
Appendix G

Preliminary Hydrology and Hydraulics Report

OTH2019-01204

www.crfengineering.com

6782 Stanton Ave. Suite-A, Buena Park CA. 90621 // T: 714-522-2266// F: 714-752-5384

Date:

06-05-2018

Date Revised:

12-11-2019

Attention:

City of Anaheim Public Works.

Subject:

Hydrology/Hydraulics Report

Reference Project:

CRF # 17-084

Permit #:

OTH2019-01204

Property Owner:

Vasken Tatarian

Mailing Address:

8469 Beach Circle, Cypress, CA., 90630.

Phone Number:

(714) 717-0400

E-mail Address:

SakoTatarian@yahoo.com

PRELIMINARY HYDROLOGY / HYDRAULICS REPORT

JAN 1 4 2020

PUBLIC WIRKS DEPARTMENT
SUBDIVISION SERVICES SECTION

3175 WEST BALL ROAD ANAHEIM, CALIFORNIA, 92804.

APN: 079-882-34

The scope of the project is to comply with county regulations for the design of drainage runoff needed for a 10, 25 & 100 year storm event to maintain the project storm run-off diversion area with adequate drainage.

Existing Conditions: The area of work is approximately 15,863 sf and consists of an empty lot surrounded by apartment buildings to the North & East, and is adjacent to the centerlines of Ball Rd. and Western Ave. to the South & West. The site is outlined by an existing 6 ft block screen wall along the North & East property lines and will remain along with the proposed development. The site is mildly sloped with slopes not exceeding 1% and almost entirely consists of pervious existing grade.

Proposed Conditions: The proposed 11 apartment home development will include a three-story structure surrounded by landscape and driveway areas. The roof & second floor are partially open to the patio below on the first living floor in the center of the structure (about 620 sf). A large portion of runoff will be attributed to roof areas which will be directed towards the building limits and then underground into a BMP treatment facility. The proposed site layout is designed to gravity flow into a HDPE detention system and then pumped into one bioretention planter which will overflow into catch basins if water ponds 6". From there, water will be diverted towards the relocated catch basin located on Ball Road and into the existing storm drain system.

The project site is regulated by the City of Anaheim Drainage Criteria and the County of Orange and shall be capable of sustaining a 10, 25 & 100 year storm event using the Orange County Hydrology Manual.

Sincerely,

Cesar R. Ramirez, R.C.E. 78100

fr.

TABLE OF CONTENTS

1.0) HYDROLOGY CALCULATIONS

- 1.1 TOTAL AREA
- 1.2 DRAINAGE MANAGEMENT AREAS
- 1.3 SOIL TYPE
- 1.4 TIME OF CONCENTRATION
- 1.5 RAINFALL INTENSITY
- 1.6 RUNOFF COEFFICIENT
- 1.7 EXISTING CONDITIONS PEAK DISCHARGE
- 1.8 PROPOSED CONDITIONS PEAK DISCHARGE

2.0) HYDRAULIC CALCULATIONS

2.1 PIPE DEPTH CALCULATIONS FOR 4" PVC

3.0) CONCLUSIONS

3.1 HYDROLOGY CONCLUSIONS

4.0) HYDROLOGY MAPS

HYDROLOGY MAP EXISTING CONDITIONS

HYDROLOGY MAP PROPOSED CONDITIONS

PONDING EXHIBIT

5.0) ATTACHMENTS/REFERENCES

HYDROGRAPH

VICINITY MAP

ORANGE COUNTY - HYDROLOGY MANUAL - FIGURE D-1

ORANGE COUNTY - HYDROLOGY MANUAL - FIGURE B-3

ORANGE COUNTY - HYDROLOGIC SOIL GROUPS - FIGURE XVI-2a

RUNOFF COEFFICIENT TABLE – NRCS

USDA WEB SOIL SURVEY - SOIL SURVEY

MANNING'S "n" VALUES TABLE - CHOW 1959

RUNOFF COEFFICIENT EXCERPT TAKEN FROM OC HYDROLOGY MANUAL

1.) HYDROLOGY CALCULATIONS

1.1 TOTAL AREA:

Net Project Area 15,863 SF Acres = 0.364 AC

1.2 DRAINAGE MANAGEMENT AREAS:

Existing Conditions:

Drainage Management Area (Vacant Lot)

Total SQ. FT. =	15,541 SF
Total Acres =	0.357 AC

Proposed Conditions:

Drainage Management Area #1

Total SQ. FT. =	2,602 SF
Total Acres =	0.060 AC

Drainage Management Area #2

Total SQ. FT. =	5,117 SF
Total Acres =	0.117 AC

Drainage Management Area #3

Total SQ. FT. =	620 SF
Total Acres =	0.014 AC

Drainage Management Area #4

Total SQ. FT. =	1,429 SF
Total Acres =	0.033 AC

Drainage Management Area #5

Total SQ. FT. =	1,196 SF
Total Acres =	0.027 AC

Drainage Management Area #6

Total SQ. FT. =	636 SF
Total Acres =	0.015 AC

Drainage Management Area #7

Total SQ. FT. =	417 SF
Total Acres =	0.010 AC

Drainage Management Area #8

Total SQ. FT. =	551 SF
Total Acres =	0.013 AC

Drainage Management Area #9

Total SQ. FT. =	1,899 SF
Total Acres =	0.044 AC

Drainage Management Area #10

Total SQ. FT. =	317 SF
Total Acres =	0.007 AC

Drainage Management Area #11

Total SQ. FT. =	394 SF
Total Acres =	0.009 AC

Drainage Management Area #12

Total SQ. FT. =	363 SF
Total Acres =	0.008 AC

1.3 SOIL TYPE

Soil Type B

Soil Group B: Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded. Group B soils typically have between 10 percent and 20 percent clay and 50 percent to 90 percent sand and have loamy sand or sandy loam textures. Some soils having loam, silt loam, silt, or sandy clay loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments.

- Taken from NRCS Hydrology national engineering Handbook Chapter 7 Hydrologic Soil Groups.
- See Attachments

1.4 TIME OF CONCENTRATION (Tc)

Existing Conditions (Vacant Lot):

DMA:

Length (L) of initial area =	165.8 FT
Inlet Elevation =	64.9 FT
Outlet Elevation =	64.2 FT
Difference in Elevation for Initial Area	= 0.7 FT
Hydrologic Area = 15,54	41 SF/0.357 AC
Impervious Areas =	125 SF
Percentage of Impervious Cover (Pi) =	1%
Time of Concentration (Tc) (min.) =	9.00 MIN.

Tc calculated from the Orange county Hydrology Manual Figure D-1 (see attachments)

Proposed Conditions:

DMA-1:

Length (L) of initial area = 10	
Inlet Elevation = 9	3.16 FT
Outlet Elevation = 9	1.92 FT
Difference in Elevation for Initial Area =	1.24 FT
Hydrologic Area = 2,602 SF/0.0	060 AC
Impervious Areas = 2,	.602 SF
Percentage of Impervious Cover (Pi) =	100%
Time of Concentration (Tc) (min.) = 6.2	5 MIN.

DMA-2:

Length (L) of initial area =	121.0 FT
Inlet Elevation =	93.16 FT
Outlet Elevation =	91.92 FT
Difference in Elevation for Initial Area =	1.24 FT
Hydrologic Area = 5,117	7 SF/0.117 AC
Impervious Areas =	5,117 SF
Percentage of Impervious Cover (Pi) =	100%
Time of Concentration (Tc) (min.) =	6.75 MIN.

DMA-3:

Length (L) of initial area =	15.1 FT
Inlet Elevation =	64.67 FT
Outlet Elevation =	64.40 FT
Difference in Elevation for Initial Area	a = 0.27 FT
Hydrologic Area =	620 SF/0.014 AC
Impervious Areas =	620 SF
Percentage of Impervious Cover (Pi)	= 100%
Time of Concentration (Tc) (min.) =	8.25 MIN.

DMA-4:

Length (L) of initial area =	54.6 FT
Inlet Elevation =	65.12 FT
Outlet Elevation =	64.31FT
Difference in Elevation for Initial Area	ı = 0.81 FT
Hydrologic Area = 1,	429 SF/0.033 AC
Impervious Areas =	1,329 SF
Percentage of Impervious Cover (Pi) =	93%
Time of Concentration (Tc) (min.) =	6.50 MIN.

DMA-5:

Length (L) of initial area =	9.2 FT
Inlet Elevation =	64.00 FT
Outlet Elevation =	63.61 FT
Difference in Elevation for Initial Ar	ea = 0.39 FT
Hydrologic Area =	1,196 SF/0.027 AC
Impervious Areas =	130 SF
Percentage of Impervious Cover (Pi) = 11%
Time of Concentration (Tc) (min.) =	7.50 MIN.

DMA-6:

Length (L) of initial area =	2.0 FT
Inlet Elevation =	64.00 FT
Outlet Elevation =	63.83 FT
Difference in Elevation for Initial Area	= 0.17 FT
Hydrologic Area =	636 SF/0.015 AC
Impervious Areas =	110 SF
Percentage of Impervious Cover (Pi) =	17%
Time of Concentration (Tc) (min.) =	8.00 MIN.

DMA-7:

Length (L) of initial area =	15.4 FT
Inlet Elevation =	64.67 FT
Outlet Elevation =	63.54 FT
Difference in Elevation for Initial Area	= 1.13 FT
Hydrologic Area =	417 SF/0.010 AC
Impervious Areas =	417 SF
Percentage of Impervious Cover (Pi) =	100%
Time of Concentration (Tc) (min.) =	6.00 MIN.

DMA-8:

Length (L) of initial area =	7.6 FT
Inlet Elevation =	64.00 FT
Outlet Elevation =	63.32 FT
Difference in Elevation for Initial Area	a = 0.68 FT
Hydrologic Area =	551 SF/0.013 AC
Impervious Areas =	14 SF
Percentage of Impervious Cover (Pi)	= 3%
Time of Concentration (Tc) (min.) =	6.75 MIN.

