Appendix E

Soil Vapor Investigation Report

CORPORATE OFFICE 605 THIRD STREET ENCINITAS, CALIFORNIA 92024 T 760.942.5147 T 800.450.1818 F 760.632.0164

October 3, 2017

Nicholas Taylor City of Anaheim 200 South Anaheim Boulevard Suite 162 Anaheim, CA 92805

Subject: Submittal – Soil Vapor Investigation Report for Former E-Z Service Station, 3175 West Ball Road, Anaheim, CA

Dear Mr. Taylor:

Attached please find the soil vapor investigation report for the Former E-Z Service Station, located at 3175 West Ball Road in Anaheim, California. The report includes the results of the soil vapor sampling conducted at the site and the human health risk assessment. A draft report was reviewed by Dr. Jill Ryer-Powder, a Board-certified toxicologist. Dr. Ryer-Powder's comments were incorporated into this final report.

If you have any questions, please feel free to contact me at 760-479-4152 or npeacock@dudek.com.

Sincerely,

Nicole Peacock Senior Engineer

Nial Pek

Dudek

Soil Vapor Investigation Report for Former E-Z Service Station 3175 West Ball Road Anaheim, California

Development Case No. 2016-00074

Prepared for:

City of Anaheim

200 South Anaheim Boulevard

Anaheim, California

Prepared by:

DUDEK
605 Third Street
Encinitas, CA 92024

Nicole
Peacock
No. 8553

EXP 6/30/19

Nicole Peacock, P.E., P.G. Senior Environmental Engineer

October 2017

Table of Contents

1. IN	NTRODUCTION	1
2. SI	SITE DESCRIPTION	2
2.1. 2.2. 2.3.	LOCATIONSITE HISTORY	2
3. E l	NVIRONMENTAL SETTING	5
3.1. 3.2. 3.3.	SITE GEOLOGY AND SOIL TYPE	5
4. S	SAMPLING ACTIVITIES	6
4.1. 4.2. 4.3. 4.4.	SOIL VAPOR PROBE INSTALLATIONSOIL VAPOR PROBE SAMPLING ACTIVITIES	6
5. A	NALYTICAL RESULTS	8
	QUALITY ASSURANCE/QUALITY CONTROL	
6.1. 6.2.		
7. C	CONCLUSIONS	12
8. RI	REFERENCES	14

List of Tables

Table 1	Historical Groundwater Sampling Results
Table 2	Soil Vapor Sampling Analytical Results
Table 3	Human Health Rick Assessment

List of Figures

Figure 1 Site Map
Figure 2 2011 Groundwater Contaminant Plume and Potential Building Layout
Figure 3 Sample Locations

List of Appendices

Appendix A Laboratory Reports
Appendix B DTSC Risk Model Inputs and Output

1. Introduction

This soil vapor investigation report has been prepared by Dudek on behalf of the City of Anaheim for the property located at 3175 West Ball Road in Anaheim, California (the site; Figure 1). The site is a former E-Z Service Gas Station. A release of gasoline at the site was monitored and remediated, leading to case closure by the Regional Water Quality Control Board (RWQCB). The case closure was based on continued commercial/industrial land use.

Soil vapor sampling and a vapor human health risk assessment were proposed to satisfy the RWQCB requirements associated with the proposed land use change at the site from commercial to residential (RM4). This analysis does not contemplate the human health risk for a subgrade structure. If a subgrade structure, such as an underground parking garage, were to be proposed, the vapor human health risk assessment should be reevaluated.

Dudek prepared a soil vapor sampling work plan dated July 2017 (Dudek 2017). The work performed during this soil vapor investigation was performed in accordance with the July 2017 Soil Vapor Sampling Work Plan and the Department of Toxic Substances Control (DTSC) Soil Gas Advisory (DTSC 2015).

The purpose of the soil vapor investigation was to collect data to estimate the potential human health risk to future building occupants due to vapor intrusion of gasoline-related volatile organic compounds (VOCs) from the subsurface.

2. Site Description

2.1. Location

The site is located at 3175 West Ball Road in Anaheim, California, in a mixed commercial and multi-family residential setting (Figure 1). According to the Orange County Tax Assessor online database, the site is located within Assessor's Parcel Number 079-882-34.

2.2. Site History

The site was operated as an E-Z Serve gasoline service station from 1963 through 1988. In 1988, three 10,000-gallon capacity underground storage tanks (USTs) and one 500-gallon capacity used oil UST were removed from the site. During tank removal, tanks were found to be corroded and leaking; free product was observed in the tank excavation.

From 1988 to 2000, site characterization and remediation efforts included soil borings, hydropunch sampling, installation and sampling of groundwater monitoring wells, and a brief dual-phase vapor extraction/air sparge pilot test.

In 2000, more than 3,000 tons of petroleum-contaminated soil were removed from the site. The excavation floor was treated with oxygen-release compound (ORC) and a SoilKleen/water mixture to facilitate microbial breakdown of residual petroleum. More than 1,000 gallons of free product and nearly 60,000 gallons of impacted groundwater were removed during the excavation dewatering activities in 2000.

From 2006 through 2011, intermittent remedial efforts included oxygen injection and use of a high vacuum dual-phase extraction (HVDPE) system to extract hydrocarbon vapor and impacted groundwater from the site. Groundwater monitoring continued through 2011, with the final round of sampling occurring in November 2011. Based on the final sampling data in 2011, residual petroleum contamination is expected along the western and southern site boundaries and beneath the adjacent Western Avenue and West Ball Road right-of-ways (Figure 2).

In 2012, the groundwater monitoring wells and oxygen injection wells were decommissioned and the RWQCB issued a site closure letter based on the current land use (commercial use; RWQCB 2012).

2.3. Previous Investigations

Previous investigations conducted on the site include the following:

Dudek

- Multiple investigations and remedial actions were conducted at the site from 1988 through 2011. Documentation of activities prior to 2004 was not available in the Geotracker database. Details of these investigations are summarized in the closure letter; select historical groundwater data is included in the routine groundwater monitoring reports. The reports indicate that free product gasoline was detected in several on-site wells in the past (MW-2, -3, and -4).
- Delta Environmental Consultants, Inc. Quarterly Groundwater Monitoring Report Third Quarter 2004

This is the earliest groundwater monitoring report available in the Geotracker database. Ten wells were sampled in October 2004. Depth to groundwater ranged from approximately 8.5 to 11 feet below ground surface (bgs). The maximum gasoline-range petroleum hydrocarbon concentration detected during this event was 36,000 micrograms per liter (μ g/L) from MW-7. The report concluded that there were no significant changes in petroleum hydrocarbon concentrations over the past 12 months.

 GeoEnviro Services, Inc. Semi-Annual Groundwater Monitoring and Sampling, Fourth Quarter 2011

This is the most recent groundwater monitoring data available in the Geotracker database. Sixteen groundwater wells were sampled in November 2011, including onsite and off-site monitoring wells and onsite oxygen injection wells. Depths to groundwater were reported to range from approximately 6 to 8 feet bgs. Seven of the 16 wells had no detectable levels of total petroleum hydrocarbons (TPH) gasoline or related constituents. The maximum TPH gasoline concentration detected was 28,400 µg/L from well MW-7, located just outside the southwest corner of the property, on West Ball Road. The maximum benzene, toluene, ethylbenzene, and xylenes (BTEX) detections also occurred at off-site well MW-7, where benzene was detected at a concentration of 7,400 µg/L, toluene at 660 μg/L, ethylbenzene at 1,300 μg/L, and total xylenes at 2,200 μg/L. Other wells in which TPH gasoline was detected above the reporting limit include MW-3R and MW-11, located on-site, near the southern border of the site, MW-4 (off-site), and OI-4 (on-site), located near the west border of the site. Well MW-13 was not sampled and MW-8 was destroyed in 2008 after nine consecutive quarters of nondetects. The highest on-site benzene concentration reported in November 2011 was 2,300 µg/L, at MW-11. Benzene concentrations are shown on Figure 2.

• SWRCB Underground Storage Tank Cleanup Fund 5-Year Review Summary 4th Review, USTCF Claim No.: 9162. January 2011

This document provides basic information including a table of well construction dates and screen intervals. Most site-related groundwater monitoring wells were

screened from 5 to 20 feet bgs. Three oxygen injection wells were screened at 10 to 30 feet bgs, and one oxygen injection well was screened 20 to 30 feet bgs. Soil types are described as interbedded silts and sands with lesser amounts of clay.

• RWQCB Closure Summary, Former E-Z Service Station No. #100842, April 2012.

This summary provides a detailed overview of site activities beginning with release discovery in 1988 through site closure in 2012. The reported history of site characterization and remediation activities is summarized in Section 2.2 of this Work Plan. Maximum pre- and post-remediation contaminant concentrations in groundwater are discussed below.

Free product was last observed in site monitoring wells in 2005. Aside from free product observations, the maximum detections of TPH gasoline, BTEX, and selected additives are provided in the table below.

Table 1
Historical Groundwater Sampling Results (micrograms per liter, µg/L)

	Historical	Maximum	Maximum On-Site
	Maximum	Detection at Final	Detection at Final
Chemical	Detection	Sampling,	Sampling,
	(location, year)	November 2011	November 2011
	1991 through	(location)	(location)
	2011		
TPH Gasoline	250,000	28,400 (MW-7)	7,670 (OI-4)
	(MW-2, 1993)		
Benzene	32,000	7,400 (MW-7)	2,300 (MW-11)
	(MW-2, 1993)	, , ,	
Toluene	24,000	660 (MW-7)	280 (OI-4)
	(MW-7, 1994)	,	
Ethylbenzene	53,000	1,300 (MW-7)	400 (OI-4)
	(MW-2, 1993)		
Total Xylenes	35,600	2,200 (MW-7)	520 (OI-4)
	(MW-2, 1992)		
MTBE	5,400	Not detected	Not detected
	(MW-7, 2000)		
Tert butanol (TBA)	160	Not detected	Not detected
, , ,	(MW-7, 2002)		
Di-isopropyl ether	93	Not detected	Not detected
(DIPE)	(MW-3, 2002)		
Ethyl-tert-butyl-ether	89	Not detected	Not detected
(ETBE)	(MW-3, 2002)		
Tert-amyl methyl ether	110	Not detected	Not detected
(TAME)	(MW-3, 2002)		

3. Environmental Setting

3.1. Site Topography

The subject property is currently vacant, with no remaining pavement or structures. The site consists of approximately 0.35 acres and is relatively flat, with an average elevation of 64 feet above mean sea level (amsl).

3.2. Site Geology and Soil Type

During the 2008 installation of oxygen injection wells, subsurface soils were continuously logged; boring logs were available from the Geotracker database. Based on the soil descriptions from the 2011 RWQCB 5-Year Review documents, soils are typically interbedded layers of silt and sand. Based on the three available boring logs, soil in the upper 5 feet bgs is silty sand to sandy silt.

3.3. Site Hydrogeologic Setting

According to the 2012 closure letter, no active beneficial use groundwater wells are located down-gradient of the site within a one-mile radius.

The depth to groundwater during the November 2011 groundwater sampling event was approximately 6 to 8 feet bgs. Historical groundwater measurements range from 5.4 to 17.8 feet bgs since the site has been under investigation. The groundwater flow direction based on water levels measured in the monitoring wells is typically southwest but can vary from south to west.

4. Sampling Activities

4.1. Utility Clearance

Dudek marked each of the 16 soil vapor probe locations on-site with white flags. On July 13, 2017, a private utility locator, ULS Services Corporation, of San Diego, California, conducted a utility survey at the site. ULS Services marked the locations of public utilities and other subsurface conflicts in the vicinity of the boring locations. Dudek also contacted Underground Service Alert (USA) and notified them of pending soil boring activities. Dudek did not encounter subsurface utilities during drilling activities.

4.2. Soil Vapor Probe Installation

Sixteen temporary soil vapor probes were installed on July 18, 2017 by Millennium Environmental, Inc. (C-57 License # 876595) using a limited access direct push drill rig. The soil vapor probes were installed to a depth of 5 feet bgs and were completed with 1/4-inch nylon-based tubing. Filter pack was placed 0.5 feet above and below the probe tip, with a hydrated bentonite seal at the surface. Each probe was secured with a valve. The 16 soil vapor probes were installed under Anaheim Public Utilities Permit #UWP-0001576. The soil vapor probe locations are presented on Figure 3.

