Appendix F – Traffic Impact Analysis

1103 Curtner Avenue Service Station

SAN JOSE, CALIFORNIA

TRANSPORTATION IMPACT ANALYSIS

DRAFT REPORT

Prepared For

Michael Franges San Jose, CA

Prepared By

J. Daniel Takacs, TR 1549 Campbell, California 408-314-0625

December 19, 2016

Table of Contents

1 EXECUTIVE SUMMARY1
Existing Conditions1
Existing Plus Project Conditions2
Background and Background Plus Project Conditions4
Queuing Analysis4
2 INTRODUCTION
Scope of Work
Traffic Operation Evaluation Methodologies and LOS Standards6
Impact Criteria7
3 EXISTING CONDITIONS
Local Road Network
Transit Services9
Existing Traffic Data9
Existing Intersection Operations
Field Observations10
4 EXISTING PLUS PROJECT CONDITIONS11
Project Description11
Project Trip Generation11
Existing Plus Project Intersection Operations12
Traffic Operations at Project Driveways12
On-Site Circulation
5 BACKGROUND AND BACKGROUND PLUS PROJECT CONDITIONS14
Background and Background Plus Project Traffic Volumes14
Background and Background Plus Project Intersection Operations14
Traffic Operations at Project Driveways14
6 QUEUING ANALYSIS
Southbound Lincoln Avenue Left Turn at Curtner Avenue15

List of Exhibits

- 1. Project Location Map
- 2. Project Site Plan
- 3. Bicycle Facilities in Project Vicinity
- 4. Pedestrian Facilities in Project Vicinity
- 5. VTA Transit Routes in Project Vicinity
- 6. Lincoln Avenue/Curtner Avenue AM and PM Peak Hour Traffic Volumes
- 7. Existing and Existing Plus Project Intersection Levels of Service
- 8. Project Trip Generation
- 9. Project Trip Assignment
- 10. Existing and Existing With Project Lincoln Avenue and Curtner Avenue Driveway Intersection Volumes
- 11. Lincoln Avenue and Curtner Avenue Project Driveway AM and PM Peak Hour Vehicle Queues
- 12. Background and Background Plus Project Intersection Levels of Service
- 13. Background and Background With Project Lincoln Avenue and Curtner Avenue Driveway Intersection Volumes

List of Appendices

- A1. Level of Service Descriptions for Signalized Intersections
- A2. Level of Service Descriptions for Unsignalized Intersections
- B. Level of Service Calculation Worksheets
- C. Approved Trip Inventory
- D. Queuing Analysis

1 EXECUTIVE SUMMARY

This report presents the transportation impact analysis (TIA) for the proposed gas station and convenience market located at 1103 Curtner Avenue in San Jose, California. The project proposes the construction of four fuel pumps (8 fueling positions) and a new 680 square foot convenience market on a site located in the northwest quadrant of the Lincoln Avenue/Curtner Avenue intersection. **Exhibit 1** shows the location of the project site with respect to the local road network and **Exhibit 2** shows the project site plan. The purpose of this analysis is to identify potentially significant impacts of the proposed project to the transportation system.

Scope of Work

The study evaluated project impacts at the Lincoln Avenue/Curtner Avenue intersection that included impacts to intersection operations and impacts to left turn queues. In addition, traffic operations were analyzed at the project driveway intersections with Lincoln Avenue and Curtner Avenue.

AM and PM peak hour traffic conditions at the Lincoln Avenue/Curtner Avenue intersection were analyzed for the following analysis scenarios:

- 1. Existing Level of Service
- 2. Existing + Project
- 3. Background Scenario: Existing + Approved Projects
- 4. Project Scenario: Existing + Approved Projects + Project

Using City of San Jose significance criteria, the significance of project impacts to traffic operations were evaluated. Existing pedestrian facilities, bicycle facilities and transit facilities serving the site are documented. On-site circulation and access from Lincoln Avenue and Curtner Avenue was also evaluated.

Existing Conditions

Road Network

The project is located in the northwest corner of the Lincoln Avenue/Curtner Avenue intersection. **Curtner Avenue** is a 4-lane undivided arterial in the vicinity of the project and **Lincoln Avenue** in the vicinity of the project is a 4-lane divided arterial.

Bicycle Facilities

Class II bike lanes are provided on Curtner Avenue and Class III bike routes are designated on Lincoln Avenue along the project frontage.

Pedestrian Facilities

Sidewalks are provided Lincoln Avenue and Curtner Avenue along the project frontage. The Lincoln Avenue/Curtner Avenue intersection signal system includes crosswalks and pedestrian countdown signals on all legs of the intersection.

Transit Services

VTA currently operates Bus Routes 26 on Curtner Avenue and 64 on Lincoln Avenue. **Route 26** is a "regular" bus route that provides weekday and weekend service between Eastridge Mall in San Jose and the Lockheed Martin Transit Center. Stops on Curtner Avenue near the project site are located about 200 feet west of the project site for westbound service and just east of the Lincoln Avenue/Curtner Avenue intersection for eastbound service. **Route 64** is a "regular" bus route that provides weekday and weekend service between the Almaden light rail station and Mckee and White Roads. Stops on Lincoln Avenue near the project site are located just south of the Lincoln Avenue/Curtner Avenue intersection for on the project frontage for southbound service.

The VTA light rail Curtner Avenue Station is located at the SR 87Curtner Avenue interchange, which is about 0.9 miles east of the project location.

Existing Intersection Operations

The existing AM and PM peak hour intersection turning movement volumes are shown in **Exhibit 6**. Intersection traffic operations were evaluated based on the Level of Service (LOS) concept using the TRAFFIX traffic analysis software. The results of the analysis indicate that, based on City of San Jose and VTA CMP standards, the study intersection operates at acceptable levels of service during the AM and PM peak hours.

Field Observations

Predominant traffic flow on the Lincoln Avenue is northbound during the AM peak period and southbound during the PM peak period. Predominant traffic flow on the Curtner Avenue is westbound during the AM peak period and eastbound during the PM peak period. Traffic queues of up to 10 vehicles were observed on the northbound Lincoln Avenue approach to Curtner Avenue during the morning peak hour. During the PM peak hour, vehicle queues as high as 14 vehicles per lane were observed on the southbound Lincoln Avenue approach to Curtner Avenue. During the AM peak hour, vehicle queues of 13 vehicles were observed on the westbound Curtner Avenue approach to Lincoln Avenue. During the PM peak hour, a vehicle queue of 23 vehicles was observed on the eastbound Curtner Avenue approach to Lincoln Avenue during one signal cycle. It was observed that the vehicles queued at the beginning of each green phase cleared the intersection on each approach during the AM and PM peak hours.

Existing Plus Project Conditions

Project Description

The proposed project proposes the construction of four fuel pumps (8 fueling positions) and a new 680 square foot convenience market on a site located in the northwest quadrant of the Lincoln Avenue/Curtner Avenue intersection. The project will be accessed via one 32 foot wide driveway to Lincoln Avenue and one 32 foot wide driveway to Curtner Avenue. The project site was previously developed with service station with 8 fueling positions. For this study, no credit was applied for the previous trip generation of the project site.

Project Trip Generation

The ITE trip generation rates and trip generation estimates are presented in **Exhibit 8**. The project will generate a total of 1,302 daily trips, with 82 trips during the AM peak hour (41 inbound & 41 outbound) and 108 vehicle trips during the PM peak hour (54 inbound & 54 outbound). The project will generate 652 daily external trips, with 32 external trips generated during the AM peak hour (16 inbound & 16 outbound) and 48 external trips generated during the PM peak hour (24 inbound & 24 outbound).

Project Trip Distribution

Based on the project site location and a review of the existing peak hour data, it anticipated that the area wide distribution of new external trips will be fairly evenly distributed as follows:

- o 25% to and from the north via Lincoln Avenue
- o 25% to and from the south via Lincoln Avenue
- o 25% to and from the east via Curtner Avenue
- o 25% to and from the west via Curtner Avenue

The arrival and departure patterns for the pass-by trips were derived from the existing AM and PM peak hour volumes on Lincoln Avenue and Curtner Avenue adjacent to the project site. **Exhibit 9** shows the assignment of project trips to the project driveways and to the Lincoln Avenue/Curtner Avenue intersection.

Existing Plus Project Intersection Operations

Trips generated by the proposed project were combined with the existing traffic volumes to obtain existing plus project traffic volumes, which are shown in **Exhibit 6**. According to the City of San Jose standards, the study intersection is projected to operate at an acceptable level of service under existing plus project conditions. Therefore, the project would not create significant traffic related impacts at the study intersection.

Traffic Operations at Project Driveways

The project will be accessed from one 32 foot wide driveway on Lincoln Avenue and one 32 foot wide driveway on Curtner Avenue. **Exhibit 10** shows the Existing and Existing Plus Project AM and PM peak hour traffic volumes at the project driveways.

Driveway Vehicle Queues – The 95th percentile queues for outbound movements and inbound left turn movements at the two study driveways are estimated to be less than one vehicle length during the AM and PM peak hours. The estimates of the 95th percentile vehicle queues are summarized in **Exhibit 11**.

Corner Sight Distance – The project driveways would be located on straight sections of Lincoln Avenue and Curtner Avenue. Therefore, there are no horizontal alignment conditions on these roadways that would restrict visibility between the project driveways and vehicles approaching the driveways on Lincoln Avenue and Curtner Avenue. There are no obstructions or street furniture adjacent to the project driveways that would significantly obstruct visibility looking from the project driveways toward traffic approaching on Lincoln Avenue and Curtner Avenue. The corner sight distances provided at the project driveways would meet minimum required stopping sight distances, which for Lincoln Avenue would be 250 feet based on a 35 mph design speed for the posted speed limit of 30 mph and for Curtner Avenue would be 300 feet based on a 40 mph design speed for the posted speed limit of 35 mph.

On-Site Circulation

The project will be accessed from one 32 foot wide driveway to Lincoln Avenue and one 32 foot wide driveway to Curtner Avenue. Both driveways would be unsignalized and allow all turning movements. The previous service station was accessed via two driveways to Curtner Avenue and to Lincoln Avenue. Elimination of the two driveways closest to the Lincoln Avenue/Curtner Avenue intersection will allow for additional parking to be provided on the site.

Motorists patronizing the convenience market will park in one of the 11 on-site parking spaces and will enter and exit via either driveway. A drive aisle is provided immediately adjacent to the service station building that will allow circulation between the east and west sides of the site as an alternative to the fueling station aisles. The solid waste receptacle is located at the northwest corner of the site and would be accessed from the Curtner Avenue driveway. Adequate on-site circulation would be provided on site for customers and service vehicles.

Background and Background Plus Project Conditions

Background No Project Conditions include the sum of existing traffic and traffic generated by approved but not yet constructed or occupied projects. The City of San Jose provided the AM and PM peak hour trips for the Lincoln Avenue/Curtner Avenue intersection for the Approved Trip Inventory (ATI). The Background No Project Conditions and Background Plus Project traffic volumes are shown on **Exhibit 6**.

Background and Background Plus Project Intersection Operations

Intersection levels of service under Background No Project and Background Plus Project conditions are shown in **Exhibit 12**. Based on City of San Jose level of service standards, the study intersection is projected to operate at acceptable levels of service under Background and Background Plus Project Conditions. On the basis of the Background Conditions analysis, the project would not create significant impacts to the study intersection.

Traffic Operations at Project Driveways

Exhibit 13 shows the Background and Background Plus Project AM and PM peak hour traffic volumes at the project driveways. The 95th percentile queues for outbound movements and inbound left turn movements at the two study driveways are estimated to be less than one vehicle length during the AM and PM peak hours under Background Conditions. The estimates of the 95th percentile vehicle queues under Background Conditions are summarized in **Exhibit 11**.

Queuing Analysis

Based upon the traffic assignment shown on **Exhibit 9**, the proposed project would potentially add traffic to existing vehicle queues in the left turn lane on the southbound Lincoln Avenue approach at the at the Lincoln Avenue/Curtner Avenue intersection. The 95th percentile queue length is referred to as

the "design queue", which represents the queue that would be exceeded during 5% of the cycles. **Appendix D** includes the queuing analysis worksheets.

Southbound Lincoln Avenue Left Turn at Curtner Avenue

The project would add trips to the left turn movement from southbound Lincoln Avenue to eastbound Curtner Avenue. The left turn lane has 130 feet for vehicle storage on Lincoln Avenue. The 95th percentile vehicle queue in the left turn lane currently exceeds the available storage during both the AM and PM peak hours and this queuing condition is an existing deficiency. To address this deficiency, the southbound Lincoln Avenue left turn movement is programmed for Conditional Service, which redisplays the left turn arrow for the southbound left turn movement following the opposing through phase. The re-service allows the southbound left turn phase to appear twice during the signal cycle, both before and after the opposing through phase. This phasing improves the efficiency of the southbound left turn movement during the PM peak hour when traffic flow on Lincoln Avenue in the northbound direction is sufficiently light.

During the AM peak hour the project would add one vehicle and during the PM peak hour the project would add two vehicles to the southbound Lincoln Avenue left turn movement at Curtner Avenue. The additional project trips would not increase the 95th percentile queue for the southbound Lincoln Avenue left turn movement under Existing and Background conditions.

2 INTRODUCTION

This report presents the transportation impact analysis (TIA) for the proposed gas station and convenience market located at 1103 Curtner Avenue in San Jose, California. The project proposes the construction of four fuel pumps (8 fueling positions) and a new 680 square foot convenience market on a site located in the northwest quadrant of the Lincoln Avenue/Curtner Avenue intersection. **Exhibit 1** shows the location of the project site with respect to the local road network and **Exhibit 2** shows the project site plan. The purpose of this analysis is to identify potentially significant impacts of the proposed project to the transportation system.

Scope of Work

The transportation impact analysis adheres to the City of San Jose and the Santa Clara Valley Transportation Authority (VTA) transportation impact study guidelines, which are documented in the following documents:

- 1. Traffic Impact Analysis Handbook Volume I (2009) Methodologies & Requirements, City of San Jose,
- 2. Volume II (2011) Policy & Guidelines, City of San Jose,
- 3. Transportation Impact Analysis Guidelines, VTA.

The study evaluated project impacts at the Lincoln Avenue/Curtner Avenue intersection that included impacts to intersection operations and impacts to left turn queues. In addition, traffic operations were analyzed at the project driveway intersections with Lincoln Avenue and Curtner Avenue.

AM and PM peak hour traffic conditions at the Lincoln Avenue/Curtner Avenue intersection were analyzed for the following analysis scenarios:

- 5. Existing Level of Service
- 6. Existing + Project
- 7. Background Scenario: Existing + Approved Projects
- 8. Project Scenario: Existing + Approved Projects + Project

Using City of San Jose significance criteria, the significance of project impacts to traffic operations were evaluated.

The City of San Jose provided existing AM and PM peak hour traffic volume data for the Lincoln Avenue/Curtner Avenue intersection. In addition, the City provided a list of approved projects and trips generated by the approved projects for the Lincoln Avenue/Curtner Avenue intersection.

Existing pedestrian facilities, bicycle facilities and transit facilities serving the site are documented including existing connections to nearby commercial services, employment centers and residential areas. On-site circulation and access from Lincoln Avenue and Curtner Avenue was also evaluated.

Traffic Operation Evaluation Methodologies and LOS Standards

Intersection traffic operations were evaluated based on the Level of Service (LOS) concept. Intersection operations were evaluated using the TRAFFIX analysis software. LOS is a quantitative description of an intersection and roadway's operation, ranging from LOS A to LOS F. Level of service A represents free

flow un-congested traffic conditions. Level of service F represents highly congested traffic conditions with unacceptable delay to vehicles on the road segments and at intersections. The intermediate levels of service represent incremental levels of congestion and delay between these two extremes.

For signalized intersections, traffic operations are evaluated based on the overall average delay in seconds per vehicle. The average delay is then correlated to a level of service.

For one and two-way stop controlled intersections the delay in seconds per vehicle at the worst movement or approach is used to evaluate operations. The delay at the worst approach is then correlated to a level of service. LOS for each side street is based on the distribution of gaps in the major traffic stream and driver judgment in selecting gaps. **Appendix A** provides additional information regarding levels of service for signalized and unsignalized intersections.

The Lincoln Avenue/Curtner Avenue intersection is not a Valley Transportation Agency (VTA) Congestion Management Program (CMP) intersection. The City of San Jose has established LOS D as the general threshold for acceptable traffic operations for signalized intersections that are not covered by the policies of the Congestion Management Program (CMP).

Impact Criteria

The City of San Jose has established criteria to determine the level of significance of traffic impacts. Significant traffic impacts at signalized intersections are defined to occur when the addition of project-generated trips causes on of the following:

- 1. Intersection operations to deteriorate from an acceptable LOS D or better to an unacceptable LOS E or F.
- 2. Critical delay increase of four or more seconds and a V/C ratio increase of 0.01 or more to intersections operating at LOS E or F.
- 3. The V/C ratio increases by 0.01 or more at an intersection operating at an unacceptable LOS E or F when the change in critical delay is negative.

3 EXISTING CONDITIONS

This section of the report evaluates existing conditions and includes a description of the project setting.

Local Road Network

The project is located in the northwest corner of the Lincoln Avenue/Curtner Avenue intersection. The following roadways provide either local access to the project site:

Curtner Avenue is a 4-lane undivided arterial in the vicinity of the project. It extends between Camden Avenue on the west to Monterey Road on the east where it continues easterly as Tully Road. The posted speed limit on Curtner Avenue in the vicinity of the project is 35 mph.

Lincoln Avenue in the vicinity of the project is a 4-lane divided arterial. It extends between Almaden Expressway on the south and Park Avenue on the north. The posted speed limit on Lincoln Avenue in the vicinity of the project is 30 mph.

Bicycle Facilities

There are four basic types of bicycle facilities. Each type is described below:

- Bike Path (Class I) A completely separate right-of-way designed for the exclusive use of cyclists and pedestrians, with minimal crossings for motorists.
- Bike Lane (Class II) A lane on a regular roadway, separated from the motorized vehicle right-of-way by paint striping, designated for the exclusive or semi-exclusive use of bicycles. Bike lanes allow one-way bike travel. Through travel by motor vehicles or pedestrians is prohibited, but crossing by pedestrians and motorists is permitted.
- Bike Route (Class III) Provides shared use of the roadway, designated by signs or permanent markings and shared with motorists.
- Cycle Track or Separated Bikeway (Class IV) Provides a right-of-way designated exclusively for bicycle travel adjacent to a roadway and protected from vehicular traffic. Types of separation include, but are not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

Class II bike lanes are provided on Curtner Avenue and Class III bike routes are designated on Lincoln Avenue along the project frontage.

