

TECHNICAL MEMORANDUM

DATE:	May 31, 2019
TO:	San Luis Obispo County Department of Public Works
FROM:	Chris Barber, PE
SUBIECT:	Sidifoax Cultivation Drainage Analysis

Project Information

This technical memorandum outlines the existing and proposed drainage features for the Sidifoax Cannabis project located at 7575 Carrisa Highway, Santa Margarita, CA. The project is located off State Route 58, just west of the Topaz Solar Farm. Approximately 9 acres of the site's 106 acres will be disturbed. The proposed project includes widening and reconstruction of an existing driveway, two outdoor cannabis grow fields, an indoor cannabis grow structure, and a support building for operations and nursery work. The outdoor grow areas will be constructed with hoop houses. The project will consist of two phases. For the purposes of the analysis in this technical memo, it is assumed that all proposed development is complete and stabilized.

The site consists of rolling terrain with 10% average slopes and contains shrubbery and short grasses. Soils are predominately Hydrologic Soil Group Type C per the NRCS Web Soil Survey. The On-Site watershed is part of a larger 440-acre off-site watershed south of the project (See Watershed Map in Appendix). Because the runoff from the on-site development (11-acre watershed) joins this confluence shortly after leaving the site and due to the significantly smaller size, the on-site development will have an insignificant impact on downstream peak runoff, even though peak flows will increase from the on-site watershed with the development of the project site. No adverse effects from the increase in post-developed water are anticipated.

Existing drainage patterns are maintained to the best extents possible in the proposed site design. A watershed map of the proposed improvements is attached to this memo for reference. Runoff from the west watershed will be captured by a roadside swale, while the east watershed will drain across the site to the north and is collected and

\\nce-dc01\cad\PROJ\19101\Civil\Drainage\Technical Memo\19101_Technical Memorandum.docx

805.239.3127 • 725 Creston Road, Suite B, Paso Robles, CA 93446

Sidifoax Cultivation Technical Memorandum May 31, 2019 Page 2 of 4

discharged through the installation of a new culvert. The discharge of the culvert will recombine with the west watershed and spread to sheet flow and continue in its existing condition to State Route 58. Collectively, the east and west watersheds are represented as the "on-site" watershed on the attached exhibit. Once runoff reaches SR58, it flows through the existing drainage ditch along the highway in a westerly direction and then through an existing 24" culvert under the projects existing driveway, continuing westerly. Increase in runoff to this culvert from development is documented in this memo and analysis of the existing culvert will be conducted with final grading plans to ensure the increase in runoff can be accommodated in the existing conditions.

Runoff Calculations

The rational method was selected to determine peak flows for the site given the acreage of the on-site watersheds.

C value: The runoff coefficient was derived from SLO County Standard Detail H-3a, resulting in a value of 0.44. A composite c-value for the west watershed was computed by using the 0.44 value for pervious areas, 0.75 for all developed areas, and 1.0 for buildings.

Time of concentration: T_c was derived from SLO County Standard Detail H-2, with elevation (45-ft) and length (850-ft) determined. This results in a T_c of 4.5 minutes. This value was brought up to the county minimum of 10 minutes.

I value: An intensity was derived based on review of SLO County Standard Detail H-1. The property is located along the 12" annual rainfall contour. With a T_c of 10 minutes, the corresponding table on Detail H-4 prescribes I values of 2.0 and 2.2 for the 25-year and 50-year storm events, respectively.

Areas: The west watershed area (A_w) is 3.5 acres. The east watershed area (A_E) is 4.3 acres. The total on-site watershed area (A_T) does not differ significantly in the pre/post developed conditions and is 11.3 acres.