4.3. Soil Vapor Probe Sampling Activities

The soil vapor sampling was conducted on July 18, 2017 in accordance with DTSC soil vapor sampling guidance (DTSC, 2015). During the sampling event, the soil vapor probes were sampled following a minimum of 2 hours after they had been installed. The soil vapor samples were collected using a glass syringe and were analyzed onsite by Jones Environmental via mobile laboratory. The soil vapor samples were analyzed for VOCs using Environmental Protection Agency (EPA) Method 8260B within 30 minutes of collection.

Prior to sample collection, a tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface to verify that the wells were properly sealed. Soil vapor samples were collected from each of the probes by the mobile laboratory operator using glass, gas-tight syringes with Teflon plungers. Three sample volumes were purged prior to sample collection.

Soil samples were also collected from six soil vapor sample locations (Figure 3) during boring advancement using the limited access rig. Soil samples were collected in acetate sleeves, stored in a cooler on ice, and analyzed by Jones Environmental.

6

The weather conditions during the sampling event were sunny and warm.

Dudek

4.4. Investigation Derived Waste

No investigation derived waste was produced during the soil vapor and soil sampling event.

October 2017

5. Analytical Results

The soil vapor samples collected during the sampling event were collected and analyzed by Jones Environmental using an on-site mobile laboratory. The soil vapor samples were analyzed for VOCs by EPA Method 8260B. Analytical results are summarized in Table 2. Sample locations are shown on Figure 3. The complete laboratory analytical reports are presented in Appendix A.

During the soil vapor sampling event, VOCs were detected in all 16 soil vapor probes (Table 2).

Table 2 Soil Vapor Sampling Analytical Results

VOCs by EPA Method 8260B (micrograms per cubic meter, μg/m³)									
Sample Identifier	Date Sampled	Benzene	Chloroform	Ethylbenzene	Isopropylbenzene	Styrene	Toluene	m,p-Xylene	o-Xylene
SV1-5'	07/18/17	<8	8	<8	<8	<8	40	<8	<8
SV2-5'	07/18/17	<8	<8	<8	<8	<8	83	<8	<8
SV3-5'	07/18/17	<8	<8	9	<8	<8	118	8	<8
SV4-5'	07/18/17	<8	<8	<8	<8	<8	56	<8	<8
SV5-5'	07/18/17	14	<8	14	12	<8	148	20	<8
SV6-5'	07/18/17	<8	<8	9	<8	8	80	<8	<8
SV7-5'	07/18/17	<8	<8	<8	<8	<8	26	<8	<8
SV8-5'	07/18/17	64	<8	25	12	15	196	41	14
SV8-5' REP	07/18/17	53	<8	22	<8	12	185	45	13
SV9-5'	07/18/17	35	<8	20	9	<8	194	46	13
SV10-5'	07/18/17	26	<8	11	<8	<8	100	23	<8
SV11-5'	07/18/17	<8	<8	<8	<8	<8	43	<8	<8
SV12-5'	07/18/17	35	<8	28	<8	13	196	49	15
SV13-5'	07/18/17	16	<8	15	<8	<8	129	27	<8
SV14-5'	07/18/17	18	<8	11	<8	<8	114	18	<8
SV15-5'	07/18/17	<8	<8	<8	<8	<8	54	16	<8
SV16-5'	07/18/17	23	<8	20	<8	<8	175	42	12
DTSC HEI Screening Reside	g Level - ential	97	120*	1,100*	420,000*	940,000	310,000	100,000*	100,000*

Notes: Detections are in bold type

DTSC HERO Note 3 Screening Levels assume a 1,000-fold attenuation factor for soil vapor to air (DTSC 2011)

<8 = less than the laboratory reporting limit

VOCs not listed were not detected above laboratory reporting limits

Complete results can be found in Appendix A

* EPA Regional Screening Level, assuming a 1,000-fold attenuation factor for soil vapor to air (DTSC 2011) µg/m3 = micrograms per cubic meter

All six soil samples were non-detect for all VOCs.

5.1. Quality Assurance/Quality Control

Field and laboratory quality assurance measures included leak checks, duplicate sample collection and analysis, evaluation of surrogate percent recovery, and analysis of blank samples.

Leak checks were conducted at every sample location during the soil vapor probe sampling event. The leak check compound, a gas mixture of n-pentane, n-hexane, and n-heptane, was placed at the tubing-surface interface before sampling to ensure a leak free soil vapor probe. No n-pentane, n-hexane, or n-heptane were found in any of the soil vapor samples.

A duplicate soil vapor sample was collected from SV8-5' during the sampling event. The relative percent difference (RPD) for all detections, except isopropylbenzene, between the original and the duplicate sample detections ranged between 0% and 22.2%, which is within acceptable precision. The RPD for isopropylbenzene could not be calculated as the compound was not detected in the duplicate sample.

As part of the laboratory quality assurance, the surrogates dibromofluoromethane, toluene-d₈, and 4-bromofluorobenzene were added to each sample at known concentrations. Analytical results were compared to the known concentration of each surrogate added and reported as a percent recovered. The percent recoveries for all surrogates were within the acceptable range of 60% to 140%, indicating acceptable accuracy.

The method blank samples analyzed by the laboratory for the soil vapor sampling event did not contain VOCs above the laboratory reporting limits.

This quality assurance and quality control evaluation indicates that the data were of acceptable quality.

6. Human Health Risk Assessment

A human health risk assessment was performed using the maximum detected soil vapor concentrations of all detected VOCs during the sampling event (Table 2). These data were input into the DTSC Screening-Level Risk Model (DTSC 2014). The purpose of the risk assessment is to evaluate the carcinogenic and non-carcinogenic risk to future site receptors.

This human health risk assessment considers the exposure pathways of vapor intrusion and direct contact. However, as no contaminants were detected in the soil samples collected, vapor intrusion is the only applicable exposure pathway.

Default model parameters were used in the risk calculations. These default values for the residential scenario assume exposure 24 hours a day, 350 days per year, for 26 years. Default soil properties values were used because future building construction could modify the shallow soils, rendering the existing site soils properties inapplicable. Risk model input values and calculations are provided in Appendix B.

6.1. Risk Assessment Results

The modeled excess carcinogenic risk for the site is 1×10^{-6} (Table 3). This is equal to the *de minimus* human health risk threshold of 1×10^{-6} .

Table 3 Human Health Risk Assessment

VOC	Input Value into Risk Model (μg/m3 vapor)	Carcinogenic Risk	Non-Carcinogenic Hazard Risk
Benzene	64	9.1E-07	2.8E-02
Chloroform	8	8.4E-08	1.0E - 04
Ethylbenzene	28	3.0E-08	3.2E-05
Isopropylbenzene (Cumene)	12	NA	3.3E-05
Styrene	15	NA	2.0E-05
Toluene	196	NA	8.1E - 04
Xylene m,p	49	NA	5.7E-04
Xylene o	15	NA	1.7E - 04
Tota	Total Risk		0.03
Human Health De Mi	Human Health De Minimus Risk Threshold		1.0

Notes: V

VOC = Volatile Organic Compound

 $\mu g/m3 = micrograms per cubic meter$

The cumulative non-carcinogenic health hazard index at the site was calculated as 0.03. This hazard index value is below the threshold value of 1.0. Therefore, the non-carcinogenic health hazard index is considered less than significant.

6.2. Risk Assessment Discussions

Uncertainties in the risk assessment can arise from only collecting one round of soil vapor data or from using the default model values. Due to uncertainties inherent in the risk calculation, it is appropriate to conservatively pad the risk calculation.

The risk assessment was conservative in that it uses the maximum concentrations for each detected contaminant at the site. This makes the conservative assumption that the maximum concentration detected at the site is present under the entire building footprint. Additionally, it makes the conservative assumption that a compound (e.g. chloroform) that was only detected in one of the 16 site samples is present under the entire building footprint. These conservative assumptions increase the calculated risk level, such that the risk level would be less than the de minimus level of one in a million if the 95% upper confidence level of the mean was used instead of maximum concentrations or if chloroform was not included as it was only detected in one of 16 samples.

As the risk level is equal to the de minimus level, mitigation is not required for residential use. However, in consideration of the uncertainties noted, mitigation of vapor intrusion into future residences could be implemented. Mitigation could include any of the following:

- Limiting vapor intrusion into future residences through use of a wellventilated ground-level garage that is not intended for human occupation; or
- Installation of a sub-slab liner/passive ventilation to limit vapor intrusion to the future residences.

7. Conclusions

The site is a former E-Z Service Gas Station. A release of gasoline at the site was monitored and remediated, leading to case closure by the RWQCB. The case closure was based on continued commercial/industrial land use. The proposed residential use of the site requires re-evaluation of the site contamination.

Based on the presence of VOCs in groundwater at the time of case closure (2012), there was a potential for vapor intrusion of VOCs to the site building. Soil vapor sampling was conducted to determine the concentrations of VOCs in the shallow subsurface that have the potential to migrate to the future site building and impact human health.

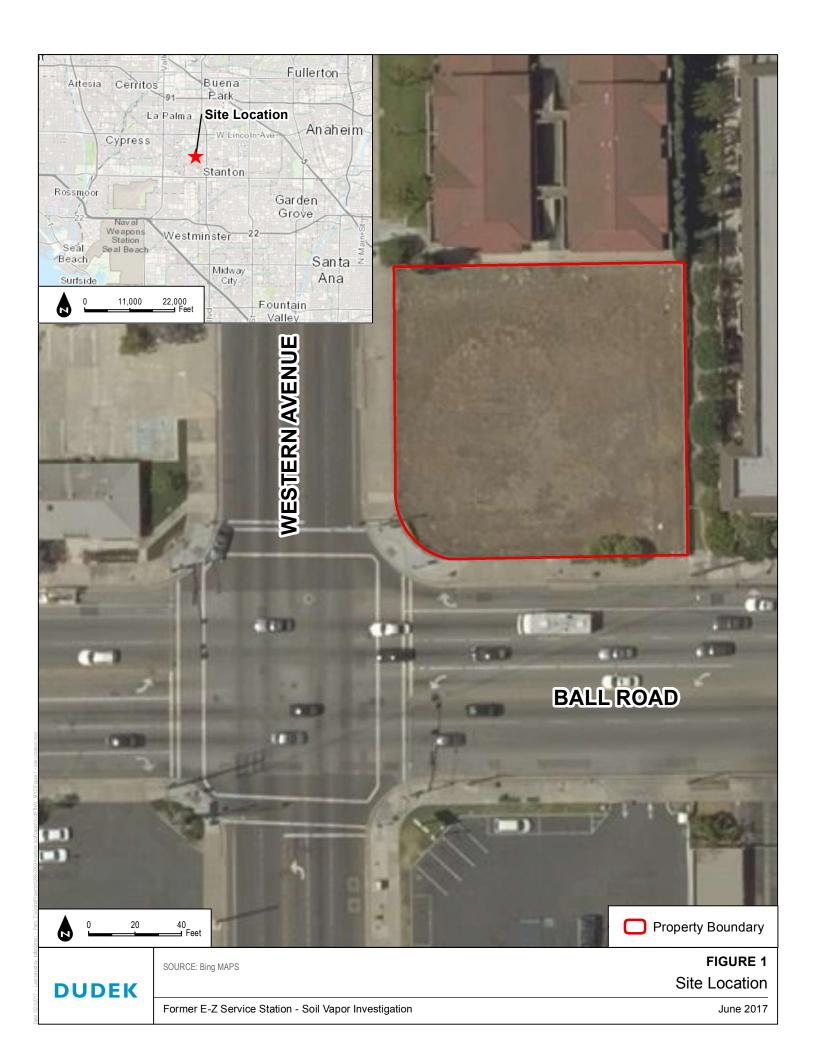
Soil vapor sampling conducted on July 18, 2017 indicated the presence of VOCs (mainly the gasoline constituents benzene, ethylbenzene, toluene, and xylenes) in the subsurface at the site. Concentrations of chloroform, isopropylbenzene, and styrene were also detected above the laboratory reporting limits.

