

Prepared for MidPen Housing Corporation

GEOTECHNICAL INVESTIGATION REPORT PROPOSED RESIDENITAL DEVELOPMENT 480 EAST 4TH AVENUE AND 400 EAST 5TH AVENUE SAN MATEO, CALIFORNIA

UNAUTHORIZED USE OR COPYING OF THIS DOCUMENT IS STRICTLY PROHIBITED BY ANYONE OTHER THAN THE CLIENT FOR THE SPECIFIC PROJECT

December 12, 2018 Project No. 18-1546

December 12, 2018 Project No. 18-1546

Ms. April Mo Associate Project Manager MidPen Housing Corporation 303 Vintage Park Drive, Suite 250 Foster City, California 94404

Subject: Geotechnical Investigation Report Proposed Residential Development 480 East 4th Avenue and 400 East 5th Avenue San Mateo, California

Dear Ms. Mo,

The results of our geotechnical investigation for the proposed residential development to be constructed at 480 East 4th Avenue and 400 East 5th Avenue in San Mateo, California are presented in the attached report. Our geotechnical investigation was performed in accordance with our proposal dated July 19, 2018.

The project site encompasses two parcels located at 480 East 4th Avenue (APN 034-183-060) and 400 East 5th Avenue (APN 033-281-140) encompassing 1.16 and 1.25 acres, respectively. The two parcels are located to the east and west of East 5th Avenue. The parcels are rectangular-shaped and relatively flat. The site is bordered to the north by S. Claremont Street and a PG&E power facility, to the east by an office building, to the south by existing Caltrain tracks, and to the west by East 4th Avenue. The parcels are currently asphalt- and concrete-paved parking lots with a small warehouse at the southeast corner of the East 5th Avenue lot.

Plans are to demolish the existing parking lots and construct three structures: two atgrade residential buildings on the western parcel (480 East 4th Avenue) and an at-grade parking garage on the eastern parcel (400 East 5th Avenue). The residential buildings will be five stories of Type IIIA (wood-framed) construction consisting of 164 residential units. The parking garage will consist of six levels of Type IA (concrete) construction to accommodate 699 passenger vehicles. Other improvements include a pedestrian bridge going over East 5th Avenue to connect the residential buildings and the parking garage, plazas, a courtyard, and community space.

Ms. April Mo MidPen Housing Corporation December 12, 2018 Page 2

On the basis of the results of our geotechnical investigation, we conclude the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications and implemented during construction. The primary geotechnical issue affecting the proposed development is providing adequate foundation support. We conclude the proposed buildings can be supported on conventional spread footings bearing on firm alluvium.

The recommendations contained in our report are based on a limited subsurface investigation. Consequently, variations between expected and actual subsurface conditions may be found in localized areas during construction. Therefore, we should be engaged to observe site grading and fill placement and footing preparations, during which time we may make changes in our recommendations, if deemed necessary.

We appreciate the opportunity to provide our services to you on this project. If you have any questions, please call.

Sincerely yours, ROCKRIDGE GEOTECHNICAL, INC.

His OF CAL

Linda H. J. Liang, P.E., G.E. Associate Engineer

Craig S. Shields, P.E., G.E. Principal Geotechnical Engineer

Enclosure

GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL DEVELOPMENT 480 EAST 4TH AVENUE AND 400 EAST 5TH AVENUE San Mateo, California

1.0 INTRODUCTION

This report presents the results of the geotechnical investigation performed by Rockridge Geotechnical, Inc. for the proposed residential development to be constructed at 480 East 4th Avenue and 400 East 5th Avenue in San Mateo, California. The subject properties are located to the east and west of East 5th Avenue, between the Caltrain tracks and South Claremont Street, as shown on the Site Location Map, Figure 1.

The project site encompasses two parcels encompassing 1.16 acres and 1.25 acres. The parcels are rectangular-shaped and relatively flat. The site is bordered to the north by South Claremont Street and a PG&E power facility, to the east by an office building, to the south by existing Caltrain tracks, and to the west by East 4th Avenue. East 5th Avenue bisects the two parcels. The parcels are currently asphalt- and concrete-paved at-grade parking lots owned by the City of San Mateo with a small warehouse at the southeast corner of the East 5th Avenue lot.

Plans are to construct three structures; two at-grade residential buildings on the western parcel (480 East 4th Avenue) and an at-grade parking garage on the eastern parcel (400 East 5th Avenue), as shown on the Site Plan, Figure 2. The residential buildings will be 5 stories of Type IIIA (wood-framed) construction consisting of 164 residential units. The parking garage will consist of 6 levels of Type 1A (concrete) construction to accommodate 699 passenger vehicles. Other improvements include a pedestrian bridge going over East 5th Avenue to connect the residential buildings and the parking garage, plazas, a courtyard, and community space.

2.0 SCOPE OF SERVICES

Our geotechnical investigation was performed in accordance with our proposal dated July 19, 2018. Our scope of services consisted of reviewing available information, exploring subsurface conditions at the site by drilling five test borings, advancing six cone penetration tests (CPTs) and performing engineering analyses to develop conclusions and recommendations regarding:

- subsurface conditions
- site seismicity and seismic hazards, including the potential for liquefaction and liquefaction-induced ground failure
- the most appropriate foundation type(s) for the proposed buildings
- design criteria for the recommended foundation type(s), including vertical and lateral capacities
- estimates of foundation settlement
- site grading and excavation, including criteria for fill quality and compaction
- subgrade preparation for slab-on-grade floors and concrete flatwork
- lateral earth pressures for permanent below-grade walls
- 2016 California Building Code (CBC) site class and design spectral response acceleration parameters
- corrosivity of the near-surface soil and the potential effects on buried concrete and metal structures and foundations
- construction considerations.

3.0 FIELD INVESTIGATION AND LABORATORY TESTING

Subsurface conditions at the site were explored by drilling five test borings, performing six CPTs, and performing laboratory testing on selected soil samples. Prior to performing the field exploration, we obtained a drilling permit from the San Mateo County Environmental Health Services Division (SCEHSD) and contacted Underground Service Alert (USA) to notify them of our work, as required by law. We also retained a private utility locator, Precision Locating, LLC, to check that the boring and CPT locations were clear of existing utilities. Details of the field investigation and laboratory testing are described below.

3.1 Test Borings

The test borings were drilled on September 6 and 7, 2018 by Exploration Geoservices of San Jose, California. The borings, designated as B-1 through B-5, were drilled to depths ranging from 31-1/2 to 51-1/2 feet below the existing ground surface (bgs) using a Mobil B-61 drill rig equipped with eight-inch-diameter hollow-stem augers. During drilling, our field engineer logged the soil encountered and obtained representative samples for visual classification and laboratory testing. The approximate locations of the borings are shown on Figure 2. The logs of the borings are presented on Figures A-1 through A-5 in Appendix A. The soil encountered in the borings was classified in accordance with the classification system shown on Figure A-6.

Soil samples were obtained using the following samplers:

- Sprague and Henwood (S&H) split-barrel sampler with a 3.0-inch outside diameter and 2.5-inch inside diameter, lined with 2.43-inch inside diameter tubes.
- Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside and 1.5-inch inside diameter, without liners.

The samplers were driven with a 140-pound down-hole safety hammer falling about 30 inches per drop. The samplers were driven up to 18 inches and the hammer blows required to drive the samplers were recorded every six inches and are presented on the boring logs. A "blow count" is defined as the number of hammer blows per six inches of penetration or 50 blows for six inches or less of penetration. The blow counts required to drive the S&H and SPT sampler were converted to approximate Standard Penetration Test (SPT) N-values using factors of 0.63 and 1.08, respectively, to account for sampler type and approximate hammer energy. The blow counts used for this conversion were the last two blow counts. The converted SPT N-values are presented on the boring logs.

Upon completion of drilling, the boreholes were backfilled with cement grout in accordance with SCEHSD requirements. The soil cuttings generated by the borings were placed in five 55-gallon drums and temporarily stored on site. Laboratory analytical testing was performed on representative samples of the drum contents. The test results indicated the material was non-

hazardous and the drums were picked-up and disposed of at a non-hazardous facility on September 27, 2018.

3.2 Cone Penetration Tests

Six CPTs, designated as CPT-1 through CPT-6, were performed at the approximate locations shown on Figure 2. The CPTs were performed by Middle Earth Geo Testing, Inc. of Orange, California on September 21, 2018 and October 6, 2018 to depths ranging from 50.5 to 77.9 feet bgs.

The CPTs were performed by hydraulically pushing a 1.7-inch-diameter cone-tipped probe with a projected area of 15 square centimeters into the ground using a 20-ton truck rig. The conetipped probe measured tip resistance and the friction sleeve behind the cone tip measured frictional resistance. Electrical strain gauges within the cone continuously measured soil parameters for the entire depth advanced. Soil data, including tip resistance and frictional resistance, were recorded by a computer while the test was conducted. Accumulated data were processed by computer to provide engineering information such as the soil behavior types and approximate strength characteristics of the soil encountered. The CPT logs showing tip resistance, friction ratio, and pore pressure, as well as interpreted soil behavior type, are presented in Appendix A on Figures A-7 through A-12. Upon completion, the CPT holes were backfilled with cement grout in accordance with SCEHSD requirements.

3.2 Laboratory Testing

We re-examined the soil samples obtained from our borings to confirm the field classifications and selected representative samples for laboratory testing. Soil samples were tested to measure moisture content, dry density, plasticity, particle size distribution, and corrosivity. The results of the laboratory tests are presented on the boring logs and in Appendix B.

4.0 SUBSURFACE CONDITIONS

A Regional Geologic Map (Figure 3) of the area indicates the site is mostly underlain by Holocene-age alluvium (Qha) in addition to a narrow band of artificial fill (af) from the Caltrain tracks running along the southwestern perimeter of the site. The results of our field investigation indicate the site is blanketed by about 1-1/2 to 5 feet of fill overlying native alluvium. The fill consists of mixtures of medium dense to dense sand and very stiff to hard clay. The fill is underlain by native alluvium that extends to the maximum depth explored of 77.9 feet bgs. The alluvium consists of very stiff to hard clay with variable amounts of sand interbedded with medium dense to very dense sand and gravel with variable amounts of clay.

4.1 Groundwater Level

Groundwater was measured in the borings and CPTs between depths of 19 and 30 feet bgs during our field investigation. Because the boreholes were backfilled with neat cement grout soon after completion of drilling, there may not have been sufficient time for the groundwater to stabilize prior to grouting. To further evaluate depth to groundwater at the site, we reviewed groundwater data on the State of California Water Resources Control Board GeoTracker website (http://geotracker.swrcb.ca.gov). There is a monitoring well (M-2) in the northeast corner of 400 East 4th Avenue and another monitoring well (M-1) across the street at 405 East 4th Avenue. Readings taken at these two monitoring wells between January 2000 and March 2012 showed the groundwater fluctuated about 5 feet over the 12-year monitoring period with the shallowest groundwater measurement at 10.75 feet bgs taken on December 26, 2001. In addition, according to the California Geologic Survey (CGS) report *Seismic Hazard Zone Report for the San Mateo 7.5-Minute Quadrangle, San Mateo County, California*, the historic high groundwater at the site is approximately 11 feet bgs.

Based on the groundwater conditions encountered during our investigation and available historic groundwater information of the site vicinity, we judge the high groundwater level at the site is about 11 feet bgs. The groundwater level at the site is expected to fluctuate several feet seasonally, depending on the amount of annual rainfall.

5.0 SEISMIC CONSIDERATIONS

5.1 Regional Seismicity and Faulting

The site is located in the Coast Ranges geomorphic province that is characterized by northwestsoutheast trending valleys and ridges. These are controlled by folds and faults that resulted from the collision of the Farallon and North American plates and subsequent shearing along the San Andreas Fault system. Movements along this plate boundary in the Northern California region occur along right-lateral strike-slip faults of the San Andreas Fault system.

The major active faults in the area are the San Andreas, Hayward, and Calaveras faults. These and other known Quaternary-aged faults that are believed to be sources of major earthquakes (i.e. Magnitude>6.0) in the region are shown on Figure 4, as accessed from the U.S. Geological Survey (USGS) database (USGS, 2010). Active faults within a 50-kilometer radius of the site, the distance from the site and mean characteristic moment magnitude¹ [2007 Working Group on California Earthquake Probabilities (USGA 2008) and Cao et al. (2003)] are summarized in Table 1.

¹ Moment magnitude is an energy-based scale and provides a physically meaningful measure of the size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.

Fault Segment	Approximate Distance from Site (km)	Direction from Site	Maximum Magnitude
N. San Andreas – Peninsula	5.1	West	7.23
N. San Andreas (1906 event)	5.1	West	8.05
Monte Vista-Shannon	15	Southeast	6.50
San Gregorio Connected	17	West	7.50
Total Hayward	24	Northeast	7.00
Total Hayward-Rodgers Creek	24	Northeast	7.33
N. San Andreas - North Coast	33	Northwest	7.51
Total Calaveras	37	East	7.03
Mount Diablo Thrust	42	Northeast	6.70
Green Valley Connected	47	Northeast	6.80

TABLE 1Regional Faults and Seismicity

Since 1800, four major earthquakes have been recorded on the San Andreas Fault. In 1836, an earthquake with an estimated maximum intensity of VII on the Modified Mercalli (MM) scale occurred east of Monterey Bay on the San Andreas Fault (Toppozada and Borchardt 1998). The estimated Moment magnitude, M_w, for this earthquake is about 6.25. In 1838, an earthquake occurred with an estimated intensity of about VIII-IX (MM), corresponding to an M_w of about 7.5. The San Francisco Earthquake of 1906 caused the most significant damage in the history of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface rupture along the San Andreas Fault from Shelter Cove to San Juan Bautista approximately 470 kilometers in length. It had a maximum intensity of XI (MM), an M_w of about 7.9, and was felt 560 kilometers away in Oregon, Nevada, and Los Angeles. The Loma Preita Earthquake of October 17, 1989 had an M_w of 6.9 and occurred about 70 kilometers south of the site.