Exhibit 3 shows the existing and proposed bicycle facilities within a 2,500 foot radius of the project boundaries.

Pedestrian Facilities

Pedestrian facilities in the project area include sidewalks and crosswalks. Sidewalks are provided Lincoln Avenue and Curtner Avenue along the project frontage.

The Lincoln Avenue/Curtner Avenue intersection signal system includes crosswalks and pedestrian countdown signals on all legs of the intersection.

Pedestrian conditions in the vicinity of the project site are satisfactory. Continuous sidewalks are provided on the Lincoln Avenue and Curtner Avenue for distances of at least 1,000 feet from the project site. Continuous sidewalks providing access between the project site and nearby residential developments, transit facilities, schools and other commercial land uses are present along most of the streets in the project vicinity.

Exhibit 4 shows the pedestrian sidewalks in the vicinity of the project within approximately 1,000 feet of the project site.

Transit Services

The Santa Clara Valley Transportation Authority (VTA) operates numerous transit routes and modes within Santa Clara County. VTA currently operates Bus Routes 26 on Curtner Avenue and 64 on Lincoln Avenue. The VTA light rail Curtner Avenue Station is located at the SR 87Curtner Avenue interchange, which is about 0.9 miles east of the project location. The Curtner Avenue light rail station serves the Peak Commuter Express Service between Tasman and Santa Teresa, the Alum Rock-Santa Teresa and the Ohlone/Crynoweth-Almaden light rail lines. A map of the transit routes in the vicinity of the project site is provided in **Exhibit 5**.

Route 26 is a "regular" bus route that provides weekday and weekend service between Eastridge Mall in San Jose and the Lockheed Martin Transit Center. Stops on Curtner Avenue near the project site are located about 200 feet west of the project site for westbound service and just east of the Lincoln Avenue/Curtner Avenue intersection for eastbound service. At the project site, the route operates weekdays from 5:42 am to 11:00 pm in the westbound direction and 6:21 am to 10:49 pm in the eastbound direction. The route operates Saturdays from 6:42 am to 10:10 pm in the westbound direction and 7:26 am to 9:57 pm in the eastbound direction and approximately the same times on Sunday. The route has headways of about 30 minutes on weekdays and 30 to 60 minutes on weekends.

Route 64 is a "regular" bus route that provides weekday and weekend service between the Almaden light rail station and Mckee and White Roads. Stops on Lincoln Avenue near the project site are located just south of the Lincoln Avenue/Curtner Avenue intersection for northbound service and on the project frontage for southbound service. At the project site, the route operates weekdays from 5:32 am to 10:31 pm in the northbound direction and weekends from 6:08 am to 10:51 pm in the southbound direction and weekends from 6:37 am to 9:32 pm in the northbound direction and weekends from 7:16 am to 10:51 pm in the southbound direction. Sunday service on Lincoln Avenue begins later and ends sooner than Saturday service. The route has headways of about 30 minutes for most of the day on weekdays and 30 to 60 minutes on weekends.

Existing Traffic Data

The evaluation of intersection operating conditions is based upon the highest one-hour traffic volumes observed during the morning and evening peak commute periods. The City of San Jose provided existing peak hour traffic volumes for the Lincoln Avenue/Curtner Avenue intersection. The existing AM and PM peak hour intersection turning movement volumes are shown in **Exhibit 6**.

Existing Intersection Operations

Intersection traffic operations were evaluated based on the Level of Service (LOS) concept using the TRAFFIX traffic analysis software. The results of the analysis indicate that, based on City of San Jose and VTA CMP standards, the study intersection operates at acceptable levels of service during the AM and PM peak hours.

Intersection levels of service for existing traffic conditions are summarized in **Exhibit 7**. The LOS calculation worksheets are included in **Appendix B**.

Field Observations

Predominant traffic flow on the Lincoln Avenue is northbound during the AM peak period and southbound during the PM peak period. Predominant traffic flow on the Curtner Avenue is westbound during the AM peak period and eastbound during the PM peak period. Traffic queues of up to 10 vehicles were observed on the northbound Lincoln Avenue approach to Curtner Avenue during the morning peak hour. During the PM peak hour, vehicle queues as high as 14 vehicles per lane were observed on the southbound Lincoln Avenue approach to Curtner Avenue. During the AM peak hour, vehicle queues of 13 vehicles were observed on the westbound Curtner Avenue approach to Lincoln Avenue. During the PM peak hour, a vehicle queue of 23 vehicles was observed on the eastbound Curtner Avenue approach to Lincoln Avenue during one signal cycle. It was observed that the vehicles queued at the beginning of each green phase cleared the intersection on each approach during the AM and PM peak hours.

4 EXISTING PLUS PROJECT CONDITIONS

This section of the report evaluates existing conditions with additional traffic generated by the proposed project. Intersection operations under Existing and Existing Plus Project traffic conditions are compared and significant project impacts are discussed.

Project Description

The proposed project proposes the construction of four fuel pumps (8 fueling positions) and a new 680 square foot convenience market on a site located in the northwest quadrant of the Lincoln Avenue/Curtner Avenue intersection. The project will be accessed via one 32 foot wide driveway to Lincoln Avenue and one 32 foot wide driveway to Curtner Avenue. **Exhibit 2** shows the project site plan.

The project site was previously developed with service station with 8 fueling positions. For this study, no credit was applied for the previous trip generation of the project site.

Project Trip Generation

Project trip generation was estimated based on the Institute of Transportation Engineers' (ITE) *Trip Generation* handbook, 9th Edition, 2012. Data in the ITE Trip Generation Handbook indicates that 85-90% of the project trips will be "pass-by" or "diverted-link" trips coming from traffic already on the adjacent street system, and only 10-15% of the total trips would be considered primary "new" single purpose trips. However, per City traffic impact study guidelines, a discount was only applied for "pass-by" trips. The ITE trip generation rates and trip generation estimates are presented in **Exhibit 8**.

The project will generate a total of 1,302 daily trips, with 82 trips during the AM peak hour (41 inbound & 41 outbound) and 108 vehicle trips during the PM peak hour (54 inbound & 54 outbound). The project will generate 652 daily external trips, with 32 external trips generated during the AM peak hour (16 inbound & 16 outbound) and 48 external trips generated during the PM peak hour (24 inbound & 24 outbound). It is noted that the project driveways will experience 100% of the total trips, but only the external trips would have a potential to impact traffic operations at the study intersection.

Project Trip Distribution

Existing AM and PM peak hour traffic volumes provided by the City indicates that the total approach volumes are relatively equal (+/-1,650 vph). However, the data demonstrate that during the AM peak hour the majority of N-S demands on Lincoln Avenue are in the NB direction (72%) while the E-W demands on Curtner Avenue are relatively close. During the PM peak hour, the majority of the N-S demands are in the SB direction (76%) while the E-W demands are slightly higher in the EB direction. Based on the project site location and a review of the existing peak hour data, it anticipated that the area wide distribution of new external trips will be fairly evenly distributed as follows:

o 25% to and from the north via Lincoln Avenue

- o 25% to and from the south via Lincoln Avenue
- o 25% to and from the east via Curtner Avenue
- o 25% to and from the west via Curtner Avenue

The arrival and departure patterns for the pass-by trips were derived from the existing AM and PM peak hour volumes on Lincoln Avenue and Curtner Avenue adjacent to the project site. **Exhibit 9** shows the

assignment of project trips to the project driveways and to the Lincoln Avenue/Curtner Avenue intersection.

Existing Plus Project Intersection Operations

Trips generated by the proposed project were combined with the existing traffic volumes to obtain existing plus project traffic volumes, which are shown in **Exhibit 6**. Intersection levels of service for existing and existing plus project traffic conditions are summarized in **Exhibit 7**. The LOS calculation worksheets are included in **Appendix B**.

According to the City of San Jose standards, the study intersection is projected to operate at acceptable levels of service under existing plus project conditions. Therefore, the project would not create significant traffic related impacts at the study intersection.

Traffic Operations at Project Driveways

The project will be accessed from one 32 foot wide driveway on Lincoln Avenue and one 32 foot wide driveway on Curtner Avenue. The Curtner Avenue driveway would be about 115 feet west of the crosswalk across the east leg of the intersection at Lincoln Avenue and the Lincoln Avenue driveway would be about 85 feet north of the crosswalk across the north leg of the intersection at Curtner Avenue. **Exhibit 10** shows the Existing and Existing Plus Project AM and PM peak hour traffic volumes at the project driveways.

Driveway Vehicle Queues – The 95th percentile queues for outbound movements and inbound left turn movements at the two study driveways are estimated to be less than one vehicle length during the AM and PM peak hours. Queue lengths for minor movements at unsignalized intersections are a function of the capacity of the movement and the volume of traffic served during the analysis period. The estimates of the 95th percentile vehicle queues are summarized in **Exhibit 11**. Level of service calculation worksheets for the Curtner Avenue/Curtner Avenue project driveway and the Lincoln Avenue/Lincoln Avenue project driveway included in **Appendix B** include calculations of the 95th percentile queues at the project driveways.

Corner Sight Distance – The project driveways would be located on straight sections of Lincoln Avenue and Curtner Avenue. Given this condition, there are no horizontal alignment conditions on these roadways that would restrict visibility between the project driveways and vehicles approaching the driveways on Lincoln Avenue and Curtner Avenue. There are no obstructions or street furniture adjacent to the project driveways that would significantly obstruct visibility looking from the project driveways toward traffic approaching on Lincoln Avenue and Curtner Avenue.

According to Caltrans standards, corner sight distance requirements as described in Section 405.1(2) of the Caltrans Highway Design Manual are not applied to urban driveways. It is desirable, however, to provide minimum stopping sight distance along streets including intersection approaches. The minimum stopping sight distance for Lincoln Avenue would be 250 feet based on a 35 mph design speed for the posted speed limit of 30 mph. The minimum stopping sight distance for Curtner Avenue would be 300 feet based on a 40 mph design speed for the posted speed limit of 35 mph. These sight distances are currently met at the project driveways.

On-Site Circulation

The project will be accessed from one 32 foot wide driveway to Lincoln Avenue and one 32 foot wide driveway to Curtner Avenue. Both driveways would be unsignalized and allow all turning movements. The previous service station was accessed via two driveways to Curtner Avenue and to Lincoln Avenue. Elimination of the two driveways closest to the Lincoln Avenue/Curtner Avenue intersection will allow for additional parking to be provided on the site.

Motorists patronizing the convenience market will park in one of the 11 on-site parking spaces and will enter and exit via either driveway. A drive aisle is provided immediately adjacent to the service station building that will allow circulation between the east and west sides of the site as an alternative to the fueling stations. The solid waste receptacle is located at the northwest corner of the site and would be accessed from the Curtner Avenue driveway. Adequate on-site circulation would be provided on site for customers and service vehicles.

5 BACKGROUND AND BACKGROUND PLUS PROJECT CONDITIONS

This section of the report describes the analyses of the study road network under Background No Project and Background Plus Project Conditions.

This scenario represents traffic conditions with and without the proposed project. Background No Project Conditions include the sum of existing traffic and traffic generated by approved but not yet constructed or occupied projects. Background Plus Project Conditions include the sum of existing traffic, traffic generated by approved but not yet constructed or occupied projects, and traffic generated by the proposed project.

Background and Background Plus Project Traffic Volumes

The City of San Jose provided the AM and PM peak hour trips for the Lincoln Avenue/Curtner Avenue intersection for the Approved Trip Inventory (ATI). The ATI for the Lincoln Avenue/Curtner Avenue intersection represents the trips from approved, but not yet developed approved projects, that would travel through the Lincoln Avenue/Curtner Avenue intersection. The ATI trips are presented in **Appendix C**.

The trips generated by the approved but not yet built or occupied projects were combined with the existing peak hour volumes to obtain Background No Project Conditions traffic volumes. The Background No Project Conditions peak hour volumes are shown on **Exhibit 6**. The project trip assignment was combined with Background No Project Conditions traffic volumes to obtain Background Plus Project traffic volumes. These volumes are shown on **Exhibit 6**.

Background and Background Plus Project Intersection Operations

Intersection levels of service under Background No Project and Background Plus Project conditions are shown in **Exhibit 12**. The LOS calculation worksheets are included in **Appendix B**.

Based on City of San Jose level of service standards, the study intersection is projected to operate at acceptable levels of service under Background and Background Plus Project Conditions. On the basis of the Background Conditions analysis, the project would not create significant impacts to the study intersection.

Traffic Operations at Project Driveways

Exhibit 13 shows the Background and Background Plus Project AM and PM peak hour traffic volumes at the project driveways.

Driveway Vehicle Queues – The 95th percentile queues for outbound movements and inbound left turn movements at the two study driveways are estimated to be less than one vehicle length during the AM and PM peak hours under Background Conditions. The estimates of the 95th percentile vehicle queues under Background Conditions are summarized in **Exhibit 11**. Level of service calculation worksheets for the Curtner Avenue/Curtner Avenue project driveway and the Lincoln Avenue/Lincoln Avenue project driveway included in **Appendix B** include calculations of the 95th percentile queues for the minor turn movements at the project driveways.

6 QUEUING ANALYSIS

Based upon the traffic assignment shown on Exhibit 9, the proposed project would potentially add traffic to existing vehicle queues in the left turn lane on the southbound Lincoln Avenue approach at the at the Lincoln Avenue/Curtner Avenue intersection. The impact of the project to vehicle queues at this location is discussed in this section.

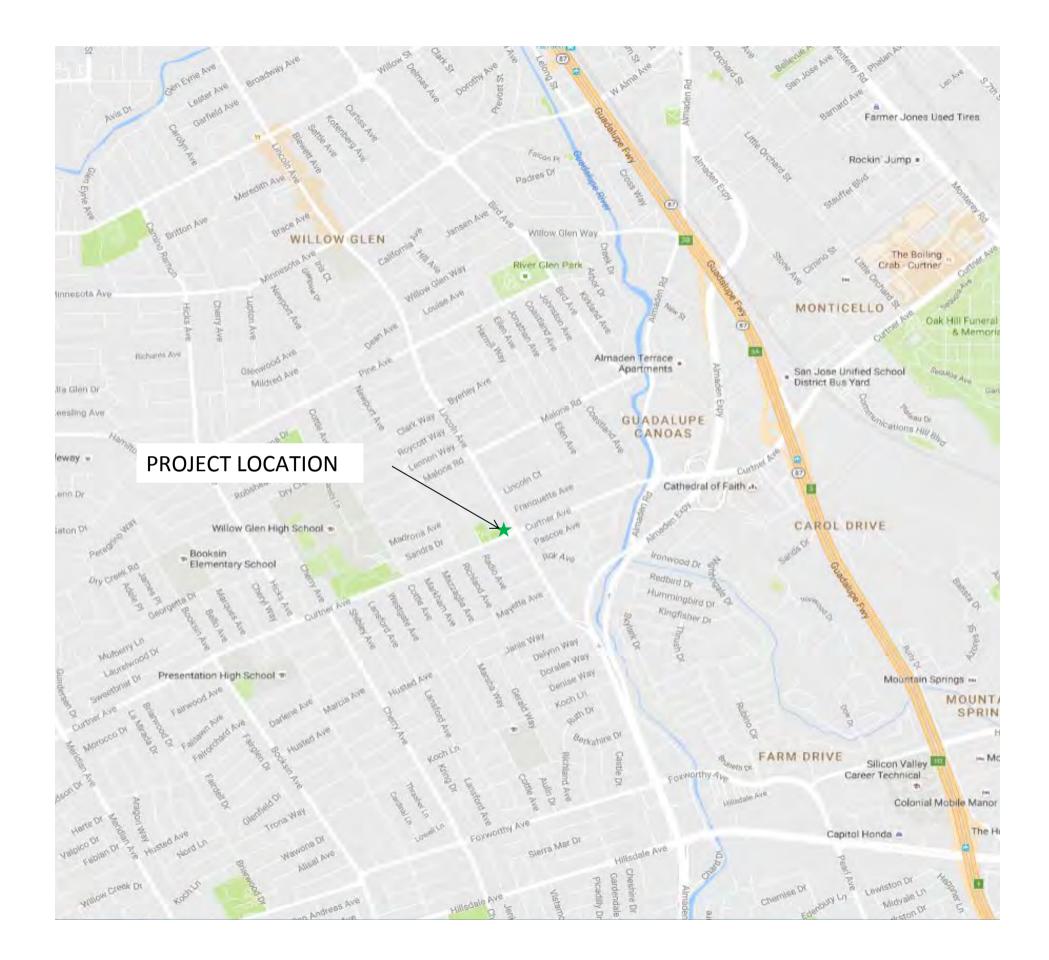
The 95th percentile queue length is referred to as the "design queue", which represents the queue that would be exceeded during 5% of the cycles. For example, a traffic signal with a 60-second cycle length would have 60 signal cycles in one hour and the design queue would be exceeded during 3 signal cycles in that hour.

Vehicle queuing and the adequacy of left-turn storage at the study intersection was evaluated by comparing the calculated design queue to the available queue storage. First, the average queue at each location was estimated by dividing the volume (vehicles per hour) by the number of signal cycles per hour. Then, a design queue was estimated using a Poisson probability distribution which converts the average queue into a 95th percentile design queue using the following formula:

$$P(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

Where:

P(x) = the probability of "x" vehicles queued per lane x = number of vehicles in queue per lane λ = average queue per lane


The 95th percentile design queue (in number of vehicles per lane) was then used to calculate the 95th percentile design queue length (in feet per lane) by multiplying the design queue by 25 feet per vehicle. The estimated 95th percentile design queue length was then compared to the available storage capacity for the particular left-turn movement. Existing and future deficiencies are identified where the design queue length exceeds the available storage capacity for a particular movement.

Appendix D includes the queuing analysis worksheets. Instances where the 95th percentile design queue exceeds the available storage are highlighted in red. Details of the queuing estimates are included and the Poisson probability calculations are included in **Appendix D**.

Southbound Lincoln Avenue Left Turn at Curtner Avenue

The project would add trips to the left turn movement from southbound Lincoln Avenue to eastbound Curtner Avenue. The left turn lane has 130 feet for vehicle storage on Lincoln Avenue. The 95th percentile vehicle queue in the left turn lane currently exceeds the available storage during both the AM and PM peak hours and this queuing condition is an existing deficiency. To address this deficiency, the southbound Lincoln Avenue left turn movement is programmed for Conditional Service, which redisplays the left turn arrow for the southbound left turn movement following the opposing through phase. The re-service allows the southbound left turn phase to appear twice during the signal cycle, both before and after the opposing through phase. This phasing improves the efficiency of the southbound left turn movement during the PM peak hour when traffic flow on Lincoln Avenue in the northbound direction is sufficiently light.