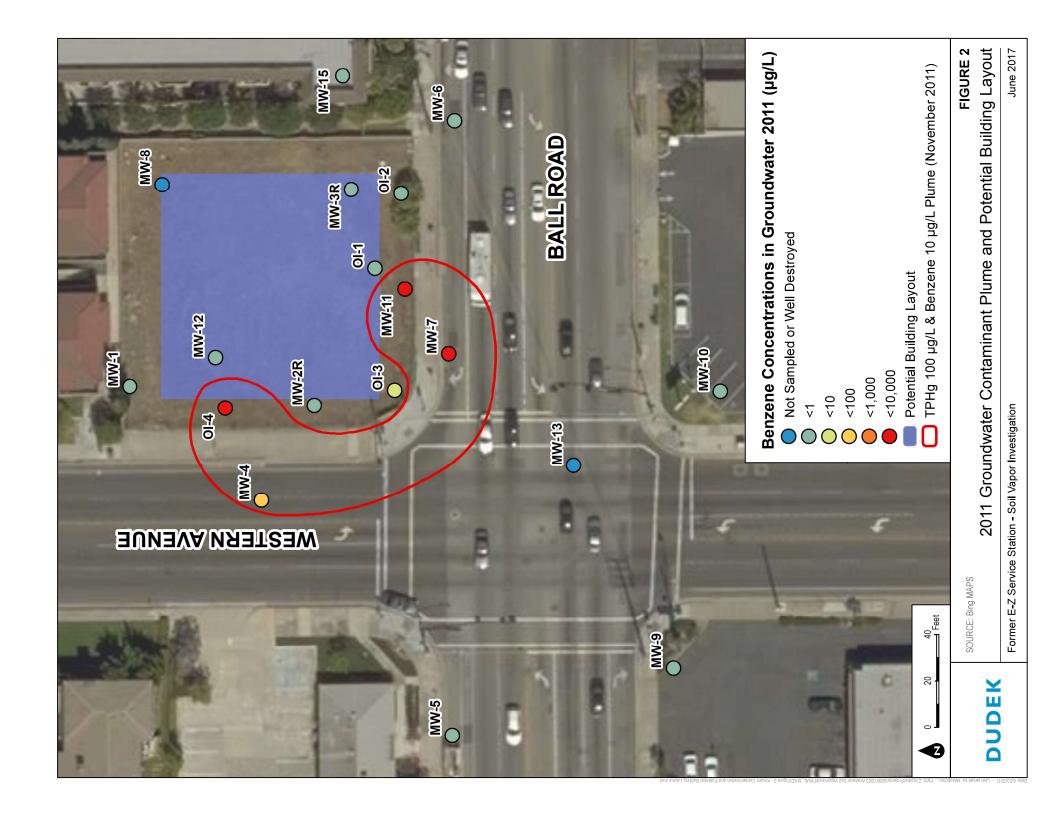
As a conservative estimate of human health risk, Dudek used the maximum concentrations of each detected compound in the DTSC Screening-Level Risk Model. A carcinogenic risk of 1×10^{-6} and a non-carcinogenic health hazard index of 0.03 were calculated using these values. While the hazard index is within the acceptable threshold of less than 1.0, the cancer risk is equal to the de minimus cancer risk level of one in a million (1×10^{-6}).

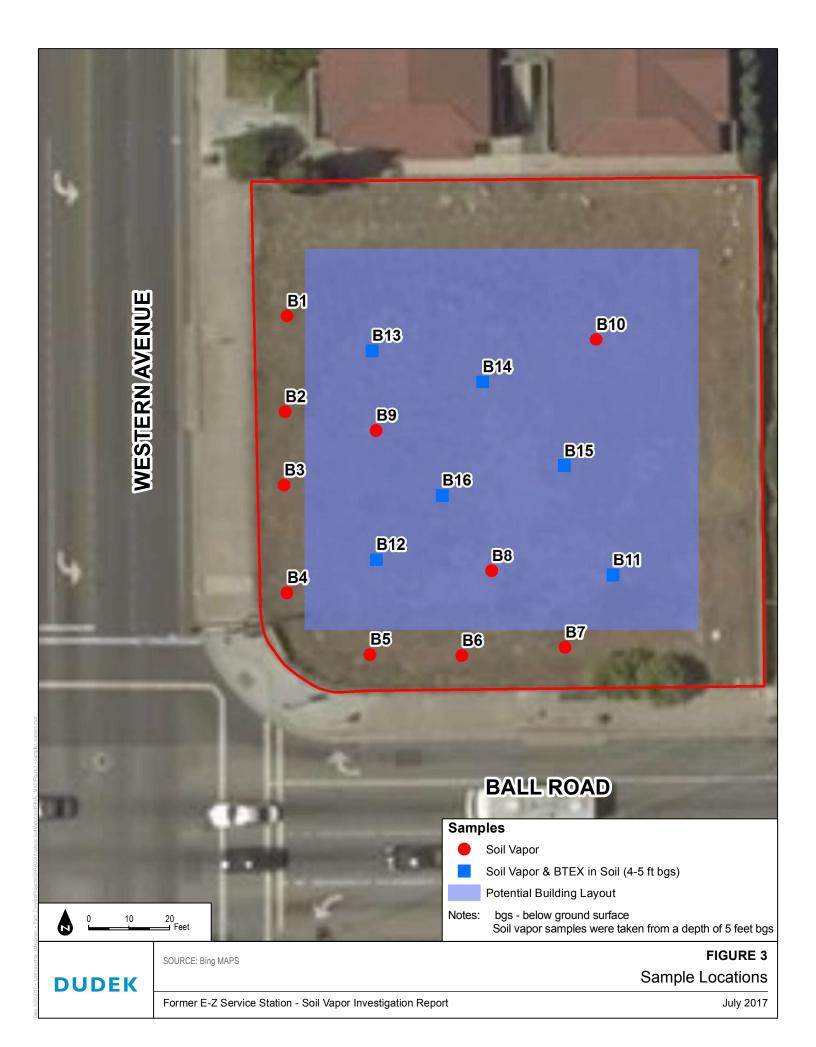
As the risk level is equal to the de minimus level, mitigation is not required for residential use. However, in consideration of the uncertainties noted, mitigation of vapor intrusion into future residences could be implemented. Mitigation could include either or both of the following:

- Limiting vapor intrusion into future residences through use of a wellventilated ground-level garage that is not intended for human occupation; or
- Installation of a sub-slab liner/passive ventilation to limit vapor intrusion to the future residences.

In addition to the recommended mitigation for future development, Dudek recommends the following mitigation during construction activities:


- Protection of worker health and safety through implementation of a health and safety plan.
- Based on the soil sampling conducted at the site and based on the site remediation, impacted soils are not anticipated to be encountered during construction activities. However, depending on the depth of excavation required for the construction work, impacted groundwater may be encountered. Any extracted groundwater should be managed in


Dudek


accordance with the National Pollutant Discharge Elimination System (NPDES) permit for construction dewatering.

8. References

- DTSC, 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.
- DTSC, 2014. Screening-Level Model for Soil Gas Contamination. Updated December.
- DTSC, 2015. Advisory Active Soil Gas Investigations. California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Water Quality Control Board.
- Dudek, 2017. Soil Vapor Sampling Work Plan for Former E-Z Service Station 3175 West Ball Road, Anaheim, California. July.
- RWQCB, 2012. Letter RE: Case Closure and Well Destruction Approval, Former E-Z Service #100842, 3175 W. Ball Road, Anaheim, California. April 9.

APPENDIX A

Laboratory Reports

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek

Client Address: 605 3rd Street

Encinitas, CA 92024

Attn: Nicole Peacock

Project Address: 3175 West Ball Rd

Anaheim, CA

Report date: 7/18/2017 **JEL Ref. No.:** F-0030 **Client Ref. No.:** 9289.003

Date Sampled: 7/18/2017

Date Received: 7/18/2017 **Date Analyzed:** 7/18/2017

Physical State: Soil Gas

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sampling – Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-pentane, n-hexane, or n-heptane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Colby Wakeman QA/QC Manager

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek Report date: 7/18/2017

Client Address: 605 3rd Street JEL Ref. No.: F-0030

Encinitas, CA 92024 Client Ref. No.: 9289.003

SV4-5'

SV5-5'

Attn: Nicole Peacock Date Sampled: 7/18/2017

Date Received: 7/18/2017 **Date Analyzed:** 7/18/2017

Project Address: 3175 West Ball Rd Physical State: Soil Gas

SV3-5'

Anaheim, CA

SV1-5'

Sample ID:

SV2-5'

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

JEL ID:	F-0030-01	F-0030-02	F-0030-03	F-0030-04	F-0030-05	Practical	T.T
Analytes:						<u>Quantitation</u> Limit	<u>Units</u>
Benzene	ND	ND	ND	ND	14	8	μg/m3
	ND ND	ND ND	ND ND	ND ND	ND	8	
Bromobenzene			ND ND			8	μg/m3
Bromodichloromethane	ND	ND		ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND		μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	8	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	8	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	8	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND ND	8	μg/m3
1,1-Diemoropropene	ND	ND	ND	ND	TID	3	MB/1113

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates							
Sample ID:	SV1-5'	SV2-5'	SV3-5'	SV4-5'	SV5-5'		
JEL ID:	F-0030-01	F-0030-02	F-0030-03	F-0030-04	F-0030-05	Practical Quantitation	<u>Units</u>
Analytes:	N.D.	N.ID	N.ID	N.ID	NID	<u>Limit</u>	/ 2
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND ND	ND ND	9 ND	ND ND	14 ND	8 40	μg/m3
Freon 113	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3
Hexachlorobutadiene	ND ND	ND ND	ND ND	ND ND	12	8	μg/m3
Isopropylbenzene	ND ND	ND ND	ND ND	ND ND	ND	8	μg/m3
4-Isopropyltoluene		ND ND	ND ND	ND ND	ND ND	8	μg/m3
Methylene chloride	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3
Naphthalene		ND ND	ND ND	ND ND	ND ND	8	μg/m3 μg/m3
n-Propylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	8	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/m3 μg/m3
1,1,2,2-Tetrachloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	8	μg/1113 μg/m3
Tetrachloroethylene	ND ND	ND ND	ND	ND	ND ND	8	μg/m3 μg/m3
Toluene	40	83	118	56	148	8	μg/m3 μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	40	μg/m3 μg/m3
1,2,4-Trichlorobenzene	ND ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
1,1,1-Trichloroethane	ND ND	ND	ND	ND	ND	8	μg/m3 μg/m3
1,1,2-Trichloroethane	ND ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
Trichloroethylene	ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
Trichlorofluoromethane	ND ND	ND	ND	ND	ND	8	μg/m3 μg/m3
1,2,3-Trichloropropane	ND ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
1,2,4-Trimethylbenzene	ND ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND ND	8	μg/m3
m,p-Xylene	ND	ND	8	ND	20	8	μg/m3
o-Xylene	ND	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/m3
TIC:							
n-pentane	ND	ND	ND	ND	ND	400	$\mu g/m3$
n-hexane	ND	ND	ND	ND	ND	400	μg/m3
n-heptane	ND	ND	ND	ND	ND	400	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:		0.5.7.1	40.77	40	40.55	QC Lim	
Dibromofluoromethane	102%	99%	104%	102%	104%	60 - 14	
Toluene-d ₈	100%	104%	103%	104%	102%	60 - 14	
4-Bromofluorobenzene	92%	97%	95%	98%	101%	60 - 14	0
					F-071817-F-		
	0030	0030	0030	0030	0030		

ND= Not Detected

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek Report date: 7/18/2017

Client Address: 605 3rd Street JEL Ref. No.: F-0030

Encinitas, CA 92024 Client Ref. No.: 9289.003

Attn: Nicole Peacock Date Sampled: 7/18/2017

Date Received: 7/18/2017 **Date Analyzed:** 7/18/2017

Project Address: 3175 West Ball Rd Physical State: Soil Gas

SV8-5'

Anaheim, CA

SV6-5'

SV7-5'

Sample ID:

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

SV8-5' REP

SV9-5'