DMA-9:

25.1 FT
64.50 FT
64.14FT
ea = 0.36 FT
1,899 SF/0.044 AC
100 SF
) = 5%
8.00 MIN.

DMA-10:

Length (L) of initial area =	23.4 FT
Inlet Elevation =	64.73 FT
Outlet Elevation =	64.07 FT
Difference in Elevation for Initial Area	a = 0.66 FT
Hydrologic Area =	317 SF/0.007 AC
Impervious Areas =	317 SF
Percentage of Impervious Cover (Pi)	= 100%
Time of Concentration (Tc) (min.) =	7.00 MIN.

DMA-11:

Length (L) of initial area =	7.7 FT
Inlet Elevation =	64.40 FT
Outlet Elevation =	64.01 FT
Difference in Elevation for Initial Area	a = 0.39 FT
Hydrologic Area =	394 SF/0.009 AC
Impervious Areas =	393 SF
Percentage of Impervious Cover (Pi) :	= 0%
Time of Concentration (Tc) (min.) =	7.50 MIN.

DMA-12:

Length (L) of initial area =	22.9 FT
Inlet Elevation =	64.39 FT
Outlet Elevation =	63.84 FT
Difference in Elevation for Initial Area	= 0.55 FT
Hydrologic Area =	363 SF/0.008 AC
Impervious Areas =	330 SF
Percentage of Impervious Cover (Pi) =	9%
Time of Concentration (Tc) (min.) =	7.25 MIN.

Tc calculated from the Orange county Hydrology Manual Figure D-1 (see attachments)

1.5 RAINFALL INTENSITY

$$\begin{split} &I\text{ (t)} = (a)(t^b)\\ &I = \text{Intensity (in/hr)}\\ &a_{10} = 10.209, \ a_{25} = 11.995, \ a_{100} = 15.560\\ &b_{10} = -0.573, \ b_{25} = -0.566, \ b_{100} = -0.573\\ &t_1 = T_c \end{split}$$

Values and equations taken from the Orange County Hydrology Manual (Figure B-3) see attached.

Existing Conditions:

AREA 1

Return Period 10 Years (24hr) $I(t) = at^b \qquad \qquad I(t) = (10.209)(9.0)^{-0.573}$ $I(t_1) = 2.90 \text{ Intensity (in/hr)}$ $Return Period \qquad 25 \text{ Years (24hr)}$ $I(t) = at^b \qquad \qquad I(t) = (11.995)(9.0)^{-0.566}$ $I(t_1) = 3.46 \text{ Intensity (in/hr)}$ $Return Period \qquad 100 \text{ Years (24hr)}$

$$I(t) = at^b$$

$$I(t) = (15.560)(9.0)^{-0.573}$$

$$I(t_1) = 4.42 \text{ Intensity (in/hr)}$$

Proposed Conditions:

RAINFALL INTENSITY						
DMA#	TC (Min.)	I (10 YR)	I (25 YR)	I (100 YR)		
DMA1	6.25	3.57	4.25	5.44		
DMA2	6.75	3.42	4.07	5.21		
DMA3	8.25	3.05	3.63	4.64		
DMA4	6.50	3.49	4.16	5.32		
DMA5	7.50	3.22	3.83	4.90		
DMA6	8.50	3.00	3.57	4.57		
DMA7	6.00	3.66	4.35	5.57		
DMA8	6.75	3.42	4.07	5.21		
DMA9	8.00	3.10	3.70	4.73		
DMA10	7.00	3.35	3.99	5.10		
DMA11	7.50	3.22	3.83	4.90		
DMA12	7.25	3.28	3.91	5.00		

1.6 RUNOFF COEFFICIENT

$$C = \begin{cases} 0.90 \left(A_I + \frac{(I - F_P)A_P}{I}\right) \text{, for I greater than } F_P; \\ 0.90A_I \text{, for I less than or equal to } F_p \end{cases}$$

runoff coefficient

I = rainfall intensity (inches/hour)

F_p = infiltration rate for pervious areas (inches/hour)

A_I = ration of impervious area to total area (decimal fraction)

A_p = ration of pervious area to total area (decimal fraction)

Existing Conditions:

$$\begin{array}{lll} I & = & 4.42 \text{ in/hr} \\ F_P & = & 0.30 \text{ in/hr} \\ A_I & = & 0.01 \\ A_P & = & 0.99 \\ C = 0.90 \left(0.01 + \frac{(4.42 - 0.30)0.99}{4.42} \right) \\ C = 0.84 \end{array}$$

Proposed Conditions:

	RUNOFF COEFFICIENT CALCULATOR											
	DMA-1	DMA-2	DMA-3	DMA-4	DMA-5	DMA-6	DMA-7	DMA-8	DMA-9	DMA-10	DMA-11	DMA-12
l =	5.44	5.21	4.64	5.32	4.90	4.57	5.57	5.21	4.73	5.10	4.90	5.00
F _P =	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
A _i =	1.00	1.00	1.00	1.00	0.11	0.17	1.00	0.03	0.06	1.00	0.00	0.09
A _p =	0.00	0.00	0.00	0.00	0.89	0.83	0.00	0.97	0.94	0.00	1.00	0.91
C =	0.90	0.90	0.90	0.90	0.85	0.85	0.90	0.85	0.85	0.90	0.84	0.85

1.7 EXISTING PEAK DISCHARGE CALCULATIONS

Q=C(I)(A)

Q = Flow (cfs) I = Intensity Rating (in/hr)

C = Run-Off Coefficient A = Area (Acres)

Existing Conditions:

EXISTING CONDITIONS 10 YEAR STORM FREQUENCY (24-HR)						
Inputs	Outputs (Flow Q)					
C (Runoff Coefficient)	0.84	Area 1		Ar	ea 2	
I (Rainfall Intensity in/hr A1)	2.90	CFS	0.87	CFS	0.00	
I (Rainfall Intensity in/hr A2)	0	GPM	390.3	GPM	0.0	
A1 (AC)	0.357					
A2 (AC)						

EXISTING CONDITIONS 25 YEAR STORM FREQUENCY (24-HR)						
Inputs	Outputs (Flow Q)					
C (Runoff Coefficient)	0.84	Area 1		Area 2		
I (Rainfall Intensity in/hr A1)	3.46	CFS	1.04	CFS	0.00	
I (Rainfall Intensity in/hr A2)	0	GPM	465.7	GPM	0.0	
A1 (AC)	0.357					
A2 (AC)						

EXISTING CONDITIONS 100 YEAR STORM FREQUENCY (24-HR)						
Inputs	Outputs (Flow Q)					
C (Runoff Coefficient)	0.84	Area 1		Area 2		
I (Rainfall Intensity in/hr A1)	4.42	CFS	1.33	CFS	0.00	
I (Rainfall Intensity in/hr A2)	0	GPM	594.9	GPM	0.0	
A1 (AC)	0.357					
A2 (AC)						

1.8 PROPOSED PEAK DISCHARGE CALCULATIONS

Proposed Conditions:

10 YEAR - 24 HOUR STORM EVENT						
		OUTPUTS (Flow Q)				
DMA#	Coeff. C	Intensity I (in/hr)	Area A	Flow Q (cfs)	Flow Q (gpm)	
DMA 1	0.90	3.57	0.060	0.19	87	
DMA 2	0.90	3.42	0.117	0.36	162	
DMA 3	0.90	3.05	0.014	0.04	17	
DMA 4	0.90	3.49	0.033	0.10	47	
DMA 5	0.85	3.22	0.027	0.07	33	
DMA 6	0.85	3.10	0.015	0.04	18	
DMA 7	0.90	3.66	0.010	0.03	15	
DMA 8	0.85	3.42	0.013	0.04	17	
DMA 9	0.85	3.10	0.044	0.12	52	
DMA 10	0.90	3.35	0.007	0.02	9	
DMA 11	0.84	3.22	0.009	0.02	11	
DMA 12	0.85	3.28	0.008	0.02	10	
			Σ=	1.06	477	

25 YEAR - 24 HOUR STORM EVENT							
INPUTS		OUTPUTS (Flow Q)					
DMA#	Coeff. C	Intensity I (in/hr)	Area A	Flow Q (cfs)	Flow Q (gpm)		
DMA 1	0.90	4.25	0.060	0.23	103		
DMA 2	0.90	4.07	0.117	0.43	192		
DMA 3	0.90	3.63	0.014	0.05	21		
DMA 4	0.90	4.16	0.033	0.12	55		
DMA 5	0.85	3.83	0.027	0.09	39		
DMA 6	0.85	3.70	0.015	0.05	21		
DMA 7	0.90	4.35	0.010	0.04	18		
DMA 8	0.85	4.07	0.013	0.04	20		
DMA 9	0.85	3.70	0.044	0.14	62		
DMA 10	0.90	3.99	0.007	0.03	11		
DMA 11	0.84	3.83	0.009	0.03	13		
DMA 12	0.85	3.91	0.008	0.03	12		
			Σ=	1.27	568		

100 YEAR - 24 HOUR STORM EVENT					
		INPUTS		OUTPUT	S (Flow Q)
DMA#	Coeff. C	Intensity I (in/hr)	Area A	Flow Q (cfs)	Flow Q (gpm)
DMA 1	0.90	5.44	0.060	0.29	132
DMA 2	0.90	5.21	0.117	0.55	246
DMA 3	0.90	4.64	0.014	0.06	26
DMA 4	0.90	5.32	0.033	0.16	71
DMA 5	0.85	4.90	0.027	0.11	50
DMA 6	0.85	4.73	0.015	0.06	27
DMA 7	0.90	5.57	0.010	0.05	22
DMA 8	0.85	5.21	0.013	0.06	26
DMA 9	0.85	4.73	0.044	0.18	79
DMA 10	0.90	5.10	0.007	0.03	14
DMA 11	0.84	4.90	0.009	0.04	17
DMA 12	0.85	5.00	0.008	0.03	15
			Σ=	1.62	727

2.0) HYDRAULIC CALCULATIONS

2.1 PIPE DEPTH CALCULATIONS FOR 4" PVC, 6" PVC, and 12" PVC

DMA SUMMARY

$Q_1 = 0.29 \text{ CFS}$	$Q_4 = 0.16 \text{ CFS}$	$Q_7 = 0.05 \text{ CFS}$	$Q_{10} = 0.03 \text{ CFS}$
$Q_2 = 0.55 \text{ CFS}$	$Q_5 = 0.11 \text{ CFS}$	$Q_8 = 0.06 \text{ CFS}$	$Q_{11} = 0.04 \text{ CFS}$
$Q_3 = 0.06 \text{ CFS}$	$Q_6 = 0.06 \text{ CFS}$	$Q_9 = 0.18 \text{ CFS}$	$Q_{12} = 0.03 \text{ CFS}$

All DMAs will carry water to the proposed detention system before being pumped to the proposed BMP planter for a total discharge of 1.62 cubic feet per second. As extra precaution for overflow, a 1 foot diameter pipe is being proposed that will core into an existing storm drain catch basin on Western Avenue.