During the AM peak hour the project would add one vehicle and during the PM peak hour the project would add two vehicles to the southbound Lincoln Avenue left turn movement at Curtner Avenue. The additional project trips would not increase the 95th percentile queue for the southbound Lincoln Avenue left turn movement under Existing and Background conditions.

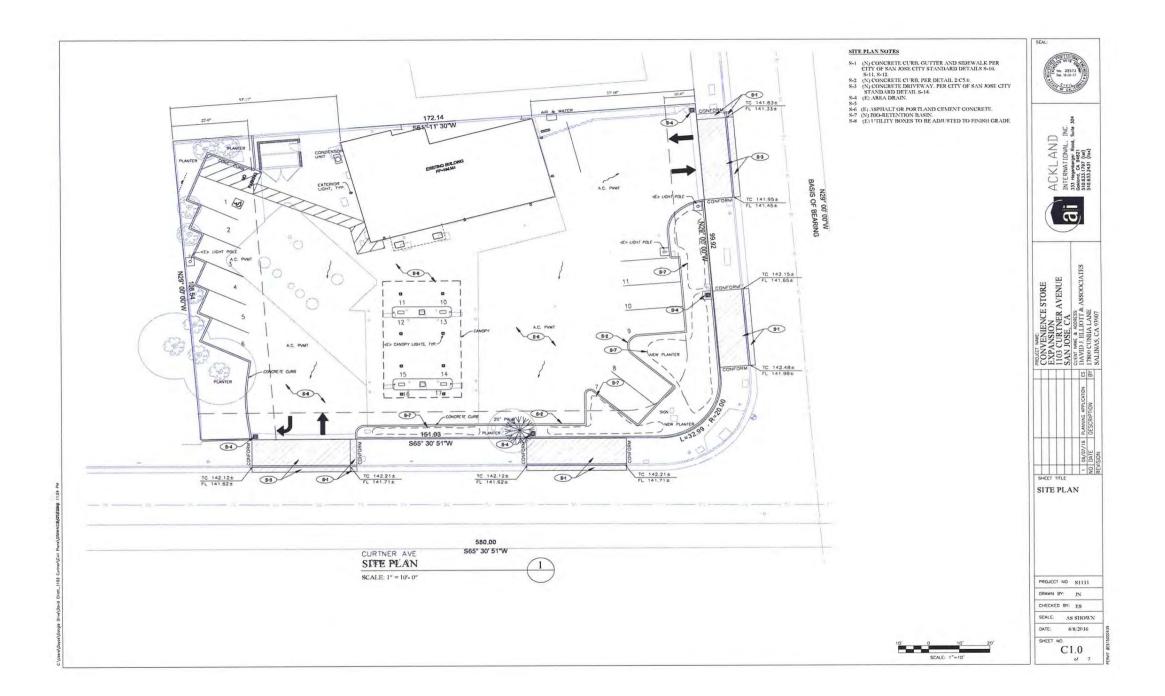
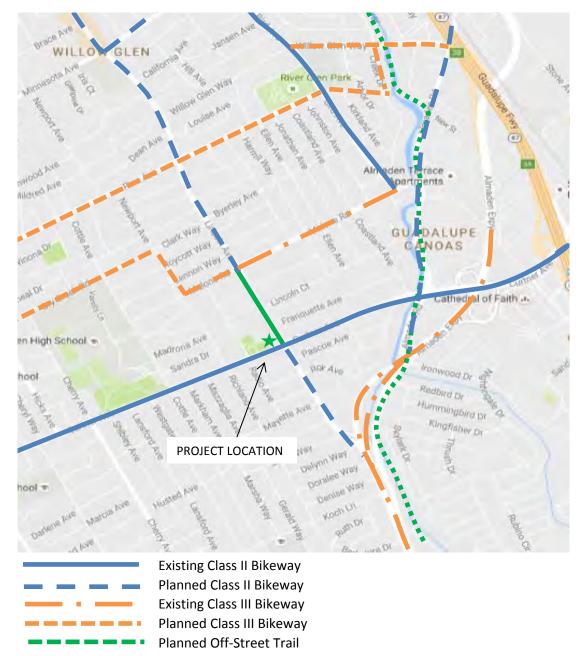



EXHIBIT 2 PROJECT SITE PLAN

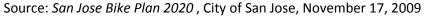
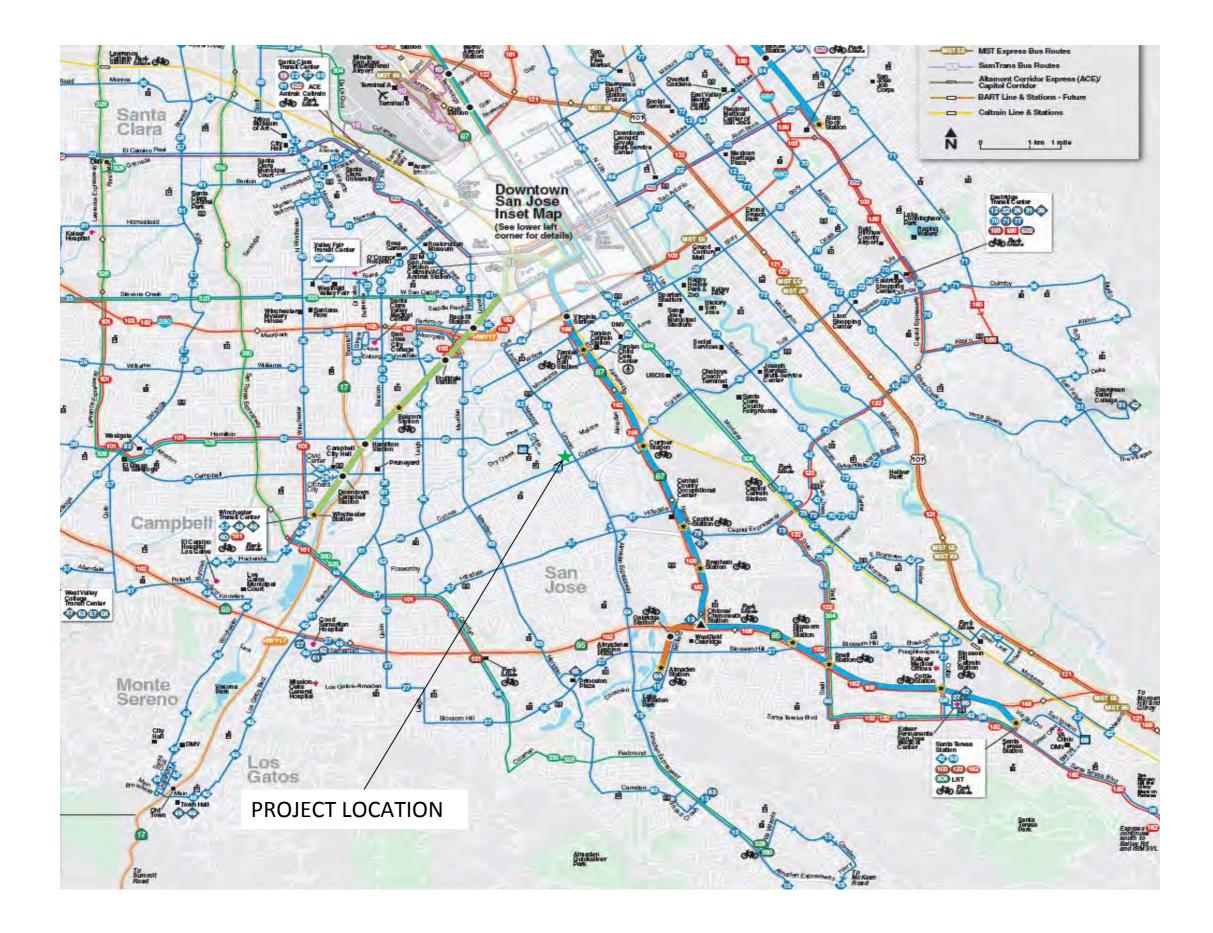



EXHIBIT 3 BICYCLE FACILITIES IN PROJECT VICINITY

EXHIBIT 4 PEDESTRIAN SIDEWALKS IN PROJECT VICINITY

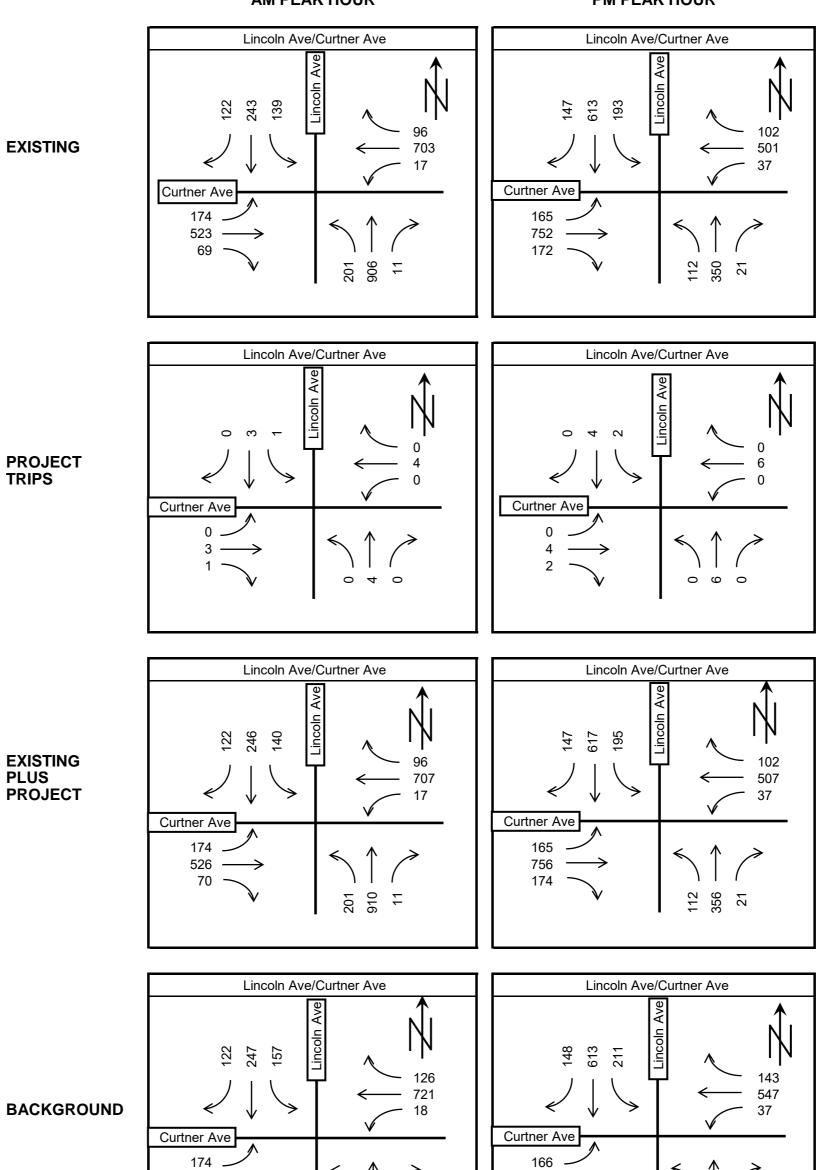
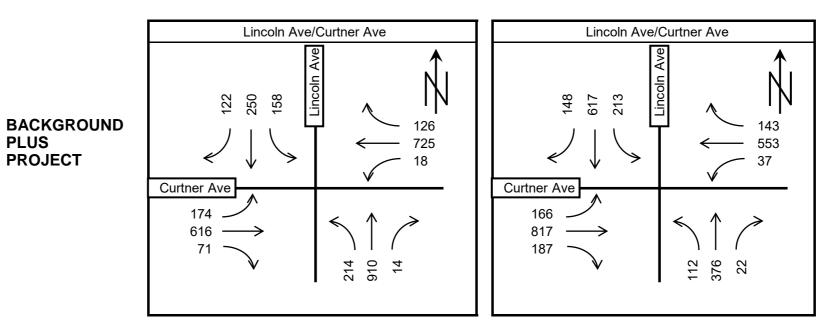


EXHIBIT 5 VTA TRANSIT ROUTES



PM PEAK HOUR

PROJECT

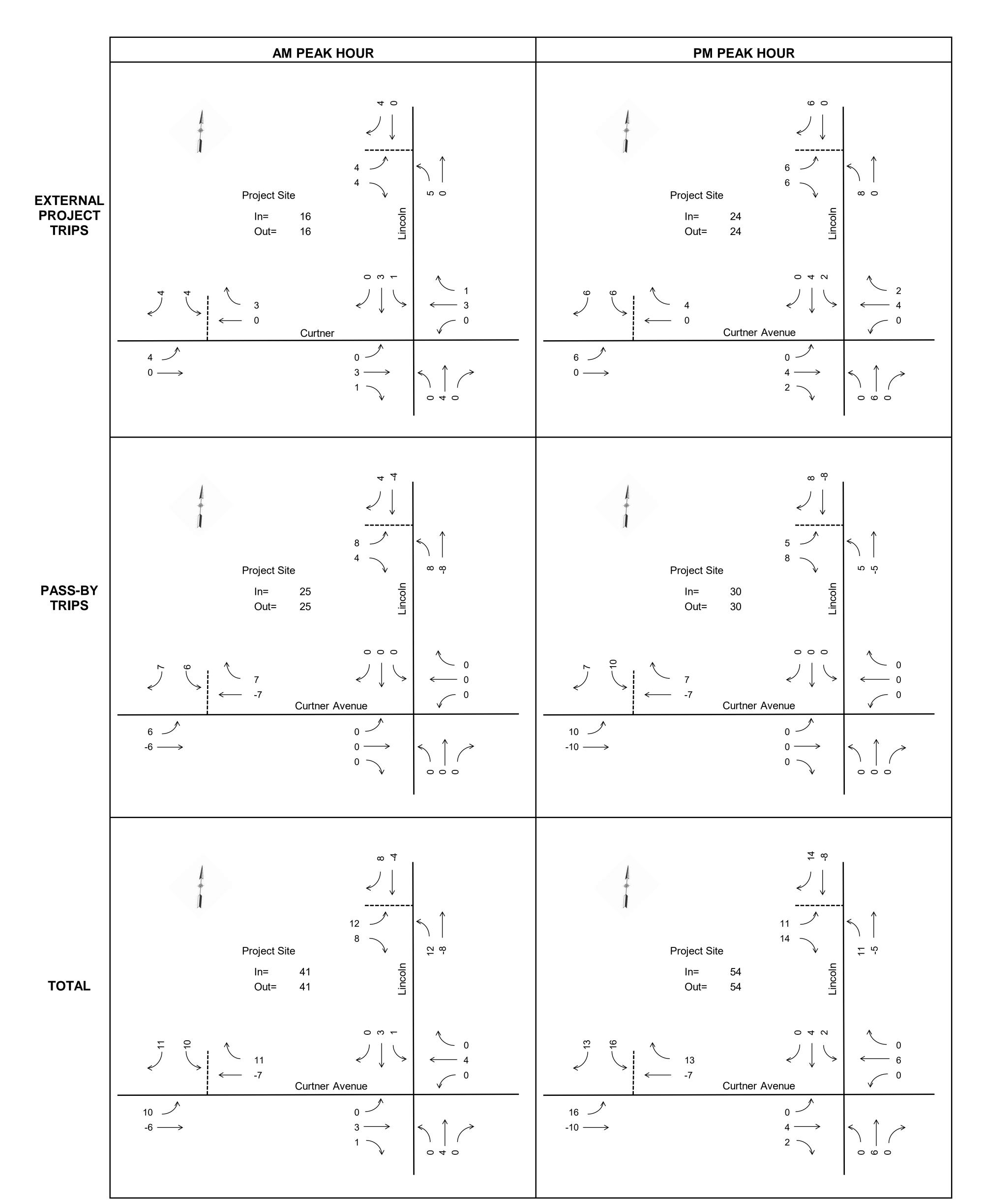
EXHIBIT 6 LINCOLN AVENUE/CURTNER AVENUE AM AND PM PEAK HOUR **TRAFFIC VOLUMES**

			•	Existing	LOS					ting itions									Existing - Condi	-	t				
Stre	et S		Lane Configuration	Intersection Control	Standard		AM F	Peak Hr			PM F	eak Hr				AM P	eak Hr					PM Pe	eak Hr		
	•																	Chai	nge					Cha	ange
						LOS	Delay (sec)	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	Crit. V/C	Crit. Delay
1 Linco Avenu		Curtner Avenue	NB 1-L, 1-T, 1-T/R SB 1-L, 1-T, 1-T/R EB 1-L, 1-T, 1-T/R WB 1-L, 1-T, 1-T/R		D	С	30.6	0.750	32.0	С	27.7	0.630	26.6	С	30.7	0.753	32.2	0.003	0.2	С	27.8	0.634	26.7	0.004	0.1

NOTES:
 L, T, R = Left, Through, Right
 NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound
 Analysis performed using 2000 *Highway Capacity Manual* Methodologies
 LOS standard for signalized City intersections is LOS D.
 LOS highlighted in red indicator operations are below level of service stand

5. LOS highlighted in red indicates operations are below level of service standard.6. Critical V/C, Critial Delay or side-street delay highlighted in yellow indicates a project impact.