Practical JEL ID: F-0030-06 F-0030-07 F-0030-08 F-0030-09 F-0030-10 Quantitation **Units** Limit **Analytes:** ND 8 Benzene ND 64 53 35 μg/m3 Bromobenzene ND ND ND ND ND 8 $\mu g/m3$ Bromodichloromethane ND ND ND ND ND 8 $\mu g/m3$ ND ND ND ND 8 $\mu g/m3$ Bromoform ND 8 n-Butylbenzene ND ND ND ND ND $\mu g/m3$ $\mu g/m3$ ND ND ND 8 sec-Butylbenzene ND ND 8 ND ND ND tert-Butylbenzene ND ND μg/m3 8 ND ND ND Carbon tetrachloride ND ND μg/m3 8 Chlorobenzene ND ND ND ND ND μg/m3 8 Chloroform ND ND ND ND ND μg/m3 8 ND ND ND ND ND 2-Chlorotoluene $\mu g/m3$ 8 4-Chlorotoluene ND ND ND ND ND $\mu g/m3$ 8 ND ND ND ND $\mu g/m3$ Dibromochloromethane ND 8 ND ND ND ND ND $\mu g/m3$ 1,2-Dibromo-3-chloropropane 8 1,2-Dibromoethane (EDB) ND ND ND ND ND μg/m3 8 Dibromomethane ND ND ND ND ND $\mu g/m3$ 8 1.2- Dichlorobenzene ND ND ND ND ND $\mu g/m3$ 8 1,3-Dichlorobenzene ND ND ND ND ND μg/m3 8 1,4-Dichlorobenzene ND ND ND ND ND μg/m3 8 Dichlorodifluoromethane ND ND ND ND ND μg/m3 1.1-Dichloroethane ND ND ND ND ND 8 μg/m3 8 ND ND μg/m3 1,2-Dichloroethane ND ND ND 8 1,1-Dichloroethene ND ND ND ND ND μg/m3 8 ND ND ND ND ND μg/m3 cis-1.2-Dichloroethene 8 ND ND ND ND ND $\mu g/m3$ trans-1,2-Dichloroethene 8 ND 1,2-Dichloropropane ND ND ND ND $\mu g/m3$ 8 1,3-Dichloropropane ND ND ND ND ND $\mu g/m3$ μg/m3 8 2,2-Dichloropropane ND ND ND ND ND 8 ND ND ND 1,1-Dichloropropene ND ND $\mu g/m3$

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B –	Volatile (Organics	by GC/MS	+ Oxygenates

Sample ID:	SV6-5'	SV7-5'	SV8-5'	SV8-5' REP	SV9-5'		
<u>JEL ID:</u> Analytes:	F-0030-06	F-0030-07	F-0030-08	F-0030-09	F-0030-10	<u>Practical</u> <u>Quantitation</u> <u>Limit</u>	<u>Units</u>
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	9	ND	25	22	20	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	40	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	8	μg/m3
Isopropylbenzene	ND	ND	12	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	8	ND	15	12	9	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
Tetrachloroethylene	ND	ND	ND	ND	ND	8	μg/m3
Toluene	80	26	196	185	194	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	40	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND ND	ND	8	μg/m3 μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND ND	ND	8	μg/m3 μg/m3
Trichloroethylene	ND	ND	ND	ND	ND	8	μg/m3 μg/m3
Trichlorofluoromethane	ND ND	ND	ND	ND ND	ND	8	μg/m3 μg/m3
1,2,3-Trichloropropane	ND ND	ND	ND	ND ND	ND	8	μg/m3 μg/m3
1,2,4-Trimethylbenzene	ND ND	ND ND	ND	ND ND	ND ND	8	μg/m3 μg/m3
1,3,5-Trimethylbenzene	ND ND	ND	ND	ND	ND ND	8	μg/m3 μg/m3
Vinyl chloride	ND ND	ND ND	ND	ND ND	ND ND	8	μg/m3
-	ND ND	ND ND	41	45	46	8	μg/m3 μg/m3
m,p-Xylene	ND ND	ND ND	14	45 13	13	8	μg/m3 μg/m3
o-Xylene MTBE	ND ND	ND ND	ND	ND	ND	40	μg/m3 μg/m3
	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3 μg/m3
Ethyl-tert-butylether	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3 μg/m3
Di-isopropylether	ND ND	ND ND	ND ND	ND ND	ND ND	40	μg/m3 μg/m3
tert-amylmethylether	ND ND	ND ND	ND ND	ND ND	ND ND	400	μg/m3 μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	μg/III3
TIC:	N.E.	ND	N.IID	NED	ND	400	/ 2
n-pentane	ND	ND	ND	ND	ND	400	μg/m3
n-hexane	ND	ND	ND	ND	ND	400	μg/m3
n-heptane	ND	ND	ND	ND	ND	400	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Lim	
Dibromofluoromethane	102%	103%	99%	103%	105%	60 - 140	
Toluene-d ₈	103%	104%	103%	104%	106%	60 - 140	
4-Bromofluorobenzene	96%	96%	99%	98%	99%	60 - 140)
				- F-071817-F-			
	0030	0030	0030	0030	0030		
NID NI ID (I I							

ND= Not Detected

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek Report date: 7/18/2017

Client Address: 605 3rd Street JEL Ref. No.: F-0030

Encinitas, CA 92024 Client Ref. No.: 9289.003

Attn: Nicole Peacock Date Sampled: 7/18/2017

 Date Received:
 7/18/2017

 Date Analyzed:
 7/18/2017

Project Address: 3175 West Ball Rd Physical State: Soil Gas

Anaheim, CA

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	SV10-5'	SV11-5'	SV12-5'	SV13-5'	SV14-5'		
JEL ID: Analytes:	F-0030-11	F-0030-12	F-0030-13	F-0030-14	F-0030-15	<u>Practical</u> <u>Quantitation</u> Limit	<u>Units</u>
Benzene	26	ND	35	16	18	8	μg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromoform	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Chloroform	ND	ND	ND	ND	ND	8	μg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	8	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	8	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	μg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates							
Sample ID:	SV10-5'	SV11-5'	SV12-5'	SV13-5'	SV14-5'		
JEL ID:	F-0030-11	F-0030-12	F-0030-13	F-0030-14	F-0030-15	Practical Quantitation	<u>Units</u>
Analytes:	NID	NID	NID	NID	NID	<u>Limit</u>	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	11 ND	ND	28	15 ND	11 ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	40	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	8	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	μg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	13	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
Tetrachloroethylene	ND	ND	ND	ND	ND	8	μg/m3
Toluene	100	43	196	129	114	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	40	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethylene	ND	ND	ND	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	23	ND	49	27	18	8	μg/m3
o-Xylene	ND	ND	15	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	$\mu g/m3$
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	$\mu g/m3$
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	$\mu g/m3$
TIC:						400	/ 0
n-pentane	ND	ND	ND	ND	ND	400	μg/m3
n-hexane	ND	ND	ND	ND	ND	400	μg/m3
n-heptane	ND	ND	ND	ND	ND	400	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Lim</u>	<u>its</u>
Dibromofluoromethane	103%	101%	103%	102%	103%	60 - 14	0
Toluene-d ₈	101%	99%	101%	102%	103%	60 - 14	0
4-Bromofluorobenzene	94%	94%	97%	94%	94%	60 - 14	0
					F-071817-F-		
	0030	0030	0030	0030	0030		
ND= Not Detected							

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek Report date: 7/18/2017

Client Address: 605 3rd Street JEL Ref. No.: F-0030

Encinitas, CA 92024 Client Ref. No.: 9289.003

Attn: Nicole Peacock Date Sampled: 7/18/2017

 Date Received:
 7/18/2017

 Date Analyzed:
 7/18/2017

Project Address: 3175 West Ball Rd Physical State: Soil Gas

Anaheim, CA

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sample ID: SV15-5' SV16-5'

JEL ID:	F-0030-16	F-0030-17	<u>Practical</u>	
JEL ID.	1-0050-10	1-0050-17	<u>Quantitation</u>	<u>Units</u>
Analytes:			<u>Limit</u>	
Benzene	ND	23		μg/m3
Bromobenzene	ND	ND		μg/m3
Bromodichloromethane	ND	ND		μg/m3
Bromoform	ND	ND		μg/m3
n-Butylbenzene	ND	ND		μg/m3
sec-Butylbenzene	ND	ND		μg/m3
tert-Butylbenzene	ND	ND	8	μg/m3
Carbon tetrachloride	ND	ND		μg/m3
Chlorobenzene	ND	ND		μg/m3
Chloroform	ND	ND		μg/m3
2-Chlorotoluene	ND	ND		μg/m3
4-Chlorotoluene	ND	ND		μg/m3
Dibromochloromethane	ND	ND		$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND		μg/m3
1,2-Dibromoethane (EDB)	ND	ND		μg/m3
Dibromomethane	ND	ND		μg/m3
1,2- Dichlorobenzene	ND	ND		μg/m3
1,3-Dichlorobenzene	ND	ND		μg/m3
1,4-Dichlorobenzene	ND	ND		μg/m3
Dichlorodifluoromethane	ND	ND		μg/m3
1,1-Dichloroethane	ND	ND		μg/m3
1,2-Dichloroethane	ND	ND		μg/m3
1,1-Dichloroethene	ND	ND		μg/m3
cis-1,2-Dichloroethene	ND	ND		μg/m3
trans-1,2-Dichloroethene	ND	ND		μg/m3
1,2-Dichloropropane	ND	ND		μg/m3
1,3-Dichloropropane	ND	ND		μg/m3
2,2-Dichloropropane	ND	ND		$\mu g/m3$
1,1-Dichloropropene	ND	ND	8	μg/m3

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:

ND= Not Detected

SV15-5'

SV16-5'

Sample 1D.	5 V 13-3	3 1 10-3	
IEL ID.	F-0030-16	E 0020 17	<u>Practical</u>
JEL ID:	F-0030-16	F-0030-17	Quantitation Units
Analytes:			<u>Limit</u>
cis-1,3-Dichloropropene	ND	ND	8 $\mu g/m3$
trans-1,3-Dichloropropene	ND	ND	8 $\mu g/m3$
Ethylbenzene	ND	20	8 $\mu g/m3$
Freon 113	ND	ND	$40 \mu g/m3$
Hexachlorobutadiene	ND	ND	8 μg/m3
Isopropylbenzene	ND	ND	$8 \mu g/m3$
4-Isopropyltoluene	ND	ND	$8 \mu g/m3$
Methylene chloride	ND	ND	$8 \mu g/m3$
Naphthalene	ND	ND	$40 \mu g/m3$
n-Propylbenzene	ND	ND	8 μg/m3
Styrene	ND	ND	8 μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	8 μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	8 μg/m3
Tetrachloroethylene	ND	ND	8 μg/m3
Toluene	54	175	8 μg/m3
1,2,3-Trichlorobenzene	ND	ND	40 μg/m3
1,2,4-Trichlorobenzene	ND	ND	8 μg/m3
1,1,1-Trichloroethane	ND	ND	8 μg/m3
1,1,2-Trichloroethane	ND	ND	8 μg/m3
Trichloroethylene	ND	ND	8 μg/m3
Trichlorofluoromethane	ND	ND	8 μg/m3
1,2,3-Trichloropropane	ND	ND	8 μg/m3
1,2,4-Trimethylbenzene	ND	ND	8 μg/m3
1,3,5-Trimethylbenzene	ND	ND	8 μg/m3
Vinyl chloride	ND	ND	8 μg/m3
m,p-Xylene	16	42	8 μg/m3
o-Xylene	ND	12	8 μg/m3
MTBE	ND	ND	40 μg/m3
Ethyl-tert-butylether	ND	ND	40 μg/m3
Di-isopropylether	ND	ND	40 μg/m3
tert-amylmethylether	ND	ND	40 μg/m3
tert-Butylalcohol	ND	ND	400 μg/m3
tert-Butyrareonor	ND	ND	μετιισ
TIC:			
n-pentane	ND	ND	400 μg/m3
n-hexane	ND	ND	400 μg/m3
n-heptane	ND	ND	400 μg/m3
Dilution Factor	1	1	
Surrogate Recoveries:			QC Limits
Dibromofluoromethane	109%	102%	60 - 140
Toluene-d ₈	102%	102%	60 - 140
4-Bromofluorobenzene	95%	97%	60 - 140
	F-071817-F-	F-071817-F-	
	0030	0030	
		-	

714-449-9937 | 11007 FOREST PLACE 562-646-1611 | SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Dudek Report date: 7/18/2017