In 1868, an earthquake with an estimated maximum intensity of X on the MM scale occurred on the southern segment (between San Leandro and Fremont) of the Hayward Fault. The estimated M_w for the earthquake is 7.0. In 1861, an earthquake of unknown magnitude (probably an M_w of about 6.5) was reported on the Calaveras Fault. The most recent significant earthquake on this fault was the 1984 Morgan Hill earthquake (M_w = 6.2).

The U.S. Geological Survey's 2014 Working Group on California Earthquake Probabilities has compiled the earthquake fault research for the San Francisco Bay area in order to estimate the probability of fault segment rupture. They have determined that the overall probability of moment magnitude 6.7 or greater earthquake occurring in the San Francisco Region during the next 30 years (starting from 2014) is 72 percent. The highest probabilities are assigned to the Hayward Fault, Calaveras Fault, and the northern segment of the San Andreas Fault. These probabilities are 14.3, 7.4, and 6.4 percent, respectively.

5.2 Geologic Hazards

Because the project site in in a seismically active region, we evaluated the potential for earthquake-induced geologic hazards, including ground shaking, ground surface rupture, liquefaction², lateral spreading³ and cyclic densification.⁴ We used the results of our field investigation to evaluate the potential of these phenomena occurring at the project site.

² Liquefaction is a phenomenon where loose, saturated, cohesionless soil experiences temporary reduction in strength during cyclic loading such as that produced by earthquakes.

³ Lateral spreading is a phenomenon in which surficial soil displaces along a shear zone that has formed within an underlying liquefied layer. Upon reaching mobilization, the surficial blocks are transported downslope or in the direction of a free face by earthquake and gravitational forces.

⁴ Cyclic densification is a phenomenon in which non-saturated, cohesionless soil is compacted by earthquake vibrations, causing ground-surface settlement.

5.2.1 Ground Shaking

The seismicity of the site is governed by the activity of the San Andreas Fault, although ground shaking from future earthquakes on other faults will also be felt at the site. The intensity of earthquake ground motion at the site will depend upon the characteristics of the generating fault, distance to the earthquake epicenter, and magnitude and duration of the earthquake. We judge that strong to very strong ground shaking could occur at the site during a large earthquake on one of the nearby faults.

5.2.2 Ground Surface Rupture

Historically, ground surface displacements closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act, and no known active or potentially active faults exist on the site. We, therefore, conclude the risk of fault offset at the site from a known active fault is very low. In a seismically active area, the remote possibility exists for future faulting in areas where no faults previously existed; however, we conclude the risk of surface faulting and consequent secondary ground failure from previously unknown faults is also very low.

5.2.3 Liquefaction and Associated Hazards

When a saturated, cohesionless soil liquefies, it experiences a temporary loss of shear strength created by a transient rise in excess pore pressure generated by strong ground motion. Soil susceptible to liquefaction includes loose to medium dense sand and gravel, low-plasticity silt, and some low-plasticity clay deposits. Flow failure, lateral spreading, differential settlement, loss of bearing strength, ground fissures and sand boils are evidence of excess pore pressure generation and liquefaction.

The CGS has prepared a map titled *State of California Seismic Hazard Zones, San Mateo Quadrangle, Official Map*, dated January 11, 2018 (Figure 5). This map was prepared in accordance with the Seismic Hazards Mapping Act of 1990. As shown on Figure 5, the project site is **not** within one of the designated liquefaction hazard zones.

Considering the soil encountered in our borings and CPTs below the historic high groundwater level of 11 feet bgs generally consists of stiff to very stiff clay with variable sand content and dense to very dense sand and gravel with variable clay content, we judge the soil is not susceptible to liquefaction because of its cohesion and/or relative density. Therefore, we conclude the potential for liquefaction and associated hazards to occur at the site is very low.

5.2.4 Cyclic Densification

Cyclic densification (also referred to as differential compaction) of non-saturated sand (sand above groundwater table) can occur during an earthquake, resulting in settlement of the ground surface and overlying improvements. The soil encountered above the groundwater table is not susceptible to cyclic densification because of its cohesion and/or relative density. Accordingly, we conclude the potential for ground surface settlement resulting from cyclic densification is very low.

6.0 CONCLUSIONS AND RECOMMENDATIONS

From a geotechnical standpoint, we conclude the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications and implemented during construction. The primary geotechnical issue affecting the proposed development is providing adequate foundation support. The foundation level of the proposed buildings is underlain by firm alluvium (stiff to hard clay and medium dense to very dense sand and gravel) that can provide adequate foundation support for moderate to high loads. Therefore, we conclude the proposed buildings may be supported on conventional spread footings.

Our conclusions and recommendations for site preparation and grading, foundation support, and other geotechnical aspects of the project are presented in this section.

6.1 Site Preparation and Grading

Site clearing should include removal of all existing pavements, foundations and underground utilities. If any voids are left from demolition of existing structures, they should be properly backfilled following the recommendations provided below in Section 6.1.2. Any vegetation and organic topsoil (if present) should be stripped in areas to receive improvements (i.e., building or flatwork). Tree roots with a diameter greater than 1/2 inch within three feet of subgrade should be removed. Excessively dry soil at tree removal locations, as determined in the field by the Geotechnical Engineer, should also be excavated and replaced. Demolished asphalt concrete should be taken to a recycling facility. Aggregate base beneath existing pavements may be re-used as select fill if carefully segregated. We anticipate the stiff to hard clay and medium dense to very dense sand and gravel encountered can be excavated with conventional grading equipment (i.e. excavators, bull dozers, etc.).

6.1.1 Soil Subgrade Preparation

In areas that will receive fill or improvements (i.e. building pad subgrade), the soil subgrade exposed should be scarified to a depth of at least eight inches, moisture-conditioned to near optimum moisture content, and compacted to at least 90 percent relative compaction⁵. If the subgrade is within eight inches of finished subgrade in areas to receive vehicular traffic (i.e. garage subgrade), it should be moisture-conditioned to above optimum moisture content and compacted to at least 95 percent relative compaction. The soil subgrade should be kept moist until it is covered by fill.

6.1.2 Fill Quality and Compaction

Material excavated at the site will primarily consist of clayey sand or sandy clay that may be reused as fill or backfill. If imported fill (select fill) is required, it should be free of organic matter, contain no rocks or lumps larger than three inches in greatest dimension, have a liquid limit less than 40 and plasticity index less than 12, and be approved by the Geotechnical

Engineer. Samples of proposed select fill material should be submitted to the Geotechnical Engineer at least three business days prior to use at the site. The grading contractor should provide analytical test results or other suitable environmental documentation indicating the imported fill is free of hazardous materials at least three days before use at the site. If this data is not available, up to two weeks should be allowed to perform analytical testing on the proposed imported material.

Fill should be placed in lifts not exceeding eight inches in loose thickness, moisture-conditioned near optimum moisture content, and compacted to at least 90 percent relative compaction. Fill consisting of clean sand or gravel (defined as poorly-graded soil with less than 5 percent fines by weight) and fill that is more than five feet thick should be compacted to at least 95 percent relative compaction. Fill placed within six inches of soil subgrade for pavement (concrete or asphalt concrete) that will be subjected to vehicular traffic and Class 2 aggregate base beneath vehicular pavements should be compacted to at least 95 percent relative compaction and be non-yielding.

6.1.3 Exterior Concrete Flatwork

We recommend a minimum of four inches of Class 2 aggregate base be placed below exterior concrete flatwork, including patio slabs and sidewalks; the aggregate base should extend at least six inches beyond the slab edges where adjacent to landscaping. Class 2 aggregate base beneath exterior slabs-on-grade, such as patios and sidewalks, should be compacted in accordance with the requirements provided above in Section 6.1.2.

6.1.4 Utility Trench Backfill

Excavations for utility trenches can be readily made with a backhoe. All trenches should conform to the current CAL-OSHA requirements. To provide uniform support, pipes or conduits should be bedded on a minimum of four inches of clean sand or fine gravel. After pipes and

⁵ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the ASTM D1557 laboratory compaction procedure.

conduits are tested, inspected (if required) and approved, they should be covered to a depth of six inches with clean sand or fine gravel, which should be mechanically tamped. Backfill for utility trenches and other excavations is also considered fill and should be placed and compacted in accordance with the recommendations previously presented. If imported clean sand or gravel (defined as poorly-graded soil with less than 5 percent fines) is used as backfill, it should be compacted to at least 95 percent relative compaction. Jetting of trench backfill should not be permitted. Special care should be taken when backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements, resulting in damage to the pavement section.

Foundations for the proposed buildings should be bottomed below an imaginary line extending up at a 1.5:1 (horizontal to vertical) inclination from the base of utility trenches. Alternatively, the portion of the utility trench (excluding bedding) that is below the 1.5:1 line can be backfilled with controlled low-strength material (CLSM) with a 28-day unconfined compressive strength of at least 100 pounds per square inch (psi) or Class 2 aggregate base compacted to at least 95 percent relative compaction.

6.1.5 Surface Drainage and Bioswales

Positive surface drainage should be provided around the building to direct surface water away from the foundations. To reduce the potential for water ponding adjacent to the building, we recommend the ground surface within a horizontal distance of five feet from the building slope down away from the building with a surface gradient of at least two percent in unpaved areas and one percent in paved areas. In addition, roof downspouts should be discharged into controlled drainage facilities to keep the water away from the foundations.

Care should be taken to minimize the potential for subsurface water to collect beneath pavements and pedestrian walkways. Where landscape beds and tree wells are immediately adjacent to pavements and flatwork, we recommend vertical cutoff barriers be incorporated into the design to prevent irrigation water from saturating the subgrade and aggregate base. These barriers may consist of either flexible impermeable membranes or deepened concrete curbs.

We recommend bio-retention areas (bioswales) at the site be constructed at least five feet from the buildings and garage. Where bio-retention areas are constructed within five feet of the new buildings or garage, we recommend the bottom of the treatment area be lined with an impermeable liner. Where a vertical curb or foundation is constructed near a bio-retention area, the curb and the edge of the foundation should be founded below an imaginary line extending up at an inclination of 1.5:1 (horizontal to vertical) from the base of the bio-retention area. Vertical curbs should be designed to resist lateral earth pressures acting against the back of the curbs by either providing lateral restraint at the top of the curb or by designing the curb as a retaining wall. The design of curbs should assume no lateral restraint (i.e., passive pressure) is provided above the gravel drainage layer at the base of the bio-retention feature.

6.2 Foundation Support and Settlement

We conclude the proposed buildings may be supported on spread footings bearing on firm alluvium. Continuous footings should be at least 18 inches wide and isolated spread footings should be at least 24 inches wide. Footings should extend at least 24 inches below the lowest adjacent exterior soil subgrade grade and at least 18 inches below the lowest adjacent interior soil subgrade. Footings should also be bottomed below an imaginary line extending up at a 1.5:1 (horizontal to vertical) inclination from the base of utility trenches and bio-retention features. Alternatively, the portion of the utility trench (excluding bedding) that is below the 1.5:1 line can be backfilled with CLSM with a 28-day unconfined compressive strength of at least 100 psi or Class 2 aggregate base compacted to at least 95 percent relative compaction.

Footings may be designed using allowable bearing pressures of 6,000 pounds per square foot (psf) for dead plus live loads and 8,000 psf for total design loads, which include wind or seismic forces. The allowable bearing pressures recommended for dead-plus-live and total load conditions include factors of safety of at least 2 and 1.5, respectively. Our settlement analyses indicate total settlement of spread footings designed using the allowable bearing pressures presented in this section will be less than 3/4 inch and differential settlement will be less than 1/2 inch over a 30-foot horizontal distance.

Lateral loads may be resisted by a combination of passive pressure on the vertical faces of the footings and friction between the bottoms of the footings and the supporting soil. To compute passive resistance, we recommend using an equivalent fluid weight of 300 pounds per cubic foot (pcf); the upper foot of soil should be ignored unless confined by a slab or pavement. Frictional resistance should be computed using a base friction coefficient of 0.35. The passive pressure and frictional resistance values include a factor of safety of at least 1.5 and may be used in combination without reduction.

Footing excavations should be free of standing water, debris, and disturbed materials prior to placing concrete. Where fill is encountered at the bottom of footing excavations, the footing should be deepened to bottom on firm alluvium. Overexcavations below footings (i.e. from removal of fill) should be backfilled with lean concrete or CLSM with a 28-day unconfined compressive strength of at least 100 psi.

The bottoms and sides of the footing excavations should be kept moist until concrete is placed in the excavations. We should check footing excavations prior to placement of reinforcing steel to check for proper bearing. We should re-examine the excavations just prior to placement of concrete to confirm the bottoms and sides of the excavations have sufficient moisture content. If the footings will be constructed during the rainy season, two inches of CLSM should be placed to protect the bottoms of the excavations from softening from standing rainwater, after we have approved the condition of the bottom of the footings.

6.3 Concrete Slab-on-Grade Floors

The subgrade for slab-on-grade floors should be prepared following the recommendations presented in Section 6.1.1. Where the parking garage floor slab is less than six inches thick, we recommend the slab be constructed on six inches of Class 2 aggregate base.

We recommend a capillary break and vapor retarder be installed beneath the floor slabs in the residential buildings to limit water vapor transmission through the slabs. The vapor retarder should meet the requirements for Class B vapor retarders stated in ASTM E1745 and should be

placed in accordance with the requirements of ASTM E1643. These requirements include overlapping seams by six inches, taping seams, and sealing penetrations in the vapor retarder.

A capillary moisture break consists of at least four inches of clean, free-draining gravel or crushed rock. The particle size of the capillary break material should meet the gradation requirements presented in Table 2.

Sieve Size	Percentage Passing Sieve
1 inch	90 - 100
3/4 inch	30 - 100
1/2 inch	5 – 25
3/8 inch	0-6

TABLE 2Gradation Requirements for Capillary Moisture Break

A capillary moisture break and water vapor retarder are generally not required beneath parking garage floor slabs because there is sufficient air circulation to allow evaporation of moisture that is transmitted through the slab; however, we recommend a vapor retarder be placed below the floor slab in utility rooms and any areas in or adjacent to the parking garage that will be used for storage and/or will receive a floor covering or coating. The vapor retarder may be placed directly on top of the compacted Class 2 aggregate base.