PIPE DEPTH CALCULATOR						
$Q = \frac{1.49}{n} (A) (R_h^{\frac{2}{3}}) (S_e^{\frac{1}{2}})$		n=	0.009	Slope =	0.005	
		D=	0.33	4" PVC		
Y(ft)	Y/D D=0.25	θ (rads)	Area(A)	Hyd. Rad. (Rh)	Q (cfs)	
0.100	0.303	1.166	0.022	0.057	0.038	
0.20	0.606	1.785	0.054	0.092	0.129	
0.300	0.909	2.529	0.082	0.098	0.203	
0.33	1.000	3.142	0.086	0.083	0.190	

	PIPE DEPTH CALCULATOR					
$Q = \frac{1.49}{n} (A) (R_h^{\frac{2}{3}}) (S_e^{\frac{1}{2}})$		n=	0.009	Slope =	0.005	
		D=	0.5	6" PVC		
Y(ft)	Y/D D=0.50	θ (rads)	Area(A)	Hyd. Rad. (Rh)	Q (cfs)	
0.100	0.200	0.927	0.028	0.060	0.050	
0.20	0.400	1.369	0.073	0.107	0.194	
0.300	0.600	1.772	0.123	0.139	0.386	
0.40	0.800	2.214	0.168	0.152	0.562	
0.45	0.900	2.498	0.186	0.149	0.612	
0.48	0.960	2.739	0.194	0.141	0.616	
0.50	1.000	3.142	0.196	0.125	0.575	

	PIPE DEPTH CALCULATOR					
$0 - \frac{1.49}{}$	$A)(R_{h}^{\frac{2}{3}})(S_{e}^{\frac{1}{2}})$	n=	0.009	Slope =	0.082	
$Q = \frac{1}{n}$	$h_{J}(N_{h}^{3})(S_{e}^{2})$	D=	1	12" PVC		
Y(ft)	Y/D D=0.25	θ (rads)	Area(A)	Hyd. Rad. (Rh)	Q (cfs)	
0.100	0.100	0.644	0.041	0.064	0.308	
0.20	0.200	0.927	0.112	0.121	1.294	
0.300	0.300	1.159	0.198	0.171	2.894	
0.40	0.400	1.369	0.293	0.214	4.979	
0.50	0.500	1.571	0.393	0.250	7.388	
0.60	0.600	1.772	0.492	0.278	9.927	
0.70	0.700	1.982	0.587	0.296	12.371	
0.80	0.800	2.214	0.674	0.304	14.443	
0.90	0.900	2.498	0.745	0.298	15.749	
1.000	1.000	3.142	0.785	0.250	14.776	

DMA #5 towards to the 36" ADS HPDE Detention pipe.

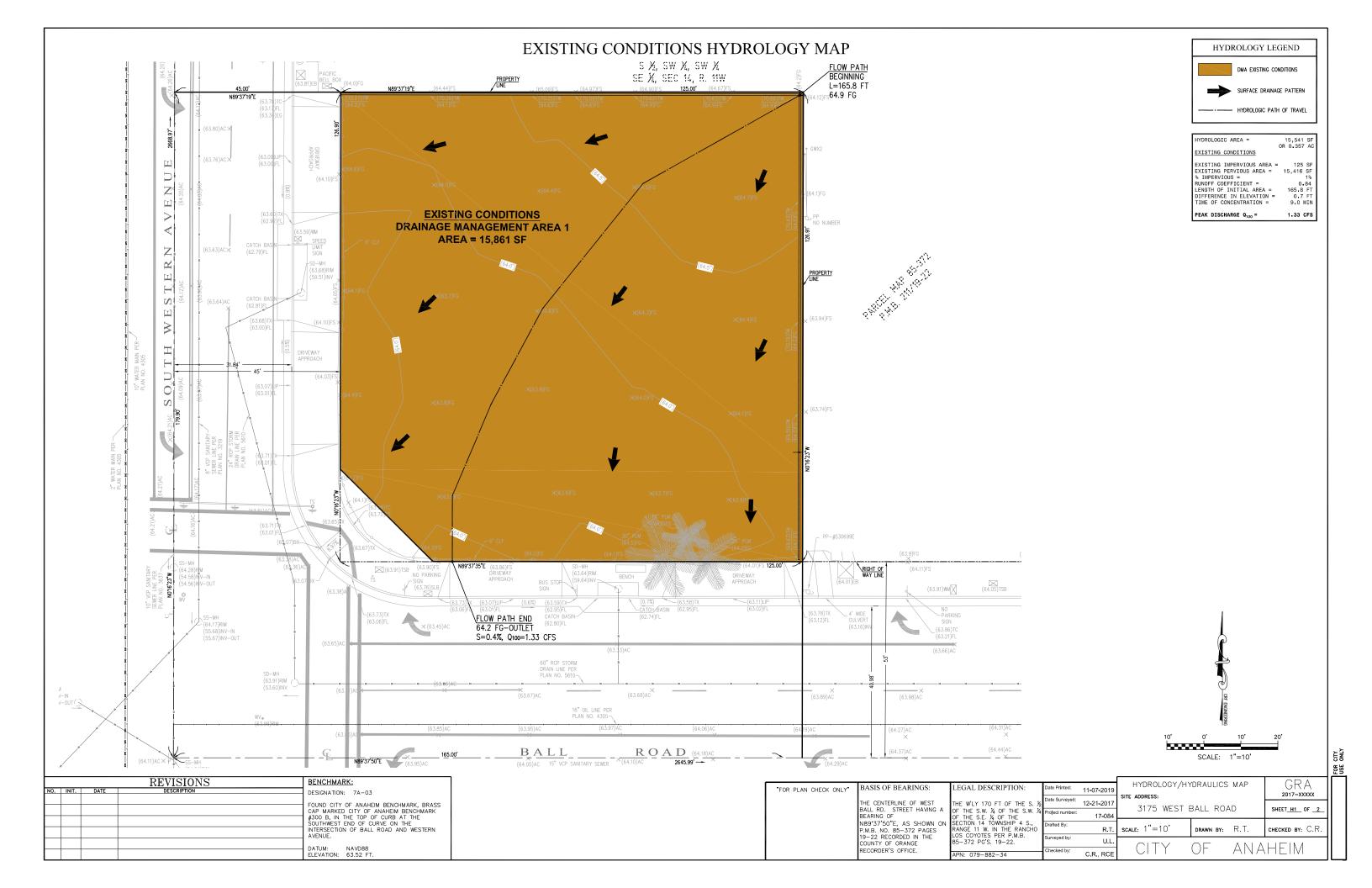
$$Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9 + Q_{10} + Q_{11} + Q_{12} = 1.62 \ \text{CFS}.$$

