Appendix E Baseline Aquatic Habitat Monitoring Survey # Pine Creek Baseline Aquatic Habitat Monitoring Survey Final Report of 2012 Results Submitted to: Glenn Lukos Associates, Inc. 29 Orchard, Lake Forest, CA 92630 Telephone: (949) 837-0404 Fax: (949) 837-5834 ## **Aquatic Habitat Monitoring Survey** ## CONTENTS ## **Pine Creek Baseline** | INTROD | DUCTION | 1 | |---------------------|--|----------------| | Locatio | on and Setting | 1 | | МЕТНО | os | 1 | | Physica | al Habitat Characterization | 3 | | BMI Co | ollection | <i>6</i> | | RESULT | s | 7 | | Contro | I Site | 7 | | Experir | mental Site | 13 | | DISCUS | SION | 15 | | Contro | I Site | 16 | | Experir | mental Site | 17 | | REFERE | NCES | 18 | | | FIGURES Project VicinityProject Area Map | | | | Index of Biological Intergrity (B-IBI) for Pine Creek Benthic Macroinvertebrate | | | Ü | Study, Fall 2012 | | | Figure 5. | Percent Dominant Taxa for Pine Creek Benthic Macroinvertebrate study, Fall 2012 | 11 | | Figure 7. Figure 8. | Tolerance Value for Pine Creek Benthic Macroinvertebrate Study, Fall 2012 Tolerance Indices for Pine Creek benthic Macroinvertebrate Study, Fall 2012 EPT Indices for Pine Creek Benthic Macroinvertebrate Study, Fall 2012 Functional Feeding Group Metrics for Pine Creek Benthic Macroinvertebrate Study, Fall 2012 | 11
12
12 | | | TABLES General Physical Habitat Characteristics and Water Quality Measurements, Fall 2012 | Ç | ## **LIST OF ATTACHMENTS** Attachment A – Physical Habitat and Substrate Characteristics, Fall 2012 Attachment B – Raw BMI Data and Summary Metrics Attachment C – SoCal B-IBI Scores Attachment D – Field Data Sheets Attachment E – Representative Site Photos Attachment F – CDFW ABL External QC Report #### INTRODUCTION In the fall of 2012, ECORP was contracted by Glenn Lukos Associates, Inc. to conduct a baseline aquatic habitat survey using Surface Water Ambient Monitoring Program (SWAMP) sampling protocols and including a benthic macroinvertebrate (BMI) bioassessment assessment of Pine Creek above and below its confluence with Morgan Creek, in the vicinity of the Pine Creek Tungsten Mine near Bishop, Inyo County, California. Pine Creek Mine, LLC has filed an application to construct and operate a hydroelectric plant to generate electricity using spring water that accumulates. There is currently a concrete plug at the entrance to the mine shaft that allows water to accumulate. A pipe running through the concrete plug in the mine shaft allows water to exit the mine into Morgan Creek which drains immediately downstream into Pine Creek. ### Location and Setting Pine Creek is approximately 22.0 kilometers (km) (13.7 miles [mi]) in length and flows from its headwaters at Pine Creek Pass at an elevation of 11,120 feet (ft) through Upper Pine Lake, Pine Lake, and eventually drains into Lower Rock Creek just before its confluence with the Owens River within the Owens River Basin (Figure 1). Pine Creek Mine is located approximately 27.2 km (16.9 mi) to the west of Bishop, California. The mine is located just upstream from its confluence with Morgan Creek at an approximate elevation of 7,800 ft. Morgan Creek is an ephemeral creek that is approximately 4.3 km (2.7 mi) in length and flows from its headwaters at an elevation of 9,200 feet to its confluence with Pine Creek just downstream from Pine Creek Mine. Spring snowpack melt and naturally occurring artesian groundwater springs are the main contributors to stream flow. #### **METHODS** Physical habitat data collection and benthic macroinvertebrate sampling methods conformed to SWAMP's standard targeted riffle composite (TRC) method for documenting and describing benthic macroinvertebrate assemblages within sampling sites. Figure 1. Project Vicinity ## **Physical Habitat Characterization** Two stream reaches (sites), each measuring 150 meters (m) in length, were selected during the Pine Creek Baseline Aquatic Habitat Monitoring Survey conducted on 10 and 11 September 2012 (Figure 2). One site was established in Pine Creek upstream from its confluence with Morgan Creek and served as the reference site (control site) for the study. The control site was located slightly outside the project area because streamflow in Pine Creek became subsurface within the project area. The control site was therefore located upstream and slightly outside of the project area because it was the only location in which a 150-m sampling reach could be located above the confluence with Morgan Creek. A second site was established in Pine Creek downstream from the confluence with Morgan Creek and served as the potentially-affected site (experimental site) for the study. This site was selected based on its proximity to the confluence with Morgan Creek and the ability of surveyors to safely work within the stream channel. In an effort to minimize any anomalous readings, water quality readings were collected prior to instream surveys. A multi-probe water quality meter (HORIBA Model U-52) was utilized to record water temperature, conductivity, salinity, dissolved oxygen (DO), total dissolved solids (TDS), pH, turbidity, and oxidation-reduction potential. The water quality meter was calibrated according to the manufacturer's instructions prior to the survey, and the data were tabulated according to site location and date of collection. Physical habitat (PHAB) characteristics at each site location were evaluated, measured, and recorded using California's State Water Resources Control Board (SWRCB) SWAMP procedures (Ode 2007). According to SWAMP protocols, PHAB characteristics that are measured in streams less than 10 m wide should be based on a 150-m reach with sub-samples collected along 11 transects and 10 inter-transects. At each transect, a tape measure was extended perpendicularly across the stream to measure the wetted width, bankfull width, and bankfull height dimensions. Along these transect lines, distance from left bank, depth, substrate size class, percent cobble embeddedness, presence of coarse particulate organic matter (CPOM), microalgae thickness, presence of attached macroalgae, presence of unattached macroalgae, and presence of aquatic macrophytes were recorded at predetermined locations (left and right banks, center, and left and right centers). Canopy cover was measured by taking four readings (center left, center upstream, center right, and center downstream) using a densiometer. Visual estimates of riparian vegetation, instream habitat complexity, human influence, and bank stability were also recorded. The evaluation of riparian bank vegetation and instream habitat complexity was provided using the SWAMP Stream Habitat Characterization forms rating scale from 0 to 4. The rating scale is arranged as follows: | 0 = Absent | (0%) | |----------------|----------| | 1 = Sparse | (<10%) | | 2 = Moderate | (10-40%) | | 3 = Heavy | (41-75%) | | 4 = Very Heavy | (>75%) | At each inter-transect, a tape measure was extended perpendicularly across the stream to measure the wetted width. Along these transect lines, distance from left bank, depth, substrate size class, percent cobble embeddedness, presence of coarse particulate organic matter (CPOM), microalgae thickness, presence of attached macroalgae, presence of unattached macroalgae, and presence of aquatic macrophytes were recorded at predetermined locations (left and right banks, center, and left and right centers). Visual estimates of the percentage of flow habitats present were also recorded. Streamflow discharge data were collected at the downstream extent of each site. Water discharge was measured using a Marsh-McBirney Flo-Mate 2000 electromagnetic flowmeter (FLO-MATE 2000). The flowmeter was calibrated according to the manufacturer's instructions prior to the survey, and the data were tabulated according to site location and date of collection. Surveyors also recorded evidence of any recent rainfall or fires in the area, in addition to the dominant surrounding land use. The slope of the entire reach was measured using a hand-held inclinometer. Additional habitat characteristics including rankings of epifaunal substrate/cover, sediment deposition, and channel alteration were recorded using the following scale: | 20-16 | = Optimal | (>70%) | |-------|--------------|----------| | 15-11 | = Suboptimal | (41-70%) | | 10-6 | = Marginal | (20-40%) | | 5-0 | = Poor | (<20%) | #### **BMI Collection** Within each site, a total of eight kick samples were collected within eight distinct riffle habitats using a 0.02-inch diameter mesh D-framed kicknet. Each of the eight subsamples covered one square foot of the stream bottom, and were used to form one composite sample for each site. Sub-samples were taken from a defined "core area" within each riffle, and surveyors were careful to avoid edges along channel margins as well as the upstream or downstream edges of the riffle. Samples were collected starting at the most downstream riffle unit and proceeding upstream to minimize instream disturbance. All samples were preserved with 95-percent ethanol, and properly labeled with time, date, and site location. Samples were delivered to the EcoAnalysts laboratory, where each sample was then rinsed in a standard No. 35 sieve (0.5 mm) and transferred to a tray with four, square-inch grids for subsampling. In cases where BMI abundance exceeded 100 organisms per grid, half grids were delineated to assure that a minimum of three discreet areas within the tray of benthic material were subsampled. A total of at least 500 BMIs were subsampled from a minimum of five grids, or five half grids. All organisms were removed from the subsample and
identified to Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) Level 2 protocol (Richards and Rogers 2006). Subsampled BMIs were identified by a taxonomist approved by the California Department of Fish and Wildlife (CDFW), (formerly California Department of Fish and Game), for U.S. Environmental Protection Agency (USEPA) evaluations using standard aquatic macroinvertebrate identification keys. Following the data collection and sample processing, all data were subject to quality assurance/quality control (QA/QC) procedures including, but not limited to, spot-checks of data and review of electronic data for completeness. Standard biological metrics (as outlined in Ode et al. 2005) plus any additional relevant metrics (regional IBI), were calculated for each reach and presented in graphical or tabular form. Finally, the CDFW Aquatic Bioassessment Laboratory (ABL) was contracted to perform an external QC review of the sample identification. Twenty percent of the samples collected (or one sample, if five samples or less are collected) were randomly selected for QC by the taxonomist and sent to the CDFW ABL for taxonomic verification. #### **RESULTS** The following section provides an overview of the BMI results (all sampling reaches combined) obtained during the survey effort in fall 2012; general descriptions of sampling reaches including physical habitat conditions (based on fall surveys); and specific BMI results, by sampling reach, for the survey efforts. During the fall 2012 surveys, an estimated 5,157 BMIs were collected from the two sampling sites, representing 51 distinct taxa and 11 orders. Of this total, 1,291 BMIs were identified during the sample processing effort. Habitat and substrate characteristics for both sites are provided in Attachment A. Raw BMI data and summary metrics are presented in Attachment B. The SoCal B-IBI scores for each site are provided in Attachment C. Additionally, copies of field data sheets completed for the fall surveys are included in Attachment D. Attachment E includes representative site photos. #### **Control Site** The control sampling site is located on Pine Creek upstream from the Pine Creek Mine at UTM coordinates 11S 0349226 E, 4135902 N and an elevation of 7,961 ft. The downstream end of the 150-m sampling site is located approximately 520 m upstream from its confluence with Morgan Creek. The control site is within a high gradient mountain creek with a slope of 19.56%, with an average streamflow of 2.9 cubic feet per second (cfs). Water temperature was 14.35 degrees Celsius (°C), dissolved oxygen was 8.24 milligrams per liter (mg/L), and pH was 9.68 within the site (Table 1). Cascades/falls and riffles were the primary instream habitats with substrates dominated by cobble and both small and large boulders. Bankfull widths ranged from 3.8 to 9.2 m, with both stable and vulnerable banks. Stream depths ranged from near zero to 110 centimeters (cm). Canopy cover was intermediate with an average of 34.1% and consisted primarily of water birch riparian scrub with minimal deposits of coarse particulate organic matter (CPOM) in the stream channel. Riparian vegetation consisted of miner's dogwood (*Cornus* sp.), mountain dogwood (*Cornus* sp.), mountain alder (*Alnus* sp.), water birch (*Betula* sp.), California buckeye (*Aesculus* sp.), buckthorn (*Rhamnus* sp.), and slippery elm (*Ulmus* sp.). Emergent vegetation was absent throughout the reach. Human influence within and adjacent to the reach was evident by the trash and landfill present, along with a bridge that extends over the reach. The surrounding land use was forest and mining. The three RBP scores for this reach were in the Optimal range. Epifaunal substrate cover scored a 17 (Optimal), sediment deposition consistently scored a 19 (Optimal), and the channel alteration parameter consistently scored 19 (Optimal) (see Attachment A). The SoCal B-IBI score for this reach was in the 'Fair' condition category (see Attachment B, Figure 3). Community metrics indicated a balanced benthic community, as indicated by the Shannon Diversity Index (SDI) (see Attachment B, Figure 4). The stonefly, *Zapada cinctipes* dominated the benthic community, comprising 15% of the community (see Attachment B, Figure 5). The Tolerance Value (2.7) was lower than that observed for the experimental site (see Attachment B, Figure 6). Intolerant Organisms accounted for 56% of the community (see Attachment B, Figure 7). The high number of Intolerant Organisms directly affected the Tolerance Value. Correspondingly, Tolerant Organisms comprised 3.5% of the community. Additionally, EPT and Sensitive EPT indices exceeded 60% of the community (see Attachment B, Figure 8). Table 1. General Physical Habitat Characteristics and Water Quality Measurements, Fall 2012 | | Fall 2012 | | | |------------------------------|-------------------|--------------|--| | | Pine Creek | Pine Creek | | | Sampling Information | Control | Experimental | | | | | | | | Date Sampled | 9/10/2012 | 9/11/2012 | | | Time Sampled | 13:30 | 10:05 | | | Site Length (m) | 150m | 150m | | | Specific Conductance (mS/cm) | 0.03 | 0.07 | | | Dissolved Oxygen (mg/L) | 8.24 | 9.17 | | | Water Temperature (°C) | 14.35 | 10.64 | | | Turbidity (NTU) | 0.00 | 0.00 | | | рН | 9.68 | 9.44 | | | Salinity (ppt) | 0.00 | 0.00 | | | ORP (mV) | 183.00 | 134.00 | | | Total Dissolved Solids (g/L) | 0.02 | 0.05 | | | | | | | | | | | | | Notable field conditions | Control | Experimental | | | Recent Rainfall | N | N | | | Evidence of Fires | N | N | | | Dominant landuse/cover | FOREST/INDUSTRIAL | FOREST | | Benthic Macroinvertebrate Study, Fall 2012. Macroinvertebrate study, Fall 2012. Functional Feeding Group metrics indicated that the community was co-dominated by three feeding groups; Predators, Collector-gatherers, and Shredders exceed 20% of the community (see Attachment B, Figure 9). Additionally, Scrapers comprised about 20% of the community. ## **Experimental Site** The experimental sampling site is located on Pine Creek downstream from the Pine Creek Mine at UTM coordinates 11S 0350045 E, 4136395 N and an elevation of 7,475 ft. The upstream end of the 150-m sampling site is located approximately 370 m downstream from its confluence with Morgan Creek. The experimental sampling site is within a high gradient mountain creek with a slope of 11.73% and an average streamflow of 17.7 cfs. Water temperature was 10.64 °C, dissolved oxygen was 9.17 mg/L, and pH was 9.44 within the site (Table 1). Rapids was the primary instream habitat type with substrates dominated by cobble and both small and large boulders (Attachment A). Bankfull widths ranged from 4.2 to 6.6 m, with both stable and vulnerable banks present. Stream depths ranged from near zero to 110 cm. Canopy cover was dense and averaged 75.3%. The riparian corridor consisted primarily of water birch riparian scrub, which included elderberry (*Sambucus* sp.), box elder (*Acer* sp.), mountain maple (*Acer* sp.), and ash (*Fraxinus* sp.), with minimal deposits of CPOM in the stream channel. Emergent vegetation was sparse throughout the reach. Human influence within and adjacent to the reach was evident by the trash present. The surrounding land use was forest. The three Rapid Bioassessment Protocol (RBP) scores for this reach were in the Optimal range. Epifaunal substrate cover scored a 19 (Optimal), sediment deposition consistently scored a 19 (Optimal), and the channel alteration parameter consistently scored 19 (Optimal) (see Attachment A). The SoCal B-IBI score for this reach was in the 'Fair' condition category (see Attachment B, Figure 3). Community metrics indicate that the benthic community was relatively balanced, as evidenced by the Shannon Diversity Index (SDI) (see Attachment B, Figure 4). The stonefly, *Zapada cinctipes* dominated the benthic community, comprising 28% of the community (see Attachment B, Figure 5). The mayfly, *Beatis* sp. comprised 17% of the community and was the second most abundant organism at this site. The Tolerance Value was slightly higher than was observed at the reference site, however, both scored less than 3.0 (see Attachment B, Figure 6). Intolerant Organisms accounted for 56% of the community (see Attachment B, Figure 7). The high number of Intolerant organisms directly affected the Tolerance Value. Correspondingly, Tolerant Organisms comprised 2.5% of the community. Additionally, the EPT Index exceeded 85% and Sensitive EPT Index exceeded 59% of the community (see Attachment B, Figure 8). Functional Feeding Group metrics indicated that the community was dominated by the three groups; Collector-gatherers, Shredders and Predators. The Collector-gatherers and Shredders each comprised greater than 30% of the community (see Attachment B, Figure 9). Scrapers comprised about 8% of the community. The experimental site was randomly selected for external QC of taxa identification and counts by the CDFW ABL in Chico. The external QC found only minor discrepancies in the counts of six taxa. There was only one instance where the original ID was disputed by the ABL, and five instances where the original ID was placed at a different taxonomic level. The CDFW ABL external QC report is included in Attachment F. #### DISCUSSION Results from the BMI bioassessment surveys indicated the sites were relatively similar, based upon IBI scores. However, streamflow at the experimental site was approximately six times the flow at the control site, due to a tributary entering Pine Creek between the two sites. Riparian canopy at the experimental site was also about twice that observed at the control site. However, the slope was much higher at the control site. Taxa Richness was higher at the control site as was the Shannon Diversity Index, indicating the control site had a more balanced community compared to the experimental site. Tolerance values were similar between sites, as were percent Intolerant and Tolerant
organisms. The control site had a lower EPT Index, however the Sensitive EPT values were similar between sites, with a difference of only 1%. Mayfly and trichoptera taxa were more abundant at the control site, while the experimental site had more stonefly taxa. Abundance estimates were higher at the experimental site. Substrate composition varied between the two sites; bedrock abundance at the control site was twice that observed at the experimental site. Larger substrates (boulder/bedrock) were more abundant (10%) at the control site and preferred BMI substrates (gravel/cobble) were more abundant (10%) at the experimental site. Habitat composition differed between the two reaches with cascades/falls comprising four times the habitat at the control site. Rapids comprised more than two times the habitat at the experimental site than that observed at the control site. The following discussion provides an assessment and comparison of the BMI communities present at the control site relative to the communities at the experimental site. #### **Control Site** The SoCal B-IBI for the control site also scored in the 'Fair' range, indicating a degree of similarity between the two sites. However, the SDI at the control reach was higher than observed at the experimental site. This higher score indicates a relatively more balanced community than observed at the experimental site. Taxa richness also scored higher at this site. The EPT Indices exceeded 60% of the community at this site and many of these organisms were 'sensitive' to pollution. The benthic community was more evenly distributed as described by the Functional Feeding Groups. Four feeding group metrics were about 20% or more of the community, with only a minor percentage of Collector-filterers comprising the community. Predators, Collector-gatherers, Shredders, and then Scrapers were the four most abundant groups in the community, compared to three of these at the experimental site. The Tolerance Value was also lower at this site. The control site also had a much higher percentage of large substrate types than observed at the experimental site. However, gravels and cobbles still comprised 40% of the substrate, which are favorable habitat for EPT taxa. Fines were a minor component of the substrate and probably had little effect on the benthic communities at this site. One of the biggest differences between the sites was the riparian canopy cover, which was half as abundant at this site compared to the experimental site. ## **Experimental Site** The SoCal B-IBI score for the experimental site was in the 'Fair' category. In addition to the reach location, substrates in the reach were dominated by cobble and small boulder with little fine substrates. Substrates of cobble, small boulder and coarse gravels are a stable base and preferred substrates for benthic macroinvertebrate communities, especially the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT Taxa) (Hines 1970). The EPT Taxa are sensitive to most types of water pollution, and the number of individuals in these groups decline with decreasing water quality, as does Taxa Richness (Reice and Wohlenberg 2001). However, the EPT taxa were the most abundant organisms in this reach. The dominant taxa was Zapada cinctipes, an intolerant stonefly which is sensitive to pollution. The mayfly Baetis sp., was the second most dominant taxa, however Baetis sp. is not considered a sensitive organism. This reach also had more stonefly taxa than observed in the control reach, and many of the genera observed were also intolerant species. This reach was also dominated by three of the Functional Feeding Group metrics, Percent Collector-gatherers, Shredders and Predators with a few Scrapers. No Collector-filterers were collected in this reach. The SDI was lowest at this site, but indicated a fairly balanced community. Nonetheless, the two sites both appear to be in good condition as determined by the BMI metrics and B-IBI scores. #### **REFERENCES** - Hynes, H. B. N. 1970. *The Ecology of Running Waters*. Caldwell, NJ: Blackburn Press. - Ode, P. R. 2007. Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. February. Available: http://swamp.mpsl.mlml.calstate.edu/wp-content/uploads/2009/04/swamp_sop_bioassessment_collection_020107.pdf. Accessed: June 3, 2011. - Ode, P. R., A. C. Rehn, and J. T. May. 2005. A Quantitative Tool for Assessing the Integrity of Southern Coastal California Streams. Environmental Management, Vol 35 (4) pp. 493-504. Available: http://www.waterboards.ca.gov/water_issues/programs/swamp/docs/reports/coastalstreams.pdf. Accessed: February 8, 2013. - Reice, S. R., and M. Wohlenberg. 2001. Monitoring Freshwater Benthic Invertebrates and Benthic Processes: Measures for Assessment of Ecosystem Health. In: *Freshwater Biomonitoring and Benthic Macroinvertebrates*, edited by D. M. Rosenberg and V. H. Resh. Boston: Kluwer Academic Publishers. - Rogers, D. C., and A. B. Richards. 2006. Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) Rules for the Development and Maintenance of the Standard Level of Taxonomic Effort. Available: http://www.safit.org/Docs/ ste_rules.pdf. Accessed: June 3, 2011. ## **LIST OF ATTACHMENTS** Attachment A – Physical Habitat and Substrate Characteristics, Fall 2012 Attachment B – Raw BMI Data and Summary Metrics Attachment C – SoCal B-IBI Scores Attachment D – Field Data Sheets Attachment E – Representative Site Photos Attachment F – CDFW ABL External QC Report ## **ATTACHMENT A** Physical Habitat and Substrate Characteristics, Fall 2012 ## Attachment A. Physical Habitat and Substrate Characteristics, Fall 2012 ## **Habitat Composition** | | Cascade/ | | | | | | | | |-------------|----------|-------|--------|------|-------|------|-----|-------| | | Falls | Rapid | Riffle | Run | Glide | Pool | Dry | Total | | Control | 28 | 16.5 | 27 | 12.5 | 12 | 3.5 | 0.5 | 100 | | Experimenta | 7 | 42.5 | 22.5 | 18 | 6.5 | 3.5 | 0 | 100 | ## **Substrate Composition** | | | | | Gravel | | Small | Large | Bedrock | Bedrock | | |-------------|------|------|-------------|--------|--------|---------|---------|---------|---------|-------| | | Wood | Sand | Gravel Fine | Coarse | Cobble | Boulder | Boulder | Rough | Smooth | Total | | Control | 1.0 | 4.8 | 9.5 | 10.5 | 20.0 | 22.9 | 20.0 | 11.4 | 0.0 | 100.0 | | Experimenta | 1.9 | 3.8 | 5.7 | 13.3 | 31.4 | 23.8 | 16.2 | 1.0 | 2.9 | 100.0 | ### **Embeddedness** | | Control | Experimenta | |---------|---------|-------------| | Average | 37.6 | 34.8 | ## **Canopy Cover** | | Control | Experimenta | |---------|---------|-------------| | Average | 34.1 | 75.3 | ### **Creek Flow** | | Control | Experimenta | |---------|---------|-------------| | Average | 2.9 | 17.7 | ### Additional Habitat Characterization | | Control | Experimenta | |-----------|---------|-------------| | Epifaunal | | | | Substrate | | | | / Cover | 17 | 19 | | Sediment | | | | Depositio | 19 | 19 | | Channel | | | | Alteratio | 19 | 19 | ## **ATTACHMENT B** Raw BMI Data and Summary Metrics ## Pine Creek BMI Data 2012 | CTV PHYLUM ARTHROPODA Class Insecta Coleoptera (Larvae) Elmidae 4 | c | g | 6275.1-1 | 6275.1-2 | |--|--------|----------------|----------|----------| | Class Insecta Coleoptera (Larvae) 4 Elmidae 4 Diptera Chironomidae 6 Tanytarsini 6 Microspecta sp. 7 | | g | | | | Coleoptera (Larvae) Elmidae 4 Diptera 6 Chironomidae 6 Tanytarsini 6 Microspecta sp. 7 | | g | | | | Elmidae 4 Diptera 6 Chironomidae 6 Tanytarsini 6 Microspecta sp. 7 | | g | | | | Chironomidae 6 Tanytarsini 6 Microspecta sp. 7 | | ٠ I | | 1 | | Chironomidae 6 Tanytarsini 6 Microspecta sp. 7 | C | - 1 | | | | Tanytarsini 6
<i>Microspecta sp.</i> 7 | C | | | | | Microspecta sp. 7 | C | | | | | | |) | | | | | CÓ | | 4 | 5 | | Rheotanytarsus sp. 6 | C | | 1 | | | Diamesinae 2 | Cĺ | ³ | | | | <u>Diamesini</u> <i>Diamesa sp.</i> 5 | C | , I | 1 | | | Orthocladiinae 5 | C | • | 1 | | | Brillia sp. 5 | sl | | 15 | 4 | | Chaetocladius sp. 6 | C | | | 2 | | Cricotopus sp. 7 | C | | | 2 | | Eukiefferiella devonica gr | or | | 4 | 4 | | Eukiefferiella gracei gr. | or | n | 2 | | | Orthocladius sp. 6 | C | , | | 1 | | Orthocladius (Symp.) lignicola | | | 1 | | | Orthocladius complex | | | 2 | 2 | | Paraphaenocladius 'n. sp.' | | | 1 | | | Parorthocladius sp. | | | _ | 1 | | Rheocricotopus sp. 6 | or | | 3 | 1 | | Tvetenia bavarica grp. 5 | CÓ | | 15 | 3 | | Dixidae 2 Dixa sp. 2 | Cĺ | | 1 | | | Dixa sp. 2 Empididae 6 | C | | 3 | 2 | | Chelifera /Metachela sp. 6 | p