Concrete mixes with high water/cement (w/c) ratios result in excess water in the concrete, which increases the cure time and can result in excessive vapor transmission through the slab. Where the concrete is poured directly over the vapor retarder, we recommend the w/c ratio of the concrete not exceed 0.45. Water should not be added to the concrete mix in the field. If necessary, workability should be increased by adding plasticizers. In addition, the slab should be properly cured. Before the floor covering is placed, the contractor should check that the concrete

surface and the moisture emission levels (if emission testing is required) meet the manufacturer's requirements.

6.4 Permanent Below-Grade Walls

Permanent below-grade walls (e.g., elevator pit walls) should be designed to resist static and seismic lateral earth pressures, vehicular surcharge pressures, and surcharges from adjacent foundations, where appropriate. We recommend restrained below-grade walls at the site be designed for the more critical of the following criteria:

- at-rest equivalent fluid weight of 55 pcf (triangular distribution), or
- active pressure of 35 pcf plus a seismic increment of 34 pcf (triangular distribution).

Where traffic loads are expected within 10 feet of the walls, an additional design load of 50 psf should be applied to the upper 10 feet of the wall. Proposed below-grade walls should be designed for surcharge pressures if new foundations are founded above the zone-of-influence for the below-grade walls. This zone is defined as an imaginary line extending up from the bottom of the basement wall at an inclination of 1.5:1 (horizontal to vertical). The influence on a wall from a foundation that is founded within this zone of influence should be analyzed on an individual basis after the geometry has been determined.

The recommended lateral earth pressures are applicable to walls that are backdrained above the water table to prevent the buildup of hydrostatic pressure. One acceptable method for backdraining the walls is to place a prefabricated drainage panel (Miradrain 6000 or equivalent) against the shoring or the back of the walls. The drainage panel should extend down to a four-inch-diameter perforated PVC collector pipe at the base of the walls. The pipe should be surrounded on all sides by at least four inches of Caltrans Class 2 permeable material (see Caltrans Standard Specifications Section 68-1.025) or 3/4-inch drain rock wrapped in filter fabric (Mirafi 140NC or equivalent). We should check the manufacturer's specifications regarding the proposed prefabricated drainage panel material to verify it is appropriate for its intended use.

To protect against moisture migration, below-grade walls should be waterproofed and water stops should be placed at all construction joints. If backfill is required behind below-grade walls, the walls should be braced, or hand compaction equipment used, to prevent unacceptable surcharges on walls (as determined by the structural engineer).

6.5 Seismic Design

For design in accordance with the 2016 CBC, we recommend Site Class D be used. The latitude and longitude of the site are 37.5649° and -122.3199°, respectively. Hence, in accordance with the 2016 CBC, we recommend the following:

- $S_S = 1.915g, S_1 = 0.895g$
- $S_{MS} = 1.915g, S_{M1} = 1.343g$
- $S_{DS} = 1.277g, S_{D1} = 0.895g$
- Seismic Design Category E for Risk Categories I, II, and III.

6.6 Soil Corrosivity

Laboratory testing was performed by Project X Corrosion Engineering of Murrieta, California on a sample of clayey sand obtained from Boring B-4 at a depth of 3.5 feet bgs. The results of the tests are presented in Appendix B of this report. The resistivity test results (3,417 ohm-cm) indicate the near-surface soil is "mildly corrosive" to buried metallic structures. Accordingly, all buried iron, steel, cast iron, ductile iron, galvanized steel and dielectric-coated steel or iron may need to be protected against corrosion depending upon the critical nature of the structure. If it is necessary to have metal in contact with soil, a corrosion engineer should be consulted to provide recommendations for corrosion protection. The results indicate that sulfate ion concentrations are sufficiently low such that they do not pose a threat to buried concrete. In addition, the chloride ion concentrations have a "mild" impact to steel reinforcement in concrete structures below ground adversely. The results of the pH test indicate the near-surface soil has a pH of 6.8 and has a "mild" impact to buried metal.

7.0 ADDITIONAL GEOTECHNICAL SERVICES

Prior to construction, Rockridge Geotechnical should review the project plans and specifications to verify that they conform to the intent of our recommendations. During construction, our field engineer should provide on-site observation and testing during site preparation, placement and compaction of fill, and installation of building foundations. These observations will allow us to compare actual with anticipated soil conditions and to verify that the contractor's work conforms to the geotechnical aspects of the plans and specifications.

8.0 LIMITATIONS

This geotechnical investigation has been conducted in accordance with the standard of care commonly used as state-of-practice in the profession. No other warranties are either expressed or implied. The recommendations made in this report are based on the assumption that the subsurface conditions do not deviate appreciably from those disclosed in the exploratory borings or CPTs. If any variations or undesirable conditions are encountered during construction, we should be notified so that additional recommendations can be made. The foundation recommendations presented in this report are developed exclusively for the proposed development described in this report and are not valid for other locations and construction in the project vicinity.

REFERENCES

2016 California Building Code

California Division of Mines and Geology (1996), Probabilistic seismic hazard assessment for the State of California, DMG Open-File Report 96-08.

California Geological Survey (2007). Fault-Rupture Hazard Zones in California, Special Publication 42, Interim Revision 2007.

Cao, T., Bryant, W. A., Rowshandel, B., Branum D. and Wills, C. J. (2003). "The Revised 2002 California Probabilistic Seismic Hazard Maps"

Field, E.H., and 2014 Working Group on California Earthquake Probabilities, 2015, UCERF3: A new earthquake forecast for California's complex fault system: U.S. Geological Survey 2015-3009, 6 p., <u>http://dx.doi.org/10.3133/fs20153009</u>.

Jennings, C.W. (1994). Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions: California Division of Mines and Geology Geologic Data Map No. 6, scale 1: 750,000.

Toppozada, T.R. and Borchardt G. (1998). "Re-evaluation of the 1936 "Hayward Fault" and the 1838 San Andreas Fault Earthquakes." Bulletin of Seismological Society of America, 88(1), 140-159.

U.S. Geological Survey, (2008), The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): prepared by the 2007 Working Group on California Earthquake Probabilities, U.S. Geological Survey Open File Report 2007-1437.

U.S. Geological Survey and California Geological Survey (2006). Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SCOPE OF SERVICES	2
3.0	 FIELD INVESTIGATION AND LABORATORY TESTING 3.1 Test Borings	
4.0	SUBSURFACE CONDITIONS 4.1 Groundwater Level	
5.0	 SEISMIC CONSIDERATIONS 5.1 Regional Seismicity and Faulting 5.2 Geologic Hazards 5.2.1 Ground Shaking 5.2.2 Ground Surface Rupture 5.2.3 Liquefaction and Associated Hazards 5.2.4 Cyclic Densification 	
6.0	 CONCLUSIONS AND RECOMMENDATIONS 6.1 Site Preparation and Grading 6.1.1 Soil Subgrade Preparation 6.1.2 Fill Quality and Compaction 6.1.3 Exterior Concrete Flatwork 6.1.4 Utility Trench Backfill 6.1.5 Surface Drainage and Bioswales 6.2 Foundation Support and Settlement 6.3 Concrete Slab-on-Grade Floors 6.4 Permanent Below-Grade Walls 6.5 Seismic Design. 	
7.0	ADDITIONAL GEOTECHNICAL SERVICES	19
8.0	LIMITATIONS	19
REFI	FERENCES	
FIGU	URES	

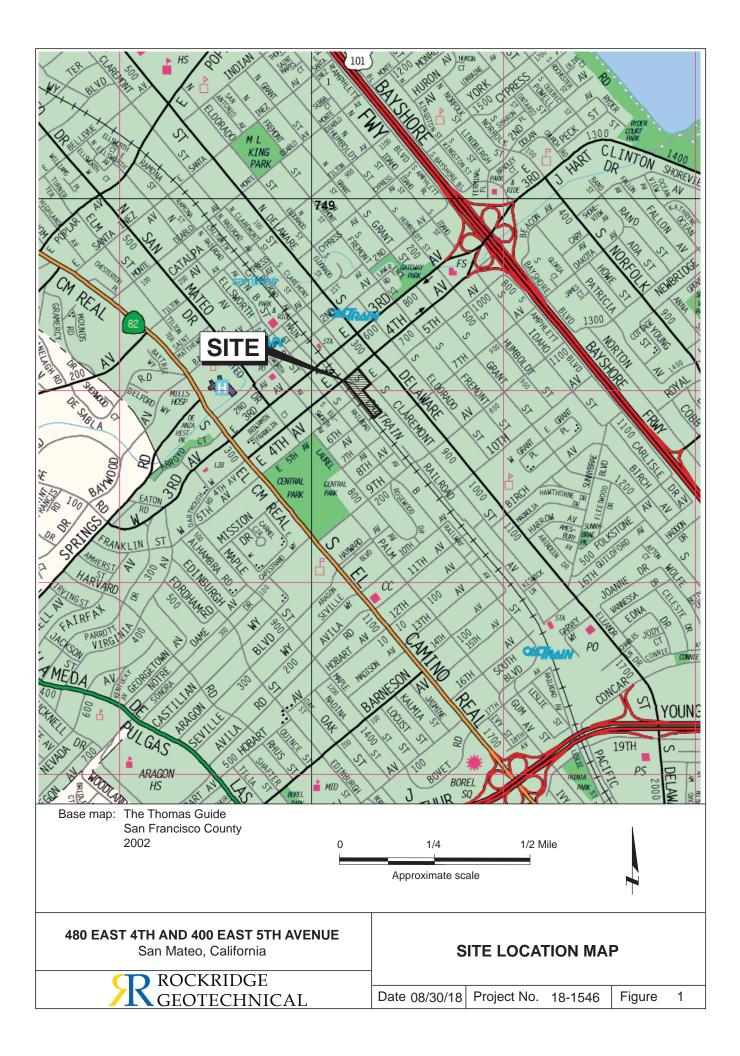
APPENDIX A – Log of Test Borings and Cone Penetration Test Results