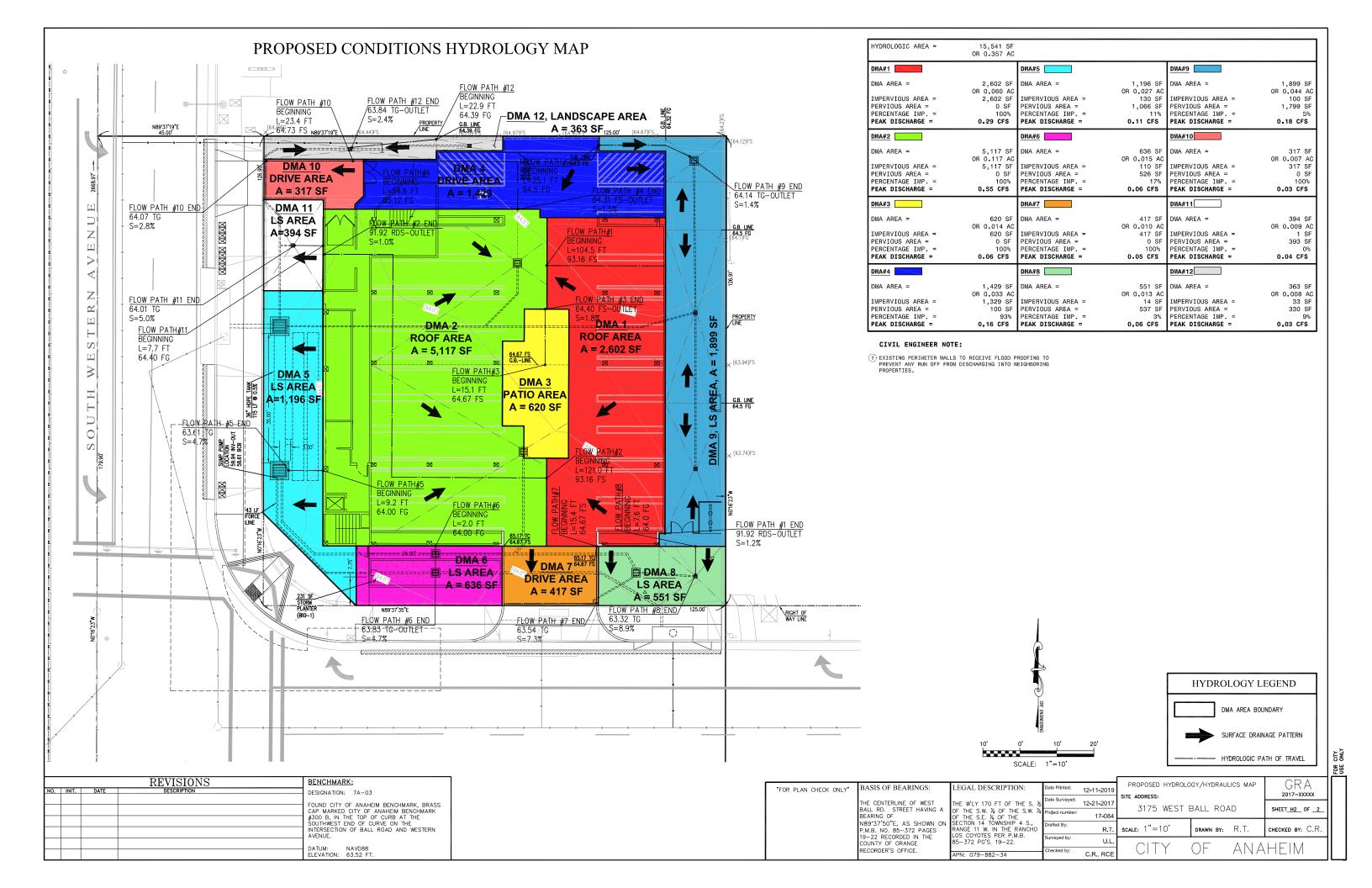
3.0) CONCLUSION

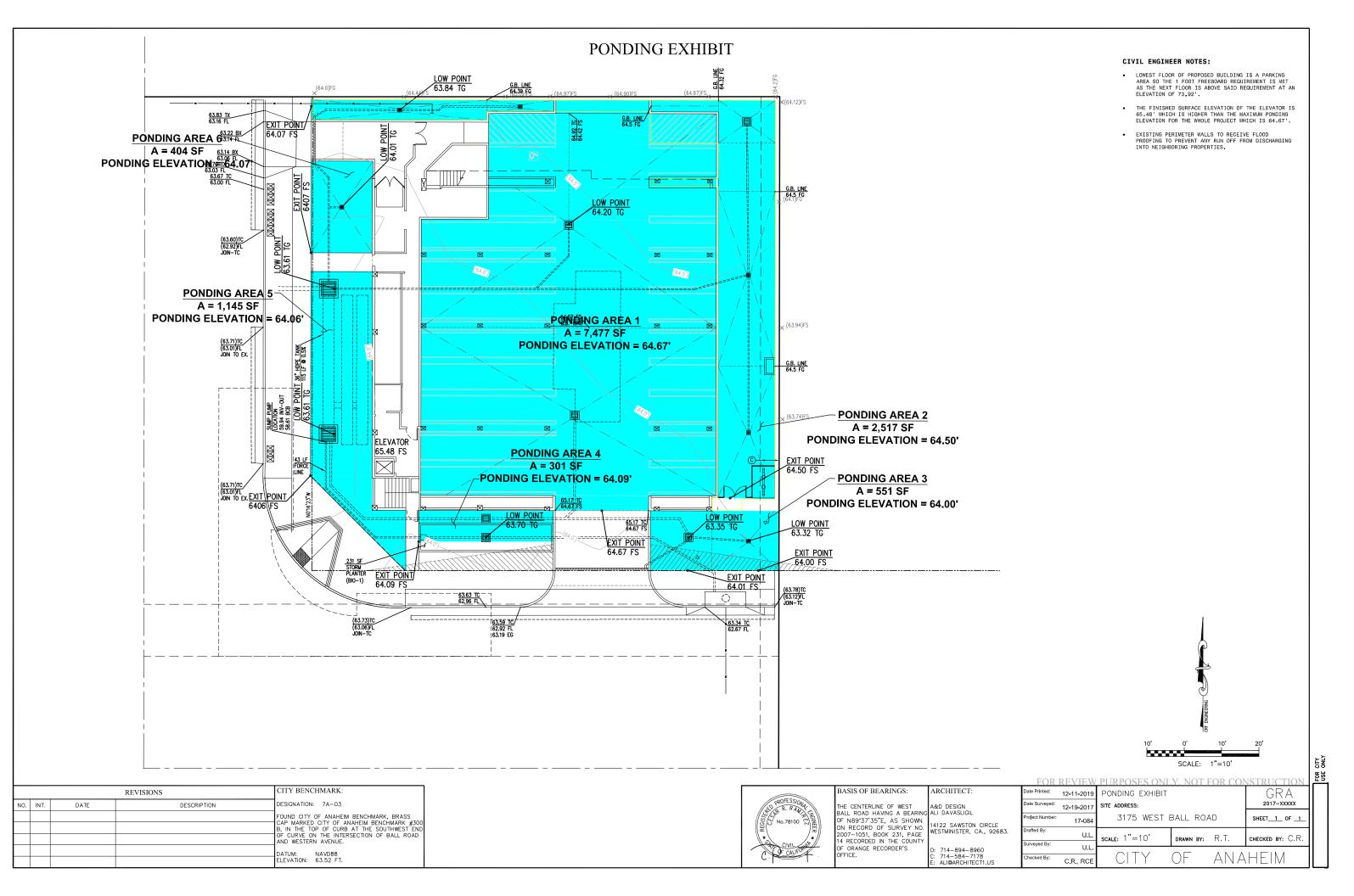
3.1 HYDROLOGY CONCLUSIONS

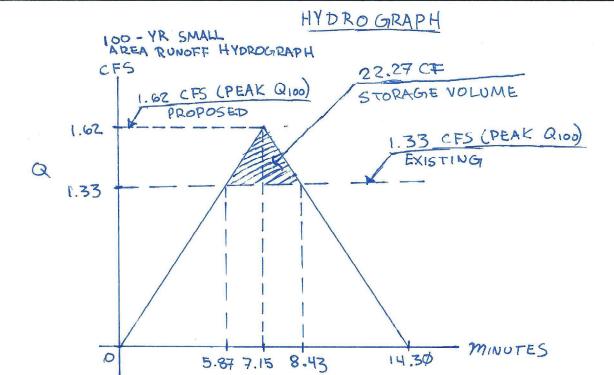
The peak flow rates for the existing and proposed conditions are summarized as follows:

STORM EVENT	EXISTING	PROPOSED	DIFFERENCE
DURATION (YR)	CONDITIONS (CFS)	CONDITIONS (CFS)	(CFS)
10	0.87	1.06	+0.19
25	1.04	1.27	+0.23
100	1.33	1.62	+0.29


After analyzing the peak flows for the existing and proposed conditions we can calculate the percentage of additional flow created by the development when comparing the proposed and existing conditions


- A 10 Year Event the development is creating an additional 22% more discharge.
- A 25 Year Event the development is creating an additional 22% more discharge.
- A 100 Year Event the development is creating an additional 22% more discharge.


This development has been required to include structural BMP's as part of WQMP requirements for the project. These BMP's are focused around keeping the same hydrological conditions for a proposed development as currently existing to not overwhelm the current public drains. These BMP's also help mitigate the amount of pollutants which get released into the surrounding rivers and streams. For this project, an HDPE detention tank system and a biotreatment planter BMP have been proposed which allow runoff to be captured and treated before entering the existing storm drainage system.


For a 100 year storm, the proposed conditions have 0.28 CFS of additional discharge compared to existing conditions. Analyzing the storage volume needed using a small area runoff hydrograph, a volume of 22.27 CF is needed. The proposed detention tanks will hold 812.89 CF of volume which is 790.62 more volume than what is needed. The proposed 36" HDPE detention tank will be a total of 115 linear feet. **Please see the hydrograph in the attachments.**

Compared to existing conditions, the proposed conditions of the project will provide relief to the public storm drain lines. The existing conditions had water sheet flowing into the street and into the public system.

CALCULATIONS:

TC

V= VOLUME IN EXCESS OF Q ALLOWABLE OVER 24-HRS
V= 1/2 (dQ) (dTIME)

dTIME = 8.43-5.87 = 2.56 min x 60 sec/min = 153.6 sec

dcss = 1.62 - 1.33 = 0,29 css

VOLUME = 1/2 (153.6)(0.29) = 22.27 CS

DETENTION VOLUME

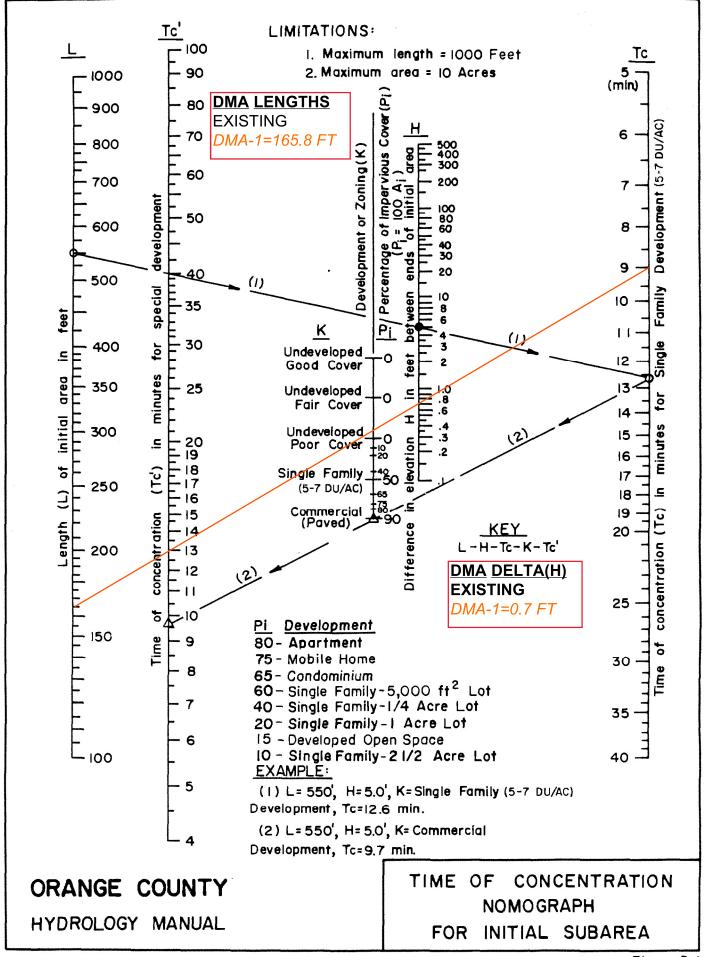
PROVIDED = 812.89 CF > 27.27 CF (OK)

