

Focused Traffic Analysis for the Proposed

Ballentine Vineyards Use Modification

Prepared for: The County of Napa

January 2020

Requested By: Ballentine Vineyards Winery

Draft (Revised)

FOCUSED TRAFFIC ANALYSIS PROPOSED BALLENTINE VINEYARDS WINERY USE MODIFICATION PROJECT

Prepared For:
COUNTY OF NAPA
At the request of:
Ballentine Vineyards Winery

Prepared By:
GHD Inc.
2300 Clayton Road, Suite 920
Concord, CA 94520
925.894.1000

Draft Report (Revised)

JANUARY 17, 2020

11188840 R2603TIA003.docx

Executive Summary

Project Description

The proposed Ballentine Vineyards Use Modification project would consist an increase in winery production, employment, visitation, and marketing events compared to existing permitted operations. The project site is located at 2820 St. Helena Highway. Access is provided by two existing driveways east into the winery grounds via two project driveways (see Figure 5.1--- Proposed Project Site Plan). The proposed project would increase production from 50,000 gallons per year to 125,000 gallons per year. Relative to employment there would be 15 total employees (12 full-time, 3 part-time) on weekdays and 6 employees (4 full-time, 2 part-time) on the weekends. Visitation would include a maximum of 95 visitors per day (Saturday and Sunday) with the winery averaging 63 visitors on weekdays. Finally, there would be an increase from 2 annual marketing events per year to 13 events per year. The largest highest attended marketing event would include four (4) annual events for 100 guests.

Four intersections along State Route 29 (St. Helena Highway) at Lodi Lane, Ballentine Vineyards Winery (north and south driveways), and Deer Park Road were evaluated for existing and future operating conditions with and without the proposed project. In addition, the arterial segments of State Route 29 north and south of the project driveways as well as Lodi Lane and Deer Park Road were evaluated for peak hour weekday and weekend operating conditions.

Based on transportation analyses of Existing, Near-Term, and Cumulative traffic conditions with and without the project the following findings and recommendations are presented:

Existing (No Project) Conditions

The intersection of Deer Park Road/SR-29 currently operates at LOS F during both the weekday PM peak hour and Saturday midday peak hour for the outbound (westbound) left and right-turn movements from Deer Park Road onto SR-29. All other study intersections operate at acceptable (LOS D or better) conditions. Based on accident history analysis, all study intersections are experiencing collision rates lower than the statewide average for similar facilities. However, the Deer Park Road/SR-29 intersection does experience more "broadside" accidents likely due to the relatively high speeds on SR-29 combined with stop-sign controlled motorists from Deer Park Road attempting to merge left onto SR-29 with very small "gaps" in through-traffic. Based on the CAMUTCD for the peak hour signal warrant, the Deer Park Road/SR-29 intersection would qualify for signalization with existing (no project) weekday PM peak and Saturday midday peak hour volumes.

Arterial operation along SR-29 is calculated at LOS E during both the weekday PM peak hour and Saturday midday peak hour conditions. Arterial operation along Lodi Lane and Deer Park Road is currently LOS C or better during both the weekday and weekend peak periods. It is noted that field observations indicate that during the weekday PM peak hour period southbound traffic flow on SR-29 can vary from free-flow conditions to intermittent periods of slowed or stop-and-go conditions between approximately 4:50-5:30 p.m. (for typical weekday southbound direction traffic flow).

Near-Term (No Project) Conditions

Under Near-Term (No Project) conditions, existing traffic volumes were increased by 4.2% per year to the year 2021 to allow for local/regional traffic growth in the area. Near-term traffic growth factors are based on historical Caltrans traffic volumes along SR-29 for the past three years.

Based on increases in traffic volumes from Near-Term traffic growth, the Deer Park Road/SR-29 intersection would continue to operate at LOS F during the weekday PM peak hour and Saturday midday peak hour, as would the north-south arterial segments of SR-29. The remaining project study intersections along SR-29 at Lodi Lane and the Ballentine Vineyard driveways would operate at acceptable levels (LOS D or better). The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with Near-Term (no project) volumes.

Existing plus Project Conditions.

A. Traffic

Proposed project daily and peak hour trip generation was conservatively based on Napa County Trip Generation ratios for winery production, employment, and visitation. Based on these County ratios, the project as modified is estimated to generate 93 daily trips with 33 weekday PM peak hour trips and 44 Saturday midday peak hour trips. However, the Winery is currently permitted to generate 19 daily trips with 7 weekday PM peak hour trips and 5 Saturday midday peak hour trips. Accounting for Ballentine Vineyards Winery permitted uses, the proposed project's net increase in vehicle trip generation would amount to 74 daily trips with 26 weekday PM peak hour trips and 39 Saturday midday peak hour trips.

The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. The remaining study intersections of Lodi Lane/SR-29 and Ballentine North and South Driveways/SR-29 Road would continue to operate acceptable levels (LOS D or better) during the same peak time periods.

Based on updated County significance criteria for unsignalized intersections the intersection of Deer Park Road/SR-29 has been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could occur if the proposed project contributes 1% or more of the total traffic at the intersection. Current County protocol go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes."

During the weekday PM peak hour, the proposed project would add 20 trips to the intersection. During the weekend midday peak hour, the project would add 27 trips to the intersection. Based on existing peak hour volumes of 2,137 and 1,748 at the intersection during these PM and midday peak hours; proposed project contribution would be less than one percent (1%) during the Friday PM peak hour. However, during the weekend (Saturday) midday peak hour the proposed project's contribution would total 1.5%. Under the County significance criteria, this would be considered a significant impact. The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with or without proposed project.

To address the potential project impacts on the Deer Park Road/SR-29 intersection during the Saturday midday peak hour, the applicant proposes the following mitigation measure is recommend to improve operations at the Deer Park Road/SR-29 intersection:

- Mitigation Alternative 1: At the Deer Park Road/SR-29 intersection, it is recommended that a signal be installed to allow the intersection to operate at acceptable levels during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under Existing plus Project conditions, the Deer Park Road/SR-29 intersection would operate at LOS D (54.7 seconds) during the weekday PM peak hour. During the weekend (Saturday) midday peak hour the intersection would operate at LOS B (16.6 seconds). In addition, it is recommended pursuant to policy CIR-19 of the Circulation Element that the proposed project contributes a "fair share" mitigation fee of 1.5% based on its total contribution to peak hour traffic volumes at the intersection. Installation of signal at the Deer Park Road/SR-29 would reduce overall project impacts to less-than-significant levels.
- Mitigation Alternative 2: As an alternative to the installation of a traffic signal at the intersection of Deer Park Road/SR-29, a reduction in the proposed project's Saturday midday peak hour trips would mitigate the impact at the Deer Park Road/SR-29 intersection. Based on the Napa County midday peak hour ratio of 57% for visitation, the project would currently generate 39 peak hour visitor trips with the proposed daily total of 95 guests. Peak hour visitor trips would have to be reduced to 21 midday peak hour trips (representing 50 daily visitors) during the peak midday hour to reduce project impacts to less-than-significant at the Deer Park Road/SR-29 intersection. However, recent discussions with County Traffic Engineering staff indicate that the County ratio of 57% for the midday peak hour is highly conservative given the overall winery visitation patterns and actual winery count data.

To determine the actual Saturday midday peak hour ratio at the Winery, the applicant recently conducted winery visitation counts for consecutive Saturday midday peak hour periods to determine the actual number of visitors that arrived and departed during the Saturday peak hour travel period. Ballentine Vineyards Winery experiences approximately 28% of their total Saturday visitation during this time period. Using actual winery visitation rates for Saturday midday peak hour, the winery generates 24 midday peak hour trips (see Appendices). Consequently, based upon actual field data, proposed project impacts would be reduced to **less-than-significant** at the Deer Park Road/SR-29 intersection. In addition, recent discussions with the applicant indicate that no production staff are on-site during the Saturday mid-day peak hour; and all administrative staff does not leave the winery until after 5:00 pm. (This would eliminate 5 midday peak hour trips). Therefore, it is recommended that winery visitation be limited to or remain consistent with their 28% midday peak hour ratio of the Saturday daily total of 68 daily visitor trips (or 24 midday total peak hour trips). Guests can be re-allocated to other time slots during the weekend hours.

With Existing plus Project traffic, the arterial north-south segments of SR-29 would continue to operate an unacceptable conditions (LOS E). The roadway segments on Lodi Lane and Deer Park Road would continue to operate at acceptable levels (LOS D or better). The addition of proposed project trips to directional (southbound only or northbound only) peak hour volumes on SR-29 would represent a **significant impact** based on the project adding more than one percent to the overall directional volumes. During the weekday PM peak hour project trips would represent 1.6% of directional southbound volumes and 1.5 % of directional northbound volumes.

• See Alternative Mitigation #2 (above). In addition to implementing alternative mitigation #2, it is recommended that the Ballentine Vineyards Winery institute a "flex-time" schedule for employees to reduce vehicle trips to/from the winery during the weekday PM peak hour and weekend (Saturday) midday peak hours as part of an overall TDM plan. (As noted, production staff is not working on Saturdays). An overall reduction of seven (7) weekday PM peak hour and five (5) weekend midday peak hour project trips would reduce overall project impacts to roadway segment operations to less-than-significant levels. As noted

under recommended project mitigation for the Deer Park Road/SR-29 intersection (above), the project's actual peak hour ratios for the both the Friday PM peak hour (10-15%) and Saturday midday peak hour (28%) are lower than Napa County peak hour ratios used to calculated the project trip generation. The reduction in peak hour project trip generation from these actual winery hourly ratios would be enough to mitigate project impacts to **less-than-significant** levels.

B. Project Access/Circulation

Vehicle access to the proposed Ballentine Vineyards Winery is provided by two existing driveways (north and south) extending east from SR-29 into the winery grounds (see Figure 5.1—Proposed Project Site Plan). As proposed, all visitors and guests would be required to use the northerly driveway for access to/from the Winery. The south driveway would be used for existing residential, employee, and truck uses. As noted, a two-way-left-turn-lane (TWLTLT) is present on SR-29 along the entire project frontage extending from Deer Park Road to 175-feet past the Ballentine Vineyards Winery driveway. The TWLTL on SR-29 allows motorists to gain access to the Winery and/or merge onto SR-29 from the Winery without delaying through-traffic on SR-29. Section 6.2 (Project Access/Circulation) describes vehicle access, parking, emergency access, design standards, pedestrian/bicycle circulation, and truck access/loading.

C. Marketing Events

In addition to normal tastings the project proposes to host 13 different sizes of marketing events that would range between 25-100 guests. These marketing events would include the following:

Proposed Ballentine Vineyards Winery Marketing Events

- 8 events monthly: maximum of 25 guests;
- 1 event monthly: maximum of 50 guests.
- 4 events yearly: maximum of 100 guests

Marketing events would typically be held outside of the peak commute periods starting in the middle of the day or early afternoon hours and extend beyond the weekday PM peak commute hour (4:00-6:00 p.m.). During weekends, events would start before or after the mid-day peak commute period (1:00-4:00 p.m.). As indicated in the trip generation sheets in Appendices, the largest marketing event would generate 87 daily trips (43 in, 42 out). As stated, the events are of sufficient length that the inbound and outbound trips occur in separate hours. Therefore, a large marketing event would generate 43 trips inbound during the hour prior to the event and 42 trips outbound during the hour directly after the event ends. Guests typically stay throughout the event and inbound/outbound traffic generation on a "per hour" basis is estimated to be very low (if any).

• As a suggested mitigation, it is recommended that large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:00-4:00 p.m.). In addition, the tasting room should suspend visitation related to wine tasting on the days when the facility hosts large marketing events that are held during the afternoon period. These measures would reduce any traffic impacts related to large marketing events to less-than-significant levels.

D. Vehicle Miles Traveled (VMT)/Transportation Demand Management (TDM) Plan

A VMT Reduction/TDM Plan has been developed for the proposed project that would reduce overall project trip generation and parking demand (too long to summarize in this section). Please refer to Section 8 (VMT Reduction/TDM Plan).

Near-Term plus Project Conditions

Same recommendations as Existing plus Project Conditions

Cumulative (No Project) Conditions

With year 2030 cumulative (no project) traffic volumes, the Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. However, both the Lodi Lane/SR-29 and Ballentine Vineyards North Driveway/SR-29 would be operating at unacceptable conditions (LOS E-F) during the weekday PM peak hour with year 2030 cumulative (no project) volumes. Directional roadway segment operation along SR-29 would continue to operate at unacceptable levels (LOS F) with year 2030 cumulative (no project) volumes. The directional roadway segments of Lodi Lane and Deer Park Road would operate acceptably (LOS D or better).

Cumulative plus Project Conditions

With proposed project traffic, there would be slight increases in vehicle delays at study intersection locations and overall LOS would remain unchanged from year 2030 cumulative (no project) conditions.

Based on updated County significance criteria for unsignalized intersections the off-site intersections of Lodi Lane/SR-29 and Deer Park Road/SR-29 have been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 5% or more to the total cumulative traffic growth at these intersections. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 13 trips to the Lodi Lane/SR-29 intersection. During the weekend (Saturday) midday peak hour the project would add 17 trips to the intersection. Based on total cumulative traffic growth at the intersection these proposed project trips would represent increases of 1.5% (13/833) and 2.4% (17/708), respectively. At the Deer Park Road/SR-29 intersection, the total cumulative traffic growth related to proposed project uses would be 1.9% (20/1,002) and 3.2% (27/830) during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under the County significance criteria, the addition of proposed project trips to these intersections would be considered less-than-significant given that all project contributions would be under 5% of overall cumulative traffic growth.

Related to arterial segment operation on SR-29, Lodi Lane, and Deer Park Road; the proposed project trips would be considered less-than-significant given that they represent less than a 5% increase in total cumulative traffic growth.

Table of Contents

1.	Intro	duction	1
2.	Exist	ting Conditions	4
	2.1	Proposed Project Site	4
	2.2	Roadways	4
	2.3	Existing Intersection Volumes	4
	2.4	Existing Intersection Methodology/Description	5
	2.5	Existing Intersection Operations Level-of-Service	5
	2.6	Existing Peak Hour Roadway Segment Level-of-Service	8
	2.7	Signal Warrant Evaluation	9
	2.8	Pedestrian-Bicycle	9
	2.9	Collision History	9
	Tabl	e 2.9-1: Existing Collision Rates at Study Intersections & Roadway Segments	10
3.	Near	r-Term Year 2021 (No Project) Conditions	10
	3.1	Near-Term (Year 2021) Methodology	10
	3.2	Near-Term (Year 2021) Intersection Operation	12
	3.3	Near-Term Year 2021 (No Project) Arterial Operation	12
	3.4	Signal Warrant	12
4.	Napa	a County Significance Criteria	12
5.	Prop	osed Project Impacts	14
	5.1	Project Description	14
	5.2	Project Trip Generation	14
	5.3	Project Trip Assignment	16
	5.4	Existing plus Project Intersection Operations Level-of-Service	17
	5.5	Existing plus Project Roadway Segment Operation	21
	5.6	Near-Term plus Project Intersection Operations	22
	5.7	Near-Term plus Project Roadway Segment Operation	22
	5.8	Signal Warrant Evaluation	22
6.	Site	Access/Design Parameters	22
	6.1	Sight Distance	22

		6.2	Project A	ccess/Circulation	23
			6.2.1	Access	23
			6.2.2	Parking	24
			6.2.3	Emergency Access	24
			6.2.4	Design Standards	24
			6.2.5	Pedestrian/Bicycle Circulation	24
			6.2.6	Truck Access\Loading	26
		6.3	Marketing	Events	26
	7.	Cumi	ulative Yea	r 2030 (No Project) Conditions	27
		7.1	Model Fo	recast	27
		7.2	Year 2030	Cumulative (No Project) Intersection Operating Conditions	30
		7.3	Year 2030	Cumulative (No Project) Roadway Segment Operation	30
		7.4	Year 2030	Cumulative plus Project Intersection Operations	30
		7.5	Year 2030	Cumulative plus Project Roadway Segment Operations	30
	8.	VMT	Reduction/	TDM Plan	31
Fi	gure	e Inc	dex		
	Figur	e 1.1	Project V	cinity Map	2
	Figur	e 1.2	Existing F	Project Site Plan	3
	Figur	e 2.1	Existing V	Veekday PM Peak and Weekend Mid-Day Peak Hour Volumes	6
	Figur	e 3.1		m Year 2021 (No Project) Weekday PM Peak and Weekend Mid-Day Peak	
	Figur	e 5.1	Proposed	Project Site Plan	15
	Figur	e 5.2	Weekday	PM and Saturday Midday Peak Hour Project Trips (Only)	18
	Figur	e 5.3	Existing p	lus Project Weekday PM and Saturday Midday Peak Hour Volumes	19
	Figur	e 5.4		m Year 2022 plus Project Weekday PM and Saturday Midday Peak Hour V	
	Figur	e 6.2	Truck Tui	ning Template—Project Site Access	25
	Figur	e 7.1		ve Year 2030 (No Project) Weekday PM and Saturday Midday Peak Hour \	
	Figur	e 7.2		ve Year 2030 plus Project Weekday PM and Saturday Midday Peak Hour V	
					29

Table Index

Table 2.4-1: Intersection Level of Service Definitions	7
Table 2.5-1: Existing (No Project) Intersection Level-of-Service	8
Table 3.2-1 Near-Term Year 2021 (No Project) Conditions: Intersection Level-of-Service Weekday Pl Peak and Weekend Midday Peak Hour	
Table 5.2-1 Proposed Project Trip Generation	6
Table 5.4-1: Existing and Near-Term Year 2021 with Project Conditions Intersection Level-of-Service	э17
Table 7.1-1 Year 2030 and Year 2030 with Project Conditions: Intersection Levels-Of-Service Week PM Peak and Weekend Mid-Day Peak Hour ¹ 2	•

Appendix Index

Appendix A	Evicting	Weekday	/ DN/I &.	Saturday	Midday	Poak	Hour	Intered	ction/AD	$\Gamma \cap C$	ninte
Appelluix A	⊏XISUHIQ	vveekuay		Salurua	/ iviiuuav	reak	noui	IIILEISE	CUOII/AD	ıv	วนทเธ

Appendix B Intersection Level-of-Service Sheets

Appendix C Signal Warrant Sheets

Appendix D Arterial Segment LOS Definitions

Appendix E Ballentine Vineyards Winery Weekday and Weekend Peak Hour Ratios

Appendix F Napa County & Ballentine Winery Daily & Peak Hour Trip Generation Sheets

1. Introduction

The following report provides a focused traffic analysis for the proposed Ballentine Vineyards Winery project located at 2820 St. Helena Highway in St. Helena, Napa County--- (see Figure 1.1 for Project Vicinity Map and Figure 1.2 for Existing Project Site Plan). This traffic analysis is based on discussions with the proposed project's planning consultant (Mr. Jeffrey Redding) and other comparable winery studies conducted for Napa County by GHD. In addition, specific transportation analyses and comments outlined in the Napa County Public Works letters on the proposed use modification were included in the overall scope-of-work.¹ Project characteristics related to employment, visitation, production, and marketing have been evaluated relative to potential roadway and intersection impacts. Methodologies for analyzing the transportation impacts of proposed project uses are consistent with the Use Permit Modification (Supplemental Winery Uses) from Napa County Planning, Building, and Environmental Services.² The methodologies focus on both daily and peak hour trip generation associated with proposed employment, visitation, and production levels. Proposed marketing plans and/or special events are also included in overall analyses of trip generation characteristics. Finally, the County has recently adopted revised transportation significance criteria and policies established in the Traffic Impact Study Policies and the recently updated Circulation Element of the General Plan.³ Key issues evaluated in this study include the following:

- Existing and future weekday (Friday) PM peak hour and weekend (Saturday) mid-day peak hour operations at the Lodi Lane/SR 29, Ballentine Vineyards Driveway(s)/SR 29, and Deer Park Road/SR 29 intersections as well as daily traffic volumes along SR 29;
- Collision history at the study intersections and project driveway areas for five-year period;
- Near-Term (2021) traffic conditions reflecting other approved/pending projects and/or historical traffic growth rates in the study area encompassing Napa County inclusive of St. Helena and Calistoga;
- Increase in proposed project trip generation relative to existing permit and baseline conditions from proposed project uses including employment, and marketing events;
- Project site access along SR 29 including other adjacent driveway(s) and circulation of vehicles within these areas;
- Cumulative year 2030 (no project) conditions along Lodi Lane, SR 29, and Deer Park Road based on the Napa Valley Transportation Authority (NVTA) model projections and/or Caltrans historical traffic growth.

The following sections outline existing and future conditions with and without the increase in traffic from proposed Ballentine Vineyards Winery project. Where necessary, measures have been recommended to ensure acceptable traffic flow, circulation and parking, and/or fair share mitigation consistent with significance thresholds outlined in the County's Traffic Impact Policies guidelines.

¹ Mr. Ahsan Kazmi, P.E., Senior Traffic Engineer, Napa County Public Works, Memorandum, Ballentine Vineyards (P18-00382), October 30, 2018, January 23, 2019.

² Napa County Planning, Building, and Environmental Services, Use Permit Application (Supplemental Application for Winery Uses, Revised June 11, 2015.

³Napa County Department of Public Works, Traffic Impact Study Policies-Traffic Impact Study (TIS) Required Elements, March 25, 2016, Napa County Circulation Element, 2018 revision.

PROJECT VICINITY MAP

FIGURE 1.1

2. Existing Conditions

2.1 Proposed Project Site

The proposed Ballentine Vineyards Winery project is located at 2820 St. Helena Highway north of St. Helena in Napa Valley (Napa County). The proposed project would increase current (baseline) winery operations to include modified levels associated with employment, visitation, and production. A brief description of the roadways serving the site is as follows:

2.2 Roadways

St. Helena Highway (SR 29) extends in a primarily north-south direction between Deer Park Road past the project site to Lodi Lane. In the project study area, SR 29 is a two-lane semi-rural highway with 10-foot striped shoulder lanes, two 12-foot travel lanes, and a 12-foot two-way-left-turn-lane (TWLTL) and provides access to agricultural (vineyard) and residential uses. The posted speed limit on SR 29 is 45 mph from St. Helena north to Deer Park Road. North of Deer Park Road, the speed limit increases to 50 MPH extending through Lodi Lane.

Lodi Lane is located approximately 0.4 miles north of the project site and extends in an east-west direction between SR 29 and Silverado Trail. Lodi Lane is a two-lane semi-rural roadway with unimproved shoulders providing access to residential and agricultural areas east of First Avenue with a 45-mph speed limit.

Deer Park Road is located approximately 1,000 feet south of the project site and (like Lodi Lane) extends in an east-west from SR 29 to Silverado Trail. Deer Park Road is two-lane roadway with Class II bike lanes (on-road, striped) that provides access to residential and agricultural areas in the Napa Valley. The posted speed limit is 55 mph on Deer Park Road in the project study area.

2.3 Existing Intersection Volumes

In order to identify existing peak hour operating conditions, existing peak period traffic counts were conducted along SR 29 at the two primary (gateway) intersections north and south and at the project site location and project driveway(s) based on input from Napa County Transportation staff.⁴ ⁵ These three intersection count locations are as follows:

1. Lodi Lane/SR 29

Stop-control (Lodi Lane)

2. Ballentine Vineyard Driveway(s)/SR 29

Stop-control (BV Driveways)

3. Deer Park Road/SR 29

Stop-control (Deer Park Rd.)

Peak period vehicle counts were conducted on a weekday (Friday) late afternoon (3:00-6:00 p.m.) and Saturday afternoon (1:00-4:00 p.m.). The resultant "peak hour" of traffic flow on SR 29 occurs during 3:30-4:30 p.m. (Friday) and 2:00-3:00 p.m. (Saturday). Peak period counts were conducted during the month of January and do not fully reflect peak traffic conditions on SR 29 or adjacent Valley cross-streets. Peak traffic volumes usually occur in the months of August, September, and October. Consequently, existing peak hour count volumes were compared to Caltrans "peak month" historical

⁴ Ahsan Kazmi, P.E., Senior Traffic Engineer, Comment letter on Ballentine Vineyard Use Modification Project (P18-00382), October 18, 2018.

⁵ National Data Systems, Weekday (Friday) peak period (4:00-6:00 p.m.) and Weekend (Saturday) peak period (1:00-4:00 p.m.) vehicle turning movement counts at the Hagan Road and North Avenue intersections at Third Avenue, October 25 and 27, 2018.

data for the most recent calendar year available (2017). Based on peak hour traffic flows (two-way) and daily volumes south of Lodi Lane, SR-29 experiences a peak hour volume of approximately 1,800 vehicles and 19,000 daily vehicles. New peak hour and daily traffic volumes collected on SR-29 at the project driveways indicate a current peak hour two-way volume of 1,431 vehicles and a daily volume of approximately 15,827 vehicles. Caltrans peak month volumes are approximately 20-26% higher than counted volumes at the project driveway and off-site intersections in January. Therefore, peak hour intersection count volumes were increased by the overall average of the peak month/peak hour volumes (23%) to account for summer peak flow volumes on SR-29. Historical Caltrans volumes are not available for Lodi Lane and Deer Park Road. Therefore, new intersection count volumes were increased by the same percentage growth as a conservative measure.

Existing weekday PM peak hour and weekend mid-day peak hour intersection volumes have been shown in Figure 2.1

2.4 Existing Intersection Methodology/Description

Intersection operation is one of the primary factors in evaluating the carrying capacity of a roadway network. Traffic conditions are measured by Level of Service (LOS), which applies a letter ranking to successive levels of intersection performance. LOS 'A' represents optimum conditions with free-flow travel and no congestion. LOS 'F' represents severe congestion with long delays at the approaches. For intersections with minor street stop control, the LOS reflects the delays experienced by the minor street approach. Level of service definitions are shown in Table 2.4-1.

Intersection levels-of-service have been based on the most recent Highway Capacity Manual (*HCM 2010*) operations methodology for unsignalized intersections. In addition, peak hour factors (PHF's) for each intersection approach have been incorporated into all existing and future intersection LOS calculations. The PHF is a measure of the traffic flow rate at each intersection approach. Based on field count data, these PHF's ranged from .75 to .95 dependent on each intersection. Intersection approaches with lower approach volumes typically have lower (and more conservative) PHF's.

The Lodi Lane and Deer Park Road intersections are stop-sign controlled for the westbound minor street approaches at SR-29. The Ballentine Vineyards north and south driveways are also stop-controlled for the minor street (driveway) approaches. A two-way-left-turn-lane (TWLTL) exists on SR-29 starting approximately 120-feet north of the Ballentine Vineyards driveways and extending south past the project driveways all the way to Deer Park Road. A southbound left-turn lane exists on SR-29 at Lodi Lane and has approximately 85-feet of storage capacity.

2.5 Existing Intersection Operations Level-of-Service

Existing weekday PM peak and weekend mid-day peak hour existing (no project) level-of-service has been shown in Table 2.5-1. As calculated, the majority of the project study intersections are operating at LOS C during both the weekday PM peak hour and Saturday mid-day peak hour. The exception would be the Deer Park Road/SR-29 intersection. At this location, intersection LOS is F for all stop-sign controlled movements from Deer Park Road onto SR-29 during both the weekday PM peak hour and weekend midday peak hour conditions.

⁶ Caltrans, 2017 Traffic Volumes on California State Highways, Peak hour two-way volumes, SR-29 south of Lodi Lane.