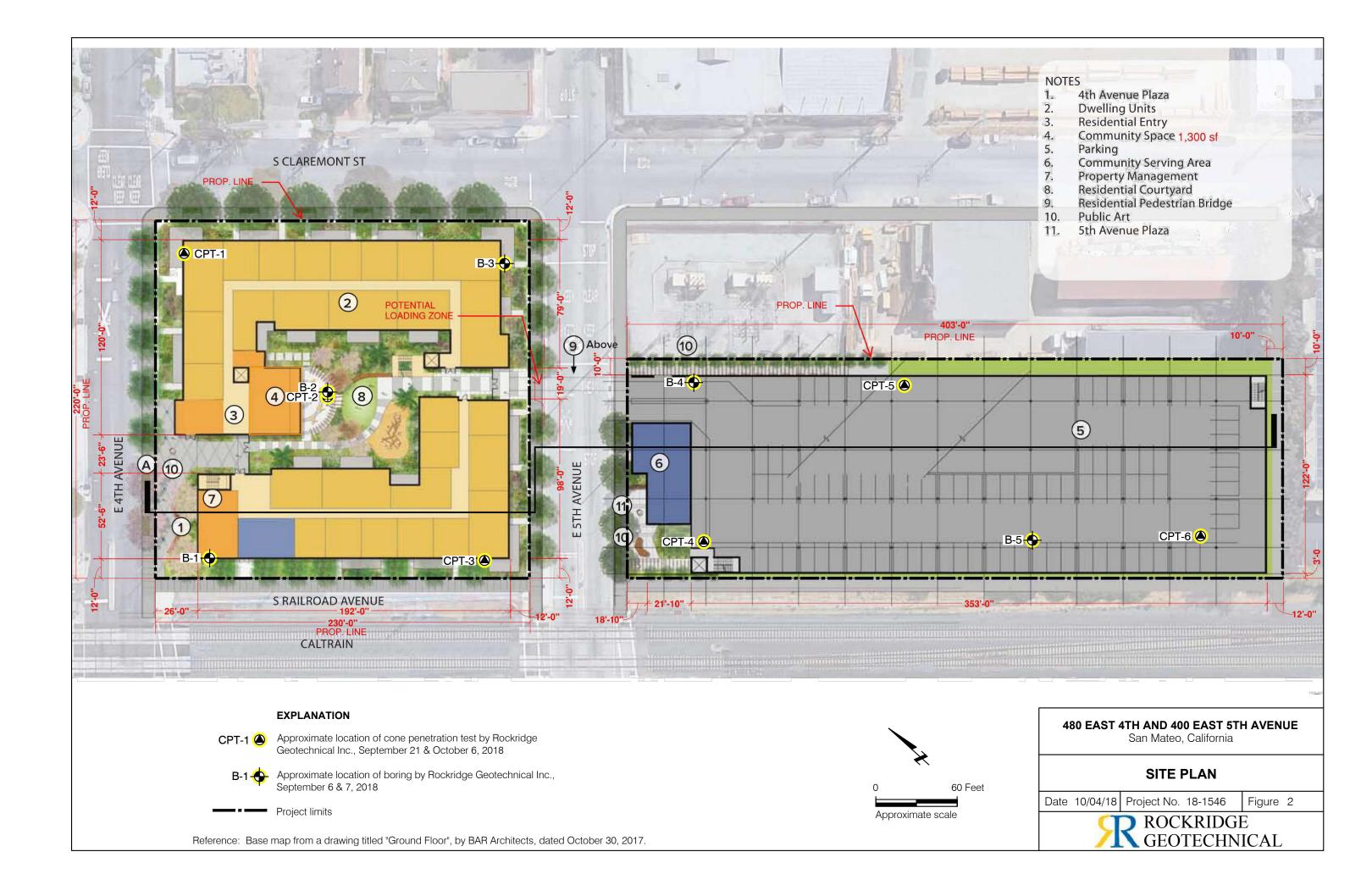
APPENDIX B – Laboratory Test Results

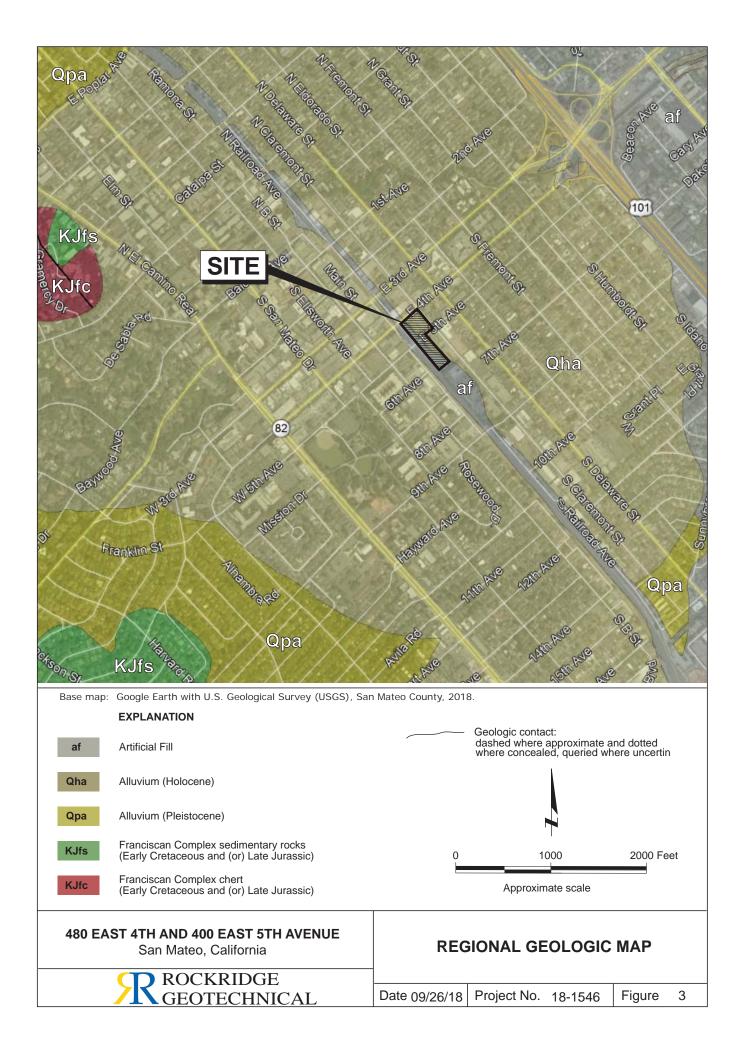
LIST OF FIGURES

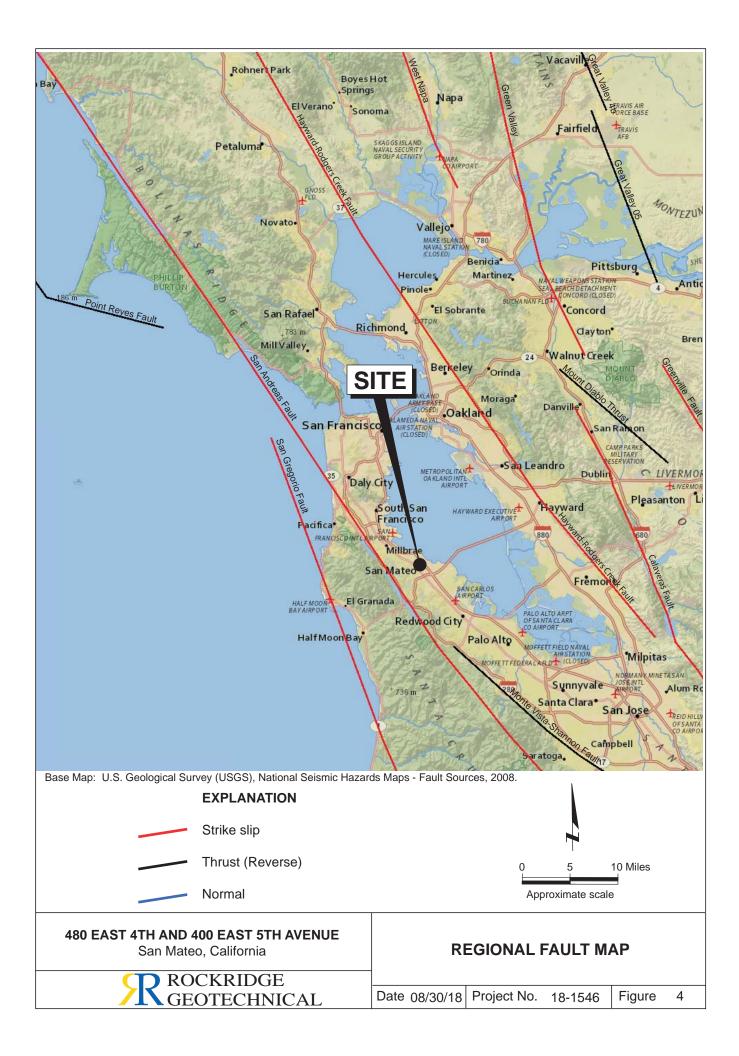
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Regional Geologic Map
Figure 4	Regional Fault Map
Figure 5	Seismic Hazards Zones Map

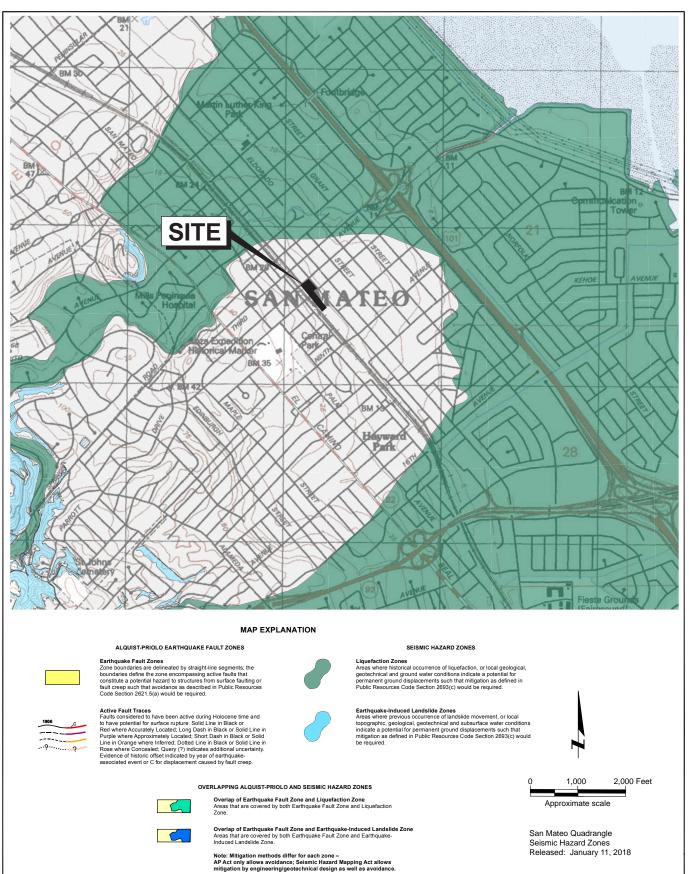
APPENDIX A


Figures A-1 through A-5	Logs of Borings
Figure A-6	Classification Chart
Figures A-7 through A-12	Cone Penetration Test Results

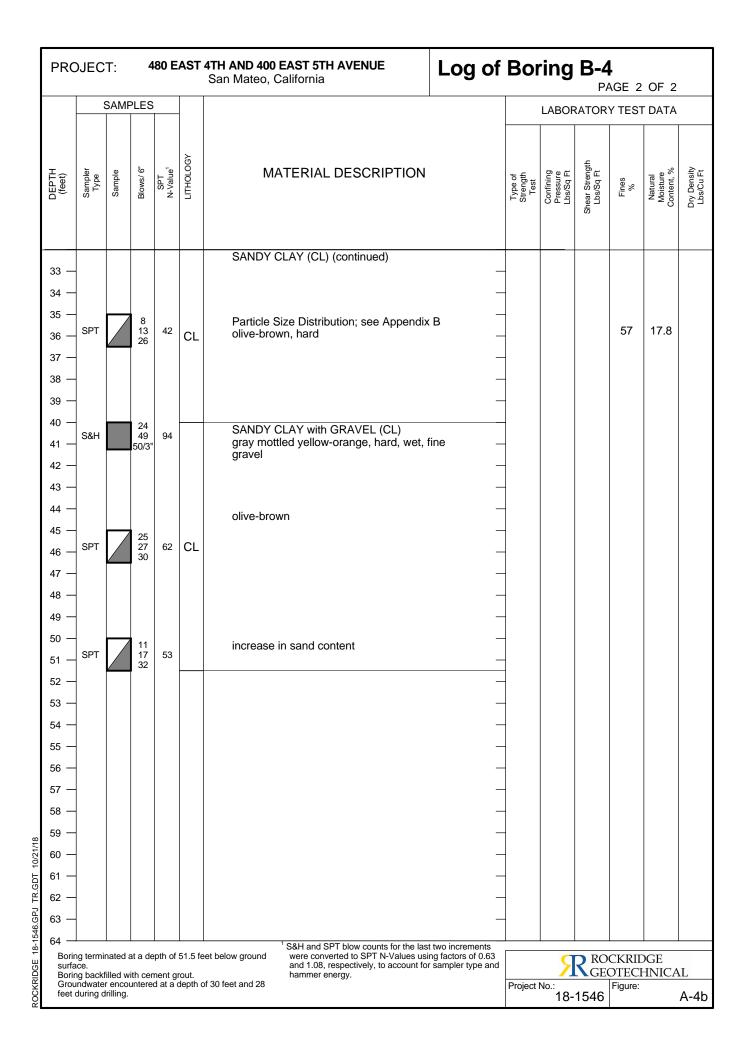

APPENDIX B


Figure B-1	Plasticity Chart									
Figure B-2	Particle Size Distribution Report									
Figure B-3	Particle Size Distribution Report									
Figure B-4	Particle Size Distribution Report									
Corrosivity Test Results										

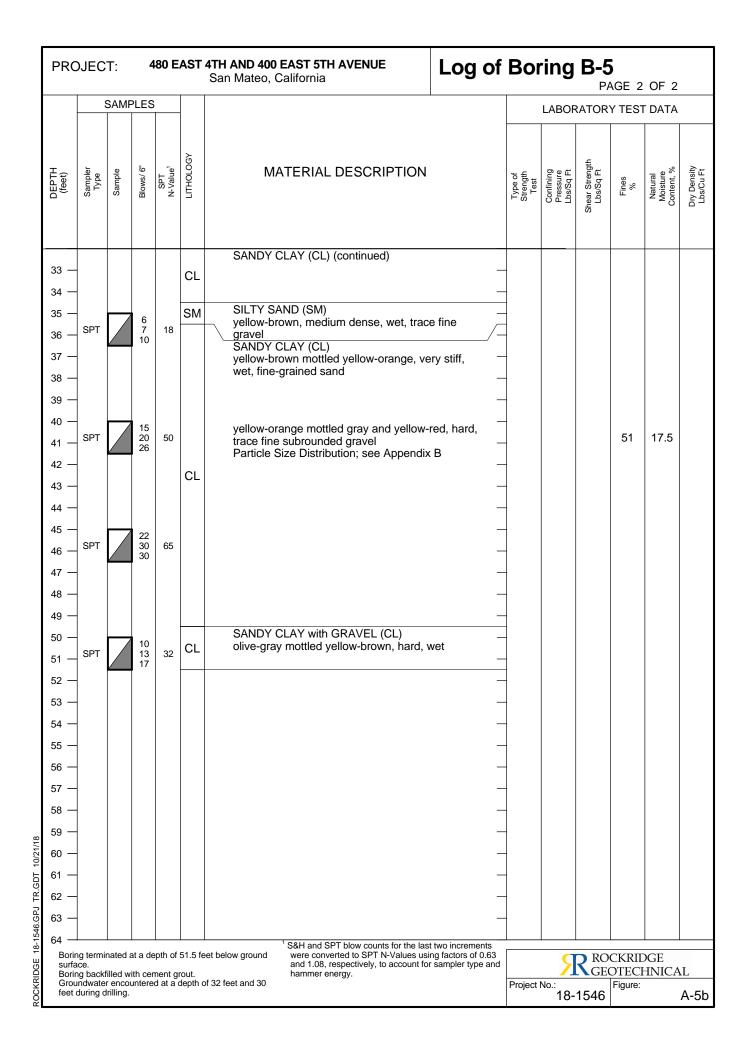



FIGURES

480 EAST 4TH AND 400 EAST 5TH AVENUE
San Mateo, California SEISMIC HAZARDS ZONES MAP ROCKRIDGE
GEOTECHNICAL Date 08/30/18 Project No. 18-1546 Figure 5


APPENDIX A Logs of Borings and Cone Penetration Test Results

PROJECT: 480 EAST 4TH AND 400 EAST 5TH AVENUE San Mateo, California								Во	ring			OF 1	
Borin	ation:	S	ee S	Logged by: R. Ford Drilled by: Exploration Geoservices									
Date	starte	ed:	9	/6/18		Date finished: 9/6/18		Drillec Rig:	l by:	Explor B-61	ation Ge	eoservice	es
Drillin	ng me	thod:	8	-inch	-diam								
Ham		-					LABOF	RATOR	Y TEST	DATA			
Samp			<u> </u>		nwoo	od (S&H), Standard Penetration Test (SPT)				f			
DEPTH (feet)	Sampler Type	SAMF	PLES [1978] Blows/ 6"	SPT N-Value ¹	гітногобу	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
					-	3.5 inches of asphalt concrete		-					
1 — 2 —	S&H		19 27 37	40	CL	7 inches of aggregate base SANDY CLAY with GRAVEL (CL) red-brown, hard, moist, with brick fragment CLAYEY SAND (SC)		_					
3 — 4 —	SPT		14 13 17	32	sc	red-yellow, dense, moist, trace fine subrou gravel Particle Size Distribution; see Appendix B	nded -				50	13.1	
5 — 6 —	SPT		22 26 36	67		CLAYEY SAND with GRAVEL (SC) light brown mottled gray, very dense, moist subangular to subrounded gravel	t, fine -	_					
7 — 8 — 9 —							-						
10 — 11 —	SPT		14 9 20	31	SC	Particle Size Distribution; see Appendix B dense	-	_			14	9.6	
12 — 13 — 14 —							-	_					
15 — 16 —	SPT		13 20 27	51		SANDY CLAY (CL) yellow-brown, hard, moist	-	_					
17 — 18 — 19 —							-	_					
20 — 21 —	S&H		28 44 55	62		mottled yellow-orange, trace subangular gr present	- ravel _	_					
22 — 23 —					CL		-	_					
24 — 25 — 26 —	SPT		9 16 22	41		Particle Size Distribution; see Appendix B decrease in gravel content	-	-			68	21.7	
27 — 28 — 29 —						9:08 AM; 9/6/2018	-	_					
29 — 30 — 31 —	SPT		16 28 30	63	SP	SAND with GRAVEL (SP) brown, very dense, wet, coarse-grained san and fine gravel	_						
		inated a	at a de	pth of	31.5 fe	¹ S&H and SPT blow counts for the last two were converted to SPT N-Values using fa	actors of 0.63				CKRII)GF	
surfa Borir Grou	če. ig back ndwate	filled wi	th cer	nent gi	rout.	and 1.08, respectively, to account for sam hammer energy. of 29 feet during		Project	> No.:	GE	OTECI Figure:	HNICA	
drilling.									18-	1546			A-1


