

Prepared for:
The County of Napa

January 2020

Requested By:
Ballentine Vineyards Winery

Draft (Revised)

Prepared For: COUNTY OF NAPA

At the request of:
Ballentine Vineyards Winery

Prepared By:
GHD Inc.
2300 Clayton Road, Suite 920
Concord, CA 94520
925.894.1000

Draft Report (Revised)
JANUARY 17, 2020

11188840
R2603TIA003.docx

Executive Summary

Project Description

The proposed Ballentine Vineyards Use Modification project would consist an increase in winery production, employment, visitation, and marketing events compared to existing permitted operations. The project site is located at 2820 St. Helena Highway. Access is provided by two existing driveways east into the winery grounds via two project driveways (see Figure 5.1--Proposed Project Site Plan). The proposed project would increase production from 50,000 gallons per year to 125,000 gallons per year. Relative to employment there would be 15 total employees (12 full-time, 3 part-time) on weekdays and 6 employees (4 full-time, 2 part-time) on the weekends. Visitation would include a maximum of 95 visitors per day (Saturday and Sunday) with the winery averaging 63 visitors on weekdays. Finally, there would be an increase from 2 annual marketing events per year to 13 events per year. The largest highest attended marketing event would include four (4) annual events for 100 guests.

Four intersections along State Route 29 (St. Helena Highway) at Lodi Lane, Ballentine Vineyards Winery (north and south driveways), and Deer Park Road were evaluated for existing and future operating conditions with and without the proposed project. In addition, the arterial segments of State Route 29 north and south of the project driveways as well as Lodi Lane and Deer Park Road were evaluated for peak hour weekday and weekend operating conditions.

Based on transportation analyses of Existing, Near-Term, and Cumulative traffic conditions with and without the project the following findings and recommendations are presented:

Existing (No Project) Conditions

The intersection of Deer Park Road/SR-29 currently operates at LOS F during both the weekday PM peak hour and Saturday midday peak hour for the outbound (westbound) left and right-turn movements from Deer Park Road onto SR-29. All other study intersections operate at acceptable (LOS D or better) conditions. Based on accident history analysis, all study intersections are experiencing collision rates lower than the statewide average for similar facilities. However, the Deer Park Road/SR-29 intersection does experience more "broadside" accidents likely due to the relatively high speeds on SR-29 combined with stop-sign controlled motorists from Deer Park Road attempting to merge left onto SR-29 with very small "gaps" in through-traffic. Based on the CAMUTCD for the peak hour signal warrant, the Deer Park Road/SR-29 intersection would qualify for signalization with existing (no project) weekday PM peak and Saturday midday peak hour volumes.

Arterial operation along SR-29 is calculated at LOS E during both the weekday PM peak hour and Saturday midday peak hour conditions. Arterial operation along Lodi Lane and Deer Park Road is currently LOS C or better during both the weekday and weekend peak periods. It is noted that field observations indicate that during the weekday PM peak hour period southbound traffic flow on SR-29 can vary from free-flow conditions to intermittent periods of slowed or stop-and-go conditions between approximately 4:50-5:30 p.m. (for typical weekday southbound direction traffic flow).

Near-Term (No Project) Conditions

Under Near-Term (No Project) conditions, existing traffic volumes were increased by 4.2% per year to the year 2021 to allow for local/regional traffic growth in the area. Near-term traffic growth factors are based on historical Caltrans traffic volumes along SR-29 for the past three years.

Based on increases in traffic volumes from Near-Term traffic growth, the Deer Park Road/SR-29 intersection would continue to operate at LOS F during the weekday PM peak hour and Saturday midday peak hour, as would the north-south arterial segments of SR-29. The remaining project study intersections along SR-29 at Lodi Lane and the Ballentine Vineyard driveways would operate at acceptable levels (LOS D or better). The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with Near-Term (no project) volumes.

Existing plus Project Conditions.

A. Traffic

Proposed project daily and peak hour trip generation was conservatively based on Napa County Trip Generation ratios for winery production, employment, and visitation. Based on these County ratios, the project as modified is estimated to generate 93 daily trips with 33 weekday PM peak hour trips and 44 Saturday midday peak hour trips. However, the Winery is currently permitted to generate 19 daily trips with 7 weekday PM peak hour trips and 5 Saturday midday peak hour trips. Accounting for Ballentine Vineyards Winery permitted uses, the proposed project's net increase in vehicle trip generation would amount to 74 daily trips with 26 weekday PM peak hour trips and 39 Saturday midday peak hour trips.

The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. The remaining study intersections of Lodi Lane/SR-29 and Ballentine North and South Driveways/SR-29 Road would continue to operate acceptable levels (LOS D or better) during the same peak time periods.

Based on updated County significance criteria for unsignalized intersections the intersection of Deer Park Road/SR-29 has been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could occur if the proposed project contributes 1% or more of the total traffic at the intersection. Current County protocol go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes."

During the weekday PM peak hour, the proposed project would add 20 trips to the intersection. During the weekend midday peak hour, the project would add 27 trips to the intersection. Based on existing peak hour volumes of 2,137 and 1,748 at the intersection during these PM and midday peak hours; proposed project contribution would be less than one percent (1\%) during the Friday PM peak hour.
However, during the weekend (Saturday) midday peak hour the proposed project's contribution would total 1.5%. Under the County significance criteria, this would be considered a significant impact. The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with or without proposed project.

To address the potential project impacts on the Deer Park Road/SR-29 intersection during the Saturday midday peak hour, the applicant proposes the following mitigation measure is recommend to improve operations at the Deer Park Road/SR-29 intersection:

- Mitigation Alternative 1: At the Deer Park Road/SR-29 intersection, it is recommended that a signal be installed to allow the intersection to operate at acceptable levels during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under Existing plus Project conditions, the Deer Park Road/SR-29 intersection would operate at LOS D (54.7 seconds) during the weekday PM peak hour. During the weekend (Saturday) midday peak hour the intersection would operate at LOS B (16.6 seconds). In addition, it is recommended pursuant to policy CIR-19 of the Circulation Element that the proposed project contributes a "fair share" mitigation fee of 1.5% based on its total contribution to peak hour traffic volumes at the intersection. Installation of signal at the Deer Park Road/SR-29 would reduce overall project impacts to less-than-significant levels.
- Mitigation Alternative 2: As an alternative to the installation of a traffic signal at the intersection of Deer Park Road/SR-29, a reduction in the proposed project's Saturday midday peak hour trips would mitigate the impact at the Deer Park Road/SR-29 intersection. Based on the Napa County midday peak hour ratio of 57% for visitation, the project would currently generate 39 peak hour visitor trips with the proposed daily total of 95 guests. Peak hour visitor trips would have to be reduced to 21 midday peak hour trips (representing 50 daily visitors) during the peak midday hour to reduce project impacts to less-than-significant at the Deer Park Road/SR-29 intersection. However, recent discussions with County Traffic Engineering staff indicate that the County ratio of 57\% for the midday peak hour is highly conservative given the overall winery visitation patterns and actual winery count data.

To determine the actual Saturday midday peak hour ratio at the Winery, the applicant recently conducted winery visitation counts for consecutive Saturday midday peak hour periods to determine the actual number of visitors that arrived and departed during the Saturday peak hour travel period. Ballentine Vineyards Winery experiences approximately 28% of their total Saturday visitation during this time period. ${ }^{1}$ Using actual winery visitation rates for Saturday midday peak hour, the winery generates 24 midday peak hour trips (see Appendices). Consequently, based upon actual field data, proposed project impacts would be reduced to less-than-significant at the Deer Park Road/SR-29 intersection. In addition, recent discussions with the applicant indicate that no production staff are on-site during the Saturday mid-day peak hour; and all administrative staff does not leave the winery until after 5:00 pm. (This would eliminate 5 midday peak hour trips). Therefore, it is recommended that winery visitation be limited to or remain consistent with their 28\% midday peak hour ratio of the Saturday daily total of 68 daily visitor trips (or 24 midday total peak hour trips). Guests can be re-allocated to other time slots during the weekend hours.

With Existing plus Project traffic, the arterial north-south segments of SR-29 would continue to operate an unacceptable conditions (LOS E). The roadway segments on Lodi Lane and Deer Park Road would continue to operate at acceptable levels (LOS D or better). The addition of proposed project trips to directional (southbound only or northbound only) peak hour volumes on SR-29 would represent a significant impact based on the project adding more than one percent to the overall directional volumes. During the weekday PM peak hour project trips would represent 1.6% of directional southbound volumes and 1.5% of directional northbound volumes.

- See Alternative Mitigation \#2 (above). In addition to implementing alternative mitigation \#2, it is recommended that the Ballentine Vineyards Winery institute a "flex-time" schedule for employees to reduce vehicle trips to/from the winery during the weekday PM peak hour and weekend (Saturday) midday peak hours as part of an overall TDM plan. (As noted, production staff is not working on Saturdays). An overall reduction of seven (7) weekday PM peak hour and five (5) weekend midday peak hour project trips would reduce overall project impacts to roadway segment operations to less-than-significant levels. As noted
under recommended project mitigation for the Deer Park Road/SR-29 intersection (above), the project's actual peak hour ratios for the both the Friday PM peak hour ($10-15 \%$) and Saturday midday peak hour (28\%) are lower than Napa County peak hour ratios used to calculated the project trip generation. The reduction in peak hour project trip generation from these actual winery hourly ratios would be enough to mitigate project impacts to less-than-significant levels.

B. Project Access/Circulation

Vehicle access to the proposed Ballentine Vineyards Winery is provided by two existing driveways (north and south) extending east from SR-29 into the winery grounds (see Figure 5.1-Proposed Project Site Plan). As proposed, all visitors and guests would be required to use the northerly driveway for access to/from the Winery. The south driveway would be used for existing residential, employee, and truck uses. As noted, a two-way-left-turn-lane (TWLTLT) is present on SR-29 along the entire project frontage extending from Deer Park Road to 175 -feet past the Ballentine Vineyards Winery driveway. The TWLTL on SR-29 allows motorists to gain access to the Winery and/or merge onto SR-29 from the Winery without delaying through-traffic on SR-29. Section 6.2 (Project Access/Circulation) describes vehicle access, parking, emergency access, design standards, pedestrian/bicycle circulation, and truck access/loading.

C. Marketing Events

In addition to normal tastings the project proposes to host 13 different sizes of marketing events that would range between $25-100$ guests. These marketing events would include the following:

Proposed Ballentine Vineyards Winery Marketing Events

- 8 events monthly: maximum of 25 guests;
- 1 event monthly: maximum of 50 guests.
- 4 events yearly: maximum of 100 guests

Marketing events would typically be held outside of the peak commute periods starting in the middle of the day or early afternoon hours and extend beyond the weekday PM peak commute hour (4:006:00 p.m.). During weekends, events would start before or after the mid-day peak commute period (1:00-4:00 p.m.). As indicated in the trip generation sheets in Appendices, the largest marketing event would generate 87 daily trips ($43 \mathrm{in}, 42$ out). As stated, the events are of sufficient length that the inbound and outbound trips occur in separate hours. Therefore, a large marketing event would generate 43 trips inbound during the hour prior to the event and 42 trips outbound during the hour directly after the event ends. Guests typically stay throughout the event and inbound/outbound traffic generation on a "per hour" basis is estimated to be very low (if any).

- As a suggested mitigation, it is recommended that large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:00-4:00 p.m.). In addition, the tasting room should suspend visitation related to wine tasting on the days when the facility hosts large marketing events that are held during the afternoon period. These measures would reduce any traffic impacts related to large marketing events to less-than-significant levels.

D. Vehicle Miles Traveled (VMT)/Transportation Demand Management (TDM) Plan

A VMT Reduction/TDM Plan has been developed for the proposed project that would reduce overall project trip generation and parking demand (too long to summarize in this section). Please refer to Section 8 (VMT Reduction/TDM Plan).

Near-Term plus Project Conditions

Same recommendations as Existing plus Project Conditions

Cumulative (No Project) Conditions

With year 2030 cumulative (no project) traffic volumes, the Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. However, both the Lodi Lane/SR-29 and Ballentine Vineyards North Driveway/SR-29 would be operating at unacceptable conditions (LOS E-F) during the weekday PM peak hour with year 2030 cumulative (no project) volumes. Directional roadway segment operation along SR-29 would continue to operate at unacceptable levels (LOS F) with year 2030 cumulative (no project) volumes. The directional roadway segments of Lodi Lane and Deer Park Road would operate acceptably (LOS D or better).

Cumulative plus Project Conditions

With proposed project traffic, there would be slight increases in vehicle delays at study intersection locations and overall LOS would remain unchanged from year 2030 cumulative (no project) conditions.

Based on updated County significance criteria for unsignalized intersections the off-site intersections of Lodi Lane/SR-29 and Deer Park Road/SR-29 have been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 5% or more to the total cumulative traffic growth at these intersections. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 13 trips to the Lodi Lane/SR-29 intersection. During the weekend (Saturday) midday peak hour the project would add 17 trips to the intersection. Based on total cumulative traffic growth at the intersection these proposed project trips would represent increases of 1.5% (13/833) and 2.4\% (17/708), respectively. At the Deer Park Road/SR-29 intersection, the total cumulative traffic growth related to proposed project uses would be $1.9 \%(20 / 1,002)$ and $3.2 \% ~(27 / 830)$ during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under the County significance criteria, the addition of proposed project trips to these intersections would be considered less-than-significant given that all project contributions would be under 5% of overall cumulative traffic growth.

Related to arterial segment operation on SR-29, Lodi Lane, and Deer Park Road; the proposed project trips would be considered less-than-significant given that they represent less than a 5\% increase in total cumulative traffic growth.

Table of Contents

1. Introduction 1
2. Existing Conditions 4
2.1 Proposed Project Site 4
2.2 Roadways 4
2.3 Existing Intersection Volumes 4
2.4 Existing Intersection Methodology/Description 5
2.5 Existing Intersection Operations Level-of-Service 5
2.6 Existing Peak Hour Roadway Segment Level-of-Service 8
2.7 Signal Warrant Evaluation 9
2.8 Pedestrian-Bicycle 9
2.9 Collision History 9
Table 2.9-1: Existing Collision Rates at Study Intersections \& Roadway Segments 10
3. Near-Term Year 2021 (No Project) Conditions 10
3.1 Near-Term (Year 2021) Methodology 10
3.2 Near-Term (Year 2021) Intersection Operation. 12
3.3 Near-Term Year 2021 (No Project) Arterial Operation 12
3.4 Signal Warrant 12
4. Napa County Significance Criteria 12
5. Proposed Project Impacts 14
5.1 Project Description 14
5.2 Project Trip Generation 14
5.3 Project Trip Assignment 16
5.4 Existing plus Project Intersection Operations Level-of-Service 17
5.5 Existing plus Project Roadway Segment Operation 21
5.6 Near-Term plus Project Intersection Operations 22
5.7 Near-Term plus Project Roadway Segment Operation 22
5.8 Signal Warrant Evaluation 22
6. Site Access/Design Parameters 22
6.1 Sight Distance 22
6.2 Project Access/Circulation 23
6.2.1 Access 23
6.2.2 Parking 24
6.2.3 Emergency Access 24
6.2.4 Design Standards 24
6.2.5 Pedestrian/Bicycle Circulation 24
6.2.6 Truck AccesslLoading 26
6.3 Marketing Events 26
7. Cumulative Year 2030 (No Project) Conditions 27
7.1 Model Forecast 27
7.2 Year 2030 Cumulative (No Project) Intersection Operating Conditions 30
7.3 Year 2030 Cumulative (No Project) Roadway Segment Operation 30
7.4 Year 2030 Cumulative plus Project Intersection Operations 30
7.5 Year 2030 Cumulative plus Project Roadway Segment Operations 30
8. VMT Reduction/TDM Plan 31
Figure Index
Figure 1.1 Project Vicinity Map 2
Figure 1.2 Existing Project Site Plan 3
Figure 2.1 Existing Weekday PM Peak and Weekend Mid-Day Peak Hour Volumes 6
Figure 3.1 Near-Term Year 2021 (No Project) Weekday PM Peak and Weekend Mid-Day Peak HourVolumes11
Figure 5.1 Proposed Project Site Plan 15
Figure 5.2 Weekday PM and Saturday Midday Peak Hour Project Trips (Only) 18
Figure 5.3 Existing plus Project Weekday PM and Saturday Midday Peak Hour Volumes 19
Figure 5.4 Near-Term Year 2022 plus Project Weekday PM and Saturday Midday Peak Hour Volumes20
Figure 6.2 Truck Turning Template—Project Site Access 25
Figure 7.1 Cumulative Year 2030 (No Project) Weekday PM and Saturday Midday Peak Hour Volumes28
Figure 7.2 Cumulative Year 2030 plus Project Weekday PM and Saturday Midday Peak Hour Volumes29