EXHIBIT 7 EXISTING AND EXISTING PLUS PROJECT INTERSECTION LEVELS OF SERVICE


	TR	IP GENERATIC	N RATES								
				AM PEAK HOUR			PM PEAK HOUR				
		DAILY			Trip			Trip			
	Units	TRIPS	Inbound	Outbound	Rate	Inbound	Outbound	Rate			
Service Station w/Convenience Market	per Fuel Position	162.75	50%	50%	10.16	50%	50%	13.51			
	PRC	DJECT TRIP GE	NERATION								
				AM PEAK HOUR			PM PEAK HOUR				
		DAILY									
	Size	TRIPS	Inbound	Outbound	Trips	Inbound	Outbound	Trips			
Restaurant	8 Fuel Positions	1,302	41	41	81	54	54	108			
SUBTOTAL GROSS TRIPS			41	41	81	54	54	108			
Pass-By Trips (Daily:50%, AM:62%, PM:56%)		651	25	25	50	30	30	60			
TOTAL NET NEW EXTERNAL TRIPS		651	16	16	31	24	24	48			

Notes:

1. Trip generation rates from ITE Trip Generation, 9th Edition, 2012.

EXHIBIT 8 PROJECT TRIP GENERATION

Trip Generation Ex 8.xlsx

Driveway Volumes.xls

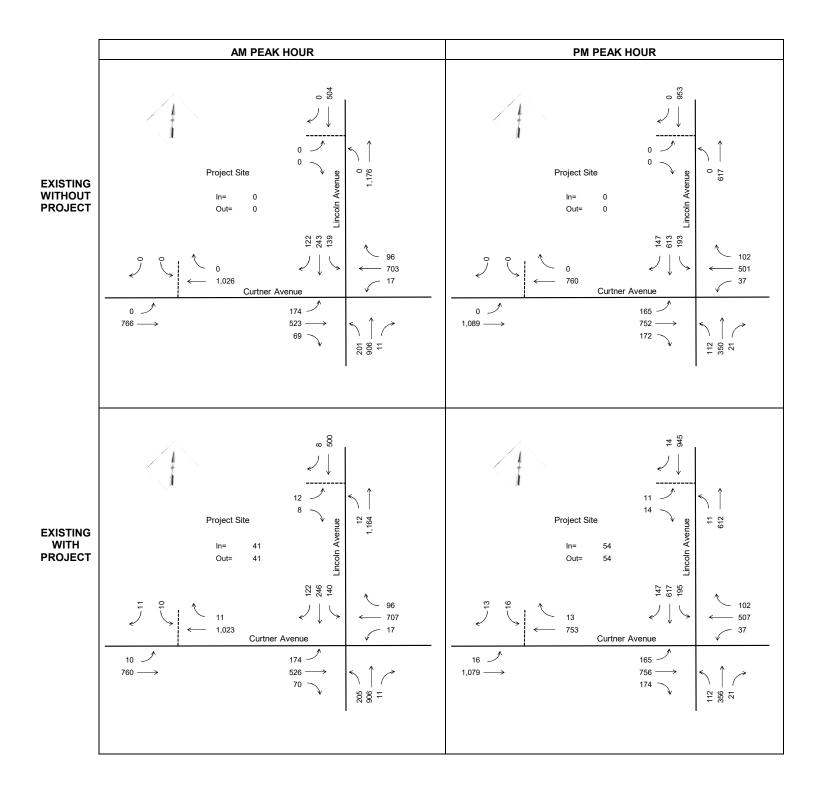
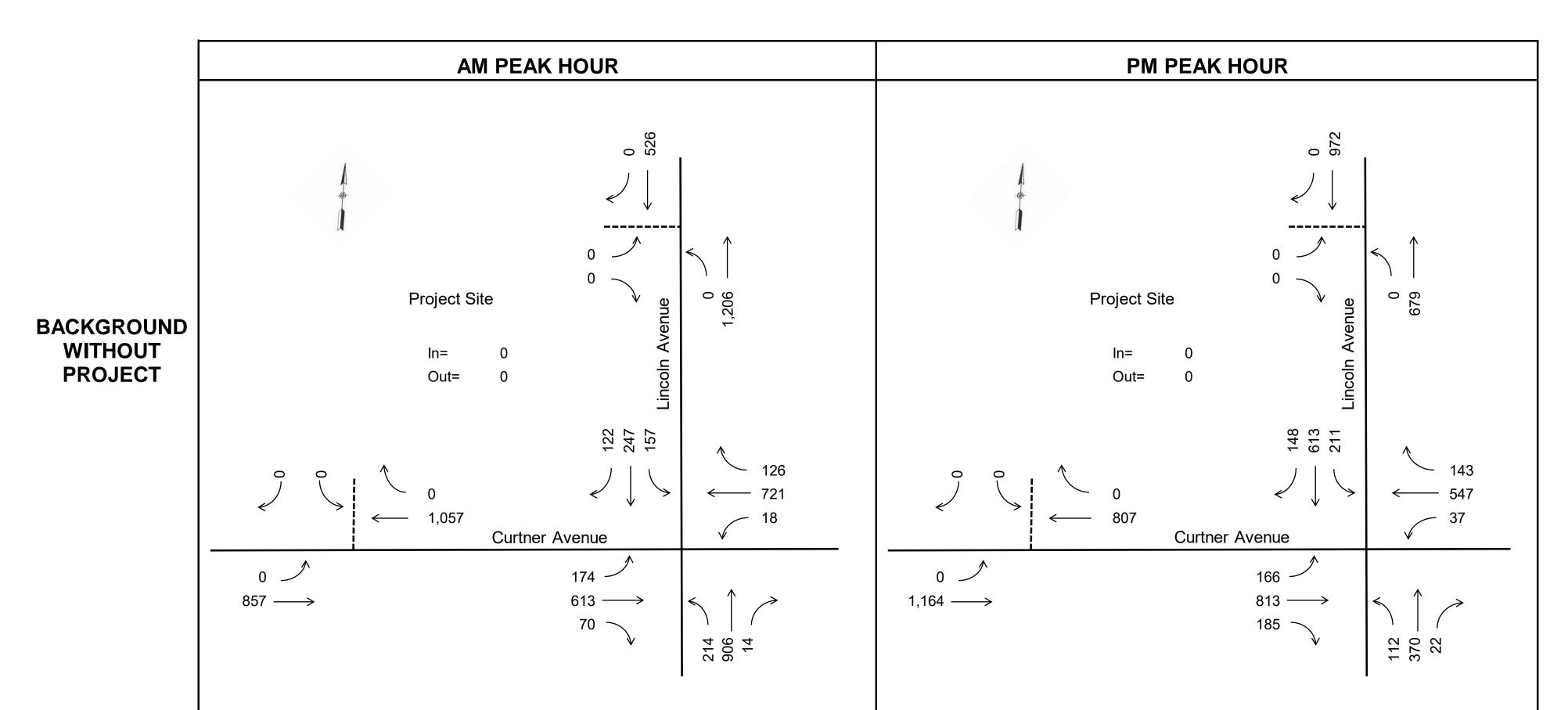
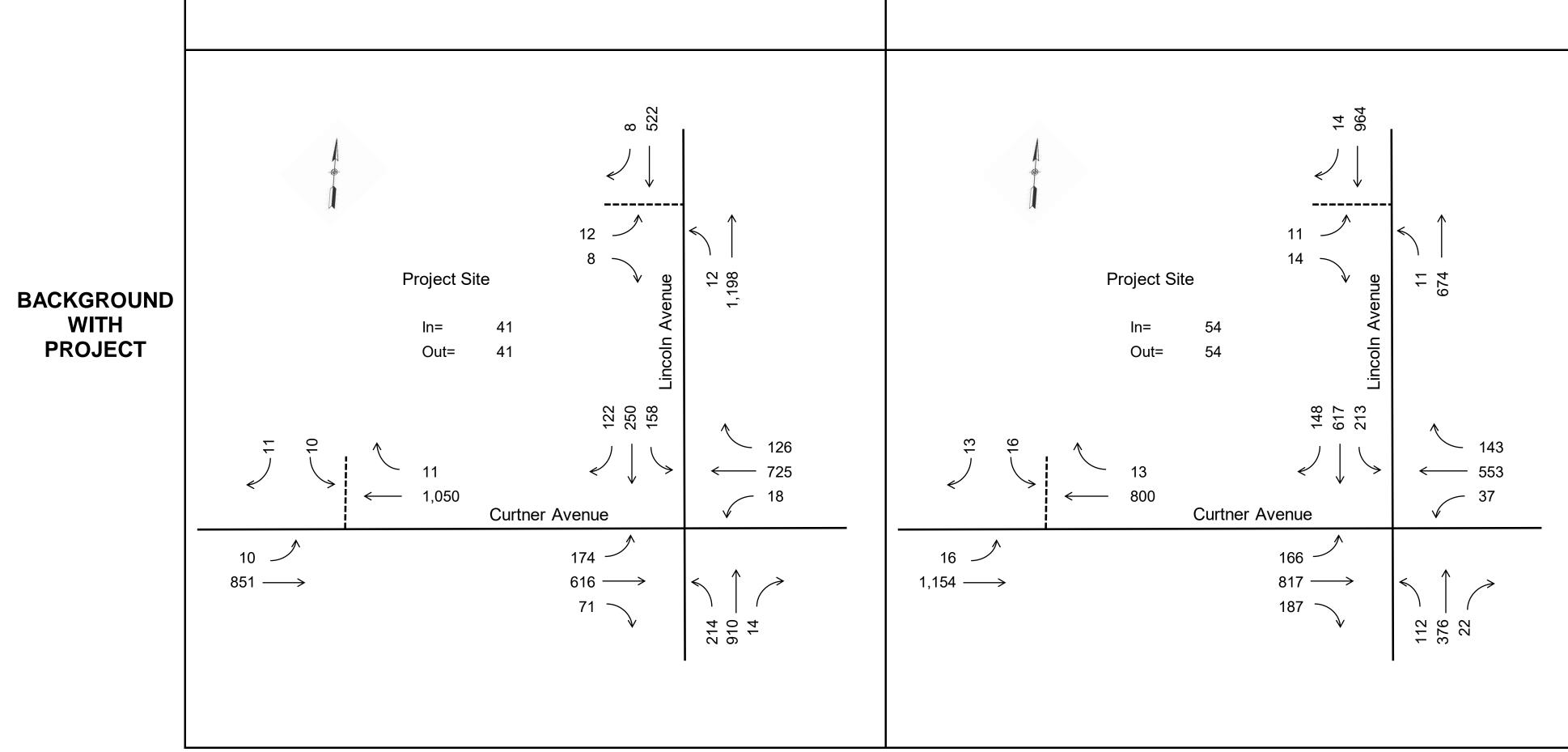


EXHIBIT 10 EXISTING PLUS PROJECT LINCOLN AVENUE AND CURTNER AVENUE PROJECT DRIVEWAY TRAFFIC VOLUMES

					VEHICLE QUEUE	(No. of Vehicles)	
N-S	E-W	Existing		Existing Cond	+ Project itions	Backgroun Cond	d + Project itions
Street	Street	Lane Configuration	Approach/Lane	AM Peak Hr	PM Peak Hr	AM Peak Hr	PM Peak Hr
Lincoln Avenue	Project Lincoln Driveway	NB 1-L/T, 1-T SB 1-T, 1-T/R EB 1-L/R	EB Approach NB L Turn	0.2 0.0	0.3 0.0	0.2 0.0	0.3 0.0
Curtner Avenue	Project Curtner Driveway	SB 1-L/R EB 1-L, 2-T WB 1-T, 1-T/R	SB Approach EB L Turn	0.3 0.0	0.4 0.1	0.4 0.0	0.5 0.1

NOTES: 1. L, T, R = Left, Through, Right 2. NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound


EXHIBIT 11 LINCOLN AVENUE AND CURTNER AVENUE PROJECT DRIVEWAY AM AND PM PEAK HOUR **VEHICLE QUEUES**


	N-S	E-W	-	•	LOS	Background Conditions									Ba	ickgroun Cond	d + Pro itions	ject							
	Street	Street	Lane Configuration	Intersection Control	Standard		AM P	eak Hr			PM P	eak Hr				AM F	Peak Hr					PM P	eak Hr		
	-																	Cha	nge					Char	nge
						LOS	Delay (sec)	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	Crit. V/C	Crit. Delay	LOS	Delay (sec)	Crit. V/C	Crit. Delay	Crit. V/C	Crit. Delay
1	Lincoln Avenue	Curtner Avenue	NB 1-L, 1-T, 1-T/R SB 1-L, 1-T, 1-T/R EB 1-L, 1-T, 1-T/R WB 1-L, 1-T, 1-T/R		D	С	31.6	0.778	33.5	С	28.1	0.654	27.0	С	31.7	0.781	33.6	0.003	0.1	С	28.2	0.657	27.1	0.003	0.1

NOTES:

 L, T, R = Left, Through, Right
 NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound
 Analysis performed using 2000 *Highway Capacity Manual* Methodologies
 LOS standard for signalized City intersections is LOS D.
 LOS highlighted in red indicates operations are below level of service standard.
 Critical V/C, Critial Delay or side-street delay highlighted in yellow indicates a project impact.

EXHIBIT 12 BACKGROUND AND BACKGROUND PLUS PROJECT INTERSECTION LEVELS OF SERVICE

EXHIBIT 13

LINCOLN AVENUE AND CURTNER AVENUE

PROJECT DRIVEWAY TRAFFIC VOLUMES

Driveway Volumes.xls

APPENDIX A1

LEVEL OF SERVICE (LOS) DESCRIPTION SIGNALIZED INTERSECTIONS

Level of Service	Control Delay (seconds / vehicle)
Α	<10
B +	>10 - 12
В	>12 - 18
B-	>18 - 20
C+	>20 - 23
С	>23 - 32
C-	>32 - 35
D+	>35 - 39
D	>39 - 51
D-	>51 - 55
E+	>55 - 60
E	>60 - 75
E-	>75 - 80
F	> 80

Level of Service (LOS) Criteria for Signalized Intersections (Reference Highway Capacity Manual 2000)

The capacity of an urban street is related primarily to the signal timing and the geometric characteristics of the facility as well as to the composition of traffic on the facility. Because geometrics are a fixed characteristic of a facility, even though traffic composition may vary somewhat over time, the capacity of an intersection is generally a stable value that can be significantly improved only by initiating geometric improvements. A traffic signal allocates time among conflicting traffic movements that seek to use the same space. The way in which time is allocated significantly affects the operation and the capacity of the intersection and its approaches.

The methodology for signalized intersection is designed to consider individual intersection approaches and individual lane groups within approaches. A lane group consists of one or more lanes on an intersection approach. The outputs from application of the method described in the HCM 2000 are reported on the basis of each lane. For a given lane group at a signalized intersection, three indications are displayed: green, yellow and red. The red indication may include a short period during which all indications are red, referred to as an all-red interval and the yellow indication forms the change and clearance interval between two green phases.

The methodology for analyzing the capacity and level of service must consider a wide variety of prevailing conditions, including the amount and distribution of traffic movements, traffic composition, geometric characteristics, and details of intersection signalization. The methodology addresses the capacity, LOS, and other performance measures for lane groups and the intersection approaches and the LOS for the intersection as a whole.

Capacity is evaluated in terms of the ratio of demand flow rate to capacity (v/c ratio), whereas LOS is evaluated on the basis of control delay per vehicle (in seconds per vehicle). The methodology does not take into account the potential impact of downstream congestion on intersection operation, nor does the methodology detect and adjust for the impacts of turn-pocket overflows on through traffic and intersection operation.

APPENDIX A2

LEVEL OF SERVICE (LOS) DESCRIPTION UNSIGNALIZED INTERSECTIONS WITH TWO-WAY STOP CONTROL (TWSC)

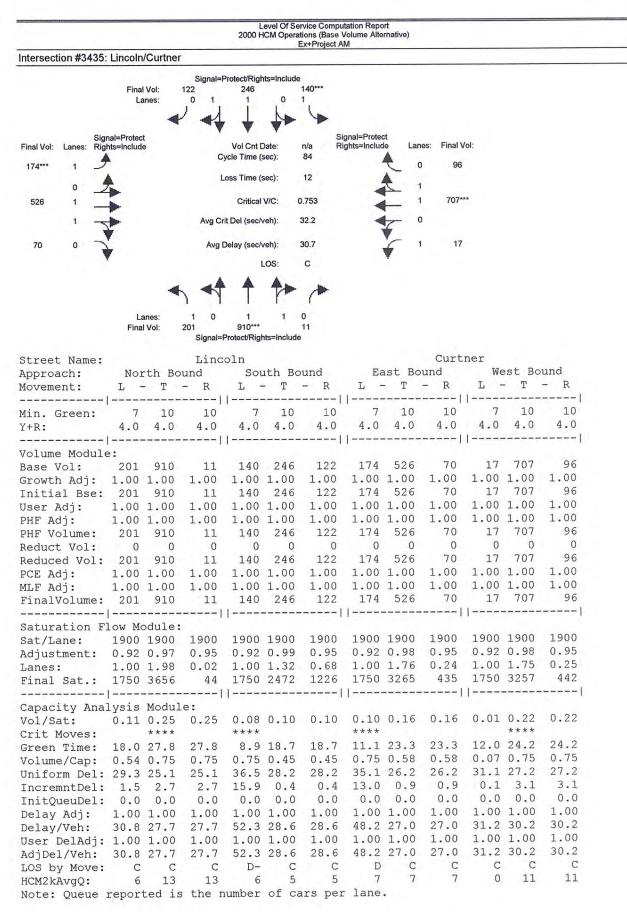
Level of Service	Control Delay (seconds / vehicle)
Α	0 - 10
В	>10 - 15
С	>15 - 25
D	>25 - 35
Ε	>35 - 50
F	>50

Level of Service (LOS) Criteria for TWSC Intersections (Reference Highway Capacity Manual 2000)

TWSC intersections are widely used and stop signs are used to control vehicle movements at such intersections. At TWSC intersections, the stop-controlled approaches are referred to as the minor street approaches; they can be either public streets or private driveways. The intersection approaches that are not controlled by stop signs are referred to as the major street approaches. A three-leg intersection is considered to be a standard type of TWSC intersection if the single minor street approach (i.e. the stem of the T configuration) is controlled by a stop sign. Three-leg intersections where two of the three approaches are controlled by stop signs are a special form of unsignalized intersection control.

At TWSC intersections, drivers on the controlled approaches are required to select gaps in the major street flow through which to execute crossing or turning maneuvers on the basis of judgement. In the presence of a queue, each driver on the controlled approach must use some time to move into the front-of-queue position and prepare to evaluate gaps in the major street flow. Capacity analysis at TWSC intersections depends on the interaction of drivers on the minor or stop-controlled approach with drivers on the major street. Both gap acceptance and empirical models have been developed to describe this interaction.

Thus, the capacity of the controlled legs is based on three factors:

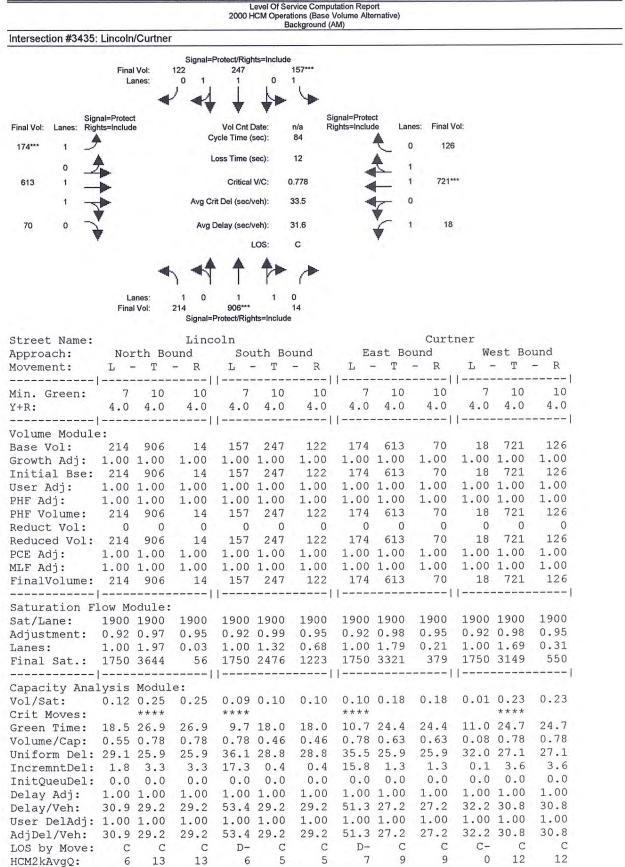

- the distribution of gaps in the major street traffic stream;
- driver judgement in selecting gaps through which to execute the desired maneuvers; and
- the follow-up time required by each driver in a queue.