Boring location: See Site Plan, Figure 2 Date finished: 94/18 Doped ty: Exploration Gendervices Performance R; Ford Performance Date stanced: 94/018 Date finished: 94/18 Date finished: 94/18 Hammer weight/drog: 140 fbs.200 inches Hammer type: Downhole Wireline LABORATORY TEST DATA Sampler: Strandard Penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) Image and the penetration Test (SPT) I	PROJECT: 480 EAST 4TH AND 400 EAST 5TH AVENUE San Mateo, California									ing			OF 1		
Date started: OP/18 Date finished: 9/6/18 Pig: B-61 Poling methods: Sinch-diameter Hollow Start Auger LABORATORY TEST DATA Hammer weight/drop: 140 lbs.300 inches Hammer type: Downhole Wireline Sampler: Sprague & Herwood (SkH), Standard Penetration Test (SPT) LABORATORY TEST DATA Egg Bardiness of asphalt concrete 1 Standard Penetration Test (SPT) Egg Bardiness of asphalt concrete 1 Standard Penetration Test (SPT) 1 Standard Penetration Test (SPT) Standard Penetration Test (SPT) 2 SPT 11/2 41 Standard Penetration Test (SPT) 2 SPT 11/2 41 Standard Penetration Test (SPT) 1 2 Inches of asphalt concrete 1 11.7 1 2 Inches of asphalt concrete 1 11.7 2 SPT 11/2 41 Standard Penetration Penetration Standard Pene	Borin	g loca	ation:	S	ee S										
Hammer weight/drop: 140 lbs:/30 inches Hammer type: Downhole Wireline LABORATORY TEST DATA Sampler: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (SPT) Image: Sprague & Hemcool (8kH), Standard Penetration Test (8kH), Standard P	Date	starte	ed:	9	/6/18		Date finished: 9/6/18			by:		ation Ge	eoservice	es	
Sampler: Sprague & Herwood (S&H), Standard Penetration Test (SPT) Description Test (SPT) SAMPLES SAMPLES MATERIAL DESCRIPTION Begin and the set of t	Drillin	ng me	thod:	8	-inch	-dian									
SAMPLES OCCUPY MATERIAL DESCRIPTION Particle Structure			-						LABOF	RATOR	Y TEST	DATA			
1 2 Set 1 1 2 Inches of aggregate base 1 5 Sinches of aggregate base 1 CLAYEY SAND (SC) 1 4 Set 1 2 SC LL = 29, PI = 10; see Appendix B 1 5 3 SC LL = 29, PI = 10; see Appendix B 1 19 7 7 8 9 11 20 CLAYEY SAND (SC) 7 8 9 11 20 CLAYEY SAND With GRAVEL (SC) 19 7 7 8 9 11 9 22 11 11 SPT 11 20 CLAYEY SAND With GRAVEL (SC) 19 9.2 11 SPT 11 52 mottled orange, dense 11 19 9.2 12 11 52 CLAY (CL) oilve-brown, hard, moist, trace fine gravel 19 9.2 13 12 52 CLAY (With SAND (CL) brown, very stiff, moist 73 23.8 24 52	Sam			<u> </u>		nwo	od (S&H), Standard Penetration Test (SPT)				÷				
1 2 Set 1 1 2 Inches of aggregate base 1 5 Sinches of aggregate base 1 CLAYEY SAND (SC) 1 4 Set 1 2 SC LL = 29, PI = 10; see Appendix B 1 5 3 SC LL = 29, PI = 10; see Appendix B 1 19 7 7 8 9 11 20 CLAYEY SAND (SC) 7 8 9 11 20 CLAYEY SAND With GRAVEL (SC) 19 7 7 8 9 11 9 22 11 11 SPT 11 20 CLAYEY SAND With GRAVEL (SC) 19 9.2 11 SPT 11 52 mottled orange, dense 11 19 9.2 12 11 52 CLAY (CL) oilve-brown, hard, moist, trace fine gravel 19 9.2 13 12 52 CLAY (With SAND (CL) brown, very stiff, moist 73 23.8 24 52					1	βG	MATERIAL DESCRIPTION	e of	ngth ist	ining sure Sq Ft	treng Sq Ft	és v	ural ture nt, %	ensity Cu Ft	
1 2 Set 1 1 2 Inches of aggregate base 1 5 Sinches of aggregate base 1 CLAYEY SAND (SC) 1 4 Set 1 2 SC LL = 29, PI = 10; see Appendix B 1 5 3 SC LL = 29, PI = 10; see Appendix B 1 19 7 7 8 9 11 20 CLAYEY SAND (SC) 7 8 9 11 20 CLAYEY SAND With GRAVEL (SC) 19 7 7 8 9 11 9 22 11 11 SPT 11 20 CLAYEY SAND With GRAVEL (SC) 19 9.2 11 SPT 11 52 mottled orange, dense 11 19 9.2 12 11 52 CLAY (CL) oilve-brown, hard, moist, trace fine gravel 19 9.2 13 12 52 CLAY (With SAND (CL) brown, very stiff, moist 73 23.8 24 52	PTH eet)	mpler ype	mple	ws/ 6'	SPT /alue ¹	НОГО		Typ	Strei	Conf Pres Lbs/5	near S Lbs/9	Fin %	Nati Mois Conte	D D/ D/S/(
1 - SPT 1 -	DE	Sa	Sa	Blo	ź	5	2 inches of combolt concrete				ۍ ا				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 —														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SPT		16	41		CLAYEY SAND (SC)								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				22			yellow-brown mottled gray, dense, moist								
a 34 yellow-brown, trace fine subrounded gravel present b 5 Set 11.7 121 b 11 29 CLAYEY SAND with GRAVEL (SC) yellow-brown, medium dense, moist, fine- to coarse-grained sand, fine subangular to subrounded gravel 19 9.2 11 SPT 11 24 45 SC mottled orange, dense 1 12 11 24 45 SC mottled orange, dense 1 19 9.2 12 11 28 52 CLAYE (CL) olive-brown, hard, moist, trace fine gravel 1 19 9.2 13 12 11 28 52 CLAYE (CL) olive-brown, hard, moist, trace fine gravel 1 1 19 9.2 14 12 11 28 52 CLAY (CL) olive-brown, hard, moist, trace fine gravel 1	3 —	CSU			26	SC									
5 sert 8 29 Present Present 19 9.2 7 - <td>4 —</td> <td>3001</td> <td></td> <td></td> <td>30</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>11.7</td> <td>121</td>	4 —	3001			30			_					11.7	121	
6 - - 16 10 CLAYEY SAND with GRAVEL (SC) - 7 - - - - - - - 8 - - - - - - - - 9 -	5 —														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 —	SPT			29		CLAYEY SAND with GRAVEL (SC)	-				19	9.2		
8 -	7 —							_							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 —							_							
10 3PT 17 12 SC mottled orange, dense 11 SPT 12 45 C mottled orange, dense 12 - CLAY (CL) - - - 14 - CLAY (CL) - - - 15 - SPT 11 22 52 - 16 - SPT 12 52 - - 17 - - CL - - - 18 - - - - - - 20 - SANDY CLAY with GRAVEL (CL) - - - 21 - SANDY CLAY with SAND (CL) - - - 22 - CLAY with SAND (CL) - - - - 23 -															
11 SPT 17 4 5 motiled orange, dense 12 12 12 12 11 12 11 12 13 14 15 11 12 52 CLAY (CL) 10 16 SPT 12 52 CLAY (CL) 0 0 10 17 12 52 CL CLAY (MCL) 0 0 10 18 19 16 52 52 SANDY CLAY with GRAVEL (CL) 0 10 20 54 16 52 52 CLAY (MI SAND (CL) 0 10 21 58H 10 22 CL CL 24 25 10.36 AN; 96/2018 73 23.8 24 24 50 52 SAND with GRAVEL (SP) 10.36 AN; 96/2018 73 23.8 27 15 50 52 SAND with GRAVEL (SP) 10.36 AN; 96/2018 73 23.8 31 SPT 16 50 59 SP 59 59 59 59 59 5						sc									
11 12 24 1 13 14 11 12 52 14 15 57 11 12 52 16 - SPT 12 52 12 cLAY (CL) olive-brown, hard, moist, trace fine gravel present 17 - - - - - - 18 - - - - - - 20 - SAND Y CLAY with GRAVEL (CL) olive-brown, hard, moist - - - 21 - SAND Y CLAY with SAND (CL) brown, very stiff, moist - - - 22 - - CL - - - 23 - - - - - - 24 - CL - - - - 25 - 11 2 Z - - - - 25 - - - - - - - - - - - - - - - -	10 —	SDT			15	00	mottled orange, dense								
13 13 13 13 13 14 15 11 12 52 15 12 52 11 12 52 11 12 52 16 SPT 12 52 CL 0	11 —	011						_							
14 -	12 —							_							
15 - SPT 11 22 52 CLAY (CL) olive-brown, hard, moist, trace fine gravel present 17 - 12 52 CL - - 18 - - - - - - 18 - - - - - - 20 - S&H 52 SANDY CLAY with GRAVEL (CL) olive-brown, hard, moist - - 21 - S&H 52 CLAY (CL) olive-brown, hard, moist - - 22 - - - - - - - 24 - - - - - - - 24 - - - - - - - - 25 - SPT 11 22 - CL With SAND (CL) brown, very stiff, moist Particle Size Distribution; see Appendix B -	13 —							_							
15	14 —							_							
16 SPT 22 52 present	15 —							_							
17 17 10 20 CL	16 —	SPT		22	52			_							
18 -				26											
19 - - slight petroleum odor present 20 - - - - 21 - SANDY CLAY with GRAVEL (CL) olive-brown, hard, moist - 22 - - - - 23 - - - - 24 - - - - 24 - - - - 24 - - - - 25 - SPT 11 0 22 CL Particle Size Distribution; see Appendix B - - 26 SPT 15 50 SAND with GRAVEL (SP) yellow-brown, dense to very dense, wet, fine- to coarse-grained sand, fine gravel - - 30 - 15 50 SP - 31 - SP - - - 32 - - - - - 31 - SP - - - 32 - - - - -						CL									
20 - Skipt petroleum odor present 21 - SANDY CLAY with GRAVEL (CL) olive-brown, hard, moist - 22 - CL - 23 - CL - 24 - CL - 25 SPT 11 10 22 CLAY with SAND (CL) brown, very stiff, moist Particle Size Distribution; see Appendix B - 26 SPT 11 10 22 SAND with GRAVEL (SP) yellow-brown, dense to very dense, wet, fine- to coarse-grained sand, fine gravel - 29 30 SPT 15 30 50 - 31 SPT 15 30 50 - - 32 Sering terminated at a depth of 31.5 feet below ground surface. * * SH and SPT blow counts for the last two increments were converted to SPT N-Values using factors of 0.63 hammer energy. * SRCKRIDGE GEOTECHNICAL															
21 S&H 16 52 SANDY CLAY with GRAVEL (CL) olive-brown, hard, moist 22 0	19 —						slight petroleum odor present	_							
21 50 CL Onversion of the structure of the struc	20 —						SANDY CLAY with GRAVEL (CL)								
23	21 —	S&H			52		olive-brown, hard, moist	_							
24	22 —					CL		_							
25 SPT 11 10 22 CL Particle Size Distribution; see Appendix B 26 SPT 10 22 Image: Close of the set of th	23 —							_							
25 SPT 11 10 22 CL Particle Size Distribution; see Appendix B 26 SPT 10 22 Image: Close of the set of th	24 —						CLAY with SAND (CL)								
26 SPT 11 10 22 Particle Size Distribution; see Appendix B 27 10 10 22 X 10:36 AM; 9/6/2018 73 23.8 27 SAND with GRAVEL (SP) yellow-brown, dense to very dense, wet, fine- to coarse-grained sand, fine gravel 73 23.8 29 SPT 15 16 30 50 SP - - 30 SPT 15 16 30 50 SP - - 31 SPT 15 16 30 50 S&H and SPT blow counts for the last two increments were converted to SPT N-Values using factors of 0.63 and 1.08, respectively, to account for sampler type and hammer energy. ROCKRIDGE and 1.08, respectively, to account for sampler type and hammer energy. ROCKRIDGE						<u> </u>									
20 10 10 SAND with GRAVEL (SP) yellow-brown, dense to very dense, wet, fine- to coarse-grained sand, fine gravel 29 15 50 30 15 50 31 SPT 15 32 S&H and SPT blow counts for the last two increments were converted to SPT N-Values using factors of 0.63 and 1.08, respectively, to account for sampler type and hammer energy. ROCKRIDGE sufface.		SPT			22							73	23.8		
28 - 29 - 29 - 29 - 30 - 50 - 50 - 50 - 50 - 50 - 50 - 50												.0			
28 - 29 - 29 - 29 - 30 - 31 - 5 = 50 SP - 29 - 29 - 30 - 20 - 20 - 20 - 20 - 20 - 20 - 20	27 —							\neg							
30 31 SPT 15 50 31 SPT 15 50 - 32 Sering terminated at a depth of 31.5 feet below ground surface. S&H and SPT blow counts for the last two increments were converted to SPT N-Values using factors of 0.63 and 1.08, respectively, to account for sampler type and hammer energy. ROCKRIDGE Project No.: Figure:	28 —							\neg							
31 SPT 15 16 30 50 32	29 —					SP		-							
31 SPT 16 50 32 32	30 —			15											
32 Boring terminated at a depth of 31.5 feet below ground surface. Boring backfilled with cement grout. Groundwater encountered at a depth of 26 feet during	, 31 —	SPT		16	50										
Skill and SPT blow counts for the last two increments surface. Boring backfilled with cement grout. Groundwater encountered at a depth of 26 feet during	32 -			30			1								
Boring backfilled with cement grout. Groundwater encountered at a depth of 26 feet during	Borin		nated a	at a de	pth of	31.5 fe	et below ground were converted to SPT N-Values using factors of 0.6	63		0	R O	CKRII)GE		
	Borir	ig back					hammer energy.			<u> </u>	GEG	OTECI	INICA	L	
			r encou	Intere	d at a d	aepth (of 26 feet during	Pro	oject N	₀.: 18-	1546	Figure:		A-2	

