Appendix G

Geotechnical Investigation Report

Geotechnical Investigation Report

Hellman Gas Plant Expansion – Hellman Properties, LLC Seal Beach, California Project # IR18166880

Prepared for:

No. GE 2983

Geotechnical Investigation Report

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

July 9, 2018 Project IR18166800

This report was prepared by the staff of Wood Environment & Infrastructure Solutions, Inc. under the supervision of the Engineer(s) and/or Geologist(s) whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice.

No warranty is expressed or implied.

M. Bora Baturay, PhD, PE, GE #2983 Associate Geotechnical Engineer

James J. Weaver, PE, GE #884 Principal Geotechnical Engineer

Geotechnical Investigation Report

Hellman Gas Plant Expansion – Hellman Properties, LLC Seal Beach, California Project # IR18166880

Prepared for:

Hellman Properties, LLC P.O. Box 2398, Seal Beach, California 90740

Prepared by:

Wood Environment & Infrastructure Solutions, Inc. 121 Innovation Drive, Suite 200 Irvine, California 92617-3094 USA

T: 949-642-0245

July 9, 2018

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Wood (© Wood Environment & Infrastructure Solutions, Inc.). save to the extent that copyright has been legally assigned by us to another party or is used by Wood under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Wood. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Table of contents

1.0	Introd	luction		3
	1.1	Propos	sed Construction	3
	1.2	Scope	of Work	3
2.0				
3.0	Field 1	nvestigat	tion and Laboratory Testing	5
	3.1	Pre-Dr	rilling Activities	5
	3.2	Cone F	Penetrometer Testing	5
	3.3	Explor	atory Borings	5
	3.4	Labora	atory Testing	6
4.0	Discus	ssion of F	-indings	7
	4.1	Surfac	e Conditions	7
	4.2	Subsu	rface Conditions	7
	4.3	Engine	eering Properties	7
	4.4	Groun	dwater Conditions	8
	4.5	Analyt	ical Test Results	8
5.0	Seism	ic Consid	derations	9
	5.1	Surfac	e Fault Rupture	9
	5.2	Seismi	ic Design Parameters	9
	5.3	Seismi	ically Induced Landslides	10
	5.4	Earthq	juake Magnitude	10
	5.5	Liquef	action	10
		5.5.1	Liquefaction Susceptibility Criteria	10
		5.5.2	Liquefaction Triggering Analysis	11
		5.5.3	Seismically Induced Settlement	
		5.5.4	Bearing Capacity Failure	
6.0	Desig	n Recom	mendations	
	6.1		eotechnical Design Considerations	
	6.2	•	vork	
		6.2.1	Site Preparation	
		6.2.2	Over-Excavation	
		6.2.3	Fill Materials and Compaction Criteria	
		6.2.4	Site Drainage	
	6.3	Earth F	Fill Pad Settlement	
	6.4		/ Loaded Mat Foundations	17
		6.4.1	Bearing Capacity and Settlement	
		6.4.2	Lateral Load Resistance	
	6.5		upport Foundations	
		6.5.1	Pipe Supports on Shallow Foundations	
		6.5.2	Pipe Supports on CIDH Piles	
	6.6		Foundations	
	0.0	6.6.1	Axial Load Capacity	
		6.6.2	Lateral Load Capacity	
	6.7		nic Foundation Design Parameters	
	6.8	,	l Pipelines	
	0.0	6.8.1	Bearing Capacity and Settlement	
		6.8.2	Bedding Material	
		6.8.3	Pipe Zone Material	
D:	4 ID104.cce		<u>'</u>	
Project #	ιπτοπρορά	0 July 9, 2	010	Page i of 30

		6.8.4 Trench Backfill		21
		6.8.5 Backfill Placement and Co	mpaction Requirements	21
	6.9	Pavement		21
	6.10	Corrosion and Chemical Attack Re	sistance	22
7.0	Constru	uction Considerations		23
	7.1	Excavation Difficulty		23
	7.2	Temporary Dewatering		23
	7.3	Construction Slopes		23
	7.4	CIDH Pile Installation		23
8.0	Post In	vestigation Services		25
9.0	Closure			26
10.0	Referer	nces		27

List of tables

- Table 1. Crushed Rock Gradation
- Table 2. Select Sand Gradation
- Table 3. Strain Compatible Shear Modulus Reduction and Damping Ratio
- Table 4. Flexible Asphalt Concrete Pavement Recommendations

List of figures

- Figure 1. Site Vicinity Map
- Figure 2. Boring Location Plan
- Figure 3. CIDH Pile Axial Capacity
- Figure 4. Lateral Load Capacities for 24-inch Diameter CIDH Piles
- Figure 5. Lateral Load Capacities for 30-inch Diameter CIDH Piles
- Figure 6. SPPC Pile Axial Capacity
- Figure 7. Lateral Load Capacities for 12-inch SPPC Driven Piles
- Figure 8. Lateral Load Capacities for 14-inch SPPC Driven Piles
- Figure 9. Shear Wave Velocity Profile

List of appendices

Appenaix A	Fault Location Map provided by Hellman Properties LLC
Appendix B	Field Exploration Program
Appendix C	Laboratory Testing Program
Appendix D	Well Permits
Appendix E	Analytical Test Results
Appendix F	Liquefaction and Seismically Induced Settlement Analysis
Appendix G	CIDH Piles Lateral Load Analysis Results
Appendix H	SPPC Piles Lateral Load Analysis Results

1.0 Introduction

Wood Environment & Infrastructure Solutions, Inc. (Wood), formerly Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), prepared this geotechnical investigation report for Hellman Properties, LLC (Hellman), for the planned expansion at the Hellman Gas Plant located in Seal Beach, California. The vicinity is shown on Figure 1. Wood performed this geotechnical investigation in accordance with its proposal dated January 29, 2018.

This report has been prepared for Hellman and its project team members, to be used solely in the development of facilities described herein. This report may not contain sufficient information for other uses or the purposes of other parties.

1.1 Proposed Construction

Hellman plans to construct four new compressors and other auxiliary equipment at the plant. The preliminary grading plan dated July 3, 2018 was provided by SPEC Services, Inc., and layout of proposed structures is shown on Figure 2. The current ground elevation in the area of the planned expansion is typically +3 to +4 feet mean sea level (msl). Prior to constructing the planned improvements, a new earth pad will be constructed with a top elevation at 5 feet msl by placing 1 to 2 feet of fill. The compressors and other equipment are planned to be supported typically on individual mat or block type foundations supported on the new earth pad. These mat foundations are anticipated to be lightly loaded. Some of the compressors may be founded on combined large mat foundations depending on other design factors such as settlement potential and vibration performance. We understand a third-party consultant may be performing vibration analyses. There will be above ground pipelines between and around the proposed structures and possibly below ground pipelines. A centralized pipe-rack will also be constructed to accommodate interconnecting piping between the various equipment. The above ground pipelines will be supported by pipe supports with shallow foundations or with cast-in-drilled-hole (CIDH) piles.

1.2 Scope of Work

Our scope of work for the geotechnical investigation consisted of the following:

- Data review for preparation of the field exploration and geotechnical investigation report.
- Preparing a Health and Safety Plan for field exploration.
- Calling Underground Service Alert (USA) before exploration activities to mark buried utilities in the area of the explorations.
- Obtaining well permits for drilling from Orange County Health Care Agency.
- Advancing five Cone Penetrometer Test (CPT) soundings to 60 feet depth or equipment refusal.
- Drilling two mud-rotary borings, to depths 40 feet and 60 feet below ground surface (bgs).
- Drilling two hand-auger holes to 10 feet depth.
- Collecting soil samples for geotechnical and analytical laboratory testing.
- Performing engineering analyses for the proposed expansion, including seismic hazard evaluations.

Preparing a report that summarizes our results and provides recommendations for design and construction of proposed expansion.

2.0 Data Review

As part of this geotechnical investigation and prior to the explorations, Wood reviewed publicly available geologic and groundwater data. Wood also reviewed a geotechnical investigation report prepared by Geomatrix Consultants (Geomatrix, 2004), a Wood legacy company, for a tank farm project located approximately 500 feet to the east of the planned expansion location. A summary of our review is provided below.

Wood reviewed the seismic hazard zone report by the Department of Conservation Division of Mines and Geology (DCDMG, 1998 - Los Alamitos Quadrangle) and Earthquake Zones of Required Investigation Los Alamitos Quadrangle map by California Geological Survey (CGS, 1999). Based on CGS (1999), the planned location for the expansion is within an area/zone identified by the State of California as being potentially susceptible to liquefaction induced ground deformation and within an area encompassing active faults that constitute a potential hazard to structures from surface faulting. Hellman provided a map showing the estimated location of the Newport Inglewood Fault zone per soils report prepared by Medall Aragon, Worswick & Associates dated December 14, 1981, Project No. S1753C. Based on the notes on the map and our communication with Hellman, we understand the subject soils report is in a file with the city engineer of the City of Seal Beach. A copy of the map is included in Appendix A. Based on this map, the proposed location of the expansion is approximately 300 feet away from the estimated location of the fault trace as noted on the map by Mendall Aragon, Worswick & Associates. DCDMG (1998) includes a map of contours showing the depth to historical high groundwater levels. Based on this map, the historically high groundwater depth is 10 feet bgs in the vicinity of the site. Based on our review of topographic information in the vicinity of the site, the expansion location appears to be 3 to 4 feet lower in elevation than where groundwater depth is provided in DCDMG (1998). Therefore, historically high depth to groundwater can be considered to be approximately at 6 feet bgs at the expansion location based on DCDMG (1998) map.

Wood reviewed the geotechnical investigation report (Geomatrix, 2004) prepared for a tank farm approximately 500 feet to the east of the planned expansion location. Based on Geomatrix (2004), subsurface conditions at the tank farm site consisted of approximately 10 feet of surficial fine-grained soils underlain by granular soils. The fine-grained soils encountered were soft and the granular soils between depths of 10 feet and 25 feet below ground surface exhibited liquefaction potential with large seismically induced settlement potential.

3.0 Field Investigation and Laboratory Testing

The field investigation and laboratory testing program included pre-drilling activities, advancing five CPT soundings, drilling two exploratory borings and two hand-auger holes, collecting soil samples, and laboratory testing of soil samples retrieved during exploratory drilling. Field activities were conducted between March 13 and April 16, 2018, under the supervision of a licensed geotechnical engineer. Key aspects of the field program are described below. The results of the field exploration program, including logs of the borings and CPTs are provided in Appendix B of this report. The laboratory testing program and test results are provided in Appendix C.

3.1 Pre-Drilling Activities

Wood obtained well permits from the Orange County Health Care Agency prior to drilling and CPT work. Copies of the permits are included in Appendix D. Wood marked the planned exploration locations in the field for Underground Service Alert (USA) on March 13, 2018. After marking, USA was notified and allowed for two full working days for the providers to identify public utilities in the areas marked. The marked locations were also verified by Hellman's field representative with respect to known underground utility lines in the expansion area.

3.2 Cone Penetrometer Testing

Wood retained Kehoe Testing & Engineering (Kehoe) of Huntington Beach, California to perform CPTs at five locations. The CPTs were performed on April 11, 2018. The CPTs are designated CPT-1 through CPT-5 and the locations of the CPTs are shown on Figure 2. The CPT locations were hand-augered to 5 feet depth prior to advancing the CPT cone. All of the CPTs, except for CPT-3, were advanced to 60 feet depth. CPT-3 encountered equipment refusal at a dense sand layer at 40 feet and was terminated at that depth. Shear wave velocity (Vs) data of subsurface materials was collected in all of the CPT soundings. Upon retrieval of the CPT cone, the holes were backfilled with bentonite chips. The CPT report provided by Kehoe is included in Appendix B.

3.3 Exploratory Borings

Wood retained SoCal Drilling of La Habra, California, to drill 2 mud-rotary borings (B-2 and B-4) and two hand-auger holes (B-1 and B-3) at the approximate locations shown on Figure 2, and to collect soil samples. The drilling work was performed on April 16, 2018. The borings B-2 and B-4, were drilled to 40 feet and 60 feet depth, respectively. Hand-auger holes were drilled to 10 feet depth and were used only to collect samples for environmental testing.

The borings and hand-auger holes were drilled approximately within five feet away from the CPTs, to collect soil samples from specific intervals identified on those CPT logs. The mud-rotary boring locations were hand-augered to 5 feet depth prior to drilling. A boring specific sampling plan was developed for the borings. Soil samples were collected from each boring at selected depth intervals, typically no less than every two and a half feet within the upper 20 feet depth and every five feet thereafter, using a Standard Penetration Test (SPT) sampler, California-Modified sampler, or Shelby Tube. The hammer blow counts required to drive the SPT and California-Modified split spoon samplers to the desired depths were recorded. Bulk samples were collected at each boring and hand-auger-hole location from hand-augering cuttings. Environmental samples were collected from each boring and hand-auger-hole at approximately 2 feet, 5 feet, and 10 feet depth bgs for analytical testing. Earth materials were visually classified in the field in general accordance with the Unified Soil Classification System and ASTM D 2488 by observation of the samples and cutting returns. Soil samples were transported to Wood's laboratory for testing to help characterize subsurface conditions and evaluate engineering properties of encountered materials. Notes

Project # IR18166880 | July 9, 2018

Page 5 of 30

were made of any visual evidence of stains or odors. Wood used a Photoionization detector (PID) to screen soil samples and PID readings are noted on the boring logs. Detailed descriptions of field exploration and sampling procedures, and the boring logs are provided in Appendix B.

Upon completion of drilling, borings were backfilled with cement-bentonite grout and soil cuttings and drilling mud were drummed for analytical testing and disposal. Analytical tests were performed by Eurofins Calscience of Garden Grove, California. Based on the test results, the soil cuttings were characterized as non-hazardous for waste disposal purposes. A copy of the test results is included in Appendix E. Wood retained services of American Integrated Services, Inc. (AIS), for transportation and disposal of the drums. AIS picked up the drums from the site on May 7, 2018.

3.4 Laboratory Testing

Wood performed geotechnical laboratory tests on selected soil samples to help further evaluate engineering properties of the site soils. Tests performed included moisture content and dry density, percent passing No. 200 sieve, Atterberg limits, expansion index, direct shear, consolidation, R-value, compaction, and corrosion. Tests were performed in general conformance with relevant ASTM procedures except for corrosion testing, which was performed in accordance with California Department of Transportation (Caltrans) methods. Wood's Irvine Office testing laboratory and AP Engineering and Testing, Inc., of Pomona, California, performed the tests. A description of the laboratory testing program is included in Appendix C. Results or abbreviations of the laboratory tests are presented on the boring logs in Appendix B, and on laboratory test sheets in Appendix C.

Analytical tests were performed on soil samples collected from the four borings. Soil samples were analyzed for the following constituents for waste characterization evaluation, and soil drill cuttings from the investigation were disposed as a non-hazardous waste.

- Total petroleum hydrocarbon (TPH) using EPA Method 8015M
- Total Recoverable Petroleum Hydrocarbons (TRPH) using EPA Method 418.1
- Volatile organic compounds (VOCs) using EPA Method 5035/8260B
- Title 22 Metals using EPA Method 6010B and 7471A (mercury)

4.0 Discussion of Findings

The following discussion of findings is based on the results of our field exploration and laboratory testing programs and our review of existing geologic and geotechnical data for the area.

4.1 Surface Conditions

The area of the expansion is undeveloped and the ground surface is bare and covered with native vegetation. There are dirt access roads around the planned location and the general area is relatively flat.

4.2 Subsurface Conditions

The subsurface conditions as encountered in the explorations consisted of fine-grained soils to depths of 18 feet to 20 feet bgs. The fine-grained soils are typically classified as medium to high plasticity clays within the upper 7 to 10 feet and underlain with low to medium plasticity silts and clays. The fine-grained soils within the upper 18 to 20 feet bgs were soft to stiff in consistency. The fine-grained soils were underlain by a 5 to 8 foot thick medium dense to dense silty sand to poorly graded sand layer. Below this upper sand layer is an approximately 5-foot thick stiff to very stiff medium plasticity clay layer. This second fine-grained soil layer was underlain by an approximately 10-foot thick dense sand layer to an approximate depth of 38 to 42 feet. This lower dense sand layer was underlain by very stiff to hard low plasticity silt to the depth of termination at 60 feet bgs.

4.3 Engineering Properties

Based on the laboratory test results, the in-situ dry density and moisture content of the upper fine-grained soils (i.e., 18 to 20 feet bgs) vary from about 88 to 98 pounds per cubic foot (pcf), and 28 to 34 percent, respectively. For underlying fine-grained soils, the in-situ dry density and moisture content vary from about 92 to 112 pcf, and 19 to 31 percent, respectively.

A total of 13 Atterberg Limits tests were performed on the fine-grained soil samples collected. The liquid limit (LL) and plasticity index (PI) for the shallow (within upper 7 to 10 feet) relatively plastic clayey soils were 61 and 40 respectively. The LL and PI for the relatively low plasticity silt soils underlying the surficial clay soils within the upper fine-grained soil layer (approximately between 7 and 20 feet bgs) vary from 22 to 33 and 3 to 8, respectively. The LL and PI for the relatively thin fine-grained soil layer in between the dense sand zones were 30 to 48 and 17 to 23, respectively. The LL and PI for the lower fine-grained layer (below approximately 40 feet bgs) consisting of silt soils vary from 31 to 37 and non-plastic (essentially zero plasticity) to 14, respectively.

One direct shear test was performed on a relatively undisturbed sample of the clay native soils near ground surface collected from boring B-2. Based on the direct shear test results, the sample exhibited large displacement friction angle of 12 degrees and cohesion of 157 psf. The upper fine-grained soils are classified as medium to high plasticity as discussed in Section 4.2.

Two consolidation tests were performed on relatively undisturbed samples of the upper clayey soil layer. The samples tested exhibited over-consolidation ratios (OCRs) of approximately 2 to 2.5. The estimated recompression ratios from the tests were 1 and 2 percent.

Expansion index (EI) test was performed on the clayey soils near ground surface. The EI value for the sample was 121, indicating high expansion potential, based on criteria presented in ASMT D 4829.

One R-value test was performed on a composite soil sample from the near surface clay soils collected in borings B-3 and B-4. The R value of the samples tested was 13.

Project # IR18166880 | July 9, 2018

Page 7 of 30

Corrosion suites of tests were performed for pH, resistivity, chloride content, and sulphate content of the near surface clay soils. The corrosion test results are discussed in Section 6.10.

4.4 Groundwater Conditions

Wood could not measure depth to groundwater within the borings drilled because the drilling method uses drilling mud in the hole. Depth to groundwater was measured immediately after removing the CPT cone within the CPT holes and depths ranging between 7 to 9 feet were reported. Several dissipation tests were performed in the CPT soundings. Based on the dissipation test data, the depth to groundwater at the time of CPT soundings were estimated as 4 to 7 feet bgs. As discussed in Section 2.0, the historically high depth to groundwater level was inferred as approximately 6 feet bgs. Based on the dissipation test results, the design groundwater level should be considered as 4 feet bgs which corresponds to -1 feet mean sea level, therefore 6 feet below the top of planned earth fill pad (i.e., 5 feet above mean sea level). The near ground surface soils are relatively high plasticity and exhibit high moisture content and likely near saturation even within the upper 4 feet bgs above the considered groundwater level.

4.5 Analytical Test Results

As discussed in Section 3.4, analytical tests were performed on soil samples collected at specified depths in the four borings and soil drill cuttings from the investigation were disposed of as non-hazardous waste. Below is a summary of the soil analytical results.

- Metals were detected in each soil sample:
 - Metals concentrations were compared to ten times the soluble threshold limit concentration (10 X STLC) and 20 times the total threshold limit concentration (20 X TCLP) equivalents for soil to evaluate if further analysis is needed for waste characterization and profiling as a California hazardous waste or as a Federal hazardous waste. Metals results were below these equivalent levels.
 - Metals concentrations were also compared to US EPA Residential and Industrial Regional Screening Levels (RSLs) (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables). Of these samples, arsenic exceeded the RSLs. The RSLs for arsenic are 0.68 mg/kg and 3 mg/kg for Residential and Industrial, respectively. Arsenic was detected above the RSLs at concentrations of 1.15 to 20.4 mg/kg. Of the arsenic sample results, the 2.5-foot soil sample results at borings B-1, B-2 and B-4 exceeded the upper-bound background concentration of 12 mg/kg for arsenic in soil within Los Angeles County (Department of Toxic Substances Control, 2008).
- Total petroleum hydrocarbons (TPH) were not detected in the soil samples. However, hydrocarbons at TRPH were detected in two soil samples at concentrations of 18 and 15 mg/kg in soil at respective depth of 5.5 and 10 feet in boring B-3. Although TRPH includes a full range of hydrocarbons that may be related to naturally occurring petroleum hydrocarbons or oil field related activities, the concentrations of TRPH in these samples are below the Los Angeles Regional Water Quality Control Board (RWQCB; updated 2004), Maximum Soil Screening Levels (MSSLs) for TPH above drinking water aquifers (for groundwater less than 20 feet, the MSSL for diesel range is 100 mg/kg and for the heavy hydrocarbon range is 1000 mg/kg).

Benzene was detected at 1.2 μ g/kg at borehole B-3 at 2.5 feet. This concentration is below the RSLs, but within the range of RWQCB MSSLs for benzene in soil above a drinking water aquifer for sands, silts and clays (1.1 to 4.4 2 μ g/kg).

5.0 Seismic Considerations

The proposed expansion is likely to experience strong ground motions as a result of a moderate to large earthquake on nearby or distant active faults. The design of the proposed upgrades should consider these effects. The following sections discuss seismic hazards, including fault rupture, seismically-induced landslides, and liquefaction-related hazards. The 2016 California Building Code (CBC; California Buildings Standards Commission, 2016) seismic design parameters are provided in Section 5.2.

5.1 Surface Fault Rupture

As discussed in Section 2.0, the site is located within an area identified as potentially over a zone encompassing active faults that constitute a potential hazard to structures from surface faulting per DCDMG (1998). As discussed in Section 2.0, Hellman provided a map showing the calculated location of the Newport Inglewood Fault zone per soils report prepared by Medall Aragon, Worswick & Associates dated December 14, 1981, Project No. S1753C, and a copy of the map is included in Appendix A. Based on this map, the proposed location of the expansion is approximately 300 feet northeast of the calculated location of the fault trace.

5.2 Seismic Design Parameters

The following seismic design parameters for the project were developed in accordance with 2016 California Building Code, Chapter 16 Section 1613 (CBC 2016) and ASCE Standard ASCE/SEI 7-10 (ASCE 7-10; ASCE, 2010).

Because of the liquefaction potential at the site as discussed later in Section 5.5, according to ASCE 7-10 Chapter 20 Section 20.3.1, for structures having fundamental periods of vibration longer than 0.5 seconds, the site should be classified as Site Class F and site-specific ground motion procedures should be followed as described in ASCE 7-10 Chapter 21 Section 21.1 which requires site response analyses. Site response analyses are not in the scope of this investigation. If such analyses are needed, Wood should be contacted. For structures with fundamental periods equal to or less than 0.5 seconds, ASCE 7-10 permits the site not to be classified as Site Class F per Section 20.3. Therefore, based on the subsurface conditions encountered in our explorations, the site was classified as Site Class "D". A site location of 33.753155° N and 118.095911° W was used for developing the seismic design parameters. The mapped spectral acceleration parameters for the Risk-Targeted Maximum Considered Earthquake (MCE_R) in the CBC, for risk category I, II, or III, and the site soil conditions are:

- Site Class: D
- Mapped spectral accelerations for short periods S_S: 1.563 g
- Mapped spectral accelerations for a 1-s period S₁: 0.585 q
- Site Coefficient F_a: 1.0
- Site Coefficient F_v: 1.5
- Adjusted MCE_R spectral acceleration for short periods S_{MS}= F_aS_S = 1.563 g
- Adjusted MCE_R spectral acceleration for a 1-s period $S_{M1} = F_v S_1 = 0.878 g$
- Five-percent damped design spectral response acceleration at short periods S_{DS}: 1.042 q
- Five-percent damped design spectral response acceleration at 1-second period S_{D1}: 0.585 g
- Long-period transition period T_L: 8 seconds

Based on the 2016 CBC and ASCE 7-10, for geotechnical analyses (liquefaction, seismic settlement, lateral spreading), the peak ground acceleration (PGA) adjusted for Site Class effects (PGA_M) is 0.603 g. Parameters above and the PGA_M are based on probability of exceedance of 2 percent in 50 years.

5.3 Seismically Induced Landslides

Based on the DCDMG (1998), the project site is not located within a zone classified as having a potential for seismically-induced landslides.

5.4 Earthquake Magnitude

De-aggregation of seismic hazard for PGA using the U.S. Geological Survey 2008 National Seismic Hazard Map source model (USGS, 2008) indicates that the Newport-Inglewood Fault with a modal moment magnitude of M = 7.1 at a site to source distance of 0.16 kilometers (500 feet) contributes the most to the probabilistic ground motion hazard at the site.

5.5 Liquefaction

Liquefaction is a phenomenon in which saturated granular soils transform from a solid to a liquefied state when subjected to large, rapid loadings such as strong ground shaking during an earthquake. The transformation to a liquid state occurs due to the tendency of granular materials to compact, which consequently results in increased pore water pressure accompanied by a significant reduction in the effective stress. The change of state occurs most readily in recently deposited (i.e., geologically young) loose to moderately dense granular soils. The liquefaction susceptibility is highly dependent on the density of the soil, wherein looser soils are generally more susceptible. Furthermore, the consequences of liquefaction are also density dependent. In loose materials, soil liquefaction can result in a significant loss of shear strength, which is often accompanied by large shear deformations. In moderately dense to dense materials, liquefaction may temporarily induce high excess pore water pressures, but the tendency to dilate during shear inhibits major strength loss and large ground deformations.

5.5.1 Liquefaction Susceptibility Criteria

It is widely understood that fine-grained soils are generally less susceptible to soil liquefaction compared to clean sands. Significant new research has developed new liquefaction susceptibility criteria for finegrained soils. Bray et al. (2006) performed laboratory testing on soils that were and were not observed to have liquefied in Adapazari, Turkey, during the 1999 Kocaeli earthquake, and concluded that the amount of clay minerals best indicates a soil's susceptibility to liquefaction. Hence, Bray et al. (2006) recommended that loose soils meeting the following criteria should be considered susceptible to soil liquefaction: (1) the PI is ≤ 12; and (2) the natural moisture content is > 0.8 times the LL. Boulanger and Idriss (2006) also investigated liquefaction characteristics of fine-grained soils and recommended that the term liquefaction be reserved to describe the development of significant strains or strength loss in soils exhibiting a sand-like behavior, while the term cyclic softening can be used to describe similar phenomena in soils exhibiting clay-like behavior. Boulanger and Idriss (2006) further recommended that for practical purposes, clay-like behavior can be expected for fine-grained soils that have a plasticity index ≥ 7, and the behavior transitions from sand-like to clay-like over the range of PI values between 3 and 8. Both Bray et al. (2006) and Boulanger and Idriss (2006) focus on fine-grained soils having fines content greater than 50% per definition. Boulanger and Idriss (2006) notes that the criteria for fine-grained soils could be applied to soils with fines content between 35% and 50% where the fine-grain matrix controls the soil behavior. Boulanger and Idriss (2006) recommend further evaluation of specific site soils where the decision on "clay-like" behavior is critical on deciding the overall liquefaction susceptibility of the site.

The LL and PI values for various fine-grained soil layers encountered at the site are discussed in Section 4.3. The low plasticity silt soils within the upper fine-grained soil layer (approximately between 7 and 20 feet bgs) exhibit PI values ranging between 3 and 8. The natural moisture content of the silt in this zone is approximately 90 to 100 percent of the corresponding LLs. The fine-grained silty soils below approximately 40 feet depth exhibit PI values ranging between non-plastic (essentially zero) to 14. The natural moisture content of these soils is approximately 74 and 87 percent of the corresponding LLs. The clay layers within the upper 7 to 10 feet and the 5-foot thick clay layer in between the dense sand layers exhibited high plasticity. Based on the liquefaction susceptibility criteria discussed above, the low plasticity silts between 7 to 20 feet depth and below 40 feet depth should be considered as potentially liquefiable with sand-like behavior and the higher plasticity silts and clays should be evaluated for clay-like behavior. Based upon the review of the PI values relative to the CPT logs, a soil behavior index value, Ic, of 2.3 was selected as the approximate cutoff for a PI of 7 for use in liquefaction triggering analysis discussed in Section 5.5.2.

5.5.2 Liquefaction Triggering Analysis

Liquefaction triggering analyses were performed using the CPT data following the procedure outlined in Boulanger and Idriss (2014). The liquefaction induced settlement calculations were performed using the CPT data per Zhang et al (2002). Liquefaction triggering analyses using CPT data was performed using a commercially available software program, CLiq (Geologismiki, 2015). The analysis results are included in Appendix F.

The seismic ground motion parameters used in liquefaction triggering analyses include peak ground acceleration (PGA), moment magnitude of the design earthquake, and the historically high groundwater level. As discussed in Section 5.1, the PGA_M, which corresponds to peak ground acceleration with probability of exceedance of 2 percent in 50 years at the site is 0.603g and the earthquake magnitude as discussed in Section 5.4 is 7.1. The analyses were performed for historic groundwater level at 4 feet bgs and considering the future raising of the site with an earth fill pad for approximately two feet.

The analyses were performed by limiting the liquefaction triggering analyses to Ic values less than 2.3 for sand-like behavior and including the cyclic softening analysis of clay-like behavior soils with Ic greater than 2.3. Based on the analysis results provided in Appendix F, the liquefaction triggering is anticipated only in scattered thin layers of non-plastic silt soils below 40 feet depth and cyclic softening of fine-grained soils are not anticipated.

5.5.3 Seismically Induced Settlement

The estimated settlements, as presented in Appendix F, vary between $\frac{1}{2}$ inch and $\frac{3}{4}$ inch and the settlements are typically estimated to occur within the deep silt soils. It should be recognized that the uncertainty associated with estimation of seismically-induced settlement is on the order of ± 50 percent. In consideration of the uncertainty, the range of seismically induced settlements may be between approximately $\frac{1}{4}$ inch and 1 inch, and the differential settlements at the ground surface could be up to $\frac{1}{2}$ inch.

5.5.4 Bearing Capacity Failure

One potential consequence of liquefaction is bearing capacity or punching failures of foundations caused by the significant strength reduction in the underlying liquefiable soils during an earthquake. For the spread and mat foundations planned to support the compressors, a bearing capacity or punching failure is unlikely due to the separation between the bottom of the foundation and the top of liquefiable layer(s). If deep foundations are considered for the structures, the deep foundation elements should not be

Project # IR18166880 | July 9, 2018

Page 11 of 30

designed to extend to a tip depth that is less than two pile diameters above the bottom of the dense sand layer. The elevation of the bottom of the dense sand layer varies from -33 feet to -39 feet msl at the site.

6.0 Design Recommendations

Based upon the results of our investigation, the proposed project is considered geotechnically feasible provided the recommendations presented herein are incorporated into the design and construction. If changes in the design of the structures are made, or variations or changed conditions are encountered during construction, Wood should be contacted to evaluate their effects on these recommendations.

6.1 Key Geotechnical Design Considerations

The planned expansion project involves construction of an earth fill pad, mat foundations for structures, and pipe supports. There are several key geotechnical considerations for design of these facilities, which are:

- 1. Soft, saturated, and highly expansive clay soils are present near ground surface.
- 2. Static settlements resulting from shallow fine-grained soils and potential seismically induced settlements of deep silt soils.
- 3. If CIDH piles are preferred as pipe support, the excavation of the piles will encounter saturated soil conditions with potential for caving and special construction considerations will be necessary.

Soft, saturated, and highly expansive clay soils are present near ground surface which should be over-excavated to provide a level uniform subgrade for the earth fill pad and provide adequate separation between the planned structures and the soft clays. Constructing the earth fill pad over the saturated soft clays may also require a stabilization zone. Wood recommends the earth fill pad to consist of a uniform thickness beneath the structures and provide at least three feet of separation between the mat or spread footing foundations and the native soft clays. The clay soils at the bottom of the over-excavation are anticipated to be saturated and soft based on the soil conditions encountered in our borings. Wood recommends placing a stabilization mat over the native soils exposed at the bottom of the over-excavation before constructing the earth fill pad. Over-excavation recommendations are discussed in Section 6.2.2.

The seismically induced settlement potential is discussed in Section 5.5.3. Static settlement potential resulting from the load associated with the earth fill pad itself is discussed in Section 6.3. The estimated settlement resulting from mat foundations and pipe supports are discussed in Section 6.4 and 6.5, respectively. The total settlement potential should be considered in design of the pipelines and associated connections to the compressors and auxiliary structures.

The site soils consist of saturated soils starting from ground surface and transition into low plasticity silts and sands at depth. The construction of CIDH piles will encounter wet drilling conditions for the entire length of the piles and potential for caving of soft clays near ground surface and granular soils at depth. Construction recommendations for CIDH piles are provided in Section 7.4.

6.2 Earthwork

Earthwork for the project is anticipated to consist of over-excavating for the earth fill pad, placement of nonwoven geotextile separator fabric and crushed aggregate stabilization mat, placement of fill for construction of the earth fill pad, and CIDH pile excavations for pipe supports, if selected as the foundation type.

All earthwork, including excavation, backfill and preparation of subgrade, should be performed in accordance with the geotechnical recommendations presented in this report and applicable portions of the grading code of local regulatory agencies. All earthworks should be performed under the observation and testing of a qualified geotechnical engineer.

Project # IR18166880 | July 9, 2018

Page 13 of 30

6.2.1 **Site Preparation**

The initial site preparation will involve removal of the vegetative cover and over-excavating within the limits of earth fill pad. The excavated materials should be removed from the planned construction area and hauled to a suitable disposal area. The excavated soils are anticipated to be highly expansive and not suitable for use as backfill material.

All active or inactive utility lines within the construction area should be relocated, abandoned, or fully protected during construction. Larger conduits to be abandoned in-place should be filled with sandcement slurry. If existing utilities are removed, the resulting excavations should be backfilled with properly compacted fill.

The construction area should be cleared of any vegetation and stripped of miscellaneous debris and other deleterious material. Organic matter and other material that may interfere with the completion of the work should be removed from the limits of the construction area. Vegetation, debris, and organic matter should not be incorporated into engineered fill. Organic rich soil may be stockpiled for future landscaping. All objectionable material from clearing and grubbing should be removed from the site and disposed of at a suitable off-site disposal area or landfill.

As discussed in Section 4.5, analytical testing was performed on soil samples collected in our borings. Even though the drill cuttings were classified as non-hazardous for waste disposal purposes and the results were below the screening levels, the analytical results indicate that some constituents were detected in the soil samples. Given the analytical results represent samples collected at four boring locations and at the specified depths, higher or lower concentrations of constituents may be present in soil that will be excavated during construction or over-excavation. Therefore:

- Soil analytical results should be included with the bid-specifications (if one is to be prepared for the project) or in the construction documents.
- Prospective bidders should be advised to evaluate site conditions and identify appropriate safety protocols.
- Additional soil testing may be needed, if soil disposal is required during over excavation or construction.

Also, due to the proximity of the active oil wells in the area, excavation work and construction should consider the potential for methane to be present in the subsurface.

6.2.2 **Over-Excavation**

Wood recommends the earth fill pad, which will have a top elevation of 5 feet msl, to consist of a uniform thickness beneath the structures and provide at least three feet of separation between the mat or spread footing foundations and the native soft clays. In other words, if the foundations were to bear at 1 foot below the top of earth fill pad, then the over-excavation of the site soils should be made to Elevation 1 foot (i.e., 4 feet below top of the earth fill pad) or lower.

Based on the preliminary grading plan for the expansion, the earth fill pad will be accessed by dirt road on the east side of the pad where there are no structures planned at this time. Wood recommends the same uniform over-excavation for the entire pad if there is potential for construction of future structures in this area. If future structures are not planned for this area, over-excavation should be performed to provide a minimum of 3-foot thick earth fill pad, corresponding to 2 feet msl for the bottom of over-excavation in these areas.

The clays at the bottom of the over-excavation are anticipated to be saturated and soft based on the soil conditions encountered in our borings. Wood recommends placing nonwoven geotextile at the bottom of

wood.

the over-excavation as a separator fabric and placing a minimum of 8-inch thick open-graded crushed rock as a stabilization mat to place the compacted earth fill pad on.

6.2.3 Fill Materials and Compaction Criteria

It is anticipated that up to four principal fill types may be used at the site. These are:

- Open-Graded Crushed Rock
- Aggregate Base
- Sand-Cement Slurry
- General Engineered Fill/Backfill

Relative compaction requirements discussed below refer to the percent of the maximum dry density and optimum moisture content as determined by ASTM D 1557 (latest edition).

6.2.3.1 Open-Graded Crushed Rock

Open-graded crushed rock may be used below mat foundations, as a drainage layer, and as the stabilization mat placed over a separator fabric placed over the soft native soils at the bottom of over-excavations for this project. The crushed rock should be an imported material that consists of durable rock and gravel that is free of deleterious material and free from slaking or decomposition under the action of alternate wetting and drying. The crushed rock should conform to $\frac{3}{4}$ -inch gradation as provided in Table 1 and as stipulated in Section 200-1.2 of the latest edition of the Standard Specifications for Public Works Construction (Greenbook). This material should be surrounded by a filter fabric selected to prevent the migration of fines into the gravel.

These materials should have a durability index not less than 40. Crushed rock used for mat foundations should be moistened thoroughly and compacted with a minimum of three passes of plate- or roller-type vibratory compaction equipment, with lifts not thicker than 8 inches before being compacted. Crushed rock does not have a specified relative compaction requirement.

6.2.3.2 Aggregate Base

Imported crushed aggregate base or crushed miscellaneous base material may be used as part of pavement sections. These materials should meet the requirements in the Section 200 of the latest edition Greenbook. When placed beneath pavements, aggregate base should be compacted to a relative compaction of at least 95 percent. The moisture content of the material should be between 1 percent below and 3 percent above the optimum moisture content and the material should be placed in horizontal lifts that do not exceed 8 inches before being compacted.

6.2.3.3 Sand-Cement Slurry

Sand-cement slurry, also known as controlled density fill (CDF), or Controlled Low Strength Material (CLSM) in Section 201 of the Greenbook (latest edition) may be used to backfill localized areas where an alternative fill/backfill material to compacted fill material is needed. Sand-cement slurry should not be used for mass backfilling of the over-excavations. Sand-cement slurry consists of a fluid, workable mixture of aggregate, Portland cement, fly ash, and water. Sand-cement slurry can be batched to flow into irregularities in the bottoms and walls of excavations and trenches. It is an ideal backfill material when adequate room is limited or not available for conventional compaction equipment, or when settlement of the backfill must be minimized. No compaction is required to place sand-cement slurry.

Project # IR18166880 | July 9, 2018

Page 15 of 30

The Greenbook provides broad specifications for the gradation of sand-cement slurry aggregate; however, more restrictive gradation requirements may be desirable to limit the fines content and the size of sand and gravel that may adversely affect (i.e., puncture or tear) the corrosion protection of pipes, for example. We recommend that no more than 15 percent of the aggregate pass through the No. 200 sieve; and the 28-day compressive strength of the CDF be no less than 50 and no more than 110 pounds per square inch (psi).

6.2.3.4 General Engineered Fill/Backfill

General engineered fill/backfill material should be granular soils with less than 30 percent of fines, free of organic material, debris, and other deleterious substances, and not contain fragments greater than 3 inches in maximum dimension. The engineered fill material should have an Expansion Index (EI) less than 50 (i.e., low expansion potential per ASTM D 4829) and an R value greater than 30. All general engineered fill/backfill should be scarified, plowed, disked, and/or bladed until it is uniform in consistency and free of large, unbroken clods of soil.

Before placement of general engineered fill/backfill, the bottom of over-excavation should be prepared in accordance with Section 6.2.2 above. General engineered fill/backfill should be placed in horizontal lifts that do not exceed 8 inches in thickness before compaction and the moisture content of the material should be adjusted to between 0 and 3 percent above the optimum moisture content. General engineered fill/backfill should be compacted with suitable equipment to a relative compaction of at least 90 percent. The final surface of the compacted fill/backfill should be graded to promote good surface drainage, as described in Section 6.2.4.

6.2.3.5 Select Sand

Select sand conforming to the gradation requirements in Table 2 may be used as a bedding material for pipelines as discussed in Section 6.8.2. The select sand should also have a minimum sand equivalent (SE) of 30, as determined by California Test Method 217. The select sand should be moisture conditioned and then compacted to 90 percent of the maximum dry density. Compaction of select sand by jetting may not be used.

6.2.4 **Site Drainage**

Final site grading should provide surface drainage away from at-grade structures and slabs-on-grade and toward suitable discharge facilities. Ponding of surface water should not be allowed adjacent to structures. The water from any downspouts should be directed in closed pipes to storm drains or other appropriate points of discharge. The contractor should implement drainage provisions during construction to divert rain and construction water away from open excavations.

6.3 **Earth Fill Pad Settlement**

As discussed earlier, the planned final top Elevation of the earth fill pad is +5 feet msl. The existing ground elevation in the area of the expansion is approximately +3 to +4 feet msl. Following the site preparation and over-excavation recommendations as discussed in Section 6.2.1 and 6.2.2, the estimated settlement resulting from the placement of the earth fill pad is approximately ½ inch. Differential settlement is expected to be one half of the total settlement over a distance of 30 feet. Because the soils near ground surface consist of saturated high plasticity clays, it is anticipated that these settlements will take place relatively slowly and significant portion of them may take place after the construction is completed.

6.4 Lightly Loaded Mat Foundations

It is anticipated that the new compressors and auxiliary equipment will be supported on shallow mat foundations on the earth fill pad. Based on the preliminary grading plan provided and our communications with the project team, typical size of mat foundations for the compressors are approximately 10 feet by 30 feet and they will be lightly loaded. The mat foundations should be founded at a minimum of 1 foot below the adjacent finished grade.

Following site preparation and over-excavation recommendations as discussed in Sections 6.2.1 and 6.2.2, at-grade mat foundations founded on compacted fill at near ground surface may be designed as discussed below.

6.4.1 Bearing Capacity and Settlement

The allowable bearing pressure for the planned mat foundation is controlled by allowable magnitude of settlement and not by bearing capacity. The total static settlement beneath the proposed mat foundations is estimated to be less than ½ inch for allowable net bearing pressure of 500 psf. The allowable bearing value is for the total of dead and sustained live loads. The allowable bearing pressure may be increased by one-third when considering transient loading conditions, including seismic or wind forces. Differential settlement is expected to be one half of the total settlement over a distance of 30 feet. The total static differential settlement should be assessed by incorporating the differential settlement that may result from the settlement of the subsurface soil because of the earth fill pad placement as discussed in Section 6.3.

If design of this mat foundation is based on elastic theory, a modulus of subgrade reaction (k) given by the following equation may be used for design.

$$k = \frac{k_1}{B} \times \frac{(2L + B)}{3L}$$

where, k_1 (in units of pounds per cubic inch) is coefficient of subgrade reaction of a square foundation measuring one foot by one foot, and B and L are width and length (in units of foot) of the mat, respectively. A value of 100 pci for k_1 may be used for design of mat foundations at this site.

6.4.2 Lateral Load Resistance

Lateral load resistance for the shallow foundations will be developed by passive soil pressure against the sides of the footings below grade and by friction acting at the base of the concrete footings bearing on compacted fill. An allowable passive pressure of 200 psf per foot of depth, beginning from 1 foot below the lowest adjacent grade, may be used for design purposes. An allowable coefficient of friction of 0.30 may be used for dead and sustained live load forces to compute the frictional resistance of the slabs constructed directly on compacted fill. Safety factors of 2.0 and 1.5 have been incorporated in development of allowable passive and frictional resistance values, respectively. Under seismic and wind loading conditions, the passive pressure and frictional resistance may be increased by one-third.

6.5 Pipe Support Foundations

The pipes will either be supported on shallow foundations or CIDH pile foundations. Design recommendations for shallow foundations and CIDH pile foundations for pipe supports are provided in following sections.

6.5.1 Pipe Supports on Shallow Foundations

Based on the information provided by SPEC Services, typical shallow foundations for concrete sleeper type pipe supports consist of strip footings which are typically approximately 4 feet wide and as long as 30 feet long depending on the number of pipes supported. The shallow foundations should be founded at a minimum of 1 foot below the adjacent finished grade. The allowable bearing pressure of the shallow foundations with above dimensions for this project depends on the allowable settlement instead of the bearing capacity similar to the mat foundations discussed in Section 6.4. Following site preparation and over-excavation recommendations as discussed in Section 6.2.1 and 6.2.2, the allowable net bearing pressures for a 4-foot wide pipe support footing are 750 psf and 1,500 psf for ½ inch and 1 inch settlement, respectively. Differential settlement is expected to be one half of the total settlement over a distance of 30 feet.

Lateral load resistance for the shallow foundations will be developed by passive soil pressure against the sides of the footings below grade and by friction acting at the base of the concrete footings bearing on compacted fill. An allowable passive pressure of 200 psf per foot of depth, beginning from 1 foot below the lowest adjacent grade, may be used for design purposes. An allowable coefficient of friction of 0.30 may be used for dead and sustained live load forces to compute the frictional resistance of the slabs constructed directly on compacted fill. Safety factors of 2.0 and 1.5 have been incorporated in development of allowable passive and frictional resistance values, respectively. Under seismic and wind loading conditions, the passive pressure and frictional resistance may be increased by one-third.

6.5.2 Pipe Supports on CIDH Piles

Based on the information provided by SPEC Services, CIDH pile foundation analyses were performed for pile diameters of 24 inches and 30 inches. The construction recommendations for CIDH pies are provided in Section 7.4. The axial and lateral load carrying capacity evaluations are discussed below.

6.5.2.1 Axial Capacity

Wood developed axial compression capacities for 24- and 30-inch diameter CIDH piles using the computer program SHAFT v.6 by Ensoft Inc. (Ensoft, 2007). Figure 3 shows allowable axial compression capacity of CIDH piles in kips. The allowable compressive capacity omits any end bearing contribution. Potential for downdrag forces acting on the piles resulting from settlement of upper high plasticity clay layer was included. The axial capacities provided in Figure 3 are for dead plus live loads with a factor of safety of 2 on frictional resistance and does not rely on tip resistance. We recommend a minimum CIDH pile tip depth of 25 feet below the finished earth fill pad which corresponds to elevation -20 feet msl. The axial capacity provided may be increased by one third for transient loads, such as wind and seismic loads. The anticipated settlement of the pile head under the allowable static axial compression load is about 1 percent of the shaft diameter. It should be noted that pile foundations do not eliminate the potential seismically induced settlements as discussed in Section 5.5.3 and the seismically induced settlements in addition to the static settlements should be considered in design.

6.5.2.2 Lateral Load Capacity

Wood performed lateral load carrying capacity calculations for the CIDH piles using the computer program LPILE v.2016-09.009 by Ensoft, Inc. (Ensoft, 2016). Analyses were performed for 24- and 30-inch diameter CIDH piles. Based on the required minimum pile tip of the CIDH piles at elevation -20 feet msl, the lateral response of the piles installed to greater depths do not change noticeably. For each diameter, analyses were performed for a range of applied pile head shear and moment forces yielding 0.5 inches and 1.0 inch of lateral pile head deflection. The summary of analysis results is provided in Figures 4 and 5

Project # IR18166880 | July 9, 2018

Page 18 of 30

and the plots of pile deflection, and moment and shear demands along the pile length are provided in Appendix G.

6.6 Deep Foundations

As an alternative to the at-grade mat foundations, deep foundation design recommendations are provided in this section. Deep foundations may be desirable if the static settlements resulting from the earth fill pad and the at-grade mat foundation or spread footing foundations are not acceptable. CIDH piles would need to be installed many feet below groundwater and encounter potentially caving excavations, which would require holes to be filled with slurry or cased during construction as discussed in Section 7.4. In our opinion, driven piles are considered to be the most suitable pile type for this project. Based on our experience and judgment from similar projects in Southern California, square precast prestressed concrete (SPPC) piles would be most appropriate to support the anticipated loads. The pile capacity analyses in the following subsection were performed for 12-inch and 14-inch SPPC piles.

The design of the pile foundations needs to consider the depth of the soils with liquefaction and seismic settlement potential. As discussed in Section 5.5, the non-plastic silt soils below the dense sand layer with bottom elevations ranging from -33 feet to -39 feet are susceptible to liquefaction. The driven piles should terminate well above this interface in order not to create a potential for bearing capacity failure of the pile tip upon potential liquefaction triggering. Therefore, axial capacity plots in following section are developed for a maximum tip depth corresponding to an elevation of -29 feet (i.e., 34 feet below top of planned earth fill pad). Additionally, predrilling maybe necessary through the upper medium dense to dense sand layers in order for the pile driving not to encounter early refusal.

6.6.1 Axial Load Capacity

Wood developed axial compression capacities for 12- and 14-inch SPPC piles using the computer program APILE v.5.0 by Ensoft Inc. (Ensoft, 2008). Figure 6 shows allowable axial compression capacity of SPPC piles in kips. Potential for downdrag forces acting on the piles resulting from settlement of upper high plasticity clay layer was included. The provided axial capacities in Figure 6 are for dead plus live loads with a factor of safety of 2 on frictional resistance and 3 for end bearing and may be increased by one third for transient loads, such as wind and seismic loads. We recommend a minimum pile tip depth of 25 feet below the finished earth fill pad which corresponds to elevation -20 feet msl. The anticipated settlement of the pile head under the allowable axial compression load is about 1 percent of the pile size. It should be noted that pile foundations installed to recommended pile tip depths above do not eliminate the potential seismically induced settlements as discussed in Section 5.5.3.

6.6.2 Lateral Load Capacity

Wood performed lateral load carrying capacity calculations for the SPPC piles using the computer program LPILE v.2016-09.009 by Ensoft, Inc. (Ensoft, 2016). Analyses were performed for 12- and 14-inch SPPC piles. Based on the recommended minimum pile tip elevation of -20 feet amsl, the lateral response of the piles installed to greater depths do not change noticeably. For each pile size, analyses were performed for a range of applied pile head shear and moment forces yielding 0.5 inches and 1.0 inch of lateral pile head deflection. The summary of analysis results is provided on Figures 7 and 8, and the plots of pile deflection, and moment and shear demands along the pile length are provided in Appendix H.

6.7 Dynamic Foundation Design Parameters

Shear wave velocity (Vs) measurements obtained from the CPTs and the average Vs profile are shown on Figure 9. In general, Vs increases with depth. From the ground surface to 20 feet bgs, Vs increases from

Project # IR18166880 | July 9, 2018

Page 19 of 30

about 400 feet/sec to about 800 feet/sec. Vs value is approximately 800 feet/sec between depths of 20 feet and 50 feet, and approximately 900 feet below 50 feet depth to the bottom of the measurements at approximately 60 feet.

Dynamic response of foundations and structures depends on the magnitude, frequency, direction, and location of the dynamic loads. A significant parameter in evaluating the dynamic response of any type of motion is the inertia reaction of the foundation.

Significant vibratory loading by mechanical equipment can, in some cases, cause minor densification (settlement) of underlying soils, and excessive motions of foundations or structures. However, densification of the proposed fill pad beneath these structures will not likely be appreciable provided the fills are placed and compacted in accordance with the recommendations of this report.

It is recommended that foundations to support rotating equipment be isolated from the foundations of other structures. Design of rotating equipment foundations should be based on equipment manufacturer's specifications. A unit weight of 118 pcf and density of 3.642 pounds/(foot²-Sec²), a shear modulus Gmax equal to 3.642*(Vs)² in psf and a damping ratio of 0.997% at small shear strain (i.e., less than 0.0001 percent strain), and a Poisson's ratio of 1/3 may be used in design, where Vs is in feet/sec. At large shear strain, a strain compatible shear modulus G and damping ratio may be used. The strain compatible shear modulus G and damping ratio may be obtained from Table 3, which is based on the Vucetic and Dobry (1991) relationships for clay with a PI of 40.

6.8 Buried Pipelines

Currently, the pipelines are planned to be above ground supported on pipe racks and following foundation recommendations in Section 6.5. The following recommendations are for installing buried pipelines of the project, if needed, for completeness. The following terminology is used in this report for the purpose of presenting design recommendations for pipe trench excavation and backfill.

<u>Bedding Zone</u> - The bedding zone includes the full width of the trench from the bottom of the trench to the bottom of the pipe.

<u>Pipe Zone</u> - The bedding zone includes the full width of the trench from the bottom of the pipe to a horizontal level about 12 inches above the top of the pipe.

<u>Trench Zone</u> - The trench zone is the full width of the trench above the pipe zone to the ground surface.

6.8.1 Bearing Capacity and Settlement

Generally, the pressure imposed by the pipelines will be less than the existing soil overburden pressure at the proposed invert depths. Even though there may be some increase in the overburden pressure associated with the replacement of lighter existing fill with denser engineered fill, significant settlement is not anticipated along the alignment of the pipelines except for within the footprint of the earth fill pad. If buried pipelines are constructed within the footprint of the planned earth fill pad, total settlement of ½ inch and differential settlement of ¼ inch over 30 feet distance should be considered in pipe design as discussed in Section 6.3. Recommendations for bedding material and, if necessary, removal of unsuitable soils, are provided below.

6.8.2 **Bedding Material**

Pipes should be supported on firm material. Disturbed or loose materials at the bottom of the trenches should be removed to expose competent material prior to placement of bedding material. The bottom of the trenches should be separated by at least 1 foot of competent material. If native soft clay soils are exposed at the bottom of the trenches, the clay soils should be over-excavated for 1 foot and replaced

Project # IR18166880 | July 9, 2018

Page 20 of 30

with open-graded crushed rock wrapped in nonwoven geotextile separator fabric. It is recommended that pipes be bedded on a minimum of 6 inches of crushed rock or select sand (in addition to the 1 foot crushed rock discussed above) meeting the gradation requirements presented in Tables 1 and 2 and Sections 6.2.3.1 and 6.2.3.5. The select sand should also have a minimum sand equivalent (SE) of 30, as determined by California Test Method 217. As an alternative to crushed rock or select sand, sand cement slurry may be considered if it is cost effective and/or it is the preference of the designer/owner. If sand cement slurry is used for bedding, the pipes should be placed on blocks or props that provide enough space underneath the pipe for the sand cement slurry to flow in.

6.8.3 Pipe Zone Material

Backfill to be placed in the pipe zone (the full width of the trench from the bottom to 12 inches above the top of pipe) should consist of crushed rock or select sand conforming to the gradation requirements recommended in Tables 1 and 2 (and Sections 6.2.3.1 and 6.2.3.5), or sand cement slurry as described in Section 6.2.3.3. Native materials are not suitable for use as pipe-zone backfill and import of backfill materials will be necessary.