East Watershed Rational Method Calculations

Q = kCIA, where k is the conversion factor for US units, k = 1.008

Composite C = (0.44 * 1.8 + 0.75 * 1.9 + 1.0 * 0.1) / 3.8 = 0.61

Sidifoax Cultivation Technical Memorandum May 31, 2019 Page 3 of 4

 $I_{25} = 2.0 \text{ in/hr} \qquad I_{50} = 2.2 \text{ in/hr} \qquad A_E = 3.8 \text{ acres}$ $Q_{25} = 1.008 * 0.61 * 2.0 * 3.8 = 4.7 \text{ CFS}$ $Q_{50} = 1.008 * 0.61 * 2.2 * 3.8 = 5.1 \text{ CFS}$

West Watershed Rational Method Calculations

Q = kCIA, where k is the conversion factor for US units, k = 1.008 Composite C = (0.44 * 0.8 + 0.75 * 2.3 + 1.0 * 0.4) / 3.6 = 0.69 $I_{25} = 2.0$ in/hr $I_{50} = 2.2$ in/hr $A_W = 3.5$ acres $Q_{25} = 1.008 * 0.69 * 2.0 * 3.5 = 4.9$ CFS $Q_{50} = 1.008 * 0.69 * 2.2 * 3.5 = 5.4$ CFS

On-Site Watershed Rational Method Calculations

Q = kCIA, where k is the conversion factor for US units, k = 1.008

Pre-developed C-value = 0.44Post-developed Composite C = (0.44 * 6.4 + 0.75 * 4.2 + 1.0 * 0.7) / 11.3 = 0.59

 $I_{25} = 2.0 \text{ in/hr}$ $I_{50} = 2.2 \text{ in/hr}$ $A_T = 11.3 \text{ acres}$

 $Q_{25PRE} = 1.008 * 0.44 * 2.0 * 11.3 = 10.0 CFS$

 $Q_{25POST} = 1.008 * 0.59 * 2.0 * 11.3 = 13.4 CFS$

 $Q_{50PRE} = 1.008 * 0.44 * 2.2 * 11.3 = 11.0 CFS$

 $Q_{50POST} = 1.008 * 0.59 * 2.2 * 11.3 = 14.8 CFS$

Sidifoax Cultivation Technical Memorandum May 31, 2019 Page 4 of 4

The existing culvert is approximately 24" diameter CMP, installed at approx. 12%. Based on the existing conditions, a maximum flow rate of 25 CFS is accepted by the culvert in ideal conditions before overtopping the road. As a result, the existing culvert can accept the post-developed 50-year flow rate.

Proposed Roadside Swale Sizing

A trapezoidal roadside swale was selected for its efficiency and modeled in FlowMaster with the west watershed peak flow. A cross section was determined using 50-yr flow rates with no freeboard, resulting in the following section (For detailed results, see the Flowmaster results in the appendix):

Side Slopes = 4:1 Bottom Width = 2-ft Depth = 6-in Total Width = 6-ft

Note: County standards require the primary storm event swale section incorporate 1-ft of freeboard but allow no freeboard in the secondary storm event. Because there is only a 15% increase in peak flows from the primary to secondary storm event, the addition of 1-ft freeboard in the 25-yr event was considered excessive, given the safe overland routes, through the project site, available.

The swale was analyzed at the steepest slope (7.6%) along the swale to determine that velocity in the 25-year storm does not exceed 4.0 ft/s and analyzed along the milder slope at the end of the swale (3.2%) for the 50-year storm to determine sufficient capacity. The results were a velocity of 4.0 ft/s in the 25-year storm and a maximum depth of 0.41-ft in the 50-year storm.

Proposed Culvert Sizing

A proposed culvert will cross the driveway and collect runoff from the east watershed. The culvert was modeled in HY-8 to determine capacity in the 50-year storm. The 18" HDPE pipe selected was found to convey the 50-year storm without spilling over the edge of shoulder. RSP was sized using county drawing H-5. For detailed results, see the HY-8 results in the appendix.