Table Index

Table 2.4-1: Intersection Level of Service Definitions 7
Table 2.5-1: Existing (No Project) Intersection Level-of-Service 8
Table 3.2-1 Near-Term Year 2021 (No Project) Conditions: Intersection Level-of-Service Weekday PM Peak and Weekend Midday Peak Hour 12
Table 5.2-1 Proposed Project Trip Generation 16
Table 5.4-1: Existing and Near-Term Year 2021 with Project Conditions Intersection Level-of-Service17
Table 7.1-1 Year 2030 and Year 2030 with Project Conditions: Intersection Levels-Of-Service Weekday PM Peak and Weekend Mid-Day Peak Hour ${ }^{1}$ 27

Appendix Index

Appendix A Existing Weekday PM \& Saturday Midday Peak Hour Intersection/ADT Counts
Appendix B Intersection Level-of-Service Sheets
Appendix C Signal Warrant Sheets
Appendix D Arterial Segment LOS Definitions
Appendix E Ballentine Vineyards Winery Weekday and Weekend Peak Hour Ratios
Appendix F Napa County \& Ballentine Winery Daily \& Peak Hour Trip Generation Sheets

1. Introduction

The following report provides a focused traffic analysis for the proposed Ballentine Vineyards Winery project located at 2820 St. Helena Highway in St. Helena, Napa County--- (see Figure 1.1 for Project Vicinity Map and Figure 1.2 for Existing Project Site Plan). This traffic analysis is based on discussions with the proposed project's planning consultant (Mr. Jeffrey Redding) and other comparable winery studies conducted for Napa County by GHD. In addition, specific transportation analyses and comments outlined in the Napa County Public Works letters on the proposed use modification were included in the overall scope-of-work. ${ }^{1}$ Project characteristics related to employment, visitation, production, and marketing have been evaluated relative to potential roadway and intersection impacts. Methodologies for analyzing the transportation impacts of proposed project uses are consistent with the Use Permit Modification (Supplemental Winery Uses) from Napa County Planning, Building, and Environmental Services. ${ }^{2}$ The methodologies focus on both daily and peak hour trip generation associated with proposed employment, visitation, and production levels. Proposed marketing plans and/or special events are also included in overall analyses of trip generation characteristics. Finally, the County has recently adopted revised transportation significance criteria and policies established in the Traffic Impact Study Policies and the recently updated Circulation Element of the General Plan. ${ }^{3}$ Key issues evaluated in this study include the following:

- Existing and future weekday (Friday) PM peak hour and weekend (Saturday) mid-day peak hour operations at the Lodi Lane/SR 29, Ballentine Vineyards Driveway(s)/SR 29, and Deer Park Road/SR 29 intersections as well as daily traffic volumes along SR 29;
- Collision history at the study intersections and project driveway areas for five-year period;
- Near-Term (2021) traffic conditions reflecting other approved/pending projects and/or historical traffic growth rates in the study area encompassing Napa County inclusive of St. Helena and Calistoga;
- Increase in proposed project trip generation relative to existing permit and baseline conditions from proposed project uses including employment, and marketing events;
- Project site access along SR 29 including other adjacent driveway(s) and circulation of vehicles within these areas;
- Cumulative year 2030 (no project) conditions along Lodi Lane, SR 29, and Deer Park Road based on the Napa Valley Transportation Authority (NVTA) model projections and/or Caltrans historical traffic growth.

The following sections outline existing and future conditions with and without the increase in traffic from proposed Ballentine Vineyards Winery project. Where necessary, measures have been recommended to ensure acceptable traffic flow, circulation and parking, and/or fair share mitigation consistent with significance thresholds outlined in the County's Traffic Impact Policies guidelines.

[^0]

FIGURE 1.2

2. Existing Conditions

2.1 Proposed Project Site

The proposed Ballentine Vineyards Winery project is located at 2820 St. Helena Highway north of St. Helena in Napa Valley (Napa County). The proposed project would increase current (baseline) winery operations to include modified levels associated with employment, visitation, and production. A brief description of the roadways serving the site is as follows:

2.2 Roadways

St. Helena Highway (SR 29) extends in a primarily north-south direction between Deer Park Road past the project site to Lodi Lane. In the project study area, SR 29 is a two-lane semi-rural highway with 10 -foot striped shoulder lanes, two 12 -foot travel lanes, and a 12 -foot two-way-left-turn-lane (TWLTL) and provides access to agricultural (vineyard) and residential uses. The posted speed limit on SR 29 is 45 mph from St. Helena north to Deer Park Road. North of Deer Park Road, the speed limit increases to 50 MPH extending through Lodi Lane.

Lodi Lane is located approximately 0.4 miles north of the project site and extends in an east-west direction between SR 29 and Silverado Trail. Lodi Lane is a two-lane semi-rural roadway with unimproved shoulders providing access to residential and agricultural areas east of First Avenue with a 45 -mph speed limit.

Deer Park Road is located approximately 1,000 feet south of the project site and (like Lodi Lane) extends in an east-west from SR 29 to Silverado Trail. Deer Park Road is two-lane roadway with Class Il bike lanes (on-road, striped) that provides access to residential and agricultural areas in the Napa Valley. The posted speed limit is 55 mph on Deer Park Road in the project study area.

2.3 Existing Intersection Volumes

In order to identify existing peak hour operating conditions, existing peak period traffic counts were conducted along SR 29 at the two primary (gateway) intersections north and south and at the project site location and project driveway(s) based on input from Napa County Transportation staff. ${ }^{4}{ }^{5}$ These three intersection count locations are as follows:

1. Lodi Lane/SR 29
2. Ballentine Vineyard Driveway(s)/SR 29
3. Deer Park Road/SR 29

> Stop-control (Lodi Lane)
> Stop-control (BV Driveways)
> Stop-control (Deer Park Rd.)

Peak period vehicle counts were conducted on a weekday (Friday) late afternoon (3:00-6:00 p.m.) and Saturday afternoon (1:00-4:00 p.m.). The resultant "peak hour" of traffic flow on SR 29 occurs during 3:30-4:30 p.m. (Friday) and 2:00-3:00 p.m. (Saturday). Peak period counts were conducted during the month of January and do not fully reflect peak traffic conditions on SR 29 or adjacent Valley crossstreets. Peak traffic volumes usually occur in the months of August, September, and October. Consequently, existing peak hour count volumes were compared to Caltrans "peak month" historical
${ }^{4}$ Ahsan Kazmi, P.E., Senior Traffic Engineer, Comment letter on Ballentine Vineyard Use Modification Project (P1800382), October 18, 2018.
${ }^{5}$ National Data Systems, Weekday (Friday) peak period (4:00-6:00 p.m.) and Weekend (Saturday) peak period (1:004:00 p.m.) vehicle turning movement counts at the Hagan Road and North Avenue intersections at Third Avenue, October 25 and 27, 2018.
data for the most recent calendar year available (2017). Based on peak hour traffic flows (two-way) and daily volumes south of Lodi Lane, SR-29 experiences a peak hour volume of approximately 1,800 vehicles and 19,000 daily vehicles. ${ }^{6}$ New peak hour and daily traffic volumes collected on SR-29 at the project driveways indicate a current peak hour two-way volume of 1,431 vehicles and a daily volume of approximately 15,827 vehicles. Caltrans peak month volumes are approximately $20-26 \%$ higher than counted volumes at the project driveway and off-site intersections in January. Therefore, peak hour intersection count volumes were increased by the overall average of the peak month/peak hour volumes (23%) to account for summer peak flow volumes on SR-29. Historical Caltrans volumes are not available for Lodi Lane and Deer Park Road. Therefore, new intersection count volumes were increased by the same percentage growth as a conservative measure.

Existing weekday PM peak hour and weekend mid-day peak hour intersection volumes have been shown in Figure 2.1

2.4 Existing Intersection Methodology/Description

Intersection operation is one of the primary factors in evaluating the carrying capacity of a roadway network. Traffic conditions are measured by Level of Service (LOS), which applies a letter ranking to successive levels of intersection performance. LOS ' A ' represents optimum conditions with freeflow travel and no congestion. LOS ' F ' represents severe congestion with long delays at the approaches. For intersections with minor street stop control, the LOS reflects the delays experienced by the minor street approach. Level of service definitions are shown in Table 2.4-1.

Intersection levels-of-service have been based on the most recent Highway Capacity Manual (HCM 2010) operations methodology for unsignalized intersections. In addition, peak hour factors (PHF's) for each intersection approach have been incorporated into all existing and future intersection LOS calculations. The PHF is a measure of the traffic flow rate at each intersection approach. Based on field count data, these PHF's ranged from .75 to .95 dependent on each intersection. Intersection approaches with lower approach volumes typically have lower (and more conservative) PHF's.

The Lodi Lane and Deer Park Road intersections are stop-sign controlled for the westbound minor street approaches at SR-29. The Ballentine Vineyards north and south driveways are also stopcontrolled for the minor street (driveway) approaches. A two-way-left-turn-lane (TWLTL) exists on SR-29 starting approximately 120 -feet north of the Ballentine Vineyards driveways and extending south past the project driveways all the way to Deer Park Road. A southbound left-turn lane exists on SR-29 at Lodi Lane and has approximately 85 -feet of storage capacity.

2.5 Existing Intersection Operations Level-of-Service

Existing weekday PM peak and weekend mid-day peak hour existing (no project) level-of-service has been shown in Table 2.5-1. As calculated, the majority of the project study intersections are operating at LOS C during both the weekday PM peak hour and Saturday mid-day peak hour. The exception would be the Deer Park Road/SR-29 intersection. At this location, intersection LOS is F for all stop-sign controlled movements from Deer Park Road onto SR-29 during both the weekday PM peak hour and weekend midday peak hour conditions.
${ }^{6}$ Caltrans, 2017 Traffic Volumes on California State Highways, Peak hour two-way volumes, SR-29 south of Lodi Lane.

$X X=$ Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

NOT TO SCALE

Existing Geometries \& Controls

Table 2.4-1: Intersection Level of Service Definitions

Level of Service	Type of Flow	Delay	Maneuverability	Stopped Delay/Vehicle (sec)	
				Signalized/ Roundabouts	Unsignalized/ All-Way Stop
A	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{0}{4} \end{aligned}$	Very slight delay. Progression is very favorable, with most vehicles arriving during the green phase not stopping at all.	Turning movements are easily made, and nearly all drivers find freedom of operation.	< 10.0	< 10.0
B	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{0}{\omega} \end{aligned}$	Good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.	Vehicle platoons are formed. Many drivers begin to feel somewhat restricted within groups of vehicles.	$\begin{gathered} >10.0 \\ \text { and } \\ <20.0 \end{gathered}$	$\begin{gathered} >10.0 \\ \text { and } \\ <15.0 \end{gathered}$
C	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{0}{4} \end{aligned}$	Higher delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.	Back-ups may develop behind turning vehicles. Most drivers feel somewhat restricted.	$\begin{gathered} >20.0 \\ \text { and } \\ <35.0 \end{gathered}$	$\begin{gathered} >15.0 \\ \text { and } \\ <25.0 \end{gathered}$
D		The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.	Maneuverability is severely limited during short periods due to temporary backups.	$\begin{gathered} >35.0 \\ \text { and } \\ <55.0 \end{gathered}$	$\begin{gathered} >25.0 \\ \text { and } \\ <35.0 \end{gathered}$
E	$\begin{aligned} & 3 \\ & \frac{0}{14} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{1}{5} \end{aligned}$	Generally considered to be the limit of acceptable delay. Indicative of poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.	There are typically long queues of vehicles waiting upstream of the intersection.	$\begin{gathered} >55.0 \\ \text { and } \\ <80.0 \end{gathered}$	$\begin{gathered} >35.0 \\ \text { and } \\ <50.0 \end{gathered}$
F	$\begin{aligned} & \text { 3 } \\ & \text { 은 } \\ & \text { O } \\ & \text { U0 } \\ & \text { 4 } \end{aligned}$	Generally considered to be unacceptable to most drivers. Often occurs with over saturation. May also occur at high volume-tocapacity ratios. There are many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors.	Jammed conditions. Backups from other locations restrict or prevent movement. Volumes may vary widely, depending principally on the downstream back-up conditions.	> 80.0	> 50.0

[^1]Table 2.5-1: Existing (No Project) Intersection Level-of-Service

		Control	Wkdy. PM LOS/Delay	Wknd. Mid-Day LOS/Delay
	Intersection	Existing (No Project)	Existing (No Project)	
1	Lodi Lane/SR-29	TWSC	C 23.5	C 21.5
2	Ballentine N. Driveway/SR-29	TWSC	C 22.4	C 15.4
3	Ballentine S. Driveway/SR-29	TWSC	C 21.8	A 0.0
3	Deer Park Road/SR-29	TWSC	F >300	F >300

Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

2.6 Existing Peak Hour Roadway Segment Level-of-Service

Peak hour roadway operation has been evaluated consistent with Napa County criteria for arterial level-of-service. Lodi Lane is currently operating at LOS B or better at 64 directional peak hour vehicles (uninterrupted flow highway). SR-29 experiences peak hour directional arterial flow (one-way) of approximately 873 vehicles during the weekday PM peak hour (southbound) and 803 during the Saturday mid-day peak hour (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods (see Appendices for Peak Hour Roadway LOS Table). It is noted that field observations indicate that during the weekday PM peak hour period southbound traffic flow on SR-29 can vary from free-flow conditions to intermittent periods of slowed or stop-and-go conditions between approximately 4:50-5:30 p.m. (for typical weekday southbound direction traffic flow). For this reason, peak hour arterial conditions reflect a progression of LOS E during this time period. Please note---traffic flow observations for southbound SR-29 may not necessarily coincide with the identified "peak hour" of traffic volumes.

It is noted that traffic observations along State Route 29 were conducted during entire weekday twohour count period between 4:00-6:00 p.m. with the observer noting the various flows of traffic ranging at times from "free-flow" conditions to intermittent periods of slowed or stop-and-go conditions between "approximately" 4:30-5:30 p.m. in the southbound commute direction. As noted, these are observations conducted by the traffic technician and may not always coincide with recorded "peak hour" of traffic. Daily fluctuations in traffic flow are quite common and observed conditions may at times differ from the recorded peak hour due to external factors (accidents, roadway construction, or event traffic).

Deer Park Road experiences peak directional volumes of 586 vehicles (eastbound) during the weekday PM peak hour and 281 vehicles (westbound) during the weekend midday peak hour yielding a roadway LOS of C and LOS B, respectively (uninterrupted flow highway).

2.7 Signal Warrant Evaluation

Based on the California Manual on Uniform Traffic Control Devices (CAMUTCD) peak hour signal warrant criteria, the three unsignalized study intersections of Lodi Lane, Ballentine Winery driveway, and Deer Park road at SR-29 were evaluated for signalization. ${ }^{7}$ The peak hour warrant(s) are one of several standards to help determine if installation of a traffic signal is appropriate. Qualifying for signalization using the peak hour warrants does not necessarily mean a signal should be installed. The decision to install a traffic signal should be based on further studies utilizing additional warrants as presented in the California MUTCD. At this time, the Lodi Lane and Ballentine Winery intersections at SR-29 not qualify for signalization under the peak hour warrant (the warrant graphs are provided in the Appendix). It is noted that the minor street volumes at the Ballentine Winery driveways are too low to consider for warrant evaluation (75 vehicles minor-street minimum volume required). However, the intersection of Deer Park Road/SR-29 would exceed the minimum volumes for peak hour signalization during both the weekday PM peak hour and weekend midday peak hour.