6.8.4 Trench Backfill

The site subsurface materials generated from trench excavations are not considered suitable to be used as backfill in the trench zone. Import material to be used for earth fill pad should be used as trench backfill material. The material description for this material is described in Section 6.2.3.4.

6.8.5 Backfill Placement and Compaction Requirements

Backfill should be compacted by mechanical or vibratory equipment to achieve the required compaction standard. Flooding or jetting should not be used for compaction purposes.

Backfill should be placed on each side of the pipe simultaneously to avoid unbalanced loads on the pipe. All backfill should be moisture-conditioned to 0 to 3 percent above optimum moisture content and placed in lifts not exceeding 8 inches in thickness, and compacted to at least 90 percent of the maximum dry density in the pipe zone and trench zone. In paved areas, the upper 12 inches of subgrade and all overlying aggregate base rock within the trench zone should be compacted to at least 95 percent of maximum dry density. The maximum density and optimum moisture content for each material used should be determined in accordance with ASTM D 1557.

6.9 Pavement

All pavement areas should be designed to minimize water percolation through the pavement and subsequent saturation of the subgrade. It would be desirable to locate the flow lines away from high traffic areas. Recommendations for flexible asphalt concrete are provided below.

In areas of proposed pavements, the subgrade below the crushed aggregate base course, to a depth of 12 inches, should be moisture conditioned to between 0 and 3 percent above optimum moisture content and compacted to 95 percent of the maximum dry density as determined by ASTM D 1557. If feasible, recompacted sections should extend horizontally at least 2 feet beyond all pavement areas.

Laboratory test result on the near surface clayey soils indicates an R-value of 13. Based on our over-excavation recommendations provided in Section 6.2.2, the subgrade for pavements over the planned earth fill pad will consist of engineered fill. The engineered fill is specified to have a minimum R value of 30 as discussed in Section 6.2.3.4. Recommendations for conventional flexible pavement sections for various Traffic Index (TI) values based on California Department of Transportation Highway Design Manual

Project # IR18166880 | July 9, 2018

Page 21 of 30

(Caltrans, 2012) are summarized in Table 4 based on an R-value of 30. The recommended sections consist of asphalt concrete over crushed aggregate or miscellaneous base and compacted subgrade soils.

Asphalt concrete should conform to Section 203 and 302 of the latest edition of the Standard Specifications for Public Works Construction (Greenbook). Crushed aggregate base or miscellaneous base should conform to Section 200 of the latest edition of the Greenbook. The crushed aggregate or miscellaneous base and subgrade soils should be compacted to at least 95 percent relative compaction.

6.10 Corrosion and Chemical Attack Resistance

Chemical analyses were performed at laboratories of AP Engineering. The chemical analyses included pH, chloride content, sulfate content, and minimum resistivity tests on two samples of shallow soils collected from the borings. Corrosion test results are presented in Appendix C.

The soil pH values were determined to be 9.8 and 9.9, which indicate the soils are strongly alkaline and severely corrosive. Based on correlations in the Navy Design Manual (NAVFAC DM-5, 1979), the sulfate and chloride content results indicate the soils tested are severely to extremely corrosive and the resistivity test results indicate the soils tested are severely corrosive. When in contact with ferrous materials, soils consisting of clay mixtures are considered to be heavily corrosive per NAVFAC DM-5.

The sulfate content test results indicate that injurious sulfate attack on concrete in contact with the soils tested is not a concern, according to American Concrete Institute (ACI) 318-14, Table 19.3.1.1. Refer to ACI-318 for appropriate concrete mix design. ACI makes no special requirements for cement type or water content when sulfate attack potential is negligible.

If ferrous materials are expected to be placed in contact with site soils, it may be desirable to consult a corrosion specialist regarding chosen construction materials, and/or protection design for the proposed facilities.

7.0 Construction Considerations

The following paragraphs discuss key considerations during construction of the proposed facilities.

7.1 Excavation Difficulty

Based on our field exploration program, earthwork can be performed with conventional construction equipment. Low ground pressure equipment may be necessary because of the presence of nearly saturated soft clays which will be exposed at the bottom of the over-excavations.

7.2 Temporary Dewatering

Based on groundwater levels encountered during this investigation, excavations for earthwork and foundation preparation for the at-grade structures are not expected to encounter groundwater. However, near ground surface soils are anticipated to be nearly saturated and wet soil conditions should be anticipated. The pipeline trenches, if excavated below 4 feet depth from the existing ground surface, may encounter groundwater. Also perched water conditions may be encountered during excavations. The need for dewatering limited amount of water may be anticipated.

7.3 Construction Slopes

Excavations during construction should be conducted so that slope failure and excessive ground movement will not occur. The short-term stability of excavation depends on many factors, including slope angle, engineering characteristics of the subsoils, height of the excavation and length of time the excavation remains unsupported and exposed to equipment vibrations, rainfall, and desiccation.

If and where spacing permits, and providing that adjacent facilities are adequately supported, open excavations may be considered. In general, unsupported slopes for temporary construction excavations above groundwater should not be expected to stand at an inclination steeper than 1.5:1 (horizontal: vertical) for the native soils.

Surcharge loads from vehicle parking and travel lanes or stockpiled materials should be kept away from the top of temporary excavations 10 feet or a horizontal distance equal to at least one-half the depth of excavation, whichever is greater. Surface drainage should be controlled along the top of temporary excavations to preclude wetting of the soils and erosion of the excavation faces. Even with the implementation of the above recommendations, sloughing of the surface of the temporary excavations may still occur, and workmen should be adequately protected from such sloughing.

7.4 CIDH Pile Installation

Proper installation of CIDH piles is important. Drilled holes should be inspected and approved by the geotechnical engineer before installation of reinforcement. Care must be taken during drilling to prevent disturbing the foundation material that will surround the pile. Equipment or methods used for drilling should not cause disturbance or caving of the shaft. The axis of the shaft should not deviate from plumb more than ¼ foot per 25 feet of the shaft length. After drilling, the pile should be constructed expeditiously, to prevent deterioration of the surrounding foundation material from exposure to air or from the presence of water.

During construction, soils encountered in the drilled shafts should be logged and the conditions of shafts should be reviewed and documented before pouring concrete. The bottoms of drilled shafts should be reasonably free of loose cuttings, slough, or debris before reinforcing steel is installed and concrete placed. If minor caving occurs, the loss of depth can be compensated for by increasing the lengths of the piers by subsequently overdrilling to a deeper depth.

Project # IR18166880 | July 9, 2018

Page 23 of 30

The majority of soils anticipated to be encountered at the project site during drilling are fine-grained soils or interbedded layers of granular and fine-grained soils. Caving of the shallow soft fine-grained soils and deep granular soils in the drilled shafts should be anticipated. Installation of steel casings or using drilling mud in the drilled shafts may be required when such caving occurs. To minimize caving, concrete should be poured the same day the shaft is drilled. If casing is required, it should be withdrawn while placing concrete in the shaft. The casing should be removed slowly so that the level of concrete at all times is at least 2 to 3 feet above the bottom of the casing. If drilling mud is used, the mud mix design should be approved by the geotechnical engineer.

Water is anticipated to be present in drilled shaft based on the findings of our investigation. Therefore, concrete placement by the pumping and tremie method will be required. Both concrete mix and concrete placement should be addressed in the specifications. The pile reinforcing cage should be installed and the concrete pumped immediately after drilling is completed. No drilled shaft should be left open overnight. Specifications should require that sufficient space be provided in the pile reinforcing cage during fabrication to allow the insertion of a tremie pipe for concrete placement. The tremie pipe should extend to the bottom of the drilled shaft; be watertight, and fitted with some form of valve at its lower end. During concrete placement, the bottom of the tremie pipe should remain embedded at all times in at least 3 feet of concrete. Water and drilling mud, if used, should be pumped out of the excavation concurrently with the concrete placement operations. If casing is used, it should have an outer diameter equal or exceeding the design shaft diameter and be removed slowly. The casing should extend above ground surface and should always be filled with a sufficient head of concrete before it is completely removed. The tremie pipe should not be removed until clean concrete is observed at the top of the pile. The concrete of the pile should be dense and homogeneous. The methods used to place the concrete should prevent segregation. Concrete placed in dry, or dewatered drilled shafts should not be permitted to fall from a height greater than 5 feet without the use of adjustable length pipes or tubes. Concrete should be vibrated into place.

8.0 Post Investigation Services

It is recommended that final project plans and specifications be reviewed by Wood to determine the extent that the recommendations presented herein have been properly interpreted and incorporated into the contract documents. Following review of plans and specifications, observation and testing should be performed by a geotechnical engineer during construction to confirm that foundation elements are founded on and penetrate the recommended soils, and that suitable engineered fill/backfill soils are placed upon competent materials and properly compacted at the recommended moisture content.

9.0 Closure

The conclusions, recommendations, and opinions presented herein are: (1) based upon our evaluation and interpretation of the data obtained from our field and laboratory programs; (2) based upon an interpolation of soil conditions between and beyond the borings and CPTs; (3) are subject to confirmation of the actual conditions encountered during construction; and, (4) are based upon the assumption that sufficient observation and testing will be provided during construction.

If parties other than Wood are engaged to provide construction geotechnical services, they must be notified that they will be required to assume complete responsibility for the geotechnical phase of the project by concurring with the findings and recommendations in this report or providing alternate recommendations.

If pertinent changes are made in the project plans or conditions are encountered during construction that appear to be different than indicated in this report, please contact this office. Significant variations may necessitate a re-evaluation of the recommendations presented in this report.

10.0 References

- American Society of Civil Engineers (ASCE), 2010, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), May 12.
- American Concrete Institute (ACI), 2014, Building Code Requirements for Structural Concrete (ACI 318-14).
- Boulanger, R.W., and Idriss, I.M., 2006, Liquefaction Susceptibility Criteria for Silts and Clays, J. Geotechnical and Geoenvironmental Eng., ASCE 132(11), 1413-426.
- Boulanger, R.W., and Idriss, I. M., 2014, CPT and SPT Based Liquefaction Triggering Procedures, Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, California, April.
- Bray, J.D., and Sancio, R.B., 2006, Assessment of the Liquefaction Susceptibility of Fine-Grained Soils, J. Geotechnical and Geoenvironmental Eng., ASCE 132(9), 1165-177.
- CBC 2016, 2016 California Building Code.
- California Department of Transportation, 2012, Highway Design Manual, May 7.
- California Geological Survey, 1999, Earthquake Zones of Required Investigation Los Alamitos Quadrangle, March 25.
- Department of Conservation Division of Mines and Geology, 1998, , Seismic Hazard Zone Report for the Los Alamitos 7.5-Minute Quadrangle, Los Angeles County, California
- DTSC, 2008, Determination of a Southern California Regional Background Arsenic Concentration in Soil, March.
- Ensoft, 2008, APILE, Axially Loading Pile Analysis Program, Version 5.0.
- Ensoft, 2016, LPILE for Windows, Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method.
- Ensoft, 2007, SHAFT, Vertically Loaded Drilled Shaft Analysis Program, Version 6.
- Geologismiki Geotechnical Software, 2015, CLiq v.1.7.6.49 Soil Liquefaction Assessment Software.
- Geomatrix Consultants, 2004, Geotechnical Investigation Report Hellman Ranch Tank Farm Replacement Project, Seal Beach, California, Project No. 7494.001, August 11.
- NAVFAC, 1979, Civil Engineering Pavements, Design Manual 5-4
- RWQCB, 1996, Interim Site Assessment & Cleanup Guidebook, Updated March 2004, May.
- US EPA, RSLs for Chemical Contaminants at Superfund Sites, Region 9, May 2018 http://www.epa.gov/region9/superfund/prg/>

- USGS, 2008. http://eqint.cr.usgs.gov/eq-men/html/lookup-2002-interp.html, National Seismic Hazard Map Interpolated Probabilistic Ground Motion.
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180.

Project # IR18166880 | July 9, 2018

Page 28 of 30

wood.

Tables

TABLE 1

CRUSHED ROCK GRADATION

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

U.S. Standard Sieve	Percent Passing by Weight	Percent Passing by Weight
(ASTM E 11)	³¼-inch max.	1-inch max.
1 inch	100	90-100
3/4 inch	90-100	30-60
1/2 inch	30-60	0-20
3/8 inch	0-20	0-20
No. 4	0-5	0-5
No. 8	0	0

TABLE 2

SELECT SAND GRADATION

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

U.S. Standard Sieve (ASTM E 11)	Percent Passing by Weight 3/8-inch max.
3/8 inch	100
No. 4	75-100
No. 40	10-50
No. 100	5-20
No. 200	0-15

TABLE 3

STRAIN COMPATIBLE SHEAR MODULUS REDUCTION AND DAMPING RATIO

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

Shear Strain (%)	G/Gmax	Damping Ratio (%)
0.0001	1	0.997
0.0002	1	1.039
0.0005	1	1.147
0.001	1	1.343
0.002	0.996	1.682
0.005	0.968	2.492
0.01	0.926	3.344
0.02	0.857	4.319
0.05	0.723	5.897
0.1	0.607	7.393
0.2	0.476	9.284
0.5	0.322	12.5
1	0.204	15.135
2	0.113	18.065
5	0.057	20.89
10	0.029	22.8

Notes:

- 1. G is strain compatible shear modulus.
- 2. Gmax is shear modulus at small shear strain (i.e., less than 0.0001 percent).

TABLE 4

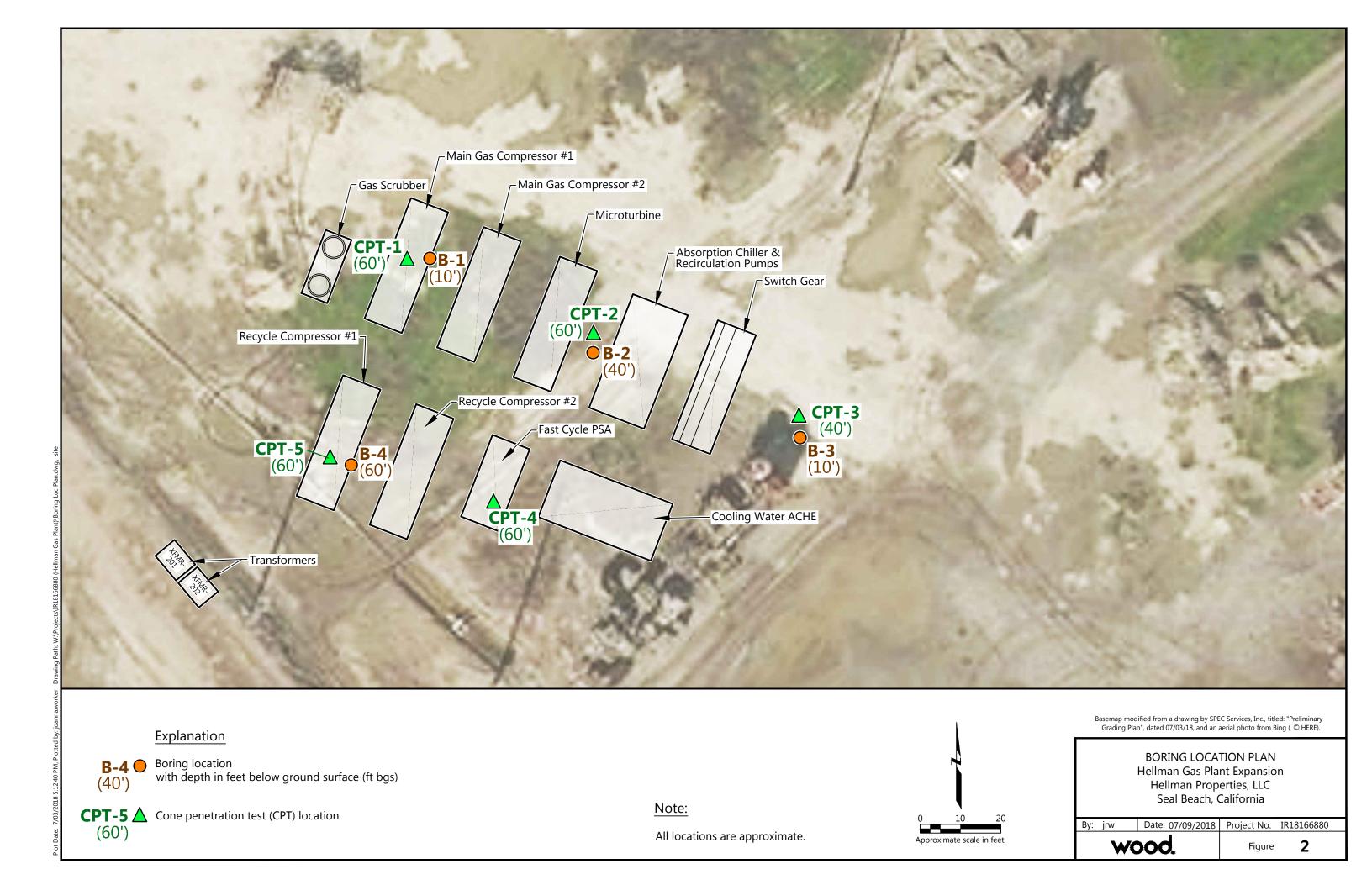
FLEXIBLE ASPHALT CONCRETE PAVEMENT RECOMMENDATIONS

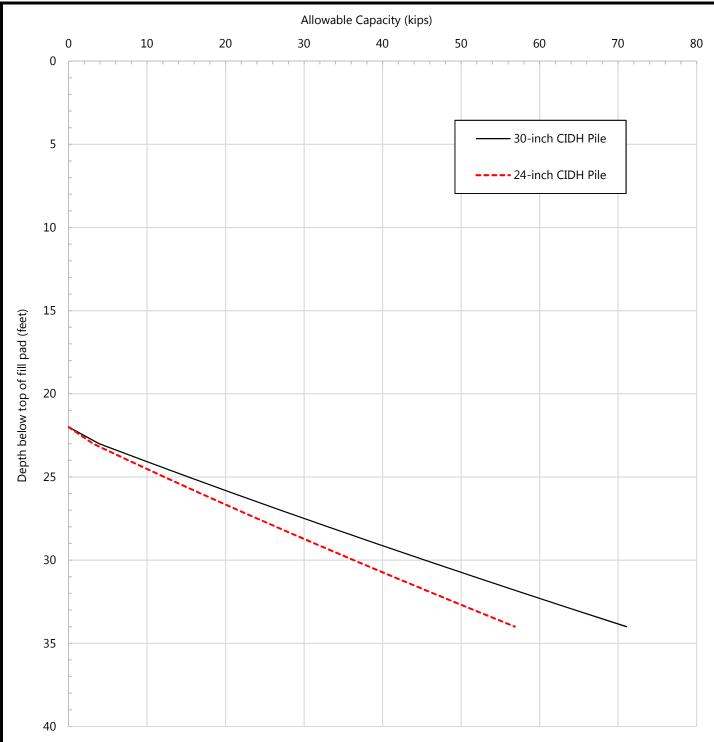
Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

	R-value > 30							
Traffic Index (TI) Asphalt Concrete Thickness (inches)		Crushed Aggregate Base or Miscellaneous Base Thickness (inches)	Compacted Subgrade Soil Thickness (inches)					
5	2.5	7.0	12					
6	3.0	9.0	12					
7	3.5	11.0	12					
8	4.0	13.0	12					

wood.

Figures

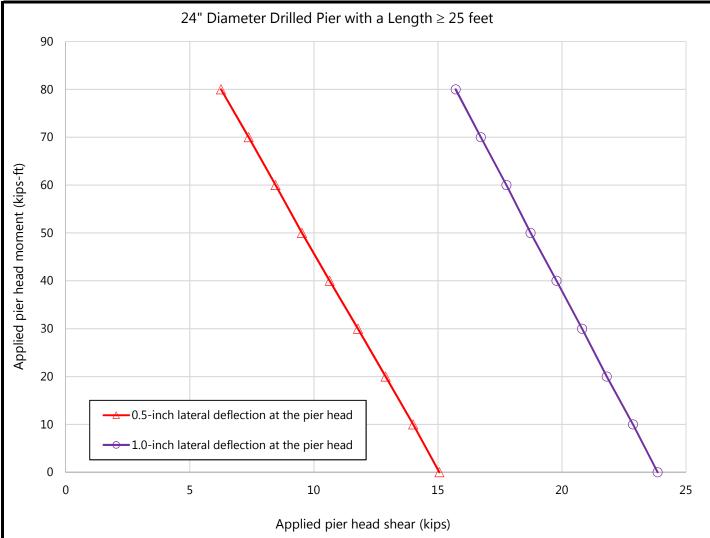

REFERENCE:


Esri World Street Map sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P, OpenStreetMap contributors, and the GIS User Community. Aerial photo from Esri World Imagery: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, dated 7-9-2016.

SITE LOCATION 1,500 Approximate scale in feet

SITE LOCATION MAP Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

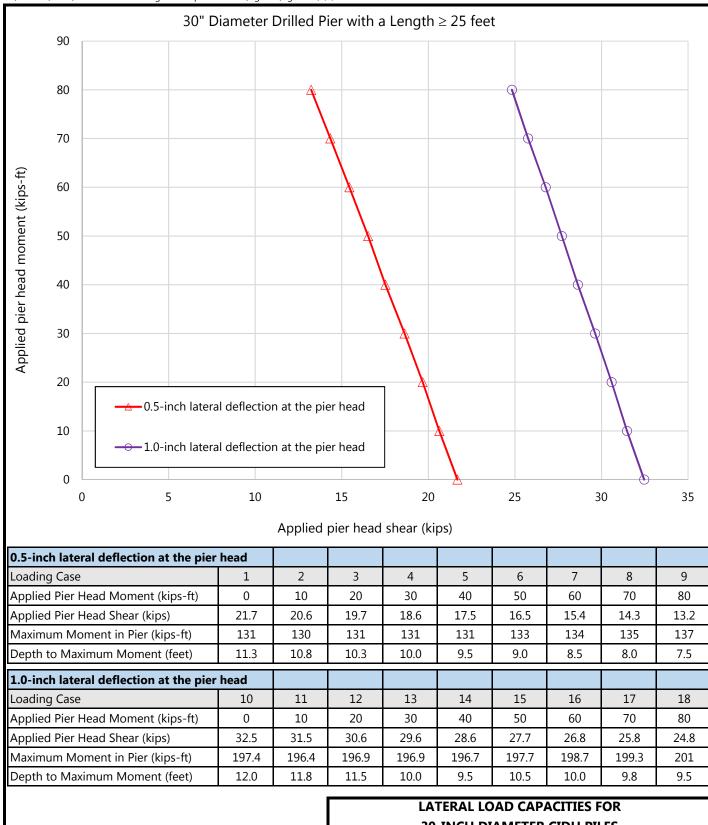
	W	ood.	Figure	1
By:	jrw	Date: 07/09/2018	Project No.	IR18166880



Notes:

- 1. The allowable capacity incorporated a factor of safety of 2 for skin friction and ignored end bearing.
- 2. The allowable capacity is for dead plus live loads and may be increased by 33% when considering transient live loads, including seismic and wind loads.

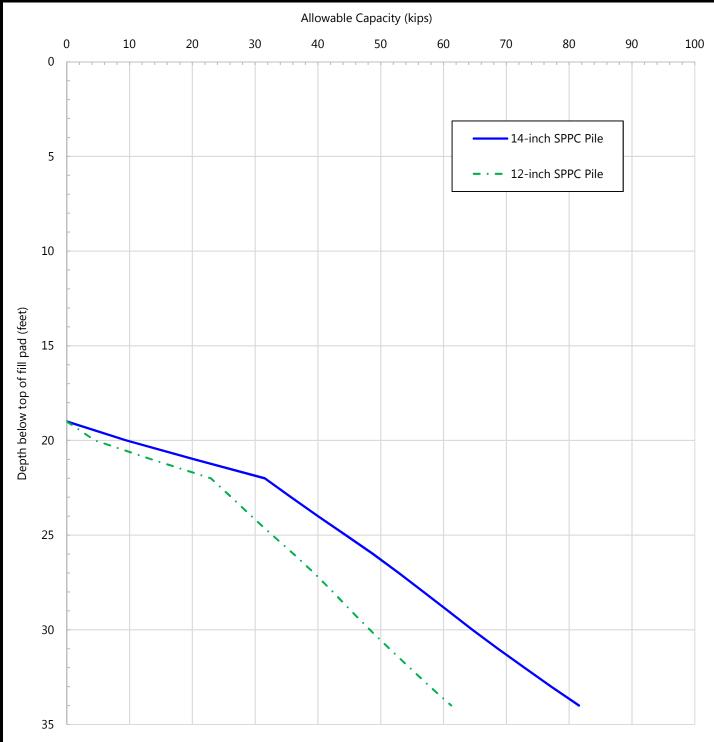
CIDH PILE AXIAL CAPACITY								
Hellman Gas Plant Expansion								
Hellman Properties, LLC Seal Beach, California								
		36	ai beach, ca	IIIOITIIa				
Ву:	LH	Date:	07/09/2018	Project No.: IR18166880				
	V	VOO	4	Figure 3				



0.5-inch lateral deflection at the pier	head								
Loading Case	1	2	3	4	5	6	7	8	9
Applied Pier Head Moment (kips-ft)	0	10	20	30	40	50	60	70	80
Applied Pier Head Shear (kips)	15.1	14.0	12.9	11.8	10.6	9.5	8.5	7.4	6.3
Maximum Moment in Pier (kips-ft)	74	75	77	79	81	84	88	93	97
Depth to Maximum Moment (feet) 9.0		8.5	8.0	7.5	6.8	6.3	5.8	5.3	4.5
1.0-inch lateral deflection at the pier	head								
Loading Case	10	11	12	13	14	15	16	17	18
Applied Pier Head Moment (kips-ft)	0	10	20	30	40	50	60	70	80
Applied Pier Head Shear (kips)	23.9	22.9	21.8	20.8	19.8	18.7	17.8	16.7	15.7
Maximum Moment in Pier (kips-ft) 119		119	121	122	124	126	129	132	135
Depth to Maximum Moment (feet)	9.75	9.25	9	7.5	6.75	7.75	7.5	7	6.75

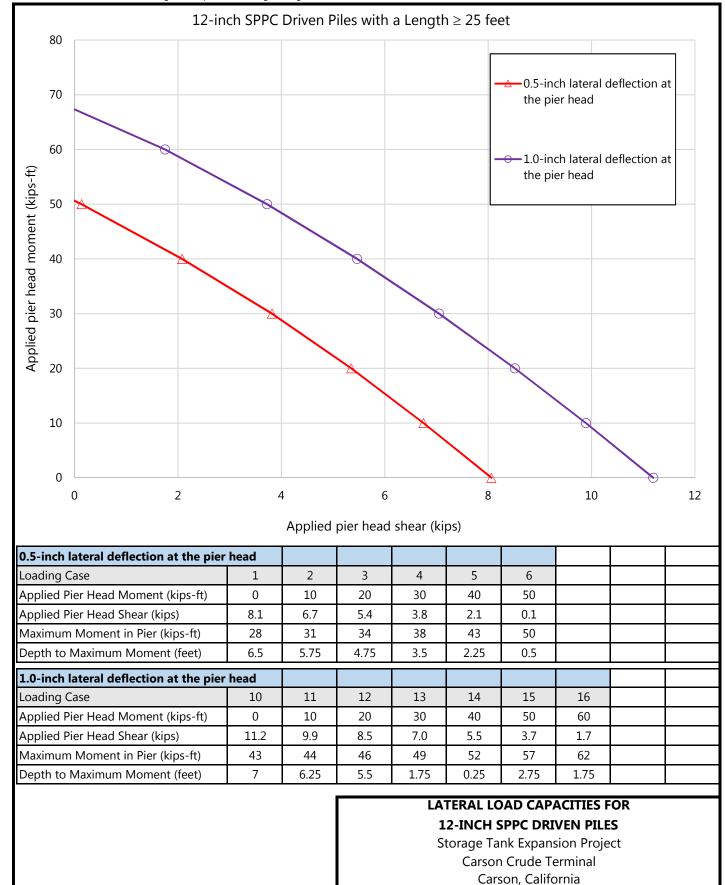
LATERAL LOAD CAPACITIES FOR 24-INCH DIAMETER CIDH PILES

Storage Tank Expansion Project Carson Crude Terminal Carson, California


Ву:	LH	Date:	07/09/2018	Project No.: IR	18166900
	٧	VOO (d .	Figure	4

30-INCH DIAMETER CIDH PILES

Storage Tank Expansion Project Carson Crude Terminal Carson, California

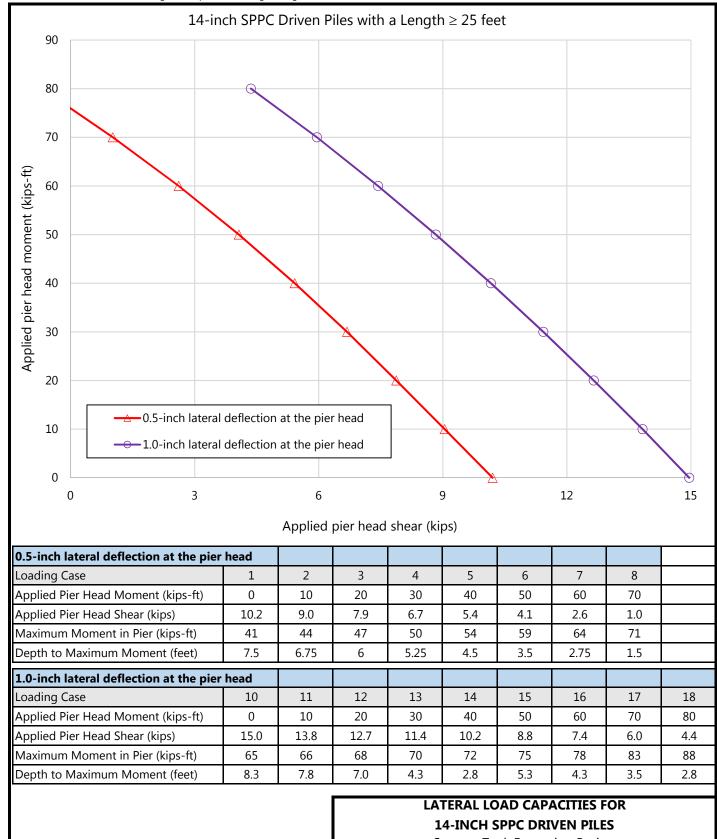

Ву:	LH	Date:	07/09/2018	Project No.: IR	R18166900
	V	VOO	d.	Figure	5

Notes:

- 1. The allowable capacity incorporates a factor of safety of 2 for skin friction and 3 for end bearing.
- 2. The allowable capacity is for dead plus live loads and may be increased by 33% when considering transient live loads, including seismic and wind loads.

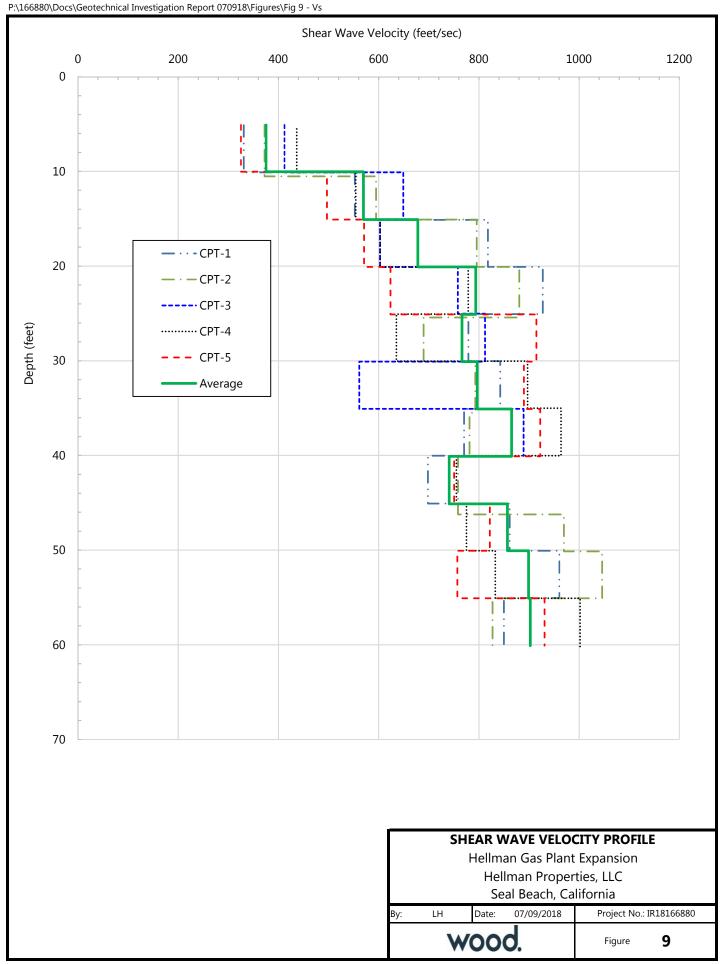
		SPPC	PILE AXIAL	CAPACITY				
Hellman Gas Plant Expansion								
Hellman Properties, LLC								
		Se	al Beach, Ca	lifornia				
Ву:	LH	Date:	07/09/2018	Project No.: IR18166880				
	V	VOO	4	Figure 6				

Project No.: IR18166900


Figure

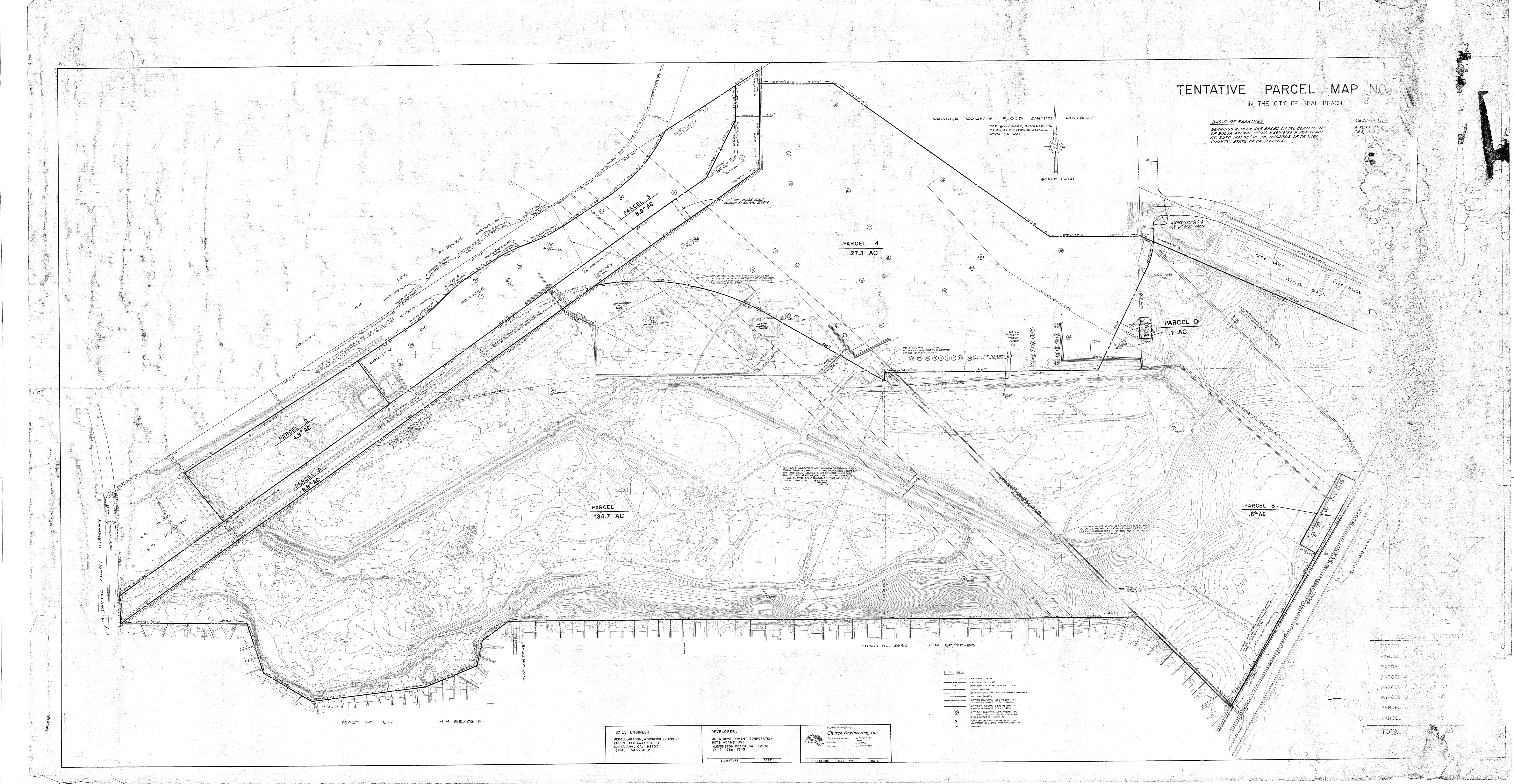
7

Date:


Wood.

07/09/2018

Storage Tank Expansion Project Carson Crude Terminal Carson, California


By: L	.H	Date:	07/09/2018	Project N	lo.: IR18166900
	W	ood		Figure	8

wood.

Appendix A

Fault Location Map provided by Hellman Properties LLC

wood.

Appendix B

Field Exploration Program

Appendix B

Field Exploration Program

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

The field exploration program described in this appendix was performed between March 13 and April 16, 2018, specifically for the planned expansion at the Hellman Gas Plant located in Seal Beach, California. The field exploration program included pre-drilling activities, drilling 2 mud-rotary borings and 2 hand-auger holes, advancing 5 cone penetration test (CPT) probes, and field screening of soil samples for the presence of organic vapor. The information provided herein depicts subsurface conditions at the specific locations and at the particular times that the explorations were made. Soil and groundwater conditions at these locations may have changed since these explorations were performed.

Pre-Drilling Activities

Wood obtained well permits from the Orange County Health Care Agency prior to drilling and CPT work. Copies of the permits are included in Appendix D. Wood marked the planned exploration locations in the field for Underground Service Alert (USA) on March 13, 2018. After marking, USA was notified and allowed for two full working days for the providers to identify public utilities in the areas marked. The marked locations were also verified by Hellman's field representative with respect to known underground utility lines in the expansion area.

Cone Penetrometer Testing

Wood retained Kehoe Testing & Engineering (Kehoe) of Huntington Beach, California to perform CPTs at five locations. The CPTs were performed on April 11, 2018. The CPTs are designated CPT-1 through CPT-5 and the locations of the CPTs are shown on Figure 2. The CPT locations were hand-augered to 5 feet depth prior to advancing the CPT cone. All of the CPTs, except for CPT-3, were advanced to 60 feet depth. CPT-3 encountered equipment refusal at a dense sand layer at 40 feet and was terminated at that depth. Shear wave velocity (Vs) data of subsurface materials was collected in all of the CPT soundings. Upon retrieval of the CPT cone, the holes were backfilled with bentonite chips. The CPT report provided by Kehoe is included in this appendix.

Mud-Rotary Borings

Wood retained SoCal Drilling of La Habra, California, to drill 2 mud-rotary borings (B-2 and B-4) and two hand-auger holes (B-1 and B-3) at the approximate locations shown on Figure 2, and to collect soil samples. The drilling work was performed on April 16, 2018. The borings B-2 and B-4, were drilled to 40 feet and 60 feet depth, respectively. Hand-auger holes were drilled to 10 feet depth and were used only to collect samples for environmental testing.

The borings and hand-auger holes were drilled approximately within five feet away from the CPTs, to collect soil samples from specific intervals identified on those CPT logs. The mud-rotary boring locations were hand-augered to 5 feet depth prior to drilling. A boring specific sampling plan was developed for the borings. Soil samples were collected from each boring at selected depth intervals, typically no less

Project # IR18166880 | July 9, 2018

Appendix B - Page 1 of 2

than every two and a half feet within the upper 20 feet depth and every five feet thereafter, using a Standard Penetration Test (SPT) sampler, Modified-California sampler, or Shelby Tube. The hammer blow counts required to drive the SPT and Modified-California split spoon samplers to the desired depths were recorded. SPTs were performed in the borings at selected depths.

The SPT consists of driving a standard sampler, as described in the ASTM D1586-84 Standard Method, using a 140-pound automatic-trip hammer falling 30 inches. The SPT sampler had no room for liners inside the barrel and thus no liners were used. The number of blows required to drive the SPT sampler six inches of the sampling interval is recorded on the blow count column of the boring logs.

Depth-discrete engineering soil samples were collected at selected depth intervals from the borings using a 2½-inch inside diameter (I.D.) modified California split-barrel sampler fitted with 12 brass rings of 2½ inches in outside diameter (O.D.) and 1-inch in height and one brass liner (2½-inch O.D. by 6 inches long) above the brass rings. The sampler was lowered to the bottom of the boreholes and driven into the soil with the same hammer used for SPT. The number of blows required to drive the sampler six inches of the sampling interval is shown on the blow count column of the boring logs. After removing the sampler from the boreholes, the sampler was opened and the brass rings and liner containing the soil were removed and observed for soil classification. Brass rings containing the soil were placed in polyethylene bags and sealed in plastic canisters to preserve the natural moisture content of the soil.

Bulk samples were collected at each boring and hand-auger-hole location from hand-augering cuttings. Environmental samples were collected from each boring and hand-auger-hole at approximately 2 feet, 5 feet, and 10 feet depth bgs for analytical testing. Earth materials were visually classified in the field in general accordance with the Unified Soil Classification System and ASTM D 2488 by observation of the samples and cutting returns. Soil samples were transported to Wood's laboratory for testing to help characterize subsurface conditions and evaluate engineering properties of encountered materials. Notes were made of any visual evidence of stains or odors. Wood used a Photoionization detector (PID) to screen soil samples and PID readings are noted on the boring logs. Detailed descriptions of field exploration and sampling procedures, and the boring logs are provided in this appendix.

Upon completion of drilling, borings were backfilled with cement-bentonite grout and soil cuttings and drilling mud were drummed for analytical testing and disposal. Analytical tests were performed by Eurofins Calscience of Garden Grove, California. Based on the test results, the soil cuttings were characterized as non-hazardous for waste disposal purposes. A copy of the test results is included in Appendix E. Wood retained services of American Integrated Services, Inc. (AIS), for transportation and disposal of the drums. AIS picked up the drums from the site on May 7, 2018.

Field Screening

Wood field-screened soil samples obtained from the borings for the presence of organic vapors using a portable photo-ionization detector (PID). The PID device is a battery-powered instrument that can detect and indicate concentrations of organic vapor. In general, a portion of each soil sample was placed in a resealable bag and allowed to set for several minutes. Then, the tip of the PID probe was inserted into the headspace of the bag and the highest stabilized organic vapor reading in units of parts per million (ppm) was recorded on the soil boring log. Results of the PID screening are presented in the boring logs included in this appendix.

Project # IR18166880 | July 9, 2018

Appendix B - Page 2 of 2

EXPLANATION OF BORING LOGS

Hellman - Gas Plant Expansion Seal Beach, California

MAJOR D	MAJOR DIVISIONS LTF		DESCRIPTION	MAJOR DIVISIONS		LTR	DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or no fines			ML	Inorganic silts and very fine sand, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity
	GRAVEL	GP	Poorly-graded gravels or gravel-sand mixture, little or no fines		SILTS AND	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean
	GRAVEL	GM	Silty gravels, gravel-sand-silt mixtures		CLAYS LL<50	CL	clays
COARSE GRAINED		GC	Clayey gravels, gravel-sand-clay mixtures	FINE GRAINED SOILS		OL	Organic silts and organic silt-clays of low plasticity
SOILS		sw	Well-graded sands or sand with gravel, little or no fines		SILTS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
		SP Poorly-graded sands or sand with gravel, little or no fines			AND CLAYS		
	SAND				LL>50	СН	Inorganic clays of hogh plasticity, fat clays
		SM	Silty sands, sand-silt mixtures			ОН	Organic clays of medium to high plasticity
		SC	Clayey sands, sand-clay mixtures	HIGHLY ORGANIC SOILS		PT	Peat and other highly organic soils

SAMPLE COLUMN SYMBOLS

Standard penetration test (SPT) sample	Modified California split spoon sample	Р	Piston sample
Shelby tube sample	6" Brass Liner Sample		Continuous soil or rock core
B Bulk sample		NF	No recovery

BLOWS/FOOT - Summation of blow counts for deepest 12 inches is sampling interval RQD% - Rock quality designation in percent

DESCRIPTION COLUMN SYMBOLS

-- Dashed lines separating soil strata represent inferred boundaries between sampled intervals or no recovery intervals and may be distinct or gradual transitions

Solid lines represent distinct or gradual boundaries observed within sampled intervals

Description right of bracket symbol represents soil conditions within the depth interval defined by the bracket length

Description right of arrow symbol represents soil conditions to the next deeper boundary line unless otherwise noted

Water level at time of drilling

Water level after at least 12 hours from time of drilling

LABORATORY TEST ABBREVIATIONS

ATT Atterberg Limits CORR Corrosion SE Sand Equivalent	
COLL Collapse Potential DS Direct Shear SG Specific Gravity	
COMP Compaction El Expansion Index TX Triaxial Test	
CON Consolidation S Grain Size Analysis UC Unconfined Compr	ession Test
R R-Value PERM Permeability #200 No. 200 Wash Siev	<i>r</i> e Analysis

NOTES

- 1. Soil descriptions are in accordance with the USCS as set forth by ASTM D2488 "Standard Practice for Description and Identification Soil Soil color described according to Munsell Soil Color Chart. Rock color described according to Munsell Rock-Color Chart.
- 3. Soil descriptions in these borings are generalized representations and based upon visual classification of cuttings and/or samples during drilling. Descriptions and related information in these borings depict subsurface conditions at the specific location and at the time of drilling only. Soil conditions at other locations may differ from conditions observed at the boring locations. Also, soil and groundwater conditions may change with time at these locations.

Project No. IR18166880	wood.	Figure
---------------------------	-------	--------

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-1 Seal Beach, California **BORING LOCATION:** 4/16/18 DATE STARTED: DATE FINISHED: 4/16/18 NOTES: Drilling Contractor: SoCal Drilling **DRILLING METHOD:** Hand Auger Drilling Equipment: Hand Auger (3-inch HAMMER WEIGHT: NA DROP: diameter) NA Logged By: K. Howe SAMPLER: Hand Auger SAMPLES LABORATORY TESTS ELEV. (feet) Sample Blows/ 6-inch DEPTH (feet) MATERIAL DESCRIPTION Dry Moisture Other Content Density Tests (%) (pcf) Surface Datum: not surveyed FAT CLAY (CH): light olive brown (2.5Y 5/3), moist, ~90% fines, ~10% fine sand, high plasticity, slow dilatancy, roots present 1 grayish brown (2.5Y 5/2), ~95% fines, ~5% fine sand, increased moisture 2 0.0 3 4 LEAN CLAY with SAND (CL): light olive brown (2.5Y 5/3), 5 0.0 moist, ~85% fines, ~15% fine sand, medium plasticity, slow dilatancy 6 7 LEAN CLAY (CL): grayish brown (2.5Y 5/2), moist, ~95% fines, ~5% fine sand, medium plasticity, no dilatancy, mottled with very dark gray (2.5Y 3/1) and light olive brown 8 (2.5Y 5/6)9 LEAN CLAY with SAND (CL): olive brown (2.5Y 4/3), wet, ~80% fines, ~20% fine sand, medium plasticity 0.0 10 Bottom of boring at 10' bgs. Backfilled with bentonite chips. Environmental samples collected at depths 2-2.5 ft, 5-5.5 ft, and 9.5-10 ft. 11 12 13 14 Project No. IR18166880 Page 1 of 1

3EO3 PID6INCH V4

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-2 Seal Beach, California BORING LOCATION: 4/16/18 DATE FINISHED: 4/16/18 NOTES: DATE STARTED: Drilling Contractor: SoCal Drilling Drilling Equipment: Mayhew 1000 DRILLING METHOD: **Mud Rotary** Logged By: K. Howe HAMMER WEIGHT: 140 lb. DROP: 30 inches

SAMPLER: Hand Auger, SAMPLES	Cal.Mod,SPT, Shelby Tube		LABOR	ATODY T	TOTO
	MATERIAL DESCRIPTION	PID (mdd)	Moisture Content	Density	Other Tests
A B C C C C C C C C C	Surface Datum: not surveyed FAT CLAY (CH): grayish brown (2.5Y 5/2), moist, ~95% fines, ~5% fine sand, high plasticity, slow dilatancy, roots and drier in upper 1 feet, mottling present, high dry strength SANDY SILT (ML): olive brown (2.5Y 4/4), moist, ~65% fines, ~35% fine sand, trace medium sand, no plasticity, rapid dilatancy with very dark grayish brown (2.5Y 3/2) mottling, high dry strength LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, ~95% fines, ~5% fine sand, medium plasticity, slow dilatancy, mottling like above unit	- 0.0 - 0.2 - 0.1 - 0.0	29.5 21.8	91.9 90.3	
15 Project No. IR18166880	wood.			Page	e 1 of 3

PROJECT: Hellman - Gas Plant Expansion Seal Beach, California

Log of Boring No. B-2 (cont'd)

					,,	JOH	. u <i>j</i>		
			PLES				LABORA	ATORY T	ESTS
(feet) DEPTH (feet)	Sample No.	Sample	Blows/ 6-inch	MATERIAL DESCRIPTION		PID (mdd)	Moisture Content (%)	Dry Density (pcf)	Other Tests
16- -	6		3 4 7	CLAYEY SAND (SC): dark grayish brown (2.5Y 4/2), we ~50% fines, ~50% fine to medium sand, trace coarse san trace fine gravel, medium plasticity, slow to rapid dilatance.	d, -	0.0			#200 LL=2 PI=8
17- - 18- - 19-	7		9 10 12	SANDY LEAN CLAY (CL): dark gray (2.5Y 4/1), moist, ~70% fines, ~25% fine to coarse sand, ~5% fine gravel, medium plasticity, slow dilatancy		0.1	18.7	111.6	
20- 21-	8		7 10 12	POORLY GRADED SAND with SILT (SP-SM): dark gray (2.5Y 4/1), wet, ~85% fine to coarse sand, ~10% fines, ~8 fine gravel	5% -	0.0			
22- - 23- - 24-	9		11 17 18	POORLY GRADED SAND with GRAVEL (SP): dark gray (2.5Y 4/1), wet, ~70% fine to coarse sand, ~25% fine gravel, ~5% fines	 - - -	0.4			
25- 26- 27- 28-	10	NR	9 12 20	LEAN CLAY (CL): gray (5Y 5/1), moist, ~95% fines, ~5% fine sand, medium plasticity, slow to rapid dilatancy, high dry strength, bedding features present	- - - - - -	0.4	30.8	91.7	LL=4 Pl=2
28- 29- 30- 31-	11		6 9	LEAN CLAY with SAND (CL): dark greenish gray (4/10B moist, ~75% fines, ~25% fine to medium sand, medium plasticity, slow dilatancy, does not form dry strength ball, coarse gravel fragment present (~1.5" diameter)	6),	0.4			LL=3 Pl=1
-					-				

Project No. IR18166880

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-2 Seal Beach, California (cont'd) LABORATORY TESTS SAMPLES ELEV. (feet) Sample Blows/ 6-inch Moisture Dry Other MATERIAL DESCRIPTION Content | Density Tests (%) (pcf) LEAN CLAY with SAND (CL): continued 33 SILTY SAND (SM): gray (2.5Y 5/1), wet, ~75% fine to coarse sand, ~25% low plasticity fines, sand is predominantly fine to medium, trace fine gravel 34 35 15 12 23 36 0.3 27 37 38 CLAYEY SAND with GRAVEL (SC): dark gray (2.5Y 4/1), wet, ~55% fine to coarse sand, ~30% fine to coarse gravel, ~15% medium plasticity fines 39 40 13 41 0.2 24.6 101.2 LL=NP SANDY SILT (ML): dark gray (2.5Y 4/1), moist, ~65% PI=NP fines, ~35% fine sand, nonplastic, slow dilatancy Bottom of boring at 41.5 ft bgs. Hand augered to 5 feet 42 depth. Backfilled with bentonite cement grout. Environmental samples collected at depths 2-2.5 ft, 5-5.5 ft, and 10.5-11 ft. 43 44 45 46 47 48

49

3EO3 PID6INCH V4

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-3 Seal Beach, California BORING LOCATION: 4/16/18 DATE FINISHED: 4/16/18 NOTES: DATE STARTED: Drilling Contractor: SoCal Drilling Drilling Equipment: Hand Auger (3-inch DRILLING METHOD: Hand Auger diameter) HAMMER WEIGHT: NA DROP: NA Logged By: K. Howe SAMPLER: Hand Auger, Cal.Mod,SPT, Shelby Tube

· _ I _		T	LES				ATORY TESTS		
(feet) DEPTH (feet)	Sample	Sample	Blows/ 6-inch	MATERIAL DESCRIPTION	PID (mdd)	Moisture Content		Other Tests	
	Š	SS	<u>m</u> 6	Surface Datum: not surveyed		(%)	(pcf)		
				FAT CLAY (CH): grayish brown (2.5Y 5/2), moist, ~90%					
				fines, ~10% fine to medium sand, high plasticity, no					
1	4			dilatancy					
'									
2	_				0.0			COM	
				~95% fines, ~5% fine sand with some black (2.5Y/1)				El	
				▼ mottling (organics?)				LL=	
3-	1	В						PI=4	
4	-								
				LEAN CLAY with SAND (CL): grayish brown (2.5Y 5/2),					
5			1	moist, ~80% fines, ~20% fine sand	0.0				
					-				
6									
6				LEAN CLAY (CL): dark grayish brown (2.5Y 4/2), moist,					
	+			~95% fines, ~5% fine sand, medium plasticity, no dilatancy					
7									
'									
	1								
8-	4				_				
				SANDY SILT (ML): dark grayish brown (2.5Y 4/2), wet,					
				~75% fines, ~25% fine sand, low plasticity, slow dilatancy					
9	-			LEAN CLAY with SAND (CL): dark growigh brown (2.5V	\dashv				
				LEAN CLAY with SAND (CL): dark grayish brown (2.5Y 4/2), wet, ~80% fines, ~20% fine sand, medium plasticity,					
				slow dilatancy	0.0				
10					\dashv				
	_			Bottom of boring at 10 ft bgs. Backfilled with bentonite					
11				chips. Environmental samples collected at depths 2-2.5 ft, 5-5.5 ft,					
11				and 9.5-10 ft.					
	+			and 5.5-10 ft.					
12									
'-									
13	4								
14	+								
	_								
15						1			

Project No. IR18166880

PROJECT: Hellman - Gas Plant Expansion Seal Beach, California

BORING LOCATION:

DATE STARTED: 4/16/18

DRILLING METHOD: Mud Rotary

HAMMER WEIGHT: 140 lb.

