis methodology for this project is presented in Attachment 5.

*Date



Percent of Upper School Students

Residence Zone

- Harvard-Westlake Upper School
- Weddington Site

Attachment 2C: Harvard-Westlake Upper School Student Residence Distribution

Fehr & Peers

Attachment 3A

This attachment documents the methodology to calculate the trip generation to be used for the transportation assessment for the Harvard-Westlake River Park project, located at 4141 Whitsett Avenue in Studio City. This attachment provides the methodology, the assumptions of the analysis, and the final output.

Harvard-Westlake Trips

This section describes how trips associated with the Harvard-Westlake athletic activities at River Park were estimated.

Methodology

Harvard-Westlake provided Fehr & Peers with a spreadsheet of Harvard-Westlake Athletics data from the 2018-2019 school year. This data includes the practice schedule for each level of each sport (e.g., Basketball Varsity Girls), including the beginning and end date of the season, the days of week in which practices were conducted, the duration of the practices, and the number of participants. There were also data on home games for each sport, including the number of home games, the number of participants, the number of coaches, and approximate number of spectators. These data are shown in Attachment 3A-1 and 3A-2.

This data was converted to an estimate of inbound and outbound person trips for each day of the 2018-2019 school year. The inbound and outbound trips were further separated into five hourly categories: 3-4 PM, 4-5 PM, 5-6 PM, 6-7 PM, and 7-8 PM.

The hourly person trips were converted to hourly vehicle trips by applying average vehicle occupancy (AVO) factors specific to each population group (e.g., students, coaches, spectators).

Instead of the maximum day trip scenario, Fehr & Peers selected the 90th percentile total trips for each peak hour, as the 90th percentile would represent most days of the school year and exclude the exceptional days such as big rivalry game days that only occur on a handful of days a year. Fehr & Peers selected two peak hours based on the hours with the highest total trips, 3-4 PM and 5-6 PM.

The final inbound and outbound peak hour trips were determined by selecting an actual date that most closely matched the 90th percentile total trips for the peak hour. For the 3-4 PM peak hour, the date was Wednesday, September 5, 2018. For the 5-6 PM peak hour, the date was Monday, March 4, 2019.

Assumptions

Fehr & Peers made several assumptions to translate the athletics schedule to peak hour trips. The assumptions included arrival and departure times, mode choice, and AVO, as discussed below.

Arrival and Departure Times

- Practices
 - Athletes and coaches would arrive at River Park 15 minutes before the start of practice
 - Athletes and coaches would depart River Park 15 minutes after the end of practice
- Games
 - Harvard-Westlake athletes, visiting athletes, and all coaches would arrive at River Park
 30 minutes before the start of the first game of the day (games for the same sport are often played consecutively, from junior varsity to varsity)
 - Spectators would arrive at River Park 15 minutes before the start of the game
 - Spectators would depart River Park 15 minutes after the end of the game

Mode Choice and AVO

- Harvard-Westlake would provide shuttles every 5-10 minutes to transport students between the Harvard-Westlake campus and River Park
- 75% of Harvard-Westlake athletes would take the shuttles to River Park, while the remaining 25% would drive their own vehicles with an AVO of 1.5
- On big event days when spectator attendance is expected to surpass 300 people (expected to occur less than 10 times per year), all Harvard-Westlake athletes would be required to take the shuttle and all spectators would be required to obtain a ticket and parking pass to park at River Park. Spectators without a parking pass would be required to park at the Harvard-Westlake Upper campus and take the shuttle to River Park.
- Coaches would not ride the shuttle and would drive their own vehicles with an AVO of 1.0
- Visiting teams would arrive in a bus together with an AVO of 25
- Spectators would arrive and depart with an AVO of 1.5

Estimated Peak Hour Vehicle Trips

Based on this methodology and these assumptions, the vehicle trip generation for each peak hour is estimated as follows:

- 3 -4 PM
 - 108 inbound, 12 outbound, 120 total trips

- 5 -6 PM
 - o 42 inbound, 106 outbound, 148 total trips

These are the estimated trips associated with Harvard-Westlake use of River Park and do not include trips associated with community use of the facilities.

Community Use

This section describes how trips associated with community use of the facilities at River Park were estimated.

Public Use of River Park

The proposed walking/jogging trails, tennis courts and clubhouse, and community room will be open to the community throughout the day. The athletic facilities, including the gym courts, the fields, and the pool, will be open to the public with advance reservation and the public will have access to these facilities except when they are in use by Harvard-Westlake (typically 3 PM to 8 PM).

Peak Hour Trip Generation

Given that only the tennis courts/clubhouse and passive park space will be used by the public during the peak hours of analysis (3 PM to 4 PM and 5 PM to 6 PM), the Institute of Transportation Engineer's (ITE) Trip Generation Manual, 10th Edition, trip generation rates for the Tennis Courts land use (LU 490) were used to estimate the peak hour trips associated with the public use during these hours.

The 8 tennis courts on-site at River Park are estimated to generate 34 trips (17 inbound, 17 outbound) during the peak hour. The same peak hour trips were assumed for the two peak hours.

Daily Trip Generation

The daily trip generation for the community use of River Park would include trips generated by the public that visit the site outside of Harvard-Westlake-use hours and the trips generated by the tennis courts during the Harvard-Westlake-use hours (as described above).

The ITE Trip Generation Manual for the Recreational Community Center land use (LU 495) was used to estimate the trips generated by the public that visit the site outside of HW-use hours. It should be noted that this land use in ITE includes more well-used facilities like YMCAs that will generate more trips than River Park, and thus using this land use as a reference is a conservative approach that will likely estimate higher trip generation than what is anticipated for River Park. Using the combined area of 82,929 square feet for the clubhouse and gym building, the facilities would be estimated to generate 2,391 trips across an entire day using the ITE rate. However, since there will not be community use (other than for tennis) when the facilities are in use by Harvard-

Westlake, the daily trip estimate was prorated by applying the percentage of daily trips that are expected to occur outside of the 3 PM to 8 PM period. Appendix A of the ITE Trip Generation Manual includes a time-of-day distribution for this land use that showed that 56% of daily trips occur outside of 3PM to 8 PM. Applying this ratio to the total daily trips, 1,344 trips are estimated to be generated by the community use outside of the 3 PM to 8 PM hours.

To estimate the trips that occur between 3 PM to 8 PM for use of the tennis courts, the peak hour trips estimated for the tennis courts (34 trips per hour) was multiplied by 5 to estimate the trips generated by the tennis courts between 3 PM to 8 PM.

Adding together the trips that would be generated by the community use outside of 3 PM to 8 PM (1,344 trips) and the trips that would be generated by the public for the tennis courts between 3 PM to 8 PM (170 trips), the total daily trip generation of the community use of River Park is estimated to be to be 1,514 trips.

Attachment 3A-1

HW Athletics Practice Schedule

			_		Days per	Week (sch	ool year)		Duration	
Section List	Begin Date	End Date	Season	Mon	Tue	Wed	Thu	Fri	(hrs)	Participants
8732-3A1: Basketball - Boys	September 1	October 31	Out of Season	Х		Х		Х	1.5	26
8730-4A1: Basketball - Varsity Boys	November 1	March 15	In Season	Х	Х	х	х	Х	2	13
8731-4A1: Basketball - JV Boys	November 1	January 31	In Season	Х	Х	х	х	Х	2	14
8734-4A1: Basketball - Freshman Boys	November 1	January 31	In Season	Х	х	Х	х	Х	2	12
8732-5A1: Basketball - Boys	April 15	May 31	Out of Season		х		х		1.5	24
8532-3A1: Basketball - Girls	September 1	October 31	Out of Season		х		х	Х	1.5	15
8530-4A1: Basketball - Varsity Girls	November 1	March 15	In Season	Х	х	х	х	Х	2	15
8532-5A1: Basketball - Girls	April 15	May 31	Out of Season	Х		х			1.5	9
8610-3A1: Field Hockey - Varsity	August 1	November 15	In Season	Х	х	Х	х	х	2	21
8611-3A1: Field Hockey - JV	August 1	November 1	In Season	Х	х	х	х	Х	2	12
8612-5A1: Field Hockey - Girls	February 15	Mav 31	Out of Season		х		х		1.5	41
8822-4A1: Lacrosse - Boys	November 15	January 31	Out of Season		X		X		2	43
8820-5A1: Lacrosse - Varsity Boys	February 1	May 15	In Season	х	X	Х	X	Х	2	22
8821-5A1: Lacrosse - JV Boys	February 1	May 1	In Season	X	X	X	X	x	2	17
XXXX-4A1: Lacrosse - Girls	November 15		Out of Season	x	~	X	X	~	2	35
XXXX-5A1: Lacrosse - Varsity Girls	February 1	May 15	In Season	X	х	X	х	х	2	20
8742-3A1: Soccer - Boys	September 1	October 31		~	X	Λ	X	~	1.5	42
8740-4A1: Soccer - Varsity Boys	November 1	February 28	In Season	х	X	х	X	х	2	21
8741-4A1: Soccer - JV Boys	November 1	January 31	In Season	x	x	X	x	x	2	20
8742-5A1: Soccer - Boys	April 15		Out of Season	~	X	~	x	~	1.5	32
8552-3A1: Soccer - Girls	September 1	October 31	Out of Season	х	~	х	^		1.5	33
			In Season	x	х	x	х	х	2	26
8550-4A1: Soccer - Varsity Girls	November 1	February 28			x	x	x	x	2	20
8551-4A1: Soccer - JV Girls	November 1	January 31	In Season	X	~	X	~	~	1.5	
8552-5A1: Soccer - Girls	April 15		Out of Season	X	N/		X			22
8582-3A1: Swimming and Diving - Girls	September 1	January 31	Out of Season	X	Х	Х	Х		1	22
8782-3A1: Swimming and Diving - Boys	September 1	January 31		Х	Х	Х	Х		1	25
8780-5A1: Swimming and Diving - Boys	February 1	May 15	In Season	Х	X	Х	X	X	2	25
8580-5A1: Swimming and Diving - Girls	February 1	May 15	In Season	х	Х	Х	Х	X	2	22
8792-4A1: Tennis - Boys	November 15		Out of Season	Х		Х		х	1.5	27
8790-5A1: Tennis - Varsity Boys	February 1	May 31	In Season	Х	X	Х	X	X	2	15
8791-5A1: Tennis - JV Boys	February 1	April 15	In Season	Х	Х	Х	Х	х	2	18
8510-3A1: Tennis - Varsity Girls		November 15	In Season	Х	Х	Х	Х	Х	2	13
8511-3A1: Tennis - JV Girls	September 1	October 31	In Season	Х	Х	Х	Х	Х	2	11
8512-4A1: Tennis - Girls	January 1		Out of Season	Х		Х		Х	1.5	21
8802-4A1: Track and Field - Boys	November 15	January 31	Out of Season	Х	Х	Х	Х		1	47
8800-5A1: Track and Field - Boys	February 1	May 31	In Season	Х	х	Х	Х	Х	2	64
8602-4A1: Track and Field - Girls	November 15	January 31	Out of Season	Х	Х	Х	Х		1	25
8600-5A1: Track and Field - Girls	February 1	May 31	In Season	Х	х	Х	Х	Х	2	42
8812-4A1: Volleyball - Boys	December 1	January 31	Out of Season		х		Х		1.5	21
8810-5A1: Volleyball - Varsity Boys	February 1	April 30	In Season	Х	х	Х	Х	Х	2	14
8811-5A1: Volleyball - JV Boys	February 1	April 15	In Season	Х	Х	х	х	Х	2	9
8520-3A1: Volleyball - Varsity Girls	September 1	November 15	In Season	Х	Х	х	х	Х	2	18
8521-3A1: Volleyball - JV Girls	September 1	October 31	In Season	Х	х	Х	х	Х	2	7
8524-3A1: Volleyball - Freshman Girls	September 1	October 31	In Season	Х	х	Х	х	Х	2	10
8522-5A1: Volleyball - Girls	January 1	March 31	Out of Season		х		х		1	21
8720-3A1: Water Polo - Varsity Boys	September 1	November 30	In Season	Х	х	х	х	Х	2	11
8721-3A1: Water Polo - JV Boys	September 1	October 31	In Season	Х	х	х	х	Х	2	11
8722-5A1: Water Polo - Boys	January 1	May 31	Out of Season	х	Х	Х	Х	Х	2	18
8542-3A1: Water Polo - Girls	September 1	October 31	Out of Season	X	X	X	X		1.5	14
8540-4A1: Water Polo - Varsity Girls	November 1	February 15	In Season	X	Х	X	X	х	2	14
8752-3A1: Wrestling - Boys	September 1		Out of Season	X		X		X	1.5	3
8750-4A1: Wrestling - Varsity	November 1	February 28	In Season	x	х	X	х	x	2	6
8751-4A1: Wrestling - JV	November 1	January 31	In Season	X	X	X	X	x	2	4
8752-5A1: Wrestling - Boys	April 15		Out of Season	x	~	X	~	x	1.5	3
Store state through g boys	, ipili 10	inay of	000000000000000000000000000000000000000	~		~		~	1.0	0

HW Athletics Team Participation

HW Athletics Team Participation				
Continue	Deuticineute	Casabaa	Fana	# of Home
Section 8520-3A1: Volleyball - Varsity Girls	Participants	Coaches	Fans	Games
	18	3 1	50	6
8521-3A1: Volleyball - JV Girls	7		30	6
8524-3A1: Volleyball - Freshman Girls	10	1	30	5
8510-3A1: Tennis - Varsity Girls	13	3	20	7
8511-3A1: Tennis - JV Girls	11	2	20	0
8614-3A1: Field Hockey - Freshman	16	2	20	4
8610-3A1: Field Hockey - Varsity	21	3	30	10
8611-3A1: Field Hockey - JV	12	2	20	8
8720-3A1: Water Polo - Varsity Boys	11	3	50	13
8721-3A1: Water Polo - JV Boys	11	2	20	6
8530-4A1: Basketball - Varsity Girls	15	4	100	7
8740-4A1: Soccer - Varsity Boys	21	3	50	7
8741-4A1: Soccer - JV Boys	20	2	30	7
8550-4A1: Soccer - Varsity Girls	26	3	50	7
8551-4A1: Soccer - JV Girls	20	2	30	6
8540-4A1: Water Polo - Varsity Girls	14	2	30	10
8750-4A1: Wrestling - Varsity	6	2	40	2
8751-4A1: Wrestling - JV	4	1	40	2
8730-4A1: Basketball - Varsity Boys	13	5	300	4
8731-4A1: Basketball - JV Boys	14	2	80	4
8734-4A1: Basketball - Freshman Boys	12	2	50	4
8790-5A1: Tennis - Varsity Boys	15	3	20	8
8791-5A1: Tennis - JV Boys	18	2	20	0
8810-5A1: Volleyball - Varsity Boys	14	2	30	6
8811-5A1: Volleyball - JV Boys	9	1	30	6
8600-5A1: Track and Field - Girls	42	5	50	3
8780-5A1: Swimming and Diving - Boys	25	3	50	8
8800-5A1: Track and Field - Boys	64	0	0	3
8580-5A1: Swimming and Diving - Girls	22	0	0	6
8820-5A1: Lacrosse - Varsity Boys	22	3	50	5
8821-5A1: Lacrosse - JV Boys	17	2	30	5
XXXX-5A1: Lacrosse - Varsity Girls	20	3	50	5
XXXX-4A1: Lacrosse (offseason) - Girls	35	3	0	0
8732-3A1: Basketball (offseason) - Boys	26	5	0	0
8732-5A1: Basketball (offseason) - Boys	24	5	0	0
8532-3A1: Basketball (offseason) - Girls	15	4	0	0
8532-5A1: Basketball (offseason) - Girls	9	4	0	0
8612-5A1: Field Hockey (offseason) - Girls	41	3	0	0
8822-4A1: Lacrosse (offseason) - Boys	43	3	0	0
8742-3A1: Soccer (offseason) - Boys	42	3	0	0
8742-5A1: Soccer (offseason) - Boys	32	3	0	0
8552-3A1: Soccer (offseason) - Girls	33	3	0	0
8552-5A1: Soccer (offseason) - Girls	22	3	0	0
8582-3A1: Swimming and Diving (offseason) - Girls	22	4	0	0
8782-3A1: Swimming and Diving (offseason) - Boys	25	4 0	0	0
8792-4A1: Tennis (offseason) - Boys	27	3	0	0
8512-4A1: Tennis (offseason) - Girls	21	3	0	0
8802-4A1: Track and Field (offseason) - Boys	47	0	0	
8602-4A1: Track and Field (offseason) - Boys 8602-4A1: Track and Field (offseason) - Girls	47 25	5	0	0
				0
8812-4A1: Volleyball (offseason) - Boys	21	2	0	0
8522-5A1: Volleyball (offseason) - Girls	21	3	0	0
8722-5A1: Water Polo (offseason) - Boys	18	3	0	0
8542-3A1: Water Polo (offseason) - Girls	14	2	0	0
8752-3A1: Wrestling (offseason) - Boys	3	2	0	0
8752-5A1: Wrestling (offseason) - Boys	3	2	0	0

			Person Trips													Vehicle Trips										
						Arrivals							Departure													
	Day of	# of	Practi			.,	Games	.		Pract				Games	-		Total	Total Person			outtles		All Vehic	es (including	Shuttles)	
Date	Day of Week	Concurrent Activities	HV Athletes		HV Athletes		Visiting Athletes		Spectators	H\ Athletes		H\ Athletes		Visiting 1 Athletes C		Spectators	Person Arrivals	Departures	Passengers	ivals Shuttles	Passengers	artures Shuttles	Arriving	Departing	Total	
8/1/2018	Wed	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/2/2018	Thu	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/3/2018	Fri	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/6/2018	Mon	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/7/2018	Tue	2	33 33	5 5	0	0	0 0	0	0	0	0	0	0	0	0 0	0	38	0	25	3	0	0	14	3	17	
8/8/2018 8/9/2018	Wed Thu	2 2	33	5	0	0 0	0	0	0	0	0	0	0 0	0	0	0	38 38	0	25 25	3	0	0	14 14	3 3	17 17	
8/10/2018	Fri	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/13/2018	Mon	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/14/2018	Tue	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/15/2018	Wed	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/16/2018	Thu	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/17/2018 8/20/2018	Fri	2 2	33 33	5	0	0 0	0	0	0	0	0	0	0 0	0	0	0	38 38	0	25 25	3	0	0	14 14	3 3	17 17	
8/20/2018	Mon Tue	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/22/2018	Wed	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/23/2018	Thu	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/24/2018	Fri	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/27/2018	Mon	2	33	5	35	5	35	5	30	0	0	0	0	0	0	0	148	0	51	6	0	0	50	6	56	
8/28/2018	Tue	2	33	5	0	0	0	0	0	0	0	0	0	0	0	0	38	0	25	3	0	0	14	3	17	
8/29/2018	Wed	3	33	5	16	2	16	2	20	0	0	0	0	0	0	0	94	0	37	4	0	0	35	4	39	
8/30/2018 8/31/2018	Thu Fri	3 1	33 0	5 0	13 33	3 5	13 33	5	20 30	0	0	0	0 0	0	0	0	90 106	0	35 25	4	0	0	35 36	4 3	39 39	
9/3/2018	Mon	13	190	32	0	0	0	0	0	0	0	0	0	0	0	0	222	0	143	12	0	0	76	12	88	
9/4/2018	Tue	5	90	12	70	13	70	13	100	ů 0	0	0 0	0	ů 0	0	0	368	0	120	12	0	0	135	12	147	
9/5/2018	Wed	10	154	25	22	5	22	5	50	0	0	0	0	0	0	0	283	0	132	12	0	0	108	12	120	
9/6/2018	Thu	7	74	14	44	8	44	8	80	0	0	0	0	0	0	0	272	0	89	9	0	0	108	9	117	
9/7/2018	Fri	7	82	17	35	5	35	5	60	0	0	0	0	0	0	0	239	0	88	9	0	0	93	9	102	
9/10/2018	Mon	12	164	27	0	0	0	0	0	0	0	0	0	0	0	0	191	0	123	12	0	0	67	12	79	
9/11/2018	Tue	12	185	29	0	0	0	0	0	0	0	0	0	0	0	0	214	0	139	12	0	0	72	12	84	
9/12/2018 9/13/2018	Wed Thu	13 9	190 149	32 22	0	0 0	0 0	0	0 0	0	0	0	0 0	0	0	0	222 171	0	143 112	12 12	0	0	76 59	12 12	88 71	
9/14/2018	Fri	10	136	26	0	0	0	0	0	0	0	0	0	0	0	0	162	0	102	11	0	0	60	11	71	
9/17/2018	Mon	12	166	27	13	3	13	3	20	0	0	0	0	0	0	0	245	0	135	12	0	0	87	12	99	
9/18/2018	Tue	12	185	29	0	0	0	0	0	0	0	0	0	0	0	0	214	0	139	12	0	0	72	12	84	
9/19/2018	Wed	13	190	32	0	0	0	0	0	0	0	0	0	0	0	0	222	0	143	12	0	0	76	12	88	
9/20/2018	Thu	6	75	16	35	5	35	5	30	0	0	0	0	0	0	0	201	0	83	9	0	0	71	9	80	
9/21/2018	Fri	12	158	31	0	0	0	0	0	0	0	0	0	0	0	0	189	0	119	12	0	0	70	12	82	
9/24/2018 9/25/2018	Mon Tue	13 8	190 125	32 17	0 13	0	0 13	0	0 20	0	0	0	0	0	0	0	222 194	0	143 104	12 11	0	0	76 69	12 11	88 80	
9/26/2018	Wed	11	154	25	13	3	13	3	50	0	0	0	0	0	0	0	257	0	124	12	0	0	103	12	115	
9/27/2018	Thu	12	185	29	0	0	0	0	0	0	0	0	0	ů 0	0	0	214	0	139	12	0	0	72	12	84	
9/28/2018	Fri	12	158	31	0	0	0	0	0	0	0	0	0	0	0	0	189	0	119	12	0	0	70	12	82	
10/1/2018	Mon	13	157	29	16	2	16	2	20	0	0	0	0	0	0	0	242	0	130	12	0	0	87	12	99	
10/2/2018	Tue	11	161	24	13	3	13	3	20	0	0	0	0	0	0	0	237	0	131	12	0	0	83	12	95	
10/3/2018	Wed	10	154	25	22	5	22	5	40	0	0	0	0	0	0	0	273	0	132	12	0	0	101	12	113	
10/4/2018	Thu	5	51	11	48	8	48 0	8 0	50	0	0	0	0	0	0	0	224	0	75	8	0	0	81	8	89	
10/5/2018 10/8/2018	Fri Mon	12 13	158 190	31 32	0	0 0	0	0	0	0	0	0	0 0	0	0 0	0	189 222	0	119 143	12 12	0	0	70 76	12 12	82 88	
10/9/2018	Tue	12	185	29	0	0	0	0	0	0	0	0	0	0	0	0	214	0	143	12	0	0	70	12	84	
10/10/2018		13	190	32	0	0	0 0	0	0	0	0	0	0	0	0	0	222	0	143	12	ů 0	0	76	12	88	
10/11/2018		9	110	21	0	0	0	0	0	0	0	0	0	0	0	0	131	0	83	9	0	0	49	9	58	
10/12/2018	Fri	12	158	31	0	0	0	0	0	0	0	0	0	0	0	0	189	0	119	12	0	0	70	12	82	
10/15/2018		13	190	32	0	0	0	0	0	0	0	0	0	0	0	0	222	0	143	12	0	0	76	12	88	
10/16/2018		11	161	24	13	3	13	3	20	0	0	0	0	0	0	0	237	0	131	12	0	0	83	12	95	
10/17/2018 10/18/2018		11 9	121 110	22 21	38 0	7 0	38 0	7 0	70 0	0	0 0	0	0 0	0	0 0	0	303 131	0	120 83	12 9	0	0 0	117 49	12 9	129 58	
10/18/2018		9 12	158	31	0	0	0	0	0	0	0	0	0	0	0	0	189	0	119	9 12	0	0	49 70	9 12	82	
10/22/2018		13	190	32	0	0	0	0	0	0	0	0	0	0	0	0	222	0	143	12	0	0	76	12	88	
. ,=		-			-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	

90th Pe	rcentile Vehic	le Trips
Arrival	Departure	Total
108	12	120

Attachment 3A-3

Daily Arrival and Departures, Persons and Vehicles, 3 PM - 4 PM

			Person Trips													Vehicle Trips										
		# of	Durat	Arrivals	6			Desertions		Departu				Total	Total		c.			A II 37 - L	All Vehicles (including Shuttles)					
	Day of	# of Concurrent		Practices HW		N	Games Visiting	Team		Practices HW		HW	Games	s ng Team		Person	Person	Shuttles Arrivals		Depart	tures	All Vehic	es (including S	shuttles)		
Date	Week	Activities		Coaches	Athletes		-		Spectators		hes At	thletes Coach		-	Spectators	Arrivals	Departures	Passengers	Shuttles	Passengers	Shuttles	Arriving	Departing	Total		
10/23/2018	Tue	12	185	29	0	0	0	0	0	0 0		0 0	0	0	0	214	0	139	12	0	0	72	12	84		
10/24/2018	Wed	13	157	29	16	2	16	2	20	0 0		0 0	0	0	0	242	0	130	12	0	0	87	12	99		
10/25/2018 10/26/2018	Thu Fri	9 12	110 158	21 31	0 0	0 0	0	0 0	0 0	0 0		0 0 0 0	0	0	0	131 189	0	83 119	9 12	0	0	49 70	9 12	58 82		
10/29/2018	Mon	13	190	32	0	0	0	0	0	0 0		0 0	0	0	0	222	0	143	12	0	0	76	12	88		
10/30/2018	Tue	10	122	23	0	0	0	0	0	0 0		0 0	0	0	0	145	0	92	10	0	0	54	10	64		
10/31/2018	Wed	13	190	32	0	0	0	0	0	0 0		0 0	0	0	0	222	0	143	12	0	0	76	12	88		
11/1/2018	Thu	7	77	19	11	3	11	3	50	0 0		0 0	0	0	0	174	0	66	7	0	0	79	7	86		
11/2/2018 11/5/2018	Fri Mon	11 11	152 157	30 30	0	0 0	0	0	0	0 0		0 0 0 0	0	0	0	182 187	0	114 118	12 12	0	0	68 69	12 12	80 81		
11/6/2018	Tue	11	152	30	0	0	0	0	0	0 0		0 0	0	0	0	182	0	114	12	0	0	68	12	80		
11/7/2018	Wed	11	152	30	0	0	0	0	0	0 0		0 0	0	0	0	182	0	114	12	0	0	68	12	80		
11/8/2018	Thu	11	157	30	0	0	0	0	0	0 0		0 0	0	0	0	187	0	118	12	0	0	69	12	81		
11/9/2018	Fri	11	152	30	0	0	0	0	0	0 0		0 0	0	0	0	182	0	114	12	0	0	68	12	80		
11/12/2018 11/13/2018	Mon Tue	11 11	157 152	30 30	0	0 0	0	0	0	0 0		0 0	0	0	0	187 182	0	118 114	12 12	0	0	69 68	12 12	81 80		
11/14/2018	Wed	9	127	21	0	0	0	0	0	0 0		0 0	0	0	0	148	0	96	10	0	0	53	10	63		
11/15/2018	Thu	13	224	35	0	0	0	0	0	0 0		0 0	0	0	0	259	0	168	12	0	0	85	12	97		
11/16/2018	Fri	12	191	32	0	0	0	0	0	0 0		0 0	0	0	0	223	0	144	12	0	0	76	12	88		
11/19/2018	Mon	14	263	37	0	0	0	0	0	0 0		0 0	0	0	0	300	0	198	12	0	0	93	12	105		
11/20/2018 11/21/2018	Tue Wed	13 14	236 263	34 37	0	0 0	0	0	0	0 0		0 0	0	0	0	270 300	0	177 198	12 12	0	0	86 93	12 12	98 105		
11/22/2018	Thu	13	236	34	0	0	0	0	0	0 0		0 0	0	0	0	270	0	177	12	0	0	86	12	98		
11/23/2018	Fri	12	191	32	0	0	0	0	0	0 0		0 0	0	0	0	223	0	144	12	0	0	76	12	88		
11/26/2018	Mon	14	263	37	0	0	0	0	0	0 0		0 0	0	0	0	300	0	198	12	0	0	93	12	105		
11/27/2018	Tue	10	140	19	41	5	41	5	30	0 0		0 0	0	0	0	281	0	136	12	0	0	89	12	101		
11/28/2018 11/29/2018	Wed Thu	15 10	298 118	40 24	0 46	0 5	0 46	5	0 30	0 0		0 0 0 0	0	0	0	338 274	0	224 123	12 12	0	0	102 92	12 12	114 104		
11/30/2018	Fri	11	145	27	46	5	46	5	30	0 0		0 0	0	0	0	304	0	144	12	0	0	99	12	111		
12/3/2018	Mon	13	252	34	0	0	0	0	0	0 0		0 0	0	0	0	286	0	189	12	0	0	88	12	100		
12/4/2018	Tue	9	105	21	60	7	60	7	60	0 0		0 0	0	0	0	320	0	124	12	0	0	111	12	123		
12/5/2018	Wed	8	129	21	41	5 0	41 0	5 0	30	0 0		0 0	0	0	0	272	0	128	12	0	0	89 01	12	101		
12/6/2018 12/7/2018	Thu Fri	12 11	225 180	31 29	0 0	0	0	0	0 0	0 0		0 0	0	0	0	256 209	0	169 135	12 12	0	0	81 71	12 12	93 83		
12/10/2018	Mon	13	252	34	0	0	0	0	0	0 0		0 0	0	0	0	286	0	189	12	0	0	88	12	100		
12/11/2018	Tue	13	268	34	0	0	0	0	0	0 0		0 0	0	0	0	302	0	201	12	0	0	91	12	103		
12/12/2018	Wed	10	208	23	14	2	14	2	30	0 0		0 0	0	0	0	293	0	167	12	0	0	95	12	107		
12/13/2018 12/14/2018	Thu Fri	12 11	225 180	31 29	0	0 0	0	0	0 0	0 0		0 0 0 0	0	0	0	256 209	0	169 135	12 12	0	0	81 71	12 12	93 83		
12/17/2018	Mon	13	252	34	0	0	0	0	0	0 0		0 0	0	0	0	286	0	189	12	0	0	88	12	100		
12/18/2018	Tue	12	225	31	0	0	0	0	0	0 0		0 0	0	0	0	256	0	169	12	0	0	81	12	93		
12/19/2018	Wed	14	264	36	0	0	0	0	0	0 0		0 0	0	0	0	300	0	198	12	0	0	92	12	104		
12/20/2018	Thu	12	225	31	0	0	0	0	0	0 0		0 0	0	0	0	256	0	169	12	0	0	81	12	93		
12/21/2018 12/24/2018	Fri Mon	9 13	150 252	20 34	39 0	9 0	39 0	9 0	50 0	0 0		0 0	0	0	0	316 286	0	142 189	12 12	0	0	109 88	12 12	121 100		
12/25/2018	Tue	12	225	31	0	0	0	0	0	0 0		0 0	0	0	0	256	0	169	12	0	0	81	12	93		
12/26/2018	Wed	13	252	34	0	0	0	0	0	0 0		0 0	0	0	0	286	0	189	12	0	0	88	12	100		
12/27/2018	Thu	11	211	29	0	0	0	0	0	0 0		0 0	0	0	0	240	0	159	12	0	0	77	12	89		
12/28/2018	Fri	9	160	25	0	0	0	0	0	0 0		0 0	0	0	0	185	0	120	12	0	0	64	12	76		
12/31/2018 1/1/2019	Mon Tue	13 13	252 243	34 34	0	0 0	0 0	0 0	0 0	0 0		0 0	0	0	0	286 277	0	189 183	12 12	0	0	88 87	12 12	100 99		
1/2/2019	Wed	12	178	30	41	5	41	5	30	0 0		0 0	0	0	0	330	0	165	12	0	0	106	12	118		
1/3/2019	Thu	13	243	34	0	0	0	0	0	0 0		0 0	0	0	0	277	0	183	12	0	0	87	12	99		
1/4/2019	Fri	8	116	16	80	14	80	14	155	0 0		0 0	0	0	0	475	0	147	12	0	0	183	12	195		
1/7/2019	Mon	15 12	291	40 29	0 14	0	0 14	0 2	0	0 0		0 0 0 0	0	0	0	331 302	0	219 169	12 12	0	0	101 102	12 12	113 114		
1/8/2019 1/9/2019	Tue Wed	12 11	211 198	29 30	14 46	2	14 46	2 5	30 30	0 0		0 0	0	0	0	302 360	0	183	12 12	0	0	102 111	12 12	114		
1/10/2019	Thu	13	243	34	0	0	0	0	0	0 0		0 0	0	0	0	277	0	183	12	0	0	87	12	99		
1/11/2019	Fri	9	136	19	80	14	80	14	200	0 0		0 0	0	0	0	543	0	162	12	0	0	219	12	231		
1/14/2019	Mon	14	259	35	14	2	14	2	30	0 0		0 0	0	0	0	356	0	205	12	0	0	116	12	128		
1/15/2019 1/16/2019	Tue Wed	12 9	211 136	29 19	14 80	2 14	14 80	2 14	30 80	0 0		0 0	0	0	0	302 423	0	169 162	12 12	0	0	102 139	12 12	114 151		
1/17/2019	Thu	9	136	23	0	0	0	0	0	0 0		0 0	0	0	0	423 213	0	162	12	0	0	67	12	79		
1/18/2019	Fri	7	102	16	0	0	0	0	0	0 0		0 0	0	0	0	118	0	77	8	0	0	41	8	49		

Attachment 3A-3

Daily Arrival and Departures, Persons and Vehicles, 3 PM - 4 PM

			Person Trips													Vehicle Trips										
		# of	Arrival: Practices			Arrivals	ls Games			Drastico		E	Departures	Games			Total	Total		Ch	uttles			les (including	Chuttles)	
	Day of	Concurrent	HW		нw		Visiting To	eam		Practice: HW	5	ни	v	Visiting	Team		Person	Person	Arriv		Depart	ures	All venic	ies (including i	Shuttles)	
Date	Week	Activities			Athletes Co	oaches	-		ectators	Athletes Co	aches	Athletes		-		Spectators	Arrivals	Departures	Passengers	Shuttles	Passengers	Shuttles	Arriving	Departing	Total	
1/21/2019	Mon	16	326	43	0	0	0	0	0	0	0	0	0	0	0	0	369	0	245	12	0	0	110	12	122	
1/22/2019 1/23/2019	Tue Wed	11 15	211 291	29 40	14 0	2 0	14 0	2 0	30 0	0	0 0	0	0 0	0 0	0	0	302 331	0	169 219	12 12	0	0	102 101	12 12	114 113	
1/23/2019	Thu	13	291	40 34	0	0	0	0	0	0	0	0	0	0	0	0	277	0	183	12	0	0	87	12	99	
1/25/2019	Fri	11	187	30	0	0	0	0	0	0	0	0	0	0	0	0	217	0	141	12	0	0	74	12	86	
1/28/2019	Mon	12	204	30	46	5	46	5	30	0	0	0	0	0	0	0	366	0	188	12	0	0	112	12	124	
1/29/2019	Tue	11	213	25	0	0	0	0	0	0	0	0	0	0	0	0	238	0	160	12	0	0	73	12	85	
1/30/2019 1/31/2019	Wed Thu	12 8	178 93	30 19	41 60	5 7	41 60	5	30 60	0	0	0	0 0	0 0	0	0	330 306	0	165 115	12 12	0	0	106 107	12 12	118 119	
2/1/2019	Fri	12	273	35	0	0	0	0	0	0	0	0	0	0	0	0	308	0	205	12	0	0	93	12	105	
2/4/2019	Mon	12	273	35	0	0	0	0	0	0	0	0	0	0	0	0	308	0	205	12	0	0	93	12	105	
2/5/2019	Tue	11	252	32	0	0	0	0	0	0	0	0	0	0	0	0	284	0	189	12	0	0	86	12	98	
2/6/2019	Wed	12	273	35	0	0	0	0	0	0	0	0	0	0	0	0	308	0	205	12	0	0	93	12	105	
2/7/2019 2/8/2019	Thu Fri	11 12	252 273	32 35	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	284 308	0	189 205	12 12	0	0	86 93	12 12	98 105	
2/11/2019	Mon	12	273	35	0	0	0	0	0	0	0	0	0	0	0	0	308	0	205	12	0	0	93	12	105	
2/12/2019	Tue	11	252	32	0	0	0	0	0	0	0	0	0	0	0	0	284	0	189	12	0	0	86	12	98	
2/13/2019	Wed	12	273	35	0	0	0	0	0	0	0	0	0	0	0	0	308	0	205	12	0	0	93	12	105	
2/14/2019	Thu	11	252	32	0	0	0	0	0	0	0	0	0	0	0	0	284	0	189	12	0	0	86	12	98	
2/15/2019 2/18/2019	Fri Mon	12 10	273 241	35 30	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	308 271	0	205 181	12 12	0	0	93 83	12 12	105 95	
2/19/2019	Tue	7	177	16	23	3	23	3	50	0	0	0	0	0	0	0	295	0	150	12	0	0	101	12	113	
2/20/2019	Wed	11	127	24	131	8	131	8	100	0	0	0	0	0	0	0	529	0	194	12	0	0	160	12	172	
2/21/2019	Thu	10	238	30	0	0	0	0	0	0	0	0	0	0	0	0	268	0	179	12	0	0	82	12	94	
2/22/2019	Fri	10	241	30	0	0	0	0	0	0	0	0	0	0	0	0	271	0	181	12	0	0	83	12	95	
2/25/2019 2/26/2019	Mon	10 10	241	30 30	0	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	271 268	0	181 179	12	0	0	83 82	12 12	95 94	
2/20/2019	Tue Wed	11	238 259	33	0	0	0	0	0	0	0	0	0	0	0	0	200	0	195	12 12	0	0	89	12	101	
2/28/2019	Thu	6	159	13	38	6	38	6	50	0	0	0	0	0	0	0	310	0	148	12	0	0	100	12	112	
3/1/2019	Fri	8	120	23	39	5	39	5	30	0	0	0	0	0	0	0	261	0	120	12	0	0	89	12	101	
3/4/2019	Mon	8	193	20	20	3	20	3	50	0	0	0	0	0	0	0	309	0	160	12	0	0	106	12	118	
3/5/2019 3/6/2019	Tue Wed	7 10	90 245	13 30	129 0	8 0	129 0	8	80 0	0	0	0	0 0	0 0	0	0	457 275	0	165 184	12 12	0	0	130 83	12 12	142 95	
3/7/2019	Thu	9	173	19	62	6	62	6	70	0	0	0	0	0	0	0	398	0	177	12	0	0	127	12	139	
3/8/2019	Fri	8	120	23	39	5	39	5	30	0	0	0	0	0	0	0	261	0	120	12	0	0	89	12	101	
3/11/2019	Mon	9	206	25	20	3	20	3	50	0	0	0	0	0	0	0	327	0	170	12	0	0	113	12	125	
3/12/2019	Tue	9	219	18	70	6	70	6	95	0	0	0	0	0	0	0	484	0	217	12	0	0	153	12	165	
3/13/2019 3/14/2019	Wed Thu	10 8	245 219	30 18	0 48	0 6	0 48	0 6	0 80	0	0 0	0	0	0	0	0	275 425	0	184 201	12 12	0	0	83 138	12 12	95 150	
3/15/2019	Fri	8	193	20	39	5	39	5	30	0	0	0	0	0	0	0	331	0	174	12	0	0	98	12	110	
3/18/2019	Mon	11	240	24	20	3	20	3	50	0	0	0	0	0	0	0	360	0	195	12	0	0	118	12	130	
3/19/2019	Tue	10	248	22	15	3	15	3	20	0	0	0	0	0	0	0	326	0	198	12	0	0	96	12	108	
3/20/2019	Wed	8	80	11	121	8	121	8	70	0	0	0	0	0	0	0	419	0	151	12	0	0	118	12	130	
3/21/2019 3/22/2019	Thu Fri	10 10	248 240	22 24	15 0	3 0	15 0	3 0	20 0	0	0	0	0	0 0	0	0	326 264	0	198 180	12 12	0	0	96 76	12 12	108 88	
3/25/2019	Mon	10	240	24	0	0	0	0	0	0	0	0	0	0	0	0	264	0	180	12	0	0	76	12	88	
3/26/2019	Tue	11	281	27	0	0	0	0	0	0	0	0	0	0	0	0	308	0	211	12	0	0	86	12	98	
3/27/2019	Wed	10	240	24	0	0	0	0	0	0	0	0	0	0	0	0	264	0	180	12	0	0	76	12	88	
3/28/2019 3/29/2019	Thu Fri	11	281	27	0 0	0 0	0	0	0	0	0 0	0	0 0	0 0	0	0	308	0	211	12 12	0	0	86 76	12 12	98 88	
4/1/2019	Mon	10 9	240 219	24 21	0	0	0	0	0	0	0	0	0	0	0	0	264 240	0	180 165	12	0	0	76 70	12	88	
4/2/2019	Tue	9	227	19	15	3	15	3	20	0	0	0	0	0	0	0	302	0	182	12	0	0	90	12	102	
4/3/2019	Wed	8	180	16	39	5	39	5	45	0	0	0	0	0	0	0	329	0	165	12	0	0	102	12	114	
4/4/2019	Thu	8	180	16	20	3	20	3	75	0	0	0	0	0	0	0	317	0	150	12	0	0	116	12	128	
4/5/2019	Fri	9	219	21	0	0	0	0	0	0	0	0	0	0	0	0	240	0	165	12	0	0	70 70	12	82	
4/8/2019 4/9/2019	Mon Tue	9 11	219 242	21 21	0 47	0 3	0 47	0 3	0 50	0	0 0	0	0 0	0 0	0	0	240 413	0	165 217	12 12	0	0	70 121	12 12	82 133	
4/10/2019	Wed	8	186	16	15	3	15	3	20	0	0	0	0	0	0	0	258	0	151	12	0	0	80	12	92	
4/11/2019	Thu	10	260	24	0	0	0	0	0	0	0	0	0	0	0	0	284	0	195	12	0	0	80	12	92	
4/12/2019	Fri	9	219	21	0	0	0	0	0	0	0	0	0	0	0	0	240	0	165	12	0	0	70	12	82	
4/15/2019	Mon	12	253	30	0	0	0	0	0	0	0	0	0	0	0	0	283	0	190	12	0	0	85	12	97	
4/16/2019 4/17/2019	Tue Wed	7 10	219 226	19 27	23 0	3 0	23 0	3 0	30 0	0	0 0	0	0 0	0 0	0	0	320 253	0	182 170	12 12	0	0	97 77	12 12	109 89	
4/18/2019	Thu	8	239	23	47	3	47	3	50	0	0	0	0	0	0	0	412	0	215	12	0	0	122	12	134	
									1							1			1						1	