FIGURE 2.1

Table 2.4-1: Intersection Level of Service Definitions

Table 2		.4-1: Intersection Level of	Service Delinitions	Stopped Delay/Vehicle (sec)			
Level of				Signalized/	Unsignalized/		
Service	Flow	Delay	Maneuverability	Roundabouts	All-Way Stop		
A	Stable Flow	Very slight delay. Progression is very favorable, with most vehicles arriving during the green phase not stopping at all.	Turning movements are easily made, and nearly all drivers find freedom of operation.	< 10.0	< 10.0		
В	Stable Flow	Good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.	Vehicle platoons are formed. Many drivers begin to feel somewhat restricted within groups of vehicles.	>10.0 and < 20.0	>10.0 and < 15.0		
С	Stable Flow	Higher delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.	Back-ups may develop behind turning vehicles. Most drivers feel somewhat restricted.	>20.0 and < 35.0	>15.0 and < 25.0		
D	Approaching Unstable Flow	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.	Maneuverability is severely limited during short periods due to temporary backups.	>35.0 and < 55.0	>25.0 and < 35.0		
E	Unstable Flow	Generally considered to be the limit of acceptable delay. Indicative of poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.	There are typically long queues of vehicles waiting upstream of the intersection.	>55.0 and < 80.0	>35.0 and < 50.0		
F	Forced Flow	Generally considered to be unacceptable to most drivers. Often occurs with over saturation. May also occur at high volume-to-capacity ratios. There are many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors.	Jammed conditions. Back- ups from other locations restrict or prevent movement. Volumes may vary widely, depending principally on the downstream back-up conditions.	> 80.0	> 50.0		

References: 2010 Highway Capacity Manual

Table 2.5-1: Existing (No Project) Intersection Level-of-Service

			Wkdy. PM LOS/Delay	Wknd. Mid-Day LOS/Delay
	Intersection	Control Type	Existing (No Project)	Existing (No Project)
1	Lodi Lane/SR-29	TWSC	C 23.5	C 21.5
2	Ballentine N. Driveway/SR-29	TWSC	C 22.4	C 15.4
3	Ballentine S. Driveway/SR-29	TWSC	C 21.8	A 0.0
3	Deer Park Road/SR-29	TWSC	F >300	F >300

Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

2.6 Existing Peak Hour Roadway Segment Level-of-Service

Peak hour roadway operation has been evaluated consistent with Napa County criteria for arterial level-of-service. Lodi Lane is currently operating at LOS B or better at 64 directional peak hour vehicles (uninterrupted flow highway). SR-29 experiences peak hour directional arterial flow (one-way) of approximately 873 vehicles during the weekday PM peak hour (southbound) and 803 during the Saturday mid-day peak hour (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods (see Appendices for Peak Hour Roadway LOS Table). It is noted that field observations indicate that during the weekday PM peak hour period southbound traffic flow on SR-29 can vary from free-flow conditions to intermittent periods of slowed or stop-and-go conditions between approximately 4:50-5:30 p.m. (for typical weekday southbound direction traffic flow). For this reason, peak hour arterial conditions reflect a progression of LOS E during this time period. Please note---traffic flow observations for southbound SR-29 may not necessarily coincide with the identified "peak hour" of traffic volumes.

It is noted that traffic observations along State Route 29 were conducted during entire weekday two-hour count period between 4:00-6:00 p.m. with the observer noting the various flows of traffic ranging at times from "free-flow" conditions to intermittent periods of slowed or stop-and-go conditions between "approximately" 4:30-5:30 p.m. in the southbound commute direction. As noted, these are observations conducted by the traffic technician and may not always coincide with recorded "peak hour" of traffic. Daily fluctuations in traffic flow are quite common and observed conditions may at times differ from the recorded peak hour due to external factors (accidents, roadway construction, or event traffic).

Deer Park Road experiences peak directional volumes of 586 vehicles (eastbound) during the weekday PM peak hour and 281 vehicles (westbound) during the weekend midday peak hour yielding a roadway LOS of C and LOS B, respectively (uninterrupted flow highway).

2.7 Signal Warrant Evaluation

Based on the California Manual on Uniform Traffic Control Devices (CAMUTCD) peak hour signal warrant criteria, the three unsignalized study intersections of Lodi Lane, Ballentine Winery driveway, and Deer Park road at SR-29 were evaluated for signalization.⁷ The peak hour warrant(s) are one of several standards to help determine if installation of a traffic signal is appropriate. Qualifying for signalization using the peak hour warrants does not necessarily mean a signal should be installed. The decision to install a traffic signal should be based on further studies utilizing additional warrants as presented in the California MUTCD. At this time, the Lodi Lane and Ballentine Winery intersections at SR-29 not qualify for signalization under the peak hour warrant (the warrant graphs are provided in the Appendix). It is noted that the minor street volumes at the Ballentine Winery driveways are too low to consider for warrant evaluation (75 vehicles minor-street minimum volume required). However, the intersection of Deer Park Road/SR-29 would exceed the minimum volumes for peak hour signalization during both the weekday PM peak hour and weekend midday peak hour.

2.8 Pedestrian-Bicycle

As noted, pedestrian-bicycle facilities in the project study area are limited to Deer Park Road south of the project site with Class II bike lanes on both sides of the street. Given the rural nature of the area along SR-29, Lodi Lane, and Deer Park Road and relatively high vehicle speeds along the roadways; bicycle traffic is light. The Napa County Bicycle Plan indicates that SR-29 is a primary Class II bike route and is proposed Class II bike lanes as part the proposed Vine Trail Alignment extending north-south through the Valley.⁸

2.9 Collision History

A collision history for the study area was conducted to determine any trends or patterns that may indicate a safety issue. Collision rates are calculated based on records provided by the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five (5) year period available is January 1, 2013 through December 31, 2017.

Collision rates for the Lodi Lane/SR-29 and Deer Park Road/SR-29 study intersections are shown in Table 2.9-1. In addition, the SR-29 segment between Lodi Lane and Deer Park Road has been evaluated for collision activity in the project driveway area. The calculated collision rates for the study locations were compared to the average collision rates for similar facilities statewide, as indicated in 2014 Collision Data on California State Highways (Caltrans).

The calculated collision rate for the Lodi Lane/SR-29 is lower than the statewide average for similar facilities, indicating the intersection is generally operating safely. The majority of collisions at this intersection represent hitting fixed objects and/or rear-end accidents and total four collisions over a five-year period. The Deer Park Road/SR-29 intersection has experienced six collisions over a five-year period. Unlike vehicle collisions at the Lodi Lane/SR-29, collisions the Deer Park Road/SR-29 primarily involve "broadside" (4), "side-swipe" (1), or "fixed-object" crashes (1). These types of collisions are likely due to the relatively high speeds on SR-29 combined with stop-sign controlled motorists from Deer Park Road attempting to merge onto SR-29 with very small "gaps" in through-traffic. Even with

⁷ California Manual on Uniform Traffic Control Devices (CAMUTCD), Chapter 4C, Peak hour signal warrant (#3), 2016.

⁸ Napa County Bicycle Plan, Napa County Transportation & Planning Agency, January 2012.

Table 2.9-1: Existing Collision Rates at Study Intersections & Roadway Segments

Study Intersection/Segment	Number of Collisions (2013-2017)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)
1. Lodi Lane./SR-29	4	0.10	0.23
3. Deer Park Road/SR-29	6	0.13	0.23
SR-29: Lodi Ln. to Deer Park Rd.	4	0.12	0.82

Source: California Highway Patrol, Statewide Integrated Traffic Records System (SWITRS), January 1, 2013—December 31, 2017.

Collision rates calculated based on c/mve or collisions per million vehicles entering.

these collisions, the Deer Park Road/SR-29 intersection collision rate is well below the statewide average for these facilities at 0.13 (statewide average is 0,23). Finally, the roadway segment of SR-29 between Lodi Land and Deer Park Road has a collision rate of 0.12 over the five-year period compared to a statewide average of 0.82 for the same facility. The total number of collisions (4) during the five-year period involve "sideswipes," "fixed objects," and "rear-end," accidents.

3. Near-Term Year 2021 (No Project) Conditions

3.1 Near-Term (Year 2021) Methodology

Future traffic conditions represent the next two years of potential traffic growth in the area and would include all approved projects situated in the Lodi Lane, Deer Park Road, and/or SR-29 study area. Based on discussions with Napa County Engineering staff, year 2021 near-term conditions have been based on historical Caltrans volume data for the last three full calendar years. Based on historical average daily traffic data that includes peak hour two-way volumes, volumes on SR-29 have increased by 12.5% in the last three years or 4.2% per year. No historical volume data is available for Lodi Lane or Deer Park Road in the immediate project study area. Therefore, the same conservative yearly growth rate was applied for a two-year period to the highway and cross-roads to account for near-term (no project) conditions.

In addition to historical Caltrans volume growth projections, local approved projects in the immediate study area have been researched for overall traffic growth in the immediate study area at the request of Napa County Public Works staff. Based on research conducted by the Napa County Planning Department there are no short-term approved projects in the current study area that would add traffic volumes to adjacent roadways...¹⁰

Near-Term Year 2021 (No Project) AM and PM peak hour intersection volumes have been shown in Figure 3.

⁹ Caltrans, Traffic Volumes on California State Highways, State Route 29, 2015, 2016, 2017.

¹⁰ Mr. Jason Hade, Associate Planner, County of Napa, Personal communication related to Napa County development projects in the Lodi Lane, Deer Park Road, and SR-29 segment at Ballentine Vineyards Winery, April 23, 2019.

3.2 Near-Term (Year 2021) Intersection Operation

Existing weekday PM peak and weekend mid-day peak hour near-term year 2021 (no project) level-of-service has been shown in Table 3.2-1. As calculated, Deer Park Road/SR-29 intersection would continue to operate at LOS F during the weekday PM peak hour and LOS F and weekend mid-day peak hour. Stated intersection LOS refer to the stop-sign controlled movements from Deer Park Road. The remaining intersections of Lodi Lane and the Ballentine Winery driveways at SR-29 would operate at acceptable levels (LOS D or better) during both the weekday PM peak hour and weekend (Saturday) mid-day peak hour under near-term year 2021 (no project) conditions.

Table 3.2-1 Near-Term Year 2021 (No Project) Conditions: Intersection Level-of-Service Weekday PM Peak and Weekend Midday Peak Hour

	Intersection	Control Type	Wkdy. PM LOS/Delay Year 2021 (No Project)	Wknd. Mid-Day LOS/Delay Year 2021 (No Project)
1	Lodi Lane/SR-29	MSSC	D 27.2	C 24.5
2	Ballentine N. Driveway/SR-29	MSSC	C 24.4	C 16.5
3	Ballentine S. Driveway/SR-29	MSSC	C 23.7	C 20.5
3	Deer Park Road/SR-29	MSSC	F >300	F >300

⁽¹⁾ Based on Highway Capacity Manual (HCM) 2016, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

3.3 Near-Term Year 2021 (No Project) Arterial Operation

Peak hour roadway operation has been evaluated near-term year 2021 (no project) conditions for arterial level-of-service. Lodi Lane will continue to operate at LOS B or better at 69 directional peak hour vehicles. SR-29 will experience peak hour directional arterial flow (one-way) of approximately 951 vehicles during the weekday PM peak hour (southbound) and 881 during the Saturday mid-day peak hour (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods. Finally, Deer Park Road would experience volumes of 635 vehicles (eastbound) during the weekday PM peak hour and 304 vehicles (westbound) on a Saturday midday peak hour representing LOS C and LOS B, respectively.

3.4 Signal Warrant

Under near-term year 2021 (no project) conditions, the Lodi Lane and Ballentine Winery intersections at SR-29 would not qualify for signalization under the peak hour warrant (the warrant graphs are provided in the Appendix). However, the intersection of Deer Park Road/SR-29 would continue to exceed the minimum volumes for peak hour signalization during both the weekday PM peak hour and weekend midday peak hour.

4. Napa County Significance Criteria

The County of Napa's significance criteria has been based on a review of the Napa Valley Transportation Authority and Napa County General Plan documentation on roadway and

intersection operations. In addition, updated criteria for unsignalized intersections and arterial segments has been based on adopted criteria in the County's Traffic Impact Study Policies (Required Elements). Specifically, the Circulation Element of the County's General Plan and updated guidelines for significance criteria outline the following significance criteria specific to intersection operation:

- The County shall seek to maintain a Level of Service D or better at all intersections, except where
 the level of service already exceeds this standard (i.e. Level of Service E or F) and where
 increased intersection capacity is not feasible without substantial additional right-of-way;
- No single level of service standard is appropriate for un-signalized intersections, which shall be evaluated on a case-by-case basis to determine if signal warrants are met;
- An unsignalized intersection operates at LOS A, B, C, or D during the selected peak hours without Project trips, the LOS deteriorates to LOS E or F with the addition of Project traffic, the peak hour signal warrant criteria should also be evaluated and presented for informational purposes; or
- Under Existing Conditions, an unsignalized intersection or roadway segment operates at LOS E or
 F during the selected peak hours without Project trips, and the project contributes one percent or
 more of the total entering traffic to that intersection/facility;
- Under Near-Term or Cumulative Conditions, an unsignalized intersection or roadway segment operates at LOS E or F during the selected peak hours without Project trips, and the project contributes five percent or more of the total traffic growth to that intersection/facility.

Further significance criteria are based on County and CEQA guidelines and apply mainly to intersection operation and access. A significant impact occurs if project traffic would result in the following:

- Cause an increase in traffic which is substantial in relation to existing traffic load and capacity of the street system (i.e. result in a substantial increase in either the number of vehicle trips, the volume capacity ratio on roads, or congestion at intersections);
- Exceed either individually or cumulatively, an LOS standard established by the county congestion management agency for designated roads or highways;
- Result in a change of traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections) or incompatible uses (e.g. farm equipment);
- Result in inadequate emergency vehicle access;
- Project site or internal circulation on the site is not adequate to accommodate pedestrians and bicycles.

5. Proposed Project Impacts

5.1 Project Description

The proposed Ballentine Vineyards Use Modification project would consist of modest increases in winery production, employment, visitation, and marketing events compared to existing permitted operations. The project site is located at 2820 St. Helena Highway with access east into the winery grounds via two project driveways (see Figure 5.1—Proposed Project Site Plan). Based on discussions with the project applicant and most recent project Use Permit Modification submitted to the County; existing (permitted) and proposed are listed as follows: 11

Project Components:		Existing (Permitted)	<u>Proposed</u>
 Winery Product 	tion (gallons)	50,000	125,000
 Employment (full 	ull-time, part-time)	5 F-T	12 F-T, 3 P-T
 Visitation (daily 	maximum)	10 (weekly not daily)	95 (Sat-Sun)
 Marketing Ever 	nts (per month)	2 (5 attendees max)	9 (50 guests max)

As shown above under the project components, the use modification proposes to increase annual winery production from 50,000 gallons to 125,000 gallons. Concerning employment, the project would increase existing employment from 5 full-time employees on the weekdays to 12 full-time and 3 part-time employees. During the weekends, there would be increase from 2 full-time and 1 part-time employee to 4 full-time and 2 part-time employees. Visitation is proposed to increase from 10 visitors per week to 95 visitors per day (maximum-weekend). The project would average 63 visitors during the weekdays. Finally, there would be an increase from 2 annual marketing events per year to 13 events per year. The highest attended marketing event would include 100 guests.

5.2 Project Trip Generation

Estimated daily, weekend PM peak hour, and Saturday midday peak hour project trip generation has been shown in Table 5.2-1. Proposed project trip generation has been based on the County of Napa's Winery Traffic/Trip Generation Sheet which contains daily and peak hour vehicle occupancy and trip generation ratios for associated winery activities. These include employment, visitation, and gallons of production for typical weekday and weekend activities (see Appendices—Napa County Winery Trip Generation Sheets). The calculations also quantify the expected truck trips associated with winery production (fruit, bottling, deliveries, etc.). However, there is no guidance for peak hour inbound/outbound vehicle flow. For this reason, a vehicle split of 25% inbound and 75% outbound has been used during the weekday PM peak hour. During the Saturday midday peak hour, a vehicle split of 50% inbound and 50% outbound has been applied. These weekday and Saturday peak hour vehicle splits are consistent with previous winery traffic analyses conducted in Napa County and observed driveway counts at other wineries. Typically, most wineries are closing between the 4:00-6:00 p.m. period during the weekday PM peak with employees and visitors outbound from the site. During the Saturday midday peak hour most employees remain on-site with primarily visitors coming/going from the site.

As shown in Table 5.2-1, the proposed project as modified would be expected to generate 93 daily trips, with 33 weekday PM peak hour trips and 44 Saturday midday peak hour trips. Accounting for permitted uses, the proposed project would be expected to generate 74 net new daily trips with 26 net new weekday PM peak hour and 39 net new Saturday midday peak hour trips. It is noted that few (if any) permitted winery trips were counted at the project driveway during data collection efforts

¹¹ Napa County Conservation, Development, and Planning Department, Ballentine Vineyards Winery Use Modification, February 22, 2019.

Table 5.2-1 Proposed Project Trip Generation

Land Use Units		Da	aily	Weekday PM Peak				Weekend MD Peak	
	Wkdy/Wknd	Wkdy Trips	Wknd Trips	Trips	In	Out	Trips	In	Out
Permitted Winery Use									
(Ballentine Vineyards)									
F-T Winery Employees	5/2	15	6	5	0	5	2	1	1
P-T Winery Employees	0/1	0	2	0	0	0	1	1	0
Visitors	4/6	3	4	2	1	1	2	1	1
Trucks		1	0						
Total Permitted Wir	nery Trips	19	12	7	1	6	5	3	2
Proposed Winery Use									
(Ballentine Vineyards)									
F-T Winery Employees	12 / 4	37	12	12	2	10	4	2	2
P-T Winery Employees	3/2	6	4	2	1	1	1	0	1
Visitors	63 / 95	48	68	19	5	14	39	19	20
Trucks		2	0						
Total Proposed Winery									
Trips	Trips		84	33	8	25	44	21	23
Net Added Projec	74	72	26	7	19	39	18	21	

Source: Balletine Winery Use Permit Application (P18-00382), Napa County Conservation, Development, and Planning Department, Existing/Proposed Winery Traffic Information/Trip Generation Sheets, April 26, 2019

for the proposed winery. Therefore, all new proposed project trips were added to the street network to ensure a conservative analysis of project impacts.

5.3 Project Trip Assignment

Proposed project trip distribution has been based on the location of the project site and existing traffic flows in the immediate study area. SR-29 (Main Street) serves as the primary access roadway to/from the project site. Using vehicle count data at the proposed project driveway at Third Avenue, project trip assignments for the weekday PM peak hour and Saturday midday peak hour would be as follows:

SR-29 to/from the north: 40% SR-29 to/from the south: 60%

For project trips coming to/from the north on SR-29, 5% would be to/from Lodi Lane with the remaining 35% remaining on SR-29. For project trips coming to/from the south, 15% would be to/from Deer Park Road with the remaining 45% remaining on SR-29.

Weekday PM peak hour and Saturday midday peak hour project trips (only) are shown in Figure 5.3-1. Existing plus project weekday PM peak hour and Saturday midday peak hour intersection

volumes are shown in Figure 5.3-2. Near-term plus project weekday PM peak hour and Saturday midday peak hour intersection volumes are shown in Figure 5.3-3.

5.4 Existing plus Project Intersection Operations Level-of-Service

Existing plus Project weekday PM peak and weekend mid-day peak hour existing level-of-service has been shown in Table 5.4-1. The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. The remaining study intersections of Lodi Lane/SR-29 and Ballentine North and South Driveways/SR-29 Road would continue to operate acceptable levels (LOS D or better) during the same peak time periods.

Based on updated County significance criteria for unsignalized intersections the intersection of Deer Park Road/SR-29 has been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 1% or more of the total traffic at the intersection. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 20 trips to the intersection. During the weekend midday peak hour, the project would add 27 trips to the intersection. Based on existing peak hour volumes of 2,137 and 1,748 at the intersection during these PM and midday peak hours; proposed project contribution would be less than one percent (1%) during the Friday PM peak hour. However, during the weekend (Saturday) midday peak hour the proposed project's contribution would total 1.5%. Under the County significance criteria, this would be considered a significant impact. The Deer Park Road/SR-29 intersection would continue to meet the peak hour signal warrant with or without proposed project. In response, the following mitigation measure is recommend to improve operations at the Deer Park Road/SR-29 intersection:

Table 5.4-1: Existing and Near-Term Year 2021 with Project Conditions Intersection Level-of-Service

			Wkdy. PM LO	S/Delay	Wknd. Mid-Day LOS/Delay		
	Intersection	Control Type	Existing (No Project)	Existing (W/ Project)	Existing (No Project)	Existing (W/ Project)	
1	Lodi Lane/SR-29	MSSC	C 23.5	C 24.0	C 21.5	C 22.0	
2	Ballentine N. Driveway/SR-29	MSSC	C 22.4	C 21.7	C 15.4	C 19.0	
3	Ballentine S. Driveway/SR-29	MSSC	C 21.8	C 22.0	A 0.0	A 0.0	
4	Deer Park Road/SR-29	MSSC	F > 300	F >300	F >300	F >300	
			Wkdy. PM LO	S/Delay	Wknd. Mid-Day LOS/Delay		
	Intersection	Control Type	N-T Yr. 2021 (No Project)	N-T Yr. 2021 (W/ Project)	N-T Yr. 2021 (No Project)	N-T Yr. 2021 (W/ Project)	
1	Lodi Lane/SR-29	MSSC	D 27.2	D 27.9	C 24.5	C 24.9	
2	Ballentine N. Driveway/SR-29	MSSC	C 24.4	C 23.8	C 16.5.	C 20.6	
3	Ballentine N. Driveway/SR-29 Ballentine S. Driveway/SR-29	MSSC MSSC	C 24.4 C 23.7	C 23.8 C 24.0	C 16.5. C 20.5	C 20.6 C 20.8	

(1) Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement. MSSC = Minor Street Stop Control

FIGURE 5.2

- At the Deer Park Road/SR-29 intersection, it is recommended that a signal be installed to allow the intersection to operate at acceptable levels during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under Existing plus Project conditions, the Deer Park Road/SR-29 intersection would operate at LOS D (54.7 seconds) during the weekday PM peak hour. During the weekend (Saturday) midday peak hour the intersection would operate at LOS B (16.6 seconds). In addition, it is recommended pursuant to policy CIR-19 of the Circulation Element that the proposed project contributes a "fair share" mitigation fee of 1.5% based on its total contribution to peak hour traffic volumes at the intersection. Installation of signal at the Deer Park Road/SR-29 would reduce overall project impacts to less-than-significant levels.
- An alternative mitigation measure to installing a traffic signal at the intersection of Deer Park Road/SR-29 would be to reduce proposed project Saturday midday peak hour project trips during this time period. Based on the Napa County midday peak hour ratio of 57% for visitation, the project would currently generate 39 peak hour visitor trips with the proposed daily total of 95 guests. Peak hour visitor trips would have to be reduced to 21 midday peak hour trips (representing 50 daily visitors) during the peak midday hour to reduce project impacts to less-than-significant at the Deer Park Road/SR-29 intersection. Discussions with County Traffic Engineering staff indicate that the County ratio of 57% for the midday peak hour is highly conservative given the overall winery visitation patterns and actual winery count data.

Based on recent winery visitation data for consecutive Saturday midday peak hour periods, the Ballentine Vineyards experiences approximately 28% of their total Saturday visitation during this time period. ¹² Using actual winery visitation rates for Saturday midday peak hour, the winery would generate 24 midday peak hour trips and proposed project impacts would be reduced to **less-than-significant** at the Deer Park Road/SR-29 intersection (see Appendices). In addition, recent discussions with the project applicant indicate that there are no production staff on-site during the Saturday mid-day peak hour and all administrative staff do not leave the winery until after 5:00 pm. (This would eliminate 5 midday peak hour trips). Therefore, it is recommended that winery visitation be limited to or remain consistent with their 28% midday peak hour ratio of the Saturday daily total of 68 visitor trips (or 24 midday total peak hour trips). Guests can be re-allocated to other time slots during the weekend hours.

5.5 Existing plus Project Roadway Segment Operation

With proposed project volumes, Lodi Lane would continue to operate at LOS B or better at 65 directional peak hour vehicles (uninterrupted flow highway). As noted, SR-29 experiences a peak hour directional arterial flow (one-way) of approximately 873 vehicles during the weekday PM peak hour (southbound) and 813 during the Saturday mid-day peak hour (northbound). With proposed project traffic, these directional volumes would increase to 888 vehicles (southbound) and 826 vehicles (northbound). Based on an undivided Class I arterial over 40 mph this would yield LOS E during both time periods (see Appendices for Peak Hour Roadway LOS Table). Deer Park Road would experience peak directional volumes of 590 vehicles (eastbound) during the weekday PM peak hour and 284 vehicles (westbound) during the weekend midday peak hour with proposed project traffic yielding a roadway LOS of C and LOS B, respectively (uninterrupted flow highway).

The addition of proposed project trips to directional peak hour volumes on SR-29 would represent a significant impact based on the project adding more than one percent to the

¹² Ballentine Vineyards Winery, Hourly visitation levels by group appointment, June 22 – July 10, 2019.

overall directional volumes. During the weekday PM peak hour project trips would represent 1.6% of directional southbound volumes and 1.5% of directional northbound volumes.

• It is recommended that the Ballentine Vineyards Winery institute a "flex-time" schedule for employees to reduce vehicle trips to/from the winery during the weekday PM peak hour and weekend (Saturday) midday peak hours as part of an overall TDM plan. (As noted, production staff are not working on Saturdays). An overall reduction in seven (7) weekday PM peak hour and five (5) weekend midday peak hour project trips would reduce overall project impacts to roadway segment operations to less-than-significant levels. As noted under recommended project mitigation for the Deer Park Road/SR-29 intersection (above), the project's actual peak hour ratios for the both the Friday PM peak hour (10-15%) and Saturday midday peak hour (28%) are lower than Napa County peak hour ratios used to calculated the project trip generation. The reduction in peak hour project trip generation from these actual winery hourly ratios would be enough to mitigate project impacts to less-than-significant levels.

5.6 Near-Term plus Project Intersection Operations

Near-term plus project conditions for intersection operations have been shown in Table 5.4-1. As with existing plus project conditions, the project study intersections at Lodi Lane and the Ballentine North and South Driveways would continue to operate at acceptable levels (LOS D or better). The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM peak hour and weekend (Saturday) midday peak hour. Therefore, it is recommended that the same suggested mitigation for the Deer Park Road/SR-29 intersection (signalization) as in existing plus project conditions be applied to the location.

5.7 Near-Term plus Project Roadway Segment Operation

Under near-term plus project conditions, all directional roadway segments would continue to operate acceptably along Lodi Lane and Deer Park Road. However, as under existing plus project conditions the directional segments of SR-29 would continue to operate unacceptably (LOS E) with proposed project traffic. Therefore, it is recommended that the same suggested mitigation for the Ballentine Vineyards (employee flex-time) as recommended for existing plus project conditions be applied.

5.8 Signal Warrant Evaluation

Peak hour signal warrant satisfaction was evaluated for both existing plus project and near-term plus project conditions for all project study intersections. Under these "with project" conditions, the Lodi Lane/SR-29 and Ballentine Driveways (north and south) at SR-29 would not qualify for signalization under the "peak hour" warrant. As noted previously, the Deer Park Road/SR-29 would meet the peak hour warrant with existing traffic volumes and this would continue under existing plus project and near-term plus project conditions(see Appendices—Signal Warrant Sheets).

6. Site Access/Design Parameters

6.1 Sight Distance

Vehicle sight distance at the existing Ballentine Vineyards driveways (north and south) intersections were evaluated. The required vehicle visibility or "corner sight distance" is a function of travel speeds on SR-29. Caltrans design standards indicate that for appropriate corner sight distance, "a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the cross road and the driver of an approaching vehicle in the right lane of the main highway". Caltrans design guidelines

also indicate that the minimum corner sight distance "shall be equal to the stopping sight distance" where possible.