PROJECT:	480 E	EAST	ATH AND 400 EAST 5TH AVENUE San Mateo, California	g of	Bor	ring			OF 1				
Boring location:	See S		Logge	d by:	R. Ford								
Date started: 9/6/18 Date finished: 9/6/18 Dilled by: Exploration Geoservices Rig: B-61													
Drilling method: 8-inch-diameter Hollow Stem Auger													
Hammer weight/drop: 140 lbs./30 inches Hammer type: Downhole Wireline LABORATORY TEST DATA													
Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT)													
DEPTH (feet) (feet) Sampler Type Sample Blows/6"	o	ГІТНОГОСУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft			
1 - 2 2 - SPT 21	6 2 30	GP	3 inches of asphalt concrete 7 inches of aggregate base GRAVEL (GP) gray-brown, medium dense to dense, moist										
3 - 1	6 6 4 57		CLAYEY SAND (SC) yellow-brown, medium dense to dense, moist, coarse-gained sand										
5 -	8 2 37		very dense dense, trace fine gravel present	_									
7 — 8 —		sc		_									
9			very dense										
13 — 14 — 15 — 16 — S&H 1 17 — 18 —	8 44	CL	CLAY with SAND (CL) yellow-brown to yellow-orange, hard, moist, trace fine gravel Particle Size Distribution; see Appendix B	-				79	17.8	116			
19		CL	SANDY CLAY with GRAVEL (CL) olive-brown, very stiff, moist	-									
24 25 26 SPT 21 1 27 1 4	8 8 82 8		CLAYEY SAND with GRAVEL (SC) yellow-brown, very dense, moist to wet, coarse-grained sand, fine gravel	-									
28 - 29 - 30 - 21 SPT 2		SC	Particle Size Distribution; see Appendix B					16	11.5				
32 Boring terminated at a surface. Boring backfilled with o	cement g	grout.	and 1.08, respectively, to account for sampler ty hammer energy.	of 0.63		9	R RO GEO	CKRII DTECI	DGE HNICA	L			
Groundwater not enco	untered	during			Project	No.: 18-	1546	Figure:		A-3			

PROJECT: 480 EAST 4TH AND 400 EAST 5TH AVE San Mateo, California							AVENUE	Log	j of	Bor	ring			OF 2		
Boring location: See Site Plan, Figure 2											Logged by: R. Ford Drilled by: Exploration Geoservices					
Date started: 9/7/18 Date finished: 9/7/18											Drilled Rig:	by:	Explor B-61	ation Ge	eoservice	es
Drillir	thod:	8	-inch													
-	Hammer weight/drop: 140 lbs./30 inches Hammer type: Downhole Wireline												RATOR	Y TEST	T DATA	
Sam			<u> </u>		nwoo	od (S&H), St	andard Penetra	ation Test (SPT)					ŧ			
		SAMF		ı —	g		MATERIAI I	DESCRIPTION			Type of Strength Test	ining sure Sq Ft	itreng Sq Ft	é és	ural ture nt, %	ensity Cu Ft
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	гітногоду						Typ Strei Te	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
DE (fé	Sai	Sa	Blo	"ź	5		o of combined						Ś			
1 —							es of asphalt co es of aggregate				-					
2 —	SPT		14 10	21		SAND	Y SILT (ML)		obrio							
			9		ML	olive-č	ray, very sun, r	moist, with brick de	eons	<u> </u>						
3 —	S&H		8 20	38		hard				_ Y _						
4 —	SQLI		40	30			EY SAND with -brown. dense.	GRAVEL (SC) moist, fine suban	aular to	_	-					
5 —			14			subrou	Inded gravel		0	_						
6 —	SPT		15 17	35		Corros	sion Test; see A	Appenaix B		_	-					
7 —					SC					_	-					
8 —										_	-					
9 —					L					_						
						GRAV	FL with CLAV	and SAND (GP-G	C)		-					
10 —	SPT		18 38	67		yellow	-brown and yel	low-orange, very c	lense,	_	1			12	6.0	
11 —	011		24			moist,	coarse-grained e Size Distribut	d sand, fine gravel tion; see Appendix	κB	_	-				0.0	
12 —					GP-					_	-					
13 —					GC					_	-					
14 —										_	-					
15 —											-					
16 —	SPT		22 20	35		dense										
			12			SANDY CLAY (CL) yellow-brown mottled yellow-orange, hard,										
17 —							trace fine grave		aru,	_	1					
18 —					CL						-					
19 —										_	-					
20 —			21		SC	CLAY	EY SAND (SC)									
21 —	S&H		27 44	45	00	_∖ yellow		yellow-orange, de	ense,	/=	-					
22 —						│ <u>noist</u> SAND	Y CLAY (CL)				-					
23 —								red, hard, moist		_						
24 —																
25 —	SPT		11 17	51						_						
26 —	371		17 30	51	CL	trace f	ine gravel and	coarse-grained sa	nd		-					
27 —							-	-		_	_					
28 —						▼ 9:15 A	M; 9/7/2018			_	-					
29 —											-					
29 — 30 —						⊻ 8:15 A	M; 9/7/2018									
b	S&H		9 17	24			tiff, wet			_						
31 —			23							_						
32 —					L									CVDT		
												<u>></u>		CKRII OTECI)GE HNICA	L
											Project	No.: 1 Q	1546	Figure:		A-4a
												10-	1040			~ -4 d

Boring location: See Site Plan, Figure 2 Date started: 9/7/18 Date started: 9/7/18 Drilling method: 8-inch-diameter Hollow Stem Auger Hammer weight/drop: 140 bs./30 inches Hammer weight/drop: 140 bs./30 inches SAMPLES MATERIAL DESCRIPTION Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Sampler: CLAY (CL) CLAY (CL) CLAY (CL) Sc Sc Sampler: Sampler: Sampler: Sampler: Sampler: Sampler: </th <th>PRO</th> <th>JEC</th> <th>T:</th> <th>4</th> <th>80 E</th> <th>AST</th> <th>4TH AND 400 San Mateo,</th> <th>D EAST 5TH AVENUE California</th> <th>L</th> <th>.og (</th> <th>of</th> <th>Bor</th> <th>ring</th> <th></th> <th></th> <th>OF 2</th> <th></th>	PRO	JEC	T:	4	80 E	AST	4TH AND 400 San Mateo,	D EAST 5TH AVENUE California	L	.og (of	Bor	ring			OF 2	
Date started: 9/718 Part Internet: 9/718 Part Internet: 9/718 Duffing method: 8-inch-chiameter Hollow Stem Auger LABORATORY TEST DATA Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) LABORATORY TEST DATA Exampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Exampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Example: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Example: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Example: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SPT) Image: Sprague & Henwood (SAH), Standard Penetration Test (SC) Image: Sprague & Henwood (SAH), Standard Penetration Test (SC) Image: Sprague & Henwood (SAH), Standard Penetration Test (SC) Image: Sprague & Henwood (SAH), Standa	Boring	g loca	ation:	S	ee Si	ite Pl	an, Figure 2					Logge	d by:	R. Ford			
Hammer weight/drop: 140 lbs./30 inches Hammer type: Downhole Wireline LABORATORY TEST DATA Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Sprad (S, Sprague & Test (S												Drilled by: Exploration Geoservices Rig: B-61				es	
Sampler: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), Standard Penetration Test (SPT) Image: Sprague & Henwood (S&H), H		•															
SAMPLES OO MATERIAL DESCRIPTION Description # dig and	-		-							ine		LABORATORY TEST DATA					
1 2 5 inches of asphalt concrete 1 - 10-12 inches of aggregate base 3 - 10-12 inches of aggregate base 3 - GRAVEL with SAND GW 4 SPT 11-12 5 Set CLAY (CL) 6 Sat 12-25 5 Sat 12-25 6 Sat 12-25 CLAYEY SAND with GRAVEL (SC) - yellow-brown, modilum dense, moist, fine - 8 - - 9 - - 10 Set - 11 Set - 12 - - 13 - - 14 - - 15 - - 16 SPT 33 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 <td>Samp</td> <td></td> <td></td> <td>-</td> <td></td> <td>nwoo</td> <td>od (S&H), Star</td> <td>ndard Penetration Test (</td> <td>SPI)</td> <td></td> <td></td> <td></td> <td>n . t</td> <td>igth t</td> <td></td> <td>~ ~</td> <td>≥ +</td>	Samp			-		nwoo	od (S&H), Star	ndard Penetration Test (SPI)				n . t	igth t		~ ~	≥ +
1 - SPT 14 4 4 84 5 2.5 inches of asphalt concrete GRAVEL with SAND (GW) brown motiled gray, very dense, dry, fine gravel 3 - SPT 12 18 12 23 42 4 CLAY (CL) dark brown, hard, moist, with brick debris 4 SPT 12 12 23 25 CLAY EY SAND with GRAVEL (SC) yellow-brown, medium dense, moist, fine subrounded to subangular gravel 7 8 9 - - 10 SPT 21 30 62 GRAVEL with CLAY and SAND (GP-GC) yellow-brown motiled red-brown and yellow-orange, very dense, moist, fine gravel 11 SPT 35 33 38 77 - 14 - - - 15 SPT 12 30 65 14 - - - 15 SPT 12 40 65 20 SPT 12 40 65 21 SPT 7 5 19 22 - - - 23 - - - 24 - - - 25 - 7 10 19 - 26	DEPTH (feet)				1	гітногоду	М										Dry Density Lbs/Cu Ft
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2.5 inches of asphalt concrete														
2 4 GW brown motiled gray, very dense, dry, tine gravel 3 SPT 21 42 4 SPT 21 42 5 SaH 22 25 CLAY (CL) dark brown, hard, moist, with brick debris - 7 SaH 22 25 CLAY (SL) very dense, dry, tine gravel - 7 SaH 21 25 CLAYEY SAND with GRAVEL (SC) very subrounded to subangular gravel - 8 SPT 21 62 GRAVEL with CLAY and SAND (GP-GC) - - yellow-brown motiled red-brown and - 12 - - 13 - - 14 - - 15 SPT 35 77 GP- - - - 14 - - - 15 SPT 12 65 - 21 SPT 12 65 - 22 - - - -		SDT			84												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 —	JF I			04	GW			dry, fine gr	ravel							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_						CLAY (C	CL)		닅	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 —	SPT			42	CL	dark bro	own, hard, moist, with bri	ck debris								
6 S8H 17 25 CLAYEY SAND with GRAVEL (St) ine subrounded to subangular gravel 7 8 9 12 5C - 9 11 SPT 21 27 62 GRAVEL with CLAY and SAND (GP-GC) yellow-brown motiled red-brown and yellow-brown motiled red-brown and yellow-orange, very dense, moist, fine gravel - 11 SPT 35 77 GP-GC - 13 - - - - - 14 - - - - - 15 SPT 35 77 GP-GC - - 16 SPT 12 65 - - - 19 - - - - - - 20 - - - - - - - 21 SPT 7 8 19 - - - - 22 - - - - - - - - 23 - - - - - -	5 —			12							⊻⊣						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 —	S&H		17	25		yellow-b	y SAND with GRAVEL (SC) loist, fine		_						
$ \begin{array}{c} 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ - \\ 12 \\ 12 \\ 13 \\ 14 \\ - \\ 13 \\ - \\ 14 \\ - \\ 13 \\ - \\ 14 \\ - \\ 15 \\ - \\ 5PT \end{array} \begin{array}{c} 21 \\ 30 \\ 33 \\ 77 \\ 33 \\ 38 \\ 77 \\ GP \\ GC \\ GC \\ GC \\ - \\ GP \\ GC \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	7 —			•							_						
10 - 11 - SPT = 21 + 27 + 30 = 62 $CRAVEL with CLAY and SAND (GP-GC) + yellow-brown mottled red-brown and - yellow-orange, very dense, moist, fine gravel - 13 - 14 - 15 - 38 = 77 + 338 + 338 +$	8 —					SC					_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 —										_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 —					\backslash											
12 - 13 - 14 - 15 - 33 = 12 = 333 = 77 $16 - SPT = 333 = 77$ $GP - GC =$		SPT		27	62												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				30						el							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 —						increase	e in sand content			_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 —										_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				35							_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 —	SPT		33 38	77						_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 —										_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 —					GC					_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 —										_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 —			10							_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SPT		20	65												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				40													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
25																	
26 SPT 7 8 19 27 10 19 olive, very stiff, moist, trace fine gravel							C V NIDV										
		QDT		7	10				gravel		_						
	26 —	011			19						_						
	27 —										_						
28 – CL – –	28 —					CL					_						
											_						
29 - 30 - 30 = 30 $211:35 AM; 9/7/2018 = - 30 = - 3$	30 —	_		30			☑ 11:35 AI	M; 9/7/2018			_						
30 30 50 yellow-brown, hard, wet 70 21.8 10 31 31 Sate Sate Sate 70 21.8 10	31 —	S&H			50		Particle	Size Distribution; see Ap	pendix B		_				70	21.8	109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 —						12:10 PI	M; 9/7/2018									
											[C	P RO	CKRII	OGE	
Project No.: Figure:												Project		GE	OTECI	INICA	L
Project No.: Project No.: 18-1546 A-:												FIUJECU	18-	1546	i igule:		A-5a