Daily Arrival and Departures, Persons and Vehicles, 3 PM - 4 PM

				Arrivals					Pers	on Trips										Ve	hicle Trips				
						Arrivals							Departures									-			
		# of	Prac	tices			Games			Prac	tices			Games			Total	Total		Shu	uttles		All Vehic	les (including	Shuttles)
	Day of	Concurrent	н	W	H	W	Visiting	g Team		H	w	H	W	Visiting	Team		Person	Person	Arriv	vals	Depart	tures			
Date	Week	Activities	Athletes	Coaches	Athletes	Coaches	Athletes	Coaches	Spectators	Athletes	Coaches	Athletes	Coaches	Athletes	Coaches	Spectators	Arrivals	Departures	Passengers	Shuttles	Passengers	Shuttles	Arriving	Departing	Total
4/19/2019	Fri	8	195	20	0	0	0	0	0	0	0	0	0	0	0	0	215	0	147	12	0	0	65	12	77
4/22/2019	Mon	10	226	27	0	0	0	0	0	0	0	0	0	0	0	0	253	0	170	12	0	0	77	12	89
4/23/2019	Tue	9	257	26	0	0	0	0	0	0	0	0	0	0	0	0	283	0	193	12	0	0	81	12	93
4/24/2019	Wed	10	226	27	0	0	0	0	0	0	0	0	0	0	0	0	253	0	170	12	0	0	77	12	89
4/25/2019	Thu	9	257	26	0	0	0	0	0	0	0	0	0	0	0	0	283	0	193	12	0	0	81	12	93
4/26/2019	Fri	8	195	20	0	0	0	0	0	0	0	0	0	0	0	0	215	0	147	12	0	0	65	12	77
4/29/2019	Mon	10	226	27	0	0	0	0	0	0	0	0	0	0	0	0	253	0	170	12	0	0	77	12	89
4/30/2019	Tue	9	257	26	0	0	0	0	0	0	0	0	0	0	0	0	283	0	193	12	0	0	81	12	93
5/1/2019	Wed	9	212	25	0	0	0	0	0	0	0	0	0	0	0	0	237	0	159	12	0	0	73	12	85
5/2/2019	Thu	7	226	22	0	0	0	0	0	0	0	0	0	0	0	0	248	0	170	12	0	0	72	12	84
5/3/2019	Fri	6	164	16	0	0	0	0	0	0	0	0	0	0	0	0	180	0	123	12	0	0	56	12	68
5/6/2019	Mon	8	195	23	0	0	0	0	0	0	0	0	0	0	0	0	218	0	147	12	0	0	68	12	80
5/7/2019	Tue	7	224	22	0	0	0	0	0	0	0	0	0	0	0	0	246	0	168	12	0	0	72	12	84
5/8/2019	Wed	8	195	23	0	0	0	0	0	0	0	0	0	0	0	0	218	0	147	12	0	0	68	12	80
5/9/2019	Thu	7	226	22	0	0	0	0	0	0	0	0	0	0	0	0	248	0	170	12	0	0	72	12	84
5/10/2019	Fri	6	164	16	0	0	0	0	0	0	0	0	0	0	0	0	180	0	123	12	0	0	56	12	68
5/13/2019	Mon	8	195	23	0	0	0	0	0	0	0	0	0	0	0	0	218	0	147	12	0	0	68	12	80
5/14/2019	Tue	7	226	22	0	0	0	0	0	0	0	0	0	0	0	0	248	0	170	12	0	0	72	12	84
5/15/2019	Wed	8	195	23	0	0	0	0	0	0	0	0	0	0	0	0	218	0	147	12	0	0	68	12	80
5/16/2019	Thu	7	236	22	0	0	0	0	0	0	0	0	0	0	0	0	258	0	177	12	0	0	74	12	86
5/17/2019	Fri	5	142	13	0	0	0	0	0	0	0	0	0	0	0	0	155	0	107	11	0	0	48	11	59
5/20/2019	Mon	7	173	20	0	0	0	0	0	0	0	0	0	0	0	0	193	0	130	12	0	0	61	12	73
5/21/2019	Tue	7	236	22	0	0	0	0	0	0	0	0	0	0	0	0	258	0	177	12	0	0	74	12	86
5/22/2019	Wed	7	173	20	0	0	0	0	0	0	0	0	0	0	0	0	193	0	130	12	0	0	61	12	73
5/23/2019	Thu	7	236	22	0	0	0	0	0	0	0	0	0	0	0	0	258	0	177	12	0	0	74	12	86
5/24/2019	Fri	5	142	13	0	0	0	0	0	0	0	0	0	0	0	0	155	0	107	11	0	0	48	11	59
5/27/2019	Mon	7	173	20	0	0	0	0	0	0	0	0	0	0	0	0	193	0	130	12	0	0	61	12	73
5/28/2019	Tue	7	236	22	0	0	0	0	0	0	0	0	0	0	0	0	258	0	177	12	0	0	74	12	86
5/29/2019	Wed	7	173	20	0	0	0	0	0	0	0	0	0	0	0	0	193	0	130	12	0	0	61	12	73
5/30/2019	Thu	7	236	22	0	0	0	0	0	0	0	0	0	0	0	0	258	0	177	12	0	0	74	12	86
5/31/2019	Fri	5	142	13	0	0	0	0	0	0	0	0	0	0	0	0	155	0	107	11	0	0	48	11	59

									F	Person Trips										v	ehicle Trips			
					_	Arrivals						Departure												
	Day of	# of		tices			Games	T	P	ractices			Games	. .		Total	Total			uttles	•	All Vehic	es (including	Shuttles)
Date	Day of Week	Concurrent Activities	⊓ Athletes	W Coaches	H\ s Athletes		Visiting Athletes	Coaches Spect	ators Athlet	HW es Coaches		HW s Coaches	Visiting Athletes		Spectators	Person Arrivals	Person Departures	Arriv Passengers	Shuttles	Depar Passengers	Shuttles	Arriving	Departing	Total
8/1/2018	Wed	2	0	0	0	0	0	0 (5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/2/2018	Thu	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/3/2018	Fri	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/6/2018	Mon	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/7/2018 8/8/2018	Tue Wed	2 2	0	0 0	0	0 0	0 0	0 0	33 33	5	0 0	0	0	0 0	0	0	38 38	0	0	25 25	3	3	14 14	17 17
8/9/2018	Thu	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/10/2018	Fri	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/13/2018	Mon	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/14/2018	Tue	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/15/2018	Wed	2	0	0	0	0	0	0 0		5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/16/2018 8/17/2018	Thu Fri	2 2	0	0	0	0 0	0 0	0 0	33 33	5 5	0 0	0	0 0	0 0	0	0	38 38	0	0	25 25	3 3	3	14 14	17 17
8/20/2018	Mon	2	0	0	0	0	0	0 0		5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/21/2018	Tue	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/22/2018	Wed	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/23/2018	Thu	2	0	0	0	0	0	0 0		5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/24/2018	Fri	2	0	0	0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/27/2018 8/28/2018	Mon Tue	4 2	0	0	0	0 0	0 0	0 5	33	5	10 0	0	10 0	0	30 0	50	90 38	0	0	33 25	4 3	38	39 14	77 17
8/29/2018	Wed	2	0	0	0	0	0	0 0	33	5	16	2	16	2	20	0	94	0	0	37	4	4	35	39
8/30/2018	Thu	3	0	0	0 0	0	0	0 0	33	5	0	0	0	0	0	0	38	0	0	25	3	3	14	17
8/31/2018	Fri	1	0	0	0	0	0	0 0	0	0	21	3	21	3	30	0	78	0	0	16	2	2	30	32
9/3/2018	Mon	11	47	4	0	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
9/4/2018	Tue	6	0	0	0	0	0	0 0	90	12	21	4	21	4	80	0	232	0	0	84	9	9	99	108
9/5/2018 9/6/2018	Wed	8 6	0	0 0	0	0 0	0 0	0 0		25 14	11 32	3 6	11 32	3 6	50 80	0	257	0	0	124 80	12 8	12 8	103 102	115
9/7/2018	Thu Fri	9	0	0	0	0	0	0 10		14	10	1	10	1	60	100	244 181	0	0	69	0 7	° 74	82	110 156
9/10/2018	Mon	12	47	4	0	0	0	0 0		27	0	0	0	0	0	51	191	36	4	123	12	24	67	91
9/11/2018	Tue	11	47	4	0	0	0	0 0		29	0	0	0	0	0	51	214	36	4	139	12	24	72	96
9/12/2018	Wed	11	47	4	0	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
9/13/2018	Thu	8	0	0	0	0	0	0 5		22	0	0	0	0	0	50	171	0	0	112	12	46	59	105
9/14/2018	Fri	8	0	0	0	0	0	0 5		26	0	0	0	0	0	50	162	0	0	102	11	45	60 67	105
9/17/2018 9/18/2018	Mon Tue	10 11	47 47	4	0	0 0	0 0	0 0		27 29	0 0	0	0 0	0	0 0	51 51	193 214	36 36	4	125 139	12 12	24 24	67 72	91 96
9/19/2018	Wed	11	47	4	0	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
9/20/2018	Thu	9	47	4	0	0	0	0 5		16	10	1	10	1	30	101	143	36	4	64	7	53	60	113
9/21/2018	Fri	9	0	0	0	0	0	0 0	158	31	0	0	0	0	0	0	189	0	0	119	12	12	70	82
9/24/2018	Mon	11	47	4	0	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
9/25/2018	Tue	8	0	0	0	0	0	0 0	125	17	0	0	0	0	0	0	142	0	0	94	10	10	48	58
9/26/2018 9/27/2018	Wed Thu	7 11	0 47	4	0	0 0	0 0	0 0	154 185	25 29	0 0	0	0 0	0 0	0	0 51	179 214	0 36	0 4	116 139	12 12	12 24	63 72	75 96
9/28/2018	Fri	9	0	4 0	0	0	0	0 0		31	0	0	0	0	0	0	189	0	0	119	12	12	70	82
10/1/2018	Mon	11	47	4	0	0	0	0 0		29	16	2	16	2	20	51	242	36	4	130	12	24	87	111
10/2/2018	Tue	10	47	4	0	0	0	0 0	161	24	0	0	0	0	0	51	185	36	4	121	12	24	63	87
10/3/2018	Wed	8	0	0	0	0	0	0 0		25	11	2	11	2	40	0	245	0	0	124	12	12	95	107
10/4/2018	Thu	8	47	4	0	0	0	0 5		11	10	1	10	1	30	101	114	36	4	46	5	51	49	100
10/5/2018 10/8/2018	Fri Mon	9 11	0 47	0 4	0	0 0	0 0	0 0		31 32	0 0	0	0 0	0 0	0	0 51	189 222	0 36	4	119 143	12 12	12 24	70 76	82 100
10/9/2018	Tue	11	47	4	0	0	0	0 0		29	0	0	0	0	0	51	214	36	4	143	12	24	70	96
10/10/2018	Wed	11	47	4	Õ	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
10/11/2018	Thu	10	47	4	0	0	0	0 0			0	0	0	0	0	51	131	36	4	83	9	21	49	70
10/12/2018	Fri	9	0	0	0	0	0	0 0		31	0	0	0	0	0	0	189	0	0	119	12	12	70	82
10/15/2018	Mon	11	47	4	0	0	0	0 0		32	0	0	0	0	0	51	222	36	4	143	12	24	76	100
10/16/2018	Tue	10	47	4	0	0	0	0 0		24	0	0	0 27	0	0	51	185	36	4	121	12	24	63	87 104
10/17/2018 10/18/2018	Wed Thu	8 10	0 47	0 4	0	0 0	0 0	0 0		22 21	27 0	4	27 0	4	40 0	0 51	245 131	0 36	0 4	111 83	12 9	12 21	92 49	104 70
10/18/2018	Fri	9	0	4	0	0	0	0 0		31	0	0	0	0	0	0	189	0	4	119	12	12	70	82
10/22/2018		11	47	4	0	0	0	0 0			0	0	0	0	0	51	222	36	4	143	12	24	76	100
																	1							1

90th Pe	rcentile Vehic	le Trips
Arrival	Departure	Total
54	93	145

Daily Arrival and Departures, Persons and Vehicles, 5 PM - 6 PM

							Person Trips								Veł	nicle Trips			
		# of	Due etiles e	Arriva			Due stiese	Departu			Total	Total		C h				oo (in dudin a	Chuttles)
	Day of	# Of Concurrent	Practices HW	нw	Games Visiting Team		Practices HW	нw	Games Visiting Team		Person	Person	Arriv		outtles Departu	ires	All venic	es (including	Shuttles)
Date	Week	Activities	Athletes Coache		s Athletes Coaches	Spectators			es Athletes Coach	s Spectators		Departures	Passengers	Shuttles		Shuttles	Arriving	Departing	Total
10/23/2018	Tue	11	47 4	0 0	0 0	0	185 29	0 0	0 0	0	51	214	36	4	139	12	24	72	96
10/24/2018	Wed	11	47 4	0 0	0 0	0	157 29	16 2	16 2	20	51	242	36	4	130	12	24	87	111
10/25/2018 10/26/2018	Thu	10 9	47 4 0 0	0 0	0 0 0	0	110 21 158 31	0 0	0 0 0	0 0	51 0	131 189	36 0	4	83 119	9 12	21 12	49 70	70 82
10/20/2018	Fri Mon	9 11	47 4	0 0	0 0	0	158 31 190 32	0 0	0 0	0	51	222	36	4	143	12	24	70 76	100
10/30/2018	Tue	10	47 4	21 3	21 3	30	122 23	0 0	0 0	0	129	145	51	6	92	10	50	54	104
10/31/2018	Wed	11	47 4	0 0	0 0	0	190 32	0 0	0 0	0	51	222	36	4	143	12	24	76	100
11/1/2018	Thu	9	12 2	0 0	0 0	0	77 19	11 3	11 3	50	14	174	9	1	66	7	11	79	90
11/2/2018	Fri	14	58 7	0 0	0 0	0	152 30	0 0	0 0	0	65	182	44	5	114	12	29	68	97
11/5/2018 11/6/2018	Mon Tue	16 16	100 11 105 11	0 0	0 0	0	157 30 152 30	0 0	0 0	0 0	111 116	187 182	75 79	8 8	118 114	12 12	40 41	69 68	109 109
11/7/2018	Wed	16	105 11	0 0	0 0	0	152 30	0 0	0 0	0	116	182	79	8	114	12	41	68	109
11/8/2018	Thu	16	100 11	0 0	0 0	0	157 30	0 0	0 0	0	111	187	75	8	118	12	40	69	109
11/9/2018	Fri	14	58 7	0 0	0 0	0	152 30	0 0	0 0	0	65	182	44	5	114	12	29	68	97
11/12/2018	Mon	16	100 11	0 0	0 0	0	157 30	0 0	0 0	0	111	187	75	8	118	12	40	69	109
11/13/2018	Tue	16	105 11	0 0	0 0	0	152 30	0 0	0 0	0	116	182	79	8	114	12	41	68	109
11/14/2018 11/15/2018	Wed Thu	14 17	123 12 148 14	15 4 0 0	15 4 0 0	100 0	127 21 152 30	0 0	0 0 0	0 0	273 162	148 182	104 111	11 12	96 114	10 12	118 51	54 68	172 119
11/16/2018	Fri	12	12 2	0 0	0 0	0	191 32	0 0	0 0	0	14	223	9	1	144	12	16	76	92
11/19/2018	Mon	15	94 9	0 0	0 0	0	191 32	0 0	0 0	0	103	223	71	8	144	12	37	76	113
11/20/2018	Tue	15	102 9	0 0	0 0	0	164 29	0 0	0 0	0	111	193	77	8	123	12	38	69	107
11/21/2018	Wed	15	94 9	0 0	0 0	0	191 32	0 0	0 0	0	103	223	71	8	144	12	37	76	113
11/22/2018 11/23/2018	Thu	15	102 9 12 2	0 0	0 0	0	164 29 191 32	0 0 0	0 0 0	0 0	111 14	193	77 9	8	123 144	12	38 16	69 76	107
11/23/2018	Fri Mon	12 15	94 9	0 0	0 0	0	191 32 191 32	0 0	0 0	0	14	223 223	71	8	144	12 12	37	76 76	92 113
11/27/2018	Tue	10	43 3	0 0	0 0	0	93 15	20 2	20 2	30	46	182	33	4	85	9	20	66	86
11/28/2018	Wed	15	59 6	0 0	0 0	0	226 35	0 0	0 0	0	65	261	45	5	170	12	28	85	113
11/29/2018	Thu	15	102 9	0 0	0 0	50	118 24	20 2	20 2	30	161	216	77	8	104	11	71	81	152
11/30/2018	Fri	12	12 2	0 0	0 0	50	145 27	20 2	20 2	30	64	246	9	1	124	12	50	90	140
12/3/2018 12/4/2018	Mon Tue	14 12	94 9 64 5	0 0	0 0 0	0 50	180 29 105 21	0 0 34 4	0 0 34 4	0 60	103 119	209 262	71 48	8 5	135 105	12 11	37 61	71 102	108 163
12/5/2018	Wed	14	94 9	0 0	0 0	0	129 21	20 2	20 2	30	103	202	71	8	103	12	37	81	118
12/6/2018	Thu	15	123 11	0 0	0 0	0	153 26	0 0	0 0	0	134	179	93	10	115	12	44	64	108
12/7/2018	Fri	11	12 2	0 0	0 0	0	180 29	0 0	0 0	0	14	209	9	1	135	12	16	71	87
12/10/2018	Mon	14	94 9	0 0	0 0	0	180 29	0 0	0 0	0	103	209	71	8	135	12	37	71	108
12/11/2018	Tue	15	80 8	0 0	0 0	0	196 29	0 0	0 0	0	88	225	60	6	147	12	34	74	108
12/12/2018 12/13/2018	Wed Thu	8 15	35 3 123 11	0 0	0 0	0	136 18 153 26	14 2 0 0	14 2 0 0	30 0	38 134	216 179	27 93	3 10	113 115	12 12	21 44	78 64	99 108
12/13/2018	Fri	11	12 2	0 0	0 0	0	180 29	0 0	0 0	0	134	209	9	10	135	12	16	71	87
12/17/2018	Mon	14	94 9	0 0	0 0	0	180 29	0 0	0 0	0	103	209	71	8	135	12	37	71	108
12/18/2018	Tue	15	123 11	0 0	0 0	0	153 26	0 0	0 0	0	134	179	93	10	115	12	44	64	108
12/19/2018	Wed	14	82 7	0 0	0 0	0	192 31	0 0	0 0	0	89	223	62	7	144	12	33	75	108
12/20/2018	Thu	15	123 11	0 0	0 0	0	153 26	0 0	0 0	0	134	179	93	10	115	12	44	64 06	108
12/21/2018 12/24/2018	Fri Mon	10 14	0 0 94 9	0 0	0 0 0 0	80 0	150 20 180 29	12 2 0 0	12 2 0 0	50 0	80 103	248 209	0 71	0 8	122 135	12 12	66 37	96 71	162 108
12/24/2018	Tue	14	123 11	0 0	0 0	0	153 26	0 0	0 0	0	134	179	93	10	115	12	44	64	108
12/26/2018	Wed	14	94 9	0 0	0 0	0	180 29	0 0	0 0	0	103	209	71	8	135	12	37	71	108
12/27/2018	Thu	15	137 13	0 0	0 0	0	139 24	0 0	0 0	0	150	163	103	11	105	11	47	59	106
12/28/2018	Fri	11	32 6	0 0	0 0	0	160 25	0 0	0 0	0	38	185	24	3	120	12	24	64	88
12/31/2018 1/1/2019	Mon Tue	14 17	94 9 144 14	0 0	0 0 0	0 0	180 29 171 29	0 0 0	0 0 0 0	0 0	103 158	209 200	71 108	8 11	135 129	12 12	37 50	71 70	108 120
1/2/2019	Wed	15	94 9	0 0	0 0	0	178 30	20 2	20 2	30	103	282	71	8	149	12	37	98	135
1/3/2019	Thu	17	144 14	0 0	0 0	0	171 29	0 0	0 0	0	158	200	108	11	129	12	50	70	120
1/4/2019	Fri	11	32 5	0 0	0 0	200	116 16	32 4	32 4	155	237	359	24	3	111	12	157	163	320
1/7/2019	Mon	15	94 9	0 0	0 0	0	219 35	0 0	0 0	0	103	254	71	8	165	12	37	84	121
1/8/2019	Tue	13	97 10	0 0	0 0	0	139 24	0 0	0 0	0	107	163	73	8	105	11	38	59 102	97
1/9/2019 1/10/2019	Wed Thu	15 17	59 6 144 14	0 0	0 0 0	90 0	198 30 171 29	20 2 0 0	20 2 0 0	30 0	155 158	302 200	45 108	5 11	164 129	12 12	88 50	102 70	190 120
1/11/2019	Fri	10	0 0	0 0	0 0	200	136 19	32 4	32 4	200	200	427	0	0	129	12	146	199	345
1/14/2019	Mon	11	47 5	0 0	0 0	0	187 30	0 0	0 0	0	52	217	36	4	141	12	25	74	99
1/15/2019	Tue	13	97 10	0 0	0 0	0	139 24	0 0	0 0	0	107	163	73	8	105	11	38	59	97
1/16/2019	Wed	13	82 7	0 0	0 0	80	136 19	32 4	32 4	80	169	307	62	7	126	12	87	119	206
1/17/2019	Thu	11	61 7	29 6	29 6	130	118 18	0 0	0 0	0	268	136	68	7	89	9	126	47	173
1/18/2019	Fri	6	0 0	15 4	15 4	100	102 16	0 0	0 0	0	138	118	12	2	77	8	83	41	124

Daily Arrival and Departures, Persons and Vehicles, 5 PM - 6 PM

										Perso	n Trips										Ve	hicle Trips			
		# of	_		A	Arrivals	-					C	epartures	_			Total	Total		c 1				<i></i>	
	Day of	# OI Concurrent	Prac	tices W	нพ		Games Visiting Te	am		Practi HW		ни	v	Games Visiting	Team		Person	Person	Arriv		uttles Depart	ures	All Vehici	es (including S	Shuttles)
Date	Week	Activities	Athletes			oaches	Athletes Co		ectators		Coaches			-		Spectators	Arrivals	Departures	Passengers	Shuttles	Passengers	Shuttles	Arriving	Departing	Total
1/21/2019	Mon	15	59	6	0	0	0	0	0	254	38	0	0	0	0	0	65	292	45	5	191	12	28	93	121
1/22/2019 1/23/2019	Tue Wed	13 15	97 94	10 9	0	0 0	0	0	0	139 219	24 35	14 0	2 0	14 0	2	30 0	107 103	225 254	73 71	8 8	115 165	12 12	39 37	85 84	124 121
1/24/2019	Thu	15	144	14	0	0	0	0	0	171	29	0	0	0	0	0	158	200	108	11	129	12	50	70	120
1/25/2019	Fri	12	44	7	0	0	0	0	0	187	30	0	0	0	0	0	51	217	33	4	141	12	27	74	101
1/28/2019	Mon	13	94	9	0	0	0	0	50	132	25	20	2	20	2	30	153	231	71	8	114	12	71	86	157
1/29/2019 1/30/2019	Tue Wed	12 15	90 94	7 9	15 0	4 0	15 0	4 0	150 0	141 178	20 30	0 20	0 2	0 20	0	0 30	285 103	161 282	79 71	8 8	106 149	11 12	141 37	55 98	196 135
1/31/2019	Thu	13	94 97	10	0	0	0	0	50	93	30 19	34	4	20 34	4	60	105	248	73	8	96	12	71	98 97	168
2/1/2019	Fri	18	129	14	0	0	0	0	0	273	35	0	0	0	0	0	143	308	97	10	205	12	48	93	141
2/4/2019	Mon	18	129	14	0	0	0	0	0	273	35	0	0	0	0	0	143	308	97	10	205	12	48	93	141
2/5/2019 2/6/2019	Tue	19 18	150	17 14	0	0 0	0	0	0	252	32 35	0	0	0	0	0	167	284	113 97	12	189	12 12	54 48	86 93	140 141
2/6/2019	Wed Thu	10	129 150	14	0	0	0	0	0	273 252	35 32	0	0	0	0	0	143 167	308 284	113	10 12	205 189	12	46 54	93 86	141
2/8/2019	Fri	18	129	14	0	0	0	0	0	273	35	0	0	0	0	0	143	308	97	10	205	12	48	93	141
2/11/2019	Mon	18	129	14	0	0	0	0	0	273	35	0	0	0	0	0	143	308	97	10	205	12	48	93	141
2/12/2019	Tue	19	150	17	0	0	0	0	0	252	32	0	0	0	0	0	167	284	113	12	189	12	54	86	140
2/13/2019 2/14/2019	Wed Thu	18 19	129 150	14 17	0	0 0	0 0	0 0	0	273 252	35 32	0	0	0 0	0	0	143 167	308 284	97 113	10 12	205 189	12 12	48 54	93 86	141 140
2/15/2019	Fri	18	129	14	0	0	0	0	0	273	35	0	0	0	0	0	143	308	97	12	205	12	48	93	140
2/18/2019	Mon	17	147	17	0	0	0	0	0	241	30	0	0	0	0	0	164	271	111	12	181	12	54	83	137
2/19/2019	Tue	14	106	11	0	0	0	0	0	177	16	9	1	9	1	30	117	243	80	8	140	12	41	81	122
2/20/2019	Wed	12	23	3	0	0	0	0	0	127	24	0	0	0	0	0	26	151	18	2	96	10	17	56	73
2/21/2019 2/22/2019	Thu Fri	18 16	150 82	17 11	0	0 0	0	0 0	0	238 241	30 30	0	0	0 0	0	0	167 93	268 271	113 62	12 7	179 181	12 12	54 37	82 83	136 120
2/25/2019	Mon	17	147	17	0	0	0	0	0	241	30	0	0	0	0	0	164	271	111	12	181	12	54	83	137
2/26/2019	Tue	18	150	17	0	0	0	0	0	238	30	0	0	0	0	0	167	268	113	12	179	12	54	82	136
2/27/2019	Wed	17	129	14	0	0	0	0	0	259	33	0	0	0	0	0	143	292	97	10	195	12	48	89	137
2/28/2019	Thu	13	59	8	47	3	47	3	50	159	13	9	1	9	1	30	217	222	80	8	126	12	77	75	152
3/1/2019 3/4/2019	Fri Mon	12 14	70 109	6 11	0	0 0	0	0	50 0	120 193	23 20	17 20	2 3	17 20	2	30 50	126 120	211 309	53 82	6 9	103 160	11 12	63 42	80 106	143 148
3/5/2019	Tue	13	105	9	0	0	0	0	0	90	13	9	1	9	1	30	117	153	81	9	75	8	36	61	97
3/6/2019	Wed	14	90	9	0	0	0	0	0	245	30	0	0	0	0	0	99	275	68	7	184	12	36	83	119
3/7/2019	Thu	14	105	12	0	0	0	0	0	173	19	47	3	47	3	50	117	342	79	8	165	12	42	107	149
3/8/2019	Fri	12	70	6	0	0	0	0	50 0	120	23	17	2	17	2	30	126	211	53	6 9	103	11	63	80	143
3/11/2019 3/12/2019	Mon Tue	14 11	109 20	11 3	0	0 0	0	0	0	206 219	25 18	20 56	3 4	20 56	3 4	50 95	120 23	327 452	82 15	9	170 207	12 12	42 19	113 147	155 166
3/13/2019	Wed	14	90	9	0	0	0	0	0	245	30	0	0	0	0	0	99	275	68	7	184	12	36	83	119
3/14/2019	Thu	10	20	3	0	0	0	0	0	219	18	34	4	34	4	80	23	393	15	2	190	12	19	133	152
3/15/2019	Fri	14	90	9	0	0	0	0	50	193	20	17	2	17	2	30	149	281	68	7	158	12	70	90	160
3/18/2019 3/19/2019	Mon Tue	12 11	47 67	3 6	0	0 0	0 0	0	0	240 227	24 19	20 0	3 0	20 0	3	50 0	50 73	360 246	36 51	4	195 171	12 12	23 30	118 69	141 99
3/20/2019	Wed	11	67	6	0	0	0	0	0	80	11	0	0	0	0	0	73	91	51	6	60	6	24	31	55
3/21/2019	Thu	11	67	6	0	0	0	0	0	227	19	0	0	0	0	0	73	246	51	6	171	12	30	69	99
3/22/2019	Fri	12	67	6	0	0	0	0	0	240	24	0	0	0	0	0	73	264	51	6	180	12	30	76	106
3/25/2019	Mon	12	67	6	0	0	0	0	0	240	24	0	0 0	0	0	0	73	264	51	6	180	12	30	76 80	106
3/26/2019 3/27/2019	Tue Wed	12 12	67 67	6 6	0 0	0 0	0 0	0	0	260 240	24 24	0	0	0 0	0	0	73 73	284 264	51 51	6 6	195 180	12 12	30 30	80 76	110 106
3/28/2019	Thu	12	67	6	0	0	0	0	0	260	24	0	0	0	0	0	73	284	51	6	195	12	30	80	110
3/29/2019	Fri	12	67	6	0	0	0	0	0	240	24	0	0	0	0	0	73	264	51	6	180	12	30	76	106
4/1/2019	Mon	12	67	6	0	0	0	0	0	219	21	0	0	0	0	0	73	240	51	6	165	12	30	70	100
4/2/2019	Tue	11	67	6	0	0	0	0	0	227	19 16	0	0	0	0	0	73	246	51	6	171	12	30	69	99
4/3/2019 4/4/2019	Wed Thu	12 13	67 86	6 8	0	0 0	0 0	0	75 0	180 180	16 16	17 20	2 3	17 20	2	45 75	148 94	279 317	51 65	6 7	148 150	12 12	80 35	94 116	174 151
4/5/2019	Fri	12	67	6	0	0	0	0	0	219	21	0	0	0	0	0	73	240	51	6	165	12	30	70	100
4/8/2019	Mon	12	67	6	0	0	0	0	0	219	21	0	0	0	0	0	73	240	51	6	165	12	30	70	100
4/9/2019	Tue	11	20	3	0	0	0	0	0	242	21	47	3	47	3	50	23	413	15	2	217	12	19	121	140
4/10/2019 4/11/2019	Wed Thu	11 12	67 67	6 6	0	0 0	0 0	0	0	186 260	16 24	0	0	0 0	0	0	73 73	202 284	51 51	6 6	140 195	12 12	30 30	59 80	89 110
4/11/2019 4/12/2019	Thu Fri	12	67	6	0	0	0	0	0	260 219	24 21	0	0	0	0	0	73	284	51	6	195	12	30 30	80 70	100
4/15/2019	Mon	12	67	6	0	0	0	0	0	253	30	0	0	0	0	0	73	283	51	6	190	12	30	85	115
4/16/2019	Tue	12	67	6	0	0	0	0	0	219	19	9	1	9	1	30	73	288	51	6	171	12	30	91	121
4/17/2019	Wed	10	67	6	0	0	0	0	0	226	27	0	0	0	0	0	73	253	51	6	170	12	30	77	107
4/18/2019	Thu	10	20	3	0	0	0	0	0	239	23	0	0	0	0	0	23	262	15	2	180	12	19	75	94

Daily Arrival and Departures, Persons and Vehicles, 5 PM - 6 PM

				Arrivals						Pers	on Trips										Ve	hicle Trips			
						Arrivals							Departures	;											
		# of	Pract	tices			Games			Prac	tices			Games			Total	Total		Shu	uttles		All Vehic	les (including	Shuttles)
	Day of	Concurrent	H/	N	H/	v	Visiting	Team		H	w	H	w	Visiting	Team		Person	Person	Arriv	vals	Depart	tures			
Date	Week	Activities	Athletes	Coaches	Athletes	Coaches	Athletes (Coaches	Spectators	Athletes	Coaches	Athletes	Coaches	Athletes	Coaches	Spectators	Arrivals	Departures	Passengers	Shuttles	Passengers	Shuttles	Arriving	Departing	Total
4/19/2019	Fri	10	67	6	0	0	0	0	0	195	20	0	0	0	0	0	73	215	51	6	147	12	30	65	95
4/22/2019	Mon	10	67	6	0	0	0	0	0	226	27	0	0	0	0	0	73	253	51	6	170	12	30	77	107
4/23/2019	Tue	11	99	9	0	0	0	0	0	257	26	0	0	0	0	0	108	283	75	8	193	12	38	81	119
4/24/2019	Wed	10	67	6	0	0	0	0	0	226	27	0	0	0	0	0	73	253	51	6	170	12	30	77	107
4/25/2019	Thu	11	99	9	0	0	0	0	0	257	26	0	0	0	0	0	108	283	75	8	193	12	38	81	119
4/26/2019	Fri	10	67	6	0	0	0	0	0	195	20	0	0	0	0	0	73	215	51	6	147	12	30	65	95
4/29/2019	Mon	10	67	6	0	0	0	0	0	226	27	0	0	0	0	0	73	253	51	6	170	12	30	77	107
4/30/2019	Tue	11	99	9	0	0	0	0	0	257	26	0	0	0	0	0	108	283	75	8	193	12	38	81	119
5/1/2019	Wed	9	67	6	0	0	0	0	0	212	25	0	0	0	0	0	73	237	51	6	159	12	30	73	103
5/2/2019	Thu	9	99	9	0	0	0	0	0	226	22	0	0	0	0	0	108	248	75	8	170	12	38	72	110
5/3/2019	Fri	8	67	6	0	0	0	0	0	164	16	0	0	0	0	0	73	180	51	6	123	12	30	56	86
5/6/2019	Mon	8	67	6	0	0	0	0	0	195	23	0	0	0	0	0	73	218	51	6	147	12	30	68	98
5/7/2019	Tue	9	101	9	0	0	0	0	0	224	22	0	0	0	0	0	110	246	76	8	168	12	38	72	110
5/8/2019	Wed	8	67	6	0	0	0	0	0	195	23	0	0	0	0	0	73	218	51	6	147	12	30	68	98
5/9/2019	Thu	9	99	9	0	0	0	0	0	226	22	0	0	0	0	0	108	248	75	8	170	12	38	72	110
5/10/2019	Fri	8	67	6	0	0	0	0	0	164	16	0	0	0	0	0	73	180	51	6	123	12	30	56	86
5/13/2019	Mon	8	67	6	0	0	0	0	0	195	23	0	0	0	0	0	73	218	51	6	147	12	30	68	98
5/14/2019	Tue	9	99	9	0	0	0	0	0	226	22	0	0	0	0	0	108	248	75	8	170	12	38	72	110
5/15/2019	Wed	8	67	6	0	0	0	0	0	195	23	0	0	0	0	0	73	218	51	6	147	12	30	68	98
5/16/2019	Thu	4	0	0	0	0	0	0	0	236	22	0	0	0	0	0	0	258	0	0	177	12	12	74	86
5/17/2019	Fri	4	0	0	0	0	0	0	0	142	13	0	0	0	0	0	0	155	0	0	107	11	11	48	59
5/20/2019	Mon	4	0	0	0	0	0	0	0	173	20	0	0	0	0	0	0	193	0	0	130	12	12	61	73
5/21/2019	Tue	4	0	0	0	0	0	0	0	236	22	0	0	0	0	0	0	258	0	0	177	12	12	74	86
5/22/2019	Wed	4	0	0	0	0	0	0	0	173	20	0	0	0	0	0	0	193	0	0	130	12	12	61	73
5/23/2019	Thu	4	0	0	0	0	0	0	0	236	22	0	0	0	0	0	0	258	0	0	177	12	12	74	86
5/24/2019	Fri	4	0	0	0	0	0	0	0	142	13	0	0	0	0	0	0	155	0	0	107	11	11	48	59
5/27/2019	Mon	4	0	0	0	0	0	0	0	173	20	0	0	0	0	0	0	193	0	0	130	12	12	61	73
5/28/2019	Tue	4	0	0	0	0	0	0	0	236	22	0	0	0	0	0	0	258	0	0	177	12	12	74	86
5/29/2019	Wed	4	0	0	0	0	0	0	0	173	20	0	0	0	0	0	0	193	0	0	130	12	12	61	73
5/30/2019	Thu	4	0	0	0	0	0	0	0	236	22	0	0	0	0	0	0	258	0	0	177	12	12	74	86
5/31/2019	Fri	4	0	0	0	0	0	0	0	142	13	0	0	0	0	0	0	155	0	0	107	11	11	48	59

Periods	Inbound	Outbound	Total
3:00 - 3:59 PM	108	12	120
4:00 - 4:59 PM	34	0	34
5:00 - 5:59 PM	42	106	148
6:00 - 6:59 PM	5	37	42
7:00 - 7:59 PM	12	54	66
Total	201	209	410

Attachment 3B: Harvard-Westlake Weekday 90th Percentile Trip Generation by Hour

Note:

Bold indicates study peak hours.