Client Address: 605 3rd Street JEL Ref. No.: F-0030

Encinitas, CA 92024 Client Ref. No.: 9289.003

Attn: Nicole Peacock Date Sampled: 7/18/2017

 Date Received:
 7/18/2017

 Date Analyzed:
 7/18/2017

Project Address: 3175 West Ball Rd Physical State: Soil Gas

Anaheim, CA

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
JEL ID:	071817- F1MB1	071817- F1SB1	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:			<u>Limit</u>	
Benzene	ND	ND	8	μg/m3
Bromobenzene	ND	ND	8	μg/m3
Bromodichloromethane	ND	ND	8	μg/m3
Bromoform	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	8	$\mu g/m3$
sec-Butylbenzene	ND	ND	8	$\mu g/m3$
tert-Butylbenzene	ND	ND	8	$\mu g/m3$
Carbon tetrachloride	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	8	μg/m3
Chloroform	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	8	μg/m3
4-Chlorotoluene	ND	ND	8	$\mu g/m3$
Dibromochloromethane	ND	ND	8	$\mu g/m3$
1,2-Dibromo-3-chloropropane	ND	ND	8	$\mu g/m3$
1,2-Dibromoethane (EDB)	ND	ND	8	μg/m3
Dibromomethane	ND	ND	8	$\mu g/m3$
1,2- Dichlorobenzene	ND	ND	8	μg/m3
1,3-Dichlorobenzene	ND	ND	8	μg/m3
1,4-Dichlorobenzene	ND	ND	8	μg/m3
Dichlorodifluoromethane	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	8	$\mu g/m3$
cis-1,2-Dichloroethene	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	8	μg/m3
1,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,3-Dichloropropane	ND	ND	8	$\mu g/m3$
2,2-Dichloropropane	ND	ND	8	$\mu g/m3$
1,1-Dichloropropene	ND	ND	8	$\mu g/m3$

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B -	Volatile	Organics	by GC/MS	S + Oxygenates

Sample ID:	METHOD BLANK	SAMPLING BLANK		
JEL ID:	071817- F1MB1	071817- F1SB1	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:			<u>Limit</u>	
cis-1,3-Dichloropropene	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND		μg/m3
Ethylbenzene	ND	ND		μg/m3
Freon 113	ND	ND		μg/m3
Hexachlorobutadiene	ND	ND	•	μg/m3
Isopropylbenzene	ND	ND	· ·	μg/m3
4-Isopropyltoluene	ND	ND	· · · · · · · · · · · · · · · · · · ·	μg/m3
Methylene chloride	ND	ND	· · · · · · · · · · · · · · · · · · ·	μg/m3
Naphthalene	ND	ND		μg/m3
n-Propylbenzene	ND	ND		μg/m3
Styrene	ND	ND	·	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND		μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	·	μg/m3
Tetrachloroethylene	ND	ND	·	μg/m3
Toluene	ND	ND		μg/m3
1,2,3-Trichlorobenzene	ND	ND		μg/m3
1,2,4-Trichlorobenzene	ND	ND		μg/m3
1,1,1-Trichloroethane	ND	ND		μg/m3 μg/m3
1,1,2-Trichloroethane	ND	ND		μg/m3 μg/m3
Trichloroethylene	ND	ND		μg/m3 μg/m3
Trichlorofluoromethane	ND	ND		μg/m3 μg/m3
	ND ND	ND ND	·	μg/m3 μg/m3
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND	ND ND		μg/m3 μg/m3
1,3,5-Trimethylbenzene	ND ND	ND ND	·	μg/m3 μg/m3
· · ·	ND ND	ND ND	·	μg/m3 μg/m3
Vinyl chloride	ND ND	ND ND	·	μg/m3 μg/m3
m,p-Xylene	ND ND	ND ND		μg/m3 μg/m3
o-Xylene	ND ND	ND ND	·	
MTBE			•	μg/m3
Ethyl-tert-butylether	ND	ND		μg/m3
Di-isopropylether	ND	ND	· ·	μg/m3
tert-amylmethylether	ND	ND		μg/m3
tert-Butylalcohol	ND	ND	400	μg/m3
TIC:	N.T.	N.T.	400	/ 2
n-pentane	ND	ND		μg/m3
n-hexane	ND	ND		μg/m3
n-heptane	ND	ND	400	μg/m3
Dilution Factor	1	1		
Surrogate Recoveries:			OC Limits	
Dibromofluoromethane	106%	107%	60 - 140	
Toluene-d ₈	100%	102%	60 - 140	
4-Bromofluorobenzene	91%	192%	60 - 140	
		- F-071817-F-		
	0030	0030		

ND= Not Detected

714-449-9937 | 110 562-646-1611 | SAN 805-399-0060 | WV

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Dudek

Client Address: 605 3rd Street

Encinitas, CA 92024

Attn: Nicole Peacock

Project Address: 3175 West Ball Rd

Anaheim, CA

JEL Ref. No.: F-0030 Client Ref. No.: 9289.003

7/18/2017

Report date:

Date Sampled: 7/18/2017 **Date Received:** 7/18/2017

Date Analyzed: 7/18/2017
Physical State: Soil Gas

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Batch ID: F-071817-F-0030

JEL ID:	071817-F1LCS1	071817-F1LCSD1		07	71817-F1CC	V1
	LCS	LCSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl Chloride	230%	216%	6.3%	70 - 130	157%	80 - 120
1,1-Dichloroethylene	116%	107%	7.9%	70 - 130	104%	80 - 120
Cis-1,2-Dichloroethene	106%	100%	5.3%	70 - 130	107%	80 - 120
1,1,1-Trichloroethane	107%	99%	7.9%	70 - 130	97%	80 - 120
Benzene	120%	111%	7.5%	70 - 130	109%	80 - 120
Trichloroethylene	106%	98%	8.5%	70 - 130	95%	80 - 120
Toluene	118%	112%	5.3%	70 - 130	110%	80 - 120
Tetrachloroethene	88%	84%	4.1%	70 - 130	83%	80 - 120
Chlorobenzene	112%	103%	8.7%	70 - 130	106%	80 - 120
Ethylbenzene	114%	108%	5.4%	70 - 130	110%	80 - 120
1,2,4 Trimethylbenzene	88%	84%	5.2%	70 - 130	85%	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	99%	100%		60 - 140	94%	60 - 140
Toluene-d ₈	106%	105%		60 - 140	106%	60 - 140
4-Bromofluorobenzene	101%	104%		60 - 140	103%	60 - 140

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Record of Sample Collection

Client DUDEK					Date 7/18/2	2017	Report O	ptions:									JEL Project #
Project Name					Client Pr	OSA DERMI	-EDD										F-0030
3175 WEST BALL RD					ESSENSED VI S	9.003	EDF - 10%	% Surcharge	8								Page
Project Address 3175 WEST BALL RD					Turn A	Around Requested:	Tra	acer:	Shut In Test	1	Α	naly	sis Re	ques	sted		1 of 2
ANAHEIM, CA					□ lmm	nediate Attention	□ n-prop	oanol	Y/ N	Gas							Lab Use Only
Email						h 24 Hours h 48 Hours	□ n-pen		Purge Number	Soil							Sample Condition as Recieved: Chilled □ yes □ no
Phone 760-419-5592					□ Rus	h 72 Hours mal	□ Heliur		□ 1P (x 3P □ 7P □ 10P	Aqueous (A),					(in/H 2O)	ø	Sealed □ yes □ no
Report To NICOLE PEACOCK	Sampler ANNA	LISE)'TOOL	E	A Mob	ile Lab	n-De	ntano		Matrix: Sludge (SL), Aq					Magnehelic Reading (in/H	of Containers	
Sample ID	Purge Number	Purge Volume	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate	Pump Used	Magnehelic	Sample N Soil (S), Slt	EPA 8260B				Magnehe	Number of	Remarks & Special Instructions
SV1-5'	3	1630	7/18/17	9:34	9:36	F-0030-01	~200cc/min	ANNALISE.1	M100.112	SG	Х				<2	2	
SV2-5'	3	1630	7/18/17	9:48	9:57	F-0030-02	~200cc/min	ANGELA.2	M100.105	SG	х				<2	2	
SV3-5'	3	1630	7/18/17	10:07	10:15	F-0030-03	~200cc/min	ANNALISE.1	M100.112	SG	Х				4	2	
SV4-5'	3	1630	7/18/17	10:25	10:34	F-0030-04	~200cc/min	ANGELA.2	M100.105	SG	х				<2	2	-
SV5-5'	3	1630	7/18/17	10:45	10:53	F-0030-05	~200cc/min	ANNALISE.1	M100.112	SG	х				4	2	
SV6-5'	3	1630	7/18/17	11:02	11:12	F-0030-06	~200cc/min	ANGELA.2	M100.105	SG	Х				2	2	
SV7-5'	3	1630	7/18/17	11:23	11:31	F-0030-07	~200cc/min	ANNALISE.1	M100.112	SG	X				4	2	
SV8-5'	3	1630	7/18/17	11:43	11:50	F-0030-08	~200cc/min	ANGELA.2	M100.105	SG	х				4	2	
SV8-5' REP	3	1630	7/18/17	12:02	12:09	F-0030-09	~200cc/min	ANGELA.2	M100.105	SG	X				4	2	V
SV9-5'	3	1630	7/18/17	12:20	12:28	F-0030-10	~200cc/min	ANNALISE.1	M100.112	SG	х				6	2	
Relinquished By (Signature):	1/		Date: 7/1	8/17		Recieved By (Signature):	100	Ze.				7-	ate: -18 -	17		20	Total Number of Containers
Company OVA Relinquished By (Signature):			Time:	507		Jones Environmer Recieved By (Signature):						1	me: SOT ate:			Colle	signature on this Record of Sampling ction form constitutes aknowledgement
Company			Time:			Company						ті	me:			that	tithe analyses above were performed.

11007 Forest PI. Santa Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com

Record of Sample Collection

Client DUDEK					Date 7/18/2	2017	Report O	ptions:									JEL Project #
Project Name					Client Pr	1977 (0.01)	-EDD	• Conversion to the									F-0030
3175 WEST BALL RD						59 OB	EDF - 109	% Surcharge	9								Page
Project Address					12,	3100											
3175 WEST BALL RD					Turn A	Around Requested:	Tra	acer:	Shut in Test	ı		naly	sis R	eque	sted	1	2 of 2
ANAHEIM, CA					□ lmm	ediate Attention	□ n-prop	panol	(N	Gas							Lab Use Only
Email					1	h 24 Hours h 48 Hours	□ n-pen		0	Soil G							Sample Condition as Recieved: Chilled □ yes □ no
Phone	- Hardin		-			h 72 Hours	□ 1,1-Di		Purge Number	8					² 0		Sealed □ yes □ no
760-419-5592					□ Norr			exave	□ 7P □ 10P	neon			İ		(in/H 20)	(0)	
Report To NICOLE PEACOCK	Sampler ANNA	LISE ()'TOOL	E.	Mob	ile Lab	N-De	epran	2	Matrix: Sludge (SL), Aqueous (A), Soil	m			1	Reading	Container	
Sample ID	Purge Number	Purge Volume	Date	Sample Collection Time	Sample Analysis Time	Laboratory Sample ID	Purge Rate	Pump Used	Magnehelic	Sample Ma Soil (S), Sluc	EPA 8260B				Magnehelic Reading	Number of Containers	Remarks & Special Instructions
SV10-5'	3	1630	7/18/17	12:39	12:46	F-0030-11	~200cc/min	ANNALISE.1	M100.112	SG					<2	2	
SV11-5'	3	1630	7/18/17	12:58	13:04	F-0030-12	~200cc/min	ANGELA.2	M100.105	SG	х				<2	2	
SV12-5'	3	1630	7/18/17	13:15	13:23	F-0030-13	~200cc/min	ANNALISE.1	M100.112	SG	х		1		4	2	
SV13-5'	3	1630	7/18/17	13:33	13:42	F-0030-14	~200cc/min	ANGELA.2	M100.105	SG	х				6	2	14
SV14-5'	3	1630	7/18/17	13:52	14:00	F-0030-15	~200cc/min	ANNALISE.1	M100.112	SG	х				10	2	
SV15-5'	3	1630	7/18/17	14:10	14:18	F-0030-16	~200cc/min	ANGELA.2	M100.105	SG	х				4	2	
SV16-5'	3	1630	7/18/17	14:29	14:36	F-0030-17	~200cc/min	ANNALISE.1	M100.112	SG	х				8	2	
													-	+	+		
Laconstitut														+	\vdash		
Relinquished By (Signature):	Uh)	/		/18/	17	Recieved By (Signature):		ne					ate:	17		14	Total Number of Containers
Dude k			Time:	つア	/	Company Jones Environmer	ital, Inc.						me: SU	7			
Relinquished By (Signature):			Date:			Recieved By (Signature):						D	ate:			Colle	e signature on this Record of Sampling ection form constitutes aknowledgement the analyses above were performed.
Company			Time:			Company						Ti	me:			trial	ите апатувев авоче were репогтед.