2.8 Pedestrian-Bicycle

As noted, pedestrian-bicycle facilities in the project study area are limited to Deer Park Road south of the project site with Class II bike lanes on both sides of the street. Given the rural nature of the area along SR-29, Lodi Lane, and Deer Park Road and relatively high vehicle speeds along the roadways; bicycle traffic is light. The Napa County Bicycle Plan indicates that SR-29 is a primary Class II bike route and is proposed Class II bike lanes as part the proposed Vine Trail Alignment extending northsouth through the Valley. ${ }^{8}$

2.9 Collision History

A collision history for the study area was conducted to determine any trends or patterns that may indicate a safety issue. Collision rates are calculated based on records provided by the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five (5) year period available is January 1, 2013 through December 31, 2017.

Collision rates for the Lodi Lane/SR-29 and Deer Park Road/SR-29 study intersections are shown in Table 2.9-1. In addition, the SR-29 segment between Lodi Lane and Deer Park Road has been evaluated for collision activity in the project driveway area. The calculated collision rates for the study locations were compared to the average collision rates for similar facilities statewide, as indicated in 2014 Collision Data on California State Highways (Caltrans).

The calculated collision rate for the Lodi Lane/SR-29 is lower than the statewide average for similar facilities, indicating the intersection is generally operating safely. The majority of collisions at this intersection represent hitting fixed objects and/or rear-end accidents and total four collisions over a fiveyear period. The Deer Park Road/SR-29 intersection has experienced six collisions over a five-year period. Unlike vehicle collisions at the Lodi Lane/SR-29, collisions the Deer Park Road/SR-29 primarily involve "broadside" (4), "side-swipe" (1), or "fixed-object" crashes (1). These types of collisions are likely due to the relatively high speeds on SR-29 combined with stop-sign controlled motorists from Deer Park Road attempting to merge onto SR-29 with very small "gaps" in through-traffic. Even with

[^2]Table 2.9-1: Existing Collision Rates at Study Intersections \& Roadway Segments

Study Intersection/Segment	Number of Collisions $(2013-2017)$	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)
1. Lodi Lane./SR-29	4	0.10	0.23
3. Deer Park Road/SR-29	6	0.13	0.23
SR-29: Lodi Ln. to Deer Park Rd.	4	0.12	0.82

Source: California Highway Patrol, Statewide Integrated Traffic Records System (SWITRS), January 1, 2013—December 31, 2017.
Collision rates calculated based on c/mve or collisions per million vehicles entering.
these collisions, the Deer Park Road/SR-29 intersection collision rate is well below the statewide average for these facilities at 0.13 (statewide average is 0,23). Finally, the roadway segment of SR-29 between Lodi Land and Deer Park Road has a collision rate of 0.12 over the five-year period compared to a statewide average of 0.82 for the same facility. The total number of collisions (4) during the fiveyear period involve "sideswipes," "fixed objects," and "rear-end," accidents.

3. Near-Term Year 2021 (No Project) Conditions

3.1 Near-Term (Year 2021) Methodology

Future traffic conditions represent the next two years of potential traffic growth in the area and would include all approved projects situated in the Lodi Lane, Deer Park Road, and/or SR-29 study area. Based on discussions with Napa County Engineering staff, year 2021 near-term conditions have been based on historical Caltrans volume data for the last three full calendar years. ${ }^{9}$ Based on historical average daily traffic data that includes peak hour two-way volumes, volumes on SR-29 have increased by 12.5% in the last three years or 4.2% per year. No historical volume data is available for Lodi Lane or Deer Park Road in the immediate project study area. Therefore, the same conservative yearly growth rate was applied for a two-year period to the highway and cross-roads to account for near-term (no project) conditions.

In addition to historical Caltrans volume growth projections, local approved projects in the immediate study area have been researched for overall traffic growth in the immediate study area at the request of Napa County Public Works staff. Based on research conducted by the Napa County Planning Department there are no short-term approved projects in the current study area that would add traffic volumes to adjacent roadways. ${ }^{10}$

Near-Term Year 2021 (No Project) AM and PM peak hour intersection volumes have been shown in Figure 3.

[^3]Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

3.2 Near-Term (Year 2021) Intersection Operation

Existing weekday PM peak and weekend mid-day peak hour near-term year 2021 (no project) level-of-service has been shown in Table 3.2-1. As calculated, Deer Park Road/SR-29 intersection would continue to operate at LOS F during the weekday PM peak hour and LOS F and weekend mid-day peak hour. Stated intersection LOS refer to the stop-sign controlled movements from Deer Park Road. The remaining intersections of Lodi Lane and the Ballentine Winery driveways at SR-29 would operate at acceptable levels (LOS D or better) during both the weekday PM peak hour and weekend (Saturday) mid-day peak hour under near-term year 2021 (no project) conditions.

Table 3.2-1 Near-Term Year 2021 (No Project) Conditions: Intersection Level-ofService Weekday PM Peak and Weekend Midday Peak Hour

		Control Type	Wkdy. PM LOS/Delay Intersection	Year 2021 (No Project)
1	Lodi Lane/SR-29	MSSC	D 27.2	Wknd. Mid-Day LOS/Delay (No Project)
2	Ballentine N. Driveway/SR-29	MSSC	C 24.4	C 24.5
3	Ballentine S. Driveway/SR-29	MSSC	C 23.7	C 16.5
3	Deer Park Road/SR-29	MSSC	F >300	C 20.5

(1) Based on Highway Capacity Manual (HCM) 2016, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

3.3 Near-Term Year 2021 (No Project) Arterial Operation

Peak hour roadway operation has been evaluated near-term year 2021 (no project) conditions for arterial level-of-service. Lodi Lane will continue to operate at LOS B or better at 69 directional peak hour vehicles. SR-29 will experience peak hour directional arterial flow (one-way) of approximately 951 vehicles during the weekday PM peak hour (southbound) and 881 during the Saturday mid-day peak hour (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods. Finally, Deer Park Road would experience volumes of 635 vehicles (eastbound) during the weekday PM peak hour and 304 vehicles (westbound) on a Saturday midday peak hour representing LOS C and LOS B, respectively.

3.4 Signal Warrant

Under near-term year 2021 (no project) conditions, the Lodi Lane and Ballentine Winery intersections at SR-29 would not qualify for signalization under the peak hour warrant (the warrant graphs are provided in the Appendix). However, the intersection of Deer Park Road/SR-29 would continue to exceed the minimum volumes for peak hour signalization during both the weekday PM peak hour and weekend midday peak hour.

4. Napa County Significance Criteria

The County of Napa's significance criteria has been based on a review of the Napa Valley Transportation Authority and Napa County General Plan documentation on roadway and
intersection operations. In addition, updated criteria for unsignalized intersections and arterial segments has been based on adopted criteria in the County's Traffic Impact Study Policies (Required Elements). Specifically, the Circulation Element of the County's General Plan and updated guidelines for significance criteria outline the following significance criteria specific to intersection operation:

- The County shall seek to maintain a Level of Service D or better at all intersections, except where the level of service already exceeds this standard (i.e. Level of Service E or F) and where increased intersection capacity is not feasible without substantial additional right-of-way;
- No single level of service standard is appropriate for un-signalized intersections, which shall be evaluated on a case-by-case basis to determine if signal warrants are met;
- An unsignalized intersection operates at LOS A, B, C, or D during the selected peak hours without Project trips, the LOS deteriorates to LOS E or F with the addition of Project traffic, the peak hour signal warrant criteria should also be evaluated and presented for informational purposes; or
- Under Existing Conditions, an unsignalized intersection or roadway segment operates at LOS E or F during the selected peak hours without Project trips, and the project contributes one percent or more of the total entering traffic to that intersection/facility;
- Under Near-Term or Cumulative Conditions, an unsignalized intersection or roadway segment operates at LOS E or F during the selected peak hours without Project trips, and the project contributes five percent or more of the total traffic growth to that intersection/facility.

Further significance criteria are based on County and CEQA guidelines and apply mainly to intersection operation and access. A significant impact occurs if project traffic would result in the following:

- Cause an increase in traffic which is substantial in relation to existing traffic load and capacity of the street system (i.e. result in a substantial increase in either the number of vehicle trips, the volume capacity ratio on roads, or congestion at intersections);
- Exceed either individually or cumulatively, an LOS standard established by the county congestion management agency for designated roads or highways;
- Result in a change of traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections) or incompatible uses (e.g. farm equipment);
- Result in inadequate emergency vehicle access;
- Project site or internal circulation on the site is not adequate to accommodate pedestrians and bicycles.

5. Proposed Project Impacts

5.1 Project Description

The proposed Ballentine Vineyards Use Modification project would consist of modest increases in winery production, employment, visitation, and marketing events compared to existing permitted operations. The project site is located at 2820 St. Helena Highway with access east into the winery grounds via two project driveways (see Figure 5.1—Proposed Project Site Plan). Based on discussions with the project applicant and most recent project Use Permit Modification submitted to the County; existing (permitted) and proposed are listed as follows: ${ }^{11}$

Project Components:	Existing (Permitted)	Proposed
- Winery Production (gallons)	50,000	125,000
- Employment (full-time, part-time)	$5 \mathrm{~F}-\mathrm{T}$	$12 \mathrm{~F}-\mathrm{T}, 3 \mathrm{P}-\mathrm{T}$
Visitation (daily maximum)	10 (weekly not daily)	95 (Sat-Sun)
- Marketing Events (per month)	2 (5 attendees max)	9 (50 guests max)

As shown above under the project components, the use modification proposes to increase annual winery production from 50,000 gallons to 125,000 gallons. Concerning employment, the project would increase existing employment from 5 full-time employees on the weekdays to 12 full-time and 3 part-time employees. During the weekends, there would be increase from 2 full-time and 1 parttime employee to 4 full-time and 2 part-time employees. Visitation is proposed to increase from 10 visitors per week to 95 visitors per day (maximum-weekend). The project would average 63 visitors during the weekdays. Finally, there would be an increase from 2 annual marketing events per year to 13 events per year. The highest attended marketing event would include 100 guests.

5.2 Project Trip Generation

Estimated daily, weekend PM peak hour, and Saturday midday peak hour project trip generation has been shown in Table 5.2-1. Proposed project trip generation has been based on the County of Napa's Winery Traffic/Trip Generation Sheet which contains daily and peak hour vehicle occupancy and trip generation ratios for associated winery activities. These include employment, visitation, and gallons of production for typical weekday and weekend activities (see Appendices-Napa County Winery Trip Generation Sheets). The calculations also quantify the expected truck trips associated with winery production (fruit, bottling, deliveries, etc.). However, there is no guidance for peak hour inbound/outbound vehicle flow. For this reason, a vehicle split of 25% inbound and 75% outbound has been used during the weekday PM peak hour. During the Saturday midday peak hour, a vehicle split of 50% inbound and 50% outbound has been applied. These weekday and Saturday peak hour vehicle splits are consistent with previous winery traffic analyses conducted in Napa County and observed driveway counts at other wineries. Typically, most wineries are closing between the 4:00-6:00 p.m. period during the weekday PM peak with employees and visitors outbound from the site. During the Saturday midday peak hour most employees remain on-site with primarily visitors coming/going from the site.

As shown in Table 5.2-1, the proposed project as modified would be expected to generate 93 daily trips, with 33 weekday PM peak hour trips and 44 Saturday midday peak hour trips. Accounting for permitted uses, the proposed project would be expected to generate 74 net new daily trips with 26 net new weekday PM peak hour and 39 net new Saturday midday peak hour trips. It is noted that few (if any) permitted winery trips were counted at the project driveway during data collection efforts

[^4]

FIGURE 5.1

Table 5.2-1 Proposed Project Trip Generation

Land Use	UnitsWkdy/Wknd	Daily		Weekday PM Peak			Weekend MD Peak		
		Wkdy Trips	Wknd Trips	Trips	In	Out	Trips	In	Out
Permitted Winery Use (Ballentine Vineyards)									
F-T Winery Employees	$5 / 2$	15	6	5	0	5	2	1	1
P-T Winery Employees	$0 / 1$	0	2	0	0	0	1	1	0
Visitors	4/6	3	4	2	1	1	2	1	1
Trucks		1	0						
Total Permitted Winery Trips		19	12	7	1	6	5	3	2
Proposed Winery Use (Ballentine Vineyards)									
F-T Winery Employees	12 / 4	37	12	12	2	10	4	2	2
P-T Winery Employees	$3 / 2$	6	4	2	1	1	1	0	1
Visitors	$63 / 95$	48	68	19	5	14	39	19	20
Trucks		2	0						
Total Proposed Winery Trips									
		93	84	33	8	25	44	21	23
Net Added Project Trips		74	72	26	7	19	39	18	21

Source: Balletine Winery Use Permit Application (P18-00382), Napa County Conservation, Development, and Planning Department, Existing/Proposed Winery Traffic Information/Trip Generation Sheets, April 26, 2019
for the proposed winery. Therefore, all new proposed project trips were added to the street network to ensure a conservative analysis of project impacts.

5.3 Project Trip Assignment

Proposed project trip distribution has been based on the location of the project site and existing traffic flows in the immediate study area. SR-29 (Main Street) serves as the primary access roadway to/from the project site. Using vehicle count data at the proposed project driveway at Third Avenue, project trip assignments for the weekday PM peak hour and Saturday midday peak hour would be as follows:

SR-29 to/from the north: 40%
SR-29 to/from the south: 60\%
For project trips coming to/from the north on SR-29, 5% would be to/from Lodi Lane with the remaining 35% remaining on SR-29. For project trips coming to/from the south, 15% would be to/from Deer Park Road with the remaining 45\% remaining on SR-29.

Weekday PM peak hour and Saturday midday peak hour project trips (only) are shown in Figure 5.3-1. Existing plus project weekday PM peak hour and Saturday midday peak hour intersection
volumes are shown in Figure 5.3-2. Near-term plus project weekday PM peak hour and Saturday midday peak hour intersection volumes are shown in Figure 5.3-3.

5.4 Existing plus Project Intersection Operations Level-of-Service

Existing plus Project weekday PM peak and weekend mid-day peak hour existing level-of-service has been shown in Table 5.4-1. The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. The remaining study intersections of Lodi Lane/SR-29 and Ballentine North and South Driveways/SR29 Road would continue to operate acceptable levels (LOS D or better) during the same peak time periods.

Based on updated County significance criteria for unsignalized intersections the intersection of Deer Park Road/SR-29 has been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 1% or more of the total traffic at the intersection. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 20 trips to the intersection. During the weekend midday peak hour, the project would add 27 trips to the intersection. Based on existing peak hour volumes of 2,137 and 1,748 at the intersection during these PM and midday peak hours; proposed project contribution would be less than one percent (1\%) during the Friday PM peak hour. However, during the weekend (Saturday) midday peak hour the proposed project's contribution would total 1.5%. Under the County significance criteria, this would be considered a significant impact. The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with or without proposed project. In response, the following mitigation measure is recommend to improve operations at the Deer Park Road/SR-29 intersection:

Table 5.4-1: Existing and Near-Term Year 2021 with Project Conditions Intersection Level-of-Service

(1) Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

- At the Deer Park Road/SR-29 intersection, it is recommended that a signal be installed to allow the intersection to operate at acceptable levels during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under Existing plus Project conditions, the Deer Park Road/SR-29 intersection would operate at LOS D (54.7 seconds) during the weekday PM peak hour. During the weekend (Saturday) midday peak hour the intersection would operate at LOS B (16.6 seconds). In addition, it is recommended pursuant to policy CIR-19 of the Circulation Element that the proposed project contributes a "fair share" mitigation fee of 1.5% based on its total contribution to peak hour traffic volumes at the intersection. Installation of signal at the Deer Park Road/SR-29 would reduce overall project impacts to less-than-significant levels.
- An alternative mitigation measure to installing a traffic signal at the intersection of Deer Park Road/SR-29 would be to reduce proposed project Saturday midday peak hour project trips during this time period. Based on the Napa County midday peak hour ratio of 57% for visitation, the project would currently generate 39 peak hour visitor trips with the proposed daily total of 95 guests. Peak hour visitor trips would have to be reduced to 21 midday peak hour trips (representing 50 daily visitors) during the peak midday hour to reduce project impacts to less-than-significant at the Deer Park Road/SR-29 intersection. Discussions with County Traffic Engineering staff indicate that the County ratio of 57% for the midday peak hour is highly conservative given the overall winery visitation patterns and actual winery count data.