p | | 22 | 5 | | Clinocera sp. 6 | p | | 1 | 3 | | Wiedemannia sp. 6 | p | | 20 | 9 | | Simuliidae 6 | C | | | | | Simulium sp. 6 | C | - | 4 | | | Thaumaleidae | S | ; | 1 | | | Thaumalea sp. | S | ; | | | | Tipulidae 3 | | | 1 | | | Dicranota sp. 3 | p | 4 | 2 | | | Megaloptera | | 4 | | | | Corydalidae 0 Orohermes crepusculus 0 | p | | 2 | 2 | | Orohermes crepusculus 0 | p | 4 | 3 | 2 | | <u>Ephemeroptera</u> | | d | | | | Baetidae 4 | C | , | | | | Baetis sp. 5 | C | | 75 | 112 | | Baetis tricaudatus 6 | C | | 8 | 51 | | Ephemerellidae 1 | C | | | | | Caudatella sp. 1 | C | | 9 | 4 | | Caudatella hystrix 1 | C | | 11 | 1 | | Drunella doddsi 0 | C | , | 20 | 26 | | Drunella spinifera 0 | p | | 6 | 1 | | Heptageniidae 4 | S | ; | 1 | | | Epeorus sp. 0 | S | | 90 | 27 | | Ironodes sp. 3 | S | | 34 | 21 | | Rhithrogena sp. 0 | S | | 2 | 3 | | Leptophlebidae 2 | CÓ | ³ ¶ | 5 | | | Plecoptera Plecoptera | | | | |
| Chloroperlidae 1 | р | d | 12 | 22 | | Nemouridae 2 | sh | | 19 | 4 | | Malenka sp. 2 | sh | | 17 | 1 | | Zapada cinctipes 2 | sh | | 95 | 177 | | Zapada columbina 2 | sl | | 7 | 2 | | Peltoperlidae 1 | sl | | | 1 | | Yoraperla sp. 1 | sł | | | 9 | | Perlidae 1 | р | | 9 | 2 | | Calineuria californica 2 | p | J | 2 | | | I | | | ı | | |--------------------------|-------------|--------|------------|--------------| | | | | Pine Creel | k Pine Creek | | | CTV | FFG | Control | Experimental | | Doroneuria baumanni | 1 | р | 4 | 3 | | Hesperoperla sp. | 2 | р | | 11 | | Hesperoperla hoguei | 2 | р | _ | 3 | | Perlodidae | 2 | р | 1 | 1 | | Frisonia picticeps | 2 | р | 9 | 26 | | Pteronarcyidae " | 0 | om | | 4 | | Pteronarcella sp. | 0 | om | | 1 | | <u>Trichoptera</u> | | | | 1 | | Hydropsychidae | 4 | cf | | | | Arctopsychinae | | | 6 | 14 | | Arctopsyche sp. | 1 | р | | 5 | | Arctopsyche californica | 1 | p | 1 | 4 | | Parapsyche sp. | 0 | p | 9 | 6 | | Hydroptilidae | 4 | ph | | | | Nothotrichia shasta | 4 | ph | 1 | | | Lepidostomatidae | 1 | sh | | | | Lepidostoma sp. | 1 | sh | 4 | | | Philopotamidae | 3 | cf | | | | Dolophilodes sp. | 2 | cf | 8 | | | Rhyacophilidae | 0 | р | | | | Rhyacophila sp. | 0 | р | 5 | 5 | | Rhyacophila betteni gr | 0 | р | 4 | | | Rhyacophila brunnea gr | 0 | р | 24 | 10 | | Rhyacophila hyalinata gr | 0 | р | | 2 | | Rhyacophila vofixa gr. | 0 | р | 1 | | | Uenoidae | 0 | SC | 1 | | | Oligophlebodes sp. | 0 | cg | | 2 | | Subphylum Chelicerata | | | | | | Class Arachnoidea | | | | | | Acari | | | | | | Hygrobatidae | 5 | n | | | | Hygrobates sp. | 8 | p
p | 2 | | | Hydrovolziidae | | Р | _ | | | Lebertiidae | 5 | р | | | | Lebertia sp. | 8 | p | 2 | 2 | | Sperchontidae | 5 | p | 1 | 1 | | Sperchon sp. | 8 | p | 11 | 3 | | Sperchonopsis sp. | 8 | p | 6 | 8 | | Torrenticolidae | 5 | p | | | | Testudacarus sp. | 5 | р | 4 | 1 | | Torrenticola sp. | 5 | p | 12 | | | | | • | | | | Subphylum Crustacea | | | | | | Class Ostracoda | | | | 3 | | <u>Ostracoda</u> | 8 | С | | 3 | | Cyprididae | 8 | С | | | | PHYLUM MOLLUSCA | | | | | | Class Bivalvia | | | | | | <u>Pelecypoda</u> | 8 | cf | | | | Sphaeriidae | 8 | cf | 1 | | | PHYLUM PLATYHELMINTHES | | | | | | Class Turbellaria | | | 1 | 6 | | | | | | 45 | | Class Oligochaeta | 5 | cg | 20 | 15 | ## Pine Creek Summary Metrics, Fall 2012 | | Control | Experimental | |------------------------|---------|---------------------| | B-IBI | 58.6 | 58.6 | | Abundance | 2080 | 3077 | | Taxa Richness | 62 | 55 | | Dominant Taxon | 14.6 | 27.6 | | EPT Taxa | 31 | 32 | | EPT Index | 74.3 | 87.1 | | Sensitive EPT Index | 60.3 | 59.3 | | Ephemeroptera Taxa | 11 | 9 | | Plecoptera Taxa | 9 | 14 | | Trichoptera Taxa | 11 | 8 | | Dipteran Taxa | 20 | 13 | | Percent Dipteran | 16.0 | 6.4 | | Non-Insect Taxa | 10 | 8 | | Percent Non-Insect | 9.2 | 6.1 | | Percent Chironomidae | 7.5 | 3.9 | | Percent Hydropsychidae | 2.5 | 4.5 | | Percent Baetidae | 12.8 | 25.4 | | Shannon Diversity | 3.27 | 2.82 | | Tolerance Value | 2.7 | 2.9 | | Intolerant | 55.7 | 56.3 | | Tolerant | 3.4 | 2.5 | | Collector-gatherer | 26.0 | 35.1 | | Collector-filterers | 2.2 | 0.0 | | Scrapers | 19.8 | 8.0 | | Predators | 27.1 | 20.9 | | Shredders | 21.5 | 30.9 | | OTHER | 1.5 | 0.9 | | Piercer herbivore | 0.2 | 0.0 | | Macrophyte herbivore | 0.0 | 0.0 | | Omnivore | 1.4 | 0.9 | | Xylophage | 0.0 | 0.0 | ## **ATTACHMENT C** SoCal B-IBI Scores ### ECORP Pine Creek SWAMP Benthos 2012 Southern California B-IBI. EcoRegion = Southern CA Mountains *Data electronically subsampled to 550 count and certain taxa rolled-up for IBI calculations* (Metrics shown on this page are calculated using CA specific attributes.) | S.tream | Pine | Creek | Pine | Creek | | | |------------------------------|--------------|-------|--------------|--------|--|--| | Stie | Cor | ntrol | Experimental | | | | | nme | 13 | :30 | 10 | :05 | | | | Sample Date | 09-10 | -2012 | 09-11 | l-2012 | | | | Percent Subsampfed | 550 | cnt | 550 | cnt | | | | EcoAnalysts Sample ID | 6275 | 5.1-1 | 6275 | 5.1-2 | | | | | Value | Score | Value | Score | | | | Coleoptera Taxa | 0.0 | 0 | 0.0 | 0 | | | | EPTTaxa | 19.0 | 10 | 17.0 | 9 | | | | Predator T.axa | 17.0 | 10 | 13.0 | 10 | | | | % Collector 1.1d: vidt.1a ls | 28.8 | 0 | 35.0 | 0 | | | | % Intolerant individuals | <i>5</i> 9.1 | 10 | 59.8 | 10 | | | | % Non-Insect Taxa | 24.3 | 6 | 25.0 | 6 | | | | % Tolerant Taxa | 20.6 | 5 | 19.2 | 6 | | | | | | | | | | | | SoCalB-IB | 58 | 3.6 | 58.6 | | | | | Score | Rating | |----------|-----------| | 0 -19 | Very Poor | | 20-39 | Poor | | 40 - 59 | Fair | | 60 - 79 | Good | | 80 - 100 | Verv Good | ## **ATTACHMENT D** Field Data Sheets (carry over from transect forms if needed to altain. --larget count of 25; measure in %) 14. 40 15 10 16 ୫୦ 17 55 18 20 :19 45 20 ВO 21 10 5 25 23 75 24 60 | | Site Code: | ango ports
Prima kata | | iaracterizat | | | 2012 | | | generality galactic (1) y 1999 | e e e e e e e e e e e e e e e e e e e | | | |-------------------------------|---------------------|--------------------------|-----------------|--|--------------------------------|--------------------------|---|-------------------------|------------------------------|--|---------------------------------------|--|---| | | Andreas | SLOPE | and Be | aring Fo | км (tran | sect ba | sed = f | or Full | PHAB | only) | | AUTOLEV
CLINOME
HANDLEV | TER X | | | Starting | (rec | cord percen | MAIN S
t of inter-trans
optermental s | ect distance | in each seg
used) | ment | (rec | ord percei | SUPPLEMEN
nt of Inter-tran
ipplemental | sect distan | MENT :: | | | 70 | Transect | | a rod
ements | Slope (%) on
Elevation
Difference | Segment
Length
(m) | Bearing
(0°-359°) | Percent
of Total
Length
(%) | | a rod
ements | Slope of
Elevation
Difference
Cm % | Segmen
Length
(m) | Bearing
(0°-359°) | | | | i k | (eye) | 63 | | E Transfer | 68 | | | | | | | | | | | | 83 | '&:'.> | | 660 | | | [.,,',\'Q | - '2.C'i!, | (n)
(n)
(n)
(n)
(n) | 45 | | | | | | 1q | I ,q | | (o'/' | |
 | :. t3 | \ Sc | | 4-3 | | | >t: | | | 4t· | Ilio | | 7d | <u>.</u> | | 55 | .16% | | 45 | | | | | 3 , 4, 5, | 3.i. | I 'oL | | (oq') | | | -42 | 205 | | 44 | | | | | | ;" 150 | 113 | | 1 .{ | D C | | I G, | 147 | | 50 | | | | | | t/3 | 1 "20
\ ") | 1 | 12- | | 1 | : 1 | - \5, | | | | | . ': | | | ?, 1
7 | 1 | | 70
90
90 | | | q.5. | c:; g | | | | | :
-
-
 | | | ; | 1'31
<i>'1</i>
'8 | | B5
B3 | | | • I f 1 | V2.%
TOG | | do | | | | B | | 4.7 | 17\$ 1 | | 88 | <u> </u> | - | • | <u></u> | | 90 | | | 1639 | A additional | | (-45 | 99 | | 86 | | | ¦ | - d | | 90 | al slope | | * | calculation
area | | | →55→(= | | ter en en en en en | | 133 | and a decision of the second | High Gradi | and the same transfer than | | | | 7979
Total Arsx
1: 2977 | Par | ameter | April 18 Par | IAI HABITAT
Optiin | ial | Şı | lboptim | al 🗐 🗀 🕒 | | Varginal : | | Po | | | - O | | il Substr
over | . fav | areater than 70%
orable for epifaur
and fish cover (5
gradient stream | al colonization
C% for low- | 40-70% m
50% for I | ix of stable h
ow-gradient s
ed for full colo | treams); 🚟 | 30% in id | ix of stable habit
ow-gradient strea
frequently distur | ms); (*)
sed ar | Less than 20%
10% in low-grad
Jack of habita | dent streams),
t is obvious; | | , i | | core, | | bmerged logs, tir
cobble or other st
19 18 | | 15 14 | potential
13 | 12 11 | (allog traces transferences) | removed
8 7 | 6 5 | 4 3 | ble of lacking
2 1 0 | | | Sedimen | t Deposi | tion 💮 🤲 | tie of no enlarger
point bars and le
e bottom affected
position (<20% i | ss than 5% of
by sediment | formation
sand, or fi | new increase
, mostly fron
le sediment
n affected (2 | gravel,
5-30% of | sand, or fin
50% of the | ieposition of new
e sediment on ba
e bottom affected | grave
ire: 30-
i (50-a | increased bar on one than 50% | of fine material, and
development; and
for the bottom
antly (>80% in | | Total | | core: | 20 | Estream | | 15 1/4 | gradient strea
13 | ims) 12 11 | 80% in i | ow gradient stream. | 6 5 | tow-gradien
4 3 | (sireams)
2 1 0 | | = 19.85% | Channe | l Alterati | | annelization or di
r minimaj, stream
patteri | with normal | (e.g., bridg | annel zation
e abulmants)
annelization
s present but | ; evidence
(> 20yrs) | embankme
present on | ation may be extents or shoring str
both banks, 40.1 | uctures re
o 80% | ment, Over 80
ich channelize | vith gablan or
% of the stream
d and disrupted
greatly altered : | | ·
· | in a sur Si | core: | 20 | | 17 16 | 15 14 | lization not p | resent | 10 9 | am reach disrupt 8 7 | eq. | or tewore | d entirely for the 2 1 0 | | | | | | | | Transect Su | bstrates | e de la companya de
La companya de la co | | | |----------------|--------------------------|------------------------------|----------------------|------------------------------|------------------------------|-------------------------------------|-----------------------------------|---|-------------------
--| | Position | Dist
frøm #
LB (m) | Depth
(cm) | mmv
size
class | %
Cobble
Embed, | СРОМ | Microalgae
Thickness
Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thickness
Godes
0 = No microalgae present | | Len
Bank | 0 | 1 | 5B | — | P ⁄ 🖹 | 1 | P 🖱 D | P 🙆 D | P 🔕 D | 1 = Present but not visible. | | Left
Center | 0,15 | 0 | I | _ | p <i>If</i>) | 2. | | p © D | P @ D | 2 = Present and visible but
<pre> <fmm; (ngers="" a)<="" on="" pre="" produces="" rubbing="" surface=""></fmm;></pre> | | Genter | 1.5 | • | c.,c, | | p ® | | p (1)I D | р <i>а</i> , _D | p <i>ii!!</i> , D | brownish tint on them,
scraping leaves visible | | Right Center | 2.25 | 1 q | ;,<. 6 | | p Ifil, | l | p D | Pd, D | p .& D | | | Right
Bank | 3. | 2 | 5.B | | Р 🔊 | - | P A D | P & D | P Ø D | 5 ≥ >20mm;
UD ≠ Cannot deta mine if | | | Note: Sub
class cate | stratė size:
gories liste | s can be
d on the | recorded eill
supplementa | ier as direc
I page (dire | t measures of thi
of measurement | e median axis of
is preferred) | each particle of | one of the size | microalgae present, substrate too small or covered with sit (fornerly 2-zode) D = Dry_not assessed | | RIPARIAN VEGETATION
(lacing downstream) | 0 = Ab
1 ≃ Sp.
2 = Mo | arse (• | <10%) | | :4 = ' | Heav
Very I | y (40
Jeav | -759
y (>7 | o).
(5%) | | INSTREAM HABITAT COMPLEXITY | 0 ∈ Abr
1 = Sp
2 = Mo
3 = He
4 = Ver | arse
derate
avy | (10-4)
(40 ₂ 7 | 0%)
0%)
5%) | | DENSIOMET
READINGS (0
Countravered | 1-17) | |--|-----------------------------|----------|-------|-----|--------|----------------|---------------|---------------|-------------|---|---|--|-----------------------|------------------------------|-------------------|---|--|-------| | Vegetation Class | LE | ft Ba | ink | | | Rig | ht E | lani | C . | | Filamentous Algae | (0) 1 | 2 | 3 | 4 | | Center | 15 | | uppe | r Canop | y (>5 | m hiç | ih) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | الما | 2 | 3 | 4 | İ | Leπ | | | Trees and saplings >5 m high | 0 1 | ② | 3 | 4 | 0 | 1 | (2) | 3 | 4 | | Boulders | | | | _4 | • | Center ;
Upstream | 13 | | Lower 6 | anopy (| 0.5 m | -5 m | nig | h) | | | | | | Woody Debris >0.3 m | | | | 4 | | Center | 1 | | All vegetation 0.5 m to 5 m | 0 1 | (2) | 3 | 4 | 0 | (1) | 2 | 3, | 4 | Ī | Woody Debris < D.3 m | o (j) | 2 | 3 | 4 | | Right _ | _ [] | | Groun | l
d Caver | (<0.5 | m hi | gh | | | 12.00 | | | | Undercut Banks | 0 | 2 | 3 | 4 | | Center
Downstream | 1+1 | | Woody shrubs & saprings
<0.5 m | o (1 |) 2 | 3 . | 4 | 0 | | 2 | 3 | 4 | | Overhang. Vegetation | $\overline{\circ} G$ |) 2 | 3 | 4 | | Optional | | | Herbs/ grasses | G) | 2 | 3 4 | 4 | 0 | © | 2 | 3 | 4 | | Live Tree Roots | 0 0) | 2 | 3 | 4 | | Left Bank | | | Barren, bare soil/duff | 0 | 2 | 3 : | 4 | , | | | | 4 | | Artificial Structures | 0 | 2 | 3 | 4 | | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = ≥ | lOm≠≤ | ∙
Ban
50m f | i & 10 ₀
rom Cha
res or No | | | | | | |---|-------------------------|-------|-------------------|---|---------|---|------|-------|-----| | | | Left | Bank | Ċ | Channel | | Righ | t Ban | k 🖃 | | -Walls/ Rip-rap/ Danis | Р | С | В | 0 | Y 🔯 | 9 | В | С | Р | | Baildings | Р | С | В | 6) | Y 🕏 | d | В | C | Р | | Pavement/ Cleared Lot. | (P) | С | В | | | | В | c | p | | Road/Railirdad | p | c | В | | | | В | c | p | | Pipes (inlet/ Outlet) | p | c | В | | | | В | С | p | | Landfill/Trash | p | c | В | | | | В | c | p | | Park/Lawn | <u>p</u> | _c | В | | - | | В | c | p | | Row Grop | р | c | В | | _ | | В | c | p | | Pasture/Range | <u>p</u> | С | В | | | | В | c | p | | Logging Operations | Р | С | В | 6 | | d | В | С | p | | Mining Activity | 0 | С | В | 0 | Y 🔞 | d | В | c | p | | Vegetation Management | Р | С | В | 0 | | o | В | c | p | | Bridges/ Abutments | Р | С | В | 0 | Y 😥 | O | В | 0 | р | | Orchards/Vineyards | Р | С | В | 0 | | V | В | c | р | | -B | | | |---|--------|--| *************************************** | 4 Mary | TAKE Hfff'OORM>ff (check box if taken & record hoto code Downstream (optiona!) | |---| | Upstream (required) | | | Inter-7 | Crans | ect: AB | } | | Wetted Width (m |): Z/8 | | | |--|----------------------------------|------------------------|------------------------------|-------------------------------|--|-------------------------------------|---|-----------------|--| | | | | | ln | rec-Fransect | Substrates | | | | | Position - Disi
Rosition - from
LB (in | Depth /cm1 | size
class | %
Cobble
Embed | | Microalgae
Ehicleness
Gode | Macroalgae
—Attached | Macroalgae
Unaltached | Macrophytes | Microalgae Thickness Codes DENomicroalgae present Feelstrough, not slimy | | Bank O | 23 | CB | 60 | Р 🕭 | | P 🙆 D | P Ø D | ₽ ⊘ D | 1 = Present but not visible
Feels slimy.
2 = Present and visible but | | Center 0.7 | 0 | s.e. | • | P @ | D | P (;))D | p €i,5D | P ® D | : Imm Rubbing fingers
on sunface produces a | | Center . 1.4 | 15 | ei c., | | p © | .Z) | p fil D | P®D | PaiD | brownish lint on them
scraping leaves visible
trail | | Right 2,2 | / 15 | @F | | A | 0 | P@D | p ;)D</td <td>P 🚳 D</td> <td>3 = 1-5mm;
-4, = 5-20mm;
-5 = >20mm;</td> | P 🚳 D | 3 = 1-5mm;
-4, = 5-20mm;
-5 = >20mm; | | Right Z.8 | 8 | GF | | PA | 0 | P 🚳 D | P (A) D | P 🙆 D | UD = Cannot determine if
microalgae present;
substrate too small or | | Note: S
class o | iubstrate size
ategories list | is can be
ed on the | recorded eith
supplements | ier as direc
Il page (dire | f measures of the comment com | ne median axis of
its preferred) | each particle or | one of the size | covered with silt = (formerly Z code) D = Dry, not assessed | | SWAMP Stream Habitat Chara | cterization Form | F | ULL VERSION Rev | ision Date: January gth 2012 | |-------------------------------|----------------------|------|----------------------|---| | Site Code: Pine Creek Control | Site Name:. p_1 | en | eek | Date: () (4) / 1 • / 2012 | | Wetted Width (m): | Bankfull V,ldth (m): | 11-1 | Bankfull Height (m): | Transact B | | -71-01-05-6- | | | | | | Transect Su | bstrates | Transit | | | |------------------|------------------------|---------------|----------------------|----------------------|-------|--------------------------------------|-----------------------------------|---------------------------|-----------------|---| | Position | Dist
from
LB (m) | Depth
(cm) | mm/
size
class |
%
Cobble
Embed | C'POM | Microalgae
Thickness 2
Code | Macroalgae
Attached | Macroalgae
-Unattached | Macrophytes | Microalgae Thickness Codes 9 = No microalgae present, Peels rough, not slimy; | | u afi
∉ Bank, | Ü | i | ls!c, | | | | | P (}A D | PAD | Feels slimy | | . Left
Center | ,7 | 16 | Qit. | | p ti) | $\mid o \mid$ | | р D | P t/fv D | 2 = Present and Visible but
<1mm, Rubbing fingers
on surface produces a | | Center | 1.3 | 16 | (',!?, | О | p ,0. | 0 | P √2iJ D | P '!I) D | p (!)) D | brownish tint on them;
scraping leaves visible
trail | | Right
Center | 2.0 | 16 | 'S A | | p fl) | D | р IJ D | р <i>G</i> D | p (#/ D | 3 = 1-5mm;
4 = 5-20mm; | | Right Bank | 2.6 | 4 | SB. | , | P Ø | 10 | P 49 D | P Ø D | POD | 5 = ≥20mm;
UD = Cannot determine if
microalgae present. | | | | | | | | f measures of the
ect measurement | e median axls of
ts preferred) | each particle or | one of the size | substrate too small or covered with silt (formerly Z code). D.= Diy- not assessed. | | The same of sa | | | | | | | | | | | |--|----------|------|------------------------------------|------|------|---------------|-----|-----|--------------|------------| | Plean an Vesenation | @ | Spa | ent (C
rs @ (=
lerate | 197 | a)(| 3 = 1
4⊕ V | | | | | | Vegetation Class | 0 | Fé | ft Ba | ınk | 1 | (8) | Rig | h€B | añl | - 4 | | ' Barren, bare soil/ dulf
Upper | O
Can | ору | (≥5 | n h | igh) | 0 | | 2 | 3 | | | Trees and saplings >5 m high | 0 | 1 | 2 | 3 | 4 | 0 | 0 | 2 | 3 | 4 | | Lower C | anop | y (0 | .5 m | ·5 n | hig | a) | | | (0.00 0.000) | | | All vegetation 0.5 m to 5 m | 0 | 1 | 2 | 3 | 4 | 0 | @ | 2 | 3 | 4 | | The Ground | t Cov | er (| <0. | | | ' | | | | | | | | | | | • | | (C) | | | | | INSTREAM Aquality Mayor Mayor Emergen Velyamon Boulders | 1
2
3 | = Abse
= Spar
= Mod
= Heav
= Very | se
eraje
N | (*1
(10.4
(46 ² 7 | 0%)"
0%) | |---|-------------|---|------------------|------------------------------------|-------------| | PVleorderRebrisAt@alem | O | 0 | 2 | 3 | 44 | | Woody Debris <0.3 m | 0 | 0 | 2 | 3 | 4 | | Undercut Banks | 0 | | 2 | 3 | 4 | | Overhang, Vegetation | 0 | (!) | 2 | 3 | 4 | | live Tree Roots | 0 | G) | 2 | 3 | 4 | | Artificial Structures | 0 | | | 3 | 4 | | | DENSIÓME
READINGS (
count coverse | 0-17) | |---|---|--| | | Center | 0 | | | Center
Upstream | D | | | Center
Right | _ | | | Center
Downstream | <u>Z</u> | | Ī | Optional | | | | Left Bank | ······································ | | | Bight Bank | | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | 0 = Not Present, 8 = On Bank, C = Between Bank & 10'm from Channel, P >>10m <50m from Channel; Channel (record Yas or No.) | | | | | | | | | | | | |---|---|--|------|------------|------------|-----|-------------|-----|----------|-----|-----|--|--| | | | | Left | Bank | | Cha | nnel - | | Right | Ban | k 💮 | | | | | Walls/ Rip-rep/ Dams | Р | С | M | 6 2 | Υ | Ø | (6) | X | С | Р | | | | | Buildings | P | С | В | 0 | Y | Ø | 19 | В | С | Р | | | | | Pavement/Cleared Lot | (P) | С | В | 0 | | | (0) | В | С | р | | | | Ø | Road/Raliroad | P | С | В | 6) | Υ | (8)° | 0) | В | c | р | | | | | Pipes (Inlet/ Outlet) | p | c | В | | | | | В | c | р | | | | | Landfill Trash | р | c | В | | | | | В | c | р | | | | | Park/ Lawn | р | c | В | | | | | В | c | р | | | | | Row Crop | p | c | В | | | _ | | В | c | _ р | | | | | Pasture/Range | p | c | В | | | | | В | c | р | | | | | Logging Operations | р | c | В | | | _ | | В | С | р | | | | | Mining Activity | p | c | В | | | | | В | c | р | | | | 1 | Vegetallon Management | Р | С | В | 0) | | | (0) | В | c | р | | | | 叫 | Bridges/Abulments | Р | С | (B) | Q | Υ | Ø | . 0 | <u> </u> | С | р | | | | | Orchards/ Vineyards | Р | С | В | 0 | | Parities of | 1 | В | c | р | | | | SWAMP | Stream Habitat | Charar;terization | Form | FULL VERSION | - RevIsionDate: Janua | 9',2012 | |-------|----------------|-------------------|------|--------------------------|--|----------------| | | | | | 经的数据 电路径 医乳头虫 医皮肤病 医多克氏管 | The forest figure is the more than the first of the contract o | 经帐款帐 法允许的 使说完的 | | | \mathbf{I} | nter-T | Frans | ect: BC | | 2- | Wetted Width (n | n): 4,4 | | | |-----------------|------------------------|------------------|----------------------|-----------------|----------------|--------------------------------------|---------------------------|-----------------------------|----------------|---| | | | | | | li lii | ter-Transec | Substrates | | | | | | Dist
from
HB (m) | ≓Depth:
⊯(cm) | mm/
Sizo
elass | €obble
Embed | GPOM. | -Microalgae
- Unickness
- Code | ≓Macroalgae
— Attached | Macroalgae =
EUnatrached | Macrophytes | Microalgae Thickness Codes 0 No microalgae present Feels rough, not slimy | | v Left.
Bank | O | 30 | SB | \$ | (P/ 0) | 0 | P 🚳 D | P 🐠 D | P 🚳 D | 4 = Present but not visible Feels allmy 2 = Present and visible but | | Lens
Ecenter | 1.1 | 6 | | 2.[) | p (!;) | сJ | P A)D | P (A)D | P 🙋 D | Zimm, Rubbing fingers
on surface produces a | | enter. | 2.2 | 5 | 1!:1 F | ·-& | P @ | C) | P @ D | p liS) D | P 🙆 D | brownish tint on them
scraping leaves visible
trail | | Right
Genter | 3,3 | 11 | 6f' | | 1 | 0 | p I<'- D | P 6 D | P Ø D | 3 = 1-5mm,
4
= 5-20mm | | Right Bank | 4.4 | 8 | 6F | | P (A) | 0 | P (5) D | P 20 D | P (b) D | UD = Cannot determine if =
criticroalgae present =
substrate too small or | | | | | | | | | nts preferred) | feach particle or | une or de size | covered with sitt (formerly Z.code) D = Dry, not assessed | | 一个的专家的基本是基本的基础的特别。 | 60 St. 10 St. | |---|---------------| | FLOW HABITA
(% between transacts total | | | Channel Type | ·% | | Cascade/-Falls | 0 | | Rapid | O | | Rifle | 60 | | 1 Run Joseph | O | | Glide | 40 | | 基型 I Pool | 0 | | Dry | ر | | Site Code: [] ,µ (!(- C, | , Site Name: >,,,,, | Date: 0 9 / 10 / 2012 | |--------------------------|---|------------------------------| | Wetted Width (m): | Bankfull Width (m): '3, 0 Bankfull Heigb.J (m): | Transect C | | | | | | | | | | | 14. | | |-----------------|-----------|-------------|------------|--------------|---------------------------------|----------------------------|---------------------------------------|------------------|-----------------|---| | Lett
Bank | o | | GF | | Р 🔗 | 0 | P 🙆 D | P 🙆 D | р D | 1 ≤ Present out not visible,
Feels slimy; | | Left
Center | 0.7 | 12 | XB | | p & | | P 🕭 D | P (3) D | p <i>t.!i</i> D | 2 = Present and Visible but *Imm; Rubbing fingers on surface produces a | | Center : | 1.4 | 1 | X6 | | p JD | 1) | P @. D | P · D | p iA. D | brownish tint on them, scraping leaves visible | | Right
Center | 2.1 | 87 | ce | 10 | Р 🙆 | ١ | P (!!) D | р <i>W</i> . D | P ell. D | frell.
3 = 1-5mm;
4 = 5-20mm; | | Right
Bank | 2.8 | 26 | СВ | 30 | P 6 | # | P Ø D | P Q D | P 🙆 D | 5 = >20mm;
UD = Cannot determine if | | | Note: Sub | strate size | s can be i | recorded eit | her as direct
al page (direc | measures of
t measureme | the median axis of
ents proferred) | each particle or | one of the size | microalgae present,
substrate too small or
covered with slit | | | | | | | | | | | | (formerly Z code). D = Dry, not assessed | | FerriorVetamics | | | | | | Bush (m. 2006) (m. 1000) (| | |--------------------------------|-----------------|---------|---------------|-----|--------------|--|--------------| | | | 44 | | | | Filmsunkau Alpon 1 1 1 1 1 Suntar | l g | | Soft Uppe | | | | | | Aquatic Macrophytes/ | [©] | | Trees and saplings >5 m high | Ø 1 2 | 3 4 | 0 (1) | 2 3 | 4 | Emergent Ve-getation 2 3 4 1 Center Boulders 0 1 2 4 Upstream | 4 | | Lower C | апору (0.5 m-5 | m high |). 12 111 111 | | King and the | Woody Debris >0.3 m ((15 1 2 3 4 Center | | | All vegetation 0.5 m to 5 m | 0 1 🔞 | (3) 4 | o (1) | 2 3 | 4 | Woody Debris <0.3 m 0 6) 2 3 4 Right | 1 | | Groun | d Cover (<0.5 i | n high) | | | | Undercut Banks 0 2 3 4 Center Downstre am | 0 | | Woody shrubs & saplings <0.5 m | 0 (j) 2 | 3 | | | | Overhang. Vegetation_ 0 2 3 4 | | | Herbs/ grasses | 0 $tJ>2$ | 3 | | | | live Tree Roots 0 {!) 2 3 4 | | | Barren, bare soil/ duff | 0) 2 | | | | | Artificial Structures 0 2 3 4 Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C ≥ B
P = 5 | 6 = Not Present. B : Op Bank. C = Between Bank & for from Channel. P =>10 m+-sion from Channel. Channel (record Yes of No). | | | | | | | | | | | |---|-------------------------|---|------|----------------|------|------|------|-------|-----|-----|--|--| | | | Left | Bank | | Char | inel | | Right | Ban | k = | | | | Walls/ Rip-rap/ Dams | Р | С | В | Q ₁ | Υ | N | di. | В | С | Р | | | | Buildings ' | <u>p</u> | c | В | | _ | 1 ,. |
 | В | С | Р | | | | Pavement/ Cleared Lot | p | c | В | | | _ | | В | С | p | | | | Road/Rallroad | p | С | В | | | | | В | c | p | | | | Pipes (Inlet/Outlet) | p | С | В | | | | | В | С | p | | | | Landrill/ frash | р | С | В | | | | | | С | р | | | | Park/Lawn | <u>p</u> | С | В | | | _ | | | С | p | | | | Row Grop | <u>p</u> | С | В | | _ | _ | | | c | p | | | | Pasture/ Range | <u>p</u> | С | В | | _ | _ | | | c | p | | | | Legging Operations | <u>p</u> | С | В | | _ | _ | | | c | p | | | | Mining Activity | p | c | В | | _ | | | | c | p | | | | Vegetation Management | <u>p</u> | c | В | | _ | _ | | В | | p | | | | -Bridges/ Abulments | p | c | В | | _ | _ | | В | c | p | | | | Örchards/ Vineyards | р | c | В | | | | | В | c | p | | | | · · · · · · · · · · · · · · · · · · · | | | | |---|------------|--------------------------|------| | ************************************** | 4 | | | | | | | | | | | | | | | ************************************ | ********** | | | | 22-44-44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | ***** | 4 | | | | | 4 | | | | | | | | | | 4 | | | | | 4 | | | | | | | | | <u> </u> | | | | | | | | | | <u> </u> | an de mar niche | | | | | | | | | erekel | an de mar niche | ar D | | | erekel | va.drangaidhg | | | | erekel | va.drangaidhg | | | Latera. | Hendad | e de manide | ar D | | | erekal | w. Armenishe | | | | | | | | | nental | vadracaide
vadracaide | | | | | | | | | nental | vadracaide
vadracaide | | | | Ι | nter-T | rans | ect: CD | | | Wetted Width (n | 1: 4.6 | ing
Signal
Signal Signal Signal Signal | | |--------------|--------------------------|---------------|-----------------------|-------------------------|---------------|--|---------------------------|--
--|--| | | | | | | - In | ter=l*r/msect | Substrates | | | | | Position= | Dist =
from
LB (m) | Depth
(cm) | nim/
size
class | %
Cobble=
= Bmb-d | CPOME | =Mi c roalgae.
=Fhickness±
- Code | Macroalgae | Macroalgae
Unatfached | E VIACIOUEVICE | Microalgae Thickness = Codes = 0 = No microalgae present = | | Тоб
ванк | Ś | | GC | | P (5) | -مـ | PA D | P 🗥 D | P 🔕 D | Feels fough, not slimy 1 = Present but not visible. | | Loft S | 1.1 | 0 |)(e, | _ | р I). | > | | <i>P {fj</i> D | P @ D | tmm, Rubbing fingers
on surface produces a | | Conten | 2.3 | 32 | \$ | | p ()J | 0 | p ,il D | p . €) D | P \$,. D | brownish lint on them,
scraping leaves visible
trail. | | Right Center | 3,4 | 0 | \4 | | p @ | b | р li) D
 | | P i D | 3 = 1-5mm;
4 = 5-20mm;
5 = >20mm; 5 = 5 = 20mm; | | Right Bank | 4,6 | 3 | C/B | 80 | P (b) | O
t measures of th | P Ø D
ie median axis o | P (A) D | P 🕡 D | ■UD = Cannot determine if ()
=== microalgae present;
== substrate too small or | | | | | | | | ect measuremen | | A STATE OF THE STA | | covered with sijt
(formerly Z code),
D = Dry, not assessed | | | | 17 (42 (42) | |---|---------------------|--| | | FLOW HABITA | | | Į | Earner Harrick Hord | production and the state of | | | Channel Type :: | % | | | Cascade/ Falls # # | 5 | | | Rapid | 25 | | | Riffle | 45 | | | 2 17 Run | Ø | | | Glide | 15 | | | Pool | 10 | | | Dry 12 | Ò | | | | | Site Name: Pine Creek Pankfull Width (m): . , | Bankfull Height (m): 0.65 Site Code: Pine Creek Control Date: 0 9 1 10 1 2012 Wetted Width (m): 3.4 Transect D | | TV:-t | | | | | Transect Su | | | | | | | Missagua Tuldasa | |-----------------|-------------|---------------|--|--|--------------|---------------------------------|---------------|-----------------|--------|--------------------|------------|--------|--| | Position : | from LB (m) | Depth
(cm) | size | Cobble
Embed | CPOM | Microalgae
Thickness
Code | :Macr
Atte | oalgae
iched | | roalgae
itached | Macro | phytes | Microalgae Thickness Codes 0 ≠ No microalgae present, Feels rough, not slight | | Lett
Bänk | 0 | 2 | хв | _ | Р / А | О | р | D | р | D | р | D: | 1.≒ Present but not visible.