These trips are from specific days in the 2018-2019 school year with inbound and outbound trips nearest the calculated 90th percentile trips for the peak hour.

	3 PM	- 4 PM Peak Hou	r Trips	5 PM	- 6 PM Peak Hou	r Trips	
Land Uses	Inbound	Outbound	Total	Inbound	Outbound	Total	Daily Trips
HW Athletics Use ¹	108	12	120	42	106	148	410
River Park (Non-HW Use) ²	17	17	34	17	17	34	1,514
SUBTOTAL	125	29	154	59	123	182	1,924
Existing Use Adjustment ³	-55	-48	-103	-54	-71	-125	-1,022
Net New Trips	70	-19	51	5	52	57	902

Attachment 3C: River Park Project Weekday Net Trip Generation

Note:

1. The new trips associated with HW Athletics is shown in Attachment 3B.

2. The trip estimates for the non-HW uses are based on rates in the ITE Trip Generation Manual, 10th Edition. The peak hour trips are estimated based on the Tennis Courts land use (LU 490) because only the tennis courts will be open to the public during the peak hour periods when Harvard-Westlake is using the other facilities. The daily trips are estimated based on the Recreational Community Center land use (LU 495), subtracting the portion of the daily trips that occur between 3-8 PM, when the site will not be open to the public, based on the time-of-day distribution data in Appendix A of the Recreation chapter of the manual. The daily trips is the sum of the trips associated with the public use of the park outside of HW hours plus the trips associated with the tennis courts during HW hours.

3. The existing use at the site is Weddington Golf and Tennis. The trips were counted at the site on Tuesday, February 12, 2019.

Attachment 4

CLATS

Case Logging and Tracking System

RELATED PROJECTS														
Centroid Info: PROJ ID: 44	800							Include NULL	. "Trip info": 🔲					
	1 Whitsett Av				Inc	clude N	NULL "FirstStu	dySubmittalD	ate" (latest) 🔲					
	DIO CITY, CA 91604						In	clude "Inactiv	e" projects: 🔲					
Lat/Long: 34.	1462, -118.405					Inc	clude "Do not	show in Relate	ed Project": 🔲					
Buffer Radius: 0.5	mile	T					Net_A	M_Trips - S	elect - 🔻					
Search							Net_F	PM_Trips - S	elect - 🔻					
		Colu	ımn				Net_Da	aily_Trips - Se	elect - 🔻					
Record Count: 4 Record Per Page: All Records 🔻											Results gen	erated sinc	e: (3/27/202() 8:02:30 AM)
Proj ID Office Area CD Year Project Title Project Desc	Address	First Study Submittal Date	Distance (mile)						Trip Info					
				Land_Use	Unit_ID	size	Net_AM_Trips	Net_PM_Trips	Net_Daily_Trips	NetAMIn	NetAMOut	NetPMIn	NetPMOut	Comments
24001 SF VEN 2 2010 Sportsman's Addition of Health Club an Restaurants to (E) hotel facility	i 12833 Ventura Bl	04/15/2010	0.4	Other	S.F. Gross Area	91466	104	136	2001	50	54	68	68	Net trips for project (see TIS)
							104	136	2001		50	54	68	68
				Land_Use		size	Net_AM_Trips	Net_PM_Trips	Net_Daily_Trips	NetAMIn	NetAMOut	NetPMIn	NetPMOut	Comments
				Land_Use	S.F. Gross Area	size 10747			Net_Daily_Trips	NetAMIn 8	NetAMOut	NetPMIn 13	NetPMOut	Comments
SF 24112 VEN 2010 Mixed-Use Mixed-Use	12548 Ventura Blvd.	07/19/2010	0.2		S.F. Gross		14	29		8	NetAMOut 6 11			Comments
24112 SF VEN 2010 Mixed-Use Mixed-Use	12548 Ventura Blvd.	07/19/2010	0.2	Retail	S.F. Gross Area S.F. Gross Area	10747 1925	22	29 21	476	8	6	13		Comments
SF VEN 2010 Mixed-Use Mixed-Use Valley	12548 Ventura Blvd.	07/19/2010	0.2	Retail Other	S.F. Gross Area S.F. Gross Area Total Units S.F. Gross	10747 1925	14 22 32	29 21	476 245	8	6	13 12	16 9	Comments
<mark>24112</mark> SF VEN 2010 Mixed-Use Mixed-Use Valley	12548 Ventura Blvd.	07/19/2010	0.2	Retail Other Apartment	S.F. Gross Area S.F. Gross Area Total Units S.F.	10747 1925 62 -3000	14 22 32 -4	29 21 38 -8	476 245 412	8 11 6 -2	6 11 26 -2	13 12 25	16 9 13 -4	Comments
24112 SF VEN 2010 Mixed-Use Mixed-Use Valley	12548 Ventura Blvd.	07/19/2010	0.2	Retail Other Apartment Retail	S.F. Gross Area S.F. Gross Area Total Units S.F. Gross Area	10747 1925 62 -3000	14 22 32 -4 64	29 21 38 -8 80	476 245 412 -133	8 11 6 -2	6 11 26 -2 23	13 12 25 -4 41	16 9 13 -4 46	34
24112SF ValleyVEN2010Mixed-UseMixed-Use41489SF ValleyVEN2013Mixed-UseMixed-Use	12548 Ventura Blvd. 12582 ventura bl	07/19/2010 09/30/2013		Retail Other Apartment Retail	S.F. Gross Area S.F. Gross Area S. Total Units S.F. Gross Area Area S.F. Gross Area S.F. Gross Area	10747 1925 62 -3000	14 22 32 -4 64 Net_AM_Trips	29 21 38 -8 80 Net_PM_Trips	476 245 412 -133 1000 Net_Daily_Trips	8 11 6 -2 NetAMIn	6 11 26 -2 23 NetAMOut	13 12 25 -4 41 NetPMIn	16 9 13 -4 46	34
SF VEN 2012 Mind the Africal the				Retail Other Apartmeni Retail	S.F. Gross Area S.F. Gross Area S.F. Gross Area S.F. Gross Area S.F. Gross	10747 1925 62 -3000 size 15700	14 22 32 -4 64 Net_AM_Trips 64	29 21 38 -8 80 Net_PM_Trips 70	476 245 412 -133 1000 Net_Daily_Trips	8 11 6 -2 NetAMIn 36	6 11 26 -2 23 NetAMOut 28	13 12 25 -4 41 38	16 9 13 -4 46 NetPMOut 32	34
SF VEN 2012 Mind the				Retail Other Apartment Retail Land_Use Land_Use	S.F. Gross Area S.F. Gross Area Total Units S.F. Gross Area Unit_ID	10747 1925 62 -3000 size 15700	14 22 32 -4 64 64 64 64 Net_AM_Trips 64 84	29 21 38 -8 80 70 70	476 245 412 -133 1000 Net_Daily_Trips 997	8 11 -2 -2 NetAMIn 36	6 11 26 -2 23 NetAMOut 28 36	13 12 25 -4 41 NetPMIn 38 28	16 9 13 -4 46 NetPMOut 32 38	34 Comments 32
SF VEN 2012 Mind the Africal the			0.3	Retail Other Apartment Retail Land_Use Character Character	S.F. Gross Area S.F. Gross Area Total Units S.F. Gross Area Unit_ID S.F. Gross Area	10747 1925 62 -3000 size 15700	14 22 32 -4 64 64 64 64 Net_AM_Trips 64 84	29 21 38 -8 80 70 70 70 Net_PM_Trips	476 245 412 -133 1000 Net_Daily_Trips 997 997 Net_Daily_Trips	8 11 6 -2 NetAMin 36 NetAMin	6 11 26 -2 23 NetAMOut 28 36	13 12 25 -4 41 NetPMIn 38 28 NetPMIn	16 9 13 -4 46 NetPMOut 32 38	34 Comments 32

Fehr & Peers

Attachment 5

This attachment documents the methodology to be used to evaluate vehicle miles traveled (VMT) impacts for the Harvard-Westlake River Park project, located at 4141 Whitsett Avenue in Studio City. This attachment provides the project description, how it would be categorized under LADOT's new Transportation Assessment Guidelines (TAG), and the VMT calculation associated with that land use category.

Project Description

The proposed project is the construction of a new athletic facility at 4141 Whitsett Avenue for the Harvard-Westlake School. The site plan calls for the development of two athletic fields (one with a track), a swimming pool, eight tennis courts, and a gymnasium for Harvard-Westlake athletic activities, including practices and games. In addition to the sports facilities that will be open to members of the public, the new site will have a walking/jogging path around the perimeter that will be open to the public 7 AM to 9 PM daily. The athletic facilities will also be open to the public when they are not in use by Harvard-Westlake.

Parking will be accommodated in an underground parking structure underneath the athletic field and tennis courts. Access to the parking structure would be via a two-way driveway on Whitsett Avenue. Another point of access to the Project Site would be via a drop-off and roundabout from Valleyheart Drive at the southeast corner of the Project Site.

Land Use in LADOT's TAG and VMT Calculation

The proposed project would be classified as an educational facility since it will be owned and operated by Harvard-Westlake, and will be predominantly utilized by their students, faculty, and associated programs in conjunction with their operation as a private high school. Per Section 2.2.4 of the LADOT Transportation Assessment Guidelines (TAG), educational facilities fall under the "Office" category of development projects. As stated in the TAG, "light industrial, manufacturing, warehousing/self-storage, K-12 schools, college/university, and hotel/motel land uses should be treated as office for screening and analysis."¹ The other land use categories set forth in the TAG are residential, retail, public services, and event centers and regional-serving entertainment venues – none of which are appropriate for the River Park project.

VMT significance thresholds vary by land use and by the Area Planning Commission (APC) area in which the project is located. Per Section 2.2.3 of the LADOT TAG, the VMT impact criteria for the

¹ Los Angeles Department of Transportation, *Transportation Assessment Guidelines*, July 2019, Page 18.

office land use is work VMT per employee. The River Park project is located in the South Valley APC, which has a VMT threshold of 11.6 daily VMT per employee for work trips.

Therefore, the River Park project would be assessed on whether the project would generate work VMT that would exceed 11.6 daily VMT per employee. Employees would include any additional staff that would be hired by Harvard-Westlake to work at River Park, as well as the coaches that are currently employed by Harvard-Westlake and would be relocating from the existing campus to the new site. The VMT per employee would be estimated with the City's VMT Calculator using a custom land use that reflects the daily trips associated with the employees at River Park.

Conclusion

Based on the categories and thresholds provided in the LADOT TAG, the VMT impact associated with the River Park project will be calculated by comparing estimated daily work VMT per employee against the threshold for the South Valley APC.

Appendix B: Transportation Analysis Guidelines Screening Responses and Supporting Analysis

Transportation Analysis Guidelines Screening Responses and Supporting Analysis

Adapted from Transportation Analysis Guidelines, LADOT, July 2020

	Screening Criteria	Screening Evaluation	Analysis Required?
2.1 CO	NFLICTING WITH PLANS, PROGRAMS, ORDINANCES, OR POLICIES		
	pject requires a discretionary action, and the answer is yes to any of the following questions, further analysis will be to assess whether the proposed project would conflict with plans, programs, ordinances, or policies:		
1. 2.	Does the project require a discretionary action that requires the decision maker to find that the decision substantially conforms to the purpose, intent and provisions of the General Plan? Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal	1. Yes 2. No 3. Yes	Yes, see Chapter 3.1
۷.	transportation options or public safety?		
3.	Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?		

2.2 CAUSING SUBSTANTIAL VEHICLE MILES TRAVELED		
 If the project requires a discretionary action, and the answer is no to either T-2.1-1 or T-2.1-2, further analysis will not be required for Threshold T-2.1, and a "no impact" determination can be made for that threshold: T-2.1-1: Would the land use project generate a net increase of 250 or more daily vehicle trips? T-2.1-2: Would the project generate a net increase in daily VMT? In addition to the above screening criteria, the portion of, or the entirety of a project that contains small-scale or local serving retail uses are assumed to have less than significant VMT impacts. If the answer to the following question is no, then that portion of the project meets the screening criteria and a no impact determination can be made for the portion of the project that contains retail uses. However, if the retail project is part of a larger mixed-use project, then the remaining portion of the project may be subject to further analysis in accordance with the above screening criteria. Projects that include retail uses in excess of the screening criteria would need to evaluate the entirety of the project's vehicle miles traveled, as specified in Section 2.2.4. If the project includes retail uses, does the portion of the project that contain retail uses exceed a net 50,000 square feet? Independent of the above screening criteria, and the project requires a discretionary action, further analysis will be required if the following statement is true: Would the Project or Plan located within a one-half mile of a fixed-rail or fixed-guideway transit station replace an existing number of residential units with a smaller number of residential units? 	1. Yes 2. Yes 3. N/A 4. No	Yes, see Chapter 3.2
2.3 SUBSTANTIALLY INDUCING ADDITIONAL AUTOMOBILE TRAVEL		
If the answer is no to the following question, further analysis will not be required for Threshold T-2.2, and a no impact determination can be made for that threshold: 1. T-2.2: Would the project include the addition of through traffic lanes on existing or new highways, including general purpose lanes, high-occupancy vehicle (HOV) lanes, peak period lanes, auxiliary lanes, and lanes through grade-separated interchanges (except managed lanes, transit lanes, and auxiliary lanes of less than one mile in length designed to improve roadway safety)?	1. No	No

2.4 SU	BSTANTIALLY INCREASING HAZARDS DUE TO A GEOMETRIC DESIGN FEATURE OR INCOMP	ATIBLE	USE	
	oject requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be to assess whether the project would result in impacts due to geometric design hazards or incompatible uses: Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of- way? Is the project proposing to, or required to make any voluntary or required, modifications to the public right-of- street dedications, reconfigurations of curb line, etc.)?	1. 2.	Yes Yes	Yes, see Chapter 3.3
3.2 PE	DESTRIAN, BICYCLE, AND TRANSIT ACCESS ASSESSMENT			
	swer is yes to all of the following questions, further analysis will be required to assess whether the project would ly affect existing pedestrian, bicycle, or transit facilities: Does the land use project involve a discretionary action that would be under review by the Department of City Planning? Does the land use project include the construction, or addition of: a. 50 dwelling units or guest rooms or combination thereof, or b. 50,000 square feet of non-residential space? Would the project generate a net increase of 1,000 or more daily vehicle trips, or is the project's frontage along an Avenue or Boulevard (as designated in the City's General Plan) 250 linear feet or more, or is the project's General Plan)?	1. 2. 3.	Yes	Yes, see Chapter 4.1
3.3 PR	OJECT ACCESS, SAFETY, AND CIRCULATION EVALUATION			
Land Use	e Development Projects:			
	use projects, if the answer is yes to all of the following questions, further analysis will be required to assess whether the vould negatively affect project access and circulation: Does the land use project involve a discretionary action that would be under review by the Department of City	1. 2.		Yes, see Chapter 4.2
1. 2.	Planning? Would the land use project generate a net increase of 250 or more daily vehicle trips?			

3.4 PROJECT CONSTRUCTION

3.5 RESIDENTIAL STREET CUT-THROUGH ANALYSIS

Land Use Development Projects:

If the answer is yes to all of the following questions, further analysis may be required to assess whether the project would negatively affect residential streets:

- 1. Would the project generate a net increase of 250 or more daily vehicle trips?
- 2. Does the land use project include a discretionary action that would be under review by the Department of City Planning?

In addition, for development projects, when selecting residential street segments for analyses during the transportation assessment scoping process, all of the following conditions must be present:

- 3. The project is located along a currently congested Boulevard or Avenue and adds trips that may lead to trip diversion to parallel routes along residential Local Streets. The congestion level of the Boulevard or Avenue can be determined based on the estimated peak hour LOS under project conditions of the study intersection(s) (as determined in Section 3.3). LOS E and F are considered to represent congested conditions;
- 4. The project is projected to add a substantial amount of automobile traffic to the congested Boulevard(s), Avenue(s), or Collector(s) that could potentially cause a shift to alternative route(s); and
- 5. Nearby local residential street(s) (defined as Local streets as designated in the City's General Plan passing through a residential neighborhood) provide motorists with a viable alternative route. A viable alternative route is defined as one which is parallel and reasonably adjacent to the primary route as to make it attractive as an alternative to the primary route. LADOT has discretion to define which routes are viable alternative routes, based on, but not limited to, features such as geography and presence of existing traffic control devices, etc.

No, see Chapter 4.4.
While the Project is not
required to analyze
residential cut-through
streets per the
screening, this analysis
was still conducted due
to the location of the
Project adjacent to a
residential area and due
to the possibility, that
the routes to and from
the Project may go
through these areas.

1. Yes

2.

3. No

4. No

5. Yes

Yes

Appendix C: Plans, Programs, Ordinances and Policies Review

Detailed Responses in Support of Determining Plans, Programs, Ordinances, or Policies Applicability

Adapted from Attachment D: Plan Consistency Workshop in Transportation Analysis Guidelines, LADOT, July 2020

Question	Guiding Questions	Relevant Plans, Policies, and Programs Ian 2035 PROW CI	Evaluation assification Standards for Dedications and Improvements
A.1	Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone?	MP ¹⁸ 2.1, 2.3, 3.2, and Mobility Plan 2035 Street Designations and Standard Roadway Dimensions	No, the Project does include additions or new construction along Whitsett Avenue, designated as Avenue II, but it is on property with more restrictive zoning than R3. The land use designation is A1-1XL-RIO (River Improvement Overlay District).
A.2	If A.1 is yes, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation?		N/A
A.3	If A.2 is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the		N/A

18 MP is the abbreviation of the Mobility Plan 2035.

A.4	fronting street (Boulevard I, and II, or Avenue I, II, or III)? If the answer to A.3. is NO, is the project applicant asking to waive from the dedication standards?		N/A
	If the answer to A.4 is NO, the project is inconsistent with Mobility Plan 2035 street designations and must file for a waiver of street dedication and improvement. If the answer to A.4 is YES, additional analysis is necessary to determine if the dedication and/or improvements are necessary to meet the City's mobility needs for the next 20 years. The following factors may contribute to determine if the dedication or improvement is necessary: Is the project site along any of the following networks identified in the City's Mobility Plan? • Transit Enhanced Network • Bicycle Enhanced Network	Mobility Plan 2035: Transit Enhanced Network, Bicycle Enhanced Network, Bicycle Lane Network, Pedestrian Enhanced District, Neighborhood Enhanced Network.	N/A

	Pedestrian Enhanced District		
	 Neighborhood Enhanced Network 		
	B. Mobili	ty Plan 2035 PRO	W Policy Alignment with Project-Initiated Changes
B.1	the curb placement or turning radius and/or physically alter the sidewalk and parkways space that	MP 2.1, 2.3, 3.2, 2.10, and Street Designations and Standard Roadway Dimensions	A sidewalk exists on the west side of the Whitsett Avenue along the Project Site, and it is proposed to remain. Sidewalks are not present on the east side of Bellaire Avenue and south side of Valley Spring Lane adjacent to the Project Site. The Project will improve pedestrian infrastructure by providing an extensively planted, three-quarter mile long internal pedestrian path that will be open to the public to circumnavigate the perimeter of the Project Site. The pedestrian path will run parallel to Bellaire Avenue and Valley Spring Lane, with three accesses on Valley Spring Lane, effectively serving as the pedestrian circulation along these streets where there is currently no sidewalk adjacent to the Project Site. A new pedestrian access between the Project Site and the Zev Yaroslavsky Greenway (Zev Greenway) will also be installed. The Project does not propose a net reduction of street trees and will provide new street trees that will result in a net increase in trees compared to existing conditions. The Project would be supportive of and not preclude or conflict with <i>Mobility Plan 2035</i> policies such as: 2.1 Adaptive Reuse of Streets: Urban streets serve multiple purposes that not only include travel but also play a role in providing other roles such as landscaping and drainage. The Project will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. 2.3 Pedestrian Infrastructure: The Project Site is not part of a Pedestrian Enhanced District, but the Project will improve pedestrian infrastructure by providing an extensively planted, three-quarter mile long pedestrian path that will be open to the public to circumnavigate the perimeter of the Project Site. The Project also proposes new pedestrian access between the Project Site and the Zev Greenway, a segment of the Los Angeles River Trail located along the south edge of the

			Project Site, as well as between Coldwater Canyon Ave and the Zev Greenway. Both of the pedestrian ramps will be ADA-accessible.
			<u>2.10 Loading Areas</u> : When designing developments, it is important to consider a loading area that minimally impacts other travelers such as people driving or walking. The Project proposes a turnaround for loading within the site, accessed from the south driveway at Valleyheart Drive. Passenger loading activity would likely have a minimal impact on the surrounding street network given that loading activity would occur within the Project Site.
			<u>3.2 People with Disabilities</u> : When designing developments, it is important to accommodate the needs of all people with varying levels of mobility. All proposed pedestrian accesses will be ADA-compliant, as well as the internal walking path on-site. In addition, the Project is proposing to provide two ADA compliant ramps – one to provide a pedestrian connection between the Zev Greenway and Coldwater Canyon Avenue northwest of the Project Site, and another between the Project Site and the Zev Greenway – which will improve ADA access to the Zev Greenway.
В.2	Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design	MP 2.10, PL.1, CDG 2 ¹⁹ , MPP 321, Mobility Plan 2035: Transit Enhanced Network, Bicycle	Yes, the Project proposes to consolidate two driveways into one driveway along Whitsett Avenue which is designated as Avenue II in the <i>Mobility Plan 2035</i> . It also proposes a new driveway as an extension of Valleyheart Drive, which is designated as a Local Street. The Project frontages are not along the Vision Zero network. The Project would remove an existing driveway on Valley Spring Lane and a second driveway on Whitsett Avenue.
	Guidelines?	Enhanced Network, Bicycle Lane Network, Pedestrian Enhanced District, Neighborhood Enhanced Network, High Injury Network, TOC Guidelines	<i>Mobility Plan 2035</i> polices PL.1 and PK.10 encourage vehicular access from non-arterial streets (or alleys) and incentives for redesigning access points to be more pedestrian friendly. The two driveways for the Project are proposed to be located on Whitsett Avenue and Valleyheart Drive in order to protect the surrounding residential streets from additional vehicle traffic and conflicts associated with the Project. To improve pedestrian access, the Project proposes a primary pedestrian entry on Whitsett Avenue for users and visitors arriving on foot, bicycle, or public transportation, as well as three pedestrian entry gates on Valley Spring Lane that provide access to a three-quarter mile pathway circumnavigating the Project Site.

 $^{19}\,\text{CDG2}$ is the abbreviation of Citywide Design Guidelines - Guideline 2

	MP Section 2.10 notes that loading areas should be strategically located and designed so as to
	not interfere with public right-of-way while still meeting commercial needs of businesses and
	residences. The driveway on Valleyheart Drive would lead to a passenger drop-off/pick-up
	turnaround area at the southeast corner of the Project Site that has been designed to
	accommodate buses, shuttles, and automobiles. Therefore, the drop-off zones are within the
	Project Site and will not interfere with public right-of-way.
	The Project is on a corner lot, as it occupies almost the entire block bound by Whitsett Avenue,
	Valley Spring Lane, Bellaire Avenue, and the LA River. MPP 321 on the design of driveways states
	that on arterial highways, such as Whitsett Avenue, serving lots with frontages greater than 250
	feet should not be placed within 150 feet of the adjacent street. The Project proposes two
	driveways. The north driveway, on Whitsett Avenue, is more than 150 feet away from the closest
	intersection at Valley Spring Lane. The south driveway, on Valleyheart Drive and leads to Whitsett
	Avenue, is more than 150 feet away from the closest intersection at Ventura Court.
	MPP Section 321 allows up to two driveways for up to 400 feet of frontage. The Project proposes
	two driveways and thus does not propose more driveways than allowed by the City's maximum
	standard.
	MPP Section 321 recommends that two-way driveways for commercial/industrial/multi-family
	residential developments be no wider than 30 feet in width. The proposed driveways would not
	comply with the City's applicable requirements, as the north driveway is proposed to be 39 feet
	wide, and the south driveway is proposed to be 33 feet wide. However, the Project would reduce
	the number of driveways on Whitsett Avenue from two to one (the south driveway is considered
	an extension of Valleyheart Drive, which is an existing street), which would overall be a benefit.
	The north driveway would be wider than the 30 feet to permit provision of a median island on the
	driveway configured to restrict turns into and out of the driveway to right-turns only, to enhance
	safety by minimizing conflicts. And the south driveway is the extension of a public street,
	Valleyheart Drive, which is currently 33 feet wide. Therefore, the Project is consistent with the
	intent of the policy to minimize conflicts with pedestrians at vehicular driveways.
If the answer to either B.1 or B.2	The Project frontage is across the LA River from the Los Angeles River Bicycle Path, which is part
are YES, City plans and policies	of the Bicycle Enhanced Network. The Project frontages are not along streets part of the
should be reviewed in light of the	
	1

FEHR > PEERS

proposed physical changes to	Pedestrian Enhanced Districts, Neighborhood Enhanced Network, Transit Network, or Vehicle
determine if the City would be	Enhanced Network.
obstructed from carrying out the	
plans and policies.	Transit Enhanced Network: Mobility Plan 2035 identifies specific streets as part of the Transit
plans and policies.	Enhanced Network (TEN) to receive improvements that enhance the performance and reliability of
The streets that need special	existing and future bus service. The Project frontages are not along streets part of TEN.
consideration are those that are	
included on the following	Bicycle Enhanced Networks: The Bicycle Enhanced Network (BEN) is a network of streets that will
networks identified in the Mobility	receive treatments that prioritize bicyclists. This network is a subset of the 2010 Bicycle Plan and
Plan 2035, or the HIN:	will supplement the system. The Project frontages are along the Los Angeles River Bicycle Path,
	which is part of the Bicycle Enhanced Network.
 Transit Enhanced Network 	
	Bicycle Lane Network: The Bicycle Lane Network consists of: Tier 2 and Tier 3 Bicycle Lanes –
Bicycle Enhanced Network	Bicycle facilities on arterial roadways with striped separation. The Project frontages are not along
	streets part of BLN.
Bicycle Lane Network	
	Pedestrian Enhanced District: Mobility Plan 2035 identifies Pedestrian Enhanced District (PED)
Pedestrian Enhanced District	where initial analysis suggests arterials can be improved and further analysis and prioritization will
 Neighborhood Enhanced 	occur as funding and projects become available. The Project frontages are not along streets part
Network	of the PED.
Network	
High Injury Network	Neighborhood Enhanced Network: The Neighborhood Enhanced Network (NEN) is a selection of
5 5 7	local streets to provide comfortable and safe routes for localized travel of slower-moving modes,
	such as walking or biking. The Project frontages are not along streets part of the NEN.
	High Injury Network: The High Injury Network (HIN) represents 6% of city streets (over 450 miles)
	that account for 70% of deaths and severe injuries for people walking ²⁰ . The Project frontages are
	not along streets that are on the HIN, and therefore the Project would not preclude or conflict
	with the implementation of any potential future Vision Zero projects on the HIN.
	Information above is retrieved from LADOT Transportation Assessment Support Map
	https://arcg.is/fubbD

20 https://ladotlivablestreets.org/programs/vision-zero/maps

B.2.1 B.2.2	Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design 		The Project frontages are not along streets in the BEN or Vision Zero network. The Project proposes to provide on-site bicycle parking and preserves the City's ability to implement bicycle projects on adjacent streets that are part of the bikeway network. Thus, the Project would not negatively impact existing bicycle infrastructure. To improve pedestrian access, the Project proposes a primary pedestrian entry on Whitsett Avenue for users and visitors arriving on foot, bicycle, or public transportation, as well as three pedestrian entry gates on Valley Spring Lane that provide access to a three-quarter mile pathway circumnavigating the Project Site. Thus, the Project would not negatively impact existing pedestrian infrastructure. The Project would not change transit infrastructure and thus would not negatively impact existing transit infrastructure.
		I	c. Network Access
C1.1	Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?	MP 3.9	The Project does not propose to remove or restrict access to a public right-of-way.
C.1.2	If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking		N/A

	and biking on the street, alley, or stairway?		
C.2.1	Does the project create a cul-de- sac or is the project located adjacent to an existing cul-de-sac?	MP 3.10	Yes. One of the Project driveways is at Valleyheart Drive, which is a paper street that ends approximately 600 feet west of Whitsett Avenue and effectively turns into a dead-end, or a cul-de-sac.
C.2.2	If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?		Yes. The cul-de-sac at Valleyheart Drive would lead to a turnaround for passenger loading. This turnaround would be accessible by pedestrians and bicycles through a parallel path north of the fire station.
	[D. Parking Suppl	y and Transportation Demand Management
D.1	Would the project propose a supply of onsite parking that exceeds the baseline amount as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?	MP 3.8, 4.8, 4.13	 <u>4.13 Parking and Land Use Management</u>: The objective of this policy is to balance parking supply with other transportation and land use objectives. The policy states that an oversupply of parking can undermine broader regional goals of creating vibrant public spaces and a robust multi-modal transportation system; that an abundance of free parking incentivizes automobile trips and makes alternative modes of transportation less attractive; and that large parking lots consume land that could be used for other valuable uses and discourage walking by increasing the distance between services and facilities. Per the LAMC, the Project is required to provided 444 vehicle parking stalls. The Project proposes to provide 532 parking stalls – 503 stalls in a subterranean parking garage and 29 surface parking spaces. The Project does not conflict with the portion of MP 4.13 that discourages utilizing land for parking that could have been used for other valuable uses since almost all parking will be located in a subterranean garage. While the Project would include parking in excess of the LAMC minimum requirements, it would include features to encourage walking and bicycling and would provide 100 bicycle parking spaces even though none are required by the LAMC. Moreover, the Project would provide a connection to the Zev Greenway, which would further broaden the multimodal network. Therefore, the Project would not undermine broader regional goals of creating vibrant public spaces and a robust multi-modal transportation system.

		Under CEQA, a project is considered consistent with an applicable plan if it is consistent with the overall intent of the plan and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every policy. Therefore, even though the Project's parking may exceed the LAMC's minimum requirements, the Project is consistent with the overall intent of Policy 4.13 and the Mobility Plan.
		Moreover, any inconsistency with an applicable policy, plan, or regulation is only a significant impact under CEQA if the policy, plan, or regulation was adopted for the purpose of avoiding or mitigating an environmental effect and if the inconsistency itself would result in a direct physical impact on the environment. The above policy is intended to implement broader regional goals, not to mitigate an environmental effect. Therefore, even if the Project's amount of parking was conservatively considered to be inconsistent with Policy 4.13, such inconsistency would not be considered to be a significant impact under CEQA.
D.2	If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g., parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?	The Project would not price parking, but the parking spaces will be restricted to only Harvard- Westlake athletics associated vehicles and for community members using the recreational facilities during the designated hours. In addition, many of the Harvard-Westlake student would travel between the Project Site and the main campus using the shuttle system, and thus would not use their own vehicles. On days in which event attendance at the Project Site is expected to surpass 300 spectators, students would be required to use the shuttles, and all other vehicles would be required to obtain tickets and parking passes to enter the Project Site.
D.3	Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A.16 of the LAMC?	Yes, the Project would provide 100 bicycle parking spaces even though none are required by LAMC.
D.4	Does the Project include more than 25,000 square feet of gross floor area construction of new non-residential gross floor?	Yes. The Project includes the development of two athletic fields with bleacher seating and field lights, an 80,249-square-foot multi-purpose gymnasium, a 52-meter swimming pool with seating, and eight tennis courts with seating. The Project would also include ancillary field buildings, a pool house, and small security kiosk.

D.5	If the answer to D.4. is YES, does the project comply with the City's TDM Ordinance in Section 12.26 J of the LAMC?		Yes, the Project will comply with the Citywide TDM Ordinance and incentive employees to utilize alternatives to the automobile.
		E. Co	onsistency with Regional Plans
E.1	Does the Project or Plan apply one the City's efficiency-based impact thresholds (i.e., VMT per capita, VMT per employee, or VMT per service population) as discussed in Section 2.2.3 of the TAG?		No, the Project applies total VMT for analysis of the potential impacts.
E.2	E.2 If the Answer to E.1 is YES, does the Project or Plan result in a significant VMT impact?		N/A
E.3	If the Answer to E.1 is NO, does the Project result in a net increase in VMT?		No, the Project will decrease VMT. The VMT associated with the Project are for trips associated with the Harvard-Westlake athletic activities and employees. Harvard-Westlake athletic activities trips include student shuttle trips, student non-shuttle trips, and other trips (coaches, opposing teams, and spectators). Trips associated with the community use of the Project Site is exempt from VMT analysis because community-serving recreational facilities are exempt per LADOT. The total VMT for the Harvard- Westlake athletic activities and employee trips are 3,932. The VMT associated with the existing use of Weddington Golf & Tennis is 6,030. Thus, the net VMT change would be a decrease of 2,098.
E.4	If the Answer to E.2 or E.3 is YES, then further evaluation would be		N/A

FEHR PEERS PEERS

necessary to determine whether
such a project or land use plan
would be shown to be consistent
with VMT and GHG reduction
goals of the SCAG RTP/SCS

Review of Consistency with Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan

The Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan was adopted in 1998 and amended in 2016 as part of the Mobility Plan 2035 Update. While an update to the Community Plan is currently under development, the plan from 2016 is currently in effect and forms the basis for this review of conflicts relating to the transportation system.

The Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan is one of 35 in the City of Los Angeles that establishes the policies and programs that inform the framework for local land use, circulation, and service systems within the selected community plan area. Per the City's new TAG, a review of the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan was conducted to evaluate whether the project conflicts with or precludes the implementation of the community plan framework.

The Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan contains transportation-related objectives, policies, and programs in Chapter III, Land Use Plan Policies and Programs. The following objectives, policies, and programs are relevant to the Project:

Policy 4-1.2 Increase accessibility to The Los Angeles River (III-12).

• The Project supports this policy by proposing new pedestrian access between the Project Site and the Zev Yaroslavsky Greenway (Zev Greenway), which is a segment of the Los Angeles River Trail located along the south edge of the Project Site. In addition, the Project is proposing a pedestrian ramp to connect the Zev Greenway to Coldwater Canyon Avenue.

Policy 5-1.3 Require development in major opportunity sites to provide public open space (III-13).

• The Project supports this policy by providing an extensively planted, three-quarter mile long pedestrian path that will be open to the public to circumnavigate the perimeter of the Project Site. The approximately 7 acres of open space and recreational amenities on site will also be made available to members of the community when not in use by Harvard-Westlake. A new ADA ramp will be constructed to connect Coldwater Canyon Avenue to the Zev Greenway, which will also connect the community to more open space.

A Transportation Improvement and Mitigation Plan (TIMP) was prepared for the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan through an analysis of the land use impacts on transportation. The TIMP establishes a program of specific measures which are recommended to be undertaken during the life of the Community Plan. The TIMP provides an implementation program for the circulation

needs of the Plan area. The following TIMP programs were reviewed to determine Project consistency with the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan:

<u>Freeway and Streets</u>: The TIMP identified streets that are designated as Boulevards and Avenues and requires that streets shall be developed in accordance with standards and criteria contained in the Mobility Plan, an element of the General plan and the City's Standard Street Dimensions except where environmental issues and planning practices warrant alternate standards consistent with street capacity requirements.