Based on recent winery visitation data for consecutive Saturday midday peak hour periods, the Ballentine Vineyards experiences approximately 28% of their total Saturday visitation during this time period. ${ }^{12}$ Using actual winery visitation rates for Saturday midday peak hour, the winery would generate 24 midday peak hour trips and proposed project impacts would be reduced to less-than-significant at the Deer Park Road/SR-29 intersection (see Appendices). In addition, recent discussions with the project applicant indicate that there are no production staff on-site during the Saturday mid-day peak hour and all administrative staff do not leave the winery until after 5:00 pm. (This would eliminate 5 midday peak hour trips). Therefore, it is recommended that winery visitation be limited to or remain consistent with their 28% midday peak hour ratio of the Saturday daily total of 68 visitor trips (or 24 midday total peak hour trips). Guests can be re-allocated to other time slots during the weekend hours.

5.5 Existing plus Project Roadway Segment Operation

With proposed project volumes, Lodi Lane would continue to operate at LOS B or better at 65 directional peak hour vehicles (uninterrupted flow highway). As noted, SR-29 experiences a peak hour directional arterial flow (one-way) of approximately 873 vehicles during the weekday PM peak hour (southbound) and 813 during the Saturday mid-day peak hour (northbound). With proposed project traffic, these directional volumes would increase to 888 vehicles (southbound) and 826 vehicles (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods (see Appendices for Peak Hour Roadway LOS Table). Deer Park Road would experience peak directional volumes of 590 vehicles (eastbound) during the weekday PM peak hour and 284 vehicles (westbound) during the weekend midday peak hour with proposed project traffic yielding a roadway LOS of C and LOS B, respectively (uninterrupted flow highway).

The addition of proposed project trips to directional peak hour volumes on SR-29 would represent a significant impact based on the project adding more than one percent to the

[^5]
overall directional volumes. During the weekday PM peak hour project trips would represent 1.6% of directional southbound volumes and 1.5% of directional northbound volumes.

- It is recommended that the Ballentine Vineyards Winery institute a "flex-time" schedule for employees to reduce vehicle trips to/from the winery during the weekday PM peak hour and weekend (Saturday) midday peak hours as part of an overall TDM plan. (As noted, production staff are not working on Saturdays). An overall reduction in seven (7) weekday PM peak hour and five (5) weekend midday peak hour project trips would reduce overall project impacts to roadway segment operations to less-than-significant levels. As noted under recommended project mitigation for the Deer Park Road/SR-29 intersection (above), the project's actual peak hour ratios for the both the Friday PM peak hour (10-15\%) and Saturday midday peak hour (28\%) are lower than Napa County peak hour ratios used to calculated the project trip generation. The reduction in peak hour project trip generation from these actual winery hourly ratios would be enough to mitigate project impacts to less-than-significant levels.

5.6 Near-Term plus Project Intersection Operations

Near-term plus project conditions for intersection operations have been shown in Table 5.4-1. As with existing plus project conditions, the project study intersections at Lodi Lane and the Ballentine North and South Driveways would continue to operate at acceptable levels (LOS D or better). The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM peak hour and weekend (Saturday) midday peak hour. Therefore, it is recommended that the same suggested mitigation for the Deer Park Road/SR-29 intersection (signalization) as in existing plus project conditions be applied to the location.

5.7 Near-Term plus Project Roadway Segment Operation

Under near-term plus project conditions, all directional roadway segments would continue to operate acceptably along Lodi Lane and Deer Park Road. However, as under existing plus project conditions the directional segments of SR-29 would continue to operate unacceptably (LOS E) with proposed project traffic. Therefore, it is recommended that the same suggested mitigation for the Ballentine Vineyards (employee flex-time) as recommended for existing plus project conditions be applied.

5.8 Signal Warrant Evaluation

Peak hour signal warrant satisfaction was evaluated for both existing plus project and near-term plus project conditions for all project study intersections. Under these "with project" conditions, the Lodi Lane/SR-29 and Ballentine Driveways (north and south) at SR-29 would not qualify for signalization under the "peak hour" warrant. As noted previously, the Deer Park Road/SR-29 would meet the peak hour warrant with existing traffic volumes and this would continue under existing plus project and near-term plus project conditions(see Appendices-Signal Warrant Sheets).

6. Site Access/Design Parameters

6.1 Sight Distance

Vehicle sight distance at the existing Ballentine Vineyards driveways (north and south) intersections were evaluated. The required vehicle visibility or "corner sight distance" is a function of travel speeds on SR-29. Caltrans design standards indicate that for appropriate corner sight distance, "a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the cross road and the driver of an approaching vehicle in the right lane of the main highway". Caltrans design guidelines
also indicate that the minimum corner sight distance "shall be equal to the stopping sight distance" where possible.

The posted vehicle speed limit on SR-29 is 50 mph in the project area. The "critical" vehicle speed (the speed at which 85% of all surveyed vehicles travel at or below) along SR-29 has been conservatively estimated at 55-60 mph at the project driveways. Caltrans' design standards indicate that these vehicle speeds require a stopping sight distance of 580 feet both north and south of the driveways measured along the travel lanes of SR-29.. ${ }^{13}$ Based on field measurements, sight distance from the Ballentine Vineyards north and south driveways exceeds 580 feet (at least 700 feet in each direction). Therefore, the sight distance recommendations would be met for the speed limit and observed vehicle speeds.

6.2 Project Access/Circulation

6.2.1 Access

The proposed Ballentine Winery Use Modification project would involve a re-design of the existing site plan to allow improved site circulation, increased parking, emergency vehicle enhancements to access/turnaround areas, and dedicated pedestrian/bicycle facilities for safety and storage. Currently, vehicle and truck access to the proposed Ballentine Vineyards Winery is gained by two existing driveways (north and south) extending east from SR-29 into the winery grounds (see Figure 5.1-Proposed Project Site Plan). Vehicle and truck access would continue from the two site driveways but would be modified to better serve guests and site circulation. The northern entry driveway and aisle would be enlarged to serve all visitors and guests. This driveway would be 25feet wide upon initial entry and expand to 74-feet to provide areas for vehicle parking and ADA spaces, dedicated pedestrian paths, and emergency vehicle turnaround.

The southern Ballentine Winery driveway is located approximately 175 -feet south of the northern driveway on SR 29 and would be used primarily for existing residential use, employees and truck access. The driveway extends east from SR 29 for approximately 200 feet with a 22 -foot width (minimum County standard). At this juncture, the driveway has internal drive aisle extensions that continue north and further east. The northern drive aisle extension provides access to employee parking spaces and would also continue through an internal gated access to connect with the northerly Ballentine Driveway to complete a circular loop-access through the property. Continuing from SR 29, the southern driveway extends east between the existing fermentation and barrel storage buildings to the eastern-most portion of the project site. In this area, an additional parking field would be created to accommodate 21 parking spaces (valet event parking spaces) directly behind the open air production canopy and north of the agricultural building. There would also be a trash enclosure immediately east of the barrel storage building not in the direct line of vehicle traffic and/or parking access.

Based on intersection LOS calculations for the Ballentine Winery north and south driveways at State Route 29, vehicle queuing at the driveways would not be significant.

[^6]
6.2.2 Parking

Vehicle parking for daily operations would be provided by a combination of designated visitor and employee parking spaces accessible via the north or south driveways. Upon entering the northern driveway, visitors and guests would be able to park in three (3) standard parking spaces along the north-east area of the drive aisle and/or in five (5) parking spaces that would front the agricultural building office on the south side of the drive aisle. Two of the five parking spaces on the south side of the drive aisle would be ADA compatible. In addition to the standard and ADA parking spaces, there would 12 over-flow parking spaces (10 spaces along the north side and 2 spaces along the south side) to accommodate additional visitor demand or special event parking. Employee parking would be accessed from the south driveway (or through the internal gate via the north driveway) and would be located along the rear or southern edge of the agricultural-office building and west of the fermentation building. A total of six (6) standard parking spaces would be provided for employees including one (1) ADA compatible parking space. As noted, additional on-site parking spaces are available in the far eastern portion of the project site behind the open air production canopy. While not permanent parking spaces (paved, striped, bumper-stop), the 21 spaces would be available for increased parking demand due to special event activities.

6.2.3 Emergency Access

Emergency vehicle access would be gained from either the north or south Ballentine Winery driveways with adequate "standard hammerhead turnarounds" designed at the eastern terminus of each driveway within 50 -feet of buildings for Napa County fire engines (see below).

6.2.4 Design Standards

Design of driveway access for truck turning radii, parking spaces, and emergency vehicle access have been reviewed based on the Napa County Road and Street Standards. ${ }^{14}$ With regard to driveway access, the County requires a design radii of R20" for driveway/common drive connection to arterial roads. Both the north and south Ballentine Winery driveways would be designed for minimum R20 radius to accommodate truck turning radii from SR 29 (See Figure 6.2-Truck Turning Templates). All standard on-site parking spaces are designed to County standards of 9'x19' with drive aisles in excess of 25 -feet. ADA compliant parking spaces (three) are in excess of what the County would require based on the total number of parking spaces being provided on the project site. Finally, emergency vehicle access and turnarounds (standard hammerhead turnarounds) have been designed to meet the County minimum design requirements of 60 feet in width with R40 turning radius.

6.2.5 Pedestrian/Bicycle Circulation

Pedestrian and bicycle circulation would occur primarily in the northern half of the project site where daily visitor parking spaces and bicycle facilities are located associated with access through the primary north driveway entrance. A new dedicated solid-paver path would be constructed between the existing residence on the west side of the site and new tasting room/support rooms on the far eastern end of the site. The path would be constructed in an area along the frontage of the existing residential garage/agricultural building and new parking spaces on the south side of the internal drive aisle. By situating the path in this area pedestrians would be removed from having to walk back and forth in the drive aisle to access winery facilities in the eastern portion of the site. Bicycle racks would be located in the northeast quadrant of the site adjacent to the new tasting room.

[^7] 26, 2017

FIGURE 6.2

6.2.6 Truck AccesslLoading

Based on discussions with the project applicant, all trucks would be required to enter the winery via the south driveway entrance. Once on the property, drivers are requested to check in at the Ballentine Winery offices on the north side of the driveway and can stage their trucks alongside the agricultural and/or barrel storage buildings so as not to block the internal drive aisle. Loading docks are not part of the winery's improvement plans. However, winery staff is able to use both pallet jacks and forklifts to efficiently off-load/load trucks when necessary. No truck is allowed on the premises longer than 48 -feet due to acceptable turning radii. In addition, all trucks leave the winery by turning around in the large "deadhead" area at the far eastern portion of the property north of the agricultural and east of the new open air production canopy.

Three types of deliveries to the winery occur during peak activity periods.. Deliveries can be categorized as casegoods, barrels and bulk wine in barrels, and bulk wine/on-haul grapes that occur in specific areas of the winery grounds. Casegoods loading occurs along the front roll-up doors of the agricultural (casegoods/agricultural building) on the southwest portion of the property via the south driveway. Barrels and bulk wine in barrels loading occurs further east on the property in front of the barrel storage building via the south driveway. Finally, bulk wine and on-haul grape deliveries occur at the open air production canopy/crush pad at the far east portion of the property behind the fermentation building.

Garbage trucks would access the winery property from the same southern driveway from SR-29. Upon picking up the trash adjacent to the winery office building and/or new trash enclosure at the far eastern portion of the property trucks would turn around in the deadhead area and exit back out to SR-29 via the same driveway.

As noted, a two-way-left-turn-lane (TWLTLT) is present on SR-29 along the entire project frontage extending from Deer Park Road to 120 -feet past the Ballentine Vineyards Winery driveway. The TWLTL on SR-29 allows motorists to gain access to the Winery and/or merge onto SR-29 from the Winery without delaying through-traffic on SR-29.

6.3 Marketing Events

As noted in the project description, in addition to normal tastings the project proposes to host 13 different sizes of marketing events that would range between $25-100$ guests. These marketing events would include the following:

Proposed Ballentine Vineyards Winery Marketing Events

- 8 events monthly: maximum of 25 guests;
- 1 event monthly: maximum of 50 guests.
- 4 events yearly: maximum of 100 guests

Marketing events would typically be held outside of the peak commute periods starting in the middle of the day or early afternoon hours and extend beyond the weekday PM peak commute hour (4:006:00 p.m.). During weekends, events would start before or after the mid-day peak commute period (1:00-4:00 p.m.). As indicated in the trip generation sheets in Appendices, the largest marketing event would generate 87 daily trips ($43 \mathrm{in}, 42$ out). As stated, the events are of sufficient length that the inbound and outbound trips occur in separate hours. Therefore, a large marketing event would generate 43 trips inbound during the hour prior to the event and 42 trips outbound during the hour directly after the event ends. Guests typically stay throughout the event and inbound/outbound traffic generation on a "per hour" basis is estimated to be very low (if any).

- As a proposed project requirement, large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:004:00 p.m.). In addition, the tasting room should suspend visitation related to wine tasting on the days when the facility hosts large marketing events that are held during the afternoon period. These measures would reduce any traffic impacts related to large marketing events to less-than-significant levels.

7. Cumulative Year 2030 (No Project) Conditions

7.1 Model Forecast

Consistent with near-term (no project) traffic volume forecasts, year 2030 cumulative conditions have been based on historical Caltrans volume data for the last three full calendar years. Based on historical average daily traffic data that includes peak hour two-way volumes, volumes on SR-29 have increased by 12.5% in the last three years or 4.2% per year. Based on an 11-year growth period from collected data (year 2019) to year 2030 conditions, 46.2% was applied to existing peak hour volumes for background/regional growth along the three study roadways.

Since future volume traffic forecasts are only available for SR-29, the same year growth rates were uniformly applied to Lodi Lane and Deer Park Road above as a very conservative measure.

Cumulative year 2030 (no project) and plus project volumes and for weekday PM peak hour and weekend mid-day peak hour have been shown in Figures 7.1 and 7.2.

Table 7.1-1 Year 2030 and Year 2030 with Project Conditions: Intersection
Levels-Of-Service Weekday PM Peak and Weekend Mid-Day Peak Hour ${ }^{1}$

Intersection	Control Type	Wkdy. PM LOS/Delay		Wknd. Mid-Day LOS/Delay	
		Yr. 2030 (No Project)	Yr. 2030 (With Prj.)	Yr. 2030 (No Project)	$\begin{aligned} & \text { Yr. } 2030 \\ & \text { (With Prj.) } \end{aligned}$
1 Lodi Lane/SR-29	MSSC	F 76.5	F 80.1	F 55.0	F 57.0
2 Ballentine N. Driveway/SR-29	MSSC	E 36.1	E 37.7	C 22.9	D 30.3
3 Ballentine S. Driveway/SR-29	MSSC	D 34.5	E 35.0	A 0.0	A 0.0
4 Deer Park Road/SR-29		F >300	F >300	F >300	F >300

(1) Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement.

Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

Peak Hour Volumes

XX = Weekday P.M. Peak Hour (XX) = Weekend Afternoon Peak Hour

7.2 Year 2030 Cumulative (No Project) Intersection Operating Conditions

With year 2030 cumulative (no project) traffic volumes, project study intersection operations have been calculated and shown in Table 7.1-1. The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. However, both the Lodi Lane/SR-29 and Ballentine Vineyards North Driveway/SR29 would be operating at unacceptable conditions (LOS E-F) during the weekday PM peak hour with year 2030 cumulative (no project) volumes.

7.3 Year 2030 Cumulative (No Project) Roadway Segment Operation

Directional roadway segment operation along SR-29 would continue to operate at unacceptable levels (LOS F) with year 2030 cumulative (no project) volumes. Southbound volumes on SR-29 during the weekday PM peak hour would total 1,280 vehicles while during the weekend (Saturday) midday peak hour northbound volumes would increase to 1,184 vehicles. Lodi Lane would operate acceptably at B or better with 86-93 directional (westbound) vehicles. Deer Park Road would operate at LOS D with 856 vehicles (eastbound) during the weekday PM peak hour and LOS B or better during the weekend (Saturday) midday peak hour.