The posted vehicle speed limit on SR-29 is 50 mph in the project area. The "critical" vehicle speed (the speed at which 85% of all surveyed vehicles travel at or below) along SR-29 has been conservatively estimated at 55-60 mph at the project driveways. Caltrans' design standards indicate that these vehicle speeds require a stopping sight distance of 580 feet both north and south of the driveways measured along the travel lanes of SR-29...¹³ Based on field measurements, sight distance from the Ballentine Vineyards north and south driveways exceeds 580 feet (at least 700 feet in each direction). **Therefore, the sight distance recommendations would be met for the speed limit and observed vehicle speeds.**

6.2 Project Access/Circulation

6.2.1 Access

The proposed Ballentine Winery Use Modification project would involve a re-design of the existing site plan to allow improved site circulation, increased parking, emergency vehicle enhancements to access/turnaround areas, and dedicated pedestrian/bicycle facilities for safety and storage. Currently, vehicle and truck access to the proposed Ballentine Vineyards Winery is gained by two existing driveways (north and south) extending east from SR-29 into the winery grounds (see Figure 5.1—Proposed Project Site Plan). Vehicle and truck access would continue from the two site driveways but would be modified to better serve guests and site circulation. The northern entry driveway and aisle would be enlarged to serve all visitors and guests. This driveway would be 25-feet wide upon initial entry and expand to 74-feet to provide areas for vehicle parking and ADA spaces, dedicated pedestrian paths, and emergency vehicle turnaround.

The southern Ballentine Winery driveway is located approximately 175-feet south of the northern driveway on SR 29 and would be used primarily for existing residential use, employees and truck access. The driveway extends east from SR 29 for approximately 200 feet with a 22-foot width (minimum County standard). At this juncture, the driveway has internal drive aisle extensions that continue north and further east. The northern drive aisle extension provides access to employee parking spaces and would also continue through an internal gated access to connect with the northerly Ballentine Driveway to complete a circular loop-access through the property. Continuing from SR 29, the southern driveway extends east between the existing fermentation and barrel storage buildings to the eastern-most portion of the project site. In this area, an additional parking field would be created to accommodate 21 parking spaces (valet event parking spaces) directly behind the open air production canopy and north of the agricultural building. There would also be a trash enclosure immediately east of the barrel storage building not in the direct line of vehicle traffic and/or parking access.

Based on intersection LOS calculations for the Ballentine Winery north and south driveways at State Route 29, vehicle queuing at the driveways would not be significant.

¹³ Caltrans, Highway Design Manual, Table 405.1A, Corner (Stopping) Sight Distance, March 7, 2014.

6.2.2 Parking

Vehicle parking for daily operations would be provided by a combination of designated visitor and employee parking spaces accessible via the north or south driveways. Upon entering the northern driveway, visitors and guests would be able to park in three (3) standard parking spaces along the north-east area of the drive aisle and/or in five (5) parking spaces that would front the agricultural building office on the south side of the drive aisle. Two of the five parking spaces on the south side of the drive aisle would be ADA compatible. In addition to the standard and ADA parking spaces, there would 12 over-flow parking spaces (10 spaces along the north side and 2 spaces along the south side) to accommodate additional visitor demand or special event parking. Employee parking would be accessed from the south driveway (or through the internal gate via the north driveway) and would be located along the rear or southern edge of the agricultural-office building and west of the fermentation building. A total of six (6) standard parking spaces would be provided for employees including one (1) ADA compatible parking space. As noted, additional on-site parking spaces are available in the far eastern portion of the project site behind the open air production canopy. While not permanent parking spaces (paved, striped, bumper-stop), the 21 spaces would be available for increased parking demand due to special event activities.

6.2.3 Emergency Access

Emergency vehicle access would be gained from either the north or south Ballentine Winery driveways with adequate "standard hammerhead turnarounds" designed at the eastern terminus of each driveway within 50-feet of buildings for Napa County fire engines (see below).

6.2.4 Design Standards

Design of driveway access for truck turning radii, parking spaces, and emergency vehicle access have been reviewed based on the Napa County Road and Street Standards. With regard to driveway access, the County requires a design radii of R20" for driveway/common drive connection to arterial roads. Both the north and south Ballentine Winery driveways would be designed for minimum R20 radius to accommodate truck turning radii from SR 29 (See Figure 6.2—Truck Turning Templates). All standard on-site parking spaces are designed to County standards of 9'x19' with drive aisles in excess of 25-feet. ADA compliant parking spaces (three) are in excess of what the County would require based on the total number of parking spaces being provided on the project site. Finally, emergency vehicle access and turnarounds (standard hammerhead turnarounds) have been designed to meet the County minimum design requirements of 60 feet in width with R40 turning radius.

6.2.5 Pedestrian/Bicycle Circulation

Pedestrian and bicycle circulation would occur primarily in the northern half of the project site where daily visitor parking spaces and bicycle facilities are located associated with access through the primary north driveway entrance. A new dedicated solid-paver path would be constructed between the existing residence on the west side of the site and new tasting room/support rooms on the far eastern end of the site. The path would be constructed in an area along the frontage of the existing residential garage/agricultural building and new parking spaces on the south side of the internal drive aisle. By situating the path in this area pedestrians would be removed from having to walk back and forth in the drive aisle to access winery facilities in the eastern portion of the site. Bicycle racks would be located in the northeast quadrant of the site adjacent to the new tasting room.

¹⁴ Napa County Road and Street Standards, Department of Planning, Building, & Environmental Services, September 26, 2017

Truck Turning Template – Project Site Access

6.2.6 Truck Access\Loading

Based on discussions with the project applicant, all trucks would be required to enter the winery via the south driveway entrance. Once on the property, drivers are requested to check in at the Ballentine Winery offices on the north side of the driveway and can stage their trucks alongside the agricultural and/or barrel storage buildings so as not to block the internal drive aisle. Loading docks are not part of the winery's improvement plans. However, winery staff is able to use both pallet jacks and forklifts to efficiently off-load/load trucks when necessary. No truck is allowed on the premises longer than 48-feet due to acceptable turning radii. In addition, all trucks leave the winery by turning around in the large "deadhead" area at the far eastern portion of the property north of the agricultural and east of the new open air production canopy.

Three types of deliveries to the winery occur during peak activity periods.. Deliveries can be categorized as casegoods, barrels and bulk wine in barrels, and bulk wine/on-haul grapes that occur in specific areas of the winery grounds. Casegoods loading occurs along the front roll-up doors of the agricultural (casegoods/agricultural building) on the southwest portion of the property via the south driveway. Barrels and bulk wine in barrels loading occurs further east on the property in front of the barrel storage building via the south driveway. Finally, bulk wine and on-haul grape deliveries occur at the open air production canopy/crush pad at the far east portion of the property behind the fermentation building.

Garbage trucks would access the winery property from the same southern driveway from SR-29. Upon picking up the trash adjacent to the winery office building and/or new trash enclosure at the far eastern portion of the property trucks would turn around in the deadhead area and exit back out to SR-29 via the same driveway.

As noted, a two-way-left-turn-lane (TWLTLT) is present on SR-29 along the entire project frontage extending from Deer Park Road to 120-feet past the Ballentine Vineyards Winery driveway. The TWLTL on SR-29 allows motorists to gain access to the Winery and/or merge onto SR-29 from the Winery without delaying through-traffic on SR-29.

6.3 Marketing Events

As noted in the project description, in addition to normal tastings the project proposes to host 13 different sizes of marketing events that would range between 25-100 guests. These marketing events would include the following:

Proposed Ballentine Vineyards Winery Marketing Events

- 8 events monthly: maximum of 25 guests;
- 1 event monthly: maximum of 50 guests.
- 4 events yearly: maximum of 100 guests

Marketing events would typically be held outside of the peak commute periods starting in the middle of the day or early afternoon hours and extend beyond the weekday PM peak commute hour (4:00-6:00 p.m.). During weekends, events would start before or after the mid-day peak commute period (1:00-4:00 p.m.). As indicated in the trip generation sheets in Appendices, the largest marketing event would generate 87 daily trips (43 in, 42 out). As stated, the events are of sufficient length that the inbound and outbound trips occur in separate hours. Therefore, a large marketing event would generate 43 trips inbound during the hour prior to the event and 42 trips outbound during the hour directly after the event ends. Guests typically stay throughout the event and inbound/outbound traffic generation on a "per hour" basis is estimated to be very low (if any).

As a proposed project requirement, large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:00-4:00 p.m.). In addition, the tasting room should suspend visitation related to wine tasting on the days when the facility hosts large marketing events that are held during the afternoon period. These measures would reduce any traffic impacts related to large marketing events to less-than-significant levels.

7. Cumulative Year 2030 (No Project) Conditions

7.1 Model Forecast

Consistent with near-term (no project) traffic volume forecasts, year 2030 cumulative conditions have been based on historical Caltrans volume data for the last three full calendar years. Based on historical average daily traffic data that includes peak hour two-way volumes, volumes on SR-29 have increased by 12.5% in the last three years or 4.2% per year. Based on an 11-year growth period from collected data (year 2019) to year 2030 conditions, 46.2% was applied to existing peak hour volumes for background/regional growth along the three study roadways.

Since future volume traffic forecasts are only available for SR-29, the same year growth rates were uniformly applied to Lodi Lane and Deer Park Road above as a very conservative measure.

Cumulative year 2030 (no project) and plus project volumes and for weekday PM peak hour and weekend mid-day peak hour have been shown in Figures 7.1 and 7.2.

Table 7.1-1 Year 2030 and Year 2030 with Project Conditions: Intersection Levels-Of-Service Weekday PM Peak and Weekend Mid-Day Peak Hour¹

			Wkdy. PM LO	S/Delay	Wknd. Mid-Da	ay LOS/Delay
	Intersection	Control Type	Yr. 2030 (No Project)	Yr. 2030 (With Prj.)	Yr. 2030 (No Project)	Yr. 2030 (With Prj.)
1	Lodi Lane/SR-29	MSSC	F 76.5	F 80.1	F 55.0	F 57.0
2	Ballentine N. Driveway/SR-29	MSSC	E 36.1	E 37.7	C 22.9	D 30.3
3	Ballentine S. Driveway/SR-29	MSSC	D 34.5	E 35.0	A 0.0	A 0.0
4	Deer Park Road/SR-29		F >300	F >300	F >300	F >300

⁽¹⁾ Based on Highway Capacity Manual (HCM) 2010, Operations methodology for stop-sign controlled (unsignalized) intersections using Synchro-Simtraffic software. Intersection calculation yields an LOS and vehicle delay in seconds. Stated LOS refers to the minor street (stop-sign) controlled movement.

7.2 Year 2030 Cumulative (No Project) Intersection Operating Conditions

With year 2030 cumulative (no project) traffic volumes, project study intersection operations have been calculated and shown in Table 7.1-1. The Deer Park Road/SR-29 intersection would continue to operate at LOS F during both the weekday PM and weekend mid-day peak hours with proposed project traffic. However, both the Lodi Lane/SR-29 and Ballentine Vineyards North Driveway/SR-29 would be operating at unacceptable conditions (LOS E-F) during the weekday PM peak hour with year 2030 cumulative (no project) volumes.

7.3 Year 2030 Cumulative (No Project) Roadway Segment Operation

Directional roadway segment operation along SR-29 would continue to operate at unacceptable levels (LOS F) with year 2030 cumulative (no project) volumes. Southbound volumes on SR-29 during the weekday PM peak hour would total 1,280 vehicles while during the weekend (Saturday) midday peak hour northbound volumes would increase to 1,184 vehicles. Lodi Lane would operate acceptably at B or better with 86-93 directional (westbound) vehicles. Deer Park Road would operate at LOS D with 856 vehicles (eastbound) during the weekday PM peak hour and LOS B or better during the weekend (Saturday) midday peak hour.

7.4 Year 2030 Cumulative plus Project Intersection Operations

With proposed project traffic, there would be slight increases in vehicle delays at study intersection locations and overall LOS would remain unchanged from year 2030 cumulative (no project) conditions.

Based on updated County significance criteria for unsignalized intersections the off-site intersections of Lodi Lane/SR-29 and Deer Park Road/SR-29 have been evaluated for proposed project impacts since the LOS operates at an unacceptable level (LOS F) without proposed project trips during the weekday PM peak hour and weekend midday peak hour. County criteria indicate that a significant impact could be found if the proposed project contributes 5% or more to the total cumulative traffic growth at these intersections. The guidelines go on to state "the peak hour signal warrant criteria should also be evaluated and presented for informational purposes." During the weekday PM peak hour, the proposed project would add 13 trips to the Lodi Lane/SR-29 intersection. During the weekend (Saturday) midday peak hour the project would add 17 trips to the intersection. Based on total cumulative traffic growth at the intersection these proposed project trips would represent increases of 1.5% (13/833) and 2.4% (17/708), respectively. At the Deer Park Road/SR-29 intersection, the total cumulative traffic growth related to proposed project uses would be 1.9% (20/1,002) and 3.2% (27/830) during the weekday PM peak hour and weekend (Saturday) midday peak hour time periods. Under the County significance criteria, the addition of proposed project trips to these intersections would be considered less-than-significant given that all project contributions would be under 5% of overall cumulative traffic growth.

7.5 Year 2030 Cumulative plus Project Roadway Segment Operations

With proposed project traffic, directional roadway segment volumes on SR-29 would increase to 1,295 (southbound) during the weekday PM pea hour and 1,200 vehicle (northbound) during the weekend (Saturday) midday peak hour. The increase from proposed project trips would represent an approximate 3.6% increase in cumulative traffic growth during the weekday PM peak hour (15/418).

During the weekend (Saturday) midday peak hour, proposed project trips would represent a 3.3% increase in overall cumulative traffic growth (13/387). SR-29 would continue to operate at LOS F during both time periods. However, the proposed project trips would be considered less-than-significant given that they represent less than a 5% increase in total cumulative traffic growth.

8. VMT Reduction/TDM Plan

VMT Reduction: The County's Circulation policy (Policy CIR-13) provides several options (and mitigation measures) for achieving a reduction in project trip generation "if such development includes measures such as staggered work hours, provision of employee bus passes, provision of van pools/car pool/shuttle programs or the like"

The application of pass-by trips (as defined by the Institute of Transportation Engineers [ITE]) to proposed project daily and peak hour trip generation is estimated to reduce vehicle project trips and associated trip generation by a minimum of 10%. With the project site located immediately north of St. Helena (less than 1 mile) and adjacent to lodging, restaurant, retail, and winery uses; proposed project uses would complement these existing uses in the study area reducing primary vehicle trips to the project site. These trip factors are categorized as "pass-by" in nature. A brief discussion of these trip reduction factors could be described as follows:

Pass-By Trips: Peak hour trip generation calculated for the proposed project does not account for any "pass-by" vehicle trips. Pass-by trips are defined as vehicle trips already on the immediate adjacent street network (SR-29) travelling to a primary destination (winery, lodging, restaurant, etc.) and stopping at the project site on their way to that primary destination. A travel mode study was conducted for Napa County that included overall vehicle classification, estimates of daily winery trip generation, vehicle license plate surveys in/out of the County, visitor surveys at specific Napa County wineries, and mobile device survey.¹⁵ One of the more interesting findings of the study was that the average winery visitor "planned" to visit approximately 3.1 wineries. Although it was noted that the actual number of wineries visited could have been lower; it is clear that overall winery trip generation in Napa Valley reflects multiple stops by the same winery visitors. Thus, while a winery would generate new vehicle trips at its driveway, the net increase on the adjacent roadways (SR-29) would be lower due to the linked or pass-by trips between wineries. The study suggests that (as a conservative measure) ---one in three vehicle trips to a winery is pass-by in nature. Stated another way; 25-30% of all winery trip generation in Napa Valley is related to pass-by trips from visitors already planning to visit other wineries or restaurants adjacent to the area.

TDM Plan

The applicant proposes a number of non-automobile use programs to further reduce the demand for parking and to ensure sufficiency of the on-site parking provided. These measures are consistent with Section 18.110.0404(G) of the zoning ordinance. These are described is some detail below.

Tasting Room Operations During Annual Events

As a proposed project requirement, large marketing events (100 guests) should not start/end during the weekday PM peak period (4:00-6:00 p.m.) nor weekend mid-day peak period (1:00-4:00 p.m.). In addition, the tasting room should suspend wine tasting on the days when the facility hosts the four (4) 100-person events. These measures would reduce any traffic impacts related to large marketing events to less than significant levels.

¹⁵ Fehr & Peers, Napa County Travel Behaviour Study Survey Results and Data Analysis Report, December 8, 2014.

Employee/Guest Incentives:

Due to its proximity to the Napa Valley Vine bus route and the Vine Trail bike path, the applicant will provide monthly bus passes and/or other incentives to its local employees to utilize these non-auto modes of transportation. In addition the applicant intends to stagger work hours, commensurate with the scheduling of larger guest tasting so employees would either arrive and/or depart outside of the peak commute periods (prior to 7:00 a.m. or after 9:00 a.m., before 4:00 p.m. or after 6:00 p.m.). Similar to voucher distribution; local tour guides, shuttle/hire car and/or limousine services, and lodging in St. Helena would be provided brochures/vouchers to encourage "car free" tourism and tasting to reduce overall parking demand. Much like the "car free" tourism program of the Napa Valley Destination Council and NVTA that provide information to guest/visitors to plan their trips without relying on car; when guests make an appointment for wine tasting project employees could inform them of this program. Dependent on the number of employees participating in the program, overall peak hour trip generation could be reduced by 14 peak hour trips.

Variable Visitation Plan

The project applicant will develop a tours and tastings schedule that would allow guests to arrive at the site prior to the weekday PM peak period (4:00-6:00 p.m.) and weekend (Saturday) midday peak period (1:00-3:00 p. m.) and leave after these peak commute periods. For example, during the weekday PM peak period all guest/visitors would be scheduled to arrive (via appointment booking) by 3:30-3:45 p.m. for late afternoon tours. Tours would then start during the peak commute period with guests exiting the site after 6:00 p.m. A similar practice would be instituted for the weekend (Saturday) midday peak hour.

As an alternative (referenced as Alternative Mitigation #2), the winery would currently limit the Saturday midday peak hour to its current 28% peak midday ratio (rather than 57% County ratio) for visitors to the reduce proposed project impacts along SR-29 and at the Deer Park Road/SR-29 intersection to less-than-significant levels. These peak hour visitation ratios would allow the winery to accommodate a maximum daily visitation of 95 guests (as proposed).

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Peter Galloway peter.galloway@ghd.com 925.849.1000

www.ghd.com

Appendix A: Existing Weekday & Weekend Intersection /ADT Counts

St Helena Hwy (SR-29) & Lodi Ln

St Helena Hwy/SR-29 & Ballentine Vineyards North Dwy

St Helena Hwy/SR-29 & Ballentine Vineyards South Dwy

St Helena Hwy (SR-29) & Deer Park Rd

SR 29 S/O Ballentine Vineyards Winery Dwy

Day: Thursday Date: 3/14/2019

	D	AILY 1	ГОТА	LS		NB		SB		EB		WB							otal
						7,635	5	7,075		0		0						14	,710
AM Period	NB		SB		EB	WB			TAL	PM Period	NB		SB		EB	V	VB		TAL
00:00 00:15	6 6		12 6					18 12		12:00 12:15	113 135		124 93					237 228	
00:30	3		3					6		12:30	142		126					268	
00:45	5	20	3	24				8	44	12:45	117	507	106	449				223	956
01:00	3 2		6					9		13:00 13:15	122 129		131					253	
01:15 01:30	4		4 3					6 7		13:30	116		119 114					248	
01:45	3	12	9	22				12	34	13:45	163	530	133	497				296	1027
02:00	2		5					7		14:00	135		104					239	
02:15 02:30	2 5		6 3					8 8		14:15 14:30	138 138		111 100					249 238	
02:45	3	12	2	16				5	28	14:45	159	570	130	445				289	1015
03:00	2		6					8		15:00	142		137					279	
03:15	1		5					6		15:15	134		120					254	
03:30 03:45	1 6	10	3 6	20				4 12	30	15:30 15:45	177 178	631	136 128	521				313 306	1152
04:00	4	10	10					14	30	16:00	172	031	143	321				315	1132
04:15	8		12					20		16:15	164		152					316	
04:30 04:45	8 10	20	13 20					21 30	or.	16:30 16:45	162	664	151 127	E72				313 293	1227
05:00	17	30	19	55				36	85	17:00	166 179	664	132	573				311	1237
05:15	8		20					28		17:15	200		132					332	
05:30	39		37					76		17:30	174		127					301	
05:45	48 78	112	49 63	125				97 141	237	17:45 18:00	116	669	114 107	505				230 236	1174
06:00 06:15	78 96		104					200		18:15	129 90		79					169	
06:30	134		138					272		18:30	88		78					166	
06:45	105	413	128	433				233	846	18:45	92	399	78	342				170	741
07:00 07:15	100 112		118 109					218 221		19:00 19:15	75 61		61 57					136 118	
07:30	112		130					242		19:30	55		54					109	
07:45	110	434	183	540				293	974	19:45	52	243	39	211				91	454
08:00	109		122					231		20:00	46		37					83	
08:15 08:30	112 121		137 144					249 265		20:15 20:30	53 45		41 49					94 94	
08:45	140	482	132	535				272	1017	20:45	45	189	25	152				70	341
09:00	100		123					223		21:00	43		33					76	
09:15	97		112					209		21:15	38		34					72	
09:30 09:45	106 116	419	111 102	448				217 218	867	21:30 21:45	38 36	155	36 35	138				74 71	293
10:00	114	413	112	440				226	007	22:00	43	133	25	130				68	233
10:15	117		101					218		22:15	30		38					68	
10:30	107	462	113	440				220	011	22:30 22:45	26	120	12	00				38 44	210
10:45 11:00	124 113	462	123 108	449				247 221	911	23:00	31 18	130	13 13	88				31	218
11:15	121		96					217		23:15	22		8					30	
11:30	126		137					263	0.5	23:30	10	-	11	25				21	
11:45	119	479	108	449				227	928	23:45	13	63	6	38				19	101
TOTALS		2885		3116					6001	TOTALS		4750		3959					8709
SPLIT %		48.1%		51.9%					40.8%	SPLIT %		54.5%		45.5%					59.2%
		A 1134.5	COTA	16-		NB		SB		EB		WB						I_I	otal
	D	AILY 1	UIA	ILS _		7,635	5	7,075		0		0							,710
AM Deck Hay		11.45		07.45					07:45	DM Dock Herry		16.45		15.45					15.20
AM Peak Hour AM Pk Volume		11:45 509		07:45 586					07:45 1038	PM Peak Hour PM Pk Volume		16:45 719		15:45 574					15:30 1250
Pk Hr Factor		0.896		0.801					0.886	Pk Hr Factor		0.899		0.944					0.989
7 - 9 Volume		916		1075	0		0		1991	4 - 6 Volume		1333		1078		0	0		2411
7 - 9 Peak Hour		08:00		07:45					07:45	4 - 6 Peak Hour		16:45		16:00					16:30
7 - 9 Pk Volume		482		586					1038	4 - 6 Pk Volume		719		573					1249
Pk Hr Factor		0.861		0.801	0.0	00	0.000		0.886	Pk Hr Factor		0.899		0.942	0.1	000	0.00	00	0.941

SR 29 S/O Ballentine Vineyards Winery Dwy

Day: Friday Date: 3/15/2019

	D	AILY 1	ΓΟΤΑ	LS_		NB	SB	_	EB		WB							otal
		AUE II				8,176	7,651		0		0						15,	,827
AM Period	NB		SB		EB	WB		TAL	PM Period	NB		SB		EB	W	В		TAL
00:00 00:15	6 12		9 4				15 16		12:00 12:15	131 157		122 124					253 281	
00:30	5		5				10		12:30	133		107					240	
00:45	6	29	3	21			9	50	12:45 13:00	136	557	121	474				257	1031
01:00 01:15	2 7		2 6				4 13		13:15	118 133		122 140					240 273	
01:30	3		6	••			9		13:30	143		125					268	400=
01:45 02:00	6 3	18	<u>6</u> 3	20			12 6	38	13:45 14:00	169 150	563	145 114	532				314 264	1095
02:15	3		3				6		14:15	141		137					278	
02:30 02:45	5 4	15	1 5	12			6 9	27	14:30 14:45	182 165	638	132 138	E21				314 303	1150
03:00	6	15	3	12			9		15:00	169	036	150	521				319	1159
03:15	4		6				10		15:15	209		148					357	
03:30 03:45	1 3	14	4 16	29			5 19	43	15:30 15:45	162 198	738	183 177	658				345 375	1396
04:00	5		4				9		16:00	163	, 50	162	000				325	1000
04:15 04:30	1 4		11				12		16:15 16:30	190 154		196 154					386 308	
04:30	9	19	12 23	50			16 32	69	16:45	188	695	168	680				356	1375
05:00	13		18				31		17:00	183		171					354	
05:15 05:30	11 29		19 38				30 67		17:15 17:30	176 165		148 122					324 287	
05:45	45	98	53	128			98	226	17:45	144	668	116	557				260	1225
06:00 06:15	62 110		65 115				127 225		18:00 18:15	95 127		100 103					195 230	
06:30	107		117				224		18:30	111		83					194	
06:45	115	394	133	430			248	824	18:45	98	431	81	367				179	798
07:00 07:15	71 112		127 103				198 215		19:00 19:15	87 86		59 67					146 153	
07:30	101		113				214		19:30	77		55					132	
07:45 08:00	101 107	385	179 119	522			280 226	907	19:45 20:00	55 50	305	40 51	221				95 101	526
08:15	103		149				252		20:15	59		44					103	
08:30	121	42.4	133	E 40			254	077	20:30	53	246	52	200				105	44.5
08:45 09:00	103 120	434	142 101	543			245 221	977	20:45 21:00	54 41	216	53 33	200				107 74	416
09:15	120		92				212		21:15	60		39					99	
09:30 09:45	120 110	470	135 123	451			255 233	921	21:30 21:45	71 57	229	19 32	123				90 89	352
10:00	105	470	107	431			212	921	22:00	35	223	30	123				65	332
10:15	136		128				264		22:15	31		31					62	
10:30 10:45	133 110	484	85 118	438			218 228	922	22:30 22:45	33 26	125	25 20	106				58 46	231
11:00	127		114	.50			241		23:00	38		20					58	
11:15 11:30	130 142		130 112				260 254		23:15 23:30	30 19		24 15					54 34	
11:45	145	544	136	492			281	1036	23:45	20	107	17	76				37	183
TOTALS		2904		3136				6040	TOTALS		5272		4515					9787
SPLIT %		48.1%		51.9%				38.2%	SPLIT %		53.9%		46.1%					61.8%
	Д.	AILY 1	OTA	15		NB	SB		EB		WB						To	otal
	- D	AILY (TOTA	IL)		8,176	7,651		0		0						15,	,827
AM Peak Hour		11:30		07:45				11:30	PM Peak Hour		15:00		15:30					15:30
AM Pk Volume		575		580				1069	PM Pk Volume		738		718					1431
Pk Hr Factor 7 - 9 Volume		0.916 819		0.810 1065	0	0		0.951 1884	Pk Hr Factor 4 - 6 Volume		0.883 1363		0.916 1237		n	0		0.927 2600
7 - 9 Volume 7 - 9 Peak Hour		08:00		07:45				07:45	4 - 6 Volume 4 - 6 Peak Hour		16:15		16:15					16:15
7 - 9 Pk Volume		434		580				1012	4 - 6 Pk Volume		715		689					1404
Pk Hr Factor		0.897		0.810	0.00	0.00	0	0.904	Pk Hr Factor		0.941		0.879	0.0	000	0.000		0.909