• The dedication requirement is not applicable to the Project since the Project is located on property zoned A1, which is more restrictive than the R3 zone and is therefore not subject to the highway and collector street dedication and improvement requirements.

<u>Public Transportation</u>: This section identified a goal of developing a public transit system that improves mobility with convenient alternatives to automobile travel within Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass area. The Project does not propose any change or placement of public transit routes or transit furniture adjacent to the Site, so the Project would not conflict with or prevent the City from pursuing the following policies:

- <u>Policy 10-1.1</u> Coordinate with the Metropolitan Transit Authority (MTA) to improve local bus service to and within the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass plan area (III-17).
 - The Project does not conflict with or prevent the City from pursuing this policy.
- <u>Policy 10-1.2</u> Encourage the expansion wherever feasible, of programs aimed at enhancing the mobility of senior citizens, disabled persons and the transit-dependent population (III-17).
 - The Project does not conflict with or prevent the City from pursuing this policy.
- Policy 10-1.3 Encourage the provision of safe, attractive and clearly identifiable transit stops with user friendly design amenities (III-18).
 - The Project does not conflict with or prevent the City from pursuing this policy.
- Policy 10-2.1 Develop an intermodal mass transportation plan to implement linkages to future mass transit service (III-18).
 - The Project does not conflict with or prevent the City from pursuing this policy.

<u>Transportation Demand Management (TDM) Program</u>: The TIMP identifies TDM programs and other improvements to enhance safety and mobility in the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass area, such as encouraging the formation of Transportation Management Associations (TMA's) and the continued implementation of the Citywide TDM Ordinance (III-19). The following policies are relevant to the Project:

- <u>Policy 11-1.1</u> encourages non-residential development to provide employee incentives for utilizing alternatives to the automobile (III-19).
 - The Project will comply with the Citywide TDM Ordinance and incentive employees to utilize alternatives to the automobile.
- <u>Policy 11-1.3</u> requires that proposals for major new non-residential development projects include submission of a TDM Plan to the City (III-19).
 - As described for Policy 11-1.1, the Project is not required to develop a TDM plan per CEQA because it is under the VMT significance threshold. The Project will be providing shuttles to transport students (and, optionally, employees) between the Project Site and the Harvard-Westlake Upper School Campus to reduce the vehicle trips arriving at the Project Site.
- <u>Policy 13-1.3</u> Discourage non-residential traffic flow for streets designed to serve residential areas only by the use of traffic control measures.
 - The Project discourages non-residential traffic flow on Valley Spring Lane and Bellaire Avenue by not providing vehicular access to the site from those streets. Shuttles routes will not be along local residential streets and the preferred driving route for other cars would be communicated by the school.
- <u>Policy 13-1.4</u> New development projects should be designed to minimize disturbance to existing flow with proper ingress and egress to parking.
 - The Project supports this policy by replacing two existing driveways on Whitsett Avenue with one new driveway directly on Whitsett Avenue. The Project will provide shuttle buses to transport students between the Project Site and the Harvard-Westlake Upper School campus, which would reduce the number of vehicles utilizing these accesses on Whitsett Avenue.
- <u>Policy 13-2.2</u> Driveway access points onto arterial and collector streets should be limited in number and be located to insure the smooth and safe flow of vehicles and bicycles.

 The Project would replace two existing driveways on Whitsett Avenue with one new driveway directly on Whitsett Avenue and thus does not propose more driveways than allowed by the City's maximum standard. The second driveway will be on Valleyheart Drive, which is not an arterial or collector.

The Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan also provides for various modes of non-motorized transportation/circulation such as walking and bicycle riding by establishing policies and standards to facilitate the development of a bicycle route system which is intended to compliment other transportation modes. The following policies are relevant to the Project:

- Policy 14-1.1 Assure that local bicycle facilities are identified and linked with facilities of neighboring areas of the City. (III-23).
 - The Project frontages are across the river from the Los Angeles River Bicycle Path, which is part of the Bicycle Enhanced Network.
 The Project proposes new pedestrian access between the Project Site and the Zev Greenway, which are linked to the Los Angeles
 River Bicycle Path near the intersection of the Zev Greenway and Coldwater Canyon Avenue northwest of the Project Site.
- <u>Policy 14-1.2</u> Encourage the provision of showers, changing rooms and bicycle storage at new and existing non-residential developments and public places.
 - The Project would provide 72 short-term bicycle parking spaces and 28 long-term bicycle parking spaces to promote bicycle connectivity between the Project Site, the Los Angeles River, and the surrounding neighborhoods. Showers and changing rooms would be available in the locker rooms for Harvard-Westlake students.

<u>Parking</u>: This section supports a sufficient system of well-designed and convenient on-street parking and off-street parking facilities throughout the plan area.

- <u>Policy 15-1.1</u> Consolidate parking where appropriate, to minimize the number of ingress and egress points onto arterials.
 - The Project proposes one primary parking structure to consolidate the parking. It would replace two existing driveways on Whitsett Avenue with one new driveway directly on Whitsett Avenue, which would minimize the number of ingress and egress points onto Whitsett Avenue.

Relevant policies in Chapter V, Urban Design, were also reviewed to assess the Project's consistency with the Sherman Oaks-Studio City-Toluca Lake-Cahuenga Pass Community Plan. The policies for individual projects are applicable only to commercial and multiple residential projects, and thus are not relevant to the Project.

Community Design and Landscaping Standards

- <u>Public Open Space and Plazas</u> Establish public open space standards that will guide the design of new public plazas and open spaces, which should include 1) Consideration of the siting of open space to maximize pedestrian accessibility and circulation, 2) Solar exposure or protection, 3) Adjacency to pedestrian routes and other open spaces, 4) Appropriate plant and hard scape materials.
 - While not in the public right-of-way, the Project supports this policy by providing regular access to 5.4 acres of passive open space and a three-quarter mile long pedestrian path with a new connection to the Zev Greenway for casual exercise by individuals or families. In addition, the Project would implement an extensive tree and landscaping program, resulting in a net increase in trees compared to existing conditions.

Review of Consistency with Los Angeles River Design Guidelines

In 2014, the City of Los Angeles established the River Improvement Overlay (RIO) District, establishing development regulations and standards for developments within Los Angeles River or tributary adjacent areas throughout Los Angeles. The Los Angeles River Design Guidelines highlight best practices for designing development projects to increase awareness of, and access to, the Los Angeles River. The provisions in the guidelines identify the desired level of design quality for all developments within the RIO District and projects within the RIO District are encouraged to incorporate these guidelines and best practices into the project design.

The Los Angeles River Design Guidelines contains transportation-related objectives and strategies. The following objectives and strategies are relevant to the Project:

<u>Strategy 1-1</u> Incorporate passageways or paseos into mid-block developments adjacent to the river, to facilitate pedestrian access to the river greenway, such that pedestrians and bicyclists will not need to walk or ride the perimeter of a block in order to access the river.

• The Project will facilitate pedestrian access to the river greenway by including a new pedestrian access between the Project Site and the Zev Greenway. In addition, the Project will provide a pedestrian ramp to connect the Zev Greenway to Coldwater Canyon Avenue.

<u>Strategy 1-2</u> Activate the passageway or paseo so that they are safe and visually interesting spaces, using recycled water features, pedestrian-level lighting, artwork, benches, landscape or special paving.

• The Project will activate the new pedestrian connection to the Zev Greenway to be safe and interesting by providing landscaping along the path. The path will also connect to the landscaped areas on the Project Site, which will have water features, benches, wooded areas, and natural spaces that are open to the public.

<u>Strategy 1-6</u> Promote pedestrian connectivity from the river by placing publicly accessible entrances at grade level or slightly above, and unobstructed from view from the river corridor. Avoid sunken entryways below the level of the adjacent river pathways.

• The Project Site is higher in elevation compared to the Zev Greenway and will be accessible via the new pedestrian path.

<u>Strategy 1-8</u> Provide bicycle lockers and/or racks near river-facing building entrances.

• The Project will provide 100 bicycle parking on the Project Site, including some near the new pedestrian path to the Zev Greenway.

<u>Strategy 4-1</u> Place on-site parking so that it does not dominate the river corridor.

• The Project will provide an underground parking structure, which will not be visible from the river corridor. 29 parking spaces will be provided at-grade, but will not be directly adjacent the Zev Greenway, and thus will not dominate the river corridor.

<u>Strategy 4-2</u> Locate loading facilities so that docks and doors do not dominate the river frontage and are screened from the river.

• Loading activity for the Project would occur in the surface parking area, which will be accessed via the new roundabout at the end of Valleyheart Drive. This area will be obscured by the landscaping and will not be visible from the river corridor.

<u>Strategy 4-3</u> Situate loading areas so as not to interfere with on-site pedestrian and bicycle circulation to and from the river corridor. When feasible, separate loading areas from areas that are used for public entrances.

• The new roundabout at the end of Valleyheart Drive and the surface parking area, where loading at the Project Site would occur, is located in a different location from the new pedestrian path to the Zev Greenway, and thus while some individuals may still choose to walk through the roundabout to connect to the new pedestrian path, on the whole it will not interfere with pedestrian and bicycle circulation to and from the river corridor.

<u>Strategy 4-4</u> Encourage shared parking agreements to minimize the amount of area dedicated to parking.

• The on-site parking spaces on the Project Site would be shared between the Harvard-Westlake athletic activities and the community use of the facilities. In addition, the Project will implement a shuttle system to transport Harvard-Westlake students to and from the Upper School, which would minimize the need for parking spaces on the Project Site.

<u>Strategy 5-1</u> Design cul-de-sacs, street ends, vacated streets, and remnant streets widths to provide pocket parks which can serve as gateways to the river while also assisting in the treatment and infiltration of stormwater as well as dry-weather run-off.

• The Project is proposing a new roundabout at the end of Valleyheart Drive, which will be separate from the pedestrian access to the Zev Greenway. Otherwise, the Project is not designing a cul-de-sac, street end, vacated street, remnant street, or pocket park that would serve as a gateway to the river. Nonetheless, the Project includes an underground stormwater capture, treatment, and reuse system on the Project Site. The Project would capture and treat surface water runoff from the Whitsett Avenue/Valley Spring Lane intersection and throughout the Project Site. Runoff would be stored in a one-million-gallon underground tank and filtered prior to

use as on-site irrigation or released into the in-street storm system (during periods of heavy rainfall when onsite stored capacity has been reached). Such storage and filtering would improve water quality and reduce the rate of runoff during storm events.

Strategy 5-2 Design parkways and traffic circles to assist in the treatment and infiltration of stormwater as well as dry-weather run-off.

• The Project is proposing a new roundabout at the end of Valleyheart Drive, which will be separate from the pedestrian access to the Zev Greenway. The Project includes an underground stormwater capture and reuse system on the Project Site.

Appendix D: Substantially Increasing Hazards due to a Geometric Design Feature Review

Detailed Responses for 3.3 Substantially Increasing Hazards Due to A Geometric Design Feature or Incompatible Use

Adapted from Section 2.4 in Transportation Analysis Guidelines, LADOT, July 2019

Impacts regarding the potential increase of hazards due to a geometric design feature generally relate to the design of access points to and from the project site, and may include safety, operational, or capacity impacts. Impacts can be related to vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts as well as to operational delays caused by vehicles slowing and/or queuing to access a project site. These conflicts may be created by the driveway configuration or through the placement of project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to busy or congested intersections. These impacts are typically evaluated for permanent conditions after project completion but can also be evaluated for temporary conditions during project construction. If the project requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be required to assess whether the project would result in impacts due to geometric design hazards or incompatible uses:

Screening Criteria

- Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of-way?
 - Yes, the Project proposes to consolidate two driveways into one driveway along the Whitsett Avenue which is designated as Avenue II in the *Mobility Plan 2035*. It also proposes a new driveway as an extension of Valleyheart Drive, which is designated as a Local Street. The Project would decrease the total number of driveways as exist today.
- Is the project proposing to, or required to make any voluntary or required, modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?
 - The Project is not subject to dedication requirements because it is located on A1 zoning, which is more restrictive than R3 zoning.
 - The Project proposes to add a ramp connecting the Project Site to the Zev Greenway, and another ramp connecting the Zev Greenway to Coldwater Canyon Avenue, which are in the public right-of-way.

Assessing Project Impacts

Project access points, internal circulation, and parking access were reviewed to assess vehicle, bicycle, and pedestrian safety impacts from an operational and safety perspective (e.g., turning radii, driveway queuing, and line of sight for turns into and out of project driveway[s]) through the lens of Threshold T-3:

Threshold T-3: Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Operational and safety issues related to the potential for vehicle/pedestrian and vehicle/bicycle conflicts and the severity of consequences that could result were considered for locations where project driveways would cross pedestrian facilities or bicycle facilities (bike lanes or bike paths). Preliminary project access plans were reviewed in light of commonly accepted traffic engineering design standards (Section 321 of LADOT's Manual of Policies and Procedures, which provides guidance on driveway design) to ascertain whether any deficiencies are apparent in the site access plans which would be considered significant. The determination of significance considered the following factors:

- The relative amount of pedestrian activity at project access points.
 - The Project Site is located in a primarily residential area with limited commercial development. Pedestrian counts conducted at the intersection of Whitsett Avenue & Valley Spring Lane and the intersection of Whitsett Avenue & Ventura Boulevard, which are the closest intersections to the north driveway and south driveway with count data, respectively. The counts indicate a low level of pedestrian activity in the PM peak period. The Project will contribute to improving walkability with enhancements to the Project Site, such as proposing an internal pedestrian path open to the public, and new pedestrian access between the Project Site and the Zev Greenway.
- Design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.
 - Pedestrian access to the Project Site would be provided via the primary pedestrian entry on Whitsett Avenue. Further, pedestrian access to the three-quarter mile pathway circumnavigating the Project Site will be provided at three pedestrian entry gates along Valley Spring Lane. Students, visitors, and employees arriving to the Project Site by bicycle would have the same access opportunities as pedestrians and would be able to utilize on-site bicycle parking facilities. The Project's access locations would be designed to the City standards and would provide adequate sight distance, sidewalks, crosswalks, and pedestrian movement controls that meet the City's requirements to protect pedestrian safety. All roadways and driveways will intersect at right angles. Street trees and other potential impediments to adequate driver and pedestrian visibility would be minimal. Pedestrian entrances separated from vehicular driveways would provide access from the adjacent streets, parking facilities, and transit stops.
- The type of bicycle facilities the project driveway(s) crosses and the relative level of utilization.
 - There are no existing or planned bicycle facilities along Whitsett Avenue. The counts collected at Whitsett Avenue & Valley Spring Lane and Whitsett Avenue & Ventura Boulevard show 2 bicyclists and 6 bicyclists in the PM peak period, respectively. Given that the entry for

bicyclists is separated from vehicular driveways, the location of the driveways is not expected to contribute to an increase in hazards for this factor.

- The physical conditions of the site and surrounding area, such as curves, slopes, walks, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts.
 - The streets surrounding the Project Site are flat and do not curve. The Project would contribute to minimizing vehicle/pedestrian, vehicle/bicycle, and vehicle/vehicle impacts by providing designated pedestrian space and locating driveways at right angles to avoid visibility challenges.
- The project location, or project-related changes to the public right-of-way, relative to proximity to the High Injury Network or a Safe Routes to School program area.
 - There are no streets along the Project's frontage that are on the High Injury Network, and the Project is not located in a Safe Routes to School program area.
- Any other conditions, including the approximate location of incompatible uses that would substantially increase a transportation hazard.
 - The Project is adjacent to a residential area and proposes an athletic and recreational facility for the School and for shared use with community members. The Project's multimodal amenities and location of driveways would not substantially increase transportation hazards.

Cumulative Impacts

There are five related projects and all of them are located on the Ventura Boulevard. Therefore, these related projects would not share adjacent street frontages with the Project Site. The access points to/from these related projects would not have a cumulative impact in conjunction with the Project's access points, given the physical distance from the Project Site.

Appendix E: Synchro Queuing Reports

HCM 6th Signalized Intersection Summary 8: Coldwater Canyon Ave & US 101 SB Ramps

11/16/2020

	٠	+	7	4	+	*	1	1	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	1					<u>ተ</u> ተኑ		٦	††	
Traffic Volume (veh/h)	207	4	343	0	0	0	0	692	372	326	803	0
Future Volume (veh/h)	207	4	343	0	0	0	0	692	372	326	803	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	291	0	138				0	752	301	354	873	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	472	0	210				0	1044	414	741	2700	0
Arrive On Green	0.13	0.00	0.13				0.00	0.29	0.29	0.42	0.76	0.00
Sat Flow, veh/h	3563	0	1585				0	3762	1424	1781	3647	0
Grp Volume(v), veh/h	291	0	138				0	712	341	354	873	0
Grp Sat Flow(s),veh/h/ln	1781	0	1585				0	1702	1614	1781	1777	0
Q Serve(g_s), s	6.9	0.0	7.4				0.0	16.9	17.1	13.0	7.0	0.0
Cycle Q Clear(g_c), s	6.9	0.0	7.4				0.0	16.9	17.1	13.0	7.0	0.0
Prop In Lane	1.00		1.00				0.00		0.88	1.00		0.00
Lane Grp Cap(c), veh/h	472	0	210				0	989	469	741	2700	0
V/C Ratio(X)	0.62	0.00	0.66				0.00	0.72	0.73	0.48	0.32	0.00
Avail Cap(c_a), veh/h	835	0	372				0.00	1104	524	741	2700	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.9	0.0	37.1				0.0	28.6	28.7	19.2	3.4	0.0
Incr Delay (d2), s/veh	2.8	0.0	7.3				0.0	4.5	9.5	0.5	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.2	0.0	3.3				0.0	7.3	7.7	5.3	1.9	0.0
Unsig. Movement Delay, s/veh		0.0	0.0				0.0	1.0	1.1	0.0	1.0	0.0
LnGrp Delay(d),s/veh	39.7	0.0	44.4				0.0	33.2	38.3	19.6	3.8	0.0
LnGrp LOS	D	A	D				A	00.2 C	00.0 D	10.0 B	A	A
Approach Vol, veh/h	0	429					Π	1053			1227	
Approach Delay, s/veh		429						34.8			8.3	
Approach LOS		41.2 D						54.0 C			٨	
Approach LOS								U			A	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	42.2	30.9		16.8		73.2						
Change Period (Y+Rc), s	4.8	* 4.8		4.9		4.8						
Max Green Setting (Gmax), s	25.6	* 29		21.1		59.2						
Max Q Clear Time (g_c+I1), s	15.0	19.1		9.4		9.0						
Green Ext Time (p_c), s	0.8	7.0		2.5		7.7						
Intersection Summary												
HCM 6th Ctrl Delay			23.8									
HCM 6th LOS			С									
Notes												

Notes

User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Harvard-Westlake River Park Project 9:00 am 11/05/2020 Baseline Future Base 3-4 PM Conditions

Synchro 10 Report Page 1

HCM 6th Signalized Intersection Summary 8: Coldwater Canyon Ave & US 101 SB Ramps

11/16/2020

	٠	+	*	4	+	*	1	1	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	1					ተተ ጮ		٦	**	
Traffic Volume (veh/h)	207	4	388	0	0	0	0	701	372	326	803	0
Future Volume (veh/h)	207	4	388	0	0	0	0	701	372	326	803	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	310	0	166				0	762	302	354	873	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	534	0	238				0	1052	413	707	2638	0
Arrive On Green	0.15	0.00	0.15				0.00	0.29	0.29	0.40	0.74	0.00
Sat Flow, veh/h	3563	0	1585				0	3773	1415	1781	3647	0
Grp Volume(v), veh/h	310	0	166				0	719	345	354	873	0
Grp Sat Flow(s),veh/h/ln	1781	0	1585				0	1702	1616	1781	1777	0
Q Serve(g_s), s	7.3	0.0	8.9				0.0	17.1	17.3	13.5	7.6	0.0
Cycle Q Clear(g_c), s	7.3	0.0	8.9				0.0	17.1	17.3	13.5	7.6	0.0
Prop In Lane	1.00	0.0	1.00				0.00	17.1	0.88	1.00	1.0	0.00
		٥	238				0.00	993	471	707	2638	
Lane Grp Cap(c), veh/h	534	0										0
V/C Ratio(X)	0.58	0.00	0.70				0.00	0.72	0.73	0.50	0.33	0.00
Avail Cap(c_a), veh/h	835	0	372				0	1104	524	707	2638	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	35.6	0.0	36.3				0.0	28.6	28.7	20.4	4.0	0.0
Incr Delay (d2), s/veh	2.1	0.0	7.7				0.0	4.6	9.6	0.6	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.3	0.0	3.9				0.0	7.4	7.8	5.5	2.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	37.7	0.0	44.0				0.0	33.2	38.3	21.0	4.3	0.0
LnGrp LOS	D	Α	D				Α	С	D	С	Α	<u> </u>
Approach Vol, veh/h		476						1064			1227	
Approach Delay, s/veh		39.9						34.9			9.1	
Approach LOS		D						С			А	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	40.5	31.1		18.4		71.6						
Change Period (Y+Rc), s	4.8	* 4.8		4.9		4.8						
Max Green Setting (Gmax), s	25.6	* 29		21.1		59.2						
Max Q Clear Time (g_c+l1), s	15.5	19.3		10.9		9.6						
	0.8	7.0		2.6		7.7						
Green Ext Time (p_c), s	0.0	7.0		2.0		1.1						
Intersection Summary												
HCM 6th Ctrl Delay			24.3									
HCM 6th LOS			С									
Notes												

Notes

User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Harvard-Westlake River Park Project 9:00 am 11/05/2020 Baseline Future Plus Project 3-4 PM Conditions

Synchro 10 Report Page 1

Appendix F: Count Sheets

National Data & Surveying Services

Control: Signalized

Location: Whitsett Ave & Moorpark St Intersection Turning Movement Count City: Studio City

								Το	tal								_
NS/EW Streets:		Whitset	t Ave			Whitset	t Ave			Moorpa	ark St			Moorpa	ark St		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
3:00 PM	36	156	40	0	16	112	35	0	29	186	25	0	28	117	19	0	799
3:15 PM	25	157	35	0	10	97	31	0	30	205	22	0	22	112	17	0	763
3:30 PM	28	162	34	0	22	98	28	0	41	190	25	0	24	143	28	0	823
3:45 PM	32	196	31	0	21	140	35	0	30	182	28	0	21	176	20	0	912
4:00 PM	25	163	33	0	20	115	33	0	28	194	22	0	31	175	29	0	868
4:15 PM	31	208	34	0	19	96	38	0	27	187	24	0	26	127	28	0	845
4:30 PM	39	174	29	0	20	98	13	0	31	198	19	0	21	146	24	0	812
4:45 PM	32	168	37	0	20	115	26	0	35	203	13	0	21	143	27	0	840
5:00 PM	42	201	45	0	21	101	22	0	28	179	18	0	16	143	33	0	849
5:15 PM	29	213	44	0	20	123	38	0	32	202	17	0	28	133	26	0	905
5:30 PM	34	207	42	0	21	123	38	0	41	185	25	0	29	150	35	0	930
5:45 PM	33	200	38	0	19	136	33	0	34	192	19	0	21	134	25	1	885
6:00 PM	33	196	51	0	18	92	25	0	33	183	17	0	27	141	29	0	845
6:15 PM	28	164	37	0	19	80	26	0	22	192	28	0	17	143	32	0	788
6:30 PM	32	185	24	0	20	77	33	0	32	196	26	0	18	141	42	0	826
6:45 PM	29	138	31	0	12	89	28	0	28	183	17	0	25	119	26	0	725
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	508	2888	585	0	298	1692	482	0	501	3057	345	0	375	2243	440	1	13415
APPROACH %'s :	12.76%	72.54%	14.69%	0.00%	12.06%	68.45%	19.50%	0.00%	12.84%	78.32%	8.84%	0.00%	12.26%	73.32%	14.38%	0.03%	
PEAK HR :		05:00 PM -															TOTAL
PEAK HR VOL :	138	821	169	0	81	483	131	0	135	758	79	0	94	560	119	1	3569
PEAK HR FACTOR :	0.821	0.964	0.939	0.000	0.964	0.888	0.862	0.000	0.823	0.938	0.790	0.000	0.810	0.933	0.850	0.250	0.959
		0.97	79			0.92	.4			0.96	58			0.9)4		0.555

	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
3-4 PM	121	671	140	0	69	447	129	0	130	763	100	0	95	548	84	0	3297	0.9037829
5-6 PM	138	821	169	0	81	483	131	0	135	758	79	0	94	560	119	1	3569	0.9594086

Project ID: 19-05071-001 Date: 2019-02-12

National Data & Surveying Services

Location: Whitsett Ave & Valley Spring Lr Intersection Turning Movement Count City: Studio City Control: 2-Way Stop(EB/WB)

_								Το	tal								_
NS/EW Streets:		Whitset	t Ave			Whitset	t Ave			Valley Sp	ring Ln			Valley Sp	oring Ln		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WEST	BOUND		
PM	0	1	0	0	0	2	0	0	0	1	0	0	0	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	ΤΟΤΑ
3:00 PM	3	194	4	0	5	155	2	0	0	0	6	0	1	0	9	0	379
3:15 PM	3	212	6	0	7	125	1	0	3	1	10	0	2	1	11	0	382
3:30 PM	5	206	7	0	6	148	1	0	1	0	5	0	3	0	17	0	399
3:45 PM	12	245	3	2	14	167	2	0	0	0	9	0	6	1	25	0	486
4:00 PM	7	245	8	0	9	152	5	0	2	0	12	0	6	0	15	0	461
4:15 PM	13	217	10	1	8	135	3	0	1	0	7	0	0	2	23	0	420
4:30 PM	10	234	5	1	5	137	0	0	2	0	10	0	4	1	16	0	425
4:45 PM	5	240	3	0	7	134	3	0	0	0	6	0	6	0	21	0	425
5:00 PM	3	253	7	0	5	137	0	1	1	0	2	0	1	0	29	0	439
5:15 PM	7	256	7	0	7	143	3	0	1	2	7	1	2	1	21	0	458
5:30 PM	12	276	5	0	12	151	3	0	1	0	4	0	1	0	22	0	487
5:45 PM	8	250	0	1	9	169	4	1	0	0	10	0	2	1	18	0	473
6:00 PM	11	249	4	1	7	124	2	0	1	0	7	0	1	1	20	0	428
6:15 PM	4	221	3	0	2	108	4	0	1	1	7	0	3	0	8	0	362
6:30 PM	7	216	3	0	6	122	1	0	1	0	11	0	2	1	28	0	398
6:45 PM	5	178	9	1	6	118	3	1	0	0	4	0	0	0	21	0	346
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTA
TOTAL VOLUMES :	115	3692	84	7	115	2225	37	3	15	4	117	1	40	9	304	0	6768
APPROACH %'s :	2.95%	94.72%	2.15%	0.18%	4.83%	93.49%	1.55%	0.13%	10.95%	2.92%	85.40%	0.73%	11.33%	2.55%	86.12%	0.00%	
PEAK HR :		05:00 PM -															TOTA
PEAK HR VOL :	30	1035	19	1	33	600	10	2	3	2	23	1	6	2	90	0	1857
PEAK HR FACTOR :	0.625	0.938	0.679	0.250	0.688	0.888	0.625	0.500	0.750	0.250	0.575	0.250	0.750	0.500	0.776	0.000	0.95
		0.92	26			0.88	1			0.6	59			0.8	17		0.955

	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
3-4 PM	23	857	20	2	32	595	6	0	4	1	30	0	12	2	62	0	1646	0.8467078
5-6 PM	30	1035	19	1	33	600	10	2	3	2	23	1	6	2	90	0	1857	0.9532854

Project ID: 19-05071-002 Date: 2019-02-12

National Data & Surveying Services

Location: Whitsett Ave & Ventura Blvd Intersection Turning Movement Count

Location:	Whitsett Ave & Ventura Blvd
City:	Studio City
Control:	Signalized

	Signalized							То	tal								_
NS/EW Streets:		Whitset	tt Ave			Whitset	t Ave			Ventura	a Blvd			Ventura	a Blvd		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	BOUND		
PM	1	1	0	0	2	1	1	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOT
3:00 PM	27	44	5	0	71	32	57	0	52	220	43	0	5	218	59	2	835
3:15 PM	26	36	4	0	46	42	30	0	55	249	50	0	13	212	88	0	851
3:30 PM	23	44	2	0	58	43	37	0	76	269	38	0	8	215	63	0	876
3:45 PM	32	42	3	0	66	40	54	0	55	194	55	0	11	251	76	0	879
4:00 PM	32	48	6	0	54	40	54	0	78	211	58	0	10	218	66	0	87
4:15 PM	17	32	2	0	44	36	41	0	60	222	53	0	7	247	85	1	84
4:30 PM	28	45	2	0	44	30	63	0	78	216	43	0	7	213	59	1	82
4:45 PM	30	31	6	0	49	28	45	0	61	242	44	0	12	245	82	1	87
5:00 PM	24	51	3	0	64	26	43	0	62	206	36	0	8	251	73	0	84
5:15 PM	35	50	4	0	58	36	53	0	64	208	41	0	6	238	69	0	86
5:30 PM	21	45	3	0	56	43	46	0	62	235	54	0	9	233	70	0	87
5:45 PM	20	45	4	0	65	47	51	0	55	240	49	0	9	239	82	0	90
6:00 PM	34	31	6	0	51	34	40	0	83	239	45	0	9	219	63	2	85
6:15 PM	30	29	13	0	42	17	50	0	69	214	30	0	12	238	78	3	82
6:30 PM	29	42	3	0	50	29	41	0	57	198	35	0	10	189	94	0	77
6:45 PM	26	37	1	0	48	15	42	0	49	208	30	0	9	230	62	2	75
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	ТОТ
TOTAL VOLUMES :	434	652	67	0	866	538	747	0	1016	3571	704	0	145	3656	1169	12	135
APPROACH %'s :	37.64%	56.55%	5.81%	0.00%	40.26%	25.01%	34.73%	0.00%	19.20%	67.49%	13.31%	0.00%	2.91%	73.38%	23.46%	0.24%	
PEAK HR :	(05:15 PM -	06:15 PM		05:15 PM												TOT
PEAK HR VOL :	110	171	17	0	230	160	190	0	264	922	189	0	33	929	284	2	350
PEAK HR FACTOR :	0.786	0.855 0.83	0.708 37	0.000	0.885	0.851 0.89	0.896 90	0.000	0.795	0.960 0.93	0.875 37	0.000	0.917	0.972 0.94	0.866 1 5	0.250	0.9

	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL	
3-4 PM	108	166	14	0	241	157	178	0	238	932	186	0	37	896	286	2	3441	0.9786689
5-6 PM	100	191	14	0	243	152	193	0	243	889	180	0	32	961	294	0	3492	0.9635762

Project ID: 19-05071-003 Date: 2019-02-12

TRAFFIC COUNT SUMMARY

City of Los Angeles Department of Transportation Count by: The Traffic Solution

North/South	COLDWATER O	ANYON AVENUE		Count b
East/West	MOORPARK ST	REET		_
Day: AM PM Hours:	WEDNESDAY WEDNESDAY 7-10 AM 3-6 PM	Date: May 3, 2017 May 3, 2017	Weather: CLEAR	
School Day:	YES	District: CENTRAL		
DUAL-	N/B	S/B	E/B	W/B
WHEELED BIKES BUSES	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
	N/B TIME	S/B TIME	E/B TIME	W/B TIME
AM PK 15 MIN	182 9:00	240 9:45	275 8:00	231 7:45
PM PK 15 MIN	303 3:00	296 3:45	216 5:15	249 4:15
AM PK HOUR	682 8:15	912 9:00	1,061 8:00	885 7:30
PM PK HOUR	1,182 4:45	1,092 4:45	806 4:45	877 3:45

STREET: North/South

NORTHBOUN	D Approaci	h			SOUTHBO	UND Approach		TOTAL	XING S/L	XING N/L
Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6	Lt 45 52 52 67 67 73	Th 390 505 514 930 898 874	Rt 51 98 99 157 187 203	Total 486 655 665 1,154 1,152 1,150	Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6	Lt Th Rt 144 374 145 173 354 183 153 596 163 85 800 135 75 815 118 143 794 146	Total 663 710 912 1,020 1,008 1,083	N-S 1,149 1,365 1,577 2,174 2,160 2,233	Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TOTAL	356	4,111	795	5,262	TOTAL	773 3,733 890	5,396	10,658	N/A N/A	N/A N/A
EASTBOUND	Approach				WESTBOU	ND Approach		TOTAL	XING W/L	XING E/L
Hours	Lt	Th	Rt	Total	Hours	Lt Th Rt	Total	E-W	Ped Sch	Ped Sch
7 - 8	101	640	29	770	7 - 8	49 579 122	750	1,520	N/A N/A	N/A N/A
8 - 9	165	866	30	1,061	8 - 9	80 577 165	822	1,883	N/A N/A	N/A N/A
9 - 10	155	689	42	886	9 - 10	77 462 139	678	1,564	N/A N/A	N/A N/A
3 - 4	105	618	39	762	3 - 4	93 577 114	784	1,546	N/A N/A	N/A N/A
4 - 5	99	589	38	726	4 - 5	110 626 117	853	1,579	N/A N/A	N/A N/A
5 - 6	94	635	55	784	5 - 6	88 568 102	758	1,542	N/A N/A	N/A N/A
TOTAL										

TRAFFIC COUNT SUMMARY

City of Los Angeles Department of Transportation Count by: The Traffic Solution

STREET: North/South	COLDV	VATER	CANYON AVENUE					_	Dep Count by
East/West	VENTU	RA BO	ULEVARD			,		_	
Day: AM PM Hours:	WEDNESDAY WEDNESDAY 7-10 AM 3-6 PI	VI	Date: May 3, 20 May 3, 20		Weather	r: _	CLEAR		
School Day:	YES		District:	CENTRAL					
DUAL- WHEELED BIKES BUSES	N/B N/A N/A		S/B N/A N/A		E/B N/A N/A N/A			W/B N/A N/A N/A	
	N/B	TIME	S/B	TIME	E/8 T	IME		W/B	TIME
AM PK 15 MIN	183	9:00	211	9:30	344	9:00		293	8:15
PM PK 15 MIN	367	4:30	301	3:45	389	3:00		353	5:45
AM PK HOUR	603	9:00	688	9:00	1,261	9:00		1,089	7:45
PM PK HOUR	1,342	3:45	1,134	4:30	1,439	3:00		1,273	3:45

NORTHBOUN	D Approach		SOUTHBO	UND Approach	TOTAL	XING S/L	XING N/L
Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6 TOTAL	Lt Th Rt 68 189 66 77 285 147 114 314 175 281 753 215 281 803 210 276 845 189 1,097 3,189 1,002	Total 323 509 603 1,249 1,294 1,310 5,288	Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6 TOTAL	Lt Th Rt Total 98 267 29 394 152 236 34 422 225 394 69 688 328 436 294 1,058 387 399 300 1,086 314 455 261 1,030 1,504 2,187 987 4,678	N-S 717 931 1,291 2,307 2,380 2,340	Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ped Sch N/A N/A N/A N/A
EASTBOUND	Approach		WESTBOU	ND Approach	TOTAL	XING W/L	XING E/L
EASTBOUND / Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6	Lt Th Rt 80 777 218 75 839 218 125 896 240 263 1,013 163 191 985 144 201 1,013 157	Total 1,075 1,132 1,261 1,439 1,320 1,371	WESTBOU Hours 7 - 8 8 - 9 9 - 10 3 - 4 4 - 5 5 - 6	ND Approach Lt Th Rt Total 160 631 69 860 171 823 91 1,085 186 642 92 920 122 905 184 1,211 124 981 161 1,266 135 954 157 1,246	TOTAL E-W 1,935 2,217 2,181 2,650 2,586 2,617	XING W/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	XING E/L Ped Sch N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Prepared by NDS/ATD

VOLUME

Valley Spring Ln Bet. Babcock Ave & Whitsett Ave

Day: Tuesday **Date:** 2/12/2019

City: Studio City Project #: CA19_5072_001

				NB		SB		EB	WB						То	otal
	DAILY TOTALS		-	0		0		500	405						9	05
AM Period	NB SB	EB		WB		TC	TAL	PM Period	NB	SB	EB		WB		TO	TAL
0:00 0:15		0		1 2		1 2		12:00 12:15			3		4		7 14	
0:30		1		0		1		12:30			8		9		14	
0:45		0	1	0	3	0	4	12:45			6	24	7	27	13	51
1:00 1:15		0 0		0 0		0 0		13:00 13:15			5 6		8 4		13 10	
1:30		0	_	0		0		13:30			3		4		7	
1:45 2:00		<u>1</u> 0	1	<u>1</u> 0	1	2 0	2	13:45 14:00			<u> </u>	20	5 10	21	11 18	41
2:15		0		0		0		14:15			7		9		16	
2:30		1	4	1	4	2	2	14:30			5	25	5	20	10	62
2:45 3:00		0	1	0	1	0	2	14:45 15:00			<u>5</u> 6	25	<u>14</u> 5	38	19 11	63
3:15		0		0		0		15:15			14		6		20	
3:30 3:45		0 1	2	0 0		0	2	15:30 15:45			4 10	34	4 11	26	8 21	60
4:00		0	2	0		0		16:00			13	54	13	20	26	00
4:15		0		0		0		16:15 16:20			7		18 10		25	
4:30 4:45		0 1	1	1 0	1	1	2	16:30 16:45			11 6	37	10 10	51	21 16	88
5:00		0		0		0		17:00			2		2		4	
5:15 5:30		0		1		1 0		17:15 17:30			9 6		8 14		17 20	
5:45		1	1	0	1	1	2	17:45			8	25	14	35	20 19	60
6:00		1		2		3		18:00			7		13		20	
6:15 6:30		2		1 0		3 1		18:15 18:30			8 12		/ 10		15 22	
6:45		3	7	1	4	4	11	18:45			3	30	7	37	10	67
7:00 7:15		7		0		7 10		19:00 19:15			6		6 10		12 13	
7:30		, 14		2		16		19:30			5 4		10		15 15	
7:45		10	38	6	11	16	49	19:45			2	15	6	33	8	48
8:00 8:15		26 23		5 6		31 29		20:00 20:15			2		6 6		8 9	
8:30		26		4		30		20:30			5		4		9	
8:45 9:00		<u>21</u> 27	96	6 2	21	27 29	117	20:45 21:00			2	12	<u>6</u> 3	22	<u>8</u> 6	34
9:15		12		2		15		21:00			1		1		2	
9:30		16	60	8	45	24		21:30			2	c	4	10	6	4.6
9:45 10:00		<u>13</u> 8	68	2 4	15	15 12	83	21:45 22:00			0	6	<u>2</u> 1	10	2	16
10:15		2		1		3		22:15			0		2		2	
10:30 10:45		12 7	29	6 5	16	18 12	45	22:30 22:45			1 0	2	1	6	2 2	8
10:45		5	23	<u> </u>	10	12	45	22:45			1	۷	1	0	2	0
11:15		4		6		10		23:15			1		0		1	
11:30 11:45		6 8	23	5 5	23	11 13	46	23:30 23:45			0 0	2	1 0	2	1 0	4
TOTALS		<u> </u>	268	J	97	10	365	TOTALS			5	232	~	308	J	540
SPLIT %			73.4%		26.6%		40.3%	SPLIT %				43.0%		57.0%		59.7%
				NB		SB		EB	WB						To	otal
	DAILY TOTALS			0		0		500	405							05
AM Peak Hour			8:15		11:45		8:00	PM Peak Hour				15:15		15:45		15:45
AM Pk Volume			97		25		117	PM Pk Volume				41		52		93
Pk Hr Factor			0.898		0.694		0.944	Pk Hr Factor			0	0.732		0.722		0.894
7 - 9 Volume 7 - 9 Peak Hour			134 8:00		32 7:45		166 8:00	4 - 6 Volume 4 - 6 Peak Hour				62 16:00		86 16:00		148 16:00
7 - 9 Pk Volume			96		21			4 - 6 Pk Volume				37		51		88
Pk Hr Factor	0.000 0.000		0.923		0.875		0.944	Pk Hr Factor	0.000	0.	000	0.712		0.708		0.846