Feels silmy, | | Left
Center | , 8 | 15 | 86 | | | 0 | p | D | p | A D | рΑ | D, | 2 = Present and visible but
\$1mm; Rubbing Ingers
on surface produces a | | Center | 1.7 | 24 | c., | - | | 0 | р | D | p | D | р | D _ | strownish tint on them,
Castraping leaves visible
trail. | | Right
Center | 2.5 | 52. | @v · | | | 0 | | | ļ | 1./ | р | D | 3 = 1-5mm;
4 = 5-20mm; | | Right
Bank | 3.4 | 5 | CB | 10 | P A | 0 | Р | D | P | V D | P | Б | 5 ≅>20mm;
UD = Cannot determine if
microalgae present | | | | | | | | measures of the | | | each p | article or | one of the | size | substrate too small or covered with sill | | | | | of age and to the second of th | American Committee (Springer Springer S | | | | | | | | | (formerly Z code),
D = Dry, not assessed | | RIPARIAN VEGETATION (facing downstream) | 11 = | Spar | se (* | =10% | a) | 3≒)
4≐V
}== | ery l | i (40-
leavy | 75%
(>7 |)
5%) | | INSTREAM HABITAT COMPLEXITY | . 2 n
3 ≤ | Spa
Mod
Hea | se
orate
VV | (0%
(<1)
(10-4)
(40,7)
(<7 | 0%)
0%)
5%) | |---|-------|--------|-------|------|-------|-------------------|-------|-----------------|------------|----------|----|---|--------------|-------------------|-------------------
--|-------------------| | Vegetation Class | | Lef | t Ba | ink | | | Rig | ht B | ank | | e: | Filamentous Algae | 0 | 1 | 1 | 3 | 4 | | i Uppe | r Can | ору | (>5 | m h | igh) | | , | | | | | Aquatic Macrophytes/
Emergent Vegetation | | | | 3 | 4 | | Trees and saplings >5 m high | 0 | O | 2 | 3 | 4 | 0 | 1 | 2 | 3 | .4 | | Boulders | | | 2 | CI) | 4 | | Lower | anop | ıy (0. | 5 m | -5 n | i hig | h) | | | | | | Woody Debris >0.3 m | | | 2 | 3 | 4 | | All vegetation 0.5 m to 5 m | σ | 1 | 2 | 9 | 4 | 0 | 1 | ② | 3 | 4 | | Woody Debris <0.3 m | | | a, | 3 | 4 | | Groun | d Co | ver (| <0.5 | m l | iigh) | | | | | | | Undercut Banks | 0 | CI) | 2 | 3 | 4 | | Woody shrubs & saplings
<0.5 m | 0 | 11/ | Ø | 3 | 4 | 0 | 0 | 2 | 3 | 4 | | Overhang. Vegetation | 0 | 1 | (3) | 3 | 4 | | Herbs/ grasses | 0 | © | 2 | 3 | 4 | (9 | | 2 | 3 | 4 | | Live Tree Roots | 0 | ID | 2 | 3 | 4 | | Barren, bare soil/ duff | 0 | | | 3 | 4 | 0 | | 2 | | 4 | | Artificial Structures | 0 · | 1 | 2 | 3 | 4 | | (0%
(\$10
10 40
40 76
7 (\$70 | %) =
(4) =
(5) = | DENSIOME
READINGS (
count covered | 0-17) | |---|------------------------|---|----------------| | 3 | 4 | Center | 11- | | 3 | 4 | Center | | | CI) | 4 | Upstream | <i>I</i> | | 3 | 4 | Center
Right | 1-:/- | | 3 | 4 | Genter | 14. | | 3 | 4 | Downstrea | . <i>It;,.</i> | | 3 | 4 | Optional | | | 3 | 4 | Left Bank | | | 3 | 4 | Bight Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = 3 | 0 = Not Presen; B = Ch Bank; C = Between Bank & 10m from Channel; P = > 10m + 50m from Channel; Channel (record Yes or No) Left Bank Channel Right Bank | | | | | | | | | | |---|-------------------------|--|---|------------|---|------------|----|---|---|---|--| | -Wajis/Rip-rap/ Dams -+ | Р | С | В | 6) | Y | Δħ | 18 | В | С | Р | | | Buildings | р | | B | 6 | Y | \ J | 10 | B | Ċ | P | | | Pavement/ Cleared Lot | р | С | В | | | | | В | c | р | | | Road/ Railroad | р | С | В | | | | | В | c | р | | | Pipes (Infel/ Outlet) | р | c | В | | | | | В | c | р | | | Landfill/Trash | р | c | В | | | İ | | В | c | р | | | Park/Lewn | <u>p</u> | c | В | | | | | В | c | р | | | Row Crop | <u>р</u> | c | В | | _ | | | В | c | р | | | Pasture/ Range | <u>p</u> | c | | _ | | | | В | c | р | | | Logging Operations | <u>р</u> | c | В | | - | | | В | c | р | | | Mining Activity | <u>p</u> | c | В | | | | | В | c | р | | | Vegetation Management | р | c | В | Ш | | | | В | c | р | | | Bridges/ Abulments | р | c | В | Ц. | | | | В | c | р | | | Orchards/Vineyards | <u>p</u> | c | В | Ш | | | | В | c | р | | | B-1 | | | | |--|------------------|--------------------------|--| | | | | | | | | | | | E | B | | | | | | | | | | B | | | | | | | | | | | | | | | E | 41.1.11.11.11.11.11.11.11.11.11.11.11.11 | | | | | | | | | | I III III III III III III III III III | | | | | | | | | | | | | | | | 22-2 88-42-11-42 | W-001-2-100140-4-200- | | | | | W 881-1-18811812-288- | | | | | M. 801-1-110-11012-2001 | | | | | W 14112-1114-111412-1141 | | | | | | | | | | | | | | enadod I | | | | | endel | | | | | enadod I | | | | | | Inter-T | Trans | ect: DE | <u>C</u> | | Vetted Width (n | n): 4.6 | Agi sandheime san | Bir Biring | |-----------------|-------------------------------|-------------|----------------------------------|-------------------------------|----------|------------------------------------|--|--------------------------|-------------------|---| | | | | | | ln | ter-Fransect | Substrates | | | | | osition . | = Dist
= froin
- LB (m) | | = innu/=
= stzic=
= class= | - ⁄o
≥Cobble=
- Linbed= | CPOM≡ | Microalgae
Thickness
Code | A COMPANY OF THE PARTY P | Macroalgae
Unartached | ≡Maerophytes | Microalgae Thickne
Codes
0 No microalgae presc | | Leit
Bank z | ် () | 3 | GF | | P 💋 | 0 | P 👸 D | P & D | P & D | Fééls rough not slimy 1 = Present but riot visib Féels slimy 2 = Present and visible b | | Lenter. | 1.1 | 18 | iВ | | • p t»·. | o | p di! D | p /) D | р <i>б)</i> D | Strom: Rubbing finger
on surface produces: | | entei | 2.3 | I z, | ˈiΒ | | p 6,l | 0 | Р Gi D | ::P ·. <i>ti/</i> . D | p 'ill D | Drownish tipt on them
scraping leaves visible
trail | | Right
Senter | 3.4 | S'! | s.e. | , | p ta | <u> </u> | p D | р D | ₽ % D | 3 = 1-5mm, / 1/6
4 = 5-20mm,
5 = ≥20mm | | Right
Bank | 4.6 | | CB | 25 | P (6) | 0 | P 🝪 D | P 😝 D | P (3) D | UD = Cannot determine
milicroalgae present | | | | | | | | t measures of th
ect measuremen | | teach particle or | one of the size | substrate foo small of
covered with silt
(formerly Z code) | | | | : | |--|-----|-----| | FLOW HABITA ///petween-transects-total | | - : | | Channel Type | % | 4 | | Cascade/, Falls | 60 | | | Rapid * * | 2.0 | | | R/file Service | 0 | | | Glide | 70 | | | Pool | 0 | | | Dry Dry | ٥ | | | | | | | | | Transect Su | bstrat | es 💮 | | | | | | |-----------------|------------------------|-----------------------------|-----------------------|------------------------------|-----------------------------|---------------------------------|-------------------|-------------------|--------------|------------------|-----------|--------|---| | Position | Dist
from
LB (m) | Depth
(cm) | nun/
size
class | %
Cobble
Embed, | | Microalgae
Thickness
Code | Macr
Atta | oalgae
sched | Macı
Unat | oalgae
tached | Macro | phytes | Microalgae Thickness Godes 0 = No microalgae present | | Left:
Bank | O | 5 | S I!J | | A | O | ۲ | עי | Р | D | · P | D | Feels rough, not allmy Teels slimy Feels slimy | | Left
Center | 1.2 | 15 | \$11> | 1 | p \$ | ,() | p , | , | р | D | р | D | 2 = Present and visible but
11mm, Rubbing fingers
on surface produces a | | Center | 2.4 | 0 | &t c, | _ | p <i>J0</i> | 6 | р | D | р | D | р | D _ | brownish tint on them.
Scraping leaves visible | | Right
Center | 3.6 | 0 | & '> | | p <u>!</u> !> | t> | р | D | р | D | p | D, | trail.
3 = 1-5mm; r
4 = 5-20mm; | | Right
Bank | 48 | 3. | SB | أسبع | P 60 | 6 | Р | D | P | D | Р | D | 5 = >20mm;
UD ≃ Gannol dete mine if
microalgae present. | | | Note: Sub- | strate size
gories fiste | dan be | recorded eith
supplementa | er as direc
I page (dire | measures of the | media
s prefer | n axis of
red) | each þa | irticle or | one of th | ė size | substrate too small or covered with sit | | | | | | | | | | | | | | | (formerly Z code),
D = Dry, not assessed | | RIPARIAN VEGETATION
(facing downstream) | 0 = Ab
1 = Sp
2 = Mo | arse (| <10% | 6) | 4 = V | ery H | eavy | į (>/t | | | INSTREAM HABITAT COMPLEXITY | 1 = 5
2 = M | jarse
oderate
iavv | (0%)
(4%)
(10:4
(40:7
(40:7 | 0%)***
0%)
5%) | | DENSIONE
READINGS (Count count | j-17) | |--|----------------------------|-------------|------|--------|-------|-------|------|--------------|---------------|---|-------------------------------|----------------|--------------------------|---|----------------------|---
---|---------------| | Vegetation Class | Le | eft Ba | ink | | | Rigi | ηt B | ank | | | Filamentous Algae | 0 (|) 2 | 3 | 4 | i | Center | Ι., | | Uppe | г Сапор | y (>5 | m h | igh) | | | | | | ſ | Aquatic Macrophytes/ | | | | | | | 1b | | Trees and saplings >5 m high | 0 1 | ි ර |) з | 4 | ത | 1 | 2 | 3 | 4 | ŀ | Emergent Vegetation Boulders | | | | | | Center
Upstream | ILf | | Lower C | апору (| 0.5 m | -5 m | i higi | າ) | | | | Church Church | ŀ | Woody Debris >0.3 m | | | | | ŀ | Center | $\frac{1}{2}$ | | All vegetation 0.5 m to 5 m > | 0 @ |) 2 | 3 | 4 | 0 | (D | | | | | Woody Debris <0.3 m | | 2 | 3 | 4 | | Right Center | 0 | | | <u></u> | | | | | | | 477 9 | | Ī | Undercut Banks | 0_ | 2 | 3_ | 4 | | Downstream | 15 | | Woody shrubs & saplings
<0.5 m | ₀ G | i) 2 | 3 | 4 | 0 | 6) | | | | | Overhang. Vegetation | 0 1 | CD | 3 | 4 | l | | | | Herbs/ grasses | o (j |) 2 | 3 | 4 | (§) | | | | | | Live Tree Roots | o (j | 2 | 3 | 4 | | Left Bank | | | Barren, bare soil/duff | 0 | 2 | | 4 | 0 | | | | | | Artificial Structures | 0 1 | 2 | 3 | 4 | | Right Bank | <u> </u> | | HUMAN INFLUENCE circle only the closest to wetted channely. | B ≤ 0
C = B
P = > | iom+< | r Bank
50ar fre | & 10m
om Cha
es of No | | | | | | |---|-------------------------|----------|--------------------|-----------------------------|--|----|----------|------|--------------| | | | Left | Bank | | Channel | | Right | Banl | k : : | | Walls/ Rip-rap/ Dams | Р | С | В | ρ | Y | A | В | С | Р | | Buildings | Р | С | В | 0 | Y | 19 | В | С | Р | | Pavement/Cleared Lot | Р | С | В | p] | | Id | В | c | _ p | | Road/Rallroad | Р | С | В | but | YW | 0 | В | c | р | | CPipes (inlei/ Outlet) | Р | С | B | 0 | Øи | | В | c | p | | Landfill/ Trash | Р | _C | В | D | Ø N | 0 | В | c | p | | Park/Lawn | р | c | | Ľ | 27 C - 1 C - | | В | С | _p | | Row Crop | р | <u>c</u> | В | | | | В | c | p | | Pasture/ Range | р. | c | В | | | | <u>B</u> | c | р | | Logging Operations | _ p_ | c | В | <u> </u> | ı | | В | c | p | | Mining Activity | р | c | В | | | | В | c | р | | Vegetation Management | р | c | В | | | | В | c | p | | Bridgest Abutments: | р | c | В | | _ | | В | c | p | | Orchards/ Vineyards | р | c | В | | | | В | c | р | | | | | | | | | | | | 1;,,J..L,J *w;*,,*e*.*1* $f(M-') = -1-At.k/w, j_1, j_2$ '; \0 f''f''' ''' l & J 1... Page of 26 Page 1i of 26 | Position Digiti Size Clobble CPOM Microalege Macroalege Code | ≡Microalgae Thickr
Godes |
--|---| | Bank o 31 ce 15 PR O POD POD POD | =0 = No misrcalgae pre
Feels rough, not slin | | Edit 6.7 49 56 - P. CI. Pii?D P. D P. D | Feels Slimy | | | s1mm Rubbing fing
Consultace produce | | enter 1.5 37 KB — PA C) (.)) A D PAD PAD | prownish tint on the
scraping leaves vis
trail. | | Right 2.2 8 56 — PO O DAD POD POD | 3 = 1/5mm; 4 = 5-20mm 5 = >20mm; | | Right 3.1 15 CB 80 PO O POD POD POD | UD = Cannot determin | | ###################################### | | |--|---| | Committee Committee and the committee of | | | | ML-Million, | | | | | | | | | | | | 111111111111111111111111111111111111111 | | | ***************** | | December 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | ******************************** | | | | | | | ************************ | | ************************************** | <u>t.pp</u>
5 | | | ::: Thh | | | 111 : I.III | | | <u>vipp</u> | | | ::: | | | ##** — | | | ::: <u>~</u> | | #************************************* | · .) | | | ::: · | | *************************************** | 111 | | | 33 5 :: | | | # ~ | | | 125. | | *************************************** | <u>S</u> | | | ::i ~ | | | ::: | | At-Id-106-4-6 | SD | | *************************************** | :: CT | | | :: -> | | 44 | 00 | | | | | | *** - () | | *************************************** | ## /L | | *************************************** | 335 L? | | 1: | ;;; \J | | | <u> </u> | | *************************************** | 777 | | *************************************** | 161 | | · · · · · · · · · · · · · · · · · · · | 477 | | | T.T. | | | 1222 | | | 223 | | *************************************** | 111 | | 10-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | ::: | | ************************************** | *** | | | **** | Site Code:j,I,J- & c,...d; Site Name: f, f, f Code f, fDate: **0 9 / 10 /** 2012 Bankfull Height (m): Bankfull Width (m): 4.0 Wetted Width (m): Transect F | | | | | | | Transect Su | bstrates | | 7 | | |------------------|-------------------------|-----------------------------|----------------------|------------------------------|-------------------------------|-----------------------------------|-----------------------------------|--------------------------|-----------------|---| | Position | Dist
from
LB (m) | Depth
(cm) | mm/
size
class | %
Cobble
Embed | CPOM | Microalgae
Thickness /
Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thickness
Codes
0 = No microalgae present | | Bank | D | 48 | CB | to | P (A) | 6 | P (A) D | P 🕡 D | Р₩Д | Feels rough not slimy 1 - Present but not visible, Feels slimy | | Left Center | (!> p | | s-e. | ., | | 0 | P ft) D | D | P 🔞 D | 2 = Present and visible but \$1mm Rubbing fingers on surface produces a | | Center | 1.2 | | 'i, | | Ρi | | b D | P Q·n | P 💋 🗗 | brownish tint on them,
scraping leaves visible | | Right,
Center | _1. ; B | | e, | | p | | p Q,D | p (& D | P 🕢 D | frail.
3. = 1-5mm;
4 = 5-20mm; | | Right
Bank | 2,4 | 30 | XB | ~ | P A | 1 | PQD | P. (4) D | P (A) D | 5 = >20mm;
UD = Canhot determine if
microalgae present. | | | Note: Sub
class cate | strate size
gorles liste | s can be
d on the | recorded eill
supplements | ier as direc
Il page (dire | t measures of the | e median axis of
is preferred) | each particle or | one of the size | substrate too small or covered with silt | | | | | | | | | | | | (formerly Z code)
_D = Dry = not assessed = | | RIPARIAN VEGETATION (racing downstream) |] ‡ | Spar | se (|)%)
k10%)
k10-40° | .::4 ≐. | Very | Heav | y (≥7 | | INSTREAM HABITAT COMPLEXITY | 0 ≡ Abse
1 = Spår
2 ≡ Mode
3 = Hedy
4 = Våry | se
orate
V | (40-759 | 0
0 | DENSIOME
READINGS (I
count covered | 0-17) | |---|-------|-------|------|-------------------------|---------|---------------|-------|-------|---|---|--|------------------|---------|--------|--|-------| | Vegetation Class | | Lef | t Ba | ink | | Riç | jht E | 3ank | Ç | Filamentous Algae | 00 | 2 | 3 | 4 | Center | | | Uppe | r Can | ору | (>5 | m high) | ija kr | | | | | Aquatic Macrophytes/
Emergent Vegetation | | 2 | 3 | 4 | Leπ | | | Trees and saplings >5 m high | 0 | 1 | 2 | 3 4 | Ø |) 1 | 2 | 3 | 4 | Boulders | 0 | 2 | _3 | | Center
Upstream | b | | Lower C | anop | y (0. | 5 m | -5 m hig | ih) – | | | | | Woody Debris >0.3 m | 0 | 2 | 3 | | Center | | | All vegetation 0.5 m to 5 m | 0 | 1 | 2 | 3 4 | 0 | 1 | 6 | 3 | 4 | Woody Debris <0.3 m | 0 (i) | 2 | 3 | 4 | Right Center | 2',' | | Groun | d Co | ver (| <0.5 | m high | | V. 2007. 1107 | | | | Undercut Banks | 0 | 2 | 3 | 4 | Downstream | | | Woody shrubs & saplings <0.5 m | 0 | 6) | 2 | 3 | 0 | | 2 | 3 | 4 | Overhang. Vegetation | <u>o (J)</u> | 2 | 3 | 4 | Optiocal | | | Herbs/ grasses | 0 | 0 | 2 | 3 | 0 | (j) | 2 | 3 | 4 | live TreeRoots | o (j) | 2 | 3 | 4 | Left Bank | | | Barren, bare soil/ duff | 0 | | 2 | 3 | 0 | | 2 | (G) | 4 | Artificial Structures | (§) t | 2 | 3 | 4 | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = 2 | 10m#≤ | Bank
50m f | & 10 m
om Cha
les or No | inel; | annel, | | | | | |---|-------------------------|-------|---------------|-------------------------------|--------|--------|---|------|-----|----------| | | | Left | Bank | • 5 = | Cha | nnel | | Righ | Ban | k | | Walls/ Rip-rap/ Dams | Р | С | В | /\dag{\partial} | Υ |
N | 6 | В | С | Р | | Bulldings. | p | С | В | 0 | Υ | M | | В | С | Р | | Pavement/ Cleared Lot | р | С | В | | | | | В | С | р | | , Road/Rallroad | р | С | В | | | П | | В | С | | | Pipes (inlet/ Outlet) | р | С | В | | | T | | В | c | <u>p</u> | | Landfill Trash | p | С | В | | | Т | | В | c | p | | Park/Lawn | <u>p</u> | c | В | | -
- | | | В | c | р | | Row Crop | <u>p</u> | c | В | | _ | | | В | С | p | | Pasture/Range | р | c | В | | _ | | | В | c | p | | Logging Operations | <u>p</u> | c | В | | _ | | | В | c | p | | Mining Activity | <u>p</u> | c | В | | _ | | | В | c | p | | Vegetation Management | p | c | В | | _ | | | В | c | р | | Bridgest Abutments | р | c | В | | | | | В | c | p | | Örchards/ Vineyards | p | С | В | | | _ | | В | c | p | | | | | *********** | |--|----------------|---|-----------------------| # | | | | | | | | | | | | | | | | | *************************************** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | ************** | | | | | | | | | | | | | | | | | | Principal March Land Committee Commi | **** ********* | | 1 1 +2-2-142 4-1441 1 | | | | | 1 | 44.4********** | i con statementer. Maria. | | | | | | | | | | | | | *************************************** | | | | | TAKE —PH6re6ftAPH5— (check box if taken & record hoto code Downstream (required) | |---| | Upstream (required) | | | I | nter-T | Crans | ect: FG | | į. | Wetted Width (n | n) 2,4 | . The second second second second | gradistation (1997)
Bernard George (1998) (1997) (1997)
Bernard George (1998) (1997) (1997) | |-----------------|--------------------------|--------------|-----------------------|-------------------|--------|-----------------------------------|-----------------|---------------------------|-----------------------------------|---| | | | | | | - In | ter#I ransect | Substrates | | | | | Position | *Dist
from
I-B (m) | | mim/
size
class | Cobble -
Embed | | Microalpae
Threkness
Code | =Macroalgae | Maoroaloge
"Unattached | Macrophyres | Microalgae Thickness Codes Service of the control | | elt
Bank | 0 | 2 | GF | | P 🔌 | o | P (0 /D | P Q D | P 🗱 D | Feels rough not slimy I = Present but not visible Feels slimy | | J.eff
Genter | 0.6 | 12. | **** | | | 0 | p (!) D | P 🛕 D | P A D | 2 = Present and visible but
<from lingers="<br" rubbing="">on surfaces roduces a:</from> | | Genter | 1.2 | 11? | ')< <i>e</i> , | | P il)) | О | (!) A D | New York | p D_ | brownish tint on them,
scraping leaves visible. | | Right
Genter | 1.8 | <u>'</u> 'lo | | | P ® | 0 | P III D | p @ D | p ,/) D | 3 = 1.5mm =
4 = 5-26mm =
5 = .20mm | | Right
Bank | 2.4 | 5 | RR | 7-7- | P 🙆 | (O | P Ø D | P 🗱 D | Ρ Λλ D | aUD.≡ Cannot determine ∏ (a.
≝≝ migroalgae present | | | | | | | | t measures of th
of measuremen | | feachmarticle or | one of the size | substrate too small or
covered with slit
((ormorly Z code) | | | | | | | | | | | | ⊒D ≡ Dry⊒not assessed | | FLOW HABITA | | | | |------------------------------|---------|------------------|--| | Channel Type Cascade/ Palis | % | | | | Rapid ATELE | 15 | 13 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | Riffle | 10 | ığ | | | Rur (1975)
Glide | 25
5 | 2 \$
5 | es la la companya de | | Pool ware | 5 | 5 | | | Dry 🔭 | Ò | , | | Site Code: P, \tau- Cr (!., J, | Site Name: fi ::, _ Cr. αL Date: 0 9 1 10 12012 Wetted Width (m): 3.5 Bankfull Width (m): 5.6 Bankfull Height (m): 0.6 Transect G | | | | | 19 19 19 19 19 19 19 19 19 19 19 19 19 1 | | Transect Su | bstrates | | | | |-----------------|-------------------------|-----------------------------|----------------------|--|------------------------------|-----------------------------------|------------------------------------|--------------------------|-----------------|--| | Position . | Dist
from
LB (m) | Depth
(cm) | mm/
size
class | %
Cobble
Embed. | СРОМ г | Microalgae
Thickness
Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thickness Codes 6 % No microalgae present Feels rough; not slimy; | | iefi
Bank | 0 | _22 | İ | | | | | р ^ D | P.(ALD | Feels slimy | | Left
Center | 0.8 | (p | | _ | p /// | | P @ D | p D | P If D | 2 = Present and visible but <1 mm, Rubbing fingers bn, surface produces a | | Genter . | 1.7 | _2'?, | Sf> | | p (lil | 0 | @ A D | p @- D | p /t). D | brownish fint or them,
scraping leaves visible
trail | | Right
Center | 2.5 | 12- |)(e, | | p (£) | () | <i>d)</i> A D | p (! D | р <i>б)</i> D | 3 = 1.5mm;
4 = 5-20mm; | | Right Bank | 3.5 | 2 | RR | | P 🙆 | 0 | P 🙆 D | P 🙆 D | P 🙆 D | 5 = >20mm;
UD = Cannot determine (f
microalgae present, | | | Note: Sub
class cate | strate size
gories liste | s can be
d on the | recorded eith
supplementa | ier as direc
I page (dire | measures of the
of measurement | e mediair axis of
is preferred) | each particle or | one of the size | substrate too small or covered with \$1. (formerly Z code). D = Dry_not assessed | | RIPARIAN VEGETATION Macing downstream) | 1.3 | • Spa | use (| 0%)
<10%)
• (10-40 | | 4 # Ve | ery Ĥ | eavy | | | INSTREAM HABITAT COMPLEXITY | EE ⊕ Abse
1 ≜ Spar
2⊫ Mod
3 ≘ Fleat
24 ≗ Very | se
erato i | 40-7 | %)
%)
1%) | | DENSIOME
READINGS
(I
count covered | 0-17) | |---|-------|------------|-------|--------------------------|------|-------------|-------|------|-----|---|---|---|---------------|------|-----------------|---------|--|-------| | Vegetation Class | | Le | ft B | ink - | | COLUMN TO | Rigi | it B | ank | | Filamentous Algae | 00 | 2 | 3 | 4 | Ī | Center | 41 | | Uppe | r Cai | пору | / (>5 | m higl | 1) | | | | | | Aquatic Macrophytes/
Emergent Vegetation | l | 2 | 3 | 4 | - | Left
Center | | | Trees and saplings >5 m high | 0 | 1 | 2 | 3 4 | | (0) | 1 | 2 | 3 | 4 | Boulders | | 2 | 3 | a> | | Upstream | 2- | | Lower C | ano | py (C |).5 m | -5 m h | igh) | | | | | W | Woody Debris >0.3 m | | 2 | 3 | 4 | _ | Center | | | All vegetation 0.5 m to 5 m | 0 | 0 | 2 | 3 4 | | 0 | 0 | 2 | 3 | 4 | Woody Debris <0.3 m | | 2 | 3 | 4 | | Right
Center | | | Groun | d Cc | ver | (<0.5 | m hīg | h) | Santar va | | | | | Undercut Banks | | 2 | 3 | 4 | | Downstream | 0 | | Woody shrubs & saplings
<0.5 M | 0 | <i>(j)</i> | 2 | 3 | | | (j) | 2 | 3 | 4 | Overhang. Vegetation | | 2 | 3 | 4 | A721 | Optional | | | Herbs/ grasses | 0 | & | 2 | 3 | | | G) | 2 | 3 | 4 | Live Tree Roots | | 2 | 3 | 4 | + | Left Bank | | | Barren, bare soil/ duff | 0 | | 2 | 3 | | | | 2 | 3 | | Artificial Structures | | 2 | 3 | 4 | -
 | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel): | 0.5 Not Present B = On Bank; C = Between Bank & 10m from Channet; P = >10m+-50m from Channet; Channet (record Yes or Not) | | | | | | | | | | | | | | |--|---|-----------|------|-----|---------|---|------|-----------|----------|--|--|--|--|--| | | | Left | Bank | | Channel | | Righ | t Ban | k 📑 | | | | | | | Walls/Rip-rap/ Dams | Р | С | В | [8] | ΥM | d | В | С | Р | | | | | | | Buildings | Р | C | В | 0 | Y | d | В | С | Р | | | | | | | Pavement Cleared Lot | Р | С | В | 0 | | q | В | | р | | | | | | | Road/Rallroad | Р | С | В | 0 | YA | q | В | С | р | | | | | | | Pipes (Inlet/ Outlet) | Р | С | В | q | Y M | d | В | С | р | | | | | | | Landfill/ Trash | Р | С | В | Q | Ø N | 0 | В | | <u>c</u> | | | | | | | Park/ Lawn | Р | С | В | q | | 0 | р | В | c | | | | | | | Row Crop | Р | С | В | Ç | | 0 | р | В | c | | | | | | | Pasture/Range | Р | С | В | q | | 0 | р | В | c | | | | | | | Logging Operations | Р | С | В | d | | 0 | р | 0 | n | | | | | | | Mining Activity | _ | | | | | | В | Č | _ p | | | | | | | Vegetation Management | <u>р</u> | <u>-E</u> | B | | | | ₿ | <u>-8</u> | _B | | | | | | | Bridges/Abutments | <u>р</u> | c | В | _ | | | В | С | p | | | | | | | Orchards/ Vineyards | р | c | В | | | | В | c | р | | | | | | | :t:::::::::::::::::::::::::::::::::::: | ********** | | | |---|--|---|--| | *********************** | | ** | *************************************** | | 1 | | | ********** | | 4 | | | ********************** | | | | | | | *************************************** | ******************** | ********************* | | | | | | | | | | | | | # | | | | | | | | | | # | | | | | | | | | | | | | | | | | | ****** | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | **,********************* | | | | | | | | 2 | | | | | m,,,,, | ,,4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , 4 v , , · · · · · · · · · · · · · · · | 44444444444444444444444444444 | | | | | *************************************** | | | | • | The second secon | | | artatratificant | | 1 .2 | | | | | 1 14 15171111111111111111111111111111111 | | ************************************** | **** ********* | | | | *************************************** | | : | 1 ************************************* | | E | | | | | | | | | | | | : | : | | | | | | | | accelori | an draarabda. | | | i meski kota i | maniani | w.bresskie | | | | | whentin | | | | | iiialeii | TUIIS | ect: GE | | | Wetted Width (| m): 5.2. | | | |-----------------|------------------------|----------------|----------|--|----------|--|---|---------------------------|-----------------
--| | | | 10010615 | | | | The state of s | t Substrates | | | West Control of the C | | sitions | Dist
Lion
EB (m) | Depthi
(cn) | | Cobble
Embed | CPOM | ■Micrealeae ■Eliickitess ■Code | Macroalgae | Macroalgae
E nattached | Macrophyles | Microalgae Thickn Codes O-No microalgae pre | | Feft
Bank | O | Ž. | i,,6. | - है कि देखा के है करते.