SR 29 S/O Ballentine Vineyards Winery Dwy

Day: Saturday Date: 3/16/2019

	D	AILY 1	ΓΩΤΛ	AI S		NB		SB		EB		WB							To	otal
		Alleli		(L)		7,303		6,844		0		0							14,	,147
AM Period	NB		SB		EB	WB		ТО	TAL	PM Period	NB		SB		EB		WB		TO	TAL
00:00	23		19					42		12:00	149		111						260	
00:15 00:30	20 12		18 14					38 26		12:15 12:30	147 150		135 132						282 282	
00:45	4	59	11	62				15	121	12:45	147	593	126	504					273	1097
01:00	3		7					10		13:00	160		142						302	
01:15	4		5					9		13:15	179		131						310	
01:30 01:45	8 8	23	7 10	29				15 18	52	13:30 13:45	183 166	688	155 119	547					338 285	1235
02:00	3	23	6	23				9	<u> </u>	14:00	162	000	150	347					312	1233
02:15	10		8					18		14:15	176		157						333	
02:30	2	10	10	22				12	г1	14:30 14:45	168	C04	160	C1C					328	1200
02:45 03:00	4	19	<u>8</u> 5	32				12 9	51	15:00	178 134	684	149 179	616					327 313	1300
03:15	1		4					5		15:15	181		150						331	
03:30	3		4					7		15:30	168		157						325	
03:45 04:00	2	10	8	17				6 10	27	15:45 16:00	138 132	621	150 188	636					288 320	1257
04:00	2		12					14		16:15	132		150						282	
04:30	3		10					13		16:30	155		146						301	
04:45	6	13	11	41				17	54	16:45	140	559	161	645					301	1204
05:00	6		9					15		17:00	143		163						306	
05:15 05:30	13 28		10 21					23 49		17:15 17:30	109 125		159 138						268 263	
05:45	17	64	27	67				44	131	17:45	102	479	144	604					246	1083
06:00	23		33					56		18:00	89		125						214	
06:15	46		49					95		18:15	79		125						204	
06:30 06:45	50 38	157	60 56	198				110 94	355	18:30 18:45	98 96	362	104 98	452					202 194	814
07:00	36	137	43	130				79	333	19:00	65	302	70	732					135	014
07:15	41		45					86		19:15	50		67						117	
07:30	47	100	47	202				94	204	19:30	67	240	71	262					138	542
07:45 08:00	64 61	188	68 44	203				132 105	391	19:45 20:00	67 43	249	55 46	263					122 89	512
08:15	88		74					162		20:15	57		44						101	
08:30	90		66					156		20:30	46		48						94	
08:45	97 93	336	77 76	261				174 169	597	20:45 21:00	52	198	47 38	185					99	383
09:00 09:15	93 87		66					153		21:15	43 57		38						81 95	
09:30	104		113					217		21:30	59		28						87	
09:45	130	414	81	336				211	750	21:45	54	213	26	130					80	343
10:00	118		77 75					195		22:00	48		40						88	
10:15 10:30	135 125		75 96					210 221		22:15 22:30	50 30		33 10						83 40	
10:45	135	513	98	346				233	859	22:45	26	154	34	117					60	271
11:00	154		99					253		23:00	32		23						55	
11:15	154		131 118					285 286		23:15 23:30	20 27		18 16						38 43	
11:30 11:45	168 135	611	118	474				261	1085	23:45	27 17	96	22	79					43 39	175
TOTALS		2407		2066					4473	TOTALS		4896		4778		_				9674
SPLIT %		53.8%		46.2%					31.6%	SPLIT %		50.6%		49.4%						68.4%
						AUD		CD.											-	
	D	AILY 1	ΓΟΤΑ	LS		NB		SB		EB		WB								otal
						7,303		6,844		0		0							14,	,147
AM Peak Hour		10:45		11:45					11:15	PM Peak Hour		13:15		14:15						14:15
AM Pk Volume		611		504					1092	PM Pk Volume		690		645						1301
Pk Hr Factor		0.909		0.933					0.955	Pk Hr Factor		0.943		0.901						0.977
7 - 9 Volume		524		464					988	4 - 6 Volume		1038		1249						2287
7 - 9 Peak Hour		08:00		08:00					08:00	4 - 6 Peak Hour		16:15		16:00						16:00
7 - 9 Pk Volume Pk Hr Factor		336 0.866		261					597 0.858	4 - 6 Pk Volume Pk Hr Factor		570 0.919		645 0.858						1204 0.941
FK HI FACLUF		0.866		0.847	0.00	JU	0.000		0.658	FR III FACIUL		0.919		0.858		0.000		0.000		0.941

Deer Park Rd E/O SR 29

Day: Thursday Date: 3/14/2019

DAILY TOTALS NB SB EB WB TOTAL PM Period NB SB EB WB 00:00 6 2 8 12:00 48 60 00:15 5 1 6 12:15 41 58 00:30 4 2 6 12:30 69 33 00:45 4 19 2 7 6 26 12:45 40 198 36 01:00 4 0 4 13:00 51 57	187 1 1 1	6,854 TOTAL 108 99 102 76 385
00:00 6 2 8 12:00 48 60 00:15 5 1 6 12:15 41 58 00:30 4 2 6 12:30 69 33 00:45 4 19 2 7 6 26 12:45 40 198 36	187 1 1 1	108 99 102
00:15 5 1 6 12:15 41 58 00:30 4 2 6 12:30 69 33 00:45 4 19 2 7 6 26 12:45 40 198 36	187 1 1 1	99 102
00:30 4 2 6 12:30 69 33 00:45 4 19 2 7 6 26 12:45 40 198 36	187 187	102
	1	76 395
01:00	1	
1		108 101
01:15 1 1 2 13:15 55 46 01:30 2 0 2 13:30 79 37	1	116
01:45 0 7 1 2 1 9 13:45 55 240 57	197 1	112 437
02:00 2 0 2 14:00 57 52 10:00 3 14:15 57 52		109
02:15 0 1 1 14:15 67 47 02:30 1 2 3 14:30 68 52		114 120
02:45 0 3 1 4 1 7 14:45 65 257 50		115 458
03:00 0 1 1 15:00 68 49		117
03:15 1 0 1 15:15 72 68 03:30 1 1 2 15:30 124 56		140 180
		177 614
04:00 1 0 1 16:00 114 62		176
04:15 1 1 2 16:15 97 42		139
04:30 8 4 12 16:30 99 55 04:45 4 14 4 9 8 23 16:45 92 402 52		154 144 613
04:43 4 14 4 9 8 23 16:43 92 402 52 05:00 8 5 13 17:00 118 51		169
05:15 8 3 11 17:15 109 59		168
05:30 19 16 35 17:30 95 51		146
05:45 20 55 19 43 39 98 17:45 83 405 44 06:00 29 28 57 18:00 79 35		127 610 114
06.00 29 28 37 18.00 79 33 06:15 58 31 89 18:15 54 34		88
06:30 75 57 132 18:30 54 31		85
		77 364
07:00 57 43 100 19:00 44 23 07:15 38 58 96 19:15 27 22		67 49
07:15		48
07:45 65 216 65 228 130 444 19:45 30 133 23		53 217
08:00 63 83 146 20:00 35 18		53
08:15 57 70 127 20:15 30 12 08:30 63 57 120 20:30 38 11		42 49
08:45 59 242 78 288 137 530 20:45 38 11 38 11 38 38 38 38 38 38 38 38 38 38 38 38 38		34 178
09:00 55 50 105 21:00 28 10		38
09:15 52 49 101 21:15 28 8		36
09:30 45 37 82 21:30 15 7 09:45 38 190 44 180 82 370 21:45 28 99 6		22 34 130
10:00 57 58 115 22:00 18 9		27
10:15 42 56 98 22:15 30 11		41
10:30 50 42 92 22:30 11 6		17
10:45 50 199 54 210 104 409 22:45 14 73 7 11:00 43 45 88 23:00 13 5		21 106 18
11:00 45 45 68 23:15 8 10		18
11:30 47 54 101 23:30 14 10		24
11:45 46 181 47 197 93 378 23:45 4 39 5	30	9 69
TOTALS 1335 1338 2673 TOTALS 2599	1582	4181
SPLIT % 49.9% 50.1% 39.0% SPLIT % 62.2%	37.8%	61.0%
NB SB EB WB		Total
DAILY TOTALS 0 0 3,934 2,920		6,854
	15.15	
AM Peak Hour 07:45 08:00 08:00 PM Peak Hour 15:30 AM Pk Volume 248 288 530 PM Pk Volume 455	15:15 243	15:15 673
	0.893	0.935
7-9 Volume 0 458 516 974 4-6 Volume 0 807	416	1223
	16:30	16:30
7 - 9 Pk Volume 0 248 288 530 4 - 6 Pk Volume 0 418	217	635
Pk Hr Factor 0.000 0.000 0.954 0.867 0.908 Pk Hr Factor 0.000 0.000 0.886	0.919	0.939

Deer Park Rd E/O SR 29

Day: Friday Date: 3/15/2019

	DAILY TOTALS			NB		SB		EB	WB						To	otal
	DAILT TOTALS			0		0		4,144	2,913						7,0	057
AM Period	NB SB	EB		WB		TO	TAL	PM Period	NB	SB	EB		WB		ТО	TAL
00:00		3		2		5		12:00			51		54		105	
00:15		1		1		2		12:15 12:30			47		58		105	
00:30 00:45		1 1	6	1 1	5	2	11	12:30 12:45			55 61	214	50 59	221	105 120	435
01:00		4		1		5		13:00			52	214	58	221	110	433
01:15		5		1		6		13:15			62		55		117	
01:30		2		1		3		13:30			60		52		112	
01:45		1	12	2	5	3	17	13:45			73	247	64	229	137	476
02:00 02:15		3		0		3		14:00 14:15			66 69		53		119	
02:15		1 1		1 1		2		14:30			70		63 66		132 136	
02:45		Ō	5	3	5	3	10	14:45			64	269	63	245	127	514
03:00		1		1		2		15:00			84		56		140	
03:15		2		1		3		15:15			78		65		143	
03:30		2		0	2	2	0	15:30 15:45			137	422	41	244	178	644
03:45 04:00		<u>1</u>	6	3	3	4	9	16:00			134 102	433	49 58	211	183 160	644
04:15		1		2		3		16:15			122		53		175	
04:30		3		1		4		16:30			98		36		134	
04:45		5	10	3	9	8	19	16:45			103	425	48	195	151	620
05:00		1		7		8		17:00			114		42		156	
05:15		1		2		3		17:15			121		55		176	
05:30 05:45		15 19	36	16 16	41	31 35	77	17:30 17:45			120 84	439	42 36	175	162 120	614
06:00		31	30	19	41	50		18:00			68	433	22	1/3	90	014
06:15		73		31		104		18:15			73		37		110	
06:30		70		44		114		18:30			42		27		69	
06:45		59	233	53	147	112	380	18:45			48	231	32	118	80	349
07:00		46		41		87		19:00			49		24		73	
07:15 07:30		54 39		44 42		98		19:15 19:30			36 38		17 13		53 51	
07:45		59 50	189	56	183	81 106	372	19:45			36	159	14	68	50	227
08:00		45	103	69	103	114	372	20:00			32	133	16	00	48	221
08:15		52		66		118		20:15			30		11		41	
08:30		68		57		125		20:30			27		8		35	
08:45		66	231	66	258	132	489	20:45			34	123	14	49	48	172
09:00 09:15		54 45		44 49		98 94		21:00 21:15			29 23		12 11		41 34	
09:30		52		62		114		21:30			44		11		55 55	
09:45		31	182	63	218	94	400	21:45			41	137	6	40	47	177
10:00		51		40		91		22:00			28		11		39	
10:15		50		63		113		22:15			25		14		39	
10:30		48		49		97		22:30			20		11		31	
10:45		48 60	197	42	194	90 109	391	22:45 23:00			17 19	90	<u>6</u> 7	42	23	132
11:00 11:15		54		49 59		109		23:00			19 17		/ 11		26 28	
11:30		49		51		100		23:30			22		14		36	
11:45		43	206	57	216	100	422	23:45			6	64	4	36	10	100
TOTALS			1313		1284		2597	TOTALS				2831		1629		4460
SPLIT %			50.6%		49.4%		36.8%	SPLIT %				63.5%		36.5%		63.2%
				NID.		C.D.			WD							tal
	DAILY TOTALS			NB 0		SB 0		EB 4,144	WB 2,913							otal 057
						U		4,144	2,313						7,0	,37
AM Peak Hour			06:15		08:00		08:00	PM Peak Hour				15:30		14:30		15:30
AM Pk Volume			248		258		489	PM Pk Volume				495		250		696
Pk Hr Factor			0.849		0.935		0.926	Pk Hr Factor				0.903		0.947		0.951
7 - 9 Volume			420		441		861	4 - 6 Volume				864		370		1234
7 - 9 Peak Hour			08:00		08:00		08:00	4 - 6 Peak Hour				16:45		16:00		16:45
7 - 9 Pk Volume			231		258		489	4 - 6 Pk Volume				458		195		645
Pk Hr Factor	0.000 0.000		0.849		0.935		0.926	Pk Hr Factor	0.000	0.000		0.946		0.841		0.916

Deer Park Rd E/O SR 29

Day: Saturday Date: 3/16/2019

	DAILY T	OTALS			NB		SB		EB	WB							otal
	DAILI	UIALS			0		0		3,132	2,64	3					5,7	775
AM Period	NB	SB	EB		WB		TO	TAL	PM Period	NB	SB	EB		WB		TO	TAL
00:00			8		6		14		12:00			41		70		111	
00:15			6		3		9		12:15			40		74		114	
00:30			7		5		12		12:30			46		63		109	
00:45			5	26	3	17	8	43	12:45			63	190	64	271	127	461
01:00			2		1		3		13:00 13:15			75 62		75 72		150	
01:15 01:30			1 3		2 2		3 5		13:30			63 58		73 77		136 135	
01:45			3	9	3	8	6	17	13:45			58	254	56	281	114	535
02:00			1		1	U	2		14:00			63	234	63	201	126	333
02:15			1		0		1		14:15			68		51		119	
02:30			1		0		1		14:30			66		70		136	
02:45			1	4	1	2	2	6	14:45			87	284	75	259	162	543
03:00			2		1		3		15:00			61		48		109	
03:15			3		0		3		15:15			86		65		151	
03:30 03:45			0 3	8	1 1	3	1 4	11	15:30 15:45			76 72	295	77 61	251	153 133	546
04:00			0	0	0	3	0		16:00			64	233	48	231	112	340
04:15			3		3		6		16:15			73		36		109	
04:30			1		0		1		16:30			84		42		126	
04:45			6	10	4	7	10	17	16:45			62	283	62	188	124	471
05:00	<u> </u>		2		0		2		17:00			99		41		140	
05:15			2		4		6		17:15			78		38		116	
05:30			7		5		12		17:30			72		35		107	450
05:45			9	20	7	16	16	36	17:45 18:00			69	318	28	142	97	460
06:00 06:15			18 25		12 12		30 37		18:15			61 37		28 21		89 58	
06:30			32		9		41		18:30			50		36		36 86	
06:45			34	109	15	48	49	157	18:45			53	201	23	108	76	309
07:00			17	103	17		34	107	19:00			48		21	100	69	303
07:15			25		11		36		19:15			33		21		54	
07:30			25		25		50		19:30			40		15		55	
07:45			20	87	23	76	43	163	19:45			38	159	19	76	57	235
08:00			18		23		41		20:00			32		18		50	
08:15			30 23		34		64 54		20:15 20:30			25 34		22		47	
08:30 08:45			23 37	108	31 35	123	54 72	231	20:45			23	114	14 12	66	48 35	180
09:00			16	108	35	123	51	231	21:00			22	114	15	00	37	180
09:15			32		42		74		21:15			19		13		32	
09:30			43		47		90		21:30			32		7		39	
09:45			35	126	53	177	88	303	21:45			26	99	12	47	38	146
10:00			40		41		81		22:00			24		10		34	
10:15			37		46		83		22:15			12		12		24	
10:30			31	1.11	45	170	76	242	22:30 22:45			26	70	6	22	32	110
10:45 11:00			33 42	141	40 55	172	73 97	313	23:00			16 19	78	9	32	20 28	110
11:00			28		55 59		97 87		23:15			8		6		28 14	
11:30			39		61		100		23:30			12		9		21	
11:45			51	160	66	241	117	401	23:45			10	49	8	32	18	81
TOTALS				808		890		1698	TOTALS				2324		1753		4077
SPLIT %				47.6%		52.4%		29.4%	SPLIT %				57.0%		43.0%		70.6%
					NB		SB		EB	WB						Te	tal
	DAILY T	OTALS			0		<u>эв</u> 0		3,132	2,64							775
484 D. 1				11.45		11.45		11:45					16-20		12:45		
AM Ple Volume				11:45		11:45		11:45	PM Peak Hour				16:30		12:45		14:45
AM Pk Volume				178		273		451	PM Pk Volume Pk Hr Factor				323		289		575
Pk Hr Factor	0			0.873		0.922		0.964	4 - 6 Volume			0	0.816		0.938		0.887
7 - 9 Volume				195		199		394	4 - 6 Volume 4 - 6 Peak Hour				601 16:30		330		931
7 - 9 Peak Hour				08:00		08:00		08:00	4 - 6 Peak Hour 4 - 6 Pk Volume						16:00		16:30
7 - 9 Pk Volume Pk Hr Factor				108 0.730		123 0.879		231 0.802	Pk Hr Factor				323 0.816		188 0.758		506 0.904
TRIII FACTOR	0.000	0.000		0.730		0.073		0.002	TRIII FACTOR	0.000		3.300	0.010		0.736		0.304

Appendix B: Intersection LOS Sheets

Intersection						
Int Delay, s/veh	1					
	•	\4/DE		NDE	0.01	007
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		^	7	ሻ	
Traffic Vol, veh/h	26	38	811	37	26	847
Future Vol, veh/h	26	38	811	37	26	847
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	28	41	882	40	28	921
Major/Minor	Minor1		Acior1		Major?	
			Major1		Major2	
Conflicting Flow All	1859	882	0	0	922	0
Stage 1	882	-	-	-	-	-
Stage 2	977	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-		2.245	-
Pot Cap-1 Maneuver	79	341	-	-	728	-
Stage 1	400	-	-	-	-	-
Stage 2	360	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	76	341	-	-	728	-
Mov Cap-2 Maneuver	197	-	-	-	-	-
Stage 1	385	-	-	-	-	-
Stage 2	360	-	-	-	-	-
, and the second						
Annuach	\A/D		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	23.5		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	_	263	728	_
HCM Lane V/C Ratio		<u>-</u>	_	0.265		_
HCM Control Delay (s)		_	_	23.5	10.1	_
HCM Lane LOS		_	_	23.3 C	В	_
HCM 95th %tile Q(veh	1		_	1	0.1	_
HOW JOHN JOHN Q VEH	1		_	ı	0.1	_

Synchro 10 Report Page 1 Exist

Intersection						
Int Delay, s/veh	0					
		WED	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ.			↑
Traffic Vol, veh/h	3	0	847	3	0	873
Future Vol, veh/h	3	0	847	3	0	873
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage	,#0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	3	0	921	3	0	949
N. 4	r: 4				4 : 0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	1872	923	0	0	924	0
Stage 1	923	-	-	-	-	-
Stage 2	949	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	79	327	-	-	739	-
Stage 1	387	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	79	327	_	_	739	-
Mov Cap-2 Maneuver	210	-	_	_	-	_
Stage 1	387	_	_	_	_	_
Stage 2	376	_		_	_	
Olage Z	310		-			
Approach	WB		NB		SB	
HCM Control Delay, s	22.4		0		0	
HCM LOS	С					
	t	NBT	NRRV	VBLn1	SBL	SBT
Minor Lane/Maior Mym		1101	HUIW		739	ODI
Minor Lane/Major Mvm				210		
Capacity (veh/h)		-	-	210		
Capacity (veh/h) HCM Lane V/C Ratio		-		0.016	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	0.016 22.4	0	-
Capacity (veh/h) HCM Lane V/C Ratio				0.016	-	

Synchro 10 Report Page 2 Exist

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	1,51	1>	, LOIK	ሻ	<u> </u>
Traffic Vol, veh/h	1	0	826	1	0	877
Future Vol, veh/h	1	0	826	1	0	877
Conflicting Peds, #/hr		0	020	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized						
	-	None	-	None	- 075	None
Storage Length	0	-	-	-	275	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	1	0	888	1	0	943
Major/Minor	Minard		Anic -1		Ania-O	
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1832	889	0	0	889	0
Stage 1	889	-	-	-	-	-
Stage 2	943	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	84	342	-	_	762	-
Stage 1	402	-	_	_	_	_
Stage 2	379	_	_	_	_	_
Platoon blocked, %	010		_	_		_
	0.1	242			760	
Mov Cap-1 Maneuver		342	-	-	762	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	402	-	-	-	-	-
Stage 2	379	-	-	-	-	-
Approach	WB		NB		SB	
			0		0	
HCM Control Delay, s			U		U	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)			-		762	-
HCM Lane V/C Ratio		<u>-</u>		0.005	- 102	_
HCM Control Delay (s	.\	-	_	21.8	0	-
)	-				
HCM Lane LOS	-\	-	-	С	A	-
HCM 95th %tile Q(veh	1)	-	-	0	0	-

Synchro 10 Report Page 3 Exist

Intersection								
Int Delay, s/veh	240.8							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		1		ሻ			
Traffic Vol, veh/h	109	140	715	306	280	587		
Future Vol, veh/h	109	140	715	306	280	587		
Conflicting Peds, #/hr	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	_	None	-	None	-	None		
Storage Length	0	-	-	-	300	-		
/eh in Median Storage	e, # 0	-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	5	5	5	5	5	5		
/lvmt Flow	118	152	777	333	304	638		
lajor/Minor	Minor1	N	Major1		Major2			
Conflicting Flow All	2190	944	0		1110			
Stage 1	944	-	_	_	-	-		
Stage 2	1246	-	-	-	-	-		
Critical Hdwy	6.45	6.25	-	-	4.15	-		
ritical Hdwy Stg 1	5.45	-	-	-	-	-		
ritical Hdwy Stg 2	5.45	-	_	-	-	-		
ollow-up Hdwy	3.545	3.345	-	-	2.245	-		
ot Cap-1 Maneuver	~ 49	314	-	-	618	-		
Stage 1	374	-	-	-	-	-		
Stage 2	267	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver		314	-	-	618	-		
Nov Cap-2 Maneuver	~ 25	-	-	-	-	-		
Stage 1	190	-	-	-	-	-		
Stage 2	267	-	-	-	-	-		
pproach	WB		NB		SB			
HCM Control Delay, \$	2048.5		0		5.3			
HCM LOS	F							
Minor Lane/Major Mvn	nt	NBT	NRRV	VBLn1	SBL	SBT		
Capacity (veh/h)		-	- INDIX	52	618			
ICM Lane V/C Ratio		_		5.205				
ICM Control Delay (s)	_		2048.5	16.3			
HCM Lane LOS		<u> </u>	Ψ.	2040.5 F	10.5 C	-		
ICM 95th %tile Q(veh	1)	-	_	30.6	2.7			
,	.,							
Notes	.,	Φ. 5			00		(() N () ()	4 All 1 1 1 1 1
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 3	00s	+: Com	outation Not Defined	*: All major volume in platoon

Synchro 10 Report Page 4 Exist

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W			7	ሻ	†
Traffic Vol, veh/h	28	31	786	17	17	625
Future Vol, veh/h	28	31	786	17	17	625
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop	None	-	None	-	None
Storage Length	0	-	_	150	100	-
Veh in Median Storage		<u>-</u>	0	130	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	31	35	883	19	19	702
Major/Minor	Minor1	N	//ajor1		Major2	
Conflicting Flow All	1623	883	0	0	902	0
Stage 1	883	-	-	_	-	-
Stage 2	740	<u>-</u>	_	_	_	_
Critical Hdwy	6.45	6.25	_	_	4.15	_
Critical Hdwy Stg 1	5.45	0.25	_	_	4.13	
	5.45		-	_		-
Critical Hdwy Stg 2		2 245	-	-	- 0.45	-
Follow-up Hdwy	3.545		-	-	2.245	-
Pot Cap-1 Maneuver	111	341	-	-	741	-
Stage 1	399	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	108	341	-	-	741	-
Mov Cap-2 Maneuver	239	-	-	-	-	-
Stage 1	389	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.5		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)			-	284	741	
HCM Lane V/C Ratio		<u>-</u>		0.233		_
HCM Control Delay (s)	\	_		21.5	10	_
HCM Lane LOS)		-			
	.\	-	-	С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0.9	0.1	-

Synchro 10 Report Page 1 Exist

Intersection						
Int Delay, s/veh	0					
Movement	\A/DI	WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M	_	}	_	<u>ች</u>	^
Traffic Vol, veh/h	0	3	811	2	0	653
Future Vol, veh/h	0	3	811	2	0	653
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	0	3	872	2	0	702
IVIVIII I IOW	U	0	012		U	102
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	1575	873	0	0	874	0
Stage 1	873		_	-	_	-
Stage 2	702	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	- 0.22	_		7.12	<u>-</u>
Critical Hdwy Stg 2	5.42	_	-	_	_	_
	3.518		-	-	2.218	
Follow-up Hdwy			-			-
Pot Cap-1 Maneuver	121	349	-	-	772	-
Stage 1	409	-	-	-	-	-
Stage 2	491	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	121	349	-	-	772	-
Mov Cap-2 Maneuver	258	-	-	-	-	-
Stage 1	409	-	_	-	-	-
Stage 2	491	_	_	-	_	_
Approach	WB		NB		SB	
HCM Control Delay, s	15.4		0		0	
HCM LOS	С					
Minor Long/Major M.	-t	NDT	NDDV	MDL ~4	CDI	CDT
Minor Lane/Major Mvn	III.	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	349	772	-
HCM Lane V/C Ratio		-	-	0.009	-	-
HCM Control Delay (s)	-	-	15.4	0	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0	0	-
	,					

Synchro 10 Report Page 2 Exist

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	אופוז	\$	אפא) j	<u> </u>
Traffic Vol, veh/h	0	0	813	0	2	651
Future Vol, veh/h	0	0	813	0	2	651
Conflicting Peds, #/hr	0	0	013	0	0	0.51
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop	None	-	None	-	None
Storage Length	0	-	_	-	275	-
Veh in Median Storage			0	_	-	0
Grade, %	, # 0	<u>-</u>	0	_	_	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	0	0	874	0	2	700
IVIVIIIL FIOW	U	U	0/4	U		700
Major/Minor N	Minor1	N	Major1	ľ	Major2	
Conflicting Flow All	1578	874	0	0	874	0
Stage 1	874	-	-	-	-	-
Stage 2	704	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	_	-	-	-
Follow-up Hdwy		3.318	-	_	2.218	-
Pot Cap-1 Maneuver	120	349	-	-	772	-
Stage 1	408	-	-	-	-	-
Stage 2	490	-	_	-	_	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	120	349	_	_	772	_
Mov Cap-2 Maneuver	257	-	_	_	- ' ' -	_
Stage 1	407	_	_	_	_	_
Stage 2	490	_	_	_	_	_
Olage 2	730					
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
Minor Lane/Major Mvm	+	NBT	NRDV	VBLn1	SBL	SBT
	ı	NDT	INDIX	VDLIII		301
Capacity (veh/h)		-	-	-	772	-
HCM Lane V/C Ratio HCM Control Delay (s)		-	-		0.003	-
DUVI CONTOL DEIAV (S)		-	-	0	9.7	-
				٨	٨	
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	A -	A 0	-

Synchro 10 Report Page 3 Exist

tersection t Delay, s/veh 57.5
t Delay, s/veh 57.5
ovement WBL WBR NBT NBR SBL SBT
ane Configurations 🎀 🖒 🏲
affic Vol, veh/h 121 160 652 143 91 581
uture Vol, veh/h 121 160 652 143 91 581
onflicting Peds, #/hr 0 0 0 0 0 0
gn Control Stop Stop Free Free Free
T Channelized - None - None
orage Length 0 300 -
eh in Median Storage, # 0 - 0 0
rade, % 0 - 0 0
eak Hour Factor 95 95 95 95 95
eavy Vehicles, % 5 5 5 5 5
vmt Flow 127 168 686 151 96 612
ajor/Minor Minor1 Major1 Major2
onflicting Flow All 1566 762 0 0 837 0
Stage 1 762
· · · · · · · · · · · · · · · · · · ·
ritical Hdwy Stg 1 5.45
ritical Hdwy Stg 2 5.45
ollow-up Hdwy 3.545 3.345 2.245 -
ot Cap-1 Maneuver ~ 120 400 784 -
Stage 1 456
Stage 2 435
atoon blocked, %
ov Cap-1 Maneuver ~ 105 400 784 -
ov Cap-2 Maneuver ~ 105
Stage 1 400
Stage 2 435
pproach WB NB SB
CM Control Delay, s\$ 354.6 0 1.4
CM LOS F
inor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT
apacity (veh/h) 181 784 -
CM Lane V/C Ratio 1.634 0.122 -
CM Lane V/C Ratio 1.634 0.122
CM Lane V/C Ratio - - 1.634 0.122 - CM Control Delay (s) - -\$ 354.6 10.2 - CM Lane LOS - - F B
CM Lane V/C Ratio 1.634 0.122 \$ 354.6 10.2
CM Lane V/C Ratio - - 1.634 0.122 - CM Control Delay (s) - -\$ 354.6 10.2 - CM Lane LOS - - F B - CM 95th %tile Q(veh) - - 19.9 0.4 -
CM Lane V/C Ratio - - 1.634 0.122 - CM Control Delay (s) - -\$ 354.6 10.2 - CM Lane LOS - - F B