7.4 Year 2030 Cumulative plus Project Intersection Operations

With proposed project traffic, there would be slight increases in vehicle delays at study intersection locations and overall LOS would remain unchanged from year 2030 cumulative (no project) conditions.

Based on updated County significance criteria for unsignalized intersections the off-site intersections of Lodi Lane/SR-29 and Deer Park Road/SR-29 have been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 5% or more to the total cumulative traffic growth at these intersections. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 13 trips to the Lodi Lane/SR-29 intersection. During the weekend (Saturday) midday peak hour the project would add 17 trips to the intersection. Based on total cumulative traffic growth at the intersection these proposed project trips would represent increases of 1.5% (13/833) and 2.4\% (17/708), respectively. At the Deer Park Road/SR-29 intersection, the total cumulative traffic growth related to proposed project uses would be $1.9 \%(20 / 1,002)$ and $3.2 \%(27 / 830)$ during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under the County significance criteria, the addition of proposed project trips to these intersections would be considered less-than-significant given that all project contributions would be under 5\% of overall cumulative traffic growth.

7.5 Year 2030 Cumulative plus Project Roadway Segment Operations

With proposed project traffic, directional roadway segment volumes on SR-29 would increase to 1,295 (southbound) during the weekday PM pea hour and 1,200 vehicle (northbound) during the weekend (Saturday) midday peak hour. The increase from proposed project trips would represent an approximate 3.6% increase in cumulative traffic growth during the weekday PM peak hour (15/418).

During the weekend (Saturday) midday peak hour, proposed project trips would represent a 3.3\% increase in overall cumulative traffic growth (13/387). SR-29 would continue to operate at LOS F during both time periods. However, the proposed project trips would be considered less-than-significant given that they represent less than a 5% increase in total cumulative traffic growth.

8. VMT Reduction/TDM Plan

VMT Reduction: The County's Circulation policy (Policy CIR-13) provides several options (and mitigation measures) for achieving a reduction in project trip generation "if such development includes measures such as staggered work hours, provision of employee bus passes, provision of van pools/car pool/shuttle programs or the like"

The application of pass-by trips (as defined by the Institute of Transportation Engineers [ITE]) to proposed project daily and peak hour trip generation is estimated to reduce vehicle project trips and associated trip generation by a minimum of 10%. With the project site located immediately north of St. Helena (less than 1 mile) and adjacent to lodging, restaurant, retail, and winery uses; proposed project uses would complement these existing uses in the study area reducing primary vehicle trips to the project site. These trip factors are categorized as "pass-by" in nature. A brief discussion of these trip reduction factors could be described as follows:

Pass-By Trips: Peak hour trip generation calculated for the proposed project does not account for any "pass-by" vehicle trips. Pass-by trips are defined as vehicle trips already on the immediate adjacent street network (SR-29) travelling to a primary destination (winery, lodging, restaurant, etc.) and stopping at the project site on their way to that primary destination. A travel mode study was conducted for Napa County that included overall vehicle classification, estimates of daily winery trip generation, vehicle license plate surveys in/out of the County, visitor surveys at specific Napa County wineries, and mobile device survey. ${ }^{15}$ One of the more interesting findings of the study was that the average winery visitor "planned" to visit approximately 3.1 wineries. Although it was noted that the actual number of wineries visited could have been lower; it is clear that overall winery trip generation in Napa Valley reflects multiple stops by the same winery visitors. Thus, while a winery would generate new vehicle trips at its driveway, the net increase on the adjacent roadways (SR29) would be lower due to the linked or pass-by trips between wineries. The study suggests that (as a conservative measure) ---one in three vehicle trips to a winery is pass-by in nature. Stated another way; $25-30 \%$ of all winery trip generation in Napa Valley is related to pass-by trips from visitors already planning to visit other wineries or restaurants adjacent to the area.

TDM Plan

The applicant proposes a number of non-automobile use programs to further reduce the demand for parking and to ensure sufficiency of the on-site parking provided. These measures are consistent with Section $18.110 .0404(\mathrm{G})$ of the zoning ordinance. These are described is some detail below.

Tasting Room Operations During Annual Events

As a proposed project requirement, large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:00-4:00 p.m.). In addition, the tasting room should suspend wine tasting on the days when the facility hosts the four (4) 100-person events. These measures would reduce any traffic impacts related to large marketing events to less than significant levels.

[^8]
Employee/Guest Incentives:

Due to its proximity to the Napa Valley Vine bus route and the Vine Trail bike path, the applicant will provide monthly bus passes and/or other incentives to its local employees to utilize these non-auto modes of transportation. In addition the applicant intends to stagger work hours, commensurate with the scheduling of larger guest tasting so employees would either arrive and/or depart outside of the peak commute periods (prior to 7:00 a.m. or after 9:00 a.m., before 4:00 p.m. or after 6:00 p.m.). Similar to voucher distribution; local tour guides, shuttle/hire car and/or limousine services, and lodging in St. Helena would be provided brochures/vouchers to encourage "car free" tourism and tasting to reduce overall parking demand. Much like the "car free" tourism program of the Napa Valley Destination Council and NVTA that provide information to guest/visitors to plan their trips without relying on car; when guests make an appointment for wine tasting project employees could inform them of this program. Dependent on the number of employees participating in the program, overall peak hour trip generation could be reduced by 14 peak hour trips.

Variable Visitation Plan

The project applicant will develop a tours and tastings schedule that would allow guests to arrive at the site prior to the weekday PM peak period (4:00-6:00 p.m.) and weekend (Saturday) midday peak period (1:00-3:00 p. m.) and leave after these peak commute periods. For example, during the weekday PM peak period all guest/visitors would be scheduled to arrive (via appointment booking) by 3:30-3:45 p.m. for late afternoon tours. Tours would then start during the peak commute period with guests exiting the site after 6:00 p.m. A similar practice would be instituted for the weekend (Saturday) midday peak hour.

As an alternative (referenced as Alternative Mitigation \#2), the winery would currently limit the Saturday midday peak hour to its current 28\% peak midday ratio (rather than 57\% County ratio) for visitors to the reduce proposed project impacts along SR-29 and at the Deer Park Road/SR-29 intersection to less-than-significant levels. These peak hour visitation ratios would allow the winery to accommodate a maximum daily visitation of 95 guests (as proposed).

Appendix A: Existing Weekday \& Weekend Intersection /ADT Counts

St Helena Hwy (SR-29) \& Lodi Ln
Peak Hour Turning Movement Count

ID: 19-08142-001 City: St Helena

Total Vehicles (NOON)

Total Vehicles (PM)

St Helena Hwy (SR-29)
SOUTHBOUND

AM	0	0	0	0	0	AM
NOON	0	0	0	0	0	NOON
	PM	0	689	21	0	690

Day: Friday
Date: 03/15/2019

Total Vehicles (NOON)

Total Vehicles (PM)

St Helena Hwy/SR-29 \& Ballentine Vineyards North Dwy
Peak Hour Turning Movement Count

St Helena Hwy/SR-29 \& Ballentine Vineyards South Dwy
Peak Hour Turning Movement Count

St Helena Hwy (SR-29) \& Deer Park Rd

Peak Hour Turning Movement Count

ID: 19-08142-002
City: St Helena City: St Helena

Total Vehicles (NOON)

Total Vehicles (PM)

St Helena Hwy (SR-29)
SOUTHBOUND

AM	0	0	0	0	0	AM
NOON	0	0	0	0	0	NOON
	PM	0	477	228	0	695

Day: Friday
Date: 03/15/2019

Total Vehicles (NOON)

Total Vehicles (PM)

VOLUME
SR 29 S/O Ballentine Vineyards Winery Dwy

Day: Thursday
Date: 3/14/2019
City: St Helena
Project \#: CA19_8143_001

DAILY TOTALS						NB 7,635 WB	$\begin{gathered} \hline \text { SB } \\ \hline 7,075 \\ \hline \end{gathered}$		$\frac{E B}{0}$		$\begin{gathered} \text { WB } \\ \hline 0 \end{gathered}$			WB	$\begin{gathered} \hline \text { Total } \\ \hline 14,710 \end{gathered}$			
AM Period	NB		SB		EB		TOTAL				PM Period		NB		SB	EB	TOTAL	
00:00	6		12				18		12:00	113		124			237			
00:15	6		6				12		12:15	135		93			228			
00:30	3		3				6		12:30	142		126			268			
00:45	5	20	3	24			8	44	12:45	117	507	106	449		223956			
01:00	3		6				9		13:00	122		131			253			
01:15	2		4						13:15	129		119			248			
01:30	4		3				$\begin{aligned} & 6 \\ & 7 \end{aligned}$		13:30	116		114			230			
01:45	3	12	9	22			12	34	13:45	163	530	133	497		2961027			
02:00	2		5				7		14:00	135		104			239			
02:15	2		6				8		14:15	138		111			249			
02:30	5		3				8		14:30	138		100			238			
02:45	3	12	2	16			5	28	14:45	159	570	130	445		289	1015		
03:00	2		6				8		15:00	142		137			279			
03:15	1		5				6		15:15	134		120			$\begin{aligned} & 254 \\ & 313 \end{aligned}$			
03:30	1		3				4		15:30	177		136						
03:45	6	10	6	20			12	30	15:45	178	631	128	521		306	1152		
04:00	4		10				14		16:00	172		143			315			
04:15	8		12				20		16:15	164		152			316			
04:30	8		13				21		16:30	162		151			313			
04:45	10	30	20	55			30	85	16:45	166	664	127	573		$\begin{array}{ll}293 & 1237 \\ 311\end{array}$			
05:00	17		19				36		17:00	179		132						
05:15	8		20				28		17:15	200		132			332			
05:30	39		37				76		17:30	174		127			301			
05:45	48	112	49	125			97	237	17:45	116	669	114	505		230	1174		
06:00	78		63				141		18:00	129		107			236			
06:15	96		104				200		18:15	90		79			169			
06:30	134		138				272		18:30	88		78			166			
06:45	105	413	128	433			233	846	18:45	92	399	78	342		170	741		
07:00	100		118				218		19:00	75		61			136			
07:15	112		109				221		19:15	61		57			118			
07:30	112		130				242		19:30	$\begin{array}{r} 55 \\ 52 \\ \hline \end{array}$	243	54			109			
07:45	110	434	183	540			293	974	19:45			39	211		91	454		
08:00	109		122				231		20:00	46		37			83			
08:15	112		137				249		20:15	53		41			94			
08:30	121		144				265		20:30	45		49			94			
08:45	140	482	132	535			272	1017	20:45	45	189	25	152		$70 \quad 341$			
09:00	100		123				223		21:00	43		33			76			
09:15	97		112				209		21:15	38		34			72			
09:30	106		111				217		21:30	$\begin{aligned} & 38 \\ & 36 \\ & \hline \end{aligned}$	155	36			7471			
09:45	116	419	102	448			218	867	21:45			35	138					
10:00	114		112				226		22:00	43		25			68 68 38 44 218			
10:15	117		101				218		22:15	30		38						
10:30	107		113				220		22:30	26		12						
10:45	124	462	123	449			247	911	22:45	31	130	13	88					
11:00	113		108				221		23:00	18		13			31			
11:15	121		96				217		23:15	22		8			30			
11:30	126		137				263		23:30	10		11			21			
11:45	119	479	108	449			227	928	23:45	13	63	6	38		19	101		
TOTALS		2885		3116				6001	TOTALS		4750		3959			8709		
SPLIT \%		48.1\%		51.9\%				40.8\%	SPLIT \%		54.5\%		45.5\%			59.2\%		
						NB	SB		EB		WB					tal		
		ILY	OTA			7,635	7,075		0		0					710		
AM Peak Hour		11:45		07:45				07:45	PM Peak Hour		16:45		15:45			15:30		
AM Pk Volume		509		586				1038	PM Pk Volume		719		574			1250		
Pk Hr Factor		0.896		0.801				0.886	Pk Hr Factor		0.899		0.944			0.989		
7-9 Volume		916		1075				1991	4-6 Volume		1333		1078			2411		
7-9 Peak Hour		08:00		07:45				07:45	4-6 Peak Hour		16:45		16:00			16:30		
7-9 Pk Volume		482		586				1038	4-6 Pk Volume		719		573			1249		
Pk Hr Factor		0.861		0.801				0.886	Pk Hr Factor		0.899		0.942			0.941		

Day: Friday
Date: 3/15/2019

City: St Helena
Project \#: CA19_8143_001

DAILY TOTALS						NB $\mathbf{8 , 1 7 6}$ WB	$\begin{array}{\|c\|} \hline \text { SB } \\ \hline 7,651 \end{array}$		$\begin{gathered} \mathrm{EB} \\ \hline 0 \end{gathered}$		$\begin{gathered} \hline \text { WB } \\ 0 \\ \hline \end{gathered}$	SB	EB	WB	$\begin{aligned} & \hline \text { Total } \\ & \hline 15,827 \\ & \hline \end{aligned}$	
AM Period	NB		SB		EB			TAL	PM Period	NB						TAL
00:00	6		9				15		12:00	131		122			253	
00:15	12		4				16		12:15	157		124			281	
00:30	5		5				10		12:30	133		107			240	
00:45	6	29	3	21			9	50	12:45	136	557	121	474		257	1031
01:00	2		2				4		13:00	118		122			240	
01:15	7		6				13		13:15	133		140			273	
01:30	3		6				9		13:30	143		125			268	
01:45	6	18	6	20			12	38	13:45	169	563	145	532		314	1095
02:00	3		3				6		14:00	150		114			264	
02:15	3		3				6		14:15	141		137			278	
02:30	5		1				6		14:30	182		132			314	
02:45	4	15	5	12			9	27	14:45	165	638	138	521		303	1159
03:00	6		3				9		15:00	169		150			319	
03:15	4		6				10		15:15	209		148			357	
03:30	1		4				5		15:30	162		183			345	
03:45	3	14	16	29			19	43	15:45	198	738	177	658		375	1396
04:00	5		4				9		16:00	163		162			325	
04:15	1		11				12		16:15	190		196			386	
04:30	4		12				16		16:30	154		154			308	
04:45	9	19	23	50			32	69	16:45	188	695	168	680		356	1375
05:00	13		18				31		17:00	183		171			354	
05:15	11		19				30		17:15	176		148			324	
05:30	29		38				67		17:30	165		122			287	
05:45	45	98	53	128			98	226	17:45	144	668	116	557		260	1225
06:00	62		65				127		18:00	95		100			195	
06:15	110		115				225		18:15	127		103			230	
06:30	107		117				224		18:30	111		83			194	
06:45	115	394	133	430			248	824	18:45	98	431	81	367		179	798
07:00	71		127				198		19:00	87		59			146	
07:15	112		103				215		19:15	86		67			153	
07:30	101		113				214		19:30	77		55			132	
07:45	101	385	179	522			280	907	19:45	55	305	40	221		95	526
08:00	107		119				226		20:00	50		51			101	
08:15	103		149				252		20:15	59		44			103	
08:30	121		133				254		20:30	53		52			105	
08:45	103	434	142	543			245	977	20:45	54	216	53	200		107	416
09:00	120		101				221		21:00	41		33			74	
09:15	120		92				212		21:15	60		39			99	
09:30	120		135				255		21:30	71		19			90	
09:45	110	470	123	451			233	921	21:45	57	229	32	123		89	352
10:00	105		107				212		22:00	35		30			65	
10:15	136		128				264		22:15	31		31			62	
10:30	133		85				218		22:30	33		25			58	
10:45	110	484	118	438			228	922	22:45	26	125	20	106		46	231
11:00	127		114				241		23:00	38		20			58	
11:15	130		130				260		23:15	30		24			54	
11:30	142		112				254		23:30	19		15			34	
11:45	145	544	136	492			281	1036	23:45	20	107	17	76		37	183
TOTALS		2904		3136				6040	TOTALS		5272		4515			9787
SPLIT \%		48.1\%		51.9\%				38.2\%	SPLIT \%		53.9\%		46.1\%			61.8\%