5/13/2019

anna tha Star Bord

Natural Hesconces Convervation Convice

2 1

Web Soll Survey

intziel Di 🕈 Bubacrick 🧕 – Ary Nywel Bull Buryary 👘 Seel Survey Waltur – Glewenry – Predvizisces – 1958 – Lugisli – Help

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

Unified Soll Classification (Surface)			195	The second	and the second second					
Water Features	6	500 m								
	You ha design Enlarg been s	rning: Soil Ratings Map may not be valid at this scale. ve zoomed in beyond the scale at which the soil map for this area is intended to be used. Mapping of map units and the level of detail shown in the resulting soil map are dependent on that map sca ement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping a hown at a more detailed scale.	of soils is dale. and accura	lone at a particu cy of soil line pla	ar scale. The soll					
	Fables - My	drologic Sall Group — Summary By Map Unit Summary by Map Unit — San Luis Oblano County, Collierato Courts, Collierato Pialo	Aren /CA	(67)						
	Summary	by Map Unit — San Luis Obispo County, California, Carrizo Plain Area (CA667)	NIGS (CAS	<i>ior</i>)						
	Map unit sy	mbol Map unit name	Rating	Acres in AOI	Percent of AO					
	218	Seaback-Calleguas-Panoza complex, 30 to 50 percent slopes	D	52,5	34.19					
	281	Seaback-Panoza-Jenks complex, 15 to 30 percent slopes	С	6.5	4.29					
	290	San Timoteo-San Andreas-Bellyspring complex, 15 to 30 percent slopes	в	0.0	0.0%					
	291	San Timoteo-San Andreas-Bellyspring complex, 30 to 50 percent slopes	в	18.3	11.99					
	311	Yeguas-Pinspring complex, 2 to 5 percent slopes	С	1.7	1.19					
	440	Bellyspring-Panoza complex, 9 to 15 percent slopes	С	74.8	48.69					
	Totals for	Area of Interest		153.8	100.0%					
	Rescription — Hydrologic Soll Group									
	Hydrologic soi soils are not p The soils in th Group A. Soils sands or grave Group B. Soils drained soils t Group C. Soils or soils of mon Group D. Soils potential, soils material. Thes If a soil is ass in their nature	I groups are based on estimates of runoff potential. Soils are assigned to one of four groups accord rotected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. e United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and a having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of elly sands. These solls have a high rate of water transmission. s having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep that have moderately fine texture to moderately coarse texture. These solls have a moderate rate of s having a slow infiltration rate when thoroughly wet. These consist chiefly of solls having a layer the derately fine texture or fine texture. These solls have a slow rate of water transmission. s having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly s that have a high water table, solls that have a claypan or clay layer at or near the surface, and so se solls have a very slow rate of water transmission. Igned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the sec al condition are in group D are assigned to dual classes.	ling to the C/D). The deep, well o or deep, r of water tra nat impedes efly of clays olls that are cond is for a	rate of water infi groups are defin drained to exces noderately well d nsmission. s the downward r s that have a hig shallow over ne undrained areas.	Itration when the ed as follows: sively drained rained or well novement of wal n shrink-swell arly impervious Only the soils th					
	Rabing Optio	ns – Hydrologic Soli Group								
	Aggregation	Method: Dominant Condition Percent Cutoff: None Specified								
	Tie-break R	ile: Higher								

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

	1104	1510115		
Approved	Date	Description	Approved	Date
	Approved	Approved Date	Approved Date Description	Approved Date Description Approved

TABLE 1: ANNUAL RAINFALL < 14":

					Duration				
		10 Min	15 Min	30 Min	1 Hr	2 Hr	3 Hr	6 Hr	10 Hr
/al	2	1.00	0.90	0.60	0.40	0.26	0.22	0.18	0.14
Iten	5	1.40	1.20	0.80	0.50	0.37	0.32	0.25	0.20
ars)	10	1.70	1.40	1.00	0.60	0.44	0.38	0.30	0.23
Ye Ve	25	2.00	1.70	1.10	0.70	0.54	0.47	0.37	0.28
scur	50	2.20	1.90	1.30	0.80	0.60	0.53	0.44	0.34
Å	100	2.40	2.10	1.40	0.90	0.65	0.59	0.48	0.36

TABLE 2: ANNUAL RAINFALL 14" TO 17":