जन्म के लेखा के के कि | | | r & D | 1 0 D | r 🕿 D | Feels rough, hat slim Feels slimy Feels slimy 2 Fresent and visible | | l eti
enter | 1.3 | 0 | ' '/ e, | | . p: ,il | /) | p <illd< td=""><td></td><td>p 'It/ D</td><td>on surface produces</td></illd<> | | p 'It/ D | on surface produces | | enter- | 2.6 | 1 q | | | p (!)) | | p D. | p /:) D | P la) D | scraping leaves visi
trail:
3 - 1 Smm | | Right
Jenter | 3.9 | 7 | <u> </u> | 7 5' | P @ | 0 | (g) A D | p (;;\? D | P e'g D | 4 = 5-20mm (1
5 = >20mm (4 | | Right
Bank | 5.2 | 3 | RR | | P 🔕 | 0 | P 🐼 D | P 🐼 D | P 🚳 D, | :UD = Cannot determin
== microsigae present
==substrate loo small | | | | | | | | t measures of
of measureme | | each particle or | one of the size | covered with sift | | na ali firmë en jimi uzështetji | | |---------------------------------|---| | FLOW HABITA | CONTRACTOR OF THE PARTY | | Channel Type | % | | Cascade/ Falls | 55 | | Rapid | <u> </u> | | Rifle - | S | | Rûn Bûn | _ 10 | | Cara Glide | O | | Talk Pool Parks | _ 5 | | Dry 3. | 0 | Site Code: fr'tte.. Ct',, dt {;,,/, | Site Name: Pine Creak | Date: 09 | 0 | 2012 | Wetted Width (m): 3.2 | Bankfull Width (m): 5.4 | Bankfull Height (m): 0.75 | Transect H | | | | | | | Transect Su | bstrat | es | | | | | | |-----------------|------------------------|---------------|----------------------|------------------|--------------|-----------------------------------|--------|-----------------|---------|------------|----------|---------|---| | Position | Dist
from
LB (m) | Depth
(cm) | mm/
size
class | Cobble
Embed. | СРОМ | Microalgae
Thickness
Code | | oalgae
iched | | | Macr | ophytes | Microalgae Thickness Codes 0 = No microalgae present | | ran
Bark | O | 3. | CB | '30 | | 0 | P. | \ D | P | A D | P | A D | Feels rough not slimy. 1 - Freesen but not visiting. Feels slimy. | | Left
Center | 0.8 | 14 | C,f, | i+0 | p fy | o | p | D | р | _D | p | b | 2 = Present and visible but
s1mm; Rubbing ingers
on surface produces a | | Conter | 1.6 | 20 | se | | p <i>t</i> 9 | 0 | p | D | p | D | p | D | brownish tint on them. | | Right
Center | 2.4 | t_\7 | 5e, | | b © | , Ci | p | D | p | . D | p | D | trail
3 = 1-5mm;
4 = 5-20mm; | | Right
Bank | 3.2 | 5 | SA | - | P A | 0 | P | A D | P Z | D. | P | D | 5 = ≥20mm; -
UD = Cannot determine if
microalgae present | | | | | | | | measures of the
ct measurement | | | each pa | ifticle or | one of t | ne size | substrate too small or covered with sill (farmerly Z coce), D = Dry Hot assessed | | RIPARIAN VEGETATION (facing downstream) | 0 =
1.≅
2.≅ | Absi
Spai
Mod | ent (C
'se (:
erate |)%)
:10%
:(10 | 6)
40% | -3 =
4 ∈ V
) | leav
'ery l | / (40
leav | 75%
/ (>75 | (
%) | | Instream Habitat Complexity | 1=
2=
3= | Spars
Mode
Heav | id
rafe (| (0%)
-(<10
(10=40
(40=75
y (>75 | (%)
(%)
(%) | | DENSIONE
READINGS (6
count covered | 0-17) = | |---|-------------------|---------------------|---------------------------|---------------------|--------------|----------------------|----------------|---------------|---------------|---------|------|---|----------------|-----------------------|--------------|---|-------------------|---|--|---------| | Vegetation Class | | Lef | tΒε | ink | | | Rig | ht B | ank | | | Filamentous Algae | 0 | 0 | 2 | 3 | 4 | | Center | | | , Uppe | Can | ору | (>5 | m h | igh) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | - | | | | | • | | O | | Trees and saplings >5 m high | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | | Boulders | | | | | | | Center
Upstream | 0 | | . Eower C | anoj | ıy (0 | .5 m | -5 m | hig | 1) | | | | | | Woody Debris >0.3 m | | | | | | | Center | | | All vegetation 0.5 m to 5 m | 0 | - | | | | 1 | 44 | | | |
 | Woody Debris <0.3 m | | | 2 | 3 | 4 | - | Right Center | | | | | | | | -gh) | | | | | | | Undercut Banks | | | 2 | 3 | 4 | | Downstream | O | | Woody shrubs & saplings
<0.5 M | R | | 2 | 3 | 4 | 0 | (f) | 2 | | | | Overhang. Vegetation | | | 2 | 3 | 4 | | . Optional | | | Herbs/ grasses | 0 | 'ID | 2 | 3 | 4 | 0 | © | 2 | 3 | | | Live Tree Roots | | | 2 | 3 | 4 | | Left Bank | | | Barren, bare soil/duff | 0 | | 2 | 3 | | 0 | | 2 | 3 | | | Artificial Structures | 0 | | 2 | 3 | 4 | | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = > | lóm+s
něl (ré | | m Cha | ngel; | hannet,
annel | ľ | Rìdh | t Ban | k | |---|-------------------------|------------------|---|-------|----------|------------------|-----|------------|-------|-----| | Walls/ Rip-rap/ Dams | Р | С | В | B | Υ | Κ'n | | n B | C | Р | | Buildings | P | <u></u> | B | 16 | Y | 7 | +-1 | ON B | - C | P | | Payement/ Cleared Lot | Р | Ċ | В | Ó | | | |) B | c | p | | Road/Raliroad | P | С | B | d | Υ | W | | ј в | С | p | | Pipes (inlet/ Outlet) | р | С | | | | | | В | c | _ p | | Ländfill/Trash | p | _c | В | | | | | В | c | p | | Park/ Lawn | p | | c | В | 3 | - | | В | _c | p | | Row Clop | <u>р</u> | | c | В | <u> </u> | | | В | c | p | | Pasture/Rångë | <u>р</u> | c | В | | _ | | | В
 c | _ p | | Logging Operations | p | c | В | | _ | | | В | c | p | | Mining Activity | <u>р</u> | | c | Е | <u> </u> | | | В | С | р | | Vegetation Management | <u>р</u> | c | В | | _ | | | В | c | p | | Bridges/ Abutments | р | c | В | | | _ | | В | c | _ p | | Orchards/ Vineyards | <u>p</u> | c | В | | | | | В | c | p | | Inter- | Fransect: H |] | | Wetted Width (n | 1): 5,2 | त्री । देश ।
स्वयुक्त रिक्ष राज्यसम्बद्धाः स्वर्णे स्थापनीतः | | |---|---|--------------|-----------------------------------|-----------------------|-------------------|---|---| | | | ln . | ter-Transec | Substrates | | | | | Position From Depth (cm) | mm/ %
size : Cobble :
elass : Embed | CPOM- | Microalgae
L'Thickness
Code | Macmalgae
Attached | | -Macrophytes | Microalgae Thickness Codes 0 - No microalgae present | | Banka O ULE | rr - | Р 🔗 | . · O | P A D | P (% D | P 🔏 D | Feels rough, not slimy 1. Fresent but not visible, Feels slimy 2. Present and visible but | | Gener 1.3 q2.:. | x6 | | -0 | P 🌓 D | P 🐼 D | P (D | stmm, Rubbling fingers | | Center 2.4 q l | , | р <i>(fJ</i> | О | PAD | P 60 D | P D | prownish lint on them. scraping leaves visible trail | | Right 4.0 3(, | 1.10 | | 0_ | PAD | P Ø D | P 🍂 D | 3. 4 5mm;
4 5-20mm | | Right 5,2 | DF- □ | | 10 | P ∮ D | P A D | PD | UD = Cannot determine if =
microalgae present, | | | s can be recorded eit
of on the supplement | | | | feach particle or | one of the size | substrate too small or covered with slit (formerly 7 code), D= Dry, not assessed | | | | | | | | | | | FLOW HABITATS (% between transcost total 100%) Channel Type % | | | | | | | | | FLOW HABITATS | | |-----------------------------------|--------------| | -(% between transecis-total=100%) | | | Channel Type%_ | | | Cascade/ Falls | ¥. '\$0 | | t Rapid Little | 2D | | '35 | <u>i</u> ' | | |) | | Glide 0 | | | Pool State | 5 | | Dry 0 | | Site Code: p, ..., i $c, r, t_j \in W$, V. (Site Name: V, V. ..., V. ... Date: 99110 / 2012 Bankfull Width (m): Bankfull Height (m): , 55 Wetted Width (m): Transect I | *************************************** | ************ | | , | | *********** | *************************************** | | | | | |---|--|---|-----------------------|---|-------------------------------|--|-------------------------------------|------------------|-----------------|---| | | | | | | | | | | | | | | | 2. | | | Pø | D | P o b | røe
røe | r y n | | | :::::::::::::::::::::::::::::::::::::: | ······································ | *************************************** | | *************************************** | | D | P {v D | р ЈО 🗅 | р ,Q. <i>b</i> | Kimm, Rubbing fingers on surface produces a | | Center | 2.7 | <u>:</u> 1-=r | se,_ | | P Ø | 0 | (f) A D | ? f:? D | p ˈ/ill D | brownish that on them, see scraping leaves visible | | Right
Center | 4.0 | 18 | G:iC | | P 🙆 | Ø | P 🙆 D | P ® D | POD | frall.
3 = 1-5 mm;
4 = 5-20 mm; | | Right
Bank | 5.4 | 5 | SA | | P 🙆 | O | P 🏈 D | P 🙆 D | P 🙆 D | 5 ≠ ≥20mm,
UD ≅ Cannot determine if a-
- ← microalgae present, | | | Note: Sub
class cate | sträte size
gories liste | s can be
ed on the | recorded eith
supplements | ner as direc
il page (dire | i measures of the comment com | ne median axis of
its preferred) | each particle or | one of the size | substrate too small or covered with sit (formerly Z code). D = Dry, not assessed | | RIPARIAN VEGETATION (facing downstream) | T = | Spa | | <10% | 6) | 4 ≂ ∜ | Heavy
/ery H | | | | 100 | INSTREAM HABITAT COMPLEXITY | 1 ≠ S)
2 = M
3 = H | oderate | (10 ²
(40-7 | 0%)
0%)
5%) | 100000000000000000000000000000000000000 | DENSIOME
READINGS (Count covered |)-17) | |---|------|------|------|------|---|-------|-----------------|------|-------------------|--------------|-----|---|--------------------------|------------|---------------------------|-------------------|---|-------------------------------------|----------| | Vegetation Class | , | Le | t Ba | ink | | | Rigi | ηf B | ank | | | Filamentous Algae | 0 (|) 2 | 3 | 4 | | Center | , | | Uppe | Car | юру | (>5 | m h | igh) | | | | | | 1 | Aquatic Macrophytes/
Emergent Vegetation | തര | J 2 | 3 | 4 | l L | Left
Center | <u>'</u> | | Trees and saplings >5 m high | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | Ï | Boulders | 0 1 | | | | _ | Upstream | | | Lower C | anor | y (0 | .5 m | -5 m | hig | h) | | | | | | Woody Debris >0.3 m | 0 | | | | _ | Center | e | | All vegetation 0.5 m to 5 m | 0 | Ε) | 2 | 3 | 4 | 0 | 0 | 2 | . 3 | 4 | | Woody Debris <: J.3m | 0< |) 2 | 3 | 4 | | Right Center | <u>6</u> | | | | | | | ,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 7. n. i | | emple of the last | - arraydar b | | Undercut Banks | | 2 | 3 | _4 | - = | Downstream | <u> </u> | | Woody shrubs & saplings <0.5 M | 0 | €) | 2 | 3 | 4 | 0 | (j) | 2 | 3 | 4 | | Overhang. Vegetation | | 2 | 3 | 4 | 200 | Optional | <u> </u> | | Herbs/grasses | 0 | O | 2 | 3 | 4 | 0 | © | 2 | 3 | 4 | | Live Tree Roots | | 2 | 3 | 4 | | Left Bank | | | Darren, bare soil/duff | 0 | | 2 | 3 | Ð | 0_ | _1_ | 2 | 3_ | 4_ | | Artificial Structu,-es | | 2 | 3 | 4 | | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | 0.4 Not Present
 B = On Bank;
 C = Between Bank & 10th from Channel;
 P = >10m² <50m from Channel;
 Channel (secord Yes or No) | | | | | | | | | | | | | |---|--|------|------|--------------------|-----|------|---|-------|------|----|--|--|--| | | | Left | Bank | | Cha | nnel | | Right | Banl | Ç. | | | | | Walls/ Rip-rap/ Dams | Р | С | В | 0 | Υ | Ø | 0 | В | С | Р | | | | | Buildings | Р | С | 3 | 9 | Y | Ø | 0 | В | С | Р | | | | | Pavement/ Cleared Lot | р | c | В | | | | | | | р | | | | | Road/Railroad . | р | c | В | | | | | | c | p | | | | | Pipes (inlet/ Outlet) | р | c | В | | 1 | | | | c | р | | | | | Eandfill Trash | р | c | В | | | | | | c | p | | | | | Park/Lawn | р | c | В | | 1 | - | | | c | p | | | | | Row Grap | р | c | В | ╄ | | | | В | c | p | | | | | Pasture/Range | р | c | В' | | | _ | | В | c | p | | | | | Logging Operations | p | c | В | $oldsymbol{\perp}$ | | | | В | c | p | | | | | Mining Activity | p p | _c | В | 4_ | | | | В | c | p | | | | | Vegetation Management | р | c | В | | | | | В | c | р | | | | | Bridges/Abulments | р | c | В | ┸ | | | | В | c | р | | | | | Orchards/ Vineyards | р | c | В | | | | | В | c | р | | | | | VEN-1111 CONTROL OF THE PARTY O | | |
--|-----------------|--| · I · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | VA-1::VA-1::VA-1::VA-1:IVA-1:III-VA-1:IVA-1:III-VA-1:IVA-1:III-VA-1:IVA- | learne detectories a construction of the const | | | | Theret detects are the second and the second are th | | | | | | | | *************************************** | | | | · · · · · · · · · · · · · · · · · · · | | | | TO SECURE AND ASSESSMENT OF THE PARTY | | | | TO SECURE AND ASSESSMENT OF THE PARTY | n deseration | | | | at deperation | | | irruul ordui | n deseration | | | intiiii araad | at deperation | | | LENTELLE arraina | at deperation | | | LENGEL engaled | at deperation | | | Left Milit arcded | at deperation | | | Lattalia arcdind | et de secretion | | | ACCIONE arradua) | ntilene u tiin | | | ACATOM gurçalind | | | | Lattilia (k. grzeje) | | | | Left Black arcine | | | | Exit Bulk arraind | | | | Left Black arcine | | | | ' , ' · · · | · · | Inter- | Frans | sect: IJ | | 7 | Vetted Width (m |): 5.6 | gagaran ya kata da kat
Kata da kata d | santania e e e e e e e e e e e e e e e e e e e | |------------------|----------------------------|---------------|------------------------|---------------------|-------------|---------------------------------------|------------------------|--------------------------|--|--| | | | | | | . In | ter=Fransect | Substrates | | | | | Position | =Dist
=from
-LB-(m)= | Depth
(on) | nim/
size
aclass | Cabble :
Dinbed: | .€P⊝M= | =Microalgae
= Thickness
== Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thicknes Codes O No microalgae prese | | l ett
Bank == | Ø | 16 | GF | | РФ | <.b_ | P 💋 D | P 💋 D | P (2) D | Feels rough, not slimy,
1 ≭ Present but not visible
Feels:slimy | | Left
Center | 1,4 | _0 | | | p 13> |)> | P @ D | P@D | p ®_D | 2 = Present and visible b
= \$1mm, Rubbing fingers
on surface produces a | | Genter | 2.8 | 2- | <i>cR</i> ., | "10 | р '9 | (!) | P @ D | Pu)) D | P1!i1 D | brownish int on them
scraping leaves visible
strail | | Right | 4.2 | 3.2 | Gf'? | i o | р @ | '6 | p 41 D | p (l;)) D | p ti) D | 3 = 1-5mm
4 = 5-20mm
5 = 20mm | | Right
Bank | 5.6 | 31 | RR | ~ | PA | 2 | P 🚱 D | РБО | , P () D., | UD = Cannot determine
, microalgae present | | | | | | | | t measures of in
of measuremen | | each particle or | one of the size | supstrate too small or
covered with slit.
(formerly Z code) | | FLOW HABITAT | S | | |-------------------|-----------------|-----| | | 100%) | | | Channel Type | % | | | Cascade//Falls | 25 | 250 | | Rapid (* 1 | 30 - | 35 | | Eliffle Elife | 35 | | | e g = ⊘Rún⊈se e e | 5 | | | - Glide | 0 |] . | | Pooles | Ø | | | Dry Dry | 0 | | | | | and the same of the same of the | el el retriète el translation | | | 7 | and the second | | To Proceed to the season | | |-----------------|------------|---------------------------------|-------------------------------|----------------|--|-------------------
---|------------------|-------------------------------|---| | | | | SECONO CONTRACT | | | Transect Su | bstrates | | | TOWN COLUMN TO A STREET | | | , Dist | Depth | inni/- | % | | Microalgae | Macroalgae | Macroalgae | | Microalgae Thickness | | Position | from | (cm) | size | Cobble | CPOM. | Thickness | Attached | Unatfached | Macrophytes | Codes :
0 = No microalgae present | | | LB (m) | | class | Embed, | | Code | | | 1 1 2 3 6 7 7 7 1 7 7 7 7 7 7 | Feels rough incts/lmy; | | Bank | O | 2 | SA | | P 🚳 | 0 | P 🔕 D | P 🔕 D | P 🔕 D | 1 = Present but not visible
Feels slimy, | | Left | 0.0 | | | 20 | p / D | 6 | p .f& D | n 4/1 D | n D | 2 ≅ Present and visible but
≪timm: Rubbing fingers | | Center | 2.0 | _ | e6 | <i>30</i> ,. | 1 11 | • | p ./ w D | P 1,11 D | Р Б_ | on surface produces a | | Genter . | 3.9 | 2,\$ | | | P @ | | p D / | D. | p I:1 D | brownish fint on them,
screpling leaves visible | | Right
Center | 5,9 |) | R.R. | ****** | Р@ | | ^p e0 D | D. | D, | | | Right
Bank | 7.8 | ľ | RR | | P 🔊 | '0 | Ø A D' | P (A) D | $_{P}$ Q $_{D}$ | 5 ≅ >20mm
UD = Cannot determine if | | | | | | | | reservation (Fig. | 1 | | 2011 | microalgae present
substrate foo small or | | | | | | | | | e median axis of
to professed | each particle or | une or me size | covered with sit | | | viass cale | กิดเเอราเรเต | u ornale | anhhigiticitie | ii haac fanc | ect measuremen | io hidicifed) | | | (formerly Z code). | | | | | | | Control of the second s | | Marie Control of the | | | D ≘Dry not assessed | | RIPARIAN VEGETATION (facing downstream) | 0 ≅ A
1 = S
2 = W | pars | se (< | 10% |) | 4 ≕∖ | Heav
Very H | r (40
feav | 75%
7 (27 |)
5%) | States of the states of the states | INSTREAM HABITAT COMPLEXITY | 1 =
2 =
3 = | Modei
Heavy | e
rate (| (0%)
(≈10%)
(0-40%)
(0-75%)
(≈75%) | 3 | DENSIOMET
READINGS (0
count covered |)-17) | |--|-------------------------|-------|-------|---------|-----------|----------------|----------------|----------------|--------------------|------------|------------------------------------|--|-------------------|----------------|-------------|--|---|---|---------------| | Vegetation Class | 1 | eft | Ва | nk | | | Rig | ht B | ank | | | Filamentous Algae | 0 | (1) | 2 | 3 4 | | Center | | | Upper | Cano | рγ | >5 i | n hi | gh) | | | | | | | Aquatic Macrophytes/
Emergent Vege: ation | | | | | | | <u> U</u> | | Trees and saplings >5 m high | Ø | 4 | 2 | 2 | 4 | ്ക | 1 4 | 2 | 2 | 1 | 1 | Boulders | | | | | _ | Center
Upstream | 3 | | Lower C | | i (n | -
 | 5
5m | y
Bini | W | | <u>د</u> | | - - | | Woody Debris >0.3 m | | | | | ┪ | Center | | | | | _ | | | | | ~ ~ ~ · · | The Control of | A A STANSON OF THE | | 51 | , | | | | | 1 | Right | | | All vegetation 0.5 m to 5 m | .0 | O_ | 2 | 3 | 4 | ्० | 6) | 2 | 3 | 4 | | Woody Debris <0.3 m | | | | 3 4 | | center | | | STORING CONTRACTOR OF CONTRACT | 3 COVE | 31 E. | ·U.J | HEE | TOI 13 | , and where it | | _ | | | • | Undercut Banks | 0 | 1 | 2 | 3 4 | | Downstream | U | | Woody shrubs & saplings <0.5 m | 0 | IQ) | 2 | 3 | | 0 | 6) | 2 | 3 | | | Overhang. Vegetation | @ | | 2 | 3 4 | | Left Bank | | | Herbs/ grasses | 0 t | D | 2 | 3 | | 0 | © | 2 | 3 | | | Live Tree Roots | | | 2 | 3 4 | | | 1 | | Barren, bare eolll duff | 0 | | 2 | 3 | | 0 | | 2 | 3 | | | Artificial Structures | | | 2 | 3 4 | 丄 | Right Bank | | | HUMAN INFLUENCE
(Gircle only the closest to
wetted channel) | B = 0
C = B
P = ≥ | Not Present. On Bank, Between Bank & 10m from Channek, 10m+-50m from Channek, annel (record Yas of No). Left Bank Channel Right Ban | | | | | | | | | | |---|-------------------------|--|------|---|---------|----|-------|-----|----|--|--| | | | Left | Bank | | Channel | À | Right | Ban | k' | | | | Walls/ Rip-rap/ Dams | Р | С | В | A | YQ | Ta | В | С | Р | | | | Buildings | Р | С | В | 0 | YW | 19 | В | С | Р | | | | Pavement/ Cleared Lot | Р | С | В | С | | 10 | В | С | Р | | | | Road/Railroad | Р | С | В | C | YQ | Ja | В | c | P | | | | Pipes (Inlet/Quilet) | Р | С | В | q | YK | 0 | В | С | р | | | | Landfill/ Trash | Р | С | В | 0 | ♠ N | 0 | В | С | р | | | | Park/Lawn | Р | С | В | 0 | | 0 | В | c | р | | | | Row Crap | р | c | В | 4 | | | В | С | р | | | | Pasture/Range | p | С | В | | [| | В | c | p | | | | Logging Operations | р | _c | В | | | | В | c | p | | | | Mining Activity | р | c | В | | | | В | c | p | | | | Vegetation Management | р | С | В | | [| | В | c | p | | | | Bridges/ Abutments | p | С | В | | Ī | | В | c | p | | | | Orchaids/ Vineyards | p | С | В | | | | В | С | p | | | | 1 H. H. H. P. L. H. H. H. H. L. | | |---|--| .!?1-,...**>** s+vvdv,,"'-, / --LleJ (rt..,-1.,) | | 1 | nter- | Frans | sect: JK | (| A | Vetťed Width (m |). 5.5 | And the second second | Ny ivonana ny inanana ny isana | |-----------------------|-------------------------|-----------------------------|-----------------------|------------------------------|---------------------------|--------------------------------------|-----------------------------------|------------------|-----------------------|---| | | 17016 | | | | i. h | iter-Fransect | Substrates | | | | | Position : |
Dist
from
LB (m) | Depth
(cm) | size
class | % ==
Cobble=
Enbed= | CPOM | Microalgae
Unicknes
Code | Maeroalgae
Attached | | Macrophytes | Microalgae Thickness Codes O No microalgae present | | Lott,
Bank = | 0 | 8 | 6F | | √P 6 9 | O | P 🐧 D | P Ø D | Р Ø Д | Feels rough, not slimy 1 = Present but not visible Feels slimy. | | Evit.
Eenten | 1.4 | 45 | C i!, | '10 | p 6> | () <u> </u> | P A D | P \delta D | P 6 D | Imm. Rubbing-lingers ** on surface produces a | | Center | 2.7 | 10 | c.h | ·e£ · | p /? | <i>C</i>) | p <i>I D</i> | р {J D | ₽ & D | brownishtlijt on thom, scraping leaves visible | | Right ==
Center == | 4,1 | 0 | Y.,f;, | <u> </u> | p f9 | D | p jil D | D | ₿₽D | 3 1.5mm, 4 5.20mm | | Bank a | 5.5 | H | RR | | P 🚱 | 0 | P ∌ D | PAD | P Ø D | 5 = >0mm
VD = Cannot determine if
microalgae present. | | | ≓Nøte Sub
class cate | strate size
gories listo | s can be
id on the | recordedseith
supplementa | ier asidire
Epage (dir | it measures of the
ect measuremen | e median axis of
is preferred) | each particle or | one of the size | substrate too small of covered with sill (formerly 7 code) D = Dry not assessed | | FLOW HA | | 1%)- "- | | | |------------|-----------------|-----------|----|------| | Channel Ty | | 40- | 15 | W. i | | Rapid F | | 10 | | | | Riffle - | CONTROL CONTROL | 30
25 | | | | Glide** | | O
LPT. | 5 | 10 | | Diy | | Ó | | • | Revision Date: Janu gth 2012 Site Name: Pine Creek fr.*ult*- t,,Jri, Date: {}"/.._ / ___/ 2012 Site Code: $oldsymbol{l}$ Bankfull Width (m):4.5 Bankfull Height (m): Wetted Vv1dth (m): Transect K | | 4 | le mant de la par | | | | ar a co | Y | | | | |-----------------|------------------------|-------------------|----------------------|-----------------------|------|--|-----------------------------------|--------------------------|-----------------|---| | Position | Dist
from
LB (m) | Depth
(om) | mm/
size
class | %
Cobble
Embed, | СРОМ | Transect Su
Microalgae
Thickness
Code | Macroalage | Macroalgae
Unattached | Macrophytes | Microalgae Thickness Codes D = No microalgae present | | Left
Bank | 0 | 5 | RR | | Ý 💋 | F | P 💋 D | P 🔗 D | P 🔕 D | 1 ≜ Present but not visible.
Peels aliny: | | Left
Čehter | 1.0 | 8 | XB | - | ą, | &- | p <i>If</i> > D | D | p {P} D | 2 = Present and visible but
:: <1mm, Rubbing fingers
on surface produces a | | Center | 2.1 | 9 | XB | | F | <i>e</i> - | ® A D | D | pf,» D | brownish tinf on them.