The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incident, control, traffic or geometric delay. Average control delay for any particular minor movement is a function of the capacity of the approach and the degree of saturation and referred to as level of service.

APPENDIX B

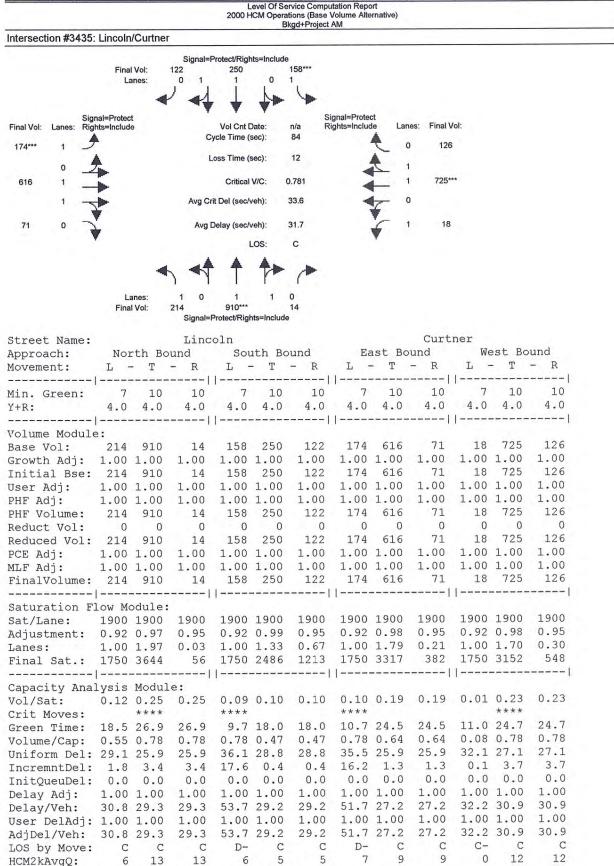
LEVEL OF SERVICE CALCULATION WORKSHEETS

					CM Operat	rvice Comput tions (Base V Existing (AM)	olume Alte					
ntersection #3435	: Lincoln	/Curtner	2									
		l Vol: anes:	Signal=F 122 0 1	Protect/Righ 243 1		139***						
Final Vol: Lanes: Rig	nal=Protect		¢	▼ Vol Cnt D ycle Time (s			gnal=Protec ghts=Includ	le Lan		ol:		
174*** 1 _7				oss Time (s		12						
0 523 1	*			Critical	V/C: (0.750				**		
1 -			Avg Cr	it Del (sec/v	eh):	32.0	-	- 0	r.			
69 0			Avg [Delay (sec/v	reh):	30.6		C 1	17			
				L	.OS:	с		•				
		anes: Il Vol:	1 0 201 Signal=F	1 906*** Protect/Righ	1.0	0						
Street Name:			Linc		th De		F	at Do	Curt		est Bo	und
Approach: Movement:	L -		– R	L -		– R	L -	ast Bo - T	– R	L -	- Т	– R
Min. Green:	7	10	 10	17	10	 10	 7	10	 10	7	10	10
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Volume Modul			1	1		1				1		
Base Vol:	201	906	11	139	243	122	174	523	69 1.00	17 1.00	703	96 1.00
Growth Adj: Initial Bse:	1.00 201	906	1.00 11	1.00 139	243	1.00	1.00 174	523	69	1.00	703	96
User Adj:		1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00
PHF Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
PHF Volume:	201	906	11	139	243	122	174	523	69	17	703	96
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	201	906	11	139	243	122	174	523	69	17	703	96
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1 00	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00	1.00	1.00
	1.00						1.00		1.00			
MLF Adj: FinalVolume:	201	906	11	139	243	122	174	523	69	17	703	96
MLF Adj: FinalVolume: Saturation F	201 low Mo	906 odule:	11 	139 	243	122	174 	523	69 	17 		
MLF Adj: FinalVolume: Saturation F Sat/Lane:	201 low Mo 1900	906 odule: 1900	11 1900	139 	243 1900	122 1900	174 	523 1900	69 1900	17 1900	1900	 1900
MLF Adj: FinalVolume: 	201 low Mo 1900 0.92	906 odule: 1900 0.97	11 1900 0.95	139 1900 0.92	243 1900 0.99	122 1900 0.95	174 1900 0.92	523 1900 0.98	69 1900 0.95	17 1900 0.92	1900 0.98	1900 0.95
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes:	201 low Mo 1900 0.92 1.00	906 odule: 1900 0.97 1.98	11 1900 0.95 0.02	139 1900 0.92 1.00	243 1900 0.99 1.31	122 1900 0.95 0.69	174 1900 0.92 1.00	523 1900 0.98 1.76	69 1900 0.95 0.24	17 1900 0.92 1.00	1900 0.98 1.75	1900 0.95 0.25
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	201 low Mo 1900 0.92 1.00 1750	906 odule: 1900 0.97 1.98 3656	11 1900 0.95 0.02 44	139 1900 0.92 1.00 1750	243 1900 0.99 1.31 2462	122 1900 0.95 0.69 1236	174 1900 0.92 1.00 1750	523 1900 0.98 1.76 3268	69 1900 0.95 0.24 431	17 1900 0.92 1.00 1750	1900 0.98 1.75 3255	1900 0.95 0.25 445
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana	201 10w Mc 1900 0.92 1.00 1750 lysis	906 odule: 1900 0.97 1.98 3656 Modul	11 1900 0.95 0.02 44 e:	139 1900 0.92 1.00 1750 	243 1900 0.99 1.31 2462	122 1900 0.95 0.69 1236	174 1900 0.92 1.00 1750 	523 1900 0.98 1.76 3268	69 1900 0.95 0.24 431	17 1900 0.92 1.00 1750 	1900 0.98 1.75 3255	1900 0.95 0.25 445
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat:	201 10w Mc 1900 0.92 1.00 1750 lysis 0.11	906 odule: 1900 0.97 1.98 3656 Modul 0.25	11 1900 0.95 0.02 44	139 1900 0.92 1.00 1750 0.08	243 1900 0.99 1.31 2462	122 1900 0.95 0.69 1236	174 1900 0.92 1.00 1750 0.10	523 1900 0.98 1.76 3268	69 1900 0.95 0.24 431	17 1900 0.92 1.00 1750 	1900 0.98 1.75 3255	1900 0.95 0.25 445
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves:	201 1900 0.92 1.00 1750 lysis 0.11	906 1900 0.97 1.98 3656 Modul 0.25 ****	11 1900 0.95 0.02 44 e: 0.25	139 1900 0.92 1.00 1750 0.08 ****	243 1900 0.99 1.31 2462 0.10	122 1900 0.95 0.69 1236 	174 1900 0.92 1.00 1750 0.10 ****	523 1900 0.98 1.76 3268 0.16	69 1900 0.95 0.24 431 0.16	17 1900 0.92 1.00 1750 	1900 0.98 1.75 3255 0.22 ****	1900 0.95 0.25 445 0.22
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time:	201 low Mo 1900 0.92 1.00 1750 lysis 0.11 18.0	906 odule: 1900 0.97 1.98 3656 Modul 0.25 **** 27.8	11 1900 0.95 0.02 44 e: 0.25 27.8	139 1900 0.92 1.00 1750 0.08 **** 8.9	243 1900 0.99 1.31 2462 0.10 18.7	122 1900 0.95 0.69 1236 	174 1900 0.92 1.00 1750 0.10 **** 11.1	523 1900 0.98 1.76 3268 0.16 23.2	69 1900 0.95 0.24 431 0.16 23.2	17 1900 0.92 1.00 1750 0.01 12.1	1900 0.98 1.75 3255 0.22 **** 24.2	1900 0.95 0.25 445 0.22 24.2
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54	906 odule: 1900 0.97 1.98 3656 Modul 0.25 **** 27.8 0.75	11 1900 0.95 0.02 44 e: 0.25 27.8	139 1900 0.92 1.00 1750 0.08 **** 8.9 0.75	243 1900 0.99 1.31 2462 0.10 18.7	122 1900 0.95 0.69 1236 	174 1900 0.92 1.00 1750 0.10 **** 11.1	523 1900 0.98 1.76 3268 0.16 23.2 0.58	69 1900 0.95 0.24 431 0.16	17 1900 0.92 1.00 1750 0.01 12.1 0.07	1900 0.98 1.75 3255 0.22 ****	1900 0.95 0.25 445 0.22 24.2 0.75
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3	906 odule: 1900 0.97 1.98 3656 	11 1900 0.95 0.02 44 e: 0.25 27.8 0.75	139 1900 0.92 1.00 1750 0.08 **** 8.9 0.75 36.5	243 1900 0.99 1.31 2462 0.10 18.7 0.44	122 1900 0.95 0.69 1236 	174 1900 0.92 1.00 1750 0.10 **** 11.1 0.75 35.1	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2	69 1900 0.95 0.24 431 0.16 23.2 0.58	17 1900 0.92 1.00 1750 0.01 12.1 0.07	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2	1900 0.95 0.25 445 0.22 24.2 0.75 27.2
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5	906 0dule: 1900 0.97 1.98 3656 	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0	139 1900 0.92 1.00 1750 0.08 **** 8.9 0.75 36.5 15.6	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4	174 1900 0.92 1.00 1750 0.10 **** 11.1 0.75 35.1	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.1 0.0	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel: IncremntDel:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5 0.0	906 0dule: 1900 0.97 1.98 3656 	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0 2.6 0.0	139 1900 0.92 1.00 1750 1 0.08 **** 8.9 0.75 36.5 15.6 0.0 1.00	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4 0.0 1.00	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4 0.0 1.00	174 1900 0.92 1.00 1750 0.10 **** 11.1 0.75 35.1 12.7 0.0 1.00	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8 0.0 1.00	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2 0.8 0.0 1.00	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.0 1.00	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0 1.00	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0 1.00
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel: IncremntDel: InitQueuDel: Delay Adj: Delay/Veh:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5 0.0 1.00 30.8	906 odule: 1900 0.97 1.98 3656 Modul 0.25 **** 27.8 0.75 25.0 2.6 0.0 1.00 27.7	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0 2.6 0.0 1.00 27.7	139 1900 0.92 1.00 1750 1 0.08 **** 8.9 0.75 36.5 15.6 0.0 1.00 52.1	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4 0.0 1.00	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6	174 1900 0.92 1.00 1750 1 0.10 **** 11.1 0.75 35.1 12.7 0.0 1.00 47.8	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.0 1.00 31.2	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0 1.00 30.2	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0 1.00 30.2
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel: IncremntDel: InitQueuDel: Delay Adj: Delay/Veh: User DelAdj:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5 0.0 1.00 30.8 1.00	906 odule: 1900 0.97 1.98 3656 Modul 0.25 **** 27.8 0.75 25.0 2.6 0.0 1.00 27.7 1.00	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0 2.6 0.0 1.00 27.7 1.00	139 1900 0.92 1.00 1750 1 0.08 **** 8.9 0.75 36.5 15.6 0.0 1.00 52.1 1.00	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00	174 1900 0.92 1.00 1750 1 0.10 **** 11.1 0.75 35.1 12.7 0.0 1.00 47.8 1.00	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.0 1.00 31.2 1.00	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel: IncremntDel: InitQueuDel: Delay Adj: Delay/Veh: User DelAdj: AdjDel/Veh:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5 0.0 1.00 30.8 1.00 30.8	906 odule: 1900 0.97 1.98 3656 	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0 2.6 0.0 1.00 27.7 1.00 27.7	139 1900 0.92 1.00 1750 1 0.08 **** 8.9 0.75 36.5 15.6 0.0 1.00 52.1 1.00 52.1	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00 28.6	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00 28.6	174 1900 0.92 1.00 1750 1 0.10 **** 11.1 0.75 35.1 12.7 0.0 1.00 47.8 1.00 47.8	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00 27.0	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00 27.0	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.0 1.00 31.2 1.00 31.2	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00 30.2	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00 30.2
MLF Adj: FinalVolume: Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: Capacity Ana Vol/Sat: Crit Moves: Green Time: Volume/Cap: Uniform Del: IncremntDel: IncremntDel: InitQueuDel: Delay Adj: Delay/Veh: User DelAdj: AdjDel/Veh: LOS by Move:	201 low Md 1900 0.92 1.00 1750 lysis 0.11 18.0 0.54 29.3 1.5 0.0 1.00 30.8 1.00 30.8	906 odule: 1900 0.97 1.98 3656 	11 1900 0.95 0.02 44 1 e: 0.25 27.8 0.75 25.0 2.6 0.0 1.00 27.7 1.00	139 1900 0.92 1.00 1750 1 0.08 **** 8.9 0.75 36.5 15.6 0.0 1.00 52.1 1.00 52.1	243 1900 0.99 1.31 2462 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00 28.6 C	122 1900 0.95 0.69 1236 0.10 18.7 0.44 28.2 0.4 0.0 1.00 28.6 1.00	174 1900 0.92 1.00 1750 1 0.10 **** 11.1 0.75 35.1 12.7 0.0 1.00 47.8 1.00	523 1900 0.98 1.76 3268 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00 27.0 C	69 1900 0.95 0.24 431 0.16 23.2 0.58 26.2 0.8 0.0 1.00 27.0 1.00	17 1900 0.92 1.00 1750 0.01 12.1 0.07 31.1 0.0 1.00 31.2 1.00 31.2 C	1900 0.98 1.75 3255 0.22 **** 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00 30.2 C	1900 0.95 0.25 445 0.22 24.2 0.75 27.2 3.0 0.0 1.00 30.2 1.00 30.2 C


Mon Dec 12 10:41:56 2016

			200	D HCM Oper	ervice Computations (Base	Volume Alte	rnative)				
ntersection #3435:	Lincoln/Ci	urtner			Existing (PN	1)					
	Lindonnot										
	Final Vol		ignal=Protect/R 613*		193						
	Lanes		1 1	0	1						
		2		h							
	32	-	* *	V		- Dort					
Sigi Final Vol: Lanes: Rigi	nal=Protect nts=Include		Vol C	nt Date:		gnal=Protection		es: Final V	/ol:		
165 1			Cycle Tim	e (sec):	84		A) 102			
100 1 -			Loss Tim	e (sec):	12		<u> </u>	102			
0	•					-	- 4				
752*** 1	•		Criti	cal V/C:	0.630	-	H '	501			
1 -			Avg Crit Del (se	ec/veh):	26.6	-		0			
172 0	7		Avg Delay (se	c/veh):	27.7			37**	*		
	7		ring Dollay (or				•				
				LOS:	С						
		-		-							
		.)	1 1	1	(
	Lanes Final Vo		0 1	1	0 21						
	1000.00		ignal=Protect/F		de						
Street Name:		I	incoln					Curt	ner		
Approach:	North		a s	outh B	ound	Ea	st Bo	und	We	est Bo	und
lovement:	L -			- т				– R			- R
Min. Green:	7			$\begin{array}{ccc} 7 & 10 \\ 0 & 4.0 \end{array}$	10 4.0	7	10 4.0	10 4.0	4.0	10 4.0	10 4.0
(+R:		4.0 4			4.0	4.0	4.0		1		
Volume Module											
Base Vol:		350	21 19	3 613	147	165	752	172	37	501	102
Growth Adj:	1.00 1.	.00 1.	.00 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	112 3	350	21 19	3 613	147	165	752	172	37	501	102
Jser Adj:	1.00 1.			0 1.00		1.00		1.00		1.00	1.00
PHF Adj:	1.00 1.			0 1.00		1.00		1.00		1.00	1.00
PHF Volume:		350	21 19			165 0	752 0	172 0	37 0	501 0	102
Reduct Vol:	0 112 3	0 350	0 21 19	0 0 3 613		165	752	172	37	501	102
Reduced Vol: PCE Adj:	1.00 1			0 1.00		1.00		1.00		1.00	1.00
ALF Adj:	1.00 1			0 1.00		1.00		1.00		1.00	1.00
FinalVolume:	112 3	350	21 19	3 613	147	165	752			501	102
Saturation F						1000	1000	1000	1000	1000	1000
Sat/Lane:			900 190					1900		1900	1900
Adjustment:					0.95		0.98	0.95		1.65	0.95
Lanes: Final Sat.:	1.00 1 1750 34				716			689		3074	626
Sat.:	1.00 3.										
Capacity Ana	lysis Mo	odule:									
Jol/Sat:	0.06 0	.10 0	.10 0.1		0.21	0.09		0.25		0.16	0.16
Crit Moves:	****			****		14 0	****	21 2	****	24 2	24 0
Green Time:	8.0 1			2 25.7	25.7 0.67		31.3	31.3			24.2
Volume/Cap:							22.1	22.1		25.4	25.4
Jniform Del: IncremntDel:			9.2 30. 0.5 2.	7 25.4 3 1.6			1.3	1.3		0.7	0.7
IncremntDel: InitQueuDel:			0.0 0.			0.0	0.0	0.0	0.0	0.0	0.0
Delay Adj:	1.00 1				1.00	1.00		1.00		1.00	1.00
Delay/Veh:	46.9 2			1 27.0			23.4	23.4		26.1	26.1
Jser DelAdj:					1.00	1.00		1.00			1.00
AdjDel/Veh:			9.7 33.	1 27.0			23.4	23.4			26.1
LOS by Move:	D	С	C C	- C		C-	C	С	D+	C	C
HCM2kAvgQ:	4	5		6 10		5		11	1	7	7
Note: Queue :											