714-449-9937 562-646-1611 805-399-0060 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek & Associates, Inc.

Client Address: 605 Third Street

Encinitas, CA 92024

Attn: Nicole Peacock

Project: Former E-Z

Project Address: 3175 West Ball Road

Anaheim, CA

Client Ref. No: 9289.0003

Report date:

JEL Ref. No.:

Date Sampled: 7/18/2017 **Date Received:** 7/18/2017

Date Received: 7/18/2017 **Date Analyzed:** 7/18/2017

7/18/2017

ST-10924

Physical State: Soil

ANALYSES REQUESTED

1. EPA 8260B by 5035 – BTEX by GC/MS

Approval:

Carolyn Carroll Stationary Lab Manager Anaheim, CA

B11

Sample ID:

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek & Associates, Inc. Report date: 7/18/2017 **Client Address:** 605 Third Street JEL Ref. No.: ST-10924

Encinitas, CA 92024 Client Ref. No.: 9289.0003

B14

B15

Nicole Peacock Attn: **Date Sampled:** 7/18/2017

> **Date Received:** 7/18/2017 **Date Analyzed:** 7/18/2017

Former E-Z **Project:**

3175 West Ball Road **Physical State: Project Address:** Soil

B13

EPA 8260B by 5035 – BTEX by GC/MS

Practical ST-10924-01 ST-10924-02 ST-10924-03 ST-10924-04 ST-10924-05 **JEL ID:**

B12

OLL ID.	01 10,2.01	21 10721 02	21 10/2: 00	51 10,2.0.	01 10,2.00	Quantitation	<u>Units</u>
Analytes:						<u>Limit</u>	
Benzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Bromodichloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
Bromoform	ND	ND	ND	ND	ND	1.0	μg/kg
n-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
sec-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
tert-Butylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Carbon tetrachloride	ND	ND	ND	ND	ND	1.0	μg/kg
Chlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Chloroform	ND	ND	ND	ND	ND	1.0	μg/kg
2-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Chlorotoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromochloromethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	1.0	μg/kg
Dibromomethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Dichlorodifluoromethane	ND	ND	ND	ND	ND	5.0	μg/kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 – BTEX by GC/MS

Sample ID:	B11	B12	B13	B14	B15

JEL ID:	ST-10924-01	ST-10924-02	ST-10924-03	ST-10924-04	ST-10924-05	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:						<u>Limit</u>	
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	1.0	μg/kg
Ethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Freon 113	ND	ND	ND	ND	ND	5.0	μg/kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	1.0	μg/kg
Isopropylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
4-Isopropyltoluene	ND	ND	ND	ND	ND	1.0	μg/kg
Methylene chloride	ND	ND	ND	ND	ND	1.0	μg/kg
Naphthalene	ND	ND	ND	ND	ND	1.0	μg/kg
n-Propylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Styrene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Tetrachloroethylene	ND	ND	ND	ND	ND	1.0	μg/kg
Toluene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	1.0	μg/kg
Trichloroethylene	ND	ND	ND	ND	ND	1.0	μg/kg
Trichlorofluoromethane	ND	ND	ND	ND	ND	5.0	μg/kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	1.0	μg/kg
Vinyl chloride	ND	ND	ND	ND	ND	1.0	μg/kg
m,p-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
o-Xylene	ND	ND	ND	ND	ND	1.0	μg/kg
MTBE	ND	ND	ND	ND	ND	5.0	μg/kg
Ethyl-tert-butylether	ND	ND	ND	ND	ND	5.0	μg/kg
Di-isopropylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-amylmethylether	ND	ND	ND	ND	ND	5.0	μg/kg
tert-Butylalcohol	ND	ND	ND	ND	ND	50.0	μg/kg
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						QC Limi	
Dibromofluoromethane	108%	112%	103%	109%	111%	60 - 140	
Toluene-d ₈	101%	105%	100%	103%	103%	60 - 140)
4-Bromofluorobenzene	109%	114%	112%	111%	113%	60 - 140)
	VOC3-071817-	VOC3-071817-	VOC3-071817-	VOC3-071817-	VOC3-071817-		

ND= Not Detected

CHECKS_1

CHECKS_1

CHECKS_1

CHECKS_1

CHECKS_1

Anaheim, CA

714-449-9937 11007 FOREST PLACE 562-646-1611 SANTA FE SPRINGS, CA 90670 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Dudek & Associates, Inc. Report date: 7/18/2017 **Client Address:** 605 Third Street JEL Ref. No.: ST-10924

> Encinitas, CA 92024 Client Ref. No.: 9289.0003

Nicole Peacock 7/18/2017 Attn: **Date Sampled:**

> **Date Received:** 7/18/2017 **Date Analyzed:** 7/18/2017

> > **Practical**

Former E-Z **Project:**

3175 West Ball Road **Physical State: Project Address:** Soil

EPA 8260B by 5035 – BTEX by GC/MS

Sample ID: B16

JEL ID:	ST-10924-06	<u> Practical</u>	
		Quantitation	<u>Units</u>
Analytes:		<u>Limit</u>	
Benzene	ND	1.0	μg/kg
Bromobenzene	ND	1.0	μg/kg
Bromodichloromethane	ND	1.0	μg/kg
Bromoform	ND	1.0	μg/kg
n-Butylbenzene	ND	1.0	μg/kg
sec-Butylbenzene	ND	1.0	μg/kg
tert-Butylbenzene	ND	1.0	μg/kg
Carbon tetrachloride	ND	1.0	μg/kg
Chlorobenzene	ND	1.0	μg/kg
Chloroform	ND	1.0	μg/kg
2-Chlorotoluene	ND	1.0	μg/kg
4-Chlorotoluene	ND	1.0	μg/kg
Dibromochloromethane	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	1.0	μg/kg
Dibromomethane	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	1.0	μg/kg
Dichlorodifluoromethane	ND	5.0	μg/kg
1,1-Dichloroethane	ND	1.0	μg/kg
1,2-Dichloroethane	ND	1.0	μg/kg
1,1-Dichloroethene	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	1.0	μg/kg
1,2-Dichloropropane	ND	1.0	μg/kg
1,3-Dichloropropane	ND	1.0	μg/kg
2,2-Dichloropropane	ND	1.0	μg/kg
1,1-Dichloropropene	ND	1.0	μg/kg

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5035 – BTEX by GC/MS

Sample ID: B16

JEL ID:	ST-10924-06		<u>Units</u>
Analytes:		<u>Limit</u>	
cis-1,3-Dichloropropene	ND		μg/kg
trans-1,3-Dichloropropene	ND		μg/kg
Ethylbenzene	ND		μg/kg
Freon 113	ND		μg/kg
Hexachlorobutadiene	ND		μg/kg
Isopropylbenzene	ND		μg/kg
4-Isopropyltoluene	ND		μg/kg
Methylene chloride	ND		μg/kg
Naphthalene	ND		μg/kg
n-Propylbenzene	ND		μg/kg
Styrene	ND		μg/kg
1,1,1,2-Tetrachloroethane	ND		μg/kg
1,1,2,2-Tetrachloroethane	ND		μg/kg
Tetrachloroethylene	ND		μg/kg
Toluene	ND		μg/kg
1,2,3-Trichlorobenzene	ND		μg/kg
1,2,4-Trichlorobenzene	ND		μg/kg
1,1,1-Trichloroethane	ND		μg/kg
1,1,2-Trichloroethane	ND		μg/kg
Trichloroethylene	ND		μg/kg
Trichlorofluoromethane	ND		μg/kg
1,2,3-Trichloropropane	ND		μg/kg
1,2,4-Trimethylbenzene	ND		μg/kg
1,3,5-Trimethylbenzene	ND		μg/kg
Vinyl chloride	ND		μg/kg
m,p-Xylene	ND		μg/kg
o-Xylene	ND		μg/kg
MTBE	ND		μg/kg
Ethyl-tert-butylether	ND		μg/kg
Di-isopropylether	ND		μg/kg
tert-amylmethylether	ND		μg/kg
tert-Butylalcohol	ND	50.0	μg/kg
Dilution Factor	1		
Surrogate Recoveries:		OC Limits	
Dibromofluoromethane	107%	60 - 140	
Toluene-d ₈	101%	60 - 140	
4-Bromofluorobenzene	107%	60 - 140	
	VOC3-071817-		
	CHECKS 1		

ND= Not Detected

CHECKS_1

714-449-9937 11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 562-646-1611 805-399-0060 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Dudek & Associates, Inc. **Client:** Report date: 7/18/2017 **Client Address:** 605 Third Street JEL Ref. No.: ST-10924

> Encinitas, CA 92024 Client Ref. No.: 9289.0003

Nicole Peacock 7/18/2017 Attn: **Date Sampled:**

> **Date Received:** 7/18/2017

Former E-Z 7/18/2017 **Project: Date Analyzed:**

Project Address: 3175 West Ball Road **Physical State:** Soil

Anaheim, CA

EPA 8260B by 5035 – BTEX by GC/MS

Sample ID:	METHOD BLANK		
JEL ID:	071817- V3MB1	Practical Quantitation	<u>Units</u>
Analytes:		<u>Limit</u>	
Benzene	ND	1.0	μg/kg
Bromobenzene	ND	1.0	μg/kg
Bromodichloromethane	ND	1.0	μg/kg
Bromoform	ND	1.0	μg/kg
n-Butylbenzene	ND	1.0	μg/kg
sec-Butylbenzene	ND	1.0	μg/kg
tert-Butylbenzene	ND	1.0	μg/kg
Carbon tetrachloride	ND	1.0	μg/kg
Chlorobenzene	ND	1.0	μg/kg
Chloroform	ND	1.0	μg/kg
2-Chlorotoluene	ND	1.0	μg/kg
4-Chlorotoluene	ND	1.0	μg/kg
Dibromochloromethane	ND	1.0	μg/kg
1,2-Dibromo-3-chloropropane	ND	1.0	μg/kg
1,2-Dibromoethane (EDB)	ND	1.0	μg/kg
Dibromomethane	ND	1.0	μg/kg
1,2- Dichlorobenzene	ND	1.0	μg/kg
1,3-Dichlorobenzene	ND	1.0	μg/kg
1,4-Dichlorobenzene	ND	1.0	μg/kg
Dichlorodifluoromethane	ND	5.0	μg/kg
1,1-Dichloroethane	ND	1.0	μg/kg
1,2-Dichloroethane	ND	1.0	μg/kg
1,1-Dichloroethene	ND	1.0	μg/kg
cis-1,2-Dichloroethene	ND	1.0	μg/kg
trans-1,2-Dichloroethene	ND	1.0	μg/kg
1,2-Dichloropropane	ND	1.0	μg/kg
1,3-Dichloropropane	ND	1.0	μg/kg
2,2-Dichloropropane	ND	1.0	μg/kg
1,1-Dichloropropene	ND	1.0	μg/kg