Synchro 10 Report Page 4 Exist

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	וטייי		7) j	<u> </u>
Traffic Vol, veh/h	28	41	↑ 879	40	28	918
					28	
Future Vol, veh/h	28	41	879	40		918
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	30	45	955	43	30	998
	Minor1		/lajor1		Major2	
Conflicting Flow All	2013	955	0	0	998	0
Stage 1	955	-	-	-	-	-
Stage 2	1058	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	_	_	_	_	_
Critical Hdwy Stg 2	5.45	_	_	_	_	_
Follow-up Hdwy	3.545		_	_	2.245	_
Pot Cap-1 Maneuver	63	309	_	_	682	_
•	369	-		_	002	
Stage 1			-	-	_	
Stage 2	329	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		309	-	-	682	-
Mov Cap-2 Maneuver	175	-	-	-	-	-
Stage 1	353	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Annuagh	\A/D		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	27.2		0		0.3	
HCM LOS	D					
Minor Lane/Major Mvr	nt	NBT	NIPDV	VBLn1	SBL	SBT
	iit.	INDI				
Capacity (veh/h)		-	-	236	682	-
HCM Lane V/C Ratio		-	-	0.318		-
HCM Control Delay (s)	-	-	27.2	10.5	-
HCM Lane LOS		-	-	D	В	-
HCM 95th %tile Q(veh	1)	-	-	1.3	0.1	-

Intersection						
Int Delay, s/veh	0					
		MDD	NET	NDD	051	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ,		7	↑
Traffic Vol, veh/h	3	0	918	3	0	946
Future Vol, veh/h	3	0	918	3	0	946
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	3	0	998	3	0	1028
Major/Minor I	Minor1	N	Major1	ı	Major2	
Conflicting Flow All	2028	1000	0	0	1001	0
Stage 1	1000	-	U	U	-	-
Stage 2	1028	<u>-</u>	_	_	_	-
Critical Hdwy	6.42	6.22	-	-	4.12	
Critical Hdwy Stg 1	5.42	0.22	_	-	4.12	_
Critical Hdwy Stg 2	5.42		-	_	-	-
	3.518		_	_	2.218	-
Follow-up Hdwy	63	295	-	-	692	_
Pot Cap-1 Maneuver	356		-	-		-
Stage 1		-	-	-	-	-
Stage 2	345	-	-	-	-	-
Platoon blocked, %	60	205	-	-	coo	-
Mov Cap-1 Maneuver	63	295	-	-	692	-
Mov Cap-2 Maneuver	189	-	-	-	-	-
Stage 1	356	-	-	-	-	-
Stage 2	345	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24.4		0		0	
HCM LOS	C					
1.0 200						
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		692	-
HCM Lane V/C Ratio		-	-	0.017	-	-
HCM Control Delay (s)		-	-		0	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh))	-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX	1\D1	NDIN	JDL Š	<u> </u>
Traffic Vol, veh/h	<u></u>	0	895	1	0	951
	1		895	-		951
Future Vol, veh/h	•	0		1	0	
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	1	0	962	1	0	1023
	•			•		
Major/Minor	Minor1		Major1	N	Major2	
Conflicting Flow All	1986	963	0	0	963	0
Stage 1	963	-	-	-	-	-
Stage 2	1023	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	_	4.12	-
Critical Hdwy Stg 1	5.42	_	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	_	_	2.218	_
Pot Cap-1 Maneuver	67	310		_	715	_
	370		_	_	115	_
Stage 1		-	-	-	-	-
Stage 2	347	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		310	-	-	715	-
Mov Cap-2 Maneuver	194	_	-	-	-	-
Stage 1	370	-	-	-	-	-
Stage 2	347	-	-	-	-	-
Ü						
	VA/D		ND		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	С					
Minor Long/Major My	~ !	NDT	NDDV	VBLn1	CDI	SBT
Minor Lane/Major Mvn	rit .	NBT			SBL	
Capacity (veh/h)		-	-		715	-
HCM Lane V/C Ratio		-	-	0.006	-	-
HCM Control Delay (s)	-	-	_0	0	-
HCM Lane LOS				С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0	0	-

to Delay, s/veh 429.4 vovement WBL WBR NBT NBR SBL SBT affic Vol, veh/h 118 152 775 331 304 636 titure Vol, veh/h 118 152 775 331 304 636 onflicting Peds, #/hr 0 0 0 0 0 0 0 gn Control Stop Stop Free Free Free Free Free To Channelized - None - None - None orage Length 0 - 0 - 300 - 0 en in Median Storage, # 0 - 0 - 0 - 0 sak Hour Factor 92 92 92 92 92 savy Vehicles, % 5 5 5 5 5 5 5 vmt Flow 128 165 842 360 330 691 Major/Minor Minor Minor Major Major2 Stage 1 1022
WBL WBR NBT NBR SBL SBT
And Configurations affic Vol, veh/h
raffic Vol, veh/h 118 152 775 331 304 636 tuture Vol, veh/h 118 152 775 331 304 636 onflicting Peds, #/hr 0 0 0 0 0 0 0 gr Control Stop Stop Free Free Free Free T Channelized
tuture Vol, veh/h 118 152 775 331 304 636 onflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0
onflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gn Control Stop Stop Free Free Free Free Free Free T Channelized - None - None - None orage Length 0 - 0 - 300 - sh in Median Storage, # 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
T Channelized
orage Length 0 300 0 rade, % 0 - 0 - 0 - 0 rade, % 0 - 0 - 0 - 0 rade, % 0 - 0 - 0 rade, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
th in Median Storage, # 0
rade, % 0 - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
Pask Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92
Paray Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Agor/Minor Minor Major M
ajor/Minor Minor1 Major1 Major2 onflicting Flow All 2373 1022 0 0 1202 0 Stage 1 1022
Stage 1 1022 Stage 2 1351
Stage 1 1022 Stage 2 1351
Stage 1 1022 Stage 2 1351
Stage 1 1022 -
Stage 2 1351
ritical Hdwy Stg 1 5.45 4.15
ritical Hdwy Stg 1 5.45
ritical Hdwy Stg 2 5.45
billow-up Hdwy 3.545 3.345 - - 2.245 - bit Cap-1 Maneuver ~ 37 283 - - 570 - Stage 1 343 - - - - Stage 2 238 - - - - atoon blocked, % - - - - ov Cap-1 Maneuver ~ 16 283 - - 570 - ov Cap-2 Maneuver ~ 16 - - - - - - Stage 1 144 - - - - - -
ot Cap-1 Maneuver ~ 37 283 570 - Stage 1 343 Stage 2 238 atoon blocked, % ov Cap-1 Maneuver ~ 16 283 570 - ov Cap-2 Maneuver ~ 16 Stage 1 144
Stage 1 343 -
Stage 2 238 - - - - atoon blocked, % - - - - ov Cap-1 Maneuver ~ 16 283 - - 570 - ov Cap-2 Maneuver ~ 16 - - - - Stage 1 144 - - - -
atoon blocked, %
ov Cap-1 Maneuver ~ 16 283 570 - ov Cap-2 Maneuver ~ 16 Stage 1 144
ov Cap-2 Maneuver ~ 16 Stage 1 144
Stage 1 144
0
ND ND CD
oproach WB NB SB
CM Control Delay, s \$ 3661 0 6.4
CM LOS F
inor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT
apacity (veh/h) 34 570 -
CM Lane V/C Ratio 8.632 0.58 -
CM Control Delay (s) \$ 3661 19.7 -
CM Lane LOS F C -
CM 95th %tile Q(veh) 35.5 3.7 -
· ·
otes
Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	WDIX	↑	7	ሻ	<u>□</u>
Traffic Vol, veh/h	30	34	852	18	18	678
Future Vol, veh/h	30	34	852	18	18	678
Conflicting Peds, #/hr	0	0	002	0	0	0/0
			Free	Free	Free	Free
Sign Control RT Channelized	Stop	Stop				
	-	None	-	None	100	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	34	38	957	20	20	762
	Minor1		//ajor1		Major2	
Conflicting Flow All	1759	957	0	0	977	0
Stage 1	957	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Critical Hdwy	6.45	6.25	_	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	_	_	_	_	_
Follow-up Hdwy	3.545	3 345	_	_	2.245	_
Pot Cap-1 Maneuver	91	308	_	_	694	_
Stage 1	368	-	_		054	_
	436			_	-	_
Stage 2	430	-	-	-	-	
Platoon blocked, %	00	000	-	-	00.4	-
Mov Cap-1 Maneuver		308	-	-	694	-
Mov Cap-2 Maneuver	215	-	-	-	-	-
Stage 1	357	-	-	-	-	-
Stage 2	436	-	-	-	-	-
Annroach	\A/D		NID		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	24.5		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBT	NRDV	VBLn1	SBL	SBT
	iit.	NDT				
Capacity (veh/h)		-	-	256	694	-
HCM Lane V/C Ratio	_	-	-	0.281		-
HCM Control Delay (s)	-	-	24.5	10.3	-
HCM Lane LOS		-	-	С	В	-
HCM 95th %tile Q(veh	1)	-	-	1.1	0.1	-

Intersection Int Delay, s/veh Movement WBL WBR NBT NBR SBL SBT Lane Configurations
Int Delay, s/veh 0 Movement WBL WBR NBT NBR SBL SBT
Movement WBL WBR NBT NBR SBL SBT
Lane Configurations 🌱 🥻
Traffic Vol, veh/h 0 3 879 2 0 708
Future Vol, veh/h 0 3 879 2 0 708
Conflicting Peds, #/hr 0 0 0 0 0 0
Sign Control Stop Stop Free Free Free Free
RT Channelized - None - None - None
Storage Length 0 250 -
Veh in Median Storage, # 0 - 0 - 0
Grade, % 0 - 0 0
Peak Hour Factor 93 93 93 93 93 93
Heavy Vehicles, % 2 2 5 2 2 5
Mvmt Flow 0 3 945 2 0 761
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 1707 946 0 0 947 0
Stage 1 946
Stage 2 761
Critical Hdwy 6.42 6.22 4.12 -
Critical Hdwy Stg 1 5.42
Critical Hdwy Stg 2 5.42
Follow-up Hdwy 3.518 3.318 2.218 -
Pot Cap-1 Maneuver 100 317 - 725 -
Stage 1 377
Stage 2 461
Platoon blocked, %
·
Mov Cap-1 Maneuver 100 317 725 -
Mov Cap-2 Maneuver 234
Stage 1 377
Stage 2 461
Approach WB NB SB
HCM LOS C
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT
Capacity (veh/h) 317 725 -
HCM Lane V/C Ratio 0.01
HCM Control Delay (s) - 16.5 0 -
• • •
HCM Lane LOS C A - HCM 95th %tile Q(veh) 0 0 -

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NDT	NBR	SBL	SBT
		WDK	NBT	NDK		
Lane Configurations	¥	^	}	^	ች	700
Traffic Vol, veh/h	1	0	881	0	2	706
Future Vol, veh/h	1	0	881	0	2	706
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	1	0	947	0	2	759
IVIVIII I IOW		U	JTI	U		100
Major/Minor	Minor1	<u> </u>	//ajor1	N	Major2	
Conflicting Flow All	1710	947	0	0	947	0
Stage 1	947	_	_	_	-	-
Stage 2	763	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	- 0.22	_		7.12	<u>-</u>
Critical Hdwy Stg 2	5.42	_	-	_	_	_
	3.518		_	_	2.218	
Follow-up Hdwy			-			-
Pot Cap-1 Maneuver	100	317	-	-	725	-
Stage 1	377	-	-	-	-	-
Stage 2	460	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	100	317	-	-	725	-
Mov Cap-2 Maneuver	234	-	-	-	-	-
Stage 1	376	-	_	-	-	-
Stage 2	460	_	_	_	_	_
Approach	WB		NB		SB	
HCM Control Delay, s	20.5		0		0	
HCM LOS	С					
Minor Long/Major M.	nt	NDT	NDDV	N/DI ∽1	CDI	CDT
Minor Lane/Major Mvn	iit	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	234	725	-
HCM Lane V/C Ratio		-	-	0.005		-
HCM Control Delay (s)	-	-	20.5	10	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0	0	-
	•					

Delay, s/veh 91.6	Intersection								
ement WBL WBR NBT NBR SBL SBT e Configurations fic Vol, veh/h 131 173 707 155 99 630 flicting Peds, #/hr 0 0 0 0 0 0 0 0 Control Stop Stop Free Free Free Free Channelized - None - None age Length 0 300 - in Median Storage, # 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int Delay, s/veh	91 6							
e Configurations fic Vol, veh/h fic Vol, veh/h fish fit Vol, veh/h									
flic Vol, veh/h 131 173 707 155 99 630 rer Vol, veh/h 131 173 707 155 99 630 flicting Peds, #hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement		WBR		NBR				
Tree Vol., veh/h	Lane Configurations								
fflicting Peds, #/hr	Fraffic Vol, veh/h								
Control Stop Stop Free Free Free Free Free Free Channelized None	uture Vol, veh/h								
Channelized - None - None - None age Length 0 300 - in Median Storage, # 0 - 0 0 de, % 0 - 0 de, % 0 - 0 0 de, % 0 de,	Conflicting Peds, #/hr	0	0	0	0		0		
rage Length 0 300 300	Sign Control	Stop	Stop	Free	Free	Free	Free		
in Median Storage, # 0	RT Channelized	-	None	-	None		None		
de, % 0 - 0 - 0 - 0 - 0 k Hour Factor 95 95 95 95 95 95 95 95 95 95 95 95 95	Storage Length		-	-	-	300	-		
k Hour Factor 95 95 95 95 95 95 95 yy Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		e,# 0	-	0	-	-	0		
vy Vehicles, % 5 5 5 5 5 5 5 5 1 5 1 5 1 5 1 5 1 5 1	Grade, %	0	-	0	-	-	0		
nt Flow 138 182 744 163 104 663 Dr/Minor Minor1 Major1 Major2	eak Hour Factor	95	95	95	95	95	95		
Major Majo	leavy Vehicles, %	5	5	5	5	5	5		
Stage 1	Nvmt Flow	138	182	744	163	104	663		
Stage 1									
Stage 1	Agior/Minor	Minor1	N	/laior1		Major?			
Stage 1 826							0		
Stage 2					U				
cal Hdwy				_	_				
cal Hdwy Stg 1 5.45				-	-				
cal Hdwy Stg 2 5.45				-	-				
Description				-	-		-		
Cap-1 Maneuver ~ 100 367 - - 738 - Stage 1 425 - - - - Stage 2 405 - - - - con blocked, % - - - - - c Cap-1 Maneuver ~ 86 - - - - c Cap-2 Maneuver ~ 86 - - - - Stage 1 365 - - - - Stage 2 405 - - - - M Control Delay, s\$ 567.7 0 1.5 The control Delay, s\$ 567.7 In the control Delay (s) In the con				-	-		-		
Stage 1 425 -				-	-		-		
Stage 2 405 -	•			-	-				
Cap-1 Maneuver Ref Section Stage 1 Section S				-	_				
Cap-1 Maneuver ~ 86 367 - 738 - Cap-2 Maneuver ~ 86 Stage 1 365 Stage 2 405 Toach WB NB SB M Control Delay, s\$ 567.7 0 1.5 M LOS F Dr Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Dracity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 - Draces		405	-	-	-	-			
Cap-2 Maneuver ~ 86 -			0.07	-	-	700			
Stage 1 365 -				-	-		-		
Stage 2 405			-	-	-	-	-		
roach WB NB SB M Control Delay, s\$ 567.7 0 1.5 Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -				-	-		-		
M Control Delay, s\$ 567.7 0 1.5 Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Pacity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -	Stage 2	405	-	-	-	-	-		
M Control Delay, s\$ 567.7 0 1.5 Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Pacity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -									
M Control Delay, s\$ 567.7 0 1.5 Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Pacity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -	pproach	WB		NB		SB			
M LOS F or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -									
or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - 152 738 - M Lane V/C Ratio - 2.105 0.141 - M Control Delay (s) - \$567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -	HCM LOS					1.5			
Acity (veh/h)	.5 200								
Acity (veh/h)									
M Lane V/C Ratio 2.105 0.141 - M Control Delay (s) \$ 567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -		mt	NBT	NBKV			SBT		
M Control Delay (s) - \$ 567.7 10.7 - M Lane LOS - F B - M 95th %tile Q(veh) - 25.7 0.5 -	Capacity (veh/h)		-	-			-		
M Lane LOS F B - M 95th %tile Q(veh) 25.7 0.5 -	ICM Lane V/C Ratio		-				-		
M 95th %tile Q(veh) 25.7 0.5 -	ICM Control Delay (s	s)	-	-\$			-		
es · · · · · · · · · · · · · · · · · · ·	ICM Lane LOS		-	-			-		
	ICM 95th %tile Q(vel	h)	-	-	25.7	0.5	-		
	lotes								
olumo oxocodo capacity — y. Dolay oxocodo ocos — i. Computation Not Delined — . Ali major volume in platoci.		anacity	\$∙ Dc	lav evo	reeds 3	00s	+: Com	outation Not Defined	*· All major volume in platoon
	. Volume exceeds Co	apacity	ψ. De	iay ext	ecus 3	003	r. Cuill	Julation Not Delined	. Ali major volume in piatoon

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NPT	NBR	SBL	SBT
		WDK	NBT			
Lane Configurations	77	20	1000	7	ነ	↑
Traffic Vol, veh/h	27	38	820	38	26	849
Future Vol, veh/h	27	38	820	38	26	849
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	29	41	891	41	28	923
IVIVIII(I IOW	25	71	001	71	20	320
Major/Minor	Minor1	<u> </u>	//ajor1	<u> </u>	Major2	
Conflicting Flow All	1870	891	0	0	932	0
Stage 1	891	-	_	_	_	-
Stage 2	979	_	_	_	_	_
Critical Hdwy	6.45	6.25	_	_	4.15	_
Critical Hdwy Stg 1	5.45	0.20	_		7.10	<u>-</u>
Critical Hdwy Stg 2	5.45	_	_	_		_
	3.545		_	_	2.245	
Follow-up Hdwy			-			-
Pot Cap-1 Maneuver	78	337	-	-	722	-
Stage 1	396	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	75	337	-	-	722	-
Mov Cap-2 Maneuver	196	-	-	-	-	-
Stage 1	381	-	-	-	-	-
Stage 2	359	-	-	-	-	-
g 						
Approach	WB		NB		SB	
HCM Control Delay, s	24		0		0.3	
HCM LOS	С					
Minor Lanc/Major Mun	ot	NBT	NIDDV	VBLn1	SBL	SBT
Minor Lane/Major Mvn	TIC .					
Capacity (veh/h)		-	-	259	722	-
HCM Lane V/C Ratio		-	-	0.273		-
HCM Control Delay (s)		-	-	24	10.2	-
HCM Lane LOS		-	-	С	В	-
HCM 95th %tile Q(veh	1)	-	-	1.1	0.1	-

E+Prj. Synchro 10 Report Page 1

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	TI DIC	ሻ	<u> </u>
Traffic Vol, veh/h	15	10	847	5	3	873
Future Vol, veh/h	15	10	847	5	3	873
Conflicting Peds, #/hr	0	0	0	0	0	0/3
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -		riee -	None
Storage Length	0	NOTIE	-	INOHE -	250	None -
Veh in Median Storage			-			0
		-	0	-	-	
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	16	11	921	5	3	949
Major/Minor N	Minor1	N	Major1	ı	Major2	
Conflicting Flow All	1879	924	0	0	926	0
Stage 1	924	324	-	-	920	-
Stage 2	955	_	_	_	_	_
	6.42	6.22			4.12	-
Critical Holy			-	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	78	327	-	-	738	-
Stage 1	387	-	-	-	-	-
Stage 2	374	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	78	327	-	-	738	-
Mov Cap-2 Maneuver	208	-	-	-	-	-
Stage 1	385	-	_	-	_	_
Stage 2	374	_	_	_	_	_
Stago L	V · ·					
Approach	WB		NB		SB	
HCM Control Delay, s	21.7		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	.	NBT	NIDDV	VBLn1	SBL	SBT
	ı	INDI	NDIN			SDT
		_	-	243	738	-
Capacity (veh/h)						-
Capacity (veh/h) HCM Lane V/C Ratio		-		0.112		
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	21.7	9.9	-
Capacity (veh/h) HCM Lane V/C Ratio						

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		₽		ሻ	<u>□ □ □ □</u>
Traffic Vol, veh/h	1	0	831	1	0	893
Future Vol, veh/h	1	0	831	1	0	893
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	275	-
Veh in Median Storage		_	0	_	-	0
Grade, %	0	<u>-</u>	0	<u>-</u>	_	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	1	0	894	1	0	960
IVIVIIIL FIOW	l.	U	094	ı	U	900
Major/Minor N	Minor1	N	Major1	N	Major2	
Conflicting Flow All	1855	895	0	0	895	0
Stage 1	895	-	-	-	-	-
Stage 2	960	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	81	339	_	-	758	_
Stage 1	399	-	_	_	-	_
Stage 2	372	_	_	_	_	_
Platoon blocked, %	012		_	_		_
Mov Cap-1 Maneuver	81	339	_	_	758	_
Mov Cap-1 Maneuver	213	-	_	_	750	_
Stage 1	399	-	-	_	_	
•	372	_	_	_	_	-
Stage 2	312	_	-	_	_	_
Approach	WB		NB		SB	
HCM Control Delay, s	22		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	+	NBT	NRDV	VBLn1	SBL	SBT
	ı	NDT	INDIX		758	301
Capacity (veh/h)		-	-	213 0.005		-
HCM Lane V/C Ratio HCM Control Delay (s)		-			-	-
DUVI CONTOL DEIAV (S)		-	-	22	0	-
				^	٨	
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	C 0	A 0	-

Intersection								
Int Delay, s/veh	264.7							
•								
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		₽					
Traffic Vol, veh/h	109	141	719	306	284	598		
uture Vol, veh/h	109	141	719	306	284	598		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	-	-	-	300	-		
eh in Median Storage	e, # 0	-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
eak Hour Factor	92	92	92	92	92	92		
leavy Vehicles, %	5	5	5	5	5	5		
/lvmt Flow	118	153	782	333	309	650		
lajor/Minor	Minor1	N	Major1	ı	Major2			
onflicting Flow All	2217	949	0	0	1115	0		
Stage 1	949	3 4 3	-	-	-	-		
Stage 2	1268	<u>-</u>	_	_	_	_		
ritical Hdwy	6.45	6.25			4.15	_		
itical Hdwy Stg 1	5.45	0.25	_	_	7.15	_		
ritical Hdwy Stg 2	5.45	_			_			
ollow-up Hdwy	3.545		-	-	2.245	_		
ot Cap-1 Maneuver	~ 47	312	-	-	615	_		
Stage 1	372	- 312	-	-	013	_		
Stage 2	261	-	_	_	_	-		
latoon blocked, %	201	_	_	_	-	_		
lov Cap-1 Maneuver	~ 23	312	-	-	615	-		
	~ 23		-	-		-		
lov Cap-2 Maneuver	~ 23 185	-	-	-	-	-		
Stage 1	261	-	-	-	-	-		
Stage 2	201	-	-	-	-	-		
pproach	WB		NB		SB			
ICM Control Delay, s	\$ 2265		0		5.3			
ICM LOS	F							
/linor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT		
apacity (veh/h)		NDT	TADIXV	48	615	- 301		
CM Lane V/C Ratio		-	•		0.502			
ICM Control Delay (s)	\	-		2265	16.6	-		
ICM Lane LOS		-	- (F 2205	10.6 C	-		
CM 95th %tile Q(veh	١	-	_		2.8	-		
· ·)			J1.Z	2.0	-		
otes								
: Volume exceeds ca	pacity	\$: De	lay exc	eeds 3	00s	+: Com	outation Not Defined	*: All major volume in platoon
								,

Intersection						
Int Delay, s/veh	1					
	•	WED	NDT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	0.4	704	7	<u> </u>	↑
Traffic Vol, veh/h	29	31	794	18	17	632
Future Vol, veh/h	29	31	794	18	17	632
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		
Storage Length	0	-	-	150	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	33	35	892	20	19	710
Major/Minor I	Minor1	N	Major1	I	Major2	
Conflicting Flow All	1640	892	0	0	912	0
Stage 1	892	-	-		Ų 1 <u>L</u>	-
Stage 2	748	<u>-</u>	_	_	<u>-</u>	<u>-</u>
Critical Hdwy	6.45	6.25			4.15	_
Critical Hdwy Stg 1	5.45	0.25	_	-	4 .15	_
Critical Hdwy Stg 2	5.45	_			_	_
Follow-up Hdwy		3.345	_	_	2.245	_
Pot Cap-1 Maneuver	108	336	_		735	_
Stage 1	395	-	_	-	- 100	_
Stage 2	462	_	_		_	
Platoon blocked, %	702	_	_	_		_
Mov Cap-1 Maneuver	105	336	_	<u>-</u>	735	_
Mov Cap-1 Maneuver	236	-	-	_	733	_
	385	_	-	-	-	_
Stage 1		-	-	-	-	-
Stage 2	462	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	22		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvm	nt .	NBT	NRDV	VBLn1	SBL	SBT
	it	IADI				
Capacity (veh/h)		-	-		735	-
HCM Control Polov (a)		-		0.242		-
HCM Control Delay (s)		-	-	22	10	-
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	0.9	0.1	-

Intersection						
Int Delay, s/veh	0					
		WED	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		- ↑		<u> </u>	↑
Traffic Vol, veh/h	0	0	826	0	2	665
Future Vol, veh/h	0	0	826	0	2	665
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	0	0	888	0	2	715
Major/Minor	Minor1	N	/lajor1		Major2	
Conflicting Flow All	1607	888	0	0	888	0
Stage 1	888	-	-	-	-	-
Stage 2	719	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	116	343	-	-	763	-
Stage 1	402	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	116	343	-	-	763	-
Mov Cap-2 Maneuver	252	-	-	-	-	-
Stage 1	401	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Approach	WB		NB		SB	
					0	
HCM Control Delay, s	0		0		U	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	_	_	763	_
HCM Lane V/C Ratio		-	_	_	0.003	-
HCM Control Delay (s)	_	_	0	9.7	_
HCM Lane LOS	,	_	_	A	A	_
HCM 95th %tile Q(veh	1)	-	_	-	0	_
	'/				J	