DROP: 30 inches

Log of Boring No. B-4

Log of Boring No. B-4

NOTES:

Drilling Contractor: SoCal Drilling Drilling Equipment: Mayhew 1000
Logged By: K. Howe

SAMPI	ER: H	land	Au	ger, C	al.Mod,SPT, Shelby Tube				
	_			LES	,		LABORA	ATORY T	ESTS
ELEV.	DEPTH (feet)	Sample No.	Sample	Blows/ 6-inch	MATERIAL DESCRIPTION	PID (ppm)	Moisture Content		Other Tests
		Š	Š	<u>m</u> 6	Surface Datum: not surveyed		(%)	(pcf)	
	1-				LEAN CLAY (CL): grayish brown (2.5Y 3/2), moist, ~90% fines, ~10% fine to medium sand, medium plasticity, slow dilatancy, rootlets (topsoil), high dry strength	0.2			
	2- - 3-	1	В		@1' more moist, no rootlets, ~95% fines, ~5% sand, some mottling with very dark gray (2.5Y 3/1) and light olive brown (2.5Y 5/6), very dark gray portion possibly organic peat	0.0			
	4-				grovich brown (2 EV 3/2) and very dark grov (2 EV 3/4)				
	5-	2	V	3	grayish brown (2.5Y 3/2) and very dark gray (2.5Y 3/4), √90% fines, ~10% fine to medium sand —	0.0			
	6- - 7-	-	/\	8			31.5	90.8	
	8-	3		1 0	grayish brown (2.5Y 3/2), with some olive brown (2.5Y 5/6) and very dark gray (2.5Y 3/1) ~95% fines, ~5% fine sand				
	9-		ZR	0	SILTY SAND (SM): dark grayish brown (2.5Y 4/2), moist,				
	10- - 11-	4		3 4	~55% fine sand, ~45% low plasticity fines with some olive brown (2.5Y 4/4), pockets of clay	0.0			
	12-	-	/\	5	SILT with SAND (ML): dark groupich grov (4/10CV 4/1)	0.0	33.2	87.8	
	13- -	5			SILT with SAND (ML): dark greenish gray (4/10GY 4/1), moist, ~85% fines, ~15% fine to medium sand, medium plasticity, slow dilatancy with layers of very dark gray (2.5Y 3/1), wood or organics, high dry strength		33.6	88.2	CON
	14- - 15-	-	NR						

Project No. IR18166880

PROJECT: Hellman - Gas Plant Expansion Seal Beach, California

Log of Boring No. B-4 (cont'd)

_									
· _			PLES				LABORATORY T		ESTS
(feet) DEPTH (feet)	Sample	Sample	Blows/ 6-inch	MATERIAL DESCRIPTION	OH,	Mois Con (%	ent	Dry Density (pcf)	Othe Tests
16	6	NR	2 2 2	LEAN CLAY with SAND (CL): continued	- 0 -	.0			
17 18 19	7		3 6 8	SANDY LEAN CLAY (CL): dark greenish gray (4/10GY 4/1), moist, ~70% fines, ~30% fine sand, medium plasticity, slow dilatancy, similar organics layers as noted above	- - - 0	.1 19.	9	109.5	
20	8		8 14 17	SILTY SAND (SM): dark greenish gray (4/10Y 4/1), wet, ~85% fine to coarse sand, predominantly fine to medium, ~15% low plasticity fines, trace fine gravel	0	.2			
22 23 24			_	CLAYEY SAND (SC): dark greenish gray (4/10GY 4/1), moist, ~50% fines, ~50% fine to medium sand, medium plasticity, slow dilatancy, some silt present, medium dry strength					
25	9		8 14 15	Suengui		.2 13.)	123.0	LL=: Pl=
28			_	SILTY SAND (SM): gray (2.5Y 4/1), wet, ~60% fine to coarse sand, ~30% low plasticity fines, fine gravel to coarse gravel, predominantly fine to medium sand					
30			10 19 21			.2			

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-4 Seal Beach, California (cont'd) LABORATORY TESTS SAMPLES ELEV. (feet) Sample Blows/ 6-inch Moisture Dry Other MATERIAL DESCRIPTION Content | Density Tests (%) (pcf) SILTY SAND (SM): continued 33 34 35 ~70% fine to medium sand, ~30% fines, trace fine gravel 12 11 18 0.1 36 20 37 SILT with SAND (ML): dark greenish gray (4/10GY 4/1), moist, ~80% fines, ~20% fine to medium sand, predominantly fine sand, rapid dilatancy, low to medium 38 plasticity, clay present 39 12 NR 40 41 trace coarse sand and fine to coarse gravel 42 43 high dry strength LL=37 10 13 PI=14 12 0.1 44 14 45 SILT with SAND (ML): dark greenish gray (4/10GY 4/1), moist, ~90% fines, ~10% fine sand, low plasticity, slow dilatancy, some clay present, trace white shell fragments 46 (1/5 of an inch in diameter) and bedding feathers, high dry 12 0.1 14 strength 24 106.0 LL=26 21.8 47 PI=2 28

49

48

PROJECT: Hellman - Gas Plant Expansion Log of Boring No. B-4 Seal Beach, California (cont'd) SAMPLES LABORATORY TESTS ELEV. (feet) Sample Blows/ 6-inch Moisture Dry Content Density Moisture Other MATERIAL DESCRIPTION Tests (%) (pcf) SILT (ML): continued 50 51 12 15 0.1 23 LL=NP 52 27.8 96.1 PI=NP 29 53 54 55 shell fragments up to 1/4" diameter 7 16 LL=32 10 0.1 PI=8 56 12 57 58 59 60 shell fragments up to 1" diameter 11 17 0.0 24 61 22.8 104.2 LL=31 26 PI=7 Bottom of boring at 61.5 ft bgs. Hand-augered to 5 feet 62depth. Backfilled with bentonite cement grout. Environmental samples collected at dephs 2-2.5 ft, 5-5.5 ft, and 10.5-11 ft. 63 64 65 **3EO3 PID6INCH V4** 66 Project No. IR18166880 Page 4 of 4

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

Hellman Properties 711 1st Street Seal Beach, CA April 11, 2018

Prepared for:

Mr. Bora Baturay
Wood Group
121 Innovation Drive, Ste 200
Irvine, CA 92617-3094
Office (949) 642-0245 / Fax (949) 642-4474

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Interpretation Output (CPeT-IT)
- Summary of Shear Wave Velocities
- Pore Pressure Dissipation Graphs
- CPeT-IT Calculation Formulas

SUMMARY

Cone Penetration Test data

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Hellman Properties project located at 711 1st Street in Seal Beach, California. The work was performed by Kehoe Testing & Engineering (KTE) on April 11, 2018. The scope of work was performed as directed by Wood Group personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at five locations to determine the soil lithology. Groundwater measurements and hole collapse depths provided in TABLE 2.1 are for information only. The readings indicate the apparent depth to which the hole is open and the apparent water level (if encountered) in the CPT probe hole at the time of measurement upon completion of the CPT. KTE does not warranty the accuracy of the measurements and the reported water levels may not represent the true or stabilized groundwater levels.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	60	Hole open to 6 ft (dry)
CPT-2	60	Groundwater @ 9 ft
CPT-3	40	Refusal, groundwater @ 16 ft
CPT-4	60	Groundwater @ 7 ft
CPT-5	60	Groundwater @ 8 ft

TABLE 2.1 - Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by KTE using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Sleeve Friction (fs)
- Inclination
- Penetration Speed
- Dynamic Pore Pressure (u)
 Pore Pressure Dissipation (at selected depths)

At locations CPT-1, CPT-2, CPT-3, CPT-4 & CPT-5, shear wave measurements were obtained at approximately 5-foot intervals. The shear wave is generated using an air-actuated hammer, which is located inside the front jack of the CPT rig. The cone has a triaxial geophone, which recorded the shear wave signal generated by the air hammer.

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil classification on the CPT plots is derived from the attached CPT Classification Chart (Robertson) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

Tables of basic CPT output from the interpretation program CPeT-IT are provided for CPT data averaged over one foot intervals in the Appendix. We recommend a geotechnical engineer review the assumed input parameters and the calculated output from the CPeT-IT program. A summary of the equations used for the tabulated parameters is provided in the Appendix.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

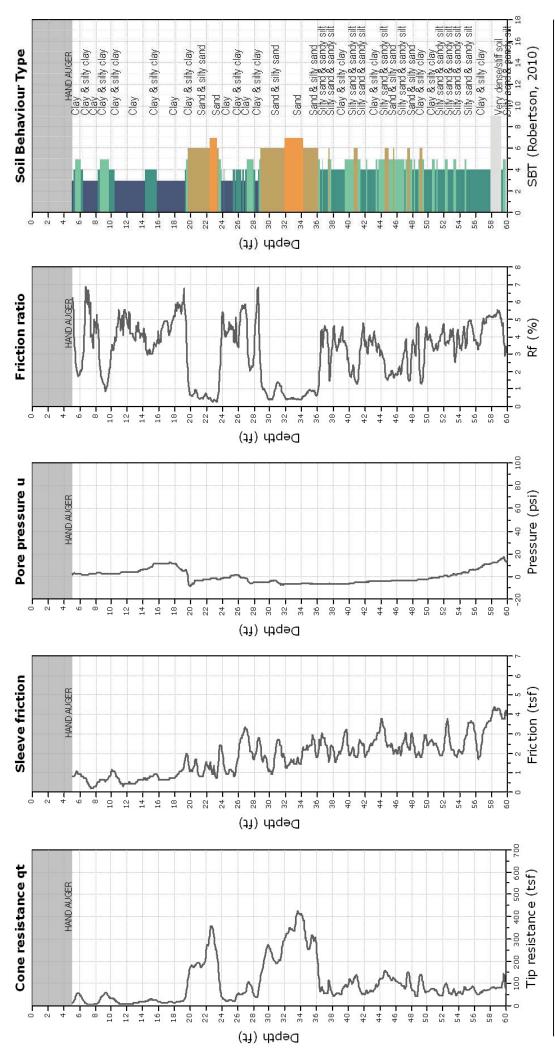
If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

Richard W. Koester, Jr. General Manager

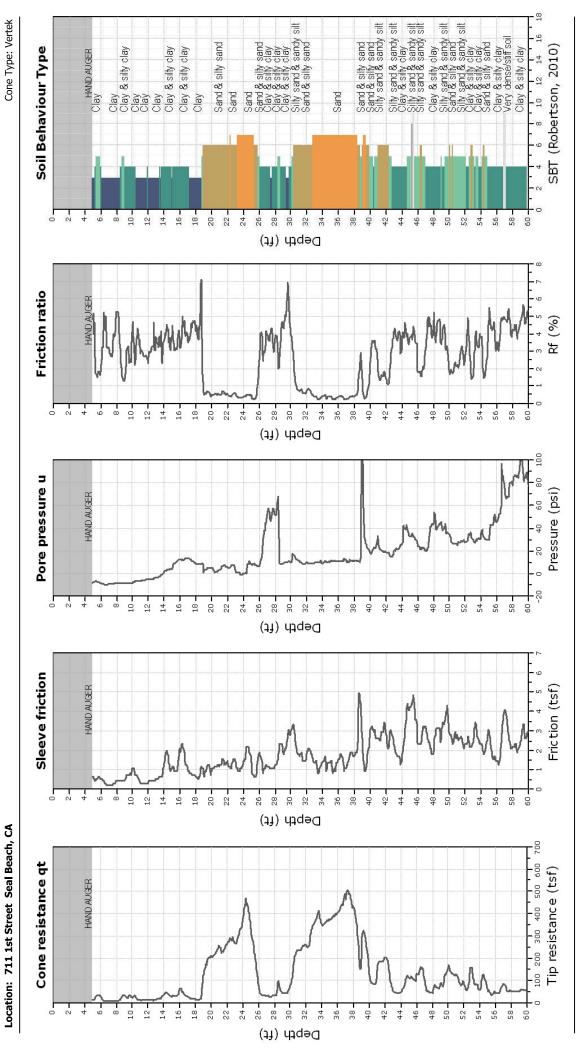
04/23/18-hh-8979


APPENDIX

Total depth: 60.18 ft, Date: 4/11/2018

Cone Type: Vertek

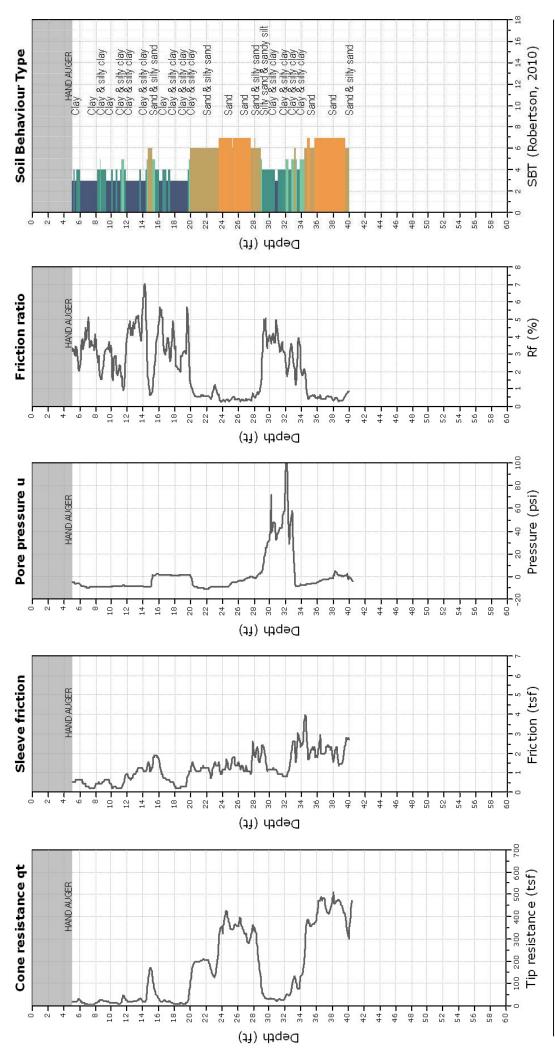
Kehoe Testing and Engineering 714-901-7270


rich@kehoetesting.com www.kehoetesting.com

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/12/2018, 3:36:27 PM Project file: C:\WoodSealBch4-18\Plot Data\Plots w-ha.cpt

Total depth: 60.24 ft, Date: 4/11/2018

rich@kehoetesting.com www.kehoetesting.com 714-901-7270 Wood Group/Hellman Properties Project:

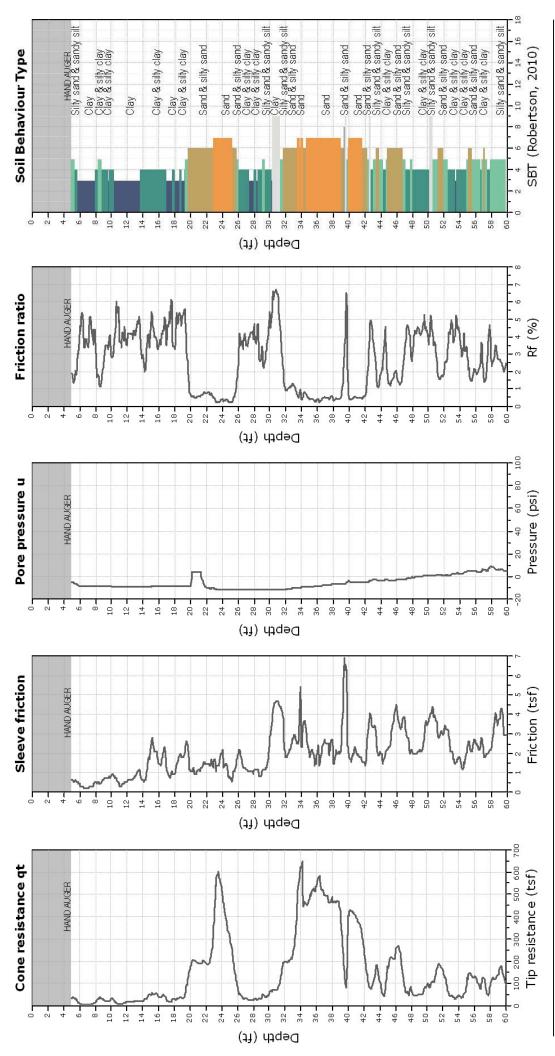

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/12/2018, 3:36:51 PM Project file: C:\WoodSealBch4-18\Plot Data\Plots w-ha.cpt

Total depth: 40.43 ft, Date: 4/11/2018

Cone Type: Vertek

Kehoe Testing and Engineering 714-901-7270

rich@kehoetesting.com www.kehoetesting.com

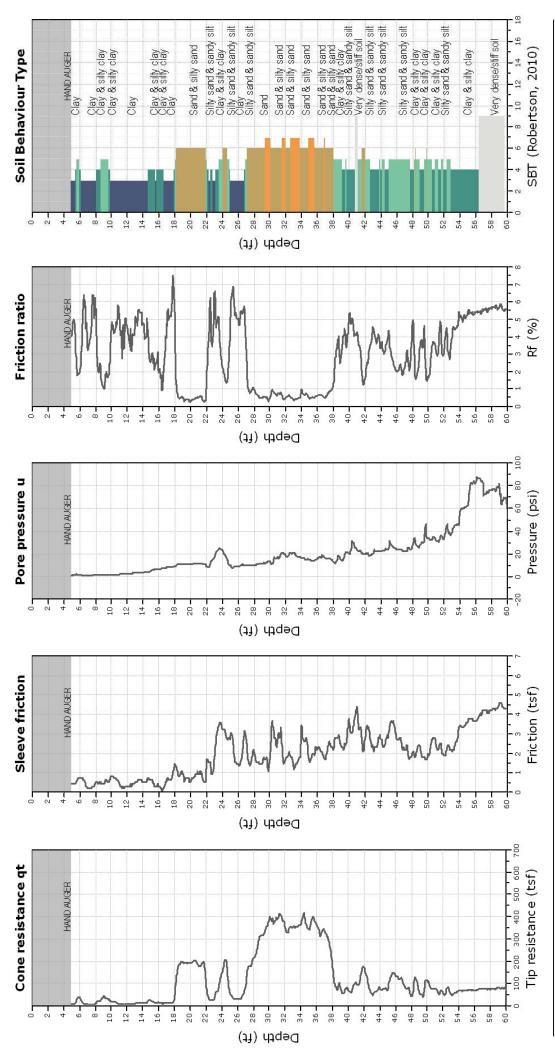

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/12/2018, 3:37:05 PM Project file: C:\WoodSealBch4-18\Plot Data\Plots w-ha.cpt

Total depth: 60.18 ft, Date: 4/11/2018

Cone Type: Vertek

Kehoe Testing and Engineering 714-901-7270 rich@kehoetesting.com

www.kehoetesting.com

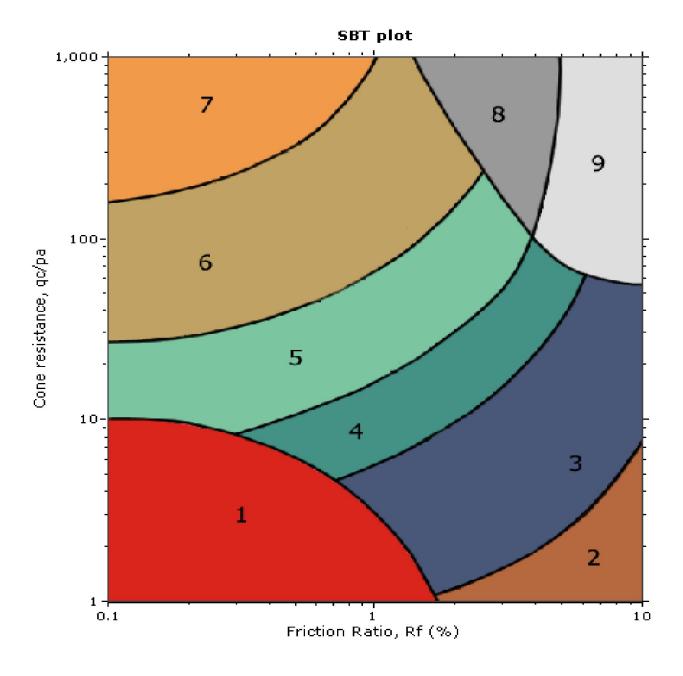

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/12/2018, 3:37:19 PM Project file: C:\WoodSealBch4-18\Plot Data\Plots w-ha.cpt

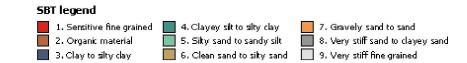
Total depth: 60.11 ft, Date: 4/11/2018

Cone Type: Vertek

Kehoe Testing and Engineering 714-901-7270

rich@kehoetesting.com www.kehoetesting.com




CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 4/12/2018, 3:37:32 PM Project file: C:\WoodSealBch4-18\Plot Data\Plots w-ha.cpt

K_T

Kehoe Testing and Engineering

714-901-7270 rich@kehoetesting.com www.kehoetesting.com

	CPT-1	In situ (data								Basic (output o	lata										
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn	U2	I(B)	Mod. SBTn
1	31.54	0.94	0.77	0.2	31.55	2.98	4	2.62	118.24	0.06	0		532.27	2.98	0	8	0.64	6.41	2.07	190.67	0.94	31.4	5
2	21.41	0.94	0.59	0.13	21.41		3	2.85	117.29	0.12	0		180.73	4.41	0	9	0.76	5.25	2.36	105.64	0.36	21.57	3
3	11.9 9.71	0.63 0.63	1.17 1.38	0.11	11.92 9.73		3	3.1 3.22	112.89 112.4	0.17 0.23	0	0.17 0.23	67.45 41.23	5.33 6.6	0.01	4	0.86 0.92	4.68 4.09	2.62 2.79	51.96 36.7	0.49	17.85	
5		1.04	1.38	0.07	14.22		3	3.14	117.06	0.29	0	0.23	48.21	7.5	0.01	3	0.92	3.31	2.78	43.64	0.43 0.34	14.96 13.51	3
6	49.19	0.94	2.06	0.04	49.21		5	2.35	119.32	0.35	0		140.15	1.92	0	5	0.67	2.1	2.11	97.19	0.43	41.72	
7	7.52	0.52	1.73	0.07	7.54	6.92	3	3.33	110.44	0.4	0	0.4	17.67	7.32	0.02	3	1	2.62	3.05	17.67	0.31	13.88	3
8		0.42	2.71	0.11	6.82		3	3.33	108.57	0.46	0	0.45	14.04	6.56	0.03	3	1	2.34	3.09	14.04	0.42	14.82	3
9		0.63	2.67	0.1	47.55		5 4	2.26 2.57	116.27	0.52	0.01 0.01	0.51 0.56	92.87	1.33	0	5 5	0.67	1.64	2.1	72.93	0.36	49.61	7
10 11	32.37 10.86	0.84 0.63	2.45 2.51	0.11	32.4 10.89		3	3.16	117.44 112.67	0.57 0.63	0.01	0.56	56.81 16.77	2.62 6.11	0.01	3	0.8 1	1.66 1.73	2.41 3.01	49.9 16.77	0.29 0.26	29.8 15.53	5 3
12		0.42	3.93	0.09	8.61		3	3.19	109.14	0.69	0.02	0.66	11.98	5.27	0.03	3	1	1.6	3.08	11.98	0.39	16.51	3
13	10.86	0.52	4.22	0.09	10.91	4.78	3	3.11	111.35	0.74	0.03	0.71	14.28	5.13	0.03	3	1	1.49	3.01	14.28	0.39	16.94	3
14		0.73	6.08	0.07	15.95		3	2.97	114.73	0.8	0.03	0.76	19.81	4.83	0.03	3	0.99	1.38	2.89	19.73	0.53	18	3
15		0.84	7.89	0.07	27.77	3.01	4	2.66	117.06	0.86	0.04	0.82	32.89	3.1	0.02	4	0.88	1.25	2.61	31.91	0.65	24.79	5
16 17	17.65 12.84	0.84	11.31 11.28	0.04 0.04	17.79 12.98	4.7 4.83	3	2.94 3.05	115.98 113.1	0.92 0.97	0.04 0.05	0.87 0.92	19.36 13.01	4.95 5.22	0.05 0.06	3	1	1.21 1.15	2.9 3.05	19.35 13.01	0.88	17.7	3
18		0.84	11.18	0.04	14.23		3	3.07	115.43	1.03	0.05	0.98	13.53	6.33	0.06	3	1	1.08	3.09	13.53	0.83 0.77	16.69 15.12	3
19		1.36	5.11	-0.07	19.38		3	3.02	119.74	1.09	0.06	1.03	17.75	7.42	0.02	3	1	1.03	3.05	17.75	0.3	13.76	3
20	174.39	1.88	-7.67	-0.04	174.3	1.08	6	1.77	127.48	1.15	0.06	1.09	158.91	1.09	0	6	0.58	0.98	1.78	160.88	-0.57	69.85	7
21		1.46	-3.05	0.04	194.3		6	1.63	125.9	1.22	0.07		168.25	0.76	0	6	0.53	0.96	1.65	174.76	-0.25	91.32	7
22		1.04	-2.55	-0.08	226.26		6	1.44	123.81	1.28	0.07		186.76	0.46	0	6	0.47	0.94	1.47	200.16	-0.21	129.01	7
23 24		1.57 1.78	-1.91 -1.61	0.01 -0.33	314.82 39.66		6 4	1.35 2.66	127.58 123.45	1.34 1.4	0.08 0.08	1.26	248.12 28.98	0.5 4.64	-0.01	6 3	0.44 0.96	0.93 0.81	1.38 2.75	274.22 29.23	-0.17 -0.15	137.29 19.08	7
25		0.94	-0.19	-0.33	25.79		4	2.74	117.74	1.46	0.08	1.37	17.7	3.86	-0.01	3	0.96	0.61	2.75	17.7	-0.15	20.02	
26		1.67	0.78	-0.2	52.54		4	2.47	123.69	1.52	0.09	1.43	35.64	3.28	0	4	0.9	0.76	2.58	36.74	-0.03	24.56	
27	61.4	2.72	-1.7	-0.22	61.38	4.42	4	2.53	127.62	1.59	0.1	1.49	40.13	4.54	0	4	0.93	0.73	2.64	41.15	-0.15	19.91	3
28		2.3	-5.5	-0.22	58.31		4	2.51	126.27	1.65	0.1	1.55	36.59	4.05	-0.01	4	0.93	0.7	2.63	37.63	-0.32	21.4	3
29		2.3	-4.9	-0.11	148.02		6	1.94	128.55	1.72	0.11	1.61	91	1.57	0	5	0.7	0.75	2.03	103.17	-0.29	48.78	7
30 31		1.67 1.98	-4.22 -5.29	-0.04 -0.09	267.07 191.14		6 6	1.47 1.73	127.66 128.1	1.78 1.84	0.11 0.12		159.18 109.69	0.63 1.05	0	6 6	0.52 0.63	0.79 0.73	1.55 1.83	197.87 131.42	-0.25 -0.29	106.81 68.07	7 7
32		1.88	-7.06	-0.09	305.68		6	1.43	128.85	1.91	0.12		170.14	0.62	0	6	0.51	0.73	1.52	219.65	-0.29	111.52	
33		1.67	-6.69	-0.24	338.47	0.49	7	1.33	128.23	1.97	0.13		182.44	0.5	0	6	0.48	0.77	1.42	243.88	-0.33	132.86	7
34	412.49	1.88	-6.28	-0.35	412.41	0.46	7	1.24	129.58	2.04	0.13	1.9	215.49	0.46	0	7	0.45	0.77	1.33	298.31	-0.31	149.2	7
35		2.51	-5.99	-0.33	255.04		6	1.63	130.51	2.1	0.14		128.74	0.99	0	6	0.61	0.69	1.75	164	-0.29	74.84	7
36 37	264.62 55.97	2.72 2.61	-6.87	-0.37	264.53		6	1.63 2.57	131.18	2.17 2.23	0.14 0.15	2.03	129.53	1.03	-0.01	6 3	0.62	0.67 0.51	1.76 2.81	166.31 25.75	-0.31	72.82	7
38		2.09	-6.41 -6.57	-0.28 -0.33	55.89 48.79		4	2.57	127.11 125.14	2.23	0.15	2.08	25.75 21.71	4.86 4.49	-0.01	3	1 1	0.51	2.81	25.75	-0.29 -0.29	18.31 18.93	3
39		2.4	-6.66	-0.55	51.3		4	2.6	126.29	2.36	0.16	2.2	22.25	4.91	-0.01	3	1	0.48	2.86	22.25	-0.29	18	3
40		2.72	-6.53	-0.69	90.67	2.99	5	2.29	128.57	2.42	0.16	2.26	39.06	3.08	-0.01	4	0.92	0.5	2.52	41.6	-0.28	26.06	5
41	137.74	2.09	-5.38	-0.71	137.67	1.52	6	1.95	127.67	2.49	0.17	2.32	58.31	1.54	0	5	0.78	0.54	2.15	69.27	-0.24	44.78	7
42		2.4	-4.9	-0.8	51.21		4	2.6	126.28	2.55	0.17	2.38	20.48	4.94	-0.01	3	1	0.45	2.88	20.48	-0.22	17.82	3
43 44		2.61 2.92	-4.61 -4.32	-0.87 -0.97	67.09 120.14		4 5	2.46 2.14	127.55 129.8	2.61 2.68	0.18 0.18	2.44 2.5	26.48 47.07	4.05 2.49	-0.01 0	4 5	1 0.88	0.43 0.47	2.74 2.38	26.48 52.36	-0.21 -0.2	20.58 31.13	3 5
45		2.32	-4.22	-0.57	144.37	1.59	6	1.95	128.49	2.74	0.19	2.55	55.44	1.62	0	5	0.8	0.49	2.18	65.95	-0.2 -0.19	42.91	7
46		1.98	-3.73	-1.04	112.74		5	2.06	126.81	2.8	0.19	2.61	42.07	1.8	0	5	0.86	0.46	2.32	47.84	-0.18	36.99	7
47	86.99	2.3	-3.44	-1.08	86.95	2.64	5	2.26	127.25	2.87	0.2	2.67	31.47	2.73	-0.01	4	0.95	0.41	2.56	32.88	-0.17	26.83	5
48	79.57	2.09	-3.5	-1.15	79.53		5	2.29	126.33	2.93	0.2	2.73	28.06	2.73	-0.01	4	0.97	0.4	2.6	28.82	-0.17	26.13	5
49		2.3	-2.84	-1.19	124.65		5	2.04	128.13	3	0.21	2.79	43.61	1.89	0	5	0.87	0.43	2.32	49.65	-0.15	36.43	
50 51	63.39 69.13	2.82 2.19	-2.09 -0.94	-1.26 -1.3	63.36 69.12		4 5	2.52 2.39	127.98 126.35	3.06 3.12	0.21 0.22	2.85 2.91	21.17 22.7	4.68 3.32	-0.01 0	3 4	1 1	0.37 0.36	2.86 2.74	21.17 22.7	-0.13 -0.1	18.45 22.49	3 5
52		2.19	0.59	-1.39	57.96		4	2.5	125.92	3.19	0.22	2.96	18.48	3.32	0	3	1	0.36	2.86	18.48	-0.1	19.78	3
53		2.51	1.38	-1.47	52.54		4	2.6	126.66	3.25	0.23	3.02	16.31	5.08	0	3	1	0.35	2.97	16.31	-0.04	17.2	
54	61.3	2.3	2.41	-1.53	61.33		4	2.48	126.4	3.31	0.23	3.08	18.83	3.96	0	3	1	0.34	2.85	18.83	-0.02	19.94	3
55		3.03	3.34	-1.61	73.24		4	2.46	128.85	3.38	0.24	3.14	22.24	4.33	0	3	1	0.34	2.82	22.24	0	19.38	3
56		3.13	10.07	-1.7	71.61		4	2.48	129.04	3.44	0.24	3.2	21.3	4.6	0	3	1	0.33	2.85	21.3	0.06	18.64	3
57 58	63.7 76.44	2.82 3.86	10.07 11.75	-1.77 -1.84	63.82 76.58		9	2.52 2.51	127.99 130.74	3.51 3.57	0.25 0.25	3.26 3.32	18.5 21.99	4.67 5.29	0.01	3	1	0.32 0.32	2.9 2.88	18.5 21.99	0.15 0.18	18.21 17.17	3
59		4.18	14.69	-1.95	79.54		9	2.51	131.41	3.64	0.26	3.38	22.45	5.5	0.01	3	1	0.31	2.89	22.45	0.24	16.77	3
60	67.56	0	14.62	-2.02	67.74	0	0	0	87.36	3.68	0.26	3.42	18.73	0	0.01	0	1	0.31	4.06	18.73	0.23	41.05	0

CPT-2 In situ data Basic output data

Donth	CF1-2	III SILU	uata								Dasic	ó',vo	uata										
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	(tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn	U2	I(B)	Mod. SBTn
1	30.08	1.25	0.1	-0.05	30.08	4.17	4	2.73	120.22	0.06	0	0.06	499.01	4.17	0	8	0.68	7.11	2.18	201.81	0.12	23.21	5
2	20.89	0.84	-0.1	0.02	20.88	4	3	2.84	116.37	0.12	0		175.43	4.02	0	9	0.75	5.15	2.34	101.02	-0.06	23.3	5
3	22.56	0.63	-0.41	0.04	22.55	2.78	4	2.71	114.45	0.12	0	0.18		2.8	0	5	0.73	3.73	2.29	78.82	-0.17	30.55	5
4	25.27	0.52	0.41	0.04	25.27	2.07	4	2.59	113.39	0.10	0	0.23		2.09	0	5	0.73	2.95	2.24	69.91			
																					0.01	37.03	7
5	13.05	0.73	-8.73	0.07	12.95	5.65	3	3.09	114.22	0.29	0	0.29	43.75	5.78	-0.05	3	0.9	3.23	2.73	38.66	-2.17	16.59	3
6	27.05	0.52	-8.57	0.09	26.94	1.94	4	2.56	113.55	0.35	0	0.35	76.83	1.96	-0.02	5	0.74	2.28	2.29	57.22	-1.78	36.87	7
7	6.79	0.31	-9.54	0.12	6.67	4.7	3	3.27	106.41	0.4	0	0.4	15.7	5	-0.11	3	1	2.65	2.98	15.7	-1.72	17.32	3
8	8.04	0.31	-8.34	0.2	7.94	3.95	3	3.17	106.83	0.45	0	0.45	16.54	4.18	-0.08	3	0.98	2.3	2.91	16.29	-1.33	19.03	3
9	31.95	0.52	-8.34	0.24	31.85	1.64	5	2.45	113.96	0.51	0	0.51	61.5	1.67	-0.02	5	0.74	1.72	2.28	50.92	-1.18	39.35	7
10	25.17	0.73	-8.41	0.26	25.06	2.92	4	2.69	115.84	0.57	0	0.56	43.53	2.98	-0.02	4	0.84	1.7	2.53	39.34	-1.09	26.33	5
11	10.76	0.52	-6.48	0.26	10.68	4.89	3	3.12	111.29	0.62	0.01	0.61	16.39	5.19	-0.05	3	1	1.72	2.97	16.39	-0.78	17.01	3
12	13.89	0.31	-5.15	0.24	13.83	2.27	4	2.83	108.18	0.68	0.01	0.66	19.84	2.38	-0.03	4	0.91	1.53	2.71	19.06	-0.58	25.18	5
13	13.99	0.52	-3.35	0.24	13.95	3.74	3	2.96	111.94	0.73	0.02	0.71	18.52		-0.02	3	0.97	1.47	2.86	18.33	-0.37	19.89	3
14	36.03	0.84	1.57	0.24	36.05	2.32	4	2.5	117.7	0.79	0.02	0.77	45.93	2.37	0	5	0.81	1.3	2.43	43.24	0.11	30.87	5
15	26.11	1.15	4.02	0.3	26.16	4.39	3	2.79	119.25	0.85	0.02	0.82	30.77	4.54	0.01	4	0.93	1.26	2.74	30.24	0.32	19.41	3
						1.99	5	2.73								5	0.76						7
16	57.64	1.15	12.46		57.8				121.18	0.91	0.03	0.88	64.78		0.02	-		1.15	2.27	61.89	0.98	36.87	-
17	27.05	1.15	13.34	0.21	27.21	4.22	3	2.77	119.34	0.97	0.04	0.93	28.12	4.38	0.04	4	0.94	1.13	2.75	27.92	0.99	19.73	3
18	14.52	0.84	8.54	0.2	14.62	5.71	3	3.06	115.5	1.03	0.04	0.99	13.79	6.15	0.04	3	1	1.07	3.08	13.79	0.58	15.37	3
19	119.67	1.15	1.07	0.17	119.69	0.96	6		122.96	1.09	0.05		113.79	0.97	0	6	0.61	1.01	1.86	113.12	0.03	68.56	7
20	207.81	1.25	4.64	0.15	207.87	0.6	6	1.54	124.94	1.15	0.05	1.1	187.95	0.61	0	6	0.49	0.98	1.55	191.66	0.25	108.31	7
21	255.32	1.25	2.86	0.26	255.36	0.49	6	1.42	125.44	1.22	0.06	1.16	219.53	0.49	0	6	0.45	0.96	1.43	230.63	0.13	130.98	7
22	263.05	1.36	5.28	0.2	263.12	0.52	6	1.42	126.1	1.28	0.06	1.22	215.35	0.52	0	6	0.46	0.94	1.45	232.17	0.26	127.21	7
23	267.02	1.25	2.19	0.24	267.05	0.47	6	1.39	125.55	1.34	0.07	1.27	208.63	0.47	0	6	0.45	0.92	1.42	230.93	0.07	134.66	7
24	367.9	1.46	-0.32	0.2	367.89	0.4	7	1.24	127.46	1.41	0.07	1.33	275.05	0.4	0	7	0.4	0.91	1.27	316.05	-0.07	166.29	7
25	347.95	1.67	7.77	-0.32	348.05	0.48	7	1.31	128.3	1.47	0.08	1.39	249.03	0.48	0	6	0.43	0.89	1.35	291.06	0.35	143.14	7
26	69.86	0.84	6.35	-0.5	69.94	1.19	5	2.1	119.32	1.53	0.08	1.45		1.22	0.01	5	0.75	0.79	2.19	51.07	0.26	46.14	7
27	28.72	1.04	51.37	-0.52	29.35	3.56	4	2.69	118.83	1.59	0.09	1.5		3.76	0.13	3	1	0.7	2.84	18.49	2.41	20.41	3
28	32.37	1.46	52.08	-0.54	33.01	4.43	4	2.72	121.58	1.65	0.09	1.56	20.14	4.66	0.13	3	1	0.68	2.87	20.14	2.35	18.39	3
							3									3	1						-
29	44.07	2.51	9.02	-0.6	44.18	5.67		2.7	126.23	1.71	0.1	1.62	26.29	5.9	0.01	-		0.66	2.86	26.29	0.34	16.12	3
30	73.93	2.72	10.11	-0.59	74.06	3.67	4	2.41	128.08	1.78	0.1	1.67	43.17	3.76	0.01	4	0.9	0.66	2.55	45.16	0.37	23.02	5
31	237.57	1.98	11.28	-0.56	237.71	0.83	6	1.6	128.63	1.84	0.11	1.73		0.84	0	6	0.58	0.75	1.69	167.69	0.41	84.19	7
32	258.25	1.57	9.43	-0.52	258.36	0.61	6	1.48	127.1	1.91	0.11	1.79	143.08	0.61	0	6	0.53	0.75	1.57	182.95	0.32	106.17	7
33	354.43	1.57	9.83	-0.49	354.55	0.44	7	1.28	127.87	1.97	0.12	1.85	190.45	0.44	0	6	0.46	0.77	1.37	257.73	0.32	145.11	7
34	353.9	1.25	8.89	-0.56	354.01	0.35	7	1.22	126.24	2.03	0.12	1.91	184.33	0.36	0	7	0.44	0.77	1.31	256.51	0.27	165.2	7
35	373.12	1.36	11.18	-0.63	373.26	0.36	7	1.21	126.95	2.1	0.13	1.97	188.59	0.37	0	7	0.44	0.76	1.3	266.88	0.34	165.19	7
36	404.13	1.15	10.4	-0.61	404.26	0.28	7	1.11	125.92	2.16	0.13	2.03		0.29	0	7	0.41	0.77	1.21	291.6	0.3	196.74	7
37	469.19	1.25	10.43	-0.53	469.32	0.27	7	1.05	126.93	2.22	0.14	2.08	224.05	0.27	0	7	0.38	0.77	1.14	340.35	0.29	217.19	7
38	430.66	2.92	11.39	-0.5	430.8	0.68	6	1.36	132.92	2.29	0.14	2.15		0.68	0	6	0.51	0.7	1.47	282.29	0.32	111.3	7
39	164.37	3.76	169.04	-0.34	166.44	2.26	5	2.02	132.44	2.35	0.15	2.21	74.33	2.29	0.07	5	0.79	0.56	2.2	86.54	5.45	35.99	7
40	138.16	1.98	18.39	-0.31	138.38	1.43	6	1.93	127.31	2.42	0.15	2.27	59.99	1.46	0.01	5	0.77	0.56	2.13	71.61	0.52	46.77	7
			27.69			1.43		1.93			0.15				0.01	5	0.77		2.13	74.87			7
41	150.27	2.82		-0.37	150.61		6		130.09	2.48		2.33	63.67	1.9		-		0.53			0.79	39.94	
42	200.92	3.03	18.91	-0.3	201.15	1.51	6	1.84	131.32	2.55	0.16	2.39	83.19	1.52	0.01	6	0.73	0.55	2.02	103.35	0.5	49.8	7
43	56.08	2.51	19.7	-0.3	56.32	4.45	4	2.56	126.83	2.61	0.17	2.45	21.96	4.67	0.02	3	1	0.43	2.85	21.96	0.51	18.53	3
44	46.68	2.51	26.05	-0.35	47	5.33	4	2.67	126.38	2.68	0.17	2.5	17.7	5.65	0.04	3	1	0.42	2.97	17.7	0.68	16.29	3
45	112.47	3.97	33.04	-0.39	112.87	3.52	5	2.28	131.88	2.74	0.18	2.57	42.94	3.6	0.02	4	0.94	0.44	2.54	45.31	0.86	23.71	5
46	127.92	3.45	26.14	-0.4	128.24	2.69	5	2.15	131.16	2.81	0.18	2.63	47.77	2.75	0.01	5	0.89	0.44	2.41	52.68	0.65	29.19	5
47	101.4	2.72	20.09	-0.46	101.64	2.67	5	2.22	128.85	2.87	0.19	2.69	36.78	2.75	0.01	4	0.93	0.42	2.51	39.18	0.47	27.68	5
48	40.31	2.4	44.73	-0.46	40.86	5.88	3	2.74	125.73	2.93	0.19	2.74	13.82	6.33	0.08	3	1	0.39	3.08	13.82	1.1	15.12	3
49	80.93	3.45	44.44	-0.48	81.48	4.23	4	2.43	130.06	3	0.2	2.8	27.99	4.39	0.04	3	1	0.38	2.75	27.99	1.07	19.69	3
50	159.46	3.55	33.95	-0.5	159.88	2.22	5	2.03	131.92	3.07	0.2	2.86	54.74	2.26	0.01	5	0.86	0.42	2.3	62.9	0.78	34.32	7
51	127.82	2.72	25.56	-0.45	128.13	2.12	5	2.08	129.42	3.13	0.21	2.92	42.75	2.17	0.01	5	0.89	0.4	2.37	47.67	0.56	33.23	7
52	82.81	2.4	27.62		83.15	2.89	5	2.3	127.46	3.19	0.21	2.98	26.8	3	0.02	4	1	0.35	2.66	26.8	0.6	24.45	5
53	145.36	2.3	29.25		145.72	1.58	6	1.94	128.51	3.26	0.21	3.04	46.83	1.61	0.02	5	0.85	0.33	2.24	54.94	0.62	40.95	7
54	60.05	2.4	33.75		60.46	3.97	4	2.5	126.69	3.32	0.22	3.1	18.43	4.2	0.04	3	1	0.34	2.87	18.43	0.71	19.28	3
55	59.52	1.98	29.72		59.89	3.31	4	2.44	125.27	3.38	0.23	3.16	17.89	3.51	0.03	3	1	0.34	2.83	17.89	0.61	21	3
56	41.46	2.09	45.88	-0.56	42.02	4.97	4	2.68	124.78	3.45	0.23	3.22	11.99	5.41	0.08	3	1	0.33	3.09	11.99	0.96	16.3	3
57	83.02	2.82	74.35	-0.54	83.93	3.36	5	2.35	128.66	3.51	0.24	3.28	24.55	3.51	0.06	4	1	0.32	2.73	24.55	1.56	22.14	5
58	50.65	2.19	79.87	-0.5	51.62	4.25	4	2.57	125.64	3.57	0.24	3.33	14.42	4.56	0.11	3	1	0.32	2.98	14.42	1.65	17.98	3
59	51.06	2.19	101.21	-0.57	52.3	4.19	4	2.56	125.67	3.64	0.25	3.39	14.35	4.51	0.14	3	1	0.31	2.98	14.35	2.08	18.08	3
60	49.71	0	78.42	-0.67	50.67	0	0	0	87.36	3.68	0.25	3.43	13.7	0	0.11	0	1	0.31	4.06	13.7	1.57	33.86	0

	СРТ-3	In situ	data								Basic	output (lata										
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn	U2	I(B)	Mod. SBTn
1	13.05	0.63	0.04	-0.06	13.05	4.8	3	3.05	113.12	0.06	0	0.06	229.65	4.82	0	9	0.76	9.22	2.37	113.23	0.06	20.01	3
2	27.57	0.73	-0.16	-0.11	27.57	2.65	4	2.63	116.07	0.11	0	0.11	239.41	2.66	0	5	0.68	4.53	2.16	117.5	-0.1	33.3	7
3	30.81	1.15	-0.64	-0.11	30.8	3.73	4	2.69	119.65	0.17	0	0.17	175.66	3.75	0	5	0.73	3.75	2.3	108.67	-0.26	24.85	5
4	27.57	0.94	-1.89	-0.07	27.55	3.41	4	2.7	117.9	0.23	0	0.23	117.06	3.44	0	5	0.76	3.13	2.35	80.88	-0.58	26.09	5
5	18.38	0.73	-3.99	-0.06	18.33	3.99	3	2.88	115.07	0.29	0	0.29	62.01	4.05	-0.02	4	0.83	2.93	2.55	49.97	-0.99	22.01	3
6	28.93	0.52	-6.21	-0.02	28.85	1.81	4	2.51	113.72	0.35	0	0.35	81.95	1.83	-0.02	5	0.72	2.23	2.25	60.18	-1.29	38.94	7
7	7.1	0.31	-10.11	0.02	6.98	4.49	3	3.25	106.52	0.4	0	0.4	16.4	4.76	-0.11	3	0.99	2.62	2.95	16.27	-1.81	17.81	3
8	10.23	0.21	-9.22	0.04	10.12	2.06	3	2.92	104.46	0.45	0	0.45	21.33	2.16	-0.07	4	0.89	2.13	2.68	19.46	-1.47	26.29	4
9	21.83	0.42	-9.33	0	21.71	1.92	4	2.63	111.39	0.51	0	0.51	41.66	1.97	-0.03	5	0.8	1.8	2.44	36.08	-1.32	32.66	7
10	12.11	0.52	-9.22	-0.02			3	3.05	111.58	0.56	0	0.56	20.25		-0.06	3	0.97	1.84	2.87	19.89	-1.18	18.59	
11	9.19	0.42	-8.19	-0.09			3	3.16	109.27	0.62	0	0.62	13.67		-0.07	3	1	1.71	3.02	13.67	-0.95	17.23	
12	22.35	0.73	-8.54	-0.15	22.24		4	2.76	115.54	0.68	0	0.68	31.84		-0.03	4	0.89	1.49	2.65	30.34	-0.91	23.34	
13	19.84	0.94	-8.3	-0.21	19.74		3	2.9	117.09	0.74	0	0.74	25.83		-0.03	3	0.96	1.42	2.82	25.44	-0.81	18.1	3
14	17.96	1.36	-8.89	-0.28			3	3.07	119.54	0.8	0	0.8	21.44		-0.04	3	1	1.33	3.01	21.44	-0.8	13.07	3
15	165.52	1.67	-7.21	-0.33			6	1.77	126.49	0.86	0	0.86	191.65		0	6	0.55	1.12	1.74	174.53	-0.6	74.65	
16	30.81	1.46	1.41	-0.36			3	2.76	121.41	0.92	0	0.92	32.52		0	3	0.94	1.14	2.74	32.23	0.11	18.56	
17	16.92	0.73	1.28	-0.37	16.93		3	2.93	114.88	0.98	0	0.97	16.42		0.01	3	1	1.09	2.94	16.42	0.09	18.19	
18 19	9.4 10.34	0.42 0.42	0.88 1.17	-0.39 -0.42			3	3.14 3.08	109.35 109.58	1.03 1.09	0.01 0.01	1.02 1.07	8.2 8.65		0.01	3	1	1.04 0.99	3.2 3.15	8.2 8.65	0.05	16.41	2
20	97.12	0.42	-0.8	-0.42			6	1.93	120.98	1.15	0.01	1.13	85.13		0.01	6	0.65	0.99	1.95	87.06	0.07	17.11	2 7
20	198.1	1.15	-9.72				6	1.55	124.18	1.13	0.02	1.13			0	6	0.03	0.94	1.57	175.66	-0.07 -0.61	62.51 107.6	-
22	205.62	1.04	-10.5	-0.74	205.49		6	1.5	123.58	1.27	0.02		164.51		0	6	0.49	0.92	1.53	178.41	-0.63	116.86	-
23	129.18	0.94	-9.33	-0.78			6	1.76	121.67	1.33	0.03	1.3			-0.01	6	0.45	0.89	1.81	106.85	-0.54	78.62	-
24	352.96	1.25	-9.33	-0.9			7	1.22	126.23	1.39	0.03		259.31		0.01	7	0.39	0.91	1.26	301.38	-0.52	175.47	7
25	359.65	1.46	-6.89	-1.24			7	1.25	127.4	1.46	0.04		253.22		0	7	0.41	0.89	1.29	300.49	-0.38	161.15	-
26	359.54	1.36	-4.39	-1.35			7	1.23	126.86	1.52	0.05		243.06		0	7	0.41	0.87	1.28	295.71	-0.25	167.84	-
27	321.53	1.15	-1.96	-1.37	321.51		7	1.25	125.37	1.58	0.05		209.02		0	7	0.42	0.86	1.31	258.75	-0.13	164.97	7
28	357.25	1.25	-0.68	-1.07	357.24		7	1.21	126.26	1.65	0.06		223.83		0	7	0.41	0.85	1.27	284.46	-0.07	172.96	
29	91.79	1.36	4.73	-1.5	91.85	1.48	5	2.07	123.53	1.71	0.06	1.65	54.78	1.51	0	5	0.76	0.71	2.19	60.84	0.17	43.83	
30	28.2	1.04	35.8	-1.5	28.63	3.65	4	2.71	118.77	1.77	0.07	1.7	15.8	3.89	0.09	3	1	0.62	2.9	15.8	1.48	19.63	
31	22.56	1.04	37.74	-1.5	23.02	4.54	3	2.84	118.24	1.83	0.07	1.75	12.08	4.93	0.12	3	1	0.6	3.06	12.08	1.51	17.05	3
32	34.04	1.15	97.06	-1.53	35.23	3.26	4	2.61	119.97	1.89	0.08	1.81	18.43	3.45	0.21	3	1	0.58	2.82	18.43	3.82	21.3	3
33	107.87	2.19	21.02	-1.62	108.13	2.03	5	2.11	127.44	1.95	0.08	1.87	56.84	2.07	0.01	5	0.8	0.63	2.27	63.63	0.77	36.56	7
34	129.59	2.92	-7.66	-1.65	129.5	2.26	5	2.09	129.98	2.02	0.09	1.93	66.11	2.29	-0.01	5	0.8	0.62	2.25	74.67	-0.33	35.09	7
35	377.61	2.72	-6.86	-1.62	377.52	0.72	6	1.41	132.05	2.08	0.09	1.99	188.72	0.72	0	6	0.52	0.72	1.51	255.31	-0.3	104.19	7
36	406.22	2.19	-5.22	-1.63	406.16	0.54	7	1.3	130.67	2.15	0.1	2.05	197.09	0.54	0	6	0.48	0.73	1.4	277.77	-0.23	130.35	7
37	479.01	2.09	-2.65	-1.46	478.98	0.44	7	1.18	130.71	2.21	0.1	2.11	225.92	0.44	0	7	0.44	0.74	1.28	333.01	-0.14	158.89	7
38	485.38	1.98	1	-1.39	485.39	0.41	7	1.16	130.37	2.28	0.11	2.17	222.58	0.41	0	7	0.43	0.73	1.26	334.46	-0.02	166.12	7
39	467.94	1.88	0.78	-1.41	467.95	0.4	7	1.17	129.88	2.34	0.11	2.23	208.74	0.4	0	7	0.44	0.72	1.27	316.69	-0.03	165.12	7
40	318.29	0	-1.2	-1.48	318.28	0	0	0	87.36	2.39	0.12	2.27	139.2	. 0	0	0	1	0.47	4.06	139.2	-0.09	213.14	0