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

EPA 8260B by 5035 – BTEX by GC/MS

Sample ID:	METHOD BLANK		
JEL ID:	071817- V3MB1	<u>Practical</u> <u>Quantitation</u>	<u>Units</u>
Analytes:		<u>Limit</u>	
cis-1,3-Dichloropropene	ND		μg/kg
trans-1,3-Dichloropropene	ND		μg/kg
Ethylbenzene	ND		μg/kg
Freon 113	ND		μg/kg
Hexachlorobutadiene	ND		μg/kg
Isopropylbenzene	ND		μg/kg
4-Isopropyltoluene	ND		μg/kg
Methylene chloride	ND		μg/kg
Naphthalene	ND		μg/kg
n-Propylbenzene	ND		μg/kg
Styrene	ND		μg/kg
1,1,1,2-Tetrachloroethane	ND		μg/kg
1,1,2,2-Tetrachloroethane	ND		μg/kg
Tetrachloroethylene	ND	1.0	μg/kg
Toluene	ND	1.0	μg/kg
1,2,3-Trichlorobenzene	ND	1.0	μg/kg
1,2,4-Trichlorobenzene	ND	1.0	μg/kg
1,1,1-Trichloroethane	ND	1.0	μg/kg
1,1,2-Trichloroethane	ND	1.0	μg/kg
Trichloroethylene	ND	1.0	μg/kg
Trichlorofluoromethane	ND	5.0	μg/kg
1,2,3-Trichloropropane	ND	1.0	μg/kg
1,2,4-Trimethylbenzene	ND	1.0	μg/kg
1,3,5-Trimethylbenzene	ND	1.0	μg/kg
Vinyl chloride	ND	1.0	μg/kg
m,p-Xylene	ND	1.0	μg/kg
o-Xylene	ND	1.0	μg/kg
MTBE	ND		μg/kg
Ethyl-tert-butylether	ND	5.0	μg/kg
Di-isopropylether	ND		μg/kg
tert-amylmethylether	ND	5.0	μg/kg
tert-Butylalcohol	ND		μg/kg
Dilution Factor	1		
Surrogate Recoveries:		OC Limits	
Dibromofluoromethane	115%	60 - 140	
Toluene-d ₈	101%	60 - 140	
4-Bromofluorobenzene	107%	60 - 140	
	VOC3-071817-		
	CHECKS_1		

ND= Not Detected

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Dudek & Associates, Inc.Report date:7/18/2017Client Address:605 Third StreetJEL Ref. No.:ST-10924

Encinitas, CA 92024 Client Ref. No.: 9289.0003

Attn: Nicole Peacock Date Sampled: 7/18/2017

 Project:
 Former E-Z
 Date Received:
 7/18/2017

 Date Analyzed:
 7/18/2017

Project Address: 3175 West Ball Road Physical State: Soil

Anaheim, CA

EPA 8260B by 5035 – BTEX by GC/MS

Sample Spiked:	CLEAN	SOIL	GC#:	VOC3-071817-0	CHECKS_1	
JEL ID:	071817-V3MS1	071817-V3MSD1		07	71817-V3LC	S1
	MS	MSD		Acceptability		Acceptability
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>LCS</u>	Range (%)
Vinyl Chloride	116%	113%	2.0%	60 - 140	119%	70 - 130
1,1-Dichloroethylene	94%	92%	1.9%	60 - 140	96%	70 - 130
Cis-1,2-Dichloroethene	114%	111%	2.4%	70 - 130	112%	70 - 130
1,1,1-Trichloroethane	110%	105%	4.4%	70 - 130	108%	70 - 130
Benzene	110%	109%	1.5%	70 - 130	109%	70 - 130
Trichloroethylene	106%	101%	4.7%	70 - 130	107%	70 - 130
Toluene	115%	114%	1.0%	70 - 130	113%	70 - 130
Tetrachloroethene	117%	119%	1.6%	70 - 130	117%	70 - 130
Chlorobenzene	106%	106%	0.2%	70 - 130	106%	70 - 130
Ethylbenzene	110%	111%	1.4%	70 - 130	111%	70 - 130
1,2,4 Trimethylbenzene	114%	114%	0.2%	70 - 130	114%	70 - 130
Surrogate Recovery:						
Dibromofluoromethane	107%	106%		60 - 140	105%	60 - 140
Toluene-d ₈	107%	106%		60 - 140	106%	60 - 140
4-Bromofluorobenzene	108%	109%		60 - 140	108%	60 - 140

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%

DUDEK Chain - of - Custody Form Laboratory: Jones Environmental Lab Job #: Encinitas, CA 92024 Lab Contact: Shipping Method: Tel: 760-942-5147 PM Email: Project Manager: Fax: 760-942-5206 Nicole Peacock npeacock @dudek.com Project Name: Job Number: Type of Analysis to be Performed Special Instructions EPA 8270 EPA 8081A EPA 8015M EPA 8270C 6010B/7471 9289.0003 72 hr Sampler Signature: Standard Turn-Around Time 24 hr 48 hr TPH (CC/ GRO/ DRO/ Motor Oil) Chlorinated Pesticides Sample Collection Matrix Method Preserved Number of Sample Container oz. Glass Jar Filtered (Y/ N) 1 40 mL glass VOA 1,4-Dioxane NONE VOCs Metals HNO3 Other: Water TDS Soil Sample ID Date Time 7/8/17 0825 A ST-10924-01 X B12 0832 ST-10924-02 3 RIZ 0839 ST-10924-03 ST-10924-04 0846 6855 B15 X 3 ST-10924-05 7/8/12 B16 0900 3 X ST-10924-06

Total # of containers per type Total # of containers Please return original COC to Dudek Company Date Time Company Date Relinquished by: Received by: Sample Receipt Time 7-18-17 Samples Intact 1508 1508 Tomes Cooler Temp: 7.6 °C 1345 Tarus 7/18/17 Dora Com 6 Toves 7-18-17 15 45 Conforms to COC

714-449-9937 562-646-1611

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 805-399-0060 | WWW.JONESENV.COM

CHENT	WASSING TO THE PARTY OF THE PAR	1	
CLIENT: Dulek DATE/T	TIME: 7-8		45
Delivered by: ☐ Client ☐ Jones Courier ☐ UPS / FedEx / US	ES (450 500 500 500 500 500 500 500 500 500		
TEMPERATURE: Temp Criteria = 6°C > Temp > 0°C (NO frozen containe	ers)		
	Blank	Sample	
Temperature Cooler #2°C ± 0.1°C	Blank	Sample	
Sample(s) outside temperature criteria but received on ice/chille	d on same d	ay of sampling.	
☐ Sample(s) outside temperature criteria. *			
☐ Samples not received on ice.*			
Ambient Temperature: 31.2°C		Checked by:	7
SAMPLE CONDITION:	YES	NO*	N/A
Chain of Custody (COC) document(s) received complete with samples	- \(\nn_{}\)		
Collection date, collection time, matrix, and/or # of containers logged in base			ircle)
□ No analysis requested. □ Not relinquished. □ No dat Sample container label(s) consistent with COC	e/time relinqu	uished.	
Total number of containers received match COC	4		
Sample container(s) intact and in good condition	4		
Proper containers and sufficient volume for analyses requested	7		
Volatile analysis container(s) free of headspace	- 6		Ø
Proper preservation for analyses requested	. 🗆	abla	
Custody Seals Intact on Cooler/Sample			\square
CONTAINER TYPE:			
Solid: VOAS / Acetate sleeve Aqueous:			
•			
*Complete Non-Conformance if checked	(Checked by:	20
ments:			

714-449-9937 562-646-1611 805-399-0060

11007 FOREST PLACE SANTA FE SPRINGS, CA 90670 WWW.JONESENV.COM

	SAMPLE NO	N-C	CONFORMANCE Jones ID:
	CLIENT: Dulek PROJECT: Former E-Z		DATE/TIME: 7-18-17 / 1545 REPORTED BY: 5
*			Non-Conformance ID:
1)2)3)4)5)	Coolers a) Not received (received COC only) b) Leaking/Damaged c) Other: Custody Seals a) None b) Not intact Temperature (Temp criteria = 6°C > Temp > 0°C) a) Sample Temp(s) b) Cooler Temp(s) c) Temperature Blank(s) Chain of Custody (COC) a) Not relinquished by client b) No date/time relinquished c) Incomplete information provided d) COC not received — notify PM Containers a) Leaking b) Broken c) Extra d) Missing	6)	a) Not the same sample ID / info as on the COC b) Incomplete information c) Markings / Info illegible Samples a) Incorrect sample ID b) Incorrect sampling Date/Time c) Samples not received but listed on COC d) Samples received but not listed on COC e) Logged based on Label Information and not COC f) Logged according to Work Plan and not COC g) Logged in, on hold until further notice h) Insufficient quantities for analysis i) Improper container used j) Mislabeled as to tests, preservatives, etc. k) Holding time expired — list sample ID and test l) Not preserved/Improper preservative used m) Without labels, no information on containers n) Other (see comments)
Cor	nments: Preservatives not rention		Checked by:
	Preservatives not rention	eJ	on COC

APPENDIX B DTSC Risk Model Inputs and Outputs

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Benzene

		Soil	Gas Concentration	n Data				Result	s Summary		
	ENTER	ENTER	Cao Concentration	ENTER			Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
Reset to		Soil		Soil			(µg/m³)	(unitless)	(µg/m³)	Risk	Hazard
Defaults	Chemical	gas	OR	gas			6.40E+01	1.4E-03	8.8E-02	9.1E-07	2.8E-02
	CAS No.	conc.,		conc.,							
	(numbers only,	C _g		C_g							
	no dashes)	(μ g /m³)		(ppmv)	Chemical			=			
	1 74400							=			
	71432	6.40E+01			Benzene			_			
					MESSAGE: See VLC and/or toxicity criteria	OKUP table comments on ch for this chemical.	iemical properties				
	ENTER	ENTER	ENTER	ENTER		ENTER					
	Depth										
MORE	below grade	Soil gas		Vadose zone		User-defined					
Ψ	to bottom	sampling	Average	SCS		vadose zone					
	of enclosed space floor,	depth below grade,	soil temperature,	soil type (used to estimate	OR	soil vapor permeability,					
	L _F	L _s	T _S	soil vapor	OK	k _v					
	(15 or 200 cm)		(°C)	· ·		(cm ²)					
	(15 OF 200 CITI)	(cm)	(0)	permeability)	i	(СПТ)					
	15	152	24	S							
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V	ENTER Vadose zone soil water-filled porosity, θ_w^V		ENTER Average vapor flow rate into bldg. (Leave blank to calcula	ate)				
	- Gramotore	(g/cm ³)	(unitless)	(cm ³ /cm ³)	i	(L/m)					
	S	1.66	0.375	0.054		5					
					ı						
MORE V	ENTER Averaging time for	ENTER Averaging time for	ENTER Exposure	ENTER Exposure	ENTER Exposure	ENTER Air Exchange					
Lookup Receptor	carcinogens,	noncarcinogens,	duration, ED	frequency, EF	Time ET	Rate ACH					
Parameters		AT _{NC}									
	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹					
NEW=> Residential	70	26	26	350	24	0.5					
	•			,	(NEW)	(NEW)					
END											

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Chloroform

Results Summary

Indoor Air Conc.

(µg/m³) 1.0E-02

Cancer

Risk

8.4E-08

Noncancer

Hazard

1.0E-04

		Soil	Gas Concentration	n Data				Result
	ENTER	ENTER		ENTER			Soil Gas Conc.	Attenuation Factor
Reset to		Soil		Soil			(µg/m³)	(unitless)
Defaults	Chemical	gas	OR	gas			8.00E+00	1.3E-03
	CAS No.	conc.,		conc.,		ц		
	(numbers only,	C_{g}		C_{g}				
	no dashes)	(μg/m³)		(ppmv)	Chemical			
	no dasnes)	(µg/III)	=	(ррпіч)	Chemical			=
	67663	8.00E+00]		Chloroform			- -
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Depth below grade	Soil gas		Vadose zone		User-defined		
Ψ.	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L _F	L _s	Ts	soil vapor		k _v		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
	(10 01 200 011)	(6)	(- /	pormous(y)				
	15	152	24	S				
MORE ¥	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb ^A (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	ite)	
	S	1.66	0.375	0.054		5		
		1.00	0.070	0.004				
MORE								
4	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
	Averaging	Averaging	_	_	_	A: = .		
	time for	time for	Exposure	Exposure	Exposure	Air Exchange		
Laslum Dasarta	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate		
Lookup Receptor Parameters	AT _C	AT _{NC}	ED	EF	ET	ACH		
. didilictors	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹		
		·						

Residential

END

70

26

26

350

24

(NEW)

0.5

(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Ethylbenzene

Results Summary

Indoor Air Conc.