Appendix G: LOS Analysis Sheets

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

09/29/2020	
------------	--

	۶	-	7	*	+	•	1	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	<u>+</u>	1	٦	†	1	٦	† Ъ		٦	† 1>	
Traffic Volume (veh/h)	131	768	101	96	551	85	122	675	141	69	450	130
Future Volume (veh/h)	131	768	101	96	551	85	122	675	141	69	450	130
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	1070	1070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	142	835	93	104	599	72	133	734	131	75	489	108
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 238	2 860	2 729	2 90	2 860	2 729	2 345	2 1319	2 235	2 244	2 1268	2
Cap, veh/h Arrive On Green	230 0.15	0.15	0.15	90 0.46	0.46	0.46	0.44	0.44	235 0.44	0.44	0.44	278 0.44
Sat Flow, veh/h	767	1870	1585	603	1870	1585	821	3013	538	640	2897	636
	142		93	104		72			432	75		
Grp Volume(v), veh/h	767	835 1870	93 1585	603	599 1870	1585	133 821	433 1777	432 1774	640	299 1777	298 1756
Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s	16.6	40.0	4.6	1.4	22.9	2.3	021 11.8	16.3	16.3	8.9	10.2	10.3
Cycle Q Clear(g_c), s	39.5	40.0	4.0	41.4	22.9	2.3	22.1	16.3	16.3	25.2	10.2	10.3
Prop In Lane	1.00	40.0	1.00	1.00	22.9	1.00	1.00	10.5	0.30	1.00	10.2	0.36
Lane Grp Cap(c), veh/h	238	860	729	90	860	729	345	778	776	244	778	769
V/C Ratio(X)	0.60	0.97	0.13	1.16	0.70	0.10	0.39	0.56	0.56	0.31	0.38	0.39
Avail Cap(c_a), veh/h	238	860	729	90	860	729	345	778	776	244	778	769
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.52	0.52	0.52	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	48.7	37.6	22.5	44.9	19.3	13.7	24.6	18.8	18.8	28.2	17.1	17.1
Incr Delay (d2), s/veh	5.7	16.2	0.2	144.8	4.6	0.3	3.2	2.9	2.9	3.2	1.4	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.7	23.6	1.7	5.6	10.3	0.8	2.5	6.7	6.7	1.5	4.2	4.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	54.4	53.7	22.7	189.8	23.9	14.0	27.9	21.7	21.7	31.4	18.5	18.6
LnGrp LOS	D	D	С	F	С	В	С	С	С	С	В	В
Approach Vol, veh/h		1070			775			998			672	
Approach Delay, s/veh		51.1			45.3			22.5			20.0	
Approach LOS		D			D			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+I1), s		43.4		27.2		42.0		24.1				
Green Ext Time (p_c), s		0.0		3.3		0.0		5.4				
Intersection Summary												
HCM 6th Ctrl Delay			35.8									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

1.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		با	1		र्भ	1		đ þ			-€î†	1	
Traffic Vol, veh/h	4	1	30	12	2	62	25	862	20	32	599	6	
Future Vol, veh/h	4	1	30	12	2	62	25	862	20	32	599	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	1	33	13	2	67	27	937	22	35	651	7	

Major/Minor	Minor2		ľ	/linor1		Ν	/lajor1		Ν	1ajor2				
Conflicting Flow All	1245	1734	326	1398	1730	480	658	0	0	959	0	0		
Stage 1	721	721	-	1002	1002	-	-	-	-	-	-	-		
Stage 2	524	1013	-	396	728	-	-	-	-	-	-	-		
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-		
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-		
Pot Cap-1 Maneuver	130	87	670	100	87	532	926	-	-	713	-	-		
Stage 1	385	430	-	260	318	-	-	-	-	-	-	-		
Stage 2	504	315	-	601	427	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	100	75	670	84	75	532	926	-	-	713	-	-		
Mov Cap-2 Maneuver	100	75	-	84	75	-	-	-	-	-	-	-		
Stage 1	361	397	-	244	298	-	-	-	-	-	-	-		
Stage 2	409	295	-	526	394	-	-	-	-	-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	15.6	21	0.5	0.9	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	VBLn1\	NBLn2	SBL	SBT	SBR	
Capacity (veh/h)	926	-	-	94	670	83	532	713	-	-	
HCM Lane V/C Ratio	0.029	-	-	0.058	0.049	0.183	0.127	0.049	-	-	
HCM Control Delay (s)	9	0.3	-	45.6	10.6	57.9	12.7	10.3	0.4	-	
HCM Lane LOS	А	А	-	Е	В	F	В	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.2	0.2	0.6	0.4	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

09/29/2020	
------------	--

	٠	→	7	4	+	•	1	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	††	1	٦	- ++	1	ሻ	f,		ኘኘ	<u>+</u>	7
Traffic Volume (veh/h)	239	938	187	39	901	288	109	167	14	242	158	179
Future Volume (veh/h)	239	938	187	39	901	288	109	167	14	242	158	179
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	260	1020	151	42	979	211	118	182	12	263	172	184
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	308	1793	800	187 0.36	1296	578 0.36	245	401	26	340	726	774
Arrive On Green	0.03	0.17	0.17		0.36		0.23	0.23	0.23 114	0.10	0.39	0.39
Sat Flow, veh/h	1781	3554	1585	479	3554	1585	1025	1735		3456	1870	1585
Grp Volume(v), veh/h	260	1020	151	42	979	211	118	0	194	263	172	184
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	479	1777	1585	1025	0	1850	1728	1870	1585
Q Serve(g_s), s	8.5	26.4	8.2	7.3	24.2	6.6	10.8	0.0	9.0	7.4	6.2	6.7
Cycle Q Clear(g_c), s	8.5	26.4	8.2	19.7	24.2	6.6	17.0	0.0	9.0	7.4	6.2	6.7
Prop In Lane	1.00 308	1700	1.00 800	1.00 187	1000	1.00	1.00	0	0.06	1.00 340	726	1.00
Lane Grp Cap(c), veh/h	308 0.84	1793 0.57	0.19	0.22	1296 0.76	578 0.37	245 0.48	0 0.00	427 0.45	0.77	0.24	774 0.24
V/C Ratio(X)	308	1793	800	187	1296	578	0.40 245	0.00	427	518	0.24 787	826
Avail Cap(c_a), veh/h HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	427	1.00	1.00	1.00
Upstream Filter(I)	0.33	0.33	0.33	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.2	31.7	24.1	31.6	27.9	10.7	39.0	0.00	33.0	44.0	20.6	14.8
Incr Delay (d2), s/veh	6.8	0.4	0.2	2.8	4.1	1.8	6.6	0.0	3.5	44.0	0.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2
%ile BackOfQ(50%),veh/In	4.3	12.6	3.3	1.0	10.6	3.6	3.1	0.0	4.3	3.3	2.6	2.3
Unsig. Movement Delay, s/veh		12.0	0.0	1.0	10.0	0.0	0.1	0.0	4.0	0.0	2.0	2.0
LnGrp Delay(d),s/veh	30.0	32.1	24.2	34.4	32.0	12.4	45.6	0.0	36.5	48.0	20.8	15.0
LnGrp LOS	C	C	C	С	C	В	D	A	D	D	C	В
Approach Vol, veh/h		1431			1232	_		312			619	
Approach Delay, s/veh		30.9			28.7			39.9			30.6	
Approach LOS		C			C			D			C	
	1			4	Ū	C	7				•	
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	14.0	<u>2</u> 41.3		44.7		<u>6</u> 55.3	<u>7</u> 15.7	<u>8</u> 29.0				
Change Period (Y+Rc), s	4.0	41.3 * 4.8		44.7 5.9		55.5 * 4.8	5.9	29.0 * 5.9				
Max Green Setting (Gmax), s	4.0	* 33		42.1		4.0 * 47	15.0	* 23				
Max Q Clear Time (g_c+I1), s	10.0	26.2		42.1 8.7		28.4	9.4	23 19.0				
Green Ext Time (p_c), s	0.0	4.2		1.5		7.5	9.4 0.4	0.6				
<i>w</i> = <i>y</i> .	0.0	4.2		1.5		7.5	0.4	0.0				
Intersection Summary			00.0									
HCM 6th Ctrl Delay			30.9									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

09/29/2020

	۲	+	*	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	٦	•	1	ሻ	† Ъ		٦	† ‡	
Traffic Volume (veh/h)	107	629	40	95	587	116	68	947	160	87	814	137
Future Volume (veh/h)	107	629	40	95	587	116	68	947	160	87	814	137
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	116	684	29	103	638	110	74	1029	158	95	885	133
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 206	2 931	2 789	2 233	2 931	2 789	2 159	2 1198	2 184	2 118	2 1201	2 181
Cap, veh/h Arrive On Green	0.50	931 0.50	0.50	233 0.16	0.16	0.16	0.39	0.39	0.39	0.39	0.39	0.39
Sat Flow, veh/h	713	1870	1585	737	1870	1585	554	3088	474	472	3098	466
	116	684	29	103		110	74	591	596	95	508	510
Grp Volume(v), veh/h	713	1870	29 1585	737	638 1870	1585	74 554	1777	596 1785	95 472	508 1777	1787
Grp Sat Flow(s),veh/h/ln	14.4	26.1	0.8	12.3	28.9	5.3	554 11.9	27.5	27.6	7.3	22.0	22.0
Q Serve(g_s), s Cycle Q Clear(g_c), s	43.3	26.1	0.8	38.3	28.9	5.3	33.9	27.5	27.6	34.9	22.0	22.0
Prop In Lane	1.00	20.1	1.00	1.00	20.9	1.00	1.00	21.5	0.27	1.00	22.0	0.26
Lane Grp Cap(c), veh/h	206	931	789	233	931	789	159	689	692	118	689	693
V/C Ratio(X)	0.56	0.73	0.04	0.44	0.69	0.14	0.46	0.86	0.86	0.80	0.74	0.74
Avail Cap(c_a), veh/h	206	931	789	233	931	789	159	689	692	118	689	693
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.70	0.70	0.70	0.48	0.48	0.48	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.4	17.9	11.6	47.6	31.0	21.1	38.2	25.3	25.3	43.5	23.6	23.6
Incr Delay (d2), s/veh	10.7	5.1	0.1	4.2	2.9	0.3	4.6	6.9	6.9	42.0	6.9	6.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.0	11.5	0.3	2.7	15.0	2.0	1.8	12.1	12.2	3.5	10.0	10.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	47.1	23.0	11.6	51.8	33.9	21.4	42.8	32.1	32.2	85.5	30.5	30.5
LnGrp LOS	D	С	В	D	С	С	D	С	С	F	С	C
Approach Vol, veh/h		829			851			1261			1113	
Approach Delay, s/veh		26.0			34.4			32.8			35.2	
Approach LOS		С			С			С			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0				
Change Period (Y+Rc), s		5.1		* 5.2		5.1		* 5.2				
Max Green Setting (Gmax), s		34.9		* 45		34.9		* 45				
Max Q Clear Time (g_c+I1), s		36.9		40.3		35.9		45.3				
Green Ext Time (p_c), s		0.0		2.1		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			32.4									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

09/29/2020

	۶	+	*	4	┥	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	- ++	1	۳.	- ++	1	ሻ	††	1	ኘኘ	† ‡	
Traffic Volume (veh/h)	268	1031	166	124	921	187	286	767	219	334	444	299
Future Volume (veh/h)	268	1031	166	124	921	187	286	767	219	334	444	299
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	291	1121	68	135	1001	89	311	834	192	363	483	205
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	189	1175	524	172	1175	524	338	1227	627	346	597	252
Arrive On Green	0.05	0.33	0.33	0.02	0.11	0.11	0.19	0.35	0.35	0.10	0.25	0.25
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2435	1027
Grp Volume(v), veh/h	291	1121	68	135	1001	89	311	834	192	363	352	336
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1685
Q Serve(g_s), s	5.0	30.8	1.7	5.0	27.7	5.1	17.1	20.1	8.3	10.0	18.6	18.8
Cycle Q Clear(g_c), s	5.0	30.8	1.7	5.0	27.7	5.1	17.1	20.1	8.3	10.0	18.6	18.8
Prop In Lane	1.00	4475	1.00	1.00	4475	1.00	1.00	4007	1.00	1.00	100	0.61
Lane Grp Cap(c), veh/h	189	1175	524	172	1175	524	338	1227	627	346	436	414
V/C Ratio(X)	1.54	0.95	0.13	0.79	0.85	0.17	0.92	0.68	0.31	1.05	0.81	0.81
Avail Cap(c_a), veh/h	189	1175	524	172	1175	524	338	1279	650	346	498	472
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.65	0.65	0.65	1.00	1.00	1.00	0.63	0.63	0.63
Uniform Delay (d), s/veh	32.8	32.7	7.4	27.0	42.1	32.1	39.7	28.0	20.8	45.0	35.5	35.6
Incr Delay (d2), s/veh	267.5	17.3	0.5	14.6	5.3	0.5	29.2	1.9	0.6	52.3	6.9	7.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	16.2	15.5	1.1	2.8	14.0	2.0	10.0	8.5	3.1	6.7	8.7	8.4
Unsig. Movement Delay, s/veh	300.3	50.0	7.9	41.6	47.4	32.5	69.0	29.9	21.4	97.3	42.4	43.2
LnGrp Delay(d),s/veh	300.3 F	50.0 D	7.9 A	41.0 D	47.4 D	32.5 C	69.0 E	29.9 C	21.4 C	97.5 F	42.4 D	
LnGrp LOS	Г		A	D		U			U	Г		<u> </u>
Approach Vol, veh/h		1480			1225			1337			1051	
Approach Delay, s/veh		97.3			45.7			37.8			61.6	
Approach LOS		F			D			D			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	38.5	14.0	39.5	8.0	38.5	24.0	29.5				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+I1), s	7.0	29.7	12.0	22.1	7.0	32.8	19.1	20.8				
Green Ext Time (p_c), s	0.0	1.6	0.0	8.5	0.0	0.0	0.0	3.7				
Intersection Summary												
HCM 6th Ctrl Delay			61.9									
HCM 6th LOS			Е									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

10/28/202	20
-----------	----

	٨	+	*	*	ł	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	1	7	+	1	ሻ	≜ †		ሻ	† ‡	
Traffic Volume (veh/h)	135	791	104	99	568	88	126	722	145	71	502	134
Future Volume (veh/h)	135	791	104	99	568	88	126	722	145	71	502	134
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	147	860	96	108	617	75	137	785	137	77	546	117
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	226	860	729	80	860	729	317	1324	231	226	1275	272
Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	752	1870	1585	587	1870	1585	772	3024	528	606	2913	622
Grp Volume(v), veh/h	147	860	96	108	617	75	137	461	461	77	332	331
Grp Sat Flow(s),veh/h/ln	752	1870	1585	587	1870	1585	772	1777	1775	606	1777	1758
Q Serve(g_s), s	17.5	41.4	4.7	0.0	23.9	2.4	13.4	17.7	17.7	9.9	11.6	11.7
Cycle Q Clear(g_c), s	41.4	41.4	4.7	41.4	23.9	2.4	25.2	17.7	17.7	27.7	11.6	11.7
Prop In Lane	1.00	000	1.00	1.00	000	1.00	1.00	770	0.30	1.00	770	0.35
Lane Grp Cap(c), veh/h	226	860	729	80	860	729	317	778	777	226	778	770
V/C Ratio(X)	0.65	1.00	0.13	1.35	0.72	0.10	0.43	0.59	0.59	0.34	0.43	0.43
Avail Cap(c_a), veh/h	226	860	729	80	860	729	317	778	777	226	778	770
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.48 50.2	0.48 38.2	0.48 22.6	1.00 45.0	1.00 19.6	1.00 13.8	1.00 26.2	19.2	1.00 19.2	1.00 29.7	1.00 17.5	1.00
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	50.2 6.8	30.2 21.2	0.2	45.0 218.7	19.0 5.1	0.3	4.2	3.3	3.3	4.1	17.5	17.5 1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.2	210.7	0.0	0.0	4.Z 0.0	0.0	0.0	4.1 0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.9	25.5	1.8	6.6	10.8	0.0	2.7	7.4	7.4	1.6	4.7	4.7
Unsig. Movement Delay, s/veh		20.0	1.0	0.0	10.0	0.9	2.1	1.4	7.4	1.0	4.7	4.7
LnGrp Delay(d),s/veh	57.0	59.3	22.8	263.7	24.7	14.1	30.5	22.5	22.5	33.8	19.2	19.3
LnGrp LOS	57.0 E	55.5 E	22.0 C	200.7 F	24.7 C	В	00.0 C	22.5 C	22.5 C	00.0 C	13.2 B	19.5 B
Approach Vol, veh/h	<u>L</u>	1103		1	800	0		1059		0	740	
Approach Delay, s/veh		55.8			56.0			23.5			20.8	
Approach LOS		55.0 E			50.0 E			23.3 C			20.0 C	
					L						U	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+I1), s		43.4		29.7		43.4		27.2				
Green Ext Time (p_c), s		0.0		3.2		0.0		5.2				
Intersection Summary												
HCM 6th Ctrl Delay			39.6									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

2

10/28/2020

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्स	1		र्स	1		đ þ			- € †	1	
Traffic Vol, veh/h	4	1	31	12	2	64	26	915	21	33	655	6	
Future Vol, veh/h	4	1	31	12	2	64	26	915	21	33	655	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	1	34	13	2	70	28	995	23	36	712	7	

Major/Minor	Minor2		ľ	Minor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1339	1858	356	1492	1854	509	719	0	0	1018	0	0	
Stage 1	784	784	-	1063	1063	-	-	-	-	-	-	-	
Stage 2	555	1074	-	429	791	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	111	73	640	85	73	509	878	-	-	677	-	-	
Stage 1	352	402	-	238	298	-	-	-	-	-	-	-	
Stage 2	484	294	-	574	399	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 82	62	640	70	62	509	878	-	-	677	-	-	
Mov Cap-2 Maneuver	· 82	62	-	70	62	-	-	-	-	-	-	-	
Stage 1	326	366	-	220	276	-	-	-	-	-	-	-	
Stage 2	384	272	-	494	363	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	17.1	23.6	0.5	0.9	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	NBLn1\	WBLn2	SBL	SBT	SBR	
Capacity (veh/h)	878	-	-	77	640	69	509	677	-	-	
HCM Lane V/C Ratio	0.032	-	-	0.071	0.053	0.221	0.137	0.053	-	-	
HCM Control Delay (s)	9.2	0.3	-	55.3	10.9	71.4	13.2	10.6	0.4	-	
HCM Lane LOS	А	А	-	F	В	F	В	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.2	0.2	0.8	0.5	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

10/28/202	0
-----------	---

	٠	→	7	1	+	*	1	1	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	1	٦	**	1	7	f.		ኘኘ	+	1
Traffic Volume (veh/h)	273	1076	193	40	1079	297	112	172	14	249	163	222
Future Volume (veh/h)	273	1076	193	40	1079	297	112	172	14	249	163	222
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	297	1170	157	43	1173	221	122	187	12	271	177	230
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	269	1785	796	152	1288	574	236	402	26	348	731	778
Arrive On Green	0.03	0.17	0.17	0.36	0.36	0.36	0.23	0.23	0.23	0.10	0.39	0.39
Sat Flow, veh/h	1781	3554	1585	413	3554	1585	978	1739	112	3456	1870	1585
Grp Volume(v), veh/h	297	1170	157	43	1173	221	122	0	199	271	177	230
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	413	1777	1585	978	0	1850	1728	1870	1585
Q Serve(g_s), s	10.0	30.8	8.5	9.4	31.4	7.0	11.9	0.0	9.3	7.7	6.4	8.6
Cycle Q Clear(g_c), s	10.0	30.8	8.5	26.2	31.4	7.0	18.2	0.0	9.3	7.7	6.4	8.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.06	1.00		1.00
Lane Grp Cap(c), veh/h	269	1785	796	152	1288	574	236	0	427	348	731	778
V/C Ratio(X)	1.11	0.66	0.20	0.28	0.91	0.38	0.52	0.00	0.47	0.78	0.24	0.30
Avail Cap(c_a), veh/h	269	1785	796	152	1288	574	236	0	427	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.17	0.17	0.17	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.0	33.6	24.3	36.2	30.4	10.7	39.6	0.0	33.1	43.9	20.5	15.2
Incr Delay (d2), s/veh	57.2	0.3	0.1	4.6	11.2	1.9	7.9	0.0	3.6	4.4	0.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	8.8	14.6	3.4	1.1	14.8	3.8	3.3	0.0	4.4	3.4	2.7	3.0
Unsig. Movement Delay, s/veh	86.2	33.9	24.4	40.8	41.5	12.7	47.5	0.0	36.7	48.3	20.7	15.4
LnGrp Delay(d),s/veh	00.2 F	33.9 C	24.4 C	40.6 D	41.5 D				30.7 D		20.7 C	
LnGrp LOS	F		U	0		В	D	A	D	D		B
Approach Vol, veh/h		1624			1437			321			678	
Approach Delay, s/veh		42.6			37.1			40.8			29.9	
Approach LOS		D			D			D			С	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	41.0		45.0		55.0	16.0	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+l1), s	12.0	33.4		10.6		32.8	9.7	20.2				
Green Ext Time (p_c), s	0.0	0.0		1.7		7.5	0.4	0.4				
Intersection Summary												
HCM 6th Ctrl Delay			38.4									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

10/28/2020

	۶	+	*	4	ł	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	٦	†	1	٦	≜ ⊅		٦	† 1>	
Traffic Volume (veh/h)	110	648	41	98	605	120	70	1041	165	90	932	141
Future Volume (veh/h)	110	648	41	98	605	120	70	1041	165	90	932	141
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	1070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	120	704	31	107	658	116	76	1132	164	98	1013	139
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 195	2 931	2 789	2 221	2 931	2 789	2 127	2 1208	2 175	2 96	2 1217	2 167
Cap, veh/h Arrive On Green	0.50	931 0.50	0.50	0.16	931 0.16	0.16	0.39	0.39	0.39	96 0.39	0.39	0.39
Sat Flow, veh/h	696	1870	1585	722	1870	1585	488	3116	450	425	3139	430
		704								<u>425</u> 98		
Grp Volume(v), veh/h	120 696	704 1870	31 1585	107 722	658 1870	116 1585	76 488	644 1777	652 1789	98 425	573 1777	579
Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s	696 14.9	27.3	0.9	13.1	29.9	5.6	400 8.6	31.3	31.6	425 3.3	26.2	1793 26.3
Cycle Q Clear(g_c), s	44.8	27.3	0.9	40.4	29.9	5.6	0.0 34.9	31.3	31.6	34.9	26.2	26.3
Prop In Lane	1.00	21.5	1.00	1.00	29.9	1.00	1.00	51.5	0.25	1.00	20.2	0.24
Lane Grp Cap(c), veh/h	195	931	789	221	931	789	127	689	694	96	689	695
V/C Ratio(X)	0.62	0.76	0.04	0.49	0.71	0.15	0.60	0.93	0.94	1.02	0.83	0.83
Avail Cap(c_a), veh/h	195	931	789	221	931	789	127	689	694	96	689	695
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.66	0.66	0.66	0.28	0.28	0.28	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.9	18.2	11.6	49.2	31.4	21.2	42.4	26.5	26.5	44.7	24.9	24.9
Incr Delay (d2), s/veh	13.7	5.7	0.1	5.0	3.0	0.3	5.8	8.2	8.6	98.6	11.2	11.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.3	12.1	0.3	2.8	15.6	2.1	1.9	13.9	14.1	4.7	12.4	12.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	51.6	23.9	11.7	54.2	34.4	21.5	48.1	34.7	35.1	143.3	36.1	36.1
LnGrp LOS	D	С	В	D	С	С	D	С	D	F	D	D
Approach Vol, veh/h		855			881			1372			1250	
Approach Delay, s/veh		27.3			35.1			35.6			44.5	
Approach LOS		С			D			D			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0				
Change Period (Y+Rc), s		5.1		* 5.2		5.1		* 5.2				
Max Green Setting (Gmax), s		34.9		* 45		34.9		* 45				
Max Q Clear Time (g_c+I1), s		36.9		42.4		36.9		46.8				
Green Ext Time (p_c), s		0.0		1.3		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			36.4									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

10/28/2020

	۶	-	7	•	+	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	††	1	٦	- ++	1	ሻ	- ++	1	ካካ	† 1>	
Traffic Volume (veh/h)	306	1086	171	135	989	200	295	817	234	353	476	308
Future Volume (veh/h)	306	1086	171	135	989	200	295	817	234	353	476	308
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	10-0		No	10-0		No			No	10-0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	333	1180	72	147	1075	103	321	888	209	384	517	220
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	171	1140	508	161	1140	508	338	1262	642	346	621	263
Arrive On Green	0.05	0.32	0.32	0.02	0.11	0.11	0.19	0.36	0.36	0.10	0.26	0.26
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2431	1030
Grp Volume(v), veh/h	333	1180	72	147	1075	103	321	888	209	384	377	360
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1685
Q Serve(g_s), s	5.0	32.1	1.8	5.0	30.0	5.9	17.8	21.5	9.0	10.0	20.1	20.2
Cycle Q Clear(g_c), s	5.0	32.1	1.8	5.0	30.0	5.9	17.8	21.5	9.0	10.0	20.1	20.2
Prop In Lane	1.00		1.00	1.00	4440	1.00	1.00	1000	1.00	1.00	450	0.61
Lane Grp Cap(c), veh/h	171	1140	508	161	1140	508	338	1262	642	346	453	430
V/C Ratio(X)	1.95	1.04	0.14	0.91	0.94	0.20	0.95	0.70	0.33	1.11	0.83	0.84
Avail Cap(c_a), veh/h	171	1140	508	161	1140	508	338	1279	650	346	498	472
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.43	0.43	0.43	1.00	1.00	1.00	0.48	0.48	0.48
Uniform Delay (d), s/veh	31.9	34.0	7.8	29.6	43.8	33.0	40.0	27.7	20.4	45.0	35.2	35.3
Incr Delay (d2), s/veh	448.3	36.1	0.6	26.1	8.4	0.4	35.5	2.2	0.6	68.3	6.4	7.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	23.0	19.0	1.2	3.6	15.6	2.4	10.9	9.1	3.3	7.5	9.2	8.9
Unsig. Movement Delay, s/veh		70.4	0.4	FF 7	50.0	22.4	75 5	20.0	01.0	110 0	11 6	40.0
LnGrp Delay(d),s/veh	480.2	70.1 F	8.4	55.7	52.2	33.4	75.5	29.9 C	21.0 C	113.3	41.6 D	42.3
LnGrp LOS	F		A	E	D	С	E		<u> </u>	F		<u> </u>
Approach Vol, veh/h		1585			1325			1418			1121	
Approach Delay, s/veh		153.4			51.2			39.0			66.4	
Approach LOS		F			D			D			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	37.5	14.0	40.5	8.0	37.5	24.0	30.5				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+I1), s	7.0	32.0	12.0	23.5	7.0	34.1	19.8	22.2				
Green Ext Time (p_c), s	0.0	0.0	0.0	8.2	0.0	0.0	0.0	3.3				
Intersection Summary												
HCM 6th Ctrl Delay			80.9									
HCM 6th LOS			F									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

02/08/2021

	۶	+	\rightarrow	4	+	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑	1	- ሽ	↑	1	- ሽ	∱ ⊅		- ሽ	≜ ⊅	
Traffic Volume (veh/h)	137	791	149	101	568	88	117	717	132	71	502	134
Future Volume (veh/h)	137	791	149	101	568	88	117	717	132	71	502	134
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	149	860	137	110	617	75	127	779	125	77	546	117
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 226	2 860	2 729	2 80	2 860	2 729	2 317	2 1343	2 215	2 232	2 1275	2 272
Cap, veh/h Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	752	1870	1585	565	1870	1585	772	3067	492	617	2913	622
	149				617		127			77		331
Grp Volume(v), veh/h		860 1870	137 1585	110 565	1870	75 1585	772	451	453 1782	617	332 1777	
Grp Sat Flow(s),veh/h/ln	752 17.5	41.4	6.8	0.0	23.9	2.4	12.3	1777 17.2	17.2	9.7	11.6	1758 11.7
Q Serve(g_s), s Cycle Q Clear(g_c), s	41.4	41.4	6.8	41.4	23.9	2.4	24.0	17.2	17.2	26.9	11.6	11.7
Prop In Lane	1.00	41.4	1.00	1.00	23.9	2.4 1.00	1.00	17.2	0.28	1.00	11.0	0.35
Lane Grp Cap(c), veh/h	226	860	729	80	860	729	317	778	780	232	778	770
V/C Ratio(X)	0.66	1.00	0.19	1.37	0.72	0.10	0.40	0.58	0.58	0.33	0.43	0.43
Avail Cap(c_a), veh/h	226	860	729	80	860	729	317	778	780	232	778	770
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.32	0.32	0.32	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.3	38.2	23.5	45.0	19.6	13.8	25.8	19.1	19.1	29.2	17.5	17.5
Incr Delay (d2), s/veh	4.8	17.3	0.2	228.5	5.1	0.3	3.7	3.1	3.1	3.8	1.7	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.9	24.6	2.6	6.8	10.8	0.9	2.5	7.2	7.2	1.6	4.7	4.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	55.1	55.4	23.7	273.5	24.7	14.1	29.6	22.2	22.2	33.0	19.2	19.3
LnGrp LOS	E	E	С	F	С	В	С	С	С	С	В	В
Approach Vol, veh/h		1146			802			1031			740	
Approach Delay, s/veh		51.6			57.8			23.1			20.7	
Approach LOS		D			Е			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+l1), s		43.4		28.9		43.4		26.0				
Green Ext Time (p_c), s		0.0		3.3		0.0		5.3				
Intersection Summary												
HCM 6th Ctrl Delay			38.9									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

1.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		સ	1		ર્સ	1		4î b			-î†	1	
Traffic Vol, veh/h	4	1	32	10	3	64	24	884	19	33	702	6	
Future Vol, veh/h	4	1	32	10	3	64	24	884	19	33	702	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	1	35	11	3	70	26	961	21	36	763	7	

Major/Minor	Minor2		N	Minor1		Ν	/lajor1		Ν	1ajor2				
Conflicting Flow All	1369	1869	382	1478	1866	491	770	0	0	982	0	0		
Stage 1	835	835	-	1024	1024	-	-	-	-	-	-	-		
Stage 2	534	1034	-	454	842	-	-	-	-	-	-	-		
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-		
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-		
Pot Cap-1 Maneuver	105	72	616	88	72	523	840	-	-	699	-	-		
Stage 1	328	381	-	252	311	-	-	-	-	-	-	-		
Stage 2	498	308	-	555	378	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	· 77	61	616	72	61	523	840	-	-	699	-	-		
Mov Cap-2 Maneuver	· 77	61	-	72	61	-	-	-	-	-	-	-		
Stage 1	306	347	-	235	290	-	-	-	-	-	-	-		
Stage 2	398	287	-	475	344	-	-	-	-	-	-	-		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	17.6	22.6	0.5	0.8	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	VBLn1\	WBLn2	SBL	SBT	SBR	
Capacity (veh/h)	840	-	-	73	616	69	523	699	-	-	
HCM Lane V/C Ratio	0.031	-	-	0.074	0.056	0.205	0.133	0.051	-	-	
HCM Control Delay (s)	9.4	0.3	-	58.2	11.2	70.1	12.9	10.4	0.4	-	
HCM Lane LOS	А	А	-	F	В	F	В	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.2	0.2	0.7	0.5	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

02/08/2021

	≯	-	7	∢	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ሽ	^	1	<u> </u>	- ††	1	- ሽ	ef 👘		ካካ	↑	1
Traffic Volume (veh/h)	303	1076	193	40	1079	298	112	170	14	254	162	243
Future Volume (veh/h)	303	1076	193	40	1079	298	112	170	14	254	162	243
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	329	1170	157 0.92	43	1173	222	122	185	12 0.92	276	176	253
Peak Hour Factor	0.92 2	0.92	0.92	0.92 2	0.92 2	0.92	0.92	0.92 2		0.92 2	0.92 2	0.92 2
Percent Heavy Veh, %	268	2 1780	2 794	152	1282	2 572	2 233	401	2 26	353	733	2 780
Cap, veh/h Arrive On Green	0.03	0.17	0.17	0.36	0.36	0.36	0.23	0.23	0.23	0.10	0.39	0.39
Sat Flow, veh/h	1781	3554	1585	413	3554	1585	959	1737	113	3456	1870	1585
Grp Volume(v), veh/h	329	1170	1505	43	1173	222	122	0	197	276	176	253
Grp Sat Flow(s), veh/h/ln	1781	1777	1585	43	1777	1585	959	0	1850	1728	1870	1585
Q Serve(g_s), s	10.0	30.8	8.5	9.4	31.5	7.0	12.1	0.0	9.2	7.8	6.3	9.6
Cycle Q Clear(g_c), s	10.0	30.8	8.5	26.2	31.5	7.0	18.4	0.0	9.2	7.8	6.3	9.0
Prop In Lane	1.00	50.0	1.00	1.00	01.0	1.00	1.00	0.0	0.06	1.00	0.5	1.00
Lane Grp Cap(c), veh/h	268	1780	794	152	1282	572	233	0	427	353	733	780
V/C Ratio(X)	1.23	0.66	0.20	0.28	0.91	0.39	0.52	0.00	0.46	0.78	0.24	0.32
Avail Cap(c_a), veh/h	268	1780	794	152	1282	572	233	0.00	427	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.17	0.17	0.17	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.1	33.7	24.4	36.4	30.5	10.8	39.7	0.0	33.1	43.8	20.4	15.3
Incr Delay (d2), s/veh	108.4	0.3	0.1	4.6	11.6	2.0	8.2	0.0	3.5	4.7	0.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.6	14.6	3.4	1.1	14.9	3.8	3.3	0.0	4.4	3.5	2.7	3.3
Unsig. Movement Delay, s/veh	I											
LnGrp Delay(d),s/veh	137.5	34.0	24.5	41.0	42.0	12.7	47.9	0.0	36.6	48.5	20.6	15.6
LnGrp LOS	F	С	С	D	D	В	D	А	D	D	С	В
Approach Vol, veh/h		1656			1438			319			705	
Approach Delay, s/veh		53.7			37.5			40.9			29.7	
Approach LOS		D			D			D			С	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	40.9		45.1		54.9	16.1	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+l1), s	12.0	33.5		11.6		32.8	9.8	20.4				
Green Ext Time (p_c), s	0.0	0.0		1.8		7.5	0.4	0.4				
Intersection Summary												
HCM 6th Ctrl Delay			42.9									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

02/08/2021

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations 1	141 141 0 1.00 1.00 1.00
Traffic Volume (veh/h) 110 648 41 98 600 116 72 1046 179 123 936 Future Volume (veh/h) 110 648 41 98 600 116 72 1046 179 123 936 Initial Q (Qb), veh 0 <th>141 141 0 1.00 1.00 1.00</th>	141 141 0 1.00 1.00 1.00
Future Volume (veh/h) 110 648 41 98 600 116 72 1046 179 123 936 Initial Q (Qb), veh 0	141 0 1.00 1.00
Initial Q (Qb), veh 0	0 1.00 1.00 1870
Ped-Bike Adj(A_pbT) 1.00 </td <td>1.00 1.00 1870</td>	1.00 1.00 1870
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1870
	1870
Work Zone On Approach No No No No	1870
Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 1870	139
Adj Flow Rate, veh/h 120 704 31 107 652 112 78 1137 179 134 1017	
Peak Hour Factor 0.92	
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Cap, veh/h 198 931 789 221 931 789 126 1193 187 91 1218	
Arrive On Green 0.50 0.50 0.16 0.16 0.39	
Sat Flow, veh/h 703 1870 1585 722 1870 1585 486 3077 483 417 314	
Grp Volume(v), veh/h 120 704 31 107 652 112 78 655 661 134 575	
Grp Sat Flow(s),veh/h/ln 703 1870 1585 722 1870 1585 486 1777 1783 417 1777	
Q Serve(g_s), s 15.2 27.3 0.9 13.1 29.6 5.4 8.5 32.2 32.5 2.4 26.4	
Cycle Q Clear(g_c), s 44.8 27.3 0.9 40.4 29.6 5.4 34.9 32.2 32.5 34.9 26.4	
Prop In Lane 1.00 1.00 1.00 1.00 0.27 1.00	0.24
Lane Grp Cap(c), veh/h 198 931 789 221 931 789 126 689 692 91 689	
V/C Ratio(X) 0.60 0.76 0.04 0.49 0.70 0.14 0.62 0.95 0.96 1.47 0.83	
Avail Cap(c_a), veh/h 198 931 789 221 931 789 126 689 692 91 689 Value 100	
HCM Platoon Ratio 1.00 1.00 1.00 0.33 0.33 1.00 1.00 1.00	
Upstream Filter(I) 1.00 1.00 0.67 0.67 0.67 0.27 0.27 1.00 1.00	
Uniform Delay (d), s/veh 37.5 18.2 11.6 49.2 31.3 21.2 42.5 26.7 26.8 44.8 24.5	
Incr Delay (d2), s/veh 12.9 5.7 0.1 5.0 3.0 0.3 6.1 9.5 10.1 260.3 11.4	
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
%ile BackOfQ(50%),veh/ln 3.3 12.1 0.3 2.8 15.4 2.0 1.9 14.5 14.7 8.6 12.5	12.7
Unsig. Movement Delay, s/veh	26.4
LnGrp Delay(d),s/veh 50.4 23.9 11.7 54.2 34.2 21.4 48.6 36.2 36.9 305.1 36.4 LnGrp LOS D C B D C C D D F E	
Approach Vol, veh/h 855 871 1394 1290 Approach Vol, veh/h 855 871 1394 1290	
Approach Delay, s/veh 27.2 35.0 37.2 64.3	
Approach LOS C D D E	
Timer - Assigned Phs 2 4 6 8	
Phs Duration (G+Y+Rc), s 40.0 50.0 40.0 50.0	
Change Period (Y+Rc), s 5.1 * 5.2 5.1 * 5.2	
Max Green Setting (Gmax), s 34.9 * 45 34.9 * 45	
Max Q Clear Time (g_c+l1), s 36.9 42.4 36.9 46.8	
Green Ext Time (p_c), s 0.0 1.3 0.0 0.0	
Intersection Summary	
HCM 6th Ctrl Delay 42.8	
HCM 6th LOS D	