	CPT-4	In situ (lata								Basic (output d	lata										
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn	U2	I(B) N	lod. SBTn
(11)	25.06	1.25	0.68	0.39	25.07	5	3	2.84	119.78	0.06	0		417.34	5.01	0	9	0.72	7.84	2.27	185.28	0.82	19.56	3
2		0.73	0.78	0.39	14.52		3	3.02	114.5	0.12	0		122.91	5.07	0	9	0.8	5.85	2.48	79.59	0.48	18.91	3
3	11.8 20.47	0.63 0.63	0.68 0.7	0.35 0.35	11.81 20.48		3 4	3.11 2.77	112.87 114.21	0.17 0.23	0	0.17 0.23	67.06 87.78	5.39 3.09	0	4 5	0.86 0.77	4.71 3.24	2.62 2.4	51.78 62.04	0.28	17.71	3
5	33	0.52	-5.19	0.39	32.94		5	2.43	114.04	0.23	0		113.47	1.6	-0.01	5	0.68	2.42	2.14	74.55	0.22 -1.3	27.5 44.68	5 7
6	8.98	0.42	-8.34	0.43	8.88		3	3.17	109.21	0.34	0	0.34	24.93	4.89	-0.07	3	0.95	2.92	2.84	23.52	-1.75	18.11	3
7	6.06	0.21	-8.24	0.48	5.96	3.51	3	3.24	103.16	0.39	0	0.39	14.12	3.76	-0.11	3	0.99	2.65	2.94	13.95	-1.51	19.57	3
8		0.31	-8.12	0.5	16.82		4	2.71	108.66	0.45	0	0.44	36.93	1.91	-0.04	5	0.82	2.03	2.48	31.45	-1.33	31.84	5
9	26.84	0.52	-8.73	0.46	26.73		4	2.56	113.53	0.5	0.01	0.5	52.97	1.99	-0.02	5	0.78	1.8	2.37	44.69	-1.29	34.4	7
10 11		0.73 0.63	-8.7 -9.51	0.48 0.48	29.76 8.45		3	2.58 3.31	116.25 112.05	0.56 0.62	0.01 0.02	0.55 0.6	53.24 13.06	2.5 8	-0.02 -0.09	5 3	0.8 1	1.69 1.76	2.42 3.17	46.63 13.06	-1.17 -1.18	30.32 13.21	5 3
12		0.52	-9.41	0.48	15.03		3	2.91	112.13	0.68	0.02	0.65	22.05	3.64	-0.05	4	0.94	1.58	2.78	21.43	-1.08	21.24	3
13	20.36	0.84	-9.37	0.5	20.25	4.13	3	2.86	116.29	0.73	0.03	0.7	27.73	4.28	-0.04	4	0.93	1.46	2.75	26.98	-1	19.94	3
14		1.25	-9.22	0.5	21.4		3	2.94	119.39	0.79	0.03	0.76	27.16	6.08	-0.03	3	0.98	1.38	2.86	26.94	-0.92	15.8	3
15		1.88	-8.79	0.52	49.18		4	2.55	124.39	0.86	0.04	0.82	59.22	3.89	-0.01	4	0.84	1.24	2.49	56.79	-0.82	22.96	5
16 17		2.09 1.78	-8.5 -8.63	0.55 0.63	40.94 26.84		4	2.69 2.9	124.71 122.49	0.92 0.98	0.04 0.05	0.87 0.93	45.81 27.81	5.22 6.87	-0.02 -0.03	4	0.9 0.99	1.19 1.14	2.66 2.89	44.97 27.79	-0.75 -0.72	18.04 14.49	3
18		1.36	-8.54	0.61	28.61		3	2.78	120.69	1.04	0.05	0.99	27.99	4.92	-0.02	3	0.96	1.07	2.78	27.79	-0.72	18.28	3
19		2.09	-8.63	0.61	33.94		3	2.81	124.26	1.1	0.06	1.04	31.5	6.36	-0.02	3	0.98	1.01	2.83	31.49	-0.65	15.35	3
20		1.88	-7.93	0.59	173.46		6	1.77	127.46	1.17	0.06		156.45	1.09	0	6	0.58	0.98	1.79	159.08	-0.58	69.42	7
21		1.15	3.93	0.59	191.99		6	1.57	124.11	1.23	0.07		164.66	0.6	0	6	0.51	0.95	1.59	172.14	0.18	104.88	7
22 23		1.57 1.67	-9.88 -10.78	0.63 0.62	191.19 371.84	0.82 0.45	6 7	1.66 1.27	126.37 128.46	1.29 1.35	0.07 0.08		156.06 290.35	0.82 0.45	0	6 7	0.55 0.4	0.93 0.93	1.69 1.3	166.17 324.59	-0.64 -0.67	85.08 154.63	7 7
23		1.46	-10.76	0.62	519.28		7	1.03	128.3	1.42	0.08		387.83	0.43	0	7	0.31	0.93	1.05	454.9	-0.67	234.3	7
25		1.15	-11.68	0.83	317.63		7	1.26	125.34	1.48	0.09		226.94	0.36	0	7	0.41	0.89	1.3	266.75	-0.67	165.8	7
26	82.08	1.25	-11.88	0.98	81.93	1.53	5	2.11	122.67	1.54	0.09	1.45	55.46	1.56	-0.01	5	0.76	0.79	2.21	59.83	-0.65	42.77	7
27		1.15	-11.78	0.87	32.54		4	2.66	119.78	1.6	0.1	1.5	20.56	3.71	-0.03	3	0.99	0.71	2.8	20.65	-0.63	20.9	3
28 29		0.94 1.04	-11.88 -11.97	0.85 0.81	24.39 30.03		4	2.78 2.68	117.61 118.89	1.66 1.72	0.1 0.11	1.56 1.61	14.59 17.55	4.13 3.69	-0.04 -0.03	3	1	0.68 0.66	2.95 2.85	14.59 17.55	-0.61	18.87	3 3
30		2.51	-11.97	0.78	51.86		4	2.61	126.62	1.72	0.11	1.67	29.96	5.01	-0.03	3	0.98	0.64	2.76	30.2	-0.6 -0.58	20.45 18.18	3
31		4.39	-11.57	0.78	73.17		9	2.58	131.56	1.85	0.12	1.73	41.17	6.15	-0.01	3	0.97	0.62	2.73	41.74	-0.55	15.84	3
32	197.26	3.34	-11.49	0.76	197.12	1.7	6	1.88	131.99	1.92	0.12	1.79	108.85	1.71	0	6	0.69	0.69	1.99	127.92	-0.53	47.73	7
33		2.4	-10.34	0.78	230.34		6	1.68	129.95	1.98	0.13		123.22	1.05	0	6	0.62	0.71	1.79	152.56	-0.47	70.54	7
34 35		2.72 2.4	-9.6 -9.11	0.78 0.65	624.88 472.84		7 7	1.11 1.24	133.28 131.7	2.05 2.11	0.13 0.14		325.23 238.22	0.44 0.51	0	7 7	0.39 0.45	0.79 0.76	1.17 1.32	467.58 336.36	-0.43	174.41	7 7
36		1.78	-8.57	0.63	544.48		7	1.06	129.84	2.11	0.14		266.35	0.33	0	7	0.43	0.78	1.14	399.66	-0.4 -0.37	143.35 203.98	7
37		2.3	-7.66	0.54	496.88		7	1.19	131.5	2.24	0.15		235.88	0.46	0	7	0.44	0.74	1.29	346.16	-0.33	154.33	7
38	464.28	2.19	-7.05	0.61	464.2	0.47	7	1.22	130.99	2.31	0.15	2.16	214.09	0.47	0	7	0.46	0.72	1.32	315.48	-0.31	148.09	7
39		3.55	-6.77	0.54	420.03		6	1.44	134.28	2.38	0.16		188.16	0.85	0	6	0.55	0.67	1.56	262.94	-0.29	92.99	7
40		4.91 1.98	-4.06 -5.29	0.72	385.5 392.48		6 7	1.61	136.43 129.85	2.44 2.51	0.16 0.17		167.78 166.43	1.28	0	6 6	0.62	0.62 0.67	1.74	224.83 247.18	-0.2	65.58	7
41 42		2.51	-5.29 -4.82	0.51 0.37	259.02		6	1.29 1.62	130.55	2.51	0.17	2.34	106.43	0.51 0.98	0	6	0.5 0.64	0.59	1.42 1.79	247.18 142.79	-0.23 -0.22	131.37 72.91	7 7
43		3.34	-2.84	0.35	87.37		4	2.38	130	2.64	0.18	2.46	34.4	3.94	0	4	0.97	0.44	2.65	35.14	-0.15	21.64	3
44	111.95	2.09	-3.83	0.48	111.9	1.87	5	2.08	127.17	2.7	0.18	2.52	43.29	1.91	0	5	0.86	0.48	2.33	49.04	-0.18	36.05	7
45		2.72	-3.12	0.58	173.31	1.57	6	1.89	130.15	2.77	0.19	2.58	66.04	1.59	0	5	0.78	0.5	2.11	80.53	-0.16	45.67	7
46		3.55	-2.84	0.84	237.54		6	1.79	132.88	2.84	0.19	2.64	88.77	1.51	0	6 4	0.73	0.51	1.99	113.27	-0.15	51.08	7
47 48		2.92 1.98	-2.94 -1.09	1.06 1.11	110.97 69.43		5 5	2.19 2.35	129.61 125.63	2.9 2.96	0.2 0.2	2.7 2.76	39.97 24.07	2.71 2.99	0	4	0.92 1	0.42 0.38	2.47 2.69	43.1 24.07	-0.15 -0.1	28.45 24.02	5 5
49		2.61	-0.15	1.13	51.69		4	2.62	126.92	3.03	0.21	2.82	17.26	5.36	0	3	1	0.38	2.96	17.26	-0.08	16.77	3
50		3.65	0.96	1.06	98.59		5	2.34	130.95	3.09	0.21	2.88	33.15	3.83	0	4	1	0.37	2.65	33.22	-0.05	21.92	3
51		3.55	1.17	1.17	131.07	2.71	5	2.15	131.43	3.16	0.22	2.94	43.48	2.78	0	5	0.92	0.39	2.45	47.04	-0.04	28.44	5
52		2.92	0.94	1.3	158.11		6	1.97	130.47	3.22	0.22	3	51.59	1.89	0	5	0.85	0.41	2.26	60.19	-0.05	38.23	7
53 54		2.3 1.67	2.03 2.48	1.39 1.43	45.66 44.93		4	2.66 2.57	125.68 123.31	3.29 3.35	0.23 0.23	3.06 3.12	13.85 13.34	5.42 4.02	0	3	1	0.35 0.34	3.04 2.97	13.85 13.34	-0.03 -0.02	16.44 18.88	3 3
55		1.98	4.95	1.43	102.19		5	2.12	125.51	3.33	0.23	3.12	31.11	2.01	0	5	0.94	0.35	2.47	33.09	0.02	31.58	5
56		2.51	4.71	1.45	131.84		5	2.03	128.9	3.47	0.24	3.23	39.69	1.95	0	5	0.91	0.36	2.37	44.09	0.03	34.65	7
57	122.91	2.51	5.85	1.43	122.98		5	2.08	128.73	3.54	0.25	3.29	36.26	2.1	0	5	0.93	0.35	2.43	39.15	0.05	32.3	7
58		2.61	8.05	1.43	100.45		5	2.21	128.54	3.6	0.25	3.35	28.88	2.7	0	4	1	0.32	2.6	28.91	0.1	26.3	5
59		3.34	5.99	1.46	141.99		5	2.08	131.19	3.67	0.26	3.41	40.51	2.42	0	5 0	0.94	0.33	2.43	43.47	0.05	30.55	5
60	93.98	0	4.9	1.54	94.04	0	0	0	87.36	3.71	0.26	3.45	26.16	0	U	U	1	0.31	4.06	26.16	0.03	51.66	0

	CPT-5	In situ	data								Basic (output o	lata										
Depth (ft)	qc (tsf)	fs (tsf)	u (psi)	Other	qt (tsf)	Rf(%)	SBT	Ic SBT	ã (pcf)	ó,v (tsf)	u0 (tsf)	ó',vo (tsf)	Qt1	Fr (%)	Bq	SBTn	n	Cn	Ic	Qtn	U2	I(B)	Mod. SBTn
1	29.66	1.15	0.97	0.04	29.67	3.87	4	2.71	119.55	0.06	0		495.01	3.88	0	8	0.68	6.99	2.16	195.69	1.17	24.81	5
2	27.67	1.25	0.74	0.07	27.68	4.53	3	2.78	120.02	0.12	0	0.12	229.94		0	9	0.74	5	2.32	130.13	0.44	21.18	3
3	15.35 18.38	0.73 0.63	0.64 1.28	0.13 0.15	15.36 18.39	4.76 3.41	3	2.99 2.84	114.64 113.95	0.18	0	0.18	85.75 77.59		0.01	4	0.82	4.35 3.32	2.53 2.46	62.44 56.98	0.26 0.39	19.54	3 5
5	10.34	0.84	0.99	0.15	10.35	8.07	3	3.27	114.66		0	0.23	34.52		0.01	3	0.97	3.48	2.89	33.1	0.39	25.12 12.5	3
6	36.55	0.52	1.25	0.1	36.56	1.43	5	2.37	114.29	0.35	0	0.35	103.89		0	5	0.67	2.11	2.12	72.29	0.26	47.23	7
7	6.47	0.42	0.88	0.12	6.49	6.44	3	3.36	108.44	0.4	0	0.4	15.1		0.01	3	1	2.63	3.08	15.1	0.16	14.45	3
8	8.67	0.31	1.49	0.15	8.69	3.61	3	3.11	107.05		0	0.46	18.04		0.01	3	0.96	2.25	2.86	17.49	0.24	20.13	3
9 10	40.1 19.42	0.52 0.63	1.38 1.28	0.15 0.15	40.12 19.44	1.3 3.22	5 4	2.31 2.8	114.52 114.09	0.51 0.57	0 0.01	0.51 0.56	77.86 33.64		0	5 4	0.69 0.88	1.66 1.75	2.15 2.63	62.12 31.18	0.19	47.48	7 5
11	8.25	0.52	1.87	0.15	8.27	6.31	3	3.27	110.67	0.63	0.01	0.50	12.51		0.02	3	1	1.73	3.14	12.51	0.15 0.2	23.73 14.48	3
12	7	0.31	2.45	0.13	7.03	4.46	3	3.24	106.53	0.68	0.02	0.66	9.62		0.02	3	1	1.6	3.14	9.62	0.24	16.7	2
13	10.13	0.52	3.44	0.11	10.17	5.13	3	3.15	111.17	0.73	0.02	0.71	13.29	5.53	0.02	3	1	1.49	3.06	13.29	0.31	16.23	3
14	10.86	0.63	3.45	0.08	10.9	5.75	3	3.16	112.68		0.03	0.76	13.28		0.02	3	1	1.39	3.09	13.28	0.29	15.29	3
15	22.45	0.52	4.71	0.02	22.51	2.32	4	2.67	113.11	0.85	0.03	0.81	26.63		0.01	4	0.88	1.26	2.61	25.82	0.38	27.09	5
16 17	15.66 13.47	0.31 0.42	6.67 8.15	-0.02 -0.05	15.75 13.57	1.99 3.08	4	2.75 2.91	108.5 110.24		0.04 0.04	0.86 0.91	17.21 13.82		0.03	3	0.93 1	1.21 1.16	2.72 2.91	16.95 13.82	0.51 0.59	25.48 20.57	4 2
18	38.95	0.84	8.83	-0.15	39.06	2.14	5	2.45	117.89	1.02	0.05	0.97	39.35		0.02	5	0.83	1.08	2.45	38.74	0.61	31.43	5
19	195.8	0.84	10.46	-0.15	195.93	0.43	6	1.47	121.83	1.08	0.05	1.02	190.48		0	6	0.46	1.02	1.47	187.03	0.68	131.19	7
20		0.73	10.41	-0.13	193.84	0.38	6	1.45	120.82		0.06	1.08	178.68		0	6	0.45	0.99	1.45	180.55	0.64	137.59	7
21	181.91	0.73	11.18	-0.15	182.05	0.4	6	1.48	120.67	1.2	0.06	1.13	159.49		0	6	0.48	0.97	1.5	165.39	0.65	128.16	7
22 23	106.72 27.57	0.73 1.88	8.96 17.36	-0.22 -0.17	106.83 27.78	0.68 6.77	6 3	1.81 2.9	119.37 123	1.26 1.32	0.07 0.07	1.19 1.25	88.81 21.25		0.01	6 3	0.61 1	0.93 0.85	1.84 2.98	92.97 21.25	0.49 0.94	76.63 14.14	7 3
23	144.63	3.24	23.31	-0.17	144.92	2.23	5 5	2.9	131	1.38	0.07	1.25			0.04	5	0.71	0.86	2.96	116.71	1.23	38.02	3 7
25	61.3	2.3	10.01	0.02	61.42	3.74	4	2.48	126.4	1.45	0.08	1.36	43.96		0.01	4	0.89	0.8	2.56	45.22	0.47	22.7	5
26	28.93	1.88	9.24	-0.02	29.04	6.47	3	2.87	123.11	1.51	0.09	1.42	19.38	6.83	0.02	3	1	0.74	3	19.38	0.41	14.52	3
27	84.69	2.3	10.2	-0.02	84.82	2.71	5	2.28	127.19		0.09	1.48	56.26		0.01	5	0.82	0.76	2.37	59.68	0.43	29.69	5
28	212.82	1.57	9.86	0.04	212.94	0.74	6	1.59	126.63		0.1	1.54	137.4		0	6	0.56	0.81	1.67	162.13	0.4	90.51	7
29 30	314.22 390.77	1.57 2.09	11.28 12.75	0.02 -0.04	314.36 390.92	0.5 0.53	6 7	1.35 1.31	127.58 130.22	1.7 1.76	0.1 0.11	1.6	195.81 234.85		0	6 6	0.47 0.45	0.83 0.82	1.42 1.37	243.84 300.33	0.44 0.49	132.1 134.24	7 7
31	388.89	2.09	16.84	0.13	389.09	0.62	6	1.36	131.23		0.11		225.44		0	6	0.48	0.79	1.43	290.72	0.49	120.14	7
32		1.78	17.88	0.37	353.7	0.5	7	1.32	128.78		0.12	1.78	197.95		0	6	0.47	0.78	1.4	260.87	0.66	134.33	7
33	354.43	1.78	20.44	0.35	354.68	0.5	7	1.32	128.79	1.96	0.12	1.84	192.05	0.5	0	6	0.47	0.77	1.4	256.92	0.73	133.92	7
34	363.72	2.09	16.58	0.35	363.92	0.57	6	1.35	130.04	2.02	0.13	1.9	190.8		0	6	0.49	0.75	1.44	256.92	0.56	122.29	7
35		2.3	14.72	0.15	343.33	0.67	6	1.42	130.6		0.13		174.35		0	6	0.52	0.73	1.52	233.96	0.47	107.23	7
36 37	366.54 335.21	1.88 2.19	15.79 15.79	0.15 0.28	366.73 335.4	0.51 0.65	7 6	1.32 1.42	129.29 130.2	2.15 2.22	0.14 0.14	2.02	180.75 160.4		0	6 6	0.49 0.53	0.73 0.7	1.42 1.53	251.83 219.87	0.5 0.48	131.02 107.06	7 7
38	176.27	2.61	12.97	0.26	176.43	1.48	6	1.87	129.91	2.28	0.15	2.14	81.49		0	5	0.72	0.6	2.03	98.88	0.48	49.89	7
39	86.99	2.72	14.72	0.31	87.17	3.11	5	2.31	128.48	2.35	0.15	2.2	38.62		0.01	4	0.92	0.51	2.54	40.93	0.41	25.34	5
40	71.74	2.92	19.73	0.36	71.98	4.06	4	2.45	128.55	2.41	0.16	2.26	30.84	4.2	0.02	4	0.99	0.47	2.7	31.16	0.56	20.48	3
41	102.13	3.24	23.29	0.39	102.41	3.16	5	2.27	130.16		0.16	2.32	43.15		0.02	4	0.91	0.49	2.5	46.19	0.65	25.59	5
42	174.71	2.51	20.12	0.46	174.95	1.43	6	1.86	129.59	2.54	0.17	2.38	72.56		0.01	5	0.75	0.55	2.05	89.17	0.54	49.68	7
43 44	52.21 80.1	2.72 2.61	19.88 22.1	0.5 0.52	52.46 80.37	5.18 3.25	4 5	2.62 2.35	127.24 127.99		0.17 0.18	2.43 2.49	20.48 31.16		0.03	3 4	1 0.97	0.43 0.44	2.91 2.63	20.48 31.97	0.52 0.57	16.79 23.66	3 5
45	68.61	3.03	24.22	0.54	68.91	4.4	4	2.49	128.7	2.73	0.18	2.55	25.92		0.02	3	1	0.41	2.79	25.92	0.61	19.04	3
46	136.28	3.13	24.12	0.65	136.57	2.29	5	2.08	130.62	2.8	0.19	2.61	51.18		0.01	5	0.86	0.46	2.33	57.97	0.59	33.03	7
47	99	2.09	21.99	0.67	99.27	2.1	5	2.15	126.87	2.86	0.19	2.67	36.08	2.17	0.01	5	0.91	0.43	2.44	39.37	0.52	31.79	5
48	42.82	1.98	27.21	0.69	43.15	4.6	4	2.65	124.47	2.93	0.2	2.73	14.74		0.04	3	1	0.39	2.99	14.74	0.65	17.34	3
49	61.09	2.09	28.22	0.72	61.44	3.4	4	2.45	125.7	2.99	0.2	2.79	20.97		0.03	4	1	0.38	2.79	20.97	0.66	21.37	3
50 51	113.3 74.77	2.09 2.72	33.79 31.65	0.74 0.78	113.72 75.16	1.84 3.61	5 4	2.07 2.4	127.21 128.12	3.05 3.12	0.21 0.21	2.85 2.91	38.88 24.8		0.02	5 4	0.89 1	0.42 0.36	2.36 2.74	43.55 24.8	0.78 0.71	35.19 21.29	7 3
52	57.12	2.4	33.66	0.78	57.53	4.17	4	2.53	126.57	3.18	0.22	2.96	18.34		0.04	3	1	0.36	2.89	18.34	0.74	18.76	3
53	50.54	2.4	40.38	0.8	51.04		4	2.6	126.27	3.24	0.22	3.02	15.82		0.06	3	1	0.35	2.97	15.82	0.89	17.27	3
54	66	3.03	57.71	0.8	66.7	4.54	4	2.51	128.62	3.31	0.23	3.08	20.58		0.06	3	1	0.34	2.87	20.58	1.28	18.17	3
55	65.79	3.55	62.58	0.8	66.56	5.33	4	2.57	129.78		0.23	3.14	20.11		0.07	3	1	0.34	2.93	20.11	1.36	16.45	3
56	66.31	3.86	83.22	0.85	67.33	5.74	4	2.59	130.43		0.24	3.2	19.96		0.09	3	1	0.33	2.95	19.96	1.8	15.71	3
57 58	73.83 73.31	4.07 4.18	71.62 77.13	0.87 0.92	74.71 74.25	5.45 5.63	9	2.54 2.55	131.07 131.24	3.5 3.57	0.24 0.25	3.26 3.32	21.83 21.27		0.07 0.08	3	1	0.32 0.32	2.91 2.92	21.83 21.27	1.51 1.6	16.33 15.98	3
59	80.2	4.28	80.6	0.93	81.19	5.27	9	2.51	131.64	3.63	0.25	3.38	22.92		0.07	3	1	0.31	2.88	22.92	1.64	16.75	3
60	76.55	0	55.4	0.99	77.22	0	0	0	87.36	3.68	0.26	3.42	21.49	0	0.05	0	1	0.31	4.06	21.49	1.09	44.98	0

711 1st Street Seal Beach, CA

CPT Shear Wave Measurements

					S-Wave	Interval
	Tip	Geophone	Travel	S-Wave	Velocity	S-Wave
	Depth	Depth	Distance	Arrival	from Surface	Velocity
CPT-1	(ft)	(ft)	(ft)	(msec)	(ft/sec)	(ft/sec)
_	5.12	4.12	6.48	12.72	509.34	
	10.10	9.10	10.38	24.52	423.46	330.88
	15.12	14.12	14.98	32.84	456.12	552.40
	20.08	19.08	19.72	38.64	510.46	818.13
	25.07	24.07	24.58	43.88	560.25	927.40
	30.05	29.05	29.48	50.16	587.66	779.19
	35.10	34.10	34.46	56.08	614.56	842.48
	40.03	39.03	39.35	62.42	630.39	770.40
	45.08	44.08	44.36	69.60	637.39	698.29
	50.07	49.07	49.32	75.36	654.51	861.36
	55.05	54.05	54.28	80.52	674.13	960.60
	60.17	59.17	59.38	86.52	686.33	850.02
CPT-2						
	5.09	4.09	6.46	14.88	434.12	
	10.53	9.53	10.76	26.44	407.04	372.17
	15.09	14.09	14.95	33.48	446.56	595.01
	20.08	19.08	19.72	39.48	499.60	795.57
	25.43	24.43	24.94	45.40	549.26	880.43
	30.09	29.09	29.52	52.04	567.19	689.78
	35.50	34.50	34.86	58.78	593.07	792.86
	40.12	39.12	39.44	64.64	610.12	781.19
	46.23	45.23	45.51	72.64	626.45	758.41
	50.13	49.13	49.38	76.64	644.36	969.56
	55.09	54.09	54.32	81.36	667.66	1045.94
	60.24	59.24	59.45	87.56	678.97	827.42

Shear Wave Source Offset = 5 ft

S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

CPT-3						
	5.09	4.09	6.46	10.80	598.12	
	10.10	9.10	10.38	20.32	510.98	412.13
	15.12	14.12	14.98	27.40	546.68	649.15
	20.11	19.11	19.75	35.32	559.27	602.80
	25.03	24.03	24.54	41.64	589.45	758.13
	30.09	29.09	29.52	47.76	618.02	812.40
	35.07	34.07	34.43	56.52	609.25	561.46
	40.06	39.06	39.38	62.08	634.32	889.17

CPT-4						
	5.51	4.51	6.73	11.96	563.00	
	10.10	9.10	10.38	20.32	510.98	436.56
	15.09	14.09	14.95	28.56	523.49	554.33
	20.08	19.08	19.72	36.48	540.69	602.70
	25.07	24.07	24.58	42.72	575.46	778.78
	30.05	29.05	29.48	50.42	584.63	635.50
	35.01	34.01	34.38	55.88	615.17	897.15
	40.03	39.03	39.35	61.04	644.64	963.84
	45.08	44.08	44.36	67.68	655.48	755.08
	50.07	49.07	49.32	74.08	665.82	775.22
	55.09	54.09	54.32	80.08	678.33	832.75
	60.24	59.24	59.45	85.20	697.78	1001.96

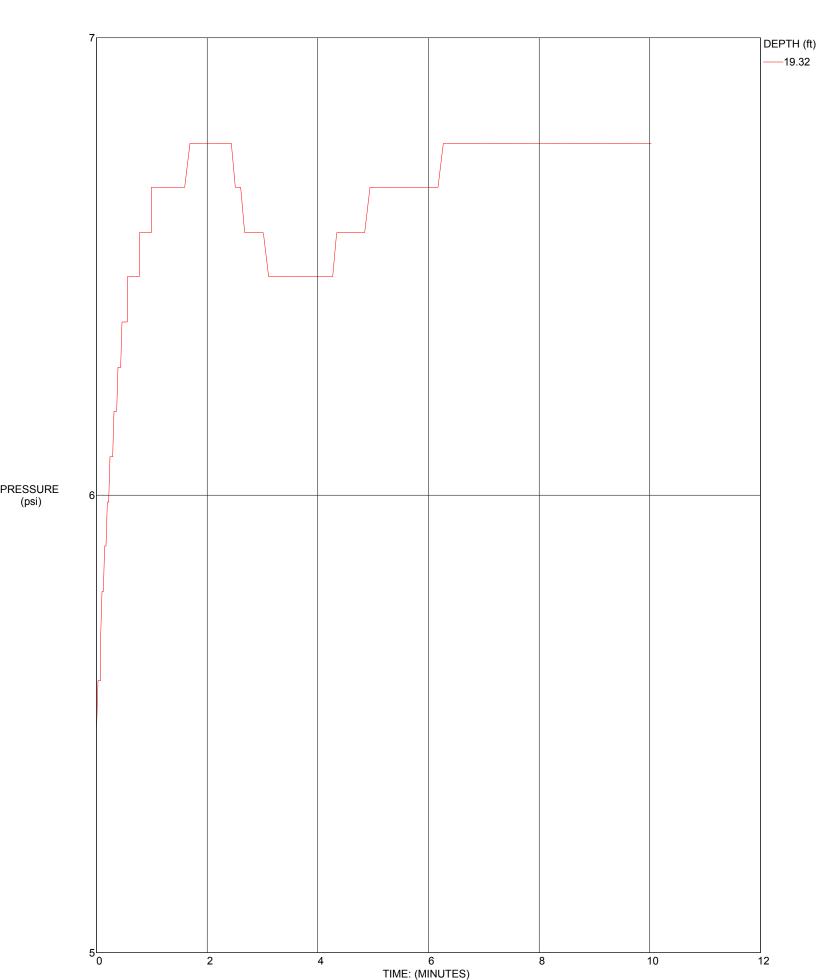
Shear Wave Source Offset = 5 ft

S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

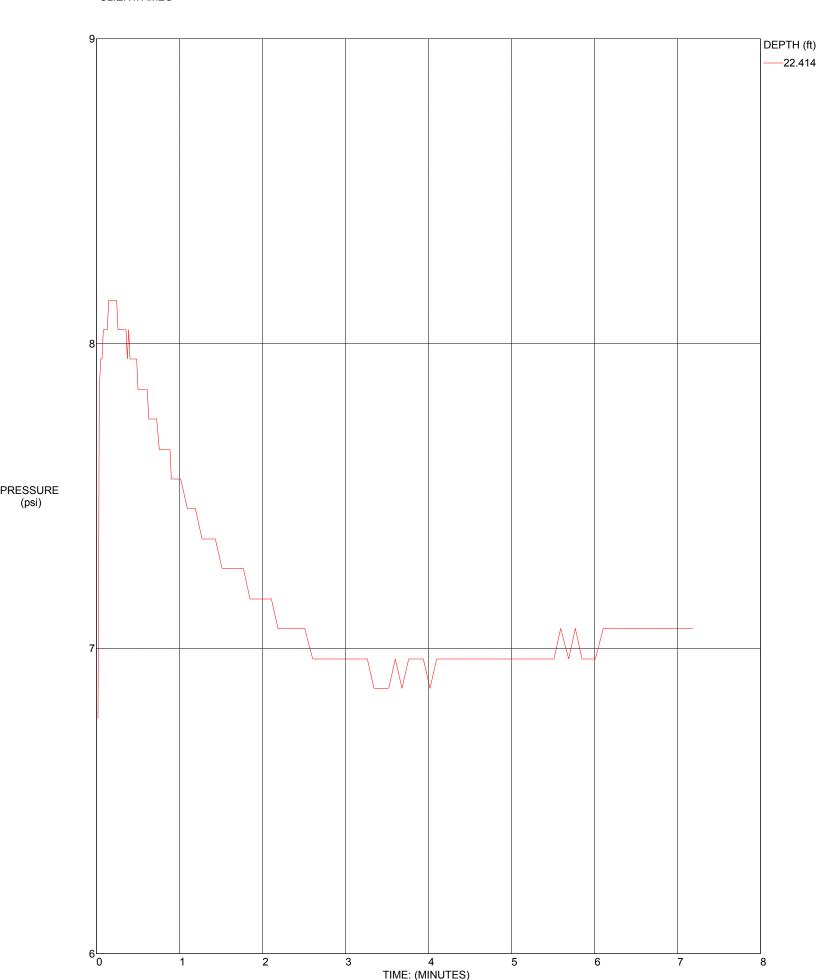
 5.09	4.09	6.46	12.28	526.04	
10.04	9.04	10.33	24.18	427.24	325.28
15.09	14.09	14.95	33.48	446.56	496.80
20.08	19.08	19.72	41.84	471.42	570.98
25.10	24.10	24.61	49.68	495.43	623.59
30.09	29.09	29.52	55.04	536.27	914.81
35.10	34.10	34.46	60.60	568.72	889.94
40.09	39.09	39.41	65.96	597.46	922.36
45.11	44.11	44.39	72.60	611.47	750.60
50.07	49.07	49.32	78.60	627.53	821.93
55.09	54.09	54.32	85.20	637.57	757.05
60.10	59.10	59.31	90.56	654.94	931.07

Shear Wave Source Offset = 5 ft

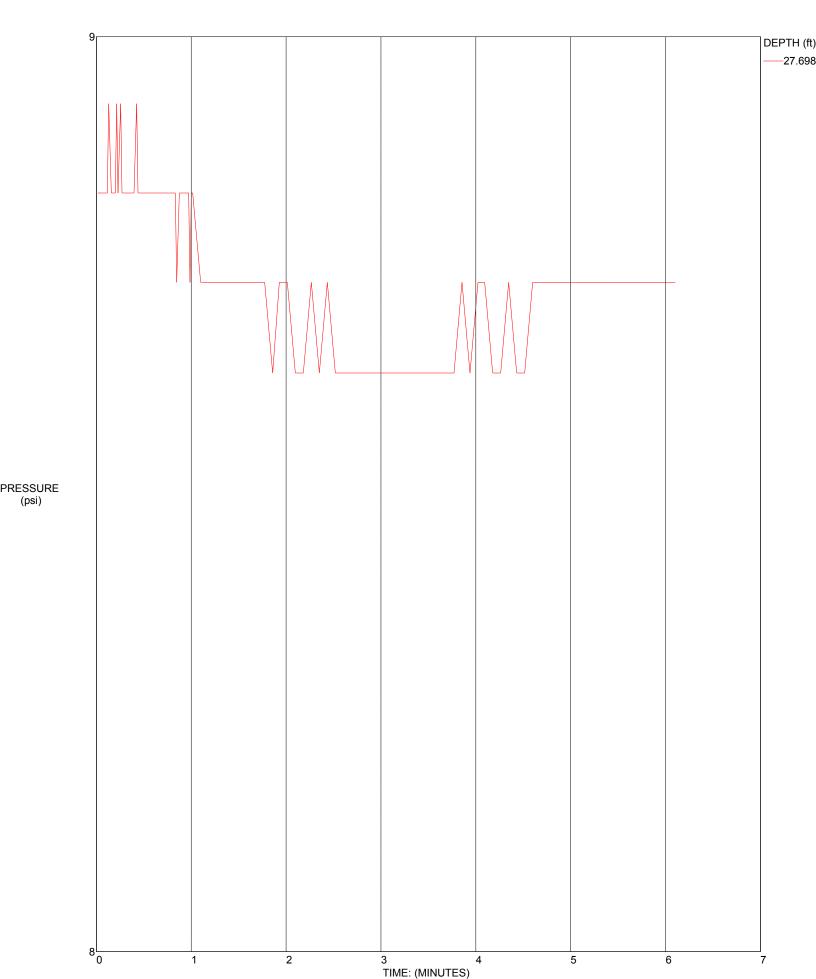
S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival


Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

DISSIPATION


TEST ID: CPT-2 LOCATION: SealBeach TEST DATE: Wed 11/Apr/2018

CLIENT: AMEC


TEST ID: CPT-2 LOCATION: SealBeach TEST DATE: Wed 11/Apr/2018 CLIENT: AMEC

DISSIPATION

TEST ID: CPT-5 LOCATION: SealBeach TEST DATE: Wed 11/Apr/2018 CLIENT: AMEC

Presented below is a list of formulas used for the estimation of various soil properties. The formulas are presented in SI unit system and assume that all components are expressed in the same units.

:: Unit Weight, g (kN/m3) ::

$$g = g_w \cdot \left(0.27 \cdot log(R_f) + 0.36 \cdot log(\frac{q_t}{p_a}) + 1.236\right)$$

where gw = water unit weight

:: Permeability, k (m/s) ::

$$I_c <$$
 3.27 and $I_c >$ 1.00 then $k =$ 10 $^{0.952\text{--}3.04\cdot I_c}$

$$I_c \leq 4.00$$
 and $I_c > 3.27$ then $k = 10^{-4.52\text{-}1.37 \cdot I_c}$

:: N_{SPT} (blows per 30 cm) ::

$$N_{60} = \left(\frac{q_c}{P_a}\right) \cdot \frac{1}{10^{1.1268 - 0.2817 \cdot I_c}}$$

$$N_{1(60)} = Q_{tn} \cdot \frac{1}{10^{1.1268-0.2817 \cdot I_c}}$$

:: Young's Modulus, Es (MPa) ::

$$(q_t - \sigma_v) \cdot 0.015 \cdot 10^{0.55 \cdot I_c + 1.68}$$

(applicable only to $I_c < I_{c_cutoff}$)

:: Relative Density, Dr (%) ::

$$100 \cdot \sqrt{\frac{Q_{tn}}{k_{DR}}} \qquad \qquad \text{(applicable only to SBT}_n: 5, 6, 7 and 8} \\ \text{or } I_c < I_{c_cutoff} \text{)}$$

:: State Parameter, ψ ::

$$\psi = 0.56 - 0.33 \cdot \log(Q_{tn.cs})$$

:: Peak drained friction angle, φ (°) ::

$$\phi = 17.60 + 11 \cdot \log(Q_{to})$$

(applicable only to SBT_n: 5, 6, 7 and 8)

:: 1-D constrained modulus, M (MPa) ::

If
$$I_c > 2.20$$

$$a = 14 \text{ for } Q_{tn} > 14$$

$$a = Q_{tn}$$
 for $Q_{tn} \le 14$

$$M_{CPT} = a \cdot (q_t - \sigma_v)$$

If
$$I_c \leq 2.20$$

$$M_{CPT} = (q_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Small strain shear Modulus, Go (MPa) ::

$$\mathsf{G}_0 = (\mathsf{q}_t - \sigma_v) \cdot 0.0188 \cdot 10^{0.55 \cdot I_c + 1.68}$$

:: Shear Wave Velocity, Vs (m/s) ::

$$V_s = \left(\frac{G_0}{\rho}\right)^{0.50}$$

:: Undrained peak shear strength, Su (kPa) ::

$$N_{kt} = 10.50 + 7 \cdot log(F_r)$$
 or user defined

$$S_u = \frac{\left(q_t - \sigma_v\right)}{N_{kt}}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Remolded undrained shear strength, Su(rem) (kPa) ::

$$S_{u(rem)} = f_s$$
 (applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Overconsolidation Ratio, OCR ::

$$\begin{aligned} k_{OCR} = & \left[\frac{Q_{tn}^{0.20}}{0.25 \cdot (10.50 \cdot +7 \cdot log(\textbf{F}_{r}))} \right]^{1.25} \text{ or user defined} \\ OCR = & k_{OCR} \cdot Q_{tn} \end{aligned}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: In situ Stress Ratio, Ko ::

$$K_0 = (1 - \sin \varphi') \cdot OCR^{\sin \varphi'}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or I_c > I_{c_cutoff})

:: Soil Sensitivity, St ::

$$S_t = \frac{N_S}{F_r}$$

(applicable only to SBT_n: 1, 2, 3, 4 and 9 or $I_c > I_{c_cutoff}$)

:: Effective Stress Friction Angle, φ' (°) ::

$$\phi' = 29.5^{\circ} \cdot B_q^{0.121} \cdot (0.256 + 0.336 \cdot B_q + \text{bgQ}_t)$$
(applicable for $0.10 < B_q < 1.00$)

References

- Robertson, P.K., Cabal K.L., Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling & Testing, Inc., 5th Edition, November 2012
- Robertson, P.K., Interpretation of Cone Penetration Tests a unified approach., Can. Geotech. J. 46(11): 1337-1355 (2009)

wood.

Appendix C

Laboratory Testing Program

Appendix C

Laboratory Testing Program

Hellman Gas Plant Expansion Hellman Properties, LLC Seal Beach, California

Selected soil samples were tested in the laboratory to evaluate their physical characteristics and engineering properties. The following tests were performed in accordance with ASTM standards:

- Moisture content and dry density
- Fines content
- Atterberg limits
- Expansion index
- Direct shear
- Consolidation
- R-value
- Compaction
- Corrosion potential

Wood's Irvine Office testing laboratory performed the tests, except for corrosion potential and R-value. Corrosion potential and R-Value tests were performed by AP Engineering and Testing, Inc. of Pomona, California. Test procedures are described herein. Results of the tests are presented in laboratory data sheets and/or graphs in this appendix. Abbreviations for the above tests and test results of moisture-dry density, fines content, Atterberg limits, expansion index, and R-value are also given at the corresponding sample locations on the boring logs in Appendix B.

Moisture Content and Dry Density

The field moisture contents, as a percentage of the dry weight of the soils, were determined by weighing samples before and after oven drying. The dry density, in pounds per cubic foot (pcf), was also determined for some Shelby-tube samples and all relatively undisturbed ring samples collected. These analyses were performed in accordance with ASTM Methods D2216 and D2937. The results of these determinations are shown on a laboratory data sheet in this appendix and the boring logs in Appendix B.

Fines Content

Fines content (fraction passing the #200 sieve) was determined to assist in classification of the coarse-grained soils. The tests were performed in general accordance with ASTM Test Method D1140. Results of the fines content tests are presented at the corresponding sample location on the boring logs in Appendix B and on a summary laboratory data sheet in this appendix.

Project # IR18166880 | July 9, 2018

Appendix C - Page 1 of 3

Atterberg Limits

Atterberg Limits were performed on representative soil samples to determine the plasticity of fine-grained soils and to assist in their classification. The test procedures were performed in accordance with ASTM D4318. The results are presented on a laboratory test sheet in this appendix and the boring logs in Appendix B.

Expansion Index

An expansion index (EI) test was performed on a representative soil sample to determine the expansion potential of site fine grained soils. A remolded ring specimen prepared in accordance with ASTM D4829 is soaked, and the maximum expansion of the sample under a standard applied pressure is recorded and used to calculate the value of EI. EI test results are shown on a laboratory data sheet in this appendix and the boring logs in Appendix B.

Direct Shear

Direct shear tests were performed on selected relatively undisturbed ring samples in accordance with ASTM Method D3080. The sample was soaked prior to testing. A different normal stress was applied vertically to each soil sample ring, which was then sheared in a horizontal direction. A new ring was used for each load. Each shear test was performed on a single ring with no multiple re-shearing. Ring samples where large gravels were exposed at the surface were not used for the shear tests. For ring samples containing fine gravel, if the fine gravel pieces were visible at the surfaces of the sample during sample preparation, the gravel was removed and patched with finer soil to achieve smooth and flat conditions of the sample surfaces before placing the sample into the test apparatus. Fine gravels inside a sample that were not visible during sample preparation were left in place. The resulting shear strength for the corresponding normal stress was measured at maximum shear stress and at a shear strain of approximately twenty percent. Results of the direct shear tests are shown graphically on laboratory data sheets included in this appendix.

Consolidation

Consolidation tests were performed to assist in evaluating the compressibility of fine grained site soils. The tests were performed in general accordance with ASTM Test Method D 2435. Inundated samples were subjected to successive loading increments. Unloading or rebound was also performed. Test results are plotted graphically to illustrate settlement characteristics of saturated soils under various normal pressures and are presented in this appendix.

R-Value

Representative soil samples were tested to determine the R-value of the subsurface materials. The tests were performed in general accordance with the latest revisions to Caltrans Test Method No. 301. Results of the R-value test are shown on a laboratory data sheet in this appendix and the boring logs in Appendix B.

Compaction

A compaction test establishes the relationship between varying moisture content and dry density when the soil is compacted under standardized conditions. The maximum dry density achievable under these

Project # IR18166880 | July 9, 2018

Appendix C - Page 2 of 3

conditions and the corresponding optimum moisture content are then obtained. Modified proctor compaction tests were performed on selected bulk samples in accordance with ASTM Method D1557. The results of the compaction test are presented graphically in this appendix.

Corrosion Potential

Selected soil samples from the exploratory borings were performed to determine corrosivity of site soils to steel and concrete. The soils were tested for pH and minimum resistivity (Caltrans Test Method 643), soluble sulfate (Caltrans 417), and chloride (Caltrans 422). The results of the corrosion tests are included in this appendix.

MOISTURE CONTENT AND DRY DENSITY TEST

ASTM D7263 - Method B

 Project Name:
 Hellman Gas Plant Expansion
 Project No.:
 IR18166880
 Phase Task:

 Date:
 5/14-5/15/2018
 Tested By:
 LT

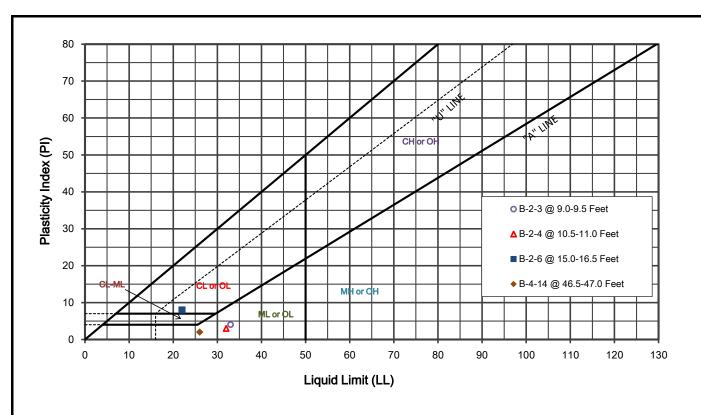
Boring No.	Sample No.	Depth (ft)	Wet Soil and Rings (gr)	Number of Rings	Weight of Rings (gr)	Volume of Sample (cc)	Wet Density (pcf)	Wet Soil and Tare (gr)	Dry Soil and Tare (gr)	Tare No.	Tare Weight (gr)	Moisture Content (%)	Dry Density (pcf)	Soil Description
B-2	4	10.5-11.0	937.46	5	221.24	375.63	119.0	186.66	153.80	MC-53	50.41	31.8	90.3	Sandy Silt (ML)
B-2	5	13.5-14.0	773.33	4	176.99	300.50	123.9	197.96	166.70	MC-75	50.23	26.8	97.7	Lean Clay (CL)
B-2	7	18.5-19.0	1018.60	5	221.24	375.63	132.5	228.48	200.45	MC-12	50.95	18.7	111.6	Sandy Lean Clay (CL)
B-2	10	26.5-27.0	943.16	5	221.24	375.63	120.0	188.60	156.02	MC-23	50.41	30.8	91.7	Lean Clay (CL)
B-2	13	41.0-41.5	1175.54	6	265.49	450.75	126.0	186.06	159.47	MC-11	51.34	24.6	101.2	Sandy Silt (ML)
B-4	2	6.0-6.5	751.96	4	176.99	300.50	119.4	175.14	145.42	MC-54	51.21	31.5	90.8	Top: Lean Clay (CL) Bottom: Silty Sand (SM)
B-4	4	11.0-11.5	739.86	4	176.99	300.50	116.9	188.17	153.80	MC-61	50.20	33.2	87.8	Silty Sand (SM)
B-4	7	18.5-19.0	1011.28	5	221.24	375.63	131.3	218.75	190.95	MC-42	51.48	19.9	109.5	Sandy Lean Clay (CL)
B-4	9	26.0-26.5	845.98	4	176.99	300.50	139.0	213.22	194.55	MC-68	50.66	13.0	123.0	Clayey Sand (SC)
B-4	14	46.5-47.0	998.36	5	221.24	375.63	129.2	188.68	164.04	MC-20	51.08	21.8	106.0	Silt with Sand (ML)
B-4	15	52.0-52.5	960.29	5	221.24	375.63	122.8	172.70	146.16	MC-55	50.68	27.8	96.1	Sandy Silt (ML)
B-4	17	61.0-61.5	1189.43	6	265.49	450.75	128.0	180.27	156.37	MC-41	51.56	22.8	104.2	Lean Clay with Sand (CL)

Ring I.D. (in.) =

2.416 Ring Height (in.) =

1.000

Average weight of 1 ring (gr.):



MATERIAL IN SOILS FINER THAN No. 200 SIEVE

ASTM D 1140

Project Name: Hellman Gas Pla	ant Expansio	n	Project No	. <i>:</i>	IR18166880)	Phase:	****
			Date:	5/01-5/23/2	2018		Tested By:	VG, LT
Boring No.	B-2	B-2						
Sample No.	3	6						
Sample Depth (Ft)	9.0-9.5	15.0-16.5						
Tare No.:	8	32						
Total Dry Weight and Tare (g):	398.98	432.80						
Tare Weight (g):	97.08	156.94						
Soaking Started: Date-Time Soaking Ended: Date-Time (*)	5/02/2018- 10:10 5/02/2018- 13:15	5/22/2018- 10:20 5/22/2018- 13:30						
Total Dry Weight of Sample (g):	301.90	275.86						
Dry Weight of Soil Retained on No. 200 Sieve (g):	111.59	144.02						
Percentage of Material Finer Than No. 200 (75 mm) Sieve (%):	63.0	47.8						
Soil Description	Olive Brown (2.5Y, 4/4) Sandy Silt (ML)	Dark Grayish Brown (2.5Y, 4/2) Clayey Sand (SC)						

^{(*):} At least 10 minutes for non-cohesive soils (Method A) or 2 hours for cohesive soils (Method B)

Sample Identification	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Soil Classification
B-2-3 @ 9.0-9.5 Feet	33	29	4	Sandy Silt (ML)
B-2-4 @ 10.5-11.0 Feet	32	29	3	Sandy Silt (ML)
B-2-6 @ 15.0-16.5 Feet	22	14	8	Clayey Sand (SC)
B-4-14 @ 46.5-47.0 Feet	26	24	2	Silt with Sand (ML)

wood.

PLASTICITY INDEX (PI)
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No. IR18166880

wood.

PLASTICITY INDEX ASTM-D 4318

Project Name:	Hellma	n Gas Plant Expansion	Project No.:	IR18166880	Phase:	***
Boring No.:	B-2	Sample No.: 3	Depth:	9.0-9.5 Feet	Date:	5/01-5/04/2018
Soil Description:	Olive B	rown (2.5Y, 4/4) Sandy Silt ((ML)		Tested by:	VC, LT

DRYING PAN No.: 36 SOAKING DISH No.: A-12

LIQUID LIMIT (LL)

TARE No.:	C-10	C-33	C-42
NUMBER OF BLOWS	16	27	33
WEIGHT OF WET SOIL + TARE, gr.:	40.55	39.03	35.73
WEIGHT OF DRY SOIL + TARE, gr.:	34.07	33.29	30.76
WEIGHT OF TARE, gr.:	15.96	15.61	15.06
MOISTURE CONTENT, %:	35.8	32.5	31.7

LIQUID LIMIT = 33

PLASTIC LIMIT (PL)

TARE No.:	C-30	C-71
WEIGHT OF WET SOIL + TARE, gr.:	26.79	26.24
WEIGHT OF DRY SOIL + TARE, gr.:	24.26	23.81
WEIGHT OF TARE, gr.:	15.30	15.42
MOISTURE CONTENT, %:	28.2	29.0

PLASTIC LIMIT = 29


PLASTICITY INDEX ASTM-D 4318

Project Name:	Hellma	n Gas Plant Expansion	Project No.:	IR18166880	Phase:	***
Boring No.:	B-2	Sample No.: 4	Depth:	10.5-11.0 Feet	Date:	5/18-5/23/2018
Soil Description:	Olive B	rown (2.5Y, 4/4) Sandy Silt	(ML)		Tested by:	VC, LT

DRYING PAN No.: 16 SOAKING DISH No.: A-12

LIQUID LIMIT (LL)

TARE No.:	C-64	C-16	C-37
NUMBER OF BLOWS	25	28	30
WEIGHT OF WET SOIL + TARE, gr.:	37.90	39.65	40.85
WEIGHT OF DRY SOIL + TARE, gr.:	32.52	33.93	34.89
WEIGHT OF TARE, gr.:	15.66	15.81	15.78
MOISTURE CONTENT, %:	31.9	31.6	31.2
MOISTURE CONTENT, %:	31.9	31.6	31.2

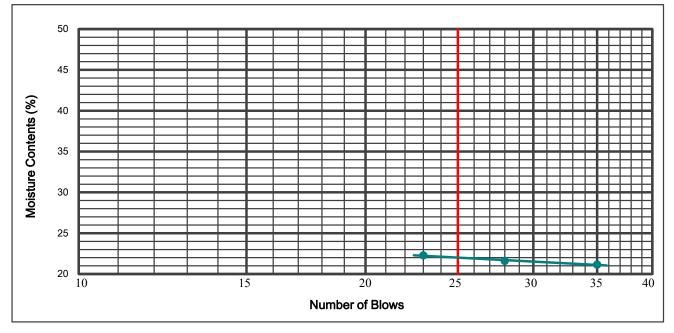
LIQUID LIMIT = 32

PLASTIC LIMIT (PL)

TARE No.:	C-18	C-78
WEIGHT OF WET SOIL + TARE, gr.:	25.22	25.80
WEIGHT OF DRY SOIL + TARE, gr.:	23.09	23.50
WEIGHT OF TARE, gr.:	15.70	15.56
MOISTURE CONTENT, %:	28.8	29.0

PLASTIC LIMIT = 29

wood.


PLASTICITY INDEX ASTM-D 4318

Project Name:	Hellma	n Gas Plant Expansion	Project No.:	IR18166880	Phase:	***
Boring No.:	B-2	Sample No.: 6	Depth:	15.0-16.5 Feet	Date:	5/18-5/23/2018
Soil Description:	Dark G	rayish Brown (2.5Y, 4/2) Cla	yey Sand (SC)		Tested by:	VC, LT

DRYING PAN No.: 4 SOAKING DISH No.: A-8

LIQUID LIMIT (LL)

TARE No.:	C-73	C-15	C-25
NUMBER OF BLOWS	23	28	35
WEIGHT OF WET SOIL + TARE, gr.:	39.42	37.39	39.73
WEIGHT OF DRY SOIL + TARE, gr.:	35.11	33.53	35.46
WEIGHT OF TARE, gr.:	15.77	15.66	15.28
MOISTURE CONTENT, %:	22.3	21.6	21.2

LIQUID LIMIT = 22

PLASTIC LIMIT (PL)

TARE No.:	C-58	C-68
WEIGHT OF WET SOIL + TARE, gr.:	25.80	26.03
WEIGHT OF DRY SOIL + TARE, gr.:	24.54	24.69
WEIGHT OF TARE, gr.:	15.65	15.48
MOISTURE CONTENT, %:	14.2	14.5

PLASTIC LIMIT = 14

wood.