(µg/m³) **3.4E-02**

Cancer

Risk

3.0E-08

Noncancer

Hazard

3.2E-05

Soil Gas Concentration Data								Result
Desert to	ENTER	ENTER		ENTER			Soil Gas Conc.	Attenuation Factor
Reset to		Soil		Soil			(µg/m³)	(unitless)
Defaults	Chemical	gas	OR	gas			2.80E+01	1.2E-03
	CAS No.	conc.,		conc.,		•		
	(numbers only,	C_g		C_g				
	no dashes)	(μg/m³)		(ppmv)	Chemical			
	100414	2.80E+01			Ethylbenzene			
	ENTER	ENTER	ENTER	ENTER		ENTER		
	Depth							
MORE	below grade	Soil gas		Vadose zone		User-defined		
₩	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L_F	L_s	Ts	soil vapor		k_v		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
		450						
	15	152	24	S				
MORE Ψ	ENTER Vandose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	ate)	
	S	1.66	0.375	0.054		5		
MORE ↓	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER		
	time for	time for	Exposure	Exposure	Exposure	Air Exchange		
	carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate		
Lookup Receptor	AT _C	AT _{NC}	ED	EF	ET	ACH		
Parameters	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹		
	(3/	()/	()/	())-/	()/	\ /		
Residential	70	26	26	350	24	0.5		
					(NEW)	(NEW)		
END						, ,		

END

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Cumene

		Soil	Gas Concentratio	n Data		İ		Result	ts Summary		
	ENTER	ENTER	Gas Concentratio	n Data ENTER	1		Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer
Reset to		Soil		Soil			(µg/m³)	(unitless)	(µg/m³)	Risk	Hazard
Defaults	Chemical	gas	OR	gas			1.20E+01	1.1E-03	1.4E-02	NA	3.3E-05
	CAS No.	conc.,		conc.,							
	(numbers only,	C_g		C_{g}							
	no dashes)	(μg/m³)		(ppmv)	Chemical			=			
	l 98828	1.20E+01			Cumene			_			
		1.202.01		1	MESSAGE: See VLC	OKUP table comments on ch	nemical properties	_			
	ENTER	ENTER	ENTER	ENTER	and/or toxicity criteria	for this chemical. ENTER	1				
	Depth	ENTER	ENTER	ENTER		ENTER					
MORE	below grade	Soil gas		Vadose zone		User-defined					
•	to bottom	sampling	Average	SCS		vadose zone					
	of enclosed	depth	soil	soil type		soil vapor					
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,					
	L _F	L _s	T _S	soil vapor		k _v					
	(15 or 200 cm)	(cm)	(°C)	permeability)	=	(cm ²)					
	15	152	24	S	1						
	10	102			ı		ı				
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porrosity, θ_w^{\vee} (cm^3/cm^3)	<u>.</u>	ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	ate)				
	S	1.66	0.375	0.054		5					
MORE ↓ Lookup Receptor Parameters	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Exposure Time ET (hrs/day)	ENTER Air Exchange Rate ACH (hour) ⁻¹	:				
NEW=> Residential	70	26	26	350	24	0.5					
END					(NEW)	(NEW)					

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: m-Xylene

Results Summary

Indoor Air Conc.

(µg/m³) **5.9E-02**

Cancer

Risk

NA

Noncancer

Hazard

5.7E-04

Chemical CAS No. umbers only,	ENTER Soil gas conc.,	Gas Concentration	ENTER				
CAS No. umbers only,	gas					Soil Gas Conc.	Attenuation Factor
CAS No. umbers only,	-		Soil			(µg/m³)	(unitless)
umbers only,	conc	OR	gas			4.90E+01	1.2E-03
**			conc.,		_		
	C_g		C_g				
no dashes)	(μg/m³)		(ppmv)	Chemical			
			,				•
108383	4.90E+01			m-Xylene			•
ENTER	ENTER	ENTER	ENTER		ENTER		
	Soil goo		Vadaga zana		Lloor defined		
		Average					
				OR			
L _F			soil vapor				
5 or 200 cm)			nermeability)				
0 0. 200 0,	(0)	(- /	pormousmey)				
15	152	24	S				
ENTER andose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^{\vee} (cm^3/cm^3)		ENTER Average vapor flow rate into bldg. (Leave blank to calcula Q _{soil} (L/m)	ite)	
	1.66	0.375	0.054		5		
	ENTER Depth Delow grade to bottom of enclosed space floor, L _F 5 or 200 cm) 15 ENTER andose zone SCS soil type Lookup Soil	ENTER Depth below grade to bottom of enclosed space floor, L _F 5 or 200 cm) ENTER andose zone SCS soil gas sampling depth below grade, L _s (cm) ENTER Vadose zone soil dry bulk density, Pb ^A	ENTER Depth below grade to bottom space floor, LF 15 152 ENTER ENTER Soil gas soil depth below grade, LS 5 or 200 cm) ENTER ENTER Andose zone SCS Soil dry Soil dry Soil dry Soil dry Soil total Soil type Lookup Soil ENTER ENTER LS ENTER Vadose zone SCS Soil dry Soil total Soil type Lookup Soil ENTER ENTER LS ENTER Vadose zone SCS Soil dry Soil total Soil type Lookup Soil ENTER LS ENTER Vadose zone SCS Soil dry Soil total Soil type Lookup Soil	ENTER Depth below grade soil gas soil to bottom sampling Average soil type (used to estimate soil vapor permeability) ENTER ENTER ENTER ENTER (used to estimate soil vapor permeability) ENTER ENTER ENTER ENTER Soil vapor permeability) ENTER ENTER ENTER ENTER Soil vapor permeability) ENTER ENTER ENTER ENTER Soil vapor permeability) ENTER ENTER ENTER Soil vapor valose zone soil dry soil total soil water-filled soil water-filled porosity, po	ENTER Depth Depth Depth Depth Delow grade Soil gas Soil g	ENTER Depth Depth Delow grade Soil gas of enclosed depth soil Space floor, below grade, L _s T _S 5 or 200 cm) ENTER ENTER ENTER ENTER ENTER Soil vapor (cm²) ENTER User-defined vadose zone soil vapor soil vapor permeability, k _v (cm²) ENTER Soil vapor permeability) (cm²) ENTER ENTER Average vapor Soil vapor permeability) (cm²)	ENTER Depth

Residential

END

70

26

26

350

24

(NEW)

0.5

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: o-Xylene

Results Summary

Indoor Air Conc.

(µg/m³) 1.8E-02

Cancer

Risk

NA

Noncancer

Hazard

1.7E-04

		Soil (Gas Concentration	n Data				Result
D	ENTER	ENTER		ENTER		 	Soil Gas Conc.	Attenuation Factor
Reset to		Soil		Soil			(µg/m³)	(unitless)
Defaults	Chemical	gas	OR	gas			1.50E+01	1.2E-03
	CAS No.	conc.,		conc.,		_		
	(numbers only,	C _g		C_g				
	no dashes)	(μ g /m³)		(ppmv)	Chemical			
	95476	1.50E+01			o-Xylene			
	ENTER	ENTER	ENTER	ENTER		ENTER		
	Depth							
MORE	below grade	Soil gas		Vadose zone		User-defined		
₩	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L_F	L_s	Ts	soil vapor		k _v		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
	15	152	24	S				
MORE ↓	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb ^A (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)		ENTER Average vapor flow rate into bldg. (Leave blank to calculat Q _{soll} (L/m)	te)	
	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, Pb	Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity, $\theta_w^{\ \ \ \ \ \ \ }$		Average vapor flow rate into bldg. (Leave blank to calculat Q_{soil}	de)	
₩ORE	Vandose zone SCS soil type Lookup Soil Parameters S ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, pb (g/cm³) 1.66 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, nV (unitless) 0.375 ENTER Exposure duration,	Vadose zone soil water-filled porosity, $\theta_w^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ENTER Exposure Time	Average vapor flow rate into bldg. (Leave blank to calculat Q _{soil} (L/m) 5	te)	
₩ORE	Vandose zone SCS soil type Lookup Soil Parameters S ENTER Averaging time for	Vadose zone soil dry bulk density, Pb A (g/cm³) 1.66 ENTER Averaging time for	Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054	ENTER Exposure	Average vapor flow rate into bldg. (Leave blank to calculat Q _{soil} (L/m) 5	de)	

Residential

END

70

26

26

350

24

(NEW)

0.5

(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Styrene

Results Summary

Indoor Air Conc.

(µg/m³)

1.9E-02

Noncancer

Hazard

2.0E-05

Cancer

Risk

NA

		Soil	Gas Concentration	n Data				Result
Desetts	ENTER	ENTER		ENTER			Soil Gas Conc.	Attenuation Factor
Reset to		Soil		Soil			(µg/m³)	(unitless)
Defaults	Chemical	gas	OR	gas			1.50E+01	1.2E-03
	CAS No.	conc.,		conc.,				
	(numbers only,	C_g		C_g				
	no dashes)	(μg/m³)	=	(ppmv)	Chemical			
	100425	1.50E+01]		Styrene			
	ENTER	ENTER	ENTER	ENTER		ENTER	1	
	Depth							
MORE	below grade	Soil gas		Vadose zone		User-defined		
Ψ	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	L_{F}	L_s	T _S	soil vapor		k_{v}		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	1	
	15	152	24	S			}	
	ENTER	ENTER	ENTER	ENTER		ENTER		
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor		
₩ .	SCS	soil dry	soil total	soil water-filled		flow rate into bldg		
	soil type	bulk density,	porosity,	porosity,		(Leave blank to calcu	late)	
	Lookup Soil	Pb ^A	n ^V	$\theta_{\mathbf{w}}^{V}$		Q_{soil}		
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)		(L/m)	=	
	S	1.66	0.375	0.054		5	1	
			•				-	
MORE								
.	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		

Lookup Receptor

Parameters

Residential

END

Averaging

time for

carcinogens,

 AT_{C}

(yrs)

70

Averaging

time for

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

26

Exposure

duration.

ED

(yrs)

26

Exposure

frequency,

EF

(days/yr)

350

Exposure

Time

ET

(hrs/day)

24

(NEW)

Air Exchange

Rate

ACH

(hour)-1

0.5

(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Toluene

Results Summary

Indoor Air Conc.

(µg/m³)

2.5E-01

Cancer

Risk

NA

Noncancer

Hazard

8.1E-04

			Soil	Gas Concentration	n Data				Result
_		ENTER	ENTER		ENTER			Soil Gas Conc.	Attenuation Factor
	eset to		Soil		Soil			(µg/m³)	(unitless)
D	efaults	Chemical	gas	OR	gas			1.96E+02	1.3E-03
		CAS No.	conc.,		conc.,		•		
		(numbers only,	C_g		C_g				
		no dashes)	(μ g /m³)		(ppmv)	Chemical			
		108883	1.96E+02			Toluene			
								_	
		ENTER	ENTER	ENTER	ENTER		ENTER		
_		Depth							
	MORE	below grade	Soil gas		Vadose zone		User-defined		
	•	to bottom	sampling	Average	SCS		vadose zone		
		of enclosed	depth	soil	soil type	OR	soil vapor		
		space floor, L _F	below grade,	temperature, T _S	(used to estimate	UR	permeability, k _v		
		·	L _s	-	soil vapor		-		
		(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
			450						
		15	152	24	S				
		ENTER	ENTER	ENTER	ENTER		ENTER		
	MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor		
	1	SCS	soil dry	soil total	soil water-filled		flow rate into bldg.		
	<u> </u>	soil type	bulk density,	porosity,	porosity,		(Leave blank to calcula	ate)	
		Lookup Soil	ρ_b^A	n ^V	θ_{w}^{V}		Q _{soil}	,	
		Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)		(L/m)		
			(g/ciii)	(unitiess)	(CIII /CIII)		(L/III)	:	
		S	1.66	0.375	0.054		5]	
								_	
Г	MORE								
	Ψ	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		
		Averaging	Averaging						
		time for	time for	Exposure	Exposure	Exposure	Air Exchange		
ſ.		carcinogens,	noncarcinogens,	duration,	frequency,	Time	Rate		
L	ookup Receptor Parameters	AT _C	AT _{NC}	ED	EF	ET	ACH		
	. Gramotoro	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹		
								1	
NEW=>	Residential	70	26	26	350	24	0.5		

END