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

02/08/2021

	≯	-	*	•	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	††	1	<u> </u>	- ††	1	ሻ	††	1	ካካ	≜ ⊅	
Traffic Volume (veh/h)	306	1088	171	146	990	209	295	832	262	353	476	308
Future Volume (veh/h)	306	1088	171	146	990	209	295	832	262	353	476	308
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	(0-0	No	10-0		No	10-0	(No		(0=0	No	10-0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	333	1183	72	159	1076	113	321	904	240	384	517	220
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	170	1140	508	161	1140	508	338	1262	642	346	621	263
Arrive On Green	0.05	0.32	0.32	0.02	0.11	0.11	0.19	0.36	0.36	0.10	0.26	0.26
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2431	1030
Grp Volume(v), veh/h	333	1183	72	159	1076	113	321	904	240	384	377	360
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1685
Q Serve(g_s), s	5.0	32.1	1.8	5.0	30.1	6.5	17.8	22.0	10.6	10.0	20.1	20.2
Cycle Q Clear(g_c), s	5.0	32.1	1.8	5.0	30.1	6.5	17.8	22.0	10.6	10.0	20.1	20.2
Prop In Lane	1.00	4440	1.00	1.00	4440	1.00	1.00	4000	1.00	1.00	450	0.61
Lane Grp Cap(c), veh/h	170	1140	508	161	1140	508	338	1262	642	346	453	430
V/C Ratio(X)	1.95	1.04	0.14	0.99	0.94	0.22	0.95	0.72	0.37	1.11	0.83	0.84
Avail Cap(c_a), veh/h	170	1140	508	161	1140	508	338	1279	650	346	498	472
HCM Platoon Ratio	1.00	1.00	1.00	0.33 0.44	0.33 0.44	0.33 0.44	1.00	1.00	1.00 1.00	1.00 0.47	1.00 0.47	1.00
Upstream Filter(I)	1.00 31.9	1.00 34.0	1.00 7.8	0.44 31.2	43.8	33.3	1.00 40.0	1.00 27.9	20.8	45.0	35.2	0.47 35.3
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	449.5	36.9	7.0 0.6	43.5	43.0 8.7	0.4	40.0 35.5	27.9	20.0 0.8	45.0 68.0	55.2 6.3	35.3 6.9
Initial Q Delay(d3),s/veh	449.5 0.0	0.0	0.0	43.5	0.7	0.4	0.0	0.0	0.0	0.0	0.0	0.9
%ile BackOfQ(50%),veh/ln	23.0	19.1	1.2	3.4	15.6	2.6	10.9	9.4	3.9	7.5	9.2	8.9
Unsig. Movement Delay, s/veh		19.1	1.2	5.4	15.0	2.0	10.9	9.4	5.9	1.5	9.2	0.9
LnGrp Delay(d),s/veh	481.4	70.9	8.4	74.6	52.5	33.7	75.5	30.3	21.6	113.0	41.5	42.1
LnGrp LOS	401.4 F	70.9 F	0.4 A	74.0 E	J2.J D	55.7 C	73.5 E	50.5 C	21.0 C	F	41.5 D	42.1 D
Approach Vol, veh/h	1	1588	<u></u>	<u> </u>	1348	0	<u> </u>	1465	0	1	1121	
Approach Delay, s/veh		154.1			53.5			38.8			66.2	
Approach LOS		-			55.5 D			50.0 D			00.2 E	
		F									E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	37.5	14.0	40.5	8.0	37.5	24.0	30.5				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+l1), s	7.0	32.1	12.0	24.0	7.0	34.1	19.8	22.2				
Green Ext Time (p_c), s	0.0	0.0	0.0	8.2	0.0	0.0	0.0	3.3				
Intersection Summary												
HCM 6th Ctrl Delay			81.1									
HCM 6th LOS			F									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

09/29/2020	
------------	--

	٨	+	*	*	ł	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	1	ሻ	†	1	ሻ	† Ъ		٦	↑ ⊅	
Traffic Volume (veh/h)	136	763	79	96	563	120	139	826	170	81	486	132
Future Volume (veh/h)	136	763	79	96	563	120	139	826	170	81	486	132
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1070	No	4070	1070	No	1070	1070	No	1070	1070	No	1070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	148	829	73	104	612	103	151	898	164	88	528	114
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	225	860	729	92	860	729	326	1314	240	185	1274	274
Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	736	1870	1585	618	1870	1585	787	3001	548	531	2909	625
Grp Volume(v), veh/h	148	829	73	104	612	103	151	532	530	88	322	320
Grp Sat Flow(s),veh/h/ln	736	1870	1585	618	1870	1585	787	1777	1772	531	1777	1758
Q Serve(g_s), s	17.8	39.6	3.6	1.8	23.6	3.4	14.7	21.6	21.6	14.3	11.2	11.3
Cycle Q Clear(g_c), s	41.4	39.6	3.6	41.4	23.6	3.4	26.0	21.6	21.6	36.0	11.2	11.3
Prop In Lane	1.00	000	1.00	1.00	000	1.00	1.00	770	0.31	1.00	770	0.36
Lane Grp Cap(c), veh/h	225	860	729	92	860	729	326	778	776	185	778	770
V/C Ratio(X)	0.66	0.96	0.10	1.13	0.71	0.14	0.46	0.68	0.68	0.48	0.41	0.42
Avail Cap(c_a), veh/h	225	860	729	92	860	729	326	778	776	185	778	770
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.15	0.15	0.15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.2 2.3	37.4 6.1	22.1	44.9	19.5	14.0	26.3 4.7	20.3 4.8	20.3	34.7	17.4	17.4
Incr Delay (d2), s/veh	2.3 0.0	0.1	0.0 0.0	132.7 0.0	5.0 0.0	0.4 0.0	4.7	4.0 0.0	4.9 0.0	8.5 0.0	1.6 0.0	1.7 0.0
Initial Q Delay(d3),s/veh	3.7	21.0	1.3	0.0 5.4	10.6	1.2	3.0	9.2	9.1	2.2	4.5	4.5
%ile BackOfQ(50%),veh/In Unsig. Movement Delay, s/veh		21.0	1.3	0.4	10.0	1.2	3.0	9.2	9.1	۷.۷	4.5	4.0
LnGrp Delay(d),s/veh	52.4	43.5	22.2	177.6	24.5	14.4	31.0	25.1	25.2	43.2	19.0	19.1
LnGrp LOS	52.4 D	43.5 D	22.2 C	F	24.5 C	14.4 B	51.0 C	20.1 C	25.2 C	43.2 D	19.0 B	19.1 B
Approach Vol, veh/h	<u> </u>	1050	0	1	819	D	0	1213	0	U	730	
Approach Delay, s/veh		43.3			42.7			25.9			21.9	
					42.7 D							
Approach LOS		D			D			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+l1), s		43.4		38.0		43.4		28.0				
Green Ext Time (p_c), s		0.0		0.7		0.0		5.7				
Intersection Summary												
HCM 6th Ctrl Delay			33.5									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

2.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्स	1		र्भ	1		đ þ			-۠	1	
Traffic Vol, veh/h	4	2	23	6	2	91	31	1041	19	35	604	10	
Future Vol, veh/h	4	2	23	6	2	91	31	1041	19	35	604	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	2	25	7	2	99	34	1132	21	38	657	11	

Major/Minor	Minor2		1	Minor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1368	1954	329	1617	1955	577	668	0	0	1153	0	0	
Stage 1	733	733	-	1211	1211	-	-	-	-	-	-	-	
Stage 2	635	1221	-	406	744	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	106	63	667	69	63	460	918	-	-	602	-	-	
Stage 1	378	424	-	193	253	-	-	-	-	-	-	-	
Stage 2	433	251	-	593	420	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	69	51	667	55	51	460	918	-	-	602	-	-	
Mov Cap-2 Maneuver	69	51	-	55	51	-	-	-	-	-	-	-	
Stage 1	339	381	-	173	227	-	-	-	-	-	-	-	
Stage 2	302	225	-	510	378	-	-	-	-	-	-	-	
Annroach	FR			WR			NR			SB			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	22.8	20.6	0.6	1.1	
HCM LOS	С	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	NBLn1\	WBLn2	SBL	SBT	SBR	
Capacity (veh/h)	918	-	-	62	667	54	460	602	-	-	
HCM Lane V/C Ratio	0.037	-	-	0.105	0.037	0.161	0.215	0.063	-	-	
HCM Control Delay (s)	9.1	0.4	-	69.8	10.6	84.1	15	11.4	0.5	-	
HCM Lane LOS	А	А	-	F	В	F	С	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.3	0.1	0.5	0.8	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

09/29/202	0
-----------	---

	٨	+	1	4	+	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	- ++	1	۳.	- ++	1	٦	f,		ኘኘ	↑	7
Traffic Volume (veh/h)	244	894	181	32	967	296	101	192	14	244	153	194
Future Volume (veh/h)	244	894	181	32	967	296	101	192	14	244	153	194
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	265	972	145	35	1051	220	110	209	13	265	166	200
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h Arrive On Green	292	1791 0.17	799 0.17	200 0.36	1294 0.36	577 0.36	246 0.23	403 0.23	25	342 0.10	727 0.39	775 0.39
	0.03 1781	3554	1585	0.36 504	3554	1585	1016	0.23 1742	0.23 108	3456	1870	1585
Sat Flow, veh/h												
Grp Volume(v), veh/h	265	972	145	35	1051	220	110	0	222	265 1728	166	200
Grp Sat Flow(s),veh/h/ln	1781	1777 25.1	1585 7.9	504 5.6	1777 26.7	1585 6.9	1016	0.0	1851 10.5	7.5	1870	1585
Q Serve(g_s), s Cycle Q Clear(g_c), s	8.7 8.7	25.1	7.9	5.6 16.6	26.7	6.9	10.1 16.0	0.0	10.5	7.5	6.0 6.0	7.4 7.4
Prop In Lane	1.00	20.1	1.00	1.00	20.7	1.00	1.00	0.0	0.06	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	292	1791	799	200	1294	577	246	0	428	342	727	775
V/C Ratio(X)	0.91	0.54	0.18	0.18	0.81	0.38	0.45	0.00	0.52	0.77	0.23	0.26
Avail Cap(c_a), veh/h	292	1791	799	200	1294	577	246	0.00	428	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.31	0.31	0.31	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.9	31.1	24.0	29.9	28.7	10.7	38.5	0.0	33.6	44.0	20.5	14.9
Incr Delay (d2), s/veh	12.2	0.4	0.2	1.9	5.6	1.9	5.8	0.0	4.5	4.1	0.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.8	11.9	3.1	0.8	11.9	3.8	2.8	0.0	5.1	3.3	2.5	2.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	36.1	31.5	24.1	31.9	34.4	12.6	44.3	0.0	38.1	48.0	20.6	15.1
LnGrp LOS	D	С	С	С	С	В	D	А	D	D	С	В
Approach Vol, veh/h		1382			1306			332			631	
Approach Delay, s/veh		31.6			30.6			40.1			30.4	
Approach LOS		С			С			D			С	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	41.2		44.8		55.2	15.8	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+I1), s	10.7	28.7		9.4		27.1	9.5	18.0				
Green Ext Time (p_c), s	0.0	3.0		1.6		7.3	0.4	0.7				
Intersection Summary												
HCM 6th Ctrl Delay			31.8									
HCM 6th LOS			С									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

09/29/2020

	۶	+	*	4	ł	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	٦	†	1	٦	↑ ĵ≽		٦	† 1>	
Traffic Volume (veh/h)	96	646	56	90	578	104	74	890	207	146	808	149
Future Volume (veh/h)	96	646	56	90	578	104	74	890	207	146	808	149
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	(No	10-0	10-0	No	(10-0	No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	104	702	44	98	628	92	80	967	200	159	878	144
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	213	931	789	220	931	789	158	1137	235	121	1185	194
Arrive On Green	0.50	0.50	0.50	0.16	0.16	0.16	0.39	0.39	0.39	0.39	0.39	0.39
Sat Flow, veh/h	732	1870	1585	715	1870	1585	552	2933	606	481	3056	501
Grp Volume(v), veh/h	104	702	44	98	628	92	80	585	582	159	510	512
Grp Sat Flow(s),veh/h/ln	732	1870	1585	715	1870	1585	552	1777	1761	481	1777	1780
Q Serve(g_s), s	12.2	27.2	1.3	12.1	28.4	4.5	12.7	27.1	27.2	7.7	22.2	22.2
Cycle Q Clear(g_c), s	40.6	27.2	1.3	39.2	28.4	4.5	34.9	27.1	27.2	34.9	22.2	22.2
Prop In Lane	1.00	001	1.00	1.00	004	1.00	1.00		0.34	1.00		0.28
Lane Grp Cap(c), veh/h	213	931	789	220	931	789	158	689	683	121	689	690
V/C Ratio(X)	0.49	0.75	0.06	0.45	0.67	0.12	0.51	0.85	0.85	1.31	0.74	0.74
Avail Cap(c_a), veh/h	213	931	789	220	931	789	158	689	683	121	689	690
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.67	0.67	0.67	0.55	0.55	0.55	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.1	18.2	11.7	48.6	30.8	20.7	38.8	25.2	25.2	43.7	23.7	23.7
Incr Delay (d2), s/veh	7.8	5.6	0.1	4.3	2.6	0.2	6.3	7.3	7.5	186.6	7.0	7.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.6	12.1	0.5	2.6	14.7	1.6	2.0	12.0	12.0	8.9	10.1	10.1
Unsig. Movement Delay, s/veh	42.8	23.8	11.8	52.9	33.4	20.9	45.1	32.5	32.7	230.2	30.7	30.7
LnGrp Delay(d),s/veh LnGrp LOS	42.0 D	23.0 C	B	52.9 D	55.4 C	20.9 C	45.1 D	32.5 C	32.1 C	230.2 F	30.7 C	30.7 C
	D		D	D	818	U	U	1247	0	F		
Approach Vol, veh/h		850 25.5			34.3			33.4			1181 57.6	
Approach Delay, s/veh		25.5 C			34.3 C			33.4 C				
Approach LOS					U						E	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0				
Change Period (Y+Rc), s		5.1		* 5.2		5.1		* 5.2				
Max Green Setting (Gmax), s		34.9		* 45		34.9		* 45				
Max Q Clear Time (g_c+l1), s		36.9		41.2		36.9		42.6				_
Green Ext Time (p_c), s		0.0		1.7		0.0		1.2				
Intersection Summary												
HCM 6th Ctrl Delay			38.9									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

09/29/2020

	۶	-	7	•	+	•	1	t	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	† †	1	۲.	- ++	1	٦	††	1	ካካ	† ‡	
Traffic Volume (veh/h)	205	1031	160	137	971	160	281	860	192	320	463	266
Future Volume (veh/h)	205	1031	160	137	971	160	281	860	192	320	463	266
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	1070	1070	No	1070	4070	No	1070	1070	No	1070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	223	1121	61	149	1055	60	305	935	163	348	503	199
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	180	1173	523	171	1173	523	335	1229	628	346	618	243
Arrive On Green	0.05	0.33	0.33	0.02	0.11	0.11	0.19	0.35	0.35	0.10	0.25	0.25
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2491	980
Grp Volume(v), veh/h	223	1121	61	149	1055	60	305	935	163	348	358	344
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1694
Q Serve(g_s), s	5.0	30.9	1.5	5.0	29.3	3.4	16.8	23.4	6.9	10.0	19.0	19.2
Cycle Q Clear(g_c), s	5.0	30.9	1.5	5.0	29.3	3.4	16.8	23.4	6.9	10.0	19.0	19.2
Prop In Lane	1.00	1170	1.00	1.00	4.470	1.00	1.00	(000	1.00	1.00		0.58
Lane Grp Cap(c), veh/h	180	1173	523	171	1173	523	335	1229	628	346	441	420
V/C Ratio(X)	1.24	0.96	0.12	0.87	0.90	0.11	0.91	0.76	0.26	1.01	0.81	0.82
Avail Cap(c_a), veh/h	180	1173	523	171	1173	523	338	1279	650	346	498	474
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.58	0.58	0.58	1.00	1.00	1.00	0.63	0.63	0.63
Uniform Delay (d), s/veh	32.2	32.8	7.4	29.2	42.9	31.4	39.8	29.0	20.3	45.0	35.4	35.5
Incr Delay (d2), s/veh	146.7	17.6	0.5	23.3	6.9	0.3	27.5	3.2	0.5	40.2	7.2	7.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	9.3	15.6	1.0	3.5	15.0	1.3	9.7	10.1	0.1	6.1	8.9	8.6
Unsig. Movement Delay, s/veh		50.4	7.9	52.5	40.0	31.6	67.0	20.0	20.0	85.2	40.6	10.0
LnGrp Delay(d),s/veh	178.9 F	50.4 D		52.5 D	49.8 D	31.0 C	67.3 E	32.2 C	20.8 C	65.2 F	42.6 D	43.3
LnGrp LOS	<u> </u>		A	U		U	<u> </u>		U	<u> </u>		<u> </u>
Approach Vol, veh/h		1405			1264			1403			1050	
Approach Delay, s/veh		68.9			49.3			38.5			57.0	
Approach LOS		E			D			D			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	38.4	14.0	39.6	8.0	38.4	23.8	29.8				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+l1), s	7.0	31.3	12.0	25.4	7.0	32.9	18.8	21.2				
Green Ext Time (p_c), s	0.0	0.2	0.0	7.3	0.0	0.0	0.0	3.6				
Intersection Summary												
HCM 6th Ctrl Delay			53.3									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

10/28/202	20
-----------	----

	٨	+	*	1	ł	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	5	†	1	٦	↑ ĵ≽		٦	† ‡	
Traffic Volume (veh/h)	140	786	81	99	580	124	143	885	175	83	548	136
Future Volume (veh/h)	140	786	81	99	580	124	143	885	175	83	548	136
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	854	75	108	630	107	155	962	170	90	596	122
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	214	860	729	82	860	729	296	1321	233	167	1287	263
Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	721	1870	1585	602	1870	1585	734	3018	533	497	2939	600
Grp Volume(v), veh/h	152	854	75	108	630	107	155	566	566	90	360	358
Grp Sat Flow(s),veh/h/ln	721	1870	1585	602	1870	1585	734	1777	1774	497	1777	1762
Q Serve(g_s), s	16.7	41.0	3.7	0.4	24.7	3.5	17.0	23.7	23.7	15.7	12.8	12.9
Cycle Q Clear(g_c), s	41.4	41.0	3.7	41.4	24.7	3.5	29.9	23.7	23.7	39.4	12.8	12.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.30	1.00		0.34
Lane Grp Cap(c), veh/h	214	860	729	82	860	729	296	778	777	167	778	772
V/C Ratio(X)	0.71	0.99	0.10	1.31	0.73	0.15	0.52	0.73	0.73	0.54	0.46	0.46
Avail Cap(c_a), veh/h	214	860	729	82	860	729	296	778	777	167	778	772
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.09	0.09	0.09	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	51.5	38.0	22.2	45.0	19.8	14.1	28.4	20.9	20.9	37.4	17.8	17.9
Incr Delay (d2), s/veh	1.8	7.7	0.0	203.1	5.5	0.4	6.5	5.9	5.9	12.0	2.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.8	22.1	1.3	6.5	11.2	1.3	3.3	10.2	10.2	2.5	5.2	5.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	53.3	45.7	22.2	248.1	25.3	14.5	34.9	26.8	26.8	49.4	19.8	19.9
LnGrp LOS	D	D	С	F	С	В	С	С	С	D	В	<u> </u>
Approach Vol, veh/h		1081			845			1287			808	
Approach Delay, s/veh		45.1			52.4			27.8			23.1	
Approach LOS		D			D			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+l1), s		43.4		41.4		43.4		31.9				
Green Ext Time (p_c), s		0.0		0.0		0.0		4.5				
Intersection Summary												
HCM 6th Ctrl Delay			36.7									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

10/28/2020

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ŧ	1		ŧ	1		đ þ			- € ↑	1	
Traffic Vol, veh/h	4	2	24	6	2	94	32	1107	20	36	669	10	
Future Vol, veh/h	4	2	24	6	2	94	32	1107	20	36	669	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	2	26	7	2	102	35	1203	22	39	727	11	

Major/Minor	Minor2		ľ	Minor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1478	2100	364	1727	2100	613	738	0	0	1225	0	0	
Stage 1	805	805	-	1284	1284	-	-	-	-	-	-	-	
Stage 2	673	1295	-	443	816	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	88	51	633	57	51	435	864	-	-	565	-	-	
Stage 1	342	393	-	174	234	-	-	-	-	-	-	-	
Stage 2	411	231	-	564	389	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	- 53	39	633	43	39	435	864	-	-	565	-	-	
Mov Cap-2 Maneuver	- 53	39	-	43	39	-	-	-	-	-	-	-	
Stage 1	298	347	-	152	204	-	-	-	-	-	-	-	
Stage 2	271	201	-	474	343	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	27.4	23.3	0.8	1.2	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	VBLn1\	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	864	-	-	47	633	42	435	565	-	-	
HCM Lane V/C Ratio	0.04	-	-	0.139	0.041	0.207	0.235	0.069	-	-	
HCM Control Delay (s)	9.3	0.6	-	93.6	10.9	111.8	15.8	11.8	0.6	-	
HCM Lane LOS	А	А	-	F	В	F	С	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0.7	0.9	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

10/28/202	0
-----------	---

	۶	+	1	4	Ļ	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	- ++	1	٦	††	1	ሻ	ţ,		ኘኘ	†	1
Traffic Volume (veh/h)	285	1055	186	33	1181	305	104	198	14	251	158	247
Future Volume (veh/h)	285	1055	186	33	1181	305	104	198	14	251	158	247
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	(10-0	No		(No	10-0	10-0	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	310	1147	149	36	1284	230	113	215	13	273	172	257
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	250	1783	795	157	1286	573	234	403	24	350	732	779
Arrive On Green	0.03	0.17	0.17	0.36	0.36	0.36	0.23	0.23	0.23	0.10	0.39	0.39
Sat Flow, veh/h	1781	3554	1585	425	3554	1585	959	1746	106	3456	1870	1585
Grp Volume(v), veh/h	310	1147	149	36	1284	230	113	0	228	273	172	257
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	425	1777	1585	959	0	1851	1728	1870	1585
Q Serve(g_s), s	10.0	30.1	8.1	7.4	36.1	7.3	11.1	0.0	10.8	7.7	6.2	9.8
Cycle Q Clear(g_c), s	10.0	30.1	8.1	23.5	36.1	7.3	17.3	0.0	10.8	7.7	6.2	9.8
Prop In Lane	1.00	1700	1.00	1.00	1000	1.00	1.00	•	0.06	1.00		1.00
Lane Grp Cap(c), veh/h	250	1783	795	157	1286	573	234	0	428	350	732	779
V/C Ratio(X)	1.24	0.64	0.19	0.23	1.00	0.40	0.48	0.00	0.53	0.78	0.24	0.33
Avail Cap(c_a), veh/h	250	1783	795	157	1286	573	234	0	428	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.16	0.16	0.16	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.0	33.4	24.2	34.9	31.9	10.8	39.1	0.0	33.7	43.9	20.4	15.4
Incr Delay (d2), s/veh	112.9 0.0	0.3 0.0	0.1 0.0	3.4	24.8 0.0	2.1 0.0	6.9 0.0	0.0 0.0	4.7 0.0	4.5 0.0	0.2 0.0	0.2 0.0
Initial Q Delay(d3),s/veh	14.4	14.3	3.2	0.0 0.9			3.0	0.0	5.2	3.4	2.6	3.4
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		14.3	J.Z	0.9	19.1	4.0	3.0	0.0	J.Z	3.4	2.0	3.4
LnGrp Delay(d),s/veh	144.8	33.7	24.2	38.3	56.7	12.9	46.1	0.0	38.4	48.4	20.6	15.7
LnGrp LOS	144.0 F	55.7 C	24.2 C	50.5 D	50.7 E	12.9 B	40.1 D	0.0 A	50.4 D	40.4 D	20.0 C	15.7 B
	1	1606	0	U	1550	<u> </u>	<u> </u>	341	U	U	702	
Approach Vol, veh/h Approach Delay, s/veh		54.2			49.8			41.0			29.6	
Approach LOS		54.2 D			49.0 D			41.0 D			29.0 C	
					D						U	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	41.0		45.0		55.0	16.0	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+I1), s	12.0	38.1		11.8		32.1	9.7	19.3				
Green Ext Time (p_c), s	0.0	0.0		1.8		7.5	0.4	0.6				
Intersection Summary												
HCM 6th Ctrl Delay			47.4									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

10/28/202	20
-----------	----

	۶	-	7	•	+	*	1	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	٦	†	1	٦	† Ъ		۳.	† Ъ	
Traffic Volume (veh/h)	99	666	58	93	596	107	76	1001	213	150	952	154
Future Volume (veh/h)	99	666	58	93	596	107	76	1001	213	150	952	154
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	108	724	47	101	648	102	83	1088	210	163	1035	152
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	202	931	789	206	931	789	119	1153	222	94	1206	177
Arrive On Green	0.50 712	0.50	0.50	0.16 698	0.16	0.16	0.39	0.39	0.39 572	0.39 425	0.39	0.39
Sat Flow, veh/h		1870	1585		1870	1585	472	2973			3109	456
Grp Volume(v), veh/h	108	724	47	101	648	102	83	649	649	163	591	596
Grp Sat Flow(s),veh/h/ln	712	1870	1585	698	1870	1585	472	1777	1767	425	1777	1788
Q Serve(g_s), s	13.3	28.5	1.4 1.4	12.9	29.4	4.9	7.4	31.7	32.0	2.9	27.5	27.5
Cycle Q Clear(g_c), s	42.8 1.00	28.5	1.4	41.4 1.00	29.4	4.9 1.00	34.9 1.00	31.7	32.0 0.32	34.9 1.00	27.5	27.5 0.26
Prop In Lane Lane Grp Cap(c), veh/h	202	931	789	206	931	789	119	689	685	94	689	693
V/C Ratio(X)	0.54	0.78	0.06	0.49	0.70	0.13	0.70	0.94	0.95	94 1.74	0.86	0.86
Avail Cap(c_a), veh/h	202	931	789	206	931	789	119	689	685	94	689	693
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.62	0.62	0.62	0.39	0.39	0.39	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.5	18.5	11.7	50.3	31.2	21.0	43.3	26.6	26.7	44.8	25.3	25.3
Incr Delay (d2), s/veh	9.8	6.4	0.1	5.1	2.7	0.2	12.6	11.4	12.2	373.0	13.1	13.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.8	12.8	0.5	2.7	15.2	1.8	2.2	14.6	14.8	11.8	13.3	13.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	46.3	24.9	11.8	55.4	33.9	21.2	55.9	38.0	38.8	417.8	38.3	38.4
LnGrp LOS	D	С	В	E	С	С	E	D	D	F	D	D
Approach Vol, veh/h		879			851			1381			1350	
Approach Delay, s/veh		26.8			34.9			39.5			84.2	
Approach LOS		С			С			D			F	
Timer - Assigned Phs		2		4	-	6		8			-	
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0				
Change Period (Y+Rc), s		40.0 5.1		* 5.2		40.0 5.1		* 5.2				
Max Green Setting (Gmax), s		34.9		* 45		34.9		* 45				
Max Q Clear Time (g_c+I1), s		36.9		43.4		36.9		44.8				
Green Ext Time (p_c), s		0.0		0.8		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			49.6									
HCM 6th LOS			49.0 D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

10/28/2020

	۶	-	7	•	+	*	1	1	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	††	1	۲.	††	1	٦	- ++	1	ኘኘ	† ‡	
Traffic Volume (veh/h)	247	1093	165	149	1051	174	290	922	208	341	502	274
Future Volume (veh/h)	247	1093	165	149	1051	174	290	922	208	341	502	274
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	268	1188	65	162	1142	75	315	1002	181	371	546	218
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	1124	501	161	1124	501	338	1279	650	346	645	257
Arrive On Green	0.05	0.32	0.32	0.02	0.10	0.10	0.19	0.36	0.36	0.10	0.26	0.26
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2482	988
Grp Volume(v), veh/h	268	1188	65	162	1142	75	315	1002	181	371	390	374
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1693
Q Serve(g_s), s	5.0	31.6	1.7	5.0	31.6	4.3	17.4	25.1	7.6	10.0	20.8	21.0
Cycle Q Clear(g_c), s	5.0	31.6	1.7	5.0	31.6	4.3	17.4	25.1	7.6	10.0	20.8	21.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.58
Lane Grp Cap(c), veh/h	161	1124	501	161	1124	501	338	1279	650	346	462	440
V/C Ratio(X)	1.66	1.06	0.13	1.01	1.02	0.15	0.93	0.78	0.28	1.07	0.85	0.85
Avail Cap(c_a), veh/h	161	1124	501	161	1124	501	338	1279	650	346	498	474
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.28	0.28	0.28	1.00	1.00	1.00	0.45	0.45	0.45
Uniform Delay (d), s/veh	31.1	34.2	7.9	31.7	44.8	32.6	39.9	28.5	19.7	45.0	35.1	35.2
Incr Delay (d2), s/veh	324.5	43.3	0.5	39.0	18.5	0.2	31.6	3.8	0.5	54.1	6.7	7.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	16.0	19.8	1.1	3.2	17.8	1.7	10.4	10.9	2.8	6.8	9.6	9.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	355.7	77.5	8.5	70.7	63.2	32.7	71.5	32.3	20.2	99.1	41.9	42.4
LnGrp LOS	F	F	A	F	F	C	E	C	C	F	D	D
Approach Vol, veh/h	· · ·	1521			1379			1498			1135	
Approach Delay, s/veh		123.6			62.5			39.1			60.7	
Approach LOS		F			02.0 E			D			E	
	4		0			0	7				L.	
Timer - Assigned Phs	1	2	3	4	5	6	7	21.0				
Phs Duration (G+Y+Rc), s	8.0	37.0	14.0	41.0	8.0	37.0	24.0	31.0 * 5				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5					
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+I1), s	7.0	33.6	12.0	27.1	7.0	33.6	19.4	23.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.0				
Intersection Summary												
HCM 6th Ctrl Delay			72.6									
HCM 6th LOS			E									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

02/08/2021	
------------	--

	≯	+	\rightarrow	4	ł	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑	1	- ሽ	↑	1	- ሽ	∱ }		- ኘ	∱ ⊅	
Traffic Volume (veh/h)	148	786	99	91	580	124	131	879	159	83	547	136
Future Volume (veh/h)	148	786	99	91	580	124	131	879	159	83	547	136
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	((No		(0=0	No	10-0	10-0	No	10-0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	161	854	92	99	630	107	142	955	156	90	595	122
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	214	860	729	82	860	729	296	1339	219	172	1286	263
Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	721	1870	1585	593	1870	1585	734	3058	499	507	2938	601
Grp Volume(v), veh/h	161	854	92	99	630	107	142	555	556	90	359	358
Grp Sat Flow(s),veh/h/ln	721	1870	1585	593	1870	1585	734	1777	1780	507	1777	1762
Q Serve(g_s), s	16.7	41.0	4.5	0.4	24.7	3.5	15.2	23.0	23.0	15.9	12.8	12.9
Cycle Q Clear(g_c), s	41.4	41.0	4.5	41.4	24.7	3.5	28.1	23.0	23.0	38.9	12.8	12.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.28	1.00		0.34
Lane Grp Cap(c), veh/h	214	860	729	82	860	729	296	778	779	172	778	771
V/C Ratio(X)	0.75	0.99	0.13	1.20	0.73	0.15	0.48	0.71	0.71	0.52	0.46	0.46
Avail Cap(c_a), veh/h	214	860	729	82	860	729	296	778	779	172	778	771
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.09	0.09	0.09	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	51.9	38.0	22.5	45.0	19.8	14.1	27.8	20.7	20.7	36.6	17.8	17.8
Incr Delay (d2), s/veh	2.3	7.7	0.0	163.2	5.5	0.4	5.5	5.5	5.5	10.8	2.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.0	22.1	1.7	5.5	11.2	1.3	3.0	9.8	9.8	2.4	5.2	5.2
Unsig. Movement Delay, s/veh		45 7		000.0	05.0					47.4	10.0	10.0
LnGrp Delay(d),s/veh	54.2	45.7	22.6	208.2	25.3	14.5	33.2	26.2	26.2	47.4	19.8	19.8
LnGrp LOS	D	D	С	F	C	В	С	C	С	D	B	B
Approach Vol, veh/h		1107			836			1253			807	
Approach Delay, s/veh		45.0			45.5			27.0			22.9	
Approach LOS		D			D			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+I1), s		43.4		40.9		43.4		30.1				
Green Ext Time (p_c), s		0.0		0.0		0.0		5.2				
Intersection Summary												
HCM 6th Ctrl Delay			35.0									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ર્ન	1		र्च	1		đ ĥ			-4 ↑	1	
Traffic Vol, veh/h	4	2	23	4	3	94	28	1065	16	36	674	10	
Future Vol, veh/h	4	2	23	4	3	94	28	1065	16	36	674	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	2	25	4	3	102	30	1158	17	39	733	11	

Major/Minor	Minor2		Ν	/linor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1452	2046	367	1673	2049	588	744	0	0	1175	0	0	
Stage 1	811	811	-	1227	1227	-	-	-	-	-	-	-	
Stage 2	641	1235	-	446	822	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	92	55	630	62	55	452	859	-	-	590	-	-	
Stage 1	339	391	-	189	249	-	-	-	-	-	-	-	
Stage 2	430	247	-	561	386	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	57	44	630	48	44	452	859	-	-	590	-	-	
Mov Cap-2 Maneuver	· 57	44	-	48	44	-	-	-	-	-	-	-	
Stage 1	305	347	-	170	224	-	-	-	-	-	-	-	
Stage 2	295	222	-	475	342	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	26.1	21	0.6	1.1	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1 E	EBLn2\	VBLn1\	WBLn2	SBL	SBT	SBR	
Capacity (veh/h)	859	-	-	52	630	46	452	590	-	-	
HCM Lane V/C Ratio	0.035	-	-	0.125	0.04	0.165	0.226	0.066	-	-	
HCM Control Delay (s)	9.3	0.4	-	83.9	11	98.2	15.3	11.5	0.6	-	
HCM Lane LOS	А	А	-	F	В	F	С	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0.5	0.9	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

02/08/2021

	≯	-	\mathbf{F}	•	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	††	1	<u> </u>	- ††	1	<u>۲</u>	ef 👘		ካካ	↑	1
Traffic Volume (veh/h)	302	1055	186	33	1181	304	104	196	14	274	155	347
Future Volume (veh/h)	302	1055	186	33	1181	304	104	196	14	274	155	347
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	328	1147	149	36	1284	228	113	213	13	298	168	366
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	250	1758	784	154	1260	562	221	403	25	375	745	790
Arrive On Green	0.03	0.16	0.16	0.35	0.35	0.35	0.23	0.23	0.23	0.11	0.40	0.40
Sat Flow, veh/h	1781	3554	1585	425	3554	1585	870	1745	106	3456	1870	1585
Grp Volume(v), veh/h	328	1147	149	36	1284	228	113	0	226	298	168	366
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	425	1777	1585	870	0	1851	1728	1870	1585
Q Serve(g_s), s	10.0	30.2	8.1	7.5	35.5	7.2	12.4	0.0	10.7	8.4	5.9	15.1
Cycle Q Clear(g_c), s	10.0	30.2	8.1	23.7	35.5	7.2	18.3	0.0	10.7	8.4	5.9	15.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.06	1.00		1.00
Lane Grp Cap(c), veh/h	250	1758	784	154	1260	562	221	0	428	375	745	790
V/C Ratio(X)	1.31	0.65	0.19	0.23	1.02	0.41	0.51	0.00	0.53	0.80	0.23	0.46
Avail Cap(c_a), veh/h	250	1758	784	154	1260	562	221	0	428	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.17	0.17	0.17	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.8	33.8	24.5	35.6	32.3	10.8	39.4	0.0	33.7	43.5	19.9	16.4
Incr Delay (d2), s/veh	145.1	0.3	0.1	3.5	30.2	2.2	8.2	0.0	4.6	5.9	0.2	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	14.6	14.4	3.2	0.9	19.8	4.0	3.1	0.0	5.2	3.8	2.5	5.1
Unsig. Movement Delay, s/veh		04.4	04.0	00.0	00 5	10.0	47.0	0.0	00.0	40.4	00.0	40.0
LnGrp Delay(d),s/veh	176.9	34.1	24.6	39.2	62.5	13.0	47.6	0.0	38.3	49.4	20.0	16.8
LnGrp LOS	F	С	С	D	F	В	D	A	D	D	C	B
Approach Vol, veh/h		1624			1548			339			832	
Approach Delay, s/veh		62.1			54.6			41.4			29.1	
Approach LOS		E			D			D			С	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	40.3		45.7		54.3	16.7	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+l1), s	12.0	37.5		17.1		32.2	10.4	20.3				
Green Ext Time (p_c), s	0.0	0.0		2.2		7.5	0.4	0.5				
Intersection Summary												
HCM 6th Ctrl Delay			51.5									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