					Duration				
		10 Min	15 Min	30 Min	1 Hr	2 Hr	3 Hr	6 Hr	10 Hr
al	2	1.30	1.10	0.80	0.50	0.35	0.30	0.23	0.18
Iten	5	1.90	1.60	1.10	0.70	0.49	0.42	0.33	0.26
ars)	10	2.30	1.90	1.30	0.80	0.60	0.51	0.40	0.30
Yen Zen	25	2.60	2.20	1.50	1.00	0.71	0.63	0.50	0.38
Scur	50	3.00	2.50	1.70	1.10	0.81	0.74	0.60	0.47
œ	100	3.20	2.70	1.90	1.20	0.90	0.80	0.65	0.49

TABLE 3: ANNUAL RAINFALL 18" TO 21":

					Duration				
		10 Min	15 Min	30 Min	1 Hr	2 Hr	3 Hr	6 Hr	10 Hr
/al	2	1.70	1.40	1.00	0.65	0.44	0.37	0.29	0.22
Iten	5	2.30	1.90	1.30	0.85	0.60	0.52	0.41	0.33
ars)	10	2.80	2.40	1.60	1.03	0.74	0.64	0.50	0.38
len ∠en	25	3.20	2.70	1.90	1.20	0.92	0.80	0.64	0.50
ecur	50	3.70	3.10	2.10	1.40	1.05	0.92	0.74	0.58
Ř	100	4.00	3.40	2.30	1.50	1.13	1.00	0.80	0.62

TABLE 4: ANNUAL RAINFALL 22" TO 28":

			_		Duration		_		
		10 Min	15 Min	30 Min	1 Hr	2 Hr	3 Hr	6 Hr	10 Hr
/al	2	2.10	1.80	1.20	0.77	0.55	0.47	0.36	0.28
Iten	5	2.80	2.50	1.70	1.05	0.76	0.64	0.52	0.42
ars)	10	3.60	3.00	2.10	1.30	0.92	0.81	0.64	0.48
Zen	25	3.90	3.50	2.40	1.50	1.10	0.98	0.78	0.60
ecur	50	4.50	3.90	2.60	1.70	1.28	1.15	0.94	0.72
Ř	100	5.00	4.30	2.90	1.85	1.40	1.25	0.98	0.76

DEPARTMENT OF PUBLIC WORKS & TRANSPORTATION Scale:

 Scale:
 Adopted: 2011

 Drawing No:
 H-4

 Sheet No:
 1 of 1

RAINFALL INTENSITY DATA

Cross Section for Roadside Swale Q25

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.040		
Channel Slope	7.	60000	%	
Normal Depth		0.35	ft	
Left Side Slope		4.00	ft/ft (H:∨)	
Right Side Slope		4.00	ft/ft (H:V)	
Bottom Width		2.00	ft	
Discharge		4.70	ft³/s	

Cross Section Image

V:1 A

 Bentley Systems, Inc. Haestad Methods Scilletide (CEnterMaster V8I (SELECTseries 1) [08.11.01.03]

 5/29/2019 11:30:44 AM
 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Worksheet for Roadside Swale Q25

Project	Descri	ption
---------	--------	-------

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge	0.040 7.60000 4.00 4.00 2.00 4.70	% ft/ft (H:V) ft/ft (H:V) ft ft ³ /s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	0.35 1.18 4.87 0.24 4.78 0.42 0.03621 3.98 0.25 0.59 1.41 Supercritical	ft ft ² ft ft ft ft/ft ft/s ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.35	ft
Critical Depth	0.42	π ~
Critical Slope	0.03621	≫ ft/ft

Cross Section for Roadside Swale Q50

Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient		0.040	
Channel Slope	3.2	20000	%
Normal Depth		0.45	ft
Left Side Slope		4.00	ft/ft (H:V)
Right Side Slope		4.00	ft/ft (H:V)
Bottom Width		2.00	ft
Discharge		5.10	ft³/s

Cross Section Image

.V:1 A

 Bentley Systems, Inc.
 Haestad Methods Scilletider/CElector/Master V8i (SELECTseries 1) [08.11.01.03]