=


						ervice Comput ations (Base V						
				2000 F		Ex+Project Pl		mauve)				
tersection #3435	: Lincoln/C	Curtner				167.00						
				Protect/Rig	nts=Include							
	Final V Lane		47 0 1	617*** 1	0	195 1						
		-	1	1	ka	1						
		-	-			-						
Sig inal Vol: Lanes: Rig	nal=Protect			Vol Cnt I	Date:		nal=Protec		es: Final V	/ol:		
			С	ycle Time (84						
165 1				.oss Time (soc).	12		7	0 102			
0	7			.055 11110 (300).	12	-	2	1			
756*** 1	-			Critical	V/C:	0.634	-	·	507			
1 -	-		Avg Cr	it Del (sec/	veh):	26.7	-		0			
	Ý							*				
174 0	-		Avg l	Delay (sec/	veh):	27.8		é	1 37**	*		
	•			-1	LOS:	С		Ť				
					A.							
			-	T		1						
	Lane	es:	1 0	1	1	0						
	Final V		***	356		21						
			Signal=	Protect/Rig	nts=Includ	9						
creet Name:			Linc	oln					Curt	ner		
oproach:		h Bou			ith Bo			ast Bc			est Bo	
ovement:	L -					- R	L -		- R		- T	- R
in. Green:	7	10	10	7	10	 10	7	10	10	7	10	10
R:	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
			1			1						
olume Modul	e:										1.1.1	
ase Vol:	112	356	21	195	617	147	165	756	174	37	507	102
rowth Adj:	1.00 1		1.00		1.00	1.00	1.00		1.00		1.00	1.00
nitial Bse:	112 1.00 1	356	21 1.00	195	617 1.00	147 1.00	165 1.00	756	174	37	507 1.00	102
ser Adj:	1.00 1								1.00			
HF Adi.		. 00	1 . 1111	1.00	1.00	1.00	1.00	1.00		1.00	1.00	T.00
	1.00 1 112	L.00 356	1.00 21	1.00 195	1.00	1.00 147	1.00 165	756	174	37	1.00 507	1.00 102
HF Adj: HF Volume: educt Vol:	1.00 1											
HF Volume:	1.00 1 112	356	21	195	617	147	165 0 165	756 0 756	174 0 174	37 0 37	507 0 507	102 0 102
HF Volume: educt Vol: educed Vol: CE Adj:	1.00 1 112 0 112 1.00 1	356 0 356 L.00	21 0 21 1.00	195 0 195 1.00	617 0 617 1.00	147 0 147 1.00	165 0 165 1.00	756 0 756 1.00	174 0 174 1.00	37 0 37 1.00	507 0 507 1.00	102 0 102 1.00
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj:	1.00 1 112 0 112 1.00 1 1.00 1	356 0 356 L.00 L.00	21 0 21 1.00 1.00	195 0 195 1.00 1.00	617 0 617 1.00 1.00	147 0 147 1.00 1.00	165 0 165 1.00 1.00	756 0 756 1.00 1.00	174 0 174 1.00 1.00	37 0 37 1.00 1.00	507 0 507 1.00 1.00	102 0 102 1.00 1.00
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume:	1.00 1 112 0 112 1.00 1 1.00 1 112	356 0 356 1.00 1.00 356	21 0 21 1.00 1.00 21	195 0 195 1.00 1.00 195	617 0 617 1.00 1.00 617	147 0 147 1.00 1.00 147	165 0 165 1.00 1.00 165	756 0 756 1.00 1.00 756	174 0 174 1.00 1.00 174	37 0 37 1.00 1.00 37	507 0 507 1.00 1.00 507	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume:	1.00 1 112 0 112 1.00 1 1.00 1 112	356 0 356 L.00 L.00 356	21 0 21 1.00 1.00 21	195 0 195 1.00 1.00 195	617 0 617 1.00 1.00 617	147 0 147 1.00 1.00 147	165 0 165 1.00 1.00 165	756 0 756 1.00 1.00 756	174 0 174 1.00 1.00 174	37 0 37 1.00 1.00 37	507 0 507 1.00 1.00 507	102 0 102 1.00 1.00
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F	1.00 1 112 0 112 1.00 1 1.00 1 112	356 0 356 1.00 1.00 356 dule:	21 0 21 1.00 1.00 21	195 0 195 1.00 1.00 195	617 0 617 1.00 1.00 617	147 0 147 1.00 1.00 147	165 0 165 1.00 1.00 165	756 0 756 1.00 1.00 756	174 0 174 1.00 1.00 174	37 0 37 1.00 1.00 37	507 0 507 1.00 1.00 507	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane:	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 112 low Moo 1900 1	356 0 356 1.00 356 356 dule:	21 0 21 1.00 1.00 21 1900	195 0 195 1.00 1.00 195 	617 0 617 1.00 1.00 617	147 0 147 1.00 1.00 147	165 0 165 1.00 1.00 165 	756 0 756 1.00 1.00 756	174 0 174 1.00 1.00 174 1900 0.95	37 0 37 1.00 1.00 37 1900 0.92	507 0 507 1.00 1.00 507 1900 0.98	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes:	1.00 1 112 0 112 1.00 1 1.00 1 112 low Moo 1900 1 0.92 0 1.00 1	356 0 356 1.00 356 dule: 1900 0.98 1.89	21 0 21 1.00 21 1900 0.95 0.11	195 0 195 1.00 1.00 195 1 1900 0.92 1.00	617 0 617 1.00 1.00 617 1900 0.98 1.60	147 0 147 1.00 1.00 147 1900 0.95 0.40	165 0 165 1.00 1.00 165 1 1900 0.92 1.00	756 0 756 1.00 1.00 756 1900 0.98 1.62	174 0 174 1.00 1.00 174 1900 0.95 0.38	37 0 37 1.00 1.00 37 1900 0.92 1.00	507 0 507 1.00 1.00 507 1900 0.98 1.66	102 0 102 1.00 1.00 102 1900 0.95 0.34
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.:	1.00 1 112 0 112 1.00 1 1.00 1 112 1.00 1 0.92 0 1.00 1 1750 3	356 0 356 1.00 356 356 341e: 1900 0.98 1.89 3494	21 0 21 1.00 21 1900 0.95 0.11 206	195 0 195 1.00 195 1 1900 0.92 1.00 1750	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988	147 0 147 1.00 1.00 147 1900 0.95 0.40 712	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080	102 0 102 1.00 1.00 102 1900 0.95 0.34 620
HF Volume: educt Vol: educed Vol: CE Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.:	1.00 1 112 0 112 1.00 1 1.00 1 112 low Moo 1900 1 0.92 0 1.00 1 1750 3 	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494	21 0 21 1.00 21 1900 0.95 0.11 206 	195 0 195 1.00 195 1 1900 0.92 1.00 1750	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988	147 0 147 1.00 1.00 147 1900 0.95 0.40 712	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080	102 0 102 1.00 1.00 102 1900 0.95 0.34 620
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: apacity Ana	1.00 1 112 0 112 1.00 1 1.00 1 112 1 10w Mod 1900 1 0.92 0 1.00 1 1750 3 1 1ysis M	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 	21 0 21 1.00 21 1900 0.95 0.11 206 	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988	147 0 147 1.00 1.00 147 1900 0.95 0.40 712	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007	174 0 174 1.00 1.00 174 1900 0.95 0.38 692	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080	102 0 102 1.00 1.00 102 1900 0.95 0.34 620
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: apacity Ana ol/Sat:	1.00 1 112 0 112 1.00 1 1.00 1 112 low Moo 1900 1 0.92 0 1.00 1 1750 3 	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 	21 0 21 1.00 21 1900 0.95 0.11 206 	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988	147 0 147 1.00 1.00 147 1900 0.95 0.40 712	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080	102 0 102 1.00 1.00 102 1900 0.95 0.34 620
<pre>HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: apacity Ana ol/Sat: rit Moves:</pre>	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1 lysis M 0.06 0	356 0 356 1.00 356 356 356 3494 1.89 3494 40dule 0.10	21 0 21 1.00 21 1900 0.95 0.11 206 	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988	147 0 147 1.00 1.00 147 1900 0.95 0.40 712	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25	174 0 174 1.00 1.00 174 1900 0.95 0.38 692	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750 1 0.02 ****	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080	102 0 102 1.00 1.00 102 1900 0.95 0.34 620
<pre>HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: apacity Ana ol/Sat: rit Moves: reen Time:</pre>	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1 lysis M 0.06 0 **** 8.0 1	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10	21 021 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 ****	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25 ****	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: apacity Ana ol/Sat: rit Moves: reen Time: olume/Cap: niform Del:	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.12 1.00 1 0.92 0 1.00 1 1.750 3 1.00 1 1.750 3 1.00 1 0.92 0 1.00 1 1.00 1 0.92 0 1.00 1 0.92 0 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 0.95 0 1.00 1 0.06 0 36.8 2 36.8 2	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 17.4 0.49 29.4	21 021 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0 0.57 32.2	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25 **** 31.3 0.67 22.1	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: aturation F aturation F at/Lane: djustment: anes: anes: anal Sat.: capacity Ana ol/Sat: cit Moves: ceen Time: olume/Cap: niform Del: accemtDel:	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1 1ysis M 0.06 0 **** 8.0 1 0.67 0 36.8 2 10.5	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 17.4 0.49 29.4 0.5	21 0 21 1.00 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4 0.5	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6	$ \begin{array}{c} 147\\ 0\\ 147\\ 1.00\\ 1.00\\ 147\\ \\ 1900\\ 0.95\\ 0.40\\ 712\\ \\ 0.21\\ 25.7\\ 0.67\\ 25.5\\ 1.6\end{array} $	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25 **** 31.3 0.67 22.1 1.3	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: 	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 0.92 0 1.00 1 1750 3 1 lysis M 0.06 0 **** 8.0 1 0.67 0 36.8 2 10.5 0.0	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 17.4 0.49 29.4 0.5 0.0	21 0 21 1.00 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4 0.5 0.0	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4 0.0	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6 0.0	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6 0.0	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25 **** 31.3 0.67 22.1 1.3 0.0	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9 0.0	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7 0.0	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: 	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.12 1.00 1 0.92 0 1.00 1 1.750 3 1.00 1 1.750 3 1.00 1 0.67 0 36.8 2 10.5 0.0 1.00 1	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 17.4 0.5 0.0 1.00	21 0 21 1.00 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4 0.5 0.0 1.000 1.0	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4 0.0 1.00	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6 0.0 1.00	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6 0.0 1.00	756 0 756 1.00 1.00 756 1900 0.98 1.62 3007 0.25 **** 31.3 0.67 22.1 1.3 0.0 1.00	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9 0.0 1.00	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7 0.0 1.00	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: Lane: djustment: anes: lanal Sat.: 	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1.00 1 1.750 3 1.00 1 0.67 0 36.8 2 10.5 0.00 1 0.00 1 47.2 2	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 17.4 0.5 0.0 1.00 29.9	21 0 21 1.00 1.00 21 1 1900 0.95 0.11 206 1 : 0.10 17.4 0.49 29.4 0.5 0.0 1.00 29.9	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4 0.0 1.00 33.1	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6 0.0 1.00 27.1	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 165 1 1900 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6 0.0 1.00 34.9	756 0 756 1.00 1.00 756 	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9 0.0 1.00 37.0	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7 0.0 1.00 26.1	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: 	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1.00 1 1.750 3 1.00 1 0.67 0 36.8 2 10.5 0.00 1 47.2 2 1.00 1	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 1.7.4 0.5 0.0 1.00 29.9 1.00	21 0 21 1.00 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4 0.5 0.0 1.00 29.9 1.00	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4 0.0 1.00 33.1 1.00	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6 0.0 1.00 27.1 1.00	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 1.00 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6 0.0 1.00 34.9 1.00	756 0 756 1.00 1.00 756 	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9 0.0 1.00 37.0 1.00	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7 0.0 1.00	102 0 102 1.00 1.00 102
HF Volume: educt Vol: educed Vol: CE Adj: LF Adj: inalVolume: aturation F at/Lane: djustment: anes: inal Sat.: 	1.00 1 112 0 112 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 0.92 0 1.00 1 1.750 3 1.00 1 1.750 3 1.00 1 0.67 0 36.8 2 10.5 0.00 1 47.2 2 1.00 1 47.2 2	356 0 356 1.00 356 dule: 1900 0.98 1.89 3494 40dule 0.10 1.7.4 0.5 0.0 1.00 29.9 1.00	21 0 21 1.00 1.00 21 1900 0.95 0.11 206 : 0.10 17.4 0.49 29.4 0.5 0.0 1.00 29.9	195 0 195 1.00 1.00 195 1 1900 0.92 1.00 1750 1 0.11 16.3 0.57 30.7 2.4 0.0 1.00 33.1 1.00	617 0 617 1.00 1.00 617 1900 0.98 1.60 2988 0.21 **** 25.7 0.67 25.5 1.6 0.0 1.00 27.1	147 0 147 1.00 1.00 147 	165 0 165 1.00 1.00 1.00 0.92 1.00 1750 1 0.09 14.0 0.57 32.2 2.6 0.0 1.00 34.9 1.00	756 0 756 1.00 1.00 756 	174 0 174 1.00 1.00 174 	37 0 37 1.00 1.00 37 1900 0.92 1.00 1750 1 0.02 **** 7.0 0.25 36.1 0.9 0.0 1.00 37.0 1.00	507 0 507 1.00 1.00 507 1900 0.98 1.66 3080 0.16 24.4 0.57 25.3 0.7 0.0 1.00 26.1 1.00 26.1	102 0 102 1.00 1.00 102

Note: Queue reported is the number of cars per lane.

Page 3-2

9

9

0

12

12

6 7 6 13 13 HCM2kAvgQ: Note: Queue reported is the number of cars per lane.

					ICM Operation		Volume Alter (PM)					
ntersection #3435:	Lincoln	/Curtne	r				(
		l Vol: anes:	Signal=I 148 0 1	Protect/Righ 613*** 1	nts=Include 0	211 1						
		-	P 📲	+		\$						
Sign Final Vol: Lanes: Righ	al=Protec ts=includ			Vol Cnt [n/a F	Signal=Protec Rights=Includ		es: Final V	'ol:		
166 1				ycle Time (84	4	2	143			
• 4			L	oss Time (12	-					
^{813***} 1 —			Ava Cr	Critical it Del (sec/		0.654 27.0						
	-			Delay (sec/		28.1						
185 0			Avgi		LOS:	C	,	¥	57			
					4							
	- 4		וי וי 10	1	۲ -	0						
		anes: I Vol: 1	12***	370 Protect/Rigi	nts=Includ	22						
Street Name:			Linc						Curt	ner		
Approach: Movement:	L -	rth Bo - T	ound - R	Sou L -	-	– R	L -	st Bo T	- R	L -	est Bo - T	ound - R
 Min. Green: Y+R:	74.0	10 4.0	10 4.0	7 4.0	10 4.0	10 4.0	7 4.0	10	10 4.0	7 4.0	10 4.0	10 4.0
							11					
Volume Module Base Vol:	: 112	370	22	211	613	148	166	813	185	37	547	143
		1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00
Initial Bse:	112	370	22	211	613	148	166	813	185	37	547	143
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
PHF Volume:	112	370	22	211	613	148	166	813	185	37	547	143
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	112	370	22	211	613	148	166	813	185	37	547	143
-		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
MLF Adj:		1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00
FinalVolume:	112	370	22	211	613	148	166	813	185	37	547	143
Saturation Fl	ow Mo	odule	:									
			1900						1900		1900	
Adjustment:				0.92			0.92			0.92		
			0.12				1.00		0.38 686		1.57 2933	
Final Sat.:	1/50	3492	208		2980							
Capacity Anal				0 10	0 01	0 01	0.00	0 07	0 27	0.02	0.19	0.19
Vol/Sat: Crit Moves:		0.11	0.11	0.12	0.21		0.09	0.27	0.27	****		0.13
Green Time:		16.1	16.1	16.4			13.3		32.5	7.0		26.2
		0.55		0.62				0.70			0.60	0.60
Uniform Del:					26.3				21.6	36.1		24.5
IncremntDel:					2.0	2.0		1.5	1.5	0.9	0.9	0.9
InitQueuDel:				0.0		0.0		0.0	0.0	0.0	0.0	0.0
Delay Adj:				1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Delay/Veh:				34.4						37.0	25.3	25.3
User DelAdj:				1.00				1.00	1.00		1.00	1.00
User DelAdi:								00 1	00 1	27 0	DE D	25.3
	49.7	31.6	31.6	34.4	28.3	28.3	36.4	23.1	23.1	31.0	25.3	20.0
AdjDel/Veh: LOS by Move:				34.4 C-		28.3 C		23.1 C		37.0 D+		20.0 C

-

					tions (Base						
			20001		kgd+Project					-	
ntersection #3435	: Lincoin/Curtr	er									
	Final Vol:	Signal= 148	Protect/Rigi 617***		213						
	Lanes:	0 1	1	0	1						
		a) al		ha	La						
	and the second second	4 4	*	A.							
Sinal Vol: Lanes: Ri	gnal=Protect		Vol Cnt I	Date:		gnal=Prote ghts=Includ		nes: Final \	/ol:		
		c	ycle Time (84	grite interact					
166 1 _			ano Timo (12		7	0 143			
0	A		.oss Time (Sec).	12		2	1			
817*** 1	K		Critical	V/C:	0.657		_	1 553	1. I.I.		
1 -		Ava C	rit Del (sec/	veh):	27.1	-	-	0			
		nug o	IL DOI (OCO	veny.			¥ (
187 0	2	Avg	Delay (sec/	veh):	28.2		1	1 37**	•		
	Ŧ			LOS:	с		¥				
	-	< <			1						
		1 1	1	1	1						
	Lanes:	1 0	1	1	0						
	Final Vol:	112*** Signal=	376 Protect/Rig	hts=Include	22						
								1.2.2.2			
creet Name:		Linc			1.52.5	-		Curt			
proach:	North I			ith Bc			ast Bo	– R		est Bc - T	– R
ovement:	L - T	- R		- T							- R
n. Green:	7 10		7			7		10	7	10	10
R:	4.0 4.0				4.0		4.0	4.0	4.0		4.0
lume Modul			,								
ase Vol:	112 376	5 22	213	617	148	166	817	187	37	553	143
owth Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
nitial Bse:	112 370	5 22	213	617	148	166	817	187	37	553	143
ser Adj:	1.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00
IF Adj:	1.00 1.00			1.00	1.00	1.00		1.00		1.00	1.00
IF Volume:	112 370		213	617	148	166	817	187	37	553	143
educt Vol:	0 (0	0	0	0	0	107	0 37	0 553	143
educed Vol:			213	617	148 1.00	166	817 1.00	187 1.00		1.00	143
CE Adj: LF Adj:	1.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00
nalVolume:			213		148		817	187	37		143
	1										
turation E											
at/Lane:	1900 1900		1900	1900	1900	1900	1900	1900	1900	1900	1900
djustment:	0.92 0.98	0.95	0.92	0.98	0.95	0.92	0.98	0.95	0.92	0.98	0.95
anes:	1.00 1.89		1.00	1.60	0.40	1.00	1.62	0.38		1.58	
nal Sat.:				2984	716		3010	689		2939	760
apacity Ana				1.10				0.07	0.00	0 10	0 10
ol/Sat:	0.06 0.1	0.11	0.12	0.21	0.21	0.09	0.27	0.27	0.02	0.19	0.19
tit Moves:	****	16 1	16 1	24.8	24.8	12 2	32.5	32.5		26.3	26.3
	7.7 16.3			24.8	0.70		0.70	0.70		0.60	0.60
lume/Cap: iform Del:				26.3	26.3		21.6	21.6		24.4	24.4
ncremntDel:			3.6		20.3	3.7	1.6	1.6	0.9		0.9
nitQueuDel:			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
elay Adj:	1.00 1.00			1.00	1.00		1.00	1.00		1.00	1.00
elay/Veh:				28.4			23.2	23.2		25.3	
ser DelAdj:				1.00		1.00		1.00		1.00	
jDel/Veh:				28.4	28.4		23.2	23.2	37.0	25.3	25.3
S by Move:		C C	C-	С	С	D+	C	C	D+	С	С
-			C	10	10	E	10	12	1	8	8
CM2kAvgQ: ote: Queue		5 6	6	10	10	5		12	Т	0	0