PLASTICITY INDEX ASTM-D 4318

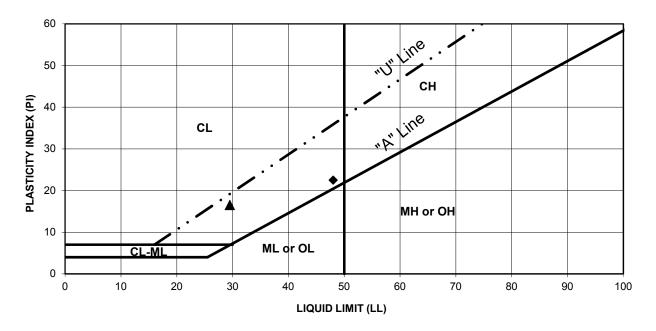
Project Name:	Hellma	n Gas Plant Expansion	Project No.:	IR18166880	Phase:	***
Boring No.:	B-4	Sample No.: 14	Depth:	46.5-47.0 Feet	Date:	5/18-5/23/2018
Soil Description:	Dark O	live Gray (5Y, 3/2) Silt with S	Sand (ML)		Tested by:	VC, LT

DRYING PAN No.: 18 SOAKING DISH No.: A-10

LIQUID LIMIT (LL)

C-75	C-35	C-11
20	22	32
38.58	44.59	43.39
33.59	38.56	37.73
15.59	15.88	15.42
27.7	26.6	25.4
	20 38.58 33.59 15.59	20 22 38.58 44.59 33.59 38.56 15.59 15.88

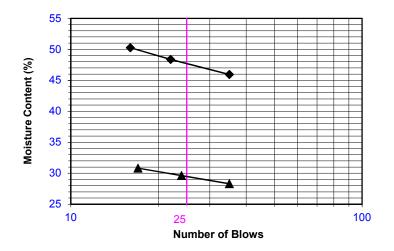
LIQUID LIMIT = 26


PLASTIC LIMIT (PL)

TARE No.:	C-12	C-56
WEIGHT OF WET SOIL + TARE, gr.:	25.83	24.80
WEIGHT OF DRY SOIL + TARE, gr.:	23.95	23.03
WEIGHT OF TARE, gr.:	15.83	15.65
MOISTURE CONTENT, %:	23.2	24.0

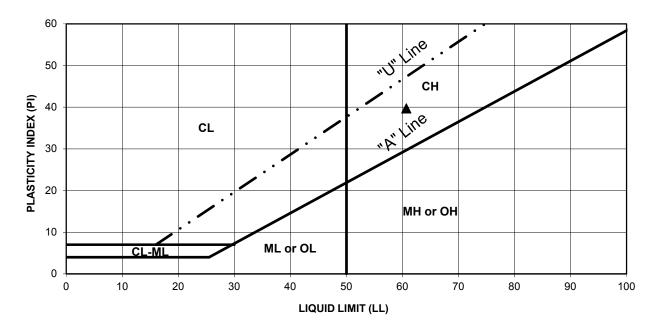
PLASTIC LIMIT = 24

Project Name:Hellman Gas Plant ExpansionTested By:DKDate:06/08/18Project No.:IR18166880Checked By:APDate:06/09/18



PROCEDURE USED

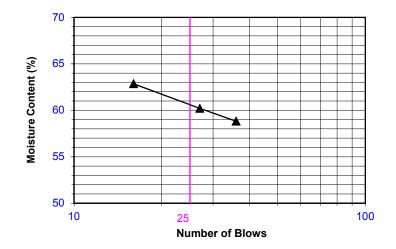
Wet Preparation


X Dry Preparation

X Procedure A
Multipoint Test

Symbol	Boring Number	Sample Number	Depth (feet)	Ы	PL	PI	Plasticity Chart Symbol
•	B-2	-	26.5-27	48	25	23	CL
A	B-2	-	30-31.5	30	13	17	CL

Project Name:Hellman Gas Plant ExpansionTested By:DKDate:06/08/18Project No.:IR18166880Checked By:APDate:06/09/18

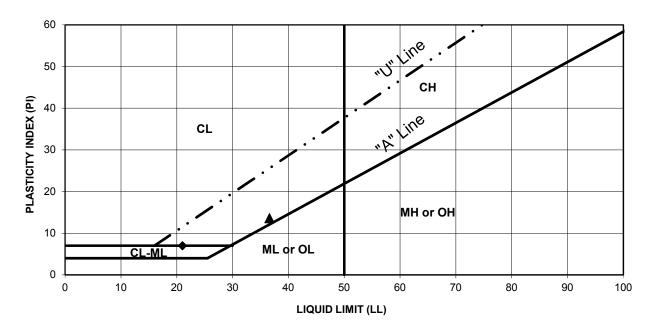


PROCEDURE USED

Wet Preparation

X Dry Preparation

X Procedure A
Multipoint Test



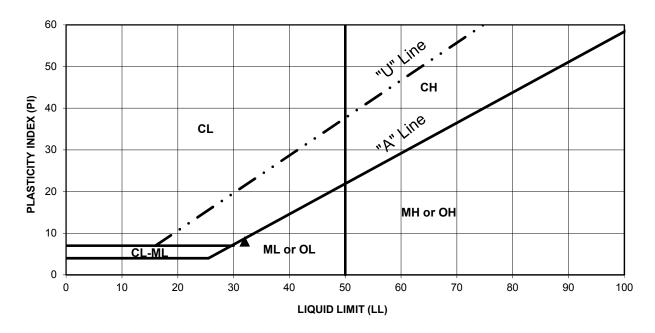
Symbol	Boring Number	Sample Number	Depth (feet)	LL	PL	PI	Plasticity Chart Symbol
	B-2	-	41-41.5	NP	NP	NP	
A	B-2 & B-3	Composite	1-5	61	21	40	СН

^{*} NP denotes "non-plastic"

Project Name:Hellman Gas Plant ExpansionTested By:DKDate:06/08/18Project No.:IR18166880Checked By:APDate:06/09/18

PROCEDURE USED

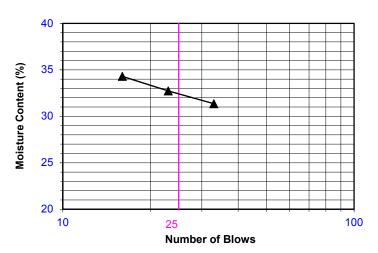
Wet Preparation


X Dry Preparation

X Procedure A
Multipoint Test

Symbol	Boring Number	Sample Number	Depth (feet)	Ы	PL	PI	Plasticity Chart Symbol
*	B-4	-	25-26.5	21	14	7	CL-ML
A	B-4	-	43-44.5	37	23	14	CL

Project Name:Hellman Gas Plant ExpansionTested By:DKDate:06/08/18Project No.:IR18166880Checked By:APDate:06/09/18

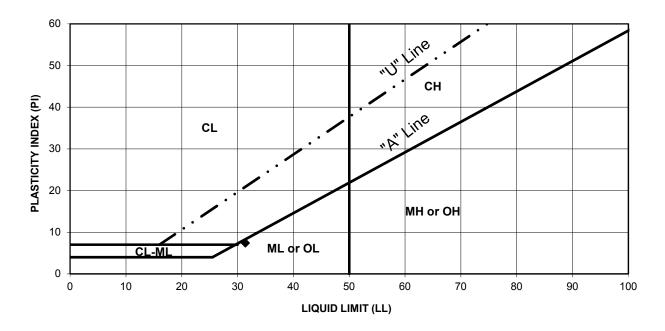


PROCEDURE USED

Wet Preparation

X Dry Preparation

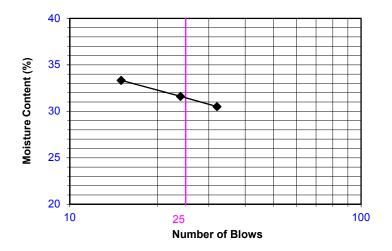
X Procedure A
Multipoint Test



Symbol	Boring Number	Sample Number	Depth (feet)	LL	PL	PI	Plasticity Chart Symbol
	B-4	-	52-52.5	NP	NP	NP	
A	B-4	-	55-56.5	32	24	8	ML

^{*} NP denotes "non-plastic"

Project Name:Hellman Gas Plant ExpansionTested By:DKDate:06/08/18Project No.:IR18166880Checked By:APDate:06/09/18



PROCEDURE USED

Wet Preparation

X Dry Preparation

X Procedure A
Multipoint Test

Symbol	Boring Number	Sample Number	•	LL	PL	PI	Plasticity Chart Symbol
*	B-4	-	61-61.5	31	24	7	ML

EXPANSION INDEX TEST

ASTM D4829

Project Name:	Hellman Gas Plant Expansion	Project No.:	IR18166880	
Sample ID.:	B-2 @ 1-5 Feet & B-3 @ 1-5 Feet Composite			
Soil Description:	Grayish Brown (2.5Y, 5/2) Lean Clay (CL)			
		Date:	5/30-6/01/2018	Bv: LT

SPECIMEN PREPARATION

WET DENSITY CALCULATION	TRIAL 1	TRIAL 2	TRIAL 3	TRIAL 4
RING No.	1	1		
RING AND WET SOIL, gr.	561.1	554.67		
WEIGHT OF RING, gr.	199.32	199.32		
WEIGHT OF WET SOIL, gr.	361.78	355.35		
WET DENSITY, PCF.	109.1	107.2		
MOISTURE CALCULATION				
TARE No.	2	17		
WET SOIL AND TARE, gr.	335.64	298.72		
DRY SOIL AND TARE, gr.	303.21	273.21		
TARE WEIGHT, gr.	98.86	99.82		
MOISTURE CONTENT, %	15.9	14.7		
DRY DENSITY, PCF.	94.2	93.4		
SATURATION DEGREE (S), % (1)	54.52	49.65		

EXPANSION INDEX (EI) CALCULATION

APPARATUS No.: 4

INITIAL SPECIMEN HEIGHT: 1.0000 inch

		HEIGHT		
		CHANGE, in.	DATE	TIME
INITIAL DIAL READING, in.	0.0500	0.0000	5/31/2018	8:48
PERIODIC DIAL READING, in.	0.1708	0.1208	6/1/2018	9:10
	0.1709	0.1209	6/1/2018	11:28
	0.1710	0.1210	6/1/2018	12:56
FINAL DIAL READING, in.	0.1710	0.1210	6/1/2018	14:02

EI = 121

FINAL MOISTURE CONTENT, DRY DENSITY AND SATURATION DEGREE

TARE No.		MOISTURE CONTENT, %	37.7
WET SOIL AND TARE, gr.	291.24	FINAL VOLUME, cc.	232.00
DRY SOIL AND TARE, gr.	211.53	FINAL DRY DENSITY, PCF.	83.4
TARE WEIGHT, gr.	0.00	FINAL SATURATION, %	99.9

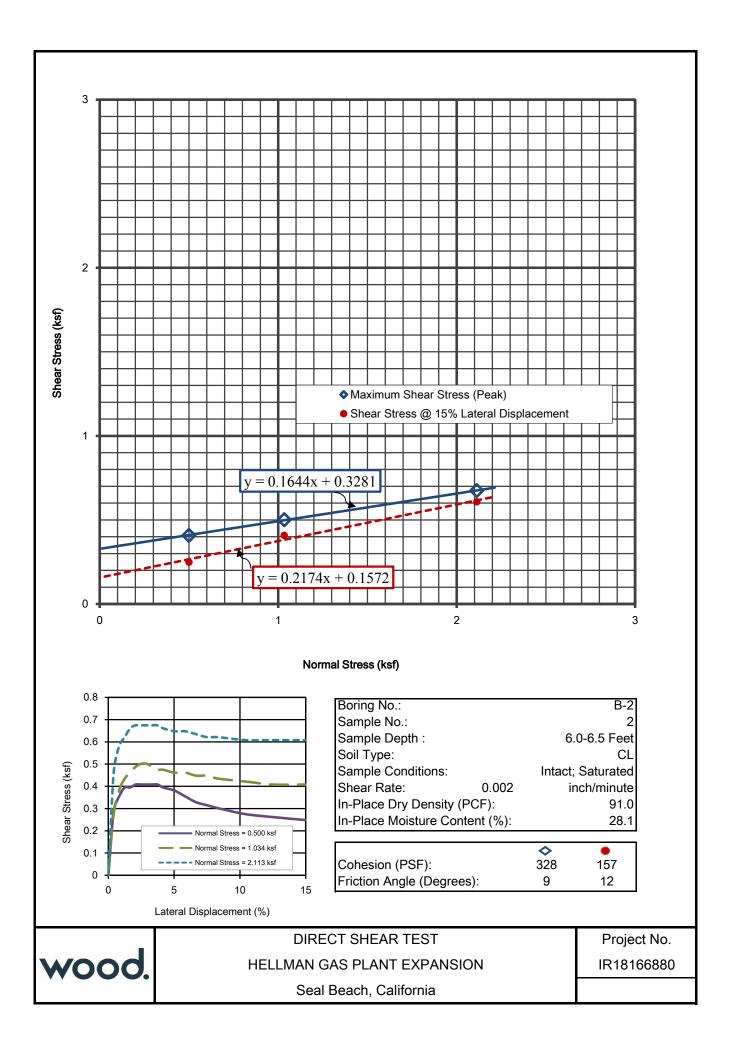
 $S = \frac{WG_s \gamma_d}{G_s \gamma_d}$ (S must be 50 ± 2%)

DIRECT SHEAR TEST

(ASTM-D3080)

Project Name:Hellman Gas Plant ExpansionProject No.:IR18166880Boring No.:B-2Sample No.:2Depth:6.0-6.5 FeetDate:5/16/2018Soil Description:Grayish Brown (2.5Y, 5/2) Lean Clay (CL)Tested By:LT

Initial After Consolidation


<u>Load 1</u> <u>Load 2</u> <u>Load 3</u>

Sample Diameter, in:	2.416	Weight of	f Wet Soil & Ring, gr:	550.70			
Normal Stress, ksf:	0.5, 1, 2	Weight of	f Ring, gr:	129.85			
Over-burdened @, pcf:		Height of	Sample, in:	3.00	0.9970	0.9872	0.9748
Shear Rate, in/min:	0.002	Moisture-	Tare No.:	MC-61			
Natural Moisture(x):			Wet Weight and Tare, gr:	196.95	141.29	137.82	135.57
Saturated(x):	Х		Dry Weight and Tare, gr:	164.77	107.62	105.55	104.49
Intact(x):	Χ		Tare Weight, gr:	50.18	0.00	0.00	0.00
Remolded to, pcf:			Moisture Content, %:	28.1	31.3	30.6	29.7
@, %:		Wet Dens	sity, pcf:	116.6	119.8	120.4	121.1
Notes:		Dry Dens	ity, pcf:	91.0	91.3	92.2	93.4
		Saturatio	n %: S.G. = 2.70 (Assumed)	89.0	99.8	99.7	99.7

	Load 1 (K	SF): 0.500			Load 2 (K	SF): 1.034			Load 3 (K	SF): 2.113	
Shear Deflec -tion (in)	Lateral Displace -ment (%)	Load Ring Reading	Shear Stress (KSF)	Shear Deflec -tion (in)	Lateral Displace -ment (%)	Load Ring Reading	Shear Stress (KSF)	Shear Deflec -tion (in)	Lateral Displace -ment (%)	Load Ring Reading	Shear Stress (KSF)
0.010	0.4	0.0017	0.288	0.010	0.4	0.0016	0.275	0.010	0.4	0.0030	0.461
0.020	0.8	0.0022	0.355	0.020	0.8	0.0024	0.382	0.020	0.8	0.0039	0.581
0.030	1.2	0.0025	0.395	0.030	1.2	0.0028	0.435	0.030	1.2	0.0042	0.621
0.040	1.7	0.0025	0.395	0.040	1.7	0.0030	0.461	0.040	1.7	0.0045	0.661
0.050	2.1	0.0026	0.408	0.050	2.1	0.0032	0.488	0.050	2.1	0.0046	0.674
0.060	2.5	0.0026	0.408	0.060	2.5	0.0033	0.501	0.060	2.5	0.0046	0.674
0.070	2.9	0.0026	0.408	0.070	2.9	0.0033	0.501	0.070	2.9	0.0046	0.674
0.080	3.3	0.0026	0.408	0.080	3.3	0.0032	0.488	0.080	3.3	0.0046	0.674
0.091	3.7	0.0026	0.408	0.091	3.7	0.0031	0.475	0.091	3.7	0.0046	0.674
0.101	4.2	0.0025	0.395	0.101	4.2	0.0031	0.475	0.101	4.2	0.0045	0.661
0.121	5.0	0.0024	0.382	0.121	5.0	0.0030	0.461	0.121	5.0	0.0044	0.648
0.141	5.8	0.0022	0.355	0.141	5.8	0.0030	0.461	0.141	5.8	0.0044	0.648
0.161	6.7	0.0020	0.328	0.161	6.7	0.0029	0.448	0.161	6.7	0.0043	0.634
0.181	7.5	0.0019	0.315	0.181	7.5	0.0029	0.448	0.181	7.5	0.0042	0.621
0.202	8.3	0.0018	0.302	0.202	8.3	0.0028	0.435	0.202	8.3	0.0042	0.621
0.252	10.4	0.0016	0.275	0.252	10.4	0.0027	0.421	0.252	10.4	0.0041	0.608
0.303	12.5	0.0015	0.262	0.303	12.5	0.0026	0.408	0.303	12.5	0.0041	0.608
0.362	15.0	0.0014	0.248	0.362	15.0	0.0026	0.408	0.362	15.0	0.0041	0.608

 Max. Shear Stress, ksf:
 0.408
 0.501
 0.674

 Lat. Displmt@Max Stress,%.:
 3.7
 2.9
 3.7

CONSOLIDATION TEST

(ASTM-D2435)

Project Name:	Hellman Ga	as Plant Expansion		Project No.:	IR18166880	Date: 5/01-5/16/2018	
Boring No.:	B-2	Sample No.:	3	Depth:	9.0-9.5 Feet	Tested by: LT	
Soil Description:	Olive Brown	n (2.5V 4/4) Sandy Silt (MI)				

Initial Sample Heig	ht:	1.00 in.
Sample Diameter:		2.416 in.
Loads (KSF):	0.25, 0.5, 1, 2, 4,	
	8, 16, 32	
Water Added @ Lo	oad (KSF):	0.25
Rebound to Loads:		8, 2, 0.5
Time Reading @ L	oads:	1
Notes:		

Frame No.:

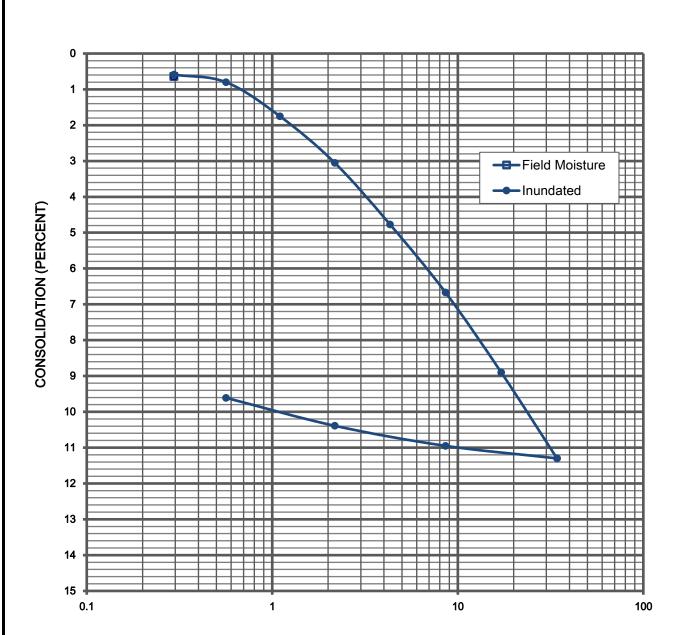
		Before Test	After Test
Wet Weight of Sample&Ring, gr:		186.49	180.81
Weight of Ri	ng, gr:	43.36	43.36
Moisture -	Tare No.:	8	
	Wet Weight, gr:	487.97	131.14
	Dry Weight, gr:	398.98	105.47
	Tare Weight, gr:	97.08	0.00
	Moisture Content, (%):	29.5	24.3
Wet Density, pcf:		118.9	126.4
Dry Density,			101.6
Volume of So	olid, in ³ :	2.50	2.50
Equivalent H	eight of Solid, in:	0.54	0.54
Void Ratio:		0.835	0.659
Degree of Sa	aturation, %: (Gs assumed=2.70)	95.3	99.8

Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio	Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio
5/1/18	13:59	0.295	0.1200			0.00	0.835	5/4/18	14:46:00	1.099	0.1381	0.0011	0.1370	1.70	0.804
5/2/18	10:53	0.295	0.1267	0.0003	0.1264	0.64	0.823		18:46:00	1.099	0.1383	0.0011	0.1372	1.72	0.803
	10:53	Inun-	0.1267	-				5/5/18	10:46:00	1.099	0.1386	0.0011	0.1375	1.75	0.803
5/3/18	10:45	dated	0.1262	0.0003	0.1259	0.59	0.824		10:46	2.171	0.1386				
	10:45	0.563	0.1262					5/6/18	12:40	2.171	0.1522	0.0017	0.1505	3.05	0.779
5/4/18	10:44	0.563	0.1285	0.0005	0.1280	0.80	0.820		12:40	4.311	0.1522				
	10:46:00	1.099	0.1285					5/7/18	11:13	4.311	0.1703	0.0026	0.1677	4.77	0.747
	10:46:06	1.099	0.1348	0.0011	0.1337	1.37	0.810		11:13	8.587	0.1703				
	10:46:15	1.099	0.1351	0.0011	0.1340	1.40	0.809	5/8/18	10:31	8.587	0.1904	0.0037	0.1867	6.67	0.713
	10:46:30	1.099	0.1355	0.0011	0.1344	1.44	0.808		10:31	17.140	0.1904				
	10:47:00	1.099	0.1359	0.0011	0.1348	1.48	0.808	5/9/18	10:39	17.140	0.2143	0.0053	0.2090	8.90	0.672
	10:48:00	1.099	0.1362	0.0011	0.1351	1.51	0.807		10:39	34.244	0.2143				
	10:50:00	1.099	0.1365	0.0011	0.1354	1.54	0.807	5/10/18	10:25	34.244	0.2404	0.0074	0.2330	11.30	0.628
	10:54:00	1.099	0.1368	0.0011	0.1357	1.57	0.806		10:25	8.587	0.2404				
	11:01:00	1.099	0.1371	0.0011	0.1360	1.60	0.806	5/11/18	10:49	8.587	0.2337	0.0042	0.2295	10.95	0.634
	11:16:00	1.099	0.1373	0.0011	0.1362	1.62	0.805		10:49	2.171	0.2337				
	11:46:00	1.099	0.1376	0.0011	0.1365	1.65	0.805	5/14/18	9:14	2.171	0.2262	0.0023	0.2239	10.39	0.644
	12:46:00	1.099	0.1379	0.0011	0.1368	1.68	0.804		9:14	0.563	0.2262				

CONSOLIDATION TEST

(ASTM-D2435)

Project Name:	Hellman G	as Plant Expansion		Project No.:	IR18166880	Date: 5/01-5/16/2018		
Boring No.:	B-2	Sample No.:	3	Depth:	9.0-9.5 Feet	Tested by: LT		
Soil Description	Olive Brow	n (2.5Y, 4/4) Sandy Silt ((ML)					


Initial Sample Heig	ht:	1.00 in.
Sample Diameter:		2.416 in.
Loads (KSF):	0.25, 0.5, 1, 2, 4,	
	8, 16, 32	
Water Added @ Lo	0.25	
Rebound to Loads:	8, 2, 0.5	
Time Reading @ L	oads:	1
Notes:		

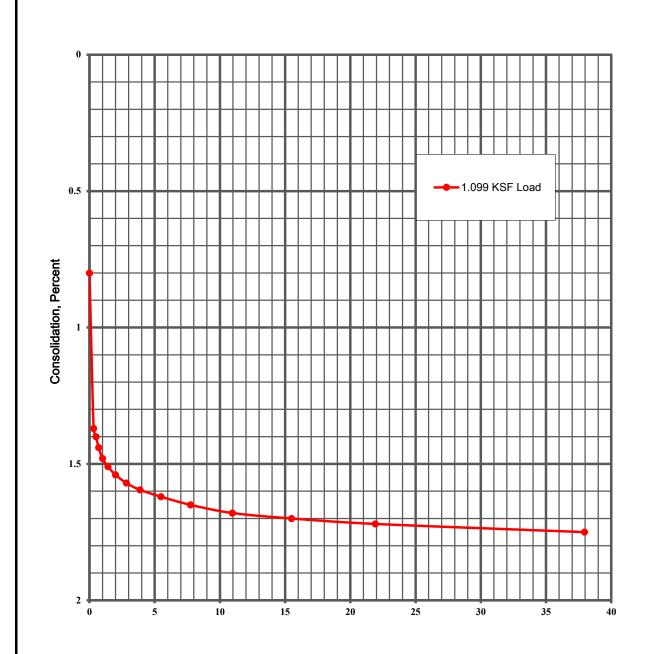
1

Frame No.:

		Before Test	After Test	
Wet Weight of Sample&Ring, gr:		186.49	180.81	
Weight of Rin	ng, gr:	43.36	43.36	
Moisture -	Tare No.:	8		
	Wet Weight, gr:	487.97	131.14	
	Dry Weight, gr:	398.98	105.47	
	Tare Weight, gr:	97.08	0.00	
	Moisture Content, (%):	29.5	24.3	
Wet Density,	pcf:	118.9	126.4	
Dry Density, p	pcf:	91.9	101.6	
Volume of So	olid, in ³ :	2.50	2.50	
Equivalent He	eight of Solid, in:	0.54	0.54	
Void Ratio:		0.835	0.659	
Degree of Sa	turation, %: (Gs assumed=2.70)	95.3	99.8	

Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading	Consoli -dation (%)	Void Ratio	Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading	Consoli -dation (%)	Void Ratio
54540	10.51	0.500			(in.)		0.050				, ,	` ′	(in.)	` ′	
5/15/18	10:51	0.563	0.2173	0.0010	0.2163	9.63	0.658								
5/16/18	10:31	0.563	0.2171	0.0010	0.2161	9.61	0.659								

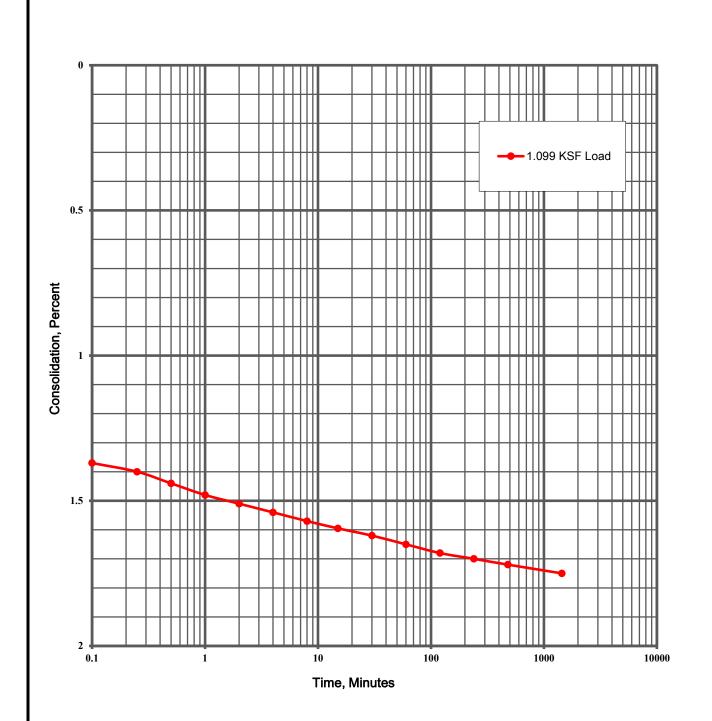
NORMAL PRESSURE (KIPs PER SQUARE FOOT)


Boring No.: B-2 In-Place Dry Density (PCF): 91.9
Sample Depth: 9.0-9.5 Feet In-Place Moisture Content (%): 29.5
Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. PRESSURE CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No.

IR18166880


Time, Square Root of Minute

Boring No.: B-2 In-Place Dry Density (PCF): 91.9
Sample Depth: 9.0-9.5 Feet In-Place Moisture Content (%): 29.5
Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. TIME CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No. IR18166880

Boring No.: B-2 In-Place Dry Density (PCF): 91.9
Sample Depth: 9.0-9.5 Feet In-Place Moisture Content (%): 29.5
Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. TIME CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No. IR18166880

CONSOLIDATION TEST

(ASTM-D2435)

Project Name:	Hellman Gas Plant Expansion			Project No.:	IR18166880	Date: 5/01-5/18/2018		
Boring No.:	B-4	Sample No.:	5	Depth:	13.0-13.5 Feet	Tested by: LT		
Soil Description:	Very Dark	Gray (5Y, 3/1) Silt with S	and (ML)					

Frame No.:

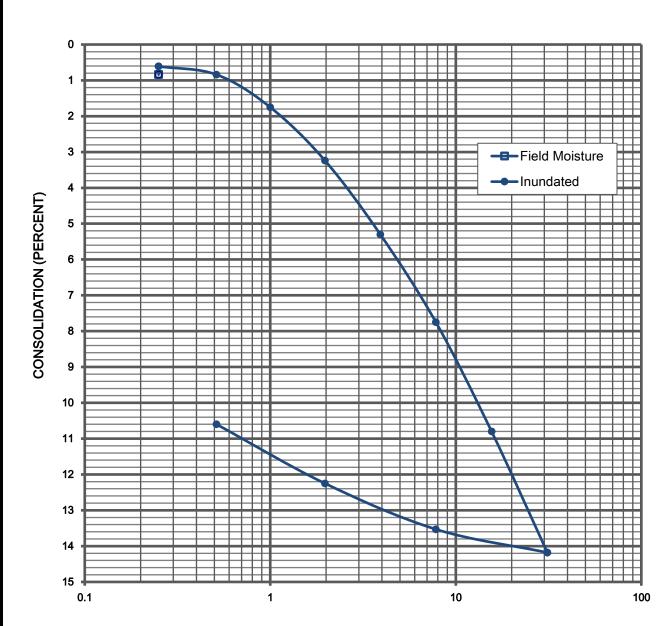
		Before Test	After Test
Wet Weight	of Sample&Ring, gr:	184.36	176.56
Weight of Ri	ng, gr:	42.66	42.66
Moisture -	Tare No.:	MC-20	
	Wet Weight, gr:	294.05	126.51
	Dry Weight, gr:	232.99	100.23
	Tare Weight, gr:	51.07	0.00
	Moisture Content, (%):	33.6	26.2
Wet Density,	pcf:	117.8	124.5
Dry Density,	pcf:	88.2	98.6
Volume of So	olid, in ³ :	2.40	2.40
Equivalent H	leight of Solid, in:	0.52	0.52
Void Ratio:		0.912	0.709
Degree of Sa	aturation, %: (Gs assumed=2.70)	99.4	99.8

Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio	Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio
5/1/18	14:31	0.250	0.1200			0.00	0.912	5/7/18	10:27:00	1.972	0.1529	0.0028	0.1501	3.01	0.854
5/2/18	10:54	0.250	0.1290	0.0006	0.1284	0.84	0.896		10:57:00	1.972	0.1533	0.0028	0.1505	3.05	0.854
	10:54	Inun-	0.1290	-					11:57:00	1.972	0.1538	0.0028	0.1510	3.10	0.853
5/3/18	10:46	dated	0.1267	0.0006	0.1261	0.61	0.900		13:57:00	1.972	0.1542	0.0028	0.1514	3.14	0.852
	10:46	0.513	0.1267						17:57:00	1.972	0.1546	0.0028	0.1518	3.18	0.851
5/4/18	10:48	0.513	0.1297	0.0013	0.1284	0.84	0.896	5/8/18	9:57:00	1.972	0.1552	0.0028	0.1524	3.24	0.850
	10:48	0.999	0.1297						9:57	3.918	0.1552				
5/5/18	10:47	0.999	0.1392					5/9/18	10:41	3.918	0.1765	0.0035	0.1730	5.30	0.811
5/7/18	9:55	0.999	0.1396	0.0021	0.1375	1.75	0.878		10:41	7.810	0.1765				
	9:57:00	1.972	0.1396					5/10/18	10:26	7.810	0.2020	0.0045	0.1975	7.75	0.764
	9:57:06	1.972	0.1450	0.0028	0.1422	2.22	0.869		10:26	15.594	0.2020				
	9:57:15	1.972	0.1467	0.0028	0.1439	2.39	0.866	5/11/18	10:50	15.594	0.2339	0.0059	0.2280	10.80	0.705
	9:57:30	1.972	0.1483	0.0028	0.1455	2.55	0.863		10:50	31.161	0.2339				
	9:58:00	1.972	0.1500	0.0028	0.1472	2.72	0.860	5/14/18	9:15	31.161	0.2695	0.0077	0.2618	14.18	0.641
	9:59:00	1.972	0.1509	0.0028	0.1481	2.81	0.858		9:15	7.810	0.2695				
	10:01:00	1.972	0.1515	0.0028	0.1487	2.87	0.857	5/15/18	10:52	7.810	0.2609	0.0056	0.2553	13.53	0.653
	10:05:00	1.972	0.1521	0.0028	0.1493	2.93	0.856		10:52	1.972	0.2609				
	10:12:00	1.972	0.1525	0.0028	0.1497	2.97	0.855	5/16/18	10:32	1.972	0.2459	0.0034	0.2425	12.25	0.678

CONSOLIDATION TEST

(ASTM-D2435)

Project Name:	Hellman Gas Plant Expansion			Project No.:	IR18166880	Date: 5/01-5/18/2018		
Boring No.:	B-4	Sample No.:	5	Depth:	13.0-13.5 Feet	Tested by:	LT	
Soil Description:	Very Dark	Grav (5Y 3/1) Silt with S	and (ML)					


Initial Sample Heig	ht:	1.00 in.
Sample Diameter:		2.416 in.
Loads (KSF):	0.25, 0.5, 1, 2, 4,	
	8, 16, 32	
Water Added @ Lo	oad (KSF):	0.25
Rebound to Loads:	:	8, 2, 0.5
Time Reading @ L	oads:	2
Notes:		

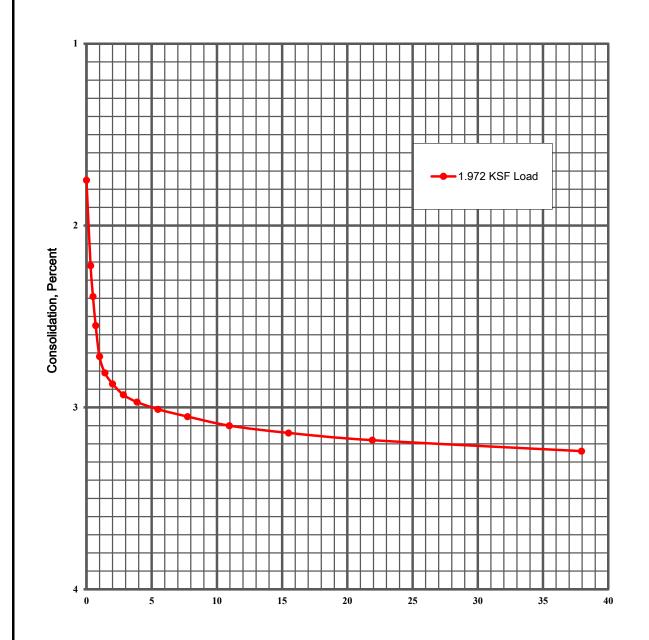
2

Frame No.:

		Before Test	After Test
Wet Weight	of Sample&Ring, gr:	184.36	176.56
Weight of Rir	ng, gr:	42.66	42.66
Moisture -	Tare No.:	MC-20	
	Wet Weight, gr:	294.05	126.51
	Dry Weight, gr:	232.99	100.23
	Tare Weight, gr:	51.07	0.00
	Moisture Content, (%):	33.6	26.2
Wet Density,	pcf:	117.8	124.5
Dry Density,	pcf:	88.2	98.6
Volume of So	olid, in ³ :	2.40	2.40
Equivalent H	eight of Solid, in:	0.52	0.52
Void Ratio:		0.912	0.709
Degree of Sa	aturation, %: (Gs assumed=2.70)	99.4	99.8

Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio	Date	Time	Load (KSF)	Dial Reading (in.)	Deform -ation (in.)	Corrected Dial Reading (in.)	Consoli -dation (%)	Void Ratio
5/16/18	10:32	0.513	0.2459												
5/17/18	13:00	0.513	0.2282												
5/18/18	11:34	0.513	0.2277	0.0017	0.2260	10.60	0.709								

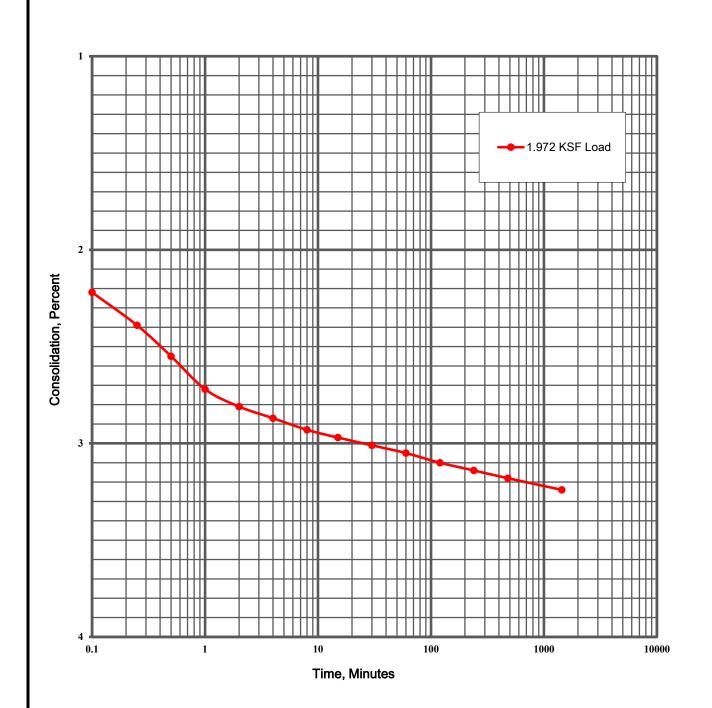
NORMAL PRESSURE (KIPs PER SQUARE FOOT)


Boring No.: B-4 In-Place Dry Density (PCF): 88.2 Sample Depth: 13.0-13.5 Feet In-Place Moisture Content (%): 33.6 Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. PRESSURE CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No.

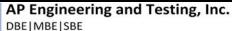
IR18166880


Time, Square Root of Minute

Boring No.: B-4 In-Place Dry Density (PCF): 88.2
Sample Depth: 13.0-13.5 Feet In-Place Moisture Content (%): 33.6
Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. TIME CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No. IR18166880



Boring No.: B-4 In-Place Dry Density (PCF): 88.2
Sample Depth: 13.0-13.5 Feet In-Place Moisture Content (%): 33.6
Sample Condition: Intact Soil Type: ML

CONSOLIDATION VS. TIME CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

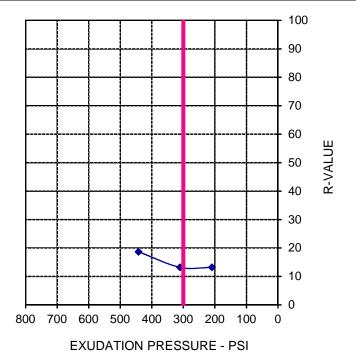
Project No. IR18166880

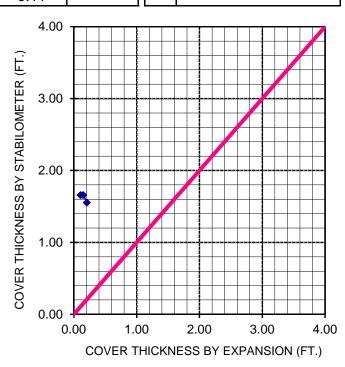
2607 Pomona Boulevard | Pomona, CA 91768

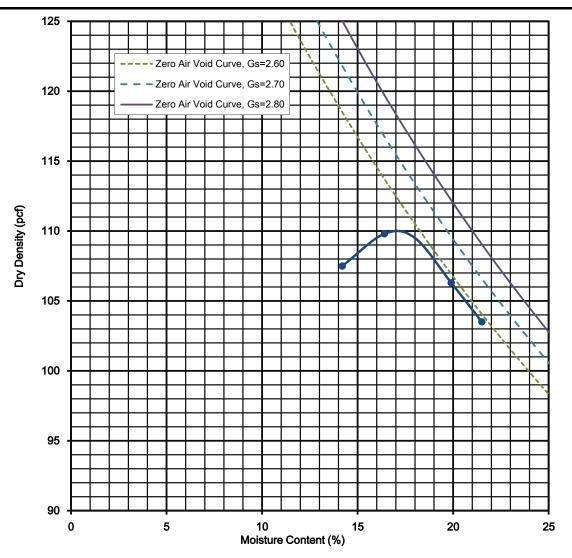
t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com

R-VALUE TEST DATA

ASTM D2844


Project Name: Hellman Gas Plant Expansion Tested By: ST Date: 04/27/18 Project Number: IR18166880 Computed By: ΚM Date: 05/01/18 B-3 & B-4 Checked By: AΡ Boring No.: Date: 05/02/18


Sample Type: Bulk Depth (ft.): 1-5


Location: N/A

Soil Description: Clay w/sand

<u> </u>				<u> </u>			
Mold Number	С	Α	В				
Water Added, g	16	34	46			By Exudation:	13
Compact Moisture(%)	26.5	28.6	30.1				
Compaction Gage Pressure, psi	110	70	60				
Exudation Pressure, psi	442	311	209		\	By Expansion:	*N/A
Sample Height, Inches	2.7	2.7	2.7		R-VALUE		
Gross Weight Mold, g	3023	3036	3044			At Equilibrium:	
Tare Weight Mold, g	1965	1967	1966				13
Net Sample Weight, g	1059	1069	1077			(by Exudation)	
Expansion, inchesx10 ⁻⁴	62	44	32				
Stability 2,000 (160 psi)	44/120	52/130	61/132				
Turns Displacement	4.15	4.09	3.91				
R-Value Uncorrected	17	12	12		rks	Gf = 1.34 , and	0.7 %
R-Value Corrected	19	13	13		emarks	Retained on th	ie ¾"
Dry Density, pcf	93.9	93.2	92.9		Re	*Not Applica	ble
Traffic Index	8.0	8.0	8.0				
G.E. by Stability	1.55	1.66	1.66				
G.E. by Expansion	0.21	0.15	0.11				

SAMPLE DATA

Sample ID.:	B-2 @ 1-5 Feet & B-3 (@ 1-5 Feet Composite	
Soil Description:	Grayish Brown (2.5Y, 5	5/2) Lean Clay (CL)	
Date:	5/30-5/31/2018	Tested by:	VG, LT

TEST DATA

Standard: ASTM-D1557-B	* *		Hammer V	Veight (lb.):	10		
Drop Height (Inches): 18	Number of	Layers:	5	Blows per	Layer:	25	
	1	2	3	4	Oversize (Correction	
Water Added (gr.)	-94	-141	-188	-47	□Yes	⊠No	
Weight of Wet Soil & Mold (lb.)	8.69	8.70	8.53	8.63	Coarser (lb.)	Finer (lb.)	
Weight of Mold (lb.)	4.44	4.44	4.44	4.44	1		
Tare No.	9	20	13	3			
Wet Soil & Tare (gr.)	620.88	760.05	647.12	695.75			
Dry Soil & Tare (gr.)	533.92	665.63	579.12	590.43			
Tare Weight (gr.)	96.94	91.03	99.87	100.39			
Moisture Content (%)	19.9	16.4	14.2	21.5			
Dry Density (lb./ft°)	106.3	109.8	107.5	103.5			
	Und	Uncorrected Value			orrected Val	ue	
Maximum Dry Density (lb/ft°)		110.0			N/A		
Optimum Moisture Content (%)		17.0		N/A			

MAXIMUM DRY DENSITY - OPTIMUM MOISTURE CONTENT CURVE
HELLMAN GAS PLANT EXPANSION
Seal Beach, California

Project No. IR18166880

CORROSION TEST RESULTS

Client Name:	AMEC Foster Wheeler	AP Job No.:	18-0452
Project Name:	Hellman Gas Plant Expansion	Date:	04/30/18

Project No.: IR18166880

Boring No.	Sample Type	Depth (feet)	Soil Type	Minimum Resistivity (ohm-cm)	рН	Sulfate Content (ppm)	Chloride Content (ppm)
B-2 & B-3	Bulk	1-5	CL	416	9.9	428	614
B-3 & B-4	Bulk	1-5	CL	623	9.8	407	439
					_		

NOTES: Resistivity Test and pH: California Test Method 643

Sulfate Content : California Test Method 417
Chloride Content : California Test Method 422

ND = Not Detectable

NA = Not Sufficient Sample

NR = Not Requested

wood.

Appendix D

Well Permits

APPLICATION FOR WELL CONSTRUCTION PERMIT ORANGE COUNTY HEALTH CARE AGENCY ENVIRONMENTAL HEALTH DIVISION APPLICATION FOR WELL CONSTRUCTION PERMIT 1241 E. DYER ROAD, SUITE 120 SANTA ANA, CA 92705-5611 FAX: (714)

1241 E. DYER ROAD, SUITE 120 (714) 433-6000 SANTA ANA, CA 92705-5611 FAX: (714) 433-6481

SEAL BEACH	DATE 3/14/18
WELL LOCATION (ADDRESS IF AVAILABLE) ENTER AT 711 137 ST, SEAL BEACH, CA 9079	40. 2,600 NE ON 1515T, THEN 1,000 FT PEST TO WELL LOCUMENT TO WELL LOCUMEN
Helman Properties LLC	TYPE OF WELL (CHECK) PROBE SURVEY PRIVATE DOMESTIC MONITORING PUBLIC DOMESTIC SOIL BORING
ADDRESS PO BOX 2398	PUBLIC DOMESTIC SOIL BORING
Seal Beach 90740 TELEPHONE 562.431.6022	IRRIGATION ☐ OTHER ☐ CATHODIC ☐ TOTAL NUMBER 42
NAME OF CONSULTING FIRM Amec Foster Wheeler	A. WELLS – SUBMIT A WELL CONSTRUCTION DIAGRAM
121 Innovation Dr. Suite 200	(INCLUDE DIMENSIONS)
orty rvine 92617 949.6420245	(INCLUDE DIMENSIONS) B. SOIL BORINGS AND PROBES -
NAME OF DRILLING CO. Gregg Drilling 485165	TOTAL DEPTH UNE CO TO TOTAL
CITY ZIP TELEPHONE	c. PROPOSED START DATE March 28,2018
DIAGRAM OF WELL SITE (Use additional sheets and/or attachments) A Hached Fig 1: Site Vicinity Map Fig 2: Boring Location Plan	I hereby agree to comply in every respect with all requirements of the Health Care Agency and with all ordinances and laws of the County of Orange and of the State of California pertaining to well construction, reconstruction and destruction, including the requirements to maintain the integrity of all significant confining zones.
Scene	Bas Salur 3/14/18
- one bonlig to to feet, one to 60 feet del	APPLICANT'S SIGNATURE DATE
-Two other bonks to 10 feet depth	BORA BATURAY
or penetrate into continuing moderal bed	949.574.7502 949.642.4474
SITE PLAN ATTACHED	PHONE NUMBER FAX NUMBER
OR ACCOUNTING USE ONLY: HSO NO. 385497 CHECK NO. 721104 DATE 3-21-18 AMOUNT 497	DISPOSITION OF PERMIT (DO NOT FILL IN): APPROVED SUBJECT TO THE FOLLOWING CONDITIONS: A. NOTIFY THIS AGENCY AT LEAST 48 HOURS PRIOR TO START. Not Ify of any changes
PPROVAL BY OTHER AGENCIES:	PRIOR TO SEALING THE ANNULAR SPACE OR FILLING OF THE CONDUCTOR CASING.
REMARKS Permit expires on 3.21.2019	B. SUBMIT TO THE AGENCY WITHIN 30 DAYS AFTER COMPLETION OF WORK, A WELL COMPLETION REPORT AND/OR DRILLING LOGS. PLEASE REFERENCE PERMIT NO.
	c. secure all monitoring wells to prevent tampering. D. other Notify when all work is complete and include the depth to 1st water Denied
	Limin Brunt 03.21.2018 PERMIT ISSUED BY
AUTHORIZED SIGNATURE DATE	Llonel Brunton 714.433.6288
MULTIN CLONED BY ATTICK	PRINT NAME PHONE NUMBER

APPLICATION FOR WELL CONSTRUCTION PERMIT

ORANGE COUNTY HEALTH CARE AGENCY ENVIRONMENTAL HEALTH DIVISION

1241 E. DYER ROAD, SUITE 120 (714) 433-6000 SANTA ANA, CA 92705-5611 FAX: (714) 433-6481

		- 1
SEAL BEACH	DATE 3/14/18	WELL
WELL LOCATION (ADDRESS IF AVAILABLE) ENTER AT 711 187 57, SEAL BALCH, CA 9074	0. 2,600 FEET NE ON 15T ST, THEN 1,000 FET EAST TO WELL WLATTEN	PERM
Hellman Properties LLC ADDRESS PO BOX 2398 CITY Seal Beach 90740 562.431.6022 NAME OF CONSULTING FIRM Amec Foster Wheeler BUSINESS ADDRESS 121 Innovation Dr. Suite 200 CITY I VI'NE 92617 949.6420245 NAME OF DRILLING CO. C-57 LICENSE NO.	TYPE OF WELL (CHECK) PROBE SURVEY PRIVATE DOMESTIC MONITORING PUBLIC DOMESTIC SOIL BORING IRRIGATION TOTAL NUMBER CATHODIC TOTAL NUMBER A. WELLS – SUBMIT A WELL CONSTRUCTION DIAGRAM (INCLUDE DIMENSIONS) B. SOIL BORINGS AND PROBES – TOTAL DEPTH 5 CPTs +6 60 FEET	PERMIT NUMBER 18-03-
CITY ZIP TELEPHONE	sealing MATERIAL <u>Bentonite Chips</u> c. proposed START DATE <u>March</u> 26,2018	2
Huntington Beach 92649 714.901.7270 DIAGRAM OF WELL SITE (Use additional sheets and/or attachments) Attached Figure 1: Site Vicinity Map Figure 2: Boring Location Map Scope: -5 CPT probes to 60 feet death	I hereby agree to comply in every respect with all requirements of the Health Care Agency and with all ordinances and laws of the County of Orange and of the State of California pertaining to well construction, reconstruction and destruction, including the requirements to maintain the integrity of all significant confining zones. Jack 3/14/18 BORA BATURAY PRINT NAME 149.574.7502 949.642.4474 PHONE NUMBER FAX NUMBER	5
*	DISPOSITION OF PERMIT (DO NOT FILL IN):	
POR ACCOUNTING USE ONLY: HSO NO. 385497 CHECK NO. 721105 DATE 3-21-18 AMOUNT 372- INTL. APPROVAL BY OTHER AGENCIES: JURISDICTION	APPROVED SUBJECT TO THE FOLLOWING CONDITIONS: A. NOTIFY THIS AGENCY AT LEAST 48 HOURS PRIOR TO START. Notify of any changes PRIOR TO SEALING THE ANNULAR SPACE OR FILLING OF THE CONDUCTOR CASING.	
REMARKS Permit expires on 3.21.2019	B. SUBMIT TO THE AGENCY WITHIN 30 DAYS AFTER COMPLETION OF WORK, A WELL COMPLETION REPORT AND/OR DRILLING LOGS. PLEASE REFERENCE PERMIT NO. C. SECURE ALL MONITORING WELLS TO PREVENT TAMPERIN D. OTHER Notify when all work is complete and include the depth to 1st DENIED DENIED DATE DATE	ig.
AUTHORIZED SIGNATURE DATE	Lionel Brunton 714.433.62 PRINT NAME PHONE NUM	

Carlina.

wood.

Appendix E

Analytical Test Results

Calscience

WORK ORDER NUMBER: 18-04-1355

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Amec Foster Wheeler Environment &

Infrastructure.