	DAILY TOTALS		NB	SB		EB	WB				Total
			8,176	7,651		0	0				15,827
AM Peak Hour	11:30	07:45			11:30	PM Peak Hour	15:00	15:30			15:30
AM Pk Volume	575	580			1069	PM Pk Volume	738	718			1431
Pk Hr Factor	0.916	0.810			0.951	Pk Hr Factor	0.883	0.916			0.927
7-9 Volume	819	1065			1884	4-6 Volume	1363	1237	-		2600
7-9 Peak Hour	08:00	07:45			07:45	4-6 Peak Hour	16:15	16:15			16:15
7-9 Pk Volume	434	580			1012	4-6 Pk Volume	715	689	0	0	1404
Pk Hr Factor	0.897	0.810			0.904	Pk Hr Factor	0.941	0.879	0.000	0	0.909

VOLUME
SR 29 S/O Ballentine Vineyards Winery Dwy

Day: Saturday
Date: 3/16/2019
City: St Helena
Project \#: CA19_8143_001

DAILY TOTALS						NB 7,303 WB	$\begin{gathered} \hline \text { SB } \\ \hline 6,844 \end{gathered}$		$\begin{gathered} \mathrm{EB} \\ \hline 0 \end{gathered}$		$\begin{gathered} \text { WB } \\ 0 \end{gathered}$	SB	EB	WB	$\begin{gathered} \hline \text { Total } \\ \hline 14,147 \end{gathered}$	
AM Period	NB		SB		EB			TAL	PM Period	NB						TAL
00:00	23		19				42		12:00	149		111			260	
00:15	20		18				38		12:15	147		135			282	
00:30	12		14				26		12:30	150		132			282	
00:45	4	59	11	62			15	121	12:45	147	593	126	504		273	1097
01:00	3		7				10		13:00	160		142			302	
01:15	4		5				9		13:15	179		131			310	
01:30	8		7				15		13:30	183		155			338	
01:45	8	23	10	29			18	52	13:45	166	688	119	547		285	1235
02:00	3		6				9		14:00	162		150			312	
02:15	10		8				18		14:15	176		157			333	
02:30	2		10				12		14:30	168		160			328	
02:45	4	19	8	32			12	51	14:45	178	684	149	616		327	1300
03:00	4		5				9		15:00	134		179			313	
03:15	1		4				5		15:15	181		150			331	
03:30	3		4				7		15:30	168		157			325	
03:45	2	10	4	17			6	27	15:45	138	621	150	636		288	1257
04:00	2		8				10		16:00	132		188			320	
04:15	2		12				14		16:15	132		150			282	
04:30	3		10				13		16:30	155		146			301	
04:45	6	13	11	41			17	54	16:45	140	559	161	645		301	1204
05:00	6		9				15		17:00	143		163			306	
05:15	13		10				23		17:15	109		159			268	
05:30	28		21				49		17:30	125		138			263	
05:45	17	64	27	67			44	131	17:45	102	479	144	604		246	1083
06:00	23		33				56		18:00	89		125			214	
06:15	46		49				95		18:15	79		125			204	
06:30	50		60				110		18:30	98		104			202	
06:45	38	157	56	198			94	355	18:45	96	362	98	452		194	814
07:00	36		43				79		19:00	65		70			135	
07:15	41		45				86		19:15	50		67			117	
07:30	47		47				94		19:30	67		71			138	
07:45	64	188	68	203			132	391	19:45	67	249	55	263		122	512
08:00	61		44				105		20:00	43		46			89	
08:15	88		74				162		20:15	57		44			101	
08:30	90		66				156		20:30	46		48			94	
08:45	97	336	77	261			174	597	20:45	52	198	47	185		99	383
09:00	93		76				169		21:00	43		38			81	
09:15	87		66				153		21:15	57		38			95	
09:30	104		113				217		21:30	59		28			87	
09:45	130	414	81	336			211	750	21:45	54	213	26	130		80	343
10:00	118		77				195		22:00	48		40			88	
10:15	135		75				210		22:15	50		33			83	
10:30	125		96				221		22:30	30		10			40	
10:45	135	513	98	346			233	859	22:45	26	154	34	117		60	271
11:00	154		99				253		23:00	32		23			55	
11:15	154		131				285		23:15	20		18			38	
11:30	168		118				286		23:30	27		16			43	
11:45	135	611	126	474			261	1085	23:45	17	96	22	79		39	175
TOTALS		2407		2066				4473	TOTALS		4896		4778			9674
SPLIT \%		53.8\%		46.2\%				31.6\%	SPLIT \%		50.6\%		49.4\%			68.4\%

VOLUME
Deer Park Rd E/O SR 29
Day: Thursday
Date: 3/14/2019
City: St Helena
Project \#: CA19_8143_002

DAILY TOTALS					$\frac{\mathrm{NB}}{0}$	SB				WB		EB				Total	
							0		3,934		2,920					6,854	
AM Period	NB	SB	EB		WB		TOTAL		PM Period	NB	SB				WB	TOTAL	
00:00			6		2		8		12:00			48		60		108	
00:15			5		1		6		12:15			41		58		99	
00:30			4		2		6		12:30			69		33		102	
00:45			4	19	2	7	6	26	12:45			40	198	36	187	76	385
01:00			4		0		4		13:00			51		57		108	
01:15			1		1		2		13:15			55		46		101	
01:30			2		0		2		13:30			79		37		116	
01:45			0	7	1	2	1	9	13:45			55	240	57	197	112	437
02:00			2		0		2		14:00			57		52		109	
02:15			0		1		1		14:15			67		47		114	
02:30			1		2		3		14:30			68		52		120	
02:45			0	3	1	4	1	7	14:45			65	257	50	201	115	458
03:00			0		1		1		15:00			68		49		117	
03:15			1		0		1		15:15			72		68		140	
03:30			1		1		2		15:30			124		56		180	
03:45			1	3	0	2	1	5	15:45			120	384	57	230	177	614
04:00			1		0		1		16:00			114		62		176	
04:15			1		1		2		16:15			97		42		139	
04:30			8		4		12		16:30			99		55		154	
04:45			4	14	4	9	8	23	16:45			92	402	52	211	144	613
05:00			8		5		13		17:00			118		51		169	
05:15			8		3		11		17:15			109		59		168	
05:30			19		16		35		17:30			95		51		146	
05:45			20	55	19	43	39	98	17:45			83	405	44	205	127	610
06:00			29		28		57		18:00			79		35		114	
06:15			58		31		89		18:15			54		34		88	
06:30			75		57		132		18:30			54		31		85	
06:45			44	206	52	168	96	374	18:45			53	240	24	124	77	364
07:00			57		43		100		19:00			44		23		67	
07:15			38		58		96		19:15			27		22		49	
07:30			56		62		118		19:30			32		16		48	
07:45			65	216	65	228	130	444	19:45			30	133	23	84	53	217
08:00			63		83		146		20:00			35		18		53	
08:15			57		70		127		20:15			30		12		42	
08:30			63		57		120		20:30			38		11		49	
08:45			59	242	78	288	137	530	20:45			26	129	8	49	34	178
09:00			55		50		105		21:00			28		10		38	
09:15			52		49		101		21:15			28		8		36	
09:30			45		37		82		21:30			15		7		22	
09:45			38	190	44	180	82	370	21:45			28	99	6	31	34	130
10:00			57		58		115		22:00			18		9		27	
10:15			42		56		98		22:15			30		11		41	
10:30			50		42		92		22:30			11		6		17	
10:45			50	199	54	210	104	409	22:45			14	73	7	33	21	106
11:00			43		45		88		23:00			13		5		18	
11:15			45		51		96		23:15			8		10		18	
11:30			47		54		101		23:30			14		10		24	
11:45			46	181	47	197	93	378	23:45			4	39	5	30	9	69
TOTALS				1335		1338		2673	TOTALS				2599		1582		4181
SPLIT \%				49.9\%		50.1\%		39.0\%	SPLIT \%				62.2\%		37.8\%		61.0\%

VOLUME
Deer Park Rd E/O SR 29

Day: Friday
Date: 3/15/2019

City: St Helena
Project \#: CA19_8143_002

DAILY TOTALS	NB	SB	EB	WB	Total
	0	0	4,144	2,913	7,057

AM Period	NB	SB	EB		WB		TOTAL		PM Period	NB	SB	EB		WB		TOTAL	
00:00			3		2		5		12:00			51		54		105	
00:15			1		1		2		12:15			47		58		105	
00:30			1		1		2		12:30			55		50		105	
00:45			1	6	1	5	2	11	12:45			61	214	59	221	120	435
01:00			4		1		5		13:00			52		58		110	
01:15			5		1		6		13:15			62		55		117	
01:30			2		1		3		13:30			60		52		112	
01:45			1	12	2	5	3	17	13:45			73	247	64	229	137	476
02:00			3		0		3		14:00			66		53		119	
02:15			1		1		2		14:15			69		63		132	
02:30			1		1		2		14:30			70		66		136	
02:45			0	5	3	5	3	10	14:45			64	269	63	245	127	514
03:00			1		1		2		15:00			84		56		140	
03:15			2		1		3		15:15			78		65		143	
03:30			2		0		2		15:30			137		41		178	
03:45			1	6	1	3	2	9	15:45			134	433	49	211	183	644
04:00			1		3		4		16:00			102		58		160	
04:15			1		2		3		16:15			122		53		175	
04:30			3		1		4		16:30			98		36		134	
04:45			5	10	3	9	8	19	16:45			103	425	48	195	151	620
05:00			1		7		8		17:00			114		42		156	
05:15			1		2		3		17:15			121		55		176	
05:30			15		16		31		17:30			120		42		162	
05:45			19	36	16	41	35	77	17:45			84	439	36	175	120	614
06:00			31		19		50		18:00			68		22		90	
06:15			73		31		104		18:15			73		37		110	
06:30			70		44		114		18:30			42		27		69	
06:45			59	233	53	147	112	380	18:45			48	231	32	118	80	349
07:00			46		41		87		19:00			49		24		73	
07:15			54		44		98		19:15			36		17		53	
07:30			39		42		81		19:30			38		13		51	
07:45			50	189	56	183	106	372	19:45			36	159	14	68	50	227
08:00			45		69		114		20:00			32		16		48	
08:15			52		66		118		20:15			30		11		41	
08:30			68		57		125		20:30			27		8		35	
08:45			66	231	66	258	132	489	20:45			34	123	14	49	48	172
09:00			54		44		98		21:00			29		12		41	
09:15			45		49		94		21:15			23		11		34	
09:30			52		62		114		21:30			44		11		55	
09:45			31	182	63	218	94	400	21:45			41	137	6	40	47	177
10:00			51		40		91		22:00			28		11		39	
10:15			50		63		113		22:15			25		14		39	
10:30			48		49		97		22:30			20		11		31	
10:45			48	197	42	194	90	391	22:45			17	90	6	42	23	132
11:00			60		49		109		23:00			19		7		26	
11:15			54		59		113		23:15			17		11		28	
11:30			49		51		100		23:30			22		14		36	
11:45			43	206	57	216	100	422	23:45			6	64	4	36	10	100
TOTALS				1313		1284		2597	TOTALS				2831		1629		4460
SPLIT \%				50.6\%		49.4\%		36.8\%	SPLIT \%				63.5\%		36.5\%		63.2\%

	DAILY TOTALS		NB	SB			EB	WB			Total
			0		0		4,144	2,913			7,057
AM Peak Hour		06:15		08:00		08:00	PM Peak Hour		15:30	14:30	15:30
AM Pk Volume		248		258		489	PM Pk Volume		495	250	696
Pk Hr Factor		0.849		0.935		0.926	Pk Hr Factor		0.903	0.947	0.951
7-9 Volume		420		441		861	4-6 Volume		864	370	1234
7-9Peak Hour		08:00		08:00		08:00	4-6 Peak Hour		16:45	16:00	16:45
7-9 Pk Volume	0	231		258		489	4-6 Pk Volume	0	458	195	645
Pk Hr Factor	0000	0.849		0.935		0.926	Pk Hr Factor	000	0.946	0.841	0.916

VOLUME
Deer Park Rd E/O SR 29
Day: Saturday
Date: 3/16/2019
City: St Helena
Project \#: CA19_8143_002

Appendix B: Intersection LOS Sheets

Intersection						
Int Delay, s/veh	1					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		4	7	${ }_{1}$	4
Traffic Vol, veh/h	26	38	811	37	26	847
Future Vol, veh/h	26	38	811	37	26	847
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	28	41	882	40	28	921

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1859	882	0	0	922	0
Stage 1	882	-	-	-	-	-
Stage 2	977	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	79	341	-	-	728	-
Stage 1	400	-	-	-	-	-
Stage 2	360	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	76	341	-	-	728	-
Mov Cap-2 Maneuver	197	-	-	-	-	-
Stage 1	385	-	-	-	-	-
Stage 2	360	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.5		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	263	728	-
HCM Lane V/C Ratio		-	-	0.265	0.039	-
HCM Control Delay (s)		-	-	23.5	10.1	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	1	0.1	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	3	0	847	3	0	873
Future Vol, veh/h	3	0	847	3	0	873
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	3	0	921	3	0	949

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	1872	923	0	0	924	0
Stage 1	923	-	-	-	-	-
Stage 2	949	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	79	327	-	-	739	-
Stage 1	387	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	79	327	-	-	739	-
Mov Cap-2 Maneuver	210	-	-	-	-	-
Stage 1	387	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	22.4		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	210	739	-
HCM Lane V/C Ratio		-	-	0.016	-	-
HCM Control Delay (s)		-	-	22.4	0	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	826	1	0	877
Future Vol, veh/h	1	0	826	1	0	877
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	888	1	0	943

Intersection						

Intersection						
Int Delay, s/veh	1					
Movement W	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	「	${ }^{4}$	4
Traffic Vol, veh/h	28	31	786	17	17	625
Future Vol, veh/h	28	31	786	17	17	625
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	31	35	883	19	19	702

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1623	883	0	0	902	0
Stage 1	883	-	-	-	-	-
Stage 2	740	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	111	341	-	-	741	-
Stage 1	399	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	108	341	-	-	741	-
Mov Cap-2 Maneuver	239	-	-	-	-	-
Stage 1	389	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.5		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	284	741	-
HCM Lane V/C Ratio		-	-	0.233	0.026	-
HCM Control Delay (s)		-	-	21.5	10	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0.9	0.1	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1		1	4
Traffic Vol, veh/h	0	3	811	2	0	653
Future Vol, veh/h	0	3	811	2	0	653
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	3	872	2	0	702

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	1575	873	0	0	874	0
Stage 1	873	-	-	-	-	-
Stage 2	702	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	121	349	-	-	772	-
Stage 1	409	-	-	-	-	-
Stage 2	491	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	121	349	-	-	772	-
Mov Cap-2 Maneuver	258	-	-	-	-	-
Stage 1	409	-	-	-	-	-
Stage 2	491	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.4		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	349	772	-
HCM Lane V/C Ratio		-	-	0.009	-	-
HCM Control Delay (s)		-	-	15.4	0	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	0	0	813	0	2	651
Future Vol, veh/h	0	0	813	0	2	651
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	0	874	0	2	700

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1578	874	0	0	874	0
Stage 1	874	-	-	-	-	-
Stage 2	704	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	120	349	-	-	772	-
Stage 1	408	-	-	-	-	-
Stage 2	490	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	120	349	-	-	772	-
Mov Cap-2 Maneuver	257	-	-	-	-	-
Stage 1	407	-	-	-	-	-
Stage 2	490	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		1 SBL	SBT
Capacity (veh/h)		-	-	-	772	-
HCM Lane V/C Ratio		-	-	-	0.003	-
HCM Control Delay (s)		-	-	0	9.7	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	F	${ }^{4}$	4
Traffic Vol, veh/h	28	41	879	40	28	918
Future Vol, veh/h	28	41	879	40	28	918
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage,	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	30	45	955	43	30	998

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2013	955	0	0	998	0
Stage 1	955	-	-	-	-	-
Stage 2	1058	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	63	309	-	-	682	-
Stage 1	369	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	60	309	-	-	682	-
Mov Cap-2 Maneuver	175	-	-	-	-	-
Stage 1	353	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	27.2		0		0.3	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	236	682	-
HCM Lane V/C Ratio		-	-	0.318	0.045	-
HCM Control Delay (s)		-	-	27.2	10.5	-
HCM Lane LOS		-	-	D	B	-
HCM 95th \%tile Q(veh)		-	-	1.3	0.1	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	3	0	918	3	0	946
Future Vol, veh/h	3	0	918	3	0	946
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	3	0	998	3	0	1028