			UNIFIED SOIL CLASSIFICATION SYSTEM
M	lajor Divisions	Symbols	Typical Names
200		GW	Well-graded gravels or gravel-sand mixtures, little or no fines
oils no.1	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines
× م	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures
ained of soil size)	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures
Coarse-Grained e than half of soil sieve size)	Sands	SW	Well-graded sands or gravelly sands, little or no fines
arse han s	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines
Coarse-Grained (more than half of soil sieve size)	coarse fraction < no. 4 sieve size)	SM	Silty sands, sand-silt mixtures
	10. 4 Sieve Size)	SC	Clayey sands, sand-clay mixtures
s (e		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts
Soils of soil e size)	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
Fine -Grained S (more than half < no. 200 sieve		OL	Organic silts and organic silt-clays of low plasticity
		МН	Inorganic silts of high plasticity
	Silts and Clays LL = > 50	СН	Inorganic clays of high plasticity, fat clays
		ОН	Organic silts and clays of high plasticity
Highly Organic Soils PT			Peat and other highly organic soils

GRAIN SIZE CHART									
	Range of Grain Sizes								
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters							
Boulders	Above 12"	Above 305							
Cobbles	12" to 3"	305 to 76.2							
Gravel coarse fine	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76							
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075							
Silt and Clay	Below No. 200	Below 0.075							

SAMPLE DESIGNATIONS/SYMBOLS

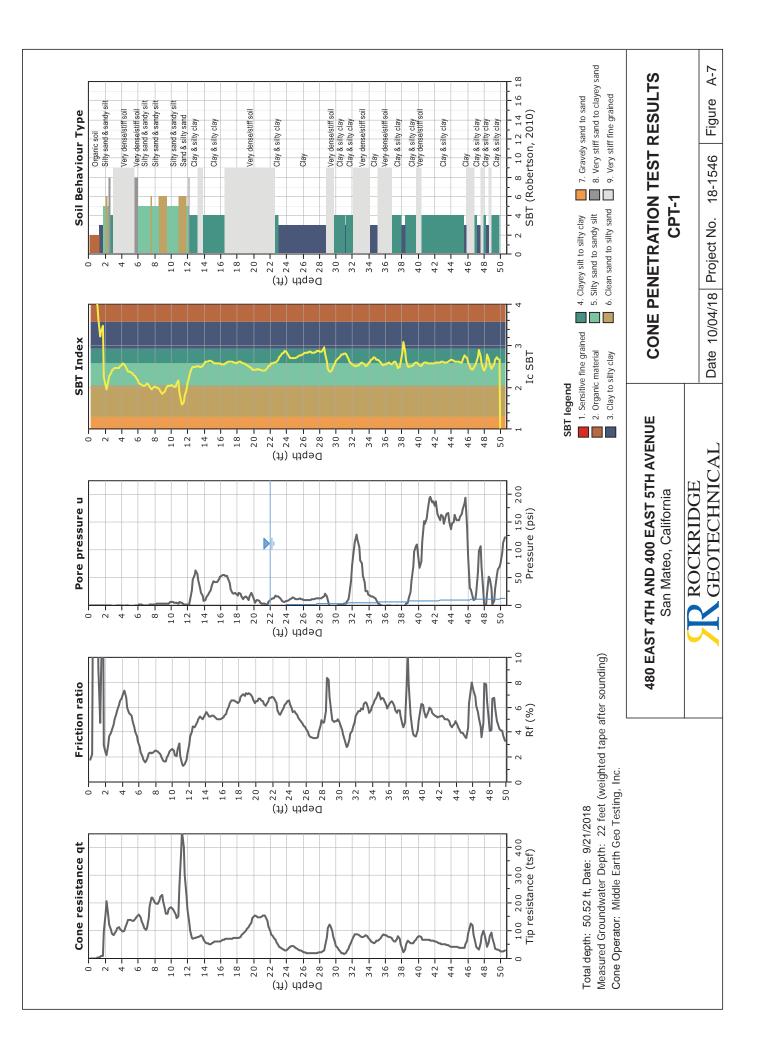
(GRAIN SIZE CHA	RT		Complet	alian with Conserve & Henrice ad antit bernal asserter with a				
	Range of Gra	ain Sizes							
fication	U.S. Standard	Grain Size		area indi	cates soil recovered				
	Sieve Size	in Millimeters		Classifica	ation sample taken with Standard Penetration Test sampler				
ers	Above 12"	Above 305							
es	12" to 3"	305 to 76.2		Undisturb	bed sample taken with thin-walled tube				
l 'se	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76		Disturbed	I sample				
se lium	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420		Sampling attempted with no recovery					
d Clay	No. 40 to No. 200 Below No. 200	0.420 to 0.075 Below 0.075		Sample taken with Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter. Darkened area indicates soil recovered Classification sample taken with Standard Penetration Test sampler Undisturbed sample taken with thin-walled tube Disturbed sample Sampling attempted with no recovery Core sample Analytical laboratory sample Sample taken with Direct Push sampler Sonic ER TYPE PT Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube S&H Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter SPT Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter ST Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure					
,				Analytical laboratory sample					
Unstabili	zed groundwater lev	rel		Sample taken with Direct Push sampler					
Stabilize	d groundwater level			Sonic					
			SAMPL	ER TYPE	E				
Core bar	rel			PT					
	a split-barrel sample and a 1.93-inch insi		side	S&H					
	Moore piston samp , thin-walled tube	oler using 2.5-inch o	outside	SPT	a 2.0-inch outside diameter and a 1.5-inch inside				
	g piston sampler usi ed Shelby tube	ng 3.0-inch outside	e diameter,	ST					
EAST	4TH AND 400 E San Mateo, Ca		NUE		CLASSIFICATION CHART				

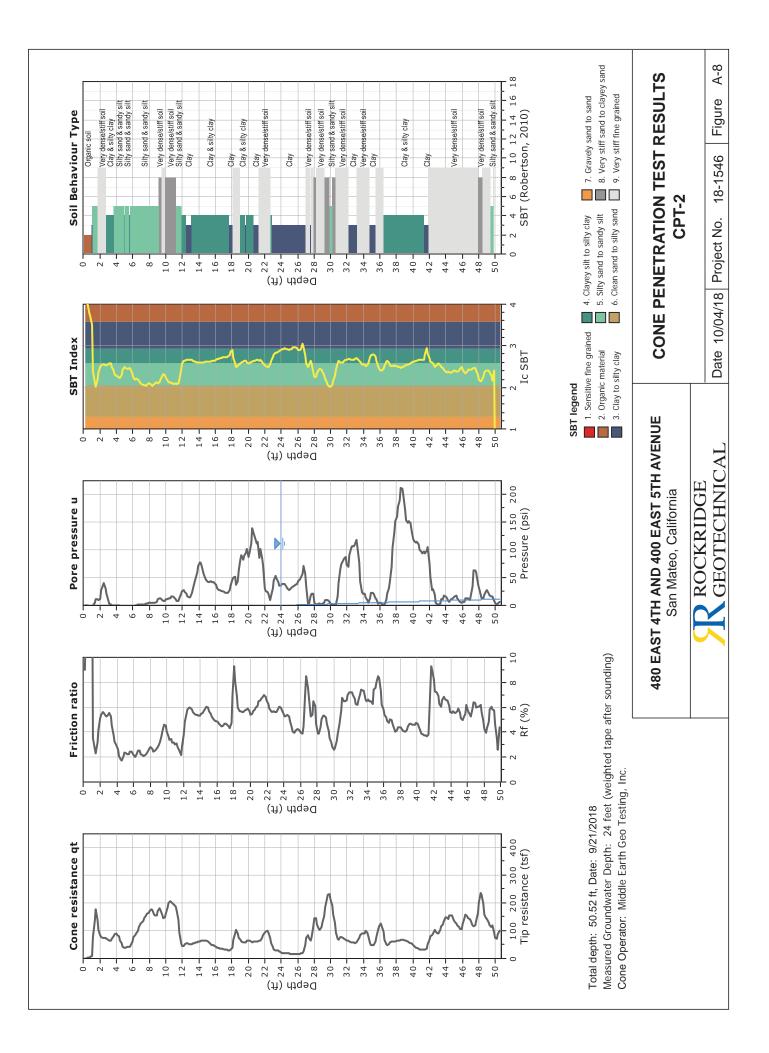
Date 09/07/18 Project No. 18-1546

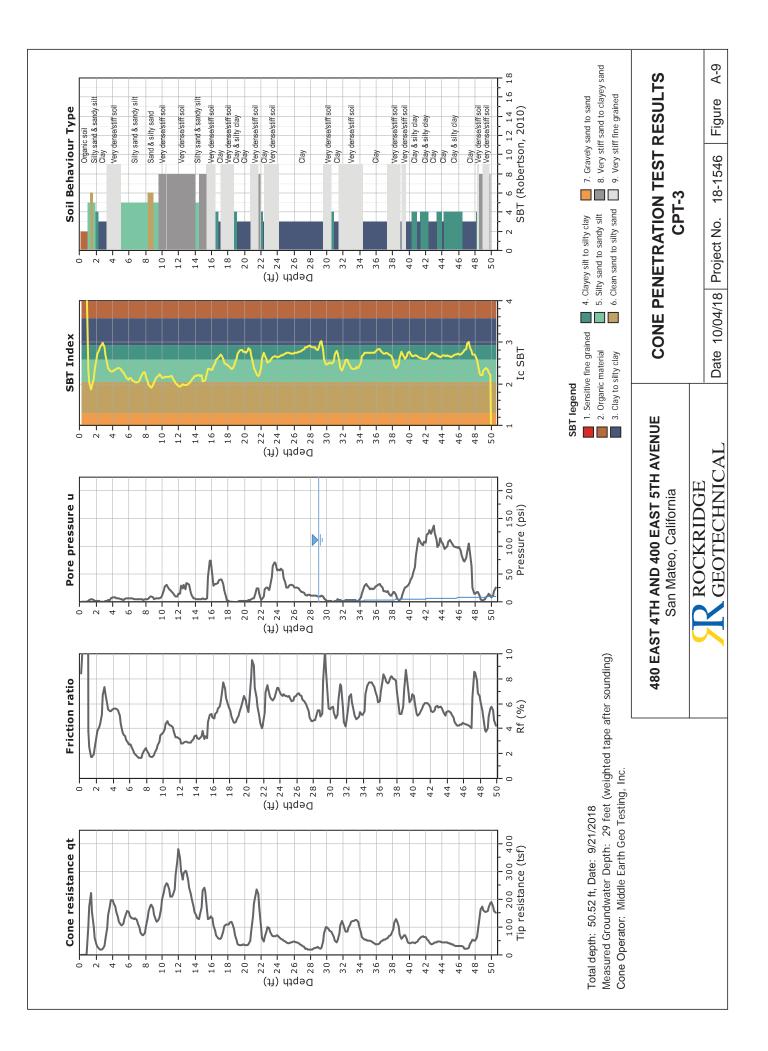
D&M Dames & Moore piston sampler using 2.5 diameter, thin-walled tube