Intersection								
Int Delay, s/veh	61.9							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥	11011	1	TIET	<u> </u>	<u> </u>		
Traffic Vol, veh/h	121	163	662	143	94	592		
Future Vol, veh/h	121	163	662	143	94	592		
Conflicting Peds, #/hr		0	002	0	0	0		
			Free	Free	Free	Free		
Sign Control RT Channelized	Stop	Stop						
	-	None	-	None	300	None		
Storage Length	0 e, # 0	-	-	-		-		
/eh in Median Storag	•	-	0	-	-	0		
Grade, %	0	- 0E	0	-	-	0		
Peak Hour Factor	95	95	95	95	95	95		
leavy Vehicles, %	5	5	5	5	5	5		
1vmt Flow	127	172	697	151	99	623		
lajor/Minor	Minor1		Major1		Major2			
Conflicting Flow All	1594	773	0	0	848	0		
Stage 1	773	-	-	-	-	-		
Stage 2	821	-	-	-	-	-		
ritical Hdwy	6.45	6.25	-	-	4.15	-		
ritical Hdwy Stg 1	5.45	-	-	-	-	-		
ritical Hdwy Stg 2	5.45	-	-	-	-	-		
ollow-up Hdwy	3.545	3.345	-	-	2.245	-		
ot Cap-1 Maneuver	~ 116	394	-	-	777	-		
Stage 1	450	-	-	_	-	-		
Stage 2	427	-	_	_	-	-		
Platoon blocked, %			-	-		-		
Nov Cap-1 Maneuver	~ 101	394	_	_	777	-		
Nov Cap-2 Maneuver		-	_	_	-	-		
Stage 1	393	-	_	_	_	_		
Stage 2	427	_	_	_	_	_		
	121							
pproach	WB		NB		SB			
			0		1.4			
ICM Control Delay, s			U		1.4			
ICM LOS	F							
/linor Lane/Major Mvr	mt	NBT	NBRV	VBLn1	SBL	SBT		
apacity (veh/h)		-	-	176	777	-		
CM Lane V/C Ratio		-		1.699	0.127	-		
CM Control Delay (s	s)	-	-\$	383.5	10.3	-		
CM Lane LOS		-	-	F	В	-		
ICM 95th %tile Q(vel	n)	-	-	20.8	0.4	-		
otes								
Volume exceeds ca	anacity	\$∙ Do	alay eye	ceeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoon
Volume exceeds Co	μρασιιγ	ψ. De	Jay CX	occus o	003		patation Not Delined	. All major volume in platoon

Intersection						
Int Delay, s/veh	1.1					
		MED	NET	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		^	7		<u></u>
Traffic Vol, veh/h	29	41	888	41	28	920
Future Vol, veh/h	29	41	888	41	28	920
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	32	45	965	45	30	1000
NA = : = =/NA:== = =	\		1-:1		M-:0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	2025	965	0	0	1010	0
Stage 1	965	-	-	-	-	-
Stage 2	1060	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	62	305	-	-	675	-
Stage 1	365	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	59	305	_	-	675	-
Mov Cap-2 Maneuver	174	-	-	_	-	_
Stage 1	349	_	_	_	_	_
Stage 2	329	_	_	_	_	_
otago z	020					
Approach	WB		NB		SB	
HCM Control Delay, s	27.9		0		0.3	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT
	it.	INDI	INDIN			ODI
Capacity (veh/h) HCM Lane V/C Ratio			-	232 0.328	675	_
		-	-	27.9	10.6	-
U('\\/ ('optrol \olov' (a)						-
HCM Long LOS		-	_			
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		-	<u>-</u>	D 1.4	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7/	77011	7>	HUIT	ሻ	<u> </u>
Traffic Vol, veh/h	15	10	918	5	3	946
Future Vol, veh/h	15	10	918	5	3	946
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	250	-
Veh in Median Storage			0	_	250	0
Grade, %	, # 0	<u>-</u>	0	<u> </u>	_	0
Peak Hour Factor	92	92	92	92	92	92
	2	2	5	2	2	5
Heavy Vehicles, %						
Mvmt Flow	16	11	998	5	3	1028
Major/Minor N	Minor1	N	Major1	N	Major2	
Conflicting Flow All	2035	1001	0	0	1003	0
Stage 1	1001	_	_	_	_	_
Stage 2	1034	_	-	_	_	_
Critical Hdwy	6.42	6.22	-	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	63	295	_	_	690	_
Stage 1	355	-	_	_	-	_
Stage 2	343	_			_	_
Platoon blocked, %	J 4 J	_	-	_	-	_
Mov Cap-1 Maneuver	63	295	-	-	690	-
	187	295	_	-	090	_
Mov Cap-2 Maneuver	354		-	_		-
Stage 1		-	-	-	-	-
Stage 2	343	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.8		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		690	-
HCM Lane V/C Ratio		-	-	0.124		-
HCM Control Delay (s)		-	-		10.2	-
HCM Lane LOS		-	-	С	В	-
HCM 95th %tile Q(veh)		-	-	0.4	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL.	וטייי	1\D1	אפא	JDL Š	<u> </u>
Traffic Vol, veh/h		0	900	1	0	966
	1		900	-		966
Future Vol, veh/h	•	0		1	0	
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	1	0	968	1	0	1039
		_		_		
	Minor1		Major1	N	Major2	
Conflicting Flow All	2008	969	0	0	969	0
Stage 1	969	-	-	-	-	-
Stage 2	1039	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	_	4.12	-
Critical Hdwy Stg 1	5.42	_	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	65	308		_	711	_
	368		_	_	7 1 1	-
Stage 1		-	_	-	-	-
Stage 2	341	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		308	-	-	711	-
Mov Cap-2 Maneuver	191	-	-	-	-	-
Stage 1	368	-	-	-	-	-
Stage 2	341	-	-	-	-	-
Anneach	\A/D		ND		CD.	
Approach	WB		NB		SB	
HCM Control Delay, s	24		0		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBT	NRRV	VBLn1	SBL	SBT
	116	וטוו				
Capacity (veh/h)		-	-		711	-
HCM Lane V/C Ratio		-	-	0.006	-	-
HCM Control Delay (s)	-	-	24	0	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh	1)	-	-	0	0	-
·						

Server S	Intersection								
### Provide the configurations The configurations	Int Delay, s/veh	458.8							
Configurations Y	<u> </u>								
fice Vol, veh/h	Movement		WBR		NBR				
re Vol, veh/h 118 153 779 331 308 647 flicting Peds, #/hr 0 0 0 0 0 0 0 Control Channelized - None - None age Length 0 - 0 3000 - in Median Storage, # 0 - 0 0 1e, % 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Lane Configurations								
Control Stop Stop Free	Fraffic Vol, veh/h								
Control Stop Stop Free	uture Vol, veh/h								
Channelized - None - None - None age Length 0 300 - in Median Storage, # 0 - 0 0 de, % 0 - 0 - 0 - 0 de, % 0 - 0 - 0 de, % 0 - 0 - 0 de, % 0 - 0 de, %	Conflicting Peds, #/hr	0	0	0	0	0	0		
age Length 0 300 300 300	Sign Control	Stop	Stop	Free	Free	Free	Free		
in Median Storage, # 0	RT Channelized	-	None	-	None		None		
te, % 0 0 - 0 - 0 - 0 0 - 0 0	Storage Length		-	-	-	300	-		
K Hour Factor 92 92 92 92 92 92 92 92 yy Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	eh in Median Storage	e, # 0	-	0	-	-	0		
vy Vehicles, % 5 5 5 5 5 5 5 5 5 5 1 5 1 5 1 5 1 5	Grade, %	0	-	0	-	-	0		
## Flow	eak Hour Factor	92	92	92	92	92	92		
Triminor Minori Majori	leavy Vehicles, %	5	5	5	5	5	5		
Stage 1 1027	Nvmt Flow	128	166	847	360	335	703		
Stage 1 1027									
Stage 1 1027	laior/Minor	Minor1	N	/laior1		Major?			
Stage 1 1027 -							0		
Stage 2					U				
cal Hdwy Stg 1 5.45 - 4.15 - cal Hdwy Stg 2 5.45 4.15 cal Hdwy Stg 2 5.45 cal Hd				-	-				
cal Hdwy Stg 1 5.45				_	-				
cal Hdwy Stg 2 5.45				-	_				
Stage 1				_	-		-		
Cap-1 Maneuver ~ 36				-	-		-		
Stage 1 341 - - - - Stage 2 232 - - - - con blocked, % - - - - Cap-1 Maneuver ~15 281 - - - Cap-2 Maneuver ~15 - - - - Stage 1 140 - - - - Stage 2 232 - - - - Stage 2 232 - - - - M Control Delay, s \$ 3932 0 6.5 - M LOS F F - - - - Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - - 32 568 - M Lane V/C Ratio - - \$3932 20 - M Lane LOS - - \$3932 20 - M Lane LOS - - F C - M Sth Wille Q(veh) - <				-	-		-		
Stage 2 232				-	-				
Cap-1 Maneuver				-	-				
Cap-1 Maneuver ~ 15		232	-	-	-	-			
Cap-2 Maneuver ~ 15 Stage 1 140		4.5	004	-	-	F00			
Stage 1 140 -				-	-		-		
Stage 2 232			-	-	-		-		
roach WB NB SB If Control Delay, s \$ 3932			-	-	-		-		
M Control Delay, s \$ 3932	Stage 2	232	-	-	-	-	-		
M Control Delay, s \$ 3932									
M Control Delay, s \$ 3932	pproach	WB		NB		SB			
T Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - 32 568 - M Lane V/C Ratio - 9.205 0.589 - M Control Delay (s) - \$3932 20 - M Lane LOS - F C - M 95th %tile Q(veh) - 35.9 3.8 -		\$ 3932		0		6.5			
or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) 32 568 - M Lane V/C Ratio - 9.205 0.589 - M Control Delay (s)\$ 3932 20 - M Lane LOS - F C - M 95th %tile Q(veh) - 35.9 3.8 -	HCM LOS								
acity (veh/h) 32 568 - M Lane V/C Ratio - 9.205 0.589 - M Control Delay (s) - \$3932 20 - M Lane LOS - F C - M 95th %tile Q(veh) - 35.9 3.8 -									
acity (veh/h) 32 568 - M Lane V/C Ratio - 9.205 0.589 - M Control Delay (s) - \$3932 20 - M Lane LOS - F C - M 95th %tile Q(veh) - 35.9 3.8 -	4		NET	NDE	VDL 4	001	057		
M Lane V/C Ratio - - 9.205 0.589 - M Control Delay (s) - - \$3932 20 - M Lane LOS - - F C - M 95th %tile Q(veh) - - 35.9 3.8 -		nt	NRI	NRKA			SBT		
M Control Delay (s)\$ 3932	Capacity (veh/h)		-	-			-		
M Lane LOS F C - M 95th %tile Q(veh) 35.9 3.8 -	ICM Lane V/C Ratio		-				-		
1 95th %tile Q(veh) 35.9 3.8 -	ICM Control Delay (s)		-	- (-		
es e	CM Lane LOS		-	-			-		
	ICM 95th %tile Q(veh		-	-	35.9	3.8	-		
	lotes								
olumo execeta capacity — y. Delay execeta 2003 — 1. Computation Not Delinet — . Ali major volume in plateon		nacity	\$∙ Do	lav evo	pade 3	NΩs	+. Com	outation Not Defined	*· All major volume in platoon
	. volume exceeds ca	pacity	ψ. De	iay ext	ecus 3	003	·. Coll	Julation Not Delined	. All major volume in piatoon

Intersection						
Int Delay, s/veh	1.1					
		WED	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	0.4	↑	7	`	↑
Traffic Vol, veh/h	31	34	860	19	18	685
Future Vol, veh/h	31	34	860	19	18	685
Conflicting Peds, #/hr	0	0	_ 0	0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	150	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	35	38	966	21	20	770
Major/Minor	Mine -1		lais=1		Mais 2	
	Minor1		Major1		Major2	
Conflicting Flow All	1776	966	0	0	987	0
Stage 1	966	-	-	-	-	-
Stage 2	810	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545		-	-	2.245	-
Pot Cap-1 Maneuver	89	305	-	-	688	-
Stage 1	365	-	-	-	-	-
Stage 2	432	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	86	305	-	-	688	-
Mov Cap-2 Maneuver	213	-	-	-	-	-
Stage 1	354	-	-	-	-	-
Stage 2	432	-	-	-	-	-
0 -						
A	\A/D		ND		OB	
Approach	WB		NB		SB	
HCM Control Delay, s	24.9		0		0.3	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT
Capacity (veh/h)		1101	-		688	051
HCM Lane V/C Ratio		-			0.029	-
HOW LAND V/O RAILO					10.4	_
HCM Control Delay (s)		-	-			
		-	- -	С	10.4 B	- -

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL	WDIX		INDIX		
Lane Configurations		0	970	12	ሻ	700
Traffic Vol, veh/h	14	9	879	13	8	708
Future Vol, veh/h	14	9	879	13	8	708
Conflicting Peds, #/hr	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	15	10	945	14	9	761
						. •
Major/Minor	Minor1	N	Major1	N	Major2	
Conflicting Flow All	1731	952	0	0	959	0
Stage 1	952	_	-	-	-	-
Stage 2	779	-	-	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	0.22	_	_	7.12	_
Critical Hdwy Stg 2	5.42	-	_	_	_	-
			_	_		-
Follow-up Hdwy		3.318	-		2.218	-
Pot Cap-1 Maneuver	97	315	-	-	717	-
Stage 1	375	-	-	-	-	-
Stage 2	452	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	96	315	-	-	717	-
Mov Cap-2 Maneuver	227	-	-	-	-	-
Stage 1	370	-	-	-	-	-
Stage 2	452	_	_	_	_	_
J	102					
Approach	WB		NB		SB	
HCM Control Delay, s	20.6		0		0.1	
HCM LOS	С					
Minor Long/Major M.	at	NDT	NDDV	MDI 1	CDI	CDT
Minor Lane/Major Mvn	nt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	255	717	-
HCM Lane V/C Ratio		-	-	0.097		-
HCM Control Delay (s)	-	-	20.6	10.1	-
HCM Lane LOS		-	-	С	В	-
HCM 95th %tile Q(veh	1)	_	-	0.3	0	-
	,					

Intersection						
Int Delay, s/veh	0					
	MDI	WDD	NDT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		₽		• ኝ	↑
Traffic Vol, veh/h	1	0	894	0	2	720
Future Vol, veh/h	1	0	894	0	2	720
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	1	0	961	0	2	774
IVIVIIIL I IUVV		U	JU 1	U		117
Major/Minor	Minor1	N	//ajor1		Major2	
Conflicting Flow All	1739	961	0	0	961	0
Stage 1	961	-	-	-	-	-
Stage 2	778	-	_	_	_	_
Critical Hdwy	6.42	6.22	-	_	4.12	-
Critical Hdwy Stg 1	5.42	- -	_	_		_
Critical Hdwy Stg 1	5.42	-	_			
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
		311	-		716	
Pot Cap-1 Maneuver	96	311	-	-	110	-
Stage 1	371	-	-	-	-	-
Stage 2	453	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	96	311	-	-	716	-
Mov Cap-2 Maneuver	229	-	-	-	-	-
Stage 1	370	-	-	-	-	-
Stage 2	453	-	_	_	_	_
Olago Z	100					
Approach	WB		NB		SB	
HCM Control Delay, s	20.8		0		0	
HCM LOS	С					
J = 0 0						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	229	716	-
HCM Lane V/C Ratio		-	-	0.005	0.003	-
HCM Control Delay (s)		-	-	20.8	10	-
HCM Lane LOS		_	_	С	В	_
HCM 95th %tile Q(veh)	_	_	0	0	_
HOW JOHN JOHNE Q(VEH	1		_	U	U	

Intersection								
Int Delay, s/veh	98.1							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		ĵ.		ች	†		
Fraffic Vol, veh/h	131	176	717	155	102	641		
uture Vol, veh/h	131	176	717	155	102	641		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-		-	None	-	None		
torage Length	0	-	_	-	300	-		
eh in Median Storage		_	0	_	-	0		
Grade, %	0	<u> </u>	0	_	<u> </u>	0		
Peak Hour Factor	95	95	95	95	95	95		
	5	5	5	5		5		
eavy Vehicles, % lvmt Flow	138	185	755	163	5 107	675		
WIIIL FIOW	130	100	755	103	107	0/5		
ajor/Minor	Minor1		Major1		Major2			
onflicting Flow All	1726	837	0	0	918	0		
Stage 1	837	-	-	-	310	-		
Stage 2	889	_		_	_	_		
ritical Hdwy	6.45	6.25	_	_	4.15	-		
tical Hdwy Stg 1	5.45	0.25	_		4.15	_		
tical Hdwy Stg 1	5.45	_	-	_	_	-		
ollow-up Hdwy	3.545		_	_	2.245	_		
t Cap-1 Maneuver	~ 96	362	-	_	731			
•	420	302	-	-	731	-		
Stage 1	397	-	-	-	-	-		
Stage 2	397	-	-		-			
atoon blocked, %	- 00	260	-	-	724	-		
lov Cap-1 Maneuver	~ 82	362	-	-	731	-		
ov Cap-2 Maneuver	~ 82	-	-	-	-	-		
Stage 1	359	-	-	-	-	-		
Stage 2	397	-	-	-	-	-		
pproach	WB		NB		SB			
			0		1.5			
CM Control Delay, s			U		1.5			
CM LOS	F							
linor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT		
	π	INDT	NDIXV	147	731	ODT		
apacity (veh/h) CM Lane V/C Ratio		-	-	2.198		-		
		-				-		
CM Control Delay (s)		-	-\$	610.5	10.8	-		
CM Lane LOS	\	-	-	F	В	-		
CM 95th %tile Q(veh)	-	-	26.6	0.5	-		
ites								
otes Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	00s	+: Com	outation Not Defined	*: All major volume in platoon

Delay, s/veh 2.9	ntersection								
A	nt Delay, s/veh	2.9							
A	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
affic Vol, veh/h 38 55 1184 54 38 1236 turre Vol, veh/h 38 55 1184 54 38 1236 turre Vol, veh/h 38 55 1184 54 38 1236 milificting Peds, #hr 0 0 0 0 0 0 0 gn Control Stop Stop Free Free Free Free Channelized - None - None - None rarge Length 0 - 150 100 - 1 h in Median Storage, # 0 - 0 - 0 - 0 0 0 ade, % 0 0 - 0 - 0 - 0 0 0 ade, % 0 0 - 0 0 - 0 0 0 ade, % 0 0 - 0 0 - 0 0 0 ade, % 0 0 - 0 0 - 0 0 0 ade, % 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 0 ade, % 0 0 0 0 0 0 ad			11011						
ture Vol, veh/h 38 55 1184 54 38 1236 nflicting Peds, #hr no			55						
Inflicting Peds, #/hr									
Stop Stop Free	<u> </u>								
Channelized - None - None - None rarge Length 0 - 150 100 - hit in Median Storage, # 0 - 0 - 150 100 - hit in Median Storage, # 0 - 0 - 0 - 0 ade, % 0 - 0 - 0 - 0 ade, % 0 - 0 - 0 - 0 ade Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92									
prage Length 0 150 100 - 16 hin Median Storage, # 0 - 0 0 adde, % 0 - 0 0 adde, % 0 - 0 0 adde, % 5 5 5 5 5 5 5 5 5 5 5 mt Flow 41 60 1287 59 41 1343 sign/Minor Minor1 Major1 Major2 mt Flow A1 2712 1287 0 0 1346 0 Stage 1 1287									
th in Median Storage, # 0							NOHE		
ade, % 0 - 0 - 0 - 0 - 0 ak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92							_		
Stage 1		<i>J</i>							
Party Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									
Antiform Minor Minor Major Major Major Major Major Minor Minor Minor Major Major Minor Minor Minor Major Major Minor Minor Major Minor Major Minor Minor Minor Major Minor Min									
Signor Minor Major Major Major									
Stage 1 1287 Stage 2 1425 Stage 2 1425	IVIIIL FIOW	41	00	1201	59	41	1343		
Stage 1 1287 Stage 2 1425 Stage 2 1425									
Stage 1	//ajor/Minor			Major1		Major2			
Stage 1	Conflicting Flow All	2712	1287	0	0	1346	0		
Stage 2	<u> </u>			-	-	-	-		
itical Hdwy Stg 1 5.45 4.15		1425	-	-	-	-	-		
itical Hdwy Stg 1 5.45	Critical Hdwy	6.45	6.25	-	-	4.15	-		
Stage 1	Critical Hdwy Stg 1	5.45	-	-	-	-	-		
Stage 1	Critical Hdwy Stg 2	5.45	-	-	-	-	-		
Stage 1	Follow-up Hdwy	3.545	3.345	-	-	2.245	-		
Stage 1 255 - - - - Stage 2 218 - - - - atoon blocked, % - - - - - ov Cap-1 Maneuver 21 198 - <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>				-			-		
Stage 2 218 -	•			_	-	-	-		
ation blocked, %			-	-	-	_	-		
ov Cap-1 Maneuver ~ 21 198 - - 502 - ov Cap-2 Maneuver 101 - - - - Stage 1 234 - - - - Stage 2 218 - - - - Stage 3 -	Platoon blocked, %			_	_		_		
Ov Cap-2 Maneuver 101 -		er ~ 21	198	-	-	502	-		
Stage 1 234 -				_	_		_		
Stage 2 218			-	-	-	_	-		
Description				_	_	_	_		
CM Control Delay, s 76.5 0 0.4 CM LOS F nor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT spacity (veh/h) - 142 502 - CM Lane V/C Ratio - 0.712 0.082 - CM Control Delay (s) - 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) - 4.1 0.3 - otes	2.0.30 =	2.0							
CM Control Delay, s 76.5 0 0.4 CM LOS F nor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT spacity (veh/h) - 142 502 - CM Lane V/C Ratio - 0.712 0.082 - CM Control Delay (s) - 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) - 4.1 0.3 - otes		ME		ND		0.0			
CM LOS F									
nor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT spacity (veh/h) - 142 502 - CM Lane V/C Ratio - 0.712 0.082 - CM Control Delay (s) - 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) - 4.1 0.3 - otes				0		0.4			
pacity (veh/h) 142 502 - CM Lane V/C Ratio 0.712 0.082 - CM Control Delay (s) 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) 4.1 0.3 - where	ICM LOS	F							
pacity (veh/h) 142 502 - CM Lane V/C Ratio 0.712 0.082 - CM Control Delay (s) 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) 4.1 0.3 - where									
M Lane V/C Ratio 0.712 0.082 - CM Control Delay (s) 76.5 12.8 - CM Lane LOS - F B - CM 95th %tile Q(veh) - 4.1 0.3 -	<u> Minor Lane/Major M</u>	vmt	NBT	NBRV	VBLn1	SBL	SBT		
M Lane V/C Ratio 0.712 0.082 - CM Control Delay (s) 76.5 12.8 - CM Lane LOS F B - CM 95th %tile Q(veh) 4.1 0.3 -	apacity (veh/h)		-	-	142	502			
CM Control Delay (s) 76.5 12.8 - CM Lane LOS F B - CM 95th %tile Q(veh) 4.1 0.3 -	ICM Lane V/C Ratio	0	-	-			-		
CM Lane LOS F B - CM 95th %tile Q(veh) 4.1 0.3 - Stees			-	-			-		
CM 95th %tile Q(veh) 4.1 0.3 - otes	ICM Lane LOS		_	_			-		
ites		eh)	-	-			-		
	· ·								
volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon		.,	Φ. 5			00		(C N 1 D C 1	W A11
	: Volume exceeds	capacity	\$: De	elay exc	eeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX		NON	JDL Š	<u> </u>
Traffic Vol, veh/h	T	0	1236	3		T 1275
		0			0	
Future Vol, veh/h	3	0	1236	3	0	1275
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	3	0	1343	3	0	1386
		_		_		
	Minor1		Major1		Major2	
Conflicting Flow All	2731	1345	0	0	1346	0
Stage 1	1345	-	-	-	-	-
Stage 2	1386	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	_	_	-
Critical Hdwy Stg 2	5.42	_	_	-	-	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	23	185	_	_	512	_
Stage 1	243	-	_	_	012	_
Stage 2	232	_		_	_	_
	232	_	_		_	
Platoon blocked, %	00	405	-	-	540	-
Mov Cap-1 Maneuver		185	-	-	512	-
Mov Cap-2 Maneuver	119	-	-	-	-	-
Stage 1	243	-	-	-	-	-
Stage 2	232	-	-	-	-	-
Approach	WB		NB		SB	
					0	
HCM Control Delay, s	36.1		0		U	
HCM LOS	Е					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		512	
HCM Lane V/C Ratio		_		0.027	312	
	١		-	36.1	0	-
HCM Long LOS)	-				-
HCM Lane LOS	.\	-	-	E	A	-
HCM 95th %tile Q(veh	1)	-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0					
		WED	NOT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	^	^		<u> </u>	1000
Traffic Vol, veh/h	1	0	1206	1	0	1280
Future Vol, veh/h	1	0	1206	1	0	1280
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	1	0	1297	1	0	1376
Majay/Minay	11:1		10:04	,	\/a:a=0	
	Minor1		Major1		Major2	
Conflicting Flow All	2674	1298	0	0	1298	0
Stage 1	1298	-	-	-	-	-
Stage 2	1376	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	25	198	-	-	534	-
Stage 1	256	-	-	-	-	-
Stage 2	234	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	25	198	-	-	534	-
Mov Cap-2 Maneuver	123	-	-	-	-	-
Stage 1	256	-	-	-	_	-
Stage 2	234	_	_	_	_	_
	_0 '					
					^=	
Approach	WB		NB		SB	
HCM Control Delay, s	34.5		0		0	
HCM LOS	D					
		NDT	NIRDV	VBLn1	SBL	SBT
Minor Lane/Major Mym	ıt .	MRI		VULII	ODL	ושט
Minor Lane/Major Mym	nt	NBT			E3.4	
Capacity (veh/h)	nt	-	-	123	534	-
Capacity (veh/h) HCM Lane V/C Ratio		-	-	123 0.009	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	- - -	123 0.009 34.5	0	-
Capacity (veh/h) HCM Lane V/C Ratio		-	-	123 0.009	-	