02/08/2021

	≯	-	\mathbf{F}	∢	•	•	•	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ሽ	↑	1	- ሽ	<u>+</u>	1		≜ ⊅		<u> </u>	∱ ⊅_	
Traffic Volume (veh/h)	99	665	58	93	590	101	84	1067	233	156	953	154
Future Volume (veh/h)	99	665	58	93	590	101	84	1067	233	156	953	154
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	108	723	47	101	641	96	91	1160	230	170	1036	152
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 206	2 931	2 789	2 207	2 931	2 789	2 118	2 1147	2 226	2 80	2 1206	2 177
Cap, veh/h Arrive On Green	0.50	0.50	0.50	0.16	0.16	0.16	0.39	0.39	0.39	0.39	0.39	0.39
Sat Flow, veh/h	721	1870	1585	699	1870	1585	472	2959	583	389	3110	456
	108	723	47	101	641	96	91	694	696	170	591	430 597
Grp Volume(v), veh/h	721	1870	1585	699	1870	90 1585	472	1777	1765	389	1777	1788
Grp Sat Flow(s),veh/h/ln	13.1	28.5	1.4	12.8	29.1	4.6	7.3	34.9	34.9	0.0	27.5	27.6
Q Serve(g_s), s Cycle Q Clear(g_c), s	42.2	28.5	1.4	41.3	29.1	4.6	34.9	34.9	34.9	34.9	27.5	27.6
Prop In Lane	42.2	20.0	1.00	1.00	29.1	1.00	1.00	54.9	0.33	1.00	21.5	0.25
Lane Grp Cap(c), veh/h	206	931	789	207	931	789	118	689	685	80	689	693
V/C Ratio(X)	0.52	0.78	0.06	0.49	0.69	0.12	0.77	1.01	1.02	2.12	0.86	0.86
Avail Cap(c_a), veh/h	206	931	789	207	931	789	118	689	685	80	689	693
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.63	0.63	0.63	0.39	0.39	0.39	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.0	18.5	11.7	50.2	31.0	20.8	43.5	27.6	27.6	45.0	25.3	25.3
Incr Delay (d2), s/veh	9.2	6.3	0.1	5.1	2.6	0.2	17.0	23.0	25.9	545.7	13.1	13.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.8	12.8	0.5	2.7	15.0	1.7	2.5	18.1	18.6	13.9	13.3	13.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	45.3	24.8	11.8	55.3	33.7	21.0	60.4	50.6	53.4	590.7	38.4	38.5
LnGrp LOS	D	С	В	Е	С	С	E	F	F	F	D	D
Approach Vol, veh/h		878			838			1481			1358	
Approach Delay, s/veh		26.6			34.8			52.5			107.6	
Approach LOS		С			С			D			F	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0				
Change Period (Y+Rc), s		5.1		* 5.2		5.1		* 5.2				
Max Green Setting (Gmax), s		34.9		* 45		34.9		* 45				
Max Q Clear Time (g_c+I1), s		36.9		43.3		36.9		44.2				
Green Ext Time (p_c), s		0.0		0.8		0.0		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			60.7									
HCM 6th LOS			Е									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

02/08/2021

	۶	+	*	4	ł	*	<	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	††	1	<u> </u>	- ††	1	- ሽ	††	1	ካካ	≜ ⊅	
Traffic Volume (veh/h)	246	1093	165	164	1054	256	290	935	225	341	502	274
Future Volume (veh/h)	246	1093	165	164	1054	256	290	935	225	341	502	274
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00	(1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	1070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	267	1188	65	178	1146	164	315	1016	200	371	546	218
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	1124	501	161	1124	501	338	1279	650	346	645	257
Arrive On Green	0.05	0.32	0.32	0.02	0.10	0.10	0.19	0.36	0.36	0.10	0.26	0.26
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2482	988
Grp Volume(v), veh/h	267	1188	65	178	1146	164	315	1016	200	371	390	374
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1693
Q Serve(g_s), s	5.0	31.6	1.7	5.0	31.6	9.6	17.4	25.6	8.5	10.0	20.8	21.0
Cycle Q Clear(g_c), s	5.0	31.6	1.7	5.0	31.6	9.6	17.4	25.6	8.5	10.0	20.8	21.0
Prop In Lane	1.00	4404	1.00	1.00	4404	1.00	1.00	4070	1.00	1.00	400	0.58
Lane Grp Cap(c), veh/h	161	1124	501	161	1124	501	338	1279	650	346	462	440
V/C Ratio(X)	1.66	1.06	0.13	1.11	1.02	0.33	0.93	0.79	0.31	1.07	0.85	0.85
Avail Cap(c_a), veh/h	161	1124	501	161	1124	501	338	1279	650	346	498	474
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.31	0.31	0.31	1.00	1.00	1.00	0.45	0.45	0.45
Uniform Delay (d), s/veh	31.1	34.2	7.9	31.7 71.4	44.8	34.9 0.5	39.9 31.6	28.7 4.1	19.9 0.6	45.0 54.1	35.1 6.7	35.2
Incr Delay (d2), s/veh	321.9 0.0	43.3 0.0	0.5 0.0	0.0	20.2 0.0	0.5	0.0	4.1 0.0	0.0	0.0	0.0	7.3 0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	15.9	19.8	1.1	4.7	18.1	4.0	10.4	11.2	3.1	6.8	9.6	9.3
Unsig. Movement Delay, s/ver		19.0	1.1	4.7	10.1	4.0	10.4	11.2	J. I	0.0	9.0	9.5
LnGrp Delay(d),s/veh	353.0	77.5	8.5	103.1	65.0	35.5	71.5	32.8	20.5	99.1	41.9	42.4
LnGrp LOS	555.0 F	F	0.5 A	105.1 F	05.0 F	55.5 D	Γ1.5 Ε	52.0 C	20.5 C	55.1 F	41.9 D	42.4 D
Approach Vol, veh/h	- 1	1520		<u> </u>	1488		<u> </u>	1531	0	1	1135	
Approach Delay, s/veh		123.0			66.3			39.1			60.7	
Approach LOS		123.0 F			00.5 E			59.1 D			60.7 E	
											L	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	37.0	14.0	41.0	8.0	37.0	24.0	31.0				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+I1), s	7.0	33.6	12.0	27.6	7.0	33.6	19.4	23.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	6.4	0.0	0.0	0.0	3.0				
Intersection Summary												
HCM 6th Ctrl Delay			73.0									
HCM 6th LOS			E									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

02/08/2021

	۶	+	\mathbf{F}	4	+	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑	1	- ሽ	↑	1	- ሽ	∱ }		- ኘ	∱ ⊅	
Traffic Volume (veh/h)	165	786	107	94	580	124	160	882	165	83	549	136
Future Volume (veh/h)	165	786	107	94	580	124	160	882	165	83	549	136
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	1070	1070	No	1070	1070	No	1070	1070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	179	854	99	102	630	107	174	959	161	90	597	122
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	214	860	729	82	860	729	296	1333	224	170	1287	262
Arrive On Green	0.15 721	0.15 1870	0.15 1585	0.46 589	0.46 1870	0.46 1585	0.44 733	0.44 3044	0.44 511	0.44 503	0.44 2940	0.44
Sat Flow, veh/h												599
Grp Volume(v), veh/h	179	854	99	102	630	107	174	559	561	90	360	359
Grp Sat Flow(s),veh/h/ln	721	1870	1585	589	1870	1585	733	1777	1778	503	1777	1762
Q Serve(g_s), s	16.7 41.4	41.0	4.9 4.9	0.4 41.4	24.7	3.5 3.5	19.8 32.7	23.3 23.3	23.3 23.3	16.1 39.4	12.9 12.9	12.9 12.9
Cycle Q Clear(g_c), s Prop In Lane	41.4	41.0	4.9	41.4	24.7	3.5 1.00	32.7 1.00	23.3	23.3 0.29	39.4 1.00	12.9	0.34
Lane Grp Cap(c), veh/h	214	860	729	82	860	729	296	778	779	170	778	0.34 772
V/C Ratio(X)	0.84	0.99	0.14	1.24	0.73	0.15	0.59	0.72	0.72	0.53	0.46	0.46
Avail Cap(c_a), veh/h	214	860	729	82	860	729	296	778	779	170	778	772
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.09	0.09	0.09	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.6	38.0	22.7	45.0	19.8	14.1	29.4	20.8	20.8	36.9	17.8	17.9
Incr Delay (d2), s/veh	3.7	7.7	0.0	176.4	5.5	0.4	8.3	5.7	5.7	11.3	2.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	4.5	22.1	1.8	5.8	11.2	1.3	3.9	10.0	10.0	2.4	5.3	5.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	56.3	45.7	22.7	221.4	25.3	14.5	37.7	26.4	26.5	48.2	19.8	19.9
LnGrp LOS	E	D	С	F	С	В	D	С	С	D	В	В
Approach Vol, veh/h		1132			839			1294			809	
Approach Delay, s/veh		45.3			47.7			28.0			23.0	
Approach LOS		D			D			С			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+l1), s		43.4		41.4		43.4		34.7				
Green Ext Time (p_c), s		0.0		0.0		0.0		3.1				
Intersection Summary												
HCM 6th Ctrl Delay			35.9									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्च	1		र्भ	1		4î þ			-4†	1	
Traffic Vol, veh/h	4	2	23	4	3	94	28	1103	16	36	689	10	
Future Vol, veh/h	4	2	23	4	3	94	28	1103	16	36	689	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	2	25	4	3	102	30	1199	17	39	749	11	

Major/Minor	Minor2		N	Minor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1488	2103	375	1722	2106	608	760	0	0	1216	0	0	
Stage 1	827	827	-	1268	1268	-	-	-	-	-	-	-	
Stage 2	661	1276	-	454	838	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	86	51	623	57	51	439	848	-	-	569	-	-	
Stage 1	332	384	-	178	238	-	-	-	-	-	-	-	
Stage 2	418	236	-	555	380	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 52	40	623	44	40	439	848	-	-	569	-	-	
Mov Cap-2 Maneuver	· 52	40	-	44	40	-	-	-	-	-	-	-	
Stage 1	295	338	-	158	212	-	-	-	-	-	-	-	
Stage 2	281	210	-	466	335	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	28.1	22.2	0.7	1.1	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1 E	EBLn2V	NBLn1\	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	848	-	-	47	623	42	439	569	-	-	
HCM Lane V/C Ratio	0.036	-	-	0.139	0.04	0.181	0.233	0.069	-	-	
HCM Control Delay (s)	9.4	0.5	-	93.6	11	108.8	15.7	11.8	0.6	-	
HCM Lane LOS	А	А	-	F	В	F	С	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0.6	0.9	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

02/08/2021

	≯	-	*	∢	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	††	1	<u> </u>	- ††	1	ሻ	ef 👘		ካካ	↑	1
Traffic Volume (veh/h)	287	1055	186	33	1181	306	104	196	14	349	155	627
Future Volume (veh/h)	287	1055	186	33	1181	306	104	196	14	349	155	627
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00	(1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	312	1147	148	36	1284	231	113	213	13	379	168	671
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2 250	2 1679	2 749	2 143	2 1182	2 527	2 186	2 403	2 25	2 451	2 786	2 825
Cap, veh/h Arrive On Green	250	0.16	0.16	0.33	0.33	0.33	0.23	403 0.23	25 0.23	451 0.13	0.42	025 0.42
Sat Flow, veh/h	1781	3554	1585	426	3554	1585	655	1745	106	3456	1870	1585
	312	1147	148	36	1284	231	113	0	226	3450	168	671
Grp Volume(v), veh/h	1781	1777	1585	426	1204	1585	655	0	1851	1728	1870	1585
Grp Sat Flow(s),veh/h/ln Q Serve(g_s), s	10.0	30.5	8.1	420	33.3	7.3	17.2	0.0	10.7	10.7	5.7	35.2
Cycle Q Clear(g_c), s	10.0	30.5	8.1	24.2	33.3	7.3	22.9	0.0	10.7	10.7	5.7	35.2
Prop In Lane	1.00	50.5	1.00	1.00	55.5	1.00	1.00	0.0	0.06	1.00	5.7	1.00
Lane Grp Cap(c), veh/h	250	1679	749	143	1182	527	186	0	428	451	786	825
V/C Ratio(X)	1.25	0.68	0.20	0.25	1.09	0.44	0.61	0.00	0.53	0.84	0.21	0.81
Avail Cap(c_a), veh/h	250	1679	749	143	1182	527	186	0.00	428	518	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.16	0.16	0.16	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.2	35.1	25.7	37.8	33.4	10.8	41.2	0.0	33.7	42.5	18.5	19.9
Incr Delay (d2), s/veh	116.8	0.4	0.1	4.2	53.0	2.6	13.9	0.0	4.6	10.6	0.1	6.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.7	14.5	3.2	1.0	22.4	4.2	3.4	0.0	5.2	5.1	2.4	13.0
Unsig. Movement Delay, s/vel	ı											
LnGrp Delay(d),s/veh	148.0	35.5	25.8	42.0	86.3	13.5	55.2	0.0	38.3	53.1	18.6	26.2
LnGrp LOS	F	D	С	D	F	В	E	А	D	D	В	С
Approach Vol, veh/h		1607			1551			339			1218	
Approach Delay, s/veh		56.4			74.4			43.9			33.5	
Approach LOS		Е			E			D			С	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	38.1		47.9		52.1	18.9	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	* 5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	15.0	* 23				
Max Q Clear Time (g_c+l1), s	12.0	35.3		37.2		32.5	12.7	24.9				
Green Ext Time (p_c), s	0.0	0.0		1.7		7.4	0.3	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			55.5									
HCM 6th LOS			Е									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 4: Coldwater Canyon Ave & Moorpark St

02/08/2021

	≯	+	\mathbf{F}	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	1	- ሽ	↑	1	- ሽ	≜ ⊅		- ሽ	≜ ⊅	
Traffic Volume (veh/h)	99	667	58	93	593	127	101	1285	238	174	955	154
Future Volume (veh/h)	99	667	58	93	593	127	101	1285	238	174	955	154
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	10-0	10-0	No	10-0	(0=0	No	(No	(
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	108	725	47	101	645	124	110	1397	241	189	1038	152
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	201	931	789	205	931	789	118	1178	200	80	1206	176
Arrive On Green	0.50	0.50	0.50	0.16	0.16	0.16	0.39	0.39	0.39	0.39	0.39	0.39
Sat Flow, veh/h	700	1870	1585	698	1870	1585	471	3037	517	306	3110	455
Grp Volume(v), veh/h	108	725	47	101	645	124	110	809	829	189	592	598
Grp Sat Flow(s),veh/h/ln	700	1870	1585	698	1870	1585	471	1777	1777	306	1777	1788
Q Serve(g_s), s	13.6	28.6	1.4	12.9	29.3	6.0	7.3	34.9	34.9	0.0	27.6	27.6
Cycle Q Clear(g_c), s	42.9	28.6	1.4	41.5	29.3	6.0	34.9	34.9	34.9	34.9	27.6	27.6
Prop In Lane	1.00	004	1.00	1.00	024	1.00	1.00	<u> </u>	0.29	1.00	<u> </u>	0.25
Lane Grp Cap(c), veh/h	201	931	789	205	931	789	118	689 1.17	689	80	689	694
V/C Ratio(X)	0.54 201	0.78 931	0.06 789	0.49 205	0.69 931	0.16 789	0.93 118	689	1.20 689	2.36 80	0.86 689	0.86 694
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.55	0.59	0.55	0.29	0.29	0.29	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.4	18.5	11.7	50.4	31.1	21.4	43.8	27.6	27.6	45.0	25.3	25.3
Incr Delay (d2), s/veh	10.0	6.4	0.1	4.9	2.5	0.3	30.6	83.3	95.4	649.9	13.2	13.3
Initial Q Delay(d3),s/veh	0.0	0.4	0.0	4.5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	12.8	0.5	2.7	15.1	2.3	3.4	29.7	32.0	16.2	13.4	13.5
Unsig. Movement Delay, s/veh		12.0	0.0	2.1	10.1	2.0	0.4	20.1	02.0	10.2	10.4	10.0
LnGrp Delay(d),s/veh	46.4	24.9	11.8	55.2	33.6	21.7	74.3	110.9	122.9	694.9	38.5	38.6
LnGrp LOS	D	2 1.0 C	B	E	C	C	E	F	F	F	D	00.0 D
Approach Vol, veh/h		880			870	<u> </u>		1748	•		1379	
Approach Delay, s/veh		26.9			34.4			114.3			128.5	
Approach LOS		C			C			F			F	
				1	•	6		8				
Timer - Assigned Phs		2		50.0		6						
Phs Duration (G+Y+Rc), s		40.0		50.0		40.0		50.0 * 5.2				
Change Period (Y+Rc), s		5.1		* 5.2		5.1						
Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s		34.9 36.9		* 45 43.5		34.9 36.9		* 45 44.9				
		36.9 0.0		43.5 0.7		36.9 0.0		44.9 0.0				
Green Ext Time (p_c), s		0.0		0.7		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			88.3									
HCM 6th LOS			F									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 5: Coldwater Canyon Ave & Ventura Blvd

02/08/2021

	۶	-	\rightarrow	•	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	<u>††</u>	1	٦	- † †	1	٦	^	1	ሻሻ	↑ ĵ≽	
Traffic Volume (veh/h)	247	1094	165	172	1074	508	290	922	209	341	502	274
Future Volume (veh/h)	247	1094	165	172	1074	508	290	922	209	341	502	274
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	268	1189	65	187	1167	381	315	1002	182	371	546	218
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	161	1124	501	161	1124	501	338	1279	650	346	645	257
Arrive On Green	0.05	0.32	0.32	0.02	0.10	0.10	0.19	0.36	0.36	0.10	0.26	0.26
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2482	988
Grp Volume(v), veh/h	268	1189	65	187	1167	381	315	1002	182	371	390	374
Grp Sat Flow(s),veh/h/ln	1781	1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1693
Q Serve(g_s), s	5.0	31.6	1.7	5.0	31.6	23.4	17.4	25.1	7.7	10.0	20.8	21.0
Cycle Q Clear(g_c), s	5.0	31.6	1.7	5.0	31.6	23.4	17.4	25.1	7.7	10.0	20.8	21.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.58
Lane Grp Cap(c), veh/h	161	1124	501	161	1124	501	338	1279	650	346	462	440
V/C Ratio(X)	1.66	1.06	0.13	1.16	1.04	0.76	0.93	0.78	0.28	1.07	0.85	0.85
Avail Cap(c_a), veh/h	161	1124	501	161	1124	501	338	1279	650	346	498	474
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.23	0.23	0.23	1.00	1.00	1.00	0.44	0.44	0.44
Uniform Delay (d), s/veh	31.1	34.2	7.9	31.7	44.8	41.1	39.9	28.5	19.7	45.0	35.1	35.2
Incr Delay (d2), s/veh	324.5	43.6	0.5	87.8	24.4	2.6	31.6	3.8	0.5	53.7	6.6	7.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	16.0	19.9	1.1	5.4	18.8	10.2	10.4	10.9	2.8	6.8	9.6	9.2
Unsig. Movement Delay, s/veh		0	• -			40 -						10.0
LnGrp Delay(d),s/veh	355.7	77.8	8.5	119.5	69.2	43.7	71.5	32.3	20.2	98.7	41.7	42.3
LnGrp LOS	F	F	Α	F	F	D	E	С	С	F	D	D
Approach Vol, veh/h		1522			1735			1499			1135	
Approach Delay, s/veh		123.8			69.0			39.1			60.5	
Approach LOS		F			E			D			E	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.0	37.0	14.0	41.0	8.0	37.0	24.0	31.0				
Change Period (Y+Rc), s	3.0	5.4	4.0	* 5	3.0	5.4	* 5	* 5				
Max Green Setting (Gmax), s	5.0	31.6	10.0	* 36	5.0	31.6	* 19	* 28				
Max Q Clear Time (g_c+l1), s	7.0	33.6	12.0	27.1	7.0	33.6	19.4	23.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.0				
Intersection Summary												
HCM 6th Ctrl Delay			73.9									
HCM 6th LOS			E									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM 6th Signalized Intersection Summary 1: Whitsett Ave & Moorpark St

	٭	→	$\mathbf{\hat{z}}$	∢	+	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ሽ	↑	1	<u> </u>	<u>+</u>	1	<u> </u>	∱ î≽		- ሽ	∱ ⊅_	
Traffic Volume (veh/h)	168	786	107	95	580	124	127	879	158	83	549	136
Future Volume (veh/h)	168	786	107	95	580	124	127	879	158	83	549	136
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	1070	1070	No	4070	1070	No	4070	4070	No	4070
· ·	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	183	854	99	103	630	107	138	955	155	90	597	122
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	214	860	729	82	860	729	296	1340	217	173	1287	262
Arrive On Green	0.15	0.15	0.15	0.46	0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
Sat Flow, veh/h	721	1870	1585	589	1870	1585	733	3061	497	508	2940	599
Grp Volume(v), veh/h	183	854	99	103	630	107	138	554	556	90	360	359
Grp Sat Flow(s),veh/h/ln	721	1870	1585	589	1870	1585	733	1777	1781	508	1777	1762
Q Serve(g_s), s	16.7	41.0	4.9	0.4	24.7	3.5	14.7	22.9	23.0	15.8	12.9	12.9
Cycle Q Clear(g_c), s	41.4	41.0	4.9	41.4	24.7	3.5	27.7	22.9	23.0	38.8	12.9	12.9
Prop In Lane	1.00 214	860	1.00 729	1.00 82	000	1.00 729	1.00 296	770	0.28 780	1.00 173	770	0.34
Lane Grp Cap(c), veh/h V/C Ratio(X)	214 0.86	0.99	0.14	62 1.25	860 0.73	0.15	296 0.47	778 0.71	0.71	0.52	778 0.46	772 0.46
	214	0.99 860	729	82	860	729	296	778	780	173	0.46 778	0.46 772
Avail Cap(c_a), veh/h HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.09	0.09	0.09	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.8	38.0	22.7	45.0	19.8	14.1	27.6	20.7	20.7	36.5	17.8	17.9
Incr Delay (d2), s/veh	4.2	7.7	0.0	180.8	5.5	0.4	5.2	5.5	5.5	10.8	2.0	2.0
Initial Q Delay(d3),s/veh	4.2 0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.6	22.1	1.8	5.9	11.2	1.3	2.9	9.8	9.9	2.4	5.3	5.3
Unsig. Movement Delay, s/veh	ч.0	22.1	1.0	0.0	11.2	1.0	2.0	5.0	5.5	۲.۲	0.0	0.0
LnGrp Delay(d),s/veh	57.0	45.7	22.7	225.8	25.3	14.5	32.8	26.2	26.2	47.3	19.8	19.9
LnGrp LOS	E	D	C	-220.0 F	20.0 C	B	C	C	C	D	B	B
Approach Vol, veh/h		1136	<u> </u>	•	840		<u> </u>	1248	<u> </u>		809	
Approach Delay, s/veh		45.5			48.5			26.9			22.9	
Approach LOS		-10.0 D			-10.0 D			20.0 C			C	
				4		<u>^</u>					Ű	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		46.0		44.0		46.0		44.0				
Change Period (Y+Rc), s		* 4.6		* 4.6		* 4.6		* 4.6				
Max Green Setting (Gmax), s		* 41		* 39		* 41		* 39				
Max Q Clear Time (g_c+I1), s		43.4		40.8		43.4		29.7				
Green Ext Time (p_c), s		0.0		0.0		0.0		5.3				
Intersection Summary												
HCM 6th Ctrl Delay			35.8									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ર્ન	1		र्च	1		đ þ			- 4 ↑	1	
Traffic Vol, veh/h	4	2	23	4	3	94	28	1060	16	36	690	10	
Future Vol, veh/h	4	2	23	4	3	94	28	1060	16	36	690	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	50	-	-	50	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	2	25	4	3	102	30	1152	17	39	750	11	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1466	2057	375	1675	2060	585	761	0	0	1169	0	0	
Stage 1	828	828	-	1221	1221	-	-	-	-	-	-	-	
Stage 2	638	1229	-	454	839	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	89	54	623	62	54	454	847	-	-	593	-	-	
Stage 1	332	384	-	191	251	-	-	-	-	-	-	-	
Stage 2	431	248	-	555	379	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	- 55	43	623	48	43	454	847	-	-	593	-	-	
Mov Cap-2 Maneuver	- 55	43	-	48	43	-	-	-	-	-	-	-	
Stage 1	298	340	-	172	225	-	-	-	-	-	-	-	
Stage 2	296	223	-	469	336	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	26.8	21	0.7	1.1	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1 E	EBLn2\	NBLn1\	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	847	-	-	50	623	46	454	593	-	-	
HCM Lane V/C Ratio	0.036	-	-	0.13	0.04	0.165	0.225	0.066	-	-	
HCM Control Delay (s)	9.4	0.5	-	87.5	11	98.2	15.2	11.5	0.6	-	
HCM Lane LOS	А	А	-	F	В	F	С	В	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.4	0.1	0.5	0.9	0.2	-	-	

HCM 6th Signalized Intersection Summary 3: Whitsett Ave & Ventura Blvd

03/15/2021

-	≯	+	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		††	1	<u> </u>	- ††	1	<u>۲</u>	ef 👘		ሻሻ	↑	1
Traffic Volume (veh/h)	287	1055	186	33	1181	306	104	196	14	356	155	663
Future Volume (veh/h)	287	1055	186	33	1181	306	104	196	14	356	155	663
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	1070	No	1070	4070	No	4070	1070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	312	1147	148	36	1284	231	113	213	13	387	168	710
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h Arrive On Green	250 0.03	1681 0.16	750 0.16	144 0.33	1184 0.33	528 0.33	182 0.23	403 0.23	25 0.23	449 0.13	785 0.42	824 0.42
Sat Flow, veh/h	1781	3554	1585	426	3554	1585	632	1745	106	3456	1870	1585
Grp Volume(v), veh/h	312 1781	1147	148 1585	36 426	1284	231 1585	113 632	0	226 1851	387	168	710
Grp Sat Flow(s),veh/h/ln		1777 30.5	8.1	420 7.7	1777 33.3	7.3	632 17.4	0.0	1051	1728 11.0	1870 5.7	1585 39.0
Q Serve(g_s), s Cycle Q Clear(g_c), s	10.0 10.0	30.5	0.1 8.1	24.2	33.3	7.3	23.1	0.0	10.7	11.0	5.7 5.7	39.0 39.0
Prop In Lane	1.00	50.5	1.00	1.00	55.5	1.00	1.00	0.0	0.06	1.00	5.7	1.00
Lane Grp Cap(c), veh/h	250	1681	750	144	1184	528	182	0	428	449	785	824
V/C Ratio(X)	1.25	0.68	0.20	0.25	1.08	0.44	0.62	0.00	0.53	0.86	0.21	0.86
Avail Cap(c_a), veh/h	250	1681	750	144	1184	528	182	0.00	428	453	787	826
HCM Platoon Ratio	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.16	0.16	0.16	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.2	35.1	25.7	37.8	33.3	10.8	41.6	0.0	33.7	42.6	18.5	20.9
Incr Delay (d2), s/veh	116.8	0.4	0.1	4.1	52.4	2.6	15.0	0.0	4.6	15.5	0.1	9.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	12.7	14.5	3.2	1.0	22.3	4.2	3.5	0.0	5.2	5.5	2.4	15.0
Unsig. Movement Delay, s/vel	1											
LnGrp Delay(d),s/veh	148.0	35.5	25.8	41.9	85.7	13.4	56.5	0.0	38.3	58.1	18.6	30.1
LnGrp LOS	F	D	С	D	F	В	Е	А	D	Е	В	С
Approach Vol, veh/h		1607			1551			339			1265	
Approach Delay, s/veh		56.4			73.9			44.4			37.1	
Approach LOS		E			E			D			D	
Timer - Assigned Phs	1	2		4		6	7	8				
Phs Duration (G+Y+Rc), s	14.0	38.1		47.9		52.1	18.9	29.0				
Change Period (Y+Rc), s	4.0	* 4.8		5.9		* 4.8	5.9	5.9				
Max Green Setting (Gmax), s	10.0	* 33		42.1		* 47	13.1	23.1				
Max Q Clear Time (g_c+I1), s	12.0	35.3		41.0		32.5	13.0	25.1				
Green Ext Time (p_c), s	0.0	0.0		0.5		7.4	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			56.1									
HCM 6th LOS			E									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

03/15/2021

ノッシュ チャット インシャイ

			•	•			· ·	•	•		•		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	- ኘ	<u>†</u>	1	`	†	1	- ሽ	_ †î≽		- ኘ	_ ≜ †≱		
Traffic Volume (veh/h)	99	667	58	93	590	97	104	1315	241	174	955	154	
Future Volume (veh/h)	99	667	58	93	590	97	104	1315	241	174	955	154	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	108	725	47	101	641	91	113	1429	244	189	1038	152	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	207	931	789	205	931	789	118	1180	198	80	1206	176	
Arrive On Green	0.50	0.50	0.50	0.16	0.16	0.16	0.39	0.39	0.39	0.39	0.39	0.39	
Sat Flow, veh/h	724	1870	1585	698	1870	1585	471	3043	512	296	3110	455	
Grp Volume(v), veh/h	108	725	47	101	641	91	113	825	848	189	592	598	
Grp Sat Flow(s),veh/h/lr		1870	1585	698	1870	1585	471	1777	1778	296	1777	1788	
Q Serve(g_s), s	13.0	28.6	1.4	12.9	29.1	4.4	7.3	34.9	34.9	0.0	27.6	27.6	
Cycle Q Clear(g_c), s	42.1	28.6	1.4	41.5	29.1	4.4	34.9	34.9	34.9	34.9	27.6	27.6	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.29	1.00		0.25	
Lane Grp Cap(c), veh/h		931	789	205	931	789	118	689	690	80	689	694	
V/C Ratio(X)	0.52	0.78	0.06	0.49	0.69	0.12	0.96	1.20	1.23	2.36	0.86	0.86	
Avail Cap(c_a), veh/h	207	931	789	205	931	789	118	689	690	80	689	694	
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.63	0.63	0.63	0.26	0.26	0.26	1.00	1.00	1.00	
Uniform Delay (d), s/vel		18.5	11.7	50.4	31.0	20.7	43.8	27.6	27.6	45.0	25.3	25.3	
Incr Delay (d2), s/veh	9.2	6.4	0.1	5.2	2.6	0.2	33.0	93.0	106.7	649.9	13.2	13.3	
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		12.8	0.5	2.7	15.0	1.6	3.6	31.5	34.2	16.2	13.4	13.5	
Unsig. Movement Delay			44.0		007	00.0	70.0	400 5	404.0	004.0	00 5	00.0	
LnGrp Delay(d),s/veh	45.2	24.9	11.8	55.6	33.7	20.9	76.8	120.5	134.2		38.5	38.6	
LnGrp LOS	D	C	B	E	C	С	E	F	F	F	D	D	
Approach Vol, veh/h		880			833			1786			1379		
Approach Delay, s/veh		26.7			34.9			124.3			128.5		
Approach LOS		С			С			F			F		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)). S	40.0		50.0		40.0		50.0					
Change Period (Y+Rc),		5.1		* 5.2		5.1		* 5.2					
Max Green Setting (Gm		34.9		* 45		34.9		* 45					
Max Q Clear Time (g c		36.9		43.5		36.9		44.1					
Green Ext Time (p_c), s	<i>,</i> .	0.0		0.7		0.0		0.4					
Intersection Summary													
HCM 6th Ctrl Delay			92.6										
HCM 6th LOS			62.0 F										
			-										

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

03/15/2021

5: Coldwater Ca	inyor	n Ave	& Ve	entura	a Blvo	ł							03/15/2021
	۶	+	*	•	ł	•	•	Ť	1	1	ŧ	~	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲.	^	1	ሻ	^	1	۲.	- 11	1	ሻሻ	∱ î≽		
Traffic Volume (veh/h)	247	1094	165	172	1074	544	290	922	209	341	502	274	
Future Volume (veh/h)	247	1094	165	172	1074	544	290	922	209	341	502	274	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	ch	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	268	1189	65	187	1167	408	315	1002	182	371	546	218	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	161	1124	501	161	1124	501	338	1279	650	346	645	257	
Arrive On Green	0.05	0.32	0.32	0.02	0.10	0.10	0.19	0.36	0.36	0.10	0.26	0.26	
Sat Flow, veh/h	1781	3554	1585	1781	3554	1585	1781	3554	1585	3456	2482	988	
Grp Volume(v), veh/h	268	1189	65	187	1167	408	315	1002	182	371	390	374	
Grp Sat Flow(s),veh/h/l		1777	1585	1781	1777	1585	1781	1777	1585	1728	1777	1693	
Q Serve(g_s), s	5.0	31.6	1.7	5.0	31.6	25.2	17.4	25.1	7.7	10.0	20.8	21.0	
Cycle Q Clear(g_c), s	5.0	31.6	1.7	5.0	31.6	25.2	17.4	25.1	7.7	10.0	20.8	21.0	
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.58	
Lane Grp Cap(c), veh/h		1124	501	161	1124	501	338	1279	650	346	462	440	
V/C Ratio(X)	1.66	1.06	0.13	1.16	1.04	0.81	0.93	0.78	0.28	1.07	0.85	0.85	
Avail Cap(c_a), veh/h	161	1124	501	161	1124	501	338	1279	650	346	498	474	
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.21	0.21	0.21	1.00	1.00	1.00	0.44	0.44	0.44	
Uniform Delay (d), s/ve		34.2	7.9	31.7	44.8	41.9	39.9	28.5	19.7	45.0	35.1	35.2	
Incr Delay (d2), s/veh		43.6	0.5	86.6	23.9	3.2	31.6	3.8	0.5	53.7	6.6	7.1	
Initial Q Delay(d3),s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve		19.9	1.1	5.4	18.7	11.1	10.4	10.9	2.8	6.8	9.6	9.2	
Unsig. Movement Delay				-	-				-			-	
LnGrp Delay(d),s/veh		77.8	8.5	118.3	68.7	45.1	71.5	32.3	20.2	98.7	41.7	42.3	
LnGrp LOS	F	F	A	F	F	D	E	С	С	F	D	D	
Approach Vol, veh/h		1522		-	1762			1499		· · · ·	1135		
Approach Delay, s/veh		123.8			68.5			39.1			60.5		
Approach LOS		120.0 F			E			D			E		
											_		
Timer - Assigned Phs	1	2	3	4	5	6	7	8					
Phs Duration (G+Y+Rc		37.0	14.0	41.0	8.0	37.0	24.0	31.0					
Change Period (Y+Rc),		5.4	4.0	* 5	3.0	5.4	* 5	* 5					
Max Green Setting (Gr		31.6	10.0	* 36	5.0	31.6	* 19	* 28					
Max Q Clear Time (g_c		33.6	12.0	27.1	7.0	33.6	19.4	23.0					
Green Ext Time (p_c), s	s 0.0	0.0	0.0	6.6	0.0	0.0	0.0	3.0					
Intersection Summary													
HCM 6th Ctrl Delay			73.7										