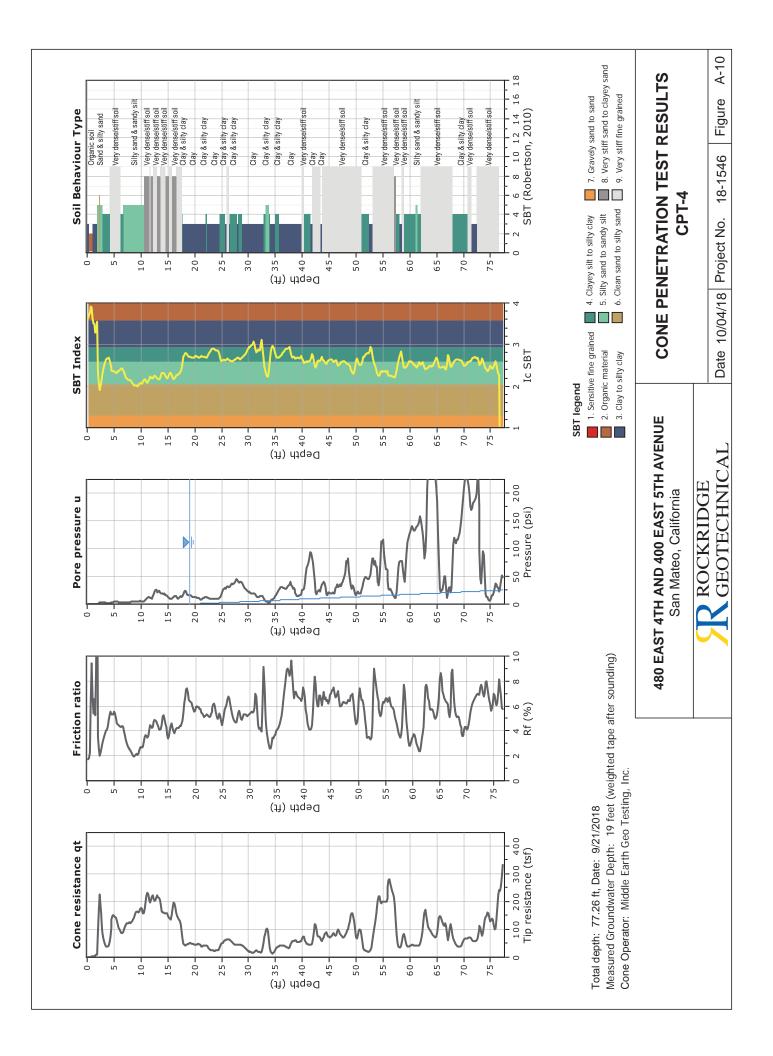
 \square

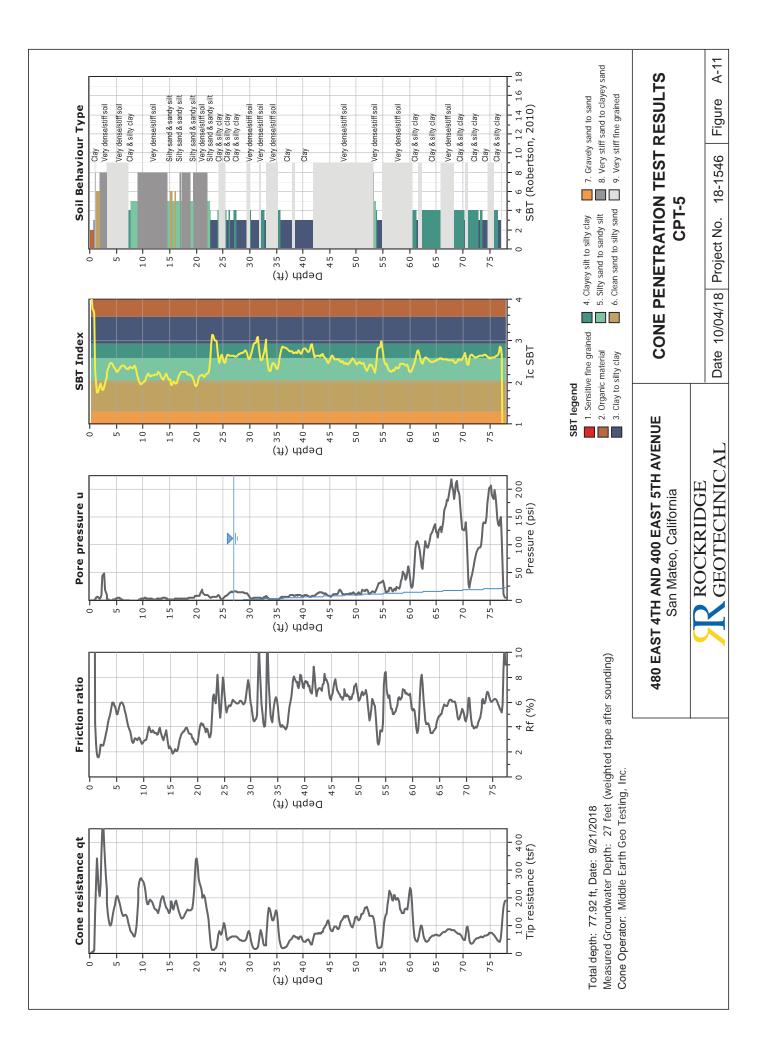
С

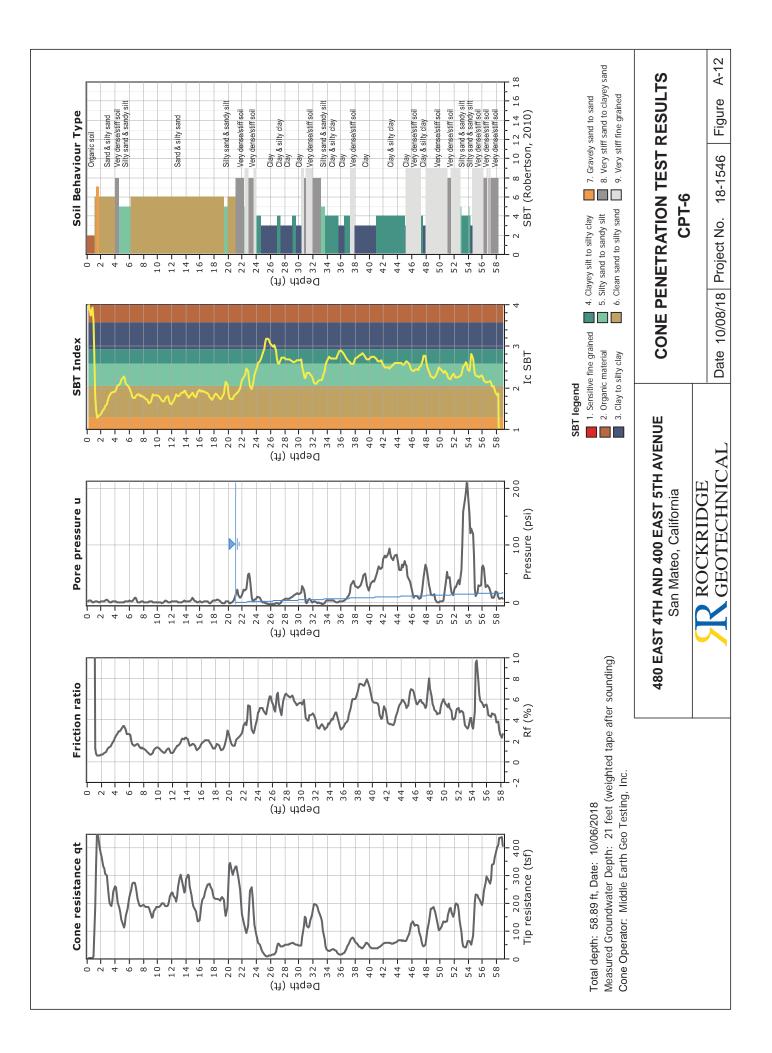

CA

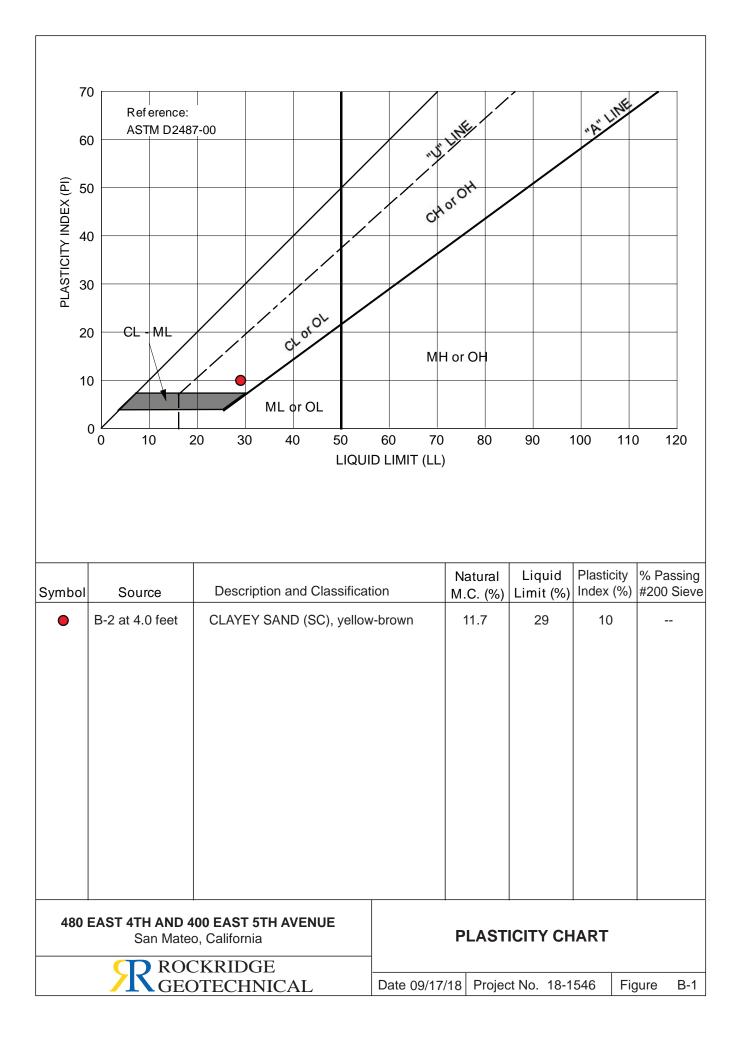

0 Osterberg piston sampler using 3.0-inch o thin-walled Shelby tube

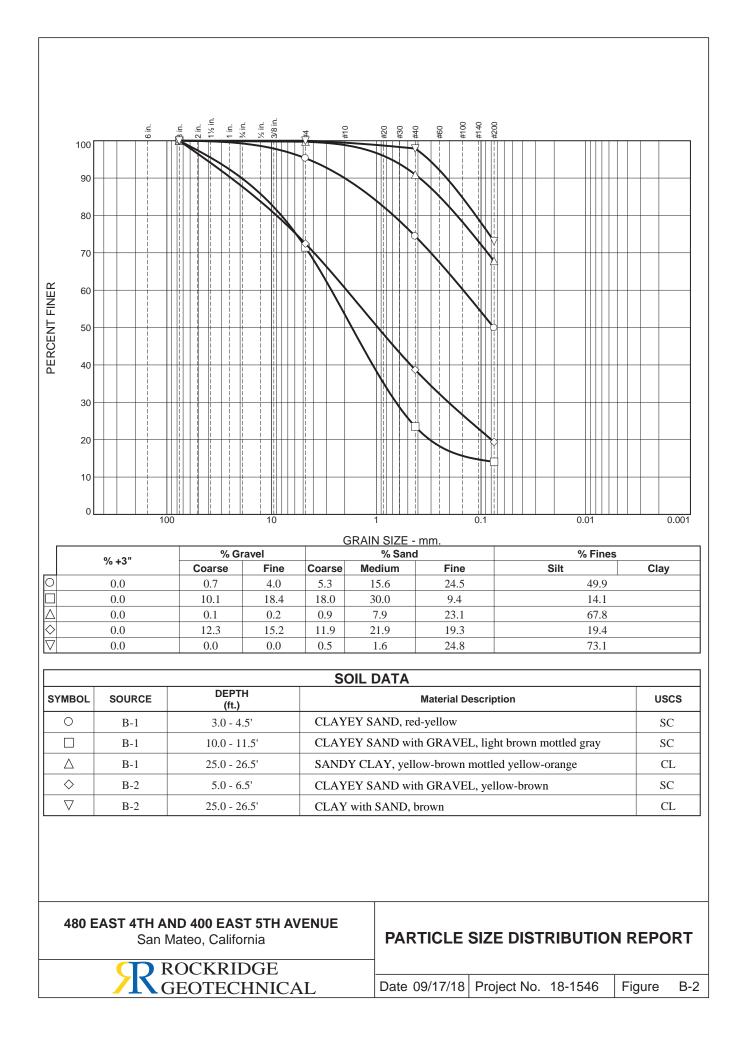

GEOTECHNICAL

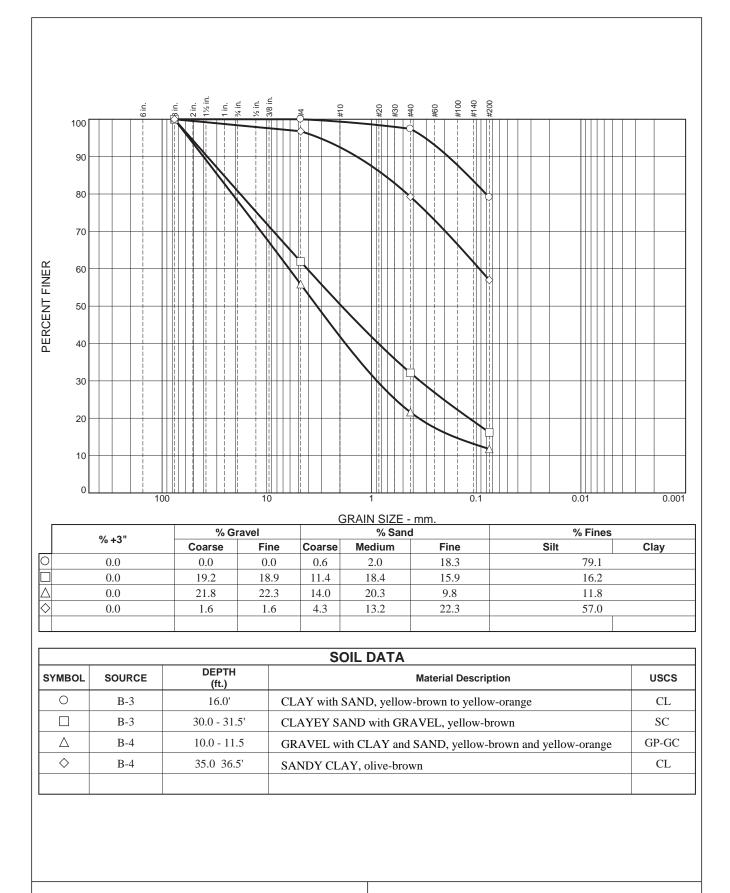

480 EAST 4TH AND 400 EAST 5TH AVENUE San Mateo, California	CLASSIFIC
ROCKRIDGE	


Figure A-6









APPENDIX B Laboratory Test Results

480 EAST 4TH AND 400 EAST 5TH AVENUE
San Mateo, California

PARTICLE SIZE DISTRIBUTION REPORT

RROCKRIDGE GEOTECHNICAL

Date 09/17/18 Project No. 18-1546 Figure

B-3

Results Only Soil Testing for 480 E 4th & 400 E 5th

September 13, 2018

Prepared for: Katie Dickinson Rockridge Geotechnical 270 Grand Ave, Oakland, CA 94610 ksdickinson@rockridgegeo.com

Project X Job#: S180911A Client Job or PO#: 18-1546

Soil Analysis Lab Results

Client: Rockridge Geotechnical Job Name: 480 E 4th & 400 E 5th Client Job Number: 18-1546 Project X Job Number: S180911A September 13, 2018

	Method ASTM G187		ASTM D516		ASTM D512B		SM 4500- NO3-E	SM 4500- NH3-C	SM 4500- S2-D	ASTM G200	ASTM G51	
Bore# / Description	Depth	Resis	tivity	Sulf	fates	Chlo	rides	Nitrate	Ammonia	Sulfide	Redox	pН
		As Rec'd Minimum										
	(ft)	(Ohm-cm)	(Ohm-cm)	(mg/kg)	(wt%)	(mg/kg)	(wt%)	(mg/kg)	(mg/kg)	(mg/kg)	(mV)	
B-4-2A / Sandy clay with gravel, red brown	3.5	20,100	3,417	60	0.0060	114	0.0114	54	6.5	0.66	239	6.84

Unk = Unknown NT = Not Tested ND = 0 = Not Detected mg/kg = milligrams per kilogram (parts per million) of dry soil weight Chemical Analysis performed on 1:3 Soil-To-Water extract

Please call if you have any questions.

Prepared by,

Nathan Jacob Lab Technician

Respectfully Submitted,

Eddie Hernandez, M.Sc., P.E. Sr. Corrosion Consultant NACE Corrosion Technologist #16592 Professional Engineer California No. M37102 <u>ehernandez@projectxcorrosion.com</u>