Pelay, siveh 88.1	ntersection								
### BY	nt Delay, s/veh	88.1							
e Configurations i	•		WDD	NDT	NDD	0.01	ODT		
fic Vol, veh/h 159 204 1043 447 409 857 re Vol, veh/h 159 204 1043 447 409 857 ficiting Peds, #hr 0 0 0 0 0 0 Channelized None None None None None age Length 0 - - 300 - in Median Storage, # 0 - 0 - 0 ie, % 0 - 0 - 0 - 4 Hour Factor 92 92 92 92 92 92 vy Vehicles, % 5 5 5 5 5 5 5 5 10 16 16 173 222 1134 486 445 932 445 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	lovement		WBK		NRK				
re Vol, veh/h 159 204 1043 447 409 857 flicting Peds, #/hr 0 0 0 0 0 0 0 0 Control Stop Stop Free Free Free Channelized - None - None age Length 0 - 0 - 0 300 - 0 In Median Storage, # 0 - 0 - 0 - 0 Ite, % 0 - 0 Ite, % 0 - 0 - 0 Ite, % 0 - 0 Ite									
flicting Peds, #hr 0 0 0 0 0 0 0 0 0 0 Control Stop Stop Free Free Free Free Channelized - None age Length 0 300 - in Median Storage, # 0 - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	raffic Vol, veh/h								
Control Stop Stop Free Free Free Free Page Length 0 - None age Length 0 - O - O - O O - O O O O O O O O O O O	uture Vol, veh/h								
Channelized - None - None - None age Length 0 300 - in Median Storage, # 0 - 0 0 de, % 0 - 0 - 0 - 0 de, % 0 - 0 - 0 de, % 0 - 0 - 0 de, % 0 - 0 de, % 0 - 0 de, % 0 d	onflicting Peds, #/hr								
age Length 0 300 - in Median Storage, # 0 - 0 - 0 - 0 de, % 0 - 0 - 0 - 0 de, % 0 - 0 - 0 de, % 0 - 0 de, % 0 - 0 de, %	ign Control	Stop				Free			
in Median Storage, # 0 - 0 0 ie, % 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 - 0 ie, % 0 0 - 0 - 0 - 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 0 ie, % 0 0 - 0 - 0 0 ie, % 0 0 - 0 0 0 ie, % 0 0 - 0 0 0 0 ie, % 0 0 - 0 0 0 0 ie, % 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0 0 0 0 0 0 ie, % 0 0 0 0 0 0	T Channelized	-	None	-	None		None		
te, % 0 0 - 0 0 0 - 0 0 - 0 0 0 0 0 0 0	torage Length		-	-	-	300	-		
Kelour Factor 92 92 92 92 92 92 92 9	eh in Median Storag	je,# 0	-	0	-	-	0		
vy Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 1 5 1 5 1 5 1 5	Grade, %	0	-	0	-	-	0		
173 222 1134 486 445 932 137 1319 1377 0 0 1620 0 0 0 0 0 0 0 0 0	eak Hour Factor	92	92	92	92	92	92		
173 222 1134 486 445 932 137 1319 1377 0 0 1620 0 0 0 0 0 0 0 0 0	eavy Vehicles, %	5	5	5	5	5	5		
Stage 1 1377	lvmt Flow	173	222	1134	486	445	932		
Stage 1 1377									
Stage 1 1377	aior/Minor	Minor1	N	Major1		Major?			
Stage 1							0		
Stage 2 1822				U	U				
cal Hdwy Stg 1 5.45 4.15				-	-				
cal Hdwy Stg 1 5.45				-	-				
cal Hdwy Stg 2 5.45 -				-	-				
Divump Hdwy 3.545 3.345 - 2.24				_	_		-		
Cap-1 Maneuver ~ 11 ~ 175 - ~ 394 - Stage 1 231 - - - - Stage 2 ~ 139 - - - - con blocked, % - - - - - Cap-1 Maneuver 0 - - - - - Cap-2 Maneuver 0 - </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>				-	-		-		
Stage 1 231 - - - - Stage 2 ~ 139 - - - - con blocked, % - - - - - Cap-1 Maneuver 0 ~ 175 - ~ 394 - Cap-2 Maneuver 0 - - - - Stage 1 0 - - - - Stage 2 ~ 139 - - - - M Control Delay, s \$ 625 0 37.8 M LOS F Or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - - 175 ~ 394 - M Lane V/C Ratio - - 2.255 1.128 - M Control Delay (s) - - \$ 625 117 - M Lane LOS - - F F - M Sth %tile Q(veh) - - 32.1 16.5 -				-	-		-		
Stage 2 ~ 139 - <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>~ 394</td><td>-</td><td></td><td></td></td<>				-	-	~ 394	-		
Cap-1 Maneuver 0 ~ 175 ~ 394 - Cap-2 Maneuver 0 Stage 1 0 Stage 2 ~ 139			-	-	-	-	-		
Cap-1 Maneuver		~ 139	-	-	-	-	-		
Cap-2 Maneuver 0 Stage 1 0 Stage 2 ~ 139	latoon blocked, %			-	-		-		
Stage 1 0 - </td <td>lov Cap-1 Maneuver</td> <td></td> <td>~ 175</td> <td>-</td> <td>-</td> <td>~ 394</td> <td>-</td> <td></td> <td></td>	lov Cap-1 Maneuver		~ 175	-	-	~ 394	-		
Stage 2 ~ 139	lov Cap-2 Maneuver		-	-	-	-	-		
roach WB NB SB M Control Delay, s \$ 625			-	-	-	-	-		
M Control Delay, s \$ 625 M LOS The Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Sacity (veh/h) 175 ~ 394	Stage 2	~ 139	-	-	-	-	-		
M Control Delay, s \$ 625 M LOS The Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Sacity (veh/h) 175 ~ 394									
M Control Delay, s \$ 625 M LOS The Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Sacity (veh/h) 175 ~ 394	pproach	WR		NB		SB			
TLane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) - 175 ~ 394 - 1 Lane V/C Ratio - 2.255 1.128 - 1 Control Delay (s) - \$625 117 - 1 Lane LOS - F F - 1 95th %tile Q(veh) - 32.1 16.5 -									
or Lane/Major Mvmt NBT NBRWBLn1 SBL SBT acity (veh/h) 175 ~ 394 - M Lane V/C Ratio - 2.255 1.128 - M Control Delay (s) \$625 117 - M Lane LOS - F F - M 95th %tile Q(veh) - 32.1 16.5 -				U		01.0			
acity (veh/h) 175 ~ 394 - M Lane V/C Ratio - 2.255 1.128 - M Control Delay (s) - \$625 117 - M Lane LOS - F F - M 95th %tile Q(veh) - 32.1 16.5 -	OIVI LOG	r							
acity (veh/h) 175 ~ 394 - M Lane V/C Ratio - 2.255 1.128 - M Control Delay (s) - \$625 117 - M Lane LOS - F F - M 95th %tile Q(veh) - 32.1 16.5 -									
M Lane V/C Ratio - - 2.255 1.128 - M Control Delay (s) - - \$ 625 117 - M Lane LOS - - F F M 95th %tile Q(veh) - - 32.1 16.5 -		mt	NBT	NBRV			SBT		
M Control Delay (s) - - \$ 625 117 - M Lane LOS - - F F - M 95th %tile Q(veh) - - 32.1 16.5 -	apacity (veh/h)		-	-			-		
1 Lane LOS F F - 1 95th %tile Q(veh) 32.1 16.5 -	CM Lane V/C Ratio		-				-		
1 95th %tile Q(veh) 32.1 16.5 -	CM Control Delay (s	s)	-	-	\$ 625	117	-		
· ·	CM Lane LOS		-	-	F	F	-		
es S	CM 95th %tile Q(vel	h)	-	-	32.1	16.5	-		
	otes								
		anaoity	¢. Da	alay ova	oods 2	000	T. Com	outation Not Defined	*: All major volume in plotoer
olume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	volume exceeds ca	apacity	φ. De	elay exc	eeus 3	005	+. COIII	Dutation Not Delined	. Ali major volume in piatoon

ntersection								
nt Delay, s/veh	2.3							
		WDD	NDT	NDD	ODI	ODT		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
_ane Configurations	Y	45	4447	7	\	↑		
raffic Vol, veh/h	41	45	1147	25	25	912		
uture Vol, veh/h	41	45	1147	25	25	912		
onflicting Peds, #/hr		0	_ 0	_ 0	_ 0	_ 0		
gn Control	Stop	Stop	Free	Free	Free	Free		
T Channelized	-	None	-	None	-	None		
Storage Length	0	-	-	150	100	-		
eh in Median Storag		-	0	-	-	0		
rade, %	0	-	0	-	-	0		
eak Hour Factor	89	89	89	89	89	89		
eavy Vehicles, %	5	5	5	5	5	5		
lvmt Flow	46	51	1289	28	28	1025		
ajor/Minor	Minor1	N	Major1	_	Major2			
onflicting Flow All	2370	1289	0	0	1317	0		
Stage 1	1289	1209	-		1317	-		
Stage 2	1081	<u>-</u>		_	_	_		
ritical Hdwy	6.45	6.25	_	-	4.15	-		
tical Hdwy Stg 1	5.45	0.25		_	4.15	_		
tical Hdwy Stg 1	5.45		_	<u>-</u>		<u>-</u>		
	3.545		_	-	2.245	-		
llow-up Hdwy	3.545 ~ 38	197	-	-	515	-		
ot Cap-1 Maneuver	255			=		-		
Stage 1	321	-	-	-	-	-		
Stage 2	321	-	-	-	-	-		
atoon blocked, %		107	_	-	EAF	-		
lov Cap-1 Maneuver		197	-	-	515	-		
ov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	241	-	-	-	-	-		
Stage 2	321	-	-	-	-	-		
proach	WB		NB		SB			
CM Control Delay, s			0		0.3			
CM LOS	F				0.0			
	,							
Uman I ama / N. 4 . 1 2. 4		NDT	MDD	VDL 4	ODI	ODT		
inor Lane/Major Mvr	TIT	NBT	NRKA	VBLn1	SBL	SBT		
apacity (veh/h)		-	-	163	515	-		
CM Lane V/C Ratio		-			0.055	-		
CM Control Delay (s	5)	-	-	55	12.4	-		
CM Lane LOS	,	-	-	F	В	-		
CM 95th %tile Q(veh	1)	-	-	3.2	0.2	-		
otes								
Volume exceeds ca	anacity	\$· De	lav exc	eeds 3	00s	+. Com	putation Not Defined	*: All major volume in platoon
. Volumo exceeds co	apacity	ψ. De	nay GAL	ocus o	003		Patation Not Defined	. All major volume in piatoon

Intersection						
Int Delay, s/veh	0					
		MDD	NOT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Å	0	\$	^	<u> </u>	↑
Traffic Vol, veh/h	0	3	1184	2	0	953
Future Vol, veh/h	0	3	1184	2	0	953
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	0	3	1273	2	0	1025
Majay/Minay	Minaul		10:04	,	Maia#0	
	Minor1		Major1		Major2	
Conflicting Flow All	2299	1274	0	0	1275	0
Stage 1	1274	-	-	-	-	-
Stage 2	1025	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	43	204	-	-	545	-
Stage 1	263	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	43	204	-	-	545	-
Mov Cap-2 Maneuver	156	-	-	-	-	-
Stage 1	263	-	-	-	-	-
Stage 2	346	_	-	_	_	_
- W.go _						
Approach	WB		NB		SB	
HCM Control Delay, s	22.9		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NRR\	VBLn1	SBL	SBT
IVIII IOI LAITO/IVIAIOI IVIVII	ıı	INDI	-		545	ODI
		-	-			-
Capacity (veh/h)				0.016		
Capacity (veh/h) HCM Lane V/C Ratio		-		0.016	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	22.9	0	-
Capacity (veh/h) HCM Lane V/C Ratio						

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NPT	NBR	SBL	SBT
		WDK	NBT	NDK		
Lane Configurations	Y	^	1107	0	ች	050
Traffic Vol, veh/h	0	0	1187	0	2	950
Future Vol, veh/h	0	0	1187	0	2	950
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	0	0	1276	0	2	1022
WWITTE	U	U	1210	U	_	1022
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	2302	1276	0	0	1276	0
Stage 1	1276	-	-	-	-	-
Stage 2	1026	-	_	_	_	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_	_		_	_
Follow-up Hdwy	3.518		_	_	2.218	_
	42	204	_		544	
Pot Cap-1 Maneuver			-	-	544	-
Stage 1	262	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	42	204	-	-	544	-
Mov Cap-2 Maneuver	154	-	-	-	-	-
Stage 1	261	-	-	-	-	-
Stage 2	346	-	_	_	_	-
5 th g =						
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
M:	-1	NDT	NDDV	VDI 4	CDI	CDT
Minor Lane/Major Mvn	IL	NBT	NBKV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	544	-
HCM Lane V/C Ratio		-	-		0.004	-
HCM Control Delay (s)		-	-	0	11.6	-
HCM Lane LOS		-	-	Α	В	-
HCM 95th %tile Q(veh)	-	-	-	0	-
	,					

May Sych 438.5 Ment WBL WBR NBT NBR SBL SBT	Intersection								
ment WBL WBR NBT NBR SBL SBT Configurations Y	Int Delay, s/veh	438.5							
Configurations V 95	<u> </u>								
c: Vol, velv/h	Movement		WBR		NBR				
e Vol, veh/h 177 234 951 209 132 848 ctring Peds, #hr 0 0 0 0 0 0 0 0 0 Control Stop Stop Free Free Free Free hannelized	_ane Configurations								
icting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	raffic Vol, veh/h								
Stop	uture Vol, veh/h								
None None	onflicting Peds, #/hr								
ge Length 0 300 1 Median Storage, # 0 - 0 0 0 a., % 0 - 0 - 0 0 a., % 0 - 0 - 0 - 0 - 0 a. Median Storage, # 0 - 0 - 0 - 0 a., % 0 - 0 - 0 - 0 a. Median Storage, # 0 - 0 0 a., % 0 - 0 0 a., % 0 - 0 0 a., % 0 a., % 0 - 0 0 a., % 0 a.	ign Control	Stop				Free			
Median Storage, # 0	RT Channelized		None	-	None		None		
e, % 0 - 0 - 0 - 0 - 0 Hour Factor 95 95 95 95 95 95 95 95 95 95 95 95 95	Storage Length		-	-	-	300	-		
Hour Factor 95 95 95 95 95 95 95 95 95 95 95 95 95	eh in Median Storag	e, # 0	-	0	-	-	0		
y Vehicles, % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Grade, %	0	-	0	-	-	0		
Flow	eak Hour Factor	95	95	95	95	95	95		
Flow	leavy Vehicles, %	5	5	5	5	5	5		
Stage 1 1111	1vmt Flow	186	246	1001	220	139	893		
Stage 1 1111									
Stage 1 1111	aior/Minor	Minor1	N	Major1		Major?			
Stage 1 1111 - - - - Stage 2 1171 - - - - al Hdwy 6.45 6.25 - - 4.15 - al Hdwy Stg 1 5.45 - - - - al Hdwy Stg 2 5.45 - - - - w-up Hdwy 3.545 3.345 - 2.245 - ap-1 Maneuver ~43 251 - - - Stage 1 311 - - - - Cap-1 Maneuver ~32 251 - - 561 - Cap-2 Maneuver ~32 - - - - - - Stage 1 234 - - - - - - - Stage 2 291 -							0		
Stage 2 1171				U	U				
al Hdwy Stg 1 5.45 4.15 - al Hdwy Stg 1 5.45				-	-				
al Hdwy Stg 1 5.45				-	-				
al Hdwy Stg 2 5.45				-	-				
Arup Hdwy 3.545 3.345 2.245				_	_		-		
Stage 1 311 -				-	-		-		
Stage 1 311 - - - - Stage 2 291 - - - - on blocked, % - - - - Cap-1 Maneuver 32 251 - - - Cap-2 Maneuver 32 - - - - Stage 1 234 - - - - Stage 2 291 - - - - Stage 2 291 - - - - Ontrol Delay, \$ 2717.6 0 1.8 - - Control Delay, \$ 2717.6 0 1.8 - - Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) - - 6.76 0.248 - Lane V/C Ratio - - 6.76 0.248 - Control Delay (s) - \$ 2717.6 13.5 - Lane LOS - - F B - 95th %tile Q(veh) - -				-	-		-		
Stage 2 291 -	•			-	-	561	-		
Cap-1 Maneuver				-	-	-	-		
Cap-1 Maneuver ~ 32		291	-	-	-	-	-		
Cap-2 Maneuver ~ 32 -	Platoon blocked, %			-	-		-		
Stage 1 234 -	Nov Cap-1 Maneuver			-	-	561	-		
Stage 2 291 -	lov Cap-2 Maneuver		-	-	-	-	-		
NB			-	-	-	-	-		
Control Delay, \$ 2717.6 LOS F Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) 64 561 - Lane V/C Ratio 6.76 0.248 - Control Delay (s) - \$ 2717.6 13.5 - Lane LOS F B - 95th %tile Q(veh) - 49.4 1 -	Stage 2	291	-	-	-	-	-		
Control Delay, \$ 2717.6 LOS F Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) 64 561 - Lane V/C Ratio 6.76 0.248 - Control Delay (s) - \$ 2717.6 13.5 - Lane LOS F B - 95th %tile Q(veh) - 49.4 1 -									
Control Delay, \$ 2717.6 LOS F Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) 64 561 - Lane V/C Ratio 6.76 0.248 - Control Delay (s) - \$ 2717.6 13.5 - Lane LOS F B - 95th %tile Q(veh) - 49.4 1 -	pproach	WB		NB		SB			
LOS F Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) - 64 561 - Lane V/C Ratio - 6.76 0.248 - Control Delay (s) - \$2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -									
Lane/Major Mvmt NBT NBRWBLn1 SBL SBT city (veh/h) - 64 561 - Lane V/C Ratio - 6.76 0.248 - Control Delay (s) - \$2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -	ICM LOS			v		1.0			
city (veh/h) 64 561 - Lane V/C Ratio - 6.76 0.248 - Control Delay (s) - \$2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -	IOW EOO								
city (veh/h) 64 561 - Lane V/C Ratio - 6.76 0.248 - Control Delay (s) - \$2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -									
Lane V/C Ratio 6.76 0.248 - Control Delay (s) - \$2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -	linor Lane/Major Mvr	nt	NBT	NBRV			SBT		
Control Delay (s) - \$ 2717.6 13.5 - Lane LOS - F B - 95th %tile Q(veh) - 49.4 1 -	apacity (veh/h)		-	-			-		
Lane LOS F B - 95th %tile Q(veh) 49.4 1 -	CM Lane V/C Ratio		-				-		
95th %tile Q(veh) 49.4 1 -	ICM Control Delay (s	s)	-	\$ 2			-		
	CM Lane LOS		-	-			-		
	ICM 95th %tile Q(veh	n)	-	-	49.4	1	-		
	lotes								
iume exceeds capacity — \$. Delay exceeds 5005 — +. Computation Not Delined — . All major volume in platoor.		naoity	¢. Da	Nov ovo	oods 3	000	+: Com	outation Not Defined	*: All major valuma in platear
	. volume exceeds ca	apacity	φ. De	ay ext	ceus 3	005	7. CUIII	butation Not Delined	. Ali major volume in piatoon

Intersection								
Int Delay, s/veh	3.1							
<u> </u>		WDD	NDT	NDD	CDI	CDT		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	¥		1100	7	<u> </u>	1000		
raffic Vol, veh/h	39	55	1193	55	38	1238		
uture Vol, veh/h	39	55	1193	55	38	1238		
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	-	-	150	100	-		
eh in Median Storag		-	0	-	-	0		
rade, %	0	-	0	-	-	0		
eak Hour Factor	92	92	92	92	92	92		
eavy Vehicles, %	5	5	5	5	5	5		
1vmt Flow	42	60	1297	60	41	1346		
ajor/Minor	Minor1	N	Major1	ı	Major2			
onflicting Flow All	2725	1297	0	0	1357	0		
Stage 1	1297	1231	-	-	1001	-		
Stage 2	1428	<u>-</u>		_	_	_		
ritical Hdwy	6.45	6.25	_	_	4.15	_		
itical Hdwy Stg 1	5.45	0.25	_	_	T. 13	_		
ritical Hdwy Stg 2	5.45	_	_	_	_	_		
ollow-up Hdwy	3.545		-	-	2.245	_		
ot Cap-1 Maneuver	~ 22	195	-	-	497			
Stage 1	252	195	-	-	431	_		
Stage 2	218		<u>-</u>	_				
atoon blocked, %	210	-	-	-	-			
	20	195	-	-	497	-		
lov Cap-1 Maneuver			-	-		-		
lov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	231	-	-	-	-	-		
Stage 2	218	-	-	-	-	-		
pproach	WB		NB		SB			
ICM Control Delay, s	80.1		0		0.4			
ICM LOS	F							
linar Lana/Maiar M.	~ 4	NDT	NDDV	VDL 4	CDI	CDT		
linor Lane/Major Mvr	IIL	NBT	NRKV	VBLn1	SBL	SBT		
apacity (veh/h)		-	-	140	497	-		
CM Lane V/C Ratio		-	-		0.083	-		
CM Control Delay (s	5)	-	-	80.1	12.9	-		
CM Lane LOS	`	-	-	F	В	-		
CM 95th %tile Q(veh	1)	-	-	4.3	0.3	-		
otes								
Volume exceeds ca	pacity	\$: De	lav exc	eeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoon
Tolumo oxocodo oc	paorty	ψ. DC	iay one	.5040 0		. 50111	patation 110t Dollinou	. 7 ar major volumo in piatoon

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		WDN		NDI	SBL N	
	\Y	10	1006	E		1075
Traffic Vol, veh/h	15	10	1236	5	3	1275
Future Vol, veh/h	15	10	1236	5	3	1275
Conflicting Peds, #/hi		0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	5	2	2	5
Mvmt Flow	16	11	1343	5	3	1386
		_				
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2738	1346	0	0	1348	0
Stage 1	1346	-	-	-	-	-
Stage 2	1392	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	_	-
Follow-up Hdwy	3.518	3.318	-	_	2.218	_
Pot Cap-1 Maneuver		185	_	_	511	_
Stage 1	242	-	_	_	-	_
Stage 2	230	-	_	_	_	_
Platoon blocked, %	200		_			_
	r 22	185	-	_	511	-
Mov Cap-1 Maneuve			_	-		
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	241	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Approach	WB		NB		SB	
			0		0.0	
HCM Control Dolay	5 31.1 E		U		U	
HCM LOS						
HCM Control Delay, s HCM LOS						
HCM LOS		NBT	NBRV	VBLn1	SBL	SBT
HCM LOS Minor Lane/Major Mv		NBT -	NBRV -	VBLn1 137	SBL 511	SBT -
Minor Lane/Major Mv Capacity (veh/h)	mt		-	137	511	
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio	mt		-	137 0.198	511 0.006	-
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	mt	- - -	-	137 0.198 37.7	511 0.006 12.1	- - -
Minor Lane/Major Mv Capacity (veh/h) HCM Lane V/C Ratio	mt s)		-	137 0.198	511 0.006	-

Intersection						
Int Delay, s/veh	0					
• •		WED	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	_	\$		ች	1005
Traffic Vol, veh/h	1	0	1211	1	0	1295
Future Vol, veh/h	1	0	1211	1	0	1295
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	1	0	1302	1	0	1392
IVIVIII I IOW	•	U	1002	•	U	1002
Major/Minor	Minor1	N	//ajor1	ľ	Major2	
Conflicting Flow All	2695	1303	0	0	1303	0
Stage 1	1303	-	-	-	-	-
Stage 2	1392	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318		<u>-</u>	2.218	_
Pot Cap-1 Maneuver	24	196	_	_	531	-
			-	-	551	-
Stage 1	254	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	24	196	-	-	531	-
Mov Cap-2 Maneuver	121	-	-	-	-	-
Stage 1	254	-	-	-	-	-
Stage 2	230	-	-	-	-	-
Ü						
	MA		ND		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s	35		0		0	
HCM LOS	Ε					
Minor Long/Major My	-1	NDT	NDDV	VDI 51	SBL	SBT
Minor Lane/Major Mvn	IL	NBT	INDKV	VBLn1		
Capacity (veh/h)		-	-	121	531	-
HCM Lane V/C Ratio		-	-	0.009	-	-
HCM Control Delay (s)		-	-	35	0	-
HCM Lane LOS		-	-	Е	Α	-
HCM 95th %tile Q(veh)	-	-	0	0	-
•						

Intersection								
Int Delay, s/veh	89.7							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		ĵ»		*	†		
Traffic Vol, veh/h	159	205	1047	447	413	868		
Future Vol, veh/h	159	205	1047	447	413	868		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-		-	None	-	None		
Storage Length	0	-	-	-	300	-		
/eh in Median Storage	e, # 0	-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	92	92	92	92	92	92		
leavy Vehicles, %	5	5	5	5	5	5		
/lvmt Flow	173	223	1138	486	449	943		
/lajor/Minor	Minor1		Major1		Major2			
Conflicting Flow All	3222	1381	0	0	1624	0		
Stage 1	1381	-	-	-	-	-		
Stage 2	1841	-	-	-	-	-		
Critical Hdwy	6.45	6.25	-	-	4.15	-		
ritical Hdwy Stg 1	5.45	-	-	-	-	-		
ritical Hdwy Stg 2	5.45	-	-	-	-	-		
ollow-up Hdwy	3.545	3.345	-	-	2.245	-		
ot Cap-1 Maneuver		~ 174	-	-	~ 392	-		
Stage 1	230	-	-	-	-	-		
Stage 2	~ 136	-	-	_	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver	0	~ 174	-	-	~ 392	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	0	-	-	-	-	-		
Stage 2	~ 136	-	-	-	-	-		
pproach	WB		NB		SB			
HCM Control Delay, s∜	633.7		0		39.7			
HCM LOS	F							
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT		
Capacity (veh/h)		-	-		~ 392	-		
HCM Lane V/C Ratio		-	-	2.274		-		
HCM Control Delay (s))	-		633.7	123	-		
HCM Lane LOS		-	-	F	F	-		
HCM 95th %tile Q(veh	1)	-	-	32.3	17	-		
Notes								
~: Volume exceeds ca	nacity	\$: De	alay eye	ceeds 3	00s	+· Com	putation Not Defined	*: All major volume in platoon
. volume exceeds ca	pacity	φ. De	ay exc	Jeeus 3	005	+. UUIII	putation Not Delined	. Ali major volume in piatoon

Intersection								
Int Delay, s/veh	2.4							
<u> </u>		14/55	NET	NDD	0.01	007		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	À		↑	7		↑		
raffic Vol, veh/h	42	45	1155	26	25	919		
ture Vol, veh/h	42	45	1155	26	25	919		
onflicting Peds, #/hr		0	0	0	0	0		
gn Control	Stop	Stop	Free	Free	Free	Free		
T Channelized	-	None	-	None	-	None		
torage Length	0	-	-	150	100	-		
eh in Median Storag		-	0	-	-	0		
rade, %	0	-	0	-	-	0		
eak Hour Factor	89	89	89	89	89	89		
eavy Vehicles, %	5	5	5	5	5	5		
rmt Flow	47	51	1298	29	28	1033		
ijor/Minor	Minor1	N	Major1	ı	Major2			
		1298				0		
onflicting Flow All	2387 1298		0	0	1327	0		
Stage 1		-	-	-	-	-		
Stage 2	1089	6.25	-	-	4.15	-		
tical Hdwy	6.45		-	-		-		
itical Hdwy Stg 1	5.45	-	-	-	-	-		
itical Hdwy Stg 2	5.45	- 0.45	-	-	- 0.45	_		
ollow-up Hdwy	3.545		-	-	2.245	-		
t Cap-1 Maneuver	~ 37	195	-	-	511	-		
Stage 1	252	-	-	-	-	-		
Stage 2	318	-	-	-	-	-		
atoon blocked, %	0.5	40=	-	-	F 4 4	-		
ov Cap-1 Maneuvei		195	-	-	511	-		
ov Cap-2 Maneuvei		-	-	-	-	-		
Stage 1	238	-	-	-	-	-		
Stage 2	318	-	-	-	-	-		
proach	WB		NB		SB			
CM Control Delay, s			0		0.3			
CM LOS	F				0.0			
	'							
nor Lane/Major Mv	mt	NBT	NBRV	VBLn1	SBL	SBT		
apacity (veh/h)		-	-	161	511	-		
CM Lane V/C Ratio		-	-		0.055	-		
CM Control Delay (s	s)	-	-	57	12.5	-		
CM Lane LOS		-	-	F	В	-		
CM 95th %tile Q(ve	h)	-	-	3.3	0.2	-		
otes								
	onocit.	¢. D.	dov. ove	oods 2	000	ı: Cara	outation Not Defined	*: All major valuma in plata an
Volume exceeds ca	apacity	⊅: De	elay exc	eeds 3	UUS	+: Com	putation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	0.4					
		WED	NDT	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		₽		7	↑
Traffic Vol, veh/h	14	9	1184	13	8	953
Future Vol, veh/h	14	9	1184	13	8	953
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	250	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	15	10	1273	14	9	1025
WWW. LOW	10	10	1210		J	1020
Major/Minor	Minor1	N	Major1	ľ	Major2	
Conflicting Flow All	2323	1280	0	0	1287	0
Stage 1	1280	_	-	-	-	-
Stage 2	1043	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_			_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
			_			-
Pot Cap-1 Maneuver	41	202	-	-	539	-
Stage 1	261	-	-	-	-	-
Stage 2	339	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		202	-	-	539	-
Mov Cap-2 Maneuver	150	-	-	-	-	-
Stage 1	257	-	-	-	-	-
Stage 2	339	-	-	-	-	-
J						
A	\A/D		NE		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s	30.3		0		0.1	
HCM LOS	D					
Minor Lana/Major Myn	nt.	NDT	NDDV	MDI n1	CDI	SBT
Minor Lane/Major Mvn	iit.	NBT	NDKV	VBLn1	SBL	
Capacity (veh/h)		-	-	167	539	-
HCM Lane V/C Ratio		-	-	0.148		-
HCM Control Delay (s)	-	-	30.3	11.8	-
HCM Lane LOS				D	В	-
HCM 95th %tile Q(veh	1)	-	-	0.5	0	-