scraping leaves visible | | Right
Center | 3.1 | 10 | 60 | _''' | p _ | - | р D | <u></u> | p D | trall,
3 = 1-5mm;
4 = 5-20mm; | | Right
Bank | 4.2 | 4 | RR | | Р 🎾 | : Per | P AD D | P Q D | P 🍪 D | 5 = >20mm;
U = Cannot determine if
microalgae present. | | | | | | | | t measures of the
of measuremen | e median axis of
ts preferred) | each particle or | one of the size | substrate too small or covered with silf (formerty Z code). D = Dry, not assessed | | RIPARIAN VEGETATION (facing downstream) | - 1 : | ≓ Abs
= Spa
= Moc | rse (| <10% | o) : | 8=1
4=V | leav
'ery l | y (40-
Heav) | 75%
(>7 |)
5%) | INSTREAM
HABITAT
COMPLEXITY | 0 ≑ Abse
1 ≓ Spar
2 = Mdd
9 ≑ Hea
4 = Very | rse i
crato
vy | (10 40
(40-7) | 7%)
7%)
7%) | DENSIOME
READINGS (
count covered | 0-17) - | |---|------------|-------------------------|----------------------|--------------|---------|---------------|----------------|-----------------|------------|----------|---|--|----------------------|------------------|-------------------|---|----------| | Vegetation Class | | Le | tB. | ank | | | Rig | ht B | ank | | Filamentous Algae | 0 D | 2 | 3 | 4 | Center | | | Uppe | r Ca | пору | (>5 | m h | igh) | | | | | | Aquatic Macrophytes/
Emergent Vegetation | | - | | | |] 0 | | Trees and saplings >5 m high | (6 |) 4 | 2 | 2 | 4 | [<i>i</i> 6) | 1 | 7 | 2 | 1 | Boulders | 0 1 | 2 | 3 | — | Center
Upstream | '2 | | Trees and sapings >5 in right | | | - <u>/.</u>
- 5 m | S
Section | i hi ni | | ı | | ,
 | + | Woody Debris >D.3 m | 0 CD | 1 2 | 3 | | Center | ┥╻┇╽ | | All vegetation 0.5 m to 5 m | 0 | 0 | 2 | 3 | 4 | 0 | 1 | (2) | 3 | 4 | Woody Debris <0.3 m | 0 (D | 2 | 3 | 4 | Right | | | - Groun | d Co | over | <0.5 | i m l | righ) | | | | | | Undercut Banks | | 2 | 3 | 4 | Center Downstream | 0 | | Woody shrubs & saplings
<0.5 m | 0 | fl) | 2 | 3 | | 0 | (j) | 2 | 3 | 4 | Overhang. Vegetation | | 2 | 3 | 4 | :::::::::::::::::::::::::::::::::::::: | <u>;</u> | | Herbs/ grasses | 0 | <5 | 2 | 3 | | 0 | | | 3 | 4 | Live Tree Roots | | 2 | 3 | 4 | Left Bank | | | Barren, bare soil/ duff | 0 | | 2 | 3 | | 0 | | 2 | 3 | 4 | Artificial Structures | | 2 | 3 | 4 | Right Bank | | | Human Influence
(direle only the closest to
wotted channel) | B = 0
G = B
P = > | l0m+<
nel (re | Bank
50m fr
ord Y | & 10m f
om Char
es or No | nel; | | | | | | |---|-------------------------|------------------|-------------------------|--------------------------------|-------|-------|--------|------|-----------|----------| | | ME . | Left | Bank | A | _ Una | nnel | A . | dgri | Ban | | | - Walls/Rip-rap/ Dams | Р | С | В | 10 | Υ | N) | 16 I | В | С | Р | | Buildings | Р | C | В | 0 | Υ | M | ा | В | С | Ρ | | Pavement/ Cleared Lot | р | • | В | 7 1 | | ,,, u | 1-2-8- | В | С | р | | Road/Ralfroad | р | С | В | | | | | В | c | _ p | | Pipes (injet/ Outlet): | р | С | В | | | | | В | c | p | | Landfill/Trash | p | С | В | | | | | В | c | р | | -Park/Lawn | p | c | В | | _ | | | В | c | | | Row Grop | <u>p</u> | С | В | | _ | | | р | 3 _ | <u>c</u> | | Pasture/ Range | p | _c | | | | | | В | c | | | Logging Operations | P | C | ·B | 0 | | | 0 | В | c | | | Mining Activity | • •P • | C | В | 0 / | Υ | 0 | \0 | р | | | | Vegetation Management | Р | С | В | þ | | | 0_ | В | c | | | Bridges/ Abutments | р | С | В | | | | | В | c | р | | Orchards/ Vineyards | <u>p</u> | c | В | _ | | | | _B | <u>c_</u> | p | | ************************************** | 40.4044.00.00 | | Maria di Contratti di Calendari | |--|------------------|--------------------|---| *************************************** | | | | | | | | | | | | | | | | | D | Bd+d++10-+4484 E | | | | | *********** | ****************** | ************* | | | | | | | | | | | | Downstream (required) | | |------------------------|---| | , | 凶 | | Upstream (optional) | | | SWAMP Stream Hab | oitat Characterization Fo | o <u>rm F</u> | -ULL VEF | RSION | Revi | ision Date: Ja | anuary 9 th , 2012 | V-V | |--
--|-----------------------------|--------------|------------|---|--|--|--| | Site Code; | ceek Contal | | 9110 | | | Analyte | Control of the Contro | | | | BENTHIC INVERTEB | BRATE SAME | PLES | | | Light | Cal date: / | / | | ea | llection Method | | | | | Wat | Calidate: / | /, | | | necuon⊧wennou
lard o⊩margin₌center-m | nargin) | Replic | ate - | #Jars | temp | Cal date: / | 1. | | Defection to the Party Addings of All | 三、1000年第二年第二十二年 | 7 | | | Adal Cal | dissolved | Odi udic. | 1. | | RWB (standard) | RWB (MCM) | (TRC) | 1.01 | | | oxygen | Cal date: | 1 | | R,WB (standard) | RWB (MCM) | TRC | 2 | | | oxygen | A Company | | | () | (, | ''`` | | | | sat sat | Cal date: | / January | | RWB (standard) | RWB (MCM) | TRC | | | | specific cond | Cal date: | | | RWB (standard) | RWB (MGM) | TDC | - | | | SCANDA BROKENSKA | Cal date. | | | , | , , | TRC | | | | Salinity | , Cal date: | 1 | | Field Notes/ Con | | | | | | Altrolipity | | 7 4. V | | | rrow e* ' co11f>,v,ve,o, | 15: t1., je | - bird | h,p | ines | Alkalinity | Cal date: | - 31.50 | | | | 10, -, -,, | , | 11 | | Totalidin. | A Committee of the Comm | . 69. s . 39
31 | | 0-A- \UU | '-\-l s:4"-S , | | | | | Turbidity | Cal date: | 1 | | | | | 17 17 | | | Silica | | | | | | | 1837/3 | | | V Olivo | Cal date: 🦠 /: 🧓 | <i>f</i> | | | | | | North A | | Airtemp | | | | | | | | | | 29-10-10-10-10-10-10-10-10-10-10-10-10-10- | Cal date: / | 1. 13-45 | | | | | | | | Velocity | | 5000 P. 10276 | | ning sampatinwasi da | ser op og av forste herforet og tremste og | ere er proved programme fil | | | | VC COA. | Cal date: | $F_{\gamma_{k}, \gamma_{k}, \gamma_{k}}$ | | | ALGAE SA | MPLES | | | | Mate | r and Sedime | 4 | | Collection | | | VAMP S | WAMP | SWAMP : | | | | | (circle one or write new n | and the second s | | | EMAP _ | EMAP | GIRG | mistry Sample | Š | | Collection | | | | Rep. | Rep. | | /ATER chemistry | 1. | | sum # of transect | (4) (-1), 40-13, (4)-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 1 | 2 | | | gra_b sarnple | Wa_s collected | D | | Rubber Delimiter (area | · · · · · · · · · · · · · · · · · · · | | - | | | (nutrients, S | | | | PVC Delimiter (area=1 | 2.6cm') | | | | | 1 | UPLICATE WATER | | | Syringe Scrubber (area | :a=5.3cm') | | | | | chemJstry gr
collected | ab- sample wa.s | D | | Other area= | | | | | | | EDIMENT chemistry | ח | | Nul)lberof.transects s | amplc:J.(O, 11 İ | | | | | sample .asc | | D | | Cpmposite Volurne {m | nL) | | | | † | Check) ! aDl | UPLICATE SEO | | | | , | | | | | .chemistry sa | ample was collected | D | | Assel]lblag ID volume (| (diatoms)
(50 mltube) | | | | | Sed Coll· Device : S | SCOOP CORE | GRAB | | Assemblage ID volume | 50 ml tube | | | | | | Stainless Steel Polyeth | | | Check if Qualitative Alga | ae sample was | | - | | | Sediment Coll | ection | | | collected with soft algae/
re uiredeven if macroal ac | /diatom.sample
enotvisible | D I | D | D | D | Depth (cm): | 2 or | 5 | | Check if a water chem. in | | | | 1; | | | ction records for each ch"e | | | was;collect§id (chi, AFD | DM) | D 1 | D | di | D. | | ed ari.d Qrab water chertlistry | | | OhlQ[bphylla volume | . use GF/F filter | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 5.44.7 | | Ash Jree Dry Mass | use GFIF filter | | | | | | A CHEST CONTRACT | | | | ml (preferred vol) | | | | | | | | | | | | NAL PHOTOG | | AND | | | The state of s | | Description | Photo Cod | e e e e | | | in- | | == Phóto Cade | | | With the Control of the Control | | | <u> </u> | <u> </u> | | 12 144 25 | | | | and the second s | I | | | 4, 1, 2, 2 | | 1 | | | | | SW | AMP Stream I | Habitat Cha | racteriz | ation Fo | rm | FUL | L VERSI | <u>'ON</u>
| Re | vision D | ate: Jar | ıuary 9 ^t | th , 2012 | | |--|--------------------|--|--|---|---|-----------------------------|---------------------------------------|--|-----------------------------------|------------------------------------|--|---|----------------------|------------------------------------|-------------| | | F | REACH DOCK | IMENTATIC |)N: | | Standard
Alte | Réach L
mate Re | angth (wett
ach Lengtr | ed width
i (wetted | ≤ 10 m) # | 150 m | Distance | between | transects | ≅ 15 m | | | Proje | ect Name: ρ_{1} | e Creek | SWAMI | BIGA | SP Fasan | enT | | EPT / | | / 2012 | Sampl | | | | | | Strea | m Name: '.\' | • ('.,.<.0 | | | De amore | jame - | Site Nar | ne/ Des | cription: | | | | | | | • | Site | $r_1 \stackrel{1}{=}$ Code: \cdot ; | :- C<.,.,l | Lc,U | Į. | | | Crew Me | | — <i>™&</i>
Z- ı A s | | i) S 6 | • Ca | lve.AU | /1'1.ar. "' | | • | Latitu | ıde (actual – de | cimal degre | es): ºN | 37.30 | ,217 | | datum: | 1 | <u>L- 176</u> | | | | | | | | | itude (actual – | | | | | 4 | NAD83
other: | | Device: | ARMIN | r5x61 | · · · · | | : | | ; | | MBIENT WATER | | | | ≓ 2.≛Tα | irbidity: si | lica, oxyge | a satural | on and a | dr fernover | | | Pank I | ength (m | | 4 | | Temp (Deg C) | βH | | MR AND COMPANY OF THE PARK AND ADDRESS. | ly (0)/L) | The second second | <i>calibration</i>
furbidity (n | Statement & Sections & Section 19 | | ngge 24
n-Sat-(%) | | (see req | | guidelines | | 00736 | 1 | 0.64 | 9,4 | 14 | 0,0 | | | Ö | | | | | | 150 | | | (), | Disso | ived O² (mg/L) | Specific
Conduct (4) | S/cm) | Salini | ty (ppf) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Silica (mg/ | 4) | Air Ten | ip (Deg C) | Salar | Explanat | tion: | | | | | 7.17 | 0.074 | F. | 0 | | | 134 | | | 6.0 | | | ·
 | | | · | 1 St ir | Discharce I | | | downsh | eam\ | | ē | heck if | discha | rge mea | surem | ents n | ot poss | ible — | | , | THE SHIP OF | /ELOCITY ARE | the property of the same | 1930 St. 10 10 10 10 10 10 10 10 10 10 10 10 10 | Michigan may 1915. | cal, dat | le | | nsect Wi | | BUOYA | ит Овј | ест Ме | tes sect
THOD (us
I not poss | se ONLY if | | , | 7 | Distance from
Left Bank (cm) | | Veloci
(ft/sec | | | ce from
ink (cm) | Depth
(em)A | Ve | ocity | | 2000 | | Float 2 | | | Salar S | | 40 | 1.7 | -04 | A Company of | | | / . i:i | 1 | sec) 📜
.88 | oi!:ita:n_c
in <; | \; <u></u> | | | | | Carl of Mick | 2 | 70 | 1.6 | 0.1 | 1 /12 | 1: | 3 <i>o</i> | | | .Is | fl <ii; _ir<="" th=""><th></th><th></th><th></th><th></th></ii;> | | | | | | Port she | (23 | 120 | 32 | 0.7 | 7 13 | _ | S O | 1.& | | 2.7 | 147 17 A | ., ., | ich Cro | ss Secti
∕Iidki | on 🗐 | | Construct | 4 | 150 | 3.2 | -0,2 | 6 14 | 1 | 10 | [.3 | | +2- | | c : Uppe
c-:-¦Csectio | | ∕/IIdl <i
ectioh:::: :};</i
 | | | | 5 | 180 | 3.2 | 0 | 15 | l · | 90 | 0.4 | 2. | <i>†7</i> - | Width | est I | | | P | | , } | 6 | 210 | 2.9 | | 16 | Z . | 10 | υ ,'+ | 2, | -# | Depth 1 | | | | | | ا
المسيدية
المارا | 7. | is majarap di disempan ministra di penerinja. Kamaminina menoning panggan danggan di sebagai penerinjang di se
A kamamining manasan majarah sa
panggan dan ministra penggan danggan danggan danggan dan menggan dan sebagai p | Andrews of the State Sta | MANAGEMENT HER THE LAND | 17 | | | | | | Depth 2 | i i i i i i i i i i i i i i i i i i i | | | | | Re- Survice | 8 | 40 | 0.4 | 0.3 | 18 | | | | | _ | Depth 3 | | | | | | Als of | 9 | 70 | 0.7 | 3.13 | 19 | | | | | | Depth 4 | YX
YX
HI | | | | | 150 parl | -10 | 90 | 0.9 | 3.63 | . 20 | | | | | . 1 . 2 | Depth 5 | | | | | | | | ner en | | Not | ABLE F | EED C | ONDITIO | NS (che | ck one l | ex per f | opic) | | | turi e e e | | | | Ε | vidence of rec | ent rainfall | | | | | - | N | | 1500 | ninimal | | >10% f | | | | Ţ | Evidence of fir | es in réach | or imme | diately i | pstrean | ı (<500 i | n) 🔭 | NO. |) | Χ. | 1 year | | ≮5.yea | I'S | | | | Dominant la | nduse/ land | coverin | area sür | roundin | g reach | a a de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de l
La compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compa | Agricu | Sandardon Santa Charles | This congress | Forest | X | Rangeia | and . | | | | | | | | | | | Urba
Eindus | | Sub | urb/Towr | | Other | Same of the | | | | TIONAL COBBL
BEDDEDNESS | | 1 2 2 3 7 | 1.3 | 15 (A 5-3 | <u> </u> | 696 | 477 | ***8 | 9 | #10° | 211 | The second second second | =13 | | | | MEASURES | 20 | 5 | 5 | 0 | 10 | 40 | 60 | 15 | 35 | 10 | 10 | 5 | 2.5 | | | forms | If needed to attai | il a | 15 | 16 | 1.7 | :18 | 19 | | | 22 | 23 | 24 | 25 | | | Exercises and the second secon | tai (| iet count of 25; =
leasure in %) | 80 | 60 | 30 | 5 | 30 | 10 | 5 | 15 | 25 | 25 | 15 | 30 | | | Site Code: | eck Ex | a la la | Date: 🧖 🤊 | 1.11 | / 2012 | | | | | | | |--|----------------------------|---|---------------------------------|----------------------|--|-----------------------------|---------------------------------|---|------------------------------------|--|----------------------------------| | | SEOPE and BE | ARING FOR | м (tran | sect k | ased = | forFull | PHAB | only) | | AUTOLEVE
CLINOMETE
HANDLEVE | R = × | | | | Main Se | GMENT | la plant | | | | SUPPLEMENT
at of interstrans | | | | | Starting
Transect | | pplemental se
Slope (%) or | | | Percent | | if su | ipplemental se
Slope or
Elevation | | e used) | Percent | | | Stadia rod
measurements | Elevation Difference Cm 2 % | Length
(m) | Bearing
(0°-359°) | | Stadi
measur | | Difference
Cm M % | Length
(m) | Bearing
(0°-359°) | of Total
Length
(%) | | ,K | 66 | 17 | | | | 46 | | = 119- | | | | | J | 58 | 105 | 4.25
2.45
2.45 | | | -:1° | { | 173 | | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | A policia de la composition della de | 38 | 125 | | | | 2 |
 | •Itq I∙ | | | | | | 53 | 110 | | | | 30 | :
:
:
:
:
:
: | | | | | | G | 38 | 125 | 1400
1400 | | | _ | : | | | | | | | 73! | 90 | | | | | : | | | | | | | 511 | 105 | | | | 1 | | | | | | | | 4 | 1 5q | | | | 1 | :
: | | | <u> </u> | 1988 | | | 71 | 92 | | | | | | | | | | | B | 17 | 146 | <i>i.</i> | | | | | | | | | | Aadditional | H2 15 | [121]
59 ÷ 15,0 | (10.5) | <i>(</i>) - | | | | | | | | | calculation
area | | | | | | 0 () | . I | ligh Gradie | nt ☑ 🌲 | Low Gr | adient ⊢i∗ | | ² 4% Para | meter last | NAL HABITAT
Optim | al· | | on
Suboptin | nal | A PARTIE | Wardinal | | gai Poo | | | | | Greater than 70% or
vorable for epifauna
and fish gover (50
agradient stream | al colonization :
% for low- | 50% 6 | nix of stable
or low-gradien
uited for full co | streams), | 30% in id | ix of stable habitat
bw-gradient stream
frequently disturbe | s) (10
d.or l | ss than 20% s
% in low-grade
ack of habitat (| ent streams);
s obvious; | | | 5 | ubmerged logs, und
cobble or other sta
0 (19) 18 | | 15 | potential
14 18 | 12 11 | 10 9 | removed
7 | 6 5 | bstrate unstab | | | Sediment | Deposition | ittle or no enlargen
ir point bars and les
he bottom affected | s than 5% of
by sediment | forma
sand, c | ne new increa
tion, mostly to
ir fine sedimen
trom affected | nn gravel,
t: 5-30% of | sand or fin
50% of th | eposition of new g
e sectiment on bar
e bottom affected (| avel.
130. 10
50 - 5 25 | nvy deposits of
creased bar de
life than 50% o
anging frequen | velopment;
f the bottom | | i i i i i i i i i i i i i i i i i i i | ore 20 | teposition (<20% in
streams
0 (19) 18 | | 15 | w-gradientstr
14 13 | aams) | 10 9 | · | 6 5 | ilow-gradient :
4 ; 3 | atreams) 1 0 | | Channel | Alteration | hannel zation or dro
or minimal, stream
pattern | with normal | (e.g., bo
of pas | channelizatio
idge abulment
t channelizatio
y be present b | s), evidence
n (> 20yrs) | embankme
present on | ation may be exten
hts or shoring struc
both banks, 40 to | sive cerr
etures reac
80% ns | anks shored wi
ent; Over 80%
hichannelized
tream habitat g | of the stream !
and disrupted | | ° Sc | ore: 20 | | 17 16 | | nnelization not | | of stre | am reach dis <i>l</i> upte
8 7 | | or removed | | SWAMP Stream Habitat Characterization Form FULL VERSION Revision Date: January 9th, 2012 Site Code: f,,,..._ C,ai,;. Site Name: 7, Crack Wetted Width (m): Bankfull Width (m): 7,1 Bankfull Height (m): 4 Transect A 5/1.70 | in the second second second second | | | | | | H | | | | Mark Andrews | |------------------------------------|-------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------|--------------------------------------|----------------------------------|---|-----------------|--| | | | | | | | Transect Su | bstrates | | | | | Position. | Dist
from
LB (m) | Depth
(em) | mm/
size
class | Cobble
Embed, | СРОМ | Microalgae :
Thickness :=
Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thickness
Godes
0 = No microalgae present, | | Len ::
Bank :: | 0 | 10 | GC | == | P 🙆 | σ | P 💋 D | P Ø D | P Q D | 1 Present but not visible. | | Left
Center | 1,4 | 41 | SB | | р fJ | t;, | p < D | p ft) D | (!') A D | 2 = Fresent and visible but
, <1mm, Rubbing Ingers
on surface produces a | | Center | 2.8 | 35 | WD | i
 | p ti) | 0 | p ,£ } D | pl)D | p (ill D | brownish tint on them,
scraping leaves visible
trail | | Right;
Center | | 12 | CB | 30 | pi <i>l)</i> | р | Р (j,, D | r 6 □ | p 6) D | uran
3 = 1-5mm;
4 = 5-20mm; | | Right
Bark | 5.6 | 10 | CB | 50 | (P) A | ø | P 🔕 D | P 🚳 D | P 🐼 D | 5 = 20mm,
UD = Cannot defermine if
microaloae present. | | | Note: Sub
class cate | strate slže
gories liste | s can be
od on the | recorded eith
supplementa | ier as dîréci
I page (dire | t measures of the | e median axis of
s preferred) | each particle or | one of the size | substrate too small or
covered with silt
(formerly Z code) | | And the second second second | | | | | | | | regions from the control of the control | | D = Dry, not assessed | | RIPARIAN VEGETATION T. (acing downstream) | 0 = Abs
1 = Spa
2 = Mod | ırse (< | 10% | T. | 4 = 1 | | | | | Section of the second | INSTREAM : HABITAT COMPLEXITY | 1
2
3 | ≓Spa
=Mod
=Hea | rse
Idrate
Vy | (0%
(410
(10-40
(40-75
% (376 | 96)
96)
96) | DENSIOME
READINGS
Count
covere | (0-17) | |--|-------------------------------|---------|------|------|-------|------|------|---|---|-----------------------|---|-------------|----------------------|---------------------|---|-------------------|--------------------------------------|--------| | Vegetation Class | Le | ft Ba | ńk | | | Rigi | ht B | ank | | 2240 | Filamentous Algae | 0 | 1 | 2 | 3 | 4 | Center | 0 | | У Пррег | Canopy | (>5) | n hi | gh) | | | | | | 200 | Aquatic Macrophytes/
Emergent Vegetation | 4 4 | * **** | 2 | 3 | 4 | Left | 8 | | Trees and saplings >5 m high | 0 1 | 0 | 3 | 4 | 0 | 1 | 2 | <u>Ø</u> | 4 | ž. | Boulders | | 1 | 2 | 3 _ | | Center
Upstream | 1:\$ | | Lower C | anopy ((|).5 m- | 5 m | hig | h) 🚆 | | | | | | Woody Debris >0.3 m | 0 | Ci) | 2 | 3 | 4 | Center | | | All vegetation 0.5 m to 5 m | 0 (1) | 2 | 3 | 4 | 0 | 0 | 2 | 3 | 4 | | Woody Debris <0.3 m | 0 | (j) | 2 | 3 | 4 | Right
Center | 14 | | Groun | d Cover | (<0.5 | m h | igh) | | | | ingle in the control of | | | Undercut Banks | 0 | | 2 | 3 | 4 . | Downstream | 10 | | Woody shrubs & saplings
<0.5 M | o (D | 2 | 3 | 4 | 0 | G) | 2 | 3 | 4 | | Overhang. Vegetation | 0 | ('i) | 2 | 3 | 4 | — Optional | | | Herbs/ grasses | 0 | | 3 | 4 | 0 | GI | 2 | 3 | 4 | | Live Tree Roots | 0 | CD | 2 | 3 | 4 | Left Bank | | | Barren, bare soil/duff | 0 | | '3 | 4 | 0 | | 2 | | 4 | | Artificial Structures | _ | | 2. | 3 | 4 | Bight Bank | | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = 9 | 10m+< | r Mank
50m: fr | & 10m f
om Offar
es of No | nnel | innel; | | | | | |-----------|---|-------------------------|------------|-------------------|---------------------------------|------|--------|--------|-------|------------------|----------| | i | EFFSTATION | | Left | Bank | | Chai | nel | | Right | Ban | (| | | Walls/ Rip-rap/ Dams | Р | С | В | þ | Υ | 0 | 1 | ρВ | С | Р | | | Buildings | p | c | В | | , | | | В | С | Р | | 4 | Pavement/Cleared Lot : | p | c | В | | | | | В | С | p | | ` | Road/Rallroad | р | c | В | | | | | В | c | _ | | | Pipes (Inlet/ Outlet) | p | С | В | | | | | В | c | p | | | Landfill Trash | р | _ <u>c</u> | В | | | | _ | В | С | р | | | Park/:Lawn | p | c | В | | | | | В | c | p | | | Row Grop | <u>p</u> | _ <u>c</u> | В | | | | | В | c | p | | - Carrier | Pasture/Range | <u>р</u> | _c | В | | | | \neg | В | С | _ | | 2020 | Logging Operations | - | | 2 | | | | | В | c | p | | 12av2m25 | Mining Activity | p | c | В | | | | | В | c | _ | | 100 | Vegetation Management | p | С | В | | | | | p | | p | | 1501.632 | Bridges/ Abutments | p | С | В | | | T | Ī | В | С | p | | S HEDRON | Orchards/ Vineyards | | c | В | | | | | В | c | p | | | | | | S | heet | med | al | t | ck,_ | , \overline{L} | | | E | | | |---|-------------------------|---| | | | | | | | | | | | | | | | | | · D | 4 | | | | | | | | | | | | ************************* | | * · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | *************************************** | • | ***************** | | | | | | | | | | | | | | | 1 con since or consider | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | | | Page 3 off 26 | Inter-Transect | t: AB | V | Vetted Width (m |): 4.5 | | | |---|----------------------|---------------------------------|------------------------|-------------------------|----------------|---| | | ln(| er-Transect | Substrates | | | | | bistion Depth Size C | | Microalgae
Threkness
Gode | Macroalgae
Attached | Macroalgae
Umitached | Macrophytes | Microalgae Thickne Codes Denomicroalgae prese | | Feb. 0 4 58 | - P Ø | 1 | P (5) D | P A D | PAD. | 1 = Present but not visit Feel's slimy 2 = Vissent and visite | | enter 2?, ()> | | ·- O | p D | p D | P A D | is frum Rubbing finge
can stirtage produces
crownish that on them | | enier : f_, t ')(. e, | р ј | 0 | (!)A , b | p D | P A D | scraping leaves visib
trail | | Grider 3.3 31 58 | PR. | <u> </u> | | p D | P A D | = 3 = 1-5mm;
= 4 = 5-20mm;
= 5 = >20mm; | | Rent 4.5 3 AS | P Ø | U | P (AD | P A D | P A D | UD = Carinot determine microalgae present. «substrate too small o | | a Note: Substrate sizes can be reconciled and the sup | plemental page (dire | ct measures of the | ts preferred) | eacrepanicie or | ene or ne size | " covered with slit. " (formerly Z code) D = Dry thot assessed | | 。
[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2 | | |---|-------------| | FLOW HABITA | | | Channel Type | :% <u>-</u> | | t:Cascade/Æalis | <u>L</u> 'S | | # // Papide | 55' | | Riffle - 2 | <u>15</u> | | Programme and the second | | | Glide - Glide | !, | | Pool 4.75 | 0 | | Dry i | 0 | | SWAMP Stream Habitat Chara | acterization Form | FULL VERSION Revis | sion Date: Januar 👊 2012 | |-------------------------------------|--------------------------|--------------------------|--| | Site Code},,,:;, <i>tr.u)c.,</i> Ex | Site Name_: P . | | Date: <u>0</u> 9 / 1 / 2012 | | Wetted Width (m): ,1 2, | Bankfull Width (m): 5, 1 | Bankfull Height (m): .42 | Transect B | | | | | | | | Transect Su | bstrates | | | | | | |-----------------|--|---------------|---------------|----------------------|-------|---------------------------------|------------------------|--------------------------|---|---|--|--| | Position | Dist
from
LB (m) | Depth
(em) | size
Glass | %
Cobble
Embed | СРОМ | Microalgae
Thickness
Code | Macroalgae
Attached | Macroalgae
Unattached | Macrophytes | Microalgae Thickness Codés 0 = No microalgae present. | | | | Leit
Bank | 0 | 19 | CB | 40 | Р 👸 | 0 | P 💋 D | P 💋 D | P 🙆 D | 1 = Present but not visible.
Feels \$limy; | | | | Left
Center | 1.0 | 2 | | | р . | 0 | _
D | p ® D | :) A D</td <td>2 = Present and visible but 31mm, Rubbing fingers on surface produces a</td> | 2 = Present and visible but 31mm, Rubbing fingers on surface produces a | | | | Center: | 2.1 | 0 | '× I, | | p (J. | O | p O | b @ D | P @ D | brownish tint on them;
scraping leaves visible | | | | Right
Genter | 3.1 | '8 ' / | 56 | | p '® | 0 | p le) D | p li!! D | p (b D | trail.
3 = 1-5mm;
4 = 5-20mm | | | | Right
Bank | 4,2 | 30 | XB | | P 🔕 | 1 | P 👌 D | P 6 D | P (3 D | 5 = >20mm
UD = Cannot determine (f | | | | | Note; Substrate sizes can be recorded either as direct measures of the median axis of each particle or one of the size categories listed on the supplemental page (direct measurements preferred) covered with silt. To a Dry not assessed. | | | | | | | | | | | | | RIPARIAN VEGETATION
(facing downstream) | 0 = At
1 = St
2 = M | arse (| <109 | 6) | 4′=1 | Heav
/ery l | y (4)
leav |)-75%
NJ (>1 |)
5%) | | INSTREAM HABITAT COMPLEXITY | 0 = Abs
1 = Spa
2 = Mod
3 = Hea
4 = Very | se
erate (
vy (|
(<10
(10-40
(40-7) | %)
:%) | DENSIOMET
READINGS (Countrovered |)-17) | |--|---------------------------|-------------|------|-------|------|----------------|---------------|-----------------|----------|---|---|--|-----------------------|--------------------------|-----------|-------------------------------------|-----------------------| | Vegetation Class | ##£ | eft B | ank | | | Rig | ht E | 3ank | | Ī | Filamentous Algae | 00 | 2 | 3 | 4 | Center | 1,, | | Uppe | r Canop | y (>5 | m h | igh) | | | | | ji. | | Aquatic Macrophytes/
Emergent Vegetation | 1 | 2 | 3 | 4 | Left | 14 | | Trees and saplings >5 m high | 0 - | <i>(</i> 2) | 3 | 4 | 0 | 1 | (2) | 3 | 4 | | Boulders | 0 | 2 | | 4 | Center
Upstream | 111 | | Lower C | anopy | (0.5 m | -5 n | n hìg | ነ) | | | | | | Woody Debris >0.3 m | 00 | 2 | 3 | 4 | Center | 1 444 | | All vegetation 0.5 m to 5 m | 0 | 2 | @ | 4 | | | _ | | | ľ | Woody Debris <: 0.3 m | ₀ (iJ | 2 | 3 | 4 | Right | 17 | | Groun | | | | | | | | | 140-16 | L | Undercut Banks | 0 | 2 | 3 | 4 | Downstream | 9 | | Woody shrubs & saplings
<0.5 m | 0 (J |) 2 | 3 | 4 | 0 | (. | 2 | 3 | 4 | | Overhang, Vegetation | 0 - © | 2 | 3 | 4 | | | | Herbs/ grasses | 0 | (y | 3 | 4 | 0 | CD | 2 | 3 | 4 | | Live Tree Roots | 0 Ci) | 2 | 3 | 4 | Left Bank | attacher and a second | | Barren. bare soil/ duff | 0 | R | 3 | 4 | 0 | | 2 | G> | 4 | | Artificial Structures | | 2 | 3 | 4 | Bight Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = ≥ | 0 ÷ Not Present; B ≈ On Bank; C ⇒ Between Bank & 10m from Channe; P ≈ >10m <50m from Channe; Channet (record Yes or No) | | | | | | | | | | | | | |---|-------------------------|---|------|----|------|-----|---|---|---|---|--|--|--|--| | | | Left | Bank | | Righ | Ban | k | | | | | | | | | Walls/ Rip-rap/ Dams | Р | C | В | (0 | Υ | Ñ | 6 | В | С | Р | | | | | | Buildings. | Р | c | В | 0 | Y | N | • | В | С | Р | | | | | | Pavenient/ Cleared Let | p | c | В | | | | | В | | p | | | | | | Road/ Railroad | p | С | В | | | 1 | | В | С | p | | | | | | Pipes (Inlet/ Outlet) | p | С | В | | | | | В | С | p | | | | | | Landfill Trash | p | С | В | | | • | | В | С | p | | | | | | Park/Lawn 1 | <u>p</u> | c | В | | | | | В | С | p | | | | | | Row Crop | p | c | В | | | | | В | С | p | | | | | | Pasture/Range | <u>p</u> | c | В | | | | | В | С | р | | | | | | Logging Operations | p | c | В | | | | | В | С | р | | | | | | Minling Activity | р | c | В | | | | | В | С | p | | | | | | Vegetation Management | p | С | В | | | | | В | c | p | | | | | | Bridges/Abutments | p | С | В | | | | | В | С | p | | | | | | Orchards/ Vineyards | p | c | В | | | | | В | c | p | | | | | | RANK STANDART PROPERTY CONTRACTOR OF THE PROPERT | | |--|--| | PANKS PORTEY THE CONTROL OF THE PARKS HELDER HELDE | | | RAW STABILITY BELL LESS CHILD CALL CALLED TO THE COLUMN C | | | Talland Carried water | | | Talland Carried water | | | Talland Carried water | | | Talland Carried water | | | Talland Carried water | | | Lattick coded (Trickle) water | | | Description of the second seco | | | Description of the second seco | | | Anthony and Anthony and the state of sta | | | Laff Chiefe enucleet Chiefenigo water | | | | | | Landberk: eruded (Trophy) makin | | | Landberk: eruded (Trophy) makin | | | Landberk: eruded (Trophy) makin | | | nate Company | | | Tank Dark: eroded (Strongly) stable | | | Lantings muches Carendad make | | | Lint Direk - eradeci - (Greenigo) - austr | | | Tall Dirik - erodeci (Giranda) - makin | | | And Company to the second Company | | | Laff Dirik eroded (Circolia) subte | | | (14)(14) ended (Tropp) wake | | | Last Black erocked Greening ducke | | | Last Black erocked Greening ducke | | | Add there exists Sirestally states | | | Materia (C <u>iderari</u>) Peteran (Madiffication | | | Hard California Control of the Contr | | | THE PERSON NAMED IN ADDITIONAL OF THE PERSON NAMED IN TAXABLE PROPERTY OF THE PERSON NAMED IN TAXABLE PROPERTY OF PROP | | | يسعي التهالية المسالة | | | يسعي التهالية المسالة | | | يسمعن المستدالة | | | | | | | | | إنسانا فعيرين المنافقين ال | Petronica de la companya de la companya de la companya de la companya de la companya de la companya de la comp | | | | | ====================================== | |--|-------|------------|--------------|--------------|--| | Bank 0 5 36 | P 🚳 | O | P Ø D P Ø | D P D | Feels slimy." 2 = Present and visible b | | onter 0.8 — 5e | p f)) | D | p@D P 🗜 | D D B D | finm; Rubbing lingers
ton surface produces a | | enter 1.7 3)'6 | P @ | 0 | р !!, D р @ |)' D : p @ D | prownish tink on them;
 scraping leaves visible
 trail | | Right 2.5 65 5e, | | O , | P D | ' P@ D | 3 = 1.5mm, 3 = 4 = 5.20mm, 4 = 5.20mm, 4 = 5.20mm, 5 = 5.30mm, | | Right 3.4 39 GC - | - P 🚳 | 0.5 | P Ø D P Ø | D P D | 5 ∈ >20mm;
UD =(Cannot determine)
imigroalgae present,
substrate too small of | | ************************************** | - Bab And |
--|--------------------| | Baardellaarrender-tankender-tankella-ta | 10 10 | | | | | | | | | | | | 4.0 | | | 1 0 | | | 10 | | | 10 | | | 10 | | | <u>10</u> | | | 10 | | | 10 | | | 10 | | | 10 | | | 10
O | | | 10
Q | | | 10
Q | | 4.005.05 | 10
D | | | 10 D | | | 10 b (| | | ، ط ر | | | 10 b a | | 1.15.