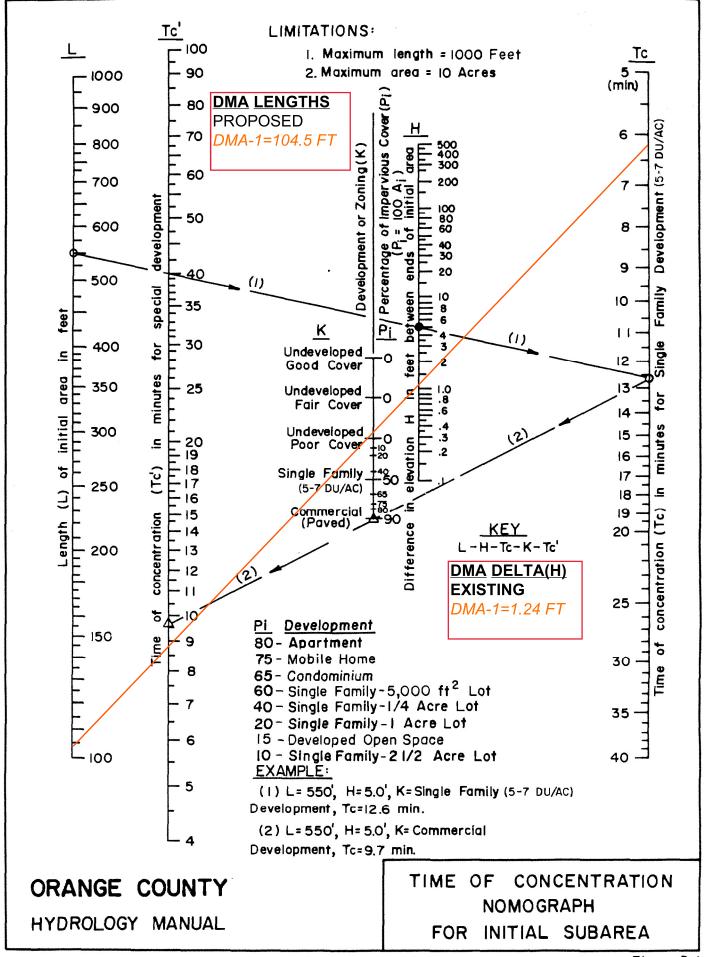
LEGEND:

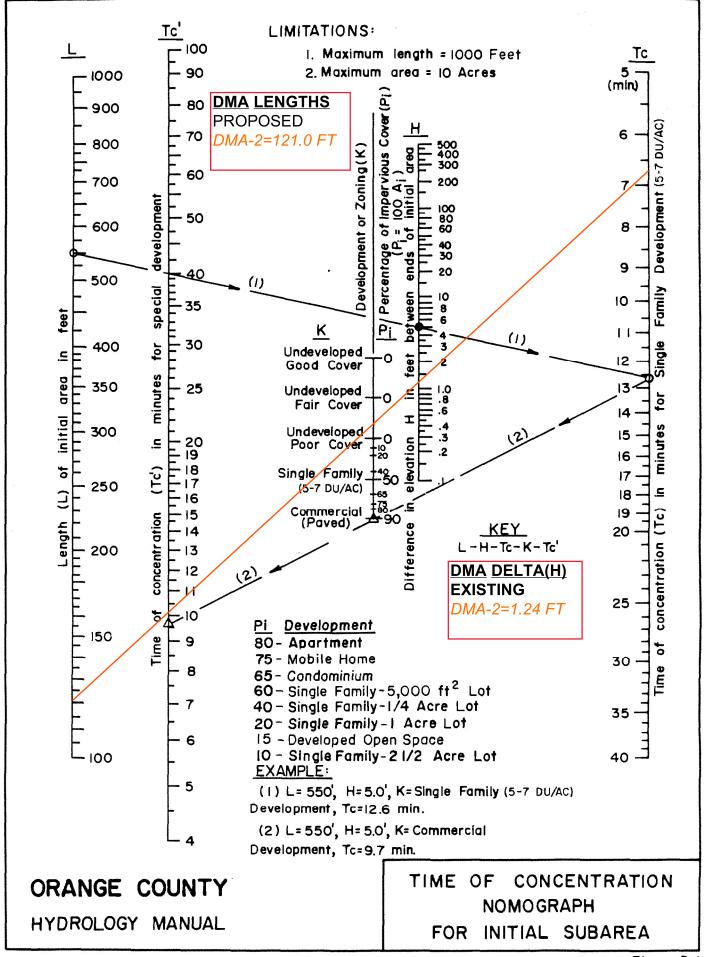
TC - TIME OF CONCENTRATION

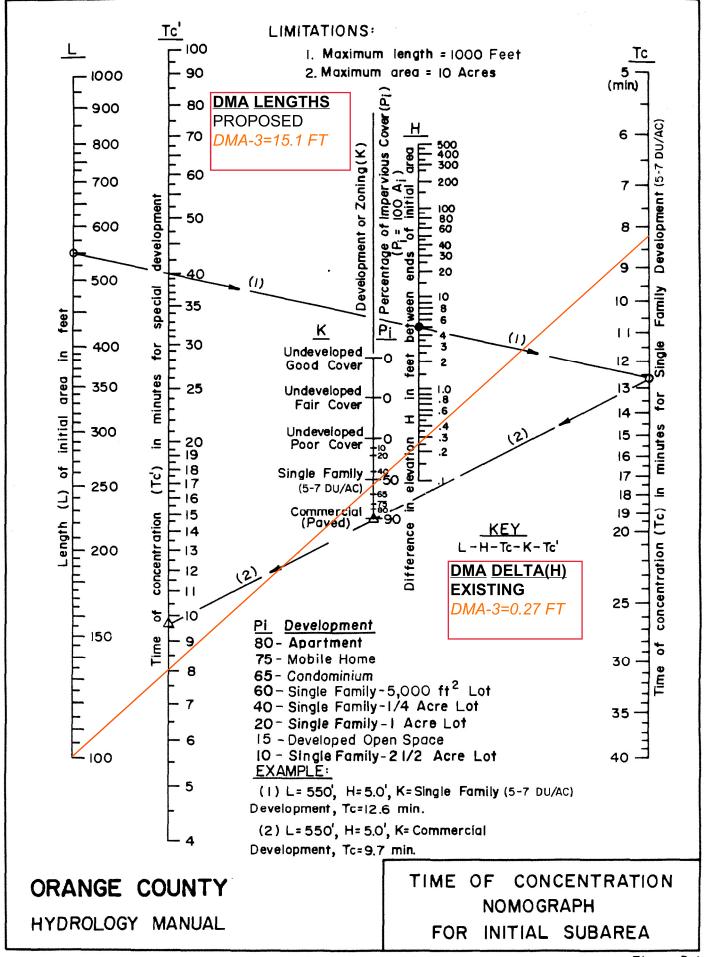
d - RATE OF CHANGE

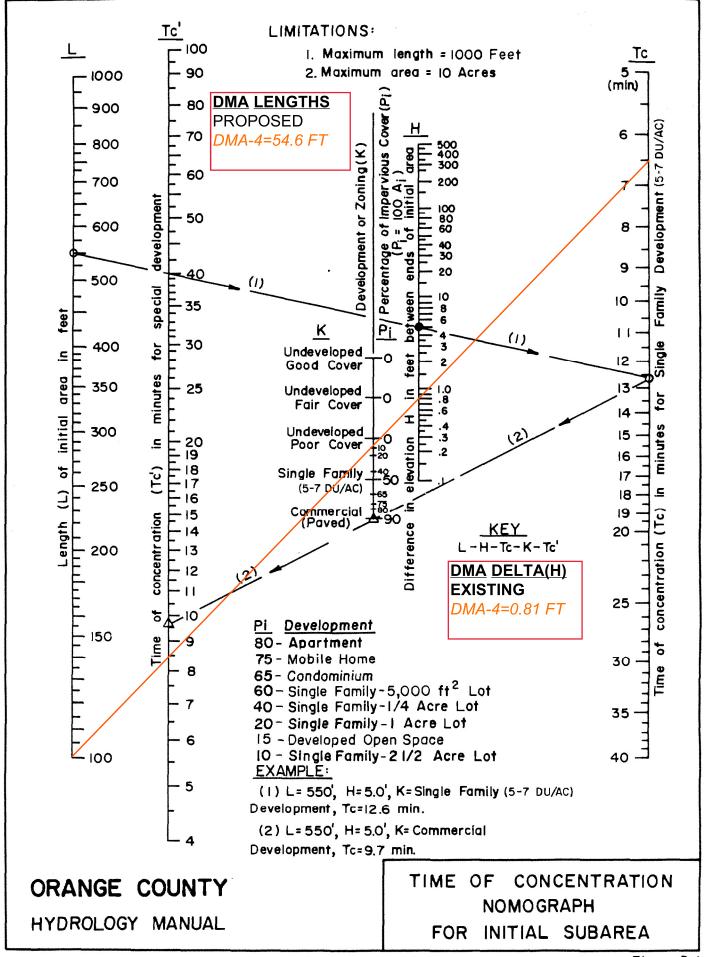
NOTE:

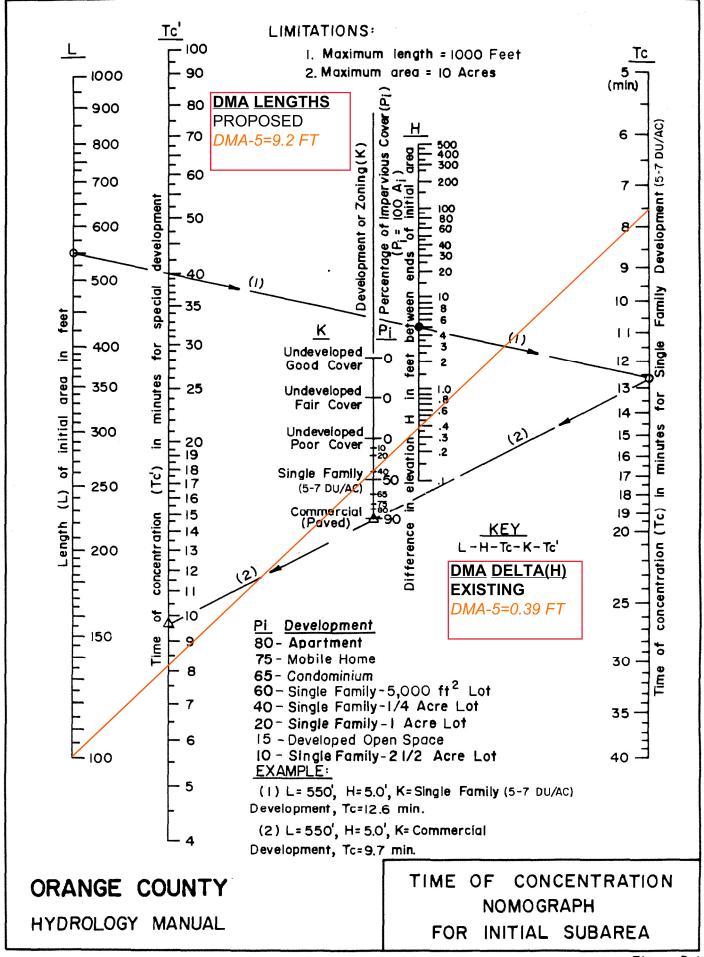

TO - BASED ON (100-YR STORM EVENT)