 5/29/2019 10:26:36 AM
 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Worksheet for Roadside Swale Q50

Proj	ect	Des	cripti	on

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.040	
Channel Slope		3.20000	%
Left Side Slope		4.00	ft/ft (H:V)
Right Side Slope		4.00	ft/ft (H:V)
Bottom Width		2.00	ft
Discharge		5.10	ft³/s
Results			
Normal Depth		0.45	ft
Flow Area		1.71	ft²
Wetted Perimeter		5.72	ft
Hydraulic Radius		0.30	ft
Top Width		5.60	ft
Critical Depth		0.44	ft
Critical Slope		0.03579	ft/ft
Velocity		2.98	ft/s
Velocity Head		0.14	ft
Specific Energy		0.59	ft
Froude Number		0.95	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	fi/s
Normal Depth		0.45	ft
Critical Depth		0.44	ft
Channel Slope	:	3.20000	%
Critical Slope	(0.03579	ft/ft

HY-8 Culvert Analysis Report

Culvert Data Summary - Driveway Culvert

Barrel Shape: Circular	***************					
Barrel Diameter: 1.50 ft	Straight Culvert					
Barrel Material: Smooth HDPE	Inlet Elevation (invert): 2107.00 ft, Outlet Elevation (invert): 2106.10 ft					
Embedment: 0.00 in	Culvert Length: 50.01 ft, Culvert Slope: 0.0180					
Barrel Manning's n: 0.0100	******************					
Culvert Type: Straight						
Inlet Configuration: Mitered to Conform to Slope						
Inlet Depression: None						

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	2107.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
1.00	1.00	2107.54	0.541	0.0*	1-S2n	0.232	0.369	0.242	0.000	5.367	0.000
2.00	2.00	2107.78	0.783	0.0*	1-S2n	0.325	0.530	0.344	0.000	6.352	0.000
3.00	3.00	2107.98	0.981	0.0*	1-S2n	0.399	0.658	0.428	0.000	6.991	0.000
4.00	4.00	2108.15	1.154	0.043	1-S2n	0.463	0.765	0.502	0.000	7.454	0.000
5.00	5.00	2108.32	1.324	0.234	1-S2n	0.521	0.856	0.571	0.000	7.828	0.000
5.40	5.40	2108.40	1.396	0.317	1-S2n	0.543	0.893	0.598	0.000	7.946	0.000
7.00	7.00	2108.72	1.721	0.666	5-S2n	0.626	1.021	0.697	0.000	8.423	0.000
8.00	8.00	2108.96	1.964	0.904	5-S2n	0.675	1.092	0.756	0.000	8.673	0.000
9.00	9.00	2109.24	2.243	1.329	5-S2n	0.722	1.156	0.813	0.000	8.910	0.000
10.00	9.88	2109.52	2.515	1.540	5-S2n	0.763	1.211	0.862	0.000	9.112	0.000

Table 1 - Culvert Summary Table: Driveway Culvert

Table 2 - Summary	y of Culvert	Flows at	Crossing:	Driveway	Culvert
-------------------	--------------	----------	-----------	----------	---------

Headwater Elevation	Total Discharge (cfs)	Driveway Culvert	Roadway Discharge	Iterations
(ft)		Discharge (cfs)	(cfs)	
2107.00	0.00	0.00	0.00	1
2107.54	1.00	1.00	0.00	1
2107.78	2.00	2.00	0.00	1
2107.98	3.00	3.00	0.00	1
2108.15	4.00	4.00	0.00	1
2108.32	5.00	5.00	0.00	1
2108.40	5.40	5.40	0.00	1
2108.72	7.00	7.00	0.00	1
2108.96	8.00	8.00	0.00	1
2109.24	9.00	9.00	0.00	1
2109.52	10.00	9.88	0.09	20
2109.50	9.83	9.83	0.00	Overtopping

Water Surface Profile Plot for Culvert: Driveway Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 5.4 cfs Maximum Flow: 10 cfs