2.15. | 10 b s | | | 10 b s | | | 10 b s | | | 10 b s | | | 10 b s | | | 10 0 0 0 | | | 10 b s c | | | 10 b s c | | | 10 b s 0 | | | 10
b
s
0 | | | 10
b s 0 | | | 10 b s 0 | | | 10 b 80 | | | 10
by s | | | | | | | | | 10
5
0 | | | 10
5
0 | | 100 pt. 1 | 10 s O O | | 19 FF. | | 3,5 Site Code: P, ' Wetted Width (m): Bankfull Width(m): 7 / Bankfull Height (m): 0.'35 Date: <u>Ø 🧐 / / 1</u> 1 / 2012 **Transect C** | | | | | | | | ili wirii | ies iii | | | | | | |----------------|--------------|--------------|------------|----------------|--------------|-----------------------------------|-----------|------------|---------|-----------|-----------|--------|---| Bank | O | | . . | <u> </u> | | 0_ | P | A D | Ρį | l D | Р | D | r = rresent out not visible,
Feals slimy | | Left
Center | <i>"</i> % | 1 2 | | | p | 0 | p | A D | P A | D | .P | D | 2 Present and Visible but
<1mm; Rubbing finders
on surface procuces a | | Center | 1 ,7- | _10 | c£, | 1 O | p <i>t</i> > | -0 | р | A D | P A | D | P | D | brownish tint on them.——
scraping leaves visible | | Right Center | 2.5 | <i>10</i> | ge, | | p & | 0 | Р | A D | P A | D | P | D | frail
3 = 1-6rmm;
4 = 5-20mm; | | Right
Bank | 3.5 | 5 | GF | - | Р (А) | 0 | P | A D | P A | Ð | P | D | 5 = >20mm;
UD = Cannot determine if | | | Note: Sub | strate size: | can be | recorded eith | ier as direc | t measures of th
ct measuremen | e media | in axis of | each pa | rticle or | one of th | e size | inicroalgae present, substrate (oo smal) or covered with sil: | | | | , | | out piction is | n poga (dije | C. Hoadu ellen | is hiere | ngu) | | | *** | | (formerly 2 code) D = Dry hot assessed | | RIPARIAN VEGETATION
(facing downstream) | 0 = Ab
1 = Sp
2 = Mo | arse | (<10° | %) | 4=\ | ery l | deav, | r (>7 |)
5%) | | INSTREAM HABITAT COMPLEXITY | - 0 = Abso
-1 = Spar
-2 = Mod
-3 = Hear
-4 = Very | se
erate
Vy | (510
(10-40
(40-7) | 1%)
1%)
1%) | | DENSIOMET
READINGS (C
count covered | 0-17) | |--|----------------------------|-------|----------|-------|-----|-------|-------|-------|----------|-------|---|---|-------------------|--------------------------|-------------------|-------|---|--| | Vegetation Class | <u> </u> | eft E | ank | | | Rig | ht B | ank | | ė | Filamentous Algae | 0 (D) | 2 | 3 | 4 | ,
 | Center | Ī | | Uppe | r Canop | y (>! | mh | iigh) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | -ما | | 3 | 4 | ļ | Lett | 1,1 | | Trees and saplings >5 m high | o O |) 2 | 3 | 4 | 0 | 1 | 0 | 3 | 4 | | Boulders | 0 1 | 2 | - 0 | 4 | | Center
Upstream | 16 | | Lower C | апору (| 0.5 r | n-5 n | n hig | h) | | | | | | Woody Debris >0.3 | 0 | 2 | 3 | 4 | | Center | | | All vegetation 0.5 m to 5 m | 0 1 | 2 | 3 | 4 | 0 | 1 | (2) | 3 | 4 | | Woody Debris <0.3 m | 0 (D | 2 | 3 | 4 | | Right | 11 | | | d Cóvei | (<0. | 5 m | hĩah) | | | | | | | Undercut Banks | 0 | _ 2 | 3 | 4 | | Center
Downstream | 1 . | | Woody shrubs & saplings | 0 (| _ | 3 | 4 | 0 | | (;) | 3 | 4
| i
 | Overhang. Vegetation. | 0 (J | 2 | 3 | 4 | | 7
Optional | | | Herbs/ grasses | 0)8 | 316) | 3 | 4 | 0 | 0> | 2 | 3 | 4 | | Live Tree Roots | 0 6) | 2 | 3 | 4 | | Left Bank | Name of the last o | | Ba rren. bare soil/ duff | 0 | | 3 | 4 | 0 | | (z) | 3 | 4 | | Artificial Structures | | 2 | 3 | 4 | | Right Bank | | | HUMAN INFLUENCE
(circle only the classes to
wetted channel) | B=0
G=B
P=3 | 10m+s
nel (re | k
1 Bank
50m fr
cord Y | 8 10m.)
op:Cha
es o:No | inel; | | | | | | |---|-------------------|------------------|---------------------------------|------------------------------|-------|------|----------|------|-----|---| | | | Left | Bank | Apparent of the | Cha | nnel | | Righ | Ban | < | | Walls/ Rip-rap/ Dams | P | С | В | þ | Υ | Ŋ | O | В | С | P | | Buildings | р | c | В | Ь | Y | N | 0 | В | С | Р | | -Pavement/ Cleared Lot | р | С | В | | | | | В | c | р | | Road/Railroad | р | С | В | | | Ш | | B | c | р | | Pipes (Infel/ Outlet) | р | С | В | | | Ti | | В | c | р | | Landfill/Trash | p | С | В | | | 1 | | В | С | р | | Park/Lawn | р | С | В | | - | | <u>'</u> | В | c | р | | Row Grop 4 | <u>р</u> | c | В | | _ | _ | | В | c | р | | Pasture/ Range | р | c | В | | | | | В | c | р | | Logging Operations | р | c | В | | | | | В | c | р | | Mining Activity | р | c | В | | | | | В | c | р | | Vegetation Management | р | c | В | | | | | В. | c | р | | Bridges/Abutments | р | c | В | | | | | В | c | р | | Orchards/-Vineyards | р | c | В | | _ | | | В | С | р | | | ************************* | |--|---------------------------| 7. × 3 10 × 4 | I | nter-T | rans | ect: CI | | | and the second of o | | | | | | | |-----------------|--------------------------------|----------------------------|-----------------------|----------------------------|--------------|-------------------------------------|--|-----------------|---------------------|----------|--------|------------|--| | | | | | | i Ji kn | ter-Transect | Subst | rates - | | | | (1) | | | ≅-Position= | ⇒ Dist
=ftom=2
=I-B-(m)= | Depth
(em) | s size = | %
Cobble
Embed | CROM | Mitioalgae
Thickness
Code | and the state of the last of the | oalgae
iehed | Macro
Unatt | | | rophytes | Microalgae Thickness Codes O No microalgae present | | Banke | .0 | | | | | | 8 1.38 Q.19 | D | r n | υ | ľ | ğμ | Feels rough, not silmy Brack how not sill like Feels slimy. 2 = Present and visible but | | Eeft.
Center | ∀ ,X | 25 | e, | | p <i>t!z</i> | | р | D | p | D | p | (). D | Immy Rubbing fingers to an surface produces a kind to brownish that an them. | | Center | ,{,(,, | O | '/\$ | | p (el | l> | p | D | p | D | R | A D | | | Right Center | <u>2't</u> | 0 | ')(e, | | р (f1
I | b | р
 | D
I | р
1 1 | D | p | 6)D. | 5 = \$20mm (4) 5 = \$20mm | | Right
Bank | 3.2 | <u> </u> | CB | 10 | P Ø | 0 | P | d D | P | D | P | ∌ D | UD = Cannot determine if 'A' microalgee present, 's substrate too small or | | | Note: Sub
class cate | strate size
gories list | s can be
ed on the | recorded eit
supplement | al page (dir | t measures of the
ect measuremen | its prefe | rred) . | each pa | rhele or | one of | the size | covered with silt (formerly Z code) D = Dry _not assessed | | 1.8 3.3 5 3.4 5 3.4 5 5.4 | | |--|---| | | | | | | | | | | | | | W-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | ****************** | | W-41-Ma-14-411-4-41-4-M-41-4-4-4-4-4-4-4-4-4-4- | | | | *************************************** | | | | | : ::::::::::::::::::::::::::::::::::::: | | | | | | | *************************************** | | | *************************************** | | | | | | | | : #:################################## | | | | 7.21 | | | ************************* | | *************************************** | | | *************************************** | | | *************************************** | 1999 11 16 12 | | | | | | | | | # 67 · · · · | | | F 475 | | | | | | *************************************** | | | | | | # .H :: | | -2-1-0-11-11-11-11-11-11-11-11-1-1-1-1-1 | 71 | | | | | | ****** | | | 100 | | | 720 | | | | | | | | | art. | | | 10.0: 12 | | | **** | | | *************************************** | | | | | ###################################### | 27 | | #************************************* | 1 2 4 | | | | | | | | The State of the Control Cont | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | a the transfer of the | | | | | | | | | | | | | | | | ~ ~ 0 | | | | | | | |-----------------|-------------------------|------------------------------|----------------------|------------------------------|------------------|--------------|---------------------------------------|----------------------|------------|---------------|---------|---------------------|-----------|---------|--|--| | | | | | | 1000 | | Transect Si | ibstra | te | S | ST 2 | | | | | | | Position : | Dist
from
LB (m) | Depth
(cm) | mm/
size
člass | %
Cobble
Embed | CP | ON
2 | Microalgae
Thickness
Code | Lyrac | | algae
hed | | oalgae
tached | Macro | ophytes | Microalgae Thickness
Codes
0 = No microalgae present, | | | Left
Bank | 0 | 19 | es | 55 | Р | A | 0 | Р | A | D | P | D | P | D | Feels rough, not slimy,
1 = Present but not visible,
Feels slimy, | | | Center | 0.9 | 32 | 88 | | · P | Α | D | P | A
| D | p | D | р | D | <1mm; Rubbing fingers
en surface produces a | | | Center | 1.8 | 0 | XB | | P | Α | 0 | P | A | D | p | ·_ D | p | D | brownish tint on them;
scraping leaves visible
trail. | | | Right
Center | 2.7 | 12 | СВ | 50 | Р | Α | 0 | P | Α | D | р | _D | p | D | .3 ≠ 1-5mm,
4 ≒ 5-20mm | | | Right
Bank | 3.6 | 2_ | SA | | P | Ø | 0 | P | M | D | P | $\mathbf{\Phi}_{j}$ | Р | ΚĎ | 5 = ≥20mm;
UD = Cannot determine]f
microalgae present; | | | | Note: Sub
class cate | štrate size:
gories liste | can be
d on the | recorded eiti
supplementa | ier as
Il pag | dire
e (d | ct measures of the
rect measuremen | ie medi
its prefe | an
erre | axis of
d) | each pa | irtiçle ör | one of th | ė sizė | substrate too small or
covered with still
(formerly Z code).
D = Dry_rot assessed | | | | - n = | ٨٤٠ | | 107 L | | 52. | i de la composição l | (B) | .3 | (41 | |---|-------|-------|-------|-------|------|-------|--|------|-----|-----| | RIPARIAN VEGETATION (Bicing downstream) | 1 ∈ | Spa | se (| <10% | | 4 = V | ery ř | eavy | (>7 | 5%) | | Woody shrubs & saplings | -27 | MIGG | erate | 10. | 40% | , | (7 | | | | | Vegetation Class | | Let | tB | ank | 4 | | Ħigl | nt B | ank | 4 | | Herbs/ grasses Uppe | Can | ору | 0 | mßhi | gh) | 0 | - 1 | J | 3 | 4 . | | Tre-Seamon shortmggik 5lwffhigh | 60 | 0 | 2 | 3 | 4 | 00 | 1 | (2) | 3 | 41 | | LowerC | anop | у (0 | .5 m | -5 m | hig | h) : | | | | | | All vegetation 0.5 m to 5 m | 0 | 1 | 2 | 3 | 4 | 0 | | | | ' | | Groun | d Co | ver (| <0.5 | mh | igh) | | | | | 1 | | INSTREAM HABITAT COMPLEXITY | 1#
2#
3 = | Spar
Mou
Heav | nt
se
erata
y
Heav | . (*)
(10-4)
40-7 | 0%)
0%)
5%) | |---|-----------------|---------------------|--------------------------------|-------------------------|-------------------| | Filamentous Algae | 0 | 1 | 2 | 3 | 4 | | Aquatic Macrophytes/
Emergent Vegetation | | | 2 | 3 | 4 | | _Boulders | 0 | | 2 | | 4 | | Woody Debris >C.3 m | 0 | 1 | 2 | 3 | 4 | | Woody Debris <0.3 m | 0 (| CD | 2 | 3 | 4 | | Undercut Banks | 0 | | 2 | 3 | 4 | | Overhang. Vegetation | 0 (| C) | 2 | 3 | 4 | | Live Tree Roots | 0 | | 2 | 3 | 4 | | Artificial Structures | 0 · | 1 | 2 | 3 | 4 | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = > | o⊧Prese
n Bank
eiwaen
Jon+<
nel (rec
Left I | | Right Bank | | | | | | | | |---|-------------------------|--|---|------------|---|---|---------|---|---|---------|-----| | -Walls/Rip-rap/Dams - | Р | С | В | ρ | Υ | N | | b | В | С | Р | | Buildings | р | c | 3 | b | Υ | M | \perp | þ | В | С | Р | | Pavement/ Cleared Lot | р | c | В | | | _ | | | | c | p | | Road/Rallibad | р | c | В | | | | | | В | c | р | | Pipes (Inlet/ Outlet) | р | c | В | | | | | | В | С | р | | Landfill/ Trash | <u>p</u> | c | В | | | | | | В | c | р | | Park/ Lawn | _ p_ | c | В | | _ | | | | В | c | p | | Row Crap | <u>p</u> | c | В | | _ | | | | В | c | р | | Pasture/Range | <u>p</u> | c | В | | _ | | | | В | С | _ p | | Logging Operations | <u>p</u> | c | В | | 1 | | | | В | <u></u> | р | | Mining Activity | р | c | В | | | | | | В | c | р | | Vegetation Management | р | c | В | | | | | | В | c | _ | | Bridges/Abutments | р | c | В | | | | | | р | | | | Orchards/ Vineyards | р | c | В | | | _ | | | В | c | _ p | | | | | |--|---------------------------------------|--| | | | | | | | | | | | | | E | E | | | | | | | | *************************************** | *************************************** | · · · · · · · · · · · · · · · · · · · | | | : Link to Mark the Control of Co | | | DENSIOMETER READINGS (0-17) count covered dots Ίb 15 lh $\backslash h$ Center Center Upstream Center Right Center Downstream Left Bank Right Bank Optional 1 SWAMP.Stream HabitEJt Characterizi'ltion Form <u>FULL VERSION</u> Revision Date: January 9th, 2012 | Electrical Section 1 | Inter | Trans | ect: DI | } | Wetted | Widih (m |) 4.2 | | Manufacture of the second | | | |----------------------
--|------------|---------------------------|---|---|---------------|-----------------|---------------------------|---------------------------|---------------|---| | | | | | - In | ESubst | rates : | distribution of | | | | | | | Dist Dept
from Jem
LB-(m) | SIZC | Gobble
Embed | CPOM | Microalgae
FIBiekness
Code | - Iviaci | | Macroalgae
Unattached | Magre | phytes | Microalgae Thickness Codes O No microalgae present. | | lacif Bank - | 0 3 | \$8 | 1 19 11 (11)) | Р 🐧 | 0 | P | D | P Å D | P | D | Feels rough, not slimy 1 = Present but not visible Peels slimy 2 = Present and visible but | | Centers | 1.0 44 | <u>e.o</u> | <u>L</u> /S | • · · · · · · · · · · · · · · · · · · · | i | р | D | D | p | D | on stiriace produces a brownish tint on them. | | Center | 2,1 48 | 0:: C | | р | | p | D | D, |)' | D | scraping leaves visible :=
trail | | Right Center | 3,1 2 | ,<. e, | - | p
 | | p | D | D | p | D | 3 = 1-5mm;
4 = 5-20mm;
5 = 20mm; | | Bank | 4,2 7
Note Substrates | GF | recorded áil | D A
heras direc | f measures of t | P
he media | D D | P∖A D
each barricle or | P i | AD
ie size | HD ≓ Cannot determine it ** microalgae present * substrate too small or ** | | | class categories I | | | | | | | | | | covered with sill (formerly Z code). Die Dny, not assessed | | | The state of s | | | | , d = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | M. Actu | | 利克尔公司 | 19 9490 | | | | | ****************** | |---|--| | | 71 | | | ****************** | | | | | | | | | ****** | | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | · | 116 1 | | | L\O I | | | = 1 = | | | • • | | | - ') (N I | | | ∠-U I | | | | | | | | | 15 1 | | | <u>L\S</u>
<u>2-0</u>
15 | | | | | | /0 | | | \U I | | | , • | | | | | | | | | | | L | | | | | | | | | | | | | | | | | 44076 | | | | | Transect Su | bstrai | eš | | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | |-----------------|------------------------|---------------|----------------------|-----------------------|-----|---|------------------------------------|--------|-----------------|---------|----------|--|-----------|--| | Position | Dist
from
LB (m) | Depth
(em) | mm/
size
class | %
Cobble
Embed, | CPC | M | Microalgae
Thickness
Code | | oalgae
iched | | | Macr | ophytes | Microalgae Thickness Codes 0 = No microalgae present, | | Bank | 0 | 4 | GF | | р | | | р | D | ΡÀ | D | Р , | D | 1 = Present but hat visible
Feels slipty | | Left
Center | Į | 27 | СВ | 5 | р | | | p | D | p | D | р | - D | 2 = Present and visible but
strimm: Rubbing fingers
on surface produces a | | Center | 2 | 50 | SB | | p | | 0 | p | D | p | D | p | D . | brownish tint on them,
scraping leaves visible | | Right
Center | 3 | 56 | SB | | p | | 0 | p | D | p | D | p | D | frail
3 = 1-5mm;
4 = 5-20mm; | | Right Bank | 40 | 13 | ac | | Ρ. | Ā | 0 | P | A D | ? A | Ď | Р | A D | 5 = ≥20mm;
UD = Cannot determine if
microalgae present. | | | | | | | | | t measures of the
ct measuremen | | | each pa | ticle or | one of t | nė size . | substrate too small or covered with still (formerly Z code). D = Dry not assessed | | Riparian Vegetation (lacing downstream) | 1.1 🕏 | 0 ± Absent (0%). 3 = Heavy (40-75%).
1 = Sparse (<10%) 4 = Very Heavy (>76%).
2 = Moderate (10-40%) | | | | | | | | | | INSTREAM HABITAT COMPLEXITY | 0 = Ab
1 = Sp
2 = Mo
3 = He
4 = Ve) | irse
Jerete
Ivy | (+10
(10-4)
(40-7) | 1%)
1%)
i%) | DENSIOME
READINGS (
count, covered | 0-17) | |---|-------|---|-------|----------|-------|--------|-----------|------|------|---|---|---|---|-----------------------|--------------------------|-------------------|--|-----------| | Vegetation Class | 1.00 | Le | ft B | ank | | | Rig | ht E | sank | | | Filamentous Algae | XX (1) | 2 | 3 | 4 | Center | 3 | | Uppe | r Car | юру | (>5 | m h | igh) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | 1 | 2 | 3 | 4 | Left
Center | _ | | Trees and saplings >5 m high | 0 |) 1 | 2 | 3 | 4 | 0 | 0 | 2 | 3 | 4 | | Boulders | | 2 | 3 | 4 | Upstream | 4 | | Lower | anoj | эў (С | .5 m | -5 n | i hig | η) 🔃 | | | | | | Woody Debris >0.3 m | | 2 | 3 | 4 | Center | 15 | | All vegetation 0.5 m to 5 m | 0 | 1 | 2 | <u> </u> | 4 | .0 | 1 | 2 | (3) | 4 | | Woody Debris <0.3 m | | 2 | 3 | 4 | Right
Center | <u>/5</u> | | Grour | d Co | ver | (<0.5 | i m f | iigh) | ienen. | e ka bibi | | | | L | Undercut Banks | 0 1 | 2 | 3 | 4 | Downstream | 6 | | Woody shrubs & saplings
<0.5 m | 0 | G) |) 2 | 3 | 4 | 0 | (1) | 2 | 3 | 4 | | Overhang. Vegetation | o (I) | 2 | 3 | 4 | Optioral | | | Herbs/ grasses | 0 | (9 | 2 | 3 | 4 | 0 | | 2 | @ | 4 | | Live Tree Roots | R | 2 | 3 | A | Left Bank | | | Barren, bare soil/ duff | 0 | | 2 | @ | 4 | 0 | (i) | 2 | 3 | 4 | | Artificial Structures | 0 | 2 | 3 | 4 | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = > | Not Present:
•On Bank;
Between Bank & 10n (form Channel).
•10n+ •50n from Channel;
annel (rector Yes of No) | | | | | | | | | | | |---|-------------------------|---|------|---|------|------------|---|-------|-----|-----|--|--| | | | Left | Bank | | Char | inel | E | Right | Ban | k | | | | -Walls/ Rip-rap/ Dams | Р | С | В | P | Y | M | • | В | С | Р | | | | Buildings | <u>p</u> | С | В | • | | | | В | С | _ P | | | | Pavement/ Cleared Lot | р | С | В | | 1 | n I | | В | c | р | | | | Road/Railroad | р | c | В | | | | | В | c | р | | | | Pipes (Inlet/ Outlet) | р | С | В | | | Ιi | | В | c | р | | | | Landfill/Trash | р | С | В | | | | | В | c | р | | | | Park/ Lawn | p | c | В | | 1 | | | В | c | р | | | | - Row Crop | р | c | В | | | _ | | В | c | р | | | | Pasture/ Range | р | c | В | | | | | В | c | р | | | | - Logging Operations | р | c | В | | | | | В | c | p | | | | Mining Activity | <u>p</u> | c | В | | _ | · <u>-</u> | | В | (| c | | | | Vegetation-Management | р | c | В | | | | | р | | | | | | Bridges/ Abutments | р | c | В | | | | | В | c | p | | | | Orchards/Vineyards | p | c | В | | : | _ | | В | c | _p | | | | ·E | ****************************** | ************************************ |
--|--------------------------------|---| | | | | | · | | | | | H-+4 - MASSA - M | | | | | | | | | | | *B - 7444 - 7444 B - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 | | | | | | | | | | | | -8 | | | | | | | | -b | -1 | ****************************** | | | | CINICAL CONTRACTOR CON | | | | | | | | | | | | varre - manne belle mane made enterer - vold darde earth | AD D | ************ | | *************************************** | | | | | | | | | | | | *************************************** | | | | | | | | | | | | Mil Mil Mill Mill Mill Mill Mi | | *************************************** | | ************************************** | | | | | | | | | | | r., l, 6bs. • - po, 6 &./s | | I | nter- | Trans | ect: El | F | Wetfed Width (m): 6,2 | | | | | | | | | |-------------------|------------------------------|----------------|-------|-----------------------------------|-----------------------|--------------------------------------|--------|----------------|----------|-----------|------------|---------|---|--| | | fire to | | | | - J | nter-Leansect | Subst | rates | | | | | III de come de la companya de la companya de la companya de la companya de la companya de la companya de la co | | | Position- | Dist ==
from==
LB (m)= | Depth
(ční) | | %
= Clobble
=Emb e d | | #Microalpac
#Elitekness
Code | ENTACE | oalgae
ehed | | | =Macr | ophytes | Microalgae Thickness Godes De No microalgae present | | | Left
Bank | 0 | 10 | ce, | 20 | - P 🐧 | 0 | P | l D | P | D | P | A D | 1 = Present but not visible.
Feels slimy | | | Left
Center | 1.5 | 4g | se. | | distance distribution | 0 | р | D | p | D | P | A D | 2 Present and visible but
Imm. Rubbing fingers
on surface produces a | | | Center, | 3.1 | 5 | :,.; | | p | 0 | p | D | р | D | (| A D | brownish tigt on them
scraping leaves visible
trail | | | Right —
Center | 4.6 | 13 | CJ/, | to_ | р
 Т | ı v | p | D | P | D | , P | ΛD | 3 = k5mm = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | Right
Bank | 6.2 | 16 | GC | | P A | 0 | P | D | P. | D | P | Å D | UD = Cannot determine it.
microalgae present. | | | | | | | | | ct measures of the | | | each pa | rticle or | one of t | ne size | substrate too small or a covered with silt of the | | | | 78.435 F 1 | | | | | Companya Sawa | | | NACH COL | | | i v | D Dry, not assessed | | | <u> </u> | *************************************** | | |--|--|---------------------| | | | : | | manda a company | B. B. B | | | | | : | | M************************************* | | • | | | ************************ | | | | *************** | | | Edition beautiful and the control of | | | | | **************** | the transfer of the | | · =:::::::::::::::::::::::::::::::::::: | | | | | | | | *************************************** | d-200444411+4641444144444 | | | | | | | | | | | | **************** | | | | | | | *************************************** | | | | | | and the second | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | 5. 1 | | | | | | | | | | | Mr | 4 3 | | despite the contract of the property of the party | 711 | | | *************************************** | **** | | | | | | | | | | | | | | | | : | 48.0 | | | | un | | | | 40 | | | | 40. | | | | 45
40 | 1 | | | | | | | | 15 | | | | # # # # # # # # # # # # # # # # # # # | | | | | | | | | | | | | | | P. | 27 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - | | | | | | | | sage
f
f | | | | .2.4
f
f | | | | . 3.3 **
.5
.5
.0 | | | | if
j | • | | | if
j | • | | 1777
1874
1824 | | • | | | if
j | • | | | if
j | • |
| | if
j | | | | | | T. | | | | Transect Su | bstrat | ės | | | | | | |-----------------|-------------------------|------------------------------|--|------------------------------|---------------------|----------------|---------------------------------|----------------------|-------------------|--------|------------|-------------|--------|--| | Position | Dist
from
LB (m) | Depth
(cm) | nun/
size
class | Cobble
Embed, | CPO | M. | Microalgae
Thickness
Code | | oalgae
iched | | | Macrophytes | | Microalgae Thickness Codes 0 4 No microalgae present, | | Lefta
Bank | . 0 | _ | B</td <td>15</td> <td></td> <td></td> <td>0</td> <td>P A</td> <td>ע</td> <td>P</td> <td>X D</td> <td>Р</td> <td>ďΩ</td> <td>Feels rough, not slimy;
Feels slimy</td> | 15 | | | 0 | P A | ע | P | X D | Р | ďΩ | Feels rough, not slimy;
Feels slimy | | Left
Center | 0' 1 | 2 | se. | | p | | P | p | D | p | D | (P) | A. D | 2 = Present and Visible but
*frim, Rübbing fingers
on surface produces a | | Center | , , "I | _3" | C6 | 70 | р | | 0 | p | D | p | D | р | D. | brownish first on them,
scraping leaves visible | | Right
Cenfer | 2.7 | 3 | xe. | ,,,,, | р | | CJ | p | D | р | D | p | D | 74 .
3 = 1.5mm;
4 = 5-20mm | | Right!
Bank | 3.8 | 6 | SA | , | P A | | 0 | P A | , D | Р | L D | Р | A D | 5 = >20mm;
UD = Cannot determine if | | | Note: Sub
class cate | istrate size
gories liste | s can be
d on the | recorded eith
supplements | ier as d
Il page | lirec
(dire | measures of the | e media
is prefer | n axis of
red) | each ö | article or | one of tr | e size | microalgae present,
substrate too sinal or
covered with silt | | | | | | | 77 | | | | ia de 11 | | | | | (formerly Z code).
=D # Dry, not-assessed | | RIPARIAN VEGETATION (facing downstream) | 0 = Absent (0%). 3 = He
1 = Sparse (<10%). 4 = Ve
2 = Moderate (10.40%). | | INSTREAM HABITAT COMPLEXITY | 0 = Absent (0%)
1 = Sparse (410%)
2 = Moderata (10.40%)
3 = Heavy (40.75%)
4 = Yery Heavy (2.75%) | DENSIONETER READINGS (0-17) count covered dots | |---|--|----------------|---|---|--| | Vegetation Class | Eeft Bank F | Right Bank | Filamentous Algae | 0 6 2 3 4 | Center | | Uppe | r Canopy (>5 m high) | | Aquatic Macrophytesi
Emergent Vegetation | 0 2 3 4 | l'f | | Trees and saplings >5 m high | 0 <i>G</i> P | 1 ② 3 4 | Boulders | 0 1 2 4 | Center
Upstream 1'7 | | Lower C | anopy (0.5 m-5 m high) | | Woody Debris >0.3 m | 0 1 /J} 3 4 | Center | | All vegetation 0.5 m to 5 m | _ | 3 4 | Woody Debris <0.3 M | 0 <fl< b=""> 2 <u>3 4</u></fl<> | Right III | | <u> </u> | d Cover (<0.5 m high) | | Undercut Banks | 2 3 4 | Downstream O | | Woody shrubs & saplings <0.5 m | 0 (i) 2 3 4 0 | 3 4 | Overhang. Vegetation | 0 6) 2 3 4 | Optional | | Herbs/grasses | 0 2 6) 4 0 | (j) 3 4 | live Tree Roots | 0 G) 2 3 4 | Left Bank | | Barren, bare soil/ duff | 0 (D 2 3 4 0 | 3 4 | Artificial Structures | 0 1 2 3 4 | Right Bank | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
C = B
P = 3 | 10m+<
nel (rei | Bank
50m fro | om Cha
es or No |)) | amel.
nnel | | Right Bank | | | | | | |---|-------------------------|-------------------|-----------------|--------------------|--|-------------------------|-------------|------------|----|-----|--|--|--| | Walls/ Rip-rap/ Dams | P | С | В | В | Υ | A | |) В | C. | Р | | | | | Buildings | р | c | В | Ь | Υ | N | | В | C | P | | | | | Pavement/ Cleared Lot | p | С | В | | ĺ | | | В | c | p | | | | | Road/Rallroad | р | c | В | | | 1 | | В | c | p | | | | | Pipes (inlet/ Outlet) | p | С | В | | | | | В | С | _ p | | | | | Landfil/Trash | p | c | В | | | | | В | С | p | | | | | Park/Lawn | p | c | В | , | | | | В | c | p | | | | | Row Crop | <u>p</u> | c | В | | | | | В | c | p | | | | | Pasture/ Range | <u>p</u> | c | В | | _ | | | В | c | p | | | | | Logging Operations | <u>p</u> | _ <u>c</u> | В | | | | | В | c | p | | | | | Mining Activity | <u>р</u> | c | В | | | | | В | c | p | | | | | Vegetation Management | <u>p</u> | c | В | | | | | В | c | p | | | | | Bridges/ Abulments | <u>p</u> | c | В | | _ | | | _ B _ | c | p | | | | | Orchards/ Vineyards | р | c | В | - | A complete complete control of the c | ern auer a e | | В | c | p | | | | | # | | .,,,, | |--|--|---| | | | | | | di | *************************************** | | Di | *** - - | | | | | | | | | | | | | | | E | , | *************************************** | | | | | | | | **************************** | | | | | | | | | | I | | Iv4++++++++++++++++++++++++++++++++++++ | | | | | | | | | | | ********** | ********************** | | | | | | | | | | ************************************** | **************************** | | | | : | | | | 2 1.1112221.1111.1.111.1.1.1.1.1.1.1.1.1 | | | | | - 10 101 100 manual 00 | | | * ************************************* | B D-D-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | ******** | | | | ******** | | | | | | | Derrett Bermittelle Metermittellerere generalentererer | 1414 | 402-4700-4-0- | | | | *************************************** | | | *** | 1147147417741 | | | | | | TAKE —PH9 (check box if taken record photo code) Downstream (required) | | |---|------| | Upstream (required) | ,gi. | | | I | nter-T | [rans | ect: FG | 1 | | V | Wetted Width (m): 3, 4 | | | | | | | | |---------------|------------------------|--------|---------------------------------|---------|----------------|----|-----------------------------------|------------------------|-----------------------------|---------|-----------|-----------|---------|--|--| | | | | | | | ln | ter-I-ransect | Sübst | rates | | | | | | | | Position | Dist
Home
LB (m) | Depth: | Microalgae
Thickness
Code | | oaigae
ched | | Macro | ophytes | Microalgae Thickness Godes | | | | | | | | Left
Bank | 0 | 1 | GF | | P A | 1 | 0 | P | D | P |) D | P | D | 1 = Aresent but not visible; Beels slimy, # | | | Len
Center | 0.8 | 37 | СВ | 60 | р | İ | 0 | р | D | р | D | р | D | 2 = Present and visible but.