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	895	1	0	951
Future Vol, veh/h	1	0	895	1	0	951
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	962	1	0	1023

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	2373	1022	0	0	1202	0
\quad Stage 1	1022	-	-	-	-	-
Stage 2	1351	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-2.245	-	
Pot Cap-1 Maneuver	~ 37	283	-	-	570	-
\quad Stage 1	343	-	-	-	-	-
Stage 2	238	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	~ 16	283	-	-	570	-
Mov Cap-2 Maneuver	~ 16	-	-	-	-	-
Stage 1	144	-	-	-	-	-
Stage 2	238	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s $\$ 3661$	0	6.4	
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-34	570	-
HCM Lane V/C Ratio	-	-8.632	0.58	-
HCM Control Delay (s)	-	$-\$ 3661$	19.7	-
HCM Lane LOS	-	-	F	C
HCM 95th \%tile Q(veh)	-	-	35.5	3.7

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	F	${ }_{1}$	4
Traffic Vol, veh/h	30	34	852	18	18	678
Future Vol, veh/h	30	34	852	18	18	678
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage,	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	34	38	957	20	20	762

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1759	957	0	0	977	0
Stage 1	957	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	91	308	-	-	694	-
Stage 1	368	-	-	-	-	-
Stage 2	436	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	88	308	-	-	694	-
Mov Cap-2 Maneuver	215	-	-	-	-	-
Stage 1	357	-	-	-	-	-
Stage 2	436	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24.5		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	256	694	-
HCM Lane V/C Ratio		-	-	0.281	0.029	-
HCM Control Delay (s)		-	-	24.5	10.3	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	1.1	0.1	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	0	3	879	2	0	708
Future Vol, veh/h	0	3	879	2	0	708
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	3	945	2	0	761

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1707	946	0	0	947	0
Stage 1	946	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	100	317	-	-	725	-
Stage 1	377	-	-	-	-	-
Stage 2	461	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	100	317	-	-	725	-
Mov Cap-2 Maneuver	234	-	-	-	-	-
Stage 1	377	-	-	-	-	-
Stage 2	461	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	16.5		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	317	725	-
HCM Lane V/C Ratio		-	-	0.01	-	-
HCM Control Delay (s)		-	-	16.5	0	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	881	0	2	706
Future Vol, veh/h	1	0	881	0	2	706
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	947	0	2	759

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	1710	947	0	0	947	0
Stage 1	947	-	-	-	-	-
Stage 2	763	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	100	317	-	-	725	-
Stage 1	377	-	-	-	-	-
Stage 2	460	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	100	317	-	-	725	-
Mov Cap-2 Maneuver	234	-	-	-	-	-
Stage 1	376	-	-	-	-	-
Stage 2	460	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.5		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	234	725	-
HCM Lane V/C Ratio		-	-	0.005	0.003	-
HCM Control Delay (s)		-	-	20.5	10	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	1					
Movement W	NBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	「	${ }^{1}$	4
Traffic Vol, veh/h	27	38	820	38	26	849
Future Vol, veh/h	27	38	820	38	26	849
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	29	41	891	41	28	923

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1870	891	0	0	932	0
Stage 1	891	-	-	-	-	-
Stage 2	979	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	78	337	-		722	-
Stage 1	396	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	75	337	-	-	722	-
Mov Cap-2 Maneuver	196	-	-	-	-	-
Stage 1	381	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	259	722	-
HCM Lane V/C Ratio		-	-	0.273	0.039	-
HCM Control Delay (s)		-	-	24	10.2	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	1.1	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F		a	4
Traffic Vol, veh/h	15	10	847	5	3	873
Future Vol, veh/h	15	10	847	5	3	873
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	16	11	921	5	3	949

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	831	1	0	893
Future Vol, veh/h	1	0	831	1	0	893
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	894	1	0	960

Intersection						
Int Delay, s/veh	264.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow		r	4
Traffic Vol, veh/h	109	141	719	306	284	598
Future Vol, veh/h	109	141	719	306	284	598
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	300	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	118	153	782	333	309	650

Intersection						
Int Delay, s/veh	1					
Movement W	NBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	「	${ }^{7}$	4
Traffic Vol, veh/h	29	31	794	18	17	632
Future Vol, veh/h	29	31	794	18	17	632
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	33	35	892	20	19	710

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1640	892	0	0	912	0
Stage 1	892	-	-	-	-	-
Stage 2	748	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	108	336	-	-	735	-
Stage 1	395	-	-	-	-	-
Stage 2	462	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	105	336	-	-	735	-
Mov Cap-2 Maneuver	236	-	-	-	-	-
Stage 1	385	-	-	-	-	-
Stage 2	462	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	22		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	279	735	-
HCM Lane V/C Ratio		-	-	0.242	0.026	-
HCM Control Delay (s)		-	-	22	10	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.9	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1		1	4
Traffic Vol, veh/h	14	9	811	13	8	653
Future Vol, veh/h	14	9	811	13	8	653
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	15	10	872	14	9	702

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow		7	4
Traffic Vol, veh/h	0	0	826	0	2	665
Future Vol, veh/h	0	0	826	0	2	665
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	0	888	0	2	715

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1607	888	0	0	888	0
Stage 1	888	-	-	-	-	-
Stage 2	719	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	116	343	-	-	763	-
Stage 1	402	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	116	343	-	-	763	-
Mov Cap-2 Maneuver	252	-	-	-	-	-
Stage 1	401	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	763	-
HCM Lane V/C Ratio		-	-	-	0.003	-
HCM Control Delay (s)		-	-	0	9.7	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Intersection						

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	
Lane Configurations	*		4	F	${ }^{4}$	4
Traffic Vol, veh/h	29	41	888	41	28	920
Future Vol, veh/h	29	41	888	41	28	920
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage,	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	32	45	965	45	30	1000

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2025	965	0	0	1010	0
Stage 1	965	-	-	-	-	-
Stage 2	1060	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	62	305	-	-	675	-
Stage 1	365	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	59	305	-	-	675	-
Mov Cap-2 Maneuver	174	-	-	-	-	-
Stage 1	349	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	27.9		0		0.3	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	232	675	-
HCM Lane V/C Ratio		-	-	0.328	0.045	-
HCM Control Delay (s)		-	-	27.9	10.6	-
HCM Lane LOS		-	-	D	B	-
HCM 95th \%tile Q(veh)		-	-	1.4	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1		7	4
Traffic Vol, veh/h	15	10	918	5	3	946
Future Vol, veh/h	15	10	918	5	3	946
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	16	11	998	5	3	1028

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2035	1001	0	0	1003	0
Stage 1	1001	-	-	-	-	-
Stage 2	1034	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	63	295	-	-	690	-
Stage 1	355	-	-	-	-	-
Stage 2	343	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	63	295	-	-	690	-
Mov Cap-2 Maneuver	187	-	-	-	-	-
Stage 1	354	-	-	-	-	-
Stage 2	343	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.8		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	219	690	-
HCM Lane V/C Ratio		-	-	0.124	0.005	-
HCM Control Delay (s)		-	-	23.8	10.2	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.4	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	900	1	0	966
Future Vol, veh/h	1	0	900	1	0	966
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	968	1	0	1039

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{r}		$\mathbf{4}$	$\mathbf{7}$	1	个
Traffic Vol, veh/h	31	34	860	19	18	685
Future Vol, veh/h	31	34	860	19	18	685
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	35	38	966	21	20	770

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1		1	4
Traffic Vol, veh/h	14	9	879	13	8	708
Future Vol, veh/h	14	9	879	13	8	708
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	15	10	945	14	9	761

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1731	952	0	0	959	0
Stage 1	952	-	-	-	-	-
Stage 2	779	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	97	315	-	-	717	-
Stage 1	375	-	-	-	-	-
Stage 2	452	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	96	315	-	-	717	-
Mov Cap-2 Maneuver	227	-	-	-	-	-
Stage 1	370	-	-	-	-	-
Stage 2	452	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.6		0		0.1	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	255	717	-
HCM Lane V/C Ratio		-	-	0.097	0.012	-
HCM Control Delay (s)		-	-	20.6	10.1	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.3	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1		7	4
Traffic Vol, veh/h	1	0	894	0	2	720
Future Vol, veh/h	1	0	894	0	2	720
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	961	0	2	774

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1739	961	0	0	961	0
Stage 1	961	-	-	-	-	-
Stage 2	778	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	96	311	-		716	-
Stage 1	371	-	-	-	-	-
Stage 2	453	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	96	311	-	-	716	-
Mov Cap-2 Maneuver	229	-	-	-	-	-
Stage 1	370	-	-	-	-	-
Stage 2	453	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.8		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	229	716	-
HCM Lane V/C Ratio		-	-	0.005	0.003	-
HCM Control Delay (s)		-	-	20.8	10	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	2712	1287	0	0	1346	0
\quad Stage 1	1287	-	-	-	-	-
Stage 2	1425	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-4.15	-	
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-2.245	-	
Pot Cap-1 Maneuver	~ 23	198	-	-	502	-
\quad Stage 1	255	-	-	-	-	-
\quad Stage 2	218	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	~ 21	198	-	-	502	-
Mov Cap-2 Maneuver	101	-	-	-	-	-
Stage 1	234	-	-	-	-	-
Stage 2	218	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	76.5	0	0.4
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-142	502	-
HCM Lane V/C Ratio	-	-0.712	0.082	-
HCM Control Delay (s)	-	-76.5	12.8	-
HCM Lane LOS	-	-	F	B
HCM 95th \%tile Q(veh)	-	-	4.1	0.3
Notes				
$\sim:$ Volume exceeds capacity	\$: Delay exceeds 300s	+ +: Computation Not Defined	*: All major volume in platoon	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow		1	4
Traffic Vol, veh/h	3	0	1236	3	0	1275
Future Vol, veh/h	3	0	1236	3	0	1275
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	3	0	1343	3	0	1386

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	2731	1345	0	0	1346	0
Stage 1	1345	-	-		-	-
Stage 2	1386	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	23	185	-	-	512	-
Stage 1	243	-	-	-	-	-
Stage 2	232	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	23	185	-	-	512	-
Mov Cap-2 Maneuver	119	-	-	-	-	-
Stage 1	243	-	-	-	-	-
Stage 2	232	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	36.1		0		0	
HCM LOS	E					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	119	512	-
HCM Lane V/C Ratio		-	-	0.027	-	-
HCM Control Delay (s)		-	-	36.1	0	-
HCM Lane LOS		-	-	E	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	1206	1	0	1280
Future Vol, veh/h	1	0	1206	1	0	1280
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	1297	1	0	1376

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	2674	1298	0	0	1298	0
Stage 1	1298	-	-	-	-	-
Stage 2	1376	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42		-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	25	198	-	-	534	-
Stage 1	256	-	-	-	-	-
Stage 2	234	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	25	198	-	-	534	-
Mov Cap-2 Maneuver	123	-	-	-	-	-
Stage 1	256	-	-	-	-	-
Stage 2	234	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	34.5		0		0	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	123	534	-
HCM Lane V/C Ratio		-	-	0.009	-	-
HCM Control Delay (s)		-	-	34.5	0	-
HCM Lane LOS		-	-	D	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	3199	1377	0	0	1620	0
Stage 1	1377			-		
Stage 2	1822					
Critical Hdwy	6.45	6.25			4.15	
Critical Hdwy Stg 1	5.45		-		-	
Critical Hdwy Stg 2	5.45		-	-		
Follow-up Hdwy	3.545	3.345	-		2.245	
Pot Cap-1 Maneuver	~11	~ 175	-		~394	
Stage 1	231	-	-	-	-	
Stage 2	~ 139					
Platoon blocked, \%						
Mov Cap-1 Maneuver	0	~ 175			~394	
Mov Cap-2 Maneuver	0		-	-	-	-
Stage 1	0		-	-	-	
Stage 2	~ 139	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s $\$ 625$	0	37.8	
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-	175	~ 394

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	4
Traffic Vol, veh/h	41	45	1147	25	25	912
Future Vol, veh/h	41	45	1147	25	25	912
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	46	51	1289	28	28	1025

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	2370	1289	0	0	1317	0
\quad Stage 1	1289	-	-	-	-	-
Stage 2	1081	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-2.245	-	
Pot Cap-1 Maneuver	~ 38	197	-	-	515	-
\quad Stage 1	255	-	-	-	-	-
\quad Stage 2	321	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	~ 36	197	-	-	515	-
Mov Cap-2 Maneuver	137	-	-	-	-	-
Stage 1	241	-	-	-	-	-
Stage 2	321	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	55	0	0.3
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-163	515	-
HCM Lane V/C Ratio	-	-0.593	0.055	-
HCM Control Delay (s)	-	-	55	12.4
HCM Lane LOS	-	-	F	B
HCM 95th \%tile Q(veh)	-	-	3.2	0.2

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	0	3	1184	2	0	953
Future Vol, veh/h	0	3	1184	2	0	953
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	3	1273	2	0	1025

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	2299	1274	0	0	1275	0
Stage 1	1274	-	-	-	-	-
Stage 2	1025	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	43	204	-	-	545	-
Stage 1	263	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	43	204	-	-	545	-
Mov Cap-2 Maneuver	156	-	-	-	-	-
Stage 1	263	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	22.9		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	204	545	-
HCM Lane V/C Ratio		-	-	0.016	-	-
HCM Control Delay (s)		-	-	22.9	0	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F		1	4
Traffic Vol, veh/h	0	0	1187	0	2	950
Future Vol, veh/h	0	0	1187	0	2	950
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	0	1276	0	2	1022

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2302	1276	0	0	1276	0
Stage 1	1276	-	-	-	-	-
Stage 2	1026	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	42	204	-	-	544	-
Stage 1	262	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	42	204	-	-	544	-
Mov Cap-2 Maneuver	154	-	-	-	-	-
Stage 1	261	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	544	-
HCM Lane V/C Ratio		-	-	-	0.004	-
HCM Control Delay (s)		-	-	0	11.6	-
HCM Lane LOS		-	-	A	B	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	2282	1111	0	0	1221	0
\quad Stage 1	1111	-	-	-	-	-
Stage 2	1171	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-2.245	-	
Pot Cap-1 Maneuver	~ 43	251	-	-	561	-
\quad Stage 1	311	-	-	-	-	-
Stage 2	291	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	~ 32	251	-	-	561	-
Mov Cap-2 Maneuver	~ 32	-	-	-	-	-
Stage 1	234	-	-	-	-	-
Stage 2	291	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, $\$ 2717.6$	0	1.8	
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-64	561	-
HCM Lane V/C Ratio	-	-6.76	0.248	-
HCM Control Delay (s)	-	$\$ 2717.6$	13.5	-
HCM Lane LOS	-	-	F	B
HCM 95th \%tile Q(veh)	-	-	-	

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined *: All major volume in platoon

Intersection						

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	2725	1297	0	0	1357	0
Stage 1	1297					
Stage 2	1428	-	-	-		
Critical Hdwy	6.45	6.25		-	4.15	
Critical Hdwy Stg 1	5.45	-				
Critical Hdwy Stg 2	5.45	-				
Follow-up Hdwy	3.545	3.345	-		2.245	
Pot Cap-1 Maneuver	~22	195	-	-	497	
Stage 1	252	-	-	-	-	
Stage 2	218	-	-	-	-	
Platoon blocked, \%				-		
Mov Cap-1 Maneuver	~ 20	195	-		497	
Mov Cap-2 Maneuver	100		-	-	-	
Stage 1	231		-	-	-	
Stage 2	218	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s	80.1	0	0.4
HCM LOS	F		

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{r}		\uparrow		l	个
Traffic Vol, veh/h	15	10	1236	5	3	1275
Future Vol, veh/h	15	10	1236	5	3	1275
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	16	11	1343	5	3	1386