Client Project Name: Hellman Properties / IR18166880

Attention: Bora Baturay

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 04/25/2018 by:

Stephen Nowak Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Hellman Properties / IR18166880

Work Order Number: 18-04-1355

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 418.1 (M) TRPH (Solid). 4.2 EPA 8015B (M) C6-C44 (Solid). 4.3 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.4 EPA 7471A Mercury (Solid). 4.5 EPA 8260B Volatile Organics Prep 5035 (Solid).	10 10 12 25 38 40
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	82 82 86
6	Sample Analysis Summary	92
7	Glossary of Terms and Qualifiers	93
8	Chain-of-Custody/Sample Receipt Form	94

Work Order Narrative

Work Order: 18-04-1355 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/17/18. They were assigned to Work Order 18-04-1355.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: Amec Foster Wheeler Environment &

Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

PO Number:

Date/Time Received:

Number of

18-04-1355

Hellman Properties / IR18166880

04/17/18 13:10

48 Containers:

Attn: **Bora Baturay**

Sample Identification	Lab Number	Collection Date and Time	Number of	Matrix
			Containers	
B-4-1	18-04-1355-1	04/16/18 07:25	4	Solid
B-4-2	18-04-1355-2	04/16/18 07:45	4	Solid
B-4-4	18-04-1355-3	04/16/18 08:00	4	Solid
B-2-1	18-04-1355-4	04/16/18 11:10	4	Solid
B-2-2	18-04-1355-5	04/16/18 11:20	4	Solid
B-2-4	18-04-1355-6	04/16/18 11:35	4	Solid
B-1-1	18-04-1355-7	04/16/18 13:35	4	Solid
B-1-2	18-04-1355-8	04/16/18 13:40	4	Solid
B-1-3	18-04-1355-9	04/16/18 13:50	4	Solid
B-3-1	18-04-1355-10	04/16/18 14:00	4	Solid
B-3-2	18-04-1355-11	04/16/18 14:10	4	Solid
B-3-3	18-04-1355-12	04/16/18 14:20	4	Solid

Client: Amec Foster Wheeler Environment &

Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 18-04-1355

Project Name: Hellman Properties / IR18166880

Received: 04/17/18

Attn: Bora Baturay Page 1 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-4-1 (18-04-1355-1)						
Arsenic	14.1		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	142		0.485	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.763		0.243	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.06		0.485	mg/kg	EPA 6010B	EPA 3050B
Chromium	25.2		0.243	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.3		0.243	mg/kg	EPA 6010B	EPA 3050B
Copper	33.0		0.485	mg/kg	EPA 6010B	EPA 3050B
Lead	8.37		0.485	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.865		0.243	mg/kg	EPA 6010B	EPA 3050B
Nickel	20.6		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	53.2		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	68.6		0.971	mg/kg	EPA 6010B	EPA 3050B
B-4-2 (18-04-1355-2)						
Arsenic	2.47		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	98.7		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.922		0.253	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.757		0.505	mg/kg	EPA 6010B	EPA 3050B
Chromium	28.7		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	16.7		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	34.0		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	10.6		0.505	mg/kg	EPA 6010B	EPA 3050B
Nickel	22.8		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	43.5		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	79.9		1.01	mg/kg	EPA 6010B	EPA 3050B
B-4-4 (18-04-1355-3)						
Arsenic	1.83		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	90.4		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.460		0.245	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.619		0.490	mg/kg	EPA 6010B	EPA 3050B
Chromium	21.6		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	25.6		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	4.70		0.490	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.624		0.245	mg/kg	EPA 6010B	EPA 3050B
Nickel	16.1		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	43.6		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	62.3		0.980	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: Amec Foster Wheeler Environment &

Infrastructure,

Attn:

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 18-04-1355

Project Name: Hellman Properties / IR18166880

Received: 04/17/18

Bora Baturay Page 2 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-2-1 (18-04-1355-4)						
Arsenic	20.4		0.785	mg/kg	EPA 6010B	EPA 3050B
Barium	148		0.524	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.734		0.262	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.00		0.524	mg/kg	EPA 6010B	EPA 3050B
Chromium	24.0		0.262	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.6		0.262	mg/kg	EPA 6010B	EPA 3050B
Copper	34.2		0.524	mg/kg	EPA 6010B	EPA 3050B
Lead	8.06		0.524	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.807		0.262	mg/kg	EPA 6010B	EPA 3050B
Nickel	21.9		0.262	mg/kg	EPA 6010B	EPA 3050B
Vanadium	53.5		0.262	mg/kg	EPA 6010B	EPA 3050B
Zinc	60.8		1.05	mg/kg	EPA 6010B	EPA 3050B
B-2-2 (18-04-1355-5)						
Arsenic	11.6		0.721	mg/kg	EPA 6010B	EPA 3050B
Barium	234		0.481	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.662		0.240	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.866		0.481	mg/kg	EPA 6010B	EPA 3050B
Chromium	26.4		0.240	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.6		0.240	mg/kg	EPA 6010B	EPA 3050B
Copper	40.5		0.481	mg/kg	EPA 6010B	EPA 3050B
Lead	7.27		0.481	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	1.43		0.240	mg/kg	EPA 6010B	EPA 3050B
Nickel	21.1		0.240	mg/kg	EPA 6010B	EPA 3050B
Vanadium	53.7		0.240	mg/kg	EPA 6010B	EPA 3050B
Zinc	66.6		0.962	mg/kg	EPA 6010B	EPA 3050B
B-2-4 (18-04-1355-6)						
Arsenic	7.10		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	112		0.498	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.611		0.249	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.742		0.498	mg/kg	EPA 6010B	EPA 3050B
Chromium	24.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	14.2		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	31.5		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	5.99		0.498	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	3.03		0.249	mg/kg	EPA 6010B	EPA 3050B
Nickel	20.3		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	53.0		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	70.8		0.995	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: Amec Foster Wheeler Environment &

Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 18-04-1355

Project Name: Hellman Properties / IR18166880

Received: 04/17/18

Attn: Bora Baturay Page 3 of 5

B-1-1 (18-04-1355-7) Arsenic	Client SampleID						
Arsenic 17.4 0.746 mg/kg EPA 6010B EPA 305 Barium 150 0.498 mg/kg EPA 6010B EPA 305 Beryllium 0.808 0.249 mg/kg EPA 6010B EPA 305 Cadmium 1.06 0.498 mg/kg EPA 6010B EPA 305 Chromium 27.0 0.249 mg/kg EPA 6010B EPA 305 Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Variadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Barium 11.15 0.785 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.	<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
Barium 150 0.498 mg/kg EPA 6010B EPA 305 Beryllium 0.808 0.249 mg/kg EPA 6010B EPA 305 Cadmium 1.06 0.498 mg/kg EPA 6010B EPA 305 Chromium 27.0 0.249 mg/kg EPA 6010B EPA 305 Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Coper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.95 mg/kg EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Barium 0.518 0.262	B-1-1 (18-04-1355-7)						
Beryllium 0.808 0.249 mg/kg EPA 6010B EPA 305 Cadmium 1.06 0.498 mg/kg EPA 6010B EPA 305 Chromium 27.0 0.249 mg/kg EPA 6010B EPA 305 Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 </td <td>Arsenic</td> <td>17.4</td> <td></td> <td>0.746</td> <td>mg/kg</td> <td>EPA 6010B</td> <td>EPA 3050B</td>	Arsenic	17.4		0.746	mg/kg	EPA 6010B	EPA 3050B
Cadmium 1.06 0.498 mg/kg EPA 6010B EPA 305 Chromium 27.0 0.249 mg/kg EPA 6010B EPA 305 Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) T T 0.785 mg/kg EPA 6010B EPA 305 B-rium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Chomium 23.3	Barium	150		0.498	mg/kg	EPA 6010B	EPA 3050B
Chromium 27.0 0.249 mg/kg EPA 6010B EPA 305 Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) W W PA 6010B EPA 305 Barium 1.15 0.785 mg/kg EPA 6010B EPA 305 Barium 0.518 0.524 mg/kg EPA 6010B EPA 305 Chromium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg	Beryllium	0.808		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt 14.5 0.249 mg/kg EPA 6010B EPA 305 Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) Total Total Total EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Barium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chotonitum 23.3	Cadmium	1.06		0.498	mg/kg	EPA 6010B	EPA 3050B
Copper 35.0 0.498 mg/kg EPA 6010B EPA 305 Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) Total Total Mg/kg EPA 6010B EPA 305 Baryllum 0.518 0.524 mg/kg EPA 6010B EPA 305 Beryllum 0.518 0.524 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9	Chromium	27.0		0.249	mg/kg	EPA 6010B	EPA 3050B
Lead 8.40 0.498 mg/kg EPA 6010B EPA 305 Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) W W EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg </td <td>Cobalt</td> <td>14.5</td> <td></td> <td>0.249</td> <td>mg/kg</td> <td>EPA 6010B</td> <td>EPA 3050B</td>	Cobalt	14.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Molybdenum 2.17 0.249 mg/kg EPA 6010B EPA 305 Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) T <td< td=""><td>Copper</td><td>35.0</td><td></td><td>0.498</td><td>mg/kg</td><td>EPA 6010B</td><td>EPA 3050B</td></td<>	Copper	35.0		0.498	mg/kg	EPA 6010B	EPA 3050B
Nickel 23.3 0.249 mg/kg EPA 6010B EPA 305 Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) V V V V V V V V PA 6010B EPA 305 BEPA 305 BEPA 6010B EPA 305 BEPA 305 CAGMIUM 0.518 0.262 mg/kg EPA 6010B EPA 305 EPA 6010B EPA 305 CAGMIUM 0.637 0.524 mg/kg EPA 6010B EPA 305 EPA 6010B EPA 305 COpper 17.9 0.262 mg/kg EPA 6010B EPA 305 EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 EPA 6010B	Lead	8.40		0.498	mg/kg	EPA 6010B	EPA 3050B
Vanadium 54.7 0.249 mg/kg EPA 6010B EPA 305 Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) FArsenic 1.15 0.785 mg/kg EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-13	Molybdenum	2.17		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc 69.3 0.995 mg/kg EPA 6010B EPA 305 B-1-2 (18-04-1355-8) Harsenic 1.15 0.785 mg/kg EPA 6010B EPA 305 Barium 1118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-135	Nickel	23.3		0.249	mg/kg	EPA 6010B	EPA 3050B
B-1-2 (18-04-1355-8) Arsenic 1.15 0.785 mg/kg EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.524 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 EPA 30	Vanadium	54.7		0.249	mg/kg	EPA 6010B	EPA 3050B
Arsenic 1.15 0.785 mg/kg EPA 6010B EPA 305 Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Beryllium	Zinc	69.3		0.995	mg/kg	EPA 6010B	EPA 3050B
Barium 118 0.524 mg/kg EPA 6010B EPA 305 Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) EA EA<	B-1-2 (18-04-1355-8)						
Beryllium 0.518 0.262 mg/kg EPA 6010B EPA 305 Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) EA EA EA EA EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.38	Arsenic	1.15		0.785	mg/kg	EPA 6010B	EPA 3050B
Cadmium 0.637 0.524 mg/kg EPA 6010B EPA 305 Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Beryllium 63.7 0.495 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobal	Barium	118		0.524	mg/kg	EPA 6010B	EPA 3050B
Chromium 23.3 0.262 mg/kg EPA 6010B EPA 305 Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt	Beryllium	0.518		0.262	mg/kg	EPA 6010B	EPA 3050B
Cobalt 11.5 0.262 mg/kg EPA 6010B EPA 305 Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper	Cadmium	0.637		0.524	mg/kg	EPA 6010B	EPA 3050B
Copper 17.9 0.524 mg/kg EPA 6010B EPA 305 Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead <t< td=""><td>Chromium</td><td>23.3</td><td></td><td>0.262</td><td>mg/kg</td><td>EPA 6010B</td><td>EPA 3050B</td></t<>	Chromium	23.3		0.262	mg/kg	EPA 6010B	EPA 3050B
Lead 4.79 0.524 mg/kg EPA 6010B EPA 305 Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Tarsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Cobalt	11.5		0.262	mg/kg	EPA 6010B	EPA 3050B
Molybdenum 0.279 0.262 mg/kg EPA 6010B EPA 305 Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) The senic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Copper	17.9		0.524	mg/kg	EPA 6010B	EPA 3050B
Nickel 18.0 0.262 mg/kg EPA 6010B EPA 305 Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9)	Lead	4.79		0.524	mg/kg	EPA 6010B	EPA 3050B
Vanadium 43.0 0.262 mg/kg EPA 6010B EPA 305 Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Molybdenum	0.279		0.262	mg/kg	EPA 6010B	EPA 3050B
Zinc 61.7 1.05 mg/kg EPA 6010B EPA 305 B-1-3 (18-04-1355-9) Feature 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Nickel	18.0		0.262	mg/kg	EPA 6010B	EPA 3050B
B-1-3 (18-04-1355-9) Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Vanadium	43.0		0.262	mg/kg	EPA 6010B	EPA 3050B
Arsenic 2.19 0.743 mg/kg EPA 6010B EPA 305 Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Zinc	61.7		1.05	mg/kg	EPA 6010B	EPA 3050B
Barium 63.7 0.495 mg/kg EPA 6010B EPA 305 Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	B-1-3 (18-04-1355-9)						
Beryllium 0.388 0.248 mg/kg EPA 6010B EPA 305 Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Arsenic	2.19		0.743	mg/kg	EPA 6010B	EPA 3050B
Chromium 16.0 0.248 mg/kg EPA 6010B EPA 305 Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Barium	63.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Cobalt 8.85 0.248 mg/kg EPA 6010B EPA 305 Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Beryllium	0.388		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper 11.4 0.495 mg/kg EPA 6010B EPA 305 Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Chromium	16.0		0.248	mg/kg	EPA 6010B	EPA 3050B
Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Cobalt	8.85		0.248	mg/kg	EPA 6010B	EPA 3050B
Lead 3.41 0.495 mg/kg EPA 6010B EPA 305	Copper	11.4		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum 1.09 0.248 mg/kg EPA 6010B EPA 305		3.41		0.495	mg/kg	EPA 6010B	EPA 3050B
	Molybdenum	1.09		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel 12.7 0.248 mg/kg EPA 6010B EPA 305	Nickel	12.7		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium 34.2 0.248 mg/kg EPA 6010B EPA 305	Vanadium	34.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc 45.6 0.990 mg/kg EPA 6010B EPA 305	Zinc	45.6		0.990	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: Amec Foster Wheeler Environment &

Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 18-04-1355

Project Name: Hellman Properties / IR18166880

Received: 04/17/18

Attn: Bora Baturay Page 4 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-3-1 (18-04-1355-10)						
Arsenic	7.89		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	194		0.498	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.748		0.249	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.16		0.498	mg/kg	EPA 6010B	EPA 3050B
Chromium	27.2		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.9		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	22.7		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	6.89		0.498	mg/kg	EPA 6010B	EPA 3050B
Nickel	18.8		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	49.7		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	76.6		0.995	mg/kg	EPA 6010B	EPA 3050B
Benzene	1.2		1.0	ug/kg	EPA 8260B	EPA 5035
B-3-2 (18-04-1355-11)						
TRPH	18		10	mg/kg	EPA 418.1M	N/A
Arsenic	5.18		0.754	mg/kg	EPA 6010B	EPA 3050B
Barium	103		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.606		0.251	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.553		0.503	mg/kg	EPA 6010B	EPA 3050B
Chromium	21.3		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	20.1		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	5.46		0.503	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.396		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	17.3		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	46.2		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	65.5		1.01	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: Amec Foster Wheeler Environment &

Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 18-04-1355

Project Name: Hellman Properties / IR18166880

Received: 04/17/18

Attn: Bora Baturay Page 5 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
B-3-3 (18-04-1355-12)						
TRPH	15		10	mg/kg	EPA 418.1M	N/A
Arsenic	1.40		0.785	mg/kg	EPA 6010B	EPA 3050B
Barium	98.9		0.524	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.549		0.262	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.634		0.524	mg/kg	EPA 6010B	EPA 3050B
Chromium	22.5		0.262	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.0		0.262	mg/kg	EPA 6010B	EPA 3050B
Copper	20.4		0.524	mg/kg	EPA 6010B	EPA 3050B
Lead	5.59		0.524	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.381		0.262	mg/kg	EPA 6010B	EPA 3050B
Nickel	17.5		0.262	mg/kg	EPA 6010B	EPA 3050B
Vanadium	45.2		0.262	mg/kg	EPA 6010B	EPA 3050B
Zinc	62.1		1.05	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Brvine, CA 92617-3094

Work Order:

Preparation:

Method:

Units:

mg/kg

Project: Hellman Properties / IR18166880

Date Received:

04/17/18

Work Order:

18-04-1355

Preparation:

N/A

Method:

Units:

mg/kg

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix		Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-1	18-04-1355-1-A	04/16/18 07:25	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
<u>Parameter</u>		Result		<u>RL</u>		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-4-2	18-04-1355-2-A	04/16/18 07:45	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter		Result		<u>RL</u>		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-4-4	18-04-1355-3-A	04/16/18 08:00	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter		Result		RL		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-2-1	18-04-1355-4-A	04/16/18 11:10	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter		Result		<u>RL</u>		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-2-2	18-04-1355-5-A	04/16/18 11:20	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter		Result		<u>RL</u>		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-2-4	18-04-1355-6-A	04/16/18 11:35	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter Parameter		Result		RL		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-1-1	18-04-1355-7-A	04/16/18 13:35	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
<u>Parameter</u>		Result		<u>RL</u>		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		
B-1-2	18-04-1355-8-A	04/16/18 13:40	Solid		IR 2	04/23/18	04/23/18 16:09	180423L01
Parameter		Result		RL		<u>DF</u>	Qua	alifiers
TRPH		ND		10		1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Date Received: Amec Foster Wheeler Environment & Infrastructure, 04/17/18 18-04-1355 121 Innovation Drive, Suite 200 Work Order: Irvine, CA 92617-3094 Preparation: N/A Method: EPA 418.1M

> Units: mg/kg

Project: Hellman Properties / IR18166880							Page 2 of 2	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
B-1-3	18-04-1355-9-A	04/16/18 13:50	Solid	IR 2	04/23/18	04/23/18 16:09	180423L01	
Parameter		Result	R	<u>L</u>	<u>DF</u>	Qua	alifiers	
TRPH		ND	1	0	1.00			
B-3-1	18-04-1355-10-A	04/16/18 14:00	Solid	IR 2	04/23/18	04/23/18 16:09	180423L01	
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers	
TRPH		ND	1	0	1.00			
B-3-2	18-04-1355-11-A	04/16/18 14:10	Solid	IR 2	04/23/18	04/23/18 16:09	180423L01	
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers	
TRPH		18	1	0	1.00			
B-3-3	18-04-1355-12-A	04/16/18 14:20	Solid	IR 2	04/23/18	04/23/18 16:09	180423L01	
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers	

TRPH		15		10	1.00	<u>gammere</u>
Method Blank	099-07-015-2272	N/A	Solid	IR 2	04/23/18	04/23/18 180423L01 16:09

<u>Parameter</u> Result <u>RL</u> <u>DF</u> Qualifiers **TRPH** ND 10 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation: Method: 18-04-1355 EPA 3550B EPA 8015B (M)

Units: mg/kg

Project: Hellman Properties / IR18166880

Page 1 of 13

04/17/18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-1	18-04-1355-1-A	04/16/18 07:25	Solid	GC 48	04/19/18	04/20/18 00:36	180419B01
Parameter	·	Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		110	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 2 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-2	18-04-1355-2-A	04/16/18 07:45	Solid	GC 48	04/19/18	04/20/18 00:57	180419B01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane		110	61-	145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Preparation:

Work Order: Method:

Units:

Page 3 of 13

Project: Hellman Properties / IR18166880

04/17/18

mg/kg

18-04-1355 EPA 3550B

EPA 8015B (M)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-4	18-04-1355-3-A	04/16/18 08:00	Solid	GC 48	04/19/18	04/20/18 01:17	180419B01
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		114	61	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

n-Octacosane

Date Received:

Work Order:

Preparation:

Method: Units:

04/17/18 18-04-1355 EPA 3550B

EPA 8015B (M)

mg/kg Page 4 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
B-2-1	18-04-1355-4-A	04/16/18 11:10	Solid	GC 48	04/19/18	04/20/18 01:38	180419B01
<u>Parameter</u>		Result	RL	=	DF	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	Qualifiers		

Rec. (%) 109

61-145

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order: 18-04-1355 EPA 3550B Preparation: Method: EPA 8015B (M)

Units: mg/kg

Project: Hellman Properties / IR18166880

e/Time llyzed	QC Batch ID

Page 5 of 13

04/17/18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-2	18-04-1355-5-A	04/16/18 11:20	Solid	GC 48	04/19/18	04/20/18 01:59	180419B01
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ontrol Limits	Qualifiers		
n-Octacosane		115	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 6 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-4	18-04-1355-6-A	04/16/18 11:35	Solid	GC 48	04/19/18	04/20/18 02:19	180419B01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		112	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Preparation:

Work Order: Method:

Units:

Page 7 of 13

Project: Hellman Properties / IR18166880

04/17/18

mg/kg

18-04-1355 EPA 3550B

EPA 8015B (M)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-1	18-04-1355-7-A	04/16/18 13:35	Solid	GC 48	04/19/18	04/20/18 02:40	180419B01
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		106	61	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 8 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-2	18-04-1355-8-A	04/16/18 13:40	Solid	GC 48	04/19/18	04/20/18 03:21	180419B01
Parameter		<u>Result</u>	RL	:	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		107	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method: Units:

EPA 8015B (M)

mg/kg Page 9 of 13

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-3	18-04-1355-9-A	04/16/18 13:50	Solid	GC 48	04/19/18	04/20/18 03:42	180419B01
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane		118	61	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 10 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-1	18-04-1355-10-A	04/16/18 14:00	Solid	GC 48	04/19/18	04/20/18 04:03	180419B01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		110	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 11 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Ir	nstrument Date Prepare	Date/Time d Analyzed	QC Batch ID	
B-3-2	18-04-1355-11-A	04/16/18 14:10	Solid G	C 48 04/19/18	3 04/20/18 04:24	180419B01	
Parameter	·	Result	<u>RL</u> <u>DF</u>		Qu	<u>Qualifiers</u>	
C6		ND	5.0	1.00			
C7		ND	5.0	1.00			
C8		ND	5.0	1.00			
C9-C10		ND	5.0	1.00			
C11-C12		ND	5.0	1.00			
C13-C14		ND	5.0	1.00			
C15-C16		ND	5.0	1.00			
C17-C18		ND	5.0	1.00			
C19-C20		ND	5.0	1.00			
C21-C22		ND	5.0	1.00			
C23-C24		ND	5.0	1.00			
C25-C28		ND	5.0	1.00			
C29-C32		ND	5.0	1.00			
C33-C36		ND	5.0	1.00			
C37-C40		ND	5.0	1.00			
C41-C44		ND	5.0	1.00			
C6-C44 Total		ND	5.0	1.00			
Surrogate		Rec. (%)	Contro	ol Limits Qualif	<u>iers</u>		
n-Octacosane		107	61-14	5			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

18-04-1355 EPA 3550B

Preparation: Method:

EPA 8015B (M)

04/17/18

Units:

mg/kg Page 12 of 13

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-3	18-04-1355-12-A	04/16/18 14:20	Solid	GC 48	04/19/18	04/20/18 04:44	180419B01
Parameter		Result	<u>RL</u>		DF	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		116	61-1	145			

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Hellman Properties / IR18166880

Page 13 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-3061	N/A	Solid	GC 48	04/19/18	04/19/18 23:13	180419B01
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		122	61-	145			

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

04/17/18 18-04-1355

> EPA 3050B EPA 6010B

mg/kg

Page 1 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-1	18-04-1355-1-A	04/16/18 07:25	Solid	ICP 7300	04/21/18	04/22/18 13:44	180421L03
Parameter		<u>Result</u>	ļ	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().728	0.971		
Arsenic		14.1	().728	0.971		
Barium		142	(0.485	0.971		
Beryllium		0.763	(0.243	0.971		
Cadmium		1.06	(0.485	0.971		
Chromium		25.2	(0.243	0.971		
Cobalt		13.3	(0.243	0.971		
Copper		33.0	(0.485	0.971		
Lead		8.37	(0.485	0.971		
Molybdenum		0.865	(0.243	0.971		
Nickel		20.6	(0.243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		53.2	(0.243	0.971		
Zinc		68.6	().971	0.971		

Amec Foster Wheeler Environment & Infrastructure,

Project: Hellman Properties / IR18166880

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: Units: 04/17/18 18-04-1355

EPA 3050B

EPA 6010B mg/kg

Page 2 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-2	18-04-1355-2-A	04/16/18 07:45	Solid	ICP 7300	04/21/18	04/22/18 13:47	180421L03
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.758	1.01		
Arsenic		2.47		0.758	1.01		
Barium		98.7		0.505	1.01		
Beryllium		0.922		0.253	1.01		
Cadmium		0.757		0.505	1.01		
Chromium		28.7		0.253	1.01		
Cobalt		16.7		0.253	1.01		
Copper		34.0		0.505	1.01		
Lead		10.6		0.505	1.01		
Molybdenum		ND		0.253	1.01		
Nickel		22.8		0.253	1.01		
Selenium		ND		0.758	1.01		
Silver		ND		0.253	1.01		
Thallium		ND		0.758	1.01		
Vanadium		43.5		0.253	1.01		
Zinc		79.9		1.01	1.01		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

18-04-1355 **EPA 3050B EPA 6010B**

mg/kg

04/17/18

Project: Hellman Properties / IR18166880

Page 3 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-4	18-04-1355-3-A	04/16/18 08:00	Solid	ICP 7300	04/21/18	04/22/18 13:48	180421L03
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).735	0.980		
Arsenic		1.83	C).735	0.980		
Barium		90.4	C).490	0.980		
Beryllium		0.460	C).245	0.980		
Cadmium		0.619	C	0.490	0.980		
Chromium		21.6	C).245	0.980		
Cobalt		11.9	C).245	0.980		
Copper		25.6	C	0.490	0.980		
Lead		4.70	C	0.490	0.980		
Molybdenum		0.624	C).245	0.980		
Nickel		16.1	C	0.245	0.980		
Selenium		ND	C).735	0.980		
Silver		ND	C	0.245	0.980		
Thallium		ND	C).735	0.980		
Vanadium		43.6	C).245	0.980		
Zinc		62.3	C	0.980	0.980		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Zinc

Date Received:

Work Order: Preparation:

Method:

04/17/18 18-04-1355

EPA 3050B EPA 6010B

Units: mg/kg
Page 4 of 13

1.05

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-1	18-04-1355-4-A	04/16/18 11:10	Solid	ICP 7300	04/21/18	04/22/18 13:49	180421L03
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.785	1.05		
Arsenic		20.4	(0.785	1.05		
Barium		148	(0.524	1.05		
Beryllium		0.734	(0.262	1.05		
Cadmium		1.00	(0.524	1.05		
Chromium		24.0	(0.262	1.05		
Cobalt		13.6	(0.262	1.05		
Copper		34.2	(0.524	1.05		
Lead		8.06	(0.524	1.05		
Molybdenum		0.807	(0.262	1.05		
Nickel		21.9	(0.262	1.05		
Selenium		ND	(0.785	1.05		
Silver		ND	(0.262	1.05		
Thallium		ND	(0.785	1.05		
Vanadium		53.5	(0.262	1.05		

1.05

60.8

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: Units:

04/17/18 18-04-1355

EPA 3050B EPA 6010B

mg/kg

Project: Hellman Properties / IR18166880

Page 5 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-2	18-04-1355-5-A	04/16/18 11:20	Solid	ICP 7300	04/21/18	04/22/18 13:50	180421L03
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().721	0.962		
Arsenic		11.6	().721	0.962		
Barium		234	().481	0.962		
Beryllium		0.662	(0.240	0.962		
Cadmium		0.866	().481	0.962		
Chromium		26.4	(0.240	0.962		
Cobalt		13.6	(0.240	0.962		
Copper		40.5	().481	0.962		
Lead		7.27	().481	0.962		
Molybdenum		1.43	(0.240	0.962		
Nickel		21.1	(0.240	0.962		
Selenium		ND	().721	0.962		
Silver		ND	(0.240	0.962		
Thallium		ND	().721	0.962		
Vanadium		53.7	(0.240	0.962		
Zinc		66.6	().962	0.962		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: Units:

04/17/18 18-04-1355

EPA 3050B

EPA 6010B

mg/kg

Project: Hellman Properties / IR18166880

Page 6 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-4	18-04-1355-6-A	04/16/18 11:35	Solid	ICP 7300	04/21/18	04/22/18 13:51	180421L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.746	0.995		
Arsenic		7.10	(0.746	0.995		
Barium		112	(0.498	0.995		
Beryllium		0.611	(0.249	0.995		
Cadmium		0.742	(0.498	0.995		
Chromium		24.5	(0.249	0.995		
Cobalt		14.2	(0.249	0.995		
Copper		31.5	(0.498	0.995		
Lead		5.99	(0.498	0.995		
Molybdenum		3.03	(0.249	0.995		
Nickel		20.3	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		53.0	(0.249	0.995		
Zinc		70.8	(0.995	0.995		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Vanadium

Zinc

Date Received:

Preparation:

Work Order: Method:

Units:

Page 7 of 13

04/17/18

18-04-1355 **EPA 3050B**

EPA 6010B

mg/kg

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-1	18-04-1355-7-A	04/16/18 13:35	Solid	ICP 7300	04/21/18	04/22/18 13:52	180421L03
<u>Parameter</u>		Result	<u> </u>	<u> </u>	DF	Qua	<u>llifiers</u>
Antimony		ND	().746	0.995		
Arsenic		17.4	().746	0.995		
Barium		150	().498	0.995		
Beryllium		0.808	().249	0.995		
Cadmium		1.06	().498	0.995		
Chromium		27.0	().249	0.995		
Cobalt		14.5	().249	0.995		
Copper		35.0	().498	0.995		
Lead		8.40	().498	0.995		
Molybdenum		2.17	().249	0.995		
Nickel		23.3	().249	0.995		
Selenium		ND	().746	0.995		
Silver		ND	().249	0.995		
Thallium		ND	().746	0.995		

0.249

0.995

0.995

0.995

54.7

69.3

04/17/18

18-04-1355 **EPA 3050B**

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

EPA 6010B Units: mg/kg

Project: Hellman Properties / IR18166880 Page 8 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-2	18-04-1355-8-A	04/16/18 13:40	Solid	ICP 7300	04/21/18	04/22/18 13:53	180421L03
Parameter	·	Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).785	1.05		
Arsenic		1.15	C).785	1.05		
Barium		118	C).524	1.05		
Beryllium		0.518	C).262	1.05		
Cadmium		0.637	C).524	1.05		
Chromium		23.3	C	0.262	1.05		
Cobalt		11.5	C).262	1.05		
Copper		17.9	C).524	1.05		
Lead		4.79	C).524	1.05		
Molybdenum		0.279	C	0.262	1.05		
Nickel		18.0	C	0.262	1.05		
Selenium		ND	C).785	1.05		
Silver		ND	C	0.262	1.05		
Thallium		ND	C).785	1.05		
Vanadium		43.0	C	0.262	1.05		
Zinc		61.7	1	.05	1.05		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation: Method:

EPA 3050B EPA 6010B

04/17/18

mg/kg

18-04-1355

Units:

Page 9 of 13

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-3	18-04-1355-9-A	04/16/18 13:50	Solid	ICP 7300	04/21/18	04/22/18 13:55	180421L03
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Antimony		ND		0.743	0.990		
Arsenic		2.19		0.743	0.990		
Barium		63.7		0.495	0.990		
Beryllium		0.388		0.248	0.990		
Cadmium		ND		0.495	0.990		
Chromium		16.0		0.248	0.990		
Cobalt		8.85		0.248	0.990		
Copper		11.4		0.495	0.990		
Lead		3.41		0.495	0.990		
Molybdenum		1.09		0.248	0.990		
Nickel		12.7		0.248	0.990		
Selenium		ND		0.743	0.990		
Silver		ND		0.248	0.990		
Thallium		ND		0.743	0.990		
Vanadium		34.2		0.248	0.990		
Zinc		45.6		0.990	0.990		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Zinc

Date Received:

Work Order:

Preparation:

Method: Units:

04/17/18 18-04-1355

> **EPA 3050B EPA 6010B**

mg/kg

Page 10 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-1	18-04-1355-10-A	04/16/18 14:00	Solid	ICP 7300	04/21/18	04/22/18 13:56	180421L03
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qual	<u>ifiers</u>
Antimony		ND	C).746	0.995		

7.89 0.746 Arsenic 0.995 194 Barium 0.498 0.995 Beryllium 0.748 0.995 0.249 Cadmium 1.16 0.498 0.995 Chromium 27.2 0.249 0.995 Cobalt 12.9 0.249 0.995 22.7 Copper 0.498 0.995 Lead 6.89 0.498 0.995 Molybdenum ND 0.249 0.995 Nickel 18.8 0.249 0.995 Selenium ND 0.746 0.995 Silver ND 0.249 0.995 ND Thallium 0.746 0.995 Vanadium 49.7 0.249 0.995

0.995

0.995

76.6

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

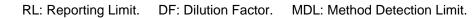
Date Received:

Work Order:

Preparation:

Method:

Units:


04/17/18 18-04-1355

> **EPA 3050B** EPA 6010B

mg/kg

Page 11 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-2	18-04-1355-11-A	04/16/18 14:10	Solid	ICP 7300	04/21/18	04/22/18 13:57	180421L03
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND	(0.754	1.01		
Arsenic		5.18	(0.754	1.01		
Barium		103	(0.503	1.01		
Beryllium		0.606	(0.251	1.01		
Cadmium		0.553	(0.503	1.01		
Chromium		21.3	(0.251	1.01		
Cobalt		11.9	(0.251	1.01		
Copper		20.1	(0.503	1.01		
Lead		5.46	(0.503	1.01		
Molybdenum		0.396	(0.251	1.01		
Nickel		17.3	(0.251	1.01		
Selenium		ND	(0.754	1.01		
Silver		ND	(0.251	1.01		
Thallium		ND	(0.754	1.01		
Vanadium		46.2	(0.251	1.01		
Zinc		65.5	1	1.01	1.01		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Date Received:

Work Order: Preparation:

18-04-1355 EPA 3050B

Method:

EPA 6010B

Page 12 of 13

04/17/18

mg/kg

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-3	18-04-1355-12-A	04/16/18 14:20	Solid	ICP 7300	04/21/18	04/22/18 13:58	180421L03
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.785	1.05		
Arsenic		1.40		0.785	1.05		
Barium		98.9		0.524	1.05		
Beryllium		0.549		0.262	1.05		
Cadmium		0.634		0.524	1.05		
Chromium		22.5		0.262	1.05		
Cobalt		12.0		0.262	1.05		
Copper		20.4		0.524	1.05		
Lead		5.59		0.524	1.05		
Molybdenum		0.381		0.262	1.05		
Nickel		17.5		0.262	1.05		
Selenium		ND		0.785	1.05		
Silver		ND		0.262	1.05		
Thallium		ND		0.785	1.05		
Vanadium		45.2		0.262	1.05		
Zinc		62.1		1.05	1.05		

RL: Reporting Limit. DF: Dilution Factor. MDL: Me

04/17/18

18-04-1355 **EPA 3050B**

EPA 6010B

mg/kg

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Date Received:

Preparation:

Work Order: Method:

Units:

Page 13 of 13

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-26227	N/A	Solid	ICP 7300	04/21/18	04/22/18 12:58	180421L03
<u>Parameter</u>		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).718	0.957		
Arsenic		ND	C).718	0.957		
Barium		ND	C	.478	0.957		
Beryllium		ND	C	0.239	0.957		
Cadmium		ND	C).478	0.957		
Chromium		ND	C	0.239	0.957		
Cobalt		ND	C	0.239	0.957		
Copper		ND	C	.478	0.957		
Lead		ND	C	.478	0.957		
Molybdenum		ND	C	0.239	0.957		
Nickel		ND	C	0.239	0.957		
Selenium		ND	C).718	0.957		
Silver		ND	C	0.239	0.957		
Thallium		ND	C).718	0.957		
Vanadium		ND	C	.239	0.957		
Zinc		ND	C	.957	0.957		

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
Work Order:
18-04-1355
Irvine, CA 92617-3094
Preparation:
Method:
Units:
mg/kg
Project: Hellman Properties / IR18166880
Date Received:
04/17/18
Work Order:
18-04-1355
Preparation:
EPA 7471A Total
Method:
Units:
mg/kg

rioject. Heilman rioperties	7 18 18 18 18 18 18 18 18 18 18 18 18 18					Га	ige i oi z	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
3-4-1	18-04-1355-1-A	04/16/18 07:25	Solid	Mercury 08	04/21/18	04/21/18 13:53	180421L03	
Parameter		Result		<u>RL</u>	<u>DF</u>	Qualifiers		
Mercury		ND		0.0833	1.00			
3-4-2	18-04-1355-2-A	04/16/18 07:45	Solid	Mercury 08	04/21/18	04/21/18 14:00	180421L03	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0794	1.00			
3-4-4	18-04-1355-3-A	04/16/18 08:00	Solid	Mercury 08	04/21/18	04/21/18 14:03	180421L03	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0794	1.00			
3-2-1	18-04-1355-4-A	04/16/18 11:10	Solid	Mercury 08	04/21/18	04/21/18 14:05	180421L03	
<u>Parameter</u>		Result		RL	DF	Qua	Qualifiers	
Mercury		ND		0.0794	1.00			
3-2-2	18-04-1355-5-A	04/16/18 11:20	Solid	Mercury 08	04/21/18	04/21/18 14:07	180421L03	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0806	1.00			
3-2-4	18-04-1355-6-A	04/16/18 11:35	Solid	Mercury 08	04/21/18	04/21/18 14:14	180421L03	
Parameter		Result	-	RL	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0820	1.00			
3-1-1	18-04-1355-7-A	04/16/18 13:35	Solid	Mercury 08	04/21/18	04/21/18 14:16	180421L03	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0820	1.00			
3-1-2	18-04-1355-8-A	04/16/18 13:40	Solid	Mercury 08	04/21/18	04/21/18 14:19	180421L03	
Parameter Parameter		Result		<u>RL</u>	DF	Qua	alifiers	
Mercury		ND		0.0794	1.00			

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
Work Order:
18-04-1355
Irvine, CA 92617-3094
Preparation:
Method:
Units:
mg/kg
Project: Hellman Properties / IR18166880
Date Received:
04/17/18
Urk Order:
18-04-1355
Preparation:
Method:
Units:
page 2 of 2

Project. Heiiman Properties	5 / IK 10 100000					Га	ige z ui z
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-3	18-04-1355-9-A	04/16/18 13:50	Solid	Mercury 08	04/21/18	04/21/18 14:21	180421L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0806	1.00		
B-3-1	18-04-1355-10-A	04/16/18 14:00	Solid	Mercury 08	04/21/18	04/21/18 14:23	180421L03
<u>Parameter</u>		Result		RL	<u>DF</u>	Qualifiers	
Mercury		ND		0.0794	1.00		
B-3-2	18-04-1355-11-A	04/16/18 14:10	Solid	Mercury 08	04/21/18	04/21/18 14:26	180421L03
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
B-3-3	18-04-1355-12-A	04/16/18 14:20	Solid	Mercury 08	04/21/18	04/21/18 14:28	180421L03
Parameter	·	Result	•	RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0877	1.00		
Made at Diamie			0 " 1		0.4/0.4/4.0	0.4/0.4/4.0	1001011 00

Method Blank	099-16-272-3785	N/A	Solid	Mercury 08	04/21/18	04/21/18 13:49	180421L03
Parameter		Result	RI	=	<u>DF</u>	<u>Quali</u>	<u>ifiers</u>
Mercury		ND	0.0	0820	1.00		

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

04/17/18 Work Order: 18-04-1355

Preparation:

EPA 5035 EPA 8260B

Method: Units:

ug/kg

Project: Hellman Properties / IR18166880

Page 1 of 42

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-1	18-04-1355-1-C	04/16/18 07:25	Solid	GC/MS LL	04/16/18	04/18/18 13:34	180418L004
<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	5	2	1.00		
Acetone		ND	5	2	1.00		
Benzene		ND	1.	.0	1.00		
Bromobenzene		ND	1.	.0	1.00		
Bromochloromethane		ND	2	.1	1.00		
Bromodichloromethane		ND	1.	.0	1.00		
Bromoform		ND	5	.2	1.00		
Bromomethane		ND	2	1	1.00		
2-Butanone		ND	2	1	1.00		
n-Butylbenzene		ND	1.	.0	1.00		
sec-Butylbenzene		ND	1.	.0	1.00		
tert-Butylbenzene		ND	1.	.0	1.00		
Carbon Disulfide		ND	1	0	1.00		
Carbon Tetrachloride		ND	1.	.0	1.00		
Chlorobenzene		ND	1.	.0	1.00		
Chloroethane		ND	2	.1	1.00		
Chloroform		ND	1.	.0	1.00		
Chloromethane		ND	2	1	1.00		
2-Chlorotoluene		ND	1.	.0	1.00		
4-Chlorotoluene		ND	1.	.0	1.00		
Dibromochloromethane		ND	2	.1	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.	.2	1.00		
1,2-Dibromoethane		ND	1.	.0	1.00		
Dibromomethane		ND	1.	.0	1.00		
1,2-Dichlorobenzene		ND	1.	.0	1.00		
1,3-Dichlorobenzene		ND	1.	.0	1.00		
1,4-Dichlorobenzene		ND	1.	.0	1.00		
Dichlorodifluoromethane		ND	2	.1	1.00		
1,1-Dichloroethane		ND	1.	.0	1.00		
1,2-Dichloroethane		ND	1.	.0	1.00		
1,1-Dichloroethene		ND	1.	.0	1.00		
c-1,2-Dichloroethene		ND	1.	.0	1.00		
t-1,2-Dichloroethene		ND	1.	.0	1.00		
1,2-Dichloropropane		ND	1.	.0	1.00		
1,3-Dichloropropane		ND	1.	.0	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Preparation:

Method:

Units:

Ug/kg

Project: Hellman Properties / IR18166880

Date Received:

04/17/18

Preparation:

18-04-1355

Preparation:

EPA 5035

Method:

Units:

Ug/kg

Page 2 of 42

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	5.2	1.00	
1,1-Dichloropropene	ND	2.1	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.1	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	21	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	21	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.1	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.1	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.1	1.00	
1,2,4-Trichlorobenzene	ND	2.1	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.1	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.1	1.00	
1,2,4-Trimethylbenzene	ND	2.1	1.00	
1,3,5-Trimethylbenzene	ND	2.1	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.1	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.1	1.00	
Tert-Butyl Alcohol (TBA)	ND	21	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	520	1.00	
Cyclohexanone	ND	52	1.00	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 3 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	98	80-120	
Dibromofluoromethane	102	79-133	
1,2-Dichloroethane-d4	120	71-155	
Toluene-d8	100	80-120	

EPA 5035

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Date Received:

04/17/18 Work Order: 18-04-1355

Preparation:

Method: EPA 8260B Units: ug/kg

Page 4 of 42

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-2	18-04-1355-2-C	04/16/18 07:45	Solid	GC/MS LL	04/16/18	04/18/18 14:01	180418L004
<u>Parameter</u>	•	Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	45	1.00		
Acetone		ND	4	45	1.00		
Benzene		ND	(0.89	1.00		
Bromobenzene		ND	(0.89	1.00		
Bromochloromethane		ND		1.8	1.00		
Bromodichloromethane		ND	(0.89	1.00		
Bromoform		ND	4	4.5	1.00		
Bromomethane		ND		18	1.00		
2-Butanone		ND		18	1.00		
n-Butylbenzene		ND	(0.89	1.00		
sec-Butylbenzene		ND	(0.89	1.00		
tert-Butylbenzene		ND	(0.89	1.00		
Carbon Disulfide		ND	8	8.9	1.00		
Carbon Tetrachloride		ND	(0.89	1.00		
Chlorobenzene		ND	(0.89	1.00		
Chloroethane		ND		1.8	1.00		
Chloroform		ND	(0.89	1.00		
Chloromethane		ND		18	1.00		
2-Chlorotoluene		ND	(0.89	1.00		
4-Chlorotoluene		ND	(0.89	1.00		
Dibromochloromethane		ND		1.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	4.5	1.00		
1,2-Dibromoethane		ND	(0.89	1.00		
Dibromomethane		ND	(0.89	1.00		
1,2-Dichlorobenzene		ND	(0.89	1.00		
1,3-Dichlorobenzene		ND	(0.89	1.00		
1,4-Dichlorobenzene		ND	(0.89	1.00		
Dichlorodifluoromethane		ND		1.8	1.00		
1,1-Dichloroethane		ND		0.89	1.00		
1,2-Dichloroethane		ND		0.89	1.00		
1,1-Dichloroethene		ND		0.89	1.00		
c-1,2-Dichloroethene		ND		0.89	1.00		
t-1,2-Dichloroethene		ND		0.89	1.00		
1,2-Dichloropropane		ND		0.89	1.00		
1,3-Dichloropropane		ND	(0.89	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Preparation:

Method:

Units:

Ug/kg

Project: Hellman Properties / IR18166880

Date Received:

04/17/18

Preparation:

18-04-1355

Preparation:

EPA 5035

Method:

Units:

Ug/kg

Page 5 of 42

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
2,2-Dichloropropane	ND	4.5	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.89	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.89	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.89	1.00	
p-Isopropyltoluene	ND	0.89	1.00	
Methylene Chloride	ND	8.9	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	8.9	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.89	1.00	
1,1,1,2-Tetrachloroethane	ND	0.89	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.89	1.00	
Toluene	ND	0.89	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.89	1.00	
1,1,2-Trichloroethane	ND	0.89	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.9	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	8.9	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	8.9	1.00	
Vinyl Chloride	ND	0.89	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.89	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.89	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.89	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.89	1.00	
Ethanol	ND	450	1.00	
Cyclohexanone	ND	45	1.00	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 6 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	98	80-120	
Dibromofluoromethane	108	79-133	
1,2-Dichloroethane-d4	112	71-155	
Toluene-d8	101	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation: Method:

Units:

04/17/18 18-04-1355

EPA 5035 EPA 8260B

ug/kg

Page 7 of 42

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-4-4	18-04-1355-3-C	04/16/18 08:00	Solid	GC/MS LL	04/16/18	04/18/18 14:29	180418L004
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	16	1.00		
Acetone		ND	4	16	1.00		
Benzene		ND	().91	1.00		
Bromobenzene		ND	().91	1.00		
Bromochloromethane		ND	1	1.8	1.00		
Bromodichloromethane		ND	(0.91	1.00		
Bromoform		ND	4	1.6	1.00		
Bromomethane		ND	1	18	1.00		
2-Butanone		ND	1	18	1.00		
n-Butylbenzene		ND	(0.91	1.00		
sec-Butylbenzene		ND	(0.91	1.00		
tert-Butylbenzene		ND	(0.91	1.00		
Carbon Disulfide		ND	9	9.1	1.00		
Carbon Tetrachloride		ND	(0.91	1.00		
Chlorobenzene		ND	().91	1.00		
Chloroethane		ND	1	1.8	1.00		
Chloroform		ND	(0.91	1.00		
Chloromethane		ND	1	18	1.00		
2-Chlorotoluene		ND	(0.91	1.00		
4-Chlorotoluene		ND	(0.91	1.00		
Dibromochloromethane		ND	1	1.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	1.6	1.00		
1,2-Dibromoethane		ND	(0.91	1.00		
Dibromomethane		ND	(0.91	1.00		
1,2-Dichlorobenzene		ND	(0.91	1.00		
1,3-Dichlorobenzene		ND	(0.91	1.00		
1,4-Dichlorobenzene		ND	(0.91	1.00		
Dichlorodifluoromethane		ND	1	1.8	1.00		
1,1-Dichloroethane		ND	(0.91	1.00		
1,2-Dichloroethane		ND	(0.91	1.00		
1,1-Dichloroethene		ND	(0.91	1.00		
c-1,2-Dichloroethene		ND	(0.91	1.00		

RL: Reporting Limit.

t-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

DF: Dilution Factor.

MDL: Method Detection Limit.

0.91

0.91

0.91

1.00

1.00

1.00

ND

ND

ND

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Preparation:

Method:

Units:

Units:

Page 8 of 42

Project. Heilinan Properties / IK 16 100660				rage 8 01 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.6	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.91	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.91	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.91	1.00	
p-Isopropyltoluene	ND	0.91	1.00	
Methylene Chloride	ND	9.1	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	9.1	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.91	1.00	
1,1,1,2-Tetrachloroethane	ND	0.91	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.91	1.00	
Toluene	ND	0.91	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.91	1.00	
1,1,2-Trichloroethane	ND	0.91	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.1	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	9.1	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	9.1	1.00	
Vinyl Chloride	ND	0.91	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.91	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.91	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.91	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.91	1.00	
Ethanol	ND	460	1.00	
Cyclohexanone	ND	46	1.00	

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

Units:

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

18-04-1355

EPA 5035

Method:

Units:

ug/kg

Project: Hellman Properties / IR18166880 Page 9 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	99	80-120	
Dibromofluoromethane	109	79-133	
1,2-Dichloroethane-d4	112	71-155	
Toluene-d8	102	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

04/17/18 18-04-1355

EPA 5035

EPA 8260B

ug/kg

Page 10 of 42

Project: Hellman Properties / IR18166880

Date/Time QC Batch ID Date/Time Client Sample Number Lab Sample Matrix Instrument Date Prepared Number Collected Analyzed 04/18/18 14:56 04/16/18 11:10 B-2-1 18-04-1355-4-C Solid GC/MS LL 04/16/18 180418L004 **Parameter** Result <u>RL</u> <u>DF</u> Qualifiers 2-Methyl-2-Butanol (TAA) ND 51 1.00 ND Acetone 51 1.00 ND 1.0 1.00

Benzene ND 1.0 1.00 Bromobenzene ND 2.0 Bromochloromethane 1.00 Bromodichloromethane ND 1.0 1.00 **Bromoform** ND 5.1 1.00 **Bromomethane** ND 20 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.00 1.0 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.1 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.0 1.00 ND 1,1-Dichloroethane 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene 1,2-Dichloropropane ND 1.0 1.00 ND 1.00 1,3-Dichloropropane 1.0

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
18-04-1355
Irvine, CA 92617-3094
Preparation:
Method:
Units:
Units:
Units:

Page 11 of 42

Project. Hellinan Properties / IK 16 100000				rage 11 01 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	5.1	1.00	
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	20	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	510	1.00	
Cyclohexanone	ND	51	1.00	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 12 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	99	80-120	
Dibromofluoromethane	106	79-133	
1,2-Dichloroethane-d4	120	71-155	
Toluene-d8	101	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units: ug/kg

Project: Hellman Properties / IR18166880

Page 13 of 42 OC Batch ID

04/17/18

18-04-1355

EPA 8260B

EPA 5035

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-2	18-04-1355-5-C	04/16/18 11:20	Solid	GC/MS LL	04/16/18	04/18/18 15:41	180418L004
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	4	1.00		
Acetone		ND	4	4	1.00		
Benzene		ND	0	.88	1.00		
Bromobenzene		ND	0	.88	1.00		
Bromochloromethane		ND	1	.8	1.00		
Bromodichloromethane		ND	0	.88	1.00		
Bromoform		ND	4	.4	1.00		
Bromomethane		ND	1	8	1.00		
2-Butanone		ND	1	8	1.00		
n-Butylbenzene		ND	0	.88	1.00		
sec-Butylbenzene		ND	0	.88	1.00		
tert-Butylbenzene		ND	0	.88	1.00		
Carbon Disulfide		ND	8	.8	1.00		
Carbon Tetrachloride		ND	0	.88	1.00		
Chlorobenzene		ND	0	.88	1.00		
Chloroethane		ND	1	.8	1.00		
Chloroform		ND	0	.88	1.00		
Chloromethane		ND	1	8	1.00		
2-Chlorotoluene		ND	0	.88	1.00		
4-Chlorotoluene		ND	0	.88	1.00		
Dibromochloromethane		ND	1	.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	.4	1.00		
1,2-Dibromoethane		ND	0	.88	1.00		
Dibromomethane		ND	0	.88	1.00		
1,2-Dichlorobenzene		ND	0	.88	1.00		
1,3-Dichlorobenzene		ND	0	.88	1.00		
1,4-Dichlorobenzene		ND	0	.88	1.00		
Dichlorodifluoromethane		ND	1	.8	1.00		
1,1-Dichloroethane		ND	0	.88	1.00		
1,2-Dichloroethane		ND	0	.88	1.00		
1,1-Dichloroethene		ND	0	.88	1.00		
c-1,2-Dichloroethene		ND	0	.88	1.00		
t-1,2-Dichloroethene		ND	0	.88	1.00		
1,2-Dichloropropane		ND	0	.88	1.00		
1,3-Dichloropropane		ND	0	.88	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18 121 Innovation Drive, Suite 200 Work Order: 18-04-1355 EPA 5035 Irvine, CA 92617-3094 Preparation: Method: EPA 8260B Units: ug/kg

Project: Hellman Properties / IR18166880				Page 14 of 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.4	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.88	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.88	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.88	1.00	
p-Isopropyltoluene	ND	0.88	1.00	
Methylene Chloride	ND	8.8	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	8.8	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.88	1.00	
1,1,1,2-Tetrachloroethane	ND	0.88	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.88	1.00	
Toluene	ND	0.88	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.88	1.00	
1,1,2-Trichloroethane	ND	0.88	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.8	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	8.8	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	8.8	1.00	
Vinyl Chloride	ND	0.88	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.88	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.88	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.88	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.88	1.00	
Ethanol	ND	440	1.00	
Cyclohexanone	ND	44	1.00	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 15 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	99	80-120	
Dibromofluoromethane	105	79-133	
1,2-Dichloroethane-d4	114	71-155	
Toluene-d8	100	80-120	

04/17/18

18-04-1355

Analytical Report

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation: EPA 5035 Method: EPA 8260B

Units: ug/kg

Project: Hellman Properties / IR18166880 Page 16 of 42

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-2-4	18-04-1355-6-C	04/16/18 11:35	Solid	GC/MS LL	04/16/18	04/19/18 11:57	180419L005
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	14	1.00		
Acetone		ND	4	14	1.00		
Benzene		ND	(0.88	1.00		
Bromobenzene		ND	(0.88	1.00		
Bromochloromethane		ND	1	1.8	1.00		
Bromodichloromethane		ND	(0.88	1.00		
Bromoform		ND	4	1.4	1.00		
Bromomethane		ND	1	18	1.00		
2-Butanone		ND	1	18	1.00		
n-Butylbenzene		ND	(0.88	1.00		
sec-Butylbenzene		ND	(0.88	1.00		
tert-Butylbenzene		ND	(0.88	1.00		
Carbon Disulfide		ND	8	3.8	1.00		
Carbon Tetrachloride		ND	(0.88	1.00		
Chlorobenzene		ND	(0.88	1.00		
Chloroethane		ND	1	1.8	1.00		
Chloroform		ND	(0.88	1.00		
Chloromethane		ND	1	18	1.00		
2-Chlorotoluene		ND	(0.88	1.00		
4-Chlorotoluene		ND	(0.88	1.00		
Dibromochloromethane		ND	1	1.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	1.4	1.00		
1,2-Dibromoethane		ND	(0.88	1.00		
Dibromomethane		ND	(0.88	1.00		
1,2-Dichlorobenzene		ND	(0.88	1.00		
1,3-Dichlorobenzene		ND	(0.88	1.00		
1,4-Dichlorobenzene		ND	(0.88	1.00		
Dichlorodifluoromethane		ND	1	1.8	1.00		
1,1-Dichloroethane		ND	(0.88	1.00		
1,2-Dichloroethane		ND	(0.88	1.00		
1,1-Dichloroethene		ND	(0.88	1.00		
c-1,2-Dichloroethene		ND	(0.88	1.00		
t-1,2-Dichloroethene		ND	(0.88	1.00		
1,2-Dichloropropane		ND	(0.88	1.00		
1,3-Dichloropropane		ND	C).88	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Page 17 of 42

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

04/17/18

Work Order:
18-04-1355

Preparation:
EPA 8260B

Units:

ug/kg

Project: Hellman Properties / IR18166880

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.4	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.88	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.88	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.88	1.00	
p-Isopropyltoluene	ND	0.88	1.00	
Methylene Chloride	ND	8.8	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	8.8	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.88	1.00	
1,1,1,2-Tetrachloroethane	ND	0.88	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.88	1.00	
Toluene	ND	0.88	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.88	1.00	
1,1,2-Trichloroethane	ND	0.88	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.8	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	8.8	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	8.8	1.00	
Vinyl Chloride	ND	0.88	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.88	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.88	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.88	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.88	1.00	
Ethanol	ND	440	1.00	
Cyclohexanone	ND	44	1.00	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 18 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	98	80-120	
Dibromofluoromethane	111	79-133	
1,2-Dichloroethane-d4	113	71-155	
Toluene-d8	102	80-120	