<1mm; Rulibing fingers #3
on surface produces a | | | Conter | 1.7 | 1 | XΒ | | р | | 1 | р | D | p | D | р | D | Scraping leaves visible. trail | | | Right Center. | 2.5 | 32 | СВ | 20 | р | | 0 | P | A D | р | D | p | D | 3 = (1-5mm) = 4 = 4 = 4 = 4 = 6 = 20mm, = 4 = 20mm | | | Right Bank | 3.4 | 3 | CB | 75 | P | | | P | D | P | . D | P | A D | UD = Cannot determine if :=
::::::::::::::::::::::::::::::::::: | | | | | | | | | | measures of the
oct measuremen | | | each pa | rticle.or | one of II | ie size | substrate foo small or
covered with silt
(formerly Z code) | | | | | | | | | | | | | | | | | □D ⊐Dry, not assessed | | | e e e | |-------| | | | | | 14 | | . Fi | | 7.0 | | | | | | | | Ta l | | | | | | 100 | To the | ASS SECTION | | | Transect Su | bstrat | es , | 7. | | | | |
--|------------|--------------|----------|--------------|---------------|----------|----------------|----------------------|----------|--------|------------|--|--------------|---| | and the same | . Dist. | Depth | mm/ | % | | | Microalgae | Mane | nalmae | Man | o almon | | pak di | Microalgae Thickness | | Position | from, | (cm) | "Sizo» | Cobble | CPC | M | Lihickness | | | | | | | Codes
0 ≠ No microalgae present. | | T # | LB (n.) | | _class_ | Embed | | 4 | Code | La complete a record | • | | | | | Feels rough, not slimy; | | Bank = | 0 | - S | (,iF | | ' r . | | Ø | 1 1 4 | ע | P | Y D | Р: | A D | Feels slimy | | Left | 1.7. | | 0- | | р | | (1 | р | D | р | D | р | | 2 = Present and visible but
< 1mm, Rubbing lingers | | Center | 11 4 | _\0 | Ge | | т | | (3 | Г | | Р | Ь | Р | | on surface produces a | | Center | 2.5 | ,, | $(\?,$ | '20 | p | | \ | p | D | p | D | p | D | brownish tint on them,
scraping leaves visible | | Right Center | 3,7 | 32 | CB | 40 | p | | 19 | p | D | | D | p | D | fralk 3 = 1.5mm;
4 = 5.20mm; | | Right
Bank | 5.0 | 44 | CB | 89 | Р . | 1 | Ь | P 4 | D | P | A D | Р, | D | 5 = >20mm;
UD = Carnot determine if | | Service Control of the th | Note: Sub | strate size | s can be | recorded ell | i
Ter as c | lfrað | measures of th | e media | návic Áf | each n | diele or | one of th | r
ia elta | microalgae present
substrate too small or | | | class cate | gories liste | d on the | supplementa | it page | (dire | ct measuremen | ts prefer | red) | caur p | article of | one of it | ic size | covered with sill | | | | | | | | | | | | | | Toronto de de la companya comp | | (formerly Z code). D = Dry, not assessed. | | RIPARIAN VEGETATION (facing downstream) | 1 = 5 | bsent (i
parse (
loderate | 410% | | 4 = V | ery H | edvy | 7 (57 | | INSTREAM HABITAT COMPLEXITY | 1 =
2 =
3 = | Abser
Spars
Mode
Heav
Very | of
rate (| (*10
10.40
40-75 | 1%)
1%)
1%) | DENSIOM
READINGS
court cover | (0-17) | |---|--|---------------------------------|-------------|-----|-------|--|------|-------|---------------------|---|-------------------|--|--------------|------------------------|-------------------|------------------------------------|-------------| | Vegetation Class | i i i l | Left Ba | ank : | Ĕ. | | Righ | it B | ank | | Filamentous Algae | 0 | 0 | 2 | 3 | 4 | Center | 1 40- | | Uppe | r Cano | ру (>5 | m hi | gh) | | | | | | Aquatic Macrop1ytes/
Emergent Vege:atlon | 1 | - | | | 4 | Left
Center | 15 | | Trees and saplings >5 m high | 0 | 1 2 | ③ | 4 | 0 | 1 | 0 | 3 | 4 | Boulders | | | _ | | 4 | Upstrearr | 14 | | | di inh | 31 W 11 | V 101 | ue. | ·/- | | | | E STATE OF STATE OF | Woody Debris >0.3 m | | | | | 4 | _ Center | | | All vegetation 0.5 m to 5 m | 0 6 | 6) ₂ | | | | | | | | Woody Debris <0.3 m | | | 2 | 3 | 4 | Right
Center | 12 | | | | :0.5 | m hi | gh) | | | | | 2000 | Undercut Banks | | | 2 | 3 | 4 | _ Downstrea,11 | 13 | | Woody shrubs & saplings
<0.5 m | 0 | | | | | | | | | Overhang. Vegetation | 0 | | 2 | 3 | 4 | | 1 Marketine | | Herbs/ grasses | 0 | (y | 3 | 4 | 0 | <d< td=""><td>) 2</td><td>3</td><td>4</td><td>Live Tree Roots</td><td>0</td><td></td><td>2</td><td>3</td><td>4</td><td>Left Bank</td><td>ESECT LECUL</td></d<> |) 2 | 3 | 4 | Live Tree Roots | 0 | | 2 | 3 | 4 | Left Bank | ESECT LECUL | | Barren, bare soil/duff | 0 | 2 | 3 | 4 | 0 | | 2 | | 4 | Artfficlal Structures | 0 | | 2 | 3 | 4 | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
welted channel) | C P | 10m#
ine (re | K | 1 | annel;
nnel | E
Rig | | P
R | |---|-----|-----------------------|---------|--------|----------------|----------|----------|-------------| | Walls/Rip-rap/ Dams Buildings Pavement/ Cleared Let. Road/ Rall/oad Pipes (Inlet/ Outlet) Landfill/ Trash Park/ Lawn Row Crop Pasture/ Range Logging Operations Mining Activity Vegetation Management | | c
c
c
c
c | B B B B | Y
Y | | B B B | | - p - p - p | | Bridges/ Abutments
Orchards/ Vineyards | p | c | В | | - | В | <u>c</u> | _ | | 1887 J | 4.4-94 | | | | | In | fer≘l ransect | Subst | rates | | e de la companya | All British | | |----------------|-----------------------|---------------|----------|----------------------|--------|----------|-------------------------------------|----------------------|-----------|--------|---|-----------------|---| | osition . | Dist
from
LB(m) | Depth
(cm) | SIZC | %
Cobble
Embed | CPC | M | Microalgae
Thickness =
Code = | NACTO (LEGE STA | | | | Macrophyrcs | Microalgae Thickne
Codes
0 = No microalgae pres | | Left.
Bank | 0 | 3 | WD | | P | Å | 0 | P. 4 | D | P | A D | O A D | Feels rough, not slimy
1⇒ Rresent but not visit
Feels slimy | | Letts
enter | lit | 26 | CB | 10 | P | A | 0 | р | D | р | D | PfP | 2 = Present and visible
≤Imm; Rubbing finge
on surface produces | | enter | 2,3 | 26 | CB | 35 | P | A | 0 | p | D | Р | D | Р If р | brownish lint on them
scraping leaves visib
trail | |
Right
enier | 3,4 | 31 | XB | Medicine | P | A | 1) | p | D | Р | D | A D | : 3 = (1-5mm) | | Right
Bank | 4.6 | 24 | GC | Tenthib | P | <u> </u> | 0 | P | D | Р. | A D | P A D | UD = Cannot determine
migroalgae present, | | | Note Sub | istrate size | s can be | recorded eit | her as | direc | f measures of the
ect measuremen | e media
Is orefei | n axis of | each p | article or | one of the size | substrate too small o
covered with slit
(formerly Z code). | | · 1777年4月25日本日本 (2014年) 1847年2月1日 | Tarest St. 164 | |-----------------------------------|----------------| | ELOW HABITA | | | Channel Type | % | | a Cascade/ Falls : - (| O | | a trans Rapido and | 5 | | Riffle. | 45 | | Run 1 1 3 3 | 30 | | Glide | 5 | | Pool 4 | 15_ | | Dry | O | | | | | | | u de la | | Transect Su | bštrat | es | | | | | | |-------------------|------------------------|---------------|-----------------------|----------------------|---------|----|----------------------------------|-------------|-----------------|------------|-------------------|-------------|---------|--| | Position : | Dist
from
LB (m) | Depth
(cm) | mm/.
size
class | %
Cobble
Embed | CPOI | M. | Microalgae
Thickness
Code | Macı
Att | oalgae
iched | Mac
Una | roalgae
tached | Macr | ophytes | Microalgae Thickness Codes 9 = No microalgae present Feels rough, not slimy; | | Left.
Bank | O | 51 | XB | | P A | | 0 | P | A D | P | D | (P) | A D | 1 Present but not visible. | | Left
Center | 1.1 | 106 | CB | 5 | p | | | p | D | p | D | Р. | Ä. D | 2 = Present and visible but = <1 mm, Rubbing fingers on surface produces a | | Center | 2.2 | 110 | XB | | p | | 0 | p | D | p | D | ,P | A D | prownish fint on them, scraping leaves visible | | Right
- Center | 3.3 | 103 | 50 | Palipadition. | P A | | O | p | D | p | , D | P. | A ,D | ral
 3 = 1-5mm;
 4 = 5-20mm; | | Right
Bank : | 4.4 | 95 | SB | | P Ą | | 0 | P | A D | P | A D | P | A D | 5 ≅ >20mm;
UD = Campt determine (f
microalgae present | | | | | | | | | measures of the
ct measuremen | | | each p | article or | one of t | ie siże | substrate too small or
covered with sill
(formerly Z code),
D = Dry, not assessed | | RIPARIAN VEGETATION (facing downstream) | 1 = | Spa | ent (C
190 (*
Jerate | 109 | 6) | 4 = \ | ery i | leav | <i>į</i> (>7 |)
5%) | | INSTREAM HABITAT COMPLEXITY | 0 = AE
1 ° SE
2 = Mo
3 ≠ Fe
4.= VE | iárse
Sderati
Iavy | (41
6 (1044
(40-7 | 0%)
0%)
5%) | THE RELIGIONS OF THE | DENSIOME
READINGS (I
count covered | (17) | |---|------|-------|----------------------------|-----|-------|-------|-------|--------|--------------|----------|---|---|--|--------------------------|-------------------------|-------------------|----------------------|--|-----------------| | Vegetation Class | | Le | ft Ba | ink | | | Rig | ht E | ank | | | Filamentous Algae | 0 (1 |) 2 | 3 | 4 | | Center | 1 | | - Uppe | Cai | 1op) | / (>5 | m h | igh) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | 1 | | 3 | 4 | _ | Left
Center | 1 / | | Trees and saplings >5 m high | 0 | 1 | 2 | 0 | 4 | ō | 1 | (2) | 3 | 4 | 1 | Boulders | 0 | 2 | | 4 | | Upstream | 15 | | Eower C | ano | ру ((|).5 m | 5 n | i hig | h) | 71 . | , Mari | | | | Woody Debris >D.3 m | 0 | 2 | 3 | 4 | | Center | T | | All vegetation 0.5 m to 5 m | 0 | 1 | 2 | 3 | 4 | 0 | 1 | (2) | 3 | 4 | | Woody Debris <0.3 m | o (V | 7 2 | 3 | 4 | _ | Right
Center | | | Groun | d Cc | ver | (<0.5 | m l | righ) | | | | | 30015 | 1 | Undercut Banks | @ 1 | 2 | 3 | 4 | | | <i> h</i> | | Woody shrubs & saplings
<0.5 M | 0 | | @ | 3 | 4 | 0 | @ | 2 | 3 | 4 | | Overhang. Vegetation | @ 1 | 2 | 3 | 4 | Se | Optional | Carland Carland | | Herbs/ grasses | 0 | CD | 2 | 3 | 4 | 0 | | (b | 3 | 4 | | Live Tree Roots | (I) | 2 | 3 | 4 | | Left Bank | | | Borrcn, bare soil/ duff | 0 | | | 3 | 4 | 0 | | 2 | (;i) | 4 | | Artificial StructLres | 0 | 2 | 3 | 4 | | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to-
wetted channel) | B=(
C=(
P=) | I = Not Present
3 = On Benk
2 = Between Bank & 10m from Channel
1 = 15 10m × 50m from Channel
Channel (record Yes or No) | | | | | | | | | | | | |--|-------------------|--|------|---|-------------------|------|----|-------|-----|-----|--|--|--| | | | Left | Bank | | Cha | nnel | 2. | Right | Ban | k 🚉 | | | | | - Walls/ Rigirap/ Dams | Р | С | В | Ø | Y | M | þ | В | С | Р | | | | | Bulldings | p | С | В | • | | - | | В | С | P | | | | | Pavement/ Cleared Lot | p | c | В | | I | | | В | c | Р | | | | | - Road/Railroad | p | С | В | | Ī | | | В | С | p | | | | | Pipes (Infet/ Outlet) | p | С | В | | | | | В | С | p | | | | | Ländfill/Trash . | p | С | В | | | | | В | c | p | | | | | Park/ Lawn | <u>p</u> | С | В | |
- | | | В | С | p | | | | | Row Crop | <u>p</u> | c | В | | _ | _ | | В | С | p | | | | | Pasture/ Range | <u>p</u> | c | В | | _ | _ | | 13 | С | р | | | | | Logging Operations | р | c | В | | | | | В | С | p | | | | | Mining Activity | <u>p</u> | c | В | a | _ | | | В | С | p | | | | | Vegetation Management | р | c | В | a | ı | | | В | С | p | | | | | Bridges/ Abutments | p | c | В | | | | | В | С | p | | | | | Orchards/ Vineyards | р | c | В | | | | | В | c | p | | | | | Likki kili mak | i malharutin | | |-----------------------|--------------|--| | | | | -1,ro--..+- *r 00 l* v./l,,) **1**<.1l\$, kt,,-, | | Inter-Transect: HI | | | | | | | n). જેમાર | 50 | San Maria | nyezhoù e e e e e e e | and toppe a faith conserve of the conserver of | |--------------------|--|-----------------------|-----------------|---------------------|---------------------------------|---------|-------|-----------|------------------|-----------|-----------------------|--| | | | | | - In | ter=l ransect | Subst | rates | | | | | | | = Position | Dist Depth
from (cirr): | op - Promise Comments | Cobble
Embed | CPOM: | Microalgae
Thickness
Code | - Macro | | | oalgaé
Jached | Macr | ophytes | Microalgae Thickness Codes Substitution Substitution Facisional not slimy | | Left
Banke | 0 6 | GF | | P A | Ø | Р 2 | D | P | A D | P | ΔD | freesent out not visible. Freesent out not visible. Freesent and visible out | | Center | 1.2 2-7.; | 1 % 1 | 8 97 F. I | F - 10 1 € - | · o_ | PA | D | P | A. D | P | A D | zimm: Rubbing fingers y | | = Center = 2 | 2.5 '13 | | | p | D | P | \ D | P | A.D | P | d D | brownish lint on them; scraping leaves visible trail | | Right ==
Center | 3.7 | XB | | р | < <i>D</i> | P A | D | ' P · | A D | р | D | 3 = 1-5mm; = = = = = = = = = = = = = = = = = = | | Right Bank | 5.0 10 | RR | - | (P) A | 0 | P | D | P | A_D | P | A D | 5 = >20mm;
UD = Cannot determiné it :
'militroalgae present.''. | | | Note Substrate siz
class categories lis | | | | | | | feach p | article or | one of t | io size | substrate too small on
covered with silf. | | | | | | | opart fil | | | | | | | D = Dry not assessed | | | Contraction of the Print | dependent and the contraction of the contract | A CONTRACTOR OF THE PROPERTY O | And the second second second second second second second | offertale contact the control of | | 20-14-04-04-04-04-04-04-04-04-04-04-04-04-04 | |---|--
---|--|--|--|--|--| | | | | orthography (gradie).
Article orthography | | | | | | FLOW-HABITATS (% between transacts-total=100%). | | | | | | | | | -Channel Type - % | | | | | | | | | Cascade/Falls 5 | | | | | | | | | Riffle 5 | | | | | | Selver Se | | | Ruja (V. 2.0 | 30 | | | | | | | | Glide -5 | 10 | e de la companya de
La companya de la co | | | | | | | Dry., O | | | | | | | 2.75 | | SWAMP Stream Habitat Chara | cterization Form | FULL VERSION Re | vision Oat : Janua · 9 ^{1,,} 2012 | |-----------------------------|---------------------|-------------------------|--| | Site Code: 'y the Creek Exp | Site Name: ()_ | Creek | Date: <u>3 9 / 1 (</u> / 2012 | | Wetted Width (m): 나,5 | Bankfull Width (m): | Bankfull Height (m): 45 | Transect I | | | | | is is | | | | Transect Su | bstra | te: | | | | - | | | |----------------|------------------------|---------------|-----------------------|-----------------------|-----|---|-----------------------------------|------------|-----|---|--------------|------------------|-----------|---------|---| | Position - | Dist
from
LB (m) | Depth
(cm) | min/
size
class | %
Cobble
Embed. | ÇPÇ | M | Microalgae
Thickness
Code | Mae
Att | | | Macr
Unat | balgaë
lached | Macro | ophytes | Microalgae Thickness Codes 0 = No microalgae present, | | Lett
Barik | 0 | 33 | ÇB | 65 | р | | 0_ | P. | Ā | D | P | A D | P 2 | D | C - Present but not visible,
Feels slimy | | Left
Center | 1.1 | 34 | 36 | unclassed for Main | p | | 0 | Р | A | D | P A | i D | p | D | 2 Thom: Rubbing lingers
on surface
produces a | | Center | 2.2 | 36 | св | 60 | p | | fI | . P | Α | D | . Р | D. | р | D | brownish tint on them,
scraping leaves visible | | Right Center | 3.3 | 28 | XB | | р | | 0 | P | 4 | D | P | 1 D. | p | D | trail
3 ¥ 1-5mm;
4 = 5-20mm; | | Right.
Bank | 4.5 | 5 | CB | 90 | PΔ | 1 | 6 | P. | | D | Р | X D | P | D | 5 = -20mm;
UD = Cannot determine if
Microaloae present. | | | | | | | | | measures of the
of measurement | | | | each pa | irticle ör | one of th | ie siże | substrate too small or covered with sit (formerly Z code). D ≅ Dry, hot assessed | | Riparian Vegetation
(facing downstream) | 1 = | Spai | | 10% | ۵) | 4 = Y | Heav
/ery / | | | | |---|-------|-------|----------|-----|-------|-------|---------------------|-----------------|----------|-----| | Vegetation Class | | Let | t Ba | nk | | | Rig | nt E | ank | | | Uppe
Woody shrubs & sablinos | Can | ору | (>5 | m h | igh) | | 08 | | | | | Trees and samptimgs >5 m high | 8 | 1 | 7 | 3 | 4 | B | UB | ² 2_ | 33 | 4 | | Lower 0 | anop | y (0 | .5 m | 5 n | ı hig | 1) | ďΝ | | | | | Herbs/ grasses All vegetation 0.5 m to 5 m Barren, bare soil/ duff | 0 | 1 | <u> </u> | 3 | 4 | 0 | CD | 2 | 3
3 | 4 | | Groun | d Cov | rër (| <0.5 | m t | righ) | | A CONTRACTOR OF THE | Ú | <u> </u> | - 1 | | INSTREAM
HABITAT
COMPLEXITY | 1
2
3 | = Abse
Spar
= Mod
= Hear
= Very | se
erate
(y | (4)
(10-4
(40-7 | 0%)
0%)
5%) | |---|-------------|---|-------------------|-----------------------|-------------------| | Filamentous Algae | (0) | 1. | 2 | 3 | 4 | | Aquatic Macrophytes/
Emergent Vegetation | | | 2 | 3 | 4 | | Boulders | 0 | 1 | 2 | | 4 | | Woody Debris >0.3 m | 0 | ,(I) | 2 | <u>3</u> | 4 | | Woody Debris <13 m | 0 | '1j) | 2 | 3 | 4 | | Undercut Banks | | | 2 | 3 | 4 | | Overhang. Vegetation | | 1_ | 2 | 3 | 4 | | Live Tree Roots | 0 | (D | 2 | 3 | 4 | | Artificial Structu1·es | | | 2 | 3 | 4 | |
DENSIONE
READINGS (I
count dovered |)-17) | |--|-------------| | Center | \ , | | Center
Upstream | \'2 | | Center
Right | <u>l'2.</u> | | Center | It._ | | Left Bank | THE STREET | | Right Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
0 = B
P = 5 | l0m+< | Bank
30m fro
jord Ye | m Cha | x)=-;:: | anhel,
nnel | | Right | Ban | k | |---|-------------------------|-----------|----------------------------|-------|---------|----------------|---|----------|-----|---| | Walls/ Rip-rap/ Dams | Р | С | В | Ю | Υ | KI) | þ | В | С | Р | | Buildings | <u>p</u> | С | В | lo | Υ | V | b | В | С | Р | | Pavement/ Cleared Lot | <u>p</u> | c | В | | | | | В | c | Р | | Road/Railroad | <u>p</u> | <u>_c</u> | В | | | | | В | c | р | | Pipes (Inlet/ Outlet) | р | c | В | | | | | В | c | p | | Landfill/Trash | р | c | В | | | | 0 | В | c | р | | Park/Lawn | <u>p</u> | c | В | | _ | | 0 | В | c | р | | Row Crop | р | c | В | | | | 0 | В | c | р | | Pasture/Range | <u>р</u> | c | B' | | _ | _ | | В | c | p | | Logging Operations | <u>р</u> | c | В | | ı | | | В | С | р | | Mining Activity | р | | В | | | | | В | С | р | | Vegetation Management | р | c | В | | | | | В | c | р | | Bridges/ Abulments | р | c | В | | | - | | <u>B</u> | c | р | | Orchards/Vineyards | р | c | В | | | | | В | c | p | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | *************************************** | | |--|---|---|---| | | | | | | | | | *********************** | | | ······ | | | | | | | *************************************** | | | | ···· | *********************** | ************************************* | **:****************** | | | | | | | | | ************************************* | | | | | ***************************** | ************************** | | | | | | | | ********** | ***************************** | ************************* | | | | | | | 4B4 | .,, | <u> </u> | *************************************** | | | | | | | ********************* | *********** | | | | ************************************** | | 1 | 4.41 2 | | | | | 111111111111111111111111111111111111111 | | · · · · · · · · · · · · · · · · · · · | , | 4 -1 414-1-4 -4 | | | ************** | *************************************** | f rfa-water redding to the state of s | | | | ********** | | *************************************** | | ********************* | ********** | | : | | | 1-1-21-1-1-1 1 1 | Marian Mariana Marian Marian | | | | | | 111111111111111111111111111111111111111 | | ****** | | L. CLASS COM MANAGEMENT | | | | | *************************************** | | | | ************************************** | ************************************** | *************************************** | | | | | | **Page 18 of 26** Page 19 of 26 | | | Inter- | Tran | sect: IJ | | | Ŋ | Vetted \ | ∕Vidth (m |): 3, | 1- | <u>)</u> | Section 1 | | |-----------------|------------------------|---------------|-----------------------|-----------------|----------------|----|-------------------------------------|----------|---------------------|-------------|-----------|----------|-----------|--| | | | | | | | In | ter-Transect | Subst | rates = | (14.04°, H) | | | | | | Position | Dist
from
IB (m) | Depth
(om) | nnn/
SIZC
Slasc | Cobbie
Embed | cro | M | Microalgae
Thlokness
Code | | oalgae:
che(l;+, | | | Macr | ophytes | Microalgae Thickness Codes Godes Godes Godes Godes Godes Godes | | l eft
Bank | o i | 43 | ХB | | * P (*) | | 0 | P Z | D | P 4 |) D | P | A, D | The Present but not visible but Present and visible but Present and visible but | | LCII. | 0,7 | 70 | SB | | р. | | O | P | D . | P | D | р | D | thmm: Rubbing finders'; | | Genter. | /,5 | 84 | SB | | p | | | р | D | . p | D | p | D | brownish (int on them,
scraping leaves visible:
trail | | Right
Center | 2.2 | 9 | XB | | р | | f' | P | D | P | . D | Р | A D | 3 = 1-5mm;
4 = 5,20mm;
5 = > 20mm | | Right
Bank | 3,1 | G/C | 3 | | Р | | | P A | d D | P | D | Р | A D | UD⇒ Cannordetermine it
imjorodigae present, is | | | | | | | | | t measures of the
ect measuremen | | | each pa | nticle or | oneloft | he şize | substrate too small or
covered with silt
(formerly Z code)
D = Dry not assessed | | The Period State of Heating and Heat A Timber 1997 (see | 1 1 to 1 to | |---|-------------| | | mains. | | | | | | 4.35 | | | 30 00 | | | exercise. | | | 20 | | | ~~ | 1.1 | | | | | | | | je j | | | | | | | | | | | | Transect Su | bstrai | tes | | | | | |------------------|-------------------------|-----------------------------|------------------------
--|------------------------------|-----------------------------------|---------------------|---------------------|--------|------------------|-----------------|---| | Position | Dist
from
LB (m) | Depth
(cm) | -inm/
size
class | Cobble
Bmbed | СРОМ | Mi¢roalgae
Thickness,
Code | | roalgae
achied | | oalgae
tached | Macrophytes | Microalgae Thickness Godes U=No microalgae present | | Leit :
Jänk : | Ö | 5 | RS | ARTHUM: | P 🙆 | 0 | Р | A D | р | D | (A) A D | 1 = Present but not visible | | Left
Center | 1.4 | 2. | ac | Name of the last o | P A | 0 | р | D | р | D | P 🐧 D . | 2 = Present and visible but Strain, Rubbing lingers on surface produces a | | Center | 2.8 | 35 | CB | 70 | Р (А) | 0 | p | D | p | D | D Q q | brownish thit on them;
scraping leaves visible | | Right
Center | 4.2 | 30 | SB | _ | P Ø | 1 | p | D | р | ,
D | Р (| frail.
3 = 1-5mm;
4 = 5-20mm; | | Right
Bank | 5.6 | 2 | RS | _ | P (Ā) | 0 | P | D | P | A D | OAD | 5 =>20mm;
UD = Cannot determine if
microalgae present. | | | Note: Sub
class cate | strate size
gories liste | s can be
ed on the | recorded eitr
supplementa | er as direct
I page (dire | measures of the
ct measurement | e media
Is prefe | ir⊧axis of
fred) | each p | rticle or | one of the size | substrate for small or covered with site (formerly Z code). D = Dry not assessed | | RIPARIAN VEGETATION (facing downstream) | 0 = A
1 = S
2 = M | parse (| <10% |) | 4 = ∨ | ery H | eavy | (>7) | | | INSTREAM HABITAT COMPLEXITY | 0 = Abse
1 = Spar
2 = Moo
3 = Head
4 = Very | se
eraterf | (<10%)
10-40%)
40-75% | | DENSIONE
READINGS (
count covered | 0-17) | |---|-------------------------|---------|------|-----|-------|-------|---|------|---|-----|---|--|---------------|-----------------------------|---|---|--| | Vegetation Class | L L | eff B | ank | | | Rigi | it B | ank | | | Filamentous Algae | 0 (1) | 2 | 3 4 | | Center | | | Uppe | r Cano | ру (>5 | m hì | gh) | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | | | 3 4 | ' | | 12- | | Trees and saplings >5 m high | 0 | 1 2 | O | 4 | 0 | 1 | Ø | 3 | 4 | | Boulders | | | 4 | _ | Center
Upstream | 7 | | Lower C | anopy | (0.5 m | -5 m | hig | b) | | | | | | Woody Debris >0.3 m | 0 | | 4 | | Center | | | All vegetation 0.5 m to 5 m | 0 | - | | | 1 | ~ | | | | | Woody Debris <0.3 m | o '. | 2 | 3 4 | | Right
Center | 10 | | | | | | _ | | | | | | | Undercut Banks | 0 | 2 | 3 4 | | Downstream | 10 | | Woody shrubs & saplings <0.5 m | 0 | ti) | 3 | 4 | 0 | (| @ | 3 | 4 |] ` | Overhang. Vege;ation | 0 O | 2 | 3 4 | | <u>i</u> | AND THE PARTY OF T | | Herbs/ grasses | 0 | О | 3 | 4 | 0 | < |))</td <td>3</td> <td>4</td> <td></td> <td>Live Tree Roots</td> <td>o <d< td=""><td>2</td><td>3 4</td><td> -</td><td>Left Bank</td><td>AT PRE-</td></d<></td> | 3 | 4 | | Live Tree Roots | o <d< td=""><td>2</td><td>3 4</td><td> -</td><td>Left Bank</td><td>AT PRE-</td></d<> | 2 | 3 4 | - | Left Bank | AT PRE- | | Barren, bare soll/duff | 0 | 2 | 3 | 4 | 0 | (| @ | 3 | 4 | | Artificial Structures | 0_1 | 2 | 3 4 | | Bignt Bank | | | HUMAN INFLUENCE
(circle only the closest to
wetted channel) | B = 0
0 = B
P = > | iom+<
nel (re | r Bank
50m fro | in Cha
is or No | | | Righ | Ban | | |---|-------------------------|------------------|-------------------|--------------------|-------------------|--------------------|------|-----------------|--------------| | | Р | С | В | 74 | y A | J | В | С | Р | | Buildings | P. | c | | 1 | Y | | В | -c - | - <u>-</u> - | | Pavement/Cleared Lot | P | C |
B | 1 | | 16 | В | | p | | Road/ Railroad | р | | В | - 8-5 | | - B | В | С | р | | Pipes (Inlet/ Outlet) | р | С | В | | | | В | С | р | | Landfill/Trash | р | С | В | | | | В | С | <u>p</u> | | Park/Lawn | <u>p</u> | c | В | | !