EX+Project AM											
		Level (of Serv	vice (Computa	ation H	Report	C.			
*************	2000 HCM U	nsignal	lized N	lethoo	d (Base	e Volur	ne Alt	cernat:	lve)		و عاد عاد عاد عاد عاد ع
						*****	*****	*****	******	****	*****
Intersection *********	#1 Curtne	r/Curtr	ner Dra	Lveway	/ 	i ala ala ala ala ala a	ه ماه ماه ماه ما	به باد باد باد باد با	L + + + + + + +		-+++++
Average Delay	/ (sec/veh) : 	0.3	له مله مله مله مله مل	Worst	Case 1	level	UI Sei	cvice:	C[Z4	±•∠]
								ound		est Bo	
Approach: Movement:	North B	ouna	JOI								
Movement:	ь – т	- R	- Ц -	- 1	- R	ц –	- 1	- K		- 1	- IX
Control	Ctop C	ian	C1			IIn(contro	alled	IIn (rontro	olled
Control: Rights:	stop s	rgn	10	Thel	ıdo	0110	Tncli	1de	UIIC	Inclu	ide
Lanes:			0 (11010		1 () 2	0 0	0 0	1 1010	1 0
Lanes:	0 0 0	0 0	0 0	J I:	0 0	· · ·					
Volume Module				100000							
	0 0	0	10	0	11	10	760	0	0	1023	11
Growth Adj:				1.00	1.00		1.00			1.00	
Initial Bse:			10	0			760			1023	
User Adj:				1.00	1.00		1.00			1.00	
PHF Adj:	1.00 1.00	1.00		1.00		1.00				1.00	
PHF Volume:	0 0	0	10	0	11		760			1023	11
Reduct Vol:	0 0	0	0	0				0			0
FinalVolume:	0 0	0	10	0					0		
Critical Gap	Module:										
Critical Gp:>	XXXXX XXXX	XXXXX	6.8	6.5	6.9	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX
FollowUpTim:>	XXXXX XXXX	XXXXX	3.5	4.0	3.3	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Capacity Modu											
Cnflict Vol:				1809				XXXXX			XXXXX
Potent Cap.:			128		509			XXXXX			XXXXX
Move Cap.:			127		509				XXXX		
Volume/Cap:	XXXX XXXX	XXXX	0.08	0.00	0.02			XXXX			XXXX
Level Of Serv				20000000		0 0			XXXX	*******	
2Way95thQ:											
Control Del:	* * *	XXXXX *	XXXXXX *	XXXX *	XXXXX *	10.4 B		*	XXXXX *	*	*
LOS by Move:						-				- LTR	
Movement:	LT - LTR										XXXXX
Shared Cap.: SharedQueue::	XXXX XXXX	XXXXX	XXXX	209	VVVVV	VAVV	XVVV	XXXXXX	XXXXX		
SharedQueue:	XXXXX XXXX	XXXXX	XXXXX	24 2	VVVVV	VVVVV	VVVV	XXXXX	XXXXXX	XXXXX	XXXXXX
Shared LOS:	* *	*	*		*	*	*	*	*	*	*
ApproachDel:	XXXXXX			24.2			XXXXX		X	XXXXX	
ApproachLOS:	*			24.2 C		71.	*			*	
Approaciiios.			*****		*****	*****	*****	*****	*****	*****	*****
Note: Queue											
***********	*******	*****	******	*****	*****	*****	*****	*****	*****	****	*****
	es aspecta name	A 10 10 10 10 10									

Ex+Project Pl												
	2000		Level (JI Serv	Vice (Computa	Volum	Alt	ternati	1001		
**********	*****	*****	******	******	*****	******	******	*****	******	*****	*****	*****
Intersection												
**********	*****	*****	******	******	*****	r ******	*****	*****	******	*****	*****	*****
Average Dela	y (se ****	c/veh) *****	· : ******	0.4	*****	Worst ******	Case I	Level	Of Sei	cvice:	C[23	8.6] ******
Approach:	No	rth Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:	L	- T	- R	L -	- T	- R	L -	- T	- R	L -	- T	- R
Control:												
Rights:	5	Incli	ıde	5.	Inclu	ıde		Inclu	ıde	18-191	Inclu	ıde
Lanes:	0	0 0	0 0	0 () 1!	0 0	1 () 2	0 0	0 () 1	1 0
Volume Module	e:											
Base Vol:	0	0	0	16	0	13	16	1079	0	0	753	13
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	0	0	16	0	13	16	10/9	0	0	153	13
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	0	0	16	0	13	16	1079	0	0	153	13
PHF Volume: Reduct Vol: FinalVolume:	0	0	0	0	0	10	10	1070	0	0	752	12
FinalVolume:	0	0	0	10	0	13	10	1079	0	0	155	10
Critical Gap	· · · · · · · · · · · · · · · · · · ·											
Critical Gp:			~~~~~	6 8	6 5	6 9	4 1	XXXX	XXXXX	XXXXX	XXXX	xxxxx
FollowUpTim::	XXXXXX	XXXX	XXXXXX	3.5	4.0	3.3	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Capacity Mod												
Cnflict Vol:	XXXX	XXXX	XXXXX	1331	1871	383	766	XXXX	XXXXX	XXXX	XXXX	XXXXX
Potent Cap .:	XXXX	XXXX	XXXXX	148	73	621	856	XXXX	XXXXX	XXXX	XXXX	XXXXX
Move Cap.:									XXXXX			
Volume/Cap:	XXXX	XXXX	XXXX			0.02			XXXX			
Level Of Ser							0 1					
2Way95thQ:												
Control Del:	XXXXX *		XXXXX *	XXXXX *		XXXXX *		XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXXX *
LOS by Move:							11		- RT			
Movement: Shared Cap.:			- RT									
SharedQueue:												
Shrd ConDel:												
Shared LOS:	*		*	*	23.0 C	*	*	*	*	*	*	*
ApproachDel:	X	XXXXX			23.6		XX	XXXXX		X	xxxxx	
ApproachLOS:		*			С			*			*	
*********	****	*****	*****	*****	****	*****	*****	*****	*****	*****	*****	*****

Bkgd+Project AM

Mon Dec 12, 2016 10:40:12

	0000		Level (
*****	2000 HC	-M UI *****	151gnaJ	L1ZEQ [1etno(1 (Base	e volui	ne Alt *****	ternat:	1Ve) ******	*****	*****
Intersection									2 10 12 10 19 12 1	2,2,2,2,2,2,4,4		
**********	π⊥ Cui	****	******	1CT DT-	k****	/ * * * * * * * * *	*****	*****	******	*****	****	*****
Average Dela	V (Sec/	(veh)		0.3		Worst	Case 1	level	Of Se	rvice:	D[20	5.21
*****	******	****	******	*****	****	******	*****	*****	*****	*****	*****	*****
Approach:	Nort	ch Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:	L -	т	– R	L -	- Т	- R	L -	- Т	– R	L ·	- T	- R
Control:	Sto	op Si	ign	St	top S:	ign	Und	contro	olled	Und	contro	olled
Rights:	I	Inclu	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde
Lanes:												
Volume Modul								0.54		0	1050	1 1
	0											
Growth Adj:										1.00		
Initial Bse:			0	10					0		1050	
User Adj:										1.00		
PHF Adj:	1.00 1	L.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1050	1.00
PHF VOLUME:	0	0	0	10	0	11	10	0.01	0	0	1030	11
PHF Volume: Reduct Vol: FinalVolume:	0	0	0	10	0	11	10	851	0	0	1050	11
	1	0					10					
Critical Gap												
Critical Gp:	XXXXX X	xxxx	XXXXX	6.8	6.5	6.9	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX
FollowUpTim:	XXXXX X	XXXX	XXXXX	3.5	4.0	3.3	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Capacity Mod	ule:											
Cnflict Vol:	XXXX X	XXXX	XXXXX			531			XXXXX		XXXX	XXXXX
Potent Cap.:	XXXX X	XXXX	XXXXX			498					XXXX	XXXXX
Move Cap.:						498						XXXXX
Volume/Cap:	XXXX X	XXXX	XXXX	0.09		0.02			XXXX			XXXX
Level Of Ser							0.0	0				
2Way95thQ:	XXXX X	XXXX	XXXXX	XXXX	XXXX	XXXXX	10.0	XXXX	XXXXXX	XXXX	XXXX	XXXXX
Control Del:		XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXXX *		XXXX *	XXXXXX *	*	*	*****
LOS by Move: Movement:	* LT -					- RT	B TTT.		- RT		- LTR	
						- KI			- KI			XXXXX
Shared Cap.: SharedQueue:												
Shrd ConDel:	VXXXX V	XXXX	XXXXXX	XXXXXX	26.2	XXXXXX	XXXXXX	XXXX	XXXXXX	XXXXXX	XXXX	XXXXXX
Shared LOS:	*	*	*	*	20.2 D	*	*	*	*	*	*	*
ApproachDel:		XXXX			26.2		X	xxxxx		X	XXXXX	
ApproachLOS:	21222	*			20.2 D			*			*	
*********	******	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

 Bkgd+Project PM
 Mon Dec 12, 2016 10:40:54
 Page 2-1

*****	2000	HCM U1	nsignal	ized N	Methoo *****	d (Base	e Volu	ne Ali	ternat:	ive) ******	*****	*****
Intersection												
**********	*****	*****	******	*****	*****	x * * * * * * * *	*****	*****	*****	*****	*****	****
Average Dela:	y (se ****	c/veh *****): ******	0.5	*****	Worst ******	Case]	Level *****	Of Sei	rvice: *****	D[20	5.2] *****
Movement:	L	rth Bo - T	– R	L ·	- Т	ound - R	L ·	ast Bo - T	- R	L ·	est Bo - T	- R
Control: Rights:	 S	top S:	ign	 S1	top S:	ign	Und	contro	olled	Une	contro	olled
Rights:		Inclu	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde
Lanes:	U	0 0	0 0	0 1	0 1!	0 0	T (JZ	0 0	0	JT	1 0
N												
Volume Modul		0	0	16	0	10	16	1154	0	0	800	1
Base Vol: Growth Adj:			1 00			1.00		1.00	1.00		1.00	
Initial Bse:			1.00	1.00	1.00	1.00		1154	1.00	1.00		
User Adj:			1.00			1.00		1.00		-	1.00	
PHF Adj:			1.00			1.00		1.00			1.00	
	1.00		1.00			13		1154		0		1
Reduct Vol:			0				0			0		
FinalVolume:			0		0				0	0	800	
				1								
Critical Gap	Modu	le:										
Critical Gp:			XXXXX	6.8	6.5	6.9	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXX
FollowUpTim::	XXXXX	XXXX	XXXXX	3.5	4.0	3.3	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXX
Capacity Mod												
Cnflict Vol:						407			XXXXX			
Potent Cap.:									XXXXX			
Move Cap.:									XXXXX			
Volume/Cap:	XXXX	XXXX	XXXX			0.02			XXXX		XXXX	
Level Of Ser				1								
2Way95thQ:				VVVV	~~~~	vvvvv	0 1	~~~~	XXXXX	vvvv	XXXX	XXXX
Control Del:									XXXXXX			
LOS by Move:	*****		*		*		9.5 A		*			
Movement:			- RT									- R1
Shared Cap.:												
SharedQueue:												
Shrd ConDel:	XXXXX	XXXX	XXXXX	XXXXX	26.2	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXX
Shared LOS:	*		*	*	D	*	*		*	*	*	
ApproachDel:	X	XXXXX			26.2		X	xxxxx		X	xxxxx	
ApproachLOS:		*			D			*			*	
*******	*****	*****	******	*****	*****	*****	*****	*****	*****	*****	*****	*****

Ex+Project AM

_____ Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #2 Lincoln/Lincoln Driveway Average Delay (sec/veh): 0.3 Worst Case Level Of Service: C[18.4] South Bound East Bound West Bound North Bound Approach: L - T - R L - T - R L - T - R L - T - RMovement: -----||-----||------|| Uncontrolled Uncontrolled Stop Sign Include Include Include Control: Stop Sign IncludeIncludeInclude0 1 1 0 0 0 0 1 1 0 0 0 1! 0 0 0 0 0 0 Rights: Lanes: Volume Module: Base Vol: 12 1164 0 0 500 8 12 0 8 0 0 0 0 0 500 8 12 0 8 0 0 0 Initial Bse: 12 1164 12 8 0 0 500 8 0 0 0 0 PHF Volume: 12 1164 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 8 8 0 0 500 0 12 0 0 0 FinalVolume: 12 1164 Critical Gap Module: Critical Gp: 4.1 xxxx xxxxx xxxx xxxx xxxx 6.8 6.5 6.9 xxxxx xxxx xxxx FollowUpTim: 2.2 xxxx xxxx xxxx xxxx xxxx 3.5 4.0 3.3 xxxxx xxxx xxxx Capacity Module: Cnflict Vol: 508 xxxx xxxxx xxxx xxxx xxxx 1110 1692 254 XXXX XXXX XXXXX 752 xxxx xxxx xxxxx Potent Cap.: 1067 xxxx xxxxx xxxx xxxx xxxx 207 94 Move Cap.: 1067 xxxx xxxx xxxx xxxx 205 93 752 xxxx xxxx xxxx Volume/Cap: 0.01 xxxx xxxx xxxx xxxx 0.06 0.00 0.01 xxxx xxxx xxxx Level Of Service Module: 2Wav95th0: LOS by Move: A * * * * * * * * * * * * * * LT - LTR - RT Movement: Shrd ConDel: 8.4 xxxx xxxxx xxxxx xxxx xxxx xxxx 18.4 xxxxx xxxx xxxx xxxx A * * * * * C * * * * Shared LOS: ApproachDel: xxxxx ApproachLOS: * 18.4 XXXXXX XXXXXX * * * C Note: Queue reported is the number of cars per lane.

				of Sor		Computa						
	2000 I					d (Base				ive)		
*****	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
Intersection ********	#2 L:	incol: *****	n/Linco	oln Dr: *****	iveway *****	/	*****	****	*****	*****	****	*****
Average Delay	y (sec *****	c/veh)): *****	0.4	* * * * * * *	Worst ******	Case 1	Level	Of Sei	cvice:	C[2().2] *****
Approach: Movement:	L -	- T	- R	L ·	- T	- R	L -	- T	- R	L ·	- T	- R
Control: Rights: Lanes:	Und	contro	olled	Und	contro	olled	St	top S:	lgn	S	top S:	ign
	. U	L L	0 0	11	J 1			· · · ·				
Volume Module												
		612	0	0	945	14	11	0	14	0	0	0
Growth Adj:										1.00	1.00	1.00
Initial Bse:				0			11					
User Adj:							1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:							1.00					1.00
PHF Volume:				0			11				0	0
Reduct Vol:							0			0	0	0
FinalVolume:	11	612	0	0	945	14	11	0	14	0	0	0
Critical Gap												
Critical Gp:	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX	6.8	6.5	6.9	XXXXX	XXXX	XXXXX
FollowUpTim:	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX	3.5	4.0	3.3	XXXXX	XXXX	XXXXX
Capacity Mod							1000	1506	100			
Cnflict Vol:												XXXXX
Potent Cap.:	725	XXXX	XXXXX	XXXX	XXXX	XXXXX	160	109	538			XXXXX
Move Cap.:								108	538			XXXXX
Volume/Cap:									0.03			XXXX
Level Of Ser										11		
				vvvv	vvvv	XXXXX	VVVV	XXXX	XXXXX	XXXX	xxxx	xxxxx
Control Del:												
LOS by Move:	10.0 B		*	*	*	*		*	*		*	*
Movement:			- RT	т.т.	- T.TR	- RT	ЪT -	- LTR	- RT	T.T	- LTR	- RT
Shared Cap.:												
SharedQueue:												
Shrd ConDel:												
Shared LOS:	в		*	*	*	*	*	C	*	*	*	*
ApproachDel:	1.17	xxxxx		X	XXXXX			20.2		X	XXXXX	
ApproachLOS: *******		*	*****	******	*	* * * * * * *	*****	С	*****	*****	* * * * *	*****