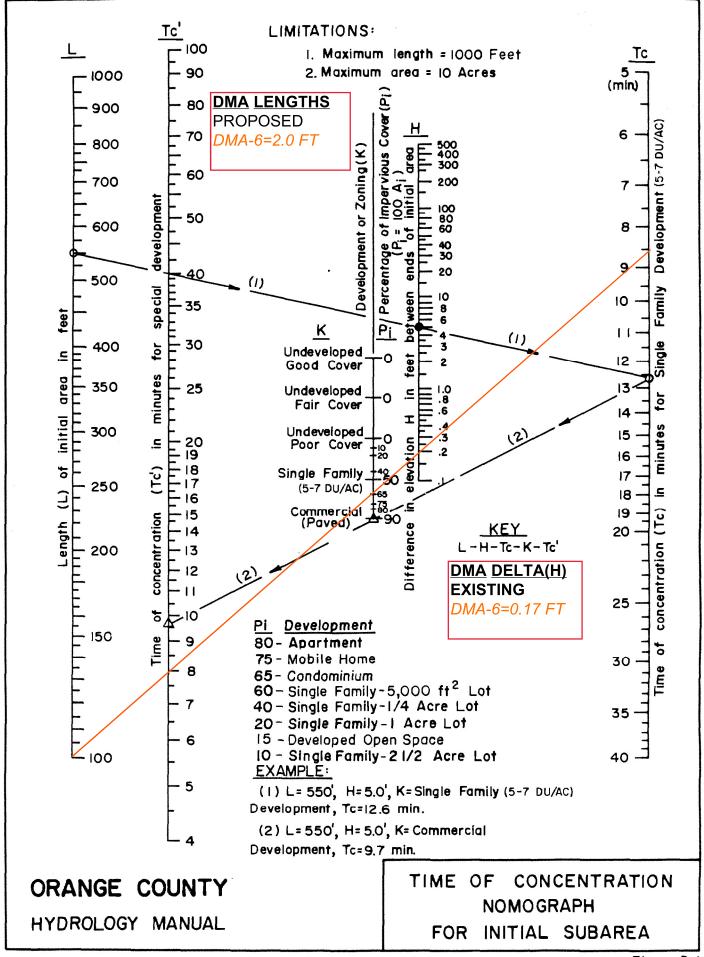

VICINITY MAP

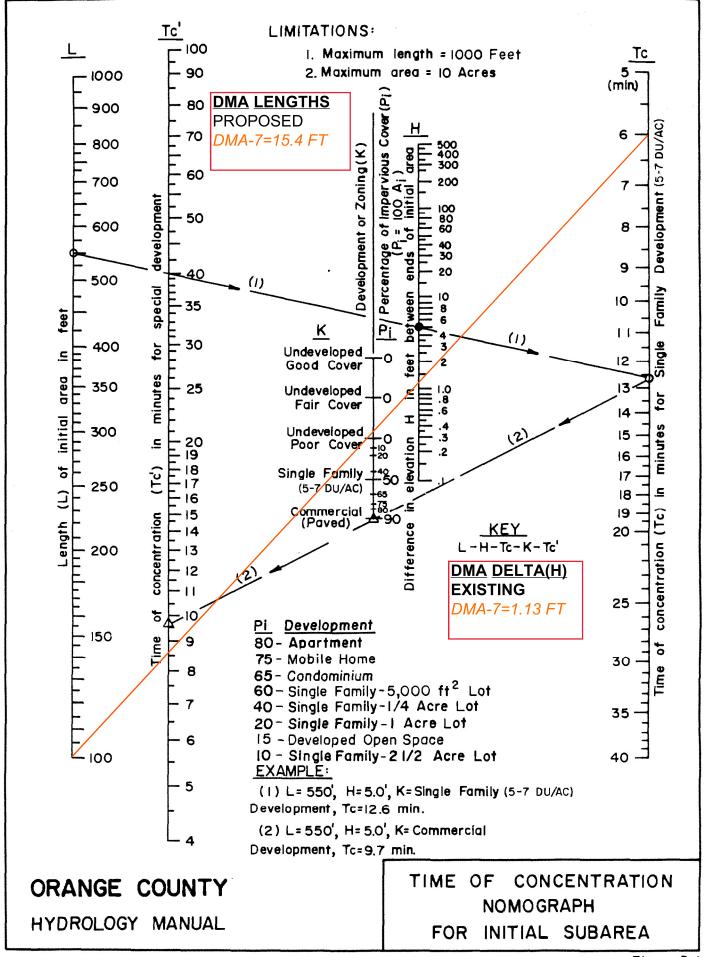


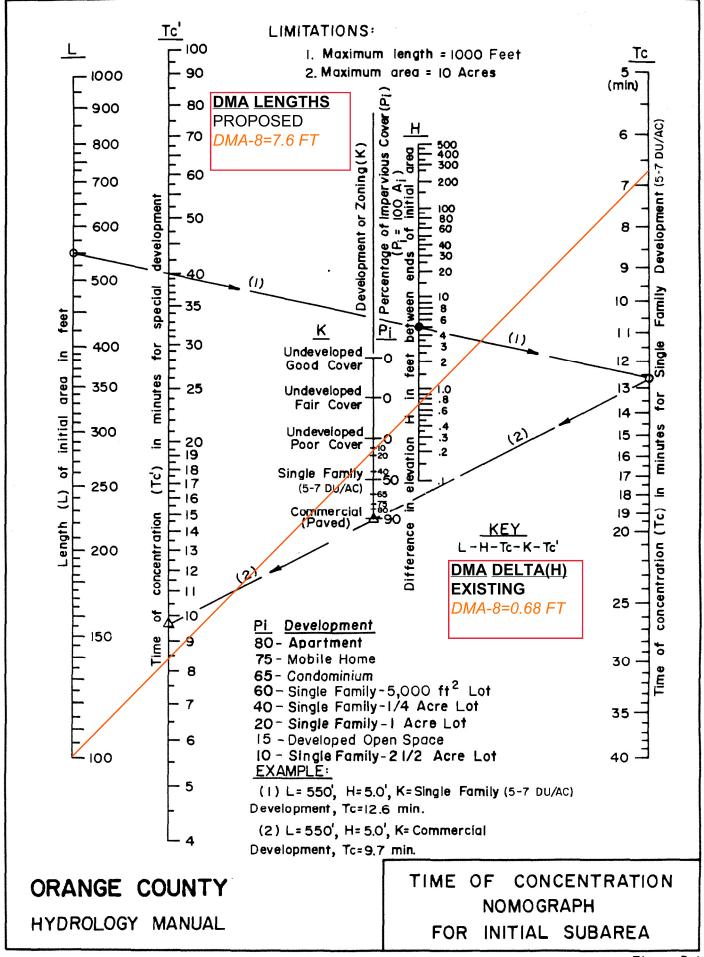

LATITUDE: 33°49'03.44" N, LONGITUDE: 118°00'06.42" W, SITE ELEVATION: 57 ft

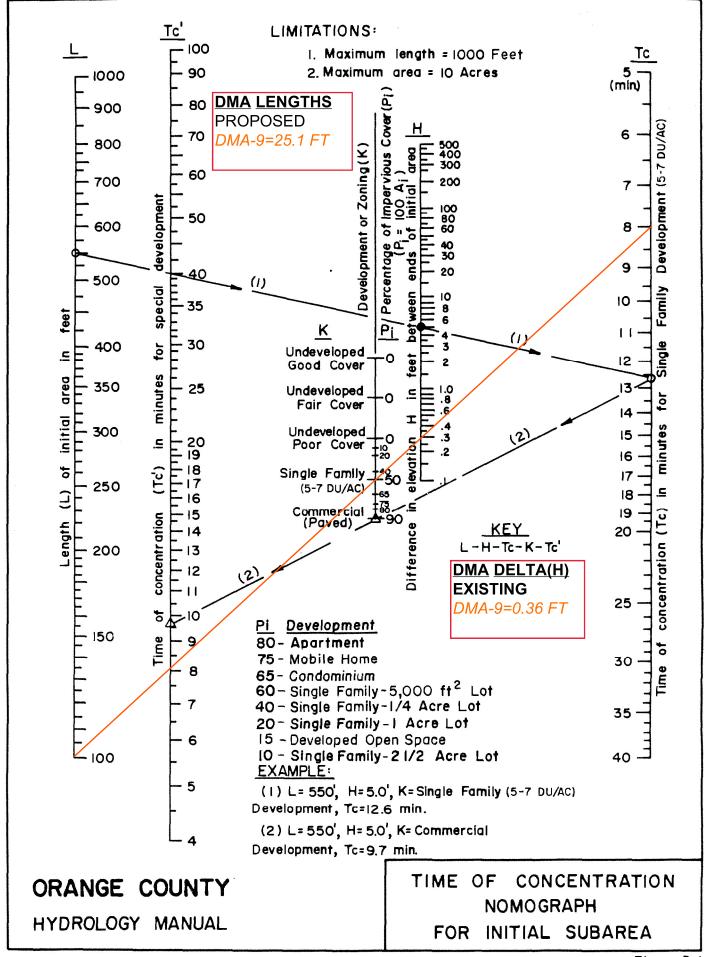

EXISTING CONDITIONS DMA

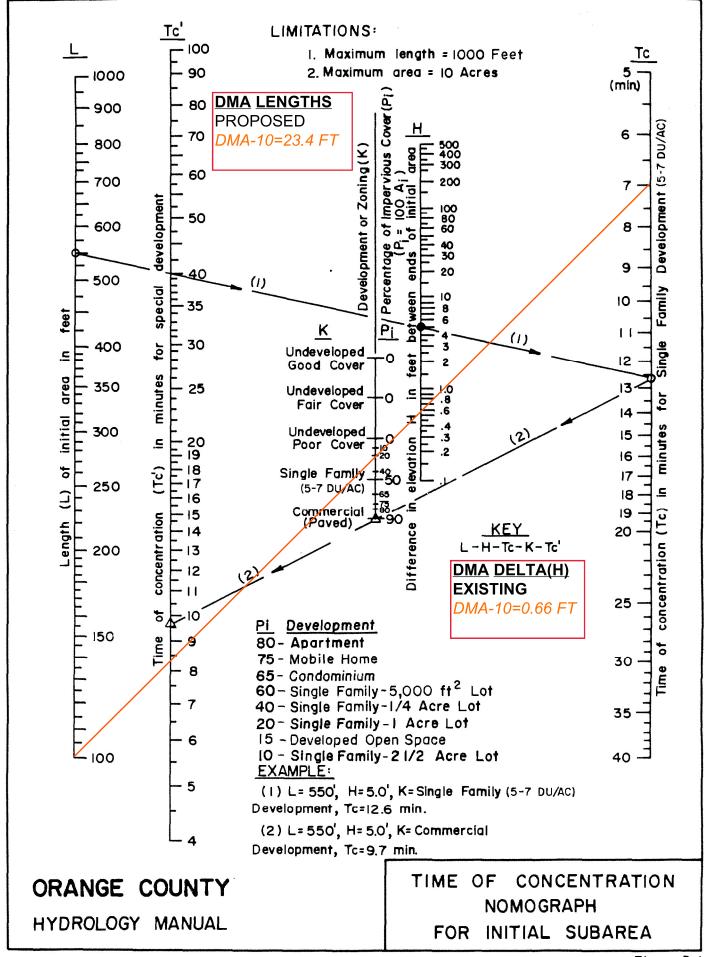


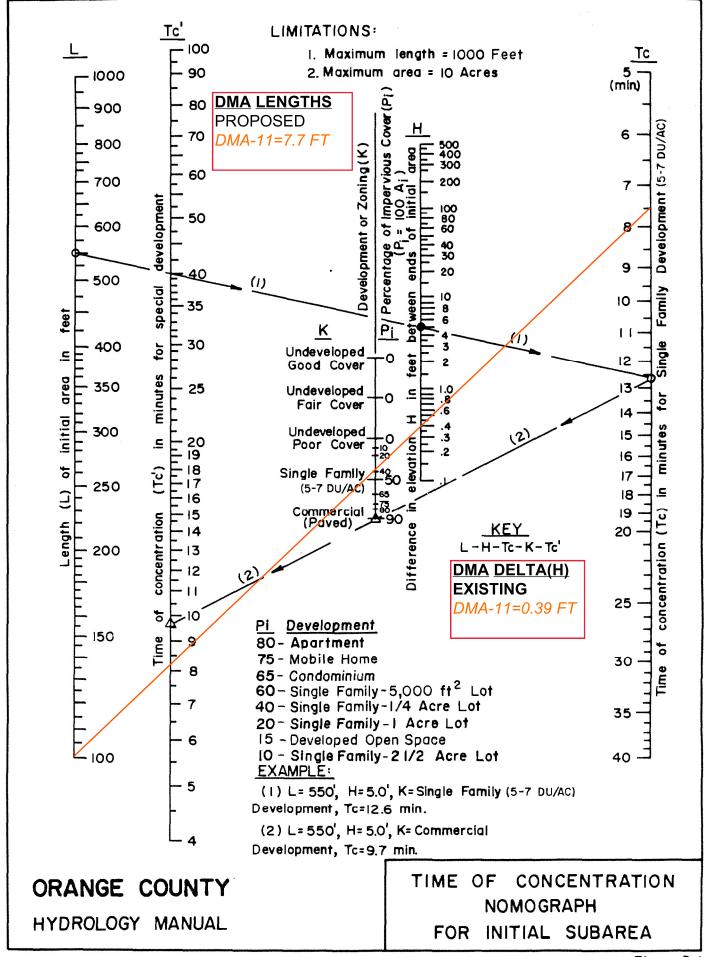


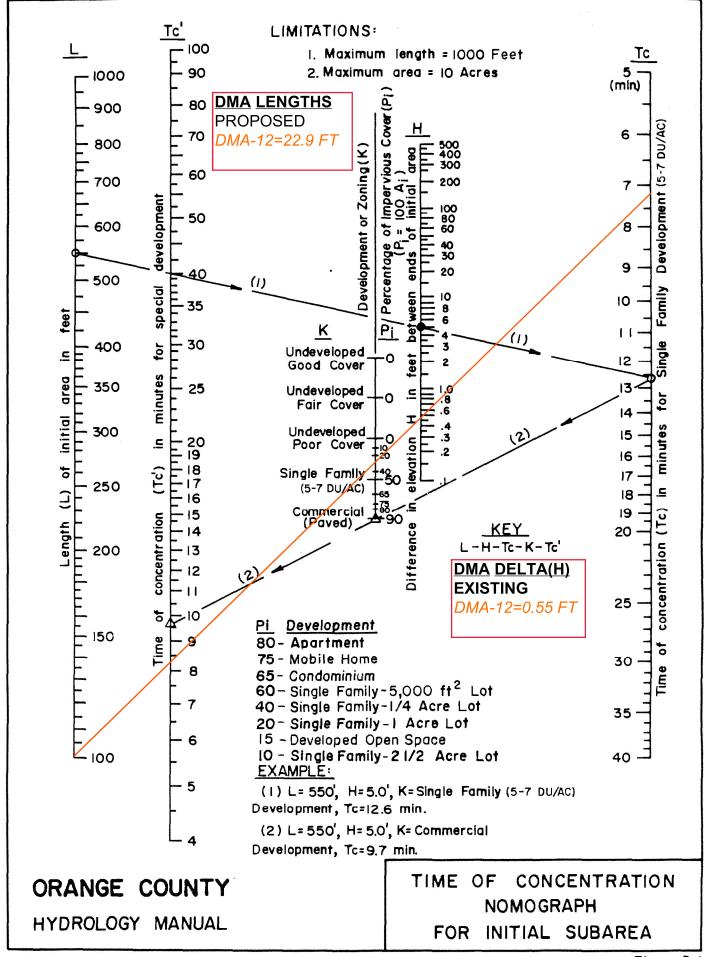


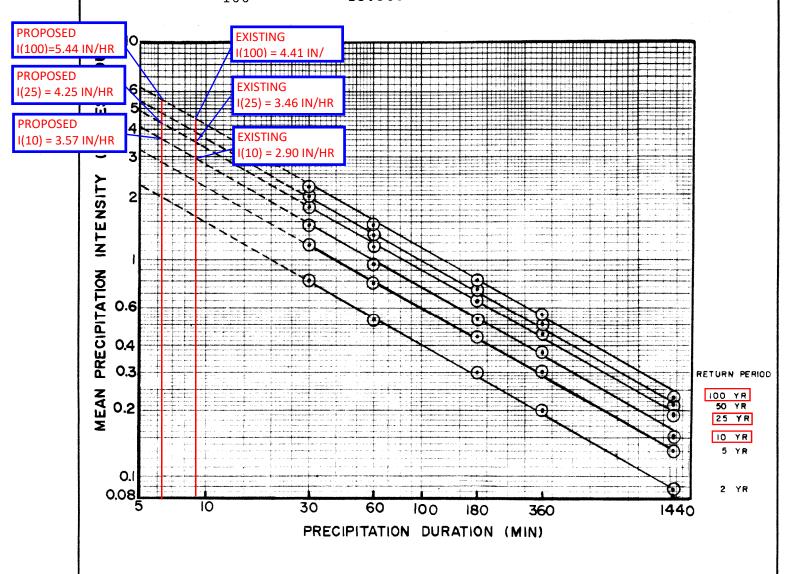












Regression Equations: I(t) = at^b
(I= Intensity in inches/hour, t= duration in minutes)

Return Frequency (years)	a	b
2	5.702	-0.574
5	7.870	-0.562
10	10.209	-0.573
25	11.995	-0.566
50	13.521	-0.566
100	15.560	-0.573