Amec Foster Wheeler Environment & Infrastructure,

Project: Hellman Properties / IR18166880

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

EPA 8260B ug/kg

04/17/18

18-04-1355

EPA 5035

Page 19 of 42

Parameter	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2-Methyl-2-Butanol (TAA) ND 58 1.00 Acetone ND 58 1.00 Benzene ND 1.2 1.00 Bromochoromethane ND 1.2 1.00 Bromochloromethane ND 2.3 1.00 Bromodichloromethane ND 5.8 1.00 Bromomethane ND 5.8 1.00 Bromomethane ND 23 1.00 Bromomethane ND 23 1.00 Bromomethane ND 23 1.00 Pommethane ND 1.2 1.00 Bromomethane ND 1.2 1.00 Bromochidence ND 1.2 1.00 Carban Disuffee ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chloroform ND 1.2 1.00 Chloroform ND 1.2 1.00 Chloroforbane ND 1.2 1.00 <	B-1-1	18-04-1355-7-C		Solid	GC/MS LL	04/16/18	04/19/18 12:24	180419L005
Actone ND 58 1.00 Benzene ND 1.2 1.00 Bromobenzene ND 1.2 1.00 Bromochloromethane ND 2.3 1.00 Bromoclichloromethane ND 1.2 1.00 Bromoferm ND 5.8 1.00 Bromomethane ND 23 1.00 2-Butanone ND 23 1.00 -Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorocethane ND 1.2 1.00	Parameter	·	Result	RI	=	<u>DF</u>	Qua	alifiers
Benzene ND 1.2 1.00 Bromochormethane ND 1.2 1.00 Bromochioromethane ND 2.3 1.00 Bromochioromethane ND 1.2 1.00 Bromodirhoromethane ND 5.8 1.00 Bromomethane ND 23 1.00 Bromomethane ND 23 1.00 -Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 Carbon Disulide ND 1.2 1.00 Carbon Disulide ND 1.2 1.00 Carbon Disulide ND 1.2 1.00 Chlorobanzene ND 1.2 1.00 Chlorobanzene ND 1.2 1.00 Chlororobanzene ND 2.3 1.00 Chlororobanzene ND 1.2 1.00 Chlororobanzene ND 1.2 1.00 Dibromochioromethane ND 1.2 <th< td=""><td>2-Methyl-2-Butanol (TAA)</td><td></td><td>ND</td><td>58</td><td>3</td><td>1.00</td><td></td><td></td></th<>	2-Methyl-2-Butanol (TAA)		ND	58	3	1.00		
Bromobenzene ND 1.2 1.00 Bromochloromethane ND 2.3 1.00 Bromochloromethane ND 1.2 1.00 Bromochlorom ND 5.8 1.00 Bromomethane ND 23 1.00 2-Butanone ND 23 1.00 n-Butylbenzene ND 1.2 1.00 see-Butylbenzene ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorochane ND 1.2 1.00 Chlorodhane ND 1.2 1.00	Acetone		ND	58	3	1.00		
Bromochloromethane ND 2.3 1.00 Bromofichloromethane ND 1.2 1.00 Bromoform ND 5.8 1.00 Bromomethane ND 23 1.00 2-Butanone ND 23 1.00 n-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chloroform ND 1.2 1.00 Chlorotolurene ND 1.2 1.00 Chlorotolurene ND 1.2 1.00 Chlorotolurene ND 1.2 1.00 L'2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.	Benzene		ND	1.3	2	1.00		
Bromodichloromethane ND 1.2 1.00 Bromoform ND 5.8 1.00 Bromomethane ND 23 1.00 2-Butanone ND 23 1.00 n-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorodenane ND 1.2 1.00 Chlorodenane ND 1.2 1.00 Chlorodenane ND 1.2 1.00 Chlorodoluene ND 1.2 1.00 Chlorodoluene ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00	Bromobenzene		ND	1.3	2	1.00		
Bromoform ND 5.8 1.00 Bromomethane ND 23 1.00 2-Bulanone ND 23 1.00 nButylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chloroberzene ND 1.2 1.00 Chlorobethane ND 1.2 1.00 Chloroform ND 2.3 1.00 Chlorobluene ND 1.2 1.00 Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 1-J2-Dibromo-3-Chloropropane ND 1.2 1.00 1-J2-Dibromo-3-Chloropropane ND 1.2	Bromochloromethane		ND	2.3	3	1.00		
Bromomethane ND 23 1.00 2-Butanone ND 23 1.00 n-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tétrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chloroform ND 1.2 1.00 Chloroforme ND 1.2 1.00 Chloroformethane ND 2.3 1.00 Chloroforbulene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 1,2-Dibromo-S-Chloropropane ND 1.2 1.00 1,2-Dibromo-S-Chloropropane ND 1.2 1.00 1,2-Dichlorobenzene ND 1	Bromodichloromethane		ND	1	2	1.00		
2-Butanone ND 23 1.00 n-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorobethane ND 2.3 1.00 Chlorochtane ND 1.2 1.00 Chloromethane ND 2.3 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 1-2-Dibromo-3-Chloropropane ND 1.2 1.00 1-2-Dibromo-3-Chloropropane ND 1.2 1.00 1-2-Dibromoethane ND 1.2 1.00 1-2-Dibromoethane ND 1.2 1.00 1-3-Dichloroebraene ND	Bromoform		ND	5.	8	1.00		
n-Butylbenzene ND 1.2 1.00 sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 1.2 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorobethane ND 2.3 1.00 Chloroform ND 1.2 1.00 Chlorothane ND 1.2 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromo-3-Chloropropane ND 1.2 1.00 1,2-Dibromo-3-Chloropropane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibrioroethane ND 1.2 1.00 1,4-Dichloroethane ND	Bromomethane		ND	23	3	1.00		
sec-Butylbenzene ND 1.2 1.00 tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 12 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorotene ND 2.3 1.00 Chloroform ND 1.2 1.00 Chlorotoluene ND 1.2 1.00 Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 1-2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2	2-Butanone		ND	23	3	1.00		
tert-Butylbenzene ND 1.2 1.00 Carbon Disulfide ND 12 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorotethane ND 2.3 1.00 Chloroform ND 2.3 1.00 Chlorotethane ND 23 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotopropane ND 1.2 1.00 1,2-Dibinomochloromethane ND 1.2 1.00 1,2-Dibinomoethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND	n-Butylbenzene		ND	1.3	2	1.00		
Carbon Disulfide ND 12 1.00 Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chlorobethane ND 2.3 1.00 Chloroform ND 1.2 1.00 Chloromethane ND 1.2 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 1-2-Dibromo-3-Chloropropane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane	sec-Butylbenzene		ND	1.3	2	1.00		
Carbon Tetrachloride ND 1.2 1.00 Chlorobenzene ND 1.2 1.00 Chloroethane ND 2.3 1.00 Chloroform ND 1.2 1.00 Chloromethane ND 2.3 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene <t< td=""><td>tert-Butylbenzene</td><td></td><td>ND</td><td>1.:</td><td>2</td><td>1.00</td><td></td><td></td></t<>	tert-Butylbenzene		ND	1.:	2	1.00		
Chlorobenzene ND 1.2 1.00 Chloroethane ND 2.3 1.00 Chloroform ND 1.2 1.00 Chloromethane ND 2.3 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibrlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.	Carbon Disulfide		ND	12	2	1.00		
Chloroethane ND 2.3 1.00 Chloroform ND 1.2 1.00 Chloromethane ND 23 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,2-Dichloroethene ND <th< td=""><td>Carbon Tetrachloride</td><td></td><td>ND</td><td>1.3</td><td>2</td><td>1.00</td><td></td><td></td></th<>	Carbon Tetrachloride		ND	1.3	2	1.00		
Chlorform ND 1.2 1.00 Chloromethane ND 23 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dibromoethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloropropane ND 1.2 1.00	Chlorobenzene		ND	1.:	2	1.00		
Chloromethane ND 23 1.00 2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloropropane ND 1.2 1.00 t-1,2-Dichloropropane ND 1.2 1.00	Chloroethane		ND	2.3	3	1.00		
2-Chlorotoluene ND 1.2 1.00 4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorodifluoromethane ND 1.2 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroptoethene ND 1.2 1.00 t-1,2-Dichloroptoethene ND 1.2 1.00 t-1,2-Dichloroptoethene ND 1.2 1.00 t-1	Chloroform		ND	1.3	2	1.00		
4-Chlorotoluene ND 1.2 1.00 Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroptoethene ND 1.2 1.00 1-1,2-Dichloroptoethene ND 1.2 1.00 1-1,2-D	Chloromethane		ND	23	3	1.00		
Dibromochloromethane ND 2.3 1.00 1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 1,1-Dichloroethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00	2-Chlorotoluene		ND	1.:	2	1.00		
1,2-Dibromo-3-Chloropropane ND 5.8 1.00 1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-2,2-Dichloroethene ND 1.2 1.00 1-2,2-Dichloroethene ND 1.2 1.00 1-2,2-Dichloroethene ND 1.2 1.00 1-2,2-Dichloroethene ND 1.2 1.00 1-2,2-Dic	4-Chlorotoluene		ND	1.:	2	1.00		
1,2-Dibromoethane ND 1.2 1.00 Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorodenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethe	Dibromochloromethane		ND	2.3	3	1.00		
Dibromomethane ND 1.2 1.00 1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-1,2-Dichloroethene ND 1.2 1.00 1-2-Dichloropropane ND 1.2 1.00	1,2-Dibromo-3-Chloropropane		ND	5.	8	1.00		
1,2-Dichlorobenzene ND 1.2 1.00 1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,2-Dibromoethane		ND	1.:	2	1.00		
1,3-Dichlorobenzene ND 1.2 1.00 1,4-Dichlorobenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	Dibromomethane		ND	1.:	2	1.00		
1,4-Dichlorobenzene ND 1.2 1.00 Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,2-Dichlorobenzene		ND	1.:	2	1.00		
Dichlorodifluoromethane ND 2.3 1.00 1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,3-Dichlorobenzene		ND	1.:	2	1.00		
1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,4-Dichlorobenzene		ND	1.:	2	1.00		
1,1-Dichloroethane ND 1.2 1.00 1,2-Dichloroethane ND 1.2 1.00 1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	Dichlorodifluoromethane		ND	2.:	3	1.00		
1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,1-Dichloroethane		ND			1.00		
1,1-Dichloroethene ND 1.2 1.00 c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	1,2-Dichloroethane		ND	1.:	2	1.00		
c-1,2-Dichloroethene ND 1.2 1.00 t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00			ND					
t-1,2-Dichloroethene ND 1.2 1.00 1,2-Dichloropropane ND 1.2 1.00	·							
1,2-Dichloropropane ND 1.2 1.00	•							
	·							
110 116 1100	1,3-Dichloropropane		ND			1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Preparation:

Method:

Units:

Units:

Page 20 of 42

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
2,2-Dichloropropane	ND	5.8	1.00	
1,1-Dichloropropene	ND	2.3	1.00	
c-1,3-Dichloropropene	ND	1.2	1.00	
t-1,3-Dichloropropene	ND	2.3	1.00	
Ethylbenzene	ND	1.2	1.00	
2-Hexanone	ND	23	1.00	
Isopropylbenzene	ND	1.2	1.00	
p-Isopropyltoluene	ND	1.2	1.00	
Methylene Chloride	ND	12	1.00	
4-Methyl-2-Pentanone	ND	23	1.00	
Naphthalene	ND	12	1.00	
n-Propylbenzene	ND	2.3	1.00	
Styrene	ND	1.2	1.00	
1,1,1,2-Tetrachloroethane	ND	1.2	1.00	
1,1,2,2-Tetrachloroethane	ND	2.3	1.00	
Tetrachloroethene	ND	1.2	1.00	
Toluene	ND	1.2	1.00	
1,2,3-Trichlorobenzene	ND	2.3	1.00	
1,2,4-Trichlorobenzene	ND	2.3	1.00	
1,1,1-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloroethane	ND	1.2	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.00	
Trichloroethene	ND	2.3	1.00	
Trichlorofluoromethane	ND	12	1.00	
1,2,3-Trichloropropane	ND	2.3	1.00	
1,2,4-Trimethylbenzene	ND	2.3	1.00	
1,3,5-Trimethylbenzene	ND	2.3	1.00	
Vinyl Acetate	ND	12	1.00	
Vinyl Chloride	ND	1.2	1.00	
p/m-Xylene	ND	2.3	1.00	
o-Xylene	ND	1.2	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.3	1.00	
Tert-Butyl Alcohol (TBA)	ND	23	1.00	
Diisopropyl Ether (DIPE)	ND	1.2	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.2	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.2	1.00	
Ethanol	ND	580	1.00	
Cyclohexanone	ND	58	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Work Order:
18-04-1355

Irvine, CA 92617-3094

Preparation:
EPA 5035

Method:
EPA 8260B
Units:
ug/kg

Project: Hellman Properties / IR18166880 Page 21 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	95	80-120	
Dibromofluoromethane	109	79-133	
1,2-Dichloroethane-d4	121	71-155	
Toluene-d8	101	80-120	

04/17/18

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

18-04-1355 EPA 5035 Preparation: Method: EPA 8260B

Units: ug/kg

Project: Hellman Properties / IR18166880 Page 22 of 42

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-2	18-04-1355-8-C	04/16/18 13:40	Solid	GC/MS LL	04/16/18	04/19/18 12:52	180419L005
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	49	1.00		
Acetone		ND	4	49	1.00		
Benzene		ND	(0.97	1.00		
Bromobenzene		ND	(0.97	1.00		
Bromochloromethane		ND		1.9	1.00		
Bromodichloromethane		ND	(0.97	1.00		
Bromoform		ND	4	4.9	1.00		
Bromomethane		ND		19	1.00		
2-Butanone		ND		19	1.00		
n-Butylbenzene		ND	(0.97	1.00		
sec-Butylbenzene		ND	(0.97	1.00		
tert-Butylbenzene		ND	(0.97	1.00		
Carbon Disulfide		ND	(9.7	1.00		
Carbon Tetrachloride		ND	(0.97	1.00		
Chlorobenzene		ND	(0.97	1.00		
Chloroethane		ND		1.9	1.00		
Chloroform		ND	(0.97	1.00		
Chloromethane		ND		19	1.00		
2-Chlorotoluene		ND	(0.97	1.00		
4-Chlorotoluene		ND	(0.97	1.00		
Dibromochloromethane		ND		1.9	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	4.9	1.00		
1,2-Dibromoethane		ND	(0.97	1.00		
Dibromomethane		ND	(0.97	1.00		
1,2-Dichlorobenzene		ND	(0.97	1.00		
1,3-Dichlorobenzene		ND	(0.97	1.00		
1,4-Dichlorobenzene		ND	(0.97	1.00		
Dichlorodifluoromethane		ND		1.9	1.00		
1,1-Dichloroethane		ND	(0.97	1.00		
1,2-Dichloroethane		ND	(0.97	1.00		
1,1-Dichloroethene		ND	(0.97	1.00		
c-1,2-Dichloroethene		ND	(0.97	1.00		
t-1,2-Dichloroethene		ND	(0.97	1.00		
1,2-Dichloropropane		ND	(0.97	1.00		
1,3-Dichloropropane		ND		0.97	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Irvine, CA 92617-3094

Preparation:

Method:

Units:

ug/kg

Project: Hellman Properties / IR18166880

Date Received:

04/17/18

Work Order:

18-04-1355

Method:

EPA 8260B

Units:

ug/kg

Project: Heliman Properties / IR18166880)			Page 23 of 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.9	1.00	
1,1-Dichloropropene	ND	1.9	1.00	
c-1,3-Dichloropropene	ND	0.97	1.00	
t-1,3-Dichloropropene	ND	1.9	1.00	
Ethylbenzene	ND	0.97	1.00	
2-Hexanone	ND	19	1.00	
Isopropylbenzene	ND	0.97	1.00	
p-Isopropyltoluene	ND	0.97	1.00	
Methylene Chloride	ND	9.7	1.00	
4-Methyl-2-Pentanone	ND	19	1.00	
Naphthalene	ND	9.7	1.00	
n-Propylbenzene	ND	1.9	1.00	
Styrene	ND	0.97	1.00	
1,1,1,2-Tetrachloroethane	ND	0.97	1.00	
1,1,2,2-Tetrachloroethane	ND	1.9	1.00	
Tetrachloroethene	ND	0.97	1.00	
Toluene	ND	0.97	1.00	
1,2,3-Trichlorobenzene	ND	1.9	1.00	
1,2,4-Trichlorobenzene	ND	1.9	1.00	
1,1,1-Trichloroethane	ND	0.97	1.00	
1,1,2-Trichloroethane	ND	0.97	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.7	1.00	
Trichloroethene	ND	1.9	1.00	
Trichlorofluoromethane	ND	9.7	1.00	
1,2,3-Trichloropropane	ND	1.9	1.00	
1,2,4-Trimethylbenzene	ND	1.9	1.00	
1,3,5-Trimethylbenzene	ND	1.9	1.00	
Vinyl Acetate	ND	9.7	1.00	
Vinyl Chloride	ND	0.97	1.00	
p/m-Xylene	ND	1.9	1.00	
o-Xylene	ND	0.97	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.9	1.00	
Tert-Butyl Alcohol (TBA)	ND	19	1.00	
Diisopropyl Ether (DIPE)	ND	0.97	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.97	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.97	1.00	
Ethanol	ND	490	1.00	
Cyclohexanone	ND	49	1.00	
9,0.0000	115	10	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 24 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	96	80-120	
Dibromofluoromethane	108	79-133	
1,2-Dichloroethane-d4	111	71-155	
Toluene-d8	102	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

Page 25 of 42

Project: Hellman Properties / IR18166880

04/17/18

18-04-1355 EPA 5035

EPA 8260B

ug/kg

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-1-3	18-04-1355-9-C	04/16/18 13:50	Solid	GC/MS LL	04/16/18	04/19/18 13:19	180419L005
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
2-Methyl-2-Butanol (TAA)		ND		43	1.00		
Acetone		ND		43	1.00		
Benzene		ND		0.87	1.00		
Bromobenzene		ND		0.87	1.00		
Bromochloromethane		ND		1.7	1.00		
Bromodichloromethane		ND		0.87	1.00		
Bromoform		ND		4.3	1.00		
Bromomethane		ND		17	1.00		
2-Butanone		ND		17	1.00		
n-Butylbenzene		ND		0.87	1.00		
sec-Butylbenzene		ND		0.87	1.00		
tert-Butylbenzene		ND		0.87	1.00		
Carbon Disulfide		ND		8.7	1.00		
Carbon Tetrachloride		ND		0.87	1.00		
Chlorobenzene		ND		0.87	1.00		
Chloroethane		ND		1.7	1.00		
Chloroform		ND		0.87	1.00		
Chloromethane		ND		17	1.00		
2-Chlorotoluene		ND		0.87	1.00		
4-Chlorotoluene		ND		0.87	1.00		
Dibromochloromethane		ND		1.7	1.00		
1,2-Dibromo-3-Chloropropane		ND		4.3	1.00		
1,2-Dibromoethane		ND		0.87	1.00		
Dibromomethane		ND		0.87	1.00		
1,2-Dichlorobenzene		ND		0.87	1.00		
1,3-Dichlorobenzene		ND		0.87	1.00		
1,4-Dichlorobenzene		ND		0.87	1.00		
Dichlorodifluoromethane		ND		1.7	1.00		
1,1-Dichloroethane		ND		0.87	1.00		
1,2-Dichloroethane		ND		0.87	1.00		
1,1-Dichloroethene		ND		0.87	1.00		
c-1,2-Dichloroethene		ND		0.87	1.00		
t-1,2-Dichloroethene		ND		0.87	1.00		
1,2-Dichloropropane		ND		0.87	1.00		
1,3-Dichloropropane		ND		0.87	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Work Order:

18-04-1355

Preparation:

Method:

Units:

Units:

Page 26 of 42

Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.3	1.00	<u>Quamero</u>
1,1-Dichloropropene	ND	1.7	1.00	
c-1,3-Dichloropropene	ND	0.87	1.00	
t-1,3-Dichloropropene	ND	1.7	1.00	
Ethylbenzene	ND	0.87	1.00	
2-Hexanone	ND	17	1.00	
Isopropylbenzene	ND	0.87	1.00	
p-Isopropyltoluene	ND	0.87	1.00	
Methylene Chloride	ND	8.7	1.00	
4-Methyl-2-Pentanone	ND	17	1.00	
Naphthalene	ND	8.7	1.00	
n-Propylbenzene	ND	1.7	1.00	
Styrene	ND	0.87	1.00	
1,1,1,2-Tetrachloroethane	ND	0.87	1.00	
1,1,2,2-Tetrachloroethane	ND	1.7	1.00	
Tetrachloroethene	ND	0.87	1.00	
Toluene	ND	0.87	1.00	
1,2,3-Trichlorobenzene	ND	1.7	1.00	
1,2,4-Trichlorobenzene	ND	1.7	1.00	
1,1,1-Trichloroethane	ND	0.87	1.00	
1,1,2-Trichloroethane	ND	0.87	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.7	1.00	
Trichloroethene	ND	1.7	1.00	
Trichlorofluoromethane	ND	8.7	1.00	
1,2,3-Trichloropropane	ND	1.7	1.00	
1,2,4-Trimethylbenzene	ND	1.7	1.00	
1,3,5-Trimethylbenzene	ND	1.7	1.00	
Vinyl Acetate	ND	8.7	1.00	
Vinyl Chloride	ND	0.87	1.00	
p/m-Xylene	ND	1.7	1.00	
o-Xylene	ND	0.87	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.7	1.00	
Tert-Butyl Alcohol (TBA)	ND	17	1.00	
Diisopropyl Ether (DIPE)	ND	0.87	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.87	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.87	1.00	
Ethanol	ND	430	1.00	
Cyclohexanone	ND	43	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 27 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	96	80-120	
Dibromofluoromethane	110	79-133	
1,2-Dichloroethane-d4	113	71-155	
Toluene-d8	101	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Units:

Method:

18-04-1355 EPA 5035 EPA 8260B

ug/kg

Project: Hellman Properties / IR18166880

Page 28 of 42

04/17/18

B-3-1 18-04-1355-10-C 64/40/18 Solid GC/MS LL 04/16/18 19/49/18 1804/19/10 Parameter Result RL DE Quainfers 2-Methyl-2-Bulanol (TAA) ND 52 1.00 Acetone 8-monophale ND 52 1.00 Acetone 8-monophale ND 1.0 1.00 Bromophale 8-monophale ND 1.0 1.00 Bromophale 8-monophale ND 2.1 1.00 Bromophale 8-monophale ND 1.0 1.00 Bromophale 8-monophale ND 2.1 1.00 Bromophale 8-monophale ND 2.1 1.00 Bromophale 8-monophale ND 2.1 1.00 Bromophale 8-monophale ND 1.0 1.00 Bromophale 8-buthone ND 1.0 1.00 Bromophale 8-buthone ND 1.0 1.00 Bromophale <tr< th=""><th>Client Sample Number</th><th>Lab Sample Number</th><th>Date/Time Collected</th><th>Matrix</th><th>Instrument</th><th>Date Prepared</th><th>Date/Time Analyzed</th><th>QC Batch ID</th></tr<>	Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
2-Methyl-2-Butanol (TAA) ND 52 1.00 Acetone ND 52 1.00 Benzene 1.2 1.0 1.00 Bromochloromethane ND 1.0 1.00 Bromochloromethane ND 2.1 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 5.2 1.00 Bromomethane ND 21 1.00 2-Butanone ND 21 1.00 Pomptyberzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 terr-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorotehane ND 1.0 1.00 Chlorotothane ND 1.0 1.00 Chlorotolune ND 1.0 1.00 <	B-3-1	18-04-1355-10-C		Solid	GC/MS LL	04/16/18	04/19/18 13:46	180419L005
Acetone ND 52 1.00 Benzene 1.2 1.0 1.00 Bromobenzene ND 1.0 1.00 Bromochloromethane ND 2.1 1.00 Bromochloromethane ND 1.0 1.00 Bromoferm ND 5.2 1.00 Bromomethane ND 2.1 1.00 Bromofermane ND 2.1 1.00 Bromomethane ND 2.1 1.00 Bromofermane ND 2.1 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 1-Butylbenzene ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorosethane ND 1.0 1.00 Chlorosethane ND 1.0 1.00	<u>Parameter</u>		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Benzene 1.2 1.0 1.00 Bromobenzene ND 1.0 1.00 Bromodichromethane ND 2.1 1.00 Bromodichromethane ND 1.0 1.00 Bromodichromethane ND 5.2 1.00 Bromomethane ND 21 1.00 Bromomethane ND 21 1.00 -Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobuene ND 1.0 1.00 L2-Dibromo-3-Chloropropane ND 1.0 <t< td=""><td>2-Methyl-2-Butanol (TAA)</td><td></td><td>ND</td><td>5</td><td>2</td><td>1.00</td><td></td><td></td></t<>	2-Methyl-2-Butanol (TAA)		ND	5	2	1.00		
Bromobenzene ND 1.0 1.00 Bromochoromethane ND 2.1 1.00 Bromochoromethane ND 1.0 1.00 Bromodichloromethane ND 5.2 1.00 Bromomethane ND 2.1 1.00 2-Butanone ND 2.1 1.00 Bromomethane ND 1.0 1.00 2-Butanone ND 1.0 1.00 Butylbenzene ND 1.0 1.00 sec-Burylbenzene ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobetane ND 1.0 1.00 Chloroform ND 1.0 1.00 Chloroform ND 1.0 1.00 Chloroforbluene ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 <td>Acetone</td> <td></td> <td>ND</td> <td>5</td> <td>2</td> <td>1.00</td> <td></td> <td></td>	Acetone		ND	5	2	1.00		
Bromochloromethane ND 2.1 1.00 Bromodichloromethane ND 1.0 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 21 1.00 2-Butanone ND 21 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 terr-Butylbenzene ND 1.0 1.00 carbon Tetrachloride ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroberne ND 1.0 1.00 Chlorotomethane ND 2.1 1.00 Chlorotoluene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibriomochloromethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.	Benzene		1.2	1.	.0	1.00		
Bromodichloromethane ND 1.0 1.00 Bromoform ND 5.2 1.00 Bromomethane ND 21 1.00 2-Butanone ND 21 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorodenae ND 1.0 1.00 Chlorodethane ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0	Bromobenzene		ND	1.	.0	1.00		
Bromoform ND 5.2 1.00 Bromomethane ND 21 1.00 2-Butanone ND 21 1.00 nButylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chloroetrane ND 1.0 1.00 Chloroethane ND 1.0 1.00 Chloroethane ND 1.0 1.00 Chloroethane ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1-2-Dibromo-3-Chloropropane ND 1.0 1.00 1-2-Dibromo-3-Chloropropane ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0	Bromochloromethane		ND	2	.1	1.00		
Bromomethane ND 21 1.00 2-Butanone ND 21 1.00 n-Butylbenzene ND 1.0 1.00 ser-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tétrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroform ND 1.0 1.00 Chloroforme ND 1.0 1.00 Chloroformethane ND 2.1 1.00 Chloroforbulene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-S-Chloropropane ND 1.0 1.00 1,2-Dibromo-S-Chloropropane ND 1.0 1.00 1,2-Dichlorobenzene ND 1	Bromodichloromethane		ND	1.	.0	1.00		
2-Butanone ND 21 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorochtane ND 2.1 1.00 Chlorochtane ND 1.0 1.00 Chlorochtane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chloromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dishlorobenzene ND 1.0 1.00 1,2-Dishlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND	Bromoform		ND	5	.2	1.00		
n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 1.0 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 2.1 1.00 Chloroform ND 2.1 1.00 Chlorotoluene ND 2.1 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane N	Bromomethane		ND	2	1	1.00		
sec-Burylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroftane ND 2.1 1.00 Chloroform ND 1.0 1.00 Chlorotolune ND 2.1 1.00 Chlorotolune ND 1.0 1.00 2-Chlorotolune ND 1.0 1.00 4-Chlorotolune ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND	2-Butanone		ND	2	1	1.00		
tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorobethane ND 2.1 1.00 Chlorotofrom ND 2.1 1.00 Chlorotofluene ND 2.1 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND <t< td=""><td>n-Butylbenzene</td><td></td><td>ND</td><td>1.</td><td>.0</td><td>1.00</td><td></td><td></td></t<>	n-Butylbenzene		ND	1.	.0	1.00		
Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chlorotethane ND 2.1 1.00 Chlorotorm ND 1.0 1.00 Chlorotoluene ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 2.1 1.00 1,2-Dibromo-3-Chloropopane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane	sec-Butylbenzene		ND	1.	.0	1.00		
Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.1 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 21 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 1.0 1.00 1,2-Dibromo-3-Chloropropane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene <th< td=""><td>tert-Butylbenzene</td><td></td><td>ND</td><td>1.</td><td>.0</td><td>1.00</td><td></td><td></td></th<>	tert-Butylbenzene		ND	1.	.0	1.00		
Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.1 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 1.0 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Ubitromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene <th< td=""><td>Carbon Disulfide</td><td></td><td>ND</td><td>1</td><td>0</td><td>1.00</td><td></td><td></td></th<>	Carbon Disulfide		ND	1	0	1.00		
Chloroethane ND 2.1 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 21 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND <th< td=""><td>Carbon Tetrachloride</td><td></td><td>ND</td><td>1.</td><td>.0</td><td>1.00</td><td></td><td></td></th<>	Carbon Tetrachloride		ND	1.	.0	1.00		
Chloroform ND 1.0 1.00 Chloromethane ND 21 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	Chlorobenzene		ND	1.	.0	1.00		
Chloromethane ND 21 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 2.1 1.00 Dibromochloromethane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	Chloroethane		ND	2	.1	1.00		
2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloropropane ND 1.0 1.00	Chloroform		ND	1.	.0	1.00		
4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 1,4-Dichloroethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene	Chloromethane		ND	2	1	1.00		
Dibromochloromethane ND 2.1 1.00 1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.1 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00	2-Chlorotoluene		ND	1.	.0	1.00		
1,2-Dibromo-3-Chloropropane ND 5.2 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-1,2-Dichloroethene ND 1.0 1.00 1-2-Dichloroethene ND 1.0 1.00 1-2-Dichloroethe	4-Chlorotoluene		ND	1.	.0	1.00		
1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00	Dibromochloromethane		ND	2	.1	1.00		
Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 1.0 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloropropane ND 1.0 1.00	1,2-Dibromo-3-Chloropropane		ND	5	.2	1.00		
1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.1 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,2-Dibromoethane		ND	1.	.0	1.00		
1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.1 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	Dibromomethane		ND	1.	.0	1.00		
1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.1 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,2-Dichlorobenzene		ND	1.	.0	1.00		
Dichlorodifluoromethane ND 2.1 1.00 1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,3-Dichlorobenzene		ND	1.	.0	1.00		
1,1-Dichloroethane ND 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,4-Dichlorobenzene		ND	1.	.0	1.00		
1,2-Dichloroethane ND 1.0 1.00 1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	Dichlorodifluoromethane		ND	2	.1	1.00		
1,1-Dichloroethene ND 1.0 1.00 c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,1-Dichloroethane		ND	1.	.0	1.00		
c-1,2-Dichloroethene ND 1.0 1.00 t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,2-Dichloroethane		ND	1.	.0	1.00		
t-1,2-Dichloroethene ND 1.0 1.00 1,2-Dichloropropane ND 1.0 1.00	1,1-Dichloroethene		ND	1.	.0	1.00		
1,2-Dichloropropane ND 1.0 1.00	c-1,2-Dichloroethene		ND	1.	.0	1.00		
	t-1,2-Dichloroethene		ND	1.	.0	1.00		
1,3-Dichloropropane ND 1.0 1.00	1,2-Dichloropropane		ND	1.	.0	1.00		
	1,3-Dichloropropane		ND	1.	.0	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18 Work Order: 18-04-1355 121 Innovation Drive, Suite 200 Preparation: **EPA 5035** Irvine, CA 92617-3094 Method: **EPA 8260B** Units: ug/kg Project: Hellman Properties / IR18166880 Page 29 of 42

Parameter Result <u>RL</u> <u>DF</u> Qualifiers ND 5.2 1.00 2,2-Dichloropropane 1,1-Dichloropropene ND 2.1 1.00 ND 1.0 1.00

c-1,3-Dichloropropene t-1,3-Dichloropropene ND 2.1 1.00 Ethylbenzene ND 1.0 1.00 2-Hexanone ND 21 1.00 Isopropylbenzene ND 1.0 1.00 p-Isopropyltoluene ND 1.0 1.00 Methylene Chloride ND 10 1.00 4-Methyl-2-Pentanone ND 21 1.00 Naphthalene ND 10 1.00 n-Propylbenzene ND 2.1 1.00 Styrene ND 1.0 1.00 1,1,1,2-Tetrachloroethane ND 1.0 1.00 1,1,2,2-Tetrachloroethane ND 2.1 1.00 Tetrachloroethene ND 1.0 1.00 Toluene ND 1.0 1.00 1,2,3-Trichlorobenzene ND 2.1 1.00 1,2,4-Trichlorobenzene ND 2.1 1.00 1,1,1-Trichloroethane ND 1.0 1.00 1,1,2-Trichloroethane ND 1.0 1.00 1,1,2-Trichloro-1,2,2-Trifluoroethane ND 10 1.00 ND Trichloroethene 2.1 1.00 Trichlorofluoromethane ND 1.00 10 1,2,3-Trichloropropane ND 2.1 1.00 1,2,4-Trimethylbenzene ND 2.1 1.00 1,3,5-Trimethylbenzene ND 2.1 1.00 ND Vinyl Acetate 10 1.00 Vinyl Chloride ND 1.0 1.00 p/m-Xylene ND 2.1 1.00 o-Xylene ND 1.0 1.00 Methyl-t-Butyl Ether (MTBE) ND 2.1 1.00 Tert-Butyl Alcohol (TBA) ND 21 1.00 Diisopropyl Ether (DIPE) ND 1.0 1.00 Ethyl-t-Butyl Ether (ETBE) ND 1.0 1.00 Tert-Amyl-Methyl Ether (TAME) ND 1.0 1.00 Ethanol ND 520 1.00 Cyclohexanone ND 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

52

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 30 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	96	80-120	
Dibromofluoromethane	110	79-133	
1,2-Dichloroethane-d4	125	71-155	
Toluene-d8	101	80-120	

04/17/18

18-04-1355 EPA 5035

EPA 8260B

ug/kg

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method:

Units:

Page 31 of 42

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-2	18-04-1355-11-C	04/16/18 14:10	Solid	GC/MS LL	04/16/18	04/19/18 14:14	180419L005
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
2-Methyl-2-Butanol (TAA)		ND	4	45	1.00		
Acetone		ND	4	45	1.00		
Benzene		ND	(0.90	1.00		
Bromobenzene		ND	(0.90	1.00		
Bromochloromethane		ND	1	1.8	1.00		
Bromodichloromethane		ND	(0.90	1.00		
Bromoform		ND	4	4.5	1.00		
Bromomethane		ND	1	18	1.00		
2-Butanone		ND	1	18	1.00		
n-Butylbenzene		ND	(0.90	1.00		
sec-Butylbenzene		ND	(0.90	1.00		
tert-Butylbenzene		ND	(0.90	1.00		
Carbon Disulfide		ND	9	9.0	1.00		
Carbon Tetrachloride		ND	(0.90	1.00		
Chlorobenzene		ND	(0.90	1.00		
Chloroethane		ND	1	1.8	1.00		
Chloroform		ND	(0.90	1.00		
Chloromethane		ND	1	18	1.00		
2-Chlorotoluene		ND	(0.90	1.00		
4-Chlorotoluene		ND	(0.90	1.00		
Dibromochloromethane		ND	1	1.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	4.5	1.00		
1,2-Dibromoethane		ND	(0.90	1.00		
Dibromomethane		ND	(0.90	1.00		
1,2-Dichlorobenzene		ND	(0.90	1.00		
1,3-Dichlorobenzene		ND	(0.90	1.00		
1,4-Dichlorobenzene		ND	(0.90	1.00		
Dichlorodifluoromethane		ND	1	1.8	1.00		
1,1-Dichloroethane		ND	(0.90	1.00		
1,2-Dichloroethane		ND	(0.90	1.00		
1,1-Dichloroethene		ND	(0.90	1.00		
c-1,2-Dichloroethene		ND	(0.90	1.00		
t-1,2-Dichloroethene		ND	(0.90	1.00		
1,2-Dichloropropane		ND	(0.90	1.00		
1,3-Dichloropropane		ND	(0.90	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
18-04-1355
Irvine, CA 92617-3094
Preparation:
Method:
Units:
Units:
Units:
Page 32 of 42

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	4.5	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.90	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.90	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.90	1.00	
p-Isopropyltoluene	ND	0.90	1.00	
Methylene Chloride	ND	9.0	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	9.0	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.90	1.00	
1,1,1,2-Tetrachloroethane	ND	0.90	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.90	1.00	
Toluene	ND	0.90	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.90	1.00	
1,1,2-Trichloroethane	ND	0.90	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9.0	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	9.0	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	9.0	1.00	
Vinyl Chloride	ND	0.90	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.90	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.90	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.90	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.90	1.00	
Ethanol	ND	450	1.00	
Cyclohexanone	ND	45	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

Units:

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

Project: Hellman Properties / IR18166880 Page 33 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	97	80-120	
Dibromofluoromethane	110	79-133	
1,2-Dichloroethane-d4	115	71-155	
Toluene-d8	102	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

04/17/18 Work Order: 18-04-1355

Preparation: Method:

Units: ug/kg

Project: Hellman Properties / IR18166880

Page 34 of 42

EPA 5035

EPA 8260B

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
B-3-3	18-04-1355-12-C	04/16/18 14:20	Solid	GC/MS LL	04/16/18	04/19/18 14:41	180419L005
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	4	5	1.00		
Acetone		ND	4	5	1.00		
Benzene		ND	0	.89	1.00		
Bromobenzene		ND	0	.89	1.00		
Bromochloromethane		ND	1	.8	1.00		
Bromodichloromethane		ND	0	.89	1.00		
Bromoform		ND	4	.5	1.00		
Bromomethane		ND	1	8	1.00		
2-Butanone		ND	1	8	1.00		
n-Butylbenzene		ND	0	.89	1.00		
sec-Butylbenzene		ND	0	.89	1.00		
tert-Butylbenzene		ND	0	.89	1.00		
Carbon Disulfide		ND	8	.9	1.00		
Carbon Tetrachloride		ND	0	.89	1.00		
Chlorobenzene		ND	0	.89	1.00		
Chloroethane		ND	1	.8	1.00		
Chloroform		ND	0	.89	1.00		
Chloromethane		ND	1	8	1.00		
2-Chlorotoluene		ND	0	.89	1.00		
4-Chlorotoluene		ND	0	.89	1.00		
Dibromochloromethane		ND	1	.8	1.00		
1,2-Dibromo-3-Chloropropane		ND	4	.5	1.00		
1,2-Dibromoethane		ND	0	.89	1.00		
Dibromomethane		ND	0	.89	1.00		
1,2-Dichlorobenzene		ND	0	.89	1.00		
1,3-Dichlorobenzene		ND	0	.89	1.00		
1,4-Dichlorobenzene		ND	0	.89	1.00		
Dichlorodifluoromethane		ND	1	.8	1.00		
1,1-Dichloroethane		ND	0	.89	1.00		
1,2-Dichloroethane		ND	0	.89	1.00		
1,1-Dichloroethene		ND	0	.89	1.00		
c-1,2-Dichloroethene		ND	0	.89	1.00		
t-1,2-Dichloroethene		ND		.89	1.00		
1,2-Dichloropropane		ND		.89	1.00		
1,3-Dichloropropane		ND		.89	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

Date Received:

04/17/18

Work Order:

18-04-1355

Preparation:

EPA 5035

Method:

Units:

Breactive Albahaman Preparation (IDA0400000)

Project: Hellman Properties / IR18166880				Page 35 of 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
2,2-Dichloropropane	ND	4.5	1.00	
1,1-Dichloropropene	ND	1.8	1.00	
c-1,3-Dichloropropene	ND	0.89	1.00	
t-1,3-Dichloropropene	ND	1.8	1.00	
Ethylbenzene	ND	0.89	1.00	
2-Hexanone	ND	18	1.00	
Isopropylbenzene	ND	0.89	1.00	
p-Isopropyltoluene	ND	0.89	1.00	
Methylene Chloride	ND	8.9	1.00	
4-Methyl-2-Pentanone	ND	18	1.00	
Naphthalene	ND	8.9	1.00	
n-Propylbenzene	ND	1.8	1.00	
Styrene	ND	0.89	1.00	
1,1,1,2-Tetrachloroethane	ND	0.89	1.00	
1,1,2,2-Tetrachloroethane	ND	1.8	1.00	
Tetrachloroethene	ND	0.89	1.00	
Toluene	ND	0.89	1.00	
1,2,3-Trichlorobenzene	ND	1.8	1.00	
1,2,4-Trichlorobenzene	ND	1.8	1.00	
1,1,1-Trichloroethane	ND	0.89	1.00	
1,1,2-Trichloroethane	ND	0.89	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	8.9	1.00	
Trichloroethene	ND	1.8	1.00	
Trichlorofluoromethane	ND	8.9	1.00	
1,2,3-Trichloropropane	ND	1.8	1.00	
1,2,4-Trimethylbenzene	ND	1.8	1.00	
1,3,5-Trimethylbenzene	ND	1.8	1.00	
Vinyl Acetate	ND	8.9	1.00	
Vinyl Chloride	ND	0.89	1.00	
p/m-Xylene	ND	1.8	1.00	
o-Xylene	ND	0.89	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.8	1.00	
Tert-Butyl Alcohol (TBA)	ND	18	1.00	
Diisopropyl Ether (DIPE)	ND	0.89	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	0.89	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.89	1.00	
Ethanol	ND	450	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cyclohexanone

45

1.00

ND

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

Units:

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

04/17/18

18-04-1355

Preparation:

EPA 5035

Method:

Units:

ug/kg

Project: Hellman Properties / IR18166880	Page 36 of 42
1 TOJOGE TICHINATI TOPOTICS / ITTO TOOGGO	1 440 00 01 72

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	98	80-120	
Dibromofluoromethane	111	79-133	
1,2-Dichloroethane-d4	116	71-155	
Toluene-d8	101	80-120	

04/17/18

18-04-1355 EPA 5035

EPA 8260B

Analytical Report

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: Units:

ug/kg Page 37 of 42

Project: Hellman Properties / IR18166880

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-025-29875	N/A	Solid	GC/MS LL	04/18/18	04/18/18 10:51	180418L004
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	50		1.00		
Acetone		ND	50		1.00		
Benzene		ND	1.0)	1.00		
Bromobenzene		ND	1.0)	1.00		
Bromochloromethane		ND	2.0)	1.00		
Bromodichloromethane		ND	1.0)	1.00		
Bromoform		ND	5.0)	1.00		
Bromomethane		ND	20		1.00		
2-Butanone		ND	20		1.00		
n-Butylbenzene		ND	1.0)	1.00		
sec-Butylbenzene		ND	1.0)	1.00		
tert-Butylbenzene		ND	1.0)	1.00		
Carbon Disulfide		ND	10		1.00		
Carbon Tetrachloride		ND	1.0)	1.00		
Chlorobenzene		ND	1.0)	1.00		
Chloroethane		ND	2.0)	1.00		
Chloroform		ND	1.0)	1.00		
Chloromethane		ND	20		1.00		
2-Chlorotoluene		ND	1.0)	1.00		
4-Chlorotoluene		ND	1.0)	1.00		
Dibromochloromethane		ND	2.0)	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	2.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	1.0)	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1,2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
18-04-1355
Irvine, CA 92617-3094
Preparation:
Method:
Units:
Units:
Units:
Page 38 of 42

Project. Hellman Properties / IK to rooodo				Fage 36 01 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	5.0	1.00	
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	20	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	500	1.00	
Cyclohexanone	ND	50	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18
121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 39 of 42

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	95	80-120	
Dibromofluoromethane	103	79-133	
1,2-Dichloroethane-d4	101	71-155	
Toluene-d8	100	80-120	

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Project: Hellman Properties / IR18166880

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: Units: 04/17/18 18-04-1355 EPA 5035

EPA 8260B

ug/kg

Page 40 of 42

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-025-29879	N/A	Solid	GC/MS LL	04/19/18	04/19/18 11:03	180419L005
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
2-Methyl-2-Butanol (TAA)		ND	5	0	1.00		
Acetone		ND	5	0	1.00		
Benzene		ND	1	0	1.00		

1.0 1.00 ND Bromobenzene 1.0 1.00 ND 2.0 Bromochloromethane 1.00 Bromodichloromethane ND 1.0 1.00 **Bromoform** ND 5.0 1.00 Bromomethane ND 20 1.00 2-Butanone ND 20 1.00 n-Butylbenzene ND 1.0 1.00 sec-Butylbenzene ND 1.0 1.00 tert-Butylbenzene ND 1.0 1.00 Carbon Disulfide ND 10 1.00 Carbon Tetrachloride ND 1.0 1.00 Chlorobenzene ND 1.0 1.00 Chloroethane ND 2.0 1.00 Chloroform ND 1.0 1.00 Chloromethane ND 20 1.00 2-Chlorotoluene ND 1.0 1.00 4-Chlorotoluene ND 1.0 1.00 Dibromochloromethane ND 2.0 1.00 1,2-Dibromo-3-Chloropropane ND 5.0 1.00 1,2-Dibromoethane ND 1.0 1.00 Dibromomethane ND 1.0 1.00 1,2-Dichlorobenzene ND 1.0 1.00 1,3-Dichlorobenzene ND 1.0 1.00 1,4-Dichlorobenzene ND 1.0 1.00 Dichlorodifluoromethane ND 2.0 1.00 ND 1,1-Dichloroethane 1.0 1.00 1,2-Dichloroethane ND 1.0 1.00 1.0 1,1-Dichloroethene ND 1.00 c-1,2-Dichloroethene ND 1.0 1.00 ND 1.0 1.00 t-1,2-Dichloroethene 1,2-Dichloropropane ND 1.0 1.00 1,3-Dichloropropane ND 1.0 1.00

RL: Reporting Limit.

DF: Dilution Factor.

Amec Foster Wheeler Environment & Infrastructure,

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Units:

Units:

Page 41 of 42

Project: Hellman Properties / IR18166880)			Page 41 of 42
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qualifiers
2,2-Dichloropropane	ND	5.0	1.00	
1,1-Dichloropropene	ND	2.0	1.00	
c-1,3-Dichloropropene	ND	1.0	1.00	
t-1,3-Dichloropropene	ND	2.0	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	20	1.00	
Isopropylbenzene	ND	1.0	1.00	
p-Isopropyltoluene	ND	1.0	1.00	
Methylene Chloride	ND	10	1.00	
4-Methyl-2-Pentanone	ND	20	1.00	
Naphthalene	ND	10	1.00	
n-Propylbenzene	ND	2.0	1.00	
Styrene	ND	1.0	1.00	
1,1,1,2-Tetrachloroethane	ND	1.0	1.00	
1,1,2,2-Tetrachloroethane	ND	2.0	1.00	
Tetrachloroethene	ND	1.0	1.00	
Toluene	ND	1.0	1.00	
1,2,3-Trichlorobenzene	ND	2.0	1.00	
1,2,4-Trichlorobenzene	ND	2.0	1.00	
1,1,1-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloroethane	ND	1.0	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	1.00	
Trichloroethene	ND	2.0	1.00	
Trichlorofluoromethane	ND	10	1.00	
1,2,3-Trichloropropane	ND	2.0	1.00	
1,2,4-Trimethylbenzene	ND	2.0	1.00	
1,3,5-Trimethylbenzene	ND	2.0	1.00	
Vinyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	1.0	1.00	
p/m-Xylene	ND	2.0	1.00	
o-Xylene	ND	1.0	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	1.00	
Tert-Butyl Alcohol (TBA)	ND	20	1.00	
Diisopropyl Ether (DIPE)	ND	1.0	1.00	
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	1.00	
Ethanol	ND	500	1.00	
Cyclohexanone	ND	50	1.00	
-,	• • •			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200 Work Order: 18-04-1355
Irvine, CA 92617-3094 Preparation: EPA 5035
Method: EPA 8260B
Units: ug/kg

Project: Hellman Properties / IR18166880 Page 42 of 42

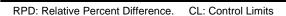
Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	97	80-120	
Dibromofluoromethane	107	79-133	
1,2-Dichloroethane-d4	106	71-155	
Toluene-d8	101	80-120	

Amec Foster Wheeler Environment & Infrastructure, Date Received: 04/17/18 121 Innovation Drive, Suite 200 Work Order: 18-04-1355 Irvine, CA 92617-3094 Preparation: N/A

> Method: EPA 418.1M

Project: Hellman Properties / IR18166880 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
18-04-1428-4	Sample		Sedime	ent IR	2	04/23/18	04/23/18	16:09	180423S01	
18-04-1428-4	Matrix Spike		Sedime	ent IR	2	04/23/18	04/23/18	16:09	180423S01	
18-04-1428-4	Matrix Spike	Duplicate	Sedime	ent IR	2	04/23/18	04/23/18	16:09	180423S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TRPH	91.47	100.0	249.7	158	244.5	153	55-135	2	0-30	3



Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200
18-04-1355
1rvine, CA 92617-3094
Preparation:
EPA 3550B
Method:
EPA 8015B (M)

Project: Hellman Properties / IR18166880 Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
B-2-1	Sample		Solid	GC	48	04/19/18	04/20/18	01:38	180419S01	
B-2-1	Matrix Spike		Solid	GC	48	04/19/18	04/19/18	23:55	180419S01	
B-2-1	Matrix Spike	Duplicate	Solid	GC	48	04/19/18	04/20/18	00:16	180419S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	378.6	95	374.8	94	64-130	1	0-15	

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order: Preparation: 04/17/18 18-04-1355 EPA 3050B

Method:

EPA 6010B

Project: Hellman Properties / IR18166880

Page 3 of 4

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
B-4-1	Sample		Solid	ICP	7300	04/21/18	04/22/18	13:44	180421S03	
B-4-1	Matrix Spike		Solid	ICP	7300	04/21/18	04/22/18	13:45	180421S03	
B-4-1	Matrix Spike	Duplicate	Solid	ICP	7300	04/21/18	04/22/18	13:46	180421S03	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	0.5850	2	0.1886	1	50-115	102	0-20	3,4
Arsenic	14.07	25.00	39.53	102	36.84	91	75-125	7	0-20	
Barium	141.9	25.00	173.6	4X	166.2	4X	75-125	4X	0-20	Q
Beryllium	0.7627	25.00	26.00	101	24.48	95	75-125	6	0-20	
Cadmium	1.061	25.00	24.07	92	23.12	88	75-125	4	0-20	
Chromium	25.23	25.00	51.99	107	48.06	91	75-125	8	0-20	
Cobalt	13.32	25.00	38.12	99	36.20	92	75-125	5	0-20	
Copper	33.04	25.00	62.13	116	57.51	98	75-125	8	0-20	
Lead	8.368	25.00	33.28	100	31.79	94	75-125	5	0-20	
Molybdenum	0.8646	25.00	21.55	83	20.65	79	75-125	4	0-20	
Nickel	20.65	25.00	45.39	99	43.36	91	75-125	5	0-20	
Selenium	ND	25.00	20.70	83	21.25	85	75-125	3	0-20	
Silver	ND	12.50	13.13	105	12.41	99	75-125	6	0-20	
Thallium	ND	25.00	20.89	84	20.57	82	75-125	2	0-20	
Vanadium	53.25	25.00	82.89	119	76.07	91	75-125	9	0-20	
Zinc	68.60	25.00	95.52	108	91.85	93	75-125	4	0-20	

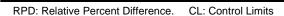
Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:
04/17/18


04/17/18

Preparation:
EPA 7471A Total

Method:
EPA 7471A

Project: Hellman Properties / IR18166880 Page 4 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
B-4-1	Sample		Solid	Mer	cury 08	04/21/18	04/21/18	13:53	180421S03	
B-4-1	Matrix Spike		Solid	Mer	cury 08	04/21/18	04/21/18	13:56	180421S03	
B-4-1	Matrix Spike	Duplicate	Solid	Mer	cury 08	04/21/18	04/21/18	13:58	180421S03	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.7492	90	0.7625	91	71-137	2	0-14	

Quality Control - LCS

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order: 04/17/18 18-04-1355

Preparation:

Method:

N/A EPA 418.1M

Project: Hellman Properties / IR18166880

Page 1 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-07-015-2272	LCS	Solid	IR 2	04/23/18	04/23/18 16:09	180423L01
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
TRPH		20.00	20.52	103	70-130)

Quality Control - LCS

Amec Foster Wheeler Environment & Infrastructure,
121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:
04/17/18

Work Order:
18-04-1355

Preparation:
EPA 3550B

Project: Hellman Properties / IR18166880 Page 2 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-3061	LCS	Solid	GC 48	04/19/18	04/19/18 23:35	180419B01
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %F	Rec. %Rec	:. CL Qualifiers
TPH as Diesel		400.0	381.9	95	75-12	3

to Contents

Quality Control - LCS

Amec Foster Wheeler Environment & Infrastructure,

Project: Hellman Properties / IR18166880

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

04/17/18 18-04-1355 EPA 3050B

Preparation: Method:

EPA 6010B

Wiotii

Page 3 of 6

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Batch	Number
097-01-002-26227	LCS	Solid	ICP 7300	04/21/18	04/22/18	12:59 180421L03	
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	21.04	84	80-120	73-127	
Arsenic		25.00	23.88	96	80-120	73-127	
Barium		25.00	26.22	105	80-120	73-127	
Beryllium		25.00	24.28	97	80-120	73-127	
Cadmium		25.00	25.27	101	80-120	73-127	
Chromium		25.00	25.39	102	80-120	73-127	
Cobalt		25.00	25.01	100	80-120	73-127	
Copper		25.00	25.15	101	80-120	73-127	
Lead		25.00	25.90	104	80-120	73-127	
Molybdenum		25.00	23.72	95	80-120	73-127	
Nickel		25.00	25.63	103	80-120	73-127	
Selenium		25.00	23.70	95	80-120	73-127	
Silver		12.50	12.61	101	80-120	73-127	
Thallium		25.00	25.23	101	80-120	73-127	
Vanadium		25.00	24.67	99	80-120	73-127	

24.51

98

80-120

73-127

25.00

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Zinc

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order:

Work Order: 18-04-1355
Preparation: EPA 7471A Total

Method:

EPA 7471A

04/17/18

Project: Hellman Properties / IR18166880

Page 4 of 6

Quality Control Sample ID	Type	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-3785	LCS	Solid	Mercury 08	04/21/18	04/21/18 13:51	180421L03
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.7802	93	85-12	1

Quality Control - LCS/LCSD

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order: Preparation:

04/17/18 18-04-1355 EPA 5035

Method:

EPA 8260B

Project: Hellman Properties / IR18166880

Page 5 of 6

Quality Control Sample ID	Type		Matrix	Insti	rument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-29875	LCS		Solid	GC/	MS LL	04/18/18	04/18/	18 09:28	180418L004	
095-01-025-29875	LCSD		Solid	GC/	MS LL	04/18/18	04/18/	18 09:56	180418L004	
Parameter	Spike Added	LCS Conc	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	50.00	50.42	101	49.62	99	80-120	73-127	2	0-20	
Carbon Tetrachloride	50.00	51.57	103	50.20	100	65-137	53-149	3	0-20	
Chlorobenzene	50.00	51.79	104	51.23	102	80-120	73-127	1	0-20	
1,2-Dibromoethane	50.00	49.93	100	51.51	103	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	50.00	49.90	100	50.14	100	80-120	73-127	0	0-20	
1,2-Dichloroethane	50.00	50.00	100	50.67	101	80-120	73-127	1	0-20	
1,1-Dichloroethene	50.00	53.26	107	51.73	103	68-128	58-138	3	0-20	
Ethylbenzene	50.00	52.78	106	51.74	103	80-120	73-127	2	0-20	
Toluene	50.00	54.16	108	53.29	107	80-120	73-127	2	0-20	
Trichloroethene	50.00	54.83	110	53.13	106	80-120	73-127	3	0-20	
Vinyl Chloride	50.00	58.41	117	55.91	112	67-127	57-137	4	0-20	
p/m-Xylene	100.0	103.2	103	101.4	101	75-125	67-133	2	0-25	
o-Xylene	50.00	49.94	100	49.50	99	75-125	67-133	1	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	47.39	95	49.37	99	70-124	61-133	4	0-20	
Tert-Butyl Alcohol (TBA)	250.0	247.8	99	244.3	98	73-121	65-129	1	0-20	
Diisopropyl Ether (DIPE)	50.00	48.30	97	49.56	99	69-129	59-139	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	47.96	96	49.33	99	70-124	61-133	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	47.33	95	48.20	96	74-122	66-130	2	0-20	
Ethanol	500.0	552.5	111	507.7	102	51-135	37-149	8	0-27	