= _ | 1 | В | С | р | | Row Crop | р | c | В | | | | В | c | p | | Pasture/Range | p | С | В | | ·
- | | В | С | _p | | Logging Operations | <u>p</u> | _c | В | | | | В | _c | р | | Mining Activity | <u>p</u> | c | В | | = | | В | c | _p | | Vegetation Management | p | c | В | | _ | | В | _c | р | | Bridges/ Abutments | _p | c | В | | | | В | _c | р | | Orchards/ Vineyards | р | <u>c</u> | В | | | i.u | В | _c | p | | · E | | |---|---| | -E | 1 | ******* Bt - Bt B - B - B - B - B - B - B - B - B - B | | | | *************************************** | | | *********** | /2,"%**W** S""lv•f ,,_,4' | | | nter-' | Frans | sect: JK | | .47.44 | years independent description | Width (m | 1): 5 | 4 | | | g v Greene i generalistico. | |----------------|------|---------------|---------------|----------|-------|---|-------------------------------|--------------------------
--|----------------------------------|------|--------|--| | osition_ | Dist | Depth
(cm) | cmun/
size | ∉Cobble= | | ter - Franseel
- Microalgae
- Thickness
- Code | Macr | rates
oalgae
iched | Contract Con | reference was seen to a still be | Macn | phytes | Microalgae Thickri
, Codes
ou≕No microalgae pre | | Leit
Rank | o | 5 | SA | · | P 🔕 | Ø | P | A D | Р | D | Р | A D | Feels, rough, not slin
 = Present but not vis
 Feels, slimy, | | Feft
enter | 1.3 | 3 | <2\C, | 1 10 | @ A | 0 | P | A D | P . | D | P | D | 2 Prosent and visible
31mm Rubbing find
on surface produces | | enter | 2.6 | S 3 | 7 | 5 | l | 0 | P | À D | P A | D | P. | A D | brewnish tint on the
scraping leaves visit
trail. | | aelil
enfer | 3,9 | <i>(.,</i> I | se. | | P 🔕 | 0 | p. | D | p A | .,D | P | D' | 3 = 1-5mm(
4 = 5-20mm; | | Right
Bank | 5.4 | 26 | СВ | 85 | P (A) | 0 | P | D | P A | D | . Р | D | 5 = >20mm;
UD = Gannot defemin
microalgae present | | | elikariya
Kapatan | . (14)
1. (14) | | |---|----------------------|-----------------------|----| | FLOW HABITA
(% between transects total | | - 1.
-1. *
1.45 | 36 | | Channel Type | % | | ì | | Cascade/ Falls | [0 | 100 | ۶ | | Rapid#### | 10 | v dry | \$ | | Riffle | 5 | - | | | Run See | 65 | 3 | 5 | | Glide : Clide | 10 | <u>-</u> ا | 5 | | Pool 2 | 0 | | | | Dry 📜 📜 | 0 | | | Revision Date: Janua gkh 2012 Site Code: P. ... Crack Exp Wetted Width (m): 117 Site Name: () e Creek Bankfull Height (m): 0.4 Date: <u>09///</u>/2012 Transect K | Position | Dist | Depth | mm/
size | %
Cobble | -CPO | M. | Transect Su
Microalgae
Thickness | Macr | oalgae | | roalgae | Mag | rophytes | Microalgae Thickness
Godes | |-----------------|-----------|-------------|-------------|-----------------------|-------------------|--------|--|--------|-----------|--------|----------------|----------|----------|--| | Left | LB (m) | (em) | class | Embed | _ | i
i | Code | Atta | chéd
I | | ttached :
r | | | 0 ≅ No microalgae presen
Feels rough, not slimy | | Bark | | 6 | SA | - Andrews | P A | _ | · O | PA | D | P | A D | P | A D | 1 = Present but not visible
- Feels slimy: | | «Center» | 1.6 | 19 | CB | 50 | р | | 0 | P A | D | P | A D | Р | A D | Strim, Rubbing fingers
on surface produces a | | Center | 2.3 | 34 | 58 | <u></u> | p | | 0 | p / | D | P | A D | P | A D | brownish tint on them,
scraping leaves visible | | Right
Center | 3,5 | 45 | CB | 00 | р | | 0 | р А | D | Р | Å D | P | A D | frall: 57 3 = 1-5min; 4 = 5-20mm; 4 = 5-20mm; 4 = 5-20mm; 5 5-20 | | Right
Bank | 4.7 | 6 | ac | erestrante | P A | | 6 | Р | D | P | D | P | A D | 5 = >20mm
U = Cannot determine if | | | Note: Sub | strate size | s can be i | ecorded eith | eras d
Loage i | rect | measures of the | mediar | axis of | each p | article or | one of t | he size | microalgae present
substrate too smalt or
covered with sit. | | | | | | | 2007 | | down is a second | | | | | | | (formerly Z code).
D = Dry_not assessed | | RIPARIAN VEGETATION
(taking downstream) | 1. | Spa | ent (0
rse (s
lerate | 10% | ·) | 4 ± \ | | | | | | INSTREAM HABITAT COMPLEXITY | 0 = Absi
1 = Spa
2 = Mod
3 = Hea
4 = Very | se
erate i | (<10%)
(10-40%)
40-75% | | DENSIOME
READINGS (C
count covered | 0-17) | |--|------|---------------|----------------------------|-----|------|---------|------------|-------------|------|--------|---|---|---|---------------|------------------------------|-----------|--|---------------| | Vegetation Class | | | t Ba | | | | Rig | ht E | Bank | | | Filamentous Algae | (6) 1 | 2 | 3 4 | \exists | Center | 16 | | To Uppe | Cai | юру | (>5) | n h | gh): | | | | | | | Aquatic Macrophytes/
Emergent Vegetation | | 2 | 3 4 | • | Left | 16 | | Trees and saplings >5 m high | 0 | 1 | | 0 | 4 | 0 | 1 | (2) | 3 | 4 |] | Boulders | 0 | | 4 | | Center
Upstream | 16 | | Lower C | ano |) y (0 | .5 m- | 5 m | hig | ı) | | | | | | Woody Oeris >C.3 m | 0 | | 4 | | Center | 10 | | All vegetation 0.5 m to 5 m | . 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | (3 | ·4 | | Woody Debris <0.3 m | 0 (1) | 2 | 3 .4 | 1 | Right
Center | _/0 | | Groun | d Co | ver (| <0,5 | m h | igh) | de Tout | | | | e post | | Undercut Banks | 0 | 2 | _3 .4 | 4 | Downstream | | | Woody shrubs & saplings <0.5 m | 0 | Cv | 2 | 3 | 4 | 0 | <i>(1)</i> | 2 | 3 | 4 | L | Overhang. Vegetation | 0 ti) | 2 | 3 4 | | | ⊥ <u>⊥</u> ∐∣ | | Herbs/ grasses | 0 | | (j | 3 | 4 | 0 | (I) | 2 | 3 | 4 | | Live Tree Roots | o d) | 2 | 3 4 | | | <u> </u> | | Barren, bare soil/ duff | 0 | | 2 | | 4 | 0 | | 2 | Q) | 4 | 1 | Artificial Structures | 0 1 | 2 | 3 4 | | Right Bank | | | HUMAN INFLUENCE : (sircia only the closest to wetted channel) | B = 0
C = E | 10m+< | k
i Baril
60ni f | t & 10n
roin Ch
es or N | | annet | | | | | |---|----------------|-------|------------------------|-------------------------------|-----|-------|------------|-----------|----------|----------| | | | Left | Bank | m | Cha | nnel | | Righ | t Ban | ĸ' . | | Walls/ Rip-rap/ Dams | Р | С | В | 0 | Y | M | 7 d | В | С | Р | | Buildings | p | | В | 0 | Y | N | q | В | С | P | | Pavement/ Cleared Lot | . p | С | В | | | | | | C | p | | Road/Rallroad | p | С | В | | | | | В | c | p | | Pipes (Inlet/ Outlet): | p | c | В | | | | | В | c | p | | Landfill/Trash | <u>p</u> | С | В | - | _ | | | В |
<u>c</u> | р | | Park/Lawit | p | c | В | | | | | В | c | p | | Row Grop | p | c | В | | | | | В | c | p | | Pasture/Range | p | c | В | | | | | $\cdot s$ | c | р | | Logging Operations | p | C | В | | | | | В | c | р | | Mining Activity | p | c | В | | | | | В | c | р | | Vegetation Management | p | c | | | _ | | | В | c | <u>р</u> | | Bridges/Abutments | Р | С | В | 0 | Υ | Ø | 0 | В | c | р | | Orchards/Vineyards | Р | С | В | Q. | | | Ъ | - | c | р | Page 18 of 26 Page 23 of 26 | SWAWE Stream made | itat Characterization F | orm <u>I</u> | F <u>ULL VE</u> | <u>RSION</u> | Revis | ion Date: Ja | nuary 9"', 2012 🖖 | (ted | |--|---|--|--|------------------------------|-------------------------------------|---|--|--| | Site Code; A C | o.k Fxp | Date: 💋 | | | 7.4 | Analyte | Equipment & Calibra Date | ation | | The second secon | BENTHIC INVERTER | | | 7 - 13 - 19 -
1 | A Law Me store of the Law | ol la Se | The second secon | | | | | | | | | | Cal date: www./ | , , segige | | | lection Method | | Rep | olicate | # Jars | Wat | Cal date: / | | | . To compression and the second and the second | ard or margin-center-n | | | | | dissolved | Cal date: / | | | RWB (standard) | RWB (MCM) | (TRC) | | 1 | | exygen | Cal date: / / | ' | | RIJVB (standard!) | RWB (MCM) | TRC | | 2 | | oxygen= | | , | | , , | . , | | <u></u>
9 | | <u> </u> | sat
specific | Cal date: / / | | | RWB (staridard) | RWB (MCM) | TRC | | , | | cond | Cal date: / | 4.00 | | RWB (standard) | RWB (MGM) | TRC | N. J. | | | Salinity | | | | ` ' | | ***** | 1494 | | The second second | | Cal date: / / | | | Field Notes/ Com | ım¢nts: | * * | | į | | Alkalinity | Cal date: / / | | | | | | | | 7.7.7 | | Caluato. | | | | | | | orania
Programa | | Turbidity | Cal date: / / | | | | | | e of the area t | | | Silica | | 417\A | | | | 41 | an e gaingte
San e gainge | | | | Cal date: 🍻 / 💛 1 | 28 A 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | An temp | Cal date: // / | | | | | <u> </u> | | Billion was
Van Nivas | | | Cardate(Asset) Asset | tudo da
Cuntrada | | | | i de la companya l | | alaming . | | Velocity | Cal date: / / | a saya
Kabata | | patiente de la company | ALGAE SA | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | rizio di Tali e Migrati
L | jaran Sarip kecapatan ke | | | | | | | SWAMP S | WAMP : | SWAMP | 1 0444115 | | er and Sedimen | | | | | | | SAVAMIL | SWAME | | | | | Collection | MERION | | EMAP | EMAP | SWAMP ; | Che | mistry Samples | | | | netrou
nethod if applicable)
Device | EMAP I | | 100,176,000,000,000,000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | check if a W | VATER chemistry e was collecte-d | D | | Gollection | method (Fapplicable) Device its per device) | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W
grab sample
(nutrients, S | VATER chemistry e was collecte-d SC, etc.) | 2007 | | dicicle one of write new received the control of t | method if applicable) Device Its per device) a=12.6cm') | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W
grab sample
(nutrients, S
Check if a D | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER | D | | Gorde one or write new r Gollection (sum # of transection that the control | method if applicable) Device Its per device) a=12.6cm') 2.6cm') | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W
grab sample
(nutrients, S
Check if a D | VATER chemistry e was collecte-d SC, etc.) | 2007 | | Gollection Gollection (sum # of transec Rubber Delimiter (area PVC Delimiter (area=1) | method if applicable) Device Its per device) a=12.6cm') 2.6cm') | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W
grab sample
(nutrients, S
Check if a D
cheinistry- ·g
collected | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was | D
D | | Collection | method (Lapplicable) Device Is per device) a=12.6cm') 2.6cm') a=5.3cm') | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W
grab sample
(nutrients, S
Check if a D
cheinistry- ·g
collected | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was | D | | Collection Collection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. | method it applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W grab sample (nutrients, S Check if a D cheinistry- · g collected Checok if a S sample I'/as Check if a p | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was | D
D | | Collection Collection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s | method if applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W grab sample (nutrients, S Check if a D cheinistry- g collected Checok if a S sample I'/as Check if a p ch_em\sJry sa | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER rab sample was SEDIMENT chemistry scollected qIPLICATE 9E;P amplewas_c_ollected | D D | | Collection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (!1 Assemblage ID volume | method if applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') TIL) (diatom) (50 ml tube) (soft algae) 50 ml tube | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W grab sample (nutrients, S Check if a D cheinistry- g collected Checok if a S sample I'/as Check if a p ch_em\sJry sa | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER rab sample was SEDIMENT chemistry scollected qIPLICATE 9E;P amplewas_c_ollected scoo_p | D D D GRAB | | Collection Collection (sum # of transec Rubber Delimiter (area PVC Delimiter (area=1) Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (IT) Assemblage ID volume Check if Qualitative Alga | method if applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') Sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was | EMAP F | EMAP Rep. 2 | Rep. | Rep. | check if a W grab sample (nutrients, S Check if a D cheinistry- g collected Checok if a S sample I'/as Check if a p ch_em\sJry sa Device: Material: | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected qIPLICATE 9E;P amplewas_c_ollected scoo_p C::ORE O Stainless Steel Polyeth PolyCrbonate Or | D D GRAB ylen9 ther | | Corposite Volume Collection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (!1 Assemblage ID volume | method if applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') Sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was | EMAP E | EMAP
Rep. | EMAP | EMAP | check if a W grab sample (nutrients, S Check if a D cheinistry- · g collected Checok if a S sample I'/as Check if a p ch_em\sJry sa Device: Material: Sedimerit Col Depth (cm): | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER rab sample was SEDIMENT chemistry scollected qIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE Stainless Steel Polyeth Poly Crbonate Ot | D D D GRAB ylen9 ther | | Gollection Gollection (sum # of transec Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (!T Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal a (,heck @ water chem, in | method (applicable) Device Isperdevice) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was soldiatom sample ae not visible ntegrated sample | EMAP FRep. 1 | EMAP Rep. 2 | Rep. | Rep. | check if a W grab sample (nutrients, S Check if a E Cheinistry- g collected Check if a S sample I'/as Check if a p ch_emsJry sa Device: Material: Sedimerit Col Depth (cm): Create-Lab Col | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected qIPLICATE 9E;P amplewas_c_ollected scoo_p C::ORE O Stainless Steel Polyeth PolyCrbonate Or | D D GRAB ylen9 ther 5 | | Gollection (sum # of transec Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (IT Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal a (theck \(\) water chem, in was coliected (chi, AFDI | method if applicable) Device its per device) a=12.6cm') 2.6cm') a=5.3cm') Sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was soldiatom sample ae not visible integrated sample M) | EMAP F | EMAP Rep. 2 | Rep. | Rep. | check if a W grab sample (nutrients, S Check if a E Cheinistry- g collected Check if a S sample I'/as Check if a p ch_emsJry sa Device: Material: Sedimerit Col Depth (cm): Create-Lab Col | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected QIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE O Stainless Steel Polyeth PolyCrbonate Oi lection 2 or | D D GRAB ylen9 ther 5 | | Collection Gollection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1: Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (IT Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal a (theck water chem, in was collected (chi, AFDI Chlorophyll a volume | method (applicable) Device Isperdevice) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was soldiatom sample ae not visible ntegrated sample | EMAP FRep. 1 | EMAP Rep. 2 | Rep. | Rep. | check if a W grab sample (nutrients, S Check if a D cheinistry- · · · · · · · · · · · · · · · · · · · | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected QIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE O Stainless Steel Polyeth PolyCrbonate Oi lection 2 or | D D GRAB ylen9 ther 5 | | Collection Gollection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1) Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (IT Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal a (theck if water chem, in was collected (chi, AFDI Chlorophyll a volume (25 mL (pref Ash Free Dry Mass | method (applicable) Device Isperdevice) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube as sample was vidiatom sample an not visible integrated sample M) use GF/F filter ferred volume) use GF/F filter | EMAP FRep. 1 | EMAP Rep.
2 | Rep. | Rep. | check if a W grab sample (nutrients, S Check if a D cheinistry- · · · · · · · · · · · · · · · · · · · | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected QIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE O Stainless Steel Polyeth PolyCrbonate Oi lection 2 or | D D GRAB ylen9 ther 5 | | Coicle one of write new Gollection (sum # of transect Rubber Delimiter (area PVC Delimiter (area Syringe Scrubber (area Other area: Nu_mber oftranse.cts state Composite VoJuni (IT Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal at (theck was collected (chi, AFD) Chlorophyll a volume (25 mL (pref | method (applicable) Device Isperdevice) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). Till) (diatom) (50 ml tube) (soft algae) 50 ml tube as sample was vidiatom sample an not visible integrated sample M) use GF/F filter ferred volume) use GF/F filter | EMAP FRep. 1 | EMAP Rep. 2 | Rep. | D D | check if a W grab sample (nutrients, S Check if a D cheinistry- · · · · · · · · · · · · · · · · · · · | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected QIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE O Stainless Steel Polyeth PolyCrbonate Oi lection 2 or | D D GRAB ylen9 ther 5 | | Collection Gollection (sum # of transect Rubber Delimiter (area PVC Delimiter (area=1) Syringe Scrubber (area Other area:. Nu_mber oftranse.cts s Composite VoJuni (IT Assemblage ID volume Check if Qualitative Algae collected with soft algae re Uired even if macroal a (theck if water chem, in was collected (chi, AFDI Chlorophyll a volume (25 mL (pref Ash Free Dry Mass | method if applicable) Device Its per device) a=12.6cm') 2.6cm') a=5.3cm') sa(Tiple>d (0°11). TilL) (diatom) (50 ml tube) (soft algae) 50 ml tube ae sample was s/diatom sample ae not visible integrated sample muse GF/F filter | D D | EMAP Rep. 2 | EMAP
Rep. | Rep. | check if a W grab sample (nutrients, S Check if a D cheinistry- · · · · · · · · · · · · · · · · · · · | VATER chemistry e was collecte-d SC, etc.) DUPLICATE WATER irab sample was SEDIMENT chemistry scollected QIPLICATE 9E;P amplewas_c_ollected SCOO_P C::ORE O Stainless Steel Polyeth PolyCrbonate Oi lection 2 or | D D GRAB ylen9 ther 5 | # **ATTACHMENT E** Representative Site Photos A) Pine Creek Mine adjacent to the control site. B) The downstream transect of the control site facing downstream. C) The downstream transect of the control site facing upstream. D) The upstream transect of the control site facing downstream. E) The upstream transect of the control site facing upstream. F) The downstream transect of the experimental site facing downstream. G) The downstream transect of the experimental site facing upstream. H) The upstream transect of the experimental site facing downstream. I) The upstream transect of the experimental site facing upstream. J) Dry stream channel downstream from the control site adjacent to the mine. K) A BMI sample collected within the control site. L) A bridge crossing over the lower section of the control site. M) Old mining debris left in the stream channel within the control site. N) An ECORP biologist taking water quality readings in the control site. # **ATTACHMENT F** CDFW ABL External QC Report DEPARTMENT OF FISH AND GAME AQUATIC BIOASSESSMENT LABORATORY-CHICO CALIFORNIA STATE UNIVERSITY, CHICO CHICO, CA 95929-0555 530-898-4792 27 February 2013 Adam Schroeder ECORP Consulting, Inc. 1801 Park Court Place, B-103 Santa Ana, CA 92701 Dear Adam, Attached are the results of my QC analysis of 1 sample submitted from the Pine Creek project. The results are presented in five summary tables. This QC analysis was performed in accordance to the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT)'s Standard Taxonomic Effort Document (STE) 1 March 2011 version (Richards and Rogers, 2011). There were two instances of "tagalong" organisms. These are defined as specimens accidentally included in a vial of organisms of another taxon and are marked as "Probable sorting error" in the attached Listing of Taxonomic Discrepancies file. Specimens originally identified as *Drunella spinifera* were earlier instars. The advice we've been given (for example, the mayfly workshop manual, Jacobus and Randolph, 2005; materials from the workshop given at Long Beach earlier this year) has been to identify only the later instars to species and leave the earlier ones at *Drunella grandis/spinifera*. A damaged early instar *Calineuria californica* (Banks) nymph was misidentified as Perlodidae. Leaving this specimen at family level would be perfectly understandable given the condition, but the presence of filamentous gills on the thorax send the specimen to Perlidae instead of Perlodidae (Stewart and Stark, 2002). The specimens originally identified as *Hesperoperla hoguei* do not appear to be either *H. pacifica* (mushroom-shaped light area anterior to compound eyes, few intercalary spinules on abdominal segments) or *H. hoguei* (inverted W-shaped light area and many intercalary spinules) but intermediate between the two (Baumann and Stark, 1980). John Sandberg of the ABL has been monitoring a site in the North Fork of the Feather River drainage in which both *Hesperoperla* species are present, based on adult collections. Nymphs from the site exhibit the same intermediate characters state as your specimens, perhaps as a result of hybridization. For these reasons, I suggest leaving these *Hesperoperla* specimens at genus. Two specimens originally identified as *Orohermes crepusculus* included one mature and one immature specimen. Since head color patterns develop in later instars and generally several corydalid genera can co-occur in a given stream, I would personally leave the earlier instar specimen at Corydalidae. I welcome any questions or comments you may have concerning this report. Sincerely, **Austin Brady Richards** Aquatic Bioassessment Laboratory-Chico California State University, Chico austra Brudy Richards Chico, CA 95929-0555 arichards@csuchico.edu (530) 898-4792 #### Literature Cited - Baumann, R. W. and B. P. Stark. 1980. *Hesperoperla hoguei,* a new species of stonefly from California (Plecoptera: Perlidae). Great Basin Naturalist 40:63-67. - Richards, A. B., and D. C. Rogers. 2011. Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels. Version: 1 March 2011. SAFIT. Retrieved 1 September 2011 from: http://safit.org/ste.html - Stewart, K. W. and B. P. Stark. 2002. Nymphs of North American stonefly genera (Plecoptera). Columbus, Ohio, The Caddis Press. ## **Comparative Taxonomic Listing of all Submitted Samples** Samples submitted by ECORP Consulting, Inc. for Project: Pine Creek Report prepared by Brady Richards, CDFG ABL-Chico, 2/22/2013 | Taxonomist | Sample no. | Vial no. | Original ID | Original | Stage | ABL | ABL ID | |------------|------------|----------|-------------|----------|-------|-------|--------| | | | | | Count | | Count | | | B. LaVoie | 6275.1-2 | | | | | | | | 1 | Baetis | 112 | L | 1 | Zapada cinctipes | |----|------------------------|-----|---|-----|----------------------------| | 1 | Baetis | 112 | L | 112 | Baetis | | 2 | Baetis tricaudatus | 51 | L | 51 | Baetis tricaudatus | | 2 | Baetis tricaudatus | 51 | L | 1 | Nemouridae | | 3 | Caudatella hystrix | 1 | L | 1 | Caudatella hystrix | | 4 | Caudatella | 4 | L | 4 | Caudatella | | 5 | Drunella doddsii | 26 | L | 26 | Drunella doddsii | | 6 | Drunella spinifera | 1 | L | 1 | Drunella grandis/spinifera | | 7 | Epeorus | 27 | L | 27 | Epeorus | | 8 | Ironodes | 21 | L | 18 | Ironodes | | 9 | Rhithrogena | 3 | L | 3 | Rhithrogena | | 10 | Chloroperlidae | 22 | L | 22 | Chloroperlidae | | 11 | Doroneuria
baumanni | 3 | L | 3 | Doroneuria baumanni | | 12 | Frisonia picticeps | 26 | L | 25 | Frisonia picticeps | | 13 | Hesperoperla
hoguei | 3 | L | 3 | Hesperoperla | | 14 | Hesperoperla | 11 | L | 11 | Hesperoperla | | 15 | Malenka | 1 | L | 1 | Malenka | | 16 | Nemouridae | 4 | L | 4 | Nemouridae | | 17 | Peltoperlidae | 1 | L | 1 | Peltoperlidae | | 18 | Perlidae | 2 | L | 2 | Perlidae | | 19 | Perlodidae | 1 | L | 1 | Calineuria californica | | 20 | Pteronarcella | 1 | L | 1 | Pteronarcella | | 21 | Yoraperla | 9 | L | 9 | Yoraperla | | 22 | Zapada cinctipes | 177 | L | 175 | Zapada cinctipes | | 23 | Zapada columbiana | 2 | L | 2 | Zapada columbiana | | 24 | Elmidae | 1 | A | 1 | Elmidae | Page 1 of 3 | Taxonomist | Sample no. | Vial no. | Original ID | Original
Count | Stage | ABL
Count | ABL ID | |------------|------------|----------|----------------------------------|-------------------|-------|--------------|-------------------------------| | B. LaVoie | 6275.1-2 | | | | | | | | | | 25 | Orohermes crepusculus | 2 | L | 1 | Orohermes crepusculus | | | | 25 | Orohermes crepusculus | 2 | L | 1 | Corydalidae | | | | 26 | Brillia | 4 | L | 4 | Brillia | | | | 27 | Chaetocladius | 2 | L | 2 | Chaetocladius | | | | 28 | Cricotopus | 2 | L | 2 | Cricotopus | | | | 29 | Eukiefferiella
devonica group | 4 | L | 4 | Eukiefferiella devonica group | | | | 30 | Micropsectra | 5 | L | 5 | Micropsectra | | | | 31 | Orthocladius complex | 2 | L | 2 | Orthocladius complex | | | | 32 | Orthocladius | 1 | L | 1 | Orthocladius | | | | 33 | Parorthocladius | 1 | L | 1 | Parorthocladius | | | | 34 | Rheocricotopus | 1 | L | 1 | Rheocricotopus | | | | 35 | Tvetenia bavaric | a 3 | L | 3 | Tvetenia bavarica group | | | | 36 | Chelifera/Metacha | nel 5 | L | 5 | Chelifera/Metachela | | | | 37 | Empididae | 2 | P | 2 | Empididae | | | | 38 | Wiedemannia | 9 | L | 9 | Wiedemannia | | | | 39 | Arctopsyche californica | 4 | L | 4 | Arctopsyche californica | | | | 40 | Arctopsyche | 5 | L | 5 |
Arctopsyche | | | | 41 | Arctopsychinae | 14 | L | 14 | Arctopsychinae | | | | 42 | Oligophlebodes | 2 | L | 2 | Oligophlebodes | | | | 43 | Parapsyche | 6 | L | 6 | Parapsyche | | | | 44 | Rhyacophila
brunnea group | 10 | L | 10 | Rhyacophila brunnea group | | | | 45 | Rhyacophila
hyalinata group | 2 | L | 2 | Rhyacophila hyalinata group | | | | 46 | Rhyacophila | 5 | L | 5 | Rhyacophila | | | | 47 | Trichoptera | 1 | P | 1 | Trichoptera | | | | 48 | Oligochaeta | 15 | X | 15 | Oligochaeta | | | | 49 | Lebertia | 2 | X | 2 | Lebertia | | | | 50 | Sperchon | 3 | X | 3 | Sperchon | Page 2 of 3 | Taxonomist | Sample no. | Vial no. | Original ID | Original
Count | Stage | ABL
Count | ABL ID | |------------|------------|----------|---------------|-------------------|-------|--------------|---------------| | B. LaVoie | 6275.1-2 | | | | | | | | | | 51 | Sperchonopsis | 8 | X | 8 | Sperchonopsis | | | | 52 | Sperchontidae | 1 | X | 1 | Sperchontidae | | | | 53 | Testudacarus | 1 | X | 1 | Testudacarus | | | | 54 | Ostracoda | 3 | X | 3 | Ostracoda | | | | 55 | Turbellaria | 6 | X | 5 | Turbellaria | ### **Listing of Enumeration Discrepancies** Samples submitted by ECORP Consulting, Inc. for Project: Pine Creek Report prepared by Brady Richards, CDFG ABL-Chico, 2/22/2013 | | | | | # Counted | | Difference | | |-------------------------------------|----------|-------|--------------------|-----------|---------------|-----------------|--| | | Sample # | Vial# | Original ID | Original | \mathbf{QC} | (Original - QC) | | | Minor Counting Discrepancies | | | | | | | | | | 6275.1-2 | 1 | Baetis | 112 | 113 | -1 | | | | | 2 | Baetis tricaudatus | 51 | 52 | -1 | | | | | 8 | Ironodes | 21 | 18 | 3 | | | | | 12 | Frisonia picticeps | 26 | 25 | 1 | | | | | 22 | Zapada cinctipes | 177 | 175 | 2 | | | | | 55 | Turbellaria | 6 | 5 | 1 | | ## **Listing of Taxonomic Discrepancies** Samples submitted by ECORP Consulting, Inc. for Project: Pine Creek Report prepared by Brady Richards, CDFG ABL-Chico, 2/22/2013 | Final ID | Taxonomic level | | nic level | # Organisms | | | |----------------------------------|-----------------|-----------------------|----------------------|-------------|---|---| | Sample # | Vial # | Original ID | QC Final ID | of dispute | | Comments | | 6275.1-2 Disputed ID | | | | | | | | Disputed ID | 19 | Perlodidae | Calineuria californi | ca Family | 1 | This disputed ID also represents a difference in taxonomic precision. | | QC ID not in Master Taxa
List | | | | | | | | Probable sorting error | 6 | Drunella spinifera | Drunella | | 1 | | | | 1 | Baetis | Zapada cinctipes | Order | 1 | This disputed ID also represents a difference in taxonomic precision. | | | 2 | Baetis tricaudatus | Nemouridae | Order | 1 | This disputed ID also represents a difference in taxonomic precision. | | Original ID more precise | | | | | | | | - | 13 | Hesperoperla hogue | ei Hesperoperla | | 3 | | | | 25 | Orohermes crepusculus | Corydalidae | | 1 | | ### **Summary of Taxonomic and Enumeration Discrepancies** Samples submitted by ECORP Consulting, Inc. for Project: Pine Creek Report prepared by Brady Richards, CDFG ABL-Chico, 2/22/2013 | | | Taxonomic Discrepancies | | | Counting I | Discrepancies | |----------|-------------------|--------------------------------|--------------|-------------------------------|--------------|----------------------| | | | | | <u>c Precision</u>
e to QC | | | | Sample | Total Taxa | Disputed ID | More precise | Less Precise | <u>Major</u> | Minor | | | | f^* n^{**} | f n | f n | $f d^{**}$ | * f d | | 6275.1-2 | 55 | 1 1 | 2 4 | | | 6 9 | ^{* =} the frequency of occurence of the discrepancy, in number of samples ^{** =} the number of organisms affected (by QC Lab counts) n ^{*** =} the sum total of (absolute value of) differences in counts d # QC Report - Disputed IDs only Samples submitted by ECORP Consulting, Inc. for Project: Pine Creek Report prepared by Brady Richards, CDFG ABL-Chico, 2/22/2013 | Sample # | Vial #. | Original ID | QC ID | comments | |----------|---------|-------------|------------------------|----------------------------| | 6275.1-2 | 19 | Perlodidae | Calineuria californica | This disputed ID also | | | | | | represents a difference in | | | | | | taxonomic precision. |