HCM 6th LOS

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Е

Appendix H: Peak Hour Traffic Volumes and Lane Configurations

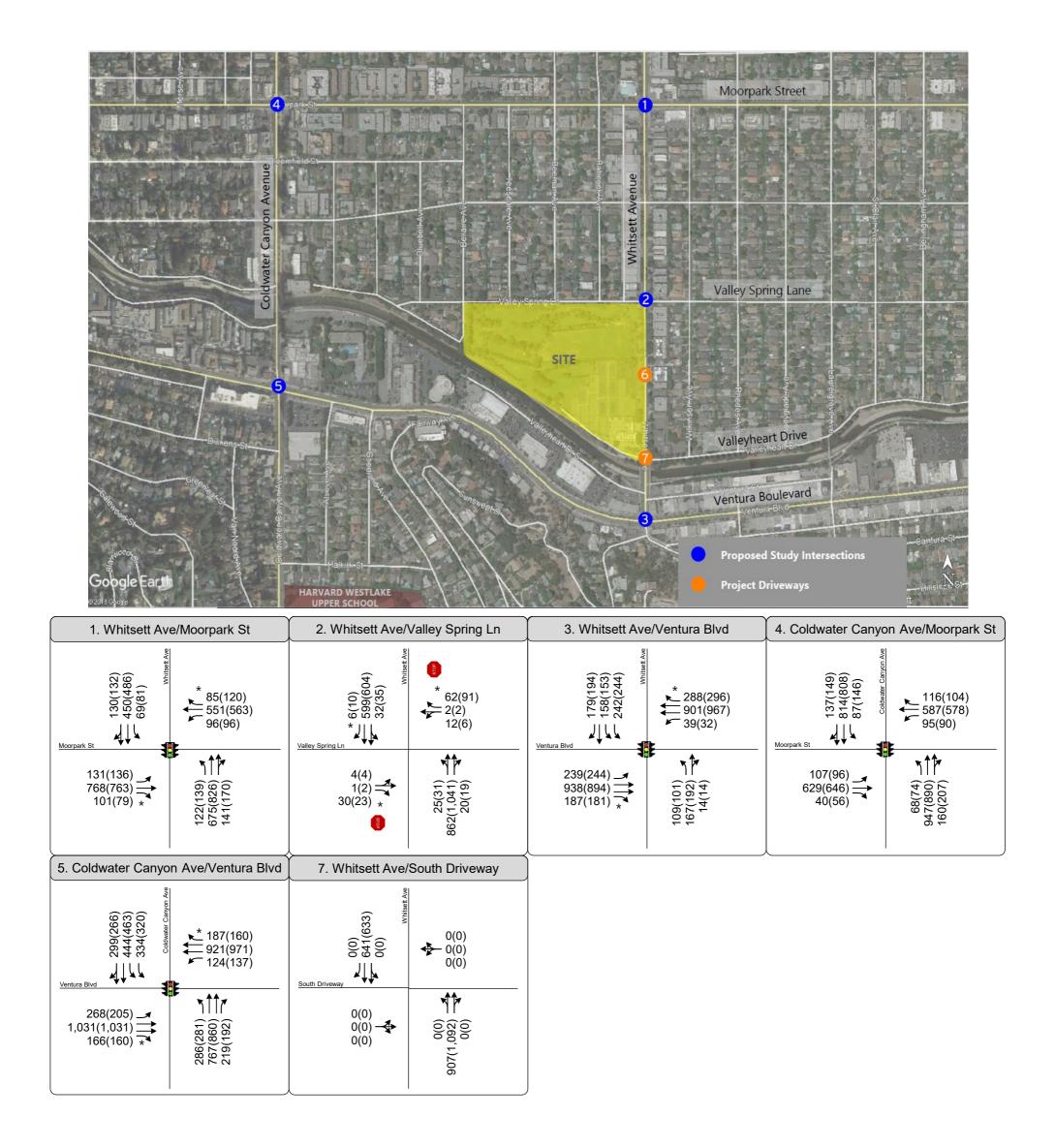


Figure H1

Peak Hour Traffic Volumes and Lane Configurations Baseline (2020) PM Peak Period

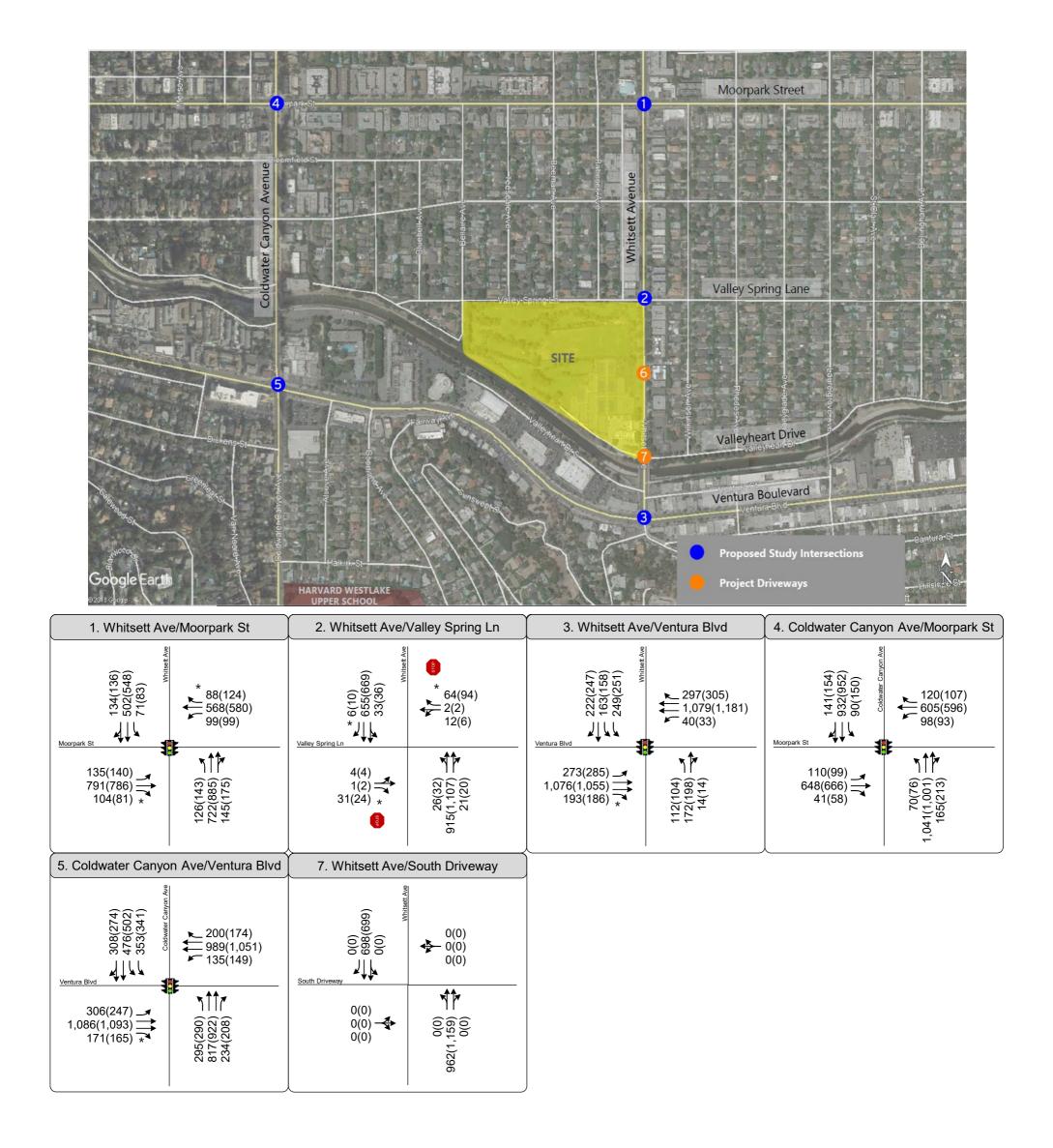


Figure H2

Peak Hour Traffic Volumes and Lane Configurations Opening Year (2025) No Project PM Peak Period

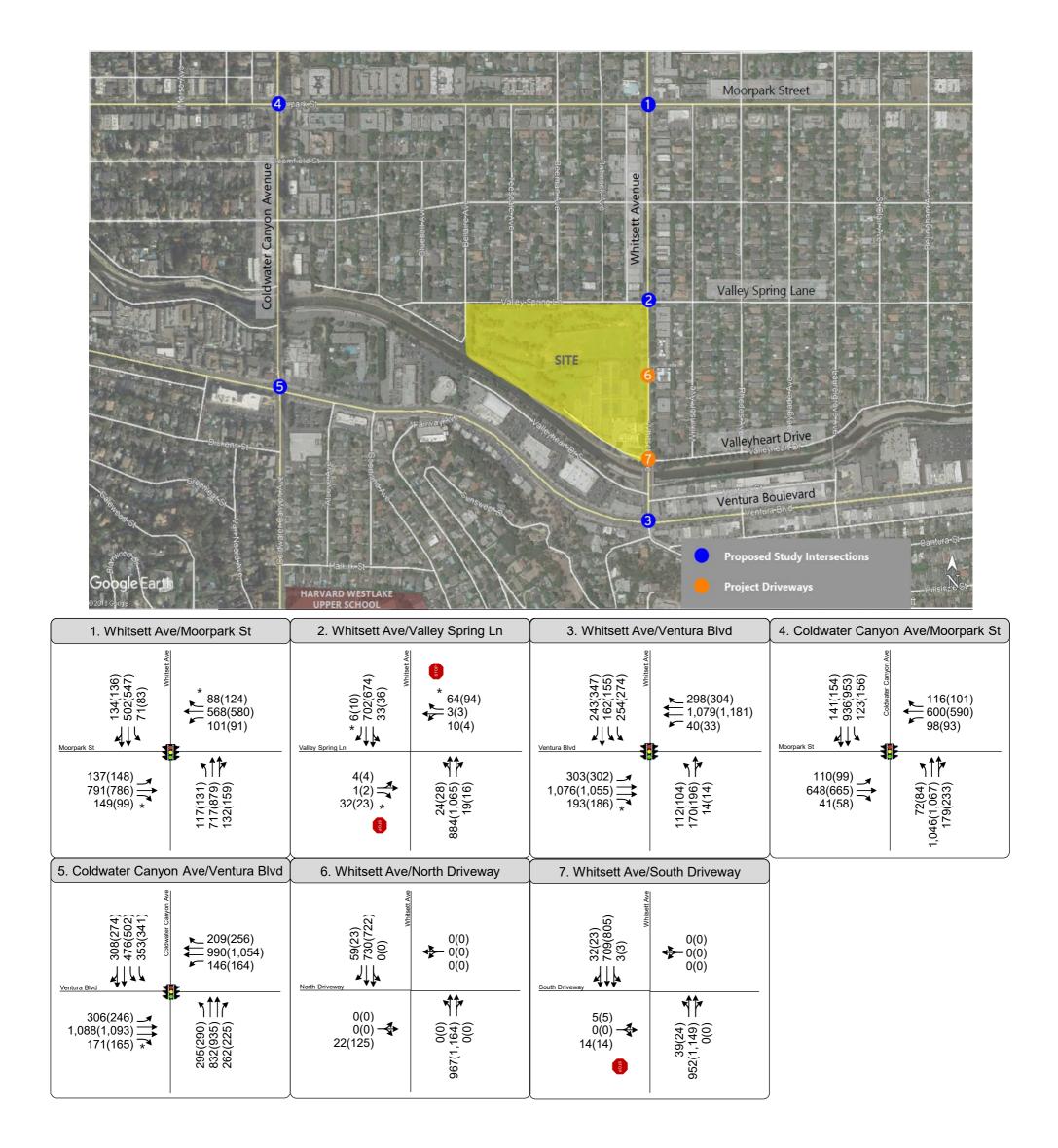
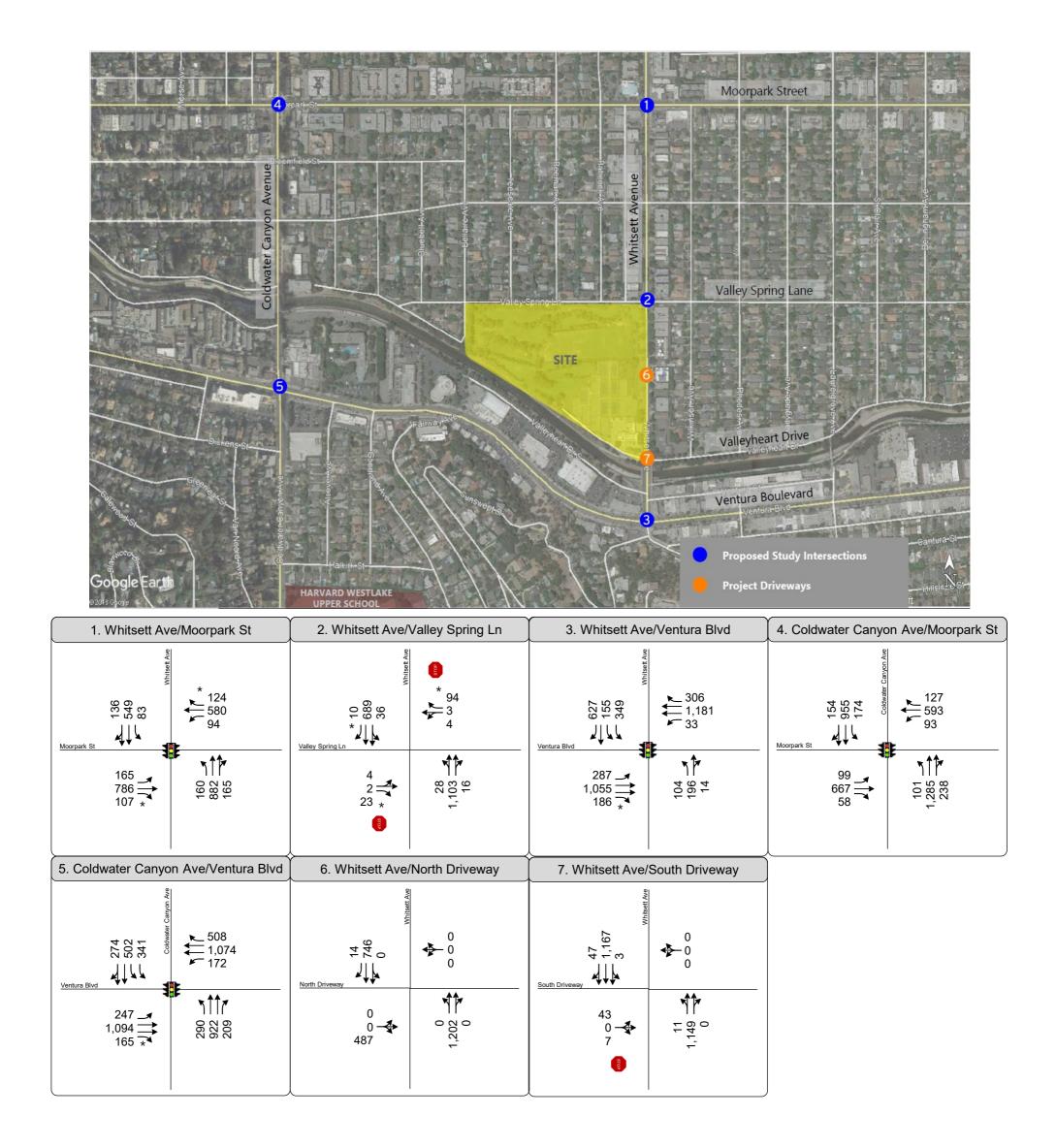
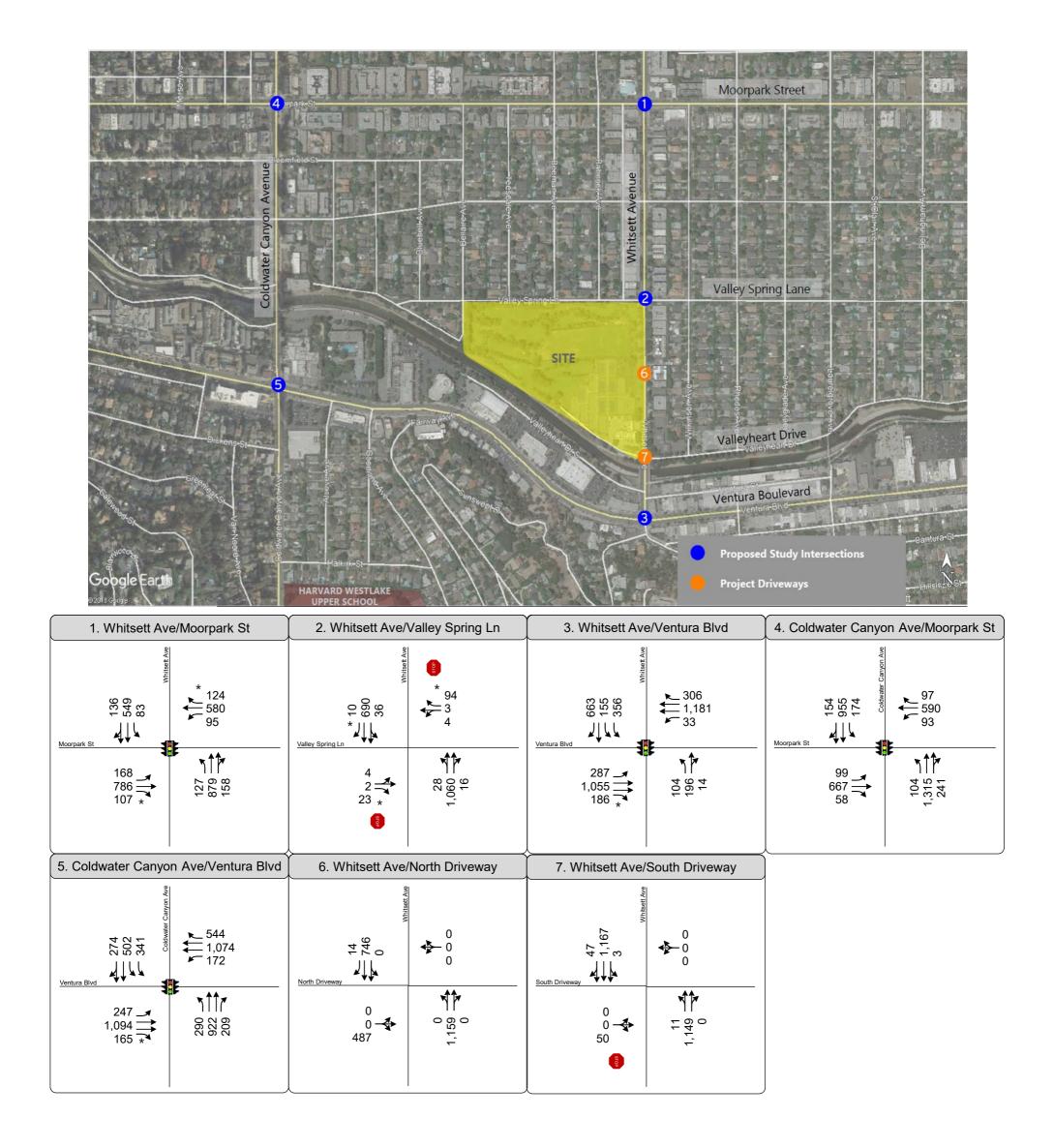



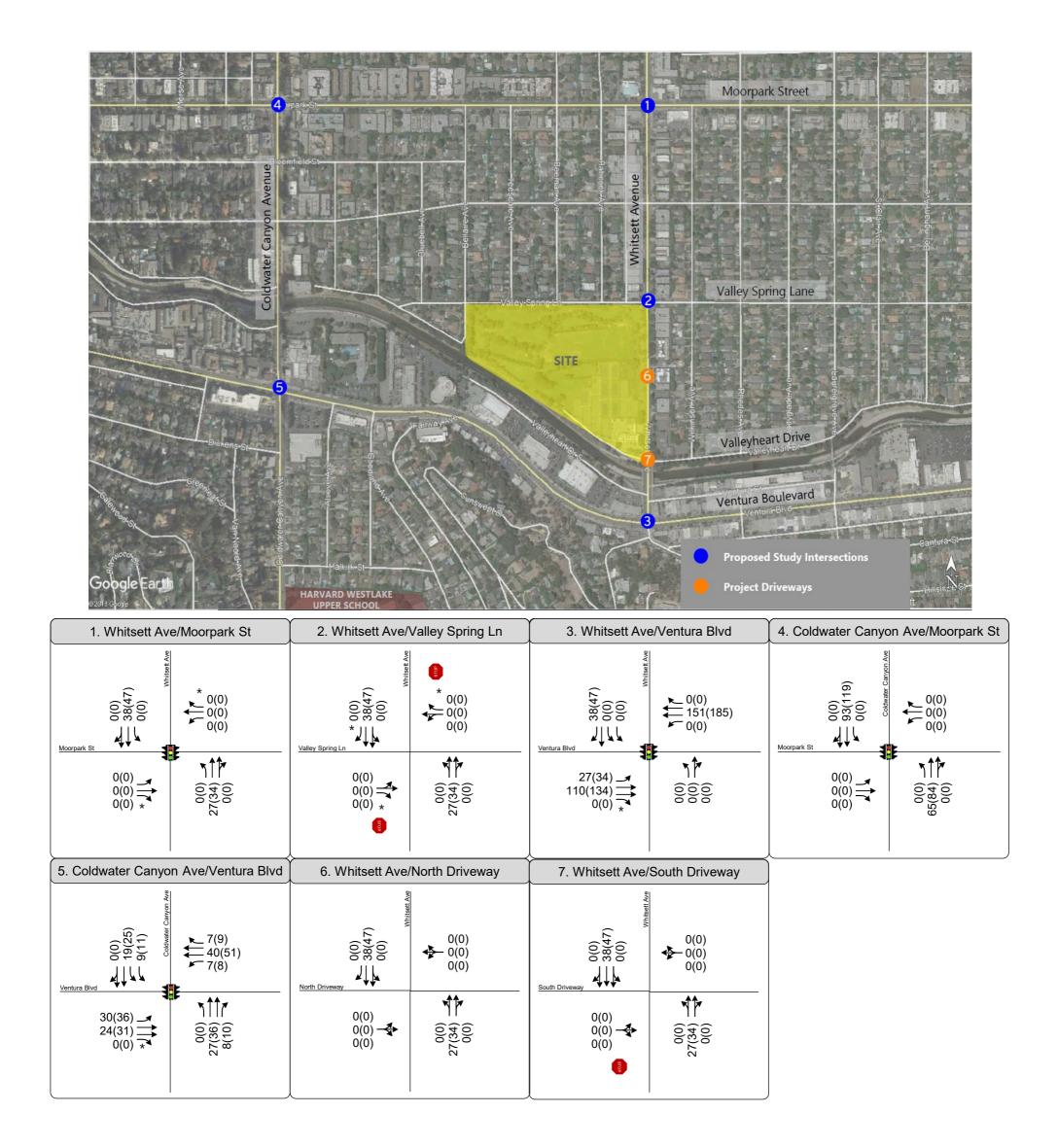
Figure H3

Peak Hour Traffic Volumes and Lane Configurations Opening Year (2025) Plus Project - Non-Event Scenario PM Peak Period

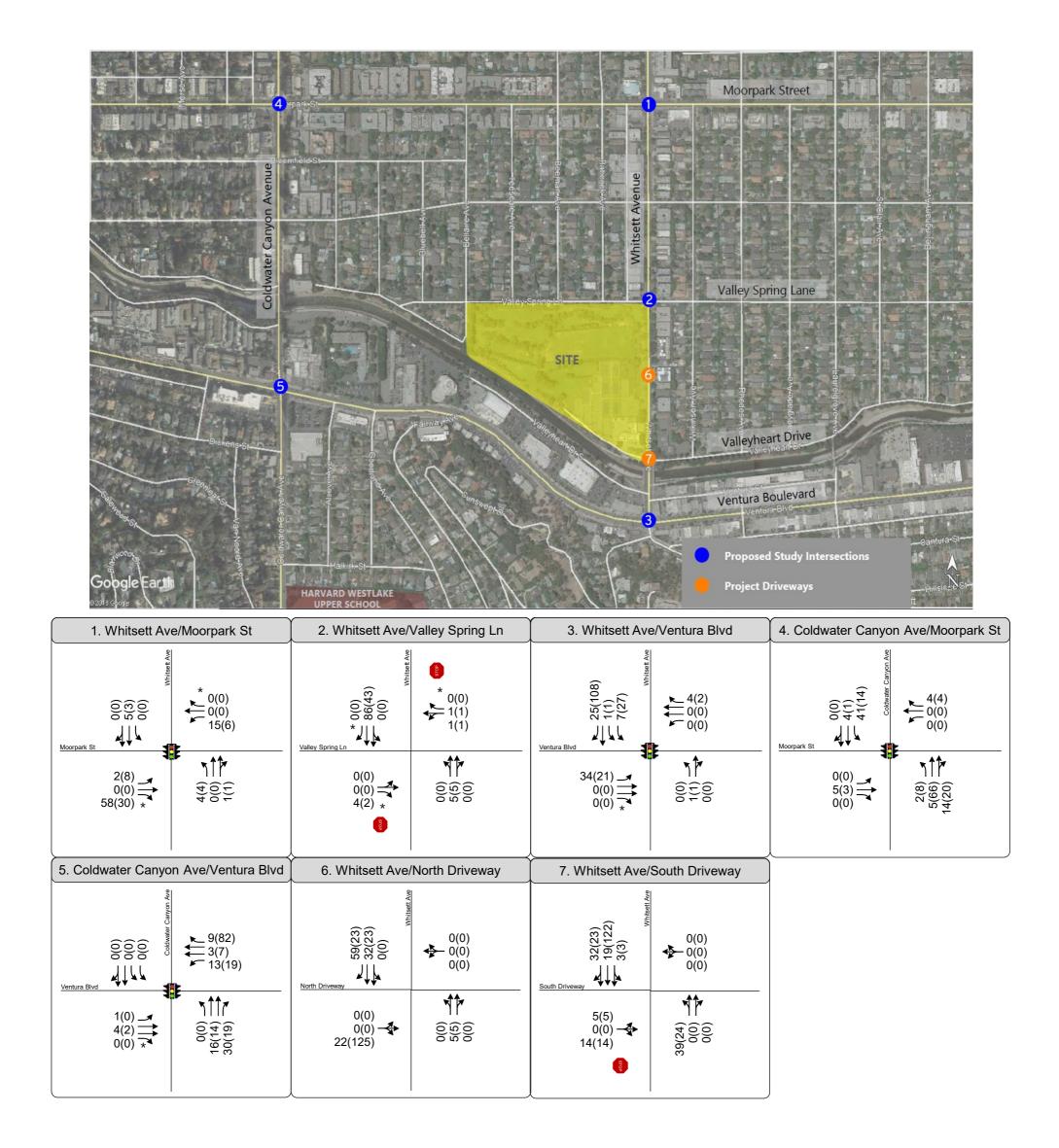


5-6 PM * De facto right turn lane

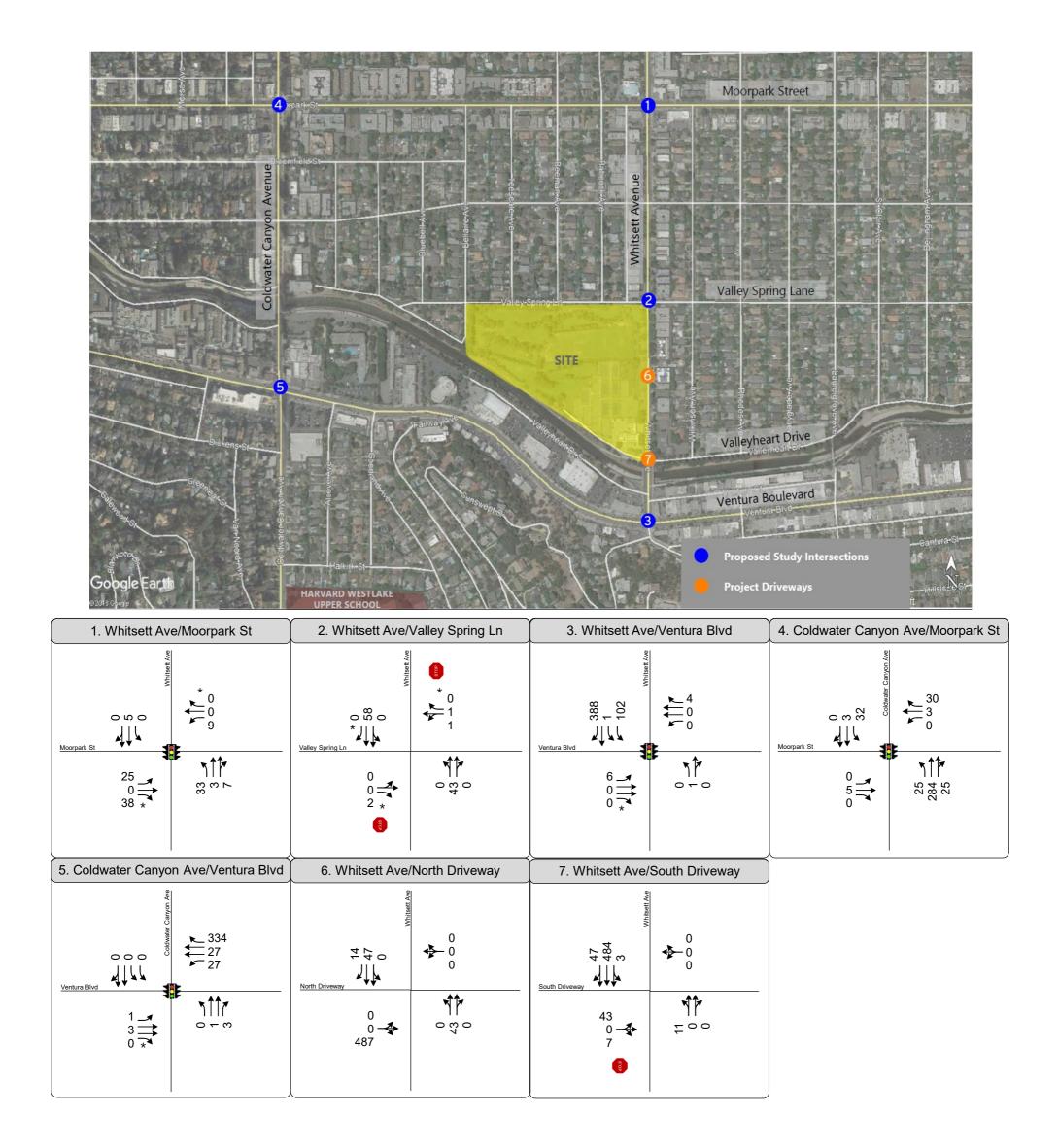
Figure H4


Peak Hour Traffic Volumes and Lane Configurations Opening Year (2025) Plus Project - Special Event Scenario PM Peak Period

5-6 PM * De facto right turn lane


Figure H5

Peak Hour Traffic Volumes and Lane Configurations Opening Year (2025) Plus Project with Corrective Action - Special Event Scenario PM Peak Period



> Figure H6 Peak Hour Traffic Volumes and Lane Configurations Related Projects PM Peak Period

> Figure H7 Peak Hour Traffic Volumes and Lane Configurations Project Only - Non-Event Scenario PM Peak Period

5-6 PM * De facto right turn lane

> Figure H8 Peak Hour Traffic Volumes and Lane Configurations Project Only - Special Event Scenario PM Peak Period

Appendix I: Driveway LOS Analysis Sheet

Intersection

Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		- 11	- 11	1
Traffic Vol, veh/h	0	22	0	967	730	59
Future Vol, veh/h	0	22	0	967	730	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	50
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	24	0	1051	793	64

Major/Minor	Minor2	N	lajor1	Ma	jor2					
Conflicting Flow All	-	397	-	0	-	0		 		
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Critical Hdwy	-	6.94	-	-	-	-				
Critical Hdwy Stg 1	-	-	-	-	-	-				
Critical Hdwy Stg 2	-	-	-	-	-	-				
Follow-up Hdwy	-	3.32	-	-	-	-				
Pot Cap-1 Maneuver	0	602	0	-	-	-				
Stage 1	0	-	0	-	-	-				
Stage 2	0	-	0	-	-	-				
Platoon blocked, %				-	-	-				
Mov Cap-1 Maneuve		602	-	-	-	-				
Mov Cap-2 Maneuve	r -	-	-	-	-	-				
Stage 1	-	-	-	-	-	-				
Stage 2	-	-	-	-	-	-				
Approach	EB		NB		SB					
HCM Control Delay, s	s 11.2		0		0					

HCM LOS В

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 602	-	-
HCM Lane V/C Ratio	- 0.04	-	-
HCM Control Delay (s)	- 11.2	-	-
HCM Lane LOS	- B	-	-
HCM 95th %tile Q(veh)	- 0.1	-	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			đÞ.			- 4 ↑	1	
Traffic Vol, veh/h	5	0	14	0	0	0	39	952	0	3	709	32	
Future Vol, veh/h	5	0	14	0	0	0	39	952	0	3	709	32	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	0	15	0	0	0	42	1035	0	3	771	35	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		Ν	lajor2			
Conflicting Flow All	1379	1896	386	1511	1931	518	806	0	0	1035	0	0	
Stage 1	777	777	-	1119	1119	-	-	-	-	-	-	-	
Stage 2	602	1119	-	392	812	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	104	69	612	83	65	502	814	-	-	667	-	-	
Stage 1	356	405	-	220	280	-	-	-	-	-	-	-	
Stage 2	453	280	-	604	390	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	94	60	612	73	57	502	814	-	-	667	-	-	
Mov Cap-2 Maneuver	94	60	-	73	57	-	-	-	-	-	-	-	
Stage 1	313	402	-	193	246	-	-	-	-	-	-	-	
Stage 2	398	246	-	584	387	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	20.7	0	0.9	0	
HCM LOS	С	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1W	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	814	-	-	250	-	667	-	-
HCM Lane V/C Ratio	0.052	-	-	0.083	-	0.005	-	-
HCM Control Delay (s)	9.7	0.5	-	20.7	0	10.4	0	-
HCM Lane LOS	А	А	-	С	Α	В	А	-
HCM 95th %tile Q(veh)	0.2	-	-	0.3	-	0	-	-

Intersection

Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		^	- 11	1
Traffic Vol, veh/h	0	125	0	1164	722	23
Future Vol, veh/h	0	125	0	1164	722	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	50
Veh in Median Storage	,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	136	0	1265	785	25

Major/Minor	Minor2	Μ	lajor1	Ма	ajor2	
Conflicting Flow All	-	393	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	606	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		606	-	-	-	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	

Approach	EB	NB	SB
HCM Control Delay, s	12.6	0	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 606	-	-
HCM Lane V/C Ratio	- 0.224	-	-
HCM Control Delay (s)	- 12.6	-	-
HCM Lane LOS	- B	-	-
HCM 95th %tile Q(veh)	- 0.9	-	-

02/08/2021

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4î þ			-4†	1	
Traffic Vol, veh/h	5	0	14	0	0	0	24	1149	0	3	805	23	
Future Vol, veh/h	5	0	14	0	0	0	24	1149	0	3	805	23	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	50	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	0	15	0	0	0	26	1249	0	3	875	25	

Major/Minor	Minor2		N	Minor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1558	2182	438	1745	2207	625	900	0	0	1249	0	0	
Stage 1	881	881	-	1301	1301	-	-	-	-	-	-	-	
Stage 2	677	1301	-	444	906	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	76	45	567	55	44	428	751	-	-	553	-	-	
Stage 1	308	363	-	170	229	-	-	-	-	-	-	-	
Stage 2	409	229	-	563	353	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 69	39	567	49	39	428	751	-	-	553	-	-	
Mov Cap-2 Maneuver	· 69	39	-	49	39	-	-	-	-	-	-	-	
Stage 1	273	359	-	151	203	-	-	-	-	-	-	-	
Stage 2	363	203	-	542	349	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	25.5	0	0.7	0.1	
HCM LOS	D	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1W	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	751	-	-	196	-	553	-	-
HCM Lane V/C Ratio	0.035	-	-	0.105	-	0.006	-	-
HCM Control Delay (s)	10	0.5	-	25.5	0	11.5	0.1	-
HCM Lane LOS	А	А	-	D	Α	В	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.3	-	0	-	-

Intersection

Int Delay, s/veh	8.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		- 11	- 11	1
Traffic Vol, veh/h	0	487	0	1202	746	14
Future Vol, veh/h	0	487	0	1202	746	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	50
Veh in Median Storage,	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	529	0	1307	811	15

Major/Minor	Minor2	N	lajor1	Maj	jor2	
Conflicting Flow All	-	406	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	594	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		594	-	-	-	-
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	41.6		0		0	

HCM LOS Е

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 594	-	-
HCM Lane V/C Ratio	- 0.891	-	-
HCM Control Delay (s)	- 41.6	-	-
HCM Lane LOS	- E	-	-
HCM 95th %tile Q(veh)	- 10.6	-	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LBIX		4		1102	4î)-		002	-۠	1
Traffic Vol, veh/h	43	0	7	0	0	0	11	1149	0	3	1167	47
Future Vol, veh/h	43	0	7	0	0	0	11	1149	0	3	1167	47
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	50
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	47	0	8	0	0	0	12	1249	0	3	1268	51

Major/Minor	Minor2		N	/linor1		1	Major1		Ν	/lajor2				
Conflicting Flow All	1923	2547	634	1913	2598	625	1319	0	0	1249	0	0		
Stage 1	1274	1274	-	1273	1273	-	-	-	-	-	-	-		
Stage 2	649	1273	-	640	1325	-	-	-	-	-	-	-		
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-		
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-		
Pot Cap-1 Maneuver	~ 40	26	422	41	25	428	520	-	-	553	-	-		
Stage 1	177	236	-	177	237	-	-	-	-	-	-	-		
Stage 2	425	237	-	430	223	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver		24	422	37	23	428	520	-	-	553	-	-		
Mov Cap-2 Maneuver		24	-	37	23	-	-	-	-	-	-	-		
Stage 1	164	231	-	164	219	-	-	-	-	-	-	-		
Stage 2	393	219	-	413	218	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	\$ 389.9			0			0.5			0.1				
HCM LOS	F			А										
Minor Lane/Major Mvi	mt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR					
Capacity (veh/h)		520	-	-	42	-	553	-	-					
HCM Lane V/C Ratio		0.023	-	-	1.294	-	0.006	-	-					
HCM Control Delay (s	s)	12.1	0.4	-\$	389.9	0	11.5	0.1	-					
HCM Lane LOS		В	А	-	F	А	В	А	-					
HCM 95th %tile Q(vel	h)	0.1	-	-	5.4	-	0	-	-					

Notes ~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection

Int Delay, s/veh	8.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		^	- 11	1
Traffic Vol, veh/h	0	487	0	1159	746	14
Future Vol, veh/h	0	487	0	1159	746	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	50
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	529	0	1260	811	15

Major/Minor	Minor2	Ν	1ajor1	Ma	jor2			
Conflicting Flow All	-	406	-	0	-	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	6.94	-	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-	-	-		
Pot Cap-1 Maneuver	0	594	0	-	-	-		
Stage 1	0	-	0	-	-	-		
Stage 2	0	-	0	-	-	-		
Platoon blocked, %				-	-	-		
Mov Cap-1 Maneuver		594	-	-	-	-		
Mov Cap-2 Maneuver	-	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s	41.6		0		0			
HCM LOS	E							

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 594	-	-
HCM Lane V/C Ratio	- 0.891	-	-
HCM Control Delay (s)	- 41.6	-	-
HCM Lane LOS	- E	-	-
HCM 95th %tile Q(veh)	- 10.6	-	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		TIDL	4		NDL	412			41)	7	
Traffic Vol, veh/h	0	0	50	0	0	0	11	1149	0	3	1167	47	
Future Vol, veh/h	0	0	50	0	0	0	11	1149	0	3	1167	47	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	50	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	54	0	0	0	12	1249	0	3	1268	51	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		Ν	/lajor2			
Conflicting Flow All	1923	2547	634	1913	2598	625	1319	0	0	1249	0	0	
Stage 1	1274	1274	-	1273	1273	-	-	-	-	-	-	-	
Stage 2	649	1273	-	640	1325	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	40	26	422	41	25	428	520	-	-	553	-	-	
Stage 1	177	236	-	177	237	-	-	-	-	-	-	-	
Stage 2	425	237	-	430	223	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	37	24	422	33	23	428	520	-	-	553	-	-	
Mov Cap-2 Maneuver	37	24	-	33	23	-	-	-	-	-	-	-	
Stage 1	164	231	-	164	219	-	-	-	-	-	-	-	
Stage 2	393	219	-	367	218	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	14.8	0	0.5	0.1	
HCM LOS	В	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1W	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	520	-	-	422	-	553	-	-
HCM Lane V/C Ratio	0.023	-	-	0.129	-	0.006	-	-
HCM Control Delay (s)	12.1	0.4	-	14.8	0	11.5	0.1	-
HCM Lane LOS	В	А	-	В	Α	В	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.4	-	0	-	-