ORANGE COUNTY
HYDROLOGY MANUAL

MEAN PRECIPITATION INTENSITIES FOR NONMOUNTAINOUS AREAS

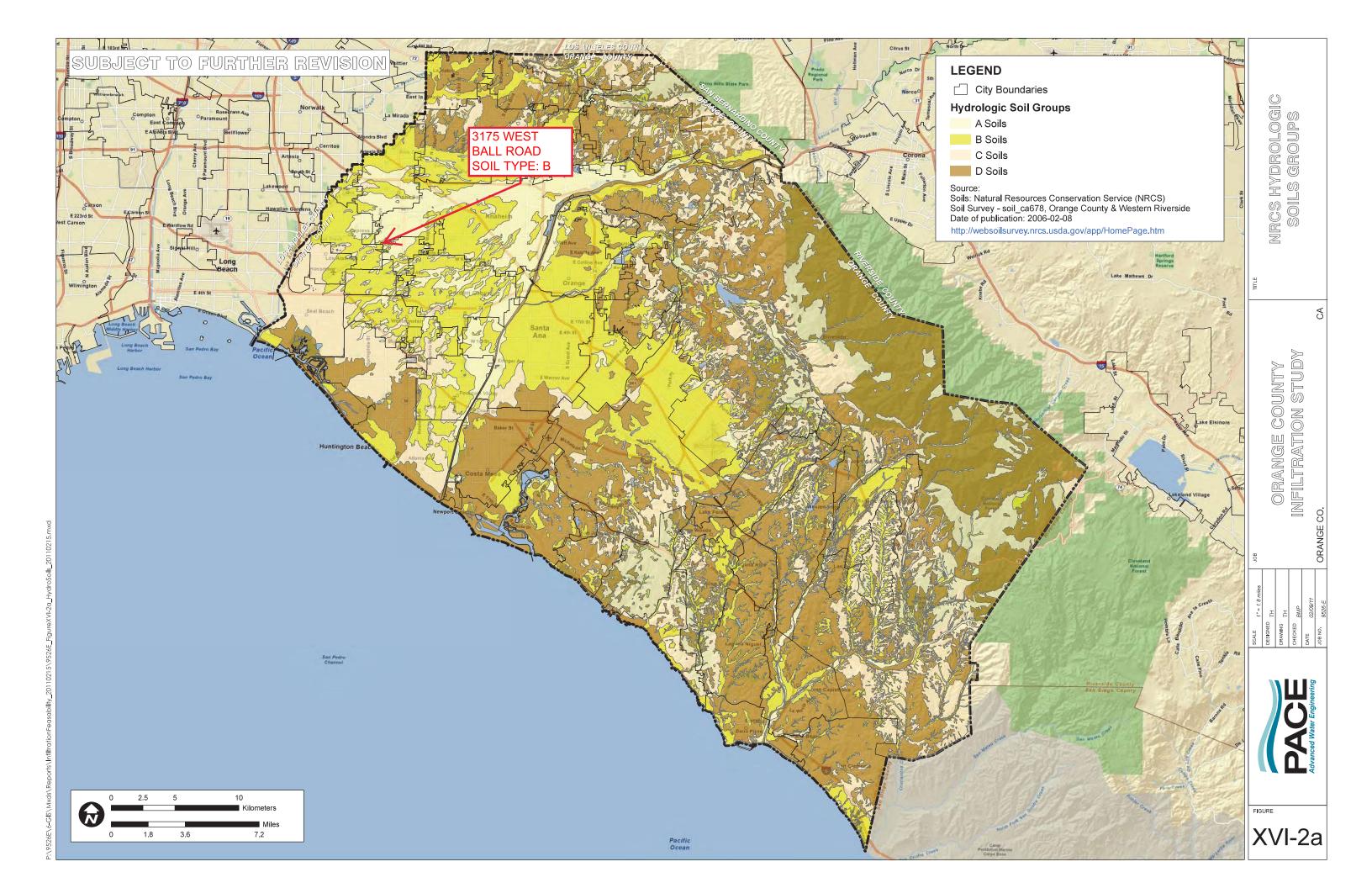


TABLE 1 Values of Runoff Coefficient C

TABLE 1 Values of Runoff Coefficient C	
URBAN	N AREAS:
Type of drainage area	Runoff coefficient C
Lawns:	0.05 - 0.10
Sandy soil, flat 2%	
Sandy soil, average, 2 - 7%	0.10 - 0.15
Sandy soil, steep, 7%	0.15 - 0.20
Heavy soil, flat, 2%	0.13-0.17
Heavy soil, average, 2 - 7%	
Heavy soil, steep, 7%	0.18 - 0.22
	0.25 - 0.35
Business:	0.70 - 0.95
Downtown areas Neighborhood areas	0.50.0.70
Residential:	0.30 - 0.50
Single-family areas	0.40 - 0.60
Multi units, detached Multi units,	0.60 - 0.75
attached Suburban	0.25 - 0.40
Apartment dwelling areas	0.50 - 0.70
Industrial:	
Light areas	0.50 - 0.80
Heavy areas	0.60 - 0.90
Parks, cemeteries	0.10 - 0.25
Playgrounds	0.20 - 0.35
Railroad yard areas	0.20 - 0.40
Unimproved areas	0.10 - 0.30
Streets:	0.70 - 0.95
Asphaltic	0.80 - 0.95
Concrete	0.70 - 0.85
Brick	
Drives and walks	0.75 - 0.85
Roofs	0.75 - 0.95

AGRICULTURAL AREAS:

Topography	Runoff Coefficient C Soil Texture				
and	Soil Texture				
Vegetation	Open Sandy Loam	Clay and Silt Loam	Tight Clay		
Woodland					
Flat 0 - 5% Slope	0.10	0.30	0.40		
Rolling 5 - 10% Slope	0.25	0.35	0.50		
Hilly 10 - 30% Slope	0.30	0.50	0.60		
Pasture	0.10	0.30	0.40		
Flat	0.16	0.36	0.55		
Rolling Hilly	0.22	0.42	0.60		
Cultivated					
Flat	0.30	0.50	0.60		
Rolling	0.40	0.60	0.70		
Hilly	0.52	0.72	0.82		

Orange County and Part of Riverside County, California

163—Metz loamy sand

Map Unit Setting

National map unit symbol: hcn8 Elevation: 30 to 2,500 feet

Mean annual precipitation: 20 inches

Mean annual air temperature: 57 to 61 degrees F

Frost-free period: 200 to 340 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Metz and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Metz

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Side slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Alluvium derived from mixed

Typical profile

H1 - 0 to 17 inches: loamy sand

H2 - 17 to 63 inches: stratified sand to fine sandy loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Available water storage in profile: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: SANDY (1975) (R019XD035CA)

Hydric soil rating: No

Minor Components

Riverwash

Percent of map unit: 4 percent

Landform: Fans Hydric soil rating: Yes

San emigdio, fine sandy loam

Percent of map unit: 4 percent

Hydric soil rating: No

Hueneme, fine sandy loam

Percent of map unit: 4 percent

Hydric soil rating: No

Corralitos, loamy sand

Percent of map unit: 4 percent

Hydric soil rating: No

Metz, mod fine substratum

Percent of map unit: 4 percent

Hydric soil rating: No

Data Source Information

Soil Survey Area: Orange County and Part of Riverside County, California

Survey Area Data: Version 11, Sep 12, 2017

Manning's n for Closed Conduits Flowing Partly Full (Chow, 1959).

tariffing of the of older of orthanto the total		(011011)	1000/1
Type of Conduit and Description	Minimum	Normal	Maximum
1. Brass, smooth:	0.009	0.010	0.013
2. Steel:			
Lockbar and welded	0.010	0.012	0.014
Riveted and spiral	0.013	0.016	0.017
3. Cast Iron:			
Coated	0.010	0.013	0.014
Uncoated	0.011	0.014	0.016
4. Wrought Iron:			
Black	0.012	0.014	0.015
Galvanized	0.013	0.016	0.017
5. Corrugated Metal:			
Subdrain	0.017	0.019	0.021
Stormdrain	0.021	0.024	0.030
6. Cement:			
Neat Surface	0.010	0.011	0.013
Mortar	0.011	0.013	0.015
7. Concrete:			
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unfinished, smooth wood form	0.012	0.014	0.016
Unfinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrified sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

It is noted that the Tc computation procedure is based upon the summation of an initial subarea time of concentration with the several travel times estimated by normal depth flow-velocities through subsequent subareas.

D.4. INTENSITY-DURATION CURVES

The precipitation intensity-duration curves presented in Section B.3 (Figures B-3 and B-4) are appropriate for the rational method.

D.5. RUNOFF COEFFICIENT

The runoff coefficient (C) is the ratio of rate of runoff to the rate of rainfall at an average intensity (I) when the total drainage area is contributing. The selection of the runoff coefficient depends on rainfall intensity, soil infiltration rate (F_p) , and impervious and pervious area fractions $(a_i \text{ and } a_p)$.

Since one acre-inch/hour is equal to 1.008 cfs, the rational formula is generally assumed to estimate a peak flowrate in cfs. Runoff coefficient curves are developed using the relationship:

$$C = \begin{cases} 0.90 \text{ (a}_{i} + \frac{(I - F_{p})a_{p}}{I}, \text{ for I greater than } F_{p}; \\ 0.90 \text{ a}_{i}, \text{ for I less than or equal to } F_{p} \end{cases}$$
(D.3)

where the proportion factor of 0.90 is a calibration constant determined by an average fit between the rational method and design storm unit hydrograph (see Section E) peak flow rate estimates, and where

C = runoff coefficient

I = rainfall intensity (inches/hour)

F_p = infiltration rate for pervious areas (inches/hour) (see Section C.6.4)

a_i = ratio of impervious area to total area (decimal fraction)

 a_p = ratio of pervious area to total area (decimal fraction), $(a_p = 1 - a_i)$

C.6.4. Estimation of Maximum Loss Rates for Pervious Areas, Fp

Table C.2 lists the maximum loss rates (inch/hour), Fp, for pervious area as a function of soil group.

SOIL GROUP:	_A_	<u>B</u>	<u>C</u>	_ <u>D</u> _
F _D :	0.40	0.30	0.25	0.20

Table C.2 reflects the model calibration assuming an F_p of 0.30 in/hr. for all the considered catchments and storm return frequencies. This mean value of F_p of 0.30 in/hr. was assigned to Hydrologic Soil Group B due to the actual average soil conditions in the reconstitution study areas. The F_p values for Hydrologic Soil Groups A, C, and D, were assigned to account for the different soil types that may be found in Orange County.

C.6.5. Estimation of Catchment Maximum Loss Rates, Fm

The maximum loss rate selected from Table C.2 applies to the pervious area fraction of the watershed. The loss rate assumed for an impervious surface is 0.0 inch/hour. The maximum loss rate, F_m, for a catchment is therefore given by

$$F_{m} = a_{p}F_{p} \tag{C.7}$$

where a_p is the pervious area fraction and F_p is the maximum loss rate for the pervious area (Section C.6.4).

Should a catchment contain several F_m values, the composite F_m value is determined as a simple area average of the several F_m values.