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NDT	NBR	SBL	SBT
		WDK	NBT	NDK		
Lane Configurations	M	^	1	^	<u>ች</u>	†
Traffic Vol, veh/h	0	0	1200	0	2	964
Future Vol, veh/h	0	0	1200	0	2	964
Conflicting Peds, #/hr	0	0	_ 0	0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	275	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	5	2	2	5
Mymt Flow	0	0	1290	0	2	1037
IVIVIII I IOW	U	U	1230	U		1001
Major/Minor	Minor1	<u> </u>	Major1		Major2	
Conflicting Flow All	2331	1290	0	0	1290	0
Stage 1	1290	-	-	-	-	_
Stage 2	1041	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	7.12	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
	3.518		_	-	0.010	
Follow-up Hdwy			-			-
Pot Cap-1 Maneuver	41	200	-	-	538	-
Stage 1	258	-	-	-	-	-
Stage 2	340	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	41	200	-	-	538	-
Mov Cap-2 Maneuver	152	-	-	-	-	-
Stage 1	257	-	-	-	_	-
Stage 2	340	_	_	_	_	_
Jugo 2	3-10					
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
M:	_1	NDT	NDDV	VDI 4	ODI	CDT
Minor Lane/Major Mvn	nt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	538	-
HCM Lane V/C Ratio		-	-	-	0.004	-
HCM Control Delay (s)	-	-	0	11.7	-
HCM Lane LOS		-	-	Α	В	-
HCM 95th %tile Q(veh	1)	-	-	-	0	-
	1					

Intersection							
Int Delay, s/veh	457.1						
Movement	WBL	WBR	R.	NBT	NBR	SBL	SBT
Lane Configurations	₩.	ופוז		14	אטוי	JDL	<u> </u>
Traffic Vol, veh/h	177	237	37	961	209	135	T 859
Future Vol, veh/h	177	237		961	209	135	859
	0	0		0	209	0	009
Conflicting Peds, #/hr							
Sign Control	Stop	Stop	•	Free	Free	Free	Free
RT Channelized	-				None	-	None
Storage Length	0	-		-	-	300	-
Veh in Median Storage		-	-	0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	95	95) 5	95	95	95	95
Heavy Vehicles, %	5	5	5	5	5	5	5
Mvmt Flow	186	249	19 ´	1012	220	142	904
Majay/Minay	Minord		N 4.	nin-1		Maia#0	
	Minor1			lajor1		Major2	
Conflicting Flow All	2310	1122		0	0	1232	0
Stage 1	1122	-		-	-	-	-
Stage 2	1188	-		-	-	-	-
Critical Hdwy	6.45	6.25	25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-	-
Critical Hdwy Stg 2	5.45	_	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	15	-	-	2.245	-
Pot Cap-1 Maneuver		~ 247		_	_	555	_
Stage 1	307			_	_	-	_
Stage 2	285	-				_	_
Platoon blocked, %	200				_		_
· · · · · · · · · · · · · · · · · · ·	24	047	17	-		EEE	
Mov Cap-1 Maneuver		~ 247		-	-	555	-
Mov Cap-2 Maneuver		-	-		-	-	-
Stage 1	228	-	-	-	-	-	-
Stage 2	285			_		_	
Slaye 2	200	-	-		-		-
Stage 2	200	-	-		-		
		-	-	ND			_
Approach	WB	-		NB		SB	
Approach HCM Control Delay,\$	WB 2842.1		-	NB 0			
Approach	WB					SB	
Approach HCM Control Delay,\$	WB 2842.1					SB	
Approach HCM Control Delay, \$ HCM LOS	WB 2842.1 F			0	/BI n1	SB 1.9	SRT
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn	WB 2842.1 F	NBT	BT I			SB 1.9 SBL	SBT
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h)	WB 2842.1 F	NBT -	BT I	0 NBRW	62	SB 1.9 SBL 555	-
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	WB 2842.1 F	NBT -	BT - -	0 NBRW -	62 7.029	SB 1.9 SBL 555 0.256	-
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	WB 2842.1 F	NBT - -	3T - -	0 NBRW - - \$ 2	62 7.029 2842.1	SBL 555 0.256 13.7	- - -
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	WB 2842.1 F	NBT -	3T - -	0 NBRW -	62 7.029 2842.1 F	SBL 555 0.256 13.7 B	- - - -
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	WB 2842.1 F	NBT - -	3T - -	0 NBRW - - \$ 2	62 7.029 2842.1	SBL 555 0.256 13.7	- - -
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh	WB 2842.1 F	NBT - -	3T - -	0 NBRW - - \$ 2	62 7.029 2842.1 F	SBL 555 0.256 13.7 B	- - - -
Approach HCM Control Delay, \$ HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	WB 2842.1 F	NBT	BT - - -	0 NBRW - - \$ 2 -	62 7.029 2842.1 F	SBL 555 0.256 13.7 B	- - - -

	•	4	†	~	/	+	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	₽		ሻ	†	
Traffic Volume (veh/h)	109	141	719	306	284	598	
Future Volume (veh/h)	109	141	719	306	284	598	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1826	1826	1826	
Adj Flow Rate, veh/h	117	152	773	329	305	643	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	5	5	5	5	5	5	
Cap, veh/h	196	175	742	316	310	1500	
Arrive On Green	0.11	0.11	0.61	0.61	0.18	0.82	
Sat Flow, veh/h	1739	1547	1215	517	1739	1826	
Grp Volume(v), veh/h	117	152	0	1102	305	643	
Grp Sat Flow(s),veh/h/ln	1739	1547	0	1733	1739	1826	
Q Serve(g_s), s	8.8	13.3	0.0	83.9	24.0	13.3	
Cycle Q Clear(g_c), s	8.8	13.3	0.0	83.9	24.0	13.3	
Prop In Lane	1.00	1.00	^	0.30	1.00	4500	
Lane Grp Cap(c), veh/h	196	175	0	1058	310	1500	
V/C Ratio(X)	0.60	0.87	0.00	1.04	0.98	0.43	
Avail Cap(c_a), veh/h	229	204	0	1058	310	1500	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	58.0 3.1	60.0	0.0	26.8	56.3	3.4 0.2	
Incr Delay (d2), s/veh	0.0	28.0	0.0	39.1 0.0	46.5 0.0	0.2	
Initial Q Delay(d3),s/veh	4.1	0.0 6.6	0.0	44.1	14.5	4.0	
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	0.0	44.1	14.5	4.0	
LnGrp Delay(d),s/veh	61.1	88.0	0.0	65.9	102.8	3.6	
LnGrp LOS	61.1 E	00.U F	0.0 A	65.9 F	102.6 F	3.0 A	
	269	Г	1102	Г	Г	948	
Approach Vol, veh/h Approach Delay, s/veh	76.3		65.9			35.5	
11 7.	_		65.9 E			_	
Approach LOS	Е					D	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	29.0	88.4				117.4	20.0
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	24.5	83.9				112.9	18.1
Max Q Clear Time (g_c+l1), s	26.0	85.9				15.3	15.3
Green Ext Time (p_c), s	0.0	0.0				5.3	0.2
Intersection Summary							
HCM 6th Ctrl Delay			54.7				
HCM 6th LOS			D				

	•	•	†	/	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	, J	7	₽		J.		
Traffic Volume (veh/h)	121	163	662	143	94	592	
Future Volume (veh/h)	121	163	662	143	94	592	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1826	1826	1826	1826	1826	1826	
Adj Flow Rate, veh/h	130	175	712	154	101	637	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	5	5	5	5	5	5	
Cap, veh/h	263	234	805	174	129	1281	
Arrive On Green	0.15	0.15	0.55	0.55	0.07	0.70	
Sat Flow, veh/h	1739	1547	1455	315	1739	1826	
Grp Volume(v), veh/h	130	175	0	866	101	637	
Grp Sat Flow(s),veh/h/ln	1739	1547	0	1769	1739	1826	
Q Serve(g_s), s	4.2	6.6	0.0	26.1	3.5	9.8	
Cycle Q Clear(g_c), s	4.2	6.6	0.0	26.1	3.5	9.8	
Prop In Lane	1.00	1.00		0.18	1.00		
Lane Grp Cap(c), veh/h	263	234	0	980	129	1281	
V/C Ratio(X)	0.49	0.75	0.00	0.88	0.79	0.50	
Avail Cap(c_a), veh/h	516	459	0	1215	185	1583	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	23.8	24.8	0.0	11.9	27.8	4.2	
Incr Delay (d2), s/veh	1.4	4.7	0.0	6.8	13.0	0.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.7	0.3	0.0	9.8	1.8	2.2	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	25.2	29.5	0.0	18.7	40.8	4.5	
LnGrp LOS	С	С	Α	В	D	Α	
Approach Vol, veh/h	305		866			738	
Approach Delay, s/veh	27.7		18.7			9.4	
Approach LOS	С		В			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	9.0	38.3				47.3	13.7
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	6.5	41.9				52.9	18.1
Max Q Clear Time (g_c+l1), s	5.5	28.1				11.8	8.6
Green Ext Time (p_c), s	0.0	5.7				5.1	0.7
Intersection Summary							
intersection Cummary							
HCM 6th Ctrl Delay			16.6				

Appendix C: Signal Warrant Sheets

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more Lane Approaches		
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach	
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700	265	
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

☆ NOTE

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Existing Weekday PM Peak Hour Conditions

Minor St. Volume: 64
Major St. Volume: 1721
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more Lane Approaches		
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach	
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700	265	
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

☆ NOTE

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Existing Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 59
Major St. Volume: 1445
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Near-Term (NP) Weekday PM Peak Hour Conditions

Minor St. Volume: 69
Major St. Volume: 1865
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Near-Term Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 59
Major St. Volume: 1445
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Existing plus Project Weekday PM Peak Hour Conditions

Minor St. Volume: 65
Major St. Volume: 1733
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Existing plus Project Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 60
Major St. Volume: 1461
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and O	2 or more Lane and One Lane Approaches		ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Near-Term plus Project Weekday PM Peak Hour Conditions

Minor St. Volume: 70
Major St. Volume: 1877
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and O	2 or more Lane and One Lane Approaches		ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Near-Term plus Project Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 65
Major St. Volume: 1582
Warrant Met?: NO

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Cumulative Yr. 2030 (NP) Weekday PM Peak Hour Conditions

Minor St. Volume: 93
Major St. Volume: 2512
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Cumulative Yr. 2030 (NP) Weekend Saturday MD Peak Hour Conditions

Minor St. Volume: 86
Major St. Volume: 2109
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and O	2 or more Lane and One Lane Approaches		ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Cumulative Yr. 2030 plus Project Weekday PM Peak Hour Conditions

Minor St. Volume: 94
Major St. Volume: 2524
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Lodi Lane / State Route 29

Scenario: Cumulative Yr. 2030 (NP) Weekend Saturday MD Peak Hour Conditions

Minor St. Volume: 87
Major St. Volume: 2125
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

☆ NOTI

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Existing Weekday PM Peak Hour Conditions

Minor St. Volume: 249
Major St. Volume: 1888
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach
		·			
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	185	600	230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Existing Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 281
Major St. Volume: 1467
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Near-Term (NP) Weekday PM Peak Hour Conditions

Minor St. Volume: 270
Major St. Volume: 2046
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and O	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach	
370	280				
400	270	460	297	430	410
500	500 215 500 290		500	380	
600	600 185 600 230		600	310	
700	140	700 198		700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	1100 90		110
1200	75	1200	75	1150	100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

☆ NOTI

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Near-Term (NP) Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 304
Major St. Volume: 1591
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Existing plus Project Weekday PM Peak Hour Conditions

Minor St. Volume: 247
Major St. Volume: 1907
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Existing plus Project Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 284
Major St. Volume: 1491
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches	Both 2 or more Lane Approaches		
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches	Volume Approach	Both Approaches	Volume Approach	
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700 198		700	265	
800	115	800	170	800 210		
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Near-Term plus Project PM Weekday Conditions

Minor St. Volume: 271
Major St. Volume: 2065
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Near-Term plus Project Weekdend Saturday MD Peak Hour Conditions

Minor St. Volume: 307
Major St. Volume: 1615
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Cumulative (NP) Weekday PM Peak Hour

Minor St. Volume: 363
Major St. Volume: 2756
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and O	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach	
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	600 185		230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	1200 75		100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Cumulative (NP) Weekend MiddayPeak Hour

Minor St. Volume: 411
Major St. Volume: 2140
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and C	ne Lane Approaches			
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach		
		·				
370	280					
400	270	460	297	430	410	
500	215	500	290	500	380	
600	185	600	230	600	310	
700	140	700	198	700 265		
800	115	800	170	800	210	
900	99	900	125	900	180	
1000	85	1000	105	1000	140	
1100	75	1100	90	1100	110	
1200	75	1200	75	1150	100	
1300	75	1300	75	1300	100	

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Cumulative plus Project Weekday PM Peak Hour

Minor St. Volume: 364
Major St. Volume: 2775
Warrant Met?: YES

Both 1 Lane	Approaches	2 or more Lane and O	ne Lane Approaches	Both 2 or more L	ane Approaches
Major Street Total of	Minor Street High	Major Street Total of	Minor Street High	Major Street Total of	Minor Street High
Both Approaches	Volume Approach	Both Approaches Volume Approach Both Approaches		Volume Approach	
370	280				
400	270	460	297	430	410
500	215	500	290	500	380
600	600 185		230	600	310
700	140	700	198	700	265
800	115	800	170	800	210
900	99	900	125	900	180
1000	85	1000	105	1000	140
1100	75	1100	90	1100	110
1200	75	1200	1200 75		100
1300	75	1300	75	1300	100

^{*} Note: Values in Table are approximate, actual curves based upon 2nd order polynomial equation

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Intersection: Deer Park Road / SR-29

Scenario: Cumulative plus Project Weekend Midday Peak Hour

Minor St. Volume: 414
Major St. Volume: 2164
Warrant Met?: YES

Appendix D: Arterial Segment LOS Capacities

Generalized **Peak Hour Directional** Volumes for Florida's

TABLE 8

0-84%

85-100%

> 5

> 4

 ≥ 4

_ ≥ 3 ≥ 3

 ≥ 2

Transitioning and Areas Over 5,000 Not In Urbanized Areas¹

1	2/	1	8,	/1	2

				11 Cas O	vc1 3,00	ONOLI	II OI Daill2	eu Alea	13		12/18/12
	INTER	RUPTED FI	OW FAC	ILITIES			UNINTE	RRUPTED	FLOW FA	ACILITIES	
	STATE S	IGNALIZ	ZED ART	ΓERIAL	S			FREE	WAYS		
Lanes 1 2 3	Class I (40 Median Undivided Divided Divided) mph or high B * *	ner posted s C 710 1,740 2,670	peed limit) D 800 1,820 2,740	E ** **	Lanes 2 3 4 5 5	B 2,200 3,260 4,260 5,300	2,88 4,28 5,68 7,08	30 30 30	D 3,440 5,100 6,760 8,440	E 3,580 5,540 7,500 9,440
	Class II (3:	5 mph or slov	ver posted	speed limit)		TF.	reeway A	dinetmant	te	
Lanes 1 2 3	Median Undivided Divided Divided	B * *	C 330 500 810	D 680 1,460 2,280	E 720 1,600 2,420		Auxiliary Lane + 1,000	reeway A	ajustinen	Ramp Metering + 5%	
		ignalized For corresponding by the indicate Signalized F	ng state volumed percent.)		nts						
	Median	& Turn La					UNINTERR	HDTED I	EL OW I	псимая	VC
Lanes	Median	Exclusive Left Lanes	Exclu Right I		djustment Factors	Lanes	Median	В	C	ughwa: D	rs E
1	Divided	Yes	No		+5%	1	Undivided	450	850	1,200	1,640
2	Undivided	No	No		-20%	2	Divided	1,740	2,450	3,110	3,440
Multi	Undivided	Yes	No		-5%	3	Divided	2,610	3,680	4,660	5,170
Multi	Undivided	No	No Ye:		-25%						
			16	5	+ 5%		Uninterrupt				
	One-V	Way Facilit	v Adinsti	ment		Lanes	Median	Exclusive		Adjustme	
		y the correspo				1 Multi	Divided Undivided	Ye Ye		+5	
	VC	olumes in this	table by 1.2	2		Multi	Undivided	Ne Ne		-5° -25	
		TOTAL E	3.50D=2								
dire	ultiply motorized ctional roadway	Vehicle volundanes to determine	nes shown be nine two-way	elow by num	ber of service	are for the constitute computer planning corridor of	shown are presented e automobile/truck e a standard and sho models from which applications. The tap intersection designanning application	modes unless spould be used only in this table is dealed and deriving the mode in the mode	pecifically state y for general perived should be g computer more fined technic	ed. This table do planning applicate of used for more odels should not ques exist. Calcu	es not cions. The specific be used for lations are
	ılder/Bicycle e Coverage	В	С	D	Е	Capacity	and Quality of Serv	rice Manual.			
	0-49%	*	140	320	1,000	² Level or	f service for the bic	ycle and pedestr	rian modes in t	his table is base	d on number
	50-84%	100	280	940	>1,000		zed vehicles, not nu				
8	35-100%	380	1,000	>1,000	**	Buses pe	er hour shown are onl	y for the peak ho	our in the single	direction of the h	igher traffic
		DESTRIA				* Canno	t be achieved using	table input valu	e defaults.		
(Mu dired	(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)				* Cannot be achieved using table input value defaults. ** Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bicycle mode, the level of service letter grade (including F) is not						
	alk Coverage		C	D	Е	achievabl	le because there is n	o maximum vel	nicle volume th	hreshold using ta	able input
1	0-49%	*	*	140	480	l arao dei					
1	50-84% 35-100%		80 540	440	800						
1 0		200	540	880	>1,000						
	BUS MOD (Buses	E (Schedu in peak hour i			3						
Sidew	alk Coverage	-	C	D	Е	Source:					
	0-84%	\ 5	> 1	` 2	~	Florida D	epartment of Transp	portation			1

 ≥ 2

 ≥ 1

Systems Planning Office
www.dot.state.fl.us/planning/systems/sm/los/default.shtm

Appendix E: Ballentine Vineyards Weekday & Weekend Peak Hour Ratios

Ballentine Vineyards Peak Hour Ratio; Weekday PM & Weekend Midday

Date	Time In	# Group	Ride Share or Personal Ca
6/22/19	10:00		Ride Share
6/22/19	12:15	1	Personal Car
6/22/19	1:15	2	Personal Car
6/22/19	2:40	2	Personal Car
6/23/19	10:30	1	Personal Car
6/23/19	11:00	1	Personal Car
6/23/19	11:30	2	Ride Share
6/23/19	12:30	2	Personal Car
6/23/19	1:30	8	Personal Car
6/23/19	2:00	1	Personal Car
6/23/19	3:00	2	Personal Car
6/24/19	11:30	2	Ride Share
6/25/19	4:00	3	Personal Car
6/26/19	11:00	10	Ride Share
6/26/19	12:30	4	Personal Car
6/26/19	3:50	3	Personal Car
6/27/19	12:00	2	Personal Car
6/28/19	12:30	2	Personal Car
6/28/19	2:20	2	Personal Car
6/28/19	2:10	2	Personal Car
6/28/19	2:00		Ride Share
6/29/19	10:30		Personal Car
6/29/19	10:45		Personal Car
6/29/19	10:50		Ride Share
6/29/19	11:50		Personal Car
6/29/19	2:00		Personal Car
6/29/19	2:30		Personal Car
6/29/19	4:15		Personal Car
6/30/19	11:30		Personal Car
7/1/19	11:00		Personal Car
7/1/19	12:00		Personal Car
7/1/19	2:00		Ride Share
7/1/19	1:45		Personal Car
7/2/19	12:30		Personal Car
7/4/19	11:00		Ride Share
7/4/19	12:45		Personal Car
7/4/19	12:00		Ride Share
7/4/19	1:50		Personal Car
7/4/19	3:30		Ride Share
7/4/19	3:35		Personal Car
7/4/19	4:00		Personal Car
7/5/19	11:15		Ride Share
7/5/19	2:30		Personal Car
7/5/19	2:30		Personal Car
7/5/19	2:30		Personal Car
7/5/19	4:00		Personal Car
7/5/19	10:30		
			Personal Car
7/6/19	12:30		Ride Share
7/6/19	2:50		Personal Car
7/6/19	3:00		Personal Car
7/6/19	2:45		Ride Share
7/6/19	2:00		Personal Car
7/6/19	2:00		Personal Car
7/6/19	3:00		Personal Car
7/6/19	3:45		Personal Car
7/6/19	4:30		Personal Car
7/6/19	4:00		Personal Car
7/7/19	11:15		Ride Share
7/8/19	2:00		Ride Share
7/8/19	1:00		Personal Car
7/8/19	3:00		Personal Car
7/9/19	10:00		Personal Car
7/9/19	11:00		Ride Share
7/9/19	2:00		Personal Car
7/10/19	11:00	10	Ride Share
9 Days		65 Groups	17 Ride Share, 48 Personal Car
		234 Guests	
		1	

cxd=e

Appendix F: Napa County & Ballentine Vineyards Trip Generation Sheets; Permitted, Proposed, & Winery Peak Hour Ratios

Proposed Project Winery Traffic Information / Trip Generation Sheet

Maximum Daily Weekday Traffic (non-harvest season)			
Total number of FT employees:x 3.05 one-way trips per employee	=	15	daily trips.
Total number of PT employees:x 1.90 one-way trips per employee	=	\mathscr{D}	daily trips.
Anticipated weekday visitors:	=	3	daily trips.
Gallons of production: $50,000$ / 1,000 x .009 truck trips daily ³ x 2 one-way trips	=		daily trips.
Total	=	19	daily trips.
(No of FT employees) + (No of PT employees/2) + (sum of visitor and truck $\underline{\text{trips}} \times .38$)	=	7(1,6)	_PM peak trips.
Maximum Daily Weekend Traffic (non-harvest Saturday)			
Number of FT employees (on Saturdays):x 3.05 one-way trips per employee	=	6	daily trips.
Number of PT employees (on Saturdays):x 1.90 one-way trips per employee		2	daily trips.
Anticipated Saturday visitors:/ 2.8 visitors per vehicle x 2 one-way trips	=	4	daily trips.
Total	=	12	daily trips.
(No of FT employees) + (No of PT employees/2) + (visitor $\underline{\text{trips}} \times .57$)	= 5	(3,2)	_PM peak trips.
Maximum Daily Weekend Traffic – Saturday Harvest Season			
Number of FT employees (during crush):x 3.05 one-way trips per employee	=	6	daily trips.
Number of PT employees (during crush):x 1.90 one-way trips per employee	=	V	daily trips.
Anticipated Saturday visitors:/ 2.8 visitors per vehicle x 2 one-way trips	=	4	daily trips.
Gallons of production: 50,000 / 1,000 x .009 truck trips daily x 2 one-way trips	=		daily trips.
Avg. annual tons of grape on-haul: 144 truck trips daily 4x 2 one-way trips	=	2	daily trips.
Total	·=	15	daily trips.
Largest Marketing Event- Additional Traffic			
Number of event staff (largest event): x 2 one-way trips per staff person	=	6	trips.
Number of visitors (largest event):/ 2.8 visitors per vehicle x 2 one-way trips	=	4	trips.
Number of special event truck trips (largest event): x 2 one-way trips	=	2	trips.

³ Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see *Traffic Information Sheet Addendum* for reference).

⁴ Assumes 4 tons per trip / 36 crush days per year (see *Traffic Information Sheet Addendum* for reference

BALLENTINE WINERY: PROPOSED

Winery Traffic Information / Trip Generation Sheet

Traffic during a Typical Weekday			
Number of FT employees:x 3.05 one-way trips per employee	_	36.60	daily trips.
Number of PT employees:x 1.90 one-way trips per employee	(# <u>_</u>	5.70	daily trips.
Average number of weekday visitors: 63 / 2.6 visitors per vehicle x 2 one-way trips	=	48.46	daily trips.
Gallons of production: $\underline{125,000}$ / 1,000 x .009 truck trips daily ³ x 2 one-way trips	=	2.25	daily trips.
Total	=	93.01	daily trips.
(N $_{\odot}$ of FT employees) + (N $_{\odot}$ of PT employees/2) + (sum of visitor and truck <u>trips</u> x .38)	=	32.77	PM peak trips.
Traffic during a Typical Saturday			
Number of FT employees (on Saturdays):x 3.05 one-way trips per employee	=	12.20	daily trips.
Number of PT employees (on Saturdays): x 1.90 one-way trips per employee		3.80	daily trips.
Average number of Saturday visitors:/ 2. 8 visitors per vehicle x 2 one-way trips	- 1	67.86	daily trips
Total	= ,	83.86	daily trips.
(Nº of FT employees) + (Nº of PT employees/2) + (visitor $\underline{\text{trips}}$ x .57)	= _	43.68	PM peak trips.
Traffic during a Crush Saturday			
Number of FT employees (during crush): x 3.05 one-way trips per employee	= ;	24.40	daily trips.
Number of PT employees (during crush): x 1.90 one-way trips per employee	=	7.60	daily trips.
Average number of Saturday visitors:/ 2. 8 visitors per vehicle x 2 one-way trips	= =	35.71	daily trips
Gallons of production: $125,000 / 1,000 \times .009$ truck trips daily x 2 one-way trips	= _	2.25	daily trips.
Avg. annual tons of grape on-haul: $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	= _	3.76	daily trips.
Total	-	73.72	daily trips.
Largest Marketing Event- Additional Traffic			
Number of event staff (largest event): x 2 one-way trips per staff person	=	12	trips.
Number of visitors (largest event): $\phantom{00000000000000000000000000000000000$	E	71	trips.
Number of special event truck trips (largest event): 2 x 2 one-way trips		4	

³ Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see *Traffic Information* Sheet Addendum for reference).

Assumes 4 tons per trip / 36 crush days per year (see *Traffic Information Sheet Addendum* for reference).

Proposed Project Winery Traffic Information / Trip Generation Sheet

Maximum Daily Weekday Traffic (n	on-harvest season)			
Total number of FT employees:x3.0	5 one-way trips per employee	= _	36,6	daily trips.
Total number of PT employees:x 1.9	0 one-way trips per employee	c=	5.7	daily trips.
Anticipated weekday visitors: 63		= ;=	48.46	daily trips.
Gallons of production: \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	.009 truck trips daily ³ x 2 one-way trips	#	2.25	daily trips.
ŧ	76 15% Total	=	93.01	daily trips.
Nº of FT employees) + (Nº of PT employees/2	11 W , -	→	21.1	_PM peak trips.
Maximum Daily Weekend Traffic (n	on-harvest Saturday)			
Number of FT employees (on Saturdays):	x 3.05 one-way trips per employee	=	12.20	daily trips.
Number of PT employees (on Saturdays):	x 1.90 one-way trips per employee	. = ,	3,90	daily trips.
Anticipated Saturday visitors: 95	/ 2.8 visitors per vehicle x 2 one-way trips	=	67.86	daily trips.
ч	Total	#	83.86	daily trips.
•	№ of PT employees/2) + (visitor <u>trips x .57</u>)	→ _	24.0	_PM peak trips.
Maximum Daily Weekend Traffic - \$	Saturday Harvest Season			
Number of FT employees (during crush):	x 3.05 one-way trips per employee	= _	24.4	daily trips.
Number of PT employees (during crush):	x 1.90 one-way trips per employee	=	7.6	daily trips.
Anticipated Saturday visitors: 50		·=	35.71	daily trips.
Gallons of production: 175, 000 / 1,000x.	009 truck trips daily x 2 one-way trips	= _	2.25	daily trips.
	/ 144 truck trips daily ⁴ x 2 one-way trips	=	3.76	daily trips.
	Total	= _	73.72	daily trips.
Largest Marketing Event- Additiona	al Traffic			
Number of event staff (largest event):	x 2 one-way trips per staff person	=	12	trips.
Number of visitors (largest event): \(\lambda \)	2.8 visitors per vehicle x 2 one-way trips	=	71	trips.
Number of special event truck trips (largest event):	x 2 one-way trips	=	4	trips.

³ Assumes 1.47 materials & supplies trips + 0.8 case goods trips per 1,000 gallons of production / 250 days per year (see *Traffic Information Sheet Addendum* for reference).

⁴ Assumes 4 tons per trip / 36 crush days per year (see *Traffic Information Sheet Addendum* for reference