						Computa						
**********	2000 *****	HCM UI	1519na. *****	*******	*****	d (Base	******	118 AI 1	******	- v e) < * * * * * *	*****	*****
Intersection ********	****	*****	*****	*****	*****	******						
Average Delay	y (se ****	c/veh): *****	0.3	*****	Worst	Case I	Level	Of Sei	vice:	C[19	9.2] *****
Approach: Movement:	L	- T	- R	L -	- T	- R	L -	- T	- R	L -	- T	- R
Control: Rights: Lanes:	Un 0	ICONTRO INCLU	olled ude 0 0	Uno 0 (contro Inclu) 1	olled ude 1 0	St 0 (cop S: Inclu) 1!	ign 1de 0 0	St 0 (cop Si Inclu) 0	lgn 1de 0 0
Volume Module							1					
Base Vol: Growth Adj: Initial Bse:	12	1198	0	0 1.00	522 1.00	8 1.00	12 1.00	0 1.00	8 1.00 8	0 1.00	0 1.00	0 1.00
User Adj: PHF Adj: PHF Volume:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol:	12	1198	0	0	522	8	12	0	8	0	0	0
FinalVolume:	12	1198	0	0	522	8	12	0	8	0	0	0
Critical Gap												
Critical Gp: FollowUpTim:	4.1	XXXX XXXX	XXXXX XXXXX	XXXXX	XXXX	XXXXX	3.5	4.0	3.3	XXXXX	XXXX	XXXXX
Capacity Mode Cnflict Vol:	ule:		*****	*****	VVVV	VVVV V	11/0	1748	265	XXXX	XXXX	xxxxx
Potent Cap.:	1048	XXXX	XXXXX	XXXX	XXXX	XXXXXX	195	87	739	XXXX		
Move Cap.:	1048	XXXX	XXXXX	XXXX	XXXX	XXXXX	193	86	739	XXXX	XXXX	XXXXX
Volume/Cap:	0.01	XXXX	XXXX	XXXX	XXXX	XXXX	0.06	0.00	0.01			
Level Of Ser									*****	VVVV	~~~~	~~~~~
2Way95thQ: Control Del:		5 xxxx		XXXXX		XXXXX XXXXX *						
LOS by Move: Movement:		- LTR				- RT			- RT	LT	- LTR	- RT
Shared Cap .:												
SharedQueue:	0.0) xxxx	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	0.2	XXXXX	XXXXX	XXXX	XXXXX
Shrd ConDel:	8.5	5 xxxx	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	19.2	XXXXX	XXXXX	XXXX	XXXXX
Shared LOS:	P	<i>H</i> *	*	*	*	*	*	0	*	*	*	*
ApproachDel:	2	XXXXXX		X	XXXXX			19.2		X	XXXXX *	
ApproachLOS: *******		*			*			С				

Bkgd+Project PM Mon Dec 12, 2016 10:40:54

Page 3-1

**********	2000 *****	HCM UI *****	nsignal	lized 1 ******	Methoo *****	d (Base	e Volui *****	ne Alt *****	ternat:	1Ve) ******	*****	****
Intersection	#2 L *****	incolr	n/Linco	oln Dr:	iveway	/ *****	*****	* * * * * *	*****	*****	*****	****
Average Dela: *********	v (se	c/veh)	:	0.4		Worst	Case]	Level	Of Sea	rvice:	C[2]	.2]
Approach: Movement:	No L	rth Bo - T	ound – R	Sou L -	uth Bo - T	ound – R	Ea L -	ast Bo - T	ound – R	We L -	est Bo - T	ound – R
Control:	Un	contro		Und	contro	olled	St	top S:	ign	St	top Si	.gn
Lanes:	0	1 1	0 0	0 (0 1	1 0	0 (0 1!	0 0	0 (0 0	0 0
Volume Modul	· · · · · · · · · · · · · · · · · · ·			[]====						[]		
Base Vol:	11	674	0		964					0	0	
Growth Adj:	1.00	1.00	1.00	1.00		1.00	1.00	1,00			1.00	
Initial Bse:	11	674	0		964		11	0				
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00					1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
		674		0	964	14		0			0	
Reduct Vol:	0	0	0	0	0	0				0	0	
FinalVolume:	11	674	0	0	964	14	11	0	14	0		
Critical Gap				11						11		
Critical Gp:	4.1	XXXX	XXXXX	XXXXX	XXXX	XXXXX	6.8	6.5	6.9	XXXXX	XXXX	XXXX
FollowUpTim:	2.2	XXXX	XXXXX	XXXXX	XXXX	XXXXX	3.5	4.0	3.3	XXXXX	XXXX	XXXX
Capacity Mod	ALC: NOT THE REAL PROPERTY OF									11		
Cnflict Vol:		vvvv	vvvvv	vvvv	YYYY	XXXXX	1330	1667	489	xxxx	XXXX	XXXX
Potent Cap.:						XXXXX		97	530		XXXX	
Move Cap.:						XXXXX			530		XXXX	
Volume/Cap:						XXXX		0.00			XXXX	XXX
Level Of Ser												
2Way95thQ:												
Control Del:										XXXXX *	XXXX *	XXXX
LOS by Move:	В		*	*	*	*	*	*	*			
Movement:			- RT									
Shared Cap.:	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX	XXXX			XXXX		
SharedQueue:	0.0	XXXX	XXXXX	XXXXX	XXXX	XXXXX	XXXXX	0.3	XXXXX	XXXXX	XXXX	XXXX
Shrd ConDel:					XXXX *	XXXXX *	XXXXX *		XXXXXX *	XXXXXX *	XXXX *	XXXX
Shared LOS:	В		*	*		*	*	C 21 2	*			
ApproachDel:	X	XXXXX		X	XXXXX *			21.2		X	XXXXX *	
ApproachLOS: *******		*						С				

APPENDIX C

CITY OF SAN JOSE APPROVED TRIP INVENTORY

AM APPROVED TRIPS												09/28/	2016
Intersection of: CURTNER/LINCOLN Traffix Node Number: 3435											Р	age No): 1
Permit No. / Description / Location		M09 NBL	M08 NBT	M07 NBR	M03 SBL		M01 SBR	M12 EBL	M11 EBT	M10 EBR	M06 WBL	M05 WBT	M04 WBR
PDC02-066 GOBLE LANE GOBLE LN & MONTEREY RD (SW/C)		0	0	0	0	0	0	0	9	0	0	17	0
PDC13-009 (IND) COMMUNICATION HILL		9	0	2	12	3	0	0	51	1	1	1	19
PDC13-009 (RES) COMMUNICATIONS HILL		4	0	1	6	1	0	0	29	0	0	0	11
PDC13-009 (RET) COMMUNICATIONS HILL		0	0	0	0	0	0	0	1	0	0	0	0
	TOTAL:	13	0	3	18	4	0	0	90	1	1	18	30
				LEFT	THRU	RIGHT	ı						
		Ež	ORTH AST OUTH	18 1 13	4 18 0	0 30 3							

WEST

0 90 1

PM APPROVED TRIPS												09/28/	2016
Intersection of: CURTNER/LINCOLN Traffix Node Number: 3435											Р	age No): 2
		M09	M08	M07	M0 3		M01	M12	M11	M10	M06	M05	M04
Permit No. / Description / Location		NBL	NBT	NBR	SBL	J SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
PDC02-066		0	0	0	0	0	0	0	18	0	0	9	0
GOBLE LANE													
GOBLE LN & MONTEREY RD (SW/C)													
PDC13-009 (IND)		0	12	1	11	0	1	1	26	8	0	22	24
COMMUNICATION HILL													
PDC13-009 (RES)		0		0	7		0		17	5		14	
COMMUNICATIONS HILL		Ū	·	Ū	·	Ū.	Ū.	Ū		Ū	Ū		20
PDC13-009 (RET)		0	1	0		0	0		0	0	0		
COMMUNICATIONS HILL													
	TOTAL:	0	20	1	18	0	1	1	61	13	0	46	41
				LEFT	THRU	RIGHT							
		N	ORTH	18	0	1							
			AST	0	46	41							
		S	DUTH	0	20	1							

WEST

APPENDIX D

QUEUING ANALYSIS WORKSHEETS

#1. Lincoln Avenue/Curtner Avenue										
	AM P	eak Hour								
	Ex	Ex+Proj	Back	Back+Proj						
	SB L	SB L	SB L	SB L						
Cycle Length (sec)	84	84	84	84						
Lanes	1	1	1	1						
Total Volume (vph)	139	140	157	158						
Volume Per Lane (vphpl)	139	140	157	158						
Average Queue (veh/In)	3.2	3.3	3.7	3.7						
Average Queue (ft/In)	75	75	100	100						
95th % Queue (veh/ln)	6	6	7	7						
95th % Queue (ft/ln)	150	150	175	175						
Storage (ft/In)	130	130	130	130						
Adequate for 95% Queue?	No	No	No	No						
#	1. Lincoln Aven	ue/Curtner Avenu	he							
	PM P	eak Hour								
	Ex	Ex+Proj	Back	Back+Proj						
	SB L	SB L	SB L	SB L						
Cycle Length (sec)	84	84	84	84						
Lanes	1	1	1	1						
Total Volume (vph)	193	195	211	213						
Volume Per Lane (vphpl)	193	195	211	213						
Average Queue (veh/In)	4.5	4.6	4.9	5.0						

125

8

200

130

No

125

9

225

130

No

125

9

225

130

No

125

8

200

130

No

Average Queue (ft/In)

95th % Queue (veh/ln)

Adequate for 95% Queue?

95th % Queue (ft/ln)

Storage (ft/In)

APPENDIX D1 Vehicle Queuing Analysis Summary

Intersection: #	1. Lincoln Avenu	e/Curtner Aven	ue					
Period: /	AM Peak Hour							
Scenario:	Ex		Ex+Proj		Back		Back+Proj	
Movement:	SB L		SB L		SB L		SB L	
Avg. Queue/Ln (veh)	3.2		3.3		3.7		3.7	
95th % Queue/Ln (veh)	6		6		7		7	
		Number of		Number of		Number of		Number of
0.95	Probability	Queued	Probability	Queued	Probability	Queued	Probability	Queued
		Vehicles		Vehicles		Vehicles		Vehicles
	0.0390	0	0.0381	0	0.0256	0	0.0251	0
	0.1656	1	0.1627	1	0.1196	1	0.1174	1
	0.3709	2	0.3662	2	0.2917	2	0.2877	2
	0.5929	3	0.5877	3	0.5018	3	0.4969	3
	0.7729	4	0.7686	4	0.6943	4	0.6898	4
	0.8896	5	0.8869	5	0.8353	5	0.8320	5
	0.9527	6	0.9512	6	0.9214	6	0.9194	6
	0.9819	7	0.9812	7	0.9664	7	0.9654	7
	0.9938	8	0.9935	8	0.9871	8	0.9866	8
	0.9981	9	0.9980	9	0.9955	9	0.9953	9
	0.9994	10	0.9994	10	0.9985	10	0.9985	10
	0.9999	11	0.9998	11	0.9996	11	0.9995	11
	1.0000	12	1.0000	12	0.9999	12	0.9999	12
	1.0000	13	1.0000	13	1.0000	13	1.0000	13
	1.0000	14	1.0000	14	1.0000	14	1.0000	14
	1.0000	15	1.0000	15	1.0000	15	1.0000	15
	1.0000	16	1.0000	16	1.0000	16	1.0000	16
	1.0000	17	1.0000	17	1.0000	17	1.0000	17
	4 0000	10	1 0000	10	1 0000	10	1 0000	10

APPENDIX D2 SOUTHBOUND LEFT TURN AM PEAK HOUR QUEUE CALCULATION

1.0000	18	1.0000	18	1.0000	18	1.0000	18
1.0000	19	1.0000	19	1.0000	19	1.0000	19
1.0000	20	1.0000	20	1.0000	20	1.0000	20
1.0000	21	1.0000	21	1.0000	21	1.0000	21
1.0000	22	1.0000	22	1.0000	22	1.0000	22
1.0000	23	1.0000	23	1.0000	23	1.0000	23
1.0000	24	1.0000	24	1.0000	24	1.0000	24
1.0000	25	1.0000	25	1.0000	25	1.0000	25

APPENDIX D3
SOUTHBOUND LEFT TURN PM PEAK HOUR QUEUE CALCULATION

Intersection: #	1. Lincoln Avenue		ue					
	M Peak Hour	-,						
Scenario:	Ex		Ex+Proj		Back		Back+Proj	
Movement:	NB L		NB L		NB L		NB L	
Avg. Queue/Ln (veh)	2.6		2.7		2.6		2.7	
95th % Queue/Ln (veh)	6		6		6		6	
Г (тел.)	Ū	Number of	Ū	Number of	0	Number of		Number of
0.95	Probability	Queued	Probability	Queued	Probability	Queued	Probability	Queued
	,	Vehicles	, , , , , , , , , , , , , , , , , , , ,	Vehicles	, , ,	Vehicles		Vehicles
	0.0733	0	0.0668	0	0.0733	0	0.0668	0
	0.2648	1	0.2475	1	0.2648	1	0.2475	1
	0.5151	2	0.4920	2	0.5151	2	0.4920	2
	0.7331	3	0.7126	3	0.7331	3	0.7126	3
	0.8755	4	0.8619	4	0.8755	4	0.8619	4
	0.9500	5	0.9427	5	0.9500	5	0.9427	5
	0.9824	6	0.9792	6	0.9824	6	0.9792	6
	0.9945	7	0.9933	7	0.9945	7	0.9933	7
	0.9985	8	0.9981	8	0.9985	8	0.9981	8
	0.9996	9	0.9995	9	0.9996	9	0.9995	9
	0.9999	10	0.9999	10	0.9999	10	0.9999	10
	1.0000	11	1.0000	11	1.0000	11	1.0000	11
	1.0000	12	1.0000	12	1.0000	12	1.0000	12
	1.0000	13	1.0000	13	1.0000	13	1.0000	13
	1.0000	14	1.0000	14	1.0000	14	1.0000	14
	1.0000	15	1.0000	15	1.0000	15	1.0000	15
	1.0000	16	1.0000	16	1.0000	16	1.0000	16
	1.0000	17	1.0000	17	1.0000	17	1.0000	17
	1.0000	18	1.0000	18	1.0000	18	1.0000	18
	1.0000	19	1.0000	19	1.0000	19	1.0000	19
	1.0000	20	1.0000	20	1.0000	20	1.0000	20
	1.0000	21	1.0000	21	1.0000	21	1.0000	21
	1.0000	22	1.0000	22	1.0000	22	1.0000	22
	1.0000	23	1.0000	23	1.0000	23	1.0000	23
	1.0000	24	1.0000	24	1.0000	24	1.0000	24
	1.0000	25	1.0000	25	1.0000	25	1.0000	25
	1.0000	26	1.0000	26	1.0000	26	1.0000	26
	1.0000	27	1.0000	27	1.0000	27	1.0000	27
	1.0000	28	1.0000	28	1.0000	28	1.0000	28
	1.0000	29	1.0000	29	1.0000	29	1.0000	29
	1.0000	30	1.0000	30	1.0000	30	1.0000	30
	1.0000	31	1.0000	31	1.0000	31	1.0000	31
	1.0000	32	1.0000	32	1.0000	32	1.0000	32
	1.0000	33	1.0000	33	1.0000	33	1.0000	33
	1.0000	34	1.0000	34	1.0000	34	1.0000	34
	1.0000	35	1.0000	35	1.0000	35	1.0000	35
	1.0000	36	1.0000	36	1.0000	36	1.0000	36
	1.0000	37	1.0000	37	1.0000	37	1.0000	37
	1.0000	38	1.0000	38	1.0000	38	1.0000	38
	1.0000	39	1.0000	39	1.0000	39	1.0000	39
	1.0000	40	1.0000	40	1.0000	40	1.0000	40

Memorandum

TO: Edward Schreiner

FROM: Joe Dyke Public Works

SUBJECT: SEE BELOW

DATE: 01/30/17

Approved Date 1-31-17

SUBJECT: 1103 CURTNER AVENUE GAS STATION PW NO. 3-18195 (CP11-041)

We have completed the review of the traffic analysis for the subject project. The project consists of a new gas station with 4 fuel pumps (8 fueling positions) and a new 680 square foot convenience market. The proposed development is located at northwest corner of Curtner Avenue and Lincoln Avenue. The proposed development is projected to add 32 a.m. peak hour trips and 48 p.m. net peak hour trips.

ANALYSIS

Project traffic impacts and transportation level of service (LOS) have been calculated using Traffix and the City of San Jose and the Santa Clara County Congestion Management Program (CMP) approved software.

ACCESS

Vehicular Access: Vehicular access to the site will be provided via two (2) full access driveways along the project frontages; one (1) along Lincoln Avenue and one (1) along Curtner Avenue.

City of San Jose Methodology: One (1) signalized intersection was analyzed for the AM and PM peak commute hours using TRAFFIX and conforming to the City of San Jose Level-Of-Service (LOS) Policy impact criteria. The results indicate that the studied intersections will not have a significant impact with the addition of project traffic.

On-Site Circulation: The analysis examined the project site plan in order to evaluate the circulation of on-site vehicles, refueling trucks, delivery trucks and emergency vehicles. The project will be accessed from one 32 foot wide driveway to Lincoln Avenue and one 32 foot wide driveway to Curtner Avenue and would be closing two (2) existing driveways closest to the intersection on both Curtner Avenue and Lincoln Avenue. Elimination of the two driveways closest to the Lincoln Avenue/Curtner Avenue intersection will allow for additional parking to be provided on the site and would result in traffic congestion in close proximity to the signalized intersection.

Planning and Building 01/30/17 Subject: Traffic Analysis for CP11-041 Page 2

Vehicles for the convenience market will park in one of the eleven on-site parking spaces and will enter and exit via either driveway. A drive aisle is provided immediately adjacent to-the service station building that allows circulation between the east and west sides of the site as an alternative to the fueling station aisles. The solid waste receptacle is located at the northwest corner of the site and would be accessed from the Curtner Avenue driveway. Adequate on-site circulation would be provided on site for customers and service vehicles.

Left-turn Storage Analysis: Left-turn lane storage analyses was performed at the southbound Lincoln Avenue to eastbound Curtner Avenue. The left turn pocket has 130 feet for vehicle storage on Lincoln Avenue and the vehicle queue currently exceeds the available storage during the AM and PM peak hours. The southbound Lincoln Avenue left turn movement is programmed for Conditional Service, which redisplays the left turn arrow for the southbound left turn movement following the opposing through phase. This allows the southbound left turn phase to appear twice during the signal cycle, both before and after the opposing through phase. This phasing improves the efficiency of the southbound left turn movement during the PM peak hour when traffic flow on Lincoln Avenue in the northbound direction is sufficiently light.

The analysis concluded that the project would add one vehicle during the AM peak and two vehicles during the PM Peak to the average queue length and will not be required to lengthen any left-turn storage pockets.

Sight Distance Analysis: A site distance analysis was performed at the project driveways. The analysis indicated that the project will provide adequate visibility for vehicles entering and exiting both driveways.

Project conditions:

- a) Close the southerly driveway on Lincoln Avenue and the easterly driveway on Curtner Avenue.
- b) Reconstruct the northerly driveway on Lincoln Avenue and the westerly driveway on Curtner Avenue with 32' wide ADA compliant driveways per City Standard Detail R-6.

RECOMMENDATION:

With the inclusion of the above conditions, the subject project will be in conformance with both the City of San Jose Transportation Level of Service Policy (Council Policy 5-3) and the Santa Clara County Congestion Management Program. Therefore, a determination for a negative declaration can be made with respect to traffic impacts.

Planning and Building 01/30/17 **Subject: Traffic Analysis for CP11-041** Page 3

If you have any questions, please call me or Keith Gaxiola at extension 5161.

Jee Dyke Project Engineer Development Services Division

NM:JD:km

C: Karen Mack Florin Lapustea, DOT Dan Takacs