Total number of LCS compounds: 19 Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Amec Foster Wheeler Environment & Infrastructure, 121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received: Work Order: Preparation: 04/17/18 18-04-1355 EPA 5035

Method:

EPA 8260B

Project: Hellman Properties / IR18166880

Page 6 of 6

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
095-01-025-29879	LCS		Solid	GC/	MS LL	04/19/18	04/19/1	8 09:38	180419L005	
095-01-025-29879	LCSD		Solid	GC/	MS LL	04/19/18	04/19/1	8 10:05	180419L005	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	50.00	52.33	105	49.89	100	80-120	73-127	5	0-20	
Carbon Tetrachloride	50.00	51.96	104	48.90	98	65-137	53-149	6	0-20	
Chlorobenzene	50.00	52.92	106	50.98	102	80-120	73-127	4	0-20	
1,2-Dibromoethane	50.00	52.22	104	51.47	103	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	50.00	50.90	102	49.88	100	80-120	73-127	2	0-20	
1,2-Dichloroethane	50.00	52.60	105	51.87	104	80-120	73-127	1	0-20	
1,1-Dichloroethene	50.00	56.35	113	52.16	104	68-128	58-138	8	0-20	
Ethylbenzene	50.00	53.93	108	51.33	103	80-120	73-127	5	0-20	
Toluene	50.00	55.65	111	53.27	107	80-120	73-127	4	0-20	
Trichloroethene	50.00	56.73	113	53.38	107	80-120	73-127	6	0-20	
Vinyl Chloride	50.00	59.83	120	57.28	115	67-127	57-137	4	0-20	
p/m-Xylene	100.0	105.6	106	100.6	101	75-125	67-133	5	0-25	
o-Xylene	50.00	51.17	102	49.10	98	75-125	67-133	4	0-25	
Methyl-t-Butyl Ether (MTBE)	50.00	49.64	99	49.59	99	70-124	61-133	0	0-20	
Tert-Butyl Alcohol (TBA)	250.0	240.7	96	240.3	96	73-121	65-129	0	0-20	
Diisopropyl Ether (DIPE)	50.00	51.40	103	50.19	100	69-129	59-139	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	50.00	50.40	101	49.93	100	70-124	61-133	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	50.00	48.38	97	47.94	96	74-122	66-130	1	0-20	
Ethanol	500.0	544.8	109	569.0	114	51-135	37-149	4	0-27	

Total number of LCS compounds: 19
Total number of ME compounds: 0
Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 18-04-1355				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 418.1M	N/A	605	IR 2	1
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7471A	EPA 7471A Total	868	Mercury 08	1
EPA 8015B (M)	EPA 3550B	682	GC 48	1
EPA 8260B	EPA 5035	867	GC/MS LL	2

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-04-1355 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

PROJECT NAME:	Hellman Proba		_						DATE:	011/h :	0	<u></u>	PAGE	_	OF
MBER:			PRATORY NA	EUCHYNAME: (1500)	Sente	CLIENT INFORMATION	RMATION:		REPORT	REPORTING REQUIRE	MENTS:	4			9
RESULTS TO: Phila	Baturau	ĽABC	DRATORY AL	DRESS:				mentipes de bilançamente sa combete, este de fermite de subset de	demokratik komunikarik kalandarik kalandarik kalandarik kalandarik kalandarik kalandarik kalandarik kalandarik		B		O POP		Administração de forma a comprehensa de porte de política de despuesta de política de política de política de p
A 1	Yandord J				-								Topicos Villenana and Tanasa and		
Lab Courer	がくくなって		RATORY P	LABORATORY PHONE NUMBER:	X				GEOTRA	GEOTRACKER REQUIRED	ED			YES	ON
SAMPLERS	(SIGNATURE):	<u>.</u>			ANALY	SES		Andrewskie in the second control of the seco	20110	S CLOS) 				editeliar for mediatal and commercial and commercia
tar	1	WSIQX h	raliz ha	Anges ha	128 ok					Agter (W), or Other (O)		ve iype		snenistr	
DATE TIME	SAMPLE	9 Hol	HARL	9701	的				CONTAINER TYPE AND SIZE		Filtered	Preservati	dsw/sw	No. of Cor	ADDITIONAL COMMENTS
4114118 10-12	1-H-B 5	X	X	X	X			Fī	407,914,92	to 8		<u> </u>	 	 	No preservetive
17.7	3-4-8	2 \times	X	X	X							X		7	Urd to alass
1 6300		$\stackrel{>}{\times}$	\times	X	X									フェ	Jac
0.01	18-2-1	4 X	X	X	X							<u> </u>		7	
Ž		κ	X	X	X									<u></u>	
15.	5 8-2-4	X	X	X	X							<u></u>			
1335	5 3-1-1	N N	X	X	X								$\overline{}$	ェ	
13,40	27-90	X	X	X	X										
1350	5-1-3	S S	X	X	X							\triangle		ュ	
001	8-3-1	X R	X	X	X									I	
0110	B-3-2	X	X	Χ	X							Δ		エ	
07/11/20	0839	X L	X	X	X				>	×	~>> ->>	$\langle \rangle$		7	
***************************************		5.a								The second secon			The second secon		
		ACTIVITY SAND OF THE PROPERTY		THE RESIDENCE OF THE PROPERTY.											
RELINQUISHED BY	: DATE	TIME RE	RECEIVED	D BY:	┨ ゚	DATE	TIME	OTAL NUMBER	TOTAL NUMBER OF CONTAINERS:					S S	
SIGNATURE: PRINTED NAME:	S S S S S S S S S S S S S S S S S S S	 	SIGNATURE:			75	┼	SAMPLING COMMENTS:	AENTS:					3	
COMPANY:	24ech Nede 111718	1 1	COMPANY:	100 100 100 100 100 100 100 100 100 100			(CM 81/1)								
PRINTED NAME	F Chandler YITAIR 1310		PRINTED NAME	3/2	CHARAC		2/6/								
COIMPAINT: DCS/EC	<u></u>		MPAN Y:	-		A,		одинения в дей							
SIGNATURE: '	The second secon	Sig id	SIGNATURE:	Afr.				121 lr	121 Innovation Drive, Suite 200	, Suite 20	0				(?
ישואיר בין יאוואין		Z 		U.				rvin	Irvine California 92617-3094	617-3094					

eurofins

Calscience

WORK ORDER NUMBER: 18-04-

SAMPLE RECEIPT CHECKLIST

000150		/ 05		Chellange
COOLER			Ur _	
DATE:	04/	171	20.	18

CLIENT: Amec	DATE: 04/	7/2018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF): 2 °C (w/ CF): 2 5 Sample(s) outside temperature criteria (PM/APM contacted by:) Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling Sample(s) received at ambient temperature; placed on ice for transport by courier		□ Sample
Ambient Temperature: Air Filter	Checked b	у:
CUSTODY SEAL: Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A		• •
SAMPLE CONDITION: Chain-of-Custody (COC) document(s) received with samples COC document(s) received complete	💆 [No N/A
□ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time		
Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen Proper preservation chemical(s) noted on COC and/or sample container Unpreserved aqueous sample(s) received for certain analyses □ Volatile Organics □ Total Metals □ Dissolved Metals	/	
Acid/base preserved samples - pH within acceptable range		
Tedlar™ bag(s) free of condensation CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna₂ □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 125AGBp □ □ 250AGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGJ □ 500AGJ □ 500AGJ	umber: 1 125PB 🛭 125PBz	nna (pH9)
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □	0	
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziplo Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Last S = H ₂ SO ₄ , u = ultra-pure, x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna = Zn (CH ₃ CO ₂) ₂ + NaOH	abeled/Checked l	by: 1140 by: 125

Calscience

SAMPLE ANOMALY REPORT

DATE: 04 / /7 / 2018

SAMPLES, CONTAINERS, AND LABELS:	Comments
☐ Sample(s) NOT RECEIVED but listed on COC	***************************************
☐ Sample(s) received but NOT LISTED on COC	
☐ Holding time expired (list client or ECI sample ID and	analysis)
☐ Insufficient sample amount for requested analysis (list	t analysis)
☐ Improper container(s) used (list analysis)	(-2) Received 2 out of 3
☐ Improper preservative used (list analysis)	terracores dry. (preserved w/
☐ pH outside acceptable range (list analysis)	methonal)
☐ No preservative noted on COC or label (list analysis a	ind notify lab)
☐ Sample container(s) not labeled	
☐ Client sample label(s) illegible (list container type and	analysis)
☐ Client sample label(s) do not match COC (comment)	
☐ Project information	
☐ Client sample ID	
☐ Sampling date and/or time	
☐ Number of container(s)	
☐ Requested analysis	
☐ Sample container(s) compromised (comment)	
☐ Broken	
☐ Water present in sample container	
☐ Air sample container(s) compromised (comment)	
□ Flat	
☐ Very low in volume	
☐ Leaking (not transferred; duplicate bag submitted)	
☐ Leaking (transferred into ECI Tedlar™ bags*)	
☐ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments
* Pry sample	
HEADSPACE:	
(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolve	ed gas analysis) (Containers with bubble for other analysis)
ECI ECI Total ECI ECI Sample ID Container ID Number** Sample ID Container	Total ECI ECI Total ID Number** Sample ID Container ID Number** Requested Analysis
Cample to Container to Hamber Cample to Container	
Comments:	
Confilicitio.	Reported by: 1/4 A
** Record the total number of containers (i.e., vials or bottles) for the affe	Reported by: 1/4 () Reted sample. Reviewed by:
Record the total number of containers (i.e., vials of bottles) for the affe	octed sample.

wood.

Appendix F

Liquefaction and Seismically Induced Settlement Analysis

121 Innovation Drive, Suite 200 Irvine, CA 92617

LIQUEFACTION ANALYSIS REPORT

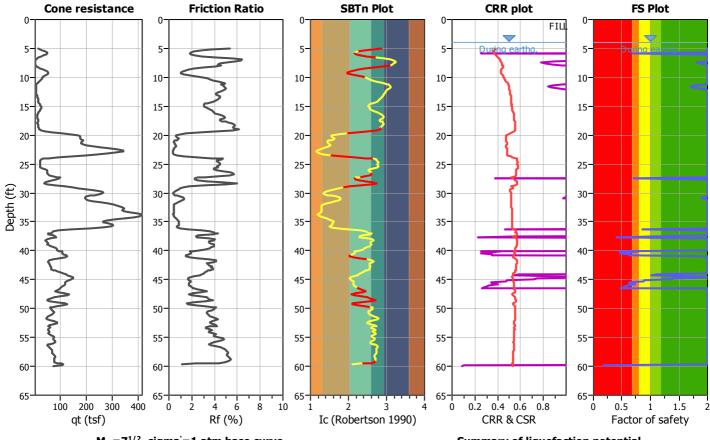
Project title: Location:

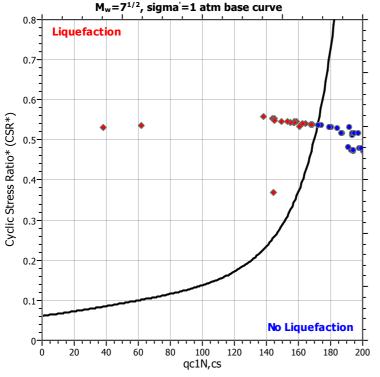
CPT file: CPT-1

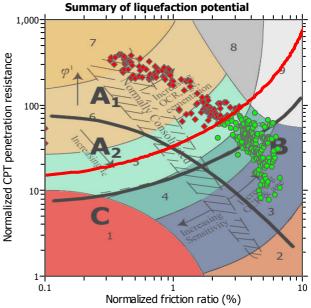
Peak ground acceleration:

Input parameters and analysis data

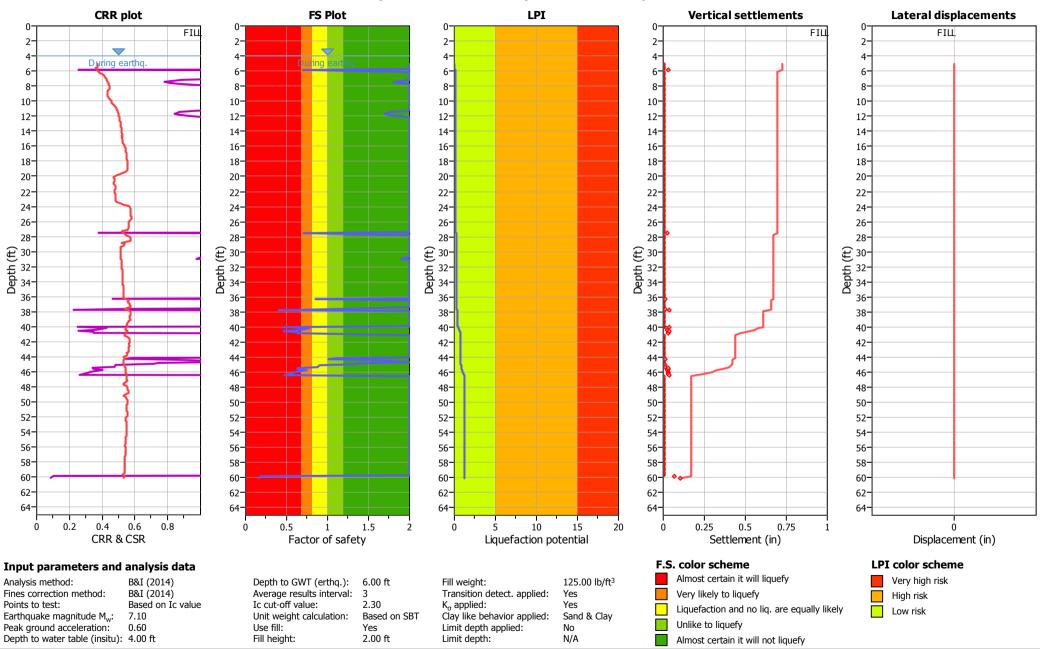
Analysis method: B&I (2014) Fines correction method: B&I (2014) Points to test: Earthquake magnitude M_w:


Based on Ic value 7.10


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


4.00 ft 6.00 ft 3 2.30 Based on SBT Use fill: Yes 2.00 ft Fill height: Fill weight: Trans. detect. applied: Yes K_{σ} applied:

125.00 lb/ft3


Clay like behavior applied: Sand & Clay Limit depth applied: No Limit depth: N/A MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

121 Innovation Drive, Suite 200 Irvine, CA 92617

LIQUEFACTION ANALYSIS REPORT

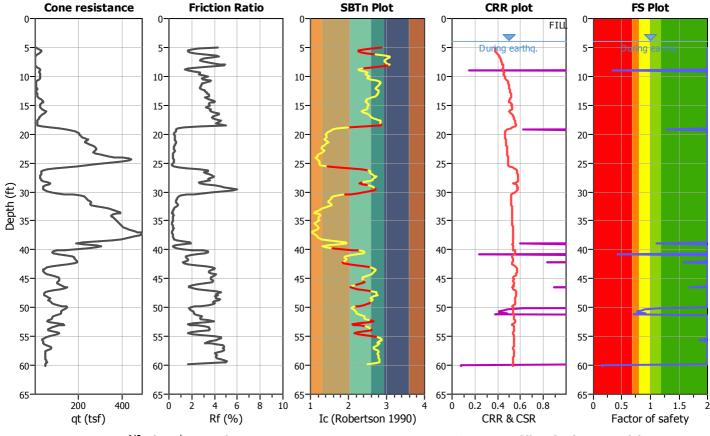
Project title: Location:

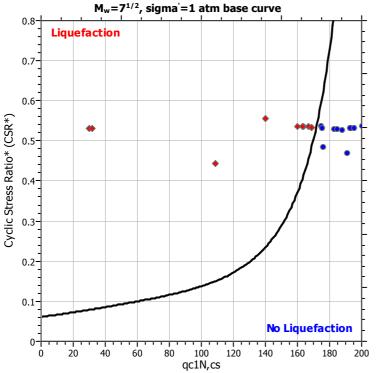
CPT file: CPT-2

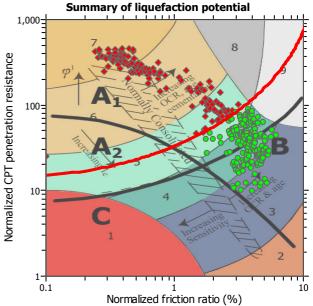
Peak ground acceleration:

Input parameters and analysis data

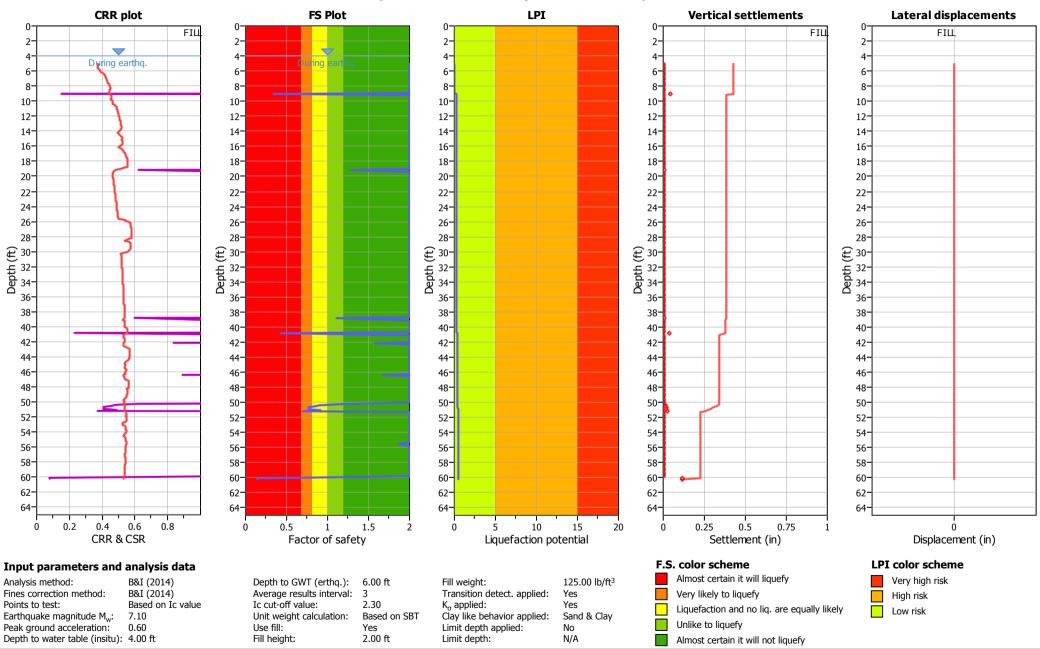
Analysis method: Fines correction method: Points to test: Earthquake magnitude M_w:


B&I (2014) B&I (2014) Based on Ic value 7.10


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


4.00 ft 6.00 ft 3 2.30 Based on SBT Use fill: Yes 2.00 ft Fill height: Fill weight: Trans. detect. applied: Yes K_{σ} applied:

125.00 lb/ft3


Clay like behavior applied: Sand & Clay Limit depth applied: No Limit depth: N/A MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

121 Innovation Drive, Suite 200 Irvine, CA 92617

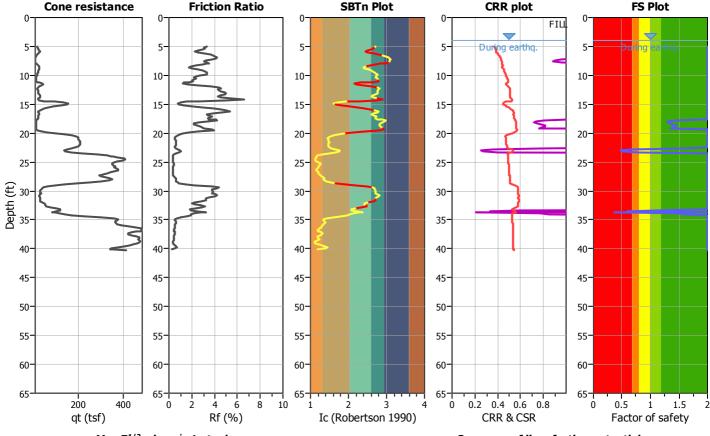
LIQUEFACTION ANALYSIS REPORT

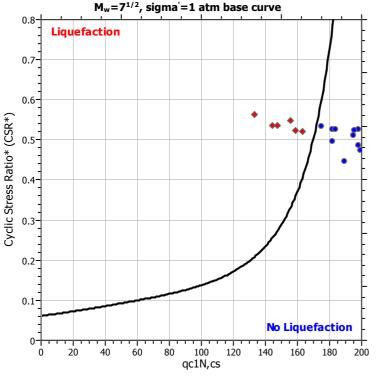
Project title: Location:

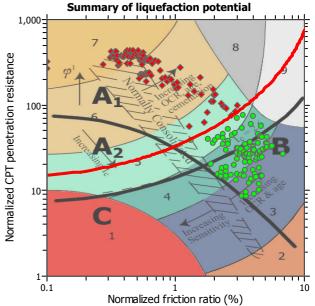
CPT file: CPT-3

Input parameters and analysis data

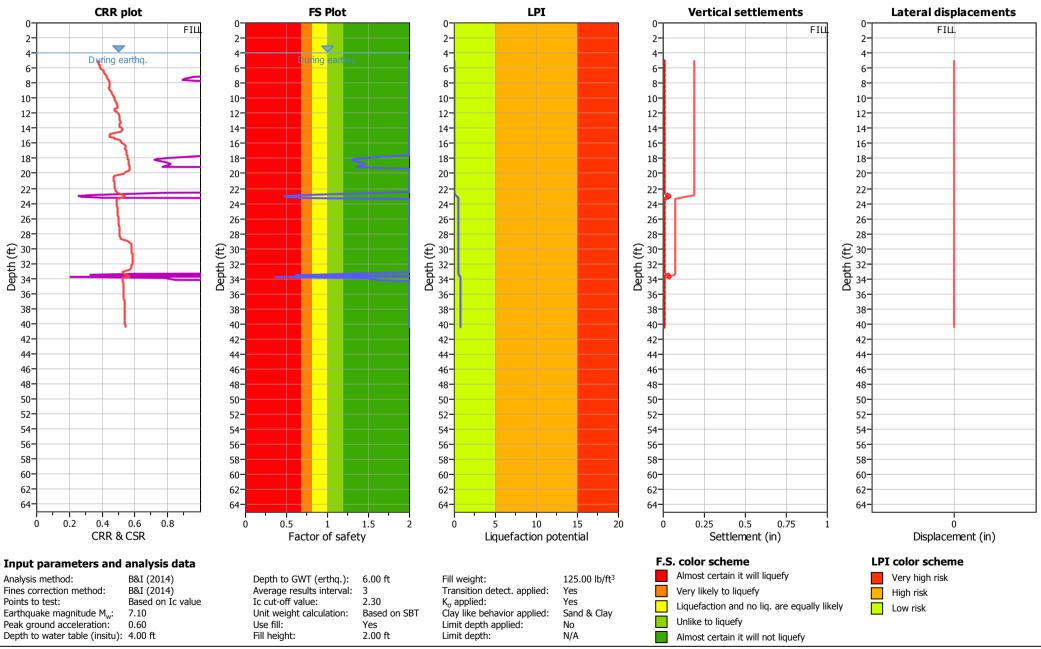
Analysis method: B&I (2014) Fines correction method: B&I (2014) Points to test: Based on Ic value


Earthquake magnitude M_w: 7.10 Peak ground acceleration:


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


4.00 ft 6.00 ft 3 2.30 Based on SBT Use fill: Yes 2.00 ft Fill height: Fill weight: Trans. detect. applied: Yes K_{σ} applied:

125.00 lb/ft3


Clay like behavior applied: Sand & Clay Limit depth applied: No Limit depth: N/A MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

121 Innovation Drive, Suite 200 Irvine, CA 92617

LIQUEFACTION ANALYSIS REPORT

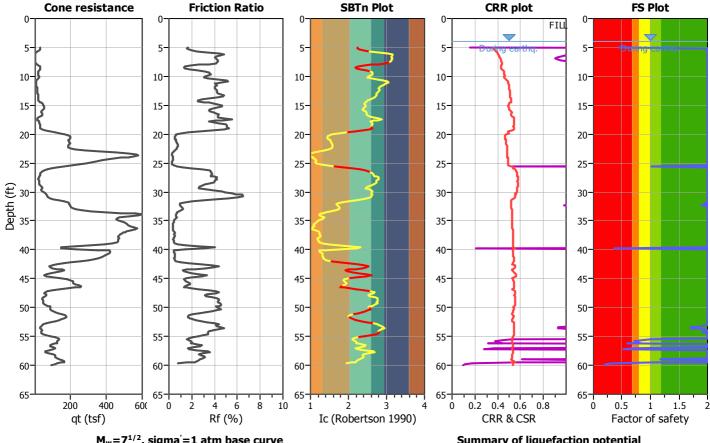
Project title: Location:

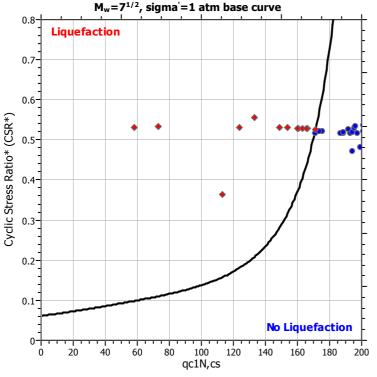
CPT file: CPT-4

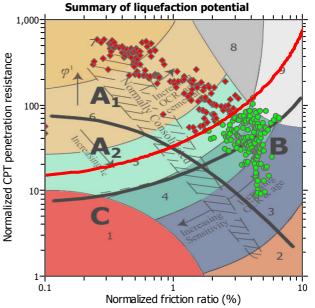
Peak ground acceleration:

Input parameters and analysis data

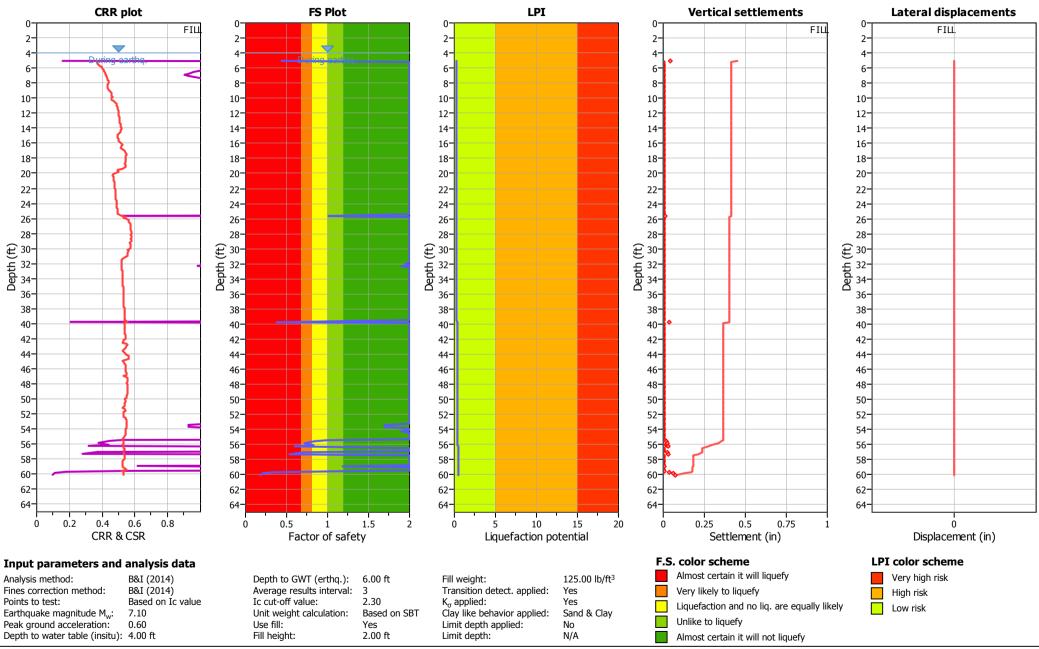
Analysis method: B&I (2014) Fines correction method: B&I (2014) Points to test: Earthquake magnitude M_w:


Based on Ic value 7.10


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


4.00 ft 6.00 ft 3 2.30 Based on SBT Use fill: Yes 2.00 ft Fill height: Fill weight: Trans. detect. applied: Yes K_{σ} applied:

125.00 lb/ft3


Clay like behavior applied: Sand & Clay Limit depth applied: No Limit depth: N/A MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

121 Innovation Drive, Suite 200 Irvine, CA 92617

LIQUEFACTION ANALYSIS REPORT

Project title: Location:

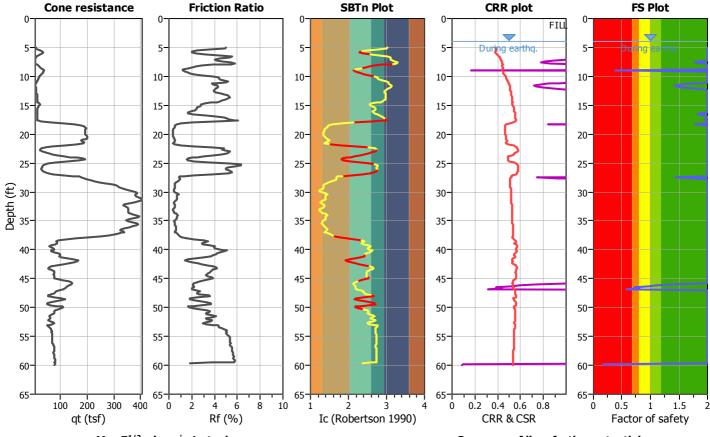
CPT file: CPT-5

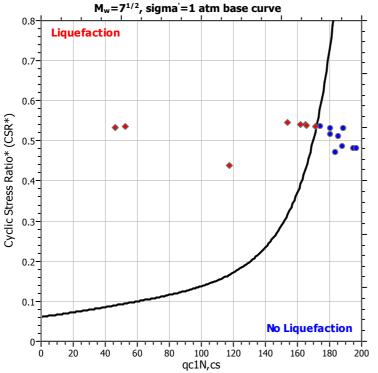
Peak ground acceleration:

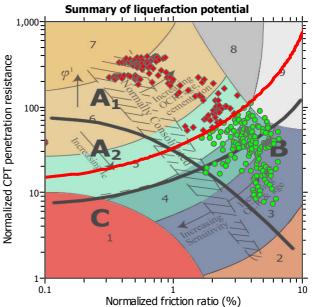
Input parameters and analysis data

Analysis method: B&I (2014) Fines correction method: B&I (2014) Points to test: Earthquake magnitude M_w:

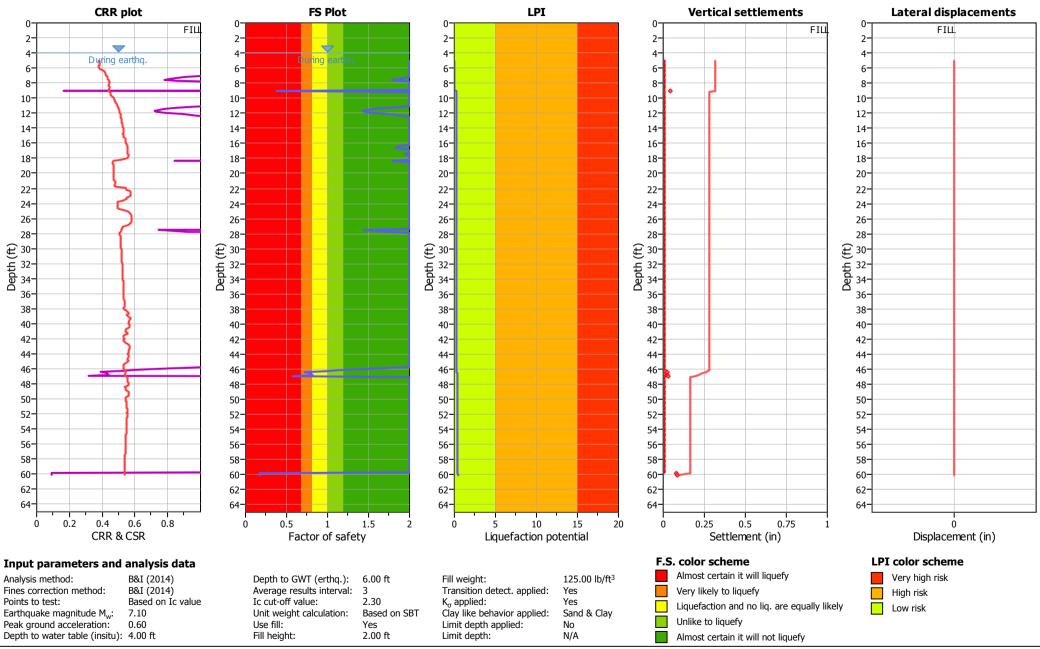
Based on Ic value 7.10

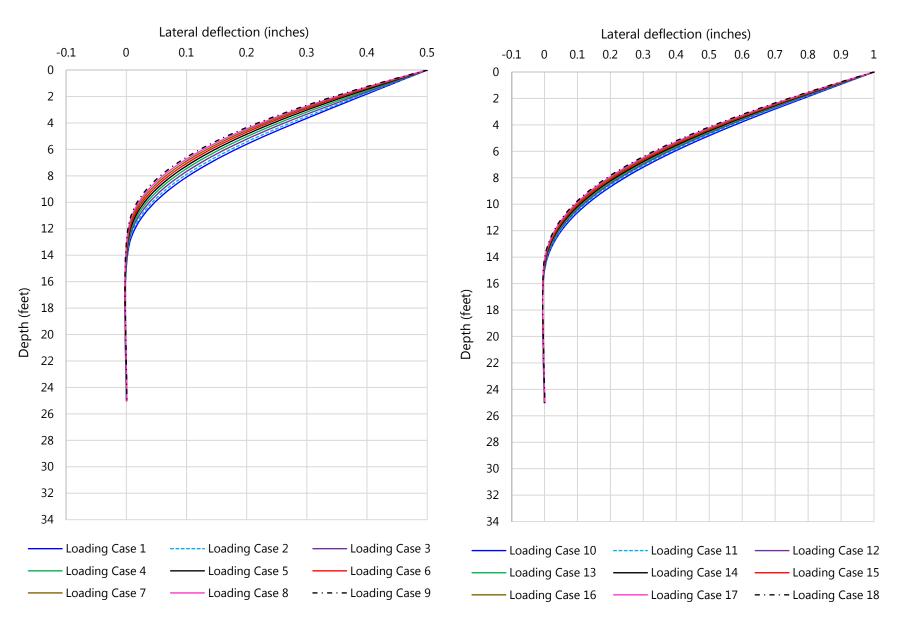

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

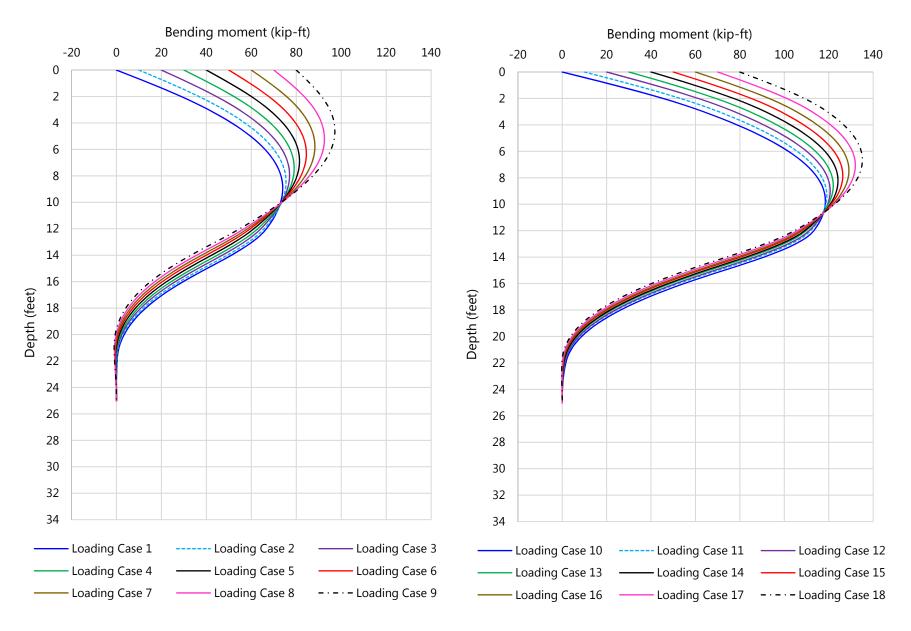

4.00 ft 6.00 ft 3 2.30 Based on SBT Use fill: Fill height: Fill weight: Trans. detect. applied: K_{σ} applied:


Yes 2.00 ft 125.00 lb/ft3 Yes

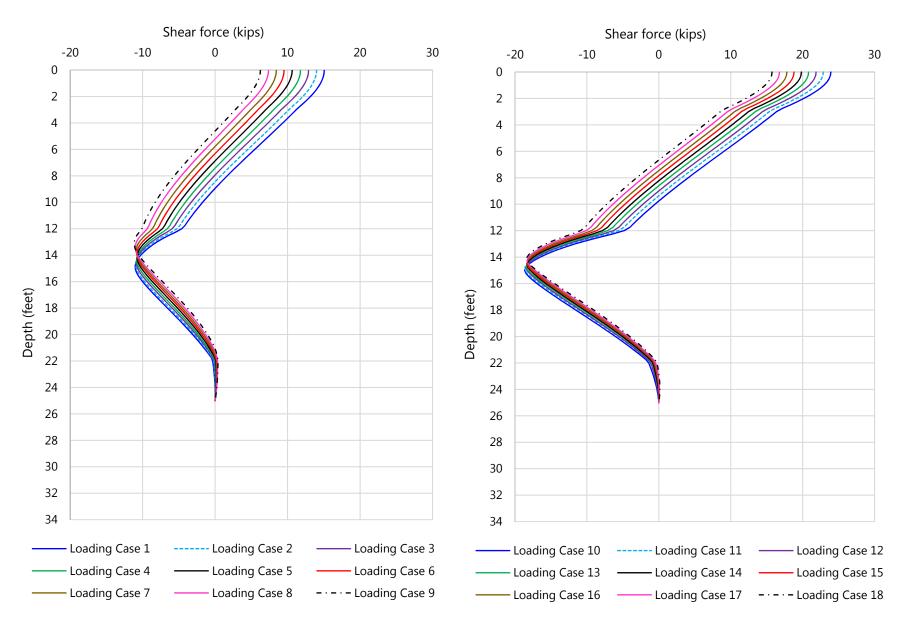
Clay like behavior applied: Sand & Clay Limit depth applied: No Limit depth: N/A MSF method:

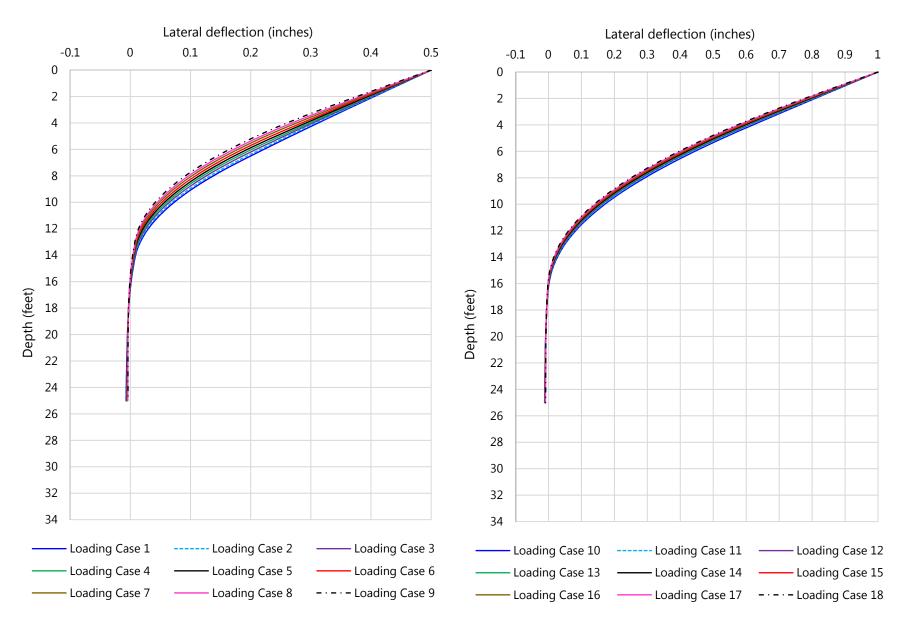

Method based

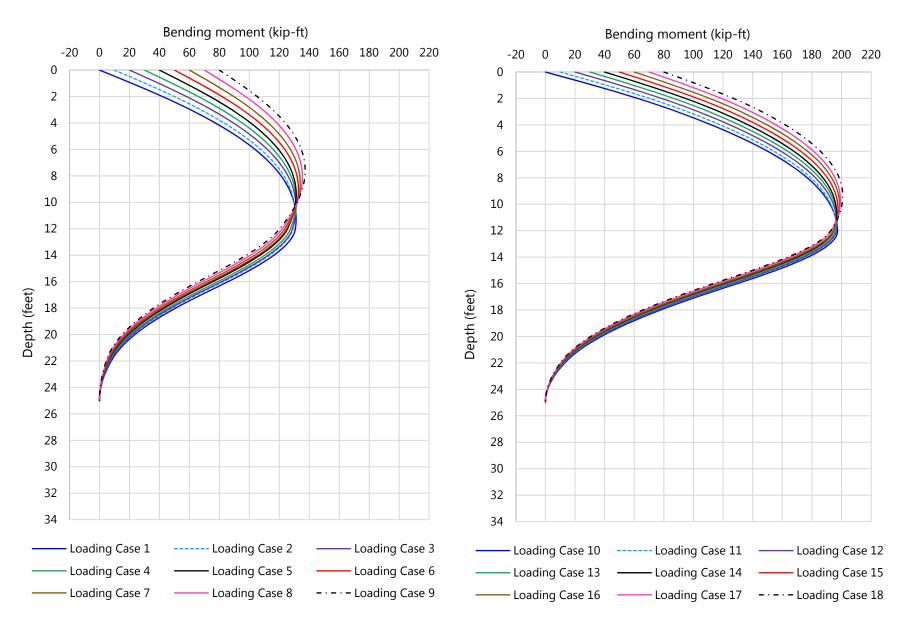

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A2: Cyclic liquefaction and strength loss likely depending on loading and ground

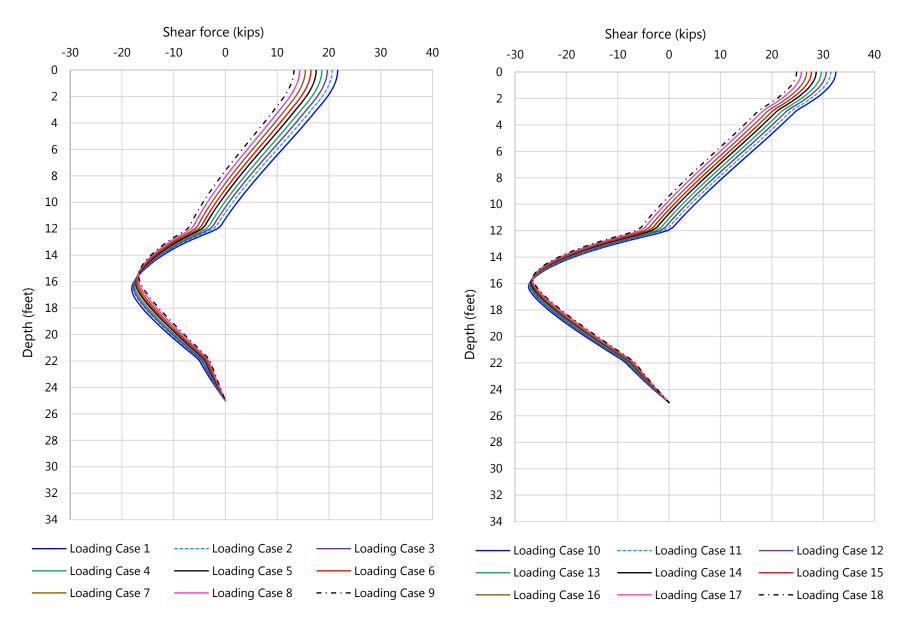

wood.

Appendix G


CIDH Piles Lateral Load Analysis Results

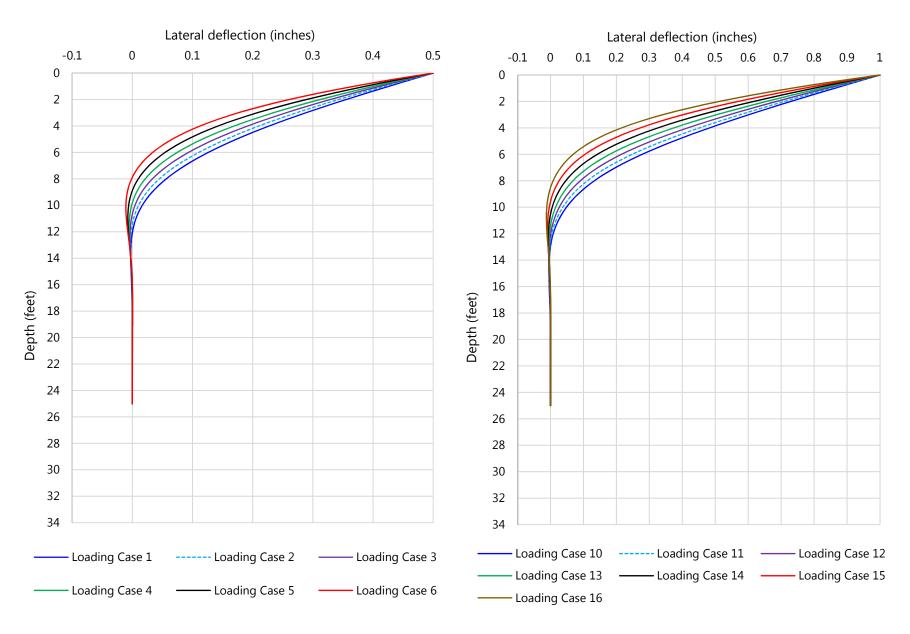

Diameter = 24 in, Length = 25 feet


Diameter = 24 in, Length = 25 feet

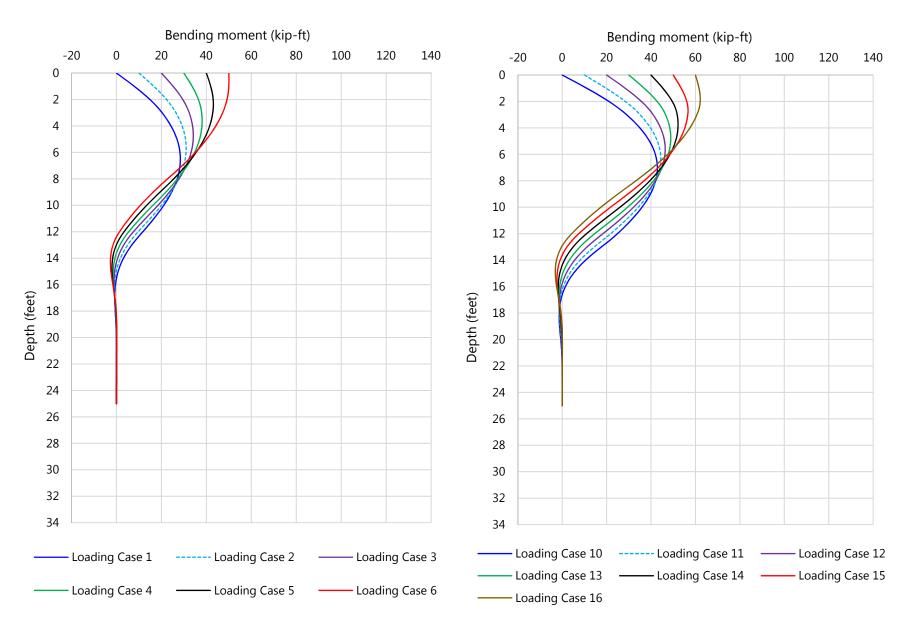

Diameter = 24 in, Length = 25 feet

Diameter = 30 in, Length = 25 feet

Diameter = 30 in, Length = 25 feet

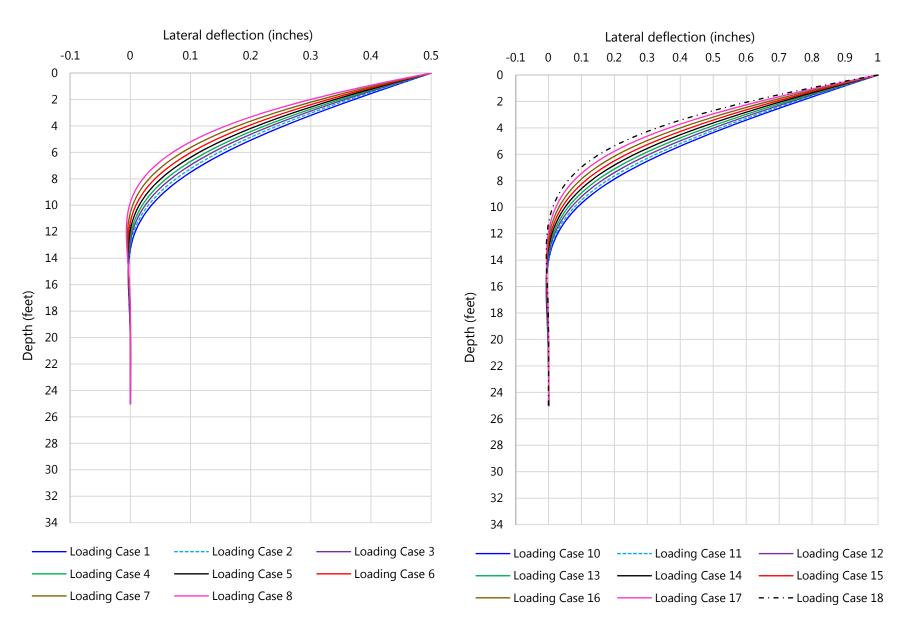


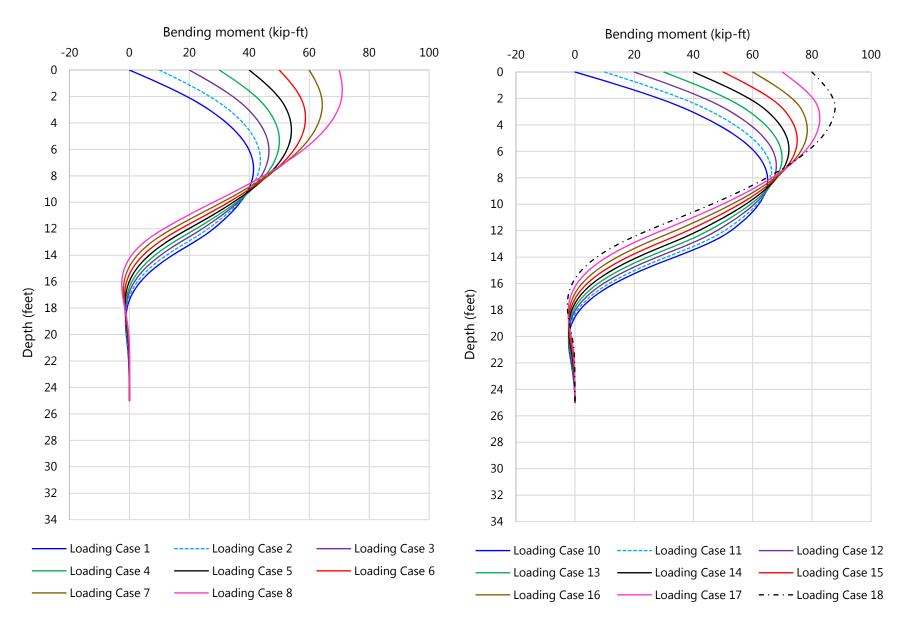
Diameter = 30 in, Length = 25 feet

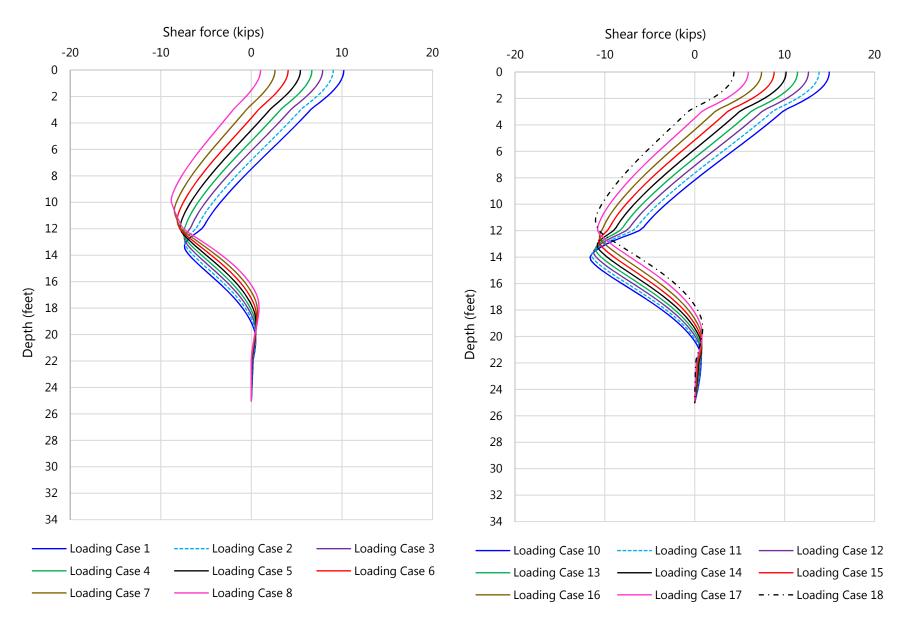

wood.

Appendix H


SPPC Piles Lateral Load Analysis Results


12-inch SPPC pile, Length = 25 feet


12-inch SPPC pile, Length = 25 feet


12-inch SPPC pile, Length = 25 feet

14-inch SPPC pile, Length = 25 feet

14-inch SPPC pile, Length = 25 feet

14-inch SPPC pile, Length = 25 feet