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2738	1346	0	0	1348	0
Stage 1	1346	-	-	-	-	-
Stage 2	1392	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	22	185	-	-	511	-
Stage 1	242	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	22	185	-	-	511	-
Mov Cap-2 Maneuver	117	-	-	-	-	-
Stage 1	241	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	37.7		0		0	
HCM LOS	E					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	137	511	-
HCM Lane V/C Ratio		-	-	0.198	0.006	-
HCM Control Delay (s)		-	-	37.7	12.1	-
HCM Lane LOS		-	-	E	B	-
HCM 95th \%tile Q(veh)		-	-	0.7	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	1	0	1211	1	0	1295
Future Vol, veh/h	1	0	1211	1	0	1295
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	1	0	1302	1	0	1392

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2695	1303	0	0	1303	0
Stage 1	1303	-	-	-	-	-
Stage 2	1392	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	24	196	-	-	531	-
Stage 1	254	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	24	196	-	-	531	-
Mov Cap-2 Maneuver	121	-	-	-	-	-
Stage 1	254	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	35		0		0	
HCM LOS	E					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	121	531	-
HCM Lane V/C Ratio		-	-	0.009	-	-
HCM Control Delay (s)		-	-	35	0	-
HCM Lane LOS		-	-	E	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	3222	1381	0	0	1624	0
Stage 1	1381			-		
Stage 2	1841					
Critical Hdwy	6.45	6.25	-		4.15	
Critical Hdwy Stg 1	5.45		-	-	-	
Critical Hdwy Stg 2	5.45	-	-	-	-	
Follow-up Hdwy	3.545	3.345	-		2.245	
Pot Cap-1 Maneuver	~ 10	~ 174	-		~392	
Stage 1	230		-	-	-	
Stage 2	~ 136					
Platoon blocked, \%						
Mov Cap-1 Maneuver	0	~ 174	-		~392	-
Mov Cap-2 Maneuver	0		-	-	-	
Stage 1	0		-	-	-	
Stage 2	~ 136	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, SS 633.7	0	39.7	
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-174	~ 392	-
HCM Lane V/C Ratio	-	-2.274	1.145	-
HCM Control Delay (s)	-	$\$ 633.7$	123	-
HCM Lane LOS	-	-	F	F
HCM 95th \%tile Q(veh)	-	-	32.3	17

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined *: All major volume in platoon

Intersection						

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1		1	4
Traffic Vol, veh/h	14	9	1184	13	8	953
Future Vol, veh/h	14	9	1184	13	8	953
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	15	10	1273	14	9	1025

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	2323	1280	0	0	1287	0
Stage 1	1280	-	-	-	-	-
Stage 2	1043	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	41	202	-	-	539	-
Stage 1	261	-	-	-	-	-
Stage 2	339	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	40	202	-	-	539	-
Mov Cap-2 Maneuver	150	-	-	-	-	-
Stage 1	257	-	-	-	-	-
Stage 2	339	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	30.3		0		0.1	
HCM LOS	D					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	167	539	-
HCM Lane V/C Ratio		-	-	0.148	0.016	-
HCM Control Delay (s)		-	-	30.3	11.8	-
HCM Lane LOS		-	-	D	B	-
HCM 95th \%tile Q(veh)		-	-	0.5	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	0	0	1200	0	2	964
Future Vol, veh/h	0	0	1200	0	2	964
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	5	2	2	5
Mvmt Flow	0	0	1290	0	2	1037

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2331	1290	0	0	1290	0
Stage 1	1290	-	-	-	-	-
Stage 2	1041	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	41	200	-	-	538	-
Stage 1	258	-	-	-	-	-
Stage 2	340	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	41	200	-	-	538	-
Mov Cap-2 Maneuver	152	-	-	-	-	-
Stage 1	257	-	-	-	-	-
Stage 2	340	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NB	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	538	-
HCM Lane V/C Ratio		-	-	-	0.004	-
HCM Control Delay (s)		-	-	0	11.7	-
HCM Lane LOS		-	-	A	B	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

Appendix C: Signal Warrant Sheets

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Existing Weekday PM Peak Hour Conditions
Minor St. Volume:	64
Major St. Volume:	1721
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

N
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Existing Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	59
Major St. Volume:	1445
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Near-Term (NP) Weekday PM Peak Hour Conditions
Minor St. Volume:	69
Major St. Volume:	1865
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

N
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Near-Term Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	59
Major St. Volume:	1445
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Existing plus Project Weekday PM Peak Hour Conditions
Minor St. Volume:	65
Major St. Volume:	1733
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Existing plus Project Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	60
Major St. Volume:	1461
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Near-Term plus Project Weekday PM Peak Hour Conditions
Minor St. Volume:	70
Major St. Volume:	1877
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Near-Term plus Project Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	65
Major St. Volume:	1582
Warrant Met?:	NO

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

N
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Cumulative Yr. 2030 (NP) Weekday PM Peak Hour Conditions
Minor St. Volume:	93
Major St. Volume:	2512
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Cumulative Yr. 2030 (NP) Weekend Saturday MD Peak Hour Conditions
Minor St. Volume:	86
Major St. Volume:	2109
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

N
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Cumulative Yr. 2030 plus Project Weekday PM Peak Hour Conditions
Minor St. Volume:	94
Major St. Volume:	2524
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Lodi Lane / State Route 29
Scenario:	Cumulative Yr. 2030 (NP) Weekend Saturday MD Peak Hour Conditions
Minor St. Volume:	87
Major St. Volume:	2125
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Existing Weekday PM Peak Hour Conditions
Minor St. Volume:	249
Major St. Volume:	1888
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:
Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

Deer Park Road / SR-29
Existing Weekdend Saturday MD Peak Hour Conditions 281
1467
YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Near-Term (NP) Weekday PM Peak Hour Conditions
Minor St. Volume:	270
Major St. Volume:	2046
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Near-Term (NP) Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	304
Major St. Volume:	1591
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:

Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

Deer Park Road / SR-29
Existing plus Project Weekday PM Peak Hour Conditions
247
1907
YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:

Scenario:
Minor St. Volume:
Major St. Volume:
Warrant Met?:

Deer Park Road / SR-29
Existing plus Project Weekdend Saturday MD Peak Hour Conditions 284
1491
YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Near-Term plus Project PM Weekday Conditions
Minor St. Volume:	271
Major St. Volume:	2065
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Near-Term plus Project Weekdend Saturday MD Peak Hour Conditions
Minor St. Volume:	307
Major St. Volume:	1615
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Cumulative (NP) Weekday PM Peak Hour
Minor St. Volume:	363
Major St. Volume:	2756
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Cumulative (NP) Weekend MiddayPeak Hour
Minor St. Volume:	411
Major St. Volume:	2140
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Cumulative plus Project Weekday PM Peak Hour
Minor St. Volume:	364
Major St. Volume:	2775
Warrant Met?:	YES

Both 1 Lane Approaches		2 or more Lane and One Lane Approaches		Both 2 or more Lane Approaches	
$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	$\begin{array}{c}\text { Minor Street High } \\ \text { Volume Approach }\end{array}$	$\begin{array}{c}\text { Major Street Total of } \\ \text { Both Approaches }\end{array}$	
370	280				
Minor Street High					
Volume Approach					

* Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

Peak Hour Volume (Warrant 11) Rural Areas

\star
NOTE:
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection:	Deer Park Road / SR-29
Scenario:	Cumulative plus Project Weekend Midday Peak Hour
Minor St. Volume:	414
Major St. Volume:	2164
Warrant Met?:	YES

Appendix D: Arterial Segment LOS Capacities

TABLE 8

Generalized Peak Hour Directional Volumes for Florida's Transitioning and
 Areas Over 5,000 Not In Urbanized Areas ${ }^{1}$

12/18/12

Appendix E: Ballentine Vineyards Weekday \& Weekend Peak Hour Ratios

Ballentine Vineyards Peak Hour Ratio; Weekday PM \& Weekend Midday

Date	Time In	\# Group	Ride Share or Personal Car
6/22/19	10:00		Ride Share
6/22/19	12:15	1	Personal Car
6/22/19	1:15	2	Personal Car
6/22/19	2:40	2	Personal Car
6/23/19	10:30		Personal Car
6/23/19	11:00		Personal Car
6/23/19	11:30	2	Ride Share
6/23/19	12:30	2	Personal Car
6/23/19	1:30	8	Personal Car
6/23/19	2:00	1	Personal Car
6/23/19	3:00	2	Personal Car
6/24/19	11:30	2	Ride Share
6/25/19	4:00	3	Personal Car
6/26/19	11:00	10	Ride Share
6/26/19	12:30	4	Personal Car
6/26/19	3:50	3	Personal Car
6/27/19	12:00	2	Personal Car
6/28/19	12:30	2	Personal Car
6/28/19	2:20	2	Personal Car
6/28/19	2:10	2	Personal Car
6/28/19	2:00	7	Ride Share
6/29/19	10:30	1	Personal Car
6/29/19	10:45	3	Personal Car
6/29/19	10:50	7	Ride Share
6/29/19	11:50	3	Personal Car
6/29/19	2:00	3	Personal Car
6/29/19	2:30	2	Personal Car
6/29/19	4:15	2	Personal Car
6/30/19	11:30	2	Personal Car
7/1/19	11:00	2	Personal Car
7/1/19	12:00	2	Personal Car
7/1/19	2:00	2	Ride Share
7/2/19	1:45	4	Personal Car
7/3/19	12:30	2	Personal Car
7/4/19	11:00	10	Ride Share
7/4/19	12:45	2	Personal Car
7/4/19	12:00	8	Ride Share
7/4/19	1:50	2	Personal Car
7/4/19	3:30	2	Ride Share
7/4/19	3:35	2	Personal Car
7/4/19	4:00	1	Personal Car
7/5/19	11:15	14	Ride Share
7/5/19	2:30	2	Personal Car
7/5/19	2:30	2	Personal Car
7/5/19	2:30	3	Personal Car
7/5/19	4:00	2	Personal Car
7/6/19	10:30		Personal Car
7/6/19	12:30	10	Ride Share
7/6/19	2:50	2	Personal Car
7/6/19	3:00	3	Personal Car
7/6/19	2:45	8	Ride Share
7/6/19	2:00	2	Personal Car
7/6/19	2:00	2	Personal Car
7/6/19	3:00	6	Personal Car
7/6/19	3:45	3	Personal Car
7/6/19	4:30	3	Personal Car
7/6/19	4:00	2	Personal Car
7/7/19	11:15	4	Ride Share
7/8/19	2:00		Ride Share
7/8/19	1:00	10	Personal Car
7/8/19	3:00	2	Personal Car
7/9/19	10:00	2	Personal Car
7/9/19	11:00	10	Ride Share
7/9/19	2:00		Personal Car
7/10/19	11:00	10	Ride Share
19 Days		65 Groups	17 Ride Share, 48 Personal Car
		234 Guests	

Appendix F: Napa County \& Ballentine Vineyards Trip Generation Sheets; Permitted, Proposed, \& Winery Peak Hour Ratios

Ballentine winery: Exist

Proposed Project Winery Traffic Information / Trip Generation Sheet

Maximum Daily Weekolay Traffic (non-harvest season)

Maximum Daily Weekend Traffic (non-harvest Saturday)

Maximum Daily Weekend Traffic - Saturday Harvest Season

Largest Marketing Event- Additional Traffic

[^9]
Traffic during a Typical Weekday

Number of FT employees: ___ 12×3.05 one-way trips per employee	$=$	36.60	daily trips.
Number of PT employees: 3 _ $\times 1.90$ one-way trips per employee	=	5.70	daily trips.
Average number of weekday visitors: 63 / 2.6 visitors per vehicle $\times 2$ one-way trips	$=$	48.46	daily trips.
Gallons of production: 125	=	2.25	daily trips.
Total	$=$	93.01	daily trips.
(№ of FT employees) + (№ of PT employees/2) + (sum of visitor and truck trips x . 38)	$=$	32.77	peak trips.

Traffic during a Typical Saturday

Traffic during a Crush Saturday

Number of FT employees (during crush): 8__ 3.05 one-way trips per employee		24.40	daily trips.
Number of PT employees (during crush): 4 ___ 1.90 one-way trips per employee		7.60	daily trips.
Average number of Saturday visitors: _ـ_ 50 2. 8 visitors per vehicle $\times 2$ one-way trips	$=$	35.71	daily trips.
Gallons of production:__ 125,	=	2.25	daily trips.
Avg. annual tons of grape on-haul: __ 271 / 144 truck trips daily ${ }^{4} \times 2$ one-way trips	=	3.76	daily trips.
Total	=	73.72	daily trips.

Largest Marketing Event- Additional Traffic

[^10]
BALLENTINE UINELY: SLRVEYED RATIOS

Proposed Project Winery Traffic Information / Trip Generation Sheet

Masimum Daily Weekday Traffic (non-harvest season)

Total number of FT employees:__	$=$	36.6	daily trips.
Total number of PT employees:__ $\quad 3.1 .90$ one-way trips per employee	$=$	5.7	daily trips.
Anticipated weekday visitors:_63 2._ 2.6 visitors per vehicle $\times 2$ one-way trips	=	28.46	daily trips.
Gallons of production: 125,000 / 1,000 $\times .009$ truck trips daily ${ }^{3} \times 2$ one-way trips	=	2.25	daily trips.
$121.515 \% \text { Total }$	$=$ $=$ $=$	$\begin{aligned} & 93.01 \\ & 21.1 \end{aligned}$	daily trips. peak trips.

Maximum Daily Weekend Traffic (non-harvest Saturoday)

Maximum Daily Weekend Traffic - Saturday Harvest Season

Number of FTemployees (during crush):___ $\quad \times 3.05$ one-way trips per employee $=$
Number of PT employees (during crush):___ $\quad 1.90$ one-way trips per employee $=$
$\frac{24.4}{3.6}$ daily trips.

Largest Marketing Event-Additional Traific

Number of event staff (largest event):____

[^11]
[^0]: ${ }^{1}$ Mr. Ahsan Kazmi, P.E., Senior Traffic Engineer, Napa County Public Works, Memorandum, Ballentine Vineyards (P18-00382), October 30, 2018, January 23, 2019.
 ${ }^{2}$ Napa County Planning, Building, and Environmental Services, Use Permit Application (Supplemental Application for Winery Uses, Revised June 11, 2015.
 ${ }^{3}$ Napa County Department of Public Works, Traffic Impact Study Policies-Traffic Impact Study (TIS) Required Elements, March 25, 2016, Napa County Circulation Element, 2018 revision.

[^1]: References: 2010 Highway Capacity Manual

[^2]: ${ }^{7}$ California Manual on Uniform Traffic Control Devices (CAMUTCD), Chapter 4C, Peak hour signal warrant (\#3), 2016.
 ${ }^{8}$ Napa County Bicycle Plan, Napa County Transportation \& Planning Agency, January 2012.

[^3]: ${ }^{9}$ Caltrans, Traffic Volumes on California State Highways, State Route 29, 2015, 2016, 2017.
 ${ }^{10}$ Mr. Jason Hade, Associate Planner, County of Napa, Personal communication related to Napa County development projects in the Lodi Lane, Deer Park Road, and SR-29 segment at Ballentine Vineyards Winery, April 23, 2019.

[^4]: ${ }^{11}$ Napa County Conservation, Development, and Planning Department, Ballentine Vineyards Winery Use Modification, February 22, 2019.

[^5]: ${ }^{12}$ Ballentine Vineyards Winery, Hourly visitation levels by group appointment, June 22 - July 10, 2019.

[^6]: ${ }^{13}$ Caltrans, Highway Design Manual, Table 405.1A, Corner (Stopping) Sight Distance, March 7, 2014.

[^7]: ${ }^{14}$ Napa County Road and Street Standards, Department of Planning, Building, \& Environmental Services, September

[^8]: ${ }^{15}$ Fehr \& Peers, Napa County Travel Behaviour Study Survey Results and Data Analysis Report, December 8, 2014.

[^9]: ${ }^{3}$ Assumes 1.47 materials \& supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference

[^10]: ${ }^{3}$ Assumes 1.47 materials \& supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Information Sheet Addendum for reference).
 ${ }^{4}$ Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference).

[^11]: ${ }^{3}$ Assumes 1.47 materials \& supplies trips +0.8 case goods trips per 1,000 gallons of production / 250 days per year (see Traffic Informationi Sheet Addendum for reference).
 ${ }^{4}$ Assumes 4 tons per trip / 36 crush days per year (see Traffic Information Sheet